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Preface

“As well as conveying a message in words and sounds, the speech signal
carries information about the speaker’s own anatomy, physiology, lin-
guistic experience and mental state. These speaker characteristics are
found in speech at all levels of description: from the spectral information
in the sounds to the choice of words and utterances themselves.”

The best way to introduce this textbook is by using the words Volker Dellwo and
his colleagues had chosen to begin their chapter “How Is Individuality Expressed
in Voice?” While they use this statement to motivate the introductory chapter
on speech production and the phonetic description of speech, it constitutes a
framework of the entire book as well: What characteristics of the speaker become
manifest in his or her voice and speaking behavior? Which of them can be
inferred from analyzing the acoustic realizations? What can this information be
used for? Which methods are the most suitable for diversified problems in this
area of research? How should the quality of the results be evaluated?

Within the scope of this book the term speaker classification is defined as as-
signing a given speech sample to a particular class of speakers. These classes
could be Women vs. Men, Children vs. Adults, Natives vs. Foreigners, etc.
Speaker recognition is considered as being a sub-field of speaker classification
in which the respective class has only one member (Speaker vs. Non-Speaker).
Since in the engineering community this sub-field is explored in more depth than
others covered by the book, many of the articles focus on speaker recognition.
Nevertheless, the findings are discussed in the context of the broader notion of
speaker classification where feasible.

The book is organized in two volumes. Volume I encompasses more general
and overview-like articles which contribute to answering a subset of the questions
above: Besides Dellwo and coworker’s introductory chapter, the “Fundamentals”
part also includes a survey by David Hill, who addresses past and present speaker
classification issues and outlines a potential future progression of the field.

The subsequent part is concerned with the multitude of candidate speaker
“Characteristics.” Tanja Schulz describes “why it is desirable to automatically
derive particular speaker characteristics from speech” and focuses on language,
accent, dialect, ideolect, and sociolect. Ulrike Gut investigates “how speakers can
be classified into native and non-native speakers of a language on the basis of
acoustic and perceptually relevant features in their speech” and compiles a list of
the most salient acoustic properties of foreign accent. Susanne Schötz provides a
survey about speaker age, covering the effects of ageing on the speech production
mechanism, the human ability of perceiving speaker age, as well as its automatic
recognition. John Hansen and Sanjay Patil “consider a range of issues associated
with analysis, modeling, and recognition of speech under stress.” Anton Batliner
and Richard Huber address the problem of emotion classification focusing on the
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specific phenomenon of irregular phonation or laryngealization and thereby point
out the inherent problem of speaker-dependency, which relates the problems
of speaker identification and emotion recognition with each other. The juristic
implications of acquiring knowledge about the speaker on the basis of his or her
speech in the context of emotion recognition is addressed by Erik Eriksson and
his co-authors, discussing, “inter alia, assessment of emotion in others, witness
credibility, forensic investigation, and training of law enforcement officers.”

The “Applications” of speaker classification are addressed in the following
part: Felix Burckhardt et al. outline scenarios from the area of telephone-based
dialog systems. Michael Jessen provides an overview of practical tasks of speaker
classification in forensic phonetics and acoustics covering dialect, foreign accent,
sociolect, age, gender, and medical conditions. Joaquin Gonzalez-Rodriguez and
Daniel Ramos point out an upcoming paradigm shift in the forensic field where
the need for objective and standardized procedures is pushing forward the use of
automatic speaker recognition methods. Finally, Judith Markowitz sheds some
light on the role of speaker classification in the context of the deeper explored
sub-fields of speaker recognition and speaker verification.

The next part is concerned with “Methods and Features” for speaker clas-
sification beginning with an introduction of the use of frame-based features by
Stefan Schacht et al. Higher-level features, i.e., features that rely on either lin-
guistic or long-range prosodic information for characterizing individual speakers
are subsequently addressed by Liz Shriberg. Jacques Koreman and his co-authors
introduce an approach for enhancing the between-speaker differences at the fea-
ture level by projecting the original frame-based feature space into a new fea-
ture space using multilayer perceptron networks. An overview of “the features,
models, and classifiers derived from [...] the areas of speech science for speaker
characterization, pattern recognition and engineering” is provided by Douglas
Sturim et al., focusing on the example of modern automatic speaker recognition
systems. Izhak Shafran addresses the problem of fusing multiple sources of in-
formation, examining in particular how acoustic and lexical information can be
combined for affect recognition.

The final part of this volume covers contributions on the “Evaluation” of
speaker classification systems. Alvin Martin reports on the last 10 years of
speaker recognition evaluations organized by the National Institute for Stan-
dards and Technology (nist), discussing how this internationally recognized se-
ries of performance evaluations has developed over time as the technology itself
has been improved, thereby pointing out the “key factors that have been studied
for their effect on performance, including training and test durations, channel
variability, and speaker variability.” Finally, an evaluation measure which aver-
ages the detection performance over various application types is introduced by
David van Leeuwen and Niko Brümmer, focusing on its practical applications.

Volume II compiles a number of selected self-contained papers on research
projects in the field of speaker classification. The highlights include: Nobuaki
Minematsu and Kyoko Sakuraba’s report on applying a gender recognition sys-
tem to estimate the “feminity” of a client’s voice in the context of a voice
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therapy of a “gender identity disorder”; a paper about the effort of studying
emotion recognition on the basis of a “real-life” corpus from medical emergency
call centers by Laurence Devillers and Laurence Vidrascu; Charl van Heerden
and Etienne Barnard’s presentation of a text-dependent speaker verification us-
ing features based on the temporal duration of context-dependent phonemes;
Jerome Bellegarda’s description of his approach on speaker classification which
leverages the analysis of both speaker and verbal content information – as well as
studies on accent identification by Emmanuel Ferragne and François Pellegrino,
by Mark Huckvale and others.

February 2007 Christian Müller
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Sacha Krstulović, Frédéric Bimbot, Olivier Boëffard,
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A Study of Acoustic Correlates of Speaker Age

Susanne Schötz1 and Christian Müller2

1 Dept. of Phonetics, Centre for Languages and Literature,
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Abstract. Speaker age is a speaker characteristic which is always
present in speech. Previous studies have found numerous acoustic fea-
tures which correlate with speaker age. However, few attempts have been
made to establish their relative importance. This study automatically ex-
tracted 161 acoustic features from six words produced by 527 speakers
of both genders, and used normalised means to directly compare the
features. Segment duration and sound pressure level (SPL) range were
identified as the most important acoustic correlates of speaker age.

Keywords: Speaker age, Phonetics, Acoustic analysis, Acoustic
correlates.

1 Introduction

Many acoustic features of speech undergo significant change with ageing. Ear-
lier studies have found age-related variation in duration, fundamental frequency,
SPL, voice quality and spectral energy distribution (both phonatory and reso-
nance) [1,2,3,4,5,6]. Moreover, a general increase of variability and instability,
for instance in F0 and amplitude, has been observed with increasing age.

The purpose of the present acoustic study was to use mainly automatic meth-
ods to obtain normative data of a large number of acoustic features in order
to learn how they are related to speaker age, and to compare the age-related
variation in the different features. Specifically, the study would investigate fea-
tures in isolated words, in stressed vowels, and in voiceless fricatives and plo-
sives. The aim was to identify the most important acoustic correlates of speaker
age.

2 Questions and Hypotheses

The research questions concerned acoustic feature variation with advancing spea-
ker age: (1) What age-related differences in features can be identified in female
and male speakers? and (2) Which are the most important correlates of speaker
age?

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 1–9, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Based on the findings of earlier studies (cf. [5]), the following hypotheses were
made: Speech rate will generally decrease with advancing age. SPL range
will increase for both genders. F0 will display different patterns for female and
male speakers. In females, F0 will remain stable until around the age of 50
(menopause), when a drop occurs, followed by either an increase, decrease or
no change. Male F0 will decrease until around middle age, when an increase
will follow until old age. Jitter and shimmer will either increase or remain
stable in both women and men. Spectral energy distribution (spectral tilt)
will generally change in some way. However, in the higher frequencies (spectral
emphasis), there will be no change. Spectral noise will increase in women,
and either increase or remain stable in men. Resonance measures in terms of
formant frequencies will decrease in both female and male speakers.

3 Speech Material

The speech samples consisted of 810 female and 836 male versions of the six
Swedish isolated words käke ["CÈ:k@] (jaw), saker ["sà:k@K] (things), själen ["ÊE:l@n]
(the soul), sot [su:t], typ [ty:p] (type (noun)) and tack [tak] (thanks). These words
were selected because they had previously been used by the first author in a
perceptual study [7] and because they contained phonemes which in a previous
study had shown tendencies to contain age-related information (/p/, /t/, /k/,
/s/, /C/ and /Ê/) [8]. The words were produced by 259 female and 268 male
speakers, taken from the SweDia 2000 speech corpus [9] as well as from new
recordings. All speakers were recorded using a Sony portable DAT recorder TCD-
D8 and a Sony tie-pin type condenser microphone ECM-T140 at 48kHz/16 bit
sampling frequency in a quiet home or office room. Figure 1 shows the age and
gender distribution of the speakers.
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Fig. 1. Age distribution of the speakers used in this study
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4 Method and Procedure

The acoustic analysis was carried out using mainly automatic methods. However,
occasional manual elements were necessary in a few steps of the procedure. All
words were normalised for SPL, aligned (i.e. transcribed into phoneme as well as
plosive closure, VOT and aspiration segments) using several Praat [10] scripts
and an automatic aligner1. Figure 2 shows an alignment example of the word
tack. The alignments were checked several times using additional Praat scripts
in order to detect and manually correct errors.

Fig. 2. Example of the word tack, aligned into word, phoneme, VOT, plosive closure
and aspiration segments

The aligned words were concatenated; all the first word productions of a
speaker were combined into one six-word sound file, all the second ones con-
catenated into a second file and so on until all words by all speakers had been
concatenated. Figure 3 shows an example of an concatenated file.

Fig. 3. Example of a concatenated file, aligned into word, phoneme, plosive closure,
VOT and aspiration segments

1 Originally developed by Johan Frid at the Department of Linguistics and Phonetics,
Centre for Languages and Literature, Lund University, but further adapted and
extended for this study by the first author.
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A Praat script1 extracted 161 acoustic features – divided into seven fea-
ture groups – from the concatenated words. Some features (e.g. syllables and
phonemes per second, jitter and shimmer) were extracted only for all six words,
while others (e.g. F0, formant frequencies and segment duration) were extracted
for several segments, including all six words and stressed vowels. Table 1 offers
an overview of which segments were analysed in each feature group. Most fea-
tures were extracted using the built-in functions in Praat. More detailed feature
descriptions are given in [5].

Table 1. Segments analysed in each feature group (LTAS: long-term average spec-
tra, HNR: harmonics-to-noise ratio, NHR: noise-to-harmonics ratio, sp.: spectral, str.:
stressed)

Nr Feature group Segments analysed
syllables & phonemes per second whole file

1
segment duration (ms) whole file, words, str. vowels,

2 sound pressure level (SPL) (dB) fricatives, plosives (incl. VOT)

3 F0 (Hz, semitones) whole file, words, str. vowels

4 jitter, shimmer
sp. tilt, sp. emphasis, whole file

5
inverse-filtered SB, LTAS

6 HNR, NHR, other voice measures whole file, str. vowels

formant frequencies (F1–F5) str. vowels
7

sp. balance (SB) fricatives and plosives

The analysis was performed with m3icat, a toolkit especially developed for
corpus analysis [11]. It was used to calculate statistical measures, and to generate
tables and diagrams, which displayed the variation of a certain feature as a
function of age. The speakers were divided into eight overlapping “decade-based”
age classes, based on the results (mean error ±8 years) of a previous human
listening test [7]. There were 14 ages in each class (except for the youngest and
oldest classes): 20, aged 20–27; 30, aged 23–37; 40, aged 33–47; 50, aged 43–57;
60, aged 53–67; 70, aged 63–77; 80, aged 73–87; 90, aged 83–89.

For each feature, m3iCat calculated actual means (μ), standard deviations
(σ) and normalised means (μ̄) for each age class. Normalisation involved mapping
the domain of the values in the following way:

ai =
(vi − mean)

stdev
(1)

where vi represents the actual value, mean represents the mean value of the
data and stdev represents the corresponding standard deviation. Occasionally,
normalisations were also carried out separately for each gender. This was done
in order to see the age-related variation more distinctly when there were large
differences in the real mean values between female and male speakers, e.g. in
F0 and formant frequencies. Because of the normalisation process, almost all
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values (except a few outliers) fall within the range between − 1 and + 1, which
allows direct comparison of all features regardless of their original scaling and
measurement units.

The values calculated for the eight age classes were displayed in tables, sep-
arately for female and male speakers. In addition, line graphs were generated
for the age-class-related profiles or tendencies, with the age classes on the x-axis
and the normalised mean values on the y-axis. The differences between the nor-
malised mean values of all pairs of adjacent age classes are displayed as labels
at the top of the diagrams (female labels above male ones). Statistical t-tests
were carried out to calculate the significance of the differences; all differences ex-
cept the ones within parentheses are statistically significant (p ≤ 0.01). Figure 4
shows an example of a tendency diagram where the normalisations were carried
out using all speakers (top), and the same tendencies but normalised separately
for each gender (bottom).
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−0.14 −0.35 −0.34 (0) 0.14 (0.09) (−0.17)

(−0.09) −0.27 (−0.01) 0.24 0.17 (0.07) 0.78

female
male

Fig. 4. Normalised tendencies for mean F0 (Hz) (all six words), 8 overlapping age
classes, normalised for all speakers (top) and normalised separately for female and
male speakers (bottom)

The advantage of using normalised means is that variation can be studied
across features regardless of differences in the original scaling and units of the
features. For instance, it allows direct comparison of the age-related variance
between duration and F0 by comparing the tendency for segment duration (in
seconds) with the tendency for mean F0 (in Hz).

5 Results

Due to the large number of features investigated, the results are presented by
feature group (see Table 1). Moreover, only a few interesting results for each
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feature group will be described, as it would be impossible to present the results
for all features within the scope of this article. A more comprehensive presenta-
tion of the results is given in [5].

The number of syllables and phonemes per second generally decreased with
increased age for both genders, while segment duration for most segments in-
creased. The tendencies were less clear for the female than the male speakers.
Figure 5 shows the results for all six words.
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Fig. 5. Normalised tendencies for duration (all six words)

Average relative SPL generally either decreased slightly or remained constant
with increased female and male age. The SPL range either increased or remained
relatively stable with advancing age for both genders. Figure 6 shows the results
for SPL range in the word käke. Similar tendencies were found for the other
words, including the one without plosives; själen ["ÊE:l@n].
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Fig. 6. Normalised tendencies for SPL range (käke)

Female F0 decreased until age group 50 and then remained relatively stable.
Male F0 lowered slightly until age group 50, but then rose into old age. Due to
the gender-related differences in F0, the results for mean F0 (Hz, all six words)
are presented in Figure 7 as normalised separately for each gender to show clearer
tendencies.
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Fig. 7. Normalised (separately for each gender) tendencies for mean F0 (Hz, all six
words)

Although generally higher for male than female speakers, no continuous in-
crease with age was found in either gender for jitter and shimmer. Female values
remained relatively stable from young to old age. Male values generally increased
slightly until age group 40, and then decreased slowly until old age, except for a
considerable decrease in shimmer after age class 80. Figure 8 shows local shimmer
for all six words.
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Fig. 8. Normalised tendencies for local shimmer (all six words)

Spectral energy distribution displayed varying results, though most measures
did not change much with increased age. Figure 9 shows the LTAS amplitudes
at 320 Hz, which generally increased with advancing age for both genders.

Few age-related changes were found in female NHR. Male NHR increased
slightly until age class 50, where a decrease followed. Figure 10 displays the
results for NHR in [A:].

Resonance feature results varied with segment type in both genders. F1 de-
creased in [E:] (and in female [y:]), but remained stable in [a], [A:] and [u:]. F2 was
stable in [y:] and increased slightly with advancing age in [A:] and [E:] for both
genders, but decreased slightly in [a] and [u:], interrupted by increases and peaks
at age group 40. In F3 and F4, a decrease was often observed from age class 20 to
30, followed by little change or a very slight increase. Figure 11 shows normalised
tendencies for F1 and F2 in the vowel [E:].
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Fig. 9. Normalised tendencies for LTAS amplitudes at 320 Hz (dB, all six words)
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Fig. 10. Normalised tendencies for NHR ([A:])
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Fig. 11. Normalised (separately for each gender) tendencies for mean F1 (top) and
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6 Discussion and Conclusions

Many of the hypotheses were confirmed. However, some were contradicted. Pos-
sible explanations for this include differences in the speech material compared
to previous studies and the fact that mainly automatic methods were used in
this study. Still, the study provided some interesting results which may be used
when building automatic estimators of speaker age: (1) Automatic methods can
be used to analyse large speech data sets in relation to speaker age, and may
yield similar results as manual studies, (2) The relatively most important corre-
lates of adult speaker age seem to be speech rate and SPL range. F0 also may
provide consistent variation with speaker age, as may F1, F2 and LTAS in some
segments and frequency intervals. These features may be used in combination
with other features as cues to speaker age and (3) The type of speech material
used in acoustic analysis of speaker age is very likely to influence the results.

These findings will be used in future studies to improve the automatic classi-
fication of speaker age.
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Abstract. Several factors determine the ease and accuracy with which we can 
estimate a speaker's age. The question addressed in our study is to what extent 
visual and auditory cues compete with each other. We investigated this question 
in a series of five related experiments. In the first four experiments, subjects es-
timated the age of 14 female speakers, either from still pictures, an audio re-
cording, a video recording without sound, or a video recording with sound. The 
results from the first four experiments were used in the fifth experiment, to 
combine the speakers with new voices, so that there was a discrepancy in how 
old the speaker looked and how old she sounded. The estimated ages of these 
dubbed videos were not significantly different from those of the original videos, 
suggesting that voice has little impact on the estimation of age when visual cues 
are available. 

Keywords: age estimation, visual cues, auditory cues, dubbed video. 

1   Introduction 

When meeting a person for the first time, we form an opinion of him or her in just a 
few seconds (Gladwell, 2006). In this process, age estimation is an important part, 
which provides a large amount of information about the person we meet. 

When making this estimation, visual cues (such as wrinkles, hair style, posture, 
and clothes) probably have a large impact. Recent studies suggest that people are able 
to determine a persons age by approximately five years, from looking at a picture of 
their face (Vestlund, 2004). Auditory cues, such as word choice and voice, also play a 
role, but yield less exact estimates than visual cues. Studies have shown that, when 
visual cues are not available, people can estimate a person’s age with an absolute dif-
ference of 10 years (Ptacek & Sander, 1966). 

Acoustic characteristics of voice contain information about a speaker’s age. Physi-
cal changes during the ageing process (decreasing lung capacity, calcification of the 
larynx, loss of muscular control) influences our voices to various degrees. Audible 
changes include a decrease in vocal intensity, lowering of vocal pitch, and narrowing 
of the vocal pitch range. Furthermore, voices tend to become harsher. Finally, elderly 
people often speak slower than younger people (Schötz, 2001). However, Brückl and 
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Sendlmeier (2003) found no difference in articulation rate between young and old 
women during read speech. 

Recently, Schötz (2006) described how these changes in voice can be synthesised 
using data-driven formant synthesis. In her study, acoustic parameters were extracted 
from the Swedish word ‘själen’ (the soul), spoken by four differently aged females of 
the same family. The information was subsequently used to synthesize voices of dif-
ferent ages. 

The accuracy with which people can estimate a person’s age, either from auditory 
or from visual information, has been studied into great detail. The following effects 
have come forward. 

The expert effect 
The expert effect means that training makes perfect. Studies have shown that, for in-
stance, professionals who work with specific age groups, are more accurate at esti-
mating the age within that age range than others (Lindstedt, 2005). Vestlund (2006) 
for example, showed that sales persons at the Swedish alcohol retail company (who 
are not allowed to sell alcohol to persons under 20) were better than a non-expert 
group at estimating the ages of people between 15 and 24 years old. A similar finding 
is reported by Nagao and Kewely-Port (2005) who compared native speakers of Japa-
nese with native speakers of American English. Both groups were asked to estimate 
the age of Japanese and of American English speakers. Overall, the subjects were 
more correct when estimating the age of a speaker of their own language. Further-
more, the Japanese listeners were better than the English listeners at estimating the 
ages. This might be due to the fact that Japanese more frequently interact with elderly 
people (more than half of the Japanese subjects lived with at least one grandparent). 
In another study (Dehon & Bredart, 2001) with pictures instead of living persons, 
Caucasian subjects performed better at estimating the age of other Caucasians than 
they were on estimating the age of people of other races. A third variant of the expert 
effect is that it is easier to estimate the age of persons your own age (George & Hole, 
1995; Vestlund, 2004). In a line-up confrontation experiment where subjects were to 
recognize a culprit among other persons, the subjects were more often correct when 
the perpetrator was their own age (Wright & Stroud, 2002). 

Age 
Overall, young adults tend to outperform older adults at age estimations, both from 
pictures (Vestlund, 2004) and sound (Linville, 1987). In a forensic context, young 
people have been found to be more reliable than elderly people as eyewitnesses 
(Wright & Stroud, 2002). Mulac and Giles (1996) added to the age effect by showing 
that someone’s voice is not perceived as the person’s chronological age, but how old 
the person feels. That is, if a person feels younger than his or her chronological age, 
this will be reflected in this person’s voice and consequently, the listener will perceive 
him or her as younger. 

Stimulus duration 
The duration of the acoustic stimulus has an impact on how well subjects are able  
to estimate age from a speaker. Schötz (2005) found that the absolute difference  
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between chronological age and perceived age increases significantly from 6.5 to 9.7 
years when the stimulus duration (spontaneous speech) decreases from 10 to 3 sec-
onds. Nagao & Kewely-Port, (2005) also found that estimations improved when  
subjects received more contextual information. 

Sex 
Conflicting results exist as to whether it is easier to estimate a man’s or a woman’s 
age. Dehon and Bredart (2001) and Krauss et al. (2001), on the one hand, found that 
the ages of men were easier to estimate than the ages of women. Schötz (2005) and 
Vestlund (2006), on the other hand, found that subjects were better at estimating 
women’s ages. 

Dialect 
Elderly speakers are more likely to have a strongly pronounced dialect than younger 
speakers, as well as men tend to be more dialectal than women (Stölten & Engstrand, 
2003; Stölten, 2001). The strength of dialect consequently is an auditory cue when es-
timating the age of a speaker. 

General effects 
Several studies of both age estimation from pictures (Vestlund, 2004) and from 
acoustic cues (Schötz, 2005; Cerrato et al., 2000) suggest that the age of younger 
people often is overestimated, while the age of older people is underestimated. This 
indicates that subjects tend to place speakers in the middle range. Cerrato et al. (2000) 
received most correct estimations of people in the age group 46-52. Dehon and Bre-
dart (2001), however, found that poor age estimations from faces are most often over-
estimations. 
 
In all, age estimation is a fairly well examined research area. However, most studies 
only concern the impact of either voice or looks. It is very common, though, that both 
auditory and visual information are available at the same time. An unexplored ques-
tion is whether the voice of a speaker has an impact on the estimation of a person’s 
age when information about the person’s looks is simultaneously available. Is it easier 
to make a correct estimation when having access to both sources of information? And 
if the voice does not agree with the looks, what affects the perceiver more, picture or 
sound? 

Differences in estimations made from voices and pictures were examined by 
Krauss et al. (2002). They carried out two experiments in which they compared age 
estimation from photographs and from voices. In the first experiment, the subjects 
heard two sentences read by two different speakers. They were then shown two pho-
tographs which they had to match with the two voices. The subjects selected the cor-
rect photograph more than 75% of the time, which is reliably above chance level. In 
the second experiment a group of participants were exposed to the same sentences as 
in the first experiment but this time they were asked to estimate the speaker’s age, 
height and weight. A comparison group made the same estimations from pictures of 
the speakers. The results showed that the estimations made from the photographs 
were only marginally better than the ones made from the voice samples. 
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It is clear that higher accuracy in age estimating is achieved when perceivers have 
access to a person’s looks instead of only the voice (cf. an absolute difference of five 
respective ten years). It is unclear, however, how much simultaneously available vis-
ual and auditory cues contribute individually to the estimation of speaker age. The 
present study addresses this issue in a series of five related experiments. We recorded 
14 differently-aged women on video tape. These video clips were subsequently pre-
sented to five groups of participants, every time in a different modality: 1) as still pic-
tures, 2) as soundless videos, 3) as audio clips, 4) as the full video with the original 
sound, and, 5) as the full video but with the voice of the speaker replaced with the 
voice of one of the other speakers. 

This design makes it possible to directly compare the estimation of age when a 
speaker is shown with or without voice. The goal of the Experiment 5 was to establish 
whether the participants’ estimations could be altered by giving the speakers a voice 
that sounded either considerably older or younger (as was revealed by the results of 
Experiment 3) than their own voices. The results of this experiment were then com-
pared with those of Experiment 4 in order to establish whether the estimated age of a 
speaker had changed. If so, that would indicate that the voice contributes to age  
estimation. Experiment 2 was included in the present study mainly to establish 
whether the extra information provided by soundless video yielded significantly better 
estimates than still pictures. 

2   Method 

Speaker characteristics 
Since previous research (Dehon & Bredart, 2001; Krauss et al., 2001; Schötz, 2005; 
Vestlund 2006) had shown a difference in the ability of estimating men and women, 
we decided to use only female speakers for the present study. Because of the pro-
nounced change of voice in puberty only adults participated. The age interval of  
approximately five years was chosen because previous studies show that participants 
are able to estimate a speaker’s age with an accuracy of approximately five years. The 
women’s ages were: 17, 25, 31, 35, 38, 45, 47, 54, 55, 58, 65, 73, 76, 81, representing 
the entire adult age range. All women spoke Southern Swedish dialect. They were 
non smokers and did not have any known pathological voice disorder. Nor did any of 
them have a cold at the time of the recording. The speakers had not received any in-
structions about visual appearance (clothing, make up, hair style). They all wore cas-
ual clothing, and, according to us, they did not look or sound older or younger than 
their chronological age. 

Equipment, recording conditions 
The recordings were made at some time between 10 AM and 4 PM in an isolated re-
cording booth. The speakers sat down on a chair in front of a neutral light background 
where they were recorded in portrait form. Recordings were made with a DV camera 
(Panasonic NVGS-180) and an external wireless microphone (Sony UTX-H1), 
mounted on a tripod. All women were first given the opportunity to look at the test  
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sentence for as long as they needed. A sign with the text was placed next to the cam-
era, so that the speakers could read it out loud and did not need to memorize the exact 
text. In order to facilitate dubbing we tried to obtain test sentences that were all read 
at approximately equal speed. The reading speed of the first speaker (age 25) was 
used as a reference during the subsequent recordings. The other speakers were first 
asked to read in their own tempo, and then, if necessary, told to increase or decrease 
their speaking rate to end up as close as possible to the reference time, without their 
speaking style becoming unnatural. 

Material 
The sentence used for the investigation was “En undersökning som denna är viktig för 
förståelsen av folks röster i olika åldrar” (A study like this is important for the under-
standing of people’s voices in different ages). In order to minimize the effect of  
dubbing a new voice onto a speaker, the sentence had few visibly salient speech 
sounds (for example, bilabial, labiodental). Furthermore, the sentence was not too 
long (a duration of about five seconds). According to previous research results 
(Schötz, 2005) five seconds is rather short to make a fair estimation of the age. In  
order to compensate for this, the participants in our study were allowed to watch or 
listen to the stimuli as many times as they wished. 

Preparation of the materials 
The video recordings were transferred to a Macintosh computer for preparation for 
the five experiments. Preparation was done using the video-editing program iMovie, 
and the speech-editing software Audacity. 14 clips with similar durations that seemed 
most suitable for the dubbing experiment were first selected from the available mate-
rial. These clips were used for Experiments 2 and 4. For Experiment 1, a neutral-
looking still picture of each speaker was taken from the original clips, and for  
Experiment 3, the mono sound signals were extracted and saved as audio files. 

Our aim for Experiment 5 was to combine speakers with a new voice that sounded 
between 15 and 20 years younger or older than the speaker’s own voice. It turned  
out that this was not possible for all speakers. In spite of the effort taken to equalize 
reading speed and utterance duration during the recordings, there was, inevitably, 
considerable variation in phrasing and pausing, which made it impossible to find an 
appropriate combination with a new voice for some speakers. We found 10 combina-
tions of speakers and voices that appeared good enough for participants not to notice 
that the voice of the speaker was dubbed. In order to mask the fact that some video 
clips were dubbed, five dubbed clips were combined with five original video clips, 
and presented in two experimental sessions. The voices were dubbed onto the re-
cordings with iMovie. In some cases, minor changes (e.g., shortening of fricative du-
rations, shortening or lengthening of pauses) were made to the sound signal with  
Audacity so that the fit between sound and image improved. 

Subjects 
To participate in the sound only experiment (Experiment 3), the original video 
(Experiment 4) experiment or the dubbed video (Experiment 5) experiment, 
participants could only be native Swedish speakers. This was to prevent a possible 
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‘other-language effect’ affecting the results. In the other experiments, there were no 
nationality restrictions for participating. All participation was voluntary. 

Procedure 
Most participants were tested in a computer room at Lund University. An additional 
number were tested at other locations. In those cases, a portable Macintosh with 
headphones was used. 

Participants received written instructions, which were similar for all five experi-
ments, except for the description of the stimuli. The instruction for Experiment 5 
(dubbed video) was identical to that of Experiment 4 (original video). 

At the start of the experiments, all participants provided information about their 
age, sex, native language and dialect. They were not allowed to ask any questions 
during the experiment. 

The video clips and still pictures were displayed on the computer screen. The pic-
ture was approximately 20 x 20 centimeters. Sound was presented via headphones at a 
comfortable listening level, but participants were allowed to adjust the volume if they 
wanted to. For every stimulus, the participants typed the speaker’s estimated age in 
exact whole years (e.g., 24, 82, 57), and rated their judgment on a scale from 1 to 5, 
indicating whether they were very confident (5) about their answer or not at all (1). 
The stimuli were presented in random order. The results were saved automatically on 
the computer’s hard disk. 

At the end of the experiment, the subjects filled in a questionnaire with the follow-
ing six questions: What information did you use for your estimation? What was your 
main cue? Did you find anything hard in particular? Did you find any of the persons 
harder to estimate than the others? Did you react to anything in particular? Did you 
recognize any of the women in the clips? Responses to speakers that the participant 
had recognized were excluded from further analysis. The answers to these questions 
were used for evaluating the results. At the end of Experiment 5, the participants were 
additionally asked if they had noticed that the videos were dubbed. If so, the partici-
pant was excluded from the analysis. All experiments took approximately 15 minutes 
to complete. 

Analysis 
Two main comparisons were carried out. The first comparison concerns the accuracy 
of the participants’ estimates. As in several previous studies (cf. Vestlund, 2006; 
Schötz, 2005; Braun & Cerrato, 1999; Nagao & Kewley-Port, 2005), the error is cal-
culated as the absolute difference between the speaker’s chronological age and the 
perceived age. If this difference is not lower on average in Experiment 4 (original 
video) than in Experiment 2 (soundless video), then it seems that auditory cues are 
more or less neglected when visual cues are available. The second comparison con-
cerns the difference in estimated age of the speakers in Experiment 4 (original video) 
and those in Experiment 5 (dubbed video). If the estimated age of a speaker does not 
change when she is given a voice that is considerably older or younger than her own 
voice, that would additionally suggest that auditory information is neglected when 
visual information is available. 
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3   Results 

In all, 141 persons participated. The majority were students or staff at the Centre for 
Languages and Literature at Lund University. None of them participated in more than 
one experiment. None of them reported any hearing disorder. 

Experiment 1: Still pictures 
14 women and 9 men participated in Experiment 1. Their average age was 33 years. 
28 were Swedish, and 5 had a different nationality. In total there were 322 responses, 
of which 13 (4.0%) were excluded, either because the participant had recognized a 
speaker or because of equipment failure. The results (given in Table 1) show that 
there was an average absolute difference of 5.7 years. Furthermore, the average dif-
ference between chronological age and perceived age was –2.7, indicating that the 
participants somewhat underestimated the age of the speakers. 

Table 1. Results of Experiment 1 (Still picture) 

chronological 
age 

perceived
age 

difference absolute
difference 

confidence 
rating 

17 21.6 4.6 4.7 3.30 
25 24.2 –0.8 2.5 3.18 
31 25.9 –5.1 5.1 3.58 
35 36.2 1.2 3.5 3.26 
38 37.0 1.0 2.4 3.26 
45 41.2 –3.8 4.6 3.23 
47 47.6 0.6 4.6 3.17 
54 43.8 –10.2 10.9 2.65 
55 50.5 –4.5 5.4 3.23 
58 50.9 –7.1 8.0 2.95 
65 69.4 4.4 6.1 3.13 
73 68.3 4.7 6.0 3.22 
76 70.7 –5.3 7.7 3.05 
81 74.0 –7.0 8.0 3.35 

Average  –2.7 5.7 3.18 

Experiment 2: Soundless video 
14 women and 14 men participated in experiment 2. Their average age was 27. 19 
were Swedish, and 9 had a different nationality. 380 responses were analyzed. 12 re-
sponses were excluded (3.1%) because the participant had recognized a speaker or 
because of equipment failure. The overall results of Experiment 2 were similar to 
those of Experiment 1. As in Experiment 1, there was a tendency to underestimate the 
age of the speakers and the absolute error was somewhat over five years. The average 
confidence ratings were similar in both experiments, suggesting that the participants 
did not find the videos more difficult to assess than the still pictures. 
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Table 2. Results of Experiment 2 (Soundless video) 

chronological 
age 

perceived
age difference absolute

difference 
confidence 

rating 
17 20.0 3.0 3.0 3.29 
25 24.5 –0.5 1.9 3.57 
31 27.2 –3.8 4.6 3.08 
35 33.1 –1.9 3.6 3.21 
38 35.9 –2.1 4.1 3.13 
45 40.8 –4.2 5.4 3.22 
47 48.4 1.4 4.4 3.30 
54 47.9 –6.1 7.1 2.93 
55 51.0 –4.0 6.0 3.14 
58 51.0 –7.0 8.0 2.81 
65 67.4 2.4 5.3 2.89 
73 67.6 –5.4 6.6 3.07 
76 73.0 3.0 4.9 3.18 
81 77.2 –3.8 5.6 3.14 

average  –2.5 5.0 3.14 

Experiment 3: Sound only 
16 women and 12 men participated in Experiment 3. Their average age was 29. There 
were 392 responses, of which 11 (2.8%) were excluded, either because the participant 
had recognized a speaker or because of equipment failure. 

Table 3. Results of Experiment 3 (Sound only) 

Chronological 
age 

Perceived
age 

Difference Absolute
difference 

Confidence 
rating 

17 18.5 1.5 3.4 3.64 
25 24.0 –1.0 2.1 3.74 
31 29.3 –1.7 5.6 3.11 
35 35.2 0.2 7.0 2.96 
38 26.3 –11.7 12.2 3.27 
45 40.8 –4.2 6.6 2.86 
47 42.0 –5.0 6.8 2.85 
54 47.2 –6.8 8.9 3.11 
55 46.2 –8.8 9.9 3.00 
58 50.7 –7.3 10.0 2.67 
65 42.9 –22.1 22.1 2.78 
73 76.2 3.2 6.7 3.64 
76 66.6 –9.4 10.6 3.18 
81 55.7 –25.3 25.3 2.93 

average  –7.0 9.7 3.13 
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The sound only experiment appeared, like previous research had shown, to constitute 
the most difficult assignment for the participants. With an average absolute difference 
of 9.7 years years, the error was twice as large compared to the results of Experi-
ments 1 and 2. This difficulty was nevertheless not reflected in particularly lower  
confidence ratings in Experiment 3 compared to those in Experiments 1 and 2. Re-
markably, the tendency to underestimate the speakers’ ages was even more  
pronounced in Experiment 3. The average estimated age was even further below the 
speakers’ chronological age in Experiment 3. This was especially the case for the 
speakers aged 65 and 81, whose voices were estimated more than 20 years below 
their chronological ages. 

Experiment 4: Original video 
9 women and 12 men participated in this experiment. Their average age was 25. A  
total of 289 responses were analyzed. 5 responses (1.7%) were excluded either be-
cause the participant had recognized a speaker, or because of equipment failure. The 
results are given in Table 4. 

Table 4. Results of Experiment 4 (original video) 

chronological 
age 

perceived 
age difference absolute 

difference 
confidence 

rating 
17 18.3 1.3 2.0 3.86 
25 24.6 –0.4 2.0 3.29 
31 27.1 –3.9 4.3 3.20 
35 32.7 –2.3 3.0 3.35 
38 34.7 –3.3 5.0 3.05 
45 39.9 –5.1 6.1 3.19 
47 45.9 –1.1 2.9 3.00 
54 47.0 –7.0 7.65 2.95 
55 50.1 –4.9 5.1 3.48 
58 51.4 –6.6 7.3 2.86 
65 62.6 –2.4 4.0 3.20 
73 70.0 –3.0 5.9 2.95 
76 69.9 –6.1 8.3 3.14 
81 74.0 –7.0 7.7 3.19 

average  –3.7 5.1 3.19 

The average absolute difference between estimated age and chronological age was 5.1 
years, which is comparable to the values found in Experiments 1 and 2. Interestingly, 
the two speakers aged 65 and 81 were not estimated considerably younger in Experi-
ment 4 than in Experiment 1, in spite of the fact that their voices sounded more than 
20 years younger in Experiment 3. This is a first indication that voice did not play a 
significant role in the judgment of age. 
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Comparison of the results of Experiments 1 to 4 
The absolute differences between chronological age and perceived age in Experi-
ments 1 (soundless video), 2 (still picture) and 4 (original video) were tested in an 
ANOVA with ‘experiment’ as fixed factor, and ‘participants’ and ‘speaker age’ as 
random factors. Overall, the differences between the experiments were significant 
(F[3, 52.048] = 5.308, p < .05). Post-hoc comparisons using Tukey’s HSD procedure 
showed that the differences between Experiments 1, 2, and 4 were not significant. 
Stated otherwise, soundless video did not yield more accurate responses than still pic-
tures, and video with sound did not yield more accurate responses than video without 
sound. 
 
The average confidence ratings, on the contrary, were not significantly different 
across the first four experiments (F[3, 52.340] = 0.229, p > .05). 

The results of the first four experiments do not suggest that speakers’ voices con-
tributed substantially to the estimation of age when visual information was available. 
This suggestion is supported by the answers that the participants gave the question-
naires. Only four participants of Experiment 4 wrote that they also had paid attention 
to the voices of the speakers while making their judgments. Most participants, though, 
only mentioned visual cues, such as wrinkles, hair color, hair style, and so on. 

Experiment 5: Dubbed video 
24 women and 17 men participated in the final experiment. They had an average age 
of 35.2. years. A total of 200 responses were analyzed. 5 responses were excluded  
because the participant had recognized the speaker, or because of equipment failure. 
Table 5 gives an overview of the results. 

Table 5. Results of Experiment 5 (Dubbed video) 

chronological 
age 

combined 
with voice 

perceived as 

perceived 
age in 

original video 

perceived age
in dubbed 

version 

confidence 
rating 

25 40.8 24.6 26.6 3.33 
35 50.7 32.7 34.8 3.14 
38 24.0 34.7 33.1 3.35 
38 47.2 34.7 40.3 2.95 
45 29.3 39.9 40.1 3.05 
47 29.3 45.9 48.4 3.25 
55 76.2 50.1 58.1 2.70 
58 66.6 51.4 55.0 2.70 
65 66.6 62.6 65.4 3.19 
76 50.7 69.9 70.2 2.75 

average    3.04 

The main comparison of interest is how the speaker’s perceived age changes as a con-
sequence of the new voice. This change is shown in the third and fourth column of the 
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table. For all but two of the speakers (aged 38 and 55), the average perceived age in 
Experiment 5 was more than five years higher than the perceived age in Experi-
ment 4. For the other speakers the differences in perceived age were smaller than five 
years. 

Comparison of experiments 4 and 5 
The estimated ages of the speakers in Experiment 4 were compared with those in Ex-
periment 5 in order to establish whether the new voices had a significant effect on the 
participants’ judgments. This turned out not to be the case. The differences in per-
ceived age were not significant (F[1,17.018] = 0.046, p > .05). Overall, the confi-
dence ratings were a bit lower in Experiment 5 than in Experiment 4. This difference 
was not significant either (F[1, 16.987] = 1.602, p > .05). 

4   Discussion 

The purpose of the present study was to investigate the impact of voice in age estima-
tion. To what extent is age estimation influenced by voice when we see and hear a 
person simultaneously? 

The results of our experiments are generally consistent with those of previous stud-
ies. Participants were more accurate at estimating the age of the speaker based on vis-
ual information compared to auditory information. Soundless video did not yield 
more accurate estimations than still pictures. 

It was found that the accuracy with which participants estimated the ages of the 
fourteen speakers did not improve significantly when sound was added to the videos. 
Furthermore, deliberately manipulating the voices in order to make the speaker appear 
younger or older, did not have a significant impact on the participants’ estimations. 
This was corroborated by the qualitative evaluations given by the participants at the 
end of the experiment. They reported that they paid attention to visual details, and 
hardly ever did they mention voice as an important characteristic. Taken together, 
these results suggest that voice does not contribute substantially to the estimation of 
age, and that estimations are based on visual appearance mainly, if not to say only. 

This conclusion is in a sense limited, since voice is not the only auditory cue that 
contains information about speaker age. Other cues, such as speaking rate, word 
choice, dialect, were kept constant to a maximal extent in the present study. Nor do 
the present results show whether the same conclusion can be drawn for male speakers. 

Even if voice does not appear to contribute significantly to the estimation of 
speaker age, it will be interesting to establish whether the impact of voice is larger 
for the estimation of other speaker characteristics, such as personality or mood. The 
present methodology of dubbing voices onto different speakers appears to be a 
promising way of investigating speaker judgments. Nevertheless, the number of 
dubbing possibilities was limited with the available material. In order to overcome 
these limitations, a tool such as the speaker age synthesizer (Schötz, 2006) can be of 
great value in the future for carrying out new experiments with more speakers and 
naturalistic material. 



 The Impact of Visual and Auditory Cues in Age Estimation 21 

References 

Braun, A., Cerrato, L.: Estimating speaker age across languages. In: Proceedings of ICPhS 99, 
San Francisco, CA, pp. 1369–1372 (1999) 

Brückl, M., Sendlmeier, W.: Aging female voices: An acoustic and perceptive analysis. Institut 
für Sprache und Kommunikation, Technische Universität, Berlin, Germany. Voqual ’03, 
Geneva (August 27-29, 2003) 

Cerrato, L., Falcone, M., Paoloni, A.: Subjective age estimation of telephonic voices. Speech 
Communication 31, 107–112 (2000) 

Dehon, H., Bredart, S.: An ‘other-race’ effect in age estimation from faces. Perception 26(9), 
1107–1113 (2001) 

George, P., Hole, G.: Factors influencing the accuracy of age estimations of unfamiliar faces. 
Perception 24(9), 1059–1073 (1995) 

Gladwell, M.: Blink: The Power of Thinking without Thinking. Time Warner Book Group, 
New York (2006) 

Krauss, R., Freyberg, R., Morsella, E.: Inferring speakers’ physical attributes from their voices. 
Journal of Experimental Social Psychology 38, 618–625 (2002) 

Lindstedt, R.: Finns det experter på åldersbedömning? (Are there experts on the estimation of 
age?) Unpublished Paper. Department of Education and Psychology, University of Gävle 
(2005) 

Linville, S.: Acoustic-perceptual studies of an aging voice in women. Journal of Voice 1, 44–48 
(1987) 

Mulac, A., Giles, H.: You’re only as old as you sound: Perceived vocal age and social mean-
ings. Health Communication 3, 199–215 (1996) 

Nagao, K., Kewley-Port, D.: The effect of language familiarity on age perception. In: Interna-
tional Research Conference on Aging and Speech Communication, Bloomington, Indiana 
(October 10, 2005) 

Ptacek, P., Sander, E.: Age recognition from voice. Journal of Speech and Hearing Research 9, 
273–277 (1966) 

Schötz, S.: Röstens ålder – en perceptionsstudie (The age of the voice – a perceptual study). 
Unpublished Paper. Department of Linguistics, Lund University (2001) 

Schötz, S.: Effects of stimulus duration and type on perception of female and male speaker age. 
In: Proceedings, FONETIK, 2002. Department of Linguistics, Gothenburg University (2005) 

Schötz, S.: Data-driven formant synthesis of speaker age. Working Papers. Lund Univer-
sity. 52, 105–108 (2006) 

Stölten, K.: Dialektalitet som ålders- och könsmarkör i arjeplogsdialekten: ett auditivt test och 
mätningar på preaspiration och VOT (Dialect as a marker of age and sex in the Arjeplog 
dialect: an auditory experiment and measurements of pre-aspiration and VOT.) Unpublished 
paper. Department of Linguistics Stockholm University (2001) 

Stölten, K., Engstrand, O.: Effects of perceived age on perceived dialect strength: A listening 
test using manipulations of speaking rate and F0. Phonum 9, 29–32 (2003) 

Vestlund, J.: Åldersbedömning av ansikten – precision och ålderseffekter (Estimation of age 
from faces – Precision and age effects). Unpublished paper. Department of Education and 
Psychology, University of Gävle (2004) 

Vestlund, J.: Åldersbedömning av ansikten – expertkunskaper, könseffekter och jämnårighet-
seffekter (Estimation of age from faces – expert effects, sex effects, and same-age effects). 
Unpublished paper. Department of Education and Psychology, University of Gävle (2006) 

Wright, D., Stroud, J.: Age differences in line-up identification accuracy: people are better with 
their own age. Law and Human Behaviour 26, 641–654 (2002) 



Development of a Femininity Estimator for Voice

Therapy of Gender Identity Disorder Clients

Nobuaki Minematsu1 and Kyoko Sakuraba2

1 The University of Tokyo
2 Kiyose-shi Welfare Center for the Handicapped

mine@k.u-tokyo.ac.jp, sakuraba@mtd.biglobe.ne.jp

Abstract. This work describes the development of an automatic esti-
mator of perceptual femininity (PF) of an input utterance using speaker
verification techniques. The estimator was designed for its clinical use
and the target speakers are Gender Identity Disorder (GID) clients, es-
pecially MtF (Male to Female) transsexuals. The voice therapy for MtFs,
which is conducted by the second author, comprises three kinds of train-
ing; 1) raising the baseline F0 range, 2) changing the baseline voice qual-
ity, and 3) enhancing F0 dynamics to produce an exaggerated intonation
pattern. The first two focus on static acoustic properties of speech and
the voice quality is mainly controlled by size and shape of the articula-
tors, which can be acoustically characterized by the spectral envelope.
Gaussian Mixture Models (GMM) of F0 values and spectrums were built
separately for biologically male speakers and female ones. Using the four
models, PF was estimated automatically for each of 142 utterances of
111 MtFs. The estimated values were compared with the PF values ob-
tained through listening tests with 3 female and 6 male novice raters.
Results showed very high correlation (R=0.86) between the two, which
is comparable to the intra- and inter-rater correlation.

Keywords: Gender identity disorder, femininity, voice therapy, vocal
tract shape, fundamental frequency, speaker verification, GMM.

1 Introduction

Advanced speech technologies are applied not only for man-machine interface
and entertainment but also for medical treatment [1] and pronunciation training
of foreign language education [2]. Many works were done for developing cochlea
implants [3,4,5] and artificial larynxes [6,7,8] and, recently, the technologies have
been applied to realize an on-line screening test of laryngeal cancer [9] as well as
an on-line test of pronunciation proficiency of foreign languages [10]. The present
work examines the use of the technologies for another medical treatment; voice
therapy for GID clients.

A GID individual is one who strongly believes that his or her true psycho-
logical gender identity is not his or her biological or physical gender, i.e., sex.
In most of the cases, GID individuals live for years trying to conform to the
social role required by their biological gender, but eventually seek medical and
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surgical help as well as other forms of therapy in order to achieve the physi-
cal characteristics and the social role of the gender which they feel to be their
true one. In both cases of FtMs (Female-to-Male) and MtFs, many of them take
hormone treatment in order to make physical change of their bodies and the
treatment is certainly effective for both cases. However, it is known that the
hormone treatment brings about sufficient change of the voice quality only for
FtMs [11,12]. Considering that the voice quality is controlled by physical con-
ditions of the articulators, the vocal folds and the vocal tract are presumed to
retain their pretreatment size and shape in the case of MtFs. To overcome this
hardship and mainly to shift up the baseline F0 range, some MtFs take surgical
treatment. Although the F0 range is certainly raised in the new voice, as far
as the second author knows, it is a pity that the naturalness is decreased in
the new voice instead. Further, many clinical papers and engineering papers on
speech synthesis claim that raising the F0 range alone does not produce good
femininity [13,14,15]. Since shape of the vocal tract has a strong effect on the
voice quality, good control of the articulators has to be learned to achieve good
femininity. Considering small effects of the hormone treatment and the surgi-
cal treatment on MtF clients, we can say that the most effective and least risky
method to obtain good femininity is taking voice training from speech therapists
or pathologists with good knowledge of GID.

2 Why Femininity Estimator?

In the typical therapy conducted by the second author, the following three meth-
ods are used based on [16]. 1) raising the baseline F0 range, 2) changing the
baseline voice quality, and 3) enhancing F0 dynamics to produce an exaggerated
intonation pattern. One of the most difficult things in the voice therapy lies not
on a client’s side but on a therapist’s side, i.e., accurate and objective evalua-
tion of the client’s voice. It is often said that as synthetic speech samples are
presented repeatedly, even expert speech engineers tend to perceive better nat-
uralness in the samples, known as habituation effect. This is the case with good
therapists. To avoid this effect and evaluate the femininity unbiasedly, listening
tests with novice listeners are desirable. But the tests take a long time and a
large cost because a new test has to be done whenever some acoustic change
happens in the client’s voice through the therapy.

Further, in most of the cases, GID clients are very eager to know how they
sound to novice listeners, not experts. Some clients, not so many, claim that they
sound feminine enough although they sound less feminine to anybody else. The
objective evaluation of their voices is very effective to let these clients know the
truth. For these two reasons, in this study, a listening test simulator was devel-
oped by automatically estimating the femininity which novice listeners would
perceive if they heard the samples.

Among the above three methods, the first two ones focus on static acoustic
properties and the last one deals with dynamic F0 control. The dynamic control
of F0 for various speaking styles is a very challenging task in speech synthesis
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research and, therefore, we only focused on the femininity controlled by the
F0 range and the voice quality. In medical and educational applications, unlike
entertainment applications, technologies should not be used easily if they are
not mature enough. In this work, good discussion was done in advance about
what should be done by machines and what should be done by humans in the
therapy. Only when there are some things difficult for humans and easy for
machines, then, those things should be treated by machines.

GMM modeling of F0 values and that of spectrums were done separately
for biologically male speakers and female ones. By using the four models, the
estimator was developed. In addition to the experimental results of the femininity
estimation, some merits and demerits of using the estimator in actual voice
therapy are described.

3 GMM-Based Modeling of Femininity

3.1 Modeling Femininity with Isolated Vowel Utterances

Questions of acoustic cues of good femininity were often raised in previous stud-
ies [17,18,19,20,21]. Acoustic and perceptual analysis of speech samples of bio-
logically male and female speakers and those of MtF ones were done and the
findings lead to the three kinds of methods in the previous section. About the
voice quality, as far as the authors know, all the studies focused on isolated vowel
utterances and formant frequencies were extracted to estimate the femininity. It
is true that, even from a single /a/ utterance, it is possible to estimate vocal
tract length [22] and then, the femininity. It is also true, however, that even if
a client can produce very feminine isolated vowels with careful articulation, it
does not necessarily mean that the client can produce continuous speech with
good femininity. This is the case with foreign language pronunciation. Even if
a learner can produce very good isolated vowels, the learner is not always a
good speaker of the target language in normal speech communication. This is
partly because good control of speech dynamics including prosody is required
in continuous speech. We can consider another reason that so much attention
cannot be paid to every step of producing vowels in a sentence. We can say
that the desired tool for MtF voice therapy is an estimator of the femininity
from naturally-spoken continuous speech. In this case, we have a fundamental
problem. With the analysis methods used in the previous studies, it is difficult
to estimate the femininity from continuous speech because formant frequencies
change not only due to the femininity but also due to phonemic contexts of the
target vowels.

3.2 Modeling Femininity with Continuous Speech

This problem can be solved by using GMM-based speaker recognition/verification
techniques. In continuous speech, various phonemes are found and the phonemes
naturally cause spectral changes. If the utterance has sufficient spectral varia-
tions, averaging the spectrum slices over time can effectively cancel the spectral
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changes caused by the phonemic variation. The resulting average pattern of spec-
trum comes to have a statically biased form of spectrum, which is considered to
characterize the speaker identity and the stationary channel. In GMM-based
speaker recognition/verification, the average pattern is modeled not as a single
spectrum slice but as a mixture of Gaussian distributions, where the spectrum is
often represented as cepstrum vector.

What kind of phone does the averaged spectrum correspond to? If a continu-
ous speech includes vowels only, it is possible to give a clear phonetic interpreta-
tion of the averaged spectrum [23]. Figure 1 shows the vowel chart of American
English, where the 10 monophthongs are plotted. This figure clearly shows the
articulatory center (average) of the vowels corresponds to /@/, schwa sound. The
other figure in Figure 1 is a result of MDS (Multi-Dimensional Scaling) analy-
sis of vowel samples from an American female speaker. Here, a single Gaussian
distribution was used to model each vowel acoustically and a distance matrix
was calculated from the vowel examples using Bhattacharyya distance measure.
In the figure, we can say that the acoustic center of the vowels also corresponds
to /@/. It is known that schwa is generated with a sound tube of a uniform
cross-sectional area, which implies that schwa is produced with the least articu-
latory effort. In continuous speech, most of the unstressed vowels are reduced to
be schwa sounds, meaning that the schwa is the most frequent sound observed
in naturally-spoken sentences. The averaging operation not only can cancel the
spectral changes caused by the phonemic variation but also can represent the
acoustic quality of the most frequent phone (vowel) of that speaker.
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Fig. 1. The vowel chart of American English and an MDS chart of its vowel examples

With speech samples of any text spoken by a large number of female speakers,
a GMM was trained to characterize the spectrum-based femininity, M s

F . With
male speakers, a GMM for the masculinity was trained, M s

M . Using both models,
the eventual spectrum-based femininity for a given cepstrum vector o, F s(o), was
defined as the following formula [24,25];

F s(o) = log L(o|M s
F ) − log L(o|M s

M ). (1)
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Similar models are trained for the F0-based femininity and masculinity;

F f (o) = log L(o|Mf
F ) − log L(o|Mf

M ). (2)

Integration of the four models, M s
F , M s

M , Mf
F , and Mf

M can be done through
generalizing the above formulae by linear regression analysis.

F (o) = α log L(o|M s
F ) + β log L(o|M s

M ) +

γ log L(o|Mf
F ) + ε logL(o|Mf

M ) + C, (3)

where α, β, γ, ε, and C are calculated so that the F (o) can predict perceptual
femininity (PF) of o the best. The PF scores were obtained in advance through
listening tests with novice listeners.

4 Femininity Labeling of MtF Speech Corpus

4.1 MtF Speech Corpus

A speech corpus of 111 Japanese MtF speakers was built, some of whom sounded
very feminine and others sounded less feminine and needed additional therapy.
Each speaker read the beginning two sentences of “Jack and the beanstalk”
with natural speaking rate and produced isolated Japanese vowels of /a, i, u,
e, o/. The two sentences had 39 words. All the speech samples were recorded
and digitized with 16 bit and 16 kHz AD conversion. Some clients joined the
recording twice; before and after the voice therapy. Then, the total number of
recordings was 142. For reference, 17 biologically female Japanese read the same
sentences and produced the vowels.

4.2 Perceptual Femininity Labeling of the Corpus

All the sentence utterances were randomly presented to 6 male and 3 female
adult Japanese listeners through headphones. All of them were in their 20s with
normal hearing and they were very unfamiliar with GID. The listeners were asked
to rate subjectively how feminine each utterance sounded and write down a score
using a 7-degree scale, where +3 corresponded to the most feminine and −3 did
to the most masculine. Some speech samples of biological female speakers were
used as dummy samples. Every rater joined the test twice and 18 femininity
judgments were obtained for each utterance. Figure 2 shows histogram of the
averaged PF scores for the individual MtF utterances. Although some utterances
still sounded rather masculine, a good variance of PF was found in the corpus.
The averaged PF of biological female speakers was 2.74. While, in Figure 2, the
averaging operation was done over all the raters, in the following section, it will
be done dependently on the rater’s biological gender.
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Fig. 2. Histogram of the averaged PF scores of the 142 utterances

4.3 Intra-rater and Inter-rater Judgment Agreement

Agreement of the judgments within a rater was examined. Every rater joined
the test twice and the correlation between the two sessions was calculated for
each. The averaged correlation over the raters was 0.80, ranging from 0.48 to
0.91. If the rater with the lowest correlation can be ignored, the average was
recalculated as 0.84 (0.79 to 0.91).

PF scores by a rater were defined as the scores averaged over the two sessions.
Using these scores, the judgement agreement between two raters was analyzed.
The agreement between a female and another female was averaged to be 0.76,
ranging from 0.71 to 0.83. In the case of the male raters, the agreement was
averaged to be 0.75, ranging from 0.59 to 0.89. The agreement between a female
and a male was 0.71 on average, ranging from 0.60 to 0.79. Some strategic
differences in the judgment may be found between the two sexes.

PF scores by the female were defined as the averaged scores over the three
female raters. Similarly, PF scores by the male were defined. The correlation
between the two sexes was 0.87, which is very high compared to the averaged
inter-rater correlation between the two sexes (0.71). This is because of the double
averaging operations, which could reduce inevitable variations in the judgments
effectively.

Now, we have 12 different kinds of PF scores; 9 from the 9 raters, 2 as the
scores by the male and the female, and the other one obtained by averaging the
male score and the female one. In the following sections, the correlations between
the original PF scores and the automatically estimated PF scores, defined in
Section 3.2, are investigated.

5 Training of Ms
F , Ms

M, Mf
F and Mf

M

As described in Section 3.2, automatic estimation of the femininity is examined
based on GMM-based modeling. As speech samples for training, JNAS (Japanese
Newspaper Article Sentences) speech database, 114 biological males and 114
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biological females, was used [26]. The number of sentence utterances was 3,420
for each sex. Table 1 shows acoustic conditions used in the analysis. For the
spectrum-based GMMs of M s

F and M s
M , silence removal was carried out from the

speech files and 12 dimensional MFCCs with their Δs and ΔΔs of the remaining
speech segments were calculated. For the F0-based GMMs of Mf

F and Mf
M , logF0

values were utilized.

Table 1. Acoustic conditions of the analysis

sampling 16bit / 16kHz
window 25 ms length and 10 ms shift
parameters MFCC with its Δ and ΔΔ for Ms

F and Ms
M

logF0 for Mf
F and Mf

M

GMM mixture of 16 Gaussian distributions

6 Automatic Estimation of Femininity

6.1 Simple Estimation Based on F s and F f

For each of the 142 MtF utterances, their femininity scores were estimated using
F s and F f . The estimated scores were compared with the 12 different PF scores
and the correlation was calculated separately. The averaged correlation over the
first 9 PF scores is 0.64 for F s and 0.66 for F f . Table 2 shows the correlation
of F s and F f with the other three PF scores; the male and the female scores
and their averaged one. While the female PF is more highly correlated with F s

than F f , the male PF is more highly correlated with F f than F s. This may
imply different strategies of judging the femininity between the male raters and
the female ones. It seems that the male tend to perceive the femininity more in
high pitch of the voice. This finding is accordant with the results obtained in a
previous study done by the second author [27]. In the study, it was shown that
male listeners tend to assign higher femininity scores to speech samples with
higher pitch.

Table 2. Correlation of F s and F f with the three PF scores

female PF male PF averaged PF

F s 0.71 0.70 0.73

F f 0.67 0.76 0.74

6.2 Integrated Estimation with Weighting Factors

Linear regression analysis was done to predict the 12 PF scores using the four
models, where the PF scores were converted to have a range from 0 (the most
masculine) to 100 (the most feminine). As shown in Equation 3, four weighting
factors and one constant term were calculated to minimize the prediction error.
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The averaged multiple correlation over the first 9 PF scores was increased
up to 0.76. Table 3 shows the multiple correlation coefficients with the other
three PF scores. Figure 3 graphically shows the correlation with the female and
male scores. Here, for utterance(s) of an MtF speaker, the weighting factors were
calculated using utterances of the other MtF speakers and then, the femininity
score(s) of utterance(s) of that MtF speaker were estimated. Namely, the esti-
mation was done in a speaker-open mode. Considering magnitude of the intra-
and inter-rater correlations of PF, we can say that F (o) is a very good estimator
of PF.

Table 3. Correlation of F with the three PF scores

female PF male PF averaged PF

F 0.78 0.86 0.84
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Fig. 3. Correlation between the original and the estimated PF scores

6.3 Discussions

The four weighting factors and the constant term in Equation 3 show different
values for the 12 PF scores. The difference in values between two raters char-
acterizes the difference in judging strategies between them. Table 4 shows 12
patterns of α, β, γ, ε, and C with the multiple correlation coefficient (R). As
was found in Section 6.1, clear difference was found between the female and the
male raters. The female tend to focus on spectral properties (α=0.125 and 0.068
for female PF and male PF), while the male tend to focus on pitch (γ=0.107
and 0.144 for female PF and male PF). In this sense, F3’s judgment is very male
because she emphasized pitch (γ=0.167) and de-emphasized spectral properties
(α=0.085). In Table 3 and Figure 3, the multiple correlation was not so high
for the female PF scores (R=0.78) and this can be considered probably because
of F3.
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For every PF score, the absolute value of α and that of β are similar. α and
β of the female PF are 0.125 and -0.127. Those of the male PF are 0.068 and
-0.064. This directly means that, with spectral properties of the voice, it is as
important to shift the client’s voice closer to the female region as to shift the
voice away from the male region. On the contrary, the absolute value of γ and
that of ε show a large difference. γ and ε of the female PF are 0.107 and -0.013.
Those of the male PF are 0.144 and 0.009. In every case, ε takes a very small
value, near to zero, compared to γ. This indicates that, as for F0, although it is
important to shift the voice into the female region, it matters very little if the
voice is still located in the male region. This asymmetric effects of spectrum and
F0 can be summarized as follows by using terms of bonus and penalty. If the
voice is closer to the female region, larger bonus is given and if the voice is closer
to the male region, larger penalty is given. Although both bonus and penalty
should be considered with spectral properties of the voice, only bonus is good
enough with its F0 properties.

Table 4. Values of the weighting factors and the constant term

α β γ ε C R

Ms
F Ms

M Mf
F Mf

M

F1 0.154 -0.143 0.068 -0.017 1.301 0.77
F2 0.133 -0.126 0.086 -0.012 1.005 0.68
F3 0.087 -0.112 0.167 -0.011 -0.742 0.72
M1 0.074 -0.069 0.120 -0.009 1.091 0.82
M2 0.035 -0.024 0.176 -0.030 1.479 0.73
M3 0.076 -0.085 0.150 0.028 0.446 0.80
M4 0.034 -0.035 0.172 -0.005 0.941 0.76
M5 0.090 -0.084 0.141 0.023 1.237 0.86
M6 0.100 -0.090 0.107 0.047 1.389 0.70
female PF 0.125 -0.127 0.107 -0.013 0.521 0.78
male PF 0.068 -0.064 0.144 0.009 1.097 0.86
average PF 0.097 -0.096 0.126 -0.002 0.809 0.84

7 Actual Use of the Estimator in Voice Therapy – Merits
and Demerits –

The second author has used the estimator in her voice therapy for MtF clients
since Feb. 2006. Figure 4 shows an actual scene of using the estimator in the
therapy and Figure 5 is the interface of the estimator. It was found that, when
biologically male speakers without any special training pretended to be female,
it was very difficult to get a score higher than 80. However, it is very interesting
that good MtF speakers, who can change their speaking mode voluntarily from
male to female, could have the estimator show a very low score (very masculine)
and a very high score (very feminine) at their will. Since the estimator is focusing
on only static acoustic properties, we consider that these MtFs have two baseline
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shapes of the vocal tract, which may be realized by different positioning of the
tongue, and two baseline ranges of F0. In this sense, the estimator helped the
clients a great deal who were seeking for another baseline of the vocal tract shape
and/or that of F0 range through try-and-errors. Needless to say, quantitative and
objective evaluation of their trials motivated the clients very well.

Fig. 4. An actual scene of the voice therapy with the estimator

Fig. 5. Interface of the estimator

Only the focus on static acoustic properties naturally caused some problems.
As described in Section 1, by producing a rather exaggerated pattern of into-
nation, listeners tend to perceive higher femininity. Although this exaggeration
is a good technique to obtain high PF in the voice, the estimator completely
ignores this aspect and then, some clients received unexpectedly high scores or
low scores. In actual therapies, the therapist has to use the machine by carefully
observing what kind of strategy the client is trying to use. If speech dynam-
ics is effectively controlled, then, the therapist should not use the machine but
give adequate instructions only based on the therapist’s ears. Further, especially
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when the clients evaluate their voices by themselves, what is possible and what
is impossible by the machine should be correctly instructed to them.

8 Conclusions

This work described the development of an automatic estimator of the percep-
tual femininity from continuous speech using speaker verification techniques.
Spectrum-based and F0-based GMMs were separately trained with biological
male and female speakers. By integrating these models, the estimator was built.
The correlation of the estimated values and the perceptual femininity scores ob-
tained through listening tests was 0.86, comparable to the intra- and inter-rater
correlation. Some analyses were done about sexual differences of the femininity
judgment and some strategic differences in the use of spectrum-based cues and
F0-based cues were shown. It was indicated that the male tend to give higher
scores to the voices with higher pitch. Further, it was shown independently of
the rater’s sex that the penalty of the F0 range being still in the male region is
remarkably small. As future work, we are planning to take MRI pictures of a
good MtF speaker’s control of the articulators when producing feminine vowels
and masculine ones. We hope that the estimator will help many MtF clients
improve the quality of their lives.
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Abstract. This article is dedicated to Real-life emotion detection using
a corpus of real agent-client spoken dialogs from a medical emergency
call center. Emotion annotations have been done by two experts with
twenty verbal classes organized in eight macro-classes. Two studies are
reported in this paper with the four macro classes: Relief, Anger, Fear
and Sadness: the first investigates automatic emotion detection using
linguistic information whith a detection score of about 78% and a very
good detection of Relief, whereas the second investigates emotion detec-
tion with paralinguistic cues with 60% of good detection, Fear being best
detected.

Keywords: emotion detection, real-life data, linguistic and paralinguis-
tic cues.

1 Introduction

The emotion detection work reported here is part of a larger study aiming to
model user behaviour in real interactions. We have already worked on other real
life data: financial call centers [1] and EmoTV clips [2]. In this paper, we make
use of a corpus of real agent-client spoken dialogs in which the manifestation
of emotion is stronger [1][3]. The context of emergency gives a larger palette
of complex and mixed emotions. About 30% of the utterances are annotated
with non-neutral emotion labels in the medical corpus compared to 11% for
the financial data. Emotions are less shaded than in the financial corpus where
the interlocutors attempt to control the expression of their internal attitude. In
the context of emergency, emotions are not played but really felt in a natural way.
In contrast to research carried out with artificial data with simulated emotions
or with acted data, for real-life corpora the emotions are linked to internal or
external emotional event(s). We might think that natural and complex emotion
behaviour could be found in movies data. Yet, emotions are still played and in
most cases, except for marvellous actors, they are not really felt. However, it is
also of great interest to study professional movie actors in order to portray a
recognisable emotion and to define a scale of naturalness [4]. The difference is
mainly due to the context. The context is the set of events that are at the origin
of a person’s emotions. These events can be external or internal. Different events
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might trigger different emotions at the same time: for instance a physical internal
event as a stomachache triggering pain with an external event as someone helping
the sick person triggering relief. In the artificial data, this context is rubbed out
or simulated so that we can expect to have much more simple full-blown affect
states which are far away from real affective states.

In contrast to research carried out with artificial data and simulated emotions,
for real-life corpora the set of appropriate emotion labels must be determined.
There are many reviews on the representation of emotions. For a recent review,
the reader is referred to [5]. We have defined in the context of Humaine NoE, an
annotation scheme Multi-level Emotion and Context Annotation Scheme [1][2] to
represent the complex real-life emotions in audio and audiovisual natural data.
It is a hierarchical framework allowing emotion representation with several layers
of granularity, including both dominant (Major) and secondary (Minor) labels as
well as the context representation. This scheme includes verbal, dimensional and
appraisal labels. Our aim in this study is to find robust lexical and paralinguistic
cues for emotion detection.

One of the challenges when studying real-life speech call center data is to iden-
tify relevant cues that can be attributed to an emotional behavior and separate
them from those that are simply characteristic of spontaneous conversational
speech. A large number of linguistic and paralinguistic features indicating emo-
tional states are present in the speech signal. Among the features mentioned in
the literature as relevant for characterizing the manifestations of emotions in
speech, prosodic features are the most widely employed, because as mentioned
above, the first studies on emotion detection were carried out with acted speech
where the linguistic content was controlled. At the acoustic level, the different
features which have been proposed are prosodic (fundamental frequency, dura-
tion, energy), and voice-quality features [6].

Additionally, lexical and dialogic cues can also help to distinguish between
emotion classes [1], [7], [8], [9], [10]. Speech disfluences have also been shown
as relevant cues for emotion characterization [11] and can be automatically ex-
tracted. Non-verbal speech cues such as laughter or mouth noise are also helpful
for emotion detection. The most widely used strategy is to compute as many fea-
tures as possible. All the features are, more or less, correlated with each other.
Optimization algorithms are then often applied to select the most efficient fea-
tures and reduce their number, thereby avoiding making hard a priori decisions
about the relevant features. Trying to combine the information of different na-
tures, paralinguistic features (prosodic, spectral, disfluences, etc) with linguistic
features (lexical, dialogic), to improve emotion detection or prediction is also a
research challenge. Due to the difficulty of categorization and annotation, most of
the studies [7], [8], [9], [10], [11] have only focused on a minimal set of emotions.

Two studies are reported in this paper: the first investigates automatic emo-
tion detection using linguistic information, whereas the second investigates emo-
tion detection through paralinguistic cues. Sections 2 and 3 describe the corpus
and the adopted annotation protocol. Section 4 relates experiments with respec-
tively lexical and paralinguistic features. Finally, in the discussion and conclusion
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(section 5), the results obtained with lexical and paralinguistic are compared and
future research is discussed.

2 The CEMO Corpus

The studies reported in this paper make use of a corpus of naturally-occurring
dialogs recorded in a real-life medical call center. The dialog corpus contains real
agent-client recordings obtained from a convention between a medical emergency
call center and the LIMSI-CNRS. The use of these data carefully respected ethi-
cal conventions and agreements ensuring the anonymity of the callers, the privacy
of personal information and the non-diffusion of the corpus and annotations.

