

Practical Rails Projects

■ ■ ■

Eldon Alameda

7818.book Page i Monday, October 8, 2007 7:38 PM

Practical Rails Projects

Copyright © 2007 by Eldon Alameda

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-781-1

ISBN-10 (pbk): 1-59059-781-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editors: Ben Renow-Clarke and Chris Mills
Technical Reviewer: Paul Bentley
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Senior Project Manager: Tracy Brown Collins
Copy Editor: Heather Lang
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Pat Christenson
Proofreader: Lori Bring, Christy Wagner, Elizabeth Berry
Indexer: Becky Hornyak
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

7818.book Page ii Monday, October 8, 2007 7:38 PM

iv

Contents at a Glance

About the Author . xviii

About the Technical Reviewer. xix

Acknowledgments. xx

Introduction . xxi

PART 1 ■ ■ ■ Making the Right Preparations
(Don’t Skip This Part)

■CHAPTER 1 Building a Development Environment . 3

■CHAPTER 2 Creating a Rails Application . 23

PART 2 ■ ■ ■ Monkey Tasks: Managing a Daily
Task List

■CHAPTER 3 Implementing a User Registration and Authentication System . . . 35

■CHAPTER 4 Building a Daily To-Do Manager. 57

■CHAPTER 5 Enhancing Monkey Tasks . 85

PART 3 ■ ■ ■ Exercisr
■CHAPTER 6 Developing a REST-Based Application . 93

■CHAPTER 7 Adding Graphs to Our Application . 155

■CHAPTER 8 Enhancing Exercisr . 181

PART 4 ■ ■ ■ Simple Blogs
■CHAPTER 9 Building a Blog Using Typo . 187

■CHAPTER 10 Building a Simple Blog Engine . 223

■CHAPTER 11 Enhancing Our Blogs . 265

7818.book Page iv Monday, October 8, 2007 7:38 PM

v

PART 5 ■ ■ ■ Building a Web Comic Using Caching
■CHAPTER 12 Building Our Base System with Page Caching 271

■CHAPTER 13 Implementing Advanced Caching . 299

■CHAPTER 14 Enhancing the Web Comic . 315

PART 6 ■ ■ ■ Church Community Site
■CHAPTER 15 Managing Users and Profiles . 321

■CHAPTER 16 Rounding out the Community . 365

■CHAPTER 17 Enhancing the Church Community Application 389

PART 7 ■ ■ ■ GamingTrend
■CHAPTER 18 Understanding the Problems of the Legacy PHP Site 397

■CHAPTER 19 Converting Game Records . 419

■CHAPTER 20 Supporting News . 501

■CHAPTER 21 Enhancing the Gaming Site . 535

PART 8 ■ ■ ■ Integrating with a RESTful Application
Using Edge Rails (Rails 2.0)

■CHAPTER 22 Brief Overview of Highrise . 543

■CHAPTER 23 Integrating to the Highrise REST API. 549

■CHAPTER 24 Building the Appointment Scheduler . 559

■CHAPTER 25 Enhancing Our Rails 2.0 Application . 585

■INDEX . 591

7818.book Page v Monday, October 8, 2007 7:38 PM

vi

Contents

About the Author . xviii

About the Technical Reviewer. xix

Acknowledgments. xx

Introduction . xxi

PART 1 ■ ■ ■ Making the Right Preparations
(Don’t Skip This Part)

■CHAPTER 1 Building a Development Environment . 3

Installing Ruby and Rails . 3

Installing on Linux . 4

Installing on Windows . 4

Installing on Mac OS X . 5

Installing a Database . 6

Installing SQLite. 7

Code Editors . 8

Windows . 9

Linux . 13

Mac . 14

Text Editor Recommendations . 15

Installing a Web Server . 16

WEBBrick . 16

Mongrel. 17

Extra Tips that You’ll Want to Adopt (Eventually). 18

Use a Version Control System. 19

Automating Deployment with Capistrano . 20

Summary . 22

7818.book Page vi Monday, October 8, 2007 7:38 PM

■C O N T E N T S vii

■CHAPTER 2 Creating a Rails Application . 23

Kicking Things Off . 23

Step 1: Create the Project.. 23

Step 2: Configure Database Settings. 27

Step 3: Test the Application. 28

Step 4: Install Style Sheets.. 29

Step 5: Freeze Rails.. 30

Summary . 31

PART 2 ■ ■ ■ Monkey Tasks: Managing a Daily
Task List

■CHAPTER 3 Implementing a User Registration and Authentication
System . 35

Building Our Layout . 36

Our Initial Layout . 37

Our First View Template. 39

Adding User Registration and Authentication . 40

Configuring Acts as Authenticated . 43

Building User Registration . 46

Sending E-mail Notifications . 49

Summary . 55

■CHAPTER 4 Building a Daily To-Do Manager . 57

Creating Our First Model: task . 57

Creating the Task Controller . 60

The Add Task Form . 62

A Better Date Selector . 63

Installing Chronic. 64

The schedule Model . 66

The todo Model . 67

Making Our Task Lists Work. 69

Making Our Daily Schedule Work . 71

Moving Tasks to the Schedule . 72

Displaying Our Schedule . 74

7818.book Page vii Monday, October 8, 2007 7:38 PM

viii ■C O N T E N T S

Utilizing Partials . 76

Marking Tasks Complete . 78

Ajaxification . 79

Sortable Elements . 79

RJS . 80

Summary . 83

■CHAPTER 5 Enhancing Monkey Tasks . 85

Add Validations . 85

Edit a Task . 85

Add a Calendar . 85

Navigate Previous Days . 86

Capture the Estimated Time for Each Task . 86

Display Percentage Completed . 86

Develop an iPhone Interface . 87

Optimize Database Queries. 87

Move Code into Models . 87

Freeze the Chronic Gem . 88

Summary . 89

PART 3 ■ ■ ■ Exercisr

■CHAPTER 6 Developing a REST-Based Application . 93

REST-Based Development . 93

So What Is REST? . 94

The Value of REST. 95

Our First Resource . 95

RESTful Tools . 95

Building the Exercise Resource . 100

Adding RESTful Authentication. 104

Refining the Look . 111

Creating a New User . 113

Creating a Home Page . 113

Completing the Exercise Resource . 115

Building the Model Associations. 116

Rescoping the Exercise Controller . 116

The Exercise Views . 119

7818.book Page viii Monday, October 8, 2007 7:38 PM

■C O N T E N T S ix

The Workout Resource. 121

The Workout Model and Associations . 122

The Workout Controller . 123

Modifying the Views . 125

Capturing Our Workouts . 127

Building Our Activities Model and Associations 128

Modifying the Activities Routes. 130

Modifying the Activities Controller . 131

Modifying Activities View Templates . 134

Modifying the Show Method for a Workout 136

Improving the Add Activity Form. 137

Tracking Fitness Goals. 139

Modifying Our Models . 140

Setting Up a Nested Route. 140

Configuring Our Controllers . 141

Configuring Our Views . 145

Capturing the Last Result . 149

Exploring the RESTful Interface . 149

Summary . 153

■CHAPTER 7 Adding Graphs to Our Application . 155

Our Next Iteration . 155

Graphing Options in Rails . 155

CSS Graphs . 156

Sparklines. 159

Gruff Graphs. 163

Scruffy. 170

Ziya . 172

Summary . 180

■CHAPTER 8 Enhancing Exercisr . 181

Add RJS to the Interface . 181

Create a Calendar Showing When You Worked Out 182

Cache Reports . 182

Make the Home Page RESTful . 182

Develop More Graphs. 182

Fat Models / Skinny Controllers . 182

Develop Social Networking Features. 183

Summary . 183

7818.book Page ix Monday, October 8, 2007 7:38 PM

x ■C O N T E N T S

PART 4 ■ ■ ■ Simple Blogs

■CHAPTER 9 Building a Blog Using Typo . 187

Introducing Typo . 188

Features of Typo . 188

Installing Typo . 189

Activating Our Typo Blog . 190

The Rails Startup Process . 192

Understanding Typo . 197

Understanding the Database. 197

How Rails Routes Requests . 201

Working Out the Design. 207

Using Typo . 209

Managing the Blog . 211

Add the Content. 212

Customizing Typo . 213

Managing Themes . 213

Exploring a Theme . 214

Building a Custom Theme . 214

Creating a Sidebar Component. 220

Customizing a Sidebar Component . 221

Summary . 222

■CHAPTER 10 Building a Simple Blog Engine . 223

So What Are We Going to Build? . 223

Building Our First Models . 224

Building Our API . 227

The MetaWeblog Service API . 230

Adding Blogger Support . 233

Supporting Images . 246

Building the Public-Facing Side of Our Blog . 253

Creating a Basic Layout . 253

Editing the Application Controller . 256

Creating the Home Page . 256

Viewing a Single Post . 260

Adding a Category Filter. 262

Building an RSS Feed . 263

Summary . 264

7818.book Page x Monday, October 8, 2007 7:38 PM

■C O N T E N T S xi

■CHAPTER 11 Enhancing Our Blogs . 265

Develop the Blogger API . 265

Build a Blog Using Mephisto . 265

Customize Typo. 265

Move Authentication Out of Methods . 266

Add in Caching . 266

Add Comments and Akismet Spam Filtering . 266

Add Web Administration . 267

RSS Feed for Categories . 267

Implement Tagging . 267

Summary . 267

PART 5 ■ ■ ■ Building a Web Comic Using
Caching

■CHAPTER 12 Building Our Base System with Page Caching 271

A Basic Administration System . 273

Uploading Comics . 273

Our Comic Model. 275

Modifying Our Routes . 278

Modifying the Scaffolding . 278

Creating a Comic. 282

A Simple Authentication System. 284

Limiting Access . 286

The Public-Facing Side . 287

Page Caching . 289

Enabling Caching. 291

Cleaning Up the Cache . 294

Summary . 297

■CHAPTER 13 Implementing Advanced Caching . 299

The Members Controller . 300

Limiting Access to Subscribers. 301

Caching Our Members Pages . 304

Expiring Action Caching . 305

7818.book Page xi Monday, October 8, 2007 7:38 PM

xii ■C O N T E N T S

Fragment Caching . 306

Customizing Our Layout . 308

Clearing Our Fragment Cache. 313

Summary . 313

■CHAPTER 14 Enhancing the Web Comic . 315

Add a Blog . 315

Integrate a Forum . 315

Change Comics to Be Selectable by Date . 316

Enhance the Authentication System . 316

Summary . 317

PART 6 ■ ■ ■ Church Community Site

■CHAPTER 15 Managing Users and Profiles . 321

Installing Restful Authentication. 321

So What Are We Going to Build? . 324

Creating Our Shared Layout . 325

The Avatar Model . 327

The User Details Model . 329

Creating a Sample User . 331

The Profile Controller . 333

Editing User Details and Avatars . 336

Editing a Profile . 338

Viewing a Profile . 340

Adding Blogs . 342

Post Controller Methods and Templates . 344

Adding Blog Summaries to Our User Page. 350

Adding Galleries . 352

Adding Photos . 355

Galleries and Photo Controllers . 357

Creating a New Gallery. 358

Viewing a Specific Gallery . 359

Display All Users’ Galleries . 361

Summary . 363

7818.book Page xii Monday, October 8, 2007 7:38 PM

■C O N T E N T S xiii

■CHAPTER 16 Rounding out the Community . 365

Building the Community Home Page. 365

Creating the Default Route . 366

The Index Page . 366

Building the Home Page. 371

Adding a Directory of Users . 373

Generating an Alphabetical Index. 373

Creating a Route . 373

Adding the Directory Method . 374

Editing Our View Template . 374

Adding Navigation. 376

The Upper Navigation . 376

The Footer Navigation . 376

Adding Comments . 377

Installing acts_as_commentable . 377

Displaying Comments. 379

Adding Comments. 382

Summary . 388

■CHAPTER 17 Enhancing the Church Community Application 389

Create a User Import or Sign-Up Process. 389

Batch Upload Photos Using SWFupload . 390

Add an RSS Feed for Each User . 390

Add Friends List Functionality . 391

Enhance the Home Page . 391

Clean Up Some of Our Ruby Code . 391

Move Code into Partials . 392

Implement Kropper for User Profile Images . 393

Add Caching . 394

Summary . 394

PART 7 ■ ■ ■ GamingTrend

■CHAPTER 18 Understanding the Problems of the Legacy PHP Site . . . 397

A Quick Tour of the Current System . 398

A Look at the Existing Code. 400

Issues with the Old System . 402

7818.book Page xiii Monday, October 8, 2007 7:38 PM

xiv ■C O N T E N T S

Setting Up Our Application . 402

Utilizing the Console . 403

Utilizing Ext-JS to Create a Better Interface. 405

Border Layout . 406

Grid . 407

Dialogs . 409

Message Box . 409

Installing Ext-JS into Our Rails Application . 410

Automating Ext-JS Installation . 411

Creating the Generator Files . 412

Summary . 417

■CHAPTER 19 Converting Game Records . 419

Converting Our Database to Migrations . 419

The Games Table . 421

Cleaning Up the Games Table. 423

Creating the Games Model . 426

Creating the Developer and Publisher Models. 428

Creating Our Genres Model. 433

Setting Our Routes . 436

Creating Our Controllers . 436

Creating Our Views. 440

A Standard Layout. 440

Enhancing Our Layout with Ext Border Layout. 442

Defining the Workflow . 445

Listing the Current Resource. 446

Creating a New Resource . 446

Deleting a Specific Resource . 446

Editing a Specific Resource. 447

Building the Developer Pages. 447

Listing Our Developers . 447

Editing a Developer. 452

Enhancing the Grid . 453

Adding Buttons to Our Toolbar . 462

Deleting a Developer . 463

Creating a New Developer . 466

Abstracting Our Workflow into a Helper . 468

Building the Show / Edit Template. 479

Capturing Failed Creations . 480

7818.book Page xiv Monday, October 8, 2007 7:38 PM

■C O N T E N T S xv

Games. 481

Handling Select Boxes . 486

Providing WYSIWYG Functionality. 489

Viewing Screenshots . 493

The Screenshot Model . 493

Summary . 499

■CHAPTER 20 Supporting News . 501

Modifying the Database. 501

Creating a Model for News . 504

Creating Our Controller . 506

Creating Our Resource . 507

Building Our List View . 507

Redefining the Index Method . 507

A First Pass at the Index Page . 508

Modifying the Grid. 510

Capturing Creation Errors . 522

The Edit News Page . 523

Editing the News Post. 523

Activating the Post . 525

Building Associations to the Post . 527

Summary . 534

■CHAPTER 21 Enhancing the Gaming Site . 535

Build Your Own Generator. 535

Add Login Capabilities . 535

Associate Publishers, Developers, and Consoles to News Posts 537

Create a Consoles Constant . 537

Add Box Art and Screenshot Uploads . 537

Add Support for Games Reviews . 538

Add Long Content Support . 538

Add the Acts as Paranoid Plug-In . 538

Move Logic to Models . 539

Summary . 539

7818.book Page xv Monday, October 8, 2007 7:38 PM

xvi ■C O N T E N T S

PART 8 ■ ■ ■ Integrating with a RESTful
Application Using Edge Rails
(Rails 2.0)

■CHAPTER 22 Brief Overview of Highrise . 543

Creating a Highrise Account . 544

Creating Contacts . 545

Creating Tasks . 547

Highrise Has More to Offer . 547

A Special Note About Permissions . 548

Summary . 548

■CHAPTER 23 Integrating to the Highrise REST API . 549

Exploring the API. 549

Consuming RESTful APIs . 551

Creating a New Edge Rails Project . 552

Pulling Down the Edge Version of Rails. 553

Creating an Edge Rails Application . 554

Testing Our Connectivity . 555

Summary . 558

■CHAPTER 24 Building the Appointment Scheduler . 559

What Are We Going to Build? . 559

Putting Together Our Layout. 560

Installing Ext. 560

Using Yahoo Maps. 561

Obtaining an Application ID . 561

Our Layout Script . 561

The Home Controller . 562

Plugging In Our Map . 565

Adding Our Task List . 566

Getting the Upcoming Tasks . 567

Displaying Our Upcoming Tasks . 569

Setting Up Our Variables . 569

Building the Data Store . 571

Displaying Customers on the Map . 576

7818.book Page xvi Monday, October 8, 2007 7:38 PM

■C O N T E N T S xvii

Managing Notes . 578

Displaying Notes . 579

Adding Notes . 579

Using AJAX to Update Displayed Notes . 581

Summary . 583

■CHAPTER 25 Enhancing Our Rails 2.0 Application . 585

Enhancing the Highrise Project . 585

Cache Customer Data. 585

Create Appointments . 585

Edit a Customer . 586

New Features in Edge Rails . 586

Sexy Migrations . 586

Automatically Generated Migrations . 587

Database Commands . 587

View Routes . 587

Query Caching . 587

RESTful Routing Improvements . 588

Features Removed from the Framework. 588

Summary . 589

■INDEX . 591

7818.book Page xvii Monday, October 8, 2007 7:38 PM

xviii

About the Author

■ELDON ALAMEDA is a web developer who currently resides in the harsh climates of Kansas. He
develops Ruby on Rails applications for a small technology startup in downtown Kansas City;
prior to this, he did development for a variety of companies including local advertising firms,
Sprint PCS, and IBM. During the ’90s, he also acquired a nice stack of worthless stock options
working for dot-com companies. When he’s not sitting in front of a computer or irritating his
wife by describing a new technology as “sexy,” Eldon spends most of his time at home playing
games with his young daughter.

7818.book Page xviii Monday, October 8, 2007 7:38 PM

xix

About the Technical Reviewer

■PAUL BENTLEY has been writing software professionally for over a decade. He has experience in
many areas of computing, from embedded devices to 3-D graphics. He is especially proficient
in the telephony world, experienced with both traditional computer telephony and SIP-based
solutions. He is currently working with Rails, developing web applications for corporations
who want stable solutions to a variety of problems.

As an avid Go player, he tries to play every day—though he admits he still has a lot to learn
before he can even be considered an amateur. He lives with his girlfriend and daughter in
Harrogate, UK. If you feel like challenging Paul to a game of Go, he can be tracked down via
paulbentley.net.

7818.book Page xix Monday, October 8, 2007 7:38 PM

xx

Acknowledgments

Blah, blah, writing a book is hard, blah, blah.
That being said, this book could not be possible without the help, patience, and wisdom of

a number of people.
Keir Thomas, Chris Mills, and Ben Renow-Clarke, the holy trinity of editors who have been

involved with this project. Thank you for your guidance, advice, and assistance throughout the
project.

Paul Bentley, the technical reviewer. Thank you for the long hours that you spent going
through the code in the book, your insightful comments (even when we didn’t agree), and your
many words of encouragement that helped along the way.

Tracy Brown Collins, the project manager for this book. Thank you for your tireless work at
keeping things (which typically meant me) on track. Thank you for also being flexible when
times called for it.

Heather Lang, the copy editor. Thanks for all of your suggestions on the text and for the
wonderful polish that you applied to the text of this book. You truly went above and beyond for
me on numerous occasions, and I want to let you know how much I appreciated it.

Laura Cheu and her production team. Thanks for all of your hard work to help get the book
out into the stores as fast as possible and for putting up with my requests for last, last minute
changes. You came to my rescue on a number of occasions, and words cannot express my
appreciation.

Thanks go to my wife Dori for your kindness, support, encouragement, and for essentially
taking on the role of a single mother to support me over the last nine months. And for (almost)
never complaining when I asked you to go pick me up an order of hot wings for dinner.

Finally, I’d like to thank my daughter Kaylee for being my sunshine and always bringing a
smile to my face.

7818.book Page xx Monday, October 8, 2007 7:38 PM

xxi

Introduction

Practical Rails Projects is for developers who have already read a beginning Rails book (or
worked though a series of introductory tutorials online) and are now looking to expand that
knowledge by gaining practical experience developing a variety of web applications in Rails. It’s
for developers who want to gain hands-on experience of building Rails applications that do
interesting things such as caching, RESTful routing, using Active Resource and RJS, and con-
necting Rails to legacy databases. While I do make the assumption that readers have read some
previous Rails material, I believe that I’ve also provided enough review information that a
highly motivated reader with previous experience in a model-view-controller framework and
familiarity with another object-oriented language should be able to work through the material.