The service center can be reached 24 hours a day, 7 days a week. The aim
of this service is to offer medical advice. The agent follows a precise, predefined
strategy during the interaction to efficiently acquire important information. The
role of the agent is to determine the call topic, the caller location, and to obtain
sufficient details about this situation so as to be able to evaluate the call emer-
gency and to take a decision. In the case of emergency calls, the patients often
express stress, pain, fear of being sick or even real panic. In many cases, two or
three persons speak during a conversation. The caller may be the patient or a
third person (a family member, friend, colleague, caregiver). Table 1 gives the
caracteristics of the CEMO corpus.

Table 1. CEMO corpus characteristics: 688 agent-client dialogs of around 20 hours
(M: male, F: female)

#agents 7 (3M, 4F)

#clients 688 dialogs (271M, 513F)

#turns/dialog Average: 48

#distinct words 9.2 k

#total words 262 k

The transcription guidelines are similar to those used for spoken dialogs in
previous work [1]. Some additional markers have been added to denote named-
entities, breath, silence, intelligible speech, laugh, tears, clearing throat and other
noises (mouth noise). The transcribed corpus contains about 20 hours of data
About 10% of speech data is not transcribed since there is heavily overlapping
speech.

3 Emotion Annotation

We use categorical labels and abstract dimensions in our annotation scheme
of emotions. The valence and activation dimensions do not allow to separate
Anger from Fear which are the main classes observed in our corpus and that we
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wanted to detect. For detection purpose, the use of categorical labels cannot be
overlooked. How to choose these labels is a real challenge.

The labels are task-dependent. There are many different possible strategies for
finding the best N category labels. Two extreme strategies are the direct selection
of a minimal number of labels (typically from 2 to 5) or a free annotation which
leads to a high number of verbal labels that must be reduced to be tractable, for
instance from 176 (after normalization) to 14 classes in experiments by [2]. The
mapping from fine-grained to coarse-grained emotion labels is not straightfor-
ward when free annotations are used. In the previous experiment, the mapping
from 176 to 14 was done manually by the same annotators after a consensus was
made on a shorter list of 14 emotion labels. An alternative strategy, which seems
to us to be more powerful, is to select by majority vote a set of labels before
annotating the corpus. However to adopt this strategy, a group of (at least 3)
persons who have already worked with the corpus, need to select emotions with
high appropriateness, appropriateness, moderate appropriateness from a list of
reference emotions. Then a majority voting procedure allows a sub-list of verbal
categories, the best 20 for instance, to be selected. Several different reference
lists can be found in the literature (see http://www.emotion-research.fr). We
have adopted the last strategy described to select labels in this work. 5 persons
were involved in this task.

The set of 20 labels is hierarchically organized (see Table 2) from coarse-
grained to fine-grained labels in order to deal with the lack of occurrences of
fine-grained emotions and to allow for different annotator judgments.

There are a lot of different manifestations of Fear in the corpus. Emotions
like Stress which, in other conditions could be linked to the coarse label Anger
for instance, were judged as fitting in the Fear class. A perceptive test will be
carried out to confirm this hierarchy.

Table 2. Emotion classes hierarchy: multi-level of granularity

Coarse level Fine-grained level
(8 classes) (20 classes + Neutral)

Fear Fear, Anxiety, Stress, Panic, Embarrassment, Dismay

Anger Anger, Annoyance, Impatience, ColdAnger, HotAnger

Sadness Sadness, Disappointment, Resignation, Despair

Hurt Hurt

Surprise Surprise

Relief Relief

Other Positive Interest, Compassion, Amusement

Neutral Neutral

Representing complex real-life emotion and computing inter-labeler agree-
ment and annotation label confidences are important issues to address. A soft
emotion vector is used to combine the decisions of the two annotators and
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represent emotion mixtures [1], [2]. This representation allows to obtain a much
more reliable and rich annotation and to select the part of the corpus with-
out conflictual blended emotions for training models. Sets of pure emotions or
blended emotions can then be used for testing models. In this experiment utter-
ances without emotion mixtures were considered.

The annotation level used to train emotion detection system can be chosen
based on the number of segments available. The repartition of fine labels (5 best
classes) only using the emotion with the highest coefficient in the vector [1] is
given Table 3.

Table 3. Repartition of fine labels (688 dialogues). Other gives the percentage of the
15 other labels. Neu: Neutral, Anx: Anxiety, Str: Stress, Hur: Hurt, Int: Interest, Com:
Compassion, Sur: Surprise, Oth: Other.

Caller Neu. Anx. Str. Rel. Hur. Oth.

10810 67.6 17,7 6.5 2.7 1.1 4.5

Agent Neu. Int. Com. Ann. Sur. Oth.

11207 89.2 6.1 1.9 1,7 0.6 0.6

The Kappa coefficient was computed for agents (0.35) and clients (0.57). Most
confusion is between a so-called neutral state and an emotional set. Because we
believe there can be different perceptions for a same utterance, we considered
an annotator as coherent if he chooses the same labels for the same utterance
at any time. We have thus adopted a self re-annotation procedure of small sets
of dialogs at different time (for instance once a month) in order to judge the
intra-annotator coherence over time. About 85%.of the utterances are similarly
re-annotated [1]. A perceptive test was carried out [13]. Subjects have perceived
complex mixtures of emotions within different classes both of the same and of
different valence. The results validate our annotation protocol, the choice of
labels and the use of a soft vector to represent emotions.

4 Classification

Our goal is to analyze the emotional behaviors observed in the linguistic and
paralinguistic material of the human-human interactions present in the dialog
corpus in order to detect what, if any, lexical information or paralinguistic is
particularly salient to characterize each of the four emotion selected. Several
classifiers and classification strategies well described in the machine learning
literature are used.

For this study, four classes at the coarse level have been considered: Anger,
Fear, Relief and Sadness (see Table 4). We only selected utterances of callers
and non-mixed emotions for this first experiment.
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Table 4. Train and test corpus characteristics

Corpus Train Test

#Speaker turn 1618 640

#Speakers 501(182 M, 319F) 179(60M, 119F)

Anger 179 49

Fear 1084 384

Relief 160 107

Sadness 195 100

4.1 Lexical Cues

Our emotion detection system is based on a unigram model, as used in the
LIMSI Topic Detection and Tracking system. The lexical model is a unigram
model, where the similarity between an utterance and an emotion is the normal-
ized log likelihood ratio between an emotion model and a general task-specific
model eq.(1). Four unigram emotion models were trained, one for each annotated
emotion, using the set of on-emotion training utterances. Due to the sparseness
of the on-emotion training data, the probability of the sentence given the emo-
tion is obtained by interpolating its maximum likelihood unigram estimate with
the general task-specific model probability. The general model was estimated on
the entire training corpus. An interpolation coefficient of λ = 0.75 was found
to optimize the results of CL and RR. The emotion of an unknown sentence is
determined by the model yielding the highest score for the utterance u, given
the emotion model E.

log P (u/E) =
1

Lu

∑

wεu

tf(w, u) log
λP (W/E) + (1 − λ)P (w)

P (w)
(1)

where P(w/E) is the maximum likelihood estimate of the probability of word w
given the emotion model, P(w) is the general task-specific probability of w in
the training corpus, tf(w,u) are the term frequencies in the incoming utterance
u, and Lu is the utterance length in words. Stemming procedures are commonly
used in information retrieval tasks for normalizing words in order to increase
the likelihood that the resulting terms are relevant. We have adopted this tech-
nique for emotion detection. The training is done on 501 speakers and the test
corresponds to 179 other speakers. Table 5 relates experiments with a stemming
procedure and without a normalization procedure (the baseline).

Table 6 shows the emotion detection results for the baseline unigram system,
and with the normalization procedure of stemming. Since the normalization
procedures change the lexical forms, the number of words in the lexicon is also
given. Results are given for the complete test set and for different λ. Using the
baseline system, emotion can be detected with about 67% precision. Stemming
is seen to improve the detection rate, we obtained around 78% of recognition
rate (67.2% for class-wise averaged recognition rate). The results in Table 6 show
that some emotions are better detected than others, the best being the Fear class



40 L. Devillers and L. Vidrascu

Table 5. Emotion detection with lexical cues

Baseline Stemming

Size of lexicon 2856 1305

lambda RR CL RR CL

0.65 62.7 47.5 75.9 67.1

0.75 66.9 47.5 78.0 67.2

0.85 67.5 44.4 80.3 64.6

Table 6. Repartition for the 4 classes for stemming condition and lambda = 0.75. Utt:
Utterances, A: Anger, F: Fear, R: Relief, S: Sadness.

Stemming Total A F R S

#Utt. 640 49 384 107 100

% rec. 78 59 90 86 34

and the worst Sadness. Anxiety is the main emotion for the callers. The high
detection of Relief can be attributed to strong lexical markers which are very
specific to this emotion (̈thanks̈, Ï agree)̈. In contrast, the expression of Sadness
is more prosodic or syntactic than lexical in this corpus. The main confusions
are between Fear and Sadness, and Fear and Anger.

4.2 Paralinguistic Cues

A crucial problem for all emotion recognition systems is the selection of the set of
relevant features to be used with the most efficient machine learning algorithm.
In the experiments reported in this paper, we have focused on the extraction
of prosodic, spectral, disfluency and non-verbal events cues, The Praat program
[14] was used for prosodic (F0 and energy) and spectral cue extraction. About
a hundred features are input to a classifier which selects the most relevant ones:

– F0 and Spectral features (Log-normalized per speaker): min, median, first
and third quartile, max, mean, standard deviation, range at the turn level,
slope (mean and max) in the voiced segments, regression coefficient and its
mean square error (performed on the voiced parts as well), maximum cross-
variation of F0 between two adjoining voiced segments (inter-segment) and
with each voiced segment(intra-segment), position on the time axis when
F0 is maximum (resp. minimum), ratio of the number of voiced and non-
voiced segments, formants and their bandwidth, difference between third
and second formant, difference between second and first formant: min, max,
mean, standard deviation, range.

– Microprosody : jitter, shimmer, NHR, HNR
– Energy features (normalized): min, max, mean, standard deviation and range

at the segment level, position on the time axis when the energy is maximum
(resp. minimum).
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– Duration features: speaking rate (inverse of the average length of the speech
voiced parts), number and length of silences (unvoiced portions between
200-800 ms).

– Disfluency features: number of pauses and filled pauses (”euh” in French)
per utterance annotated with time-stamps during transcription.

– Non linguistic event features: inspiration, expiration, mouth noise laughter,
crying, and unintelligible voice. These features are marked during the tran-
scription phase.

The above set of features are computed for all emotion segments and fed
into a classifier. The same train and test are used as for the classifier based on
the lexical features. Table 7 shows the emotion detection results using a SVM
classifier.

Table 7. Repartition for the 4 with a SVM classifier. A: Anger, F: Fear, R: Relief, S:
Sadness.

Total A F R S

#Utterances 640 49 384 107 100

% rec. 59,8 39 64 58 57

As for lexical results, the Fear is best detected (64%). The Anger is worst
detected (39%) while still above chance. It is mostly confused with Fear (37%).
This might be due to the fact that Fear is often in the background.

5 Discussion and Conclusion

We have obtained about 78% and 60% of good detection for respectively lexical
and paralinguistic cues on four real-life emotion classes. Both results were bet-
ter for FearAnxiety detection, which is the most frequent emotion in the corpus
and occurs with different intensity (anxiety, stress, fear, panic). Because Anger
recognition is very low with the paralinguistic model and Sadness is low with the
lexical model, we believe there might be a way to combine the two models and
yield better results. Thus, future work will be to combine information of different
natures: paralinguistic features (prosodic, spectral, disfluences, etc) with linguis-
tic features (lexical), to improve emotion detection or prediction. Comparison
with our previous results on lexical, paralinguistic and combined cues on other
call center data will be done in a next future.
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Abstract. We present a study on the automatic classification of expressiveness 
in speech using four databases that belong to two distinct groups: the first group 
of two databases contains adult speech directed to infants, while the second 
group contains adult speech directed to adults. We performed experiments with 
two approaches for feature extraction, the approach developed for Sony’s 
robotic dog AIBO (AIBO) and a segment based approach (SBA), and three 
machine learning algorithms for training the classifiers. In mono corpus 
experiments, the classifiers were trained and tested on each database 
individually. The results show that AIBO and SBA are competitive on the four 
databases considered, although the AIBO approach works better with long 
utterances whereas the SBA seems to be better suited for classification of short 
utterances. When training was performed on one database and testing on 
another database of the same group, little generalization across the databases 
happened because emotions with the same label occupy different regions of the 
feature space for the different databases. Fortunately, when the databases are 
merged, classification results are comparable to within-database experiments, 
indicating that the existing approaches for the classification of emotions in 
speech are efficient enough to handle larger amounts of training data without 
any reduction in classification accuracy, which should lead to classifiers that are 
more robust to varying styles of expressiveness in speech. 

Keywords: Affective computing, emotion, expressiveness, intent. 

1   Introduction 

Affective computing aims at the automatic recognition and synthesis of emotions in 
speech, facial expressions, or any other biological communication channel [1]. Within 
the field of affective computing, this paper addresses the problem of the automatic 
recognition of emotions in speech. Data-driven approaches to the classification of 
emotions in speech use supervised machine learning algorithms (such as neural 
                                                           
* This paper summarizes research that was reported in the manuscript “An evaluation of the 

robustness of existing supervised machine learning approaches to the classification of 
emotions in speech”, which was accepted for publication in Speech Communication. 
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networks or support vector machines, etc.) that are trained on patterns of speech 
prosody. Typically, statistical measures of speech pitch and intensity contours are 
used as features of the expression of emotions in speech. These features are provided 
as input to a machine learning algorithm along with the known emotional labels of a 
training set of emotional utterances. The output of the supervised learning phase is a 
classifier capable of distinguishing between the emotional classes it was trained with. 

Previous studies have focused on different aspects of the emotion recognition 
problem. Some studies focus on finding the most relevant acoustic features of 
emotions in speech [2], [3], [4]. Other studies search for the best machine learning 
algorithm for constructing the classifier [5] or investigate different classifier 
architectures [6]. Lately, segment based approaches that try to model the acoustic 
contours more closely are becoming popular [7], [8], [9]. In all of these studies, a 
single corpus is used for training and testing a machine learned classifier. To our 
knowledge, emotion recognition using parallel emotional corpora has not been 
attempted. In this study, we used four emotional speech databases. Our aims were 
twofold; an estimation of the accuracy of the classification approaches in single 
corpus experiments and the assessment of their robustness in multi-corpus 
experiments utilizing parallel emotional speech corpora. 

2   Description of the Speech Corpora 

We used four different databases that each belong to one of two different groups. One 
group of two databases contains adult speech directed to infants (Kismet and 
BabyEars), while the second group contains adult speech directed to adults (Berlin 
and Danish). 

2.1   The Databases with Adult-to-Infant Expressive Speech 

The two adult-to-infant corpora used in this study are Kismet and BabyEars. They 
contain expressions of non-linguistic communication (affective intent) conveyed by a 
parent to a pre-verbal child.1 The breakdown of the expressive class distribution in the 
Kismet and the BabyEars databases is given in Table 1. 

Table 1. Emotional Classes in the Kismet and BabyEars database pairs and number of 
utterances per class 

Kismet BabyEars 
Approval 185 Approval 212 
Attention 166 Attention 149 
Prohibition 188 Prohibition 148 
Soothing 143   
Neutral 320   

 

                                                           
1  Actually, Kismet is a small robotic creature with infantile looks; the speech type utilized 

when addressing the robot is essentially of a same type as that addressed to human infants. 
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Since the Kismet corpus contains two extra emotional classes that are not available in 
the BabyEars corpus, it was necessary to remove those two classes of emotions when 
performing multi-corpus experiments. Assuming that the recorders of the two corpora 
intended to have the same color of emotion under the same emotional label, the 
removal of the extra classes makes the two corpora compatible for machine learning 
experiments. 

Kismet 
The first corpus is a superset of the Kismet speech corpus that has been initially used 
in [6]. The corpus used in this work contains a total of 1002 American English 
utterances of varying linguistic content produced by three female speakers in five 
classes of affective communicative intents. These classes are Approval, Attention, 
Prohibition Weak, Soothing, and Neutral utterances.  

The affective communication intents sound acted and are generally expressed 
rather strongly. Recording is performed with 16-bit per sample, with occurrences of 8 
and 22 kHz sampled speech, and under varying amounts of noise. The speech 
recordings are of variable length, mostly in the range of 1.8 to 3.25 seconds. 

BabyEars 
The second speech corpus is the BabyEars speech corpus that has also been used in 
[10], [11]. The corpus consists of 509 recordings in American English of six mothers 
and six fathers as they addressed their infants while naturally interacting with them. 
Three emotional classes are included in the corpus, namely: Approval, Attention, and 
Prohibition.  

The emotions expressed in the recordings sound natural and unexaggerated. The 
utterances are typically between 0.53 to 8.9 seconds in length. 

2.2   The Databases with Adult-to-Adult Expressive Speech 

The two databases with adult-to-adult expressive speech used in this study are the 
Berlin and Danish databases. Table 2 shows their emotional class distributions. 

Table 2. Emotional Classes in the Berlin and Danish databases and nr. of utterances per  
class 

Berlin Danish 
Anger 127 Angry 52 
Sadness 52 Sad 52 
Happiness 64 Happy 51 
Neutral 78 Neutral 133 
Fear 55 Surprised 52 
Boredom 79   
Disgust 38   
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Similarly to the Kismet and BabyEars database pair, the Berlin and Danish databases 
share a number of emotional classes. Only these common emotional classes were used 
in multi-corpus experiments. 

Berlin 
This emotional speech database was recorded at the Technical University of Berlin 
[12]. Five female and five male actors uttered ten sentences in German that have little 
textual emotional content. The database contains a total of 493 utterances, divided 
among seven emotional classes: Neutral, Anger, Fear, Joy, Sadness, Disgust, and 
Boredom. 

The recordings were made using high-quality recording equipment with 16-bit 
precision at a sampling rate of 22 kHz.  

Danish 
This database is described in detail in [13]. It consists of a combination of short and 
long utterances in Danish spoken by two male and two female speakers in five 
emotions. These emotions are Neutral, Surprised, Happy, Sad, and Angry.  

The recordings were made with 16-bit precision at a sampling rate of 20 kHz in a 
recording studio. 

3   Approaches Used for the Classification of Expressive Speech 

Two different approaches for the classification of expressive speech have been used 
in this study; the AIBO approach uses feature vectors that are composed of statistical 
measures of acoustical parameters at the utterance level, while SBA uses a 
combination of such statistical measures at the utterance level and the level of 
individual voiced segments in the utterance. More details on these two feature sets 
will be given in subsections 3.1 and 3.2, respectively. 

Based on these feature vectors, several supervised machine learning techniques 
were used to construct the classifiers. These were K-nearest neighbours (KNN) 
Support Vector Machines (SVM) and Ada-boosted C4.5. The method used to evaluate 
the resulting classifiers is stratified 10-fold cross validation. In all classification 
experiments, we used the implementation of the machine learning algorithms as 
available in the data mining toolkit Weka [14] and Milk [15]. 

3.1   Utterance Based Classification of Emotions: The AIBO Feature Space 

The AIBO approach is a bottom up approach that relies on using an extensive feature 
set of low level statistics of prosodic parameters that are used in conjunction with a 
supervised machine learning algorithm to construct a classifier from the labeled 
database [5]. 

First the pitch, intensity, lowpass intensity, highpass intensity, and the norm of the 
absolute vector derivative of the first 10 Mel Frequency Cepstral Coefficients 
(MFCCs) are extracted from the speech signal. Next, out of each one of these five 
time series, four derived series are further extracted: the series of minima, the series  
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of maxima, the series of the durations between local extrema of the 10 Hz smoothed 
curve, and the series itself. In the last step 10 statistics of each of the resulting 20 
series are calculated, as shown in Table 3. 

Table 3. Statistical measures used in the AIBO approach 

Acoustic features 
measured Derived time series Statistics used 

-intensity 
-lowpass intensity  
-highpass intensity 
-norm absolute vector 
derivative of first 10 
MFCCs 

-minima 
-maxima 
-durations between 
local extrema 
-the feature series 
itself 

-Mean 
-maximum 
-minimum 
-range 
-variance 
-median 
-first quartile 
-third quartile 
-inter-quartile range 
-Mean absolute value 
of the local derivative  

3.2   Segment Based Classification of Emotions: The SBA Feature Space 

As the flowchart in Fig. 1 shows, the speech utterance as a whole is first summarized 
using statistical measures of spectral shape, intensity, and pitch contours. As a by-
product of the pitch extraction process, the utterance is segmented into a sequence of 
N voiced segments.  

Using that segmentation information, the same statistical measures that were also 
used at the whole utterance level are now calculated for each of the detected 
segments. Next, a feature vector consisting of both the utterance level information and 
the information local to the voiced segment is formed for each of the voiced 
segments.  

Since class labels in the database are provided for the utterances as a whole, each 
of the voiced segments of the utterance is given the same label as the whole utterance 
it belongs to. A segment classifier is trained using the segment feature vectors and 
these segment labels.  

For the classification of the whole utterance, the decisions made by the segment 
classifier for each of the utterances voiced segments, expressed as a posteriori class 
probabilities, are aggregated to obtain a single utterance level classification 
decision.  

The feature set is made up of 12 statistical measures of pitch, intensity, and spectral 
shape variation (Delta-MFCCs). For pitch extraction PRAAT [16] is employed, which 
uses a pitch extraction algorithm that is based on an autocorrelation method [17]. As 
shown in Table 4, six statistical measures are used to describe the pitch contour, three 
for the intensity contour, and three for the spectral rate of change. More details on the 
specifics of the algorithm are in [11], [18]. 
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Fig. 1. Flowchart of the segment based approach 

Table 4. Statistical measures used in the SBA approach 

Pitch  Intensity Speech Rate 

-Variance  
- Slope  
- Mean  
- Range  
- Max  
- Sum of Abs Delta  

-Variance 
- Mean 
- Max 

- Sum of Absolute Delta 
MFCC 
- Variance of Sum of 
Absolute Delta MFCC 
- Duration 

 

3.3   Classifier Evaluation Schemes 

The experimentation paradigm used for evaluation of the classifiers is stratified 10-
fold cross validation. In N-fold-cross-validation, the labeled corpus S is randomly 
split into N partitions of about equal size. Next, the classifier is generated using the 
chosen learning algorithm and conditions, but one of the N subsets is left out of the 
training set and used as the testing set. The remaining (N-1) subsets are used for 
training the classifier. This process is repeated N times, every time using a different 
subset for testing. The overall performance is then taken as the average of the 
performance achieved in the N runs. In stratified cross-validation, the generated folds 
contain approximately the same proportions of classes as the original dataset. Ten is 
the most common value for N used in the literature and was also adopted here. 
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4   Mono Corpus Experiments  

Table 5 summarizes the results of the classifiers trained and tested on each of the 
individual databases for both of the feature sets and all three machine learning 
algorithms. Overall, these results compare favourably with the state of the art results 
reported in literature for the same databases (see Table 6). 

Table 5. Percentage classification accuracy in single corpus experiments 

 Kismet BabyEars Berlin Danish 

MLA AIBO SBA AIBO SBA AIBO SBA AIBO SBA 

SVM 83.7 83.2 65.8 67.9 75.5 65.5 63.5 56.8 

KNN 82.2 86.6 61.5 68.7 67.7 59.0 49.7 55.6 

ADA C4.5 84.63 81 61.5 63.4 74.6 46.0 64.1 59.7 

As one can see from Table 5, there is no single best machine learning algorithm or 
feature vector for all the databases as they all achieve globally comparable results. 
Comparing the best results that can be obtained with the AIBO and SBA feature sets, 
we can see that AIBO outperforms SBA for the Berlin and Danish databases, while 
SBA performs slightly better than AIBO on the Kismet and BabyEars databases. 
Since the latter two have fewer voiced segments on average per utterance (4 and 2 
respectively) than the former (8 and 14), it would seem that segment based 
approaches, such as SBA, could be advantageous for short utterances, while the 
global approaches that are more common in classifiers for expressive speech perform 
better on longer utterances. We should note, however, that the difference in 
expression styles between the databases also correlates with the type of algorithm that 
performs best. It is also interesting to note that the best learning algorithm to use with 
SBA on Kismet and BabyEars seems to be KNN while, on Berlin and Danish, KNN 
performs poorly. This could be related to the compactness of the SBA feature set and 
the relevance of each of its member features. 

Table 6. Percentage classification accuracies reported in the literature 

 Kismet BabyEars Berlin Danish 
 
Machines 

82 Breazeal 
& Aryananda 
20022 

67 Slaney & 
McRoberts 2003 

 
void 

54 Hammal 
et al. 2005 

 
Humans 

 
void 

7/7 raters correct: 
79 Slaney & 
McRoberts 2003 

85 Paeschke & 
Sendlmeier 
2000 

67 Ververidis 
& Kotropolos 
2004 

Baseline3 32 42 34 51 

                                                           
2 This result relates to a subset of the Kismet database that was used here. 
3 The baseline classification results in table 6 were obtained by classifying all test utterances as 

the most common emotional class in the database. 
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5   Multi-corpus Experiments 

In multi-corpus experiments and for each of the emotional database pairs (Kismet-
BabyEars and Berlin-Danish) the following is performed. First, only the emotional 
classes that are common to both databases in consideration are kept in each of the 
databases. The remaining classes are removed. Three kinds of experiments are 
performed on the paired databases. First, within-corpus classification on each of the 
two databases is performed for comparative purposes. Then off-corpus and integrated-
corpus experiments are performed. In off-corpus classification, a classifier is machine 
learned using one corpus and tested on emotional samples from the other corpus. 
Integrated-corpus testing involves merging the two corpora into one speech corpus 
and then performing within-corpus testing on the resulting corpus. 

5.1   The BabyEars-Kismet Database Pair 

The common classes that remain in the paired BabyEars-Kismet databases are 
approval, attention and prohibition (see Table 1). Based on the results of the single 
database experiments, the SBA approach has been found to be more suitable for the 
Kismet and BabyEars databases. Therefore, it was used for all the multi-database 
experiments with these databases. The 3-way classification accuracy obtained for the 
BabyEars corpus was 65.4%; for the Kismet corpus it was 88.3%. The classification 
results in off-corpus experiments are shown in Table 7. 

Table 7. Off-corpus classification results 

Training 
Set 

Testing 
Set 

Classification 
Accuracy 

Baseline 
Accuracy 

BabyEars Kismet 54.40% 34.90% 
Kismet BabyEars 45.00% 41.70%  

When testing on the Kismet corpus and training on the BabyEars corpus, the resulting 
accuracy is higher than the baseline accuracy. This suggests that the learned classifier 
has captured enough information about the emotional class found in the testing set by 
learning from the training set even though the two sets come from two different 
domains and are recorded under different conditions. Training using the more varied 
BabyEars database and testing on Kismet database is found to be more successful 
than the other way around. This is probably due to the fact that it is unlikely for a 
classifier trained on a narrow corpus (Kismet corpus) to generalize for a wider corpus 
(BabyEars corpus) than the other way around. 

In integrated-corpus experiments, the overall classification accuracy obtained when 
the corresponding classes in the two corpora are merged is 74.7 % correct. For 
comparison purposes, the resulting accuracy is plotted in Fig. 2 next to the results that 
were obtained in the within-corpus tests. 
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40%

60%

80%

100%

Within-Corpus Testing : Kismit Corpus
Within-Corpus Testing: BabyEars Corpus
Within-Corpus Accuracy Weighed Average
Integrated Corpus Testing: Kismit + BabyEars Corpora  

Fig. 2. Comparison of the classification accuracies obtained in different settings 

In order to examine in more detail the confusion tendencies in integrated corpus 
mode, the corresponding emotional classes of the two corpora were kept distinct. 
Therefore, there were six emotional classes in total, namely: {Approval, Attention 
Prohibition}_Kismet, and {Approval, Attention, Prohibition}_BabyEars. 

The confusion matrix resulting from machine learning and classification with these 
six classes is shown in Table 8. Shaded cells denote test utterances that have been 
correctly classified. One can see that Kismet samples are almost never confused with 
BabyEars samples, but a significant number of BabyEars samples are confused with 
Kismet samples. The majority of those confused samples are actually classified 
correctly in terms of the conveyed emotion, which is very encouraging (32 samples 
with correct emotional label out of 50 corpus-confused samples, or 64 % correct) 

Table 8. Confusion matrix in the case of integrated-corpus classification across six classes 

a b c d e f  class 
150 26 8 1 0 0 a Ap_K 
26 140 0 0 0 0 b At_K 
1 0 186 0 1 0 c Pr_K 
20 7 6 105 32 40 d Ap_B 
0 2 3 24 86 32 e At_B 
1 0 9 29 16 93 f Pr_B 

The resulting classification accuracy in integrated corpus mode is somewhere in 
between the accuracies generated in within-corpus testing. This might suggest that the 
patterns behind the different emotions in the two corpora do not overlap in the feature 
space. As an example, the “Approval” class of the Kismet corpus is not getting 
confused with, let us say, the “Attention” class of the BabyEars corpus and so forth as 
the confusion matrix in Table 8 shows. 
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In order to further analyze the proximity of the emotional classes in the above 
experiment we applied clustering on the integrated corpus of the Kismet/BabyEars 
databases using the K-means clustering algorithm in Weka. We choose to cluster the 
instances into 6 clusters and we note the classes to clusters evaluation in Table 9. 

Table 9. Classes to clusters evaluation in BabyEars Kismet integrated corpus 

A B C D E F  Assigned to cluster 
0 30.9 0 30.3 38.6 0.1  kismet_approval 
0 0 99.8 0.2 0 0   kismet_attention 
100.0 0 0 0 0 0   kismet_prohibition 
0 3.2 0 19.0 31.0 46.7   babyears_approval 
4.1 0 46.6 0 0 49.3   babyears_attention 
98.3 0 0 0.7 1.0 0   babyears_prohibition 

Table 9 shows the classes to clusters evaluations taken as per class percentages (each 
row adds up to 100%). The Kismet and the BabyEars databases lie on sets of clusters 
with significant overlap. Specifically, the Kismet database is on clusters {A, B, C, D, 
E} whereas the BabyEars database is on clusters {A, C, D, E, F}. Furthermore, 
similar emotions in the two databases frequently lie on the same clusters. For 
example, kismet_approval is on clusters {B, D, E} whereas BabyEars_approval falls 
on {D, E, F}. Similarly, Kismet_prohibition and BabyEars_prohibition lie on cluster 
{A}. Furthermore, different emotions in the two databases lie on different clusters. In 
other words, the same cluster does not contain different emotions from different 
databases. For example, clusters {C, D, E} carry {attention, approval, approval} 
from both databases. Cluster F carries approval and attention from the BabyEars 
database only. 

5.2   The Berlin-Danish Database Pair 

The common classes that remain in the paired Berlin-Danish databases are Angry, 
Sad, Happy and Neutral (Table 2). Based on the results of Table 5 the AIBO approach 
has been found to be more suitable for the Danish and the Berlin databases. 
Therefore, this approach is used here, together with both SVM and KNN classifiers. 
The results from the performed within-corpus, off-corpus and integrated-corpus 
experiments are shown in Tables 10, 11 and 12, respectively. 

Table 10. Within-Corpus Results Using the AIBO Approach 

Database Classification 
Accuracy 

Danish 64.90% 
Berlin 80.7 %  
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Table 11. Off-Corpus Classification Results using the AIBO approach 

Training Testing MLA Classif. 
Acc. 

Baseline 
Acc. 

Berlin Danish SVM 20.8% 24.3% 
Berlin Danish KNN 22.9% 24.3% 
Danish Berlin SVM 52.6% 46.2% 
Danish Berlin KNN 38.9% 46.2%  

Table 12. Classification Results in Integrated Corpus Tests 

MLA 
Classif. 
Acc. 

SVM 72.2 % 
KNN 66.83 %  

As these tables show, the obtained off-corpus classification accuracies are similar to 
the baseline classification accuracies, implying that generalization was not possible 
across databases. In integrated corpus experiments, the accuracies obtained are again 
in-between the accuracies that were obtained in the within-corpus experiments, 
indicating that learning of the merged databases was possible.  

When the same emotional types of the two databases were again assigned a 
different label, this resulted in eight emotional classes, namely Danish_{neutral, 
happy, angry, sad} and Berlin_{neutral, happy, angry, sad}. It can be observed in 
Table 13 that in this 8-way classification experiment in the integrated database, the 
instances belonging to one database are not at all being confused with instances 
belonging to the second database, while some confusion occurred within the 
Kismet/BabyEars database.  

Table 13. Confusion Matrix in Integrated Corpus mode using Danish/Berlin Database 

a b c d e f g h <-- classified as 
74 1 2 1 0 0 0 0 | a berlin_neutral 
3 36 0 25 0 0 0 0 | b berlin_happy 
4 0 48 0 0 0 0 0 | c berlin_sadness 
1 25 0 101 0 0 0 0 | d berlin_anger 
0 0 0 0 106 2 17 8 | e danish_neutral 
0 0 0 0 7 29 2 13 | f danish_happy 
0 0 0 0 21 4 27 0 | g danish_sad 
0 0 0 0 11 16 2 23 | h danish_angry  

We applied clustering on the eight-class integrated corpus of the Danish/Berlin 
databases using the K-means clustering algorithm in order to examine the locations of 
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the emotional classes in the feature space. We choose to cluster the instances into 8 
clusters. The results are shown in Table 14. As can be seen, the Danish and Berlin 
databases lie on sets of clusters with little overlap. Specifically, the Danish is on 
clusters {A, B, D, E, G} whereas the Berlin database is on clusters {C, F, H}. 
Consequently, similar emotions in different databases lie on different clusters. For 
example, Berlin_happy is on clusters {F, H} whereas Danish_happy falls on {A, B, 
D, E, G}. Furthermore, the expression of emotional classes in the Berlin database is 
seen to be less varied and more consistent than the expression of the same emotional 
classes in the Danish database. For example, the emotions {happy, neutral, sadness, 
anger} are each assigned to a single cluster with a rate of {100%, 71.9%, 78.8%, 
80.3%} in the Berlin database as compared to {33.8%, 45.1%, 53.8%, 48.1%} in the 
Danish database. The higher consistency of emotional expressions in the Berlin 
database also explains the higher classification accuracy obtained in within corpus 
testing on the Danish and Berlin databases as reported in Table 10.  

It is a well-known fact in machine learning that the more specific and uniform  
the training corpus is, the more accurate the classifier trained using that corpus. On 
the other hand, when the classifier is learned using a more heterogeneous corpus, the 
expected classification accuracy is usually less when the learned classifier is used to 
classify new instances. In our case, it turned out that using a heterogeneous emotional 
corpus (Kismet/BabyEars and Berlin/Danish database pairs) for constructing the 
classifier did not result in a notable deterioration in classification accuracy. In other 
words, the added robustness of being able to deal with emotions in speech that is 
recorded in more than one setting is not costly in terms of recognition accuracy.  

Table 14. Classes to clusters evaluation in Danish/Berlin integrated corpus 

a b c d e f g h <= assigned to cluster 
0 0 0 0 0 0 0 100 
0 0 0 0 0 71.9 0 28.1 
0 0 78.8 0 0 0 0 21.2 
0 0 0 0 0 80.3 0 19.7 
15.0 18.8 0 15.8 33.8 0 16.5 0 
3.9 7.8 0 45.1 7.8 2.0 33.3 0 
7.7 7.7 0 26.9 3.8 0 53.8 0 
7.7 5.8 0 48.1 9.6 0 28.8 0 

berlin_neutral 
berlin_happy 
berlin_sadness 
berlin_anger 
danish_neutral 
danish_happy 
danish_sad 
danish_angry 

 

6   Conclusions 

The difference in performance reported on the same databases between the AIBO and 
the SBA approach are significant. The AIBO approach seems to be better suited for 
classification of emotions in emotion databases with long utterances whereas the SBA 
works better with short utterances.  

The choice of the most effective machine learning algorithm (MLA) seems to 
depend on the approach (AIBO vs SBA). An approach that uses a large feature set of 
low level statistics such as the AIBO approach seems to work best with an SVM or a 
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ADA-C4.5 classifier. KNN performs best with the SBA approach, which is based on 
a more compact feature set than the AIBO approach. 

Off-corpus testing on both corpus pairs of parallel emotional classes reveals that 
there is little generalization happening for the same emotional classes across 
databases. Fortunately, when the two emotional corpora that share the same emotional 
classes are merged into one single large corpus, the classification accuracy on the 
resulting database is only slightly reduced compared to the single database accuracies. 
Such findings suggest that the existing approaches for the classification of emotions 
in speech are efficient enough to handle larger amounts of training data without any 
reduction in classification accuracy. This way, more recordings expressing the same 
emotions in slightly different domains can continuously be added to the training 
corpus to produce a more robust classifier for the target emotions 

Automatic clustering of the emotional classes in the integrated corpora shows that 
similar emotions in the databases lie on distinct sets of clusters. If an ideal feature 
space could be employed, similar emotions belonging to different databases should be 
assigned to the same clusters. To achieve the desired robustness, an alternative 
method to the use of more training data perhaps lies in the design of better features 
and new classification paradigms. For emotion recognition, the integration of 
knowledge from domains such as psychoacoustics could be one step towards building 
emotion recognition systems that mimic human emotion perception. 
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Abstract. This paper examines the interaction between the emotion in-
dicated by the content of an utternance and the emotion indicated by the
acoustic of an utterance, and considers whether a speaker can hide their
emotional state by acting an emotion even though being semantically
honest. Three female and two male speakers of Swedish were recorded
saying the sentences “Jag har vunnit en miljon p̊a lotto” (I have won a
million on the lottery), “Det finns böcker i bokhyllan” (There are books
on the bookshelf) and “Min mamma har just dött” (my mother just died)
as if they were happy, neutral (indifferent), angry or sad. Thirty-nine ex-
perimental participants (19 female and 20 male) heard 60 randomly se-
lected stimuli randomly coupled with the question “Do you consider this
speaker to be emotionally X?”, where X could be angry, happy, neutral
or sad. They were asked to respond yes or no; the listeners’ responses
and reaction times were collected. The results show that semantic cues to
emotion play little role in the decoding process. Only when there are few
specific acoustic cues to an emotion do semantic cues come into play.
However, longer reaction times for the stimuli containing mismatched
acoustic and semantic cues indicate that the semantic cues to emotion
are processed even if they impact little on the perceived emotion.

Keywords: Emotion identification, acoustic emotion, semantic emotion,
perception, Swedish.

1 Introduction

The interaction of acoustics and semantics in spoken language emotion decoding
has been widely studied with a range of listener groups, for example, emotionally
deficient participants [1], children [2,3], and adults [2,7,6,5,4].

Psychological and neurological dysfunctions have been shown to affect a per-
son’s ability to recognize and to produce emotions. For example, [1] studied
how a participants with different degrees of alexithymia was evidenced in the
participants’ automatic emotion decoding by presented the participants with
emotionally congruent and non-congruent pairs of visually presented faces and
auditorially presented single word verbal targets. They found that, regardless of
the participants mood, the greater the degree of alexithymia the less the amount
of emotional information that is automatically processed.

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 57–69, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Visually and auditory congruent and non-congruent stimuli have also been
used to study the processing of emotional information by children. Using such
stimuli [4] found that children judged verbal negative content presented with
a positive visual content more negatively than their parents on a positive to
negative scale. The results also indicated an interaction between the acoustic and
semantic part of the verbal stimuli modality; positive signals in one part were
disregarded in favour of a negative signal in the other channel. This interaction
was further found to be impacted upon by the gender of the speaker; females
were significantly judged more negatively than males when presenting verbally
negative content. More recently, [2] using verbal stimuli that varied in semantic
and acoustic emotional connotation found that children primarily use the content
(i.e. semantics) of the stimuli to determine the emotional content of the stimuli,
whereas adults primarily use other cues, when the task was to judge whether
a stimulus was happy or sad. The stimuli used in [2] contained congruent and
non-congruent cues for tone and content and were spoken by a single female.

It has been shown [5] that adult participants attend to tone of voice as the
primary cue when judging the emotional content in non-congruent stimuli on a
one-dimensional scale (positive through negative). Two other effects of note were
found. One, that participants were able to disregard the acoustic cues in favour
of content ones when instructed to do so and two, a speaker dependent effect;
one speaker was more efficient in conveying their emotional disposition. This
effect may have been caused by the use of amateur speakers; an effect discussed
in detail in [8].

More recently, [6] studied the effect of emotional congruence on response times
in a lexical decision task. The participants’ task was to decide whether a word
was ‘real’ or not. During complete randomisation trials (i.e. all stimuli were
randomised with regards to their presentation) no significant differences were
found between response times for congruent and non-congruent stimuli. An effect
was found, however, in blocked trials in which each group of participants heard
all the stimuli presented with the same tone of voice. Here, congruent stimuli
reaction times were significantly shorter than both non-congruent and baseline
stimuli (neutral words spoken in neutral tone) reaction times. In their adult trials
[2] also found reaction time differences between congruent and non-congruent
stimuli. However, this effect diminished over the course of the trials.

Emotional congruence has also been used to study lexical disambiguation [7].
Nygaard and Lunders presented their participants with homophones of one, or
two, semantic attitudes (Happy or Sad) spoken in a neutral, positive or negative
tone. The participants’ task was to transcribe the homophone as they thought
they heard it. Nygaard and Lunders found that their participants were more
likely to respond with the happy connoted variant of the homophone than the
neutral counterpart when spoken with a happy tone of voice and the negative
counterpart when spoken with a negative tone of voice.

In this study, the impact of semantic content on acoustic emotion decoding
(and vice-versa) of acted emotion was investigated using signal detection the-
ory. The participants were asked to respond yes or no to a question asking
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if the stimulus was a particular emotion or not; congruent and non-congruent
stimuli were presented. As previous findings indicate that adults decode emotion
based solely on acoustic cues, analysis of the participant responses using signal
detection theory should show a significantly better signal detection ability for
the acoustic cues than the semantic cues in the stimuli set. The signal detec-
tion approach also facilitates rapid participant responses, as the decision to be
made by participants is binary; reaction time measurement is, therefore, sound
and motivated. The task is straightforward and related to the investigated vari-
ables (cf. for example, [6]). The stimuli set was constructed in Swedish. It was
expected that reaction times for congruent stimuli would be shortest and that
signal detection values would show that acoustic cues are used more accurately
in emotion detection than semantic cues.

2 Method

2.1 Participants

These were 39 (20 male and 19 female) undergraduate students (mean age=
24.7, sd= 4.1) at Ume̊a University, Sweden. All were native speakers of Swedish
and reported no known hearing problem. Their participation was voluntary and
without reimbursement.

2.2 Materials

The stimuli set was created from the recordings of five Swedish speakers (2
male and 3 female; mean age = 23.6, range: 20 – 30 years), who were selected
on the basis of a pre-test [9]. In the pre-test 30 listeners specified the acoustic
emotional content 30 speakers tried to convey (happy, sad, neutral and angry).
The stimulus sentence for the pre-test was the semantically emotional neutral
sentence (“Min vän har köpt en ny bil”, My friend has bought a new car). The
five speakers with highest identification of acoustic emotions were selected.

Each speaker was recorded uttering three sentences: “Jag har vunnit en miljon
p̊a lotto” (I have won a million on the lottery; happy sentence content), “Det finns
böcker i bokhyllan” (There are books on the bookshelf; neutral sentence content)
and “Min mamma har just dött” (My mother just died; sad sentence content).
These sentences were also submitted to a written test in which subjects were to
specify whether the sentences signalled happiness, sadness, anger or neutrality
(i.e. did not convey a specific emotion) [9]. The three sentences selected signalled
their intended semantic emotional content clearly: the sad sentence was identified
as ‘sad’ 100% of the time, the happy sentence as ‘happy’ 96.7% of the time and
the neutral sentence as ‘neutral’ 80% of the time. These three sentences were
recorded using four emotional tones of voice: happy, sad, neutral and angry
(unspecified hot or cold).

The stimuli were recorded in a sound-attenuated room using a microphone
connected to a PC computer through a microphone pre-amp. The analogue signal
was digitized at 44.1 kHz in Adobe Audition and subsequently re-sampled at 16
kHz and high-pass filtered at 60 Hz. Each stimulus was circa 3 seconds long.
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Table 1. The categorisation of the stimuli. ‘+’ indicates a match between the question
emotion the emotion cue and ‘−’ indicates no match between the question emotion the
emotion cue.

Stimulus Set Name Acoustic Cues Semantic Cues

Baseline + +
Noise − −

Test
+ −
− +

2.3 Procedure

The listeners were positioned in front of a computer and were equipped with
headphones. The test was presented using a tcl/tk script and started with de-
mographic questions about gender and age of the listener. The perception test
consisted of 60 randomly presented stimuli, each accompanied by a question
(presented visually) of the form “Do you consider this speaker to be emotionally
X?”, where X was randomly chosen as either happy, sad, angry or neutral. Two
buttons were displayed below the question, one no-button and one yes-button.
These were disabled until after the stimulus has been played. The listeners then
responded to the question by clicking the appropriate button using the com-
puter mouse. The listeners were requested to answer the question as quickly and
accurately as possible. Reaction time was measured from the end-point of the
file until one of the buttons has been selected. When the participant had not
responded after 10 seconds, a new stimulus was automatically presented. The
answers (yes or no) were recorded together with response times, the file played
and the question emotion.

2.4 Experimental Design and Analysis

The data was categorised into three sets as shown in Table 1: (i) The baseline set:
the semantic emotion matched that of the acoustic one which, in turn, matched
that of the question (for example, semantic happy, acoustic happy and question
happy); (ii) The test set: the semantic or the acoustic emotion (but not both)
matched the question emotion and (iii) noise: the question emotion did not match
either of the signalled emotions.

In a yes-no experimental design responses can be grouped into four different
categories: hit, miss, false alarm and correct rejection. A hit is when
the participant responds yes when the emotion in the question agrees with the
emotion of the stimulus, a miss is when the participant incorrectly responds no

when the question emotion and the emotion of the stimulus are the same; a
false alarm is when the participant responds yes when the question emotion
is not the same as the emotion of the stimulus, and a correct rejection

is when the participant correctly rejects a stimulus as not being the same as
the question emotion. This division of responses into these categories makes it
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possible to calculate the signal detection ability or the discrimination sensitivity
of the listener. The signal detection measure, d-prime, is the difference between
the hit rate (H), the number of hits relative to the total number of possible
hits, and the false alarm rate (F), the number of false alarms relative
to the total number of possible false alarms, after first being transformed
into z-values, d − prime = z(H) − z(F ) [10], and is based on both the listener’s
ability to answer yes correctly and inability to say no when they should. The
value of the d-prime is symmetrically distributed around zero, where zero means
no difference between hits and false alarms indicating a lack of signal detection
ability.

The data categorisation scheme permits testing for above chance emotion
identification for the baseline stimuli: d-prime was calculated using baseline and
noise stimuli. D-prime can also be calculated for accuracy of acoustic emotion
identification using the test and noise stimuli. Here a hit is scored by the par-
ticipant when the acoustic emotion matches the question emotion and the par-
ticipant answers yes, and a false alarm when the acoustics and question
emotion do not match and the participant answers yes. D-prime can be simi-
larly calculated using the test and noise stimuli for accuracy of semantic emotion
identification. Here a hit is scored by the participant when the semantic emo-
tion matches the question emotion and the participant answers yes, and a false

alarm when the semantic and question emotions do not match and the partic-
ipant answers yes. As angry only occurs as an acoustic emotion, d-prime angry
could only be calculated for acoustic emotion detection, and no baseline d-prime
could be calculated. Differences in d-prime values were tested using the Student’s
t-test.

Correct response reaction times for the various test types were compared using
the Kolmogorov-Smirnov test as the reaction times were shown to be skewed
by a D’Agostino test. Non-responses, when the listener did not respond, were
discarded; these accounted for 0.6% of the total stimuli.

3 Results

The signal detection theory d-prime results are presented followed by the reaction
time results and response confusion.

3.1 D-Prime Analysis

In order to ensure accurate measures of parametric tests, the normality of the
d-prime values was investigated. Shapiro-Wilk’s test confirmed a normally dis-
tributed set of data (W= 0.99, p= 0.99).

The participants’ d-prime scores for the identification of the baseline stim-
uli were significantly above chance (t(37) = 34.79, p= 0.0001). This indicated
that the speakers successfully conveyed the emotional content in a manner the
listeners expected using voice alone, semantic cues alone, or both in tandem.

The participants’ ability to detect emotion based on the semantics of the test
stimuli, as indicated by the d-prime values for semantic emotion identification,
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Table 2. Student’s t-tests between the acoustic emotions’ detectability measured in
d-prime

Angry Happy Neutral

Happy t(75.5) = −2.9
p = 0.02

Neutral t(75.9) = 0.77 t(75.5) = 3.08
p = 0.44 p = 0.002

Sad t(75.9) = 2.93 t(75.8) = −0.72 t(75.9) = −3.70
p = 0.004 p = 0.475 p = 0.001

was significantly lower than for detection of emotion based on the acoustics of the
test stimuli, as indicated by the d-prime values for acoustic emotion identification
(t(71.58) = 3.95, p= 0.001).

When compared to the d-prime values for the baseline stimuli, the d-prime
values for acoustic emotion identification were significantly lower (t(69.1) = 17.6,
p= 0.001). A significant difference was also found for semantic emotion identifi-
cation (t(74.8) = 25,1, p= 0.001). The participants’ acoustic emotion detection
performance was better than chance (t(38) = 3.61, p= 0.001), but the partici-
pant’s semantic emotion detection was not better than chance (t(38) = −1.79,
p= 0.081). No gender difference was found in the signal detection (d-prime)
rate for either acoustic cues (t(36) = 1.278, p= 0.21) or the semantic cues
(t(36) = −0.0001, p= 0.9998).

The mean d-prime values for each of the test sets (acoustic and emotion) and
the baseline set show that the baseline stimuli are most readily identified (mean
d-prime = 2.39), followed by the acoustic cue test second (mean d-prime = 0.34)
and the semantic emotion cue test set the least readily recognised with decoding
at chance level (mean d-prime = −0.13).

The signal detection performance of the listeners in terms of d-prime values
was investigated for the question emotions. For each question emotions that
was cued by both acoustics and semantics (Happy, Neutral and Sad) a Stu-
dent’s t-test was computed between the semantic and acoustic emotion detec-
tion ability. These tests showed significant differences in performance for Happy
(t(75.78) = 2.53, p= 0.013) and Neutral (t(73.8) = −2.07, p= 0.042) but not for
Sad (t(73.7) = 1.55, p= 0.126).

Using the same d-prime values it is possible to compare emotion detection
within the test due to acoustic and semantic cues. The results presented in
Table 2 show that for emotion detection based on the acoustic cues there were
significant differences in emotion detection depending on the emotion of the
question, and those presented in Table 3 show that for emotion detection based
on the semantic cues there were no significant differences in emotion detection
that were dependent upon the emotion of the question.

D-prime allows comparison of emotion detection; it is possible to use d-prime
to determine which of the emotions was most easy to identify (high d-prime) and
which was the hardest (low d-prime). The means of d-primes for each acoustic
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Table 3. Student’s t-tests between the semantic emotions’ detectability measured in
d-prime

Happy Neutral

Neutral t(75.9) = 1.43, p = 0.156
Sad t(75.6) = −1.87, p = 0.065 t(75.9) = −0.42, p = 0.674

Table 4. Descriptives (means and standard deviation (std. dev)) for acoustic emotion
detection values (d-prime)

Emotion x̄ std. dev

Angry −0.098 0.67
Happy 0.237 0.62
Neutral −0.215 0.67
Sad 0.34 0.65

emotion are shown in Table 4. From this table it can be seen that Sad was the
most readily detected emotion, followed by Happy, Angry, and finally Neutral
was the least detectable. The values for d-primes for each semantic emotion are
not ranked as no significant deference was found.

3.2 Reaction Time Analysis

The reaction times for the correct responses to test set acoustic cues were anal-
ysed in relation to the reaction times for correct responses to test set semantic
cues and to the correct responses to baseline stimuli set. Due to the skewed
distribution of response times (D’Agostino test: skewness= 1.82, p= 0.001 and
skewness= 1.81, p=0.001 reaction times to semantic and acoustic cues, respec-
tively. See also Figures 1 and 2) the Kolmogorov-Smirnov non-parametric test
was used. (Logaritmization of the variables did not improve skewness.) A differ-
ence between the test stimuli set and the baseline set was found. The baseline
had significantly lower reaction times (D= 0.145, p= 0.003). No significant dif-
ference in response times between correct responses to semantic cues and correct
responses to acoustic cues within the test set were found (D=0.039, p= 0.194).

The reaction times for hits only were also analysed for the reaction times to
semantic and acoustic cues. The Kolmogorov-Smirnov test showed a significant
difference between the response times (D= 0.328, p= 0.0001). The reaction times
to acoustic cues were shorter than the reaction times to semantic cues (median
response time to the acoustic cues: 1.51s; median response time to the semantic
cues: 2.46s).

Reaction times were also analysed for gender differences. A Kolmogorov-
Smirnov test showed a significant difference between male and female response
times for hits for both responses to acoustic cues (D= 0.0848, p= 0.002) and re-
sponses to semantic cues (D= 0.1012, p= 0.002). The female group was faster in
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tion of response times for test set semantic
cue hits and correct rejections

Table 5. Reaction time descriptives (in seconds) for correct responses by gender and
cue

Female Male

Mean Median Mean Median

Acoustic cue 1.66 1.41 1.80 1.47
Semantic cue 1.74 1.49 1.93 1.57

both cases (see Table 5 ). No significant difference was found due to the question
asked. Figures 3 – 6 show box-plots of the participants’ reaction times by gen-
der. Each figure presents a set of triplets that are defined by the question asked.
The reaction times in each panel have been subjected to a Kolmogorov-Smirnov
test and the significant gender differences within a triplet are marked with a ‘*’.
These figures, thus, provide more detailed information about the participants’
reaction times.

3.3 Confusion Analysis

Participant responses were analysed in terms of confusion between the acoustic
and the semantic cues. For each question emotion, the responses (either yes

and no) were investigated in terms of which emotion listeners were responding
to. This analysis includes yes-responses to noise data. Tables 6 – 9 detail the
responses to each semantic emotion cue per acoustic emotion cue. Each table
details a question emotion.

The confusion tables reveal that the semantic cues to emotion decoding play
little role in the decision process whether the aural stimuli is the same as
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question emotion or not. In Tables 6 – 9, most yes responses are found where the
question and acoustic cue agree. The degree of yes confusion for the question
Angry is small with only the occasional yes when the acoustic cue is not that
of Angry. For the Happy question the semantic cue Happy achieved a few yes



66 E.J. Eriksson, F. Schaeffler, and K.P.H. Sullivan

Table 6. Responses to all stimuli for the
question emotion Angry

Acoustic
Emotion

Semantic
Emotion Yes No

Happy 24 16
Neutral 34 1Angry
Sad 34 14

Happy
Happy 1 50
Neutral 9 43
Sad 3 52

Neutral
Happy 2 43
Neutral 7 39
Sad 2 45

Sad
Happy 1 49
Neutral 1 46
Sad 0 46

Table 7. Responses to all stimuli for the
question emotion Happy

Acoustic
Emotion

Semantic
Emotion Yes No

Angry
Happy 16 42
Neutral 9 36
Sad 7 45
Happy 51 4
Neutral 42 5Happy
Sad 40 3

Neutral
Happy 3 46
Neutral 9 37
Sad 8 44

Sad
Happy 2 40
Neutral 1 45
Sad 0 42

Table 8. Responses to all stimuli for the
question emotion Neutral

Acoustic
Emotion

Semantic
Emotion Yes No

Angry
Happy 0 62
Neutral 3 62
Sad 2 49

Happy
Happy 13 39
Neutral 14 33
Sad 6 42
Happy 39 13
Neutral 48 3Neutral
Sad 30 17

Sad
Happy 11 45
Neutral 7 40
Sad 3 48

Table 9. Responses to all stimuli for the
question emotion Sad

Acoustic
Emotion

Semantic
Emotion Yes No

Angry
Happy 3 30
Neutral 3 46
Sad 9 34

Happy
Happy 0 37
Neutral 1 46
Sad 2 47

Neutral
Happy 15 27
Neutral 10 42
Sad 25 22
Happy 38 8
Neutral 49 4Sad
Sad 53 2

responses even when the acoustic cue is that of Angry. For the Neutral ques-
tion, the Happy and Sad acoustic cues manage to attract a few yes responses
together with the Happy and Neutral semantic cues. For the Sad question, the
sad semantic cue coupled with the neutral acoustic cue managed to attract a
relatively large number of yes responses; this was the only combination in the
study where it can be claimed that the semantic cues, at times, overrode the
acoustic cues.
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4 Discussion

Previous research that has investigated emotion decoding has measured this by
either asking participants to write down, or select from a given set of emotions,
the emotion they perceive from the stimuli or asking participants to rate the
emotion they perceive on a given dimension. A detailed discussion of the ad-
vantages and disadvantages of these two approaches is given in [8] and [11]. For
example, naming emotions (picking them from a set) is flawed as it forces par-
ticipants into selecting emotions which may not be as clear to the participant as
the researcher desires [8].

The experimental design used in this paper did not force participants to pick
one emotion from a given set of emotions or to map the perceived stimuli onto
arbitrary dimensions. I asked the participants to respond to whether a particular
stimuli was a specific emotion or not. This experimental design gave the partic-
ipants the opportunity to respond yes or no to the presented emotion stimulus
triplets depending upon whether they perceived the oral stimulus as representing
the question emotion or not. This use of a binary participant response affords
the use of signal detection theory and the calculation of listener discrimination
ability as measured by d-prime. Further the set of test stimuli facilitated the
calculation of d-prime for acoustic and semantic cues of emotion transmission
separately; high d-prime values indicate good signal detection and values close
to zero indicate near random signal detection.

Another advantage of the experimental design used is that by asked the par-
ticipants to evaluate the input and relate it to their emotion prototypes, it is
possible to measure emotion matching, and not simple the participant’s emotion
naming or mapping ability. The approach, however, does not provide any infor-
mation about how the stimuli are processed, which features the listener attends
to or what information is relevant for a specific decoding.

Accuracy for emotion decoding, and thus detection, was high for the base-
line stimuli set. This showed that the listeners accurately responded yes when
the semantic and acoustic cues in the aurally presented stimulus matched the
emotion in question asked and no when the semantic and acoustic emotion cues
did not match the emotion in the question. The detection rate significantly fell
when the acoustic and semantic emotion cues contradicted each other. It was,
further, found that listeners are more likely to rely on the information given by
the acoustic channel.

Thus, when two different channels (in this case acoustic and semantic) signal
different emotions, the chance of deducing the speaker’s intended emotion is
lower, but due to the greater impact of the acoustic cues, individuals acting
acoustic cues for an emotion are more likely to succeed in hiding their emotional
state than individuals that attend to the semantic content of their speech but
ignores the need to act the acoustic cues to emotion. As no gender difference in
detection rate was found (cf. [12], was has posited that such a differences exists),
males and females appear to attend to the same cues and to the same degree.

The listeners’ reaction times were longer for the test set stimuli, where the
acoustic and semantic cues did not match, than for baseline stimuli, where the
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acoustic and semantic cues matched. This result parallels the findings of [6] and
[13]. A significant gender difference was found for the reaction time in the test
set. The female participants responded faster than the males when responding
correctly; this finding is similar to the one reported in [14]. Taken together with
the d-prime results, it can be posited that although there is no difference be-
tween the genders in their emotion identification and discrimination abilities, the
reaction time difference indicates a difference in how the genders neurologically
process emotional content (see, for example, [12]) and that females (possibly)
handle emotion cue discrepancies earlier than males.

The examination of confusion between the question and the emotion cues
revealed that the semantic cues played little, and often no, role in the decision
process. However, for Neutral and Sad there is more confusion. This is notable
as this differs from the results of [14] who specified sad, anger and fear as the
most easily recognized emotions in speech. Scherer’s findings indicate that sad
semantic cues should impact upon the perceived acoustic cues as suggested by
[4]; this is not supported by the findings of this study.

5 Conclusion

The experiment presented here has used a novel, to the emotion in speech re-
search sector, method to measure listeners’ ability to decode emotional content
in spoken material. The impact of semantic cues to emotion upon acoustically
encoded cues to emotion detection has been investigated. The findings show that
semantic cues to emotion play little role in the decoding process; the signal de-
tection ability for acoustic cues to emotion is superior to that of semantic cues
to emotion. Only when there are few specific acoustic cues (for instance, when
the target acoustics cue the emotion Neutral) do semantic cues come into play,
and even then only marginally. Thus, from this acted speech material it can be
concluded that a speaker can hide their emotional state by acting an emotion
even though being semantically honest. However, the longer reaction times for
the test data indicate that the semantic cues to emotion are processed. The
gender differences in reaction time may reflect a gender-based difference in the
processing of emotion information in speech; this warrants further investigation.
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Abstract. This article describes a project which aimes at reviewing per-
ceptive works on emotion and prosodic description of affective speech.
A study with a spontaneous French corpus, for which a corresponding
acted version has been built, shows that native listeners perceive the
difference between acted and spontaneous emotions. The results of cross-
linguistic perceptual studies indicate that emotions are perceived by lis-
teners partly on the basis of prosody only, proposing the universality of
emotions like anger, and partly on the basis of the variability. The latter
assumption is supported by the fact that the characterization of anger in
degrees is different depending on the mother tongue of the listeners. Fi-
nally, a prosodic analysis of the emotional speech is presented, measuring
F0 cues, duration parameters and intensity.

Keywords: Emotions, perception, prosody.

1 Introduction

This paper reports on a project we conducted which aimes to contribute to the
description of the prosody of affective speech. The choice of a corpus in the study
of the vocal characterization of emotion is not trivial: Research is often based
on non-natural corpora, played by actors. This allows for a tighter control of the
quality of the recordings and also to select the emotion to be acted. Recently,
however, more and more studies have insisted on the necessity of using natural
and authentic emotional speech. As we wanted to work on spontaneous emotion,
we used a corpus extracted from a radio programme which plays hoaxes on
unsuspecting members of the public. The emotion we chose to focus on is anger.

The first part of this paper will describe how we validated the emotive charge
of the corpus. We show that native listeners can sense the difference between
acted and spontaneous emotion, thus confirming us in our decision to work
with a spontaneous corpus. Then, we focus on the cultural or universal aspect
of the affective behaviour (which differentiates attitudes from emotions). To
verify the universality of anger as an emotion, we made a set of cross-linguistic
perceptual tests. These tests show that listeners may perceive emotions on the
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basis of prosody only1. The results confirm both universality and variability
in the perception of anger: It is identified when participants hear only prosody;
moreover, the characterization of anger in various degrees depends on the mother
tongue of the listeners. It appears that the global concept of anger may be
graduated, and the categories so defined are closed to attitudes: Their perception
is cultural. Finally, results from a prosodic analysis of the emotive speech are
presented measuring F0 cues, duration parameters, and intensity.

2 The Spontaneous Speech Corpus

For the reasons stated above, we decided to work on spontaneous rather than
acted emotions and thus endeavoured to select a suitable spontaneous French
corpus. We chose a corpus based on radiophonic hoaxes (online Fun Radio
http://www.funradio.fr). The radio presenter calls on institutions (high
schools, hospitals) or professionals (bakers, taxidermists, bankers) and, playing
the role of a client, asks something which does not fit the situation. For example,
the animator calls a taxidermist and asks him for a taxi cab, creating thus a situ-
ation where the professional tries to explain the mistake while the animator acts
as if he does not understand the problem. Eventually, this miscommunication2

leads the victim of the hoax to express anger.
The corpus consists of one hour and four minutes of speech (twenty-four

hoaxes). Fifteen out of the twenty-four initial dialogues were transcribed us-
ing Transcriber 4.0 which supports reading, selecting and transcribing a sound
file (.wav) by speaker turns. We chose not to analyze the production of the an-
imator for two main reasons: First, it is not possible to interpret his speech on
the same level as the speech of the victim as he is in fact addressing a “third”
party – the public – and his interventions with the victims are shaped by this
(see the discussion on communicational tropes in Kerbrat-Orecchioni, 1990 [1]).
Secondly, we assume that the type of anger the animator expresses is different
to that expressed by the victim: Only the victim, unaware of the hoax, expresses
spontaneous emotion, whereas the animator is acting his emotion. Since our aim
is to test the perception of authentic spontaneous emotions, we concentrated on
the “victim’s speech”.

In total, the collect corpus comprises twenty-seven speakers: thirteen men
and fourteen women. Some of the dialogues were rejected because the speech
contained a dialectal or foreign accent or the victims had realised the call was
a hoax. Each sentence of each turn was annotated using three types of labels:
Anger , associated with a number from one to five to mark a degree (A1, A2, ...,
A5), Neutral Attitude (N), and Other Emotion (OE). These three labels
constituted the main categories. Table 1 depicts the distribution of speaker turns
based on the annotations. Among the total speaker turns, 305 were annotated as
Anger. The corpus contains 40 % Anger and 52 % Neutral speakers turns.
1 However, other linguistic information completes this perception and comprehension.
2 There are two types of miscommunication, one based on the ambiguity of the context,

and the other on the meaning of the word.

http://www.funradio.fr


72 C. Mathon and S. de Abreu

After this first annotation, the speaker turns were classified and extracted from
their context. The first annotation, based on our intuition and our competence
as French native speakers, allowed harmonizing the emotive charge of the sen-
tences proposed to the appreciation of native speakers in the pretest presented
below.

Table 1. Distribution of speakers turns based on annotations. N= Neutral Atti-

tude; A1,. . . ,A5 = Anger; OE = Other Emotion (OE).

Annotation N A1 A2 A3 A4 A5 OE Total

Number of speaker turns 399 89 117 70 24 5 61 765

% of speaker turns 52 12 15 9 3 1 8 100

3 Perception Tests

Based on this corpus, we wanted to test how anger is actually perceived by the
listeners. In order to do so, a set of perceptual tests was devised. First, the corpus
had to be validated by showing that the chosen sentences are really perceived as
conveying anger. Then, it was shown that listeners can differentiate spontaneous
and acted anger. Finally, the role of prosody in the recognition of anger in a
cross-linguistic study is pointed out.

3.1 Validation of the Corpus

To validate the corpus, a pretest was conducted. Five French native speakers
were asked to decide if the sentences they heard were said with anger, a neutral
attitude, or another emotion.

The first difficulty we had to face was the question of attributing a degree
to the emotion conveyed by the sentences of the corpus. If the sentence was
pronounced with anger, the subjects had to evaluate the degree of this emotion
by graduating from one to five. A total of eighty-one sentences were chosen, five
of which being training sentences. The subjects had to listen to the random-
ized eighty-one sentences. The beginning of each sentence was indicated by a
specific sound and they had two seconds to accomplish their task. This pretest
revealed that the choice between Anger and Other emotion was difficult for
the subjects. Particularly, it was difficult for them to conceptualize emotion (for
instance, understanding what anger or emotion means), especially in a test sit-
uation. We therefore decided to eliminate the category of Other emotion for
the perceptual test.

On the basis of the pretest, a set of sentences was selected: Only those sen-
tences for which the judgments were clearly defined by a majority were kept.
For instance, for Anger, the sentences which scored at least 80 % of answers
were kept. From the pretest, thirteen sentences judged as expressing Anger and
thirteen judged as expressing No Anger, as well as five training sentences were
selected.
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3.2 Spontaneous Versus Acted Speech

Almost all the studies about emotions are based on non-natural corpora, usu-
ally played by actors (see e.g. Scherer [2], Bänziger [3], Léon [4], Fónagy [5]).
The sentences are chosen in order to be semantically neutral, built with written
syntax. This type of methodology makes it possible to control the experimental
parameters and the sound quality of the corpus. Nonetheless, more and more
researchers are interested in studying spontaneous emotion and use corpora col-
lated under natural conditions (see e.g. Campbell [6], [7], Douglas-Cowie [8]).
They assume that working with natural speech is the best way to capture the
reality of emotion. At this stage, however, it is not known whether there is a sig-
nificant difference between both types of corpora. Would the difference between
spontaneous and acted emotion be perceptible to listeners? And how would it
be actually realised? Through prosodic or syntactic parameters? The stuy de-
scribed in this section attempts to provide an answer to the first question, that
is to say: Can we perceive the difference between natural and played emotion?

Generation of an Acted Corpus. In order to verify our hypothesis, we had
to get natural and played corpora of emotion. We decided to work from the
spontaneous French corpus described above. The acted corpus was built from
the spontaneous one. Natural sentences from the corpus of spontaneous speech
containing anger were extracted. In order to verify the influence of oral syntax
and especially the influence of disfluencies on the perception of emotion (here
anger) as natural, we modified the extracted sentences, removing all the disfluen-
cies (such as pauses, repetitions, hesitations, and false starts) with the software
Soundforge 7.0. Finally, the natural corpus contained the original sentences ex-
tracted from hoaxes as well as the same sentences but without the disfluencies.

Three French speakers were asked to read the sentences, acting anger: (1) With
exactly the same segmental content as in the original ones. For that purpose, the
actors were given exactly the same orthographical transcription of each sentence.
The aim was to focus on the prosodic realizations. (2) With sentences having the
same content but no disfluencies. The disfluencies were removed to check their
influence on the perception of speech and emotion as natural or not. (3) With
sentences reworked with written syntax. This was to see if written syntax can
be an important cue of non natural emotion.

The French speakers were recorded on a Sony MD recorder in a quiet room
in order to avoid any noise. Unfortunately, the recording conditions were not
identical with those of the spontaneous corpus. It was considered that this could
influence the results of our test. In order to neutralize these effects, the acted
stimuli were reworked with Soundforge 7.0: The intensity was lowered until a
good homogeneity of intensity between all the stimuli was obtained.

Subjects and Task. The subjects (ten French listeners) were asked decide if, in
each of the sentences they listened to, the anger was real or acted. They listened
to each sentence only once. They had five seconds to decide and answer. The
test set consisted of: ten original sentences extracted from the corpus of hoaxes
described above; ten original sentences without disfluencies; ten sentences acted
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from the exact transcription of the original sentences; ten sentences acted from
the transcription of the original sentences without disfluencies and Ten sentences
reworked in written syntax. Four training sentences were added. The subjects
heard five sentences twice to verify the coherence of the answers.

Results. Table 2 shows the percentage of answers for spontaneous anger for
each of the five types of stimuli. Original sentences (with and without disfluen-
cies) have been well recognized at 87 % and 83 % as spontaneous anger. Acted
sentences were not recognized as spontaneous anger. Note that acted sentences
without disfluencies were perceived as more natural than the other acted sen-
tences. Surprisingly, acted sentences from the original orthographical transcrip-
tion have been perceived as the least natural. Disfluencies are characteristic of
oral speech and it was expected that played sentences with disfluencies would
seem more natural. The results do not confirm this hypothesis which might be
explained by the fact that our speakers found it difficult to act the sentences
with all the disfluencies, to adhere strictly to the marked text.

Table 2. Percentage of times subjects anwered with “spontaneous anger” for each type
of stimulus

Original sentences 87 %

Original sentences without disfluencies 83 %

Acted sentences 23 %

Acted sentences without disfluencies 35 %

Acted sentences with written syntax 28 %

3.3 Crosslinguistic Tests on Prosody

With this third test, we wanted to show whether prosody is sufficient to recognize
anger or not. Particularly, we were interested to find out about the universality
and variability of the perception of anger. The universal character of the emotion
is demonstrated if, whatever their mother tongue, the subjects can identify anger
with prosodic information only. If universality is effectively demonstrated, it
is then interesting to know to what extent the specific mother tongue of the
listeners has an effect on the perception. This we refer to as variability.

Stimuli. In order to mask the lexical meaning, from which information about
the presence and the intensity of an emotion could be deduced, the prosodic
information had to be isolated from other linguistics parameters. One way to
proceed is through re-synthesis. However, as we did not want to modify the
spontaneous prosody of the sentences, re-synthesis did not represent a satisfying
solution: The authentic value of the document would not have been preserved.

Another method to hide linguistic content is low-pass filtering. The problem
with this method is that it eliminates the energy in high frequencies. Since energy
in high frequencies is an important parameter of anger [9], we assumed that it is



Emotion from Speakers to Listeners 75

a decisive perceptive parameter that could not be dismissed from our analysis.
The method of adding white noise to hide the linguistic content of sentences in
order to keep only the prosodic information was thus adopted.

A white noise was added to each of the sentences selected after the pretest
with the software Soundforge 7.0. The white noise created had the same length
as the original sentence. The intensity of the white noise was defined according
to the intensity of the speakers voice for each sentence. Sentences and white
noise were mixed to create our stimuli.

It is worth mentioning that the constructed stimuli were perceived by the
listeners as sounds of bad quality. This impressionistic perception can be com-
pared to that obtained with a low-pass filtering which gives the impression of
a damaged sound. We believe that adding white noise is a good way to control
the effects of segmental information and to evaluate the part played by prosodic
parameters in the perception of emotion.

The 26 chosen sentences of the stimuli were doubled in order to verify the
coherence of the answers. Then these 52 sentences were randomized and preceded
by 5 training sentences. The test which contains 57 stimuli is about 8 minutes
long.

Subjects and Task. Three groups of listeners were invited to do the perceptual
test: The first one, composed of 10 native speakers of French (6 women and 4
men), represented our control group. The Portuguese speakers, 7 women and 3
men, our test group, were students in the Faculdade de Letras, Universidade de
Lisboa, from the same class. Their level of proficiency in French corresponds to
B2 level, according to the European portfolio of languages [10].

The Czech speakers, 8 women and 2 men, are students of the University of
West Bohemia of Pilsen. They also have a B2 level. It was important to get
listeners of an intermediate level of French because we considered that beginners
would not have enough knowledge to interpret the various degrees of anger,
while advanced students would have too much knowledge about prosody to show
significant results.

The task the subjects had to accomplish was double: The listeners had to
decide if the stimulus conveyed anger or not, and if so to evaluate the degree of
anger. They were previously advised that the quality of the sound was bad, in
order to avoid the need for adaptation.

Interface. It is acknowledged that the way a test is presented to the subjects
can have an important impact on the results of the test. Careful attention was
paid to the directives given to the subjects in this test.

The crosslinguistic perception test was presented on a computer. The interface
was written in HTML and was created in EasyPhp. Results were then extracted
to a text format.

One of the advantages of the interface is its practical aspect since results can be
automatically extracted. Moreover, the main advantage of this kind of interface
is that the subjects are in a friendly, albeit restrictive, environment. As opposed
to a paper format which would allow hesitations or modifications of choice with
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deletions, the electronic format allows just one choice restricted in time. We
were also interested in testing the robustness of the presentation of such a test
on the Internet. The interface was designed in order to control what speakers
really do while taking the test: The number of “clicks” they perform, and the
time allocated at each step. It was not possible, for instance, for the subjects to
go back and redo a step3. It was not possible either to give an answer to the
subsequent step without having given one for the previous one, and the duration
of the step.

Fig. 1. Emonicons used in the study for (from left to right): Neutral, Anger, and “hear
the sample” (Neutral state refers to effective neutral state and attitudes different from
Anger)

Because of the cross linguistic aspect of this test, extra attention was given
to the aspects of learning a foreign language while creating the interface. One
main problem was to decide which language to use in the interface. Since the
subjects were learners of French, they did understand French perfectly. Instruc-
tions were therefore given in their mother tongue so as to avoid any confusion
about the task. As for the questions within the test itself, it was important to
avoid cognitive overload due to constant alternation between languages. We fi-
nally proposed to use visually explicit instructions based on “emoticons” which
are easily recognisable icons from their common usage on the internet. We used
three emoticons that are depicted in Figure 1. This interface was created so that
it could be used to test other languages and other types of emotion.

Results. The coherence of the answers given the first and the second time
were verified using a Spearman correlation test on the Software Statview 5.0.
Table 3 shows that results are significant (p < 0.0001). The answers of the
three groups tested (white noise condition) were compared with the judgments
of the control group (French without white noise). The three groups tend to
the same results. The main judgment for all the stimuli and the three language
groups is No Anger. However, the sum of the other answers is higher. Strong

Anger (4 and 5) is rare, while Mild Anger (1 and 2) appear twice as often. As
expected, listeners answered No Anger more often than other choices, since half
of the sentences do not express anger (according to the results of the pretest).
Portuguese and Czech chose No Anger more often than French (50 % for
Portuguese and 44 % for Czech vs. 37 % for French). The 13 Anger sentences
(based on the pretest) have been recognized as such by 84 % of French and Czech

3 An identification number was attributed to each step so that we could check the
correct progression of the test.
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Table 3. Results of the Spearman correlation test

French (without white noise) p9 = 0.763 p < 0.0001

French (with white noise) p9 = 0.848 p < 0.0001

Portuguese FFL p9 = 0.833 p < 0.0001

Czech FFL p9 = 0.691 p < 0.0001

subjects and by 77 % of the Portuguese. In the light of these first results, we can
conclude that prosody is sufficient to recognize anger.

Next we looked at the categorization of anger into degrees by the listeners.
French subjects spread their responses more widely into the categories of anger
1, 2 and 3: They detect Mild Anger (A1 and A2) more than Portuguese and
Czech subjects. For A1 and A2, there is a 10 % difference between the French
and Portuguese and a 9 % difference between the French and Czech.

These results suggest that French grade their answers more homogeneously
in the mild anger categories (A1 and A2), whereas non native listeners (Czech
and Portuguese) often perceive mild anger as no anger at all. Czech listeners
judged stimuli as ’Strong Anger’ (A4-A5) more often than French and Portuguese
listeners (8 % and 6 % for A4 and A5 vs. 7 % and 4 %). It is thus fair to conclude
that it is easier to judge Strong Anger than Mild Anger for Portuguese and
Czech learners of French as a Foreign Language (FFL).

Some t-tests showed there are some differences of perception within the three
groups. For example, the difference between the Czechs answers and the French
ones (with noise) for Anger 1 is significant, p=0.0207. Czech listeners have
a more approximate perception of the degrees of anger than the French na-
tive speakers. The difference between French listeners without noise and Por-
tuguese for Anger 3 and Anger 4 is significant too (p=0.0338 and p=0.0301).
This result indicates that semantic information probably had an impact on the
answers of the French listeners during the test without noise for these cate-
gories. Some sentences judged as Anger 3 and 4 were recategorized as Anger 1
and 2 when listeners could not reach the semantic meaning any more. This result
might indicate that when emotional information is semantically high, the role of
prosody is less important to avoid redundancy.

4 Prosodic Analysis

The perceptual test made it possible to categorize anger sentences in degrees.
We wanted to measure the acoustic parameters which characterize each degree
of anger. To that purpose, all measures were taken from the original sentences
without any modifications.

Among the abundant literature about the acoustic cues of emotion, we decided
to follow the suggestions for measurements proposed by Bänzinger (2004) [3]. We
focused on F0 parameters and rhythm phenomena. Intensity is a very interesting
feature to study, but our corpus does not allow reliable measures of intensity:
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The recordings circumstances were not controlled at all. Furthermore, the sound
was filtered through two channels: telephone and radio channel.

4.1 Automatic Measures of F0

We proceeded to measure F0 automatically with the help of the software Win-
PitchPro. This software takes into consideration the transcriptions and signal
segmentations first made with Transcriber. WinPitchPro recognises all speakers
created with Transcriber and treats them separately in specific layers. It analyzes
fundamental frequency (F0 > 0 Hz) automatically. For each speaker and each
category of annotations (see above Table 1), we took measures of F0 (sampling
rate 20 ms). The measurements are then transferred to an Excel table. Some
statistics were then performed, calculating the minimum, maximum, mean and
range of F0 for each speaker and each category.

Mean F0. Figure 2 shows the results obtained by comparing the mean F0
for each category, based on the gender of speakers. The F0 mean values in
Hertz have been transformed in semitones. As the graph shows, the F0 mean
increases depending on the degree of anger. The stronger the anger is, the more
the F0 increases. From one degree to another, there is a difference of one or two
semitones. The increasing curve is interrupted for the female speakers, at the
degree 3 of anger. A fall of both F0 minimum and F0 maximum for Anger 3
is apparent which implies a fall of the mean. This difference may be due to the
few utterances of Anger 3 compared to Anger 2.

Fig. 2. F0 mean (semitones) shared out by degrees of anger and by gender

Intra-Speaker Measures of Mean F0. We wanted to see the differences of
F0 mean between the neutral state and the various degrees of anger, and measure
the increasing rate of F0. For each sentence recognized as Anger by the French
subjects of the perceptive test without white noise (see 3.3), we compared the
F0 mean of the sentence to the F0 mean of the Neutral speaker turns of
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the same speaker. Next, the ratio between the two values was calculated and
converted into a percentage. The values obtained were assembled depending on
the degrees of emotion. For some sentences, the subjects hesitated between two
degrees, which explains the repartition of the categories in the graph below. It is
worth noting that the listeners always hesitated between two consecutive degrees
(for example Anger 1 and 2, but not Anger 1 and 3).

As shown in Table 4, in all the categories of anger an increase of mean F0
between Anger and Neutral can be observed in sentences uttered by the same
speaker. Globally, the ratio increases with the degree of anger, which means that
there is an increase of mean F0 between Anger and Neutral and that the
increase is higher for Strong Anger than for Mild Anger. The ratio goes
from 18 % (A2 A3) to more than 60 % (A4 A5).

Table 4. Ratio (percentage) of mean F0 between Neutral and various degrees of
Anger (grouped in pairs)

Anger Group A1 A2 A2 A3 A3 A4 A4 A6

Ratio 29.6 % 17.6 % 45 % 65.5 %

4.2 Temporal and Rhythm Measures

Duration Measures. Duration of speaker’s turns has been measured. Looking
at Table 5 we noticed that the longer the speaker turn was, the less likely it was
to be perceived as Strong Anger. The longest speaker turns were recognized
as Mild Anger (Anger 1- Anger 2), and the shortest ones as Strong Anger

(Anger 3-Anger 4 and Anger 4-Anger 5). The presence of disfluencies in the
longest speaker turns may also influence the perception of anger as milder. The
sentences recognized as Anger 4 and 5 (from the results of the evaluating test
without white noise) contain high semantic information: Even if the duration
of these speaker turns is more important than those of Anger 3 and 4, the
semantic information influences the judgment of the subjects.

Table 5. Duration of speaker turns

Anger Group A1 A2 A2 A3 A3 A4 A4 A6

Duration 6.1 4.7 3.1 4.3

Speech and Pronunciation Rates. The speech and pronunciation rates are
presented in Figure 3. Speech rate is defined as the number of syllables uttered
in one second of speech, containing pauses, disfluencies etc. Pronunciation rate
is measured as the number of syllables in a speech segment without pauses and
interruptions.
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Fig. 3. Pronunciation and speech rates shared out by categories of anger

Pronunciation and speech rates tend to increase with the degrees of anger.
The stronger the anger is, the more the speech and pronunciation rates increase,
that is to say the faster the speakers speak. But there is a break point on the
increasing curves of speech and pronunciation rate for the categories A3 A4.

4.3 Example Sentences

We made a detailed analysis of the sentences. There are some interesting intona-
tion curves, corresponding to the Anger patterns as defined by Lon [4]. Figure 4
shows an intonation curve obtained with WinPitchPro for a sentence perceived
as Strong Anger with a score of 84 %. It has been pronounced by a male
speaker. There are steep rises and falls. The F0 range for the whole sentence is
237 Hz (about 4 semi-tones). On some syllables, the F0 range is very important,
about 100 Hz. Here, on the syllable “con”, the average F0 of the syllable is 306
Hz, whereas the average of the sentence is 212 Hz, a difference of 6 semi-tones
(94 Hz). The speakers register is very high, from 88Hz to 318 Hz (22 semi-tones)
for the same sentence.

Fig. 4. Intonation curve for a strong anger-sentence (WinPitchPro)
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Some relevant acoustic features for the analysis of our corpus were checked.
The increase of F0 and rhythm rates, depending of the degree of anger perceived,
has been verified. A global analysis of our corpus was performed with the help
of automatic measurements. Other parameters such as intensity require further
investigation in order to analyze fully the way anger is manifested in speech.

5 Conclusions

In this paper, we proposed and described an experimental protocol for the treat-
ment and analysis of emotion in a natural speech corpus. We first evaluated
how much emotion was conveyed in our corpus. Then, we made a set of percep-
tual tests which yielded some interesting results. There is a perceptive difference
between played-acted and natural emotional speech. Listeners are clearly able
to distinguish between them, notwithstanding the type and the content of the
sentences.

Prosody is sufficient to allow listeners to give an appropriate evaluation of the
emotion expressed throughout the corpus. In a cross linguistic perspective, the
distinction between Anger and No Anger is common to the three language
groups tested (Czech, Portuguese and French). Differences appear between the
three groups in the evaluation of the degree of Anger (how angry is the person?).

Finally, we tried to describe some prosodic parameters. We showed that F0
average is a good parameter to distinguish anger from a neutral state, and also
to distinguish the degrees of anger themselves. We showed that duration of
speaker turns and rhythm (i.e. speech and pronunciation rates) had an effect
on the perception of the degrees of anger. We then proposed some examples of
sentences recognized as Anger with a brief analysis. Further work is required on
the parameter of intensity. Work is in progress to finalize the F0 analysis of the
syllables. As to the perceptual part of our project, it would be interesting to
compare different ways of masking the signal and correlate the results.

Acknowledgments. The authors would like to thank all the subjects who
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his good advises, to Nicolas Créplet for his help for the interface and to Candide
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Abstract. It is known that the accuracy of perceptual speaker identification is 
dependent on the stimulus contents presented to the subjects. Two experiments 
were conducted in order to find out the effective sounds and to investigate the 
effects of the syllable structures on familiar speaker identification. The results 
showed that the nasal sounds were effective for identifying the speakers both in 
onset and coda positions, and coronal sounds were more effective than labial 
counterparts. The onset consonants were found to be important, and the 
identification accuracy was degraded in onsetless structures.  

Keywords: Perceptual speaker identification, Familiar speaker identification, 
Nasal sounds, Coronal sounds. 

1   Introduction 

It is manifest that human beings have the innate ability to recognise speakers by 
speech sounds alone. This means that speech sounds convey information about the 
speakers as well as the linguistic contents.  

Speech individualities, or speaker-specific characteristics contained in speech 
sounds, derive either from physiological properties of the speaker or from his/her 
learned habits. The former includes the length or the thickness of the vocal folds, the 
length or the volume of the vocal tract, and all other physical properties of a given 
speaker, and the latter is exemplified by speaking style, speaking rate, and social and 
regional dialects. The modality of an utterance and the articulatory disorders may also 
be included among the learned habits.  

The term “speaker individuality,” called “voice quality” in a broad sense in some 
studies, can be used to refer to “a quasi-permanent quality running through all the 
sound that issues from a speaker’s mouth [1],” and the “characteristic auditory 
                                                           
*  This work was originally presented at the 9th European Conference on Speech 

Communication and Technology Interspeech 2005 (Experiment 1) and at the International 
Workshop on Frontiers in Speech and Hearing Research 2006 (Experiment 2). For details see 
references [23] and [24]. 
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colouring of a given speaker’s voice [2].” Ball and Rahilly [3] regard this quality as 
being responsible for human identification of a speaker or a group of speakers.  

In forensic speech sciences, it is important to know about the relationship between 
speech individualities and how people perceive them. The use of speech materials in 
court cases has a relatively long history since 1660 [4], though there are still some 
controversial issues remaining, such as the correspondences between acoustic 
properties of the sounds and the human percepts, the limits of the human memory, 
and the effects of the recording conditions and transmission.  

If we could find acoustic correlates of speaker individuality, they can be exploited 
for various fields in speech technology [5]. For example, speaker individuality is 
extracted and used in automatic speaker recognition and in voice conversion [6, 7]. In 
automatic speech recognition, on the other hand, speech individuality should be 
excluded. One way to find the acoustic parameters that indicate speech individuality 
is to conduct a speaker identification experiment by listening, and to investigate the 
property of human perception [8]. The factors that affect the perception would be 
important in defining speech individuality.  

When identifying a speaker, listeners abstract speaker-specific characteristics of 
the utterance, and collate them with the information stored in the brain. It is reported 
that the processing of speech contents and that of speaker identity occur separately, 
though they interact with each other [9, 10]. Also, it is also pointed out that listeners 
use linguistic information in order to identify the speakers, and vice versa [9, 11].  

One example of the interaction between the linguistic information and the speaker 
information is that different speech sounds are more or less effective for perceptual 
speaker identification [12]. This means that the accurateness of the identification 
depends on what sounds are presented to the listeners. In previous studies, sonorants, 
such as vowels and voiced consonants, were reported to be effective for perceptual 
speaker identification [13-19]. Especially, vowels and nasals are found to be 
effective [13, 14]. The same results were obtained in automatic speaker recognition 
tests [20-22]. 

Investigating the differential effects of the sounds on speaker identification enables 
us to know about the effects of the physical and physiological speaker variations in 
speech production, and at the same time, leads to a better understanding of human 
cognition. In this present study, we carried out two experiments in order to see the 
differences among the sounds in perceptual speaker identification tests. In the first 
experiment [23], the differences among the onset consonants in monosyllables which 
were excerpted from sentences were inspected, and in the second experiment [24], the 
stimuli with various syllabic structures were compared. The results showed that nasals 
and coronals in the onset position were effective for the identification.  

2   Experiment 1 

2.1   Methodology 

Speakers and subjects. In human speaker identification tests, the selection of 
speakers and subjects is one of the most important and difficult tasks. The size of the 
speaker ensemble is concerned with the difficulty of the test task, and a homogeneous 



 Effects of the Phonological Contents on Perceptual Speaker Identification 85 

subject group is also necessary for reliable data. Also the speakers’ ages, genders and 
accents must be consistent [12].  

Taking these things into account, we selected ten male speakers and five male 
subjects. All of them were undergraduate students at Sophia University, and they had 
lived in the same dormitory for more than four years. They were all native speakers of 
Japanese and none of them had hearing impairments.  

Speech materials. The speech materials used in this study were CV Japanese 
monosyllables excerpted from the carrier sentences. The onset consonants were six 
oral consonants articulated at coronal area, and three nasal consonants /m/, /n/, and 

/ /. The vowel was controlled to be /a/, because this vowel was the most effective 
vowel for speaker identification in previous studies [12-14, 16, 18], and also for 
making the experiment simple. 

The recording sessions were held in a soundproof room. The speakers uttered the 
sentences shown in Table 1. All the materials were recorded onto a digital audiotape 
at the sampling frequency of 48 kHz with 16 bit resolution, using the electret-
condenser microphone (SONY, ECM-MS957) and DAT recorder (SONY, TCD-D8).  

The uttered sentences were /‘aCaCaCa’ to  o i i imas /, as shown in Table 1. 

The carrier sentence means “I support ‘aCaCaCa’ (political) party,” and the first four 

syllables, /‘aCaCaCa’/, are the names of the fictional political parties. The symbol “a” 
is the Japanese /a/, and “C” stands for one of the following consonants: 
/t/, /d/, /s/, /z/, / /, /j/, /m/, /n/ and / /. The reason for using the names of parties is 

that the suffix “/-to / (party)” forms compound words that do not have accentual 

nucleus (pitch fall) [25], thus /‘aCaCaCa’/ is uttered with relatively stable accent 
pattern in the last two syllables.  

The fourth syllables of the uttered sentences were manually excerpted for making 
the stimuli presented to the listeners. The excerption was conducted based on the 
waveform, using the computer software Cool Edit Ver.96 (Syntrillium Software 
Corporation).  

Five tokens for each consonant were selected to be used in the test, and the total 
number of the stimuli was 450, i.e. corresponding to five tokens, nine consonants and 
ten speakers. The speech samples were randomly presented to the subjects, and a 500 
ms portion of white noise was inserted before each stimulus in order to degrade the 
auditory memory of the preceding stimulus [26].  

Procedures. The experiment was also conducted in the soundproof room. The 
subjects listened to the stimuli through binaural headphones (SONY, MDR-Z400) at a 
comfortable loudness level.  

The subjects were first informed of the names of the ten speakers, listened to 
several sample files as to each speaker, and practised the task by use of these samples. 
These files were different from the samples used in the actual test, and the subjects 
listened to them and practised only once. During the test, they were told to write the 
name of the speaker on the answer sheets for each stimulus. They took breaks after 
every 150 trials, and the total test time was about 40 minutes.  
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Table 1. List of the recorded sentences in Experiment 1. Combinations of various consonants 
and the vowel /a/ were read in the carrier sentence. 

/aCaCaCa/   + carrier sentence 

/a.ta.ta.ta/ 
/a.da.da.da/ 

 

/a.sa.sa.sa/ 
/a.za.za.za/ 
/a. a. a. a/ 
/a.ja.ja.ja/ 
/a.ma.ma.ma/ 
/a.na.na.na/ 
/a. a. a. a/ 

/to  o i i imas / 
 
 
 

2.2   Results 

The results of the identification test are shown in Table 2. Just as with the results in 
the previous experiments [13, 14], the nasals are the most effective sounds for the 
identification of the speakers, followed by the fricatives and the oral stops. Moreover, 
in the voiceless-voiced pairs of the same places and manners of articulation, /ta/-/da/ 
and /sa/-/za/, the tendency was seen that the voiced sounds obtained higher scores 
than the voiceless counterparts. This tendency was also reported in the previous 
studies [13, 14, 18, 21].  

In the statistical analyses, the differences among the consonants were not 
significant in ANOVA. In t-test, the difference between the nasal and the oral sounds 
was significant (p = 0.0044). There were no other pairs that differed significantly in t-
test: for example, the pairs like oral stops-fricatives (p = 0.25), obstruents-sonorants 
(p = 0.15), and voiced-voiceless (p = 0.36).  

Table 2. Identification results for each stimulus. The number of the correct answers (centre 
column) and the percent correct (right column) are shown. The number of samples for each 
stimulus (the denominator) is 250. 

Stimulus Percent Correct (%) 

/na/ 86.0 (215/250) 

/ a/ 85.6 (214/250) 

/ma/ 
/za/ 

80.8 (202/250) 

/sa/ 78.8 (197/250) 

/ja/ 78.4 (196/250) 

/da/ 78.0 (195/250) 

/ a/ 74.4 (186/250) 

/ta/ 73.6 (184/250) 
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3   Experiment 2 

3.1   Methodology 

In Experiment 1, the effectiveness of the nasals in monosyllabic stimuli was found 
out. However, only the nasals in the onset position were examined, and the nasals in 
the coda position were not dealt with. Moreover, the stimuli had an onset consonant 
followed by a nucleus vowel and therefore the effects of the vowel part or the 
transition to the following vowel were not inspected.  

In Experiment 2, we carried out another speaker identification test in order to 
investigate the effects of the syllable structures and the contributions of the onset 
consonant and the transition to the vowel to the speaker identification. 

Speakers and speech materials. Eight male students in the age range 22-25 years old 
(average 23.1 years old) served as the speakers in this experiment. All of them spoke 
Tokyo Japanese as their native language and had normal hearing.  

The recording procedure was exactly the same as in Experiment 1. As shown in 
Table 3, the speech materials used in this experiment were Japanese non-sense 
monosyllables of various structures. In order to see how the syllable structures and 
coda nasals work in the identification of the speakers, the materials covered the 
following structure types: V, VV, VN, CV, CVV and CVN. This variety of structures 
enables us to know the influence of the onset consonants, syllable weight and the coda 
nasals. The speakers read out each kind of material seven times and five of them were 
selected and used as the stimuli.  

In order to examine the contribution of the consonant-to-vowel transitions, we 
prepared two more structures, –V and –VN, which were cut out from recorded CN 
and CVN. These two types were edited manually on the computer, using the software 
Praat [27]. The onset consonants were cut off just before the visible transitions of the 
second formant of the following vowel began on spectrograms. Thus, the stimuli –V 
and –VN contained the transition parts to the nucleus vowel. We will indicate it by 
the notation ‘–.’  

Subjects. Eight students, two males and six females, who belonged to the same 
research group as the speakers participated in the experiment. They had spent at least 
one year with the speakers and knew all of the speakers very well. The mean age was 
23.1 years old and they were all native speakers of Japanese. None of them had any 
known hearing impairment.  

Procedures. The procedure of the second perception test was almost the same as in 
the test in Experiment 1 except that the test sessions were performed on a computer. 
The subjects listened to the test sample, identified the speaker, and then answered by 
clicking on a rectangle with the name of the speaker to whom s/he thought the speech 
belonged.  

The total number of the test stimuli was 920, i.e. corresponding to 8 speakers, 23 
stimuli and 5 different tokens for each stimulus. The total test time was about an hour, 
and the subjects took breaks after every 230 trials. 
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Table 3. List of the stimuli used in Experiment 2. Consonants in the parentheses were cut off 
manually from corresponding samples in CV and CVN.  

Syllable structure Stimuli 

V /a/ 

VV /aa/ 

VN /a / 

CV /ba/ /da/ /ma/ /na/ 

CVV /baa/ /daa/ /maa/ /naa/ 

CVN /ba / /da / /ma / /na / 

–V /(b)-a/ /(d)-a/ /(m)-a/ /(n)-a/* 

–VN /(b)-a / /(d)-a / /(m)-a / /(n)-a /* 

3.2   Results 

The results of the perception test are summarised according to the syllable structures 
in Figure 1 and to the onset consonants in Figure 2.  

Figure 1 shows that the structures with an onset consonant (shown by black bars) 
gained higher scores than onsetless structures (grey and striped bars). It also tells us 
that there is a tendency that the heavier syllables obtained better scores except in 
/VN/. Coda nasals also seem to be effective for the identification in /CVN/ and /–VN/. 
As to the influence of the transition, we cannot tell many things only from the results 
of this study, but the scores of the edited syllables, /–V/ and /–VN/, did not reach 
those of the structures with an onset.  

It is affirmed again in Figure 2 that onset consonants are important. The data here 
do not include the results of the edited structures. The letter φ indicates the onsetless 
syllables, /V/, /VV/, and /VN/. The scores of these onsetless syllables were the worst 
of all structures, though it still gained more than 90 % correct identification.  
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Fig. 1. Percentages of correct speaker identification (as to the syllable structure) 



 Effects of the Phonological Contents on Perceptual Speaker Identification 89 

One can also see in Figure 2 that the alveolar consonants in the onset position were 
more effective than the bilabial consonants in the test. Nasal consonants, /n/ and /m/, 
were better than their oral counterparts, /d/ and /b/, respectively.  
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Fig. 2. Percentages of correct speaker identification (as to the onset consonant) 

4   General Discussion 

In this study, two perception experiments were conducted in order to investigate the 
differential effects among the stimulus contents on familiar speaker identification by 
listening.  

In Experiment 1, ten male speakers were identified by five listeners who knew the 
speakers very well, and the identification rate was the highest when the stimuli 
containing the nasal sounds were presented. The difference between the nasal stimuli 
and the oral stimuli was significant. In Experiment 2, eight male speakers were 
identified by eight familiar subjects, and the effects of the syllable structures were 
examined. The results showed that the structures with onset consonant obtained 
higher identification scores than onsetless structures, and coda nasals were found to 
be effective for speaker identification. Furthermore, the identification was more 
accurate when the onset consonant was one of the nasals, and also the coronal 
consonants were better than the labial consonants.  

In summary, the results in this study yield the following conclusions:  

− Onset consonants are important for perceptual speaker identification. 
− Nasals are effective for speaker identification both in onset and coda 

positions. 
− Coronal consonants convey more individuality than labial consonants. 

Onset consonants. The structures with transition or the onsetless structures in this 
study gained no higher identification rates. This suggests that the differential effects 
in the onset consonants come from the consonant parts of the stimuli.  

Nasals. The properties of the nasal sounds are speaker-dependent, because the 
shapes of the resonators involved in the articulations of these sounds are 
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considerably different for individuals [28]. In addition, the shapes of these resonators 
cannot be changed voluntarily. This means that the resonance properties of nasals 
rarely change.  

The nucleus vowel in the structure that has a nasal sound in onset or coda, or both, 
position(s) is necessarily nasalised to some extent. This nasalisation process occurs 
especially in the structure with a coda nasal, and the nasalised vowels are predicted to 
contain more individuality than non-nasalised vowels.  

Japanese coda nasal /N/ in the word-final position has been said to be articulated at 
the uvula, but recent work [29] reports that the place of articulation of /N/ differs 
among speakers, and this sound is not always uvular. This variation among the 
speakers explains the results in this study, too.  

Coronal consonants. This tendency is what was seen in our previous experiment, too 
[14]. Japanese has three places of articulation in oral and nasal stops, i.e. bilabial, 
alveolar and velar. Alveolar sounds have the largest range of possible articulation of 
these three, as the phonology of Japanese does not require any contrasts in place 
feature in the coronal area among the stop sounds. This may lead to inter-speaker 
differences in articulation of alveolar sounds.  

Phonological unmarkedness and speaker individuality. It is interesting that the 
effective structures or the sounds shown above are all linguistically unmarked ones. 
The structures with onset consonants are universally unmarked [30]; vowels and 
nasals are the sounds that children learn in the early stage of language acquisition. 
There is also a typologically universal tendency that coronal is the dominant place of 
articulation compared to labial and guttural [31].  

The relationship between the linguistically unmarked structures/sounds and 
speaker individuality has not been clarified yet, but the obtained results here imply 
that unmarked structures/sounds are more effective for perceptual speaker 
identification than other structures/sounds. One reason for this may be that unmarked 
sounds occur more frequently in natural language.  

The final goal of our study is to delimit the speaker individuality conveyed by 
speech sounds and to understand the interaction between human perception of the 
speaker individuality and the linguistic information.  

Our future task will be to look into the acoustic characteristics of the stimuli used 
in this study, and to show quantitative data for explaining the effectiveness of the 
phonologically unmarked sounds. We must also test on different kinds of vowels, in 
order to examine the effects of co-articulation. Speaker identification experiments 
with reversed speech may also be useful for revealing the properties of human 
perception. As to the nasal sounds, the acoustic properties are inevitably degraded by 
flu or other diseases in the supra-laryngeal part, and the study of the influences of 
these factors will be one of our future tasks.  
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Abstract. We present a text-dependent speaker verification system
based on Hidden Markov Models. A set of features, based on the tem-
poral duration of context-dependent phonemes, is used in order to dis-
tinguish amongst speakers. Our approach was tested using the YOHO
corpus; it was found that the HMM-based system achieved an equal er-
ror rate (EER) of 0.68% using conventional (acoustic) features and an
EER of 0.32% when the time features were combined with the acoustic
features. This compares well with state-of-the-art results on the same
test, and shows the value of the temporal features for speaker verifica-
tion. These features may also be useful for other purposes, such as the
detection of replay attacks, or for improving the robustness of speaker-
verification systems to channel or speaker variations. Our results confirm
earlier findings obtained on text-independent speaker recognition [1] and
text-dependent speaker verification [2] tasks, and contain a number of
suggestions on further possible improvements.

Keywords: Speaker verification, triphones, time durations, Hidden
Markov Models.

1 Introduction

Speaker verification (SV) is a widely-used biometric, and is useful in several
circumstances – e.g. for multilevel access control to prevent unauthorized indi-
viduals from gaining access to high security systems [3]. SV is not considered
entirely secure and there are several problems which limit the accuracy of such
systems, such as noise on telephone channels [4,5], good mimics, recordings of
valid speakers’ voices etc. To address some of these issues, a new class of fea-
tures based on temporal information in spoken utterances was proposed in [1]
(for text-independent speaker recognition) and [2] (for text-dependent speaker
verification). In [2] preliminary tests demonstrated the value of these features in
addressing problems due to noise and recordings. The database of speakers in
[2] was very small and the claims of temporal information improving the equal

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 93–103, 2007.
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error rate (EER) of SV systems had to be verified on a larger corpus of data.
Here, we report on a set of experiments using the YOHO corpus, which has been
used widely to evaluate SV systems [6] and has a structured methodology for
performing comparative tests [7]. We then discuss a number of ways in which
more sophisticated models may be used to further enhance the accuracy of the
duration model, and show preliminary results indicating that such a model may
indeed provide a more accurate model of phoneme durations.

2 The YOHO Corpus

The YOHO corpus is a large supervised speaker verification database [6]. It
consists of 138 speakers (106 males and 32 females) who spoke prompted ut-
terances from a restricted grammar set of 56 two-digit numbers ranging from
21-97 [8]. The utterances comprised combination-lock phrases (e.g. 21−38−44)
as proposed by [8]. Four such phrases were prompted during a verification ses-
sion and 10 such phrases for a training/enrollment session. The YOHO corpus
has 4 enrollment sessions per speaker and 10 verification sessions. The data
was recorded with a 3.8 kHz bandwidth in an office environment with normal
background noise.

3 Testing Procedure

3.1 Background

In order to compare the performance of our proposed speaker verification system
to that of other speaker verification systems, a standard testing procedure was
employed, similar to that used by others on the same corpus (see [9], [10], [11]).
The exact test procedure is most clearly described by Reynolds [9].

Table 1 summarizes the results of several different tests that were performed
by Reynolds[9] on the YOHO corpus. (In this table, msc denotes “maximally-
spread close” and msf “maximally-spread far”; these are two different approaches
to selecting cohort speakers – see below.) The test M+F(10 msc) was used
as basis for our comparison, the only difference being that all four enrollment
sessions were used for enrolling the speakers. (Reynolds used the fourth session
for cohort selection).

Table 1. Equal error rates reported in [9] for different experimental conditions

Test YOHO(eer)

M(10 msc) 0.20

M(5 msc, 5 msf) 0.28

F(10 msc) 1.88

F(5 msc, 5 msf) 1.57

M+F(10 msc) 0.58

M+F(5 msc, 5msf) 0.51
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In order to perform comparable tests using the temporal features, we had
to adapt the use of cohorts for score normalization. A cohort set is a small
selection of speakers other than the true speaker, which are used to normalize
the speaker’s score. That is, to determine whether the true speaker (Pr(λc|X))
or an impostor (Pr(λc|X)) is speaking, we compute the likelihood ratio:

likelihoodratio =
Pr(λc|X)
Pr(λc|X)

(1)

In (1) X denotes the spoken utterance, λc the claimed speaker model and λc the
cohort (also known as background or impostor) model. By applying Bayes’ rule
and working in the log domain, (1) can be rewritten as

Λ(X) = log p(X |λc) − log p(X |λc) (2)

The speaker is accepted as the claimed speaker if Λ(X) > θ and rejected
as an impostor if Λ(X) < θ where θ is an appropriate threshold [9]. θ can
be speaker specific (which is computationally more expensive, but also more
accurate) or global. The determination of the EER in our test used a global
threshold approach, as in [9].

This standard approach to normalization works well if only one type of feature
is employed. However, the choice of cohort speakers dictates a group of speakers
that cannot be tested as possible impostors, which complicates the procedure
when a second feature set is to be used. (If the cohort speakers are based on
acoustic features only, they will not necessarily be a good model when using
the time feature.) We therefore chose to normalize the temporal features using
a universal background model (UBM) rather than a cohort set.

3.2 Detailed Test Description

The HTK 3.2.1 toolkit [12] was used to construct the speaker verification sys-
tem. MFCCs were used as input features together with delta and acceleration
coefficients. HMMs with one Gaussian mixture per state were created for all
context-dependent triphones occurring in the restricted grammar set.

A cohort set of 10 speakers were selected for every speaker in the database in
accordance with the procedure in[9]. Choices that arise with background speakers
are the choice of specific speakers and the number of speakers to employ. The
selection can be viewed from two different points of view. Firstly, the background
set can be chosen in order to represent impostors that sound similar to the
speaker, referred to as dedicated impostors [9]. Another approach is to select a
random set of speakers as the background set, thus expecting casual impostors
who will try to represent a speaker without consideration of sex or acoustic
similarity. By selecting the dedicated impostor background set, in contrast, the
system may be vulnerable to speakers who sound very different from the claimed
speaker [8].
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The selection of the background set was done on a per speaker basis and it
was decided to use the dedicated impostor approach. First the N = 20 closest
speakers to a speaker were determined using pair-wise distances between the
speaker and all others. The pair-wise distance between speakers i and j with
corresponding models λi and λj is

d(λi, λj) = log
p(Xi|λi)
p(Xi|λj)

+ log
p(Xj |λj)
p(Xj|λi)

, (3)

where p(Xi|λi)
p(Xi|λj)

is a measure of how well speaker i scores with his/her own model
relative to how well speaker j scores with speaker i’s model. The ratio becomes
smaller as the match improves.

These N speakers are known as the close cohort set, which is denoted by C(i)
for speaker i. The final background set consists of the B = 10 maximally spread
speakers from C(i), denoted B(i). To determine B(i), the closest speaker to i is
moved to B(i) and B′ is set to 1 (1 speaker in the background set). The next
speaker c from those left in C(i) to be moved to B(i) is then selected as

c = arg max
c∈C(i)

{
1
B′

∑

b∈B(i)

d(λb, λc)
d(λi, λc)

}
(4)

This procedure is repeated until B′ = B. According to [9], the maximal spread
constraint is to prevent “duplicate” speakers from being in the cohort set.

For speaker i, all other speakers (excluding i’s cohort set of 10 speakers) were
then used as impostors and tested using (2). Speaker i’s verification data was
also tested using (2), resulting in 1270 impostor attacks and 10 true attempts to
gain access to the system (since every speaker has 10 verification sessions). This
process was repeated for all speakers in the corpus, resulting in 175260 impostor
attacks and 1380 true attempts.

In particular, (2) was evaluated as follows using the cohort set and the claimed
speaker model: First, log p(X |λc) was evaluated as

log p(X |λc) =
1
T

T∑

t=1

log p(xt|λc), (5)

where T is the number of frames in the utterance and 1
T is used to normalize

the score in order to compensate for different utterance durations.
log p(X |λc), the probability that the utterance was from an impostor was

calculated using the claimed speaker’s cohort set as

log p(X |λc) = log

{
1
B

B∑

b=1

p(X |λb)

}
, (6)

where p(X |λb) was calculated as in (5).
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The EER was then calculated by creating a list of all the likelihood ratios,
sorting it and finding the threshold point where the percentage of true speak-
ers below the threshold is equal to the percentage of false speakers above the
threshold.

4 Time Information

The use of context-dependent triphones as a feature is new in speaker verifica-
tion. It was decided to use separate Gaussian distributions with only one mixture
each to model the durations of each context-dependent triphone of a speaker.
This is a crude duration model, and we return to other possibilities in the conclu-
sion below. The grammar for the YOHO corpus contains 36 different triphones.
An example of a triphone is r-iy+ey, which denotes the phoneme iy preceded
by an r and followed by an ey. Other contexts containing this same phoneme
were ay-iy+n, p-iy+sh and t-iy+d. The context dependence is an important
consideration, since significant contextual variability in phoneme duration was
observed.

The models were constructed for each triphone k by calculating the sample
mean

x =
1
M

M∑

n=1

xn, (7)

where M is the number of observations of the triphone and xn is the duration of
the n’th observation. An unbiased estimate of the sample variance σ2 was also
calculated as

s2
M−1 =

1
M − 1

M∑

n=1

(xn − x)2. (8)

Every speaker thus has 36 time models of the form (x,s2
M−1). The time models

were constructed by using all the extracted time durations from the 4 enrollment
sessions. Testing was then performed by first extracting the time durations of
the triphones in the test session and then calculating a score

P (x|x, s2
M−1) =

1√
2πs2

M−1

e
− (x−x)2

2s2
M−1 , (9)

where x is the observed duration of a specific triphone. The evaluation of (9)
yields a value that occurs on the normal distribution with parameters (x, s2

M−1).
This value is normalized by evaluating the normal distribution with the same
value, but using the UBM parameters (which are the means and variances of the
appropriate context-dependent triphone, calculated across all training sessions
by all speakers). A score is then generated for a speaker i as

Scorei =
1
L

L∑

l=1

log(P (xl|λc)) − 1
L

L∑

l=1

log(P (xl|λUBM )) (10)
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where L is the number of observed triphones in the test session. Tests were again
performed on a rotating scheme as before, where one speaker is the claimed
“client” and all speakers excluding the (acoustic) cohort set are tested using the
claimed speaker’s models. Once all scores have been obtained, they were again
put in an ordered list and the EER was determined.

Figures 1 and 2 illustrate typical distributions of durations observed in our
tests. Figure 1 shows an example of a triphone that provides good discrimination
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Fig. 1. Probability distributions of a triphone that provides good discrimination be-
tween a pair of speakers
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Fig. 2. Probability distributions of a triphone that does not provide good discrimina-
tion between a pair of speakers
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between two speakers; in other words, time durations of speaker x matched
to the model of y would produce a poor score and the general UBM would
be chosen, resulting in a correct reject decision of the impostor. Figure 2 il-
lustrates a bad example of a triphone to use, since speaker x’s time dura-
tions would match speaker y’s durations well, resulting in a good score for an
impostor.

Since both cases are observed in our data, it is an empirical task to determine
whether durations are useful for the task of speaker verification. We therefore
now report on tests that were performed to address this question.

5 Results

The results obtained using conventional acoustic scores, temporal features, and
a combination of the two types of features, are summarized in table 2, and
the corresponding DET curves can be seen in figure 3. The combined EER
was obtained by taking a linear combination of the likelihood ratios obtained
using time and MFCC features, with the weighting constant determined
empirically.

Table 2. Equal error rates obtained on the YOHO database (M+F, msc)

Feature set eer

MFCCs 0.68%

Time 9.2%

MFCCs and time 0.31%

Several tests have been performed on the YOHO database [6]. ITT’s Con-
tinuous Speech Rrecognition and Neural Network systems achieved EERs of
1.7% and 0.5% respectively. MIT/LL’s Gaussian Mixture Model (GMM) sys-
tem achieved an EER of 0.51%, Rutgers’ Neural Tree Network achieved 0.65%
and Reynolds’s GMM based system achieved 0.58%. Only the last test can be
directly compared to the system described here, since the other tests were per-
formed under different conditions.

Our results with the acoustic (MFCC) features are seen to be comparable
to those achieved by other researchers. The temporal features by themselves
are significantly less reliable than the acoustic features, but reduce the error
rate by a factor of approximately two when combined with those features. This
suggests that the temporal features are reasonably uncorrelated with the acoustic
features, and the scatter plot in figure 4 confirms this impression. (For clarity,
only 400 randomly-selected pairs of acoustic and temporal scores are shown in
the figure). The correlation coefficient between the scores using the two types of
features was found to be 0.201.
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6 Models for Predicting Phoneme Duration

In the preceding sections we assumed that the duration of a particular phoneme
spoken by a given speaker is described by a normal distribution, independently
of the durations of other phonemes in the utterance. This is clearly not realistic
- for example, the speaking rate will tend to influence all the phonemes in an
utterance [13] in a correlated manner. It is therefore interesting to ask whether a
more detailed duration model can be developed, to account for such influences on
phoneme durations. Such a model could also include factors such as the position
of the phoneme in the word or utterance, but for now we will concentrate on the
influence of speaking rate.
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To do this, we developed a model for predicting the duration of a phoneme of
the form

t(ms) =
[
tf,global · αf,s χw,s

]
· λT

f ,s, (11)

where tf,global is the global mean estimate of the phoneme duration for phoneme
f , αf,s is a speaker-specific parameter that was determined to adapt the global
phone duration estimate to speaker s, and χw,s is the ”stretch factor” for a
specific word w spoken by s. This is determined as

χw,s =
τ − τ̂∑

σn
. (12)

Here τ is the true word length, τ̂ is the estimated word length that was deter-
mined by summing the means of the phonemes constituting the word and

∑
σn

is the sum of the standard deviations of these phonemes. Finally, λf,s is the
vector of parameters obtained from a General Linear Model (GLM) in order to
model the effect of the speech rate on the specific phoneme.

In order to evaluate the performance of this simple model of speaking rates, we
computed the speaker-specific models on the training data. We then calculated
the word-specific factor χw,s for each word in the test set, and compared the
predicted phoneme accuracy according to our model with two baseline models:
(a) the duration of each triphone is assumed to be constant (as in Section 4
above) and (b) the duration of each triphone is assumed to scale linearly with
the stretch factor. In Table 3 we show that the GLM indeed is significantly
more accurate than the constant stretch factor, which in turn outperforms the
constant-duration model used previously.

Table 3. Comparison of three approaches to the modelling of speech rate. The sec-
ond column contains the mean-squared difference between the actual and predicted
phoneme durations (averaged over all test utterances), and third column contains the
standard error of this estimate (that is, the standard deviation of all differences divided
by the square root of the total number of phonemes in these utterances).

Model MS error Standard error of
(msec) MS error estimate

Constant speaker-specific 777.25 65.94
duration per phoneme

Linear scaling of 522.33 25.46
phoneme durations

General linear model 430.59 16.86
of phoneme durations

7 Discussion

It has been shown that durations of context-dependent triphones constitute a
feature set that can improve the accuracy of speaker verification systems to
a significant degree. Although our results were obtained with an HMM in a
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text-dependent application, it seems likely that an equally low correlation be-
tween acoustic and temporal scores will be found with other classes of SV sys-
tems. This was indeed true for the text-independent speaker recognition system
in [1]. We are therefore confident that similar improvements will be obtained in
other SV systems.

Our current system uses the temporal features in a fairly crude fashion: all tri-
phones are modelled with independent Gaussian distributions, and all triphone
scores are combined with equal weight. It will be interesting to see how much im-
provement can be obtained with more sophisticated models (which, for example,
assign greater weight to more discriminative triphones or those which have been
observed more frequently, or consider correlations between the different triphone
durations).

Our initial experiments with more sophisticated duration models (Section 6)
suggest that accounting for effects such as speech rate should further improve
the discriminative power of duration models, and we are currently investigat-
ing how this can be incorporated into our verification system. Modelling effects
such as the position of the phoneme in the utterance should produce additional
improvements.

Another promising area for further research is related to the relative robust-
ness of temporal and acoustic features to factors such as channel variation and
speaker condition [13]. In [2] temporal information was found to be more robust
against channel interference than MFCCs, but that result needs to be tested on a
more substantial corpus. (Unfortunately, YOHO is not suitable for this purpose,
since variable recording conditions were not part of the YOHO protocol.)

Since triphone durations are a very compact descriptor of an utterance, this
feature set may also be useful in detecting and deflecting replay attacks. A
database of durations during previous verification sessions may be maintained
conveniently. One can then calculate the probability of a specific triphone or
a sequence of triphones having the same (within some small threshold) time
duration, setting a threshold for an acceptable probability and rejecting the
speaker as an impostor launching a replay attack if the probability is lower than
the threshold.

Overall, it seems as if triphone durations are likely to be a useful addition to
almost any toolbox for SV system development.

Acknowledgments. Dr. Marelie Davel assisted in several aspects of this
research.
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Abstract. The speaker classification approach described in this contri-
bution leverages the analysis of both speaker and verbal content informa-
tion, so as to use two light-weight components for classification: a spectral
matching component based on a global representation of the entire utter-
ance, and a temporal alignment component based on more conventional
frame-level evidence. The paradigm behind the spectral matching compo-
nent is related to latent semantic mapping, which postulates that the un-
derlying structure in the data is partially obscured by the randomness of
local phenomena with respect to information extraction. Uncovering this
latent structure results in a parsimonious continuous parameter descrip-
tion of feature frames and spectral bands, which then replaces the origi-
nal parameterization in clustering and identification. Such global analysis
can then be advantageously combined with elementary temporal align-
ment. This approach has been commercially deployed for the purpose of
language-independent desktop voice login over a far-field microphone.

Keywords: Spectral matching, global representation, latent structure,
distance metric, desktop voice login.

1 Introduction

1.1 Background

This contribution is an outgrowth of an approach we proposed a few years ago for
the dual verification of speaker identity and verbal content in a text-dependent
voice authentication system [6]. Voice authentication, the process of accepting
or rejecting the identity claim of a speaker on the basis of individual informa-
tion present in the speech waveform [9], has received increasing attention over
the past two decades, as a convenient, user-friendly way of replacing (or supple-
menting) standard password-type matching [7]. The application considered in
[6] was desktop voice login, where access to a personal computer can be granted
or denied on the basis of the user’s identity. In that context, the authentica-
tion system must be kept as unintrusive as possible, which normally entails the
use of a far-field microphone (e.g., mounted on the monitor) and a very small
amount of enrollment data (5 to 10 seconds of speech). In addition, the scenario
of choice is text-dependent verification, which is logistically closest to that of a
typed password.

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 104–115, 2007.
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In the setup of [6], each speaker was allowed to select a keyphrase of his or
her own choosing, and enrollment was limited to four instances of the keyphrase,
each 1 to 2 seconds of speech. Assuming the user maintains the confidentiality
of the keyphrase, this offers the possibility of verifying the spoken keyphrase in
addition to the speaker identity, thus resulting in an additional layer of security
(cf. [11]). We thus developed an approach which leveraged the analysis of both
speaker characteristics and verbal content information. The resulting technique
had an innovative spectral matching component based on a global representation
of the entire utterance.

As has since become clear, the paradigm underlying this component is related
to latent semantic mapping (LSM), a data-driven framework for modeling mean-
ingful global relationships implicit in large volumes of data [4]. LSM operates
under the assumption that there is some latent structure in the data, which is
partially obscured by the randomness of local phenomena with respect to in-
formation extraction. Algebraic techniques are brought to bear to estimate this
structure and get rid of the obscuring “noise.” In the present case, this results
in a parsimonious continuous parameter description of feature frames and spec-
tral bands, which then replaces the original parameterization in clustering and
identification. The outcome of such global analysis can then be advantageously
combined with the outcome of elementary temporal alignment.

1.2 Contrast with HMM Solutions

The above approach can be viewed as following a divide and conquer strategy
with a slightly unconventional division of labor. While existing systems tend to
directly target speaker information on the one hand and verbal content infor-
mation on the other, the method of [6] deliberately blurs the line between the
two, instead targeting more explicitly spectral and temporal information. This
has several advantages over standard classification techniques using HMM tech-
nology with Gaussian mixture distributions (see, e.g., [14], [15]), for which the
typical framework is illustrated in Fig. 1.

For the verification of speaker identity, speaker-dependent (SD) language-
independent (LI) sub-word HMMs must be constructed from the training data
available. This is liable to suffer from scarce data problems when enrollment is
severely limited, as is the case here. Variance estimation is of particular concern,
as the underlying Gaussian mixture distributions run the risk of being too sharp
and overfitting the training data [12]. And speaker adaptation is not really a
viable option, as it tends to reduce the amount of discrimination that can be
achieved between different speakers.

In addition, handling verbal content with the HMM paradigm normally
entails using large vocabulary speech recognition to recognize the uttered word
sequence. This requires speaker-independent (SI) HMMs to characterize the
acoustics, and a large vocabulary language model (commonly an n-gram) to char-
acterize the linguistics. As a result, the overall solution is language-dependent
(LD). Note that each component must perform a combination of spectral match-
ing and time alignment to compute its own, separate likelihood score associated
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Fig. 1. Standard Approach to Text-Dependent Verification

Fig. 2. Alternative Approach to Text-Dependent Verification

with the input speech. The accept/reject decision is then based on the combina-
tion of these two scores.

In contrast, the approach advocated in [6] largely decouples spectral matching
and time alignment, as illustrated in the framework of Fig. 2. Spectral match-
ing is performed primarily based on an LSM-based utterance-level representation
obtained by integrating out frame-level information, while temporal alignment,
based only on this frame-level information, no longer involves specific word knowl-
edge. This allows the two components to remain speaker-dependent and language-
independent (SD/LI). On the other hand, it is likely that each component now
relies on a combination of speaker and content information.

Note that for temporal alignment, we use simple dynamic time-warping
(DTW). Although HMMs can more efficiently model statistical variation in
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spectral features, here DTW is sufficient, because the LSM approach already
takes care of spectral matching, and therefore the requirements on DTW are
less stringent than usual. As before, each component produces a likelihood score,
and the accept/reject decision is based on the combination of the two scores.

1.3 Organization

The purpose of this contribution is to go over the above approach, with special
emphasis on its LSM component, in order to illustrate, on this case study, the
potential benefits to more general speaker classification tasks. The material is
organized as follows. The next section briefly mentions feature extraction, which
is common to the two components. Section 3 reviews the LSM framework and
its relevance to the problem at hand. In Section 4, we derive a distance mea-
sure specifically tailored to speaker classification, and present the ensuing LSM
component. Section 5 discusses integration with the DTW component. Finally,
in Section 6 we report experimental results underscoring the performance of the
integrated LSM+DTW system.

2 Feature Extraction

Feature extraction largely follows established procedure (see, e.g., [14], [15]). We
extract spectral feature vectors every 10ms, using short-term Fourier transform
followed by filter bank analysis to ensure a smooth spectral envelope. (This is
important to provide a stable representation from one repetition to another of
a particular speaker’s utterance.) To represent the spectral dynamics, we also
extract, for every frame, the usual delta and delta-delta parameters [16].

After concatenation, we therefore end up with a sequence of M feature vectors
of dimension N . To distinguish them from other types of vectors discussed later,
we will refer to these feature vectors as frames. For a typical utterance, M ≈ 200
and N ≈ 40. The resulting sequence of frames is the input to both the LSM
component and the DTW component of the proposed method.

3 LSM Framework

3.1 Single–Utterance Representation

Upon re-arranging this input sequence, each utterance can be represented by
a M × N matrix of frames, say F , where each row represents the spectral in-
formation for a given frame and each column represents a particular spectral
band over time. We then compute the singular value decomposition (SVD) of
the matrix F , as [10]:

F = U S V T , (1)

where U is the (M × R) matrix of left singular vectors, S is the (R × R) di-
agonal matrix of singular values, V is the (N × R) matrix of right singular
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Fig. 3. Two Equivalent Views of SVD Decomposition

vectors, R < min(M, N) is the order of the decomposition, and T denotes ma-
trix transposition. As is well known, both U and V are column-orthonormal,
i.e., U T U = V T V = IR, the identity matrix of order R [8]. For reasons to be-
come clear shortly, we refer to (1) as the decomposition of the utterance into
single-utterance singular elements U , S, and V .

Such whole utterance representation has been considered before: see, e.g.,
[1]. The resulting parameterization can be loosely interpreted as conceptually
analogous to the Gaussian mixture parameterization in the HMM framework.
The main difference is that the Gaussian mixture approach is implicitly based
on a sub-word unit (such as a phoneme), whereas the LSM approach operates
on the entire utterance, which introduces more smoothing.

3.2 Interpretation

It is intuitively reasonable to postulate that some of the singular elements will
reflect more speaker information and some others more verbal content informa-
tion. But it is not completely clear exactly which reflects what. In [1], a case was
made that speaker information is mostly contained in V . Speaker verification was
then performed using the Euclidean distance after projection onto the “speaker
subspace” defined by V , on the theory that in that subspace utterances from
the true speaker have greater measure. This is illustrated in Fig. 3, top figure. In
that interpretation, each row of V T can be thought of as a basis vector spanning
the global spectral content of the utterance, and each row of US represents the
degree to which each basis vector contributes to the corresponding frame.
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But an equally compelling case could be made under the (dual) assump-
tion that verbal content information is mostly contained in U . In this situation
speaker verification could conceivably be performed after projection onto the
“content subspace” spanned by U . One would simply compute distances between
reference and verification utterances in that subspace, on the theory that a large
distance between two utterances with the same verbal content would have to be
attributed to a speaker mismatch. This is illustrated in Fig. 3, bottom figure. In
that interpretation, each column of U is a basis vector spanning the verbal con-
tent of the utterance, and each column of SV T represents the degree to which
each basis vector contributes to the corresponding spectral band.

In the standard LSM framework (cf. [3] – [5]), such discussion normally leads
to a common representation in terms of the rows vectors of US and V S, which
correspond to the coordinates of the M frames and N spectral bands in the
space of dimension R spanned by the singular vectors (usually referred to as the
LSM space L). As this mapping, by definition, captures the major structural
associations in F and ignores higher order effects, the “closeness” of vectors in
L is determined by the overall speech patterns observed in the utterance, as
opposed to specific acoustic realizations. Hence, two frames whose representa-
tions are “close” would tend to have similar spectral content, and conversely two
spectral bands whose representations are “close” would tend to appear in similar
frames.

In the present situation, however, this level of detail is not warranted, because
we are not trying to compare individual frames (or spectral bands, for that mat-
ter). Rather, we are interested in assessing potential changes in global behavior
across utterances. The problem, then, is not so much to analyze a given LSM
space as it is to relate distinct LSM spaces to each other. For this, we need to
specify some distance measure suitable to compare different global representa-
tions. The following justifies and adopts a new metric specifically tailored to the
LSM framework.

4 LSM–Tailored Metric

4.1 Multiple–Utterance Representation

Assume, without loss of generality, that (1) is associated with a particular train-
ing utterance, say the jth utterance, from a given speaker, and consider the set
of all training utterances from that speaker. This set will be represented by a
M̃ ×N matrix, with M̃ ≈ JM , where J is the number of training utterances for
the speaker. Denoting this M̃ × N matrix by F̃ , it can be decomposed as:

F̃ = Ũ S̃ Ṽ T , (2)

with analogous definitions and properties as in (1). In particular, (2) defines a
similar, though likely distinct, LSM space from the one obtained via (1), which
was only derived from a single utterance.
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Obviously, the set of all training utterances contains the jth utterance, so by
selecting the appropriate M rows of F̃ , we can define:

F̃(j) = F = Ũ(j) S̃ Ṽ T , (3)

where the subscript (j) serves as an index to the jth utterance. Presumably, from
the increased amount of training data, the matrices S̃ and Ṽ are somewhat more
robust versions of S and V , while Ũ(j) relates this more reliable representation
(including any embedded speaker information) to the original jth utterance. We
refer to (3) as the decomposition of the utterance into multiple-utterance singular
elements Ũ(j), S̃, and Ṽ , and similarly to the LSM space associated with (2) as
the underlying multiple-utterance LSM space.

4.2 Mapping Across LSM Spaces

This opens up the possibility of relating the two LSM spaces to each other. Note
that the equality:

Ũ(j) S̃ Ṽ T = U S V T (4)

follows from (1) and (3). To cast this equation into a more useful form, we
now make use of the (easily shown) fact that the matrix (V T Ṽ ) is (both row-
and column-) orthornormal. After some algebraic manipulations, we eventually
arrive at the expression:

S̃ (Ũ T
(j) Ũ(j)) S̃ = (V T Ṽ )T S 2 (V T Ṽ ). (5)

Since both sides of (5) are symmetric and positive definite, there exists a (R×R)
matrix Dj|S̃ such that:

D 2
j|S̃ = S̃ (Ũ T

(j) Ũ(j)) S̃. (6)

Note that, while Ũ T Ũ = IR, in general Ũ T
(j)Ũ(j) �= IR. Thus D 2

j|S̃ is closely re-

lated, but not equal, to S̃ 2. Only as the single-utterance decomposition becomes
more and more consistent with the multiple-utterance decomposition does D 2

j|S̃
converge to S̃ 2.

Taking (6) into account and again invoking the orthonormality of (V T Ṽ ),
the equation (5) is seen to admit the solution:

Dj|S̃ = (V T Ṽ )T S (V T Ṽ ). (7)

Thus, the orthonormal matrix (V T Ṽ ) can be interpreted as the rotation nec-
essary to map the single-utterance singular value matrix obtained in (1) onto
(an appropriately transformed version of) the multiple-utterance singular value
matrix obtained in (2). Clearly, as V tends to Ṽ (meaning U also tends to Ũ(j))
the two sides of (7) become closer and closer to a diagonal matrix, ultimately
converging to S = S̃.
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Fig. 4. Overview of LSM Component

4.3 LSM Component

The above observation suggests a natural metric to evaluate how well a particular
utterance j is consistent with the (multiple-utterance) speaker model: compute
the quantity Dj|S̃ = (V T Ṽ )T S (V T Ṽ ), per (7), and measure how much it de-
viates from a diagonal matrix. For example, one way to measure the deviation
from diagonality is to calculate the Frobenius norm of the off-diagonal elements
of the matrix Dj|S̃ .

This in turn suggests an alternative metric to evaluate how well a veri-
fication utterance, uttered by a speaker �, is consistent with the (multiple-
utterance) model for speaker k. Indexing the single-utterance elements by �,
and the multiple-utterance elements by k, we define:

D�|k = (V T
� Ṽk)T S� (V T

� Ṽk), (8)

and again measure the deviation from diagonality of D�|k by calculating the
Frobenius norm of its off-diagonal elements. By the same reasoning as before, in
this expression the matrix (V T

� Ṽk) underscores the rotation necessary to map
S� onto (an appropriately transformed version of) S̃k. When V� tends to Ṽk, D�|k
tends to S̃k, and the Frobenius norm tends to zero. Thus, the deviation from
diagonality can be expected to be less when the verification utterance comes from
speaker � = k then when it comes from a speaker � �= k. Clearly, this distance
measure is better tailored to the LSM framework than the usual Euclidean (or
Gaussian) distance. It can be verified experimentally that it also achieves better
performance.

The LSM component thus operates as illustrated in Fig. 4. During enrollment,
each speaker 1 ≤ k ≤ K to be registered provides a small number J of training
sentences. For each speaker, the enrollment data is processed as in (2), to obtain
the appropriate right singular matrix Ṽk. During verification, the input utterance
is processed as in (1), producing the entities S� and V�. Then D�|k is computed
as in (8), and the deviation from diagonality is calculated. If this measure falls
within a given threshold, then the speaker is accepted as claimed. Otherwise, it
is rejected.
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5 Integration with DTW

5.1 DTW Component

The LSM approach deliberately discards a substantial amount of available tem-
poral information, since it integrates out frame-level information. Taking into
account the linear mapping inherent in the decomposition, it is likely that the
singular elements only encapsulate coarse time variations, and smooth out finer
behavior. Unfortunately, detecting subtle differences in delivery is often crucial
to thwarting non-casual impostors, who might use their knowledge of the true
user’s speech characteristics to deliberately mimic his or her spectral content.
Thus, a more explicit temporal verification should be added to the LSM compo-
nent to increase the level of security against such determined impersonators.

We adopt a simple DTW approach for this purpose. Although HMM tech-
niques have generally proven superior for time alignment, in the present case the
LSM approach already contributes to spectral matching, so the requirements on
any supplementary technique are less severe. As mentioned earlier, here DTW
suffices, in conjunction with the LSM component, to carry out verbal content
verification.

The DTW component implements the classical dynamic time warping algo-
rithm (cf., e.g., [2]). During training, the J training utterances provided by each
speaker are “averaged” to define a representative reference utterance savg. This
is done by setting the length of savg to the average length of all J training ut-
terances, and warping each frame appropriately to come up with the reference
frame at that time. During verification, the input utterance, say sver, is acquired
and compared to the reference model savg. This is done by aligning the time
axes of sver and savg, and computing the degree of similarity between them, ac-
cumulated from the beginning to the end of the utterance on a frame by frame
basis. Various distance measures are adequate to perform this step, including
the usual Gaussian distance. As before, the speaker is accepted as claimed only
if the degree of similarity is high enough.

5.2 System Integration

For each verification utterance, two scores are produced: the deviation from
diagonality from the LSM component, and the degree of similarity from the
DTW component. There are therefore several possibilities to combine the two
components. For example, it is possible to combine the two scores into a single
one and base the accept/reject decision on that single score. Alternatively, one
can reach a separate accept/reject decision for each component and use a voting
scheme to form the final decision.

For simplicity, we opted for the latter. Thus, no attempt is made to introduce
conditional behavior in one component which depends on the direction taken
by the other. The speaker is simply accepted as claimed only if both likelihood
scores are high enough.



Language–Independent Speaker Classification over a Far–Field Microphone 113

Fig. 5. Performance Space of LSM+DTW Approach

6 Performance Validation

Experiments were conducted using a set of 93 speakers, K = 48 true users
and K ′ = 45 impostors. True users enrolled by speaking their keyphrase J =
4 times. They also provided four instances of a voice login attempt, collected
on different days. This resulted in a total of 191 true test utterances, across
which the minimum, average, and maximum sentence length were 1.2, 1.8, and 3
seconds, respectively.

To increase the severity of the test, each impostor was dedicated to a particular
speaker, and was selected on the basis of his/her apparent “closeness” to that
user, as reflected in his/her speech characteristics. For example, to impersonate
a male speaker who grew up in Australia, we chose another male speaker with
an Australian accent. Further, each impostor was given access to the original
enrollment keyphrases from the true speaker, and was encouraged to mimic
delivery as best as s/he could. This was to reflect the high likelihood of deliberate
imposture in desktop voice login, where the true user is typically known to the
impostor. (On the other hand, given this application and in view of Apple’s
target market, we deemed unnecessary to consider more sophisticated attempts
like technical imposture [13].) Each impostor provided two distinct attempts, for
a total of 90 impostor test utterances.

The results are plotted in Fig. 5. For the appropriate combination of thresh-
olds, the above system leads to 0 false acceptances and 20 false rejections (10.4%).
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After tuning to obtain an equal number of false acceptances and false rejections,
we observed approximately a 4% equal error rate.

7 Conclusion

Desktop voice login is a challenging application due to several inherent con-
straints: (i) the acoustic signal is normally acquired via a low-quality far-field
microphone, (ii) enrollment is limited to an average of about, in our case, 7
seconds of speech, and (iii) ideally the solution has to work across multiple lan-
guages. Although in typical text-dependent mode it also allows for the dual ver-
ification of speaker identity and verbal content, this is not an ideal environment
for HMM-based methods using Gaussian mixtures.

We have discussed an alternative strategy which leverages the analysis of both
speaker and keyphrase information, and uses a light-weight component to tackle
each: an LSM component for global spectral matching, and a DTW component
for local temporal alignment. Because these two components complement each
other well, their integration leads to a satisfactory performance for the task
considered. An equal error rate figure of approximately 4% was obtained in
experiments including deliberate imposture attempts. The resulting LSM+DTW
system was commercially released several years ago as part of the “VoicePrint
Password” feature of Mac OSTM.

This case study illustrates the potential viability of the LSM approach, and
associated deviation from diagonality metric, for more general speaker classi-
fication tasks. By integrating out temporal aspects across an entire utterance,
the LSM representation uncovers information that is largely orthogonal to more
conventional techniques. Incorporating this information with other sources of
knowledge can therefore prove useful to increase the robustness of the overall
classification system.
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Abstract. A linear-scaling approach is introduced for handling acoustic-
phonetic manifestations of inter-speaker differences. The approach is motivated 
(i) by the similarity commonly observed amongst formant-frequency patterns 
resulting from different speakers’ productions of the same utterance, and (ii) by 
the fact that there are linear-scaling properties associated with similarity. In 
methodological terms, formant patterns are obtained for a set of segments 
selected from a fixed utterance, which we call poly-segmental formant 
ensembles. Linear transformations of these ensembles amongst different 
speakers are then sought and interpreted as a set of scaling relations. Using 
multi-speaker data based on Australian English “hello”, it is shown that the 
transformations afford a significant reduction of inter-speaker dissimilarity by 
inverse similarity. The proposed approach is thus able to unlock regularity in 
formant-pattern variability from speaker to speaker, without prior knowledge of 
the exact causes of the speaker differences manifested in the data at hand.  

Keywords: Poly-Segmental Ensembles, Linear Scaling, Speaker Variability, 
Formant-Frequency Patterns. 

1   Introduction 

The work presented in this paper draws its motivation from a familiar observation, 
which holds promise for apprehending acoustic-phonetic manifestations of speaker-
to-speaker variations and, eventually, gaining better control of their effects in speaker 
classification. The motivating observation is that, for the same utterance produced by 
different speakers, formant-frequency patterns retain a certain similarity despite the 
variations expected from vocal-tract structures and articulatory habits (Nolan, 1983). 
According to Ohta and Fuchi’s (1984) “constancy” interpretation, the similarity may 
be thought of as a manifestation of different speakers tending to utilise similarly-
shaped vocal-tracts while producing the same utterance. A long-foreshadowed (Chiba 
and Kajiyama, 1958) implication of the similarity proposition is that, irrespective of 
inter-speaker differences, there should be some hope for predictable regularity in the 
way in which formant-patterns for a fixed utterance vary from speaker to speaker. 
Here we develop an approach for characterising this regularity. 
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Our first step is to treat the acoustic-phonetic segments selected from a fixed 
utterance as components of a speaker-dependent ensemble. Each component 
contributes towards some global behaviour, whose similarity amongst a set of 
different speakers becomes quantifiable by comparing their corresponding ensembles 
to one another. Ensemble similarity is a key aspect of our approach, which is 
explained through the schematic representation shown below in Fig.1.  

Along the ordinate axis, each rectangle contains a set of dots which, for a given 
speaker and a fixed utterance, schematise relative positions of a formant’s frequencies 
for a set of phonetic segments selected from that utterance. The unequal spacing 
between dots simulates the variation expected from segment to segment for a given 
formant. Such a data set forms a “Poly-Segmental formant Ensemble” (an ensemble or 
a PSE in short). The abscissa is a “speaker axis”, along which each rectangle 
represents a PSE for each speaker with a constant, relative spacing of the dots. 

 

Fig. 1. Idealisation of inter-speaker similarity: Formants (F1, F2 or F3) for an ensemble of 
(colour-coded) segments plotted for a set of speakers. Rectangles enclose each speaker’s PSE. 

Figure 1 essentially portrays a systemic organisation of multi-speaker, segmental 
data as a set of speaker-dependent PSEs which, formant by formant, are geometrically 
interpretable in terms of scaling relations. This is the methodological basis for our 
approach, which is evaluated in the remainder of the paper. 

Section 2 describes the poly-segmental data employed for this work. The scaling 
methodology is presented in Section 3, where the procedures outlined include a pre-
scaling check of the extent of similarity in the data, a motivating glimpse at actual 
ensembles, and the calculation of ensemble scales. In Section 4 the per-formant scales 
are examined numerically, and their effectiveness as measures of similarity is 
evaluated. In Section 5 it is shown that pre-normalisation of the raw ensembles by 
vocal-tract length brings the per-formant scales in line with the notion of uniform 
scaling. Finally, the effects of direct and inverse scaling are contrasted and discussed. 



118 F. Clermont 

2   Poly-segmental, Formant Parameterisation of Spoken “hello” 

The poly-segmental data used for illustrating and evaluating the ensemble-scaling 
approach outlined above, originate from a previous study of the spoken word “hello” 
(Rose, 1999). The data embody interesting features that are described below. 

In addition to being a frequent lexical item in spoken English, the word “hello” 
embodies a situational sensitivity that facilitates elicitation with spontaneous 
variability. Several situational tokens were thus produced (at one sitting) by 6 adult-
male speakers: DM (17 tokens), EM (3 tokens), JM (6 tokens), MD (12 tokens), PS  
(4 tokens) and RS (7 tokens). They all are native speakers of Australian English with 
accents ranging from general to slightly broad. 