The Problem with Most Training Books and
Courses
Over the course of my career, I’ve had to sit through an inordinate amount of technical training
sessions, and I would estimate that 98 percent of them all suffered from the same major flaw—
they didn’t actually teach anything. I sat in a classroom for a week and proved that I could fol-
low step-by-step directions. Heck, for the majority of them, I could even daydream about other
things all day and still pass the course. It wasn’t until I got back to the office and was confronted
with having to work with the technology myself (without a safety net) that I actually learned
anything. It was only when I was removed from the ideal environment and had to use the tech-
nology in the real world that its benefits or weaknesses were revealed. I’m sure many of you
have suffered through similar things.

Unfortunately, it seems that many current programming books fall into that same trap.
The ones that provide instruction on how to build applications tend to fall into this same paint-
by-numbers mentality so that at the end of the book, you’ve simply proven that you can follow
step-by-step directions as well. I wanted to write something different.

You see, I love Ruby on Rails. I truly believe that it’s the best web development framework
available today. I know that Rails has brought a lot of the fun of web development back to my
work and that it has made me a better developer as well. So when the opportunity to write this
book came to me, I wanted to write something that would help others develop the same love for
Rails. As I reviewed the existing books available on Rails, I noticed that they fell into just a few
categories:

• Introductory Rails books provide the necessary introduction to the structure, conventions,
and features of Rails. Examples include Beginning Rails: From Novice to Professional
(Jeffrey Allan Hardy, Cloves Carneiro Jr., and Hampton Catlin. Apress, 2007), Agile Web
Development with Rails (Dave Thomas, David Hansson, Leon Breedt, and Mike Clark.
Pragmatic Bookshelf, 2006), or even Ruby on Rails for Dummies (Barry Burd. For Dummies,
2007).

7818.book Page xxi Monday, October 8, 2007 7:38 PM

xxii ■I N T R O D U C T I O N

• Single-project books are designed to spoon-feed the reader, moving step-by-step
through the creation of a single application in Rails, such as building a social network
site or an e-commerce site with Ruby on Rails.

• Recipe books are designed for intermediate to advanced Rails developers that include
short snippets of code to demonstrate solutions for solving common problems such as
adding authentication.

• Reference books are designed for intermediate to advanced Rails developers and take you
deeper into a single feature or component related to Rails development, such as the
excellent Ruby for Rails: Ruby Techniques for Rails Developers (David Black. Manning
Publications, 2006), and books such as Pro ActiveRecord: Databases with Ruby and Rails
(Kevin Marshall, Chad Pytel, and Jon Yurek. Apress, 2007), Deploying Rails Applications
A Step-by-Step Guide (Ezra Zygmuntowicz and Bruce Tat. Pragmatic Programmer, 2007),
and so on.

Typically, I recommend people interested in learning Rails to use books in exactly this
order. Start with a beginning Rails book, then move into doing a variety of the project-based
books to gain hands-on experience. Finally, move onto the recipe and reference books as a
means of deepening your knowledge.

How This Book Is Different
Of those listed above, I believe that people gain the most knowledge of Rails from the project-
based books. Unfortunately, even when dealing with a subject as fun as Rails, it’s still possible
to shut off your mind while reading those books and just end up following the instructions
without learning from them. That’s not meant as a knock on any of those books. I’ve bought
and read pretty much all of them myself.

I wanted to give you something that was focused on helping you bridge that gap from
being a beginning Rails developer to becoming an experienced Rails developer. I wanted to
give you more value for your book-buying dollar by not just showing you how I might build an
application but instead giving you the tools and knowledge necessary to build these applica-
tions for yourself.

So, rather than simply taking you through the process of how to build a single solution,
we’ll tackle several different types of projects. Each project was selected to allow you to develop
hands-on experience either working with a core feature of Rails (such as caching or RESTful
routing) or to wrangle an interesting problem domain in an effort to spark your interest. Each
of these projects could have easily been extended out into the single-project book format.

Learning to Ride a Bike

In addition, rather than expand each project out into a full book of its own and spoon-feeding
you the step-by-step instructions for how to build the exact project that I would build, I chose
to scale back the applications a bit, giving you the results of an initial rollout version of each
application. This way, each application is workable yet still at a point where you can easily
modify and extend it to suit your own needs. When describing this book, I’ve often used the
analogy of teaching someone to ride a bike. My goal is to help you get past that initial hurdle of

7818.book Page xxii Monday, October 8, 2007 7:38 PM

■I N T R O D U C T I O N xxiii

getting up and going—and then let go once you’ve got some momentum and balance so that
you can finish the ride yourself.

At the end of each project, I include a number of exercise ideas for you. As I believe that you
often learn some concepts the best when having to fix something broken, I’ve created some
areas in the projects that are less than optimal and then point them out in the exercise sections
for you to fix. Other ideas I give you point you in new directions to take our project that would
be fun and interesting. I strongly recommend that you go through all of the exercises, as I truly
believe that you will learn more from them than in the other sections of the book (which isn’t to
imply that I haven’t tried to share a lot of cool and interesting web development techniques
with you in the rest of the book).

What’s Not in This Book
Of course, writing a book like this also requires a substantial amount of sacrifice of subjects that
the geek in me would have liked to cover as well. Unfortunately, if I covered everything that I
wanted to, this book would have turned out to be around 2,000 pages (and I would probably still
be writing it). That said, some of the core elements that I don’t cover in the book but are impor-
tant for you to understand are mentioned in the following sections.

Database Tuning and Indexing

Since database tuning and indexing are absent, you’ll notice that we’re not adding any addi-
tional indexes onto the databases in most of the applications. This is fine while our data storage
is small and our queries remain fairly simple. However, as our applications grow over time, this
lack could cause significant performance issues. Perhaps because I came into web develop-
ment by way of database administration, this was an important feature that was hard for me to
remove from the book, but this subject is complex and deserves more attention than I would
have been able to give it in this book. Perhaps I’ll write a second book that’s focused entirely on
this subject.

Testing

Test-driven development (TDD) has certainly taken a strong foothold within the Rails commu-
nity, and while I haven’t yet become a convert to writing tests first, I’m a firm believer in the
value of developing a comprehensive test suite before the application is deployed. I’ve heard it
said that all applications are going to be tested—the question is if you’ll write the tests yourself
or simply dump the application on your users to test it for you.

Refactoring

Going hand-in-hand with a solid set of test cases is the need to refactor the code. As each
project is at an initial rollout stage, there’s always going to be lots of room for refactoring the
code to make it cleaner, simpler, or in some cases optimized for performance and scaling.

7818.book Page xxiii Monday, October 8, 2007 7:38 PM

xxiv ■I N T R O D U C T I O N

In the exercise section of each project, I try to point you in the right direction for some com-
mon-sense refactorings and optimizations.

Icons Used in This Book
As much as I would love to be able to claim responsibility for all of the artwork used in this
book, the simple truth is that I’m a coder, not an artist. So to give credit where credit is due, here
is a short list of the people responsible.

MonkeyTasks Project

Some icons used in this project were modified versions of ones I downloaded from the Creative
Commons Licensed Mini-Icons v2 by Timothy Groves. You can obtain the whole set at http://
www.brandspankingnew.net/archive/2006/12/hohoho.html.

Exercisr Project

Icons used in this project were from Paul Armstrong’s Gallery 2 Icon set, which is licensed
under the GNU General Public License (GPL). They are available for download at http://
paularmstrongdesigns.com/portfolio/.

Typo Blog Project

Icons used in this project were created by Amanda Dinkel, a talented Kansas City
graphic designer whose portfolio can be found at http://creativehotlist.com/
index.asp?linkTarget=fullProfile.asp&indID=83102.

GamingTrend Project

Icons used in this project were created by Mike Dunn of http://www.foolishstudios.com. For
the navigation links, he utilized and modified the Creative Commons licensed FamFam Silk
Icons available at http://www.famfamfam.com/lab/icons/silk/.

7818.book Page xxiv Monday, October 8, 2007 7:38 PM

■ ■ ■

P A R T 1

Making the Right
Preparations (Don’t Skip
This Part)

Yes, I know that there is probably a strong temptation to skip straight ahead to some

project that’s piqued your interest or looks like a good start to solving a specific problem

that you’re dealing with, but doing so would be a big mistake, perhaps even one with fatal

consequences.

OK, maybe not fatal consequences, but it is very important that you don’t skip this part,

because here, we’re going to go over some basic information that will be very helpful in

completing the projects in this book. Even if you already have a fairly significant amount

of Rails experience, it will be useful for you to at least review the information presented,

to make sure you’ve got everything you need to complete all the projects in this book.

I’ll start by discussing how to establish a good development environment for yourself and

what tools you should consider using. Once those basic requirements are established,

we’ll close out Part 1 with a step-by-step breakdown of the common tasks that will be

used in building each of our projects so as to eliminate redundancy in this book.

7818.book Page 1 Monday, October 8, 2007 7:03 PM

3

■ ■ ■

C H A P T E R 1

Building a Development
Environment

Miracle Max: You rush a miracle man, you get rotten miracles.

——William Goldman, The Princess Bride

In order to run the projects in this book, you need to ensure that you have installed the follow-
ing technologies on your development machine:

• Ruby and Rails: As Rails is a framework for and written in Ruby, you need to have a work-
ing installation of Ruby. For this book, you’ll need to have Ruby 1.8.4 at a minimum. I’ll
point you in the right direction for some painless ways to get both Ruby and Rails
installed.

• Database: Rails is a framework that was designed specifically for creating database-driven
web applications. Therefore, the framework won’t even start without a connection to a
database. We’ll discuss some of the popular database options for development machines.

• Code editor: While you can use any program that can create and edit text files, develop-
ing in Rails means switching among a lot of files, so you’ll benefit from checking out
some of the more advanced code editing solutions that we’ll discuss.

• Web Server: Any good development machine needs a way for you to run your applica-
tion. Fortunately, we’ve got several great ruby based options to choose from that we’ll
discuss.

Installing Ruby and Rails
Since you’ve more than likely read through a beginning Rails book already, we won’t spend a
lot of time going over how to install Rails. However, just in case there are some people who still
need this information, I do want to at least point you in the right direction for getting Rails
installed on your development machine. So, in this section, I’ll give some high-level informa-
tion on how to install Rails on Linux, Windows, and Mac OS X.

If you’re looking for a beginning-level book, the best one is still Agile Web Development
with Rails (Thomas, Dave et al. Pragmatic Programmers, 2006).

7818.book Page 3 Monday, October 8, 2007 7:03 PM

4 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Installing on Linux
Unfortunately, because of the large number of different Linux distributions, attempting to doc-
ument a single installation method would be an exercise in futility.

The good news, however, is that if you’ve installed any of the development packages with
your distribution, there’s a good chance that Ruby may already be installed. If it’s not, it’s typ-
ically just a matter of using whichever package manager your Linux distribution requires to
add it, and it’s generally fairly painless. If you’re a bit more daring, you could even build from
source.

A great resource to find step-by-step instructions for your specific Linux distribution is the
official Ruby on Rails wiki (http://wiki.RubyonRails.org).

Installing on Windows
If you choose to develop Rails applications on a Windows machine, you can bypass all the
installation and configuration headaches that come with building a development environment
on other operating systems by downloading Instant Rails.

Instant Rails is a full Ruby on Rails development environment that is installable through a sin-
gle executable. You can download the latest version of Instant Rails from http://Rubyforge.org/
projects/instantRails.

At the time of this writing, an Instant Rails installation includes the following files:

• Instant Rails Manager 1.7

• Ruby 1.8.6 (from the One-Click Ruby Installer 1.8.6-25)

• Ruby on Rails 1.2.3

• Apache 1.3.33

• MySQL 5.0.27

• MySQL/Ruby 2.7.3 (native driver)

• Mongrel 1.01

• phpMyAdmin 2.10.0.2

• Two preinstalled Rails applications for you to experiment with:

• A cookbook application taken from an ONLamp.com tutorial

• Version 2.6 of the popular Rails blogging engine Typo

7818.book Page 4 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 5

To simplify things even further, the Instant Rails Manager (see Figure 1-1) is a GUI man-
agement tool from which you can start or stop any of the processes (Apache, MySQL, and so
on) or your individual Rails applications that you’ve installed into Instant Rails.

Figure 1-1. Instant Rails management console

Installing on Mac OS X
If you’re running Mac OS X 10.5 (Leopard) or above, you’ll be pleasantly surprised to find that
Ruby on Rails is already included along with the OS in the development tools. Unfortunately,
since Leopard’s release has been postponed until after this book’s publication date, you’ll have
to check back for updates to the book at http://www.RailsProjects.com or the Apress site for
information on any gotchas associated with activating Rails.

If you’re running Max OS X 10.4 (Tiger) or below, you have a few options to choose from to
build your development environment. Regardless of which one you choose, it would be a good
idea to first install the Xcode development tools. You can install these either from your Mac
OSX CD/DVD or by downloading the latest version from http://developer.apple.com. Install-
ing these tools will provide your Mac with the necessary compilers to build some of the
packages that I recommend, such as Mongrel and SQLite.

Your first option for installing Rails is to install Locomotive, which is the Mac equivalent of
Instant Rails. Within a single .dmg package, you’ll find a complete development environment
for Ruby and Rails along with a large number of commonly used Ruby gems. You can down-
load Locomotive at http://locomotive.raaum.org. Locomotive also includes a management
GUI similar to the Instant Rails Management tool (see Figure 1-2).

7818.book Page 5 Monday, October 8, 2007 7:03 PM

6 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Figure 1-2. Locomotive is the easiest way to set up Ruby on Rails for your Mac.

Secondly, for those of you who (like me) would rather have full control over your develop-
ment installation, you can do a full install manually by following the excellent step-by-step
instructions found online at the Hivelogic blog (http://www.hivelogic.com/).

Installing a Database
As the ActiveRecord library in Rails does a fantastic job of abstracting your database connectiv-
ity from your code, switching databases underneath a Rails application is typically merely a
matter of modifying the database.yml configuration file (found in /config) and rerunning your
migrations to load the schema into your new database. As such, which database you choose to
use for development will normally be more a matter of personal taste than a necessity of the
eventual production environment. Gone are the days of having to use database-specific query
commands such as PHP’s mysql_query. In fact, it’s also very easy to mix and match different
databases for different environments, such as using SQLite for development and a PostgreSQL
database for production.

7818.book Page 6 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 7

Unless you need to connect to a legacy enterprise database, most Rails developers choose
to use one of the popular open source database solutions such as MySQL, PostgreSQL, or
SQLite. While I have a lot of respect for using PostgreSQL and MySQL as my database for pro-
duction applications, I have found that SQLite is my preferred database for development for
the following reasons, so I’ll be using it in the projects in this book:

• SQLite is easy to manage. SQLite lives up to its description as “a self-contained,
embeddable, zero-configuration SQL database engine.” It provides support for most of
SQL-92 and offers a simple command-line utility for interacting with its databases.

• Creating new databases is less of a hassle with SQLite. With SQLite, there is no need to run
extra commands to create your database prior to running your migrations. Running your
migrations will automatically create the database specified in your database.yml file.

• SQLite is easier to destroy. Since a SQLite database is merely a file sitting in the file sys-
tem, I can easily blow it away using a simple rm or del command. During the early stages
of development, if I find that I need to make a database schema change, I would prefer
to modify the original migration file and re-create the database from scratch rather than
build an additional migration to correct an oversight or mistake I may have made in my
first attempt.

• SQLite is less resource intensive than MySQL yet provides excellent performance that is
in most cases comparable to MySQL’s. Also, unlike MySQL and PostgreSQL, which run
as services and eat system resources even when you’re not developing, SQLite has the
advantage of running only when it’s needed.

• SQLite is more portable. Since the database is merely a file in the file system, it can be
distributed along with the application. This means that your development database can
also be placed into your version control system so that it can be checked out along with
the code.

Installing SQLite
Even if you choose to use another database for your development environment, it would
behoove you to go through the process of installing SQLite and the SQLite Ruby gem so that
you can utilize the sample databases that is included with most of the projects in this book (the
sample databases are available in the Source Code/Download section of the Apress web site).

Installing SQLite on Windows

To install SQLite onto a Windows development box, you will need to download and install two
files—the SQLite DLL and command line application—copying them into the bin directory of
your Ruby installation (typically C:\Ruby\bin). You can download these from the SQLite home
page at http://www.sqlite.org.

7818.book Page 7 Monday, October 8, 2007 7:03 PM

8 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Installing SQLite on Linux/Unix

Most distributions offer a package manager that makes installing SQLite as simple as asking it
to install. You could also install from source by checking out the latest build from the SQLite
home page at http://www.sqlite.org.

Installing SQLite on Mac OS X

Starting with Tiger, Mac OS X began including SQLite along with the operating system, so
there’s no need to worry about installing SQLite. The necessary SQLite Ruby gem to interface
to a SQLite database is a bit more complicated, however. Before you can install the Ruby gem,
you will need to install an application named SWIG. Otherwise, the SQLite gem will not use the
correct SQLite library but will default to a using a pure Ruby version of SQLite that doesn’t work
as well.

The easiest way to install SWIG is to first install the MacPorts tool. MacPorts is a free and
open source application that simplifies installation of many open source tools that otherwise
would require compiling from source manually. You can install the latest version of MacPorts
from http://www.macports.org.

Once you have MacPorts installed, you can install the SWIG library from the command
line with this simple command:

sudo port install swig

Install the SQLite Ruby Gem

Open a command prompt, and use RubyGems to install the SQLite Ruby gem:

sudo gem install sqlite3-Ruby

You’ll see a list of possible install versions. You should choose the highest numbered ver-
sion for your operating system (choose the Win32 version if you’re on Windows or the Ruby
version if you’re on Unix/Linux or Mac OS).

■Note Even though I recommend using SQLite as your primary database during development, it certainly
doesn’t hurt to have MySQL installed on your development box as well. In fact, I often use SQLite during my
initial development and switch over to a MySQL database as I get close to deploying the application into the
wild. Installing MySQL is often a fairly painless procedure as well. Windows and Mac users have easy wizard-
based setup tools can be downloaded from http://dev.mysql.com/downloads/mysql/5.0.html,
whereas pretty much every Linux package manager has a way to easily add MySQL to your installation. For
example, from a Debian-based Linux distribution (such as Ubuntu) you would merely run the following com-
mand: sudo apt-get install libmysql-Ruby1.8 mysql-server-5.0.

Code Editors
To create Rails application code, all you need is a basic editor that can create and modify
text files. In fact, I built my very first Rails application on a Windows laptop using Notepad.

7818.book Page 8 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 9

It worked, but the experience sure was a lot more painful than it needed to be, and I wouldn’t
recommend it. Since that time, I’ve developed Rails application on that same laptop running
Windows and several different flavors of Linux, before switching to the Macbook that I use for
development today. Having used the full gamut of operating systems, I’ve installed and exper-
imented with different editors on each OS. Based on that experience, here are a few options for
you to consider, as well as my recommendations for each OS.

Windows
If you’re developing on Windows, you have a number of cross-platform and great Windows-
only editors to consider.

Scite

This text editor, shown in Figure 1-3, should have been installed along with your Ruby one-
click installation, and you should find it in your Ruby programs folder in your Start menu.
Although a bit on the simple side, it does have a few nice features such as tabbed code editing,
code block collapsing, and syntax highlighting. I tend to use this as my go-to editor if I just need
to do something quick and small with an application that’s running on a Windows server.

Figure 1-3. Scite Text Editor, a cross-platform text editor

7818.book Page 9 Monday, October 8, 2007 7:03 PM

10 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

jEdit

jEdit, another great programmer’s text editor written in Java, has been around for a quite some
time and supports a large number of languages (see Figure 1-4). Typically, the people who are
using jEdit are people who have used it in the past. You can download the editor at http://
Rubyjedit.org and the Ruby plug-in at http://Rubyjedit.org.

Figure 1-4. jEdit is a popular cross-platform text editor for programmers.

RIDE-ME

RIDE-ME, shown in Figure 1-5, is a great editor for those who are coming from a .NET back-
ground and have grown accustomed to the Visual Studio tools. It has a lot of nice features such
as support for snippets, code folding, and an integrated Internet Explorer browser. You can
check it out at http://www.projectrideme.com.

7818.book Page 10 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 11

Figure 1-5. RIDE-ME is a Rails IDE with a Visual Studio feel to it.

RadRails

RadRails is an Eclipse-based integrated development environment (IDE) that’s been custom-
ized for Rails development (see Figure 1-6). It offers a number of nice features such as
Subversion integration, generator and rake support, integrated testing, and snippet support.
You can download it at http://www.radrails.org.

7818.book Page 11 Monday, October 8, 2007 7:03 PM

12 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Figure 1-6. RadRails is an Eclipse-based Rails IDE.

E

E is a brand new entry into the realm of Windows editors that’s hoping to prove that imitation
truly is a sincere form of flattery. E strives to bring the power of TextMate over to the Windows
world by not only supporting many of its features and functions but also providing full com-
patibility with TextMate’s large library of bundles as well. You can download a copy of E from
the official site at http://www.e-texteditor.com.

In addition, you may also want to check out a blog entry from Kansas City Rails devel-
oper Ben Kittrell on setting up a Mac-esque Rails development system in Windows using E at
http://garbageburrito.com/blog/entry/391.

Figure 1-7 shows the E editor in action.

7818.book Page 12 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 13

Figure 1-7. The E text editor running the Vibrant Ink theme.

Linux
Not only can Linux developers use familiar tools such as Gedit (included with the Gnome
Desktop) or Kate (included with the KDE desktop) but they can also choose to use Linux ver-
sions of Scite, jEdit, or RadRails. Both Gedit and Kate should be easily installable from
whichever package manager your specific flavor of Linux utilizes.

7818.book Page 13 Monday, October 8, 2007 7:03 PM

14 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Figure 1-8. Kate is an advanced text editor within the KDE desktop.

Mac
While you could certainly use the Mac versions of cross-platform development tools such as
RadRails, the simple truth is that TextMate truly rules the roost for Rails development on a Mac.
TextMate is the editor that the entire Rails core team uses, and it is, by far, the most popular
editor for Rails development.

TextMate, shown in Figure 1-9, provides excellent syntax highlighting support for Ruby,
Rails, HTML, CSS, and anything else that you might need to use while developing Rails appli-
cations. It also features an incredible number of macros and Emacs-like shortcut commands
that truly accelerate your development time.

It’s so popular, in fact, that a large number of developers have switched to the Mac just so
they can use TextMate. You can download a trial at http://macromates.com.

7818.book Page 14 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 15

Figure 1-9. TextMate by Macromates is considered by many to be the best Rails editor.

Text Editor Recommendations
I started out developing with Rails in the Windows world; later, I switched to various Linux dis-
tributions so that I could match production servers and, finally, settled on Mac OS X as I started
writing this book. My recommendations are based on personal experience with all of the edi-
tors I listed previously.

By far, my recommendation is to go with TextMate if you’re on a Mac or can switch to
a Mac.

7818.book Page 15 Monday, October 8, 2007 7:03 PM

16 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

If you’re going to be developing on a Windows or Linux machine, I highly recommend
using RadRails. RadRails provides excellent support for syntax highlighting. It also offers inte-
grated tests, a database perspective that allows you to inspect and query your database, and
Subversion integration. Also, its cross-platform compatibility means that this tool can grow
with you no matter what type of system you develop on over the years.

Even though the editor you end up using is going to be a matter of your personal tastes, I
do strongly recommend that you take the time to experiment with several and get a good feel-
ing for what’s out there. After you make your decision, dedicate some time to really getting to
know the editor, and see what kind of additional shortcuts and features it may have that could
help you out while you’re developing. You’re going to spend a lot of time in this editor, and
investing the time to truly learn what it can do will pay you big dividends later on.

Installing a Web Server
Now that you have all of the tools in place to create a Rails application, you just need a way to
run those applications on your development machine to see the fruits of your labors. While
you’re certainly free to go through the hassle of installing and configuring a full web server, like
Apache, Lighttpd, or LiteSpeed, onto your development box, it strikes me as overkill for our
needs—especially when we have a pair of excellent, lightweight, and fully functional solutions
to use instead.

WEBBrick
The first solution we’ll look at is WEBrick, which should already have been installed along with
your Ruby installation. WEBrick is an HTTP server library written purely in Ruby that has been
a part of Ruby’s standard library since version 1.8.0. Ruby on Rails has always included bun-
dled support for WEBrick. Running a Rails application in WEBrick is as simple as navigating to
the root of your Rails application and running

ruby script/server

WEBrick also provides support for a large number of command-line configuration options
as well such as:

 -p, --port=port
Runs Rails on the specified port. Default: 3000
 -b, --binding=ip
Binds Rails to the specified ip. Default: 0.0.0.0
 -e, --environment=name
Specifies the environment to run this server under
I.E. test/development/production. Default: development
 -m, --mime-types=filename
Specifies an Apache style mime.types configuration file to
 be used for mime types Default: none
 -d, --daemon

7818.book Page 16 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 17

Make Rails run as a Daemon
(only works if fork is available -- meaning on *nix).
 -c, --charset=charset
Set default charset for output. Default: UTF-8
 -h, --help
Show this help message.

While WEBrick provides a great, low-configuration option for running development code,
it does suffer from a couple of minor problems. First, since WEBrick is a pure Ruby implemen-
tation, it will never run as fast as a web server written in a compiled language. This can be a
pain, because you don’t have a good scale for judging how fast your code will run when it’s
ported to production. Second, WEBrick has extremely limited scalability, which makes it
impossible to use as a production web server for Rails applications (or at least, its use is highly
discouraged).

Issues like these have caused a large number of developers to forgo using WEBrick to test
their code. Instead, those developers installed a full-fledged web server, such as Lighttpd or
FastCGI, on their development machines, but that all changed once Mongrel was released.
Mongrel is a thing of beauty—it’s what I use in both development and production, and I highly
recommend that you do as well.

Mongrel
Frustrated with the complexity of Rails deployment using FastCGI, programmer Zed Shaw set
out to develop a solution to simplify it. His first attempt to replace FastCGI was to develop a
Simple CGI implementation, which looked very promising but unfortunately proved to be dif-
ficult to support within an existing web infrastructure. When he began working on a project for
proxying HTTP requests into Simple CGI requests, he realized that he could just cut out Simple
CGI completely, and thus Mongrel was born.

Today, Mongrel is a very fast web server written in Ruby and C and is an excellent alternative
to WEBrick. It has quickly become the unofficial standard for development machines, and I rec-
ommend that you use Mongrel as your development web server. Mongrel is incredibly easy to
install, much faster than WEBrick, and can also be used to power a production application.

To install Mongrel, open a command prompt and run the following line:

gem install mongrel

Once Mongrel is installed on your development box, you can start an application under-
neath it by navigating to the root directory of your application and running this command:

mongrel_rails start

Your application is now available on the local host at port 3000 with Mongrel running in
the foreground. You can stop Mongrel by hitting Ctrl+C. Unfortunately, running your applica-
tion in the foreground can get a tad annoying, as it means additional clutter on your desktop.
But Mongrel supports a wide range configuration options including the capability to run as a
daemon in the background (on Unix, Linux, and Mac OS). You can start a Mongrel process in
the background by passing in the –d flag:

mongrel_rails start –d

7818.book Page 17 Monday, October 8, 2007 7:03 PM

18 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

You can pass Mongrel the following command line options:

 -e, --environment ENV Rails environment to run as
 -d, --daemonize Whether to run in the background or not
 -p, --port PORT Which port to bind to
 -a, --address ADDR Address to bind to
 -l, --log FILE Where to write log messages
 -P, --pid FILE Where to write the PID
 -n, --num-procs INT Number of processors active before client's
 denied
 -t, --timeout TIME Timeout all requests after 100th seconds time
 -m, --mime PATH A YAML file that lists additional MIME types
 -c, --chdir PATH Change to dir before starting (will be
 expanded)
 -r, --root PATH Set the document root (default 'public')
 -B, --debug Enable debugging mode
 -C, --config PATH Use a config file
 -S, --script PATH Load the given file as an extra config script.
 -G, --generate CONFIG Generate a config file for -C
 --user USER
 User to run as
 --group GROUP
 Group to run as
 --prefix PATH
 URL prefix for Rails app
 -h, --help Show this message
 --version Show version

Stopping a Mongrel process running in the background is similarly easy; use the following
command:

mongrel_rails stop

Restarting a Running mongrel process can be done with the following command

mongrel_rails restart

Extra Tips that You’ll Want to Adopt (Eventually)
At this point, you should have a pretty solid development environment that will enable you to
complete all the projects in this book as well as your own development projects. Before we
close this chapter, however, there are a few more items that I wanted to share with you. Even
though we won’t be explicitly using them in the projects in this book, I feel that these are criti-
cal elements for your development system, and I would be remiss if we didn’t cover them in
our discussion.

7818.book Page 18 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 19

Use a Version Control System
Perhaps the most important tool to add to your development environment is a version control
system. A solid version control system and discipline will undoubtedly save your tail end from
the fire at some point. I remember with great clarity the first time that something went wrong
with a large piece of code that I was working on and that wonderful feeling of joy I had when I
realized that I didn’t have to try and troubleshoot why it had gone wrong—since I could merely
restore the previous (working) version of the code again.

One of the most popular version control systems today is Subversion, and if you’re using
TextMate or RadRails, you’ll find that your code editor already has full support for integrating
with a Subversion repository.

Going into the details of how to install or administer a Subversion repository is beyond the
scope of this book. However, you can find a wonderful book online for free at http://
svnbook.red-bean.com. I’m going to assume that you have already created your Subversion
repository, and we’ll discuss the process for importing your application into Subversion.

Let’s assume a project named tickets, a Subversion repository at svn://192.168.1.200/
projects/ with a username of eldon and a password of password.

To start, open a command prompt, and navigate to the root of your application to perform
your initial import:

svn import . svn://192.168.1.200/projects/tickets ➥

 --message "initial import" –username eldon

At this point, our application should be added to the repository. So now you’ll want to
check out a new copy of the application and make your modifications to the checked out ver-
sion. You could simply delete the existing copy, but instead, it’s a good idea to move your
existing copy to a backup location just to be safe.

cd ..
mv tickets tickets_backup
svn checkout svn://192.168.1.200/projects/tickets tickets
cd tickets

Now that we have a copy from our Subversion repository, let’s make some modifications
to clean it up a bit. To start with, we obviously don’t need to have our log files stored in version
control, so let’s get rid of those.

svn remove log/*
svn commit --message "removing all log files from subversion"

Though that command removed the existing log files from our existing copy and the copy
in the repository, it won’t prevent the addition of new log files to the repository. To do that,
we’ll need to tell Subversion to ignore any new log files added to the log directory:

svn propset svn:ignore "*.log" log/
svn update log/
svn commit –message "Ignore all log files in the log directory"

7818.book Page 19 Monday, October 8, 2007 7:03 PM

20 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

Let’s also have Subversion ignore all the files in the /tmp directories (that is, cache, session,
and socket files):

svn propset svn:ignore "*" tmp/sessions tmp/cache tmp/sockets
svn commit –message "Ignore all cache, sessions ,etc files in the tmp directory"

And that’s it! Your project is now fully loaded into Subversion.

Automating Deployment with Capistrano
Assuming that you’re not trying to deploy your applications to a Windows-based server for
production, the final item that I strongly recommend is that you set up your applications to uti-
lize Capistrano for deployment.

Capistrano is a tool that’s designed to automate the normally painful task of moving your
application from your development machine to your production servers. Capistrano is an
incredibly powerful tool that can support virtually all of your deployment needs, from simple
deployments on a single server to complex deployments in a server farm configured for share-
nothing scalability. Capistrano is also fully extendable, so you can customize it to support any
particular need that it doesn’t support out of the box.

The first step to automating your deployments with Capistrano is to install the Capi-
strano gem:

gem install capistrano

Once you have that installed, you can configure an application to utilize Capistrano by
opening a command prompt in the root of the application and running the following com-
mand to prepare the application for Capistrano deployment:

capify .

Running this command adds two files to your application: a new Capistrano capfile in the
root of your application and a configuration file named deploy.rb in /config that you’ll config-
ure with your specific deployment options.

Using the same sample ticket application from the previous section, let’s modify the
deploy.rb file now. The first thing you need to do is to set the required variables—the applica-
tion’s name and the path to the Subversion repository:

set :application, "set your application name here"
set :repository, "set your repository location here"

For our example, we’ll set these to

set :application, "tickets"
set :repository, svn://192.168.1.200/projects/#{application}

Next, we need to define the servers that we want to deploy our application to in the Roles
section:

role :app, "your app-server here"
role :web, "your web-server here"
role :db, "your db-server here", :primary => true

7818.book Page 20 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T 21

Showing some marvelous forethought, Capistrano allows us to define many different
server roles that we might want to deploy to: A web role would be where our actual files are
served from. An application role would be useful if we wanted to farm out the actual processing
of our application’s code to application servers running Mongrel or FastCGI instances, and the
database role provides a way to deploy elements to a separate database server. In addition,
notice that Capistrano easily supports having multiple servers in each role, so even as your
application grows and requires you to add more hardware, your deployment always remains
just as easy.

For our example, we’re just starting out with a single server for our application, so we’ll
define it like so:

role :web, "www.tickets.com"
role :app, "www.tickets.com"
role :db, "www.tickets.com", :primary => true

Finally, we’ll need to change some of the optional variables to more accurately match the
way that our system administrators have set up things.

We have just a couple of minor changes to make to our deployment. First off, our system
administrators have decided that all of our applications are to be deployed into the /home direc-
tory on our web servers, so we’ll need to change the deploy setting from the default. Second, we’ll
need to set the login user name to use the eldon account instead of our system login name:

set :deploy_to, "\home\#(application)"
set :user, "eldon"

Go ahead and save your modified deploy.rb file, and Capistrano is now configured to
deploy your application to your production servers.

Before we can deploy the application, though, we need to set up the production environments
to receive our application code. We can do that through Capistrano using the setup task:

cap deploy:setup

During execution of the task, you’ll be prompted to enter your password for the produc-
tion server. That’s normal, so go ahead and enter it to continue.

If you log on to the production server once the setup task has completed, you will find
that Capistrano has created a new directory structure under /home/tickets on your server.
You now have three new subdirectories that will be used to manage deployed revisions of
your application.

The releases subdirectory is where Capistrano will deploy each revision of your applica-
tion. The current subdirectory is a symbolic link to the active revision of your application
under releases. The shared subdirectory is a single location where items that need to be shared
among releases (such as logs) are stored.

Now that we have the server configured, let’s go ahead and deploy our application:

cap deploy:cold

After entering your password again and waiting a few minutes for all the files to copy over,
your application should be deployed to the production server. From now on, you can push out
the latest version of your code that’s stored in Subversion by running the cap deploy
command.

7818.book Page 21 Monday, October 8, 2007 7:03 PM

22 C H A P T E R 1 ■ B U I L D I N G A D E V E L O P M E N T E N V I R O N M E N T

 If, for any reason, Capistrano encountered an error during deployment, it automatically
rolls back any changes it has made. If you discover that your recently deployed revision isn’t
working and you need to revert to the previous version, you can do so by running the
rollback task:

cap deploy:rollback

That’s a decent enough introduction to using Capistrano, even though we barely touched
on all the things you could do with it. For more information on Capistrano, check out the offi-
cial site at http://www.capify.org.

Summary
In this chapter, we took a very high-level view of the steps necessary for installing Ruby and
Rails onto your development machine. We touched on some of the bundled installation tools
that make setting up a development environment even easier, such as Instant Rails and
Locomotive.

We also looked a few options for tools that you can use to write your Rails code on different
operating systems and discussed a few best practice ideas, such as using a version control sys-
tem and using Capistrano to deploy your applications into production.

7818.book Page 22 Monday, October 8, 2007 7:03 PM

23

■ ■ ■

C H A P T E R 2

Creating a Rails Application

Wiseman: When you removed the book from the cradle, did you speak the words?

Ash: Yeah, basically.

Wiseman: Did you speak the exact words?

Ash: Look, maybe I didn’t say every tiny syllable, no. But basically I said them, yeah.

——Sam and Ivan Raimi, Army of Darkness

Now that you have a development environment put together, we’re just about ready to begin
creating some Rails applications. Before we dive into that though, we need to go over a few
things to keep this book in line with the Don’t Repeat Yourself (DRY) principle. Over the course
of this book, we’re going to be creating quite a number of Rails applications together, and we’re
going to do a lot of common things with each new application, such as creating the project
structure and configuring the database connection.

I don’t know about you, but for me, reading the same basic steps again and again can get
pretty boring, so in an effort to save us both from some boredom, I’m going to document the
basic setup process for all of our projects in this chapter. Since you’re obviously one of the
smart readers who chose not to skip the important set of chapters with the label “Don’t Skip
This,” you’ll know that, at the start of each project, when I say to create your Rails application,
you should follow the steps in this chapter.

Kicking Things Off
At the start of each project, the first thing we’ll need to do is to have Rails create our new appli-
cation.

Step 1: Create the Project.
The first step to starting a new project is to use the rails command to generate the directory
structure for our new project. From a command prompt, you’ll run the following commands
(for our example we’ll assume we’re creating an application named ticket):

rails ticket
 create

7818.book Page 23 Monday, August 20, 2007 10:48 PM

24 C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N

 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create components
 create db
 create doc
 create lib
 create lib/tasks
 create log
 create public/images
 create public/javascripts
 create public/stylesheets
 create script/performance
 create script/process
 create test/fixtures
 create test/functional
 create test/integration
 create test/mocks/development
 create test/mocks/test
 create test/unit
 create vendor
 create vendor/plugins
 create tmp/sessions
 create tmp/sockets
 create tmp/cache
 create tmp/pids
 create Rakefile
 create README
 create app/controllers/application.rb
 create app/helpers/application_helper.rb
 create test/test_helper.rb
 create config/database.yml
 create config/routes.rb
 create public/.htaccess
 create config/boot.rb
 create config/environment.rb
 create config/environments/production.rb
 create config/environments/development.rb
 create config/environments/test.rb
 create script/about
 create script/breakpointer
 create script/console
 create script/destroy

7818.book Page 24 Monday, August 20, 2007 10:48 PM

C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N 25

 create script/generate
 create script/performance/benchmarker
 create script/performance/profiler
 create script/process/reaper
 create script/process/spawner
 create script/process/inspector
 create script/runner
 create script/server
 create script/plugin
 create public/dispatch.rb
 create public/dispatch.cgi
 create public/dispatch.fcgi
 create public/404.html
 create public/500.html
 create public/index.html
 create public/favicon.ico
 create public/robots.txt
 create public/images/rails.png
 create public/javascripts/prototype.js
 create public/javascripts/effects.js
 create public/javascripts/dragdrop.js
 create public/javascripts/controls.js
 create public/javascripts/application.js
 create doc/README_FOR_APP
 create log/server.log
 create log/production.log
 create log/development.log
 create log/test.log

Creating the Rails Folder Structure

The rails command created the directory structure for your project. Let’s take a quick look at
the structure that’s been created for us. A new Rails project contains the following directories:

app: The app directory contains the folders where the majority of your code will be stored.
Subdirectories within this folder segregate your code into its specific functions.

app/controllers: Your controller classes will be stored here; these are the classes that
serve as the general directors for responding to requests. Most of these should inherit from
ActionController::Base.

app/models: Models are the classes that hold business logic and typically map to a database
table. Subsequently, most model classes will inherit from ActiveRecord::Base.

app/views: All of your template files will be stored here. When you use the Rails generators
to create your controllers, Rails will automatically create subfolders in this directory to
match each of your controllers. Typically you’ll store view files with extensions like .rhtml,
.rjs, or .rxml here.

7818.book Page 25 Monday, August 20, 2007 10:48 PM

26 C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N

app/helpers: Helpers are small bits of code that you can call from your views. You’ll want
to push code out of your views and into these helpers to minimize the amount of Ruby
code that’s present in your view templates.

app/apis: You won’t have this folder for a brand new project. It’s created by the Action
Web Service generator when you need to add a SOAP or XML-RPC interface to your
application.

config/: Configuration files for your Rails application are stored here. Important ones that
you’ll typically modify are database.yml, routes.rb, and environment.rb.

components/: Components were an attempt at creating self-contained applets that could
be dropped into any Rails application. They had a number of serious issues (primarily that
they were slow), and they have pretty much been replaced by plug-ins.

db/: This folder stores database-specific files. Schema.rb is a helpful file that shows the cur-
rent database schema and is auto-generated when you run your migrations. Its default
behavior is to display this information in Ruby migration format, but you can change this
to SQL format if you want. This folder also has a subdirectory named migrate where Rails
stores your database migration files. Typically, I use this directory to store my SQLite data-
bases as well.

doc/: Documentation for your application should be placed in this directory if you plan to
share the application with others. You can even generate Rdoc documentation from your
application within this directory by running the rake doc command.

lib/: Custom libraries that don’t necessarily belong in one of the app folders are supposed
to be stored here.

log/: Log files created by Rails are stored here.

public/: From the web server’s perspective, this is the document root for your applica-
tion. This directory also has several subdirectories for storing images, style sheets, and
JavaScript files.

script/: This is where many of the important Rails scripts live, such as the generator script
that you use to create controllers, models, migrations, and so forth.

test/: All the files you need to run unit, integration, and functional test are stored here.

tmp/: Temporary files such as cached files or session files are stored here.

vendor/: Third-party or external libraries that the application uses, such as plug-ins, are
stored here.