 

Fig. 2. Acoustic-phonetic analysis of “hello” [Rose’s (1999: 9) Fig. 1]. Top panel: Waveform. 
Middle panel: Energy contour. Bottom panel: Linear-prediction “pole-gram” & F-patterns at 7 
segments (Phonetic labels on top of waveform; Operational labels at right of arrows). 

The acoustic-phonetic structure for the word “hello” is adopted from Rose (1999). 
It consists of 7 segmental landmarks (v1, ell, v2@0%, v2@25%, v2@50%, v2@75%, 
v2@100%), which span a small subset of the phonetic space but whose realisations 
involve a range of vocal-tract configurations – one at the initial monophthongal target 
(v1), one in the middle of the lateral consonant (ell), and five at equidistant instants of 
the final diphthong (v2). For each segment and every token, the 4 lowest formant-
frequencies (F1, F2, F3, and F4) were extracted using linear-prediction analysis.  

Per speaker and per formant-frequency, a poly-segmental ensemble is here defined 
numerically as the set of token-averaged values obtained for each of the 7 segments.  
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Thus, there are 6 speaker-dependent ensembles for each formant. In the next sections, 
the scaling methodology is developed and illustrated using F1-, F2- and F3-
ensembles.  

3   Ensemble-Scaling Technique 

The scaling technique is based on Broad and Clermont’s (2002) analogous 
development for characterising the frame-to-frame similarity of co-articulation effects 
of consonantal context on vowel-formant ensembles. Under the first-order assumption 
of linearity, the same technique is applicable to poly-segmental formant ensembles 
defined for different speakers, provided the ensemble data at hand exhibit a certain 
consistency from speaker to speaker. In Section 3.1 it is shown that the scaling 
technique affords a preliminary diagnostic for lack of consistency in ensemble 
similarity. In Section 3.2 the technique itself is described.  

3.1   Pre-scaling Diagnostic  

A basic aspect of the scaling technique is the use of the speaker-averaged PSE (the 
mean PSE), as a reference ensemble with respect to which individual PSEs are to be 
scaled. It stands to reason that the mean ensemble should be desirable for its 
representative behaviour and its statistical robustness. However, it is its objective role 
that is paramount in seeking a relative measure of ensemble-to-ensemble similarity. 
This quest can be pursued more confidently if, indeed, there is evidence of consistent 
similarity in the data at hand. 

 

Fig. 3. Profile of correlations between each of the 6 speaker-dependent PSEs and the mean 
PSE, providing a diagnostic for consistency in ensemble similarity. The very weak correlation 
of 0.18 for speaker MD’s F3-ensemble indicates his departure from similarity in F3. 

One approach to detecting departure from similarity is to look at the strength of 
correlation between individual PSEs and the mean PSE. The numerical profile of such 
correlations is given in Fig. 3 for the 6 speakers and the 3 lowest formants. 
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Whilst there is strong indication of similarity amongst all speakers’ F1- and F2-
ensembles, there is also strong evidence against the inclusion of the F3-ensemble for 
speaker MD. Rather than include him only for F1 and F2, we retain the 5 speakers for 
whom all formant ensembles are consistently similar, thus avoiding a confounding 
factor in the evaluation of the scaling technique as a tool for expressing similarity.   

Table 1. Correlations between each of the remaining 5 speaker-dependent PSEs, and 2 mean 
PSEs: one excluding speaker MD (values outside parentheses), and the other including speaker 
MD (values within parentheses) 

SPEAKERS F1 F2 F3 
DM 0.96 (0.96) 0.99 (0.99) 0.89 (0.87) 
EM 0.96 (0.96) 0.99 (0.96) 0.97 (0.97) 
JM 0.98 (0.97) 0.97 (0.97) 0.93 (0.93) 
PS 0.97 (0.97) 0.98 (0.98) 0.96 (0.96) 
RS 0.95 (0.95) 0.99 (0.99) 0.99 (0.99) 

The correlations re-calculated (see Table 1) for the non-problematic, 5-speaker set 
remain quite strong with even a slight improvement for speaker EM’s F2-ensemble 
and speaker DM’s F3-ensemble. It is with this 5-speaker set of PSEs that the scaling 
technique is developed in the next section. 

3.2   Ensemble Scaling Via Linear Regression  

The strong correlations reported above have confirmed the existence of a consistent 
similarity amongst 5 of the 6 speakers’ ensembles examined, thereby paving the way 
for the scaling implementation. However, the procedure is more directly motivated by 
first taking a glimpse at the actual ensemble data shown in Fig. 4.  

 

Fig. 4. Actual Poly-Segmental Ensembles obtained for F2. Ensemble scales are shown at 
bottom of rectangles. Fig. 5 illustrates how the ensemble scale for speaker DM was obtained. 

Glimpse at Poly-Segmental Ensembles for F2. On the “speaker axis” of Fig. 4 are 
juxtaposed the F2-ensembles obtained from the 5-speakers’ data. Perhaps the first 
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observation worth noting is that the ensembles are translated with respect to one 
another. While this may be a useful factor of discrimination amongst speakers, it is 
inconsequential to scaling. Instead, the crucial factor of similarity is the ensemble-to-
ensemble regularity in relative position and spacing of the segments’ formants. 
Although the ensembles shown in Fig. 4 do not appear to be exactly linearly-scaled 
copies of each other, there is a sufficiently noticeable trend to warrant the next step 
leading to scaling relations.  
 
Linear-Regression Procedure. Ensemble scaling is achieved using linear-regression 
fits of each speaker’s PSE translated by its mean against the mean of all translated 
PSEs. This is illustrated in Fig. 5 for speaker DM, where the slope of the fitted line is 
an estimate of the scaling factor, justly referred to as an ensemble scale describing a 
proportion with respect to the mean ensemble. The scales obtained for DM and the 
other 4 speakers are shown in Fig. 4 at the bottom of the corresponding rectangles. 

 

Fig. 5. Linear-regression fit through DM’s PSE against the mean PSE 

The regression procedure also yields a measure of goodness-of-fit expressed as the 
Root-Mean-Squared (RMS) deviations of the fitted lines from the ensemble data. 
Table 2 gives these measures with ranges for F1 ([17-28]), F2 ([17-57]) and F3 ([23-
63]) that lie comfortably within the range of difference limens for human perception.  

Table 2. Root-Mean-Squared (RMS) deviations (Hz) of fitted lines 

SPEAKERS F1 F2 F3 
DM 25 34 42 
EM 28 55 63 
JM 17 57 47 
PS 22 33 36 
RS 24 17 23 
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4   Ensemble Scales 

The ensemble scales obtained for all speakers and all formants are now brought 
together for a close evaluation of their plausibility and effectiveness as measures of 
similarity. This is undertaken from the viewpoint of uniformity across formants. 

4.1   Preliminary Observations  

Figure 6 displays the ensemble scales derived from the original (token-averaged) 
PSEs. For this reason, they will be referred to as raw scales. One striking observation 
concerns the F3-scales for speakers DM and EM, which seem to be at odds with the 
patterns for the other speakers. In addition to this apparent aberration, there are only 
very weak correlations between F1- and F2-scales (0.02) and between F1- and F3-
scales (-0.17). The raw scales clearly exhibit a strong non-uniformity that is 
inconsistent with similarity. A deeper investigation is therefore warranted.      

 

Fig. 6. Per-formant profile of RAW scales for the 5-speakers’ ensembles. “RAW” signifies that 
the scales shown are based on the original (token-averaged) PSEs. 

4.2   Insights from Vocal-Tract Length  

Thus far, the scaling technique has yielded insights that might have been obscured if it 
had simply encompassed all formants in the first place. Nor does it need to as a tool 
for expressing similarity. The non-uniformity noted above is therefore investigated by 
independently evaluating the formant ensembles before and after ensemble scaling.   

To understand the possible causes of the non-uniformity observed above, we first 
appeal to a closed-form expression proposed by Paige and Zue (1970: Eq. (13) on  
p. 169) for estimating vocal-tract length directly from formant frequencies. The  
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expression extends the quarter-wave formula by implicating all available formants, 
thereby providing length estimates that are more realistic for speech sounds other than 
the neutral vowel. The length estimates presented here are referred to as L4 in short, 
as they are based on our measured F1, F2, F3 and F4.  

The left panel of Fig. 7 displays, speaker by speaker, the raw L4 as a function of 
phonetic segment. The per-speaker patterns show encouraging consistency in the way 
in which variations from segment to segment reflect differing degrees of lip rounding 
and, conceivably, concomitant adjustments of larynx height. Whilst the overall pattern 
is indeed “similar” from speaker to speaker, it is visibly different in absolute terms. 
An intriguing question thus arises – Is the non-uniformity manifest in the raw scales 
partly attributable to differences in vocal-tract length patterns?  

4.3   Post-scaling Effects on Vocal-Tract Length  

The question raised above is approached by looking at the inter-speaker variations in 
vocal-tract length that remain after ensemble scaling.  This is readily achieved by 
using the reciprocals of the raw scales for inverse scaling the ensembles formant by 
formant. The L4 measure is then re-applied to the inversely-scaled formants, yielding 
the new pattern shown on the right panel of Fig. 7.  

 

Fig. 7. Vocal-Tract Lengths (L4) based on F1, F2, F3 and F4 (Paige and Zue, 1970). Left 
panel: L4s for raw ensembles. Right panel: L4s for inversely-scaled ensembles. 

The new pattern is revealing in several ways. The spread in L4 amongst the 5 
speakers is now much smaller, indeed causing a typical behaviour to emerge from 
segment to segment. This behaviour indicates that, without any knowledge of inter-
formant relationships, the inverted raw scales already account for a large proportion 
of the ensemble-to-ensemble variations. It seems reasonable to expect further 
improvements if the raw ensembles are pre-normalised using the L4 measure, which  
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is inclusive of all available formants. A pre-normalisation stage involving L4 is 
described in the next section, where the results presented yield a more definite 
perspective on the similarity proposition. 

5   Ensemble Scales and Pre-normalisation Involving L4 

The argument put forward in the previous section has brought into focus the fact that 
the scaling technique operates on a per-formant basis and, therefore, it should not be 
able to completely handle the speaker-to-speaker differences in vocal-tract length 
patterns observed in Fig. 7. Our aim here is to secure a fairer outcome of the scaling 
technique by pre-normalising the raw PSEs using L4.  

In Section 5.1 we describe the pre-normalisation method and, in Section 5.2,  
we compare the resulting ensemble scales with those shown in Fig. 6. For the sake  
of completeness, we will return to the patterns of vocal-tract length from speaker to 
speaker, and compare them with those shown in Fig. 7. Finally, the two stages put in 
place will take us to Section 5.3, where inversely-scaled data (L4-normalised) and 
raw data are contrasted in the traditional planes spanned by F1 and F2, and F2  
and F3. 

5.1   Pre-normalisation Method 

The method employed for pre-normalising our raw ensembles was inspired by the 
encouraging results reported in a previous experiment (Wakita, 1977), where vocal-
tract length was used as a normalisation parameter for automatic classification of 9 
American English vowels uttered by 14 men and 12 women. Wakita’s motivation for 
exploiting vocal-tract length is encapsulated in his statement that it is “not 
unreasonable as a first step toward inter-speaker normalisation in consideration of  
the structural similarity of the human vocal organs from individual to individual”  
(p. 184). Since this echoes some of the motivational arguments presented earlier, the 
algorithmic procedure developed by Wakita was adapted to our ensemble data. 

Here the normalisation factor is defined as the ratio of raw L4s to their average. 
For each of the 7 phonetic segments, there are 5 such ratios corresponding to our 5 
speakers, which are then used to normalise each formant for that segment.  

5.2   Scaling Uniformity Revisited  

Figure 8 shows the results of applying the scaling technique to L4-normalised PSEs. 
A more meaningful picture now emerges from the new ensemble scales. 

The aberrant behaviour observed earlier for DM’s and EM’s raw scales has now 
disappeared and, as a result, the new scales follow a much more consistent pattern 
across all speakers. DM’s and EM’s ensembles are relatively larger by comparison 
with the other 3 speakers’ ensembles, and the downward trend from left to right in 
Fig. 8 is also consistent for the 3 formants. Inter-formant correlations have expectedly 
grown stronger: from 0.02 to 0.68 between F1- and F2-scales, from 0.76 to 0.89 
between F1- and F3-scales, and from -0.17 to 0.93 between F2- and F3-scales.  
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Fig. 8. Per-formant profile of the 5-speakers’ ensemble scales resulting from pre-normalisation 
of the raw PSEs by vocal-tract length (L4) 

 

Fig. 9. Vocal-Tract Lengths (L4). Left panel: L4s for raw ensembles. Right panel: L4s for  
L4-normalised and then inversely-scaled ensembles. 

The emergent perspective is indeed clearer. Some proportion of the variations 
manifest in the 5-speakers’ PSEs appears to be caused by inter-speaker differences in 
vocal-tract length through the 7 segments representing the word “hello”. This is 
confirmed in Fig. 9, where the residual variation in the new L4s is now negligible. 
Collectively, the results given in Fig. 8 and Fig. 9 show a believable tendency towards 
uniformity, thereby lending support to the similarity proposition. 
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5.3   Reduction of Inter-speaker Differences  

The process described above is summarised in Fig. 10. There are two stages leading 
to ensemble scales: (i) pre-normalisation of the raw F-patterns by vocal-tract length, 
and (ii) linear regression of every ensemble against the mean ensemble. The final 
stage (iii) is built into the linear-scaling approach, in that the reciprocals of the 
ensemble scales are readily obtained for inverse scaling the ensembles formant by 
formant. The following question remains to be elucidated: To what extent the inter-
speaker differences in our “hello” ensembles have indeed been accounted for through 
the entire process?  

 

Fig. 10. Implementation stages of the linear-scaling approach: (i) pre-normalisation by vocal-
tract length; (ii) ensemble scaling via linear regression; and (iii) inverse scaling using 
reciprocals of ensemble scales 

Formant Spaces: Pre- and Post-Scaling. To address the above question in 
graphical terms, the raw and the inversely-scaled ensembles are independently re-
grouped as convex hulls in the planar spaces of F1-F2 and F2-F3. There are 7 
convex hulls corresponding to the 7 segments representative of “hello”, while 
every hull encloses 5 data points corresponding to the 5 speakers. The convex hulls 
obtained from raw and inversely-scaled ensembles are superimposed in Fig. 11 
(F1-F2 plane) and Fig. 12 (F2-F3 plane). The reduction of inter-speaker 
differences is significant, as evidenced by the substantial shrinkage of each of the 
7 hulls, causing the latter to be completely separated from each other. Whilst this 
result provides a clear illustration of the effectiveness of the approach, a more 
quantitative assessment is next sought in terms of the residual spread amongst the 
5 speakers.  
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Fig. 11. F1-F2 plane for 7 segments from “hello” spoken by 5 male speakers of Australian 
English (DM, EM, JM, PS, RS). Raw convex-hulls are shown in blue (dashed lines). Hulls 
obtained by inverse scaling of L4-normalised ensembles are shown in red (solid lines).  

 

Fig. 12. F2-F3 plane with same labelling conventions as for Fig. 11 

Inter-Speaker Spread: Pre- and Post-Scaling. The results plotted in Figs 11 and 12 
are re-considered on a per-formant basis to yield the profiles of speaker spreads given 
in Fig. 13. The spread values represent the root-mean-squared (RMS) deviations from 
the 5-speaker averages corresponding to individual segments. The RMS profiles 
indicate that inter-speaker differences have been brought down to the level of inter-
token variation expected for F1, F2 and F3, with slightly-differing consistency from 
segment to segment. On the whole, the post-scaling evidence presented supports our 
interpretation that the bulk of inter-speaker variations have been accounted for. 
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Fig. 13. Speaker spread (RMS) based on the raw (left panel), and the L4-normalised and 
inversely-scaled ensembles (right panel) 

6   Concluding Summary 

This paper has outlined and illustrated a new approach to the problem of handling 
acoustic-phonetic dissimilarity in different speakers’ productions of the same 
utterance. Instead of focusing on dissimilarity and trying to disentangle its multiple 
sources, relations of similarity are sought with a view towards unlocking regularity in 
formant-pattern variability from speaker to speaker. The regularity present in the data 
at hand is described in terms of scaling factors, which require only linear-regression 
operations. Dissimilarity amongst speakers is indirectly accounted for by inverting the 
linear-scaling factors of similarity. 

Central to the approach is the poly-segmental formant ensemble (PSE), which 
provides a solution to the problem of capturing global regularity amidst the fine 
acoustic-phonetic details of its segmental components. As a result, the PSE facilitates 
the search for (dis)similarity amongst a set of different speakers. These long-term 
properties of the PSE are reminiscent of those associated with a “setting”, which is 
also poly-segmental by definition (Laver, 1980).  

The results achieved thus far have shown the potentiality of approaching the 
problem of inter-speaker dissimilarity by way of similarity. It will be instructive to 
evaluate the approach with differing PSEs, with a wider-ranging set of speakers, or 
with forensically-oriented cases involving, for example, different imitations by the 
same speaker (Clermont and Zetterholm, 2006). Progress along these paths will 
help to focus on the pending question of how speakers (or their imitations) are 
distributed in a space defined by ensemble scales. Ultimately, it is conjectured that 
PSE scaling should prove useful for handling inter-speaker variations in speaker 
classification, as there is no requirement for a priori knowledge of the exact sources 
of the variations. 
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Abstract. This study investigates whether the pattern of diachronic
sound change within a language variety can predict phonetic variabil-
ity useful for distinguishing speakers. An analysis of Standard Southern
British English (SSBE) monophthongs is undertaken to test whether in-
dividuals differ more widely in their realisation of sounds undergoing
change than in their realisation of more stable sounds. Read speech of 20
male speakers of SSBE aged 18-25 from the DyViS database is analysed.
The vowels /æ, U, u:/, demonstrated by previous research to be chang-
ing in SSBE, are compared with the relatively stable /i:, A:, O:/. Results
from Analysis of Variance and Discriminant Analysis based on F1 and
F2 frequencies suggest that although ‘changing’ vowels exhibit greater
levels of between-speaker variation than ‘stable’ vowels, they may also
exhibit large within-speaker variation, resulting in poorer classification
rates. Implications for speaker identification applications are discussed.

Keywords: Speaker identification, sound change, vowels, formant fre-
quencies, Standard Southern British English.

1 Introduction

The system of sound contrasts in a language is constantly in flux. Linguistic
variation leads to change as new realisations of existing contrasts become estab-
lished, as old contrasts are subject to merger, and as new contrasts are formed.
At any point in time, certain sounds are changing while others appear more
stable. The variationist approach to linguistic change suggests that, at a given
point in time, members of a speech community will realise particular sounds in
their language system with two or more realisations (see e.g. Labov 1994: Ch. 14
[1]). These co-existing variants may be categorically different realisations pho-
netically, e.g. [P] versus [t] for /t/, or, as is typically the case for vowel change,
a number of gradiently different realisations along a continuum.

The present study examines such variation as a potential source of speaker-
distinguishing information. We hypothesise that, within a given homogeneous
speech community, those sounds which are undergoing diachronic change are
more likely to exhibit individual variation than sounds which are relatively sta-
ble. It is likely that speakers within the group will differ in terms of their reali-
sations of variables which are undergoing change. Certain speakers may exhibit

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 130–141, 2007.
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more conservative or more novel realisations than others. Although in the longer
term a particular change would be expected to characterise all members of a
speech community, in the shorter term patterns of usage may be valuable in
distinguishing different speakers (Moosmüller 1997 [2]). This paper explores this
possibility through an analysis of speaker-distinguishing properties of monoph-
thongs in SSBE.

Changes in the vowel system of SSBE (Standard Southern British English),
Received Pronunciation (RP), and related accents of British English have re-
ceived attention from a number of phoneticians over the years (e.g. Wells 1962
[3], 1982 [4], 1984 [5]; Gimson 1964 [6], 1980 [7], 1984 [8]; Trudgill 1984 [9], 1990
[10]; Deterding 1990 [11], 1997 [12]; Hughes and Trudgill 1996 [13]; Harrington
et al. 2000[14]; Cruttenden 2001 [15]; Fabricius 2002 [16]). A recent and com-
prehensive acoustic study of diachronic change in RP monophthongs is provided
by Hawkins and Midgley (2005) [17]. These authors analysed the F1 and F2 fre-
quencies of monophthongs produced in /hVd/ contexts by male speakers of RP
in four age groups: 20-25 years, 35-40 years, 50-55 years and 65-73 years. There
were five speakers in each age group and directional patterns of differences in
formant frequencies across successive age groups were interpreted as evidence of
a time-related shift in the acoustic target for the relevant vowel.

The monophthongs Hawkins and Midgley identified as having undergone the
largest changes were /E, Ãę, u:, U/. For /E/, and even more so for /æ/, the fre-
quency of F1 was progressively higher for younger cohorts of speakers. These
two vowels also exhibited a slight lowering in their F2 frequencies for succes-
sively younger age groups. Phonetic lowering of /æ/, the vowel found in had, is
consistent with the auditory observations of Cruttenden (2001: 83) [15], Wells
(1982: 291-2) [4] and Hughes and Trudgill (1996: 44) [13]. The frequency of F2
for /u:/, as in the word who’d, was progressively higher for younger speakers in
Hawkins and Midgley’s study, consistent with the percept of /u:/ becoming in-
creasingly centralised, or even fronted and less rounded (cf. Hughes and Trudgill
1996: 45 [13]; Wells 1982 [5]; Cruttenden 2001: 83 [15]). Finally, Hawkins and
Midgley’s data for /U/, as in hood, showed a trend for the youngest group of
speakers to realise this vowel with a higher F1 frequency and a much higher F2
frequency than the three older groups. Fig. 1 shows a schematic overview of the
trends described above and the mean values measured by Deterding in 1990.

Overall these changes appear to contribute to a picture of anti-clockwise move-
ment of the peripheral monophthongs of RP in the vowel quadrilateral. However,
this is not the case for all RP monophthongs, with certain vowel qualities showing
apparent resistance to change. The vowels /i:, I, A:, 6, O:, 2, 3:/ exhibited similar
F1 and F2 frequencies across the four age groups in Hawkins and Midgley’s data,
with /i:, A:, O:/ appearing particularly stable.

This chapter examines individual variation in three ‘changing’ vowels and
three ‘stable’ vowels in SSBE, produced by a group of speakers of the same
sex and similar age. The speech analysed is drawn from the DyViS database,
developed as part of the research project ‘Dynamic Variability in Speech: A
Forensic Phonetic Study of British English’ at the University of Cambridge.
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Fig. 1. A schematic representation that shows the SSBE vowels currently undergoing
change. The data points are derived from Deterding (1990) [11] and the arrows represent
the trends described in Hawkins and Midgley (2005) [17], where the starting-points
are the mean values reported for the oldest cohort (65-73 years) and the end-points
are the mean values of the youngest cohort (20-25 years) in the study.

Formant frequency measurements of /æ, U, u:/ (changing) and /i:, A:, O:/ (stable)
are compared, to investigate whether patterns of sound change may inform the
selection of indices useful for speaker identification.

2 Method

2.1 Database and Subjects

The DyViS database is a large-scale database of speech collected under simu-
lated forensic conditions. When completed, it will include recordings of 100 male
speakers of SSBE aged 18-25 to exemplify a population of speakers of the same
sex, age and accent group. Each speaker is recorded under both studio and tele-
phone conditions, and in a number of speaking styles. The following tasks are
undertaken by each subject:

1. simulated police interview (studio quality)
2. telephone conversation with ‘accomplice’ (studio and telephone quality)
3. reading passage (studio quality)
4. reading sentences (studio quality)

A subset of the speakers are participating in a second recording session to
enable analysis of non-contemporaneous variation. Further details about the
content of the database and elicitation techniques are given in Nolan et al. (2006)
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[18]. In the present study, data from the fourth task, the read sentences, are
analysed for 20 speakers, who were recorded between February and April 2006.
The subjects had no history of speech or hearing problems, and their status as
speakers of SSBE was judged by a phonetician who is a native speaker of that
variety. The subjects are henceforth referred to as S1, S2, S3, etc.

2.2 Materials and Elicitation

The data analysed are six repetitions per speaker of the vowels /i:, æ, A:, O:, U,
u:/ in hVd contexts with nuclear stress. Each hVd word was included in capitals
in a sentence, preceded by schwa and followed by today, as below:

/i:/ It’s a warning we’d better heed today.
/æ/ It’s only one loaf, but it’s all Peter had today.
/A:/ We worked rather hard today.
/O:/ We built up quite a hoard today.
/U/ He insisted on wearing a hood today.
/u:/ He hates contracting words, but he said a who’d today.

Six instances of these sentences were arranged randomly among a number
of other sentences. The sentences were presented to subjects for reading one at
a time using PowerPoint. Subjects were asked to read aloud each sentence at
a normal speed, in a normal, relaxed speaking style, emphasising the word in
capitals. They practised reading a few sentences at the start before the actual
experimental items were recorded. Subjects were encouraged to take their time
between sentences and asked to reread any sentences containing errors.

Subjects were recorded in the sound-treated booth in the Phonetics Labora-
tory in the Department of Linguistics, University of Cambridge. Each subject
was seated with a Sennheiser ME64-K6 cardioid condenser microphone positioned
about 20 cm from the subject’s mouth. The recordings were made with a Marantz
PMD670 portable solid state recorder using a sampling rate of 44.1 kHz.

2.3 Measurements

Analysis was carried out using Praat (Boersma and Weenink 2006 [19]). Wide-
band spectrograms were produced for each utterance. LPC-derived formant
tracks were generated by Praat, and formant frequency values written to a log
file for the time-slice judged by eye to be the centre of the steady state of each
vowel. In cases where no steady state for the vowel was apparent, the time-slice
chosen was that considered to be the point at which the target for the vowel
was achieved, according to movement of the F2 trajectory (i.e. a maximum or
minimum in the F2 frequency). All measurements were compared with visual
estimates based on the spectrogram, values from adjacent time-slices, and the
peak values of the frequency-amplitude spectrum at the target time-slice. When
values generated by Praat were judged to be incorrect, they were replaced by cor-
rect values from a time-slice immediately preceding or following the slice being
measured.
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3 Results

Fig. 2 compares the mean F1 and F2 frequency values of /i:, æ, A:, O:, U, u:/
from Deterding (1990) [11] with the means across the 20 speakers from the
DyViS project. The Figure mainly confirms the changing patterns noted by other
authors: for both /u:/, the vowel in who’d, and /U/, the vowel in hood, the
F2 frequency is increasing, indicative of a more fronted pronunciation of those
vowels. For /u:/ the change is most marked, going from Deterding’s average F2
frequency of around 1100 Hz to a value of almost 1600 Hz. This difference is
even larger if compared with the data for Wells (1962) [3] and the 65+ cohort
for Hawkins and Midgley (2005) [17]. An increase in the frequency of F1 is
observed for the vowel /æ/, giving the vowel a more open articulation. Also
here, this increase is larger when compared with the formant values reported
by Wells and by Hawkins and Midgley. The DyViS data confirm that indeed
the pronunciations of /i:, A:, O:/ are remaining quite stable: the differences are
relatively small when compared with Deterding’s data and even smaller when
compared with the other authors’ data. Overall, the data confirm the research
findings described earlier in Fig. 1 for /i:, æ, A:, O:, U, u:/.

Fig. 2. Mean F1 and F2 frequency values for the recordings used in Deterding (1990) in
diamonds (recorded in the late 1980s) and for the DyViS recordings in circles (recorded
in 2006)

The mean values of the frequencies of F1 and F2 of /i:, æ, A:, O:, U, u:/ for each
individual speaker are shown in Fig. 3. Each data point represents the average
realisation of the relevant vowel for a given speaker across 6 tokens. The Figure
shows that these vowels differ considerably from one another in the degree of
between-speaker variation they exhibit. For example, /O:/, the vowel in hoard,
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Fig. 3. Mean F1 and F2 frequency values for 20 SSBE speakers for the vowels in
heed(/i:/), had(/ae/), hard(/A:/), hoard(/O/), hood(/U/), who’d(/u:/). For each
speaker, the mean consists of the formant values of 6 tokens per vowel.

is tightly clustered in the vowel space, with F1 mean values only ranging from
approximately 350 to 445 Hz and F2 mean values from 625 to around 900 Hz.
In other words, this vowel exhibits an F1 range of 95 Hz and an F2 range of
275 Hz. The /æ/ vowel in had, on the other hand, has a similar spread for F2
(i.e. 215 Hz), but a much larger one, 380 Hz, for the F1 dimension: means for
F1 start around 680 Hz and the highest mean found was 1060 Hz. Overall, /æ,
U, u:/ exhibit the widest ranges of realisations when comparing speakers.

Consistent with the hypotheses based on patterns of sound change in SSBE,
the vowels in hood and who’d demonstrate extensive variation in the F2 di-
mension and /æ/, as in had, varies widely in the F1 dimension. A result not
predicted by sound change data for SSBE is that of considerable differences
among speakers in their average F2 frequency of /i:/. The vowel /A:/ is also
more variable in the F1 dimension than might be expected. However, formant
frequencies are of course not only influenced by vowel quality but also by vocal
tract size; we return to this issue briefly in the discussion section.

The observations described above were confirmed statistically by running a
Univariate Analysis of Variance with Speaker as a random factor (20 levels) on
the F1 and F2 frequencies of each vowel. The resulting F-ratios are displayed
in Fig. 4. The vowels demonstrating the greatest ratio of between- to within-
speaker variation in F1 are those in had and hard. In the second formant the
vowels yielding the highest F-ratios are heed, hood and who’d.

To test the degree of speaker-specificity exhibited by the F1 and F2 frequen-
cies in combination for each vowel Discriminant Analysis was carried out. This
multivariate technique enables us to determine whether a set of predictors can
be combined to predict group membership (Tabachnick and Fidell 1996: Ch. 11
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Fig. 4. Univariate ANOVA F-ratios for F1 and F2 frequencies (df = 19, 100; p = 0.000
in all cases). The vowels with * are the SSBE vowels undergoing change as reported in
previous research.

[20]). For the present study a ‘group’ is a speaker, or rather the set of utterances
produced by a speaker. The Discriminant Analysis procedure constructs dis-
criminant functions, each of which is a linear combination of the predictors that
maximises differences between speakers relative to differences within speakers.
These functions can be used to allocate each token in the data set to one of the
speakers and determine a ‘classification rate’ according to the accuracy of the
allocation. In the present study, this is done using the ‘leave-one-out’ method,
where each case is classified by discriminant functions derived from all cases
except for the case itself. The higher the classification rate, the more useful the
vowel for distinguishing speakers.

Direct discriminant function analyses were performed for each vowel category,
using the frequencies of F1 and F2 as predictors of membership of twenty groups,
S1, S2, S3, . . . etc. (k = 20). The data set for each vowel contained the twenty
speakers’ six tokens, a total of 120 tokens. The resulting classification rates are
shown in Fig. 5.

The Discriminant Analyses yielded rates of classification of 25% to 41%, rates
much higher than chance (for all vowels 1/20 = 5%). However, certain vowel
qualities performed better than others. The best classification rate, 41%, was
achieved for the hood vowel. The vowels in heed and had also performed
quite well: 35%. Poorer rates were noted for the vowels of hard, hoard and
who’d with scores ranging from 25% to 28%. These initial findings seem only
partially to support our hypothesis that sounds undergoing change (had, hood,
who’d) are particularly useful for speaker identification, at least when applying
Discriminant Analysis.
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Fig. 5. Discriminant Analysis classification rates using F1 and F2 frequencies as predic-
tors of group (speaker) membership. The vowels with * are the SSBE vowels undergoing
change as reported in previous research. Chance level is 5% as there are 20 speakers.
The maximum rate is found for hood: 41%.

So why does the vowel in who’d which has, as seen in Fig. 3, a relatively
large between-speaker variation in F2, perform less well in Discriminant Analy-
sis, and why does the supposedly stable vowel in heed do better? Reasons for
the differing degrees of discrimination achieved become clearer when data for
individual speakers are examined with respect to within-speaker variation and
vocal tract size and the effect that may have on a particular vowel. First, con-
sider the different scenarios for /i:/, /O:/ and /u:/ represented by the six tokens
of each vowel produced by five speakers shown in the F1-F2 plot in Fig. 6.

For the HOARD vowel /O:/, each speaker’s tokens are clustered closely to-
gether in the vowel space. However, for the who’d vowel/u:/, some speakers
(S15 and S22) produce very consistent realisations, whilst others (S2, S4 and
S9) vary widely especially in the frequency of F2. The situation for /i:/ is dif-
ferent again, with speakers exhibiting large between-speaker variation and small
within-speaker variation. Overall, for vowels where a speaker’s average (F2, F1)
realisation differs widely from one person to the next, but each individual is rela-
tively consistent across his own productions, classification rates are higher. This
is the situation for /i:/ (35%) and /U/ (41%), especially due to the contribution
of the F2 frequency. However, vowel qualities which exhibit large within-speaker
variation for certain speakers perform less well in the classification tests. This
is the case for /u:/ (particularly due to F2) and /A:/ (particularly due to F1),
with classification rates of 27% and 25% respectively. The HAD vowel /æ/ with
a rate of 35% also exhibits large within-speaker variation in the F1 direction,
but this is compensated for by an extremely large between-speaker variation.
The most tightly clustered vowel in Fig. 3, /O:/, has low within-speaker varia-
tion, but its low between-speaker variation explains its lower classification rate
of 28%.
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Fig. 6. F1 and F2 frequencies of /i:/, /O:/ and /u:/ produced by S2, S4, S9, S15 and
S22 (6 tokens each)

As noted above, the vowel /i:/ did not conform to the pattern of a tight
cluster of data points expected for a ‘stable’ vowel; rather, the vowel exhibited
a wide spread in the F2 dimension. Combined with low within-speaker variation
this leads to a higher level of speaker discrimination (35%) than expected. So, is
the vowel in heed currently undergoing change after all? And is it incorrect to
label it as ‘stable’? Auditory examination of the data for /i:/ and also for /æ/
indicates that the differences in the frequency of F2 (and F1 for /æ/) observed
here do not correspond systematically to auditorily distinct vowel qualities; some
vowel tokens with similar coordinates do not sound the same in terms of vowel
quality. Also, speakers who tended to give the impression of having either a small
or large vocal tract size were usually found at the extreme ends of the formant
scale for both /i:/ and /æ/ and their vowel quality in terms of the phonetic vowel
quadrilateral usually did not ‘correspond’ to their location in the F2-F1 graph.

These two vowels may be sensitive to the relation between a speaker’s anatomy
and the achievement of auditory phonetic goals in rather different ways however.
F1 of /æ/ is highly sensitive to pharynx length (Nolan 1983: 171-172 [21]; Stevens
1998: 270-271 [22]) and will vary fairly directly with anatomy. In the case of /i:/,
the frequency of F2 may be less crucial perceptually than a weighted average of
F2, F3, and F4, which is because they may merge auditorily into one spectral
prominence and as a result compensate for each other in the achievement of
a specific phonetic quality (Carlson et al. 1975 [23]; Nolan 1994: 337-341 [24]).
These are matters on which further research in the domain of speaker identity
is clearly needed.

The individual differences in the means for the other vowels were more con-
sistent with the predictions based on diachronic change, and this was confirmed
by further auditory examination of tokens with formant values at the extreme
ends of the clusters for these vowels.
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4 Discussion

The F1 and F2 frequencies of the vowels studied achieved differing levels of
speaker discrimination. Patterns of sound change are relevant to the degree of
speaker-specificity exhibited by a vowel; however, vocal tract differences are also
important, as explained above.

The only ‘stable’ vowel to yield a tight cluster of data points in F1-F2 space
was /O:/, the vowel in hoard; both between- and within-speaker variation were
small for this vowel and the classification rate yielded was relatively low (28%).
Large between-speaker variation was observed in the means for individual speak-
ers for the F2 frequency of /i:/ as in heed, /u:/ as in who’d, /U/ as in hood

and the F1 frequency of /æ/ (had) and to some extent /A:/ (hard) (see Fig.
3). The changing vowels /æ/ and /U/ yielded two of the highest classification
rates on the Discriminant Analysis (35% and 41% respectively). However, /u:/
performed less well (27%) due to the large within-speaker variation in this vowel
for some speakers (see Fig. 6). Although the data support the observation that
/u:/ is changing in SSBE, this vowel did not perform equally well in Discrim-
inant Analysis, since for some individuals the diachronic change is reflected in
considerable within-speaker instability. The vowel /A:/ was not as stable as /i:/
in terms of the range of F1 values exhibited by different speakers, although the
cluster of data points for /A:/ was smaller than those of the three ‘changing’
vowels, and its classification rate was the lowest of the vowels tested (25%).

The vowel /i:/ did not conform to the pattern of a tight cluster of data points
expected for a ‘stable’ vowel; rather, the vowel exhibited a wide spread in the F2
dimension. Nevertheless, stability in /i:/ was evidenced by its low within-speaker
variation, which, combined with the vowel’s large between-speaker variation, led
to a relatively high level of speaker discrimination (35% classification rate). The
‘changing’ vowel /æ/ with a rate of 35% also exhibits large within-speaker vari-
ation in the F1 direction, but this is compensated for by an extremely large
between-speaker variation, probably due to a combination of the changing char-
acter of the vowel quality and vocal tract size differences.

5 Conclusion

This chapter has provided an analysis of read data from 20 speakers of Standard
Southern British English from the DyViS database investigating whether sounds
which are undergoing change are those most likely to differ among speakers. The
results showed that this is true to an extent, but that some qualifications are
needed. The historically stable vowels of SSBE /O:/, as in hoard, and /A:/,
as in hard, offered the least reliable discrimination, and the rapidly fronting
/U/, as in hood, provided the best discrimination. The vowel in who’d, /u:/,
is fronting, and was able to separate many speakers, but its within-speaker vari-
ation was large for some speakers, leading to a lower discrimination. A vowel
particularly affected by differences in vocal tract size was /æ/. The had vowel
showed large between-speaker variation in F1, but this conflated slight audible
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phonetic quality variation with the acoustic consequences of (inferred) vocal tract
size differences. The /i:/ vowel, as in heed, was auditorily stable but provided
good discrimination due to low within-speaker variation (presumably linked to
both historical and proprioceptive stability) and large between-speaker vara-
tion (perhaps licensed by the possibility of auditory compensation in the higher
formants).

The work reported here underlines just how far the speech signal is from
being a straightforward biometric. To understand the speech signal fully, and
therefore to be able to exploit its potential for the identification of an individual
to best effect, we need to appreciate not only its complex relation to the vocal
tract which produces it, but also its determination by a linguistic system set in a
social and historical context. We hope this paper will stimulate progress towards
an integrated theory of vocal identity which will provide principles to underpin
practical work in speaker identification.
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Abstract. In text-independent speaker recognition, Gaussian Mixture
Models (GMMs) are widely employed as statistical models of the speak-
ers. It is assumed that the Expectation Maximization (EM) algorithm
can estimate the optimal model parameters such as weight, mean and
variance of each Gaussian model for each speaker. However, this is not
entirely true since there are practical limitations, such as limited size of
the training database and uncertainties in the model parameters. As is
well known in the literature, limited-size databases is one of the largest
challenges in speaker recognition research. In this paper, we investigate
methods to overcome the database and parameter uncertainty problem.
By reformulating the GMM estimation problem in a Bayesian-optimal
way (as opposed to ML-optimal, as with the EM algorithm), we are able
to change the GMM parameters to better cope with limited database
size and other parameter uncertainties. Experimental results show the
effectiveness of the proposed approach.

Keywords: Estimation, Bayes procedures, speaker recognition, Gaus-
sian distributions, modeling.

1 Introduction

Speaker recognition is the process of automatic recognizing who is speaking based
on the statistical information provided by speech signals [1]. The main technique
is to find a set of features that represents a specific speaker voice. The speaker
identity is correlated with the physiological and behavioral characteristics of
the speech production system [2, 1], and these characteristics can be captured
by short- and long-term spectra. The most common spectral features are Linear
Prediction coefficients (LPC), Mel frequency cepstral coefficients (MFCC)[3] and
Line Spectral Frequencies (LSF) [4, 5].

State-of-the-art text-independent speaker recognition systems commonly use
the Expectation Maximization (EM) algorithm [6, 7] to estimate Gaussian Mix-
ture Models (GMMs) for each speaker. The EM algorithm provides Maximum
Likelihood (ML) estimates for the unknown model parameters from a training
database. When a GMM for each speaker is computed, Bayesian classification
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is used to determine the most probable speaker for test speech samples with an
unknown voice.

A problem in speaker recognition is the mismatch between training and test
data. Such mismatches will lead to severe performance loss, and should be
avoided if possible. As we show in Section 3, the performance loss due to such
mismatches is quite severe in current state-of-the-art systems. One of the reasons
for the large performance loss is the two-stage procedure described above, with
first ML estimation of the GMM parameters (using the EM algorithm), and then
Bayesian classification. In this paper, we propose instead a Bayes-optimal pa-
rameter estimation procedure, and we show that our algorithm leads to improved
performance, particularly when the amount of training data is small.

The paper is organized as follow. The state-of-the-art of text-independent
speaker identification is discussed in Section 2. The Problem of mismatches be-
tween training and testing is presented is presented in Section 3. The Bayesian
approach for estimation of uncertain parameters is discussed in Section 4. Finally
the results and conclusions are discussed in Section 5 and 6, respectively.

2 State-of-the-Art Speaker Identification

We divide the task of speaker identification into two phases; the design phase,
where a database of speech samples from known speakers are used to optimize the
parameters of the system, and the classification phase, in which speech samples
from unknown speakers are classified based on the parameters from the design
phase.

2.1 The Design Phase

The first step in the design phase is to determine what features to use. Commonly
used features are Mel-frequency cepstrum coefficients (MFCC), linear-prediction
cepstrum coefficients (LPCC) or line spectrum frequencies (LSF). The MFCC
features are based on the known variation of the human ear’s critical band-
widths, with filter-banks that are linear at low frequencies and logarithmic at
high frequencies [3]. The LPCC and LSF features are based on an all pole model
used to represent a smoothed spectrum [8].

In many text-independent speaker identification systems, Gaussian Mixture
Models (GMMs) are used as a statistical model of each speaker. The GMM for
a speaker s is defined as

f (s) (x) =
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i.e. it is a weighted sum of Gaussian distributions g(x, μ
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k ), where μk is

the mean and Ck is the covariance matrix of the k-th Gaussian distribution,
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and D is the dimensionality of the models. Each speaker has a unique model,
describing the particular features of his/her voice.

We will use GMM models with diagonal covariance matrices in this report,

C
(s)
k = diag(σ(s)

k,1, . . . , σ
(s)
k,D). (3)

In other reports, it has been shown that for similar complexity diagonal covari-
ances works at least as good, sometimes better, than full covariance matrices,
and it will simplify our equations later. The resulting GMM can then be written
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To determine the parameters of the GMMs, the EM algorithm can be used. The
EM algorithm is an iterative algorithm that uses a training database to find
maximum-likelihood (ML) estimates of the weights, means and covariances in
the GMM (or at least approximations to the ML estimates).

2.2 The Classification Phase

In the classification phase, the GMMs that are found in the design phase are
used to compute the log-likelihood (LL) of a sample from an unknown speaker,
{xt}N

t=1, with respect to the actual speaker GMM parameters θ,
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The speaker with the highest log-likelihood is declared as the winner,

ŝ = argmax
s∈{1...S}

LL(s) (6)

The goal of speaker recognizer is to minimize the probability of error given by
Pe = Pr[s �= ŝ] [9]. We will use this state-of-the-art speaker recognizer as a
baseline system, against which the performance of the proposed schemes are
compared.

3 The Problem: Mismatches Between Training and
Testing

As discussed in the introduction, we (and others) claim that speaker recogni-
tion research suffers from performance losses due to mismatches between the
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training database (the data used in the design phase) and the testing database
(the data used in the classification phase, to evaluate the performance of the
recognizer). The mismatches are clearly observed by evaluating performance
both using an independent test database (which is the standard procedure), and
using the training database. We will in this document refer to performance eval-
uation with the training database as closed testing, and using an independent
database as open testing1. The results using closed and open tests are given in
Figure 1.
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Fig. 1. Comparison of open and closed tests for various database size

The performance gap is quite large, indicating severe mismatches between the
training and testing databases. As expected, the performance in an open test
improves as the training set increases. In contrast, the closed test gives best
result for a small training set, since the GMMs then become over-fitted to the
specific details of that set. In the limiting case of an infinitely large training set,
the open and closed test would converge to equal performance. In the current
experiment in Figure 1, we can extrapolate the curves to at least 1000 files2

for convergence. This is of course quite unrealistic, and we will have to suffer
with small databases and, consequently, a large performance loss for the open
test.

There are several possible reasons for the huge difference between closed and
open tests, e.g. small training database, over-fitting of GMM parameters etc.
Part of the reason for the huge performance penalty for the open test is the sep-
aration of the training phase (optimizing GMMs by the EM algorithm) from the
evaluation phase (Bayesian classification). In the evaluation phase it is assumed
that the pre-determined GMMs are true speaker pdfs, and no consideration is
given to possible mismatches. In reality, the mismatches are severe as shown
1 Closed testing/open testing should not be confused with closed-set identification,

which refers to that the unknown voice comes from a fixed set of known speakers,
or open-set identification, where a previously unknown (not within the training set)
speaker is allowed.

2 One file corresponds here to a short (1 to 2 seconds) phrase by one of the speakers.
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above, and there is room for performance improvements if the mismatches are
considered.

In this paper, we present a theoretical framework for optimization of the
GMM parameters, and we show that Bayesian parameter estimation can partly
overcome database mismatches.

4 The Solution: Bayesian Estimation of GMM
Parameters

In the baseline system, if we assume that the GMM of each speaker is a perfect
estimate of the speaker pdf, the system is the best possible; it is easily verified
that the Bayesian classifier achieves the minimum classification error probability
when the correct pdfs are given [10]. However, the GMMs are not perfect pdf
estimators, due to two reasons:

– The EM algorithm cannot estimate the optimal GMM parameters, due to
limited size of the training database, and also due to local minima in the EM
optimization. There will always be uncertainties in the estimated parameters,
and different parameters will have different uncertainty.

– A Gaussian mixture of finite order cannot describe arbitrary densities per-
fectly. If the GMM order is increased, the fitting ability of the GMM is
increased, but the limited database size sets an upper limit to the number
of model parameters that can be accurately determined.

The optimal way to deal with the uncertain parameter values is to use Bayesian
estimation [11][12](as opposed to the ML approach of the EM algorithm), where
the parameter values Θ are assumed to be random variables with a given pdf
fΘ(θ). This is in contrast to the baseline system, where the parameters Θ as
determined by the EM algorithm are assumed to be the true values. To com-
pute the Bayes-optimal pdf estimate for a speaker s, the corresponding GMM
f (s)(x|θ) must be modified according to

f (s) (x) =

∞∫

−∞
f (s) (x |θ ) fΘ (θ) dθ (7)

In the simplest case, with perfectly estimated parameters Θ, the pdf fΘ(θ) is a
Dirac delta function centered at its mean Θ0 [13]. This simple ”perfect” case gives
pdf equivalent to the unmodified ML-optimized GMM, as is easily verified by
inserting the Dirac function into the integral in (7). Hence, the baseline speaker
recognition system is a special case of the Bayes-optimal system, where perfectly
estimated parameters are assumed.

To compute our proposed Bayesian estimate, we must either know or assume
some characteristics about the pdf of the parameters. The parameters of interest
in this case are the weights w

(s)
k , the means μ

(s)
k,d and the variances σ

(s)
k,d for each
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user s, each mixture component k and each dimension d in the the GMMs as is
shown in (4). We will study the Bayesian estimation of each of these parameters
one by one in the following.

4.1 GMM Modeling with Uncertain Mean Estimates

First, we assume that the weights and the variances of the GMMs are perfectly
estimated by the EM algorithm, while the mean values μ

(s)
k,d are treated as un-

certain. We model the GMM mean vectors as stochastic variables with Gaussian
distributions with known mean μμ (”the mean of the mean”) and variance σ2

μ,

fμ(μ) = g(μ, μμ, σ2
μ). (8)

There are several μ values to be estimated (for each speaker s, for each mix-
ture component k, and for each dimension d) but if we use diagonal covariance
matrices in the GMM, we can treat the problem as a set of independent scalar
Bayes optimizations. Thus, the problem is simplified to find the Bayes-optimal
pdf estimate when the original pdf is Gaussian with mean μ and variance σ2,
and the pdf of μ is also Gaussian, with mean μμ and variance σ2

μ.
Inserting the pdf of μ into (7), we get

f(x) =

∞∫

−∞
g(x|μ, σ2)g(μ|μμ, σ2

μ)dμ (9)

=

∞∫

−∞
g(x − μ|0, σ2)g(μ|μμ, σ2

μ)dμ (10)

= g(x|μμ, σ2 + σ2
μ) (11)

where we note that we have the convolution of two independent Gaussians,
yielding a new Gaussian with added means and variances.

Generalizing the expression to the original multidimensional GMM, the result-
ing Bayes-optimal pdf is a new GMM where each variance is replaced with the
sum of the original variance (as given by the EM algorithm) and the uncertainty
variance,

f (s)(x) =
M∑

k=1

w
(s)
k g(x|μ(s)

k , C
(s)
k + C

(s)
μ,k) (12)

where C
(s)
μ,k is a diagonal matrix with the uncertainty variances σ2

μ(s, k, d) where
s is the speaker index, k is the mixture component, and d indicates the dimension
index of the extracted features.

A main conclusion that can be drawn from the above analysis is that Bayes-
optimal estimates of GMM mean values can be modeled as an added variance
compared to the ML estimate, a conclusion that is intuitively satisfying. In reality,
it can be quite difficult to find optimal values of each variance, but we propose
a solution in Section 5.1.
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4.2 GMM Modeling with Uncertain Weight Estimates

Now we assume that the means and the covariances of the GMM components
are perfectly estimated by the EM algorithm, while the weights of the GMMs
are treated as stochastic variables. As in the previous case, we will model the
weights of the GMMs vectors as stochastic variables with Gaussian distributions
with known mean μw and variance σ2

w,

fw(w) = g(w, μw, σ2
w) (13)

Several w values to be estimated, one for each mixture component in each speaker
model. For simplicity we drop s that corresponds to the speaker since the analysis
is valid for all the speakers. Using (1) and the pdf of w into (7) we get

f(x) =
M∑

k=1

∫ ∞

−∞
wkg(x|μk, Ck)g(wk|μwk

, σ2
wk

)∂wk (14)

=
M∑

k=1

g(x|μk, Ck)

∞∫

−∞
wkg(wk|μwk

, σ2
wk

)∂wk (15)

=
M∑

k=1

E(wk)g(x|μk, Ck) =
M∑

k=1

μwk
g(x|μk, Ck) (16)

where E(wk) is the expectation of the weights for the k component of the GMM.
In our case, the expectation is equal to the mean value of the weights for the
k component of the GMM (μwk

), which is the same as the output from the
EM algorithm. The main conclusion of this analysis is that the Bayesian esti-
mate with noisy weights is the same as the ML estimate, as given by the EM
algorithm[7].

4.3 GMM Modeling with Uncertain Variance Estimates

As in the previous sections of Bayes-optimal parameter estimation, we will as-
sume that the weights and the means of the GMM components are perfectly
estimated by the EM algorithm, while the covariances of the GMM are treated
as uncertain. We will model the variances of the GMM as stochastic variables
with Gaussian distributions with known mean μσ2 and variance σ2

σ2

fσ2(σ2) = g(σ2, μσ2 , σ2
σ2). (17)

We use diagonal covariance matrices in the GMMs and treat the problem as a
set of independent scalar Bayes optimizations,

f(x) =
∫ ∞

−∞
g(x|μ, σ2)g(σ2|μσ2 , σ2

σ2)∂σ2. (18)
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However, this integral does not have a simple closed form. For one extreme case,
when σ2 >> σ2

σ2 , the parameter uncertainties in the variance are very low, and
we can observe that the Bayesian estimator for this case is equivalent to the
unmodified ML-optimized estimator with variance (σ2 = μσ2). Otherwise, the
integral is difficult to compute, and we have not included this case further in
the document.

4.4 Optimal Estimation of GMM Parameters

In the previous section, we described the estimation of the parameter uncertain-
ties in the weights w

(s)
k , the variances σ

2 (s)
k and the means μ

(s)
k of the GMMs.

The analysis of the estimation shows that the uncertainties in the means can be
simply modeled as an additional variance to the GMMs, and including them only
requires a small increase in the total complexity of a speaker recognition system.
The modified GMM including the model of the uncertainties in the means is
expressed as:

f (s)(x) =
M∑

k=1

w
(s)
k g(x|μ(s)

k , C
(s)
k + C

(s)
μ,k), (19)

where C
(s)
μ,k is a diagonal matrix with the variances of the means σ2

μ(s, k, d) where
s is the speaker index, d is the dimension, and k is the component of the GMM.
Using (19) in (5), the log-likelihood can be determined as :

LL(s) =
N∑

t=1

log
M∑

k=1

w
(s)
k g(xt|μ(s)

k , C
(s)
k + C

(s)
μ,k).

=
N∑

t=1

log
M∑

k=1

w
(s)
k

D∏

d=1

(2π)
−D
2

(σ2 (s)
k,d + λs,k,d)

1
2

exp
(

−
(xt,d − μ

(s)
k,d)

2

2(σ2 (s)
k,d + λs,k,d)

)
,
(20)

where we rename the variances of the means λs,k,d = σ2
μ(s, k, d). The model-

ing of the parameter uncertainties can be addressed in different ways. In the
followings, we describe the methods and optimization procedures to optimize
λs,k,d in function of the speaker (s), the dimension (d) and the component of the
GMM (k).

Description of the algorithm for optimization. We perform a full grid
search for the optimal set of variances over speaker (s), dimension (d) and mix-
ture component (k) using (20). Note that the optimization over speaker (λs),
dimension (λd) and mixture component (λk) is performed independently, one at
a time.

To optimize the model as a function of the speaker, we simplify (20) by re-
stricting the variances σ2

μ(s, k, d) to be equal for all the dimensions and for all
the mixtures, but varying between speakers s, such that σ2

μ(s, k, d) = λs. Intro-
ducing λs instead of λs,k,d in (20) and applying the afore-mentioned restrictions,
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we run the optimization algorithm to find the optimal λs. The algorithm is ini-
tialized with λs = 0 for all the speakers and then sequentially searches for the
optimal λs for each of the speakers, until convergence of the log-likelihood is
achieved.

The algorithm is applied in a similar way for the optimization in function
of the dimension (d) and component of the GMM (k), where again we simplify
(20), by restricting the variances σ2

μ(s, k, d) to vary only over the axis we want
to optimize ( d or k).

5 Results

In this section, we present the results obtained from the optimization of λ. As
discussed, the parameter we play with is the extra variance λ as a function of
speaker, mixture number or dimension.We separately discuss the three cases,
with λ a function of the speaker (λs), the mixture (λk) and the dimension (λd).

5.1 Experimental Setup

For the realization of the experiments, we used the YOHO database. In all tests,
32 speakers were used, whereof 16 were males and 16 females. The database
was divided into three parts; one part was used for optimization of the GMMs
by the EM algorithm, a second part was used for optimization of the λ values,
and a third part was used for evaluation of the performance. Since the YOHO
database contains a total of 138 speakers, we were able to create four independent
32-person databases, so that the robustness of the method could be evaluated.

For each speech file in the database, we removed silence at the beginning
and end, and apply a 25 ms Hamming window with an overlap of 10 ms. Then,
20th-dimensional mel-frequency cepstrum coefficients (MFCC) was created.

In all of the tests, we use one database for optimization of the GMM’s with
the EM algorithm, another for optimization of λs,k,d, and a third for evaluating
the results.

5.2 Experiments with Speaker-Dependent λ

Here we optimize λs, with a different value of λ for each speaker. A high value
of λs for a particular speaker s indicates that the speaker has a high variability
and uncertain estimates, and vice versa. When the optimal λs values were found,
these values were used with an independent database to test their performance.

Table 1. Results for optimal λs for each speaker

No of Mixtures Pe Baseline Pe with optimal λs

4 0.1836 0.1835
8 0.0898 0.0781
16 0.0625 0.0531
32 0.0461 0.0367
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Table 1 shows the results of the optimization of λs for the 32 speakers in the
database. The second column illustrates the probability of error considering a 20
dimensional baseline GMM with 4-32 mixtures, and the third column shows the
probability of error using the optimal λs for the same database. We see that the
performance improvement is not so impressing, but that in the case of 32-order
GMM, the relative improvement is 20%-25%.

5.3 Experiments with Dimension-Dependent λ

Here we present the results from the optimization of λd, with a different λ
for each dimension of the 20-dimensional MFCC vectors. The interpretation
of a high λd for a particular dimension d (a particular position in the MFCC
vectors) is that the dimension under study suffers from a high uncertainty and
should be given lower weight in the log-likelihood. Figure 2 shows an example
of the estimated λd, illustrating the optimal λd for each dimension of the 20-
dimensional MFCC vectors, using a 16-mixture GMM. The results are a bit
noisy, but we can observe that for higher dimensions, the λd values are pretty
high, indicating that those dimensions are more suspectable to have uncertain
estimates in the EM algorithm.
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Fig. 2. Values of optimal λd for different dimensions used for testing

Due to the noisy behavior of Figure 2, we have also reduced the number
of parameters to estimate by approximating the λd curves with a parametric
sigmoid function, determined as

λd(d) =
A1

1 + exp(−A2(d + A3))
, (21)

d ∈ {1 . . .D}
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Fig. 3. Smoothing of the λd for different dimensions for a 16-mixture GMM

where we optimize the magnitude A1, the slope A2, and the offset A3. The
optimization process is based on a full search algorithm on a dense grid. The
sigmoid function gives a smooth approximation to the λd values, and Figure 3
shows the optimal smoothing sigmoid. Table 2 shows the probabilities of error
with different GMM order, obtained by optimization of the λd. The second

Table 2. Dimension optimization

No of Mixtures Pe Baseline Pe with optimal λd Pe with smoothing of λd

4 0.1836 0.1391 0.1328
8 0.0898 0.0633 0.0547
16 0.0625 0.0352 0.0225
32 0.0461 0.0227 0.0195

column illustrate the probability of error with a 20 dimension baseline GMM,
the third column presents the probability of error obtained from the Bayesian
estimation approach applying the optimal λd to each dimension of the GMMs
and the forth column shows the probability of error using a smoothing sigmoid
curve for the optimal λd. The results are convincing, with the results for the
smooth sigmoid being the best.

5.4 Testing the Robustness of the Method of Optimization of λd

In order to test the robustness of the method, we have used the λd values of
Figure 3 with independent databases, with different sets of speakers. The results
are shown in Table 3. We see that the probability of error in different databases
varies considerably, but that the Bayesian approach is always substantially bet-
ter. Since the λd curve was derived using one database, and the results in Table 3
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Table 3. Results of the smoothing curve of λd for databases of 16 GMMs

Database Pe Baseline Pe with smoothing of λd

DB2 0.0688 0.0500
DB3 0.1492 0.1094
DB4 0.1734 0.0930

were obtained with three independent databases, we have illustrated the robust-
ness of the proposed method.

5.5 Experiments with Mixture-Dependent λ

Here, we present the results of the optimization of λk, for different mixture
component of the GMMs. Before applying the method, we ordered the mixtures
according to the determinant of the corresponding covariance matrix, placing the
component with the lowest determinant first. The interpretation of a high λk for
a particular mixture component means that this component suffers from a high
uncertainty and should be given lower weight in the log-likelihood. Following
the same approach used for the optimization in function of the dimension, we
observe that the λk suffers from noise. Thus, we try to find a smoothing function
that can approximate the pattern of the estimated λk. The smoothing function
used is the sum of two sigmoid functions, determined as:

λk(k)=B1
1

1 + exp(−B2(k + B3))
+ R1

1
1 − exp(−R2(k + R3))

(22)

k ∈ {1 . . .M}

where we optimize the amplitudes B1, R1, the slopes B2, R2 and the offset B3,
R3 of each of the sigmoid functions, respectively. The optimization is based on
a full search algorithm on a dense grid.

Figures 4 and 5 show the optimal λk and the smoothing curves for a 16
and 32-mixture GMM. We only apply the smoothing curves to these number
of mixture due to fewer mixtures GMM provide patterns difficult to approxi-
mate. Table 4 shows the results of the Bayesian approach, the second column
illustrates the baseline system, the third column presents the results of using the
optimal λk and the fourth column shows the results of approximating λk with the

Table 4. Comparison of different number of GMMs for optimal λks for each component
of the GMM, weighting each distribution by the determinant

No of Mixtures Pe Baseline Pe with optimal λk Pe with smoothing of λk

4 0.1836 0.1859
8 0.0898 0.0758
16 0.0625 0.0570 0.0531
32 0.0461 0.0398 0.0391
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Fig. 5. Comparison of optimal λk for a 32
GMMs and the smoothing curve

smoothing curve. These results shows a maximum improvement of 17% which
is good since we are using the same optimal λk for all the dimensions of the
mixture component.

5.6 Testing the Robustness of the Method for Optimization of λk

In order to test the robustness of the method, we have used the λk values of
Figure 4 with independent databases, with different sets of speakers. Table 5
shows the results of the application of smoothing λk to databases of 16 GMMs.
We can see that even with this simple implementation of the Bayesian estimation
approach, we were able to gain some improvement in the performance.

5.7 Results of the Application of the Bayesian Approach to
Different Databases Sizes

As it was shown in Section 3, there is a problem of mismatches between training
and testing databases which is reduced as the size of the training set increases.
By applying the Bayesian approach, we can make the effect of the mismatch
smaller. Figure 6 shows the results of the application of the Bayesian approach
to the dimensions for varying training set size and different number of mixtures.
We observe that the Bayesian approach leads to an improved performance for
all training set sizes.

Table 5. Results showing the Robustness of the method

Database Pe Baseline Pe with smoothing of λk

DB2 0.0688 0.0672
DB3 0.1492 0.1422
DB4 0.1734 0.1547
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6 Conclusion

In this work, we illustrate that current state-of-the-art speaker recognition suf-
fers from a mismatch between training and verification data, mainly due to small
training sets. We propose a Bayesian approach to reduce the effect of such mis-
matches, and show that by applying the new method to the parameters of a
GMM, we can improve the performance significantly.

As an example of the use of Bayes-optimized GMM for speaker recognition,
we focus on estimating accuracy of different speaker models, different dimensions
and on different components of GMMs . It is clearly shown that some components
are of less importance than other, and by exploiting these differences, large
performance gains can be reached.
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Abstract. Perceptual cues for speaker individualities embedded in spec-
tral envelopes of vowels and fundamental frequency (F0) contours of
words were investigated through psychoacoustic experiments. First, the
frequency bands having speaker individualities are estimated using stim-
uli created by systematically varying the spectral shape in specific fre-
quency bands. The results suggest that speaker individualities of vowel
spectral envelopes mainly exist in higher frequency regions including and
above the peak around 20–23 ERB rate (1,740–2,489 Hz). Second, three
experiments are performed to clarify the relationship physical charac-
teristics of F0 contours extracted using Fujisaki and Hirose’s F0 model
and the perception of speaker identity. The results indicate that some
specific parameters related to the dynamics of F0 contours have many
speaker individuality features. The results also show that although there
are speaker individuality features in the time-averaged F0, they help to
improve speaker identification less than the dynamics of the F0 contours.

Keywords: spectral envelopes, fundamental frequency contours,
perceptual speaker identification, psychoacoustic experiments.

1 Introduction

How humans perceive speaker individualities in speech waves and how humans
identify phonemes overcoming speaker-to-speaker differences in the physical
characteristics in speech waves are the most fundamental issues in speech science.
Despite earnest studies in this area over the years, such human abilities have not
yet been clarified. It is probable that the identification of perceptual cues for
speaker identification and the clarification of the relationship between the cues
and perceptual distance are required to elucidate the mechanism of the human
abilities. In this study, we thus attempt to explore possible perceptual cues in
spectral envelopes and fundamental frequency (F0) contours, assuming that the
physical characteristics used by humans to identify speakers are significant ones
that represent the speaker individuality.

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 157–176, 2007.
c© Springer-Verlag Berlin Heidelberg 2007
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Speaker characteristics consist of two major elements: static and dynamic
physical variations in speech waves. The former is based on physical variations
of speech organs and the latter reflects behavioral variations, and the two appear
both in speech spectra and F0 contours. Since Takahashi and Yamamoto [1], in
their study of Japanese vowels, reported that higher spectral regions contain
speaker characteristics, perceptual contributions of speech spectra for speaker
identification have been studied by many researchers. Furui and Akagi [2], for
example, showed that speaker individualities are mainly in the frequency band
from 2.5 to 3.5 kHz, within the range of telephony. Zhu and Kasuya [3] studied
the perceptual contribution of static and dynamic features of vocal tract char-
acteristics for speaker identification, and demonstrated that the static feature is
significant. In the present study, we aim to investigate the relationship between
specific frequency regions of speech spectra and speaker identification, focusing
on static features of speech spectral envelopes.

It is well known that time-averaged F0 affects auditory speaker identification
and is often used for automatic speaker identification or verification; previous
studies, however, have addressed only the static characteristics of F0, but not
the dynamic properties. The dynamic features of F0 could be significant for
speaker perception in continuous speech, and we thus also investigate potential
perceptual cues in dynamic physical characteristics of F0 contours in the present
study.

We describe two separate sets of psychoacoustic experiments concerning static
characteristics of speech spectral envelopes and static and dynamic features of
F0 contours. In Experiments 1, 2, and 3, we attempted to identify the spe-
cific frequency regions in which speaker individualities exist. Spectral envelopes
of stimuli for several frequency regions were varied using the log magnitude
approximation (LMA) analysis-synthesis system [4]. The effectiveness of the
specific frequency regions for automatic speaker recognition is also discussed.
Experiments 4, 5, and 6 were performed to clarify the relationship between
static and dynamic physical characteristics of F0 and speaker perception. In the
three experiments, we employed the analysis method proposed by Fujisaki and
Hirose [5] (Fujisaki F0 model) to extract and control the physical characteristics
of F0, and the LMA analysis-synthesis system was used to synthesize stimuli.

2 Speaker Individualities in Speech Spectral Envelopes

2.1 Analysis of Spectral Envelopes

To identify the frequency bands containing speaker individualities in the spec-
tral envelope, we calculated the variance for the spectral envelopes of the five
Japanese vowels, /a/, /e/, /i/, /o/, and /W/, for ten male speakers from the ATR
speech database [6]. The sampling frequency of the data is 20 kHz. The spectral
envelopes were smoothed with 60th-order fast Fourier transform (FFT) cepstra
and the frequency axis was converted to the equivalent rectangular bandwidth
(ERB) rate [7].
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Let Eijk(n) be the kth-frame log-power spectrum of the jth vowel uttered by
the ith speaker at ERB rate n, where n = 1 · · ·N , k = 1 · · ·K, j = 1 · · ·J , and
i = 1 · · · I. The variance of Eijk(n) with respect to i is given by

σ2
j (n) =

1
I − 1

I∑

i=1

{
1
K

K∑

k=1

Eijk(n) − 1
IK

I∑

i=1

K∑

k=1

Eijk(n)

}2

, (1)

and the frequency bands having large quantities of σ2
j (n) are regarded to reflect

the speaker individualities. The variance of Eijk(n) with respect to j is given by

σ2
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1
J − 1
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⎧
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⎭

2

. (2)

The frequency bands having large quantities of σ2
i (n) are regarded to reflect the

vowel characteristics.
The variances σ2

j (n) and σ2
i (n) shown in Fig. 1 indicate that potential

speaker individualities are mainly above the 22 ERB rate (2,212 Hz) and that
vowel characteristics mainly exist from the 12 ERB rate (603 Hz) to the 22
ERB rate. Similar results were reported by Li and Hughes [8] and Mokhtari and
Clermont [9].
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Fig. 1. Variance of spectral envelopes: the upper panel shows interspeaker variance
σ2

j (n) and the lower panel shows intervowel variance σ2
i (n)
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2.2 Experiment 1

On the basis of the analysis results described above, we assumed that the fre-
quency band above the 22 ERB rate contains the speaker individualities and the
band from 12 to 22 ERB rate contains the vowel characteristics. Experiment 1
was designed to test this assumption from a psychoacoustic viewpoint [10].

Stimuli. Five male native Japanese speakers recorded the five Japanese vowels
at a sampling rate of 20 kHz with 16-bit resolution. When uttering the vowels,
the speakers were forced to tune the pitch of their voices to the same height as
that of a 120 Hz pure tone in order to avoid the influence of F0 on the speaker
identification tests.

The four types of stimuli used in Experiment 1 were LMA analyzed-synthesized
speech waves with fixed power. The F0 contour of the stimuli was fixed, as shown
in Fig. 2, and frame sequence was randomized to synthesize stimuli in which only
the static feature of the spectral envelope depends on the speakers. The spectral
envelopes of three of the stimuli were varied in the frequency domain. Two
varying methods were used: in Method 1 the spectral envelopes were reversed
symmetrically with respect to their autoregressive line, and in Method 2 the
spectral envelopes were replaced by their autoregressive line. Figure 3 shows
the spectral envelopes varied above 22 ERB rate by these two methods. The
following types of stimuli were used:

1a LMA analyzed-synthesized speech waves without varying their spectral
envelopes,

1b speech waves varied by Method 1 from 12 to 22 ERB rate,
1c speech waves varied by Method 1 above 22 ERB rate, and
1d speech waves varied by Method 2 above 22 ERB rate.

The LMA filter with 60th-order FFT cepstra was used to synthesize the stimuli,
and the duration of each stimulus was approximately 500 ms.

Subjects. The eight listeners (seven males and one female) serving as subjects
in the experiment were very familiar with the recorded speakers’ voice charac-
teristics. None had any known hearing impairment.

Procedure. The stimuli were presented through binaural earphones at a
comfortable loudness level in a soundproof room. Each stimulus was presented
to the subjects randomly three times. The task was to identify vowels and speak-
ers, and when the subjects could not identify speakers or vowels they responded
with “X.”

Results. The speaker identification rates and the vowel identification rates
averaged across the subjects for Experiment 1 are shown in Fig. 4. They suggest
the following conclusions (F (1, 14) = 4.60, p < 0.05).
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Fig. 2. F0 contour for stimuli used in Experiments 1 and 2
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Fig. 3. Spectral envelopes varied by Methods 1 and 2 above 22 ERB rate. The top panel
shows the original envelope, the middle one shows the envelope reversed symmetrically
with respect to its autoregressive line (Method 1), and the bottom one shows the
envelope replaced by its autoregressive line (Method 2).

1. The distortion of the spectral envelopes above the 22 ERB rate does not
affect vowel identification but does affect speaker identification (F (1, 14) =
4.51 between stimuli 1a and 1c for the vowel identification rate, F (1, 14) =
88.90 between 1a and 1c for the speaker identification rate).

2. The distortion of the spectral envelopes from the 12 to 22 ERB rate affects
vowel identification (F (1, 14) = 342.85 between 1a and 1b for the vowel
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Fig. 4. Speaker (dark bars) and vowel (light bars) identification rates for Experiment 1

identification rate). This distortion has less of an affect on speaker identifi-
cation rates than does the distortion of the spectral envelopes above the 22
ERB rate (F (1, 14) = 11.84 between 1b and 1c for the speaker identification
rate).