7818.book Page 26 Monday, August 20, 2007 10:48 PM

C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N 27

Common Command-Line Options for the rails Command

The rails command also supports a number of command-line options that allow you to over-
write the defaults or simplify your configuration. You can view all of the available options by
running

rails --help

Three options that I use on a regular basis follow:

--version

This spits out information about the version of Rails that you have installed—very useful
when you have applications deployed to a large number of servers or web hosts.

--freeze

This option extracts the currently installed version of Rails into the vendor/rails directory.
Freezing your Rails applications to a specific version is strongly recommended, as it guarantees
that your application will continue to work regardless of what some crazed system administra-
tor decides to do to the installed version of Rails on the server. We won’t be using this option in
this book; instead, in the next few steps, we’ll manually freeze to the version of Rails that was
available while this book was being written.

--database=name

 Rails generates a database.yml file with MySQL parameters by default. You can override
this behavior by specifying your desired database with this parameter. Valid options are mysql,
oracle, postgresql, sqlite2, and sqlite3. Obviously, I recommend using SQLite for your
development environment, in which case, the correct way to create your new Rails application
would be like this:

rails ticket --database=sqlite3

Step 2: Configure Database Settings.
Now that our application’s structure is created, we need to configure the application with our
specific database settings. That job is made considerably easier if you’ve used the correct data-
base option when creating your application structure, as Rails uses that option when it
generates database.yml:

SQLite version 3.x
gem install sqlite3-ruby
development:
 adapter: sqlite3
 database: db/development.sqlite3
 timeout: 5000

7818.book Page 27 Monday, August 20, 2007 10:48 PM

28 C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N

Warning: The database defined as 'test' will be erased and
re-generated from your development database when you run 'rake'.
Do not set this db to the same as development or production.
test:
 adapter: sqlite3
 database: db/test.sqlite3
 timeout: 5000

production:
 adapter: sqlite3
 database: db/production.sqlite3
 timeout: 5000

You could modify the names of the databases if you wanted, but there’s really no need to.
If, on the other hand, you’re using MySQL as your development database, you first need to

create your database using either a tool such as PhpMyAdmin or the command-line
mysqladmin tool:

mysqladmin -u root –p create ticket_development

Once your database is created, you should modify your database.yml file to match your
newly created database:

development:
 adapter: mysql
 database: ticket_development
 username: root
 password:
 host: localhost

Testing Your Database Settings

After you’ve configured your database settings, you should do a quick test to verify that Rails
can connect to your database with those settings by running the rake db:migrate task:

rake db:migrate

As long as you don’t see any errors from that command, everything is working like it
should, and Rails can connect to and create tables within your database.

Step 3: Test the Application.
Assuming that you’re using Mongrel as your development web server, you can test that every-
thing is working correctly at this point by starting up a Mongrel instance with this command:

mongrel_rails start

7818.book Page 28 Monday, August 20, 2007 10:48 PM

C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N 29

This command will start up a version of the application running on IP 0.0.0.0 and on port 3000.
You can access it by opening a web browser and navigating to http://localhost:3000/. Once you
do, you should see the Rails default test page that will confirm that your environment is configured
correctly (see Figure 2-1).

Figure 2-1. The Rails “Welcome aboard” page

Now that we know that the application is running, let’s go ahead and get rid of this test
page, so it won’t be in our way later when we need our application to handle the default page
for the application.

Navigate to the public folder, and delete index.rhtml to get rid of this page.

Step 4: Install Style Sheets.
Another element that I would like you to add to all of the projects in this book is a set of style
sheet files from the Yahoo User Interface (YUI) library, an open source set of JavaScript con-
trols designed to make it easy to build advanced web applications. The library includes three

7818.book Page 29 Monday, August 20, 2007 10:48 PM

30 C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N

very powerful CSS stylesheets that we’ll take advantage of in our projects to simplify the styling
of our application front ends:

• Reset.css is a style sheet that removes all of a browser’s default rendering by doing
things like setting margins, padding, and borders to 0. Basically, this sets the style sheet
rendering of all browsers back to a level playing field to help ensure that our applications
look the same across different browsers.

• Fonts.css builds on Reset.css and provides normalization of text across browsers.

• Grids.css is the final piece of the puzzle and provides a flexible grid system for building
CSS layouts. It provides over 200 preset layouts and allows for unlimited customizations.

Adding the three of these into our application will allow us to build the visual layout
aspects of each project quickly and with minimal fuss. That way, we can focus our attention on
the actual Rails applications that we’re building instead of worrying about whether our appli-
cations are going to look the same in multiple browsers.

Fortunately, the YUI library also provides us with a lightweight way to use all three by pro-
viding a concatenated and minified (all whitespace removed) version called reset-fonts-
grids.css. To further sweeten the deal and make using these files even easier, in April 2007,
Yahoo opened up their own network to host the YUI library files for you (you can read more
about this at http://developer.yahoo.com/yui/articles/hosting/). So within the application
layout of any application from which we want to use the YUI style sheets, we can simply add a
link to the Yahoo-hosted version of the reset-fonts-grids.css style sheet like this:

<link rel="stylesheet" type="text/css" href= ➥

"http://yui.yahooapis.com/2.2.2/build/reset-fonts-grids/reset-fonts-grids.css">

Alternatively, you can download the current version of the YUI library from the official site
at http://developer.yahoo.com/yui/ and manually copy the reset-fonts-grids style sheet
into your application’s /public/stylesheets directory (which may be useful if you tend to
develop in a place where you don’t always have an Internet connection). If you choose to do
this, you’ll need to link to the style sheet like this:

<%= stylesheet_link_tag 'reset-fonts-grids-min' %>

Step 5: Freeze Rails.
The final step you’ll need to take with each application is to freeze the application to the
1.2 release of Rails. In essence, this means that we’ll copy a specific version of the Rails gems
(ActiveRecord, ActiveSupport, and so on) into vendor/rails, so our application will use those
gems instead of whatever version may happen to be installed on the server.

Freezing the version of Rails into our applications means that you’ll be building your
applications with the same version of Rails that they were originally created and tested in, so
you don’t have to worry about future releases of Rails breaking things (especially considering
the ever-increasing number of items planned to be deprecated in Rails 2.0).

You can freeze Rails by navigating to the root of your project and running this command:

rake rails:freeze:edge TAG=rel_1-2-3

7818.book Page 30 Monday, August 20, 2007 10:48 PM

C H A P T E R 2 ■ C R E A T I N G A R A I L S A P P L I C A T I O N 31

Freezing Other Gems

Freezing the Rails gems is all well and good, but what if our application uses other Ruby gems?
Unfortunately, there’s no automated way to freeze those gems in a standard Ruby on Rails
application, but we can add a custom task to our application to solve that problem and make it
easier to deploy our applications to remote servers without worrying about whether or not all
of the correct versions of the required gems are installed.

Geoffrey Grosenbach is the author of the rake task that we’ll use, and you can download
the task from his blog at http://nubyonrails.com/articles/2005/12/22/freeze-other-gems-
to-rails-lib-directory. Once you have it downloaded, copy it into your lib/tasks directory,
and edit the libraries line of the task to match the gems that you wish to freeze:

libraries = %w(shipping gruff)

Once you have saved it with your specific gems that you’ll want to freeze, you can run this
task like so:

rake freeze_other_gems

Summary
In this chapter, I explained some of the common tasks that we’ll be performing in each of the
projects in this book. We took a high level look at the directory structure of a new Rails applica-
tion and discussed some of the useful options for defining a new application. From there, we
discussed how to freeze the Rails version and gems into your Rails application to simplify
deployment. With those final additions to our toolbox, we’re now ready to start developing our
projects.

7818.book Page 31 Monday, August 20, 2007 10:48 PM

■ ■ ■

P A R T 2

Monkey Tasks:
Managing a Daily
Task List

If your life is anything like mine, you know how easy it is to get overwhelmed by the sheer

number of things that we have to keep up with on a daily basis. It rarely seems to be the

big items—like picking up the kids from school or finishing that report by noon—that get

lost in the shuffle. It’s the little ones—like picking up milk on the way home, updating that

web page, sending that Netflix movie back, or remembering to return that coworker’s

call—that are so easily forgotten. I affectionately call all this little stuff “monkey work”

(because it’s so small and easy that you could train a monkey to do it).

Solving this problem requires some intelligent application of task management principles,

an area where there are already endless theories, books, and software applications

readily available. Unfortunately, the majority of them are designed for people who want to

get much more organized than I care to. Even worse, these solutions make me feel

increasingly guilty for not abdicating full control of my life and schedule to their collective

wisdom on scheduling, prioritization, and task management.

What has worked for me is a much simpler method. At the very beginning of each day, I

simply write out on a single sheet of paper all of the tasks that I plan to try to accomplish

that day (trying very hard to be realistic about what I can actually accomplish in the few

short hours of the day). It’s a simple discipline but one that has worked wonders for my

ability to keep on task and prevent items from slipping through the cracks.

7818.book Page 33 Thursday, October 4, 2007 7:56 PM

So, for our first Rails programming project, we’ll do a review of basic Rails development

by building a simple task management application. As we build the application, we’ll dis-

cuss some good practices for modeling our data, practice applying plug-ins to expedite

some of our development, eliminate duplication by extracting portions of our code, and

finish up by adding a bit of Ajax to our application using a powerful feature of Rails called

Remote JavaScript, or RJS for short. By the time we’re finished, we’ll have a nice little

application that can be used to manage tasks in a simple daily task list, but we certainly

won’t leave it there—throughout the course of this book, I’ll refer to this application and

discuss ways that you can enhance it.

7818.book Page 34 Thursday, October 4, 2007 7:56 PM

35

■ ■ ■

C H A P T E R 3

Implementing a User
Registration and Authentication
System

Let’s kick things off by generating our project structure. Open a command line prompt, and
create a new project named “monkey” using the instructions from Chapter 2.

For the sake of clarity, we’re going to work from the outside in. That is, we’re going to start
by building our basic layout and view templates; next, we’ll add in our user registration and
authentication system, and then work backward from there to build the models, controllers,
and methods that we’ll need to bring our application to life.

With that in mind, I sketched out the basic design shown in Figure 3-1 (don’t laugh; I never
claimed I was a designer).

Figure 3-1. A rough sketch of our application

7818.book Page 35 Thursday, October 4, 2007 7:56 PM

36 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

Once we have the application built, we’ll have a fairly simple page layout. On the left-hand
side of our application, we’ll maintain our daily list of tasks that we want to accomplish. While
over on the right-hand side of the page, we’ll maintain a list of all of our uncompleted tasks
placed into three groups (those that are now past their due dates, those due today, and those
due in the future). We’ll use these three task list groups to populate our daily task list.

Building Our Layout
Going from our design sketch, we’re going to need a page that will serve as the primary inter-
face for our daily task list. So let’s go ahead and create a controller and define the first page.
Since the primary purpose of this page will be to display today’s tasks, let’s name the controller
“today.”

Running the following command will create a new controller named today_controller.rb
and build an empty index page:

ruby script/generate controller today index

exists app/controllers/
exists app/helpers/
create app/views/today
exists test/functional/
create app/controllers/today_controller.rb
create test/functional/today_controller_test.rb
create app/helpers/today_helper.rb
create app/views/today/index.rhtml

So our new controller was created in /app/controllers/ and our main view page
(index.rthml) was created in /app/views/today. Opening our today_controller, we can see
that Rails even built our index method for us as well:

class TodayController < ApplicationController
 def index
 end
end

Since we want to make this the default page for the application, let’s go ahead and set that
up as the default route now. Open routes.rb in /config, and add a route for request to '' (i.e.,
the root) to go to the today controller. So, minus the comments, your routes file should look
like this:

ActionController::Routing::Routes.draw do |map|
 map.connect '', :controller => "today"
 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

7818.book Page 36 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 37

Our Initial Layout
A web application should maintain a consistent look and feel, and Rails provides us with some
wonderful tools to make it easy for us to maintain consistency as we build our application. One
of the key ones, which we’ll look at right now, is the ability to define layouts to wrap our tem-
plates. We can use layouts to separate common presentational items, such as headers and
footers, into a file that can be used for every page request; we can simply populate the file with
our specific, personalized content.

We’re going to keep our design nice and simple so that we can get away with utilizing a sin-
gle layout file for the entire application. However, before we do that, you’ll need to download a
few resources from the code archive for this application from the Apress web site’s Source
Code/Download section. First, you’ll want to copy the file styles.css from the archive into
your /public/stylesheets directory. Second, you’ll need to copy all the images from the
archive into /public/images.

With those resources added to your project, we can go ahead and create a standard layout
that will wrap around all of our view templates. Create a new file named application.rhtml in
/monkey/app/views/layouts, and edit that file to look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>MonkeyTasks</title>
 <link rel="stylesheet" type="text/css" href= ➥

"http://yui.yahooapis.com/2.2.2/build/reset-fonts-grids/reset-fonts-grids.css">
 <%= stylesheet_link_tag 'styles' %>
 <%= javascript_include_tag :defaults %>
 </head>

 <body>
 <div id="content">
 <div id="header">
 <%= image_tag 'monkeyhead.gif' %>
 <%= image_tag 'monkeytasks.gif' %>
 </div> <!-- End header -->

 <ul id="topnav">

 <%= link_to "Today", :controller => 'today', :action => 'index' %>

 <%= link_to "Logout", :controller => 'account', :action => 'logout' %>

 <p style="color:green;"><%= flash[:notice] %></p>

7818.book Page 37 Thursday, October 4, 2007 7:56 PM

38 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

 <%= yield %>
 </div> <!-- End content -->
 </body>
</html>

As you can see, it’s really just standard HTML plus a few helper methods such as the
following:

stylesheet_link_tag 'styles'

This is a helper method that will generate a standard link tag to the CSS style sheet passed
as the parameter. It expects that your CSS style sheets are stored in the /public/stylesheets
directory. In our layout, the method will generate the following HTML:

<link href="/stylesheets/styles.css?1179549309"
 media="screen" rel="Stylesheet" type="text/css" />

The image_tag helper method

image_tag 'monkeyhead.gif'

also generates common HTML elements; this time it will generate a link to the image name
specified. It expects images to be stored in /public/images. This call will generate the follow-
ing HTML:

The following helper method

link_to "Today", :controller => 'today', :action => 'index'

will also generate the proper HTML links to controller methods. It is preferable to use these
methods over building your links manually, as these helpers are able to more easily adapt to
changes in your environment. This method generates the following HTML:

Today

The magic yield method will pass control of rendering over to the template that is being
rendered. In other words, it is at this location that our actual templates will be rendered within
this layout.

javascript_include_tag :defaults

This is a convenience method that Rails provides to allow us to automatically pull in the
standard prototype and script.aculo.us javascript libraries into our pages. In essence, it’s the
same as putting in the following commands, just with a lot less typing:

<%= javascript_include_tag 'prototype' %>
<%= javascript_include_tag 'effects' %>
<%= javascript_include_tag 'dragdrop' %>
<%= javascript_include_tag 'controls' %>
<%= javascript_include_tag 'application' %>

7818.book Page 38 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 39

If you were to start up our application now (most likely using mongrel_rails start) and
open a web browser to http://localhost:3000/today, you would see a result like in the one
shown in Figure 3-2.

Figure 3-2. Our application layout displaying the default template

Our First View Template
Now, let’s put together the main page of our application. Open index.rhtml in /app/views/
today (this file was created when we generated our controller) and add the following content to
it:

<div id="primary">
 <div id="add_task"> </div>

 <div id='main'>
 <h1>Today's Tasks</h1>
 <ul id="todo-list">
 test
 test2

 </div>
</div>

<div id='sidebar'>
 <div class="sidebar-tasks">
 <h1>Overdue Tasks</h1>
 </div>

 <div class="sidebar-tasks">
 <h1>Due Today </h1>
 </div>

 <div class="sidebar-tasks">
 <h1>Upcoming Tasks</h1>
 </div>
</div>

7818.book Page 39 Thursday, October 4, 2007 7:56 PM

40 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

Fire up a web browser, and navigate to http://localhost:3000/, and you should see
something similar to Figure 3-3:

Figure 3-3. Our page with content added to the view

Within a few minutes, we’ve created a basic HTML mock-up of our site, which gives us a
decent looking interface to use while we build our application (decent being a relative term,
of course).

Adding User Registration and Authentication
Although I’m sure there’s a wealth of people who would love to have the godlike ability to con-
trol my to-do list and force me to work on their pet projects today, I feel a lot more comfortable
when I’m the only one who can control what goes into my daily task list. Since we want to be
able to make our application open to other people to use, we’re going to need to make sure that
no one else is able to mess around with our daily schedules, which means adding user
authentication.

Adding user authentication is an area where there has been a small amount of conflict
within the Rails community. On one side is a large group of programmers who feel that user
authentication is a common feature of most web applications and that Rails should provide an
automated solution within the framework that can be added simply and easily. On the other
side, many feel that adding basic authentication functionality is so easy within Rails that it is a
bad idea to use over-the-counter solutions. In another project, we’ll explore building our own
simple authentication system, so you’ll be able to make your own decision on what you want
to use. I will say that in my most of my own development, I tend to roll my own authentication
systems.

However, for the purpose of this project, we’re going to use one of the most popular auto-
matic authentication solutions, a plug-in developed by Rick Olsen called Acts as Authenticated.

7818.book Page 40 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 41

Acts as Authenticated is a great plug-in that provides us with a rather large amount of
functionality for supporting both automated user registration and user authentication with
very little pain in configuration. Plus, since it’s designed as a plug-in, we can easily integrate it
into our application without being forced into any corners on how we use it.

So let’s go ahead and install Acts as Authenticated. Go to the root of your application, and
install the plug-in by running this command:

ruby script/plugin install ➥

http://svn.techno-weenie.net/projects/plugins/acts_as_authenticated/

./acts_as_authenticated/CHANGELOG
+ ./acts_as_authenticated/README
+ ./acts_as_authenticated/generators/authenticated/USAGE
+ ./acts_as_authenticated/generators/authenticated/authenticated_generator.rb
+ ./acts_as_authenticated/generators/authenticated/templates/authenticated_system.rb
+ ./acts_as_authenticated/generators/authenticated/templates/ ➥

authenticated_test_helper.rb
+ ./acts_as_authenticated/generators/authenticated/templates/controller.rb
+ ./acts_as_authenticated/generators/authenticated/templates/fixtures.yml
+ ./acts_as_authenticated/generators/authenticated/templates/functional_test.rb
+ ./acts_as_authenticated/generators/authenticated/templates/helper.rb
+ ./acts_as_authenticated/generators/authenticated/templates/index.rhtml
+ ./acts_as_authenticated/generators/authenticated/templates/login.rhtml
+ ./acts_as_authenticated/generators/authenticated/templates/migration.rb
+ ./acts_as_authenticated/generators/authenticated/templates/model.rb
+ ./acts_as_authenticated/generators/authenticated/templates/signup.rhtml
+ ./acts_as_authenticated/generators/authenticated/templates/unit_test.rb
+ ./acts_as_authenticated/generators/authenticated_mailer/USAGE
+ ./acts_as_authenticated/generators/authenticated_mailer/ ➥

authenticated_mailer_generator.rb
+ ./acts_as_authenticated/generators/authenticated_mailer/templates/activation.rhtml
+ ./acts_as_authenticated/generators/authenticated_mailer/templates/notifier.rb
+ ./acts_as_authenticated/generators/authenticated_mailer/templates/notifier_test.rb
+ ./acts_as_authenticated/generators/authenticated_mailer/templates/observer.rb
+ ./acts_as_authenticated/generators/authenticated_mailer/templates/ ➥

signup_notification.rhtml
+ ./acts_as_authenticated/install.rb
+ ./acts_as_authenticated generator

Now that we have the plug-in installed, we need to install it into our application by run-
ning the following generator to create the authentication models, views, and controllers that
we’ll be customizing for our needs:

ruby script/generate authenticated user account

7818.book Page 41 Thursday, October 4, 2007 7:56 PM

42 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/account
 exists test/functional/
 exists test/unit/
 create app/models/user.rb
 create app/controllers/account_controller.rb
 create lib/authenticated_system.rb
 create lib/authenticated_test_helper.rb
 create test/functional/account_controller_test.rb
 create app/helpers/account_helper.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create app/views/account/index.rhtml
 create app/views/account/login.rhtml
 create app/views/account/signup.rhtml
 create db/migrate
 create db/migrate/001_create_users.rb

Since we’re going to want to make it easy for people to sign up for the application them-
selves (otherwise, we’d have to manually create accounts for all new users—and that just
doesn’t fit into my plans for doing less overtime work). To support this, we’ll want to configure
the mailer functionality of Acts as Authenticated as well. Generate the necessary mailer models
and views by running this authenticated mailer generator:

ruby script/generate authenticated_mailer user

 exists app/models/
 create app/views/user_notifier
 exists test/unit/
 create app/models/user_notifier.rb
 create app/models/user_observer.rb
 create test/unit/user_notifier_test.rb
 create app/views/user_notifier/activation.rhtml
 create app/views/user_notifier/signup_notification.rhtml

As you may have noticed in the text that flew by while running those commands, Acts as
Authenticated created a new controller (account_controller), several views, and, of particular
note, a few models for us (User, User Notifier, and User Observer).