3. Method 1 affects speaker identification rates more than does Method 2
(F (1, 14) = 14.32 between 1c and 1d for the speaker identification rate).

The first two conclusions indicate that the speaker individualities can be con-
trolled independently of vowel characteristics by manipulating the frequency
band of the spectral envelopes above the 22 ERB rate. The third conclusion im-
plies that the relationship between the peaks and dips in the spectral envelopes
is important in identifying speakers.

2.3 Experiment 2

The results presented in the previous section suggested that speaker individu-
alities in spectral envelopes mainly appear in the high frequency region for the
sustained vowels. Experiment 2 was carried out to clarify whether the frequency
region is also significant in speaker identification for vowels extracted from a
sentence [11].

Stimuli. Speech data were the three Japanese vowels /a/, /i/, and /o/ extracted
from the Japanese sentence “shiroi kumo ga aoi yane no ue ni ukande iru” (the
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white clouds are above the blue roof) uttered by four male native Japanese
speakers. The sampling frequency of the data was 20 kHz. The speakers were
not instructed as to the prosody of the sentence. F0 of the speech data ranged
from 95.7 Hz to 193.2 Hz.

The stimuli were LMA analyzed-synthesized speech waves with fixed
power. The LMA filter with 60th-order FFT cepstra averaged for the voiced
period of the speech data was used to synthesize the stimuli, and the duration
of each stimulus was approximately 500 ms. The F0 contour shown in Fig. 2,
after shifting its average to that of each speaker, was used to synthesize the
stimuli.

The spectral envelopes of the stimuli were manipulated to study whether the
higher frequency region including and above the peak at around the 20–23 ERB
rate (1,740–2,489 Hz) illustrated in Fig. 5 is significant for speaker identification.
Hereafter, this higher frequency region is referred to as the higher frequency
region in italics, and the lower frequency region excluding and below the peak
is referred to as the lower frequency region. Since the spectral peak is significant
for voice perception, the higher frequency region is defined to include the peak at
around the 20–23 ERB rate. The frequency regions are different for the different
vowels and speakers. Three types of stimuli were used in Experiment 2.

ORG. LMA speech waves synthesized from the original spectral envelope for
the whole frequency region.

LOW. LMA speech waves synthesized from the spectral envelope where the
higher frequency region was replaced by the average over the speakers, for
each vowel. (The original spectral envelope remains for the lower frequency
region.)

HIGH. LMA speech waves synthesized from the spectral envelope where the
lower frequency region was replaced by the average over the speakers, for
each vowel. (The original spectral envelope remains for the higher frequency
region.)

It should be noted that the manipulation described above did not affect vowel
identification.

Subjects. The eight listeners (seven males and one female) serving as potential
subjects in the experiment were very familiar with the recorded speakers’ voice
characteristics, but they were different from the subjects in Experiment 1. None
had any known hearing impairment.

Procedure. The stimuli were filtered through a low-pass filter with a cut-off
frequency of 8 kHz to eliminate high-frequency noise, and were presented through
binaural earphones at a comfortable loudness level in a soundproof room. Each
stimulus was presented randomly five times. The task was to identify the
speaker of each stimulus. The subjects were allowed to listen to each stimulus
repeatedly.
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Results. Figure 6 shows the speaker identification results of the psychoacoustic
experiment. Two of the subjects whose speaker identification rates for stimulus
ORG were less than 40% were excluded from the results. The F test for the
speaker identification rate (F (1, 34) = 4.13, p < 0.05) indicates that speaker in-
dividualities mainly exist in the higher frequency region of the spectral envelopes
for steady periods of the vowels in the sentences, because there is no significant
difference between ORG and HIGH (F (1, 34) = 0.51) whereas there are signifi-
cant differences between ORG and LOW (F (1, 34) = 52.13) and between HIGH
and LOW (F (1, 34) = 38.00).

2.4 Experiment 3

Experiment 2 revealed that the higher frequency region is crucial for percep-
tual speaker identification. In Experiment 3, we attempt to evaluate the rela-
tive effectiveness of the frequency region for automatic speaker identification or
verification. We adopted the simple similarity method [13] to measure the simi-
larity of the shape between two spectral envelopes of specific frequency regions,
and demonstrated how the frequency regions contribute to automatic speaker
recognition [12].

Speech Data. Five male native Japanese speakers recorded the five Japanese
vowels at a sampling rate of 20 kHz with 16-bit resolution. The speakers were
instructed to tune the pitch of their voices to the same height as that of a
125 Hz pure tone to avoid the influence of F0 on the evaluation. A steady period
of 200 ms duration was extracted from each recorded speech waveform. Five
tokens for each vowel were used in the experiment.
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Parameter. Spectral envelopes were obtained from 60th-order FFT cepstra
averaged over the voiced period of the speech data. The frame length was 25.6 ms
and the frame period was 6.4 ms. The 0th-order cepstrum was set to 0 prior to
calculating the spectral envelopes to avoid the influence of power.

Simple Similarity Method. The simple similarity method [13] is adopted to
evaluate the similarity between two spectral envelopes. The simple similarity
value Ss between a reference pattern r and input pattern t is defined as

Ss =
(r, t)2

||r||2||t||2 , (3)

where (r, t) is the inner product of r and t, and ||r|| is the norm of r (=
√

(r, r)).

Averaged Distance. The averaged distance (AD) [14] was adopted to evaluate
the performance of speaker classification. When the simple similarity is used as
the distance criterion, AD is defined as

AD =

∑Nsp

i

∑Nsp

j �=i

∑Nset

k {Ss(ri, tik) − Ss(ri, tjk)}
Nsp(Nsp − 1)Nset

, (4)

where Nsp is the number of speakers (=5), Nset is the number of input patterns
(=5), ri is the reference pattern of speaker i (= 1, · · · , Nsp), and tik is the
kth input pattern of speaker i. A larger AD value means that the classification
method gives higher performance, and the speaker-specific shape of the spectral
envelope thus would appear in the region of frequencies that give the higher AD
value.
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AD values of the following three frequency regions were calculated: 0–33 ERB
rate (0–8,000 Hz), 0–20 ERB rate (0–1,740 Hz), and 20–33 ERB rate (1,740–
8,000 Hz). The last frequency region is significant for perceptual speaker identi-
fication, as shown by the results of Experiment 2.

Results. AD values for the three frequency regions are listed in Table 1. They
show that the performance of speaker classification using the frequency region
from the 20 to 33 ERB rate is the best. The results indicate that the spectral en-
velope in that frequency region has essentially a speaker-specific shape, thus mak-
ing it suitable for speaker classification based on the simple similarity method.

Table 1. Averaged distance value for three frequency regions

frequency region vowel
(ERB rate) /a/ /e/ /i/ /o/ /W/

0 − 33 0.077 0.103 0.110 0.046 0.068

0 − 20 0.033 0.045 0.035 0.017 0.031

20 − 33 0.510 0.351 0.639 0.514 0.579

2.5 Discussions

The results of the psychoacoustic experiments suggested that speaker individ-
ualities embedded in static characteristics of spectral envelopes mainly exist in
the higher frequency region, a result that is consistent with previous psychoa-
coustic studies [1][2]. The results of Experiment 3 demonstrated that the higher
frequency region contributes not only to perceptual speaker identification but
also to automatic speaker recognition. The effectiveness of selecting or over-
weighting a higher frequency region for speaker recognition was demonstrated
by Hayakawa and Itakura [15], Lin et al. [16], and Sivakumaran et al. [17].

Most recently, Kitamura et al. [18] reported, on the basis of MRI observations,
that the shape of the hypopharyngeal cavities is relatively stable regardless of the
vowel whereas it displays a large degree of interspeaker variation, and that the
interspeaker variation of the hypopharynx affects the spectra in the frequency
range beyond approximately 2.5 kHz. They concluded that hypopharyngeal res-
onance (i.e., the resonance of the laryngeal cavity and the antiresonance of the
piriform fossa) constitutes a causal factor of speaker characteristics. It is fair
to say that their results provide a biological basis for the experimental results
described above.

3 Speaker Individuality in Fundamental Frequency
Contours [19]

3.1 Analysis of F0 Contours

To discuss the relationship between F0 contours and the speaker individuality
embedded in them, we adopt the Fujisaki F0 model [5] to represent F0 contours
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in this study. In this model, F0 contours consist of two elements, phrase and
accent, which can be controlled independently.

Representation of F0 Contours. The Fujisaki F0 model represents the F0
contour F0(t) as follows [5]:

ln F0(t) = lnFb +
I∑

i=1

ApiGp(t − T0i)

+
J∑

j=1

Aaj {Ga(t − T1j) − Ga(t − T2j)} + ApeGp(t − T3) (5)

⎧
⎨

⎩

Gp(t) = α2t exp(−αt)

Ga(t) = min[1 − (1 + βt) exp(−βt), 0.9],

t ≥ 0

where Fb is the baseline value of an F0 contour, Api is the magnitude of the ith
phrase command, Aaj is the amplitude of the jth accent command, I is the
number of phrase commands, J is the number of accent commands, T0i is the
timing of the ith phrase command, T1j and T2j are the onset and offset of the jth
accent command, and α and β are natural angular frequencies of the phrase
and accent control mechanisms, respectively. Parameters α and β characterize
dynamic properties of the laryngeal mechanisms for phrase and accent control,
and therefore may not vary widely between utterances and speakers [20]. They
were thus fixed at α = 3.0 and β = 20.0. The negative phrase command at the
end of the utterance was used as T3. A schematic figure of the model is shown
in Fig. 7.

Speech Data. The speech data used for all the experiments were three-mora
words with accented second mora: “aōi” (blue), “nagāi” (long), and “niōu”
(smell). Each word was uttered ten times by three male speakers: KI, KO,
and YO. When recording the speech data, the speakers were instructed to
utter the words with the standard Japanese accent and without emotion. Al-
though the speakers are from different areas of Japan, in this study, difference
in the speaker’s home districts was regarded as one of the causes of speaker
individuality.

The speech data were sampled at 20 kHz with 16-bit accuracy, and analyzed
using 16th-order LPC in a 30 ms Hanning window for every 5 ms period. The
autocorrelation of the LPC residual signal was used to estimate the F0 con-
tours. Equation (5) was then fitted to the contours by the analysis-by-synthesis
method.

Analysis Results. To identify physical characteristics that represent speaker
individuality in the analyzed parameters, we calculated the F ratio (inters-
peaker variation divided by averaged intraspeaker variation) for each parameter
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of the F0 model. A large F ratio indicates a parameter of which the inters-
peaker variation is large and the intraspeaker variation is small, and suggests
that the parameter may be significant for speaker identification. Figure 8 shows
the F ratio for each parameter of the word “aoi” as an example. In the figure,
ΔTi indicates the difference between the command timing and corresponding
mora boundary. The aspects of the F ratio of the other two words are almost
the same.

These results indicate that the F ratio of three parameters, Fb, Ap, and Aa,
are much larger than those of the other parameters, which suggests that the
three parameters are significant for perceptual speaker identification. Parameter
Fb is related to the time-averaged F0 and parameters Ap and Aa are related to
the dynamic range of the F0 contour. The significance of the time-averaged F0
for speaker perception is well known and it is usually used in automatic speaker
identification and verification systems. The dynamics of F0 contours, however,
have not been studied in detail.

3.2 Experiment 4

Experiment 4 clarifies whether speaker individuality still exists in the F0 con-
tours when spectral envelopes and amplitude contours are averaged for the three
speakers, and when F0 contours are modeled by the Fujisaki F0 model.

Stimuli. The stimuli were original speech waves re-synthesized by the LMA
analysis-synthesis system [4]. Four types of stimuli were used for Experiment 4:

4a original speech waves,
4b LMA speech waves without modification of their FFT cepstral data,
4c LMA speech waves with spectral and amplitude envelopes averaged for the

three speakers, which we call spectral-averaged LMAs, and
4d spectral-averaged LMA speech waves whose F0 contours were modeled by

Eq. (5), which we call F0-modeled LMAs.

Since the time lengths of words uttered by the three speakers were different, a
dynamic programming (DP) technique was adopted to shorten or lengthen each
word nonlinearly.

The local distance for the DP in this experiment was an linear predictive
coding (LPC)-spectrum distance,

d(x, y) =

√√√√2
P∑

i=1

(cx
i − cy

i )2, (6)

where cx
i and cy

i are ith LPC-cepstra of speakers x and y and P is the LPC
order. The LPC-cepstra were analyzed using 16th-order LPC in 30-ms Hanning
window for every 5 ms period.
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The cepstral and amplitude sequences of each word were time-warped and
their duration was normalized by the DP-path of each word. The duration-
normalized FFT-cepstral and amplitude sequences were averaged arithmetically
in each frame and inversely relengthened or reshortened using each DP-path.
The calculated FFT-cepstral sequence was the spectral-averaged FFT-cepstral
sequence with the same length as the original. The spectral-averaged LMA (4c)
was, thus, resynthesized with the spectral-averaged FFT-cepstral sequence, the
averaged amplitude sequence, and the extracted F0 contour. In contrast, the F0-
model LMA (4d) was re-synthesized with the spectral-averaged FFT-cepstral
sequence, the averaged amplitude sequence, and the F0 contour modeled by
Eq. (5).

The stimuli were presented through binaural earphones at a comfortable loud-
ness level in a soundproof room. Each stimulus was presented to each subject
six times.

Subjects. The ten male listeners serving as subjects were very familiar with
the speakers’ voices. No listeners had any known hearing impairment. They also
served in Experiments 5 and 6.

Procedures. The task was to identify the speaker of the stimulus. The subjects
were allowed to listen to the stimulus repeatedly. Speaker identification rates
for the stimuli were averaged for all subjects. This procedure was also used in
Experiments 5 and 6.

Results and Discussion. The speaker identification rates are shown in Fig. 9.
The results lead to the following conclusions (F (1, 18) = 4.41, p < 0.05).

1. Speaker individuality remains in the LMA analysis-synthesis speech. The
difference between the speaker identification rates of 99.1% for the original
speech waves (4a) and 97.4% for the LMA speech waves without modification
(4b) is not significant (F (1, 18) = 2.82).

2. The speaker identification rate for the spectral-averaged LMA speech waves
(4c) is still large enough to distinguish speakers (92.0%), although the dif-
ference between the speaker identification rates for stimuli 4b and 4c is sig-
nificant (F (1, 18) = 7.35). This indicates that there is speaker individuality
in the F0 contours, even though both spectral and amplitude envelopes are
averaged, and that speaker individuality also exists in the spectral and am-
plitude envelopes.

3. Speaker individuality still remains in the F0 contours calculated using Eq. 5,
because the speaker identification rate for the F0-modeled LMA speech waves
4d is 88.2% and F (1, 18) = 1.67 between stimuli 4c and 4d. This result
suggests that the Fujisaki F0 model can be used as a basis for controlling
speaker individuality.
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Fig. 9. Speaker identification rates of Experiment 4

3.3 Experiment 5

The aim of Experiment 5 is to clarify whether the three parameters Fb, Ap, and
Aa of the Fujisaki F0 model, which were found to have large F ratio values,
are effective in identifying speakers, and whether the perceived speaker identity
would change upon exchanging parameter values across speakers.

Stimuli. The following types of stimuli were used in Experiment 5:

5a F0-modeled LMA speech waves (same as stimulus 4d), and
5b modified F0-modeled LMA speech waves.

Stimulus 5b was resynthesized with the spectral-averaged FFT-cepstral sequence
and the modified F0 contour, of which parameters Fb, Ap, and Aa were exchanged
with those of another speaker. The duration of the modified F0-modeled LMA
speech waves was the same as that of the original speaker’s. We call the speaker
who contributes parameters Fb, Ap, and Aa for stimulus 5b the “target” speaker
and the speaker who contributes parameters ΔT0, ΔT1, ΔT2, and ΔT3 for the
stimulus the “origin” speaker. Figure 10 is a schematic diagram of the exchange
of parameters.

Parameters were exchanged between speakers KI and KO, and YO’s speech
was used as dummy data. First, the stimuli for 5a were presented two times to
the subjects for training and then the stimuli for 5b were presented randomly
six times.
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Fig. 10. Schematic diagram of parameter exchange for the word “aoi”

Results and Discussion. The speaker identification rates for Experiment 5
are shown in Fig. 11. The results can be summarized as follows.

1. The speaker identification rate of the target speaker for modified F0-modeled
LMA speech waves (5b-2) is 88.9% and F (1, 18) = 0.05 between stimuli 5a
and 5b-2 in Fig. 11. Note that the speaker identification rate of stimulus 5a
is 88.2%.

2. The speaker identification rate of the origin speaker for modified F0-modeled
LMA speech waves (5b-1) is 3.4%, and that of the other speaker (5b-3) is
7.8%. These values are much smaller than the rate identified for the target
speaker.

These results indicate that the parameters Fb, Ap, and Aa, which describe time-
averaged F0 and the dynamic range of an F0 contour, are significant in con-
trolling speaker individuality. The results also suggest that the timings of the
commands are not particularly significant in identifying speakers when the per-
ceived speech is a word.

3.4 Experiment 6

The aim of Experiment 6 is to clarify whether speaker individuality can be
manipulated by shifting the time-averaged F0. Time-averaged F0 values are
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often used for automatic speaker identification or verification. This experiment
evaluates whether the parameter is also efficient for speaker individuality control.

Stimuli. The following types of stimuli were used in Experiment 6:

6a spectral-averaged LMA speech waves (same as stimulus 4c) and
6b F0-shifted LMA speech waves.

The F0-shifted LMA speech waves were resynthesized with the spectral-averaged
FFT-cepstral sequence and the F0 contour whose time average was shifted to
equal that of another speaker. Since the time-averaged F0 can be modified by
shifting F0 contours, the Fujisaki F0 model is not adopted in this experiment.
We call the speaker who contributes all parameters except the time-averaged
F0 for stimulus 6b the “origin” speaker and the speaker who contributes the
time-averaged F0 for the stimulus the “target” speaker.

F0 contours were shifted between speakers KI and KO, and YO’s speech was
used as dummy data. First the stimuli for 6a were presented two times to the sub-
jects for training and then the stimuli for 6b were presented randomly six times.

Results and Discussion. The speaker identification rates are shown in Fig. 12.
The results indicate that the following.

1. The identification rate of the origin speaker for the stimulus is 50.8% (6b-1
in Fig. 12) and that of the target speaker for stimulus 6b is 37.2 % (6b-2 in
Fig. 12). F (1, 18) = 24.63 between stimulus 6a and 6b-1, and 67.50 between
stimuli 6a and 6b-2.
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2. The results indicate no significant difference between the identification rates
of the target and origin speakers for the F0-shifted LMA speech waves, be-
cause F (1, 18) = 2.59 between stimuli 6b-1 and 6b-2.

These results suggest that shifting the time-averaged F0 of one speaker to that
of another speaker causes perceptual confusion during speaker identification.
Although the time-averaged F0 still contains speaker individuality, these values
are not as significant as the dynamics of the F0 contours, which are described
by the set of parameters Fb, Ap, and Aa. It is not clear which of Fb, Ap, and
Aa is the most significant for speaker identification; however, it is clear that a
change in any one of them can cause misperception and all of them are needed
to identify speakers.

4 Conclusion

We proposed some physical characteristics related to speaker individuality
embedded in the spectral envelopes of vowels and F0 contours of words and
investigated the significance of the parameters through speech analyses and psy-
choacoustic experiments. FFT spectral envelopes of specific frequency regions
were directly manipulated, the Fujisaki F0 model was used to extract and ma-
nipulate the physical characteristics of F0, and the stimuli were synthesized by
the LMA analysis-synthesis system.

Experiments 1 and 2 showed that, under the present experimental conditions,
speaker individuality in the spectral envelopes mainly exists including and above
the peak at around the 20–23 ERB rate (1,740–2,489 Hz), which is referred to
as the higher frequency region in this study. The frequency region includes the
third and higher formants for the vowels /a/, /o/, and /W/, while it includes
the second and higher formants for the vowels /i/ and /e/. The results are sup-
ported from a biological viewpoint by the results obtained by Kitamura et al.
[18], who showed that the shape of the hypopharyngeal part of the vocal tract
affects spectra in the frequency region beyond approximately 2.5 kHz. The ex-
perimental results imply that speaker individualities can be controlled without
influencing vowel identification by manipulating this frequency region. Exper-
iment 3 revealed that the spectral envelope in the higher frequency region is
more effective for automatic speaker identification or verification than that in
the lower frequency region or the whole frequency region.

The results of Experiments 4 and 5 demonstrate that speaker individuality
exists in both the F0 contours and spectral envelopes and that the parameters Fb,
Ap, and Aa, which are related to the dynamics of F0 contours, are significant
in identifying speakers. The results suggest that speaker individuality can be
controlled when the three parameters are manipulated. Experiment 6 showed
that shifting the time-averaged F0 of one speaker to that of another results in a
low speaker identification rate. Although the time-averaged F0 is often used as
a distinctive feature for automatic speaker identification and verification, these
values are not as significant as the dynamics of the F0 contours controlled by
the parameters Fb, Ap, and Aa.
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In Experiments 4, 5, and 6, the speech data were three-mora words with
accented second mora, and the speakers came from different dialectal districts.
In future work, we will investigate speaker individuality for different accent or
mora words, for sentences, and among speakers of the same dialect. Duration
of phonemes and pauses may also be significant in identifying speakers when
listening to sentences, and the relative significance of the three parameters, Fb,
Ap, and Aa, may change when using speech data of the same dialect.

Acknowledgments. This study was supported in part by Grants-in-Aid for
Scientific Research from the Ministry of Education (No. 07680388), from the
Japan Society for the Promotion of Science (No. 6157), and from the Ministry
of Internal Affairs and Communications through their Strategic Information and
Communications R&D Programme (No. 042107002).

References

1. Takahashi, M., Yamamoto, G.: On the physical characteristics of Japanese vowels.
Res. Electrotech. Lab. 326 (1931)

2. Furui, S., Akagi, M.: Perception of voice individuality and physical correlates.
Trans. Tech. Com. Psychol. Physiol. Acoust. H85-18 (1985)

3. Zhu, W., Kasuya, H.: Perceptual contributions of static and dynamic features of
vocal tract characteristics to talker individuality. IEICE Trans. Fundamentals E81-
A, 268–274 (1998)

4. Imai, S.: Log magnitude approximation (LMA) filter. IEICE Trans. Fundamentals
J63-A, 886–893 (1980)

5. Fujisaki, H., Hirose, K.: Analysis of voice fundamental frequency contours for
declarative sentences of Japanese. J. Acoust Soc. Jpn (E) 5, 233–242 (1984)

6. Takeda, K., Sagisaka, Y., Katagiri, S., Abe, M., Kuwabara, H.: Speech database
user’s manual. ATR Tech. Rep. TR-I-0028 (1988)

7. Glasberg, B.R., Moore, B.C.J.: Derivation of auditory filter shapes from notched-
noise data. Hear. Res. 47, 103–138 (1990)

8. Li, K.-P., Hughes, G.W.: Talker differences as they appear in correlation matrices
of continuous speech spectra. J. Acoust. Soc. Am. 55, 833–873 (1974)

9. Mokhtari, P., Clermont, F.: Contributions of selected spectral regions to vowel
classification accuracy. In: Proc. ICSLP’94, pp 1923–1926 (1994)

10. Kitamura, T., Akagi, M.: Speaker individualities in speech spectral envelopes. J.
Acoust. Soc. Jpn (E) 16, 283–289 (1995)

11. Kitamura, T., Akagi, M.: Speaker individualities of vowels in continuous speech.
Trans. Tech. Com. Psycho. Physio. Acoust. H-96-98 (1996)

12. Kitamura, T., Akagi, M.: Frequency bands suited to speaker identification by sim-
ple similarity method. In: Proc. Autumn Meet. Acoust. Soc. Jpn, pp. 237–238
(1996)

13. Iijima, T.: Theory of Pattern Recognition. Morikita, Tokyo (1989)
14. Kitamura, Y., Iwaki, M., Iijima, T.: Pluralizing method of similarity for speaker-

independent vowel recognition. IEICE Tech. Rep. Sp. 95, 47–54 (1996)
15. Hayakawa, S., Itakura, F.: Text-dependent speaker recognition using the informa-

tion in the higher frequency band. In: Proc. ICSLP’94, pp. 137–140 (1994)



176 T. Kitamura and M. Akagi

16. Lin, Q., Jan, E.-E., Che, C.-W., Yuk, D.-S., Flanagan, J.: Selective use of the speech
spectrum and a VQGMM method for speaker identification. Proc. ICSLP’96, pp
2415–2418 (1996)

17. Sivakumaran, P., Ariyaeeinia, A.M., Loomes, M.J.: Sub-band based text-dependent
speaker verification. Speech Commun. 41, 485–509 (2003)

18. Kitamura, T., Honda, K., Takemoto, H.: Individual variation of the hypopharyn-
geal cavities and its acoustic effects. Acoust. Sci. & Tech. 26, 16–26 (2005)

19. Akagi, M., Ienaga, T.: Speaker individuality in fundamental frequency contours
and its control. J. Acoust. Soc. Jpn (E) 18, 73–80 (1997)

20. Fujisaki, H., Ohno, S., Nakamura, K., Guirao, M., Gurlekian, J.: Analysis of accent
and intonation in Spanish based on a quantitative model. In: Proc. ICSLP’94, pp.
355–358 (1994)



Speaker Segmentation for Air Traffic Control

Michael Neffe1, Tuan Van Pham1, Horst Hering2, and Gernot Kubin1

1 Signal Processing and Speech Communication Laboratory
Graz University of Technology, Austria

2 Eurocontrol Experimental Centre, France
michael.neffe@TUGraz.at, v.t.pham@TUGraz.at,
horst.hering@eurocontrol.int, g.kubin@ieee.org

Abstract. In this contribution a novel system of speaker segmentation
has been designed for improving safety on voice communication in air
traffic control. In addition to the usage of the aircraft identification tag
to assign speaker turns on the shared communication channel to aircrafts,
speaker verification is investigated as an add-on attribute to improve se-
curity level effectively for the air traffic control. The verification task is
done by training universal background models and speaker dependent
models based on Gaussian mixture model approach. The feature extrac-
tion and normalization units are especially optimized to deal with small
bandwidth restrictions and very short speaker turns. To enhance the
robustness of the verification system, a cross verification unit is further
applied. The designed system is tested with SPEECHDAT-AT and WSJ0
database to demonstrate its superior performance.

Keywords: Speaker Segmentation/Verification, Air Traffic Control,
GMM-UBM, Voice Activity Detection, Quantile Filtering.

1 Introduction

The air ground voice communication between pilots and air traffic controllers
is hardly secured. This contribution proposes the introduction of an additional
security level based on biological speech parameters. The Air Traffic Control
(ATC) voice communication standards have been defined by international con-
ventions in the forties of the last century. These standards do not address security
issues in the air ground voice communication. Illegal phantom communication
of “jokers” playing the role of pilot or controller has repeatedly been reported.
Voice communications from attackers to achieve terrorist goals are possible. In
order to address the raised security demands the introduction of security mea-
sures for the air ground voice communication is required. The proposed levels
of security have to align with the existing technical communication standards.
Beside the technical standards for the physical transmission channel, behavioral
rules for the users of the so-called party-line channel are established. Party-line
communication means that the communication with all aircrafts in a controlled
sector handled by an unique controller takes place in a consecutive manner on a
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single shared voice channel. Therefore, pilots have to identify themselves in each
voice message with the attributed call sign for this flight. The ATC controller
uses the same call sign in any reply to identify the destination of the voice mes-
sage. Addressing messages by call signs requires permanent attentiveness of all
party-line users. Call sign confusion represents an important problem in terms
of ATC safety. A recent study showed that call sign confusion can be associated
with about 5% of the overall ATC related incidents [1].

In the legacy air ground voice communication system multiple safety and
security lacks can be identified. As a consequence, the Eurocontrol Experimen-
tal Centre (EEC) proposed the Aircraft Identification Tag (AIT) [2] in 2003,
which embeds a digital watermark (e.g., call sign) in the analog voice signal of
a speaker before it is transmitted over the Very High Frequency (VHF) com-
munication channel. AIT represents an add-on technology to the existing VHF
transceiver equipment, which remains unchanged. The watermarks are not au-
dible for humans. They represent a digital signature of the originator (pilots
or controller) hidden in the received voice message. AIT allows the automatic
identification of the origin of the voice communication within the first second
of speaking as the schematic illustration in Fig.1 shows. As stated previously,
spoken call signs are included in each voice message to identify originator and
destination of this voice message. Many different reasons like bad technical chan-
nel quality, misunderstanding, speaking errors and so on, may make the spoken
call sign unserviceable for the destination. This creates supplementary workload
and call-sign confusion may affect ATC safety. AIT will help to overcome this
safety issue as it can be used to “highlight” the speaking aircraft in real-time.
In this manner AIT also introduces some basic level of security for the commu-
nication layer.

Fig. 1. Illustration of the voice communication between pilots and controller in one
control sector. The AIT watermarking system allows the identification of the transmit-
ting source at a particular time.
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Our research goes beyond pure AIT watermarking and introduces a new secu-
rity level for the air ground communication channel by using behavioral biometric
voice data of the party-line speakers. The idea is that some behavioral biometric
characteristics can be extracted from the pilots’ voices and are automatically
enrolled when an aircraft registers the first time to a control sector. At any later
occurrence of the same AIT signature the new received speaker voice can be com-
pared with the existing enrolled speaker dependent models to verify whether the
speaker had changed as proposed in [3]. Recapitulating, the AIT reduces the
problem of distinguishing different speakers on the party-line channel known as
the speaker segmentation problem to a binary decision problem of claimant vs.
imposter speaker. Note that the use of a speaker segmentation system alone can
not satisfy the high security demands needed for ATC. On the one hand because
the AIT watermarking is able to determine the beginning of each speaker turn
exactly and assigns it to the corresponding aircraft. On the other hand for the
verification problem the system has to make a binary decision compared to a one
out of N decision for the segmentation task, where N is the number of pilots on
the party-line in a certain control sector. Moreover, in ATC only the information
of a speaker change in one aircraft is relevant. As one can imagine the error rate
for such system is higher compared to a verification system. The enrolled speaker
model should be handed over from control sector to control sector to enable a
more accurate modeling of speakers with flight progress. This proposed concept
secures the up and down link of the ATC voice communication. An illustration
of the proposed solutions is shown in Fig.2. Before transmitting a voice message
the push-to-talk (PTT) button has to be pressed, which introduces a click on
the transmission channel. This solution may be considered as a first level of basic
security. Using a click detector one may determine the start of each talk spurt.
On the party-line unfortunately no information of the transmitting source can
be gained with such a method. The AIT as shown in the second level in Fig.2
identifies beside the start of each sent voice message also the transmitting source
microphone. Base on this framework, the level of security can be improved by
embedding a speaker verification system which is depicted as the third level in
Fig.2. At the second and third level, the first numerical index determines the
aircraft number and the second the speaker. As an example AC22 is not equal
to AC21 which is the first speaker assigned to aircraft AC2 when AC2 enters the
control sector. Hence AC22 has to be verified as an imposter.

Air traffic communication can be thought of as a special case of the well-
studied meeting scenario [4,5]. Here, all participants of the meeting communicate
over the VHF channel using microphones, whereas the communication protocol
is strictly defined. As mentioned before, the communication is highly organized,
concurrent speaking is not allowed and no direct conversation between pilots of
different aircrafts is allowed, communication is intended only between pilots and
controller.

This contribution is organized as follows: Section 2 investigates the restric-
tions arising from the transceiver equipment and the channel itself and also
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Fig. 2. Coaction of AIT and SV on the party-line in air-ground voice communication.
TS is the abbreviation for an arbitrary talk spurt, GC for a talk spurt originating
from the ground (i.e., ground control) and AC for a talk spurt originating from a
certain aircraft. The first numeric index in level 2 and 3 indicates a specific aircraft
and the second index in level 3 the speaker identity. In the first level the nature of the
generic speaker segmentation problem is depicted. In level 2 AIT watermarking assigns
speaker turns to their source and in level 3 AIT and SV are shown to solve the speaker
segmentation task. The waveform at the top shows channel noise between talk spurts.

addresses speaker behaviors. In section 3 the system design is presented with
all its processing units. A detailed description of the experimental setup and
the databases is given in section 4 where also restrictions discussed in sec. 2
are considered. Experimental results and comparisons are discussed in section 5.
The contribution finally ends with some conclusions in section 6.

2 Radio Transceiver Characteristics and Inter-speaker
Behaviors

2.1 VHF Transceiver Equipment and Its Limitations

After introducing the ATC security problem the signal conditioning and its ef-
fects for speech quality will be analyzed. Speech quality in ATC is impaired
in two ways: Firstly, the speech signal is affected by additive background noise
(wind, engines) which is not completely excluded by using close talking micro-
phones. Secondly, there is a quality degradation by the radio transmission system
and channel which limits the signal in bandwidth and causes distortions. The
transmission of the speech signal uses the double sideband amplitude modula-
tion (DSB-AM) technique of a sinusoidal carrier. The system is known to have a
low quality. The signal is transmitted over a VHF channel with a 8.3 kHz chan-
nel spacing. This yields in an effective bandwidth of only 2200 Hz in the range
of 300 − 2500 Hz [6] for speech transmission. The carrier frequency is within
a range from 118 MHz to 137 MHz. Dominating effects which are degradat-
ing the transmitted signal are path loss, additive noise, multipath propagation
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caused by reflections, reflection itself, scattering, absorption and Doppler shifts.
A thorough description of the degradation of the signal caused by the fading
channel can be found in [7,8]. In literature the system proposed in [9] deals with
a bandwidth close to but not as narrow as this system has to deal with related
to SV.

2.2 Inter-speaker Behaviors

Considering the speaking habits during pilot and controller communication,
Hering et al. [2] has shown that one speaker turn is only five seconds on av-
erage in length. Training of speaker verification algorithms with speech material
of such a short duration is a really challenging task. For comparison Kinnunen
[10] used 30 seconds in mean for testing and 119 seconds for training or Chen [11]
uses 40 seconds for training.

3 System Design

Considering all these demands, the front-end processing has a main impact on
speaker verification performance. First a Voice Activity Detector (VAD) is used
to separate speech from silence portions. Based on this segmentation the fea-
ture extraction unit performs the transformation from the speech signal in the
time domain to a set of feature vectors to yield a more compact, less redun-
dant representation of the speech signal. After the feature extraction, speaker
classification is performed. For this application we are only interested in text-
independent methods. Main concepts of speaker verification methods in litera-
ture are, firstly Support Vector Machine (SVM) where a suitable kernel function
has to be found for each speaker. Commonly polynomial and radial basis function
are used as kernels. In [12] a slightly worse performance is reported compared to
Gaussian Mixture Models (GMM) for clean audio recordings. Secondly, Vector
Codebooks [13] have been considered. In this method a vector codebook has
to be built using clustering methods to enroll speakers. In the testing phase a
distance metric is used to make a decision. They reported a performance slightly
lower than GMM but with a lower complexity. Lastly we considered Gaussian
Mixture Models. The GMM method had been chosen because firstly the method
is well established and understood, secondly is low in complexity and lastly
it still delivers state-of-the-art performance. After gender recognition speaker
dependent models are derived from a gender dependent Universal Background
Model (UBM) which is trained off-line and is assumed to model the whole model
space of all existing speakers. For retraining only the speaker dependent model
is used. Finally verification of an utterance is done in the verification unit which
is shown in the block diagram in Figure 3.

3.1 Pre-processing

Voice Activity Detection: To segregate speech from non-speech, first the
short-term log-energy E is extracted from each frame with a length of 16 ms and
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Fig. 3. Processing units of the speaker verification system. Features are extracted only
of speech-frames detected by the VAD. After feature normalization gender recognition
is performed and only the recognized gender model is further used. Depending on the
state of the experiment a new speaker model is derived, a speaker model is retrained
or recognition and scoring is done.

8 ms frame shift. Based on the quantile method introduced by Stahl et al. [14]
a rough estimate for speech frames is obtained. There a hard threshold is de-
termined experimentally by taking a quantile factor from the range [0 .. 0.6] as
produced by Pham et al. in [15]. Because quantile filtering is based on mini-
mum statistics the determined hard threshold adapts over time, leads to high
VAD performance [16]. In addition this introduces low complexity because only
one parameter, the log-energy, extracted directly from signal domain is needed.
By employing a quantile factor of q = 0.4, which was selected experimentally
to achieve high accuracy of VAD in [16], we expect also high performance for
speaker verification. To smooth VAD outputs resulting from fluctuations of non-
stationary noise, a duration rule has been applied. In order to adapt with our
air traffic speech data, the 15ms/200ms rule as reported in [17] has been modi-
fied as 100ms/200ms rule to bridge short voice activity regions, preserving only
candidates with a minimal duration of 100 ms, and being not more apart than
200 ms from each other. This excludes talk-spurts shorter than 100 ms and re-
labels pauses smaller than 200 ms. We propose in the following a new detection
method to distinguish between speech signals and consistently high-level noise
which results from the transmission channel itself during non-active communi-
cation periods.

Long-Term High-Level Noise Detection: To account for long term high-level noise
as encountered in air traffic voice communication a new rule is introduced. The
1st discrete derivative of the log-energy values ΔE of all frames which are stored
in a buffer of 800 ms are calculated. If the difference between the maximum
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and minimum values of ΔE in a buffer is below a predefined threshold k as
Equation 1 shows, the part is considered as high-level noise and is relabeled as
non-speech frame.

max
i∈Z

(ΔEi) − min
i∈Z

(ΔEi) < k (1)

The frame index i runs from one to buffer length. Informal experiments showed
good performance of long-term noise detection for a threshold of k = 0.002 on
air traffic recordings provided by EEC [18]. The buffer update rate has been set
to 80 ms. In Figure 4 the effect of this method is shown on a true air traffic
voice communication recording. The buffer window containing the values of ΔE
is slided over the whole signal. As one can easily recognize by visual inspection,
the region between second 4.25 and second 7.8 contains only channel-noise. ΔE
of these frames depicted as dashed line in Fig. 4 is almost consistent and the
difference between max ΔE and min ΔE is smaller than the predefined threshold
in this specified region. This whole section is going to be relabeled as non-speech
after applying this rule.
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Fig. 4. Example of the effect of the Long-term high-level noise detection method on
real AT voice communication recordings. The time domain speech signal is depicted
as reference, the solid line shows the detected speech of the VAD inside the recording
and finally the dashed one the 1st discrete derivative of the log-energy ΔE. The VAD
outputs are shown (a) before and (b) after applying the consistent noise detector which
eliminates the labeled speech frames of long-term noise duration.

Feature Extraction Unit. Before extracting features as first step mean sub-
traction and amplitude normalization of the input speech signal is performed.
For each speech segment detected by the VAD features are extracted separately.
This is necessary to avoid artificial discontinuities when concatenating speech
frames. 14 cepstral coefficients are extracted using a linear frequency, triangular
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shaped filterbank with 23 channels between 300 Hz and 2500 Hz for each frame.
Finally the whole feature set comprises these cepstral coefficients calculated in
dB and the polynomial approximation of its first and second derivatives [19]. Al-
together 42 features per frame are used. Performance results using this feature
setup but for different frame lengths and frame rates are listed in section 5.

Feature Normalization: In order to reduce the impact of environmental/channel
dependent distortions, feature normalization has been carried out. Histogram
Equalization (HEQ) [20,21] is known to normalize not only the first and the
second moment but also higher-order ones. Experimental results showed that
HEQ outperforms the commonly used mean and variance normalization tech-
nique [19]. The HEQ method maps an input cumulative histogram distribution
onto a Gaussian target distribution. The cumulative histogram distribution is
calculated by sorting the input feature distribution into 50 bins. This number
has been selected that small to get sufficient statistical reliability in each bin.

3.2 Gaussian Mixture Models

For classification a text-independent statistical method, the GMM-UBM, is used.
This method was first introduced by Reynolds et al. [13]. Speaker dependent
models are derived from the UBM by maximum a posteriori (MAP) adapta-
tion [22]. Our application uses gender dependent UBMs and not merged ones.
For training the UBM, the basic model has been initialized randomly and then
trained in a consecutive manner by the speech data. To form a speaker dependent
model first the log-likelihood of each gender dependent model given the input
data is calculated. The gender is determined by selecting the gender-model with
the higher score. The corresponding gender dependent UBM is used to adapt a
speaker dependent model. For speaker adaptation three EM-steps and a weight-
ing factor of 0.6 for the adapted model and correspondingly 0.4 for the UBM
is used to merge these models to the final speaker dependent model. The re-
training of an existing speaker dependent model with new speaker data is done
in the same manner but with a different weighting. The weighting is directly
proportional to the ratio of the total speech length used so far for training and
the new utterance length, the model is going to be retrained to. The retraining
of the UBM with new data is done in the same way.

Score-Normalization: The score S(X) is calculated using the log-likelihood
of the speaker dependent model θSPK and the UBM θUBM given the test data
X as:

S(X) = log P (X |θSPK) − log P (X |θUBM ) (2)

For score normalization two methods [23] have been tested. Firstly, the Zero
Norm (ZNORM) and secondly the test-normalization (TNORM) was used. For
this the mean and variance of the score distribution of ten imposter models
have been taken to normalize the score. Both methods have been tested but no
increase in performance can be reported.
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3.3 Cross Verification

Alternatively to meet the high security expectations in ATC voice communi-
cation a cross verification unit is applied as add-on. If an utterance is shorter
than a predefined minimum length (i.e., 8 seconds) and the score is not confi-
dent enough (positive or negative) the system waits for another utterance and
conducts a cross verification. To explain the meaning of cross verification let X1

and X2 be the feature vectors of the first and second utterance to be investi-
gated, respectively. Furthermore θ1 and θ2 are the adapted speaker models. If
the following equation is satisfied

Sθ2(X1)& Sθ1(X2) > t (3)

i.e., both scores S are above a threshold t and are verified to be from the same
gender as defined in 3.2, than it is assumed that both utterances are from the
same person and thus are concatenated.

This method shows to increase the robustness of the verification system. Two
wrong behaviors may occur in the cross verification unit. Firstly, if two utter-
ances from one speaker are not determined to be uttered from the same speaker,
the two utterances are not concatenated and hence are not used together for ver-
ification. Furthermore the overall performance stays the same. Secondly, if two
utterances from different speakers occupy the same model space e.g., have almost
the same “statistical properties” they are verified to be uttered by one speaker
and are hence concatenated. But this leaves the score almost the same. Using
this method the performance increases because by concatenating two utterances
more data for verification are available. This procedure works well in the region
of the score distribution where the probabilities of intruders and claimants are al-
most the same i.e., the confidence is low. Figure 5 shows the region of insufficient
confidence in the score distribution histogram. Intruders and true speakers are
illustrated separately. The region of low confidence for our experiment as shown
in this figure in the white box with dashed borders has been set to −1.8 ± 0.2.

4 Experimental Setup and Data

For development purposes the telephone database from SPEECHDAT-AT [24]
was used. It is emphasized that for development, training and testing separate
parts of this database are used. Further testings have been carried out on the
WSJ0 database [25] where different speakers utter the same text. In order to
simulate the conditions of ATC all files were band-pass filtered to a bandwidth
from 300 Hz to 2500 Hz and down-sampled to a sampling frequency of 6 kHz. For
the experiment a total of 200 speakers comprising 100 females and 100 males
were randomly chosen from the entire database. A representative distribution
of dialect regions and age was maintained. Background models were trained
gender dependent using two minutes of speech material for each of 50 female
and 50 male speakers. For training the UBM the speech material of five speakers
had been concatenated. This model then was used for training the next five
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Fig. 5. Histogram and fitted Gauss curves for the score distributions of imposters (left)
and true speakers (right). The rectangle with dashed borders illustrates the score region
of low confidence.

speakers to yield the UBM in the end. Since also the influence of the number
of Gaussian components on the performance is of interest it will be analyzed
in more detail in sec. 5. Out of the remaining 100 speakers 20 were marked as
reference speakers. Afterwards their speech material was used to train speaker
dependent models. Both, for the remaining 99 speakers, known as imposters as
well as for the reference speaker, six utterances were used for verification. So each
reference speaker was compared to 600 utterances, yielding a total of 12000 test
utterances for 20 reference speaker models all together. To match ATC conditions
the database was cut artificially in segments of 5 seconds. The experiment was
performed twice. Firstly only one segment of 5 seconds was used for training and
secondly, which is assumed to be the general case, three segments in a row.

For the tests conducted on the WSJ0 database again the files were pre-
processed as for the SPEECHDAT-AT database. The CD 11 2 1 of wsj0 database
comprising 23 female and 28 male speakers was used to train the gender depen-
dent UBMs. Since in this database each speaker produces the same utterance
100 seconds of speech were randomly selected from each speaker and used for
training. For testing CD 11 1 1 with 45 speakers divided into 26 female and
19 male ones was taken. Here again the speech files for the reference speaker
as well as for the claimants were selected randomly. Speech material used for
training the reference speaker was labeled and hence excluded from verification.
Because the speech files were randomly selected, the experiment was carried
out five times. Out of the 45 speakers 24 were labeled as reference speakers,
12 female and 12 male each. As for the SPEECHDAT-AT database the speech
files were cut artificially into talk spurts of 5 seconds. Training of the reference
speakers was performed by using three segments of speech each of 5 seconds in
length. Both, for the remaining 44 speakers, known as imposters as well as for
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the reference speaker, 12 utterances also five seconds in length were used for ver-
ification. So each reference speaker was compared to 540 utterances. Verification
had been done for 24 reference speakers which yields in a total number of 12960
test utterances.

Here the influences of mismatches between different microphone types have
not been considered, because in general it can be assumed that a pilot does not
change the headset during a flight.

5 Results and Discussion

The impacts of front-end processing and model complexity on speaker verifica-
tion performance are examined. Therefore various numbers of Gaussian mixture
components and different frame lengths and frame rates configurations shown
in Table 1 are studied. The performance has been measured in terms of equal
error rate (EER) and detection cost function (DCF) [26] which are depicted
as special points in the detection error trade-off (DET) curve [27]. The DET
curve is defined as the plot of the false acceptance (FA) rate vs. the false re-
jection (FR) rate. In Figure 6 DET curves for both the best system with and
without the cross verification unit are shown. As previously expected, the EER
for the cross-verification system is lower than for the basic system but with a
slight increase of the DCF value. To see the influence of the frame length and
frame rate on the one hand and the number of Gaussian components on the
other hand experiments on the SPEECHDAT-AT database had been conducted
several times using 3 segments of 5 seconds in length for training. Performance
results of the various setups measured as EER in [%] and as DCF values are
shown in Table 1. We used 16, 38, 64 and 128 Gaussian components (#GC)
for the experiments. For feature extraction five different configurations of frame
lengths/frame rates (FL/FR) in [ms], (10/5, 20/5, 20/10, 25/5, 25/10), have
been examined. Considering only the EER values for the FL/FR ratio of 0.5
e.g., 10/5 ms and 20/10 ms, the EER increases with increasing number of Gaus-
sian components used for modeling. For the remaining FL/FR configurations
one can easily recognize a minimum for 38 Gaussian components.

After studying these results one had taken the system with the lowest EER of
only 6.51 % as the best setup for this specific application. This system has been
finally used for training a speaker model with only one segment of 5 seconds.
Here an EER of 13.4 % has still been reached. The recognition rate for the gender
recognition is 96 %.

The same experiment for the SPEECHDAT-AT database has been conducted
for a background model with 1024 Gaussian mixture components.

The remaining parts have been left untouched. This has been done for com-
parison reasons since many systems being in place are using GMMs up to this
number of components [22]. For this system design and its restrictions an EER
of 33 % could be reached. A reason for this result could be the over modeling
for speaker dependent models and verification afterwards, using short speaker
turns.
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Fig. 6. DET curves with EER point (plus sign and circle) defined as the intersection of
the main-diagonal with the DET curve. Additional the DCF values (star and rectangle)
for the SPEECHDAT-AT database are depicted. The results are shown for both the
normal system and the system with cross-verification. FA is the abbreviation for the
false acceptance rate and FR for the false rejection rate. The results with subscript cr
are those of the cross-verification system and those without, of the basic system. For
training three segments of 5 seconds in length are used.

Table 1. Performance results as a function of the frame length/frame rate and the
number of Gaussian components (#GC) tested with SPEECHDAT-AT database. The
first value of each table entry is the EER in % and the second one corresponds to
the DCF value. For training 3 segments of 5 seconds in length are used.

#GC Frame Length/Frame Rate [ms]

10/5 20/5 20/10 25/5 25/10

16 8.2/0.042 7.4/0.039 6.75/0.042 7.26/0.033 10.14/0.0438
38 9.04/0.042 6.9/0.037 10.83/0.053 6.51/0.0376 8.8/0.0435
64 9.25/0.045 7.88/0.042 11.8/0.054 9.62/0.05 11.2/0.05
128 10.65/0.046 9.15/0.044 13.12/0.068 12.5/0.043 13.6/0.066

At the end the results for the WSJ0 database are presented. As mentioned in
sec. 4 the experiment has been done five times. The mean result of the EER and
the DCF values are given as follows: The mean EER is 10.8 % and the mean
DCF value is 0.0637 with a standard deviation of 0.5823 and 0.0104 respectively.
The degradation in performance from SPEECHDAT-AT to WSJ0 database is
due to inter-speaker score threshold shifts and not due to false/true speaker
discrimination problems. To solve this problem and improve the score for this
database in future different score and feature normalization techniques are going
to be investigated.
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6 Conclusion

A novel speaker segmentation system for voice communication in air traffic con-
trol is described for enhancing the security of air traffic voice communication.
As a first security level the aircraft identification tag based on watermarking
technique is used to assign a talk spurt on the shared communication channel
to its source. The air traffic communication safety is then enhanced by applying
a speaker verification system based on the optimized front-end processing units
for this task. Speaker dependent models are derived in cooperation with gen-
der information for selecting the gender dependent universal background model.
Results have been presented with investigation of various numbers of Gaussian
components used for modeling. Furthermore its inter-relationship with the frame
length and frame rate used to extract features are discussed. Based on a priori
knowledge of the score distribution a cross verification unit can further reduce
the equal error rate. The system has been evaluated on two databases with
promising results. As each pilot has to identify its voice message with the call
sign a planned extension of the system is the combination of our system with
a text-constrained system to get an even higher level of security. Furthermore,
the means of the frequency restriction as well as the optimization of VAD for
speaker recognition performance will be investigated.
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Abstract. When recognizing a voice we attend to particular features
of the person’s speech and voice. Through voice imitation it is possi-
ble to investigate which aspects of the human voice need to be altered
to successfully mislead the listener. This suggests that voice and speech
imitation can be exploited as a methodological tool to find out which
features a voice impersonator picks out in the target voice and which
features in the human voice are not changed, thereby making it possible
to identify the impersonator instead of the target voice. This article ex-
amines whether three impersonators, two professional and one amateur,
selected the same features and speaker characteristics when imitating
the same target speakers and whether they achieved similar degrees of
success. The acoustic-auditory results give an insight into how difficult
it is to focus on only one or two features when trying to identify one
speaker from his voice.

Keywords: Voice imitation, voice disguise, speaker identification, im-
personator, dialect.

1 Introduction

A listener may recognize a voice even without seeing the speaker. There are cues
in voice and speech behaviour, which are individual and thus make it possible to
recognize familiar voices. We attend to particular features of the person’s speech,
e.g. fundamental frequency, articulation, voice quality, prosody, dialect/sociolect,
studied among others, by Gibbons (2003) [1] and Hollien (2002) [2]. Probably a
combination of different features is involved in the recognition process. It is well-
known that the individual voice changes throughout lifetime, but also depending
on speaking situation, the speaker’s health and emotion. Still, in general it is
possible to recognize a well-known and a familiar voice. There are studies com-
paring the difference in performance between listeners who knew the speaker
and those who did not know the speaker. Hollien et al. (1982) [3] show that
there was a great difference between the two groups of listeners. Those who were
familiar with the speaker had a high degree of correct identifications (98 %) com-
pared to listeners who were not familiar with the speaker (32.9 %). Van Lancker
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(1985a, b) [4] [5] point out that there are different cognitive processes involved in
the recognition task, which might be an explanation for the results. For familiar
voices pattern recognition is used and for unfamiliar voices feature analysis is
involved. In order to mislead the listener, the speaker may disguise the voice
in different ways. In the science of forensic phonetics the task is to try to find
out how to recognize disguised voices, a speaker identification task. Any aspect
of the speech chain, any sound made by the human vocal tract, from produc-
tion through acoustics to perception and transcription is of interest in forensic
phonetics. It is important to understand which features in the human voice to
focus on for speaker identification. It is likely that more than one feature is of
importance. This article will focus on voice imitation as a kind of voice disguise,
and as a tool for detection of speaker characteristics. Imitation can be used both
for impersonation of a specific target speaker and the personal identity as well as
the imitation of markers of group identity, such as regional and social dialects.

2 Voice Disguise

When trying to hide one’s identity the speaker can disguise his/her voice in a
number of ways, e.g. changing the pitch, voice quality, prosodic pattern or lip
protrusion, clenched jaw or use objects over the mouth. According to Künzel
(2000) [6], it seems that falsetto, pertinent creaky voice, whispering, faking a
foreign accent, and pinching one’s nose are some of the perpetrators’ favourites.
He also reports that 15-25 % of the annual criminal cases involving speaker
identification, involve at least one type of voice disguise (statistics from German
Federal Police Office).

Different identification studies with disguised voices show that e.g. whispering
and hypernasal voice are effective disguise methods (Yarmey et al. 2001 [7],
Reich and Duke 1979 [8]). One might suggest that it is quite easy to recognize
a familiar voice even if disguised, but the identification rates drop both for
familiar and unfamiliar voices despite of disguise in studies by Hollien et al.
(1982) [3]. Imitating a dialect might also be used as a kind of voice disguise.
In a study of imitation of some Swedish dialects, Markham (1999) [9] found
that there was a wide variation in the ability to create natural-sounding accent
readings. Some speakers were able to both hide their own dialect and convince
the listeners that they were native speakers of another dialect, other speakers
were able to hide their own dialect, but less successful in creating a natural
sounding dialect, according to the listeners. He points out that it is important
to create an impression of naturalness in order to avoid suspicion.

To investigate the power of dialect in voice identification, a voice line-up
with a bidialectal male Swedish speaker was conducted (Sjöström et al. 2006)
[10]. Two recordings when reading a fairy tale were made by the speaker in
his two different dialects, Scanian and Stockholm dialects. These were used as
the familiarization voice in four different voice line-ups. Four more recordings of
the fairy tale were made with four mono-dialectal Swedish male speakers, two
with a Scanian dialect and two with a Stockholm dialect, used as foils in the
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line-ups. Different tests were made and the results are quite clear. Each line-
up contained the four mono-dialectal male voices and one of the target’s two
dialect voices. Two tests were created as control tests with the same dialect
used both as familiarization and target voice. Two other tests were created as
dialect shifting tests, where one dialect was used as a familiarization voice and
the other of his dialects was the target voice in the line-up. The control tests are
to investigate if the speaker can be recognized among the other voices and if they
are recognized to the same degree. Native Swedish speakers from different dialect
areas in Sweden participated in the different voice line-ups. A high identification
rate was found in both control tests, but the results in the dialect shifting tests
show that the target speaker is difficult to identify. Listeners often judged one of
the foils speaking with the same dialect as the one presented in the familiarization
passage instead of the bidialectal target speaker. Dialect seems to be a strong
attribute in an identification task and maybe with a higher priority than other
features of the voice.

3 Voice Imitation

Voice imitation can be viewed as a particular form of voice disguise. E.g. in
crime, voice imitation can be used to hide one’s identity and mislead the police
investigation. The purpose of the criminal is to disguise his/her voice, probably
not to imitate another specific person, but a group of speakers such as a dialect
or a specific pronunciation or intonation of an accent. According to Markham
(1997) [11] impersonation is defined as reproduction of another speaker’s voice
and speech behaviour. When imitating a certain target speaker the impersonator
has to select and copy many different features, laryngeal as well as supralaryn-
geal, to be successful. There are organic differences between speakers, which can
not be changed, and it is quite hard to produce very close copies of another
speaker’s voice and speech. Therefore, mimicry is often a stereotyping process
and not an exact copy of the target speaker (Laver 1994 [12]). Despite that, it is
shown that high quality voice imitation can mislead the listener (Schlichting and
Sullivan 1997 [13]). Imitation for entertainment is often more like a caricature
and the impersonator focus on the most prominent features of the target speaker,
to strengthen the impression. When listening to a voice imitation, the listeners
may have expectations about characteristic features of the target speaker’s voice
and speech, especially if the impersonator uses words and phrases related to the
target speaker. Two experiments with an imitation of a Swedish politician have
been done to show the impact of the semantic expectation upon a voice imitation.
One imitation with a political speech and one imitation with a cooking passage
of the same target speaker, were used in a voice line-up. The results support the
hypothesis that listeners’ semantic expectations would impact upon the listeners’
readiness to accept a voice imitation as the voice of the person being imitated
(Zetterholm et al. 2002 [14]). Different studies of professional impersonators and
their voice imitations show that it is possible to get close to another speaker’s
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voice and speech behaviour both in perceptual and acoustic analyses, which
indicate that the human voice is quite flexible (Zetterholm 2003 [15]).

The study of impersonation may give an insight into centrally important fea-
tures for speaker recognition and therefore be exploited as a methodological tool
to find out which features a voice impersonator picks out in the target voice and
which features in the human voice are not changed, which is of high importance
in a identification situation. The results are also of forensic interest when trying
to detect a disguised voice.

4 Overview of the Present Study

As already mention, the impersonator has to identify and copy the most charac-
teristic features of the target speaker’s voice and speech behaviour. If different
impersonators imitate the same target speakers – will they select the same fea-
tures? This might give us an insight into important features of specifically im-
personation, but also give us a general understanding of speaker characteristics
and speaker identification.

In order to better understand the perceptual impression and the acoustic
realization of voice imitation, this study examines whether three Swedish im-
personators, two professional and one amateur: select the same features when
imitating a set of target voices, and achieve similar degrees of closeness to the
target voices in terms of pitch, dialect, speech tempo, voice quality and the fea-
tures that are generally viewed as the characteristic features of each of the target
voices.

5 Material

Voice imitations made by three impersonators were used in this study.
Recordings of nine target voices, 22 imitations and the impersonators’ own voices
were analysed. The impersonators are all native speakers of Swedish, yet live in
different dialect areas in Sweden, two of them are professional imitators (Imp I
and Imp II) and one is an amateur (Imp III). The recordings of the imitators,
both the imitations and with their own voices, are made in their own recording
studios or in the recording studio at the Department of Linguistics and Pho-
netics, Lund University, Sweden. All target voices are well-known male Swedish
voices, politicians and TV personalities. These recordings are taken from public
appearances. All the texts are different, but all imitations are related to the
target speaker’s profession. Imp I imitates all the target voices, Imp II imitates
seven of the voices and Imp III imitates six of the nine target voices. All tar-
get speakers are all older than the three impersonators. It is easier to imitate a
speaker at the same age or older, according to an interview with Imp I (Zetter-
holm 2003:132 [15]).

Imp I has a mixed dialect that is a combination of the western part of Swe-
den and a more neutral Swedish dialect, Imp II has a dialect from the eastern
part of Sweden, and Imp III speaks with a neutral Swedish dialect influenced
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by the intonation pattern of the south Swedish dialect. As there is a clear dis-
tinction in the pronunciation of the phoneme /r/ between the Swedish dialects,
it is important to describe the impersonator’s usage of this phoneme. All three
impersonators use a voiced alveolar trill [r] for the phoneme /r/ and the retroflex
variants in the combination /r/ and alveolar consonants.

All target speakers have dialects from the western or eastern part of Sweden,
some of them influenced by the dialect of Stockholm, and three speakers have a
clear dialect from the Stockholm area.

6 Brief Description of Swedish Dialects

The intention is not to give a complete description of the different Swedish
dialects, only a brief presentation, especially of the dialects occurring among
the speakers in this study. There is a considerable variation between Swedish
regional dialects concerning both phonetics and phonology and some of the most
characteristic dialectal markers will be presented. The traditional division of
Swedish dialects are as follows: South, West, East, Central and North.

6.1 The Phoneme /r/

There are a number of different forms of the phoneme /r/ in Swedish. The two
main types are [r] and [ö]. In south Swedish dialects a uvular trill [ö] or a uvular
fricative [K] is used (Elert 1991 [16]). In central Swedish dialects an alveolar trill
[r], a retroflex fricative [Þ] or an alveolar approximant [ô] is used. In some parts
of central Sweden a retroflex /r/ is used in the combination with /r/ + alveolar
consonant, e.g. /rt/ [ú], /rd/ [ã], /rs/ [ù], /rn/ [ï] and /rl/ [í]. In south Swedish
dialects the pronunciation of the same combinations are a uvular /r/ and the
alveolar consonant (Elert 1991 [16], Markham 1999 [9]).

6.2 The Vowels

Various diphthongizations of long monophthongs are one characteristic dialectal
marker of the southern dialects, often with an initial onglide of the target vowel.
The short vowels are often monophthongs (Bruce 1970 [17], Elert 1991 [16]).
Some of the Swedish dialects have a “damped” i- and y-vowel, called Viby-i
and Viby-y. One characteristic of this “damped” vowel is a fricative feature and
apical articulation. The acoustic analysis shows that Viby-i has a considerably
lowered F2 compared to standard Swedish [i].

6.3 Tonal Word Accents

The two Swedish tonal word accents, accent I and accent II, are represented
by a high and a low turning point in all dialects, but the timing in relation to
the stressed syllable differs between the dialects. The tonal gesture for accent
I always precedes the tonal gesture for accent I independent of the dialect and
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there is a distinctive difference in timing for accent I and accent II. The tonal
gesture is earlier in the dialect of Stockholm compared to South Swedish (Bruce
1998 [18]).

7 Method

An auditory analysis of the recordings was conducted at the Department of
Linguistics and Phonetics at Lund University, Sweden. An informal listening
test was undertaken by 10 members of faculty and a detailed close auditory
analysis done by three of the experienced phoneticians from the department. All
the listeners were familiar with the nine target voices. The listeners were asked
to comment on the voice imitations and to describe which characteristic features
of the target voices the impersonators have selected in their imitations. There
was a discussion about the general impression of the imitations as well as specific
features.

A second auditory analysis was made by 10 speech therapy students from the
Department of Logopedics and Phoniatrics at Lund University. These students
carried out a critical and close analysis that focused on the voice quality of
the recordings of the target voices, the impersonators own voices as well as the
imitations.

The auditory analyses focus on the overall impression, the pitch, the dialect
and the voice quality.

To examine how the listeners’ impressions, as revealed in the auditory analysis,
are evidenced acoustically in the imitations, some specific factors were selected
for acoustic analysis. These were: (1) The mean fundamental frequency for the
target voices, the voice imitations as well as the impersonators’ natural voices was
measured in all recordings; the auditory analysis show that this is of fundamental
importance to acceptance of an imitation. (2) The formant frequencies of the
i-vowel were measured for one of the voices, and the imitations of him, to compare
the auditory impression of a damped i-vowel. (3) The frequency of the lower edge
of the noise energy plateau in the spectrum of /s/ was measured for two of the
voices and the imitations, justified by the auditory analysis. (4) The articulation
rate of the target speaker was compared to the imitations in order to find out
if that is a strong individual phonetic habit or easily changed when imitating
someone else.

8 Auditory Analysis

The general auditory impressions that the different groups of listeners gained
was that all three impersonators speak with a normal male pitch, that Imp I
has a sonorous but slightly leaky voice, that Imp II has a slightly strained and
hypernasal voice quality and that Imp III has a sonorous but slightly creaky voice
quality. The listeners further formed the impression that Imp III (the amateur)
speaks with a higher speech tempo than Imp I and II.
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The phoneticians’ general impression of all voice imitations was that the im-
personators selected the same primary characteristic features of the target voices.
This did not, however, necessarily result in the different voice imitations of the
same target speaker sounding similar. In spite of this, the phoneticians concluded
that all three of the impersonators succeeded in imitating the target voices with
global success.

The listener’s detailed descriptions of the imitations focused on phonetic fea-
tures; pitch level, intonation pattern, with particular reference to dialect, pronun-
ciation of dialectal markers, speech tempo, and individual characteristic features
of the target speakers.

8.1 Pitch Level

The auditory impression of the pitch level is that the impersonators are flexible
in their different imitations and actively attempt to achieve the target speaker’s
pitch. This is reflected in some of the listeners holding the opinion that the low
pitch in the imitation of HV, by Imp I, is too low and that the high pitch in
both imitations of MH is exaggerated. The listeners also commented that Imp
III (the amateur) maintained a pitch level that was too high in all his imitations.

8.2 Dialectal and Individual Features

The impersonators captured the different dialect intonation patterns well. They
also imitated dialect segmental markers successfully. For example, all three im-
personators managed to capture the different pronunciation of the r-segment for
each target voice. Exaggeration of dialect targets was noted by the listeners.
They commented that in the imitations of CB, the pronunciation of [ö], and in
the imitations of HV the pronunciation of [K] is exaggerated. The pronunciation
of the r-segment is a characteristic of these two speakers. In some of the other
voice imitations the impersonators have focused on the regional dialect and ex-
aggerated the characteristic pronunciation of the dialect further than individual
features of the target speaker. E.g. in the imitation of LO, Imp I has captured
the west Swedish dialect and the clearly downstepped intonation pattern of the
target speaker whereas the voice imitation made by Imp II of the same target
speaker, LO, is more like an imitation of the west Swedish dialect in general,
focusing on both intonation pattern and the pronunciation of the vowels.

At a more detailed segmental level, the listeners commented upon the pro-
nunciation of [E:] is more like an [e:] and this is obvious in the imitations of
especially CG, by all three impersonators, and the imitations of GP, by Imp I
and III. The listeners also noted that the damped i-vowel, that is found in some
Stockholm dialects and is a characteristic of IW, was found in the imitations
of him.

The listeners also noted audible differences between the pronunciations of the
phoneme /s/. In most of the voice imitations it is pronounced [s], but in the
imitations of HV and IK, it sounds more like [S]. This is also in accordance with
the target speaker’s pronunciation of /s/.
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8.3 Speech Tempo and Speech Style

It seems that all three impersonators are aware of each targets personal speech
tempo; they capture these with a varying degree of success. Imp III has a global
imitation problem in that he has a higher speech tempo in his imitations com-
pared to the target speakers. Interestingly, even though in some of his imitations
he starts with a slower tempo close to the target speaker, he speeds up after a
few seconds.

The auditory analysis also showed that the impersonators try to capture the
individual rhetorical speech of each target’s voice. In the imitation of CB, the
imitators manage to copy his rhetorical speech style and his use of focal words,
but perceptually they are less successful in imitating CB’s characteristic feature
of cutting the end of the last syllable. Perhaps, the listeners did not feel that this
affected the quality of the voice imitations. Comments from the listeners indicate
that Imp II and III, in particular, had captured the target speaker’s speech style;
a fast speech tempo with pauses and acceleration on focal words. Imp I, on the
other hand, was more successful with his imitation of the hesitation sound that
CB makes at the beginning of a phrase. All three impersonators were judged by
the listeners to achieve distinct articulation, phrasing and formal speaking style
of the target speaker CB.

In the imitations of HV they manage to capture the characteristic speech style
with an energetic distinct articulation, engaged speech and a speech rhythm like
staccato, which are individual markers and characteristics by this speaker. Fur-
ther, in the different voice imitations of both LO and MH, the characteristic high
speech tempo of the target speakers is achieved. The loudly extensive breath, a
speaking manner of GP, is achieved effectively in the imitations of him. More
generally the listeners noticed that the prolonging of words, and the many pauses
and hesitation sounds that form part of the GP imitations acted to strengthen
the acceptance of these voice imitations.

8.4 Voice Quality

The consensus of the listeners was that Imp I and II were successful in altering
their voice quality in the direction of the target speakers. This was not the case
for Imp III, where the listeners reported that even though he attempted to alter
his voice quality, his own voice quality was clearly audible in all his imitations.

One specific observation was that the creaky voice quality perceived in the
target speakers CB and HV, was achieved by both Imp I and II. Moreover they
were successful in making this quality more obvious at the end of utterances,
just like the target speakers. Creaky voice quality is also a feature of the target
speaker GB, yet here, only Imp I was successful in capturing this quality.

Another specific observation is related to nasal voice quality. In the dialect of
Stockholm, spoken by CG, IW and MH, a slightly nasal voice quality is a dialect
marker. Both Imp I and II manage to imitate the nasal voice quality in these
imitations.



200 E. Zetterholm

A tense-breathy voice quality is a kind of personal marker for speaker IK,
especially in a speaking style of a political speech. This is exaggerated in the
voice imitations of him.

9 Acoustic Analysis

9.1 Mean Fundamental Frequency, F0

With the exception of the target voice IK and IW, there is little variation in
the mean F0s of the target voices, see Table 1. When looking at the record-
ings with the impersonators own voices it is shown that Imp I has the lowest
mean F0 (113 Hz), Imp III the highest mean F0 (149 Hz), while Imp II has a
mean F0 of 127 Hz. Especially for Imp III his own mean F0 is reflected in the
imitations.

A comparison between the target speakers and the imitations show that
some of the voice imitations are quite close to the target voices. It is clear
that Imp I and II (the professionals) seem to have the same conception about
the variation in F0 between the target voices, while there is less variation in the
imitations made by Imp III. This corresponds with the findings in the auditory
analysis.

Table 1. Mean F0 (in Hz) and std.dev. of the target voices, the imitators’ natural
voices and the voice imitations

Target voices Imp I Imp II Imp III

Mean F0 Std.dev. Mean F0 Std.dev. Mean F0 Std.dev. Mean F0 Std.dev.

Natural 113 38 127 53 149 32

AS 128 41 133 40 142 35 145 45

CB 135 35 125 23 130 28 157 56

CG 121 21 122 17 103 11 136 26

GP 126 42 96 36 - - 139 48

HV 135 36 91 14 119 28 145 76

IK 207 33 198 23 255 37 - -

IW 107 27 99 16 97 15 - -

LO 149 28 142 39 133 25 - -

MH 147 31 202 40 - - 218 25

9.2 The “damped” i-Vowel

The auditory impression of a “damped” i-vowel in the recordings of IW and the
imitations of this voice is confirmed in the acoustic analysis (see Figure 1). A
considerably lowered F2 compared to standard Swedish /i/ (approximately 2200
Hz) is an acoustic correlate to a “damped” i-vowel. The formant frequencies of
F2 are lower than 2000 Hz in all occurrences by both Imp I and II. (NB. There
is no imitation of IW by Imp III in this imitation corpus).
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Fig. 1. Mean values (in Hz), of all occurrences, of the formant frequencies of the i-vowel
for the target voice IW and the voice imitations by Imp I and II

9.3 The Phoneme /s/

The frequency of the lower edge of the noise energy plateau in the spectrum
of the phoneme /s/ was measured for the target voices HV and IK and the
imitations of them. Unfortunately, there are no comparable occurrences of words
with the same surrounding segments in the recordings, but still a few words
for comparison. The acoustic analysis of the target speaker HV, and all the
imitations of his voice, confirms the auditory impression of a pronunciation more
like [S], with a lowered frequency in the spectrum. In the imitations of IK, Imp I
and II solely use [S], whereas IK himself produces /s/ both as [s] and [S]. There
is no clear pattern in the context with a preference for one of the phonemes.