In order for that User model to be active, we’re going to need to run a rake db:migrate
command to load the database structure from the migration file it created. But before we can
do that, we need to make a few minor modifications to support our application’s needs.

7818.book Page 42 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 43

We need to add in the necessary fields to support our automated user activation. Navigate
to /monkey/db/migrate/, open the file 001_create_users.rb, and add the following two bold
lines in the self.up block:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string
 t.column :email, :string
 t.column :crypted_password, :string, :limit => 40
 t.column :salt, :string, :limit => 40
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :remember_token, :string
 t.column :remember_token_expires_at, :datetime
 t.column :activation_code, :string, :limit => 40
 t.column :activated_at, :datetime
 end
 end

 def self.down
 drop_table "users"
 end
end

Those extra data elements will be used to store the activation code that we’ll send along in
the new users’ activation e-mail. It will also provide us with a simple Boolean field to flag
whether or not a user account is activated or yet. Go ahead and run rake db:migrate now to
build the users table in our database:

rake db:migrate

== CreateUsers: migrating ===
-- create_table("users", {:force=>true})
 -> 0.1359s
== CreateUsers: migrated (0.1361s) ==

Configuring Acts as Authenticated
Now that we’ve installed Acts as Authenticated, we’ve gained a User model with some nice
convenience methods for our use, an authentication system that uses SHA-1 to securely
encrypt user passwords, and all the necessary login forms. But before we can make use of all of
this, we still need to add the plug-in to our application and configure some of the additional
functionality available, such as allowing the system to remember the user by storing a cookie
on the user’s system and the optional mailer functions we installed earlier.

7818.book Page 43 Thursday, October 4, 2007 7:56 PM

44 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

Let’s go back to /monkey/apps/controllers and tell our application to include the
Authenticated System library when it starts up. We do that by reediting application.rb to
look like this:

class ApplicationController < ActionController::Base
 session :session_key => '_monkeytasks_session_id'
 include AuthenticatedSystem
 before_filter :login_from_cookie
end

before_filter is a powerful command that we’ll be using a lot. It allows us to define a
method to call before any other methods are run in a controller. Here in application.rb, we’re
using it call the login_from_cookie method from Acts as Authenticated, which allows us to pro-
vide a remember-me feature to the Monkey Tasks application. In other controllers, we’ll use
that before_filter functionality to prevent unauthorized access to resources.

Limiting Access to Today

Now that we have Acts as Authenticated implemented in our application, we can start using it
to limit access to our main page. Open today_controller in /app/controllers, and add the fol-
lowing bold line to it:

class TodayController < ApplicationController
 before_filter :login_required
 def index
 end
end

If we were to build other controllers in this application, we’d add that same before_filter
:login_required method call to each of those as well to limit access to their methods to only
those people who are logged in. Any requests from a nonlogged-in user will get redirected to
the login screen, as shown in Figure 3-4.

Figure 3-4. Our login page with a few display issues

7818.book Page 44 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 45

As you can see, we have a few minor issues with the login page view that we need to
address. First off is the fact that our navigational elements are being displayed even though
they serve no purpose to a nonlogged-in user. Second, we need to make a couple of small
changes to the generated login page template to make it fit within our current styling.

To fix the navigation items from showing up when a user is not logged in, we’ll need to
make some additions to our layout template (/monkey/views/layouts/application.rhtml). To
disable those elements, we’ll take advantage of a helper method called logged_in? that was
added by Acts as Authenticated. We’ll utilize logged_in? to hide our navigation menu unless a
user has signed in to the system. To do so, change the topnav unordered list to look like this
instead:

<ul id="topnav">
 <% if logged_in? %>
 <%= link_to "Today", :controller => 'today', :action => 'index' %>
 <%= link_to "Logout", :controller => 'account', :action => 'logout' %>
 <% end %>

Now that we’ve fixed that, let’s add a div to the login template that Acts as Authenticated
generated. Open login.rhtml in app/views/account, and add a surrounding div with an id of
login-form around the form. For good measure, let’s also add a link to a sign-up form:

<div id="login-form">
 <% form_tag do -%>
 <p><label for="login">Login</label>
 <%= text_field_tag 'login' %></p>

 <p><label for="password">Password</label>
 <%= password_field_tag 'password' %></p>

 <p><label for="remember_me">Remember me:</label>
 <%= check_box_tag 'remember_me' %></p>

 <p><%= submit_tag 'Log in' %></p>

 <p>Not a member yet?
 <%= link_to 'Click Here', :action => 'signup' %> to join today!</p>
 <% end -%>
</div>

While you’re in app/views/account, go ahead and open the signup.rthml file as well, and
enclose its contents in a login form div like we just did here in login.rhtml.

Last, delete the index.rhtml file out of /monkey/app/views/account, as this is just a sample
file installed by Acts as Authenticated that provides us with no value.

Time to fire up the web browser again—you can see the fruits of our modifications in
Figure 3-5.

7818.book Page 45 Thursday, October 4, 2007 7:56 PM

46 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

Figure 3-5. Our new (corrected) login screen

While it would be tempting to go on over to the sign-up page and create a new user now,
we still have a few modifications left to make to our user registration system before we’ll be
ready to do that.

Building User Registration
The goals of our user registration system should be fairly obvious—it needs to create a new
user object within the system. If we were to document the intended flow of our user registra-
tion system, it should go something like this.

1. A visitor accesses site and is immediately directed to the login screen.

2. The visitor clicks the sign-up link, since he doesn’t have an account yet.

3. The visitor submits the sign-up form, which consists of a login name, e-mail address,
and password.

4. The application will run a number of validations on the data that was submitted and
create a new user object.

5. The application redirects the user to a page that provides instructions on checking
e-mail to activate the new account.

6. The application sends out an e-mail to the user with an activation code embedded into
a link.

7. The visitor opens the e-mail and clicks the link to activate the account.

8. On all future visits, the user can simply log in via the login form to access the site.

We’ve already got our sign-up form built, but we need to make some modifications to sup-
port our sign-up process. When a new sign-up form is submitted, it goes to the sign-up method
in account_controller, which attempts to use the submitted form parameters to create a new
user. However, we also want the system to generate an activation code with every new user
that’s created, so we’ll need to add some code to support that. To do so, we’ll need to open the
User model (/app/models/user.rb) and add a method that can generate that code.

7818.book Page 46 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 47

We don’t want anyone to be able to call this method directly, so we’ll add it to the section
of protected methods (near the bottom of the file):

def make_activation_code
 self.activation_code = ➥

Digest::SHA1.hexdigest(Time.now.to_s.split(//).sort_by{rand}.join)
end

If you’re having any trouble following that line of code, a great tool for helping you see
what each method is doing is script/console. Simply open a command prompt in the root of
your application and run the following:

ruby script/console

Loading development environment.

>> require 'digest/sha1'

=> []

>> Time.now.to_s

=> "Mon May 14 00:44:08 CDT 2007"

>> Time.now.to_s.split(//)

=> ["M", "o", "n", " ", "M", "a", "y", " ", "1", "4", " ", "0", "0", ":", "4", "4",
 ":", "1", "2", " ", "C", "D", "T", " ", "2", "0", "0", "7"]

>> Time.now.to_s.split(//).sort_by {rand}.join

=> "0M40T4 C1:1 o2n0M4:7 0a Dy 2"

>> Digest::SHA1.hexdigest(Time.now.to_s.split(//).sort_by {rand}.join)

=> "95ca7cf4fbd94f7ce74e6f8063650b400f79233d"

7818.book Page 47 Thursday, October 4, 2007 7:56 PM

48 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

In the end, our activation code is merely a hash of the randomized version of the current
time stamp.

Now, we just need to make sure that our new make_activation_code method is called
whenever we create a new user, so we’ll add another filter for that. Scroll up to the top of the
model, and add this line after the validation method calls:

 before_create :make_activation_code

Even though we’re not really set up to create a user using the sign-up form just yet, you
can see the activation code being generated by creating a new user via script/console in sand-
box mode:

ruby script/console -s

Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.

>> u = User.new(:login => 'test', :email => 'test@test.com', ➥

:password => 'test', :password_confirmation => 'test')

=> #<User:0x2370160 @password_confirmation="test", @password="test", ➥

@new_record=true, @attributes={"salt"=>nil, "activated_at"=>nil, ➥

"updated_at"=>nil,"crypted_password"=>nil, "activation_code"=>nil, ➥

"remember_token_expires_at"=>nil, "remember_token"=>nil, "login"=>"test",➥

 "created_at"=>nil, "email"=>"test@test.com"}

>> u.save

=> true

>> u

=> #<User:0x2370160 @password_confirmation="test", @password="test", ➥

@errors=#<ActiveRecord::Errors:0x23328c4 @errors={}, @base=#<User:0x2370160 ...>, ➥

 new_recordfalse, attributes{"salt"=>"d56eb8eeff209aeaf397bbbba3a2315982866e69", ➥

"activated_at"=>nil, "updated_at"=>Mon May 14 23:18:20 CDT 2007, ➥

 "crypted_password"=>"dd086c2a04cf00200ec7ddf1d810fc6152a72a32", ➥

"activation_code"=>"2f0ca264b8839a37be7d00810de0e8d56ef4b822", ➥

"remember_token_expires_at"=>nil, "id"=>1, "remember_token"=>nil, "login"=>"test",➥

"created_at"=>Mon May 14 23:18:20 CDT 2007, "email"=>"test@test.com"}

7818.book Page 48 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 49

Sending E-mail Notifications
Now that we’ve set up our model to create the activation code, our next step is to enable
the process for sending it out to users in an e-mail when they sign up. In order to do that, we’ll
need to make a few small additions to our environment.rb in /config and then restart our web
server to load those changes. After that, we’ll configure the components that we set up with
that authenticated mailer and finish up by making some modifications to our User model and
controllers.

Configuring Outbound E-mails in Rails

Before we can send out e-mails from our Rails application, we need to configure Rails to let our
application know how it should attempt to deliver e-mail. Rails supports two options for out-
bound e-mail: SMTP or SendMail. We select the option our application should use by adding
one of the following lines to our environment.rb file.

config.action_mailer.delivery_method = :sendmail

or

config.action_mailer.delivery_method = :smtp

In my experience, I’ve had better luck using the SMTP option; it seems to be a more porta-
ble solution as my applications have moved across servers. However, you should choose
whatever you feel most comfortable with. If you do choose SMTP, you will also have to provide
Rails with an SMTP configuration in your environment settings (replace these values with your
own SMTP settings, of course):

config.action_mailer.server_settings = {
:address => "my.smtpserver.com",
:port => 25,
:domain => "my smtp domain ",
:authentication => :login,
:user_name => "username",
:password => "password"
}

Even though you might be tempted, you need to resist the urge to restart your web server
to load these new configuration changes until we’ve made one more change to our environ-
ment file.

Earlier when we ran the authenticated_mailer generator, it added four new files to our
application (not counting tests) that we’ll be using to enable our outbound e-mails. The first
one that we’ll look at is an observer for our User model named user_observer.rb, which can be
found in /app/models. Observers are very powerful tools for monitoring an ActiveRecord model
and kicking off actions in response to events without having to add extra code to the model or
force our model to take on responsibilities that it doesn’t really need to have (such as sending
out activation e-mails).

7818.book Page 49 Thursday, October 4, 2007 7:56 PM

50 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

Our user_observer has two events that it’s monitoring on the User model:

class UserObserver < ActiveRecord::Observer

 def after_create(user)
 UserNotifier.deliver_signup_notification(user)
 end

 def after_save(user)
 UserNotifier.deliver_activation(user) if user.recently_activated?
 end
end

After a new user is created in our system, this observer calls the User Notifier model to send
out a signup_notification e-mail. And after a user has been updated, it will call the User Notifer
model to send out an activation confirmation e-mail if that user was recently activated (we’ll
need to add the recently_activated method to our user model before we call this though).

In order to utilize this observer, we’ll have to let Rails know that we want it to be enabled.
We do that by uncommenting and editing a line in our environment.rb file to register our
user_observer class:

Activate observers that should always be running
config.active_record.observers = :user_observer

Once we restart our web server, all of our new configuration changes will be loaded into
our Rails application. Now, whenever we create or update a user object, our user_observer will
be notified and respond by calling UserNotifer to send out an e-mail.

User_Notifer.rb

The UserNotifier class is an Action Mailer class, where each method represents a different
e-mail that can be sent from our application—the corresponding views for the methods are
the actual e-mail text that is sent out. Each UserNotifier method sets up a set of instance
variables that are used in the template, such as the subject line, recipients, and so on. As you
can see, in UserNotifer, we have two methods available: a signup_notification method and
an activation method. We can make a few minor modifications to these to reflect our appli-
cations name and settings:

class UserNotifier < ActionMailer::Base
 def signup_notification(user)
 setup_email(user)
 @subject += 'Please activate your new account'
 @body[:url] = "http://localhost:3000/account/activate/#{user.activation_code}"
 end

 def activation(user)
 setup_email(user)
 @subject += 'Welcome to MonkeyTasks'
 @body[:url] = "http://localhost:3000/"
 end

7818.book Page 50 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 51

 protected
 def setup_email(user)
 @recipients = "#{user.email}"
 @from = "Monkeytasks"
 @subject = "[MonkeyTasks] "
 @sent_on = Time.now
 @body[:user] = user
 end
end

We’ll leave the actual e-mail templates as they are. However, if you want to modify the text
of what’s sent to the user in the e-mails, you can edit them. They’re stored as activation.rhtml
and signup_notification.rhtml in the /app/views/user_notifier directory.

Modifying the User Model

Before our observer will be able to work, though, we still need to make a few modifications to
our User model—most notably, we need to fix the missing recently_activated? method that I
mentioned was being called in the observer. Go to /app/models, and open our User model
(user.rb) to fix our missing methods issue.

The first method we’ll add is one that we’ll use to activate a user. We’ll call this from the
controller when processing an activation request. In this method, we’ll set an instance variable
named @activated to true (which will come into play when we build our recently_activated?
method) and update the current user to set activated_at to the current time stamp and erase
the activation code from the record:

def activate
 @activated = true
 update_attributes(:activated_at => Time.now.utc, :activation_code => nil)
end

The second method we’ll add is our missing recently_activated? method:

def recently_activated?
 @activated
end

If you were expecting this method to do some sort of date-time comparison between the
time the user was activated and current time, you might be a little confused by the simplicity of
this method. In essence, all we’re doing is returning the @activated instance variable, which
would be set to true only if the preceding request was a call to the activate method. Otherwise,
our @activated variable would not be set, so it would be equal to nil. Therefore, when our
UserNotifier calls UserNotifier.deliver_activation(user) if user.recently_activated?,
the if statement will receive either a true if the update came from the activate method or noth-
ing if it came from anywhere else (which evaluates to false).

Before we close out the User model, we need to make one last change. Currently, our login
method in account_controller.rb calls the authenticate class method in the User model (/
app/models/user.rb) to verify that the user is valid. Currently the self.authenticate method is
only verifying that the username and password match. We need to modify the methods find

7818.book Page 51 Thursday, October 4, 2007 7:56 PM

52 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

parameters to also ensure that only a user who has an activated account will authenticate suc-
cessfully. Modify the method like so:

def self.authenticate(login, password)
 u = find :first, ➥

 :conditions => ['login = ? and activated_at IS NOT NULL', login]
 u && u.authenticated?(password) ? u : nil
end

Modifying the Account Controller

We’re almost finished now; all that’s left is to make a few modifications to our account control-
ler to handle our new activation process. Go ahead and open account_controller.rb in /app/
controllers. The first thing we can do is remove the include AuthenticatedSystem and
login_from_cookie filter calls from the controller, since we already added those to the Applica-
tion controller (which means that they’re included into every controller).

The next thing we want to change is our sign-up method. The current code will actually
temporarily log in the user once she signs up even though she hasn’t activated her account yet.
We’ll fix that by removing the line self.current_user = @user and changing the redirection
method to take the user to a page that lets her know to check her e-mail. So you’ll modify the
signup method to look like this:

def signup
 @user = User.new(params[:user])
 return unless request.post?
 @user.save!
 redirect_back_or_default(:action => 'welcome')
 rescue ActiveRecord::RecordInvalid
 render :action => 'signup'
end

And create a new file named welcome.rhtml in /app/views/account that has the following
content, which we’ll display after a user has submitted a new sign-up:

<div id="welcome">
 <h1>Welcome to MonkeyTasks</h1>
 <p>You're just one step away from utilizing this simple daily task manager.</p>
 <p>An activation email has been sent to the e-mail address you provided.</p>
 <p>Follow the instructions in it to activate your account</p>
 <p>Thanks</p>
 <p>The MonkeyTasks Team</p>
</div>

7818.book Page 52 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 53

We also need to redefine what our login and logout methods are going to display to a user
by default. Currently, both make this call when choosing what to display:

redirect_back_or_default(:controller => '/account', :action => 'index')

redirect_back_or_default is a method that’s added in acts_as_authenticated; you can
find it in /lib/authenticated_system.rb, but here is the method, so you can see it firsthand:

def redirect_back_or_default(default)
 session[:return_to] ? redirect_to_url(session[:return_to]) : redirect_to(default)
 session[:return_to] = nil
end

All this method does is check for a return_to key in the current session. If one exists, the
user is directed to that value; otherwise, the user is directed to whatever was passed in as an
option to the method. This is useful for handling situations where you want to return the user
to the requested page rather than a standard default page.

So barring the idea that the user went to an original page, the default for these method
calls was to send the user back to the index method in the account_controller. However, the
current index method merely redirects the user to the sign-up page. I think we should give
some better defaults for our application.

Within the login method, it makes more sense to me that the default page should be the
primary page our application, so change the redirect_back_default parameters in the login
method to this:

redirect_back_or_default(:controller => '/today', :action => 'index')

After logging out, displaying the new user sign-up page could be confusing to an end user. A
better choice would be to send users to the login screen, so change the redirect_back_default
parameters in the login method to this:

redirect_back_or_default(:controller => '/account', :action => 'login')

Finally, let’s add an activate method to this controller to support the e-mail activation
functionality (and actually activate a user):

def activate
 @user = User.find_by_activation_code(params[:id])
 if @user and @user.activate
 self.current_user = @user
 flash[:notice] = "Your account has been activated."
 end
 redirect_back_or_default(:controller => '/account', :action => 'login')
end

7818.book Page 53 Thursday, October 4, 2007 7:56 PM

54 C H A P T E R 3 ■ I M P L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y S T E M

With that, we’re finally at the finish line and should be all set up to handle user registra-
tions now. Since we don’t have an account yet, let’s go ahead and create one using the form
shown in Figure 3-6.