9.4 Articulation Rate

The auditory impression is that all three impersonators are aware of the speech
tempo of the target speakers and that both Imp I and II manage to imitate
that. But concerning the imitations made by Imp III, the listeners comment
that he speaks too fast. To get an acoustic correlate to this impression the
articulation rate, excluding the silent pauses, were measured in all recordings.
Mean articulation rate for Swedish is about 5 syllables per second. In Figure 2
some of the measurements are shown, just to give an insight of the differences
between the imitations (there is no imitation of the target speaker LO by Imp III
in this corpus). The articulation rate in the recordings with the natural speech
with the three impersonators and four of the target voices and the imitations
of them are shown in the figure. The tendency is clear; the two professional
impersonators (Imp I and II) are more flexible and are closer to the target
voices in their imitations than the amateur (Imp III). Concerning the imitations
of the target speaker AS, both Imp I and II exaggerates his slow speaking style,
more like a caricature.

The auditory impression and the comments from the listeners that Imp III
has a high speech tempo in general is not confirmed in the measurements of the
articulation rate. One explanation for that might be that he often starts in a slow
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tempo, but speeds up after a few seconds. These measurements show the mean
rate during the imitation. When comparing all measurements of all imitations
it is clear that the variation in articulation rate is very small in his imitations,
all very close to 5 syllables per second. On the other hand, the two professional
impersonators seem to have more variation in their articulation rate.

Fig. 2. Articulation rate, syllables per second. The natural voices of the three imper-
sonators, the target voices AS, CG, HV and LO and the imitations of these voices.

10 Concluding Discussion

When listening to a familiar voice, listeners have expectations about the char-
acteristic features of the speaker’s voice and speech behaviour. For an imitation
on stage, global success and imitation of the most characteristic features may be
enough for the listeners to recognize the target voice. But in a critical listening
task, by trained phoneticians, there are often passages that reveal the imper-
sonator’s identity and voice. On stage, the impersonator can use gestures, body
language and other attributes to strengthen the impression of the imitation and
distract the listeners from weakness in the voice imitation. Moreover, voice imita-
tions primarily meant for entertainment may be exaggerated, to the extent that
they approach a caricature of the target speaker and his/her voice and speech be-
haviour. This situation permits the impersonator to focus on the most prominent
features of the target speaker and build on a situation in which listeners only no-
tice the expected features of the target voice. If a caricature of another speaker is
created in a criminal act it would probably be detected to someone who is famil-
iar to the target speaker. To give an impression of naturalness in the imitation
it is of importance to convince and deceive the audience (Markham 1999 [9]).

The imitation corpus used in this study show that three different imperson-
ators seems to have different strategies when imitating the same target speakers.
It is also shown that the professional impersonators (Imp I and II) are more flexi-
ble in their imitations compared to the amateur (Imp III), both concerning voice
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quality, mean fundamental frequency and articulation rate. Despite that, all lis-
teners agreed that it is clear who they are imitating and that all three imperson-
ators have selected prominent features of each speaker and that they focus on the
same characteristics of each target voice. This might indicate which voice fea-
tures are important for voice recognition and identification by human listeners.

The listeners in this study comment that the impersonators, in almost all im-
itations, have captured the pitch level, the dialect with different pronunciations
and prosody, the speech style, e.g. speech tempo, articulation and individual
phonetic habits, such as hesitations sounds, as well as other individual charac-
teristic features of the target speakers. The phoneme /r/ is an important dialec-
tal marker in Swedish and it is obvious that the impersonators focus on this
phoneme in some of the imitations. In stressed and focused words and phrases,
the impersonators often succeed in imitating vowels, but in unstressed passages
the critical listener can hear the impersonators’ own voices and their own di-
alects. Focusing on characteristic features and important passages in the text
may be a conscious way of working with and improving the voice imitation.

The anatomically dependent component in the voice quality, such as the size
of the vocal tract, is outside of our control, but there is also a component in
the speaker’s voice quality that is learned. Abercrombie (1967) [19] suggests
that most people are probably capable of changing their voice quality and one
question is how much of the voice quality is learnt. There is no doubt that a
special voice quality characterizes one speaker as well as the members of dif-
ferent groups of speakers. Both laryngeal and supralaryngeal features influence
the perception of a speaker’s voice quality and a classification is made by Laver
(1980) [20]. In spite of these terms we still lack a more complete typology for
description of the different voice qualities in normal speech. The categories of-
ten described with metaphorical adjectives in a perceptual description, have no
consistent acoustic-phonetic correlation. Even though the variation of different
voice qualities in normal voices is hard to describe, the listeners were able to tell
if the voice quality in the voice imitation is close to the target voice or not. Voice
quality is by definition a perceptual matter and according to Hammarberg and
Gauffin (1995) [21] perceptual evaluation of voices is subjective and impression-
istic, the perceptual aspects are important since they play a role in the listener’s
acceptance of a voice. It seems to be quite hard to change voice quality, both
laryngeal and supralaryngeal features, to make a copy of another speaker’s voice
quality and to keep the settings for a long period of time. There are passages
in this imitation corpus where the natural voice quality of the impersonators is
audible. This feature seems to be a strong factor for detecting and acceptance of
an imitation and recognition of a voice. When combining the results of the audi-
tory impression and the acoustic measurements, it is shown that it is possible to
get quite close to one specific target speaker and that might lead to the conclu-
sion that it is possible to change your own voice and speech in order to disguise
your voice. The results of this study also indicate that these three impersonators
selected the same features of the target speakers, although to different degrees
of success. These features included voice quality, mean F0, dialect with different
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pronunciation of phonemes and a speaker’s individual speech style. With regard
to degree of success, as defined by closeness to the target voices, it is clear that
the two professional impersonators are able to imitate the voices used in this
study with global success, whereas the amateur impersonator is not as success-
ful. In the professional impersonations there were, however, unstressed passages
that revealed Imp I and II. The overall impression of the voice imitations made
by Imp III is that the imitations are more exaggerated, as if only for entertain-
ment, and that his own voice, both mean F0, articulation rate and voice quality,
is reflected in his imitations. The result of the measurements of the articula-
tion rate is of interest when comparing the three impersonators. A professional
impersonator is aware of how to change his voice and speech behaviour, both
laryngeal and supralaryngeal settings, to get close to the target speaker. There
are more variation in the rate in the imitations by the two professional imper-
sonators (Imp I and II) compared to the amateur (Imp III). The question raised
before, if the articulation rate is an individual phonetic habit, is not answered,
but the results give us an insight into this area and more research is requested.
We can thus conclude that the impersonators achieved different degrees of suc-
cess in getting close to the target voices, both perceptually and acoustically,
with all being unsuccessful in one aspect or another. All three impersonators
were successful concerning the imitation of the features of the different Swedish
dialects.

Applying these findings to a forensic setting that is neither the one of per-
formance or of the critical listener raises a number of issues. It is clear that a
caricature would be detected, but will the detailed phonetic errors be noticed by
the untrained ear? Equally, it is not clear whether the person familiar with the
imitated voice would notice these detailed errors and if so whether they would
describe the voice as sounding odd or a similar sounding voice to an investigating
officer. Moreover, how well an individual has to know a person to detect these
detailed phonetic errors and what parameters interact with knowing a person’s
voice demands further investigation. All texts in this imitation corpus are within
the target speakers’ professional life and this would, based on results of Zetter-
holm et al. (2002) [14], increase the acceptance of a famous voice or by those
who are only familiar with the voice in the professional domain.

It is obvious that voice and speech imitation can be used as a method to
find out which features the impersonator changes with success and the acoustic
correlates of these features, and also to find out which features and characteristics
in the human voice are not changed and thus, identify the impersonator rather
than the target voice. This is a way of extracting information about individuals
from their speech which make it possible to detect speaker characteristics for
identification and classification.

Acknowledgements. This study is partly funded by a grant from the Bank of
Swedish Tercentenary Foundation Dnr K2002-1121:1-4 to Ume̊a University for
the project “Imitated voices: A research project with applications for security
and the law”. Thanks to Dr. Frantz Clermont for fruitful discussions and graphs,
and of course, thanks to the impersonators and the listeners.



Detection of Speaker Characteristics Using Voice Imitation 205

References

1. Gibbons, J.: Forensic Linguistics. Blackwell Publishing, Oxford (2003)
2. Hollien, H.: Forensic Voice Identification. Academic Press, San Diego (2002)
3. Hollien, H., Majewski, W., Doherty, E.: Perceptual identification of voices under

normal, stress and disguise speaking conditions. Journal of Phonetics 10, 139–148
(1982)

4. Van Lancker, D., Kreiman, J., Emmorey, K.: Familiar voice recognition: Patterns
and parameters. Part 1: recognition of backward voices. Journal of Phonetics 13,
19–38 (1985)

5. Van Lancker, D., Kreiman, J., Wickens, T.D.: Familiar voice recognition: Patterns
and parameters. Part 2: Recognition of rate-altered voices. Journal of Phonetics 13,
39–52 (1985)

6. Künzel, H.: Effects of voice disguise on speaking fundamental frequency. Forensic
Linguistics 7, 199–289 (2000)

7. Yarmey, D., Yarmey, L., Yarmey, M., Parliament, L.: Commonsense beliefs and the
identification of familiar voices. Applied Cognitive Psychology 15, 283–299 (2001)

8. Reich, A., Duke, J.: Effects of selected voice disguises upon speaker identification
by listening. Journal of the Acoustical Society of America 66, 1023–1028 (1979)

9. Markham, D.: Listeners and disguised voices: the imitation and perception of di-
alectal accent. Forensic Linguistics 6(2), 289–299 (1999)
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Abstract. This article overviews human language identification (LID) 
experiments, especially focusing on the modification methods of stimulus, 
mentioning the experimental designs and languages used. A variety of signals 
to represent prosody have been used as stimuli in perceptual experiments: 
lowpass-filtered speech, laryngograph output, triangular pulse trains or 
sinusoidal signals, LPC-resynthesized or residual signals, white-noise driven 
signals, resynthesized signals preserving or degrading broad phonotactics, 
syllabic rhythm, or intonation, and parameterized source component of speech 
signal. Although all of these experiments showed that “prosody” plays a role in 
LID, the stimuli differ from each other in the amount of information they carry. 
The article discusses the acoustic natures of these signals and some theoretical 
backgrounds, featuring the correspondence of the source, in terms of the source-
filter theory, to prosody, from a linguistic perspective. It also reviews LID 
experiments using unmodified speech, research into infants, dialectology and 
sociophonetic research, and research into foreign accent. 

Keywords: Language identification, Human language identification, Speech 
modification, Source-filter model, Prosody. 

1   Introduction 

Language Identification (LID) is a process for identifying a language used in speech.1 
Although there have been several reviews of automatic LID by computers ([3][4][5] 
etc.), there have been no extensive reviews of human, or perceptual, LID research as 
far as the author knows. As opposed to the well-documented automatic LID research, 
the research scene of human LID gives the impression that it is not well traffic-
controlled and the studies are often sporadic. The backgrounds and motivations of 
researchers are diverse. Thus, the research into the human capability of LID extends 
into several disciplines, and the communication seems lacking between disciplines, 
sometimes even within a discipline. 

The cues for identifying languages are classified into two types: segmental and 
prosodic. The former includes “acoustic phonetics,” “phonotactics,” and 
“vocabulary,” and the latter corresponds to “prosodics” of the terms in [3]. In the field 
of automatic LID by computers, much of the research so far has focused on utilizing 
                                                           
1 Part of this article is based on [1][2]. 
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segmental features contained in the speech signal, although some research also 
suggests the importance of incorporating prosodic information into the system ([6][7] 
etc.). In contrast to this engineering research scene, most of the research on perceptual 
LID by humans has focused on prosodic information. 

Humans’ capacity for LID has drawn the attention of engineers, linguists, and 
psychologists since 1960s. The typical method of research is to conduct perceptual 
experiments with stimulus signals that are supposed to contain prosodic information 
of certain languages but not contain segmental information. In other words, the 
signals are used as the representative of prosody. The modification methods of 
stimulus signals and the languages used in the experiments have been various and not 
consistent across researchers. The critical question here is whether the signals used 
really represent the prosody of language, or more specifically what represents prosody 
acoustically. 

This article aims at giving the reader an overview of the human LID research, 
discussing the modification methods of speech, the experimental designs, and the 
relations to the prosodic types of used languages. It also introduces examples from 
related areas of research. The latter part of the article discusses the acoustic correlates 
of prosody to advance suggestions for future research. 

2   Overview of Human LID Experiments 

2.1   LID with Modified Speech 

A variety of signals and languages have been used as stimuli in perceptual 
experiments (see Table A1). All studies listed there have used modified speech that 
was presumed to represent the prosody of speech, and all of them have concluded that 
prosody plays some role in LID. 

Of the stimuli to represent prosody used in previous experiments, the handiest is 
lowpass-filtered speech. Atkinson [8] used this signal for the discrimination test of 
English and Spanish, and showed that these two languages were discriminable and 
that error rates varied depending on speech styles. The lowpass-filtering technique is 
still being used (e.g., Mugitani et al. [9], for Eastern and Western Japanese, which 
have different characteristics of lexical accent). 

The most straightforward is a laryngograph signal, which is an indication of 
variations in glottal electrical resistance, closely related to the glottal waveform. It 
sounds like a dull buzzing noise, varying in pitch. Maidment [10][11] showed that 
English and French are discriminable with this signal. Moftah & Roach [12] 
compared the lowpass-filtered and laryngograph signals and concluded that there 
was no significant difference in language identification accuracy for Arabic and 
English. 

A synthesized signal was used by Ohala and Gilbert [13]. They made triangular 
pulse trains that had the same F0 and amplitude as the original speech signal; the 
amplitude was set to zero where F0 was unavailable, i.e., there was no voicing. The 
signal simulated the F0, amplitude, and voice timing of the original speech, and 
sounded like a buzz. They designed the experiments to investigate the relation of 
prosodic types of languages to explicitly defined acoustic features. They chose three 
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prosodically different languages to test: English (stress-accented, stress-timed), 
Japanese (pitch-accented, mora-timed), and Chinese (tonal). The results indicated that 
these languages were discriminated. It also showed that the listeners with prior 
training performed better than those with no training, that bilingual listeners 
performed better than trilinguals and monolinguals, and that longer samples were 
better discriminated than shorter ones. Barkat et al. [14] used sinusoidal signals 
instead of triangular pulses to test Western and Eastern Arabic, the former of which 
loses short vowels causing prosodic difference. These two dialects were discriminated 
by Arabic listeners, but not by non-Arabic listeners. 

Application of Linear Predictive Coding (LPC) is comparatively new in the history 
of research on human LID. LPC separates the speech signal into the source and filter, 
or spectral, components in terms of the source-filter model. The idea of using LPC 
can be traced back to Foil’s experiment [15], but it was simply a preparatory test for 
developing an automatic LID system. Foil resynthesized speech by LPC with its filter 
coefficients constant, resulting in the speech signal that had a constant spectrum all 
the time, and said that languages were easy to discriminate with this signal. The 
languages discriminated were not explicitly described. 

Navrátil [16] used an inverse LPC filter to remove spectral information of speech; 
the signal represented prosody of speech. He also made a random-spliced signal, 
where short segments roughly corresponding to syllables were manually cut out and 
concatenated in a random order; the resultant signal lost F0 and intensity contours of 
the original speech and represented syllable-level phonotactic-acoustic information 
plus duration. He compared the LID results with these signals for Chinese, English, 
French, German, and Japanese, and concluded that prosody contributes less to LID 
(see Table 1). 

Table 1. Correct identification rates for 6-s excerpts in Navrátil’s experiment [16] (Chance 
level: 20%). Random-spliced speech represnts syllable information, and inverse-LPC-filtered 
speech represents prosody. 

Stimulus German English French Japanese Chinese Overall 
Unmodified speech 98.7 % 100.0 % 98.7 % 81.7 % 88.7 % 96.0 % 
Random-spliced 79.7 %  98.7 % 79.1 % 54.6 % 57.7 % 73.9 % 
Inverse-LPC-filtered 32.1 %  34.3 % 69.4 % 45.3 % 65.9 % 49.4 % 

Komatsu et al. [17] used an inverse LPC filter, and further lowpass-filtered the 
signal with the cutoff of 1 kHz to ensure spectral removal. The resultant signal 
sounded like muffled speech. They suspected that partial phonotactic information 
remained in this signal, so they also created the consonant-suppressed signal for 
comparison, where the amplitude of consonant intervals of the former signal was set 
to zero to remove possible consonantal effects. In the former signal, the LID for 
English and Japanese was successful; but in the latter consonant-suppressed signal, it 
was unsuccessful. Besides, they created signals driven by band-limited white noise. 
These signals were the replication of what Shannon et al. [18] used for speech 
recognition experiments. The speech was divided into 1, 2, 3, or 4 frequency bands, 
the intensity contours of these bands were used to modulate noises of the same 
bandwidths, and they were summed up altogether. The resultant signals kept only 
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intensity when the number of bands was 1, and broad spectral information increased 
as the number of bands increased. The correct identification rate increased as the 
number of bands increased. Comparing the results with all these stimulus types (see 
Fig. 1), they concluded that LID was possible using signals with segmental 
information drastically reduced; it was not possible with F0 and intensity only, but 
possible if partial phonotactic information was also available. The results also 
suggested the variation due to prosodic difference of languages and listeners’ 
knowledge. 

Full  C-suppressed  1-     2-     3-     4-band
Inverse LPC filtered      White noise driven  

Fig. 1. LID results of English and Japanese in terms of the discriminability index by  
Komatsu et al. [17]. The index was calculated such that “English” and “Japanese” were scored 
as +/−2 and “Probably English” and “Probably Japanese” were +/−1, where positive values 
indicate correct responses and negative, incorrect ones. The graph indicates the results of each 
stimulus type for English and Japanese samples identified by Japanese monolingual listeners 
and Japanese-English bilingual listeners, respectively. C-suppressed inverse-LPC-filtered and 
1-band white-noise-driven stimuli have only prosodic information (F0, intensity), and the 
amount of additional information increases when it goes to either side of the graph. 

The idea of using LPC was taken a step further by Komatsu et al. [19]. They 
decomposed the source signal, in terms of the source-filter model, into three 
parameters, F0, intensity, and Harmonics-to-Noise Ratio (HNR); and created stimulus 
signals simulating some or all parameters from white noise and/or pulse train. 
Compared to the previous LPC applications, this method has the merits of the 
parameterization of the source features and the completeness of spectral removal. 
They conducted a perceptual discrimination test using excerpts from Chinese, 
English, Spanish, and Japanese, differing in lexical accent types and rhythm types. In  
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general, the results indicated that humans can discriminate these prosodic types and 
that the discrimination is easier if more acoustic information is available (see Fig. 2). 
Further, the results showed that languages with similar rhythm types are difficult to 
discriminate (i.e., Chinese-English, English-Spanish, and Spanish-Japanese). As to 
accent types, tonal/non-tonal contrast was easy to detect. They also conducted a 
preliminary acoustic analysis of the experimental stimuli and found that quick F0 
fluctuations in Chinese contribute to the perceptual discrimination of tonal and non-
tonal. However, their experiment had a drawback that the number of experimental 
conditions was too large, which as a consequence had the number of repetitions in 
each condition too small to run statistical tests. Experiments must be designed to zero 
in on fewer combinations of acoustic parameters and languages in future. 
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Fig. 2. Correct response rates for each language pair by Komatsu et al. [19]. “C” stands for 
Chinese, “E” for English, “J” for Japanese, and “S” for Spanish. Set 1 is stimuli made of white 
noise simulating the intensity of the original speech, Set 2 is made of pulse train simulating 
intensity, Set 3 is made of white noise and pulse train simulating intensity and HNR, Set 4 is 
made of pulse train simulating F0, Set 5 is made of pulse train simulating intensity and F0, and 
Set 6 is made of white noise and pulse train simulating intensity, HNR, and F0. Sets 1-3 
represent amplitude-related information, Set 4 represents F0 information, and Sets 5-6 represent 
both information. 

The modification method by Ramus and Mehler [20] is different from others; 
they are segment-based. They conducted perceptual experiments on English and 
Japanese, controlling broad phonotactics, syllabic rhythm, and intonation. They 
segmented the original English and Japanese speech into phonemes and replaced 
them by French phonemes to exclude the segmental cues to LID. They created four 
types of stimulus signals differing in the information they contain: “saltanaj”, 
“sasasa”, “aaaa”, and “flat sasasa”. In “saltanaj”, all fricatives were replaced by /s/, 
stops by /t/, liquids by /l/, nasals by /n/, glides by /j/, and vowels by /a/. In “sasasa”, 
all consonants were replaced by /s/, and vowels by /a/. In “aaaa”, all segments were 
replaced by /a/. “Flat sasasa” was the same as “sasasa” but its F0 was made 
constant. The information that each stimulus contained and the results of LID tests 
are summarized in Table 2. Ramus and Mehler concluded that syllabic rhythm is a 
necessary and sufficient cue. 
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Table 2. Stimuli and LID results of Ramus and Mehler [20]. “+” indicates presence of cue, and 
“−” indicates absence of cue. 

  Intonation Syllabic rhythm Broad phonotactics  Result of LID 
saltanaj  + + +  successful 
sasasa  + + −  successful 
aaaa  + − −  unsuccessful 
flat sasasa  − + −  successful 

Although all of these experiments showed that “prosody” plays some role in LID, 
the stimuli used differ from each other in the amount of information they carry; that 
is, the acoustic definitions of prosody are not coherent among the studies. An 
appropriate selection of stimuli is needed for further research. 

Experimental procedures in these studies are simple. Participants were provided 
with a stimulus and instructed to identify a language or dialect. Many experiments 
simply adopted a multiple choice from two or more language names. Others used 
somewhat different procedures. In Atkinson’s experiment [8], the ABX procedure 
was used. Ramus and Mehler [20] used a multiple choice from two fictional language 
names. Maidment [11] and Komatsu et al. [17] used the 4-point scale judgment, e.g., 
definitely French, probably French, probably English, and definitely English; and 
Mugitani et al. [9] used the 5-point scale judgment. Komatsu et al. [19] asked the 
sequential order of the presented stimuli because a multiple choice from four 
languages would be so difficult to discourage the participants: e.g., participants 
listened to a Chinese sample and an English sample sequentially and judged whether 
it was Chinese-English or English-Chinese. 

Experimental designs started with a simple one. Discrimination tests were 
performed for a pair of popular languages: English and Spanish (Atkinson [8]), and 
English and French (Maidment [10][11]). Mugitani et al. [9] was a pretest for an 
infants’ experiment. Moftah and Roach [12] intended to compare the previously used 
signals using Arabic and English. Ohala and Gilbert [13] designed their experiment to 
investigate the relation of prosodic types of languages to explicitly defined acoustic 
features. They chose three prosodically different languages to test, English (stress-
accented, stress-timed), Japanese (pitch-accented, mora-timed), and Chinese (tonal), 
as well as exploring several other effects. They used conversational speech while 
preceding studies had predominantly used reading. Barkat et al. [14] focused on the 
prosodic difference between two Arabic dialects caused by short vowel elision. 
Navrátil’s experiment [16] intended to compare the contributions of prosodic and 
segmental features, covering five languages. Komatsu et al. [17] compared the LID 
with segmental features reduced by several methods using English and Japanese. 
Komatsu et al. [19] parameterized the source features and involved four languages 
differing in prosodic types (stress-accented, pitch-accented, tonal; stress-timed, 
syllable-timed, mora-timed) to discuss the relation of the acoustic features to prosodic 
types. Ramus and Mehler [20] focused on the rhythmic difference of English (stress-
timed) and Japanese (mora-timed), which backed up their argument on the acoustic 
correlates of rhythm. 
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2.2   LID with Unmodified Speech 

It should also be noted that some researchers have used real speech as the stimulus. 
The purposes and methods of these experiments are different from those using 
modified speech (see Table A2 for details). 

An engineering motivation is the benchmark by humans. Muthusamy et al. [21] did 
this using 1-, 2-, 4-, and 6-s excerpts of spontaneous speech of 10 languages. The 
listeners were given feedback on every trial. The obtained results showed that humans 
are quite capable of identifying languages, but the perceptual cues were not 
experimentally explored. The cues were sought by Navrátil [16] using two types of 
modified speech as well as unmodified one, mentioned in section 2.1. 

Barkat and Vasilescu [22] sought perceptual cues by two experiments. One is a 
dialect identification of six Arabic dialects. Endogenous listeners were better at 
identifying dialects than exogenous listeners. The other used the AB procedure for 
five Romance languages. The perceptual space was configured by Multi-Dimensional 
Scaling (MDS) with familiarity and vowel system configuration. 

Maddieson and Vasilescu [23] conducted experiments with five languages, 
combining identification and similarity judgment, and showed that individual 
variation is poorly explained by prior exposure to the target languages and academic 
linguistic training. 

Bond et al. [24] explored the features that listeners attend using 11 languages from 
Europe, Asia, and Africa. They used magnitude estimation and MDS techniques and 
showed that languages were deployed by familiarity, speaker affect (reading dramatic 
or not), and prosodic pattern (rhythm and F0). 

Stockmal et al. [25] challenged to remove the effects of speakers’ identity. They 
did experiments with the AB procedure and similarity judgment for several language 
pairs using the speech samples spoken by the same bilingual speakers. The results 
indicated that the listeners discriminated the language pairs spoken by the same 
speakers and that, in the MDS configuration, they used rhythm information within 
the context of language familiarity. Stockmal and Bond [26] further eliminated the 
effect of language familiarity. They replicated the previous experiment only with 
languages unfamiliar to listeners. The selected languages were all African: all of 
them are syllable-timed, and all but Swahili were tonal. The results suggested that 
the listeners discriminated the language pairs using difference in the phoneme 
inventories. 

2.3   Examples from Other Related Areas of Research 

Experiments have been conducted with somewhat different perspectives, too. Table 
A3 listed a few examples of research into infants. Boysson-Bardies et al. [27] showed 
that the babbling of 8-month-old infants is discriminable by adults. Non-segmental 
cues such as phonation, F0 contour, and intensity were important. Hayashi et al. [28] 
and Mugitani et al. [9][29] indicated that infants can discriminate their native 
language or dialect from others. They used the head-turn preference procedure, which 
regards the stimulus that infants pay attention longer as preferred, and showed that 
infants paid attention to their native language or dialect for a longer duration. The  
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original interest of Ramus and Mehler [20], who did the experiment with adults, is in 
exploring how pre-language infants discriminate languages in bilingual or trilingual 
environments. See [20][30][31][32] for more literature. 

Perceptual experiments have been conducted also for dialectology and 
sociophonetic purposes (see Table A4 for several recent examples). They seek the 
perceptual cues of dialect identification and measure the distance among dialects. 

Van Bezooijen and Gooskens [33] compared the identification rates between the 
original speech and monotonized (F0 flattened) speech, representing segmental 
features, or lowpass-filtered speech, representing prosody, for four Dutch dialects. 
The results indicated that prosody plays a minor role in dialect identification. A 
follow-up experiment using only the unmodified signal showed that the difference in 
the identification rates between spontaneous speech and reading varies among 
dialects. They also conducted the experiment for five British English dialects, 
showing that prosody plays a minor role as in Dutch dialects. Gooskens and van 
Bezooijen [34] adopted a different procedure, 10-point scale judgment of whether 
dialectal or standard, for six Dutch dialects and six British English dialects. They 
showed that segmentals are more important, as in their previous experiments, and that 
the importance of prosody is somewhat larger in English than in Dutch. Gooskens 
[35] explored 15 Norwegian dialects, and showed that endogenous listeners identify 
dialects better than exogenous listeners and that prosody is more important than in 
Dutch dialect identification. 

In the United States, Thomas and Reaser [36] did a discrimination test of English 
spoken by African Americans and European Americans. In order to focus on phonetic 
characteristics, speech samples were carefully selected to include diagnostic vowels, 
usually /o/, and subject pronouns, related to intonation variation, but to avoid 
diagnostic morphosyntactic and lexical variables. European American listeners 
performed better with monotonized samples than with lowpass-filtered samples; and 
the detailed analysis indicated that African Americans could not use the vowel quality 
as a perceptual cue. Thomas et al. [37], who incorporated different techniques, 
converting all vowels to schwa and swapping F0 and segmental durations, showed 
that the vowel quality is important although F0 also plays a role and that different 
listener groups use different cues. 

See [36][38] for extensive reviews of the studies in these areas, including 
experiments with various modification techniques: lowpass-filtering, highpass-
filtering, center-clipping; lowpass-filtering vs. monotonization (F0 flattening); 
bandwidth compression to remove nasality; backward playing, temporal compression; 
F0 level change of isolated vowels; F2 modification to make vowels front or back; 
resynthesis of /s/-/ʃ/ to assess the McGurk effect on the perceptual boundary; a 
synthetic vowel continuum; synthetic vowels; synthetic diphthongs; modification of 
the intonation and the speaking rate; unmodified, lowpass-filtered, random-spliced, 
vs. written text. 

Table A5 gives examples of the research into foreign accents.2 Miura et al. [40] 
and Ohyama and Miura [41] did experiments manipulating a segmental feature 
(PARCOR3 coefficients) and prosodic features (F0, intensity, phoneme durations), 

                                                           
2 See also [39]. 
3 PARCOR stands for partial auto-correlation. 
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showing prosodic features contribute more. Miwa and Nakagawa [42] focused on 
only prosodic features and showed that the sensitivity to such a feature is different 
between native and non-native listeners. 

A confounding factor of perceptual experiments on LID or the naturalness of 
languages is that prosody is closely related to not only linguistic information but also 
paralinguistic and nonlinguistic information. Grover et al. [43] found that F0 
variation at the continuation junctures of English, French, and German differ 
significantly, but that the synthetically replaced intonation patterns were regarded by 
listeners as speakers’ variation of emotional attitudes or social classes rather than 
foreign accents. 

Another problem was raised by Munro [44], who investigated the effect of prosody 
on the perception of foreign accent using lowpass-filtered speech. The results 
indicated that the foreign-accentedness was recognized in the lowpass-filtered speech. 
However, they did not show a correlation with the unfiltered, or original, speech, 
which means that samples regarded as accented when lowpass-filtered may not be 
regarded as accented when not filtered, suggesting that listeners may use different 
cues in different conditions. 

3   Acoustic Definition of Prosody 

3.1   Reviewing Stimulus Signals 

The speech modification methods described in section 2.1 may be classified into 
several groups. The first one is what does not use synthesis or resynthesis techniques: 
lowpass-filtering and laryngograph output. The second one, which uses 
synthesis/resynthesis techniques, includes the simple acoustic simulation (triangular 
pulses, sinusoidal signals, band-limited white noise) and the signal processing based 
on the source-filter model (inverse LPC filtering, source feature parameterization). 
Random splicing and phoneme replacing constitute the third group: these modify the 
signal in segment-based manners, permuting or replacing them, rather than utilizing 
acoustic processing globally. The second group may be called more “acoustic,” and 
the third group more “phonological.” 

It is in question whether some of them do properly represent prosody in speech. In 
lowpass filtering, the cutoff frequency is usually set at 300-600 Hz to make speech 
unintelligible, but it is reported that speech is sometimes intelligible if repeatedly 
listened to [45]. In lowpass-filtered speech, some segmental information is preserved 
under the cutoff frequency, F0 sometimes rises higher than the cutoff, and intensity is 
not preserved [20]. A perceptual experiment confirmed that, if the cutoff is set at 300 
Hz, the filtered signal retains prosodic features and some laryngeal voice quality 
features but not articulatory features [45]. The laryngograph output is an indication of 
short-term variations of glottal electrical resistance and virtually uninfluenced by 
supraglottal resonance and noise source [12][13]. This means that it is not 
representative of output speech, which we actually hear in usual situations. Due to the 
loss of resonance and noise source, it does not contain sonority information, which  
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will be discussed in section 3.2. The simple acoustic simulation techniques are close 
to the source-filter-model-based ones but incomplete because they lack something. 
The simulation of prosody with pulse or sinusoidal trains does not take the noise 
source into account. The white-noise driven signal keeps the intensity contour of the 
original speech but does not have any other information such as F0. 

Of the segment-based approaches, random-splicing, of course, destroys prosodic 
contour information as the experimenter intends. It was reported that speech random-
spliced with the segment size between 150-300 ms was unintelligible, and a 
perceptual experiment confirmed that speech random-spliced with the segment size of 
255 ms carries voice quality, some articulatory features, and overall prosodic features 
(level, range, and variability of pitch, loudness, and sonority) but loses tempo [45]. In 
Navrátil’s experiment [16], segments in length roughly corresponding to syllables 
were manually cut out. 

The processing based on the source-filter model may be the best to represent 
prosody (see the discussion in section 3.2), but it may have a technical drawback. 
Inverse LPC filtering does not guarantee the perfect removal of the spectrum. To 
avoid this problem, Komatsu et al. [17] used a lowpass filter in conjunction with an 
inverse LPC filter, but still reported that some listeners said they spotted words 
although it is not clear whether it was true or illusory. On the other hand, the source 
feature parameterization, in which the stimulus is made of pulses and white noise 
from scratch, is perfect in the spectral removal but problematic especially in the F0 
contour estimation. Komatsu et al. [19] used the MOMEL algorithm [46], originally 
devised to extract the intonation contour of the intonation languages (i.e., non-pitch-
accented, non-tonal). It seems that the algorithm does not only remove microprosody 
but affects the F0 variation related to pitch accent and tone [47]. 

To estimate F0 correctly and compare among languages, a model that does not 
incorporate any phonology of specific languages is desired. For example, modeling by 
INTSINT [46], which simply encodes F0 patterns, seems more adequate for the 
present purpose than ToBI [48][49], which describes only F0 variations meaningful in 
respective languages. Another desirable nature of the model is to divide the contour 
into components. Although the difference in F0 between languages of different 
prosodic types have been pointed out [50], local characteristics seem more important 
than global characteristics [6][51]. Further, three types of F0 characteristics varying 
across languages have been distinguished: global, recurrent, and local [52]. Although 
there have been proposed various F0 models [53], not all are adequate for the present 
purpose. Scrutiny of models is necessary for future research. 

The notion of rhythm is also confounding. Since Pike’s dichotomy of stress- and 
syllable-timed rhythms [54], the isochronic recurrence of stress/syllable in speech 
signal has not been found. This has caused the definition of rhythm to be claimed 
variously [31][55]. Timing hypotheses argue that there is an isochronic unit or that the 
length of the higher level unit such as a word can be predictable from the number of 
lower level units. Rhythm hypotheses argue that the rhythmic difference is the 
reflection of structural factors, such as syllable structures, phonotactics, etc., rather  
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than timing specifically [30][56][57]. There are also other alternative claims focusing 
the competence of coordinating units in speech production [58], or the role of the unit 
in perception [59]. 

Ramus and Mehler’s experiment [20] was to support the rhythm hypothesis.  
They define “syllabic rhythm” as the temporal alignments of consonant and vowel, 
which is the reflection of syllable structures, and showed that it is essential to the 
perceptual discrimination of languages. Here, rhythm is not defined by acoustic 
features such as the intensity contour but defined by the discrimination of consonant 
and vowel. This reminds us of the role of broad phonotactics in human LID [17] and 
automatic LID [60]. 

The studies pursuant to the rhythm hypothesis are rather phonological than 
acoustic, because they need phoneme identification. Phonemes must be identified in 
the stream of speech signal prior to the measurement of durations. However, it seems 
that this method has been taken as an expedient because appropriate acoustic 
measures to grasp syllable shapes were not available. Ramus et al. [30] (p. 271 fn) 
states that “[their] hypothesis should ultimately be formulated in more general terms, 
e.g. in terms of highs and lows in a universal sonority curve.” In another analysis [57], 
devoiced vowels are treated as consonantal rather than vocalic to reflect more 
acoustic features. Retesting this hypothesis by calculating sonority in acoustic terms 
[61] is worth mentioning. 

3.2   Correspondence Between Acoustic and Linguistic Features 

This section argues that the source at the acoustic level approximately represents 
prosody at the linguistic level. Fig. 3 shows the simplified correspondence of the 
articulatory, acoustic, and linguistic models. Note that the figure is simplified for 
illustration, and that the correspondences of the features in different models are 
actually not as simple as drawn in the figure. When humans utter speech, especially 
vowels, the voice source is created at the larynx, is modulated by the vocal tract, and 
results in the speech sound. This can be modeled by an acoustic model called the 
source-filter model, in which the source, or the excitation signal, is processed by the 
filter, resulting in the speech signal. The source consists of three physical elements, 
F0, intensity, and HNR; and the filter determines the spectral envelope of the sound in 
the frequency domain. Very naively, prosodic, or suprasegmental, features in the 
linguistic model seem to involve F0 and intensity of the speech signal controlled by 
the laryngeal activity: the tone and accent systems seem to involve F0 and intensity, 
and rhythm seems to involve the temporal variation of intensity. On the other hand, 
segmental features, i.e. phoneme distinctions, seem to be related to spectral patterns 
determined by the vocal tract shape, or the movement of articulators. However, their 
correspondence to each other is actually not so simple. For example, in the 
recognition of phonemes, it is known that various acoustic cues interact, including not 
only the spectral pattern but also F0 and intensity. So far, the acoustic contributors to 
prosodic features have not been thoroughly inquired into. This section discusses 
whether, or how well, the source elements of the acoustic model approximately 
represent the linguistic prosody. 
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Fig. 3. Approximate correspondence of articulatory, acoustic, and linguistic models. The 
shaded area indicates the correspondence discussed in this section. 

Linguistic features that constitute a prosodic typology include lexical accent (stress 
accent, pitch accent, and tone), intonation, and rhythm (stress-timed, syllable-timed, 
and mora-timed). Their acoustic correlates are, basically, F0, intensity, and length. 
However, assuming that rhythm is, even if partly, the reflection of syllable structures, 
it follows that acoustic properties that represent sonority contribute to constituting 
rhythm. 

Sonority is a linguistic feature that approximately represents syllable shapes (see 
Sonority Sequencing Principle [62]). The sonority feature is ambivalently prosodic 
and segmental by nature. On one hand, it represents syllable shapes, and consequently 
contributes to rhythm. On the other hand, it is closely related to the articulatory 
manner of segments, and, as a result, it partially represents some phoneme classes and 
phonotactics. Consequently, the acoustic properties that represent sonority contain 
both prosodic and segmental information. Then, it is impossible to completely 
separate acoustic features corresponding to prosody from acoustic features 
corresponding to segmentals. The dichotomy of prosody and segmentals are possible 
in the linguistic model but impossible in the real-world acoustic model. 

The important question is, therefore, whether or how the source features at the 
acoustic level represent sonority, and do not represent segmental features, at the 
linguistic level. To this end, experiments on Japanese consonant perception were 
conducted with the LPC residual signal [63]. The identification rate of major classes 
corresponding to the sonority ranks, i.e., obstruent, nasal, liquid, and glide [62],  
was as high as 66.4 % while that of phonemes was as low as 20.0 % (chance level: 
1/17 = 5.9 %). 

Further, to investigate how sonority is represented in the source, the confusion 
matrix obtained from this experiment was analyzed with MDS [64]. The analysis 
showed that sonority can be located in a multi-dimensional perceptual space, and that 
the dimensions of the space have correspondence to both acoustic and phonological 
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features. Because the LPC residual signals represent the source, the confusion pattern 
for the signals indicates the consonants’ similarities in the source. Although fitting of 
the data was not satisfactory, the result showed that the consonants can be modeled in 
a 3-dimensional perceptual space according to their sonority ranks. Its dimensions 
could be related to acoustic measurements and phonological features. The result also 
showed that sonority can be mostly defined within the source. 

In the perceptual space, consonants with the same sonority rank clearly tended to 
cluster together. As seen in Fig. 4, voiceless plosives, voiceless fricatives, voiced 
obstruents, and nasals/glides gathered together. Each dimension of the perceptual 
space had correspondence to acoustic and phonological features, as shown in  
Table 3. The dimensions were correlated with acoustic measurements obtained from 
the stimulus, and had correspondence to some of the sonority-related distinctive 
features [65]. 

 

Fig. 4. Three-dimensional analysis of consonant perception in the LPC residual signal (altered 
from [64]) 

Table 3. Correspondence of each dimension to acoustic and phonological features 

  Lower sonority  Higher sonority 
   

Acoustics Lower HNR  Higher HNR 
Dim 1 

Phonology [−voice]  [+voice] 
Smaller amplitude  Larger amplitude 

Acoustics 
Lower F0  Higher F0 Dim 2 

Phonology [−sonorant]  [+sonorant] 
Acoustics Shorter duration  Longer duration 

Dim 3 
Phonology [−continuant]  [+continuant] 

These results indicate that the source retains sonority information while segmental 
information, such as cues for phoneme identification, is effectively suppressed. The 
importance of sonority, or broad phonotactics, has been shown by many previous LID 
studies, human or automatic. 
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4   Concluding Remarks 

This article started with overviewing human LID experiments, especially focusing on 
the modification methods of stimulus, also mentioning the experimental designs and 
languages used (section 2). It was followed by the discussion on what those acoustic 
features used in human LID experiments mean (section 3). It discussed the acoustic 
natures of the stimulus signals and some theoretical backgrounds, featuring the 
correspondence of the source to prosody. 

LID is, from a linguistic point of view, a study on the naturalness of a language and 
the difference from other languages. Language is defined as the pair of the form and 
meaning. LID research focuses on the form only, and would provide cross-linguistic 
foundations for the description of the form. Simple manipulations of acoustic features 
may suffice to engineering purposes; their linguistic meanings have not been inquired 
into. The author hopes that this article gives the reader some insights into this 
question. 
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Appendix: Lists of LID Research 

Table A1. LID using modified speech 

 
Atkinson (1968) [8] 
 Language: English, Spanish 
 Material: Poetry, prose, natural speech, nursery rhymes, dramatic dialogues 
 Modification: Lowpass-filetered 
 Method: Identification (ABX) 
 Result: English and Spanish were discriminated. Least error rates in poetry, 

greatest in prose and nursury rhymes. 
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Table A1. (continued) 

Mugitani, Hayashi, & Kiritani (2000) [9] 
 Language: Eastern Japanese dialect, Western Japanese dialect 
 Material: Elicited speech by a speaker fluent in both dialects 
 Modification: (1) Unmodified, (2) Lowpass-filtered (400Hz) 
 Method: (1) 5-pt scale (+2=Definitely Eastern, -2=Never Eastern; +2=Definitely 

Western, -2=Never Western), (2) Identification (Eastern or not) 
 Result: (1) Almost perfect, (2) Significant result 

 
Maidment (1976) [10] 
 Language: English, French 
 Material: Reading 
 Modification: Laryngograph waveform 
 Method: Identification 
 Result: 64.5% 

 
Maidment (1983) [11] 
 Language: English, French 
 Material: Spontaneous speech 
 Modification: Laryngograph waveform 
 Method: 4-pt scale judgment (1=Definitely French, 4=Definitely English) 
 Result: 74.68% [Calculated such that both “1 Definitely French” and “2 Probably 

French” counted as French and both “3 Definitely English” and “4 
Probably English” counted as English] 

 
Moftah & Roach (1988) [12] 
 Language: Arabic, English 
 Material: Reading and spontaneous speech 
 Modification: (1) Laryngograph waveform, (2) Lowpass-filtered (500Hz) 
 Method: Identification 
 Result: (1) 63.7%, (2) 65.5% 

 
Ohala & Gilbert (1979) [13] 
 Language: English, Japanese, Cantonese Chinese 
 Material: Conversation 
 Modification: Triangle pulses simulating F0, amplitude, voice timing 
 Method: Identification 
 Result: 56.4% [Chance level: 33.3%] 

 
Barkat, Ohala, & Pellegrino (1999) [14] 
 Language: Western Arabic dialects, Eastern Arabic dialects 
 Material: Elicited story-telling 
 Modification: (1) Unmodified, (2) Sinusoidal pulses simulating F0, amplitude, voice 

timing 
 Method: Identification 
 Result: (1) 97% by Arabic listeners, 56% by non-Arabic listeners. (2) 58% by 

Arabic listeners, 49% by non-Arabic listeners 
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Table A1. (continued) 

Foil (1986) [15] 
 Language: Unknown (one Slavic and one tonal SouthEast Asian languages?) 
 Material: Unknown (noisy radio signals?) 
 Modification: LPC-resynthesized with the filter coefficients constant 
 Method: Identification 
 Result: Easy to distinguish 

 
Navrátil (2001) [16] 
 Language: Chinese, English, French, German, Japanese 
 Material: Spontaneous speech? 
 Modification: (1) Unmodifed, (2) Random-splicing, (3) Inverse-LPC-filtered 
 Method: Identification 
 Result: (1) 96%, (2) 73.9%, (3) 49.4%  [Chance level: 20%] 

 
Komatsu, Mori, Arai, Aoyagi, & Murahara (2002) [17] 
 Language: English, Japanese 
 Material: Spontaneous speech 
 Modification: (1) Inverse-LPC-filtered followed by lowpass-filtered (1kHz), (2) 

Consonant intervals of (1) suppressed, (3) Band-devided white-noise driven 
(from 1 to 4 bands) 

 Method: 4-pt scale judgment (1=English, 4=Japanese) 
 Result: For English, (1) 70.0%, (2) 44.0%, (3) 56.0-95.0% varying over the number 

of bands; for Japanese, (1) 100.0%, (2) 66.0%, (3) 60.0-96.0% varying over 
the number of bands 

 
Komatsu, Arai, & Sugawara (2004) [19] 
 Language: Chinese, English, Japanese, Spanish 
 Material: Reading 
 Modification: (1) White noise simulating intensity, (2) Pulse train simulating intensity, (3) 

Mixture of white noise and pulse train simulating intensity and 
harmonicity, (4) Pulse train simulating F0, (5) Pulse train simulating 
intensity and F0, (6) Mixture of white noise and pulse train simulating 
intensity, harmonicity, and F0 

 Method: Judgment on the sequential order by listening to a language pair 
 Result: (1) 61.3%, (2) 61.1%, (3) 63.1%, (4) 62.8%, (5) 74.7%, (6) 79.3%  [Chance 

level: 50%] 

 
Ramus & Mehler (1999) [20] 
 Language: English, Japanese 
 Material: Reading 
 Modification: Resynthesized preserving (1) broad phonotactics, rhythm, and intonation, 

(2) rhythm and intonation, (3) intonation only, (4) rhythm only 
 Method: Identification (using fictional language names) 
 Result: (1) 66.9%, (2) 65.0%, (3) 50.9%, (4) 68.1%; indicating the importance of 

rhythm 
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Table A2. LID using unmodified speech only 

 

Muthusamy, Jain, & Cole (1994) [21] 
 Language: 10 languages (English, Farsi, French, German, Japanese, Korean, Mandarin 

Chinese, Spanish, Tamil, Vietnamese) 
 Material: Spontaneous speech 
 Method: Identification 
 Result: With 6-s excerpts, 69.4% (varying from 39.2 to 100.0% over languages) 

[Chance level: 10%] 
 

Barkat & Vasilescu (2001) [22] 
 Language: 6 Arabic dialects 
 Material: Elicited speech 
 Method: Identification 
 Result: 78% for Western dialicts, 32% for Eastern dialects by Western Arabic 

listerns; 59% for Western dialects, 90% for Eastern dialects by Eastern 
Arabic listeners [Chance level: 16.7%] 

 

 Language: 5 Romance languages (French, Italian, Spanish, Portuguese, Romanian) 
 Material: Reading or story-telling 
 Method: AB (same or different) 
 Result: MDS configured with familiarity, vowel system complexity 
 

Maddieson & Vasilescu (2002) [23] 
 Language: 5 languages (Amharic, Romanian, Korean, Morroccan Arabic, Hindi) 
 Material: Reading 
 Method: (1) Identification, (2) Identification and similarity judgment 
 Result: (1) 65% [Chance level: 20%], (2) Partial identification patterns varied 

among languages 
 

Bond, Fucci, Stockmal, & McColl (1998) [24] 
 Language: 11 languages from Europe, Asia, Africa (Akan, Arabic, Chinese, English, 

French, German, Hebrew, Japanese, Latvian, Russian, Swahili) 
 Material: Reading 
 Method: Similarity to English (magnitude estimation) 
 Result: MDS configured with familiarity, speaker affect, prosodic pattern (rhythm, F0) 
 

Stockmal, Moates, & Bond (1998) [25] 
 Language: Language pairs (Arabic-French, Hebrew-German, Akan-Swahili, Latvian-

Russian, Korean-Japanese, Ombawa-French, Ilocano-Tagalog) 
 Material: Each language pair was spoken by the same talker 
 Method: (1) AB (same or different), (2) AB (7-pt similarity; 1=very dissimilar, 

7=very similar) 
 Result: (1) 66.5% and 63.4% depending on the experimental condition [Chance 

level: 50%], (2) 5.19 for the same-language pairs, 3.45 for the different-
language pairs 

 

Stockmal & Bond (2002) [26] 
 Language: Language pairs (Akan-Swahili, Haya-Swahili, Kikuyu-Swahili, Luhya-

Swahili) 
 Material: Reading; each language pair was spoken by the same talker 
 Method: AB (same or different) 
 Result: 71% [Chance level: 50%] 
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Table A3. Examples of research into infants 

 
Boysson-Bardies, Sagart, & Durand (1984) [27] 
 Language: Arabic, Chinese, French 
 Material: 8- and 10-month-old infants’ babbling 
 Method: Choice of French from French-Arabic or French-Chinsese pair 
 Result: For 8- and 10-month samples respectively; 75.8%, 74.4% (French-Arabic 

pairs); 69.4%, 31.9% (French-Chinese pairs) [Chance level: 50%] 
 
 Language: Arabic, French 
 Material: 6-, 8-, 10-month-old infants’ babbling 
 Method: Choice of French from the pair of babbling 
 Result: For 6-, 8-, 10-month samples respectively; 55.5-68%, 67.5-74%, 49-56.9% 

(varying over experimental conditions) [Chance level: 50%] 
 

Hayashi, Deguchi, & Kiritani (1996) [28] 
 Language: Japanese, English 
 Material: Spontaneous speech by a bilingual speaker 
 Method: Head-tern preference procedure (for infants) 
 Result: Infants aged over 200 days preferred the native language Japanese 
 

Mugitani, Hayashi, & Kiritani (2000) [9] 
 Language: Eastern Japanese dialect, Western Japanese dialect 
 Material: Elicited speech by a speaker fluent in both dialects 
 Modification: Unmodified 
 Method: Head-turn preference procedure (for infants) 
 Result: Greater preference to their native Eastern dialect 
 

Mugitani, Hayashi, & Kiritani (2002) [29] 
 Language: Eastern Japanese dialect, Western Japanese dialect 
 Material: Elicited speech by a speaker fluent in both dialects 
 Modification: Lowpass-filtered (400Hz) 
 Method: Head-turn preference procedure (for infants) 
 Result: 8-month-old infants preferred their native Eastern dialect 
 

Table A4. Examples of dialectology and sociophonetic research using modified speech 

 
Van Bezooijen & Gooskens (1999) [33] 
 Language: 4 Dutch dialects 
 Material: Spontaneous 
 Modification: (1) Unmodified, (2) Monotonized (flat f0), (3) Lowpass-filtered (350Hz) 
 Method: Identification of Country, Region, Province, and Place 
 Result: (1) Country 90%, Region 60%, Province 40%; (2) Decreased from (1) by 

7%, 2%, 4%; (3) Decreased from (1) by 29%, 41%, 32% [Chance levels for 
Country, Region, Province are 50%, 12.5%, 5.26% respectively; there were 
almost no answer for Place] 

 

 Language: 5 British English dialects 
 Material: Spontaneous 
 Modification: (1) Unmodified, (2) Monotonized (flat f0), (3) Lowpass-filtered (350Hz), 

(4) The same as (3) but including typical dialect prosody 
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Table A4. (continued) 

 Method: Identification of Country, Region, Area, and Place 
 Result: (1) Country 92%, Region 88%, Area 52%; (2) Decreased from (1) by 4%, 

10%, 3%; (3) Decreased from (1) by 18%, 43%, 33%, (4) Increased from 
(3) by 5%, 5%, 1% [Chance levels for Country, Region, Area are 50%, 
14.28%, 6.67% respectively; there were almost no answer for Place] 

 
Gooskens & van Bezooijen (2002) [34] 
 Language: 6 Dutch dialects 
 Material: Interview 
 Modification: (1) Unmodified, (2) Monotonized (flat F0), (3) Lowpass-filtered (350Hz) 
 Method: 10-pt scale judgment (1=dialect, 10=standard) 
 Result: (1)(2) 4 groups separated, (3) Standard variation and the others were 

separated 
 
 Language: 6 British English dialects 
 Material: Interview 
 Modification: (1) Unmodified, (2) Monotonized (flat F0), (3) Lowpass-filtered (350Hz) 
 Method: 10-pt scale judgment (1=dialect, 10=standard) 
 Result: (1)(2) 3 groups separated, (3) 2 groups separated 
 
Gooskens (2005) [35] 
 Language: 15 Norwegian dialects 
 Material: Reading 
 Modification: (1) Unmodified, (2) Monotonized (flat F0) 
 Method: Identification (marking on a map, choosing from 19 countries), Similiarity 

to the listener’s own dialect (15-pt scale) 
 Result: (1) 67% by endogenous listeners, 25% by exogenous listeners, (2) 50% by 

endogenous listeners, 16% by exogenous listeners [Chance level: 5.3%] 
 
Thomas & Reaser (2004) [36] 
 Language: English spoken by African Americans and European Americans 
 Material: Spontaneous speech (interview) 
 Modification: (1) Unmodified, (2) Monotonized (flat F0), (3) Lowpass-filtered (330Hz) 
 Method: Identification 
 Result: (1) 71.10%, (2) 72.08%, (3) 52.28% by European American listeners 

[Chance level: 50%] 
 
Thomas, Lass, & Carpenter (in press) [37] 
 Language: English spoken by African Americans and European Americans 
 Material: Reading 
 Modification: (1) Unmodified, (2) Monotonized (flat F0), (3) Conversion of all vowels to 

schwa 
 Method: Identification 
 Result: Vowel quality is important; F0 also plays a role 
 
 Language: English spoken by African Americans and European Americans 
 Material: Reading 
 Modification: Swapping F0 and segmental durations 
 Method: Different listener groups use different cues 
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Table A5. Examples of research into foreign accent using modified speech 

 
Miura, Ohyama, & Suzuki (1989) [40] 
 Language: English spoken by Japanese speakers 
 Material: Reading 
 Modification: Substitution of the features of a native speaker’s English with those of 

Japanese English (PARCOR coefficients, F0, Intensity, Phoneme 
durations) 

 Method: Choosing the more natural sample from a pair of samples 
 Result: Durations and F0 contribute to the naturalness 
 
Ohyama & Miura (1990) [41] 
 Language: Japanese spoken by English, French, Chinese speakers 
 Material: Reading 
 Modification: Substitution of the features of foreign-accented Japanese with those of a 

native speaker’s Japanese (PARCOR coefficients, F0, Intensity, Phoneme 
durations) 

 Method: Choosing the more natural sample from a pair of samples 
 Result: Durations contribute for the speech by English and French speakers; F0 

contribute for the speech by Chinese speakers 
 
Miwa & Nakagawa (2001) [42] 
 Language: English spoken by native speakers and Japanese 
 Material: Reading 
 Modification: Resynthesized preserving (1) F0 and intensity, (2) F0, (3) intensity 
 Method: Judgment on naturalness (5-pt scale) 
 Result: English spoken by native speakers were more natural. Japanese instructors 

of English were less sensitive to intensity variation than native instructors 
 
Grover, Jamieson, & Dobrovolsky (1987) [43] 
 Language: English, French, German 
 Material: Reading 
 Modification: Replacement of the continuative pattern of F0 with that of another language 
 Method: Choosing the more natural sample from a pair of samples 
 Result: Not discriminated 
 
Munro (1995) [44] 
 Language: English spoken by Mandarin Chinese and Canadian English speakers 
 Material: (1) Elicited sentence, (2) Spontaneous speech 
 Modification: Lowpass-filtered (225Hz for male speech, 300Hz for female speech) 
 Method: Judgment on accentedness (1=Definitely spoken with a foreign accent, 

4=Definitely spoken by a native speaker of English) 
 Result: For Mandarine speakers (1) 1.8, (2) 2.1; for Canadian English speakers (1) 

3.0, (2) 2.8 
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Abstract. In this study, we explore what is needed to get an automatic 
estimation of speaker relative pitch that is good enough for many practical tasks 
in speech technology. We present analyses of fundamental frequency (F0) 
distributions from eight speakers with a view to examine (i) the effect of 
semitone transform on the shape of these distributions; (ii) the errors resulting 
from calculation of percentiles from the means and standard deviations of the 
distributions; and (iii) the amount of voiced speech required to obtain a robust 
estimation of speaker relative pitch. In addition, we provide a hands-on 
description of how such an estimation can be obtained under real-time online 
conditions using /nailon/ – our software for online analysis of prosody. 

Keywords: pitch extraction; pitch range; speaker relative pitch; fundamental 
frequency (F0) distribution; online incremental methods; semitone transform; 
percentiles; speech technology. 

1   Introduction 

Prosodic features have been used in speech technology and nearby fields for a great 
many tasks – some directly related to spoken communication, such as segmentation 
and disambiguation [see e.g. 1 for an overview], and some less obviously 
communicative in nature, such as speaker identification and even clinical studies  
[e.g. 2]. Amongst these prosodic features, the fundamental frequency (F0) is perhaps 
the most widely used. Pitch and intonation has been associated with a large number of 
functions in speech [see e.g. 3 for an overview] but, in the words of Honorof & 
Whalen, “its [the pitch’s] linguistic significance is based on its relation to the 
speaker’s range, not its absolute value”. Others have made similar observations [cf. 4, 
5, 6]. It has even been suggested that listeners must estimate a base value of a 
speaker’s pitch range in order to recover the information carried by F0 [7]. In other 
words, what we should be looking for when applying F0 analysis to practical tasks is 
commonly not the absolute F0 values, but rather an estimation of speaker relative 
pitch. Within speech technology, pitch and pitch range have been used for nearly as 
many purposes as has prosody in general. In our own studies, we have shown that 
online pitch analysis can be used to improve the interaction control of spoken 
dialogue systems [8] and that similar techniques can be used off-line to achieve more 
intuitive chunking into utterance-like units [9]. Tasks such as these require a 
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classification of individuals with respect to the range they produce when they speak. 
The classification of intonation patterns into for example HIGH and LOW is a more 
general example of this. The work presented here provides underpinnings for some of 
the methods used for pitch extraction in /nailon/ – the computer software we 
maintain and use for the online pitch analysis [10]. In short, we will explore what is 
needed to create a model that gives a good enough estimation of speaker relative 
pitch.  

Several studies have attempted to investigate how humans accomplish pitch  
range estimation [e.g. 4, 5, 6]. Here, we are concerned with how to make such 
estimations automatically for use in real-time in speech technology applications. In 
other words, we must remain within the constraints set by current technology, which 
makes some suggested correlates of (position in) pitch range, for example voice 
quality [e.g. 5], difficult to use. The current work relies on the F0 extraction provided 
by the ESPS get_f0 function in the Snack Sound Toolkit by Kåre Sjölander 
(http://www.speech.kth.se/snack/), with online and real-time abilities added by 
/nailon/. It is worth noting that although get_f0 is more or less the industry 
standard and very well proven, output from get_f0 is quite noisy. Any model built on 
automatic extraction of F0 values must be quite resistant to errors in the training data 
as well as in the test data. 

We are primarily interested in how pitch relates to spoken communication, and for 
F0 patterns to have an effect on communication, they must be perceivable to the 
interlocutors. It follows that we need a model that is perceptually sound – a model of 
pitch rather than F0, if you will. It is clear that we lack the know-how to make a 
model that mimics human perception to perfection, but to the greatest extent we can, 
we should avoid methods that lie outside the scope of human perception. We may for 
example want to use a perceptually relevant scale for frequencies, say semitones or 
ERBs rather than Hertz [11, 12], and we may want to discard differences in frequency 
that are not discernable to humans. 

Furthermore, we want a model that is as general as possible. We will aim at finding 
a model capable of sensibly estimating speaker relative pitch by searching for (i) the 
trimmed pitch range of a speaker and (ii) a reasonable description of the distribution 
of pitch values within that range. Both (i) and (ii) can be approached by searching the 
F0 distribution for quantiles. Quantiles are values dividing an ordered set of 
observations. Phrased differently, a quantile is the cut-off point under which a certain 
proportion of the observations fall. Oft-used divisions have specific names, for 
example quartiles (which divide the observations into four equal parts), quintiles (five 
parts), deciles (10 parts), and percentiles (100 parts). For (i), the 5th and 95th percentile 
will be used as targets to achieve a trimming of the data. The exact numbers are ad 
hoc, although the techniques should not rely on the trimming being set at exactly five 
per cent at each end. For (ii), we will aim to further divide the speaker’s pitch values 
into four similarly sized parts – the quartiles. In other words, our aim is to find a 
method to decide if a pitch value is within a speakers range, given that we trim five 
per cent at the top and at the bottom of the range, and if so, which quartile of a 
speakers F0 distribution a given pitch value belongs to, with the first and fourth  
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quartiles being somewhat diminished due to the trimming (see Fig. 1). Generally 
speaking, the task can be formulated as judging a given F0 value against some kind of 
history of F0 values providing information about whether it belongs to this quantile or 
the other. 

 

Fig. 1. The aim set forth here is to describe a speaker’s pitch range and distribution using 
percentiles. This histogram over a mock F0 distribution shows the 5th, 25th, 50th, 75th and 95th 
percentiles. 

Given the automatic F0 extraction, this can be done by training a model, or profile, 
of a speaker’s range using pre-recorded speech, or by training a model for a specific 
group of speakers, say, young male speakers. These methods are burdened with 
several problems. The first method of pre-compiling user-specific profiles is 
susceptible to dynamic influences such as emotion and voice fatigue, in that it will fail 
if a speaker’s voice changes from the time of the recording of the training data to the 
time when the profile is used. It also requires user data to be saved, which has severe 
implications, both in high demands on storage capacity and on user integrity. 
Furthermore, both methods require that the speaker be identified, either as a specific 
speaker or as a member of a class of speakers. In the first case, mistaken identity is a 
potential problem, and in the second case, there is a corresponding risk that a speaker 
is associated with the wrong class. Finally, there are naturally a lot of cases where it is 
simply not practical to pre-compile a model. Notwithstanding these concerns, a model 
where a large amount of speech from one person has been analysed is, in a sense, the 
best we can do. We may even say that if we build a model on a set of speech data by 
ordering all pitch values and counting through them to find our percentiles, this model 
is correct; it constitutes a gold standard as far as the data it is built on is concerned. 
The descriptive statistics presented in Tables 1 and 2, and in the Appendix, can be 
viewed as such a gold standard. 

If we take the concerns listed above regarding pre-compiled user models seriously 
– as indeed we should – there is ample reason to look for other solutions. One 
possibility that eliminates much of the problems with pre-compiled models is to train 
the models online, when they are needed. In other words, to incrementally train a  
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speaker model as the speaker speaks. As our primary goal is to be able to judge each 
F0 value with regard to the speakers range online and in real-time, both the time it 
takes to train the model before it is reasonably reliable and the time it takes to update 
it with each new data item are major concerns. Unfortunately, there is no efficient 
way of calculating exact quantiles incrementally – finding range and percentiles in 
this manner requires us to build a model where the entire set of instances seen is 
scanned to recalculate the range and percentiles each time a new instance is added. 
This method places high demands on memory and processor load. The relationship 
between the methods is the same as the relationship between the mean score and the 
median (indeed, if we aim to split a user’s pitch into two equally sized categories, say 
HIGH and LOW, then the mean or the median, respectively, would make up the 
threshold between the categories. All in all, the exact, instance based method of 
calculation is virtually useless for our purposes.  

The stock pile way of getting around process intensive, instance based and exact 
calculation of distributions is to find some function that describes the data, either 
more or less exactly, as in the case of the colouring of rabbit youngs, or reasonably 
well, as when network and database engineers maintain estimated histograms  
[e.g. 13]. When it comes to the distribution of F0 values in a speaker’s speech, we and 
others have more or less treated them as if they were normally distributed [8, 14]. 
There are good reasons to suspect this not to be true. Several authors [e.g. 14] have 
also pointed out that the distribution is indeed not normal.  

A quick survey of the F0 distributions of some individuals still leads one to believe 
that it is somewhere close to normal, and assuming a normal distribution allows us to 
straightforwardly find the percentiles given the standard deviation and the means, 
both of which are readily accessible in an incremental manner. The question, then, is: 
how close to the truth do we get if we assume a normally distributed F0 within a 
speaker’s speech?  

Given our intention that the model be perceptually sound it is clear that we  
can disregard differences that cannot be perceived by humans. It is not entirely easy to 
say what differences in F0 humans can and cannot perceive, however. Several studies 
have been made on the subject: ‘t Hart, Collier, & Cohen [15] gives an overview of 
studies that place the just noticeable difference (JND) for F0 between 1 Hz and 5 Hz 
at frequencies around 100 Hz. Unsurprisingly, the higher values come from studies 
using voice like stimuli, and the lower from studies using sine tones and suchlike. 
Elsewhere, ‘t Hart reports the minimum difference between two F0 movements for 
them to be perceived as different. The numbers here are much larger, and range from 
over one and a half to more than four semitones [16]. For the purposes we have in 
mind – for example to classify pitch as HIGH, LOW, or MID within a speakers range - 
we will say that differences of less than one semitone are acceptable.  

In the remainder of this chapter, we present the results of analyses of speech from 
eight speakers with a view to answering the following questions: What does the F0 
distribution look like? How does a semitone transformation affect it? What will the 
error be if we assume normally distributed F0 values to approximate the 5th, 25th, 50th, 
75th and 95th percentiles? How much speech is needed to build a reliable model of F0  
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distribution? Furthermore, we discuss whether there is a need for a decaying model – 
a model in which the weight of an observation decreases with time – and if so, what 
the rate of decay should be. 

2   Method 

2.1   Speech Material 

The speech data used for the present study consists of Swedish Map Task dialogues 
recorded by Pétur Helgason at Stockholm University [17, 18]. The Map Tasks were 
designed to elicit natural-sounding spontaneous dialogues [19]. There are two 
participants in a Map Task dialogue: an instruction-giver and an instruction follower. 
They each have a map, both maps being similar but not identical. For example, 
certain landmarks on these maps may be shared, whereas others are only present on 
one map, some landmarks occur on both maps but are in different positions etc. The 
task is for the instruction-giver to describe a route indicated on his or her map to the 
follower.  

The Swedish Map Task data used in this study consists of recordings of four pairs, 
or eight speakers including five female (F1-F5) and three male (M1-M3) speakers. 
Within each pair, each speaker acted as both giver and follower at least once. They 
were recorded in an anechoic room, using close talking microphones, and facing away 
from each other. They were recorded on separate channels. The total duration of the 
complete speech material is about three hours.  

2.2   F0 Analysis and Filtering 

The Snack sound toolkit (http://www.speech.kth.se/snack/), with a pitch-tracker 
based on the ESPS tool get_f0 was used to extract F0 and intensity values. The 
resulting F0 values (in Hz) were transformed onto logarithmic scale (semitones 
relative to 100 Hz) to enable comparisons between Hertz and semitone data. 
Although the quality of the recordings was very good, there was some channel 
leakage. As the pitch-tracker analyzed parts of the leakage as voiced speech, a filter 
was used to remove the frames in the lower mode of the intensity distribution. 
Similarly, in case there was a bimodal distribution of F0 values (e.g. due to creaky 
voice or artefacts introduced by the pitch-tracker), another filter was applied to 
remove the lower mode of the F0 distribution. No filtering was used for the upper 
part of the distributions, however. 

2.3   Statistical Analysis 

SPSS was used to calculate descriptive statistics, percentiles, and Kolmogorov-
Smirnov tests of normality for Hertz and semitone data, respectively, in the pre-
processed models condition.  

For the incremental models condition the percentiles where calculated in two 
ways. A gold standard was achieved at each calculation interval by sorting and 
counting every data point, a method that, as already mentioned, is impractical for  
 



234 J. Edlund and M. Heldner 

real, online purposes. Another set of function-based percentiles – which can be 
achieved realistically under real online circumstances – was then calculated in a 
two-step process, in which means and standard deviations were first calculated 
incrementally at regular intervals. The straightforward method of doing this – 
simply adding up all instances and calculating the means and standard deviation 
using the sum and the number of instances – is associated with floating point errors 
which can be quite severe when the number of instances is high. Instead, recursion 
functions where used, as described by [20]. The percentiles where then looked up in 
a table of the area under the standard normal distribution [e.g. 21] using the 
incrementally calculated means and standard deviation. This technique is the same 
that we use in the /nailon/ software, although /nailon/ uses a very small 
moving window for get_f0 for performance reasons [10]. Here, in order to make the 
results of the incremental processing directly comparable to the pre-processed 
models created in SPSS, we used the same pre-extracted F0 values as input for all 
methods. An informal test revealed that /nailon/ data would yield very similar 
results, however. 

3   Results: Pre-processed Models 

This section presents estimations of pitch range and subdivisions of the distributions 
using all available F0 data for the speakers. Note that, these estimations in a sense 
represent a speaker’s total pitch range (although the outliers are trimmed) rather than 
the range to be expected within an individual utterance. Table 1 shows descriptive 
statistics for F0 distributions calculated from Hertz data for each speaker, and Table 2 
the corresponding statistics calculated from semitone data. Unsurprisingly, the male 
and female speakers differed substantially with respect to means (or medians), and 
there was considerable individual variation within the male and female groups. The 
differences in standard deviation (or inter-quartile range IQR), however, and 
especially those calculated from semitone data, were more modest, and could not be 
attributed to speaker gender [cf. 14].  

Table 1. Descriptive statistics (means, medians, standard deviations SD, interquartile range 
IQR, skewness, kurtosis, and number of data points N) for F0 distributions based on Hertz data 
per speaker SP 

SP MEAN MEDIAN SD IQR SKEW. KURT. N 
F1 217 213 38 51 0.56 0.27 49070 
M1 124 120 30 27 4.72 47.04 79703 
F2 194 194 49 67 0.09 -0.16 72554 
F3 201 194 45 51 1.47 5.29 77086 
F4 238 234 30 31 2.13 11.30 74790 
M2 122 119 26 30 1.02 4.03 39064 
M3 117 112 33 34 2.85 21.19 63454 
F5 200 193 42 59 0.68 0.18 36415 
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Table 2. Descriptive statistics (means, medians, standard deviations SD, interquartile range 
IQR, skewness, kurtosis, and number of data points N) for F0 distributions based on semitone 
data per speaker SD 

SP MEAN MEDIAN SD IQR SKEW. KURT. N 
F1 13.1 13.0 3.0 4.1 0.06 -0.10 49070 
M1 3.3 3.2 3.5 3.9 0.92 6.53 79703 
F2 10.9 11.4 4.7 6.0 -0.72 0.80 72554 
F3 11.7 11.5 3.6 4.5 0.32 1.32 77086 
F4 14.9 14.7 2.0 2.3 1.12 3.83 74790 
M2 3.1 3.0 3.6 4.4 -0.04 0.88 39064 
M3 2.1 2.0 4.3 5.2 0.53 2.12 63454 
F5 11.6 11.4 3.5 5.2 0.19 -0.37 36415 

Although there were considerable individual differences, the F0 distributions were 
generally asymmetric. For the distributions based on Hertz data, the medians were 
smaller than the means and the distributions were positively skewed for all speakers. 
Similarly, the medians were smaller than the means for all but one speaker, and the 
distributions were positively skewed for six of the speakers in the semitone 
distributions. Positive skewness values indicate that the tails of the distributions tend 
to stretch out more on the right (higher) side than in the normal distribution. 
Furthermore, seven of the distributions based on Hertz data, and six of those based on 
semitones had positive kurtosis values, indicating that the data were squeezed into the 
middle of the distributions compared to the normal distribution.  