Figure 3-6. Our sign-up page

After creating the account, you should find that you’ve been shown the welcome tem-
plate that we created; meanwhile, the system has sent you an activation e-mail to the e-mail
address that you specified. Go ahead and open that e-mail and paste the activation URL into
your web browser to activate your account. Now, you should be able to log in and out of the
application with no issues. If you can’t find the e-mail or didn’t have access to an SMTP server,
you can also pull out the text of the e-mail that was sent from the logs. Open development.log
in /log, scroll nearly to the bottom, and you will see something similar to this:

Sent mail:
 Date: Wed, 16 May 2007 13:51:00 -0500
From: ADMINEMAIL
To: test@test.com
Subject: [YOURSITE] Please activate your new account
Mime-Version: 1.0
Content-Type: text/plain; charset=utf-8

Your account has been created.

 Username: test
 Password: test

Visit this url to activate your account:

 http://localhost:3000/account/activate/58e11cd2d64a50abb8f8ff4a2062209e61dd2675

7818.book Page 54 Thursday, October 4, 2007 7:56 PM

C H A P T E R 3 ■ I MP L E M E N T I N G A U S E R R E G I S T R A T I O N A N D A U T H E N T I C A T I O N S Y ST E M 55

You can copy the URL from the log to activate your account as well. With that, we’re now
finished with our user registration and authentication system and can focus on building our
daily to-do list manager.

Summary
We’ve covered a large amount of functionality in this chapter, including installing
acts_as_authenticated and configuring it to meet our needs. Our end solution not only
supports allowing users to sign up via the Web but requires them to prove that they gave
us valid e-mail account information by requiring them to activate their accounts. We’ve
also established a solid pattern for how we can provide security to our application by using
the authentication system to limit access to our controllers to only those people who have
logged in.

7818.book Page 55 Thursday, October 4, 2007 7:56 PM

57

■ ■ ■

C H A P T E R 4

Building a Daily
To-Do Manager

We’ve made a pretty impressive amount of progress so far, even though we haven’t done a
lot of actual coding—but that’s about to change. Now, we’re going to start building our own
models and controllers to support the application.

Creating Our First Model: task
Let’s get this party started by defining our first model. We need to have a way to capture all of
our tasks, so we can build a daily to-do list—our primary model for this application is going to
be the task model. Let’s think about the attributes of a task:

• A task should have a name or description.

• A task should know if it’s been completed or not.

• A task should know when it’s due, which also means that a task should know if it’s
overdue.

• A task should know which user it’s associated with (so that no one else can view or edit
another user’s tasks).

Armed with that knowledge, let’s go ahead and create our task model; from the root of
your application, run this command:

ruby script/generate model task

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/task.rb
 create test/unit/task_test.rb
 create test/fixtures/tasks.yml
 exists db/migrate
 create db/migrate/002_create_tasks.rb

7818ch04.fm Page 57 Thursday, October 4, 2007 8:05 PM

58 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Looking back through the output, you’ll notice that the generate model command is smart
enough to know that it should also create a database migration file for us with the same name
as the model that we just created.

■Note What if you wanted to create a model that didn’t need to create a database table? Are you going to
be stuck leaving a bunch of empty migration files within your application or spending time going back and
deleting them?

Nope, you can just run the command with the –skip-migration option to bypass the creation of a migration
file, like this: ruby script/generate model modelname –-skip-migration.

Now, let’s edit our new database migration to build the fields that a task needs to be able
to keep track of:

class CreateTasks < ActiveRecord::Migration
 def self.up
 create_table :tasks do |t|
 t.column 'name', :string
 t.column 'complete', :datetime
 t.column 'due', :date
 t.column 'created_on', :datetime
 t.column 'updated_on', :datetime
 t.column 'user_id', :integer
 end
 end

 def self.down
 drop_table :tasks
 end
end

There’s nothing too fancy here, but let’s discuss a few of the field choices just to make sure
that we’re all on the same page as we move forward:

According to our database migration, a task field in the database has the following
columns:

• name: This is set as a string in the migration file that will create a varchar (255-character)
field in databases like MySQL, SQLite, and SQL Server. It will create a (note 1) field in
PostgreSQL.

• complete: We will check this field to determine if a task has been completed. So why are
we using a datetime field instead of a Boolean one? I’ve found that using a datetime
stamp provides the same functionality as using a Boolean but also provides us with addi-
tional information—we know when the task was completed.

7818ch04.fm Page 58 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 59

• due: This should be pretty straightforward. Some may ask, though, “Why not use a
datetime field? After all, couldn’t some tasks have a deadline that would require them
to be completed by certain times?” Perhaps, but those tasks should be the exception
rather than the norm; plus, adding that could change the scope of our application,
making it more of a scheduling application. It also increases the level of complexity for
us, as users, when adding tasks (e.g., what time should we mark a task due if it isn’t due
by a specific hour on the due date?). I’m a big believer in the idea that the simple appli-
cation is actually more flexible in the long run. If a user needed to indicate that a task
should be completed by a certain time, why couldn’t that user simply put the time in the
name (e.g., Pick up dry cleaning before 3 p.m.)?

• created_on and updated_on : These are just some extra sweetness for our application
that Rails provides by convention. Simply because we include these two fields in our table,
Rails will automatically populate them with the current time stamp whenever it creates or
updates a task. We probably won’t use them in our application, but I like adding them in
my primary models, as they are sometimes of great assistance in troubleshooting issues.

• user_id: This is an integer field, as it stores a foreign key reference to the primary key of
the task’s associated user.

Now that we understand what we’re building, let’s run the migration:

rake db:migrate

== CreateTasks: migrating ===
-- create_table(:tasks)
 -> 0.1320s
== CreateTasks: migrated (0.1321s) ==

Modifying the task Model

Navigate to /app/models/, and edit our model files to create the associations between the user
model and our brand new task model.

Modify task.rb to register that it is a child table to the User table with a belongs_to
association:

class Task < ActiveRecord::Base
 belongs_to :user
end

Next, we’ll modify the user model (user.rb in /app /models) to reflect that it has a one-to-
many relationship with the task model by adding a has_many association underneath the
validation calls:

 has_many :tasks

7818ch04.fm Page 59 Thursday, October 4, 2007 8:05 PM

60 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

And that’s it—our models are now joined together so that a user object can now know
about and reference the tasks associated with it, and a task object now knows to which user
object it belongs.

Creating the Task Controller
Let’s go ahead and create task_controller now; it will be the primary interface that we’ll use to
manage our task objects. Go back to the root of your application and run the following command:

ruby script/generate controller task

 exists app/controllers/
 exists app/helpers/
 create app/views/task
 exists test/functional/
 create app/controllers/task_controller.rb
 create test/functional/task_controller_test.rb
 create app/helpers/task_helper.rb

Open task_controller.rb from /app/controllers/, and edit it to match this:

class TaskController < ApplicationController
 before_filter :login_required
 before_filter :find_task, :except => [:index, :new, :create]

def index
 @tasks = current_user.tasks
end

def show
end
def new
 @task = Task.new
end

def create
 @task = current_user.tasks.build(params[:task])
 if @task.save!
 redirect_to(:controller => 'today')
 else
 render :action => "new"
 end
end

7818ch04.fm Page 60 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 61

def update
 @task.attributes = params[:task]
 @task.save!
 redirect_to(:action => "index")
end

def destroy
 @task.destroy
 redirect_to(:controller => "today", :action => "index")
end

protected
def find_task()
 @task = current_user.tasks.find(params[:id])
end

end

A few elements are important to point out about this controller. Obviously, you should
notice right off the bat that we’re using before_filter, which we discussed earlier to prevent
unauthorized access to this controller:

 before_filter :login_required

Second, we’ve added a new before filter that’s calling a protected method from within the
controller:

before_filter :find_task, :except => [:index, :new, :create]

protected
def find_task()
 @task = current_user.tasks.find(params[:id])
end

This is another shortcut that I use to avoid repetition in my code. Since many of the actions
in this controller need to look up a task object, calling this filter allows me to build that lookup
only once and prevent a lot of code duplication in this controller. Since some actions, such as new,
would never need to look up a preexisting task object, I exclude them from the before_filter
using the :except option.

Finally, one last important thing to note is that the default actions in this controller are built
to follow along the standard CRUD (create, read, update, destroy) operations that a task would
need. DHH, who, you’ll recall, is the creator of Rails, gave a wonderful presentation at the 2006
Rails Conference challenging Rails developers to begin to think in terms of CRUD while design-
ing their applications (the presentation is available online at http://media.rubyonrails.org/
presentations/worldofresources.pdf).

7818ch04.fm Page 61 Thursday, October 4, 2007 8:05 PM

62 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

CRUD is definitely a pattern that requires a bit of time to get used to. However, the benefits
of implementing this design will pay off big in terms of cleaner controllers, more maintainable
code, and easier implementation of web services (which you’ll see when we start building
REST-based interfaces into our applications).

The Add Task Form
Back when we were talking about the design of the application, we said that we needed to make
it quick and easy to add new tasks to our application (so we can dump them out of our heads).
The main page seems an ideal place to add tasks, so we don’t have to navigate to another page
just to add a task. So let’s add a form that will allow us to do just that.

In the index page of our today controller, we included a placeholder div called add_task.
We’re going to place our add task form within that container. Go to /app/views/today/; open
index.rhtml, and find this section:

 <div id="add_task">
 </div>

Rails provides an easy way to build a form for a given model using the form_for method.
Create a form now by entering this form code inside of the add_task div:

<div id="add_task">
 <% form_for :task,
 :url => {:controller => :task, :action => :create},
 :html => {:id => 'addtaskform'} do |t| %>
 <p>
 <label for='task_name'>Task:</label>
 <%= t.text_field 'name' %>
 </p>
 <p>
 <label for='task_name'>Due Date:</label>
 <%= t.date_select 'due', :order => [:day, :month, :year] %>
 </p>
 <p>
 <%= submit_tag "Add Task" %>
 </p>
 <% end %>
</div>

Save your work, and open your web browser; you should see a page like the one shown in
Figure 4-1.

7818ch04.fm Page 62 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 63

Figure 4-1. Our add task form has been added.

A Better Date Selector
While that form certainly doesn’t look bad, I wouldn’t exactly say it’s very attractive either.
Looking at the form, I think what bothers me the most are those date selection fields. Having
those three selection boxes there on the page just looks so archaic—I know we can do better.

Even though there aren’t many alternative options for the date selectors within Rails,
there is a huge world of plug-ins and Ruby Gems available to us that we can use to enhance
our rails applications. For our application, let’s implement a Ruby gem by the name of
Chronic (http://chronic.rubyforge.org) that will allow us to use natural language process-
ing for the due date instead.

What does natural language processing mean? Quite simply, it means that we can enter
dates in the same language that we would use to describe that date to a friend; it gives us the
ability to enter our dates like this:

Tomorrow
3 weeks from tomorrow
this Monday
Friday
3rd Wednesday in November
7 days from now
yesterday

and Chronic will parse those into valid dates for our application. Cool stuff!

7818ch04.fm Page 63 Thursday, October 4, 2007 8:05 PM

64 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Installing Chronic
Open a command line, and run the following command to install the Chronic gem:

gem install chronic

Attempting local installation of 'chronic'
Local gem file not found: chronic*.gem
Attempting remote installation of 'chronic'
Updating Gem source index for: http://gems.rubyforge.org
Successfully installed chronic-0.1.2
Installing RDoc documentation for chronic-0.1.2...

Since Chronic isn’t a part of the Rails framework, we’ll have to tell Rails to load the Chronic
gem into our applications environment when it starts up. To do that, navigate to /config, and
edit the file named environment.rb. Scroll down to the very last line and add this command:

require 'chronic'

As always, any modifications to environment.rb will require you to restart your web server
to have those changes loaded. Now that we have Chronic loaded into our Rails application,
let’s modify our application to use Chronic to allow users to enter dates in a much more
friendly manner.

Our first step is to remove the date_select field from our add task form and replace it with
a standard text field. So change that field to this:

<label for='task_due_date'>Due Date:</label>
<%= t.text_field 'due_date' %>

Now that we have our due date being captured in natural language, we need to set up our
model to both accept this due_date field and use it to populate the due column in our database.
We can do that by creating a pair of methods to handle due_date as a virtual attribute. In other
words, we’ll need to manually build getter and setter methods for due_date. So open task.rb,
which is in /app/models, and let’s start adding.

For our getter method, we’ll simply return the due field converted back to a string.

def due_date
 due.to_s
end

Our setter method might require a bit more explanation:

def due_date=(str)
 self.due = Chronic.parse(str).to_date.to_s

 rescue
 @invalid_date = true
end

7818ch04.fm Page 64 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 65

Chronic.parse is the main method that we use to convert our dates; parse will return a
time object if it can parse the text. But we’re not interested in times for our application—just
dates—so we’ll take that time object and immediately convert that to a date object with the
to_date method. Finally, we’ll pull back the string representation of that date object with to_s,
and that’s the value that will be pushed into the due column of our database for this record.

If, for some reason, Chronic cannot parse the text into a valid time, it will return nil. When
we try to call the next method in the chain (to_date) on a nil object, we will generate an error.
That’s actually a good thing and puts us in a good position for validating our text. We merely
need to rescue that error and set an @invalid date instance variable to true to indicate that we
hit an error. We’ll use that instance variable in our validations to set an error if that variable has
been set to true. Add the following validate method to your task model:

def validate
 errors.add :due_date, 'is not a valid date' if @invalid_date
end

Now that we’ve added an error for the model, we just need to display that to the user. Since
we already have a section on the page to display notification messages to the user, I like to
reuse that so that informational messages are consistent. We’ll modify our controller to send
the errors back in the flash[:notice] hash. Open /app/controllers/task_controller.rb, and
modify the create method to look like this:

def create
 @task = current_user.tasks.build(params[:task])
 if @task.save
 redirect_to(:controller => 'today')
 else
 flash[:notice] = @task.errors.full_messages.to_sentence
 redirect_to(:controller => 'today')
 end
end

If the task doesn’t pass validations, we’ll display the errors to the user, as shown in
Figure 4-2.

Figure 4-2. Displaying errors above our add task form

7818ch04.fm Page 65 Thursday, October 4, 2007 8:05 PM

66 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

The schedule Model
The next object that we want to model is the ability to have a daily task list—not in the sense of
the actual tasks that we have to do that day, more like the blank sheet of paper that we’re going
to place our daily list on. Coming up with a name for this was a bit of a challenge, but I finally
decided on naming this object schedule.

So when we first log into the application each day, we’re going to want the system to give us
a brand new schedule object with no tasks added yet (simulating a blank sheet each morning)
and give us that existing schedule as we go through our day; it should give us a new schedule only
at the start of a new day.

Based on that description, a schedule object needs to know

• The day it’s responsible for

• The user it’s associated to

With that understanding, let’s generate our schedule model:

ruby script/generate model schedule

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/schedule.rb
 create test/unit/schedule_test.rb
 create test/fixtures/schedules.yml
 exists db/migrate
 create db/migrate/003_create_schedules.rb

And now, let’s build our migration file for this model. Navigate to the db/migrations folder,
and edit migration file 003_create_schedules.rb to look like this:

class CreateSchedules < ActiveRecord::Migration
 def self.up
 create_table :schedules do |t|
 t.column :today, :date
 t.column :user_id, :integer
 end
 end

 def self.down
 drop_table :schedules
 end
end

7818ch04.fm Page 66 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 67

The todo Model
Now, our users have a current schedule and many tasks that could be associated with that
schedule, but we still need to find a way to associate a task with the current schedule. To do
that, we’re going to have to create another model to handle that association. We’re going to
name this model the todo model; the idea is that a scheduled task has now been upgraded to
a todo object, that is, something to be done today.

At first glance, it might be tempting to build a many-to-many join table with a
has_and_belongs_to_many association; after all, a schedule can have many tasks associated
with it, and a task could be associated with multiple schedules (in the event that it didn’t
get completed the previous time it was added to a schedule). Doing that might prove too
limiting, though, as we’ll probably want to keep track of data beyond just the fact that the
two are associated; one idea would be keeping track of a task’s position within the current
schedule to give a user the ability to change the order of the items in that schedule.

To accomplish this, our daily to-do items are going to require a full-fledged model of their
own. We’ll set it up to take advantage of the has_many :through associations that Rails added
back in version 1.1.

Let’s create our todo model:

ruby script/generate model todo

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/todo.rb
 create test/unit/todo_test.rb
 create test/fixtures/todos.yml
 exists db/migrate
 create db/migrate/004_create_todos.rb

Edit your migration to match this one:

class CreateTodos < ActiveRecord::Migration
 def self.up
 create_table :todos do |t|
 t.column :schedule_id, :integer
 t.column :task_id, :integer
 t.column :position, :integer
 end
 end

 def self.down
 drop_table :todos
 end
end

7818ch04.fm Page 67 Thursday, October 4, 2007 8:05 PM

68 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Run rake db:migrate to build the tables in the database, and then we’ll set up all of our
new models (/app/models) and their relationships to each other.

Ordering the todo Model

I really liked the idea of allowing users to be able to reorder their to-do items within their daily
schedule. To support that, we added a position field within the database migration, so that, we
can apply the Acts As List call on this model and use that functionality to support ordering and
reordering our daily to-do lists. After adding the Acts as List call, a simple validation to prevent
duplicates, and our associations to other models, our todo model (/app/models/todo.rb)
should look like this:

class Todo < ActiveRecord::Base
 belongs_to :schedule
 belongs_to :task
 acts_as_list :scope => :schedule

validates_uniqueness_of :task_id, :on => :create,
 :message => "Cannot add the same task twice", :scope => "schedule_id"
end

Updating the schedule Model

Our schedule model (/app/models/schedule.rb) also needs to be set up with its associations to
users, tasks, and to-do items. We also need to specify that our to-do items need to be pulled in
the proper order by specifying an order clause on that association:

class Schedule < ActiveRecord::Base
 belongs_to :user
 has_many :todos, :order => :position
 has_many :tasks, :through => :todos
end

Updating the task Model

We’ll also have to modify our task model (/app/models/task.rb) to let it know about its new
association to the todo model:

class Task < ActiveRecord::Base
 belongs_to :user
 has_one :todo

 def validation
 errors.add :due, 'is not a valid date' if Chronic.parse(due.to_s).nil?
 end
end

7818ch04.fm Page 68 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 69

Updating the user Model

Add the following association to the user model (/app/models/user.rb) just under the has_many
:tasks call to grab the schedule for the current day for the user:

 has_one :schedule, :conditions => ["today = ?", Date.today.to_s]

Making Our Task Lists Work
Now, it’s time to start seeing some of the fruits of our labors. Let’s start by building out the sup-
port for our task lists along the right-hand side of the page.

Looking back at the code we added in index.rhtml, we can see our div structures where we
will be adding our code:

<div id='sidebar'>
 <div class="sidebar-tasks">
 <h1>OverDue Tasks</h1>
 </div>

 <div class="sidebar-tasks">
 <h1>Due Today </h1>
 </div>

 <div class="sidebar-tasks">
 <h1>Upcoming Tasks</h1>
 </div>
</div>

We can gather a list of tasks for a user by calling current_user.tasks, but that would give
us one large list containing all tasks, instead of three separate lists based on due date. To get
around this, we can modify the user model to enhance the has_many relationship with some
block methods that will partition the data for us:

 has_many :tasks do
 def overdue
 find(:all, :conditions => ["due < ? and complete is null", Date.today.to_s])
 end
 def today
 find(:all, :conditions => ["due = ? and complete is null", Date.today.to_s])
 end
 def upcoming
 find(:all, :conditions => ["due > ? and complete is null", Date.today.to_s])
 end
 end

Now, we can call current_user.tasks.overdue to get a list of all tasks that should have
been completed before today.

7818ch04.fm Page 69 Thursday, October 4, 2007 8:05 PM

70 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

■Tip The current_user.tasks.overdue method does excel in being the most readable way for us to
gather the relevant data, but it could cause problems at a later date because it requires three separate hits to
the database to populate these lists. This shouldn’t be an issue initially considering the small scale of our
application. If the user base grows and performance becomes an issue, we could easily remove the block
methods from the association and use an enumerable select method to partition the single, large dataset
into the necessary collections. However, that’s a lot of extra work that degrades the readability of the code to
solve a problem that doesn’t exist yet. We should always avoid premature optimization.

Now, armed with those methods, pulling in the relevant data is easy and looks pretty good too:

<div id='sidebar'>
 <div class="sidebar-tasks">
 <h1>OverDue Tasks</h1>
 <% for task in current_user.tasks.overdue %>
 <%= task.name %>
 <%= link_to " (Delete) ", :controller => "task",
 :action => "destroy", :id => task.id %>

 <% end %>
 </div>

 <div class="sidebar-tasks">
 <h1>Due Today </h1>
 <% for task in current_user.tasks.today %>
 <%= task.name %>
 <%= link_to " (Delete) ", :controller => "task",
 :action => "destroy", :id => task.id %>

 <% end %>
 </div>

 <div class="sidebar-tasks">
 <h1>Upcoming Tasks</h1>
 <% for task in current_user.tasks.upcoming %>
 <%= task.name %>
 <%= link_to " (Delete) ", :controller => "task",
 :action => "destroy", :id => task.id %>

 <% end %>
 </div>
</div>

Open the page, and add some sample tasks (using the form shown in Figure 3-8) to check
that the page is working correctly.

7818ch04.fm Page 70 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 71

Figure 4-3. Displaying our Task lists in the sidebar

Making Our Daily Schedule Work
Let’s get back to the primary focus of our application, making our actual daily task list. The first
thing we need to do is make sure that we always have a schedule object for the current day.
We’ll do this through the use of a before_filter added to our today controller. We’ll name this
filter find_schedule:

before_filter :find_schedule

We’ll add the method at the bottom of the today controller and make it a protected
method, so a user would not be able to access this method directly. We’ll either return the
schedule that’s already been created for today or we’ll create a new one:

protected
 def find_schedule
 @today = current_user.schedule || ➥

current_user.create_schedule(:today => Date.today.to_s)
 end

You should recall that when we defined the association between a user and a schedule
we included a condition on the association to match the current date (has_one :schedule,
:conditions => ["today = ?", Date.today.to_s]). This means that if we were to access the
page at 11:45 p.m., we would get one schedule object, and if we were to access the same page
15 minutes later (after midnight), we would get an entirely new object.

7818ch04.fm Page 71 Thursday, October 4, 2007 8:05 PM

72 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Moving Tasks to the Schedule
Now that we’ve ensured that we’ll always have a schedule for the current day, we need to add
some ways to move tasks to the current schedule. Let’s look at our models. When we move a
task to the current schedule, what we’re really doing is creating a new todo object. Since we
want to keep with our goal of using a CRUD-based design, the way to manage our to-do items
is to create a new to-do controller with this command:

ruby script/generate controller todo

 exists app/controllers/
 exists app/helpers/
 create app/views/todo
 exists test/functional/
 create app/controllers/todo_controller.rb
 create test/functional/todo_controller_test.rb
 create app/helpers/todo_helper.rb

Within this controller, we’ll want to restrict access to the to-do list unless a user is logged in,
so we’ll need to add our login_required filter again and create two methods: a create method
will be responsible for the creation of a new to-do item based on the task that was sent to it, while
delete will be responsible for removing a to-do item (which will effectively remove it from the
user’s current schedule). Our todo_controller should look like this:

class TodoController < ApplicationController
 before_filter :login_required

 def create
 task = current_user.tasks.find(params[:id])
 current_user.schedule.todos.create(:task_id => task.id)
 redirect_to(:controller => "today", :action => "index")
 end

 def destroy
 todo = current_user.todo.find(params[:id])
 current_user.schedule.todos.delete(todo)
 redirect_to(:controller => "today", :action => "index")
 end
end

7818ch04.fm Page 72 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 73

Armed with a way to move tasks to and from our daily schedule, let’s modify our main
page to include links to these new methods. While we’re at it, we’ll also slap in a few icons for
the actions associated with a task. Here’s what our block to pull in the overdue tasks looks like:

<div class="sidebar-tasks">
 <h1>Overdue Tasks</h1>
 <% for task in current_user.tasks.overdue %>
 <%= link_to image_tag('arrow_left.gif', :title => "Do Today"),
 :controller => "todo", :action => "create", :id => task.id %>

 <%= task.name %>

 <%= link_to image_tag('trash.gif', :title => "Delete"),
 :controller => "task", :action => "destroy", :id => task.id %>

 (Due <%= task.due.to_s(:long) %>)
 <% end %>
</div>

Implementing a Helper Method

Hopefully your spider sense is tingling at the very thought of putting multiple copies of that
block of code onto our index page, because mine sure is. That’s an awfully large amount of
code to be in the template; it looks ugly; and worst of all, it’s going to be duplicated several
times. So let’s move that out of the view, and create a helper method that we can use to build
this block for us. Open today_helper.rb from /app/helpers, and let’s create a method named
sidebar_tasks that will build out that same block of code for us:

def sidebar_tasks(name)
 tasklist = content_tag(:h1, "#{name.capitalize} Tasks")
 for task in current_user.tasks.send(name)
 tasklist += link_to image_tag('arrow_left.gif', :title => 'Do Today'),
 :controller => 'todo', :action => 'create', :id => task.id
 tasklist += " #{task.name} "
 tasklist += link_to image_tag('trash.gif', :title => 'Delete'),
 :controller => 'task', :action => 'destroy', :id => task.id
 tasklist += content_tag(:span, "(Due #{task.due.to_s(:long)})",
 :class => 'duedate')
 end

 content_tag :div, tasklist, :class => "sidebar-tasks"
 end

7818ch04.fm Page 73 Thursday, October 4, 2007 8:05 PM

74 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Now, within our index page, we can remove all those ugly blocks and use this instead:

<div id="sidebar">
 <%= sidebar_tasks "overdue" %>
 <%= sidebar_tasks "today" %>
 <%= sidebar_tasks "upcoming" %>
</div>

Displaying Our Schedule
We have a way to move tasks to the daily schedule, so now, we just need to add a way to display
that schedule. Before we add the code to the main page, though, we need to set up an instance
variable for our main page to display. Within the today_controller, add this line to the index
method to gather a list of scheduled tasks for the current day:

def index
 @todos = @today.todos
end

We’ll loop through the to-do items in the @todos instance variable in our main view to pop-
ulate our daily task list. Open index.rhtml from /app/views/today/, and let’s add the code to
show our current tasks. For good measure, we’ll also add two links in our list, one to mark the
task as complete

<%= link_to image_tag("check.gif", :title => "Mark Complete"),
 :controller => "task", :action => "mark_complete", :id => todo.task.id %>

and a second to remove the task from our current schedule:

<%= link_to image_tag("arrow_right.gif", :class => 'unschedule',
 :title => 'Remove from Today'), :controller => "todo", :action => "destroy",
 :id => todo.id %>

So your index.rhtml will look like this with all of the code added:

<div id="primary">
 <div id="add_task">
 <% form_for :task, :url => {:controller => :task, :action => :create},
 :html => {:id => 'addtaskform'} do |t| %>
 <p>
 <label for='task_name'>Task:</label>
 <%= t.text_field 'name' %>
 </p>

7818ch04.fm Page 74 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 75

<p>
 <label for='task_due_date'>Due Date:</label>
 <%= t.text_field 'due_date' %>
 </p>
 <p>
 <%= submit_tag "Add Task" %>
 </p>
 <% end %>
 </div>

 <div id="main">
 <h1>Today's Tasks</h1>
 <ul id="todo-list">
 <% for todo in @todos %>
 <li id="todo_<%= todo.id %>">
 <%= link_to image_tag("check.gif", :title => "Mark Complete"),
 :controller => "task",
 :action => "mark_complete",
 :id => todo.task.id %>
 <% if todo.task.complete %>
 <strike><%= todo.task.name %></strike>
 <% else %>
 <%= todo.task.name %>
 <% end %>

 <%= link_to image_tag("arrow_right.gif", :class => 'unschedule',
 :title => 'Remove from Today'),
 :controller => "todo",
 :action => "destroy",
 :id => todo.id %>

 <% end %>

 </div>
</div>

<div id="sidebar">
 <%= sidebar_tasks "overdue" %>
 <%= sidebar_tasks "today" %>
 <%= sidebar_tasks "upcoming" %>
</div>

7818ch04.fm Page 75 Thursday, October 4, 2007 8:05 PM

76 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

Open a web browser again, and you should see that our application is well on its way, as
shown in Figure 3-9.

Figure 4-4. The main page of our Application in its finished appearance

Unfortunately, even a cursory glance at the sheer ugliness of the code in our index.rhtml
is enough to churn my stomach. It was nice and clean to start out with, but now it’s been made
ugly by the inserted code. Let’s fix that.

Utilizing Partials
Just as layouts give us a simple way to avoid repetition of the elements that surround our page
content and helpers helped us to generate some dynamic code, partials are another powerful
solution for eliminating duplication of code. Sound complicated? It won’t be once you see
them in action, so without further ado, let’s convert some of these code elements to partials.

Converting Our Add Task Form to a Partial

Create a new file named _task.rhtml in the /monkey/app/views/today subdirectory, and copy
the code for our add task form into it:

<% form_for :task, :url => {:controller => :task, :action => :create},
 :html => {:id => 'addtaskform'} do |t| %>
 <p>
 <label for='task_name'>Task:</label>
 <%= t.text_field 'name' %>
 </p>

7818ch04.fm Page 76 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 77

 <p>
 <label for='task_due_date'>Due Date:</label>
 <%= t.text_field 'due_date' %>
 </p>
 <p>
 <%= submit_tag "Add Task" %>
 </p>
<% end %>

Now, within the index.rthml file, let’s remove the code we just moved to the partial and
replace it with a call to render our partial here instead:

<div id="add_task">
 <%= render :partial => 'task' %>
</div>

We can repeat this process and move the schedule display code out of our page and into
its own partial. Even better, since we can pass in the array of @todos to the partial as a collec-
tion, we can even eliminate the need to use a loop.

Copy the code that generates our to-do list into a partial named _todo.rhtml:

<li id="todo_<%= todo.id %>">
 <%= link_to image_tag("check.gif", :title => "Mark Complete"),
 :controller => "task", :action => "mark_complete",
 :id => todo.task.id %>
 <% if todo.task.complete %>
 <strike><%= todo.task.name %></strike>
 <% else %>
 <%= todo.task.name %>
 <% end %>

 <%= link_to image_tag("arrow_right.gif", :class => 'unschedule',
 :title => 'Remove from Today'), :controller => "todo",
 :action => "destroy", :id => todo.id %>

Then, we can reduce that section of the index page to merely this:

<ul id="todo-list">
 <%= render :partial => 'todo', :collection => @todos %>

With those few changes, our main index.rthml page is now reduced to this:

<div id="primary">
 <div id="add_task">
 <%= render :partial => 'task' %>
 </div>

7818ch04.fm Page 77 Thursday, October 4, 2007 8:05 PM

78 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

 <div id="main">
 <h1>Today's Tasks</h1>
 <ul id="todo-list">
 <%= render :partial => 'todo', :collection => @todos %>

 </div>
</div>

<div id="sidebar">
 <%= sidebar_tasks "overdue" %>
 <%= sidebar_tasks "today" %>
 <%= sidebar_tasks "upcoming" %>
</div>

Ah—so much nicer. Don’t you agree?

Marking Tasks Complete
In our last iteration, we also added a link in our daily task list for marking a task as complete.
Let’s go ahead and finish that process up, so clicking that link doesn’t generate a nasty error
message. Open task_controller to add our mark_complete method, which will set the complete
attribute to the current time and move the task to the bottom of the list in our daily schedule:

def mark_complete
 @task.complete = Time.now
 @task.todo.move_to_bottom
 @task.save!
 redirect_to(:controller => "today", :action => "index")
end

Marking a task complete will make the task list look like the one shown in Figure 4-5.

Figure 4-5. Displaying our daily task list with an item crossed off

But what happens if you click the mark-complete icon again? You would merely update
the timestamp in the complete column of the database again, but it would appear to the user
that nothing happened. That might be OK in some situations, but it would probably be more
useful to our users if clicking that link would allow them to toggle whether a task is completed
or not. We can do that by modifying the mark_complete method in the controller to first check

7818ch04.fm Page 78 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 79

to see if the complete attribute is nil or not. If it is, we’ll continue as normal. If it’s already pop-
ulated with a timestamp (i.e., marked complete), we’ll clear it out:

def mark_complete
 if @task.complete.nil?
 @task.complete = Time.now
 @task.todo.move_to_bottom
 else
 @task.complete = nil
 end
 @task.save!
 redirect_to(:controller => "today", :action => "index")
end

Ajaxification
The application looks good now, and we’ve cleaned up the code to make it both easier on the
eyes and easier to maintain. But it’s still lacking that certain something that makes it feel like a
modern web application: Ajax.

Even if, like me, you absolutely hate that term, there’s no denying that utilizing JavaScript
to enhance our applications through the use of the XMLHTTP request (which technically is Ajax)
and through the use of user interface enhancements (which technically is not Ajax). Unfortu-
nately, the risk of using Ajax is that it becomes very tempting to start spreading it everywhere
and soon your application is a horrible mess.

That being said, in my experience, a liberal amount of JavaScript can significantly improve
your application, but you should be extremely critical when evaluating when and where to use
it. In most of our projects, we’ll be very conservative in our use of Ajax. However, let’s add a few
Ajax elements to our task application as an introduction to the basics.

Sortable Elements
You may remember that, when we built out our todo model, we added the act_as_list func-
tionality to provide us with a mechanism for easily reordering our daily task list. Reordering
elements in a list used to be handled by adding simple arrow icons next to each element and
using methods in the controller called move_up and move_down, but that was always a bit painful
if you needed to move an element multiple spaces, and it certainly added extra clutter to the
interface. Using Ajax for this functionality is a much better solution, so let’s make our daily task
list sortable via a drag and drop mechanism.

Adding this functionality is amazingly easy thanks to the some of the JavaScript helpers
that come standard with Rails. Simply open index.rhtml, and add the following block at the
very bottom:

<%= sortable_element 'todo-list',
 :url => { :action => "sort" , :id => @today },
 :complete => visual_effect(:highlight, 'todo-list')
%>

7818ch04.fm Page 79 Thursday, October 4, 2007 8:05 PM

80 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

That one command created a full drag and drop interface to our to-do list; with each
change, it submits the reordered list to a sort method in the today controller. Unfortunately,
since that method doesn’t exist, our changes are not permanent, and the list goes back to the
original order the next time we refresh the page. To make our changes permanent, let’s add a
sort method to today_controller.rb:

def sort
 @today.todos.each do |todo|
 todo.position = params['todo-list'].index(todo.id.to_s) + 1
 todo.save
 end
 render :nothing => true
end

This method simply loops over the list of the to-do items that were submitted and sets
their current positions in the order they were submitted. Refresh our home page—we’ve now
added true drag-and-drop sorting of our daily schedule in less than two minutes. Show it off to
everyone you know, and they’ll think you’re a web programming god.

RJS
Another exciting feature added in Rails 1.1 was the ability to use RJS templates. RJS stands for
Remote JavaScript, and it allows our applications to generate JavaScript code in response to
XMLHTTP requests that will then be executed in the calling client, rather than an HTML page like
our standard templates. RJS provides a unique and powerful solution for coding advanced
JavaScript effects within our applications pages without having to resort to coding JavaScript.

Let’s start with a practical example: don’t you find it annoying that the simple action of
marking one of our tasks complete forces us to refresh the entire page? That feels horribly inef-
ficient for such a small change. Let’s convert the mark-complete link to send that request to our
controller via an Ajax call and use RJS to refresh only our daily task list, rather than force a full
page reload.

Open the todo partial we created to manage our task list, and locate the line that marks the
task as complete:

<%= link_to image_tag("check.gif", :title => "Mark Complete"),
 :controller => "task", :action => "mark_complete", :id => todo.task.id %>

To convert it to an Ajax call, we need to make a few minor modifications to that call; we
need to convert the link_to method to a link_to_remote method and wrap our controller and
action parameters within a :url block:

<%= link_to_remote image_tag("check.gif", :title => "Mark Complete"),
 :url => {:controller => "task", :action => "mark_complete",
 :id => todo.task.id} %>

7818ch04.fm Page 80 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 81

And that’s all there is to it. Clicking that link will now generate an Ajax callback to the
server instead of submitting a GET request. However, we do need to make a few small changes
to our controller method now. Currently, the mark_complete action in the task controller ends
with the following command to redirect to the index page:

 redirect_to(:controller => "today", :action => "index")

Since we now want to render an RJS template instead, we should delete that line and
replace it with a call to create an updated list of our current to-do items, which we can use to
refresh our list:

def mark_complete
 if @task.complete.nil?
 @task.complete = Time.now
 @task.todo.move_to_bottom
 else
 @task.complete = nil
 end
 @task.save!
 @todos = current_user.schedule.todos
end

Next, we need create a new RJS template in app/views/task, and name it mark_complete.rjs.
Since we don’t have an RHTML template for this method, our RJS template will be rendered when
the mark_complete action is called. Within the mark_complete.rjs file, place the following code,
which will replace the unordered to-do list with our partial, highlight the list to indicate to the user
that it has indeed been updated, and reinstantiate our sortable list function on the new list:

page.replace_html 'todo-list', :partial => '/today/todo', :collection => @todos
page.visual_effect :highlight, 'todo-list'
page.sortable 'todo-list', :url => { :action => 'sort' }

Save your files; refresh the today page, and be amazed at how easily we’ve just added a
pretty exciting effect.

Toggling the Add Task Form

Another one of the really cool things that we can do with RJS is to insert it directly into a page
template, so we can add functionality within the page without having to make requests to the
server or revert to creating JavaScript in our client-side code.

We create an inline RJS function through the use of the link_to_function helper method.
Let’s add a basic RJS inline function that we can use to hide or reveal the add task form by mod-
ifying index.rthml as follows:

<%= link_to_function "Add Task", update_page { |page|
 page.visual_effect :toggle_blind, 'add_task' } %>

7818ch04.fm Page 81 Thursday, October 4, 2007 8:05 PM

82 C H A P T E R 4 ■ B U I L D I N G A D A I LY T O - D O M A N A G E R

<div id="primary">
 <div id="add_task" style="display:none;">
 <%= render :partial => 'task' %>
 </div>

<div id="main">
 <h1>Today's Tasks</h1>
 <ul id="todo-list">
 <%= render :partial => 'todo', :collection => @todos %>

 </div>
</div>

<div id="sidebar">
 <%= sidebar_tasks "overdue" %>
 <%= sidebar_tasks "today" %>
 <%= sidebar_tasks "upcoming" %>
</div>

<%= sortable_element 'todo-list',
 :url => { :action => "sort" , :id => @today },
 :complete => visual_effect(:highlight, 'todo-list')
%>

The end result is definitely more appealing, as shown in Figure 3-11.

Figure 4-6. Our add task form has been hidden.

7818ch04.fm Page 82 Thursday, October 4, 2007 8:05 PM

C H A P T E R 4 ■ B U I L D I N G A D A I L Y T O - D O M A N A G E R 83

Summary
We’ve covered quite a lot of ground in this chapter, as we built our first basic Rails application.
We used acts_as_authenticated to build out a full user registration and authentication system;
we built our controllers and models around the idea of a CRUD-based design, and we finished
things out by rolling in a bit of Ajax to enhance the application. The application that we built is
simple but functional, and in the end, it should have served as a good primer for the traditional
ways of building Rails applications. There’s certainly a lot more that you can and should do to
this application, and we will—in the next chapter there is a set of exercises that will help you
begin to modify this application. Plus, at the end of most of the other projects in this book will
be supplemental exercises that refer to the project.

But don’t feel limited to just the exercises that I give you. Make this application your very
own by modifying it in new and fun ways that I never thought of: Redesign it; add functionality
that makes it better for your own personal needs. Open it to your friends, and get their feed-
back on how to make it better. Projects are never truly finished; they just get abandoned after
time. In other words, don’t ever stop coding and improving on this—keep applying new les-
sons you’ve learned to it and finding ways to enhance it; that is where your true learning will
come from.

7818ch04.fm Page 83 Thursday, October 4, 2007 8:05 PM

85

■ ■ ■

C H A P T E R 5

Enhancing Monkey Tasks

In this project, we took a high-level view of basic Rails development as we put together a daily
task list manager. However, having me take you step by step through the development of an
application will only get you so far; to truly enhance your learning what you need now is to
solve some problems yourself. In this chapter, I’ve included a number of ideas to get you
started. There are a few minor bugs you can fix, some basic refactoring to clean up the code,
and some ideas for how you can take the application to a whole new level yourself.