Thus, the F0 distributions in our data generally deviate from the normal 
distribution, both in terms of skewness and kurtosis. The distributions tend to be 
clustered more and to have longer tails than in the normal distribution, and those tails 
tend to be at the right hand side of the distributions [cf. 14]. Kolmogorov-Smirnov 
tests of normality showed that all distributions, based on Hertz as well as on 
semitones, differed significantly (p<0.01) from a normal distribution.  

As it is difficult to assess the effect of these deviations from a normal distribution 
directly from the skewness and kurtosis values, we calculated the differences (in 
semitones) between distribution subdivisions based on distance from the mean 
expressed in standard deviations and the percentiles corresponding to these distances 
given normally distributed data, as given by a table of the area under the standard 
normal distribution. That is, the distance between the 5th percentile and the mean 
minus 1.65 standard deviations; the 25th percentile and the mean minus 0.65 standard 
deviations; the 50th percentile (the median) and the mean; the 75th percentile and the 
mean plus 0.65 standard deviations; and the 95th percentile and the mean plus 1.65 
standard deviations. The results for Hertz and semitone data are shown in Table 3 and 
Table 4, respectively. See the Appendix for the percentile values used for these 
calculations. 
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Table 3. Distance (in semitones) between distribution subdivisions based on distance from the 
mean expressed in standard deviations and the percentiles corresponding to these distances in 
normally distributed data. Distributions based on Hertz data. 

SP 5TH PERC 25TH PERC 50TH PERC 75TH PERC 95TH PERC 
F1 -0.9 0.3 0.3 0.1 -0.4 
M1 -3.6 -0.6 0.5 1.1 1.2 
F2 -0.4 0.2 0.1 -0.1 -0.1 
F3 -2.3 0.0 0.6 0.6 -0.3 
F4 -1.1 -0.1 0.3 0.5 -0.1 
M2 -0.8 -0.1 0.4 0.4 -0.2 
M3 -3.7 -0.2 0.7 1.0 0.1 
F5 -1.7 0.5 0.6 0.0 -0.5 

Table 4. Distance (in semitones) between distribution subdivisions based on distance from the 
mean expressed in standard deviations and the percentiles corresponding to these distances in 
normally distributed data. Distributions based on semitone data. 

SP 5TH PERC 25TH PERC 50TH PERC 75TH PERC 95TH PERC 
F1 -0.2 0.1 0.1 0.0 -0.3 
M1 -0.9 -0.3 0.1 0.4 0.7 
F2 0.5 -0.4 -0.5 -0.2 1.1 
F3 -0.7 0.0 0.2 0.1 -0.2 
F4 -0.5 0.0 0.2 0.3 -0.1 
M2 0.4 -0.2 0.1 0.1 0.1 
M3 -0.6 -0.1 0.1 0.3 0.0 
F5 -0.6 0.3 0.2 -0.3 -0.2 

These calculations showed that a base value for a speaker’s pitch calculated as the 
mean minus 1.65 standard deviations resulted in slightly lower values than the 5th 
percentile for all speakers in the Hertz distributions, and for 6 of the speakers in the 
semitone distributions. The differences ranged from 0.4 to 3.7 semitones (average 1.8 
ST) in the Hertz distributions, and from 0.2 to 0.9 semitones (average 0.5 ST) in the 
semitone distributions. Similarly, the mean minus 0.65 standard deviations resulted in 
values within 0.6 semitones (average 0.3 ST) from the 25th percentile in the Hertz 
distributions, and within 0.4 semitones (average 0.2 ST) in the semitone distributions. 
The mean was within 0.7 semitones from the 50th percentile (i.e. the median) in the 
Hertz distributions, and within 0.5 semitones in the semitone distributions. The mean 
plus 0.65 standard deviations resulted in values within 1.0 semitone (average 0.5 ST) 
from the 75th percentile in the Hertz distributions, and within 0.4 semitones (average 
0.2 ST) in the semitone distributions. Finally, a top value for a speaker’s pitch 
calculated as the mean plus 1.65 standard deviations resulted in values within 1.2 
semitones from the 95th percentile in the Hertz distributions (average 0.4 ST), and 
within 1.1 semitones (average 0.3 ST) in the semitone distributions.  
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4   Discussion: Pre-processed Models 

The analyses of all F0 data for each speaker support the previous findings that F0 
distributions are typically not normally distributed [cf. 12]. There is usually some 
positive skewness and some positive kurtosis indicating that the distributions lean to 
the right and are clustered more than the normal distribution. Thus, F0 data typically 
violate the assumption of normality underlying many statistical procedures, including 
estimations of pitch range based on means and standard deviations.  

Various transformations (including square roots, logarithmic, and inverse 
transforms) may be used to correct non-normally distributed data [e.g. 21]. Among 
these, logarithmic transformation (i.e. from Hertz to semitones) makes the most sense 
here, in that the data are more readily interpreted and perceptually relevant after 
transformation. For example, semitone transformation makes the pitch ranges of 
males and females comparable [e.g. 12]. Indeed, our analyses show that such a 
transformation (N.B. before the calculations of distribution statistics) resulted in 
lower skewness values for all but one speaker, and in lower kurtosis values for all but 
two speakers, and hence decreased the deviations from normally distributed data 
(which has skewness and kurtosis values of zero). Figure 2 shows histograms with 
superimposed normal distribution curves for one of the speakers (M1) to exemplify 
this. 
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Fig. 2. Histograms showing F0 distributions with superimposed normal distribution curves 
based on Hertz data (left panel) and on semitone data (right panel) for one of the speakers (M1) 

Although our F0 data generally deviated from a normal distribution also after 
logarithmic transformation, subdivisions based on distance from the mean expressed 
in standard deviations yielded fairly good estimations of the percentiles. The 
differences between exact subdivisions and estimations based on the assumption of 
normality were reduced as a result of the transformation. In the distributions based on  
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semitone data, the differences exceeded one semitone for one subdivision and one 
speaker only (95th percentile, speaker F2). Given the current knowledge about pitch 
perception in speech [see e.g. 15 and references mentioned therein] we find it most 
unlikely that these differences should be perceptually relevant – we consider 
estimations within one semitone good enough for the kind of classification we are 
aiming at.  

Based on these observations, we argue that use of semitone transformation is 
advantageous for theoretical as well as for statistical reasons, and hence a sound 
practice for automatic estimation of pitch range, and furthermore that distribution 
subdivisions based on means and standard deviations which in turn are based on a fair 
amount of data, yields a description of the F0 distribution that is good enough to 
estimate speaker relative pitch in an offline situation. It remains to be shown, 
however, how much speech is needed to build a reliable model of the F0 distribution 
in an online situation. This issue will be addressed in the following sections. 

5   Results: Incremental Models 

As mentioned above, percentiles can either be calculated using an exact method, or, 
given that a normal distribution can be assumed, from means, standard deviations and 
a table of the area under the standard normal distribution. Figure 3 shows how 
percentiles calculated using these two methods differ and evolve over time for the 
eight speakers in our data.  

A comparison of the two methods of calculating percentiles revealed minor 
differences only. It seems that the method assuming a normal distribution (i.e. the 
estimation) stabilised at the same rate as the exact method. After 10 seconds of voiced 
speech, the estimation resulted in percentiles within one semitone from the exact ones 
in 92.5 % of the cases (counting eight speakers times five percentiles). Similarly, after 
20 seconds 95.0 % of the cases differed less than one semitone, and after six minutes, 
the figure was 97.5 %. There are no large fluctuations in the differences anywhere 
from 20 seconds to 6 minutes. 

As you would have thought, the most drastic changes were found during the first 
10 seconds of voiced speech, and especially in the 5th and 95th percentile trimming the 
outliers. Some 10 to 20 seconds of voiced speech was enough to get a fair model for 
most speakers, although the models kept on changing well after 20 seconds for some 
(e.g. M2 and M3).  

A rough estimate of the stability of the models can be obtained by comparing the 
estimated percentiles at 10 and 20 seconds with the percentiles at six minutes (the 
shortest amount of voiced speech we have available for an individual speaker is six 
minutes, and we want comparable data sets). After 10 seconds, 80.0 % of the 
thresholds (again for eight speakers times five percentiles) differed less than one 
semitone from the thresholds at six minutes, 97.5 % were less than two semitones, 
and one case exceeded two semitones. Similarly, at 20 seconds, 82.5 % of the 
thresholds were less than one semitone from the result at six minutes, 97.5 % less than 
two semitones away, and again; only one case exceeded two semitones.  
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Fig. 3. Cumulative percentiles (in semitones) calculated using an exact method (black lines), 
and an estimation calculated from incremental means and standard deviations (grey lines) for 
each speaker. The 5th, 25th, 50th, 75th, and 95th percentiles are shown from the bottom and up. 
The scale on the time axis is logarithmic.  

6   Discussion: Incremental Models 

The analysis of the incremental models has shown that a good estimate of the shape of 
the F0 distribution can be obtained after a short period of time using incrementally 
calculated means and standard deviations, although it is clear that 10 to 20 seconds is 
not sufficient to create models of a speaker’s total pitch range. For most practical 
purposes, we would not be interested in a speaker’s total pitch range, however, but 
rather of a speaker’s current pitch range. We need to ask ourselves how stable F0-based 
models are, how much data needs to go into them, and when they become obsolete. 

Fig. 3 may lead us on our way towards the answers. It is important to note that if 
we use very large quantities of data in a model without putting less weight in old data 
than in new, we are quickly going to end up with a model that is in effect static, since 
each new data point has less and less influence on the model as a whole. Such a 
model will become increasingly burdened with problems typical for static models, 
most notably susceptibility to dynamic influences. If we on the other hand pay very 
little attention to older data, the model is going to flutter unpredictably. There are a 
number of ways to achieve a model that places more weight in new data than in old, 
for example by letting the weight of data points decrease as they grow older – a 
decaying model. The question is when the decay should start and at what speed it 
should proceed. The graphs in Fig. 3 indicate that in several cases, the models are 
quite fickle before the 10-second line. These fluctuations are not likely to be 
something we want to capture. At 20 seconds to a minute, the changes are much 
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smaller and slower, and may well be worth modelling. A rough estimate, then, is that 
decay should commence no sooner than 10 seconds after the data is seen, and should 
continue slowly over 10 seconds to a minute, perhaps. Further research is needed to 
test these observations, however.  

7   Conclusions 

In this contribution, we have examined measurable manifestations of pitch range and 
speaker relative pitch in the speech signal and provided a hands-on description of how 
to capture this. The technique works and can be used on a normal computer under 
real-time online conditions. For concepts like “the centre of the user’s F0 range”, it is 
comparable to pre-processed models. 

We may conclude that semitone transformation is advantageous for theoretical as 
well as for statistical reasons, and hence a sound practice for automatic estimation of 
pitch range, and furthermore that estimations of percentiles based on means and 
standard deviations yields a description of the F0 distribution that is good enough to 
estimate speaker relative pitch with errors of less than one semitone. 

Finally, we note that somewhere between 10 and 20 seconds of voiced speech is 
sufficient training material to make such estimations for most speakers, at least in 
dialogue situations that change at a similar rate to Map Task, and that decaying models 
are likely to outperform models that grow rigid over large quantities of training data.  
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Appendix 

Table 5. Percentiles for F0 distributions based on all Hertz data for each speaker 

SP 5TH PERC 25TH PERC 50TH PERC 75TH PERC 95TH PERC 
F1 162 189 213 239 287 
M1 91 108 120 135 162 
F2 116 161 194 228 277 
F3 146 172 194 223 280 
F4 202 220 234 251 288 
M2 83 106 119 136 167 
M3 78 97 112 131 170 
F5 145 168 193 227 276 
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Table 6. Percentiles for F0 distributions based on all semitone data for each speaker 

SP 5TH PERC 25TH PERC 50TH PERC 75TH PERC 95TH PERC 
F1 8.3 11 13 15.1 18.3 
M1 -1.6 1.3 3.2 5.2 8.4 
F2 2.6 8.2 11.4 14.2 17.6 
F3 6.5 9.4 11.5 13.9 17.8 
F4 12.1 13.6 14.7 15.9 18.3 
M2 -3.2 1 3 5.3 8.9 
M3 -4.4 -0.6 2 4.6 9.2 
F5 6.4 9 11.4 14.2 17.6 
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Abstract. This contribution deals with the automatic identification of
the dialects of the British Isles. Several methods based on the linguistic
study of dialect-specific vowel systems are proposed and compared using
the Accents of the British Isles (ABI) corpus. The first method examines
differences in diphthongization for the face lexical set. Discrimination
scores in a two-dialect discrimination task range from chance to ca. 98 %
of correct decision depending on the pair of dialects under test. Thanks
to the ACCDIST method (developed in [1,2]), the second and third ex-
periments take dialectal differences in the structure of vowel systems into
consideration; evaluation is performed on a 13-dialect closed set identi-
fication task. Correct identification reaches up to 90% with two subsets
of the ABI corpus (/hVd/ set and read passages). All these experiments
rely on a front-end automatic phonetic alignment and are therefore text-
dependent. Results and possible improvements are discussed in the light
of British dialectology.

Keywords: Automatic dialect identification, accents of English, British
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1 Introduction

The specific patterns of pronunciation that are related to speakers’ regional
origin or social background greatly contribute to the distinctiveness of their
voices, and therefore to the variability of speech. Dialect – or rather accent1 –
identification has therefore become an important concern in speech technology.
For instance, it has been shown that automatic speech recognition systems can
perform tremendously better when the training and the test sets are matched
for dialect ([3]). Dialect identification – whether the task be carried out by a
computer or a human expert – also has forensic applications ([4,5]) although, as
is the case with any other component of somebody’s voice, the plasticity issue
1 The word accent quite often refers to foreign-accented speech, and although it is

appropriate to designate the pronunciation of dialects, the term dialect will be used
instead since the present contribution deals exclusively and unambiguously with
pronunciation features.

C. Müller (Ed.): Speaker Classification II, LNAI 4441, pp. 243–257, 2007.
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(e.g. somebody may alter their accent for sociolinguistic reasons, or in order to
deceive) raises daunting challenges for the speech community. Our aim here is
to assess to what extent knowledge of the phonetics of dialects can provide an
alternative to crude acoustic modelling. A substantial part of this contribution
is therefore devoted to some aspects of phonetic vowel variation across dialects.
The remainder covers experiments in the automatic classification of the dialects
of the British Isles ([6,1,2,7]) with a twofold objective: evaluating classification
scores per se, and demonstrating how automatic methods can assist researchers
in phonetics and dialectology.

2 An Overview of the Dialects of the British Isles

Most of the dialects of the British Isles have been extensively described in the
literature; therefore an exhaustive account falls well beyond the scope of this
contribution. The reader is advised to consult the following references for thor-
ough information on the phonetic aspect: [8,9,10,11]. However, some features
are highlighted in this section because they constitute the necessary background
basis for the rest of the discussion. In traditional (areal) dialectology, pronuncia-
tion isoglosses, i.e. boundaries demarcating dialects, have commonly been used.
The boundaries that delimit differences in vowel systems are of particular inter-
est to us since they are at the heart of the method developed in Experiment 2.
By way of example, gas does not rhyme with grass in the south of England,
but it does in the (linguistic) north. Similarly, the vowels of nut and put are
phonologically identical in the north, but a phonemic split caused them to be
differentiated in the south. Good and mood rhyme in Scotland, but not in the
rest of the British Isles, while nurse and square have been reported to have
the same vowel in certain speakers from Liverpool and Hull, for example. How-
ever, just as surface realization can be affected by sociological factors, vowel
systems too may vary within a given location, and speakers sometimes try to
“posh up” their accent by adopting the vowel system of a more prestigious va-
riety than their own. This can lead to a phenomenon known as hypercorrection
whereby, for instance, a speaker from the north of England (having no distinc-
tion between the vowels in nut and put) tries to imitate a southerner, failing
to identify which words should pattern with the southern phonemes of nut or
put, and ends up pronouncing sugar with the vowel of nut (example taken from
[9, page 353]). This may sound trivial, but it has serious consequences on the
method we describe in Experiment 2. The question of lexical incidence (roughly
speaking: deciding to which phonemic category a vowel token belongs) is indeed
crucial here because it suggests extreme caution – and, clearly, expert knowl-
edge – when choosing the key words for creating shibboleth sentences. Suppose
a phonetician designs test sentences to elicit the – or the absence of – contrast
between gas and grass or father in order to determine whether a speaker is from
the north or the south of England. Without prior knowledge of dialectology, he
or she may well wrongly infer from the spelling that mass patterns with grass, or
that gather rhymes with father in southern dialects. Opposing gather or mass
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with gas, and therefore failing to identify the correct underlying phonological
representation of these words, would lead the phonetician to miss the poten-
tial contrast under study. We will return to this question further below. Beside
systemic differences, dialect variation is also manifested by different phonetic re-
alizations of the same phoneme; this characteristic also plays an important role
in Experiment 2, and it is clearly illustrated in Experiment 1, which focuses on
diphthongization.

3 Corpus Description

The material comes from the Accents of the British Isles (ABI) corpus ([12]).
The database consists of recordings from 14 geographical areas throughout the
British Isles. For each variety of English, 20 speakers on average (equally divided
into men and women) participated. In the following experiments, two types of
data were used: a list of 19 /hVd/ words spoken 5 times by each speaker, and
a read passage, containing approximately 290 word tokens, specifically designed
to elicit dialect variation. The recordings took place in quiet rooms (e.g. in
public libraries) at the beginning of 2003; the participants spoke through a head-
mounted microphone that was connected to a PC via an external sound card.
The sound files are mono 16 bit 22050Hz PCM Windows files. Worthy of mention
is the total lack of individual information on the participants (age, occupation,
etc.), which precludes the inclusion of highly relevant sociolinguistic factors in the
study ([5,13,14]). The dialects and the towns where the corresponding recordings
took place are listed in Table 1.

Table 1. Dialects of the ABI Database

LABEL DIALECT PLACE

brm Birmingham Birmingham
crn Cornwall Truro
ean East Anglia Lowestoft
eyk East Yorkshire Hull
gla Glasgow Glasgow
ilo Inner London London (Tower Hamlet)
lan Lancashire Burnley
lvp Liverpool Liverpool
ncl Newcastle Newcastle
nwa North Wales Denbigh
roi Republic of Ireland Dublin
shl Scottish Highlands Elgin
sse Standard Southern English London
uls Ulster Belfast
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4 Experiment 1: Diphthongization

4.1 Goal

Diphthongization refers to the stability over time of the formant pattern in a
vowel. The concept lies at the phonetic level in that it disregards whether a vowel
be phonologically termed a diphthong or not. For example the vowels of fleece

and goose
2 in Standard British English are often described as monophthongs

in manuals for foreign learners, but they are clearly diphthongized. Our aim is to
come up with an economical and sufficient set of parameters to describe formant
stability and then validate the model with a classifier. For the sake of parsimony,
and in order to get rid of part of the individual variation, absolute vowel initial
and final formant values are discarded (although they are known to be dialect
specific) and only dynamic features are considered. In the first experiment we
concentrate on the so-called face vowel, which occurs in the corpus in the words
sailor, faces, today, takes, same, generations, way, stable, unshakable, faith, later,
favour, great, fame, Drake, sail, and make. We posit for practical reasons that
all these words belong to the face set. Note however that this may be too much
of an assumption, and a more cautious approach is taken in Experiment 3 where
we no longer consider lexical sets, but individual words instead. Using formant
trajectories (i.e. the formant slopes) as a criterion, the face vowel has, roughly
speaking, three main realizations in the dialects of the British Isles:

1. a long closing diphthong beginning with an open-mid vowel and gliding to-
wards a close front position, e.g. in the south of England (e.g. Figure 1a);

2. a centring diphthong starting from a mid-close (or even closer) quality and
gliding towards schwa in Newcastle (e.g. Figure 1b);

3. a rather short front close-mid monophthong, e.g. in Scotland and some di-
alects of the north of England (e.g. Figure 1c).

It is hypothesized that the slopes of F1 and F2 will adequately model these three
types of vowels.

4.2 Method and Results

A transcription at the phonetic level was generated with forced alignment using
the Hidden Markov Model Toolkit (HTK) ([15]). The models had been trained on
the WSJCAM corpus3. Formant values were estimated with the Praat program
([16]) using the Burg algorithm set with default values. Some formant extraction
errors occurred (as confirmed by visual inspection of formant tracks); however,
in order to keep the procedure as automatic as possible, no attempt was made to
manually get rid of outliers. Then the slopes of F1 and F2 were computed with
robust linear regression in Matlab. Knowledge of phonetic variation was taken

2 These small capitalized key words stand for lexical sets: [9] popularized this practice
in the early 80s, and it is still widely used in British English dialectology nowadays.

3 We are grateful to Mark Huckvale for kindly providing the HMM models.
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into account in order to conceptualize the classification problem. Given that
one single linguistic variable (i.e. the face vowel) does not allow separability
between all dialects, the original task with C = 14 classes was approached as
C(C−1)/2 = 91 separate two-class problems. Another reason for building several
two-class models, which would be worth exploring, is to gather an optimal - and
therefore presumably different - set of parameters for each pair of dialects. In the
absence of any a priori reason to the contrary, linear separability was assumed
and the classification was performed with a single layer neural net implemented
with the Netlab toolbox ([17]). The network has two inputs: the slopes of F1 and
F2. For each pair of dialects, all the tokens of all speakers except the speaker
under test are passed through the network. This cross-validation procedure is
adopted because of the very small size of the dataset. The network is trained
with 10 iterations of the iterated re-weighted least squares algorithm. Finally
the ouput neuron with a logistic activation function makes a binary decision:
the test speaker’s tokens either belong to the first or the second dialect of the
current pair. A correct classification score is therefore computed for each pair of
dialects. In order to save space the 91 scores are not reproduced here; instead,
the top and bottom ten pairs are shown in Table 2.

The fourth column shows the geographical distance (in km) between towns.
Note how, on average, pairs with high classification scores are farther apart
than those with low scores. Actually, a rather low but significant correlation
exists between discrimination scores and geographical distances for the 91 pairs
(r = .53, Spearman rank correlation).

4.3 Discussion

This experiment is the most linguistic-oriented one since the correspondence be-
tween formant slope values (the input to the model) and the traditional phonetic
vowel quadrilateral facilitates phonetic interpretation. In other words, Experi-
ment 1 not only shows that the method works, but also that the results are
directly interpretable in phonetic terms. However, one of the flaws lies in that
automatic formant estimation is only partially reliable. Besides, the automatic
aspect is quite restricted, and the method described here is therefore very un-
likely ever to be implemented in real-life applications. It may however prove
a useful tool for testing dialectological hypotheses such as the discriminatory
power of a given pronunciation trait.

5 Experiment 2: Vowels in hVd Context

5.1 The ACCDIST Method

In Experiment 2, 19 vowels embedded in /h d/ consonantal contexts were ex-
amined. /hVd/ words have often been used in phonetic studies because the
acoustic characteristics of vowels are only slightly affected by these consonants,
and keeping the same consonantal context rules out coarticulatory differences.
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Fig. 1. Spectrograms exemplifying the three realizations of the face vowel

In a multi-dialect perspective, the 19 /hVd/ words presumably instantiate all
possible phonological contrasts in the dialect that has the biggest inventory4.
Artificial though the stimuli may seem, they nevertheless give the opportunity
to calibrate the system under ideal conditions for subsequent use on data closer
to real-life speech (see Experiment 3), and provide a convenient way of studying
variation in phonological systems. Prior to the analysis proper, a native English
expert phonetician examined the corpus and advised us against including the ilo
subset on the grounds that the extreme heterogeneity of the speakers could in no
way form a single entity (further details are given in section 7.1). More than for
any other dialect in the corpus, individual information on speakers would have

4 This again is an oversimplification: to be more accurate, the 19 stimuli exemplify
the phonological vowel contrasts of Standard British English, which implies that
the other vowel inventories are assessed with reference to that of Standard English,
and not to an ideal panlectal representation. Thus, we have no means of knowing
whether increasing the number of /hVd/ words would elicit other contrasts in the
remaining dialects.
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Table 2. Paired-dialect discrimination based on diphthongization. The ten highest
and lowest scores are displayed. All scores, unless specified (ns), are significant at the
p = .05 level (binomial tests).

CORRECT GEOGRAPHICAL
DIALECT1 DIALECT2 DISCRIMINATION (%) DISTANCE (km)

brm shl 97.8 581
ean shl 96.8 658
ean gla 96.3 541
shl sse 96.1 712
brm gla 95.9 406
crn shl 95.5 829
ilo shl 95.4 712

brm ncl 95.2 277
lvp shl 95.0 471
ean ncl 94.7 354

...
lvp roi 57.3 219
lvp sse 56.3 ns 285
nwa roi 52.6 ns 189
crn lvp 51.4 ns 380
crn sse 51.3 ns 374
ilo sse 51.3 ns 0
gla ncl 51.0 ns 193
lvp nwa 49.7 ns 38
eyk lan 49.3 ns 125
crn ilo 42.5 374

been essential. ABI comes complete with a word-level segmentation; assuming –
although this is not totally accurate – that voiced frames corresponded to vowels,
automatic pitch detection with the Snack Sound Toolkit ([18]) was employed to
estimate vowel boundaries. 12 MFCC and one energy feature were computed at
25%, 50%, and 75% of the duration of the vowel, and the duration itself was
included to form a vector of 40 features. The computation was done with the
melfcc routine from the rastamat toolbox ([19]); the options were those that the
author recommends to duplicate HTK’s MFCC, except that the window length
and the analysis step were set to 20ms and 10ms, respectively. After removing
the speakers from ilo and two participants who did not complete the whole set
of test words, we were left with 261 speakers. The rationale for the classification
method was first introduced, as far as we know, by [6], and it was later adopted
by [1,2], who devised the ACCDIST method (Accent Characterisation by Com-
parison of Distances in the Inter-segment Similarity Table), which is central to
this section5. Speaker normalization is a critical issue in phonetics: differences in

5 [1,2] also used the ABI corpus; he however worked on a different part of the database,
namely, a set of shibboleth sentences.
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individual acoustic spaces, either due to physiological constraints or habit, have
to be factored out. [6] and later [1,2] got round the problem by representing
vowels with reference to a speaker’s vowel space structure, and not to average
stored values. One way to do this is to compute distances between each pair of
vowels. As mentioned above, a vector of size 40 was computed for each vowel.
For a given speaker, the values for the five repetitions of each /hVd/ type were
averaged. Then, distances were calculated between the 19 vowel types, yielding,
for each speaker, a 19 × 19 symmetric distance matrix. Quite a few distance
measures for continuous variables are available in the literature (see for example
[20], for a discussion of the properties of some of them), and the choice of the
appropriate one depends on the particular kind of data. Central to the problem
is the issue of variable weighting: in our n×p matrices (where n are the 19 vowels
of a speaker and p the 40 spectral and duration features), the ranges and scales
of the p variables differ substantially. It is common practice to standardize each
variable to zero mean and unit variance (i.e. computing a so-called z-score); yet,
we assumed that, given that the computation of MFCC is based on an auditory
filter bank, the differential weightings induced by differences in scales and ranges
reflected perceptually relevant attributes of the spectrum, and should therefore
be preserved. A good choice in such cases is to use a family of distance metrics
whose general form is the Minkowski distance:

dij =

(
p∑

k=1

|xik − xjk|r
) 1

r

(1)

where r must be superior or equal to 1. As the chosen r value increases, the
differential weighting of the p variables also increases: large differences are given
relatively more weight than small ones. Bearing in mind what has just been
said about the perceptual relevance of our feature space, we want to avoid dis-
torting it by using high exponents and will therefore stick to low values such
as r = 1 and r = 2, which correspond to the Manhattan and Euclidean dis-
tances, respectively. So, once a 19 × 19 distance matrix has been computed for
each speaker, the classification method described in [1,2] is carried out: 13 di-
alect matrices are obtained by getting the mean of the individual matrices for
each dialect. The validation procedure goes as follows: the dialect matrix of the
speaker under test is re-computed without her/his individual matrix and then
each individual matrix is compared to the 13 dialect matrices. Matrix similarity
is estimated with a matrix correlation coefficient: the two matrices, i.e. the test
speaker and the dialect matrix (or rather: either the upper or lower triangular
part, since they are symmetric) are unfolded onto a row vector, then the Pearson
product-moment correlation is computed. The speaker under test is classified as
belonging to the dialect whose correlation with her/his matrix is highest. Percent
correct identification scores are 86.6%, 89.0%, and 89.7%, for men, women, and
both sexes respectively, using the Euclidean distance. Slight improvements are
obtained in both sexes condition with the Manhattan distance: 90.0%. Corre-
lation measures are insensible to scale magnitude, which solves the question of
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Table 3. Confusion Matrix: /hVd/ words; all subjects; Manhattan distance. Overall
correct score: 90.0 %.

TEST MODELS
DIALECT BRM CRN EAN EYK GLA LAN LVP NCL NWA ROI SHL SSE ULS

brm 18 - 1 - - 1 - - - - - - -
crn - 16 - - - - - - - 1 - 3 -
ean 1 - 15 - - - - - - - - 3 -
eyk 2 - - 22 - - - - - - - 1 -
gla - - - - 18 - - - - - - - 2

lan - - - - - 21 - - - - - - -
lvp - - - - - - 19 - - - - - -
ncl - - - - - - - 18 1 - - - -
nwa 1 - - - - - 1 - 18 - - - -
roi - - - - - - - - 1 19 - - -
shl 1 - - - 1 - - - - - 19 - 1

sse 1 1 2 - - - - - - - - 12 -
uls - - - - - - - - - - - - 20

speaker normalization. Note incidentally that the method is unaffected by sex
differences.

5.2 Gaussian Modelling

An alternative classification using Gaussian modelling was carried out with the
Netlab ([17]) toolbox. The model takes z-scored individual distance matrices as
input and estimates one Gaussian model N(μ, σ) per dialect. As before, the test
speaker is excluded from the training set; in other words, for each speaker, a
new model is trained on all the data minus this speaker’s matrix. The estimated
dialect identity is then given according to the Maximum Likelihood decision.
This statistical decision yields a non significant improvement over the previ-
ous method: for the both sexes condition, the model achieves 90.4% correct
classification.

5.3 Discussion

Both methods seem to perform equally well, which might indicate that a ceiling
has been reached for this particular corpus. This question will be addressed more
in depth in Section 7.1. A close examination of Table 3 suggests that linguistic
explanations can often justify some of the misclassifications. For example, the
historical link between ean and sse may account for the 3 ean speakers being
classified as sse, and the 2 speakers of sse being classified as ean. The fact that
2 speakers of gla, and 1 from shl were identified as uls could be accounted for
by saying that the 3 dialects belong to a common super region, namely, the
Celtic countries. The high scores were of course facilitated by the absence of
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co-articulatory variation; yet, it is worth pointing out that even /hVd/ words
– whose weaknesses are constantly condemned – contain essential information
about dialect. And, what is more, they probably constitute the quickest and
most convenient way to form an opinion about the linguistic quality of a corpus,
or the feasibility of a classification task.

6 Experiment 3: Dialect Classification with Read
Passages

The ACCDIST procedure is then applied to the read passage part of the
corpus. The segmentation was obtained through forced-alignment as in Exper-
iment 1. The number of words uttered by all speakers amounted to 61. When
words were polysyllabic, only the stressed syllable was kept for the classification.
The same spectral and duration parameters as in Experiment 2 were computed.
One option would have been to classify the vowels according to the lexical set
they belonged to. However, this would have artificially reduced the diversity of
coarticulatory phenomena, possibly leading to poor performances, and it would
have necessitated the intervention of a human expert in order to infer lexical set
membership of the stressed vowel in a given word. This would in turn have led to
a manifold increase in the tedium and the time to carry out the classification, not
to mention the questionable theoretical validity of such inferences. A sounder ap-
proach that by-passes such linguistic hypotheses was therefore adopted: instead
of vowel types, distances were computed between vowel tokens. Note here that
264 speakers are included. The 61 × 61 individual distance matrices were then
classified with the same correlation-based procedure that was used for the /hVd/
words. 89.6%, 87.6%, and 90.5% correct classification are obtained for men,
women, and both sexes respectively with the Euclidean distance. The Manhattan
distance yields 87.4% and 89.4% for men and women; there is no improvement
for the third condition.

7 General Discussion

7.1 Guidelines to Assess Classification Scores

One of the questions underlying these experiments is how good a 90% correct
classification score is with respect to the data that has been analysed. A fun-
damental conceptual discrepancy between language identification and dialect
identification should help us come up with a tentative answer. Except for a
few borderline cases – including code-switching –, language sets are in principle
mutually exclusive; in other terms, a speaker either speaks language A or lan-
guage B, and certainly not a mixture of the two. Matters get more complicated
for dialect corpora: dialect membership for a speaker does not mean that the
speaker produces all the phonetic features of that particular dialect, nor does
it mean that s/he does not use features from other dialects. And as the dis-
tance (however it is measured) of a speaker from its dialect prototype increases,
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so does the risk of this speaker being associated (by a naive listener, an expert
phonetician, or the machine) with another dialect. In other words, it is undoubt-
edly more adequate to view dialect classes as fuzzy sets, and language classes
as hard sets, although quite circularly, depending on linguistic denominations,
we may come across borderline cases: if we use the linguistic criterion of mutual
intelligibility, some entities traditionaly termed “languages” can overlap (see the
case of Danish, Swedish, and Norwegian) while others called “dialects” may be
rather distinct (possibly the case for distant dialects of Arabic). Translating this
into figures, it could be said that language identification scores must be judged
against the maximal achievable score (i.e. 100% in almost all cases) whereas,
there is no simple way to estimate this figure for dialects. There probably ex-
ists a floor (above chance level) below which the scores of an automatic dialect
identification system can be considered bad; this floor could be given by classi-
fication carried out by naive listeners. And there certainly is another threshold
around which scores can be deemed excellent. We tried to estimate the value of
the latter threshold with an informal experiment: a native speaker expert pho-
netician was asked to listen to one third of all the passages spoken by men in
the ABI corpus. The experiment was actually divided into 14 (one per dialect)
separate verification tasks. In each task, the expert had to listen to a stimulus
and say whether it had been uttered by a speaker of the dialect of the current
task or not. We will not go into too much detail since this is beyond the scope
of the present research, suffice it to say that the expert scored 89.6%. Of course,
proficient though the expert may have been, his degree of acquaintance with
dialects probably varied from one to the next, but this is the closest we can get
to estimating the highest possible classification score. Ceiling effects in classifi-
cation accuracy are also suggested by a statement in the documentation of the
corpus acknowledging that some speakers, particularly in crn and nwa, have an
accent that might not be regarded as typical.

7.2 Descriptive Scope

Part of the descriptive task of the phonetician is to come up with linguistically
interpretable visual representations from multidimensional raw numerical data.
Graphical displays, particularly vowel plots, have been frequently used to illus-
trate phonetic phenomena. This section exemplifies how the methods employed
in Experiment 2 for classification can be used as a descriptive tool. The dendro-
grams in Figures 2 and 3 display the output of hierarchical clustering computed
with the single linkage algorithm implemented in Matlab for a selected set of
vowels in two female speakers from eyk and shl respectively. The first tree clearly
shows the relative proximity of hood and Hudd, exemplifying the well-known ab-
sence of phonemic split in the north of England we discussed in Section 2. The
second tree illustrates the phonemic merger in Scotland involving the vowels of
hood and who’d.

Figure 4 shows the scatter of women from six selected dialects based on in-
dividual 19 × 19 distance matrices computed with the /hVd/ words. Each in-
dividual matrix was z-scored and dimensionality was reduced with principal
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Fig. 2. Dendrogram illustrating the ab-
sence of hood vs. Hudd phonemic split in
eyk

Fig. 3. Dendrogram illustrating the
phonemic merger involving hood and
who’d in shl

component analysis. The plane is defined by the first two principal components,
which account for approximately 35% of the variance of the original data. High
though the distorsion may be, meaningful patterns can still be identified on the
graph: an imaginery oblique line separates the dialects of England (ean,lan, and
ncl) from those of the Celtic countries (gla, roi, and shl). Then, within the En-
glish group, an almost geographical picture emerges: ean in the south east, lan
in the north west, and ncl in the north east. In the Celtic group, Scotland and
Ireland are neatly split, with roi being distinct from gla and shl6. Finally, within
the Scottish subset, the situation looks more fuzzy (but this may simply be a
consequence of dimensionality reduction), although there is a tendency for gla
speakers to cluster near the bottom of the graph, and shl speakers above the
latter. Whatever the goodness of the final display, the efficiency of inter-segment
distance matrices to capture dialect specifities is confirmed by the bidimensional
map whose interpretation in linguistic and geographical terms makes perfect
sense.

7.3 Suggested Improvements

We now turn to the question of how to improve the classification scores. Consider
the n×p matrix where n refers to the 261 speakers and p to the 19(19−1)/2 = 171
distances (i.e. the unfolded 19×19 individual symmetric matrix) between pairs of
vowels. It is very unlikely that all distances possess equal discriminatory power:
some may be extremely relevant, e.g. those between two vowels that can be ei-
ther merged or not depending on the specific vowel system, others may have
only slight discriminatory power, for example those implying minute phonetic
differences, and others may be irrelevant altogether. In addition, measurements
6 Note however that one speaker from roi ended up with the ncl cluster.
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Fig. 4. Female speakers from 6 dialects along 1st and 2nd principal components derived
from the distance matrices on /hVd/ words

on continuous scales contain noise, hence we could consider dichotomizing some
of the quantitative variables. For example, phomenic mergers, or the absence of
phonemic splits, could be regarded as binary events: on a continuous scale, the
distance between hood and Hudd in northern English dialects is never equal to
zero, although it should be in systemic (phonological) parlance. Besides, it may
vary between speakers despite their producing exactly the same target vowel
in these two words. The varying distances between hood and Hudd in a set of
speakers having no hood vs. Hudd contrast is linguistically irrelevant, and it
adds noise to the system. So there must be a threshold in the distance measured
on a continuous scale below which the two vowels can be regarded as identical;
and above this threshold, the two vowels can be considered different. Feature
selection (recall that the features are the p = 171 distances between vowel pairs)
would be desirable for at least three reasons. Firstly, it would rid the system
of noisy variables, possibly improving classifications scores and reducing com-
putational cost. Secondly, some modelling techniques require a subtle balance
between the number of examples to classify and the size of the feature space
(the n and p dimensions in the matrix respectively); given the small size of n in
our data, reducing p is imperative. Thirdly, and most interestingly, special cases
of feature selection such as feature ranking and feature weighting can provide
explanatory principles: such methods as K-means partitioning may be used to
assess the relative weight of each feature ([21]). This assessment could in turn
validate linguistic hypotheses on the discriminatory power of each feature. All
these methods work a posteriori in that they need the data first; another possible
improvement would be to include linguistic knowledge prior to data analysis. [6]
applied such a procedure to increase the potential differentiation of dialects: for
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example, if the distance between the vowels of father and after is smaller than
that between cat and after, then strong evidence for a southern English dialect
is obtained, whereas this weighs against northern English dialects, and neither
favours nor disfavours Scottish dialects. So [6] came up with an a priori triva-
lent weight system which somewhat enhances the discrimination on the basis of
phonological knowledge after the raw numerical evidence has been accumulated.

7.4 Perspectives

The classication method presented here is text-dependent: what is being said
must be known beforehand, and the words of the training and test sets must
match. Besides, it is based on phonetic and phonological knowledge of dialect
differences, and we must bear in mind that the stimuli (/hVd/ words and read
passages) were precisely designed to elicit dialect variation, and therefore facili-
tate discrimination. So this approach can be termed shibboleth-based. Now, how
good would the performance be with a randomly chosen text? More specifically,
how could one deal with mismatches between the vowels of the training datasets
and those of the test speaker set? Another challenge is the transposition of the
method to spontaneous speech. Future research will focus on text-independency
and include other phonetic cues such as consonants and suprasegmentals.

Acknowledgements

We are grateful to Mark Huckvale and Francis Nolan for their help. This study
was supported by a Eurodoc grant from the Région Rhône-Alpes.
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Abstract. ACCDIST is a metric of the similarity between speakers' accents that 
is largely uninfluenced by the individual characteristics of the speakers' voices. 
In this article we describe the ACCDIST approach and contrast its performance 
with formant and spectral-envelope similarity measures. Using a database of 14 
regional accents of the British Isles, we show that the ACCDIST metric 
outperforms linear discriminant analysis based on either spectral-envelope or 
normalised formant features. Using vowel measurements from 10 male and 10 
female speakers in each accent, the best spectral-envelope metric assigned the 
correct accent group to a held-out speaker 78.8% of the time, while the best 
normalised formant-frequency metric was correct 89.4% of the time. The 
ACCDIST metric based on spectral-envelope features, scored 92.3%. 
ACCDIST is also effective in clustering speakers by accent and has 
applications in speech technology, language learning, forensic phonetics and 
accent studies. 

Keywords: Accent, accent recognition, accent similarity, speaker 
normalisation. 

1   Introduction 

1.1   What Is an Accent Similarity Metric? 

An accent similarity metric is a formal procedure to estimate the distance between the 
accents of two speakers as measured from recordings of their speech. An accent 
metric would analyse the phonetic content of two transcribed recordings and deliver a 
single number that would reflect the extent that the two speakers had similar accents 
in their production of that material. If it were possible to create such a metric, then it 
would be useful in a number of ways in both speech science and speech technology. 
For example, an accent metric could be used to cluster speakers into accent groups 
automatically, which could be used to track the spread and development of accents 
according to regional or social class parameters. The identification of accent groups 
would be useful for building speech recognition systems that adapted to a speaker's 
accent. An accent metric might be used as part of a forensic investigation to help 
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identify characteristics of an unknown speaker. It might be used to evaluate the 
"nativeness" of the accents of second language learners. Or an accent metric could be 
used in a diagnostic way to discover the most significant differences between accents.  

However the development of an accent metric is not without problems. At the same 
time as a metric has to be sensitive to accent, it must also be insensitive to the 
individual characteristics of the speakers themselves: to whether the speaker is a man 
or a woman, young or old, large or small. Ideally an accent metric would also be 
insensitive to characteristics of the recording, to differences in the speaking styles 
exhibited by the speakers, to the emotional states of the speakers involved, and to the 
exact content of the phonetic material analysed. These, however, are aspirations, 
while insensitivity to speaker characteristics is essential. 

This article describes some fundamental investigations into the practicality of an 
accent metric using a database of 275 speakers representative of 14 regional accents 
of the British Isles. It explores the effect of speaker characteristics, such as speaker 
sex, on the ability to assign a sample speaker to an accent group. It explores the effect 
of different acoustic parameter sets, different speaker normalisation procedures, and 
different pattern classification functions. 

The rest of this section provides an overview of accent measurement: including 
what to measure, how to measure, how to normalise measurements and how to 
compare measurements. Section 2 demonstrates the application of the currently most 
effective technique based on normalised formant frequencies and Linear Discriminant 
Analysis (LDA) using the British Isles data. Section 3 presents an alternative 
normalisation strategy for accent similarity measurement called ACCDIST which 
finesses the speaker normalisation problem and which provides demonstrably superior 
performance. 

1.2   What to Measure? 

Research has uncovered phonetic variation across social groups at all levels of 
speech: phonological organisation, prosody, phonetic quality and effect of context on 
phonetic realisation. In terms of phonological variation, for example, Northern and 
Southern accents of the British Isles differ in the lexical distribution of the PALM and 
TRAP vowels, so that words like "bath" and "ask" have the PALM vowel in one accent 
the TRAP vowel in another [1]. Another example is that English accents vary 
according to "rhoticity" - whether orthographic "r" letters are realised as an /r/ 
segment pre-consonantally or in syllable final position. In terms of prosodic variation, 
differences have been observed across accents in the realisation of intonational tunes 
– for example the use of either a low-falling or a low-rising pattern for the ends of 
declarative sentences [2]. In terms of phonetic quality, the preferred articulation of 
vowels and consonants can vary across accents. Some London accents notoriously 
exploit a glottal stop for /t/ in some syllable-final environments, while Liverpool 
accents use a softer fricated form of /t/ in syllable-initial position [1]. Similarly the 
realisation of /l/ in different syllable contexts varies markedly across accents: some 
like Irish-English use a fronted "clear" [l] in all positions, while many American-
English accents use a palatalised "dark" [l], and an ongoing trend in Southern England 
is for a syllable-final /l/ to be realised as a back rounded vowel [1]. 
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Although there are all these differences between accents, the greatest body of 
research has concentrated on the quality of vowels. For example, the extensive study 
by Labov and his colleagues into American-English accent variation across regions of 
the U.S. has looked almost exclusively at vowels [3]. Various reasons could be 
proposed for this: (i) vowels are readily mutable by speakers and changes in vowel 
quality are widely exploited to establish differences between accents, (ii) vowels are 
common, acoustically intense and relatively stable, which makes them easy to record 
and identify, and (iii) vowels are easy to describe using a few acoustic parameters, 
such as average formant frequencies. This article will also focus on measurements of 
vowel quality, but the reader should keep in mind that vowel quality is only one part 
of the phonetic difference between accents. 

Even when the choice is to concentrate on vowel quality, it is also important to 
realise that any operation which averages across vowel qualities realised in different 
words makes an implicit assumption about the phonological distribution of vowels in 
the lexicon. While it may make sense in an American accent to average the 
measurements of the vowels in "tack" and "task", this does not make sense in a 
Southern British accent where these are phonologically different vowels. Similarly, it 
may be satisfactory to average vowels measurements across "palm" and "harm" in 
Southern British accent, but it would not be for a rhotic accent, where the /r/ in 
"harm" will have some effect on the vowel quality used. In summary, we need to take 
care when averaging measurements across words, since this might obscure differences 
in phonological distribution which are themselves characteristics of accents. 

1.3   How to Measure? 

How can we measure the quality of vowels? It is worth asking what properties we 
require of the measurements? These include: (i) that the numbers are of low 
dimensionality, but that (ii) they capture all the important perceptual differences 
between vowels, that (iii) the parameters are easy to measure and are robust to 
variation caused by the recording equipment or the recording environment. Finally we 
need measurements (iv) which can be processed in such a way as to remove 
characteristics of speaker identity while preserving characteristics of accent identity. 

There are really two main approaches: firstly to estimate the centre frequencies of 
the main concentrations of spectral energy in the acoustic form of the vowel – this 
provides estimates of the vocal tract resonant frequencies used in vowel production; 
or secondly to estimate the shape of the spectral envelope of the whole vowel sound. 
Typically the former gives rise to between 2 and 4 numbers representing the formant 
frequencies of the vocal tract, while the latter gives rise to between 10 and 20 spectral 
coefficients representing the shape of the spectral envelope. 

Historically, formant frequencies have been most widely used in the field of 
experimental phonetics, and have been the basis for the influential studies by Labov, 
quoted above. Spectral envelope measures, on the other hand, have been most widely 
used in speech technology to represent phonetically relevant properties of the speech 
signal. The advantages of formant measures are that a significant fraction of 
perceptual vowel quality can be captured (and indeed plotted) using just two numbers; 
and that a frequency-based measure leads to a natural means for speaker 
normalisation through frequency scaling (see next section). Disadvantages of formant 
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measures are that they are difficult to extract from the signal automatically (and 
measurement errors have a non-normal distribution), and that they ignore the 
perceptual effect of changes in formant amplitude. On the other hand while spectral 
measures capture all the perceptually important aspects of vowel quality, they use far 
more parameters which are also less amenable to normalisation. The effect of acoustic 
representation on accent similarity is investigated in section 2. 

Finally, it is also worth noting that vowels are not static sound objects: not only are 
some vowels intrinsically dynamic in nature (diphthongs) but also vowels are affected 
by the syllabic context in which they occur, particularly the influence of the 
consonantal environment. Thus measurements of a vowel realisation need to be 
sensitive to any changes in vowel quality that occur across time. 

1.4   How to Normalise? 

Since any speaker could speak any accent, knowledge of the physical characteristics 
of the speaker as expressed in their speech is of no help in identifying the speaker's 
accent. Thus we need some process by which the influences of the physical 
characteristics of the speaker on the recorded speech need to be removed or ignored. 
Typically these will be aspects of the signal related to a speaker's vocal anatomy and 
physiology, for example: voice quality, pitch range and vocal tract size. 

The extensive use of formant frequencies to characterise vowels in experimental 
phonetics research has led to a lot of work into the best means by which formant 
frequencies can be normalised to remove the influence on the measurements caused 
by the speaker's vocal tract size. Fortunately, a recent study by Adank [4] has 
compared a large number of these normalisation techniques specifically within the 
domain of accents research. Adank tested a number of formant frequency 
normalisation procedures on vowels from a number of speakers within a task which 
assessed whether the normalisation also affected the discriminability of their accents. 
The best method turned out to be very simple: the conversion of formant frequencies 
into z-scores using the distribution of individual formant frequencies by each 
individual speaker. Thus a normalised formant frequency describes the relative 
position of the formant within the range of its frequencies typically used by the 
speaker, and independently from other formants. 

Normalisation in the frequency domain seems sensible since the major effect of a 
change of vocal tract size is indeed to scale its resonant frequencies. However it is 
harder to see how frequency domain normalisation can be as simply applied to 
measures of the spectral envelope. For example, a spectral envelope estimate 
extracted by measuring the energy across a number of fixed frequency bands has 
confounded measures of energy and frequency. No simple scaling using the 
distribution of measurements from a speaker would produce an envelope that would 
be independent of vocal tract size. 

There are ways of representing the spectral envelope which appear to make it less 
sensitive to speaker characteristics: firstly to put the spectral envelope on a 
logarithmic frequency axis, and secondly to use "cepstral" coefficients which are 
more sensitive to shape than to absolute position within the spectrum. The most 
common form of spectral envelope measure used in speech recognition approximates 
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these two suggestions, and is called mel-scaled frequency cepstral coefficients 
(MFCC) derived from the work of [5]. 

Although the use of MFCCs to represent the spectral envelope does seem to reduce 
the sensitivity of speech recognisers to speaker characteristics, it is not clear whether 
the use of MFCC also affects the measurement of accent. This is investigated in 
section 2. 

Recently a radical alternative approach to normalisation was proposed by Nobuaki 
Minematsu [6] and formulated explicitly for the purpose of comparing accents by 
Huckvale [7]. The idea is to represent the accent of a speaker not in terms of the 
absolute quality of the sounds realised in their speech, but to represent them in terms 
of the relative similarity of those sounds. That is, to describe a speaker through a set 
of vowel-to-vowel distances rather than in terms of the individual vowel qualities. 
The advantage of such an approach is that a speaker's vowels are only compared with 
each other, not with the vowels of other speakers. Thus normalisation is implicit in 
the representation, rather than added in a post-processing step. The effectiveness of 
this kind of representation will be investigated in section 3. 

1.5   How to Compare Accents? 

Given a set of normalised measurements of vowels for a speaker, how can we 
compare speakers to get a measure of accent similarity? If we assume that we have 
matched phonetic material, the task comes down to finding the distance between two 
instances of the same vowel, represented by two vectors of acoustic measurements: x1 
and x2. There are a number of ways in which we might approach this: (i) Correlation 
distance: this gives the similarity between the two vectors independently from the 
mean and variance of each vector; (ii) Unweighted Euclidean distance: this gives the 
root mean square difference between the means of the vectors independently from 
their variance; (iii) Weighted Euclidean distance: this gives the root mean square 
difference between the means but each squared acoustic parameter difference is first 
weighted by the variance of that parameter calculated across all data from all 
speakers; (iv) Mahalanobis distance: this gives the difference between the vectors 
weighted by the covariance between all acoustic parameters calculated across all data 
from all speakers; and (v) Linear Discriminant Analysis distance: this is the 
Mahalanobis distance where the covariance is calculated separately for each accent 
group. 

Which of these distance functions to use will depend on the nature of the acoustic 
parameter set and on the amount of data available. If the acoustic parameters are 
independent and identically distributed, then the Euclidean metric is appropriate. 
However if the acoustic parameters are independent but have different variances, then 
the Weighted Euclidean metric should be used. If the acoustic parameters are not 
independent, then the Mahalanobis distance is best. However, the use of the full 
covariance matrix in the distance measure relies on that matrix itself being well 
estimated from the data – a poorly estimated covariance matrix may perform worse 
than the Euclidean metric. Linear Discriminant Analysis is a powerful way of making 
use of the fact that the covariance matrix may well be different in the different accents 
– however it requires that speakers be assigned to accent groups in the first place. The 
benefits of the different distance measures are explored in section 2. 
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2   Accent Data and Baseline Performance 

2.1   Speech Data 

Speech material was extracted from the Accents of the British Isles (ABI) corpus 
recorded by the University of Birmingham under contract to 2020 Speech Ltd. 
Nominally, ten male and ten female speakers from 14 accent areas (see Table 1) 
spoke the same set of 20 short sentences (see Table 2). However, there are some 
gaps in the database and the material in fact totalled 275 speakers and 5208 
sentences. 

Table 1. The 14 accents areas in the ABI corpus 

Code Accent Code Accent 
brm Birmingham lvp Liverpool 
crn Cornwall ncl Newcastle 
ean East Anglia nwa North Wales 
eyk East Yorkshire roi Dublin 
gla Glasgow shl Scottish Highlands 
ilo Inner London sse South East 
lan Lancashire uls Ulster 

Table 2. List of sentences used for the experiments 

1 Kangaroo Point overlooked the ocean 
2 where were you while we were away 
3 the high security prison was surrounded by barbed wire 
4 an official deadline cannot be postponed 
5 few people live to be a hundred 
6 co-operation and understanding go a long way to alleviate dispute 
7 they often go out in the evening 
8 glucose and fructose are natural sugars found in fruit 
9 help celebrate your brother's success 

10 young children should avoid exposure to contagious diseases 
11 the oasis was a mirage 
12 comedies never have enough villains 
13 cement is measured in cubic yards 
14 I itemise all accounts in my agency 
15 a young mouse scampered across the field and disappeared 
16 Gary attacked the project with extra determination 
17 a good attitude is unbeatable 
18 her auburn hair reminded him of autumn leaves 
19 after tea father fed the cat 
20 father cooked two of the puddings in batter 
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The designers of the ABI corpus [8] selected the first 18 of the 20 sentences to 
achieve 'phonetic balance' of British English, while the last two sentences were 
adapted from the 'accent revealing' sentences used by Barry et al [9]. A phonological 
transcription was generated for each sentence using Southern British English 
pronunciations, and phonetic segmentation was performed by forced alignment using 
the HTK Hidden Markov Modelling toolkit1. All subsequent analysis was made using 
only the vowel segments in the 20 sentences including diphthongs but excluding 
schwa. This gave up to 145 vowel measurements per speaker. The fact that a single 
phonological transcription was used for annotating all accents was not important as 
only the segment boundaries, rather than the phonetic identity was used in subsequent 
analysis. After segmentation, phones were effectively referred to as, e.g., the "first 
vowel in 'after'" rather than as /ɑː/ or /æ/. 

2.2   Accent Recognition with a Formant Frequency Distance Metric 

To assess how well formant frequency measurements can be used in a metric to 
compare speakers' accents, an accent recognition experiment was constructed using 
the accent labels in the ABI corpus as the 'correct' answer for each speaker. Accent 
classification accuracy can then be used as a benchmark for different accent similarity 
metrics, assuming that the corpus was well designed. Formant frequency estimation 
was performed using the FORMANAL program of the Speech Filing System2; this 
delivers spectral peak estimates each 10ms using LP analysis. The automatic 
segmentation labels were used to divide each vowel into two halves by time, and an 
average frequency of each formant in each half was calculated from the trimmed 
mean of the frame values. The trimmed mean was calculated using values from the 
20th to 80th percentiles. Average formant frequency values from each half were then 
abutted to create a single vector for classification. 

Accent recognition performance was evaluated by comparing each speaker to  
the data set remaining (274 speakers) once that speaker had been removed ("leave 
one out"). Only vectors from identical vowels in identical word positions were 
compared across speakers. The overall distance was computed from the mean of  
the individual matched vowel distances. Evaluation was done for two, three and 
four formants. Similarity was judged using an unweighted Euclidean metric, a 
weighted Euclidean metric (using the diagonal elements of the covariance matrix) 
and with a Mahalanobis metric (using the full covariance matrix) on the hertz 
values. Performance was also evaluated in three gender conditions: (i) where the 
unknown speaker is compared only to speakers of the same sex, (ii) where 
comparison is made to speakers of either sex, and (iii) where comparison is made 
only to speakers of the opposite sex. The idea here was to expose any sensitivity of 
the comparison to the physical characteristics of the speakers. The recognised 
accent was chosen from the accent of the most similar individual speaker. Results 
are shown in Table 3. 

                                                           
1 htk.eng.cam.ac.uk 
2 www.phon.ucl.ac.uk/resource/sfs/ 



 ACCDIST: An Accent Similarity Metric for Accent Recognition and Diagnosis 265 

Table 3. Baseline accent recognition rate for held-out speaker using 2, 3 or 4 formant 
frequency data, in 3 covariance conditions (U=unweighted, D=diagonal, F=full-covariance) 
across 3 gender match conditions. N=275. 

%Correct Same Sex Any Sex Opposite Sex 
#Formants U D F U D F U D F 

2 68.2 69.0 70.4 67.5 68.2 67.2 38.0 37.2 41.2 
3 55.5 58.8 60.2 55.1 58.8 60.6 29.9 31.8 34.7 
4 51.1 55.8 57.7 52.9 59.5 57.3 28.1 32.1 33.6 

The best recognition performance without taking notice of speaker sex came from 
using just two formants and a weighted Euclidean metric, but at only 68.2%, 
performance is not very good. More formants do not mean better performance. The 
matching to speakers of the opposite sex to the test speaker makes performance 
considerably worse (37.2%), showing the sensitivity of formant frequency values to 
speaker characteristics. Matching to speakers of the same sex only makes 
performance a little better (69.0%), because speakers tend to match best to speakers of 
the same sex in any case. The use of the weighted distance measures shows a small 
improvement, particularly for 4 formants, where it accommodates the fact that the 
variance of the formant frequencies are not equal. 

2.3   Formant Frequency Normalisation 

It is expected that a normalisation procedure should improve accent recognition 
performance when formant frequencies are used. Firstly, the reduction in inter-
speaker variability means the speakers will form more compact clusters within an 
accent group. Secondly, the sex of the test speakers should have less effect. Thirdly, 
the difference in variance of the formant frequencies (when expressed in hertz) should 
be removed, making the frequencies more compatible with the unweighted metric. To 
evaluate the importance of normalisation, the formant frequencies for each speaker 
were normalised to a unit normal distribution (i.e. to z-scores) using all the vowel 
frames for each speaker and each formant independently. Accent recognition 
performance using the normalised formant frequency values is shown in Table 4: 

Table 4. Accent recognition rate for held-out speaker using normalised 2, 3 or 4 formant 
frequency data, in 3 covariance conditions (U=unweighted, D=diagonal, F=full-covariance) 
across 3 gender match conditions. N=275. 

% Correct Same Sex Any Sex Opposite Sex 
# Formants U D F U D F U D F 

2 76.3 76.3 74.1 79.2 79.2 74.5 66.8 67.2 63.9 
3 67.5 70.8 68.2 69.3 72.6 72.6 50.0 57.3 54.0 
4 57.3 66.1 64.6 56.6 66.4 65.0 39.1 47.4 48.5 

Normalisation has a large effect, with the best performance in the any sex condition 
now reaching 79.2%. Most noticeable, however is that there is much less variation 
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across the three gender matching conditions. Matching only to the opposite sex still 
has a somewhat lower performance, showing that even formant frequency 
normalisation does not remove all speaker characteristics from the data.  The 
normalisation of the formant frequencies from hertz to z-scores reduces the benefit of 
the weighted distance functions as expected, although there is still a benefit for 3 and 
4 formants. 

2.4   Pooling of Speakers and Contexts 

So far we have chosen the accent group for our test speaker by finding the accent of 
the single closest known speaker in the training data.  However, if we assume that the 
training speakers are drawn from a population of speakers of that accent, we might do 
better to compare our unknown speaker to the estimated mean of that accent 
population.  Individual speakers with idiosyncratic pronunciations then have less 
effect. On the other hand, this assumes that the speakers in the database do indeed 
form a homogeneous group with a single, meaningful average. Another advantage of 
pooling speakers into a mean is also that separate acoustic parameter covariance 
matrices for each accent can be computed.  Any differences in covariance between 
accents can then be exploited in recognition.  Table 5 shows the results for accent 
recognition against the accent group means using Linear Discriminant analysis. 

Table 5. Accent recognition rate for held-out speaker against accent group means using 
normalised 2, 3 or 4 formant frequency data, in 3 covariance conditions (U=unweighted, 
LD=diagonal LDA, LF=full-covariance LDA) across 3 gender match conditions. N=275. 

% Correct Same Sex Any Sex Opposite Sex 
# Formants U LD LF U LD LF U LD LF 

2 84.3 85.4 84.3 85.8 85.4 86.9 74.5 72.3 74.5 
3 83.6 85.0 84.7 82.1 86.9 89.4 71.9 71.9 79.2 
4 75.2 83.9 85.0 70.4 83.6 88.7 59.9 71.2 76.6 

Even with the unweighted distance measure, performance is markedly improved by 
matching to the accent group means rather than to individual speakers. This shows 
that the means are indeed a reasonable way of describing the accents in this data. The 
use of LDA has very little effect when only two formants are used, but there is 
increasing benefit of using LDA with 3 or 4 formants. In other words there are 
differences in the covariance matrix across accents which are useful to accent 
recognition. The best performance overall now comes from 3 normalised formant 
frequencies with full covariance LDA at 89.4%. 

If pooling speakers into groups helps, then it is worth considering whether it would 
also help to pool vowels together across words.  For example, it would be possible to 
average instances of /i/ vowels across all words in the sentences that a dictionary 
would indicate contain /i/. Pooling in this way, of course, assumes that the 
phonological units used by the speakers in the words are known, and as we have seen 
in section 1.2, this is not necessarily the case. Accents vary in terms of the inventory 
and distribution of phonological units in the lexicon. Table 6 shows the effect of 
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averaging vowel measurements within each speaker using a Southern British English 
dictionary as the phonological model. 

Table 6. Accent recognition rate for held-out speaker against accent group means using 
normalised 2, 3 or 4 formant frequency data pooled across phonologically matched vowels, in 3 
covariance conditions (U=unweighted, LD=diagonal LDA, LF=full-covariance LDA) across 3 
gender match conditions. N=275. 

% Correct Same Sex Any Sex Opposite Sex 
# Formants U LD LF U LD LF U LD LF 

2 79.9 65.0 63.9 79.6 67.2 66.1 65.0 58.8 56.9 
3 80.3 69.7 69.0 74.1 65.3 65.7 64.2 58.0 55.5 
4 74.5 70.8 71.5 65.7 65.0 67.2 48.5 48.2 53.6 

In comparison with Table 5, these results show that pooling over word contexts 
makes performance considerably worse, with the best performance in the any sex 
condition falling from 89.4% to 79.6%. Although pooling over contexts may be of 
benefit when the number of measurements is small - so as to obtain more robust 
measures of the average form of a vowel - when there is enough data, the 
disadvantage of pooling becomes significant. When the data is normalised, it is 
beneficial to average across speakers when the word contexts are the same, but that 
doesn't extend to averaging across vowel contexts, even within the same speaker. 

2.5   Spectral Envelope Measures 

Formant frequencies are just one way of characterising the important features of the 
sound spectrum for speech. Although vowel quality can largely be preserved through 
formant frequencies alone, there are other aspects of the spectrum which affect our 
perception of timbre, and these may be significant in judging vowel similarity across 
speakers [10]. Another problem with formant frequencies as acoustic parameters is 
the difficulty of measuring them in situations of noise, poor voice quality, nasality or 
high pitch. Finally, accent variation is not solely restricted to vowels, and formant 
frequencies are unlikely to be appropriate for consonantal speech sounds. An 
alternative feature set comes from parameterisation of the spectral envelope directly, 
expressing how energy is distributed across frequency without trying to estimate the 
location of spectral peaks. Such representations have been shown to correlate well 
with the perception of timbre, including vowel quality [11]. Speech coding and 
speech recognition systems use such features extensively, and many designs have 
been evaluated. Here we will choose two possible candidates for comparison with the 
formant metric: an approach used for speech coding that uses an auditory filterbank, 
and an approach widely used in speech recognition using cepstral coefficients. 

The auditory filterbank analysis was adapted from the 19-channel vocoder of 
Holmes [12], which has 19 band-pass channels between 180 and 4000Hz with 
bandwidths based roughly on auditory filter widths. The output of the filterbank was 
rectified, smoothed by a low-pass filter at 50Hz, downsampled to 100 frames/sec then 
logarithmically compressed. The mean of each frame was then subtracted and added 
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as a 20th parameter. This makes the vector more compatible with an unweighted 
Euclidean metric by encoding the difference in overall energy once rather than 19 
times. For each vowel, the mean frame was calculated from each half, and the two 
means abutted to create a 40 dimensional classification vector.  Processing was 
performed using the VOC19 program of SFS. 

The second spectral envelope feature set was based on the mel-frequency scaled 
cepstral coefficient (MFCC) approach described by Davis & Mermelstein [5]. 25ms 
windows of signal are transformed by DFT into spectral energies which are collected 
into 20 triangular channels spaced according to a mel-scaling of the frequency space. 
The first 12 coefficients of the cosine transform of the channel energies are then 
calculated, and these are then weighted with a sinusoidal cepstral lifter. Finally the 
overall window energy is added in bels as a 13th coefficient. The cosine transform 
makes the parameters relatively independent (i.e. diagonal covariance), while the 
cepstral liftering and the energy coding gives the parameters more equal variance. 
Both of these make the feature set more suitable for use with an unweighted 
Euclidean metric. Frames are computed every 10ms. For each vowel, the mean 
cepstral coefficients were calculated from each half, and the two means abutted to 
create a 26 dimensional classification vector. Processing was performed with the 
MFCC program of SFS. For comparison with the normalised formant frequency metric, 
accent recognition was performed as in Table 5, with pooling across speakers and 
using LDA, see Table 7. 

Table 7. Accent recognition rate for held-out speaker against accent group means using 
spectral envelope parameters, in 3 covariance conditions (U=unweighted, LD=diagonal LDA, 
LF=full-covariance LDA) across 3 gender match conditions. N=275. 

% Correct Same Sex Any Sex Opposite Sex 
Features U LD LF U LD LF U LD LF 
voc19e 79.2 79.9 77.4 70.1 75.2 71.9 52.6 54.4 44.9 
MFCC 65.3 70.8 82.1 56.2 63.5 78.8 26.6 44.5 55.5 

It is clear that the switch back to un-normalised parameters has produced a significant 
drop in recognition performance compared to formants. The best performance is now 
only 78.8% in the any sex condition, compared to 89.4% for 3 normalised formants. 
The spectral envelope parameters, like the unnormalised formant frequency 
parameters also show a great sensitivity to speaker sex, with very poor performance in 
the opposite sex condition. Linear Discriminant Analysis has a large benefit for the 
MFCC feature set, but less so for the vocoder feature set, possibly because the latter 
had a far larger covariance matrix to be estimated. Overall the MFCC feature set gave 
better performance, perhaps related to the smaller number of parameters. 

2.6   Summary 

In this section, a large and difficult accent recognition task has been used to evaluate 
some different ways to measure accent similarity. We have shown that (i) 
normalisation has a large effect on recognition performance, not only because it 
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reduces the differences between speakers, but because it enables (ii) pooling of 
speakers into accent groups, which in turn allows for (iii) the use of independent 
covariance matrices per accent in the LDA distance measure. However, only formant 
frequencies are amenable to speaker normalisation: through a mapping from hertz to 
z-scores. In the next section, we will show how the ACCDIST approach allows 
speaker normalisation to be performed using any acoustic parameter set. 

3   ACCDIST Metric 

3.1   Construction 

Section 2 has shown the importance of speaker normalisation to the construction of an 
accent similarity metric. The real challenge is how to create a representation of the 
pronunciation preferences of a speaker which is sensitive to all the significant 
phonetic quality of his or her speech without it being affected by the physical 
characteristics of his or her particular vocal apparatus. There are two previous studies 
in the area which give hints on how this might be achieved. The first is the work of 
Barry, Hoequist and Nolan [9] who developed a regional accent classification 
technique based on acoustic comparisons made within known sentences. Speakers 
were asked to record specific sentences which were automatically segmented. 
Formant frequencies were estimated for particular vowels in particular words in those 
sentences. Then, relative values of the formant frequencies were compared across 
vowels within a sentence and a set of threshold rules were used to assign the speaker 
to one of four English regional accents. By this means the system was able to classify 
accents with an accuracy of 74%. Although the work is conventional in that it used 
prior knowledge about what vowel realisations characterise a particular accent, it was 
unconventional in that was based on comparisons between vowels spoken by one 
speaker rather than on comparisons to some absolute norm. Thus the procedure was 
self-normalising: the influence of the speaker's physical characteristics, and the 
influence of the linguistic context on the realisation of vowels were made irrelevant 
by the use of only relative measurements within a fixed set of sentences. 

The idea to quantify the effect of accent through the relationship between the 
realisations of known segments rather than their absolute spectral quality was recently 
advanced further by the work of Nobuaki Minematsu [6]. In a study of Japanese 
learners of English as a second language, Minematsu trained a set of HMM phone 
models for individual speakers and then performed hierarchical cluster analysis on the 
pair-wise similarity of those phone models. The cluster analysis produced a 
dendrogram which he then used to compare individual learners with a native English 
speaker. The analysis showed, for example, that /l/ and /r/ were more similar 
(clustered lower in the dendrogram) for Japanese speakers of English compared to 
native speakers. Here too, the use of comparisons within a speaker were used to 
address the speaker variability problem: it is the results of cluster analysis of phone 
similarities that are compared rather than the characteristics of the phones themselves. 

The work of Barry and Minematsu suggests that we can gain information about the 
pronunciation preferences of a speaker solely through comparisons made within that 
person's speech. So, for example, we could compare the vowel a speaker uses in 
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"after" with the vowel he/she uses in "cat" rather than comparing it to some reference 
pronunciation. We would expect these two vowels to be more similar in some accents 
and less similar in others. Providing we know what pairs of vowels to study and what 
typical similarities occur in different accents, then this process can be used to 
recognise accents – indeed this is the basis of the Barry et al system. But we need to 
generalise the idea if we want to work with unknown accents where we know neither 
which vowels are important nor what is the typical variation. 

The first part of the solution is to make comparisons between all pairs of segments 
spoken by the speaker, to create an inter-segment distance table. This must be based 
on individual instances of tokens, since we do not know yet which words share the 
same phonological units. The following example analyses the pairwise similarity 
between the vowels in the utterance "after tea father fed the cat" spoken by a 
Birmingham speaker and a South East British speaker from the ABI corpus. Table 8 
shows the unweighted Euclidean distance between MFCC measurements for all pairs 
of vowels (following the procedure described in 2.3). 

The distance table shows very clearly that the vowel in "after" for the Birmingham 
speaker is most similar to the vowel he uses in "cat", while for the South East speaker 
it is most similar to the vowel he uses in "father". Thus the distance tables capture a 
significant aspect of the known accent difference without comparing speakers' vowels 
with each other. Table 8 also shows a potential problem, however, in that the absolute 
size of the similarities also varies from speaker to speaker. Consider the difference 
between "fed" and "tea" which is twice as large for the South East speaker than for the 
Birmingham speaker. This variation may be due to the articulatory quality of the 
speakers, and have nothing to with their accent. 

Table 8. MFCC distances between vowels in the sentence "after tea father fed the cat" spoken 
by a Birmingham and a South East speaker 

BRM_M_01 father cat fed tea 
after 66.6 11.0 31.5 58.4 
father  81.4 63.9 78.9 
cat   28.5 56.4 
fed    24.2 

 
SSE_M_01 father cat fed tea 
after 16.1 62.7 76.9 97.0 
father  73.9 69.3 83.9 
cat   42.1 105.0 
fed    68.0 

How can we use the distance tables to compare speaker's accents? Effectively 
Minematsu performed cluster analysis on such distance tables (although his tables 
were based on HMM phone models, not single tokens) to derive a dendrogram which 
he called a 'phonetic tree' [6]. However, it is hard to compute the similarity between 
trees while it is relatively easy to consider ways to compute the similarity between 
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raw distance tables. Since the absolute values in the distance tables vary from speaker 
to speaker, a correlation measure seems the most appropriate. This overall strategy is 
called ACCDIST for Accent Characterisation by Comparison of Distances in the 
Inter-segment Similarity Table [7]. 

3.2   Accent Recognition Performance Using the ACCDIST Metric 

To establish the validity of the basic approach, the accent recognition experiments 
described in sections 2.4 and 2.5 were repeated using the ACCDIST metric to 
compare speakers to accent group means. The process was as follows: firstly the 140 
or so vowel instances of each speaker were used to create the distance table for the 
speaker. This distance table was based on either the raw formant frequency 
parameters or the spectral envelope parameters, and pairwise similarities were 
calculated using an unweighted Euclidean metric. Then accent recognition was 
performed by taking each speaker in turn and comparing his or her distance table to 
the mean distance table of each accent group (excluding the speaker under test) by a 
correlation distance measure. Since not all vowels were spoken by all speakers, the 
correlations only took into account those vowel-pairs which occurred in the test 
speaker. The tests were run under three sex conditions as before, and the results for 
the formant parameters and the spectral envelope parameters are shown in Table 9. 

Table 9. Accent recognition rate for held-out speaker against accent group means using the 
ACCDIST metric based on formant and spectral envelope parameters across 3 gender match 
conditions, compared with the best previous score from Tables 3-7 for that condition. N=275. 

% Correct Same Sex Any Sex Opposite Sex 
Features BEST ACCDIST BEST ACCDIST BEST ACCDIST 

2 formant 85.4 82.5 86.9 86.5 74.5 78.1 
3 formant 85.0 82.1 89.4 85.8 79.2 73.7 
4 formant 85.0 78.8 88.7 84.7 76.6 70.8 

voc19e 79.9 88.3 75.2 89.4 54.4 82.1 
MFCC 82.1 85.8 78.8 92.3 55.5 84.3 

For formant parameters, there is no advantage to using the ACCDIST metric rather 
than z-score normalisation. In only one case, in the opposite sex condition for 2 
formants, did ACCDIST outperform LDA. However, there is considerable advantage 
to using the ACCDIST metric with the spectral envelope features. Large performance 
gains were seen in all conditions, particularly in the opposite sex condition. This 
shows that ACCDIST does indeed perform effective speaker normalisation, even on 
spectral envelope features. Overall, ACCDIST with MFCC features has the best 
performance of all, with 92.3% accent recognition, a reduction in the error rate of 
over 25% compared to LDA on normalised formant frequencies. A graphical 
summary of the important results of all the experiments is shown in Figure 1. 

The best score of over 92% is very impressive for a database of regional accents, 
where differences are often hard for a human listener to judge. However there are no 
published human classification performance statistics on these data, so we are not sure 
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what the ultimate performance might be. Subjects were chosen for the corpus on 
geographical grounds rather than on an analysis of their accent. 

In summary these results are promising for the utility of the ACCDIST metric. 
Regional accent classification performance is high even without a better means to 
compare segment realisations than an unweighted Euclidean distance, and with the 
use of only the vowel segments in the sentences. 

3.3   Example Use in Clustering and Diagnosis 

Accent recognition is not the only possible application of an accent similarity metric. 
A particularly interesting application is for the discovery of accent groups "bottom 
up", from a corpus of recordings of unlabelled speakers. A metric would help find the 
significant clusters of speakers, and could be used in a diagnostic sense to discover 
which aspects of the speech are most significant for each cluster. 

To demonstrate this, we shall cluster the speakers in the British Isles database and 
compare the contents of the clusters with the known accent labels. If the clustering is 
successful, we should see that the speaker clusters are also accent clusters, that is that 
all speakers of one accent group should end up in one cluster. 
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Fig. 1. Summary of accent recognition performance as function of feature set, similarity 
measure and gender condition 

Figure 2 is a graphical representation of k-means clustering of the 275 speakers 
into four clusters based on the vowel data used in section 2, and with three different 
accent similarity measures. In the figure, the source accent group for each speaker is 
shown across the top, while the four output clusters are shown down the side. The 
area of each filled circle represents the proportion of speakers of the accent group that 
ended up in each cluster. 
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Figure 2a shows that clustering based on spectral envelope does not create clusters 
which have any useful relationship to the underlying accent groups.  Indeed the likely 
result is that one cluster contains mainly male speakers and one cluster mainly female 
speakers! Figure 2b shows clustering based on normalised formant frequencies, the 
kind of similarity measure used by Labov [3]. Here it is possible to see that the output 
clusters do indeed relate to the underlying accent groups. However, there is also a 
significant amount of imprecision, whereby the members of some accent groups are 
divided across clusters. Figure 2c shows clustering using the ACCDIST metric on 
MFCC features. There is a very clear clustering behaviour seen, where all the 
members of an accent group end up almost completely in a single output cluster. 
Furthermore, investigation of how the accents are assigned to clusters, brings out four 
geographical areas of the British Isles: cluster 0 is Northern England, cluster 1 is 
Ireland, cluster 2 is Southern England, and cluster 3 is Scotland. 

 

(a) Euclidean distance on MFCC features 

 

(b) Euclidean distance on 2 normalised formant frequencies 

 

(c) ACCDIST distance on MFCC features 

Fig. 2. K-means clustering of 275 speakers into 4 clusters using different feature set and 
distance measures. The area of the circles represents the proportion of each ABI accent group 
assigned to each cluster. 
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In summary, ACCDIST can also be used to help uncover the identity of accent 
groups among a corpus of speakers. This could be useful in accents research for 
studying how accents develop and change, and does not require a priori knowledge 
about which accents exist. Once accent groups have been established, these can then 
be used as the basis for training accent-specific speech recognition systems. Or the 
ACCDIST metric can help in uncovering what particular characteristics of the speech 
of the members of a cluster are most significant in defining the group. 

4   Conclusions 

An accent similarity metric could be very useful in both speech technology and socio-
phonetic research. In this article we have discussed the main problems and shown 
how a high-performance accent similarity metric can be constructed. In a difficult 
regional accent recognition task, the ACCDIST metric assigned a held-out speaker to 
the correct accent group 92.3% of the time. The ACCDIST metric had 25% fewer 
errors than the best linear discriminant analysis using normalised formant frequencies. 
Also ACCDIST gave a cleaner clustering of speakers into accent groups. 

There are many ways in which this work could be extended. One particular area 
would be to extend measurements to consonants as well as vowels, and to pitch and 
timing as well as to segmental quality.  Fortunately, the inter-segment distance tables 
used by ACCDIST can readily incorporate such information. 
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Abstract. In the context of the Neologos French speech database
creation project1, a general methodology was defined for the selection
of representative speaker recordings. The selection aims at providing a
good coverage in terms of speaker variability while limiting the number
of recorded speakers. This is intended to make the resulting database
both more adapted to the development of recently proposed multi-model
methods and less expensive to collect.

The presented methodology proposes a selection process based on the
optimization of a quality criterion defined in a variety of speaker similar-
ity modeling frameworks. The selection can be achieved with respect to
a unique similarity criterion, using classical clustering methods such as
Hierarchical or K-Medians clustering, or it can combine several speaker
similarity criteria, thanks to a newly developed clustering method called
Focal Speakers Selection.

In this framework, four different speaker similarity criteria are tested,
and three different speaker clustering algorithms are compared. Results
pertaining to the collection of the Neologos database are also discussed.

Keywords: speech database,minimization,speaker selection, speaker
clustering, optimal coverage, multi-models, speech and speaker recog-
nition, speech synthesis.

1 Introduction

General goals – The state of the art techniques in the various domains
of Automatic Speech Processing (be it for Automatic Speaker Recognition,
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Automatic Speech Recognition or Text-To-Speech Synthesis) make extensive
use of speech databases. Nevertheless, the problem of optimizing the contents
of these databases to make them adequate to the development of a considered
speech processing task has seldom been studied (see e.g. [1]). The usual defini-
tion of speech databases consists in collecting a volume of data that is supposed
sufficiently large to represent a wide range of speakers and a wide range of acous-
tic conditions [2,3]. Nevertheless, identifying and omitting some redundant data
may prove more efficient with respect to the development and evaluation costs as
well as with respect to the performances of the targeted system [1]. Alternately,
the most recently developed speech recognition and adaptation algorithms tend
to make use of several specialized models instead of a unique general model, and
hence require an important volume of data to guarantee that the variability of
speech is accurately modeled. Similarly, the most recent advances in Text-To-
Speech synthesis (TTS) require the availability of a wide range of speakers to
investigate the degradation of quality which is still noticeable in the synthetic
voices. Hence, The above-mentioned developments require a much larger quan-
tity of data per speaker than the traditional databases can offer (e.g. Speech-
Dat2). Nevertheless, the increase in the collection cost for such newer and larger
databases should be limited as much as possible.

Thus, the present work, partly led in the framework of the Neologos

project3, focuses on optimizing the contents of the speech databases in order
to control the diversity of the recorded speech, both at the segmental and supra-
segmental levels. In addition to this scientific objective, it addresses the practical
concern of reducing the collection costs for new speech databases.

Proposed database design – The starting point of this work is to consider
that the variability of speech can be decomposed along two axes, one of speaker-
dependent variability and one of purely phonological variability. The classical
speech databases [4,3] seek to provide a sufficient sampling of both variabilities
by collecting few data over many random speakers (typically, several thousands).
Alternatively, we propose to optimize explicitly the coverage in terms of speaker
variability, prior to extending the phonetic coverage by collecting a lot of data
over a reduced number of reference speakers.

In this framework, the reference speakers should come out of a selection pro-
cess which guarantees that their recorded voices are non-redundant but keep a
balanced coverage of the speech space. Thus, we propose to lead the collection
of the corpus along a three stage process:

1. a bootstrap database is collected by recording a first set of many different
speakers. This database should provide a wide and potentially redundant

2 See http://www.elda.org/ for the specifications of the currently available Speech-
Dat databases.

3 The following public, academic and industrial partners have participated in the Ne-

ologos project, funded by the French Ministry of Research in the framework of the
Technolangue program: the ELDA agency, the ENSSAT lab, the France Telecom
R&D company/lab, the IRISA lab, the LORIA lab and the Telisma company.

http://www.elda.org/
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sampling of the speaker space, balanced in turn by a limitation of the quan-
tity of recorded speech per speaker. To compensate for this limitation and
to ensure an acceptable sampling of the phonological variability, the phono-
logical coverage is maximized through a careful specification of the linguistic
contents of the prompted text. For Neologos, 1,000 speakers were recorded
over the fixed telephone network, and the recorded utterances were a set of
45 phonetically balanced sentences, optimized using techniques derived from
TTS methods [5], identical for all the speakers and recorded in one call;

2. a reduced subset of reference speakers (200 for Neologos) is selected
through a clustering of the voice characteristics of the bigger set of boot-
strap speakers, and the reduction of the clusters to their most representative
element;

3. the final database, comprising only the reference speakers’ voices, is col-
lected (for this project, the database of 200 speakers was called Idiologos).
The reference speakers are requested to pronounce a larger corpus of spe-
cific sentences. For Neologos, the 200 reference speakers were requested
to pronounce 450 sentences, identical for all the speakers, in 10 successive
telephone calls that had to be completed in a short period of time to avoid
shifts in the voice characteristics.

The use of clustering methods supposes the definition of a distance, or sim-
ilarity metric, between the objects to be gathered and their prototype. In our
context, the definition of speech clusters represented by a centroid speaker relies
on the definition of some similarity metrics between speaker voices. The choice
of a relevant speaker similarity metrics has to be made a priori among the range
offered by the state of the art speech and speaker recognition techniques, since a
direct optimization of this choice is infeasible in practice. To avoid a restriction of
this choice to a particular a priori metrics, we define a framework where several
sets of reference speakers can emerge from various speaker similarity metrics,
and where the extracted sets can be cross-validated with respect to a metrics
different from their metrics of origin (this is detailed in section 2). This approach
preserves a diversity of criteria for the selection of reference speakers, and it al-
lows to combine these criteria in order to keep a certain level of generality in the
definition of the speech coverage brought by the reference speakers.

Working hypotheses, claims and limitations – As mentioned above, the
context of this work (the Neologos project) is limited by a strong practical
constraint : a large number of speakers, namely 1000, are recorded in one sin-
gle session to set up the bootstrap database. From this initial step, a fraction
of this population, namely 200 “typical” speakers, are selected for a complete
data collection of 50 sessions, and only these speakers are recorded extensively.
This prevents a full-loop evaluation of the proposed speaker selection method,
which ideally would consist in comparing the performance of speech applica-
tions trained with the 50 recordings of the 200 typical speakers as opposed to
those obtained with the 50 recordings from random selections of 200 speakers.
As a result of this situation, the work and observations reported in this chapter
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can not be used to support the universal effectiveness of the proposed method-
ology, nor the absolute superiority of the Neologos/Idiologos corpus thus
obtained.

However, the approach adopted and the results reported in this chapter sug-
gest a number of relevant properties of the proposed framework. They are bound
to contribute and be reused in other contexts of speech-corpus construction, es-
pecially in what concerns:

– the formulation of the “loss of quality” of a sub-corpus with respect to a
reference corpus;

– the definition and relevance of several metrics between speech utterances;
– a number of approaches for speech utterances clustering and selection;
– the principle and consistency of the “focal speakers” reference selection

approach;
– a framework for combining heterogeneous criteria for utterance selection.

It is also important to note that the present work is based on the assumption
that one recording provides an accurate representation of a speaker’s voice, which
is clearly a simplistic view with respect to reality.

Overview of the chapter – Section 2 exposes our speaker selection methodol-
ogy and the design of the related corpus. Section 3 proposes and discusses some
particular instances of speaker similarity metrics. Section 4 presents some clus-
tering methods for the selection of the reference speakers. Section 5 discusses
an evaluation of the clustering methods in the framework of the Neologos

database, while section 6 is dedicated to some conclusions and perspectives.

2 Methodology and Corpus

This section exposes the different steps in the formulation of our general ap-
proach, applicable to any database, and ends with more specific details about
the linguistic contents of Neologos.

Reference speakers – Let M be a large number of speakers xi, i = 1, · · · , M ,
among which we want to choose N � M reference speakers. Let
L = {xj ; j = 1, · · · , N} be a given list of N speakers xj .

Let dA (xi, xj) be a function able to measure the distance, or dissimilarity,
between two speakers xi and xj . dA(·, ·) depends upon a similarity modeling
method A. The lower the distance, the more representative xj is of xi in the
sense of the similarity modeling method A.

Let refA(xi|L) be a function able to find out, among the list L, the refer-
ence speaker which best represents the speaker xi in the similarity modeling
framework A. Given the above definitions, it can be obtained as:

refA(xi|L) = arg min
xj∈L

dA(xi, xj) (1)



280 S. Krstulović et al.

Quality of a list of reference speakers – Given the ability to represent
every speaker xi of the initial set by a reference speaker issued from a given list
L, then:

QA(L) =
M∑

i=1

dA (xi, refA(xi|L)) (2)

measures the total cost, or total loss of quality4, that occurs when replacing each
of the M initial speakers by their reference among the N speakers listed in L,
according to the similarity modeling method A. The smaller this total loss, the
more representative the reference list.

For instance, if the distance dA(xi, xj) is defined as a crossed likelihood be-
tween the model of speaker xi and the data of speaker xj , then QA(L) measures
the loss of likelihood that occurs when replacing each speaker xi with its reference
speaker refA(xi|L). Nevertheless, this interpretation goes beyond the likelihood-
based distances: for any distance dA(·, ·), QA(L) measures a loss of information,
or loss of diversity, relevant to the characteristics of speaker variability modeled
by dA(xi, xj).

Optimal list of reference speakers – In turn, finding the optimal list LA of
reference speakers with respect to the similarity modeling method A translates
as:

LA = argmin
L

QA(L) (3)

Due to the dimensions of the databases, solving this optimization problem by
an exhaustive search across all the possible combinations of N speakers taken
among M speakers is infeasible in practice, due to the huge number of combi-
nations:

CN
M =

(
M

N

)
=

M !
N !(M − N)!

(4)

Nevertheless, clustering methods such as Hierarchical Clustering or K-means
clustering can provide locally optimal solutions. The application of these clus-
tering methods to our problem will be developed in section 4.

Comparison of reference lists – Within equation (2), the quality of any
reference list L can be measured. In particular, L can be a list LB issued from
an optimization in a similarity modeling framework B:

LB = argmin
L

QB(L) (5)

In this case, the reference speakers can be attributed from LB with respect to an
alternate similarity modeling framework A:

refA(xi|LB) = arg min
xj∈LB

dA(xi, xj) (6)

4 Although QA(L) actually denotes the loss of quality, it will be mostly referred to as
‘quality’ in the rest of the chapter, for the sake of simplicity.
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It follows that the quality of a selection of reference speakers LB made in the
framework of the similarity modeling method B can be evaluated in the scope
of the similarity modeling method A:

QA(LB) =
M∑

i=1

dA(xi, refA(xi|LB)) (7)

This case illustrates the fact that the quality defined by equation (2) brings a
general answer to the problem of comparing various reference lists, even when the
reference lists are issued from selections made with respect to different speaker
similarity criteria. Defining the similarity of the lists in the space of the quali-
ties is more general than trying to implement a direct comparison of the lists’
contents. For example, if the method B would form a list LB by replacing every
speaker of a list LA by its nearest neighbor in the sense of A, then LA and LB

would have no speaker in common, whereas LB may still have a good quality in
the sense of A.

Moreover, the cross-quality defined by equation (7) suggests a way to find
out reference speakers which satisfy a combination of similarity criteria. Let
LA =

{
LA

k ; k = 1, · · · , K
}

be a set of K lists of reference speakers which keep
a good quality with respect to the similarity modeling method A. Then it is
possible to find a set of speakers LA|B so that:

LA|B = arg min
L∈LA

QB(L) (8)

This corresponds to finding the best list, in the sense of the similarity criterion
B, among a set of lists which are good in the sense of A. For a sufficiently large
K, the list LA|B represents a compromise of quality across the similarity criteria
A and B (in a non-commutative way), though it may represent a sub-optimal
solution within each of these individual frameworks.

The formulation of the loss of quality based on a framework A assumes that
A involves a unique type of metrics between speakers. Therefore, LA refers to
a list optimized with respect to the loss of quality QA (involving the similarity
modeling framework A) and LA|B refers to a list optimized with respect to the
loss of quality QB (involving the framework B, among lists that are “good” with
respect to A). Conversely, regarding the notations, the sets LX can contain any
type of lists, possibly issued from optimizations in several frameworks. Hence,
the superscripts X of the sets LX , in this passage and the rest of the chapter,
will refer to the contents of the set and will not necessarily map back to a unique
similarity modeling framework. (See, e.g., note 5 below.)

Calibration of the measure of quality – For the quality of a reference
speaker selection to be interpretable and comparable across several modeling
criteria, it is necessary to calibrate it. This is done by ranking QA with respect
to an estimate of the distribution of qualities, computed over a “big enough”
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selection of K random reference lists Lrand = {Lrand
k ; k = 1, · · · , K}5. In a non-

parametric framework, the values of QA (Lrand) are simply sorted in decreasing
order, i.e., from the worst random list to the best. To evaluate a particular list
L, we rank QA(L) against the sorted qualities and divide the result by the total
number of random lists. This normalized rank is called a Figure Of Merit (FOM)
and is very easily interpretable: FOMA(L) = 80% means that the list L is better,
in the framework of A, than 80% of the random lists in Lrand. The closer to 100%,
the better the list.

Linguistic contents – For Neologos, Some financial and methodological
considerations have suggested to limit the volume of the bootstrap database to
50 sentences per speaker, to be recorded in one call. The definition of the lin-
guistic contents of these 50 sentences uses the following method: from a set of
50,000 short sentences (from 5 to 15 words) taken from the French newspaper
“Le Monde”, a greedy algorithm is applied to find a minimal subset which would
cover 99 classes of diphones for at least two times [5]. The obtained set of 76 sen-
tences is further reduced to 36 sentences through a manual sorting of the groups
of words carrying the highest count for the diphones classes of interest, and their
re-arrangement in a way which preserves natural semantics. Finally, 9 sentences
which duplicate already represented diphone classes are added to fit TTS syn-
thesis assessment purposes, and 5 utterances of various natures (numbers and
spellings) are added for further control and testing purposes. The definition of
the linguistic contents for the 450 sentences of the final Neologos/Idiologos

database uses a generalized version of the same method, the main difference be-
ing that all the diphones can be covered; it will not be detailed in the present
chapter. (See [6] for more detail.) A phonetic alignment of the speech data has
been generated using standard HMM-based techniques (see [6]).

3 Modeling the Speaker Similarity

Many inter-speaker metrics have been studied in the context of clustering appli-
cations (e.g., [7], [8], [9], etc.; see [6] for more). For Neologos, we have chosen
to apply four methods which focus on a variety of speech modeling aspects.

Canonical-Vowels metrics – The Canonical-Vowels (CV) metrics, defined as
a Kullback-Leibler distance between Gaussian models of the canonical vowels,
accounts for physiological differences between speakers, related to their vocal
tract dimensions, in a maximum likelihood modeling framework.

In practice, speaker-dependent mono-Gaussian models are estimated for the
three cardinal vowels /a/, /i/ and /u/, on the basis of Mel-Filterbank Cepstral
Coefficients (MFCCs). Denoting by pα

i = N (μi, σi) the mono-Gaussian model
of a phoneme α for speaker xi (in a D-dimensional space), the Kullback-Leibler

5 Here, the rand superscript of set Lrand does not refer to any particular similarity
modeling framework. Lrand contains uniformly distributed random lists.
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divergence between the models of two speakers xi and xj can be expressed
through the phoneme α as:

KL(pα
i ||pα

j ) =
D∑

d=1

1
2

(
log

σd
j
2

σd
i
2 +

σd
i
2

σd
j
2 +

(μd
i − μd

j )
2

σd
j
2 − 1

)
(9)

and a symmetrical speaker dissimilarity can be defined as:

dα(xi, xj) = KL(pα
i ||pα

j ) + KL(pα
j ||pα

i ) (10)

The distance dα(xi, xj) can be computed for α = /a/, /i/, /u/, and a global
distance dCV can be defined as a simple sum of the phoneme-dependent distances:

dCV(xi, xj) = d/a/(xi, xj) + d/i/(xi, xj) + d/u/(xi, xj) (11)

Dynamic Time Warping metrics – The Dynamic Time Warping (DTW)
metrics makes minimal modeling assumptions, provides a “direct” comparison of
the speech signals, and is affiliated with classical speech recognition techniques.

In practice, the standard DTW algorithm is applied between the 160 breath
groups making the original sentences, as determined by phonetician experts from
the orthographic transcripts. Standard symmetrical left-to-right displacement
plus matching boundaries constraints are applied to the DTW graph. The local
distance that we use is the Hamming distance between feature frames based on
cepstral coefficients:

d(Y (tj), X(ti)) =
Nc∑

c=1

|Y c(tj) − Xc(ti)| (12)

where Nc is the number of coefficients in the acoustic vector and Y c(tj) is the
cth coefficient of the cepstral features vector Y (tj). The total distance between
two speakers is given by the average distance over correct pronunciations of the
matching breath groups. Denoting by {bgi

k}k=1,..,K (resp. {bgj
k}k=1,..,K) the set

of K = 160 breath groups pronounced by speaker xi (resp. xj), and defining

δk(i, j) =
{

1 if bgi
k and bgj

k are correctly pronounced; 0 otherwise
}

we have:

dDTW(xi, xj) =
∑

k δk(i, j) · DDTW(bgi
k, bgj

k)∑
k δk(i, j)

(13)

where DDTW(bgi
k, bgj

k) is the Hamming distance cumulated along the optimal
path. Given the used displacement constraints, this distance is symmetrical.

Gaussian Mixture Models metrics – The Gaussian Mixture Models (GMM)
metrics estimates a Kullback-Leibler distance between the GMM speaker models
that are employed in state-of-the-art speaker recognition.

For this distance, speaker-dependent GMMs are trained using MAP adapta-
tion [10] from a common Universal Background Model [11], a method currently
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acknowledged as state of the art in the domain of Automatic Speaker Identity
Verification. For the GMMs, no analytic expression is available for the Kullback-
Leibler distance, but it is possible to approximate it by using an unbiased es-
timator based on a suitable number of random observations, according to the
Monte-Carlo method [12]:

KL(pi||pj) =
1
N

N∑

n=1

log
pi(oi

n)
pj(oi

n)
(14)

where: pi (resp. pj) models the speech of speaker xi (resp. xj), in the form of a
GMM; oi

n (resp. oj
n), n = 1 · · ·N , is a sample of speech data (or observations)

spoken by speaker xi (resp. speaker xj) or synthesized by random draws accord-
ing to the probability law modeled by pi (resp. pj). In our experiments, a limited
number of synthetic MFCC vectors was used instead of the natural speech data,
in order to speed up the computation of equation (14).

The KL(pi||pj) quantity measures the loss of likelihood of the data of speaker
xi with respect to the model of speaker xj . This measure is not symmetrical,
but the sum of KL(pi||pj) and KL(pj||pi) is; hence, a symmetrical speaker
dissimilarity metric can be defined as:

dGMM(xi, xj) =
1
N

N∑

n=1

log
pi(oi

n)
pj(oi

n)
+

1
N

N∑

n=1

log
pj(oj

n)
pi(o

j
n)

(15)

where pi and pj correspond to the Gaussian mixture models of the speakers xi

and xj .

Hidden Markov phoneme Models metrics – The Hidden Markov phoneme
Models (HMM) metrics uses crossed likelihoods between complete sets of
speaker-dependent, 3-states, left-right hidden Markov models of French
phonemes, and is affiliated with state-of-the-art speech recognition.

This metrics is defined as:

dHMM(xi, xj) = Λ (Ωi | ΘHMM
i ) − Λ

(
Ωi | ΘHMM

j

)

+ Λ
(
Ωj | ΘHMM

j

)
− Λ (Ωj | ΘHMM

i ) (16)

where Λ
(
Ωi | ΘHMM

j

)
is a crossed likelihood between the data of xi and the

models of xj , defined as: Λ
(
Ωi | ΘHMM

j

)
=

∑
α

1
να

i
Λ
(
ωα

i | ϑα
j

)
, with: ωα

i the set
of frame sequences (or observations) corresponding to the phoneme α pronounced
by the speaker xi; να

i the number of frames in the set ωα
i ; ϑα

i a 3-states, left-
to-right hidden Markov model of the sequences of frames corresponding to the
phoneme α, and estimated from the sample ωα

i ; Ωi the phonetic data of any
speaker xi, and ΘHMM

j = {ϑα
j , ∀α} the set of all the phoneme models for a

speaker xj . This distance is symmetrical by definition.
Each metric has been developed independently by the labs participating in

this work, according to their know-how and on the basis of their standard tools.
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In particular, the choice of the acoustic features used in each metric is related to
the observed performances of the local systems. These features are mostly based
on Mel-scale cepstra, which are known to provide a good model for the speech
spectral envelope, often followed by Cepstral Mean Subtraction, which is known
to compensate roughly for some channel distortions. Greater detail about the
implementation of each of these metrics can be found in [6].

4 Speaker Clustering and Selection

Finding a global optimum by an exhaustive search among every possible combi-
nation of speakers is not tractable in practice, due to the high number CN

M or
(
M
N

)

of possible combinations (e.g., for Neologos: C200
1000 =

(
1000
200

)
= 6.6172 · 10215).

Nevertheless, this optimization problem can be understood as a clustering task.
Classical clustering algorithms, able to find locally optimal solutions, include
the K-Means algorithm (or a K-Medians variant) and the Hierarchical Cluster-
ing algorithm. In addition, we propose a new method called the Focal Speakers
selection.

The K-Means/K-Medians algorithm – The K-Means algorithm [13] aims
at grouping data in classes by locally minimizing the following criterion:

Q =
M∑

i=1

d(xi, ref(xi|C)) =
N∑

n=1

(
∑

xi∈Cn

d(xi, cn)

)
(17)

where C is a list of N classes Cn in which the data xi will be clustered, and cn =
ref(xi|C) indicates the position of the centroid which abstracts the class Cn. In
our framework, the centroids have to be ultimately assimilated to real speakers.
Besides, if this assimilation is made at each iteration, a lot of computation can
be saved, because the distances between the centroids and the speakers can be
read from a pre-computed matrix of inter-speaker distances. The corresponding
discretized version of the K-Means algorithm, called the K-Medians, uses the
following steps:

1. computation of the matrix of speaker similarities for the considered modeling
method (CV, DTW or GMM);

2. random initialization, by a uniform draw of N reference speakers among the
M > N initial speakers;

3. assignation of each speaker to the cluster characterized by the closest refer-
ence speaker;

4. for each new cluster, determination of the reference speaker as the median
speaker, i.e. the one for which the sum of the distances to every other speaker
in the cluster is minimum:

cn = arg min
xj∈Cn

∑

xi∈Cn

dA(xi, xj) (18)

5. iteration of steps (3) and (4) until the N clusters stabilize.
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At step 3, the assignation is done so that each of the d (xi, ref(xi|C)) terms of the
sum in equation (17) diminishes or stays the same; then, at step 4, the upgrade
of cn for each class Cn minimizes the

∑
xi∈Cn

d(xi, cn) term explicitly, so that
the second expression in equation (17) is further minimized. Therefore, the final
solution will get a quality better than or equal to that of the list used for the
initialization at step 2.

As a matter of fact, the result of the K-Medians is very dependent on the
initialization, and the degree of quality of a locally optimal solution is undefined
a priori. A solution consists in realizing a great number of runs of the algorithm,
with different initializations, and to keep the local solution which reaches the
best quality.

Hierarchical clustering – The Hierarchical Clustering algorithm [13] proceeds
by establishing a typology of the data which can be described by a tree, or
dendrogram, where each node describes a group of observations, characteristic
of a particular class of data. The building of the tree can be operated in two
manners:

– agglomerative hierarchical clustering: The classes described in the parent nodes
are determined by merging the characteristics defined in the child nodes. The
nodes to merge are chosen so that they minimize the following criterion:

Δ(Θi, Θj) =
∑

xk∈πi∪j

dA (xk, Θi∪j) −
∑

xk∈πi

dA (xk, Θi) −
∑

xk∈πj

dA (xk, Θj) (19)

where πj is the population of the cluster/node represented by Θj , and πi∪j is
the union of the πi and πj populations. It can be shown that this criterion
corresponds to a direct optimization of the quality QA within the constraints of
the dendrogram construction. After each merge, a new representative speaker is
chosen as the centroid of the merged population.

– divisive hierarchical clustering: The child nodes inherit from the characteristics
of their parent, but are further divided so that they refine the taxonomy of the
data. The node to divide is chosen so that it minimizes the criterion (19). For
each node splitting, the speaker assignations and the centroids for the two child
nodes are determined by the local application of a 2-classes K-Medians on the
population of the parent node. Since this K-Medians is repeated over all the
parent nodes to minimize the criterion (19), the divisive version is significantly
heavier than the agglomerative one.

In any case, the tree-building procedure is stopped when the number of nodes
reaches the requested number of clusters (200 for Neologos). The list of refer-
ence speakers obtained by the Hierarchical Clustering procedure can be used as
an initialization for the K-Medians.

The Focal Speakers method – This method is based on empirical considera-
tions. It starts from the hypothesis that speaker subsets with a good quality are
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Fig. 1. Number of speaker occurrences for various compositions of L500

more likely to contain some speakers of the global optimum. If this hypothesis
is true, the reference speakers of the global optimum should appear more often
than others in a set LK = {Lk; k = 1, .., K} made of a union of locally good
speaker lists. To verify this, we computed the number of occurrences of each
of the M initial speakers xi among: (a) K random lists of N speakers; (b) the
K best lists of a great number of random lists; (c) the K best lists among the
solutions given by a great number of runs of the K-Medians.

The results are depicted in figure 1, for lists of N = 200 speakers taken among
M = 1000 speakers, and with LK gathering K = 500 lists taken from 400 000
initial lists. The number of occurrences of each speaker (black dots) is compared
to the expected number K × N/M = 100, corresponding to a uniform draw of
200 speakers among 1000. The figure shows that some speakers appear more
often than the average across the series of lists characterized by their locally
good quality. This suggests that there is a correlation between the quality of the
lists and the fact that they contain some particular reference speakers.

Reverting this idea, we have studied if the N most frequent speakers in a set
of lists characterized by their good quality would correspond to a good selection
of reference speakers. Let LK = {Lk; k = 1, .., K} be a set of speaker lists Lk,
and δk(i) = {1 if speaker xi ∈ Lk;0 else.}. The number of times the speaker xi

appears in LK is therefore defined as:

Freq( i |LK) =
∑

Lk∈LK

δk(i) (20)
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K , in the DTW modeling framework

Then, the speakers corresponding to the N highest values of Freq( i |LK) can be
selected to constitute a list of so called Focal Speakers. This list will be noted
Lfoc (LK). Its quality QA(Lfoc (LK)) can be computed from various sets LK of
“good lists”, and, in particular, the set Lrand

K containing the K best of 400 000
random lists or the set Lkmed

K containing the K best of 400 000 K-Medians results.
Figure 2 illustrates the evolution of QDTW(Lfoc(Lrand

K )) versus the number K
of lists in Lrand

K (gray curve). The quality of the best list in LK corresponds to
K = 1. Lower quality values mean better lists: for every value of K, Lfoc (LK) has
a better quality than the best list in LK . Similar results have been observed in the
other modeling frameworks than DTW, as well as with Lkmed

K . The most frequent
speakers have been called Focal Speakers because they seem to concentrate the
quality of the lists gathered in LK . The lists of focal speakers obtained for each K
can be used to initialize additional runs of K-Medians. The resulting additional
gain of quality is represented by the black curve.

The Focal Speakers approach naturally suggests a joint optimization for the
four speaker similarity modeling frameworks. One can search the focal speak-
ers among a set Lrand

K×CV+DTW+GMM+HMM or a set Lkmed
K×CV+DTW+GMM+HMM formed

by gathering the K best lists obtained in CV, DTW, GMM and HMM. The
corresponding results will be given in the next section.

5 Evaluation and Comparison of the Clustering Methods

Figure 3 compares the solutions of the various speaker selection algorithms for
each of the four separate modeling frameworks:
– the gray Gaussian is the density of quality of 400 000 random lists. The black
Gaussian is the density of quality for the related 400 000 K-Medians solutions.
The short flag (at level 0.5) indicates the position of the best K-Medians solution
(the lower the abscissa value, the better the quality);
– the medium sized flags (at level 1) indicate the solutions of the Hierarchical
Clustering (HC) in the agglomerative case (solid); the divisive HC has been found
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to perform consistently worse than the agglomerative HC and its solutions have
not been depicted here (see [6]);
– the taller flags (at level 1.5) indicate the solutions of the Focal Speakers method
for the optimal K in Lrand

K (dashed) and Lkmed
K (solid).

The Focal Speakers method reaches qualities comparable to the agglomerative
HC, both with the best random lists and with the best K-Medians. The optimal
lists from FS and HC outperform the results of the K-Medians; however, they
can be used to initialize a subsequent pass of K-medians which can push the
quality a bit further (see [6]).

Figure 4 considers the solutions optimized in the DTW framework, and eval-
uates them in the context of the alternate similarity modeling methods. It shows
that an optimal quality in a given modeling framework does not necessarily guar-
antee a good quality in the other ones. For example, the solution brought by the
agglomerative HC applied in the DTW framework (distinctly marked in the fig-
ure) is the best in its framework of origin, but has a low quality with respect
to CV, GMM and HMM modeling. The bold gray flags indicate the quality of
Lfoc(Lkmed

K×CV+DTW+GMM+HMM) for K = 500 lists in each framework (2000 lists in
total). As opposed to the previous cases, the quality of this optimal list of focal
speakers is consistently good across all the frameworks. Besides, this list could
be used to initialize an additional K-medians in each of the separate frameworks,
giving 4 more lists with an even better (or same) quality in each framework (not
depicted; see [6]). Using K = 500 lists for the FS method is, for the moment, an
ad-hoc choice. We have observed that it does not influence so much the quality
of the result: taking the 1000 best lists of each framework gave comparable re-
sults. Nevertheless, more elaborate ways to compose LCV+DTW+GMM+HMM could
be studied.

Figure 5 generalizes figure 4 to all the cases of match or mismatch between
the optimization context and the evaluation context. It shows that the Focal
Speakers reach a consistently good solution across all the combinations.

6 Summary, Conclusions and Perspectives

In the context of the Neologos project, we have built a methodology for select-
ing a subset of reference speaker recordings, so as to keep a diversity of voices
with respect to a variety of similarity criteria.

After formulating a FOM measure for quantifying the loss of quality of a sub-
corpus with respect to a reference corpus, we have defined and experimented
a number of similarity metrics between speakers, that can be used in a clus-
tering stage to partition the reference recordings into a predetermined number
of classes. The concept of focal speaker has been introduced and experimented
as a means to obtain a consistent and potentially robust set of selected speak-
ers, making it easy to combine the results of several clustering processes (with
different similarity metrics).

Given the constraints of the Neologos project, a validation of the method in
terms of its impact on speech recognition error rates was not feasible. Neverthe-
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less, this work contributes to the important area of corpus design by presenting
a general framework, making explicit a well-defined methodology and associated
tools, together with results that suggest its relevance and may encourage the
investigation of similar approaches in other contexts.
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Abstract. In this study we investigate whether a classification algorithm 
originally designed for authorship verification can be used to classify speakers 
according to their gender, age, regional background and level of education by 
investigating the lexical content and the pronunciation of their speech. Contrary 
to other speaker classification techniques, our algorithm does not base its 
decisions on direct measurements of the speech signal; rather it learns 
characteristic speech features of speaker classes by analysing the orthographic 
and broad phonetic transcription of speech from members of these classes. The 
resulting class profiles are subsequently used to verify whether unknown 
speakers belong to these classes. 

Keywords: Speaker Classification, Linguistic Profiling, Orthographic 
Transcriptions, Broad Phonetic Transcriptions. 

1   Introduction 

Human listeners can rely on multiple modalities to determine a speaker’s gender, age, 
regional background and -be it with less confidence- his or her level of education. 
Visual as well as auditory input can provide us with cues about a speaker’s gender 
and age. In addition, auditory input can teach us a great deal about a speaker’s 
regional background and his or her level of education. 

The aim of our study was to investigate whether Linguistic Profiling, a supervised 
learning classification algorithm originally designed for authorship verification [1], 
can also be used to classify speakers according to their gender, age, regional 
background and level of education by investigating the lexical content and the 
pronunciation of their speech. Our procedure differs from conventional procedures for 
speaker classification in that our algorithm analysed written representations of speech 
rather than the speech signal proper; it analysed orthographic and broad phonetic 
transcriptions of speech to identify regularities in the use of words and the 
pronunciation of speakers of different genders, ages, regional backgrounds and levels 
of education. These regularities were subsequently combined into feature sets: one set 
of features describing the use of words as reflected in the orthographic transcription, 
and a second set of features describing the pronunciation characteristics as reflected in 
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the broad phonetic transcription. These feature sets were used to accept or reject 
unknown speakers as members of speaker classes that were defined in terms of the 
four aforementioned speaker characteristics. Since we wanted to study the 
performance of the algorithm with the individual features sets, the algorithm worked 
with one feature set at a time. The performance of the algorithm was evaluated 
through a comparison of its classification of unknown speakers with the information 
on the speakers as provided in the meta-data of the speech material. 

This chapter is organised as follows. In Section 2, we describe the corpus material 
and the transcriptions. In Section 3, we describe the classification algorithm, the 
definition of speaker classes, the two sets of classification features and our general 
experimental setup. Subsequently, in Section 4, we present and discuss the results of 
the classification experiments, and in Section 5 we present our conclusions and our 
plans for future research. 

2   Corpus Material and Transcriptions 

We conducted our classification experiments with transcriptions of spontaneous 
telephone dialogues in the Spoken Dutch Corpus (Corpus Gesproken Nederlands, 
CGN), a 9-million word corpus comprising standard Dutch speech from native 
speakers in the Netherlands and in Flanders [2]. We considered recordings of 
telephone dialogues between speakers from the Netherlands only. These recordings 
were separated into two samples each (one sample per speaker). After excluding 
dialogues for which the meta-data were incomplete as far as relevant for our 
classification variables (see Section 3.2), and after excluding samples of which large 
parts were tagged as unintelligible in the orthographic transcription, we counted 663 
samples from 340 different speakers. These samples ranged from 321 to 2221 words 
in length and comprised a total of 689,021 word tokens. 

In addition to the words in the orthographic transcription, we also considered their 
part-of-speech tags. The orthographic transcription of the words in the CGN was 
created fully manually, the part-of-speech tags were generated automatically and 
manually corrected afterwards [2]. 

In order to study pronunciation characteristics we needed a canonical 
representation of the words in the orthographic transcription (i.e. the written 
representation of the standard pronunciation of the words in isolation from the context 
of neighbouring words [3]) and a broad phonetic transcription reflecting their actual 
pronunciation in the speech recordings. We generated a canonical representation of 
each recording by substituting every word in the orthographic transcription with its 
representation in a canonical pronunciation lexicon. The broad phonetic transcription 
was generated automatically because the CGN provides a manually verified phonetic 
transcription of only 115,574 out of the 689,021 words in our samples. We used an 
automatic transcription procedure which proved capable of closely approximating the 
manually verified phonetic transcription of the CGN [4]. In this procedure, the 
canonical representation of every utterance was first expanded into a network of 
alternative pronunciations. A continuous speech recogniser then chose the best 
matching phonetic transcription through forced recognition. In order to ensure the 
automatic generation of plausible phonetic transcriptions, we excluded speech 
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utterances that, according to the orthographic transcription, contained non-speech, 
unintelligible speech, broken words and foreign speech. Samples containing 
overlapping speech were excluded as well. This resulted in automatic transcriptions 
for 252,274 out of 689,021 words, i.e. 136,700 words more than the 115,574 words 
for which the CGN could have provided a manually verified phonetic transcription. 

3   Classification Methodology 

3.1   Classification Algorithm 

Linguistic Profiling is a supervised learning algorithm [1]. It first registers all 
classification features (e.g. pronunciation processes) that occur in at least N training 
samples (e.g. speech samples of individual speakers) of a corpus1. The algorithm then 
builds a ‘profile’ of each training sample by listing the number of standard deviations 
the count of each of the classification features deviates from the average count in the 
whole corpus. Subsequently, class-specific profiles are generated by averaging the 
profiles of all training samples from a specific speaker class (e.g. male speakers). The 
distance between the profile of a test sample and the profile of a given class of 
speakers is compared with a threshold value in order to determine whether the speaker 
of the sample should be attributed to that speaker class. The degree to which the 
distance does or does not exceed the threshold value indicates the confidence of the 
decision. We evaluated the algorithm’s classification accuracy by comparing its 
decisions with the actual characteristics of the test speakers as provided in the 
metadata of the CGN. Since Linguistic Profiling is a verification algorithm, we 
measured its accuracy initially in terms of False Accept Rates (FARs) and False 
Reject Rates (FRRs). Since these values are threshold-dependent, however, we 
present a threshold-independent derivative instead, viz. the Equal Error Rate (EER), 
which is the value at which the FAR and the FRR are equal. 

3.2   Classification Variables 

We assigned the 663 selected samples to different classes according to the gender, 
age, regional background and level of education of the speakers. 

The establishment of a male and a female speaker class was straightforward. We 
separated the samples into two classes: one class with 276 samples from 148 male 
speakers and another class with 387 samples from 192 female speakers. 

All speakers were born between 1928 and 1981. We classified the speech samples 
age-wise according to two classification schemes. First, for every year, we generated 
a binary split of all speakers into those who were born in or before that year (e.g. ≤ 
1955), and those who were born after that year (e.g. > 1955). This yielded classes 
with 24 to 639 samples from 11 to 329 speakers. In addition, for every year, we 
defined a class with subjects born within a symmetric eleven-year window around the 
target year (e.g. 1950 -1955- 1960). This yielded classes with 67 to 174 samples from 
32 to 98 speakers. 

                                                           
1  For each new classification task, the threshold (N) is empirically determined in order to keep 

the amount of information Linguistic Profiling has to deal with computable. 
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We retrieved the regional background of the speakers from the metadata of the 
CGN. We classified the speech samples in 16 classes according to the region speakers 
mainly lived in between the age of 4 and 16. Table 1 presents the distribution of 
samples per region. As a result of the large number of classes (we adhered to the 
original classification of the CGN), some classes contained only a few samples, in 
particular classes 2e (6), 3c (12) and 2f (13). However, since merging regional classes 
would probably have resulted in classes with more heterogeneous speech behaviour 
(which would probably have made speech from these classes harder to characterise 
and distinguish), we held on to the subdivision in 16 regional classes. 

Table 1. Distribution of samples and speakers in terms of the speakers’ regional backgrounds. 
From left to right: abbreviation, general geographical region in the Netherlands, specific 
geographical region, number of samples per class, number of individual speakers per class. 

 general regions specific geographical regions sam spk 

1a South Holland, excl. Goeree Overflakee 105 55 
1b North Holland, excl. West Friesland 112 50 
1c 

central 
West Utrecht, incl. the city of Utrecht 21 12 

2a Zeeland, incl. Goeree Overflakee + Zeeland Flanders 42 21 
2b East Utrecht, excl. the city of Utrecht 42 19 
2c Gelderland river area, incl. Arnhem + Nijmegen 52 27 
2d Veluwe up to the river IJssel 19 14 
2e West Friesland 6 4 
2f 

transitional 

Polders 13 4 
3a Achterhoek 18 10 
3b Overijssel 37 20 
3c Drenthe 12 7 
3d 

peripheral,  
North East 

Groningen 17 11 
3e  Friesland 20 10 
4a North Brabant 113 60 
4b 

peripheral, 
South Limburg 34 16 

 663 340 

The metadata of the CGN also provided us with information on the level of education 
of the speakers. The speakers were tagged as having enjoyed higher education 
(university or polytechnic), secondary education or only primary education (no 
completed secondary education). In our samples, we counted 256 speakers who had 
enjoyed higher education, 75 speakers with secondary education and only 9 speakers 
with primary education. Because of the skewness of the distribution of speakers in 
these three classes, and because we didn’t have reason to believe that the 9 subjects of 
the third class would heavily increase the heterogeneity in the large second class if we 
would merge these classes, we merged the 9 speakers of the third class with the 75 
speakers of the second class. As a result, two speaker classes were established: highly 
educated subjects (256 speakers in 496 samples) and moderately educated subjects 
(84 speakers in 167 samples). 



 Speaker Classification by Means of Orthographic and Broad Phonetic Transcriptions 297 

3.3   Classification Features 

Per speaker class, the classification algorithm retrieved a set of lexical features from 
the orthographic transcription, and a set of pronunciation features from the broad 
phonetic transcription of the samples. The values of both feature sets were grouped 
into separate classification profiles modelling class-specific lexical use on the one 
hand and class-specific pronunciation characteristics on the other hand. 

3.3.1   Lexical Features 
The lexical features largely resembled the features that were used for the authorship 
verification experiments in [1]. This time, however, full syntactic analyses were not 
considered because the Amazon parser used in [1] has been developed for the analysis 
of written instead of spoken Dutch.2 The lexical profiles represented the average 
utterance length in terms of number of word tokens, counts of uni-, bi-, and trigrams 
of words and the part-of-speech tags of the words. All counts were normalised for 
sample length by translating them to their frequency per 1000 tokens. In addition to 
these features, we tagged each utterance with information about the length, the 
linguistic status (declarative, interrogative and exclamatory, based on the punctuation 
marks) and the speaker (current speaker or interlocutor) of the preceding utterance. 
Only the features occurring in at least five samples were used. This led to a feature set 
of about 150.000 features potentially useful for classification. 

3.3.2   Pronunciation Features 
We characterised ‘pronunciation features’ in terms of the segmental differences 
between the canonical (standard) representation and the broad phonetic transcription 
of the words in the speech samples. We aligned the canonical and broad phonetic 
transcriptions with ADAPT, a dynamic programming algorithm designed to align 
strings of phonetic symbols according to their articulatory distance [5]. Figure 1 
illustrates the alignment of a canonical (Can) and a broad phonetic transcription (PT), 
and the derivation of a pronunciation process: the deletion of schwa. 

Can | d @ | A p @ l | v A l t | 
PT | d - | A p @ l | f A l t | 
Dutch De appel valt 
English The apple drops 
 
 
 
 

Fig. 1. Alignment of a canonical (Can) and a broad phonetic transcription (PT) and derivation 
of a pronunciation process (deletion of schwa). SAMPA symbols are used, word boundaries are 
marked as vertical bars. 

                                                           
2  Part of the CGN is annotated for syntactic structure, but the amount of annotated data would 

have been insufficient to be of use for our experiments. 

@ → Ø / [ | d ] ___ [ | A p @ l | v A l t | ] 
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The segmental differences between a canonical and a broad phonetic transcription can 
be influenced by (at least) four main variables: the socio-situational setting 
(transcriptions of spontaneous speech typically yield more mismatches than 
transcriptions of prepared speech [6]), the consistency of the transcriptions (human 
transcribers may not always transcribe in a consistent manner [7]), the use of words 
(the use of specific words triggers specific pronunciation processes), and the 
pronunciation habits of the speakers (the focus of our study). Since we aimed at 
classifying speakers according to genuine speaker-specific pronunciation features 
only, we tried to filter out all pronunciation features that were due to the other three 
variables. 

The first two variables (the socio-situational setting and the consistency of the 
transcriptions) were irrelevant for our study since we considered the transcriptions of 
speech uttered in one socio-situational setting only, and since the transcriptions were 
generated by a consistent automatic transcription procedure. This left us with one 
more variable to control: the lexical context in which the pronunciation processes 
occurred, which we modelled by means of the frequency of the current word and 
information about its context (its co-occurrence with surrounding words and the 
position of the word in the utterance). 

We controlled for lexical context by means of a three-step procedure. First, we set 
up a ten-fold cross-validation training in which we consecutively built ten models for 
the impact of the lexical context on pronunciation, each time on the basis of 90% of 
the samples. The models represented the counts of all pronunciation processes 
observed in their canonical contexts. Next, we used each of these models in turn to 
predict the pronunciation in the left-out samples. For every canonical phone the 
pronunciation model predicted the probability of different phones being actually 
pronounced, considering all canonical contexts seen in the training material. As a 
final step, we compared the predicted pronunciation processes with the pronunciation 
processes observed in the automatic phonetic transcription. To this end, we counted 
the actual occurrences of all pronunciation processes in every sample, and for each 
process we calculated the difference between the predicted and the observed 
probability. These differences were considered to mainly indicate speaker-specific 
pronunciation processes, since these pronunciation processes were present in addition 
to the pronunciation processes that were predicted on the basis of the lexical context 
of the pronunciation processes. This additional variation was numerically represented 
as a feature vector of 94 numerical values, one for each of the 94 different 
pronunciation processes that were encountered in our material. 

To investigate to what extent our approach was successful in removing the 
influence of the speakers’ use of words on the observed pronunciation processes, we 
computed the Kullback-Leibler distance between the predicted and the observed 
pronunciation processes. This distance halved when the predictions were based on the 
observations of pronunciation processes in their lexical context instead of on the 
observations of the pronunciation processes by themselves, without considering their 
context. This leads us to believe that a significant part of the influence of the lexical 
context was indeed modelled by our method. 
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3.4   Experimental Setup 

We organised our classification experiments as ten-fold cross-validations. To this end, 
we divided the 663 samples in ten mutually exclusive sample sets of comparable size. 
Each speaker occurred in one set only. Per classification variable (gender, age, 
regional background and level of education) and per feature set (lexical and 
pronunciation), we consecutively used nine sample sets to train the algorithm, and  
the remaining set to test the algorithm. Each time, Linguistic Profiling was trained and 
tested with a range of parameter settings. Upon completion, we considered the 
algorithm’s accuracy at the parameter settings yielding the best performance over all 
ten folds in order to determine its performance ceiling. 

After running our experiments, it became clear that the use of this Oracle approach 
had a negative consequence, in particular when we assessed the algorithm’s 
performance for speaker classes with a small number of samples. We found that the 
EERs at the best performing parameter settings were lower than 50%, even when we 
attempted the classification of speakers in classes with randomly selected speakers. 
This is not surprising: there will always be some degree of variance around the 
expected value of 50% accuracy, and by selecting the best performing settings we are 
likely to end up with a score better than 50%. This effect grows stronger as the 
number of samples in the classification profiles becomes smaller. 

In order to determine whether the algorithm’s classification was above or below 
chance rate, we experimentally determined the mean and standard deviation of the 
algorithm’s EER for the classification of speakers in randomly selected speaker 
classes of various sizes. When 300 or more random samples were used, we found a 
mean random group EER of 44% with a standard deviation under 2%. When our 
algorithm considered 50 to 100 random samples, we found a mean random group 
EER of 40% with a standard deviation of 3%. When smaller groups of random 
samples were considered, the mean random group EER gradually decreased while its 
standard deviation increased. 

To facilitate the interpretation of the classification results in the upcoming 
sections, we compare each EER with the expected distribution of the random group 
EERs. We mark each EER with one asterisk if the probability that it belongs to the 
distribution of the random group EERs is smaller than 0.05, with two asterisks when 
p<0.01 and with three asterisks when p<0.001. In all cases where p<0.05, we will call 
the classification "effective". Since both the expected EER value and the variance 
depend on group size, all values reported below for different speaker classes can only 
be compared directly if the number of speech samples in the classes is comparable.  

4   Classification Results 

4.1   Classification in Terms of Gender 

For both genders, we conducted a ten-fold cross-validation in which nine-tenths of the 
transcriptions were used to identify gender-specific lexical and pronunciation 
features, and in which the transcriptions of the remaining samples were used to test  
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the classification algorithm. Table 2 presents the results of this experiment for both 
genders and feature sets. The results were obtained with the algorithm’s optimal 
parameter settings for each of the two feature sets. 

Table 2. Best possible speaker classification in terms of gender with lexical and pronunciation 
features 

lexical features pronunciation features gender # samples 
EER (%) EER (%) 

male 276 41 
female 387 

23 *** 
24 *** 42 

Whereas the use of the lexical features led to a highly effective classification with 
error rates of about 24%, the use of the pronunciation features did not. In other words, 
the pronunciation features could not help the algorithm distinguish between the 
phonetic transcriptions of male and female speakers. The frequent misclassification of 
speakers from their pronunciation features may be due to several reasons. The most 
obvious reason would be the absence of gender-specific pronunciation characteristics 
at the broad phonetic level. A more disturbing reason (disturbing because it would 
question the validity of our automatic phonetic transcriptions as a knowledge source 
for our experiments), would be an inadequate representation of gender-specific 
pronunciation features in the automatic phonetic transcriptions. 

There are two reasons to assume that the mediocre classification performance of 
our algorithm was due to the absence of gender-specific pronunciation characteristics 
at the broad phonetic level rather than to inadequacies in the automatic phonetic 
transcriptions. First, the linguistic literature has not yet reported systematic gender-
specific pronunciation differences at the broad phonetic level.  The only systematic 
gender-specific pronunciation characteristics that have so far been reported were 
based on measurements of the overall speech rate [8-9], and on measurements at 
levels of finer phonetic detail (e.g. a structural difference between the dimensions of 
the vowel space of male and female speakers [10]). None of these gender-specific 
pronunciation characteristics can be reflected in a broad phonetic transcription of 
speech, e.g. in the form of systematic phone deletions or substitutions. Second, our 
results are in line with [11], who could not discover gender-specific pronunciation 
characteristics through the alignment of a canonical and a manually verified (instead 
of an automatic) transcription of male and female speech from the Spoken Dutch 
Corpus either. 

4.2   Classification in Terms of Age 

For every year of birth between 1928 and 1981, we tried to classify the speakers in 
terms of them being born before that year (24 to 631 samples per class), after that year 
(32 to 639 samples per class), or in an eleven-year window around that year (67 to 
174 samples per class - see Section 3.2). Since these classification experiments 
yielded many data points, we confine ourselves to a description of the general 
tendencies. 
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Despite the fact that the algorithm was able to retrieve and successfully use age-
specific pronunciation features for most of these classes, it still performed better with 
the lexical profiles than with the pronunciation profiles. The binary before/after 
classifications showed relatively stable classification accuracies: ignoring three 
outliers at each side of the time scale, the EERs ranged between 18% and 23% for the 
lexical profiles (with a mean EER over all age classes of 20.5%) and between 26% 
and 36% for the pronunciation profiles (mean EER over all classes: 32.4%). The use 
of the lexical profiles consistently led to effective classification (p<0.001), the use of 
the pronunciation profiles as well (p<0.01, and in 90% of the tests even p<0.001). 

 The classification of speakers according to the eleven-year intervals showed more 
variation: ignoring the same three outliers at each side of the time scale, we obtained 
error rates between 19% and 41% with the lexical profiles (mean EER over all 
classes: 32.0%), and between 28% and 46% with the pronunciation profiles (mean 
EER over all classes: 38.5%). The use of the lexical profiles led to effective 
classification for the years at the outskirts of the time scale (p<0.001 for the years 
between 1928 and 1942, and between 1973 and 1981) whereas there was hardly any 
effective classification noticeable for the years between 1942 and 1973. The use of 
the pronunciation features showed a similar pattern, although fewer effective 
classifications were found. 

4.3   Classification in Terms of Regional Background 

Table 3 presents the results of the classification of our speakers according to the 
regional background they lived in between the age of 4 and 16. We classified the 
speakers in terms of 16 geographical regions (see Table 1 in Section 3.2) and by 
means of the two feature sets. 

Table 3. Best possible speaker classification in terms of regional background with lexical and 
pronunciation features 

lexical features pronunciation features 
region # samples 

EER (%) EER (%) 
1a 105 35 *   38 
1b 112 36 *   40 
1c 21 26 *   29 
2a 42 23 ***   34 
2b 42 36   37 
2c 52 32 *   40 
2d 19 30   32 
2e 6 21   21 
2f 13 14 **   30 
3a 18 19 **   33 
3b 37 27 *   37 
3c 12 23   24 
3d 17 36   26 
3e 20 38   31 
4a 113 32 ***   40 
4b 34 27 * 22 *** 
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Table 3 shows that the classification algorithm obtained effective classification  
for 10 out of 16 regions when using the lexical classification features. This indicates 
that the orthographic transcription of (at least part of) the investigated speech 
contained useful information with which our classification algorithm could classify 
unknown speakers. The EERs in Table 3 can only be compared for speaker classes 
comprising a comparable number of speech samples, because the EERs decreased 
when speaker classes with fewer samples were considered (e.g. compare the 36% 
EER with class 1b, which was made up of 112 samples, with the 26% EER with  
class 1c with only 21 samples). This means that we cannot draw conclusions about 
specific regions being more easily recognised than other regions. 

The results in Table 3 also show the inability of the algorithm to retrieve and use 
geographically determined pronunciation features from the broad phonetic 
transcription. The classification algorithm was only able to effectively classify 
speakers of one region (Limburg, a peripheral region in the South East of the 
Netherlands). 

The poor performance of the classification algorithm with the pronunciation 
features can be due to several reasons. First of all, some of the above mentioned 
regions may have characteristic features, but of a kind that are usually not 
represented at the broad phonetic level. For example, the Dutch phoneme /r/ has 
many allophonic variants, some of which have been reported characteristic for 
specific regions in the Netherlands [12]. However, in our study these different 
realisations could not be used for classification because the broad phonetic 
transcription did not distinguish allophonic variants of the phoneme /r/. A second 
possible explanation for the disappointing performance of our algorithm is the 
absence of distinguishing pronunciation features in our automatic phonetic 
transcription. To verify whether this could indeed be so, we examined the 
pronunciation of word-final /n/ preceded by schwa in plural nouns and verbs, since 
this pronunciation process is known to be typical for speakers in specific regions of 
the Netherlands, notably 2d and 3a [13]. A comparison between the speech samples 
for which both an automatic and a manually verified phonetic transcription were 
available showed that the automatic phonetic transcription did not represent the 
pronunciation of such word-final /n/s, whereas the manually verified phonetic 
transcription of the CGN did at least in some cases. A third possible explanation for 
the mostly ineffective classification performance is the potential mismatch between 
the geographical boundaries of the 16 regions defined in the CGN and the regions 
that can actually be characterised by means of outspoken pronunciation features. A 
fourth potential explanation is the heterogeneity of the speaker populations in the 
regional classes, either because the pronunciation features in these classes are 
inherently heterogeneous or because some speakers in the CGN are not particularly 
representative of their region. Finally, of course, we should also consider potential 
limitations of Linguistic Profiling for the purpose of classifying speakers on the basis 
of pronunciation features. Perhaps its capabilities were hampered by the fact that it 
could only use 94 pronunciation features, while there were some 150.000 lexical 
features, comparable to the number of features used in [1].  

Further research is needed to clarify the way in which the above mentioned factors 
affect the classification of speakers on the basis of manual or automatic broad 
phonetic transcriptions. 
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4.4   Classification in Terms of Education Level 

Finally, we investigated whether our classification algorithm was able to classify 
speakers in terms of their level of education. Table 4 presents the classification results 
for the two speaker classes (highly educated and moderately educated) with both the 
lexical and the pronunciation features. Again, we show the Equal Error Rates at the 
algorithm’s optimal parameter settings. 

Table 4. Best possible speaker classification in terms of education level with lexical and 
pronunciation features 

lexical features pronunciation features level of education # samples 
EER (%) EER (%) 

highly educated 496 41  46 
moderately educated 167                 41 44 

The results in Table 4 show that the algorithm was not able to classify speakers 
effectively in terms of their level of education. The classification results with the 
pronunciation features reflect the inconclusive results reported in [14]. While they 
found significant differences between the reductions of phones in 14 frequent words 
ending in –lijk spoken by highly versus moderately educated Flemish speakers (the 
moderately educated speakers reduced more phones), there was no significant 
difference between the phone reductions of highly and moderately educated speakers 
from the Netherlands.  

Although our results do not imply that speakers cannot be categorised according to 
the influence of their education on their speech, the high EERs do imply that the 
lexical features as well as the pronunciation features were unsuitable for classifying 
speakers according to their education level. Future research should clarify whether a 
further division of the speakers into smaller, more specific classes can improve 
classification accuracy. 

4.5   More Specific Speaker Classes 

In the previous sections, we classified speakers in classes that were defined by one 
speaker characteristic (gender, age…) at a time. However, someone’s speech is likely 
to be influenced by the interplay of all four aforementioned speaker characteristics. 
This implies that, when we classify speakers in broad classes of which all members 
have only one characteristic in common, the ‘class-specific’ speech features may 
show a great deal of dispersion. Evidently, speaker classification with very broad and 
therefore perhaps partially overlapping classification profiles for different speaker 
classes is more difficult than speaker classification with well defined and more 
exclusive classification profiles. 

Therefore, we attempted an integrated classification of our speakers according to 
all four speaker characteristics by using classes of speakers for which all four 
characteristics were fixed. In order to have sufficient training data for each combined 
class, we restricted this experiment to the classification of highly educated women 
who were born before or in 1975 and who were raised in region 1a (South Holland)  
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or 4a (North Brabant), and the classification of highly educated women who were 
born after 1975 and who were raised in North Brabant. Class profiles were created for 
each of these classes. Table 5 presents the results of this classification experiment. 

Table 5. Best possible speaker classification in terms of three specific speaker classes 
according to a joint assessment of four speaker characteristics: gender, age, education, regional 
background 

highly educated 
women 

lexical features 
pronunciation 

features 
born  raised in  

# samples 
EER (%) EER (%) 

≤1975 1a 29 24 ** 36 
≤ 1975 4a 28   30 30 
> 1975 4a 23   31 28 

In order to evaluate the possible benefit of classifying speakers in more specific 
speaker classes rather than in general classes, one would ideally want to compare the 
EERs in Table 5 with the EERs reported in Sections 4.1 to 4.4. However, as was 
explained in Section 3.4, such a direct comparison is impossible because of the 
different number of samples in the speaker classes in the previous sections. It is 
possible, however, to compare the EERs obtained with the lexical and the 
pronunciation features for the three specific speaker classes in Table 5. These 
comparisons (24-36%, 30-30%, 31-28%) show that per speaker class, the EERs 
obtained with both feature types were much more similar than in the previous 
sections. 

We hypothesise that in the previous sections, where we classified speakers in 
general speaker classes that were defined by only one common speaker characteristic 
(e.g. gender), classification was affected by an influence from the interplay of the 
remaining speaker characteristics (age, regional background and level of education) 
on the speech features in the classes.  It may well be that in these circumstances, the 
classification algorithm could still benefit from the abundance of lexical classification 
features (around 150.000) to use the most distinguishing features for classification 
and to ignore less characteristic features. At the same time, the algorithm may have 
had more difficulties to select and use features out of the much smaller set of 94 
pronunciation features which were characteristic of the classes and which were not 
influenced by an interplay of speaker characteristics. 

5   Conclusions and Plans for Future Research 

We investigated whether Linguistic Profiling, a supervised learning algorithm 
originally designed for authorship verification, can be used to classify speakers 
according to their gender, age, regional background and level of education on the 
basis of the lexical content and the pronunciation of their speech. Our approach 
differed from conventional speaker classification procedures in that our algorithm 
analysed written representations of speech rather than the speech signal proper; it 
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analysed orthographic and broad phonetic transcriptions of speech in order to identify 
regularities in lexical content and pronunciation. 

We conducted experiments to determine the performance of our algorithm for 
speaker classification with the aforementioned lexical and pronunciation features. 
These experiments showed that the algorithm was often able to retrieve and use 
characteristic lexical features from the orthographic transcriptions. The lexical 
features enabled the classification algorithm to distinguish between male and female 
speakers, to classify speakers in terms of their age, and to determine the region 
speakers spent most of their childhood in (this held for 10 out of 16 investigated 
regions). Despite these encouraging results, however, the use of the lexical features 
proved insufficient to effectively classify speech from moderately or highly educated 
speakers and from people who spent their childhood in specific (6 out of 16 
investigated) regions in the Netherlands. Moreover, the algorithm’s performance is 
probably not good enough for operational speaker classification: in general, we found 
equal error rates between 20% and 40%. 

When the classification algorithm had access only to the pronunciation features as 
reflected in our automatic broad phonetic transcription, it was hardly ever able to 
classify speakers effectively. We have argued that this may be explained by 1) the 
absence in the material of distinguishing pronunciation features at the broad phonetic 
level, 2) the failure of the automatic phonetic transcription procedure to capture 
distinguishing pronunciation features, 3) a mismatch between our speaker classes and 
groups of speakers that possibly show distinguishing speech features, 4) the 
heterogeneity of our speaker classes (either because they are inherently heterogeneous 
or because the speakers were not representative of their classes), and 5) the limitations 
of our algorithm for classification with a small number of classification features. 

In future research, some of these potential explanations may be further 
investigated. As for 1), we had hoped that the relatively large amounts of broad 
phonetic transcriptions would enable our algorithm to identify class-specific 
pronunciation features at the broad phonetic level. However, our approach to defining 
potentially useful pronunciation processes resulted in fewer than 100 such features, 
which appeared insufficient to distinguish speaker classes effectively. It remains to be 
seen if and how the number and the distinctiveness of the pronunciation features can 
be increased. One option might be to move towards more detailed phonetic 
transcriptions. This would increase the number of possible mappings between 
canonical representations and actual realisations, and hence potentially also the 
number of different pronunciation processes that can be used for classification. This 
approach may seem counterproductive because it might reduce the number of 
pronunciation processes that occur at least five times (the criterion used in this study). 
However, if more detailed transcriptions can be made reliably, we might gain after all, 
since the use of more diverse phonetic symbols can result in the definition of more 
diverse but also more systematic phone mappings representing characteristic 
pronunciation features. At the same time it is clear that the further we would move 
away from a broad phonetic transcription of speech, the closer we would come to the 
signal-based classification procedures reported elsewhere in this book. As for 2), we 
have identified at least one regional pronunciation phenomenon, viz. the presence of 
word-final /n/ preceded by schwa in plural nouns and verbs, which was not 
systematically represented in the automatic transcriptions. It may well be that the 
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same holds for other pronunciation phenomena that are conventionally considered as 
characteristic for some geographical region; the automatic transcription procedure, 
which was based exclusively on local properties of the speech signal may have 
selected its symbols less ‘systematically’ than the human transcribers who may have 
been biased towards conventional regional characteristics on the basis of subtle cues 
in the signal. Again, this seems to suggest that we should try and move towards more 
detailed phonetic transcriptions. As for 3) and 4), we may attempt to classify speakers 
in more specific classes, hopefully with more homogeneous speech behaviour. In 
most cases, this is likely to mean a subdivision of the classes used in this study. Recall 
that we classified our speakers in just 16 predefined geographical regions, and that we 
attempted the classification of speakers in just two classes defined by their level of 
education. The training and use of more specific speaker classes may increase the 
homogeneity of speech characteristics in these classes, but it would inevitably also 
introduce a data sparseness problem. Finally, as for 5), we may consider increasing 
the number of classification features for our algorithm, but we have already argued 
that it is not obvious how this can be accomplished. Alternatively, we may consider 
investigating classification techniques that are designed to operate with smaller 
numbers of features. 

Finally, for a real application rather than for a scientific investigation like this 
study, it will probably be suboptimal to base classifications on a single type of 
classification features. For the best possible classification, we should give the 
classifier access to as many and as large a variety of features as possible. This means 
combining both the lexical and pronunciation features presented here, and probably 
also other features which have proven useful for speaker classification, e.g. acoustic 
features that can be directly retrieved from the speech signal as illustrated in the other 
chapters of this book. 
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