Add Validations
I thought that one of the easiest ways to get you started on modifying the code that we just built
was to leave some easy holes in our application for you to fix: namely one big hole in our model
validations. For example, currently it’s possible for a user to create a task without any text. That
doesn’t make any sense, does it? You can easily fix that by adding a validates_presense_of call
to the task model. Are there any other validations you can think of that might be useful?

Edit a Task
Another area missing from our application is the ability to edit an existing task. Currently,
the only way to modify a task is to delete it and create it anew. That works but is not exactly the
most intuitive solution. You should be able to easily add the necessary edit and update meth-
ods to your task controller—but how are you going to work that process into the current
interface?

Add a Calendar
While generating a list of the upcoming tasks on the sidebar is okay, sometimes we just need to
see our tasks in the context of the bigger picture. In that situation, a calendar that shows the
days that tasks are due would be a nice tool. You can easily build a calendar into the application
with the Calendar Helper plug-in:

ruby script/plugin install http://topfunky.net/svn/plugins/calendar_helper/

7818.book Page 85 Wednesday, September 26, 2007 10:01 PM

86 C H A P T E R 5 ■ E N H A N C I N G M O N K E Y T A S K S

To help you get started, here’s some code I used in a similar project using this plug-in; it
marks certain days on the calendar with different CSS styling based on whether or not a task is
due on that day:

<%= calendar({:year => @year, :month => @month, :table_class => ➥

"calendar_helper"}) do |d|
 if @tasks.include?(d)
 [d.mday, {:class => "specialDay"}]
 else
 [d.mday, {:class => "day"}]
 end
end %>

Navigate Previous Days
One area that we didn’t really develop in our application was the ability to navigate back over
previous days to see our completed tasks by day. It’s a minor point that won’t be exceptionally
useful, but every once in a while, it could be nice, so play around with the interface to add the
ability to navigate backward and forward to see other daily task lists. Check out the Exercisr
project for a simple approach to showing previous days.

Capture the Estimated Time for Each Task
Another area where we could add some distinction to our application would be to go beyond
merely capturing our list of tasks to also include capturing an estimated amount of time that
we expect each task to take. Then, as you’re adding tasks to your daily to-do items, you could
keep a running total of the estimated time to complete each day’s tasks. This would be useful
in ensuring that you don’t commit yourself to eleven hours of work when you only have eight
hours to complete it.

To make capturing estimated time easy, you should probably capture the time in a single
format and convert it as needed. I would recommend adding an estimated time field to the task
and storing the estimated times in minutes (so a 1-hour task would be entered as 60 minutes
and converted into hours and minutes when you display it).

Display Percentage Completed
Going hand in hand with capturing an estimated amount of time that all of our tasks should
take, it would be useful to be able to display the percentage of our total tasks completed as part
of our daily list. Calculating the percentage from the sheer number of tasks doesn’t really make
sense, though. After all, if you have eleven tasks and six of them only took 10 minutes but the
other five take an hour each, you’re not necessarily close to 50 percent done with your daily
work when you’ve marked five tasks completed. Instead, you should use the estimated time
field from the previous exercise to calculate the total percentage completed. In this case, you’d
only hit the 50 percent complete mark after you had completed three hours of your total tasks,
irregardless of how many tasks that actually consisted of.

7818.book Page 86 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 5 ■ E N H A N C I N G M O N K E Y T A S K S 87

Develop an iPhone Interface
Being able to manage our daily task list is nice. However, for those of us who are mobile during
the day, it will be a tad inconvenient to have to wait until we’re at a computer to check the list
again or to mark things as complete. For that reason, building a mobile interface to our appli-
cation would be a huge boon. And what better mobile interface to develop for than the recently
introduced iPhone?

To makes things easier, developer Joe Hewitt (creator of the insanely useful Firebug plug-
in for Firefox) has created a set of JavaScript and style sheets for a solid and consistent iPhone
user interface named iUI. You can read about iUI and download the latest version at http://
www.joehewitt.com/iui/.

For this exercise, you’ll probably find it easiest to simply create a new iPhone controller
that provides the iPhone interface methods and views. This way, the iPhone interface could be
accessed at www.monkeytasks.com/iphone for simplicity.

Optimize Database Queries
You should recall how we built those wonderful association proxies to show how we can make
our code more expressive with calls, such as:

has_many :tasks do
 def overdue
 find(:all, :conditions => ["due < ? and complete is null", Date.today.to_s])
 end
 def today
 find(:all, :conditions => ["due = ? and complete is null", Date.today.to_s])
 end
 def upcoming
 find(:all, :conditions => ["due > ? and complete is null", Date.today.to_s])
 end
 end

Well, we talked about how that works, but three separate queries to the same model are
also a bit of a hit on the database. You should rewrite this to be only a single call to the database
and do your partitioning within your Ruby code.

Move Code into Models
We also have a few places where we’re doing things in the controller that really scream to be
made into methods in the models instead. For example, in our tasks controller, we have a
method named mark_complete:

def mark_complete
 if @task.complete.nil?
 @task.complete = Time.now
 @task.todo.move_to_bottom

7818.book Page 87 Wednesday, September 26, 2007 10:01 PM

88 C H A P T E R 5 ■ E N H A N C I N G M O N K E Y T A S K S

 else
 @task.complete = nil
 end
 @task.save!
 @todos = current_user.schedule.todos
end

This is just plain ugly, and this level of business logic should not be left in the controller.
Why don’t you fix this by creating a few methods in the task model, such as a complete? method
that will let us know if a task is complete and task.complete! and task.incomplete! methods
that will immediately mark a method as complete or incomplete? With those methods, you
could rewrite this controller method to look like this:

def mark_complete
 if @task.complete?
 @task.complete!
 else
 @task.incomplete!
 end
 @task.save!
 @todos = current_user.schedule.todos
end

That’s much nicer, but of course, even that could be simplified further with another model
method named toggle_complete:

def mark_complete
 @task.toggle_complete!
 @task.save!
 @todos = current_user.schedule.todos
end

You see—the goal is to move as much of our logic as possible into our model methods, leav-
ing our controllers nice and lean. For a great article on this process, check out the outstanding
blog post “Skinny Controller, Fat Model” by Jamis Buck at http://weblog.jamisbuck.org/2006/
10/18/skinny-controller-fat-model.

Freeze the Chronic Gem
Another point that you should consider is that if were to deploy this project to an external web
server, you would first have to ensure that the Chronic gem was installed on the remote server
(otherwise, the application wouldn’t even start). Back in Chapter 2, we talked about a better
solution involving freezing gems locally to the application. This is the perfect time to practice
that procedure by freezing the Chronic gem into your application.

7818.book Page 88 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 5 ■ E N H A N C I N G M O N K E Y T A S K S 89

Summary
Congratulations are in order once you’ve finished these tasks. While these exercises may seem
simple, now that you’ve done them, you’ve cleaned up the code, added new features, and
almost certainly learned a substantial amount more about Rails development.

7818.book Page 89 Wednesday, September 26, 2007 10:01 PM

■ ■ ■

P A R T 3

Exercisr

Who would have thought that the stereotypical programmer lifestyle might not be the

healthiest way to live? Once upon a time we could stay up all night hacking away at code,

eating cold pizza, and drinking warm beer (or Dr. Pepper) without suffering any side

effects or, worse, gaining weight. But those days are gone—now we’re supposed to live

healthy and that means making better choices for what goes into our bodies and investing

time in regular exercise. While conventional wisdom has always thought that aerobic

exercise was best for you, science over the last few years has given evidence that a reg-

ular resistance training program such as weight lifting is one of the best things you can

do for your body. Because muscle requires more energy for your body to maintain, resis-

tance training can significantly increase your metabolic rate (the rate at which your body

burns calories).

So you’ve bitten the bullet and invested in a swanky new home gym so that you have no

excuse for not working out. With that excuse removed, you only need to tackle the issue

of how to keep yourself motivated once you start. A good way to do that is to maintain

records of your progress as you begin a lifelong journey into fitness. In this project, we’ll

look at building a simple application that will help you do just that.

7818.book Page 91 Wednesday, October 3, 2007 8:58 PM

93

■ ■ ■

C H A P T E R 6

Developing a REST-Based
Application

For this project, we’re going to build a rails application that will provide a way for us to track
our fitness goals and results. When we’re finished, the final project should

• Allow us to maintain a list of our goals (such as weight loss or bicep size) and maintain
records of our progress towards those goals over time.

• Allow us to maintain a record of when we worked out and what we did.

• Allow us to capture and track the progress of our workouts. We need to be able to cap-
ture data like how long it took us to jog three miles or how much we were able to lift using
the bench press.

• Include an API for our application to open the door for us to make this data available
elsewhere (such as on a personal blog).

• Provide a way to graph our progress over time. This will allow us to visually identify any
problems in our workouts, such as a long period with no increase in our bench press
weight. Seeing steady progress toward our goals is a great motivational asset as well.

REST-Based Development
As a means to accomplish these application goals, we’re going to explore the new REST-based
support that was added in Rails 1.2. It would be an understatement to say that RESTful develop-
ment has been adopted by the Rails community big time, as evidenced by the overwhelming
amount of discussions and posts that have been seen online since RESTful support was first
announced during David Heinemeier Hansson’s (DHH’s) keynote address at the 2006 RailsConf
entitled “A World of Resources” (available for download at http://media.rubyonrails.org/
presentations/worldofresources.pdf). During that keynote, DHH introduced features of Rails
designed to support the development of RESTful applications and challenged developers to
embrace the constraints of RESTful development by viewing their controllers with a mindset of
supporting CRUD operations (you should recall that we touched on these in Chapter 3).

7818.book Page 93 Wednesday, October 3, 2007 8:58 PM

94 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

So What Is REST?
From an academic standpoint, Representational State Transfer (REST) is a software architec-
ture for distributed hypermedia systems. It refers to a collection of principles for how data is
defined and accessed. It provides a simple way for external systems to access applications’ data
over HTTP without having to add an additional layer, such as SOAP. In web applications, REST
is often used to describe a development style that provides a clean and unified interface that
allows the same interface to serve multiple representations of the same data to various clients.
In a REST-based system, we’re often talking about interacting with resources. Examples of
resources include such things as a Ruby object, a database result, and an image—essentially, a
resource is anything that we might want to expose to our users to interact with.

Hopefully, that last paragraph didn’t cause your eyes to glaze over too badly. If it did, don’t
worry, because from this point forward, we’ll avoid the definitions and focus on what REST
means for us. From a more practical view, when we’re talking about building a RESTful appli-
cation, we’re talking about building a simple interface to our application where we’re using the
four core HTTP methods (GET, POST, PUT, and DELETE) to define the actions to perform on a
resource rather than by placing method names within the URL as you can see in Table 6-1.

Table 6-1. Comparison REST and Traditional URLs

The goal of a REST design is to break things down into nouns and verbs. The verbs that we
use in a RESTful application are the core HTTP methods GET, POST, PUT, and DELETE, while the
nouns are the resources that we’ve made available. Those core HTTP methods have an obvious
similarity to the CRUD database operations that you can see in Table 6-2.

Table 6-2. Correlation of HTTP Methods to Database Operations

REST URL Traditional URL

/exercises /exercises/index

/exercises/1 /exercises/show/1

/exercises/new /exercises/new

/exercises/1;edit /exercises/edit/1

/exercises /exercises/create

/exercises/1 /exercises/update/1

/exercises/1 /exercises/destroy/1

Operation Database HTTP

Find SELECT GET

Create INSERT POST

Update UPDATE PUT

Destroy DELETE DELETE

7818.book Page 94 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 95

The goal of REST is to get away from creating an endless series of method names that we might
tack onto a URL to interact with an object such as http://localhost/resource/add_resource or
http://localhost/resource/list. Instead, we want to move to using our verbs to interact with our
nouns so that those same requests become a POST or GET request to http://localhost/resources.

The Value of REST
RESTful design provides a number of advantages; in his keynote, DHH brought up three main
advantages for Rails developers:

Consistency: Designing a RESTful application provides us with a greater level of consis-
tency—not just in our URLs but also in our controllers. Controllers built to the RESTful
ideals will always have the same seven methods (index, new, create, show, edit, update, and
destroy).

Simplicity: RESTful design takes away a lot of the questions about where things go; it lets
every object focus primarily on its CRUD operations by implementing the seven methods
discussed in the previous point. Simplifying these decisions effectively simplifies our
design. There are already success stories out there, such as that of Scott Raymond who
refactored IconBuffet.com to RESTful principles and discovered that he had reduced the
number of actions in his application by 25 percent.

Discoverability: This goes hand in hand with consistency—as more and more developers
embrace a common set of constraints, it eases integration between applications.

Our First Resource
Enough theory—let’s kick off our project and see how Rails makes building a RESTful applica-
tion a snap as we explore building our first resource. Open your development directory, and
create a new project named exercisr using the instructions from Chapter 2. With our project
created, let’s take a brief look at some of the tools within Rails that we’ll use to support building
a RESTful application.

RESTful Tools
DHH, the creator of Ruby on Rails, has talked a number of times about how the core team tries
to add syntactic sugar around certain programming styles or approaches to encourage their
use, and that’s highly apparent in the Rails support for building REST applications. Let’s take a
quick look at the three core features of Rails that support RESTful development.

map.resources

The first tool that we want to take a look at is a method that has been added for our routes. Tra-
ditionally we’ve had two methods that we could use within our routes. The oldest of these was
map.connect, which is used to build our general /:controller/:action/:id style of routes in a
manner like this:

map.connect '', :controller => 'home', :action => 'welcome'
map.connect '/post/:id', :controller => 'post', :action => 'show'

7818.book Page 95 Wednesday, October 3, 2007 8:58 PM

96 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

map.connect '/weather/:year/:month/:date, :controller => 'weather',
 :action => 'archive'

While the map.connect method was fine for awhile, it did cause Rails developers to be a bit
too verbose a bit too often, when they wanted to refer to a specific route. If we wanted to create
a link to the preceding routes, the correct way would have been

link_to 'Home', :controller => 'home', :action => 'welcome'
link_to 'Show Post', :controller => 'post', :action => 'show', :id => @post
link_to 'Weather Last Christmas', :controller => 'weather', :action => 'archive',
 :year => '2006' :month => '12', :date => '25'

You can see how quickly it would become bothersome to constantly generate links by
manually typing the controller, actions, and ID parameters each time, and you can imagine
how quickly this was increasing the noise ratio within our view files. Named routes were added
to our Rails arsenal to ease this pain for Rails developers. Building a named route is almost
identical to building a regular route—except that we replace the connect method with a
custom name of our own choosing for the route. So to convert the regular routes you saw pre-
viously, you might write them like this:

map.home '', :controller => 'home', :action => 'welcome'
map.post '/post/:id', :controller => 'post', :action => 'show'
map.weather_archive '/weather/:year/:month/:date, :controller => 'weather',
 :action => 'archive'

While this may seem like just a minor change, it makes a big difference for us. When we
create a named route, Rails provides us with two new URL methods that make our lives much
easier: {named_route}_path and {named_route}.url. So our previous map.home route would gen-
erate these URL methods as home_path and home_url, and they would generate the URLs for this
route. The only difference between these two methods is that home_url will generate a fully
qualified link including host and post (i.e., http://locahost:3000/) while home_path will only
generate the relative path (i.e., /). So armed with our named routes, we could build links to
those routes like this:

link_to 'Home', home_path
link_to 'Show Post', post_path(@post)
link_to 'Weather Last Christmas', weather_archive_path('2006', '12', '25')

While named routes are an incredibly powerful tool, they were still a bit underpowered
for the needs of building RESTful routes, as we would be forced to build numerous named
routes to support the seven CRUD style methods for each resource that we wanted to sup-
port. Fortunately, a new routing method by the name of map.resources was added to Rails;
it’s like scaffolding for RESTful routes. Let’s take a look at a map.resources example by creat-
ing a resource named exercises. So imagine that we added a route such as this:

map.resources :exercises

Running map.resources :exercises generated a whole mess of dynamically generated
routes that map to our RESTful actions, as well as a full plate of useful URL methods (the same
as a named_route would), which you can see in Table 6-3.

7818.book Page 96 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 97

Table 6-3. map.resources Generated Routes

With one map.resources call, we’ve generated a full suite of RESTful routing actions for our
application and saved ourselves a tremendous amount of typing. In fact, to do it by hand would
have required us to create a routes configuration like this:

ActionController::Routing::Routes.draw do |map|
 # map.resources :exercises
 # gives us all this
 map.exercises 'exercises', :action => 'index', :conditions => {:method => :get}
 map.connect 'exercises', :action => 'create', :conditions => {:method => :post}
 map.formatted_exercise 'exercises.:format', :action => 'index',
 :conditions => {:method => :get}
 map.exercise 'exercises/:id', :action => 'edit', :conditions => {:method => :get}
 map.connect 'exercises/:id', :action => 'update', :conditions => {:method => :put}
 map.connect 'exercises/:id', :action => 'destroy',
 :conditions => {:method => :delete}
 map.formatted_exercise 'exercises/:id.:format', :action => 'edit',
 :conditions => {:method => :get}
 map.connect 'exercises/:id.:format', :action => 'update',
 :conditions => {:method => :put}
 map.connect 'exercises/:id.:format', :action => 'destroy',
 :conditions => {:method => :delete}
 map.new_exercise 'exercises/new', :action => 'new',
 :conditions => {:method => :get}
 map.formatted_new_exercise 'exercises/new.:format', :action => 'new',
 :conditions => {:method => :get}
 map.edit_exercise 'exercise/:id;edit', :action => 'edit',
 :conditions => {:method => :get}
 map.edit_exercise 'exercise/:id.:format;edit', :action => 'edit',
 :conditions => {:method => :get}
end

Action HTTP Method URL Generated URL Method

Index GET /exercises exercises_path

Show GET /exercises/1 exercise_path(:id)

New GET /exercises/new new_exercise_path

Edit GET /exercises/1;edit edit_exercise_path(:id)

Create POST /exercises exercises_path

Update PUT /exercises/1 exercise_path(:id)

Destroy DELETE /exercises/1 exercise_path(:id)

7818.book Page 97 Wednesday, October 3, 2007 8:58 PM

98 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

respond_to

The next tool within Rails that we’ll use to support RESTful applications is the respond_to
method within our controllers. Within a normal non-RESTful method, we might have an action
that looks like this:

def index
 @exercises = Exercise.find(:all)
end

By default, this method will automatically render the first template file named index that it
finds in its corresponding folder (in this example, index.rhtml). But one of our goals with REST
is to be able to provide different variations of the same data from a single resource. For that,
we’ll modify the method to use the respond_to method:

def index
 @exercises = Exercise.find(:all)

 respond_to do |format|
 format.html
 format.xml { render :xml => @exercises.to_xml }
 end
end

In essence what this does is evaluate the desired response format that was sent with the
request in the HTTP accept header and return the corresponding template. Therefore, a nor-
mal web request will be served back HTML, while an XML request would be served a list of
exercises in XML format.

scaffold_resource

The last tool that we’ll explore here is the new scaffolding generator for resource based routing
named scaffold_resource. Over the last year or so, using the Rails scaffolding had fallen out of
favor within the Rails community; and it was considered good for screencasts but not a tool
that a professional Rails developer would use. Well, that changed with the release of the
scaffold_resource generator, as scaffold_resource provides a wealth of functionality that
truly speeds up your development in a clean and elegant manner. To get an understanding of
how the new scaffold_resource works, you can run the command with no parameters to view
some helpful information about how to use it:

ruby script/generate scaffold_resource

7818.book Page 98 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 99

Usage: script/generate scaffold_resource ModelName [field:type, field:type]
. . .
Description:
 The scaffold resource generator creates a model, a controller, and a set of
templates that's ready to use as the starting point for your REST-like,
resource-oriented application. This basically means that it follows a set of
conventions to exploit the full set of HTTP verbs (GET/POST/PUT/DELETE) and is
prepared for multi-client access (like one view for HTML, one for an XML API, one
for ATOM, etc). Everything comes with sample unit and functional tests as well.

 The generator takes the name of the model as its first argument. This model
name is then pluralized to get the controller name. So "scaffold_resource post" will

generate a Post model and a PostsController and will be intended for URLs like
/posts and /posts/45.

 As additional parameters, the generator will take attribute pairs described
by name and type. These attributes will be used to prepopulate the migration to
create the table for the model and to give you a set of templates for the view. For
example, "scaffold_resource post title:string created_on:date body:text
published:boolean" will give you a model with those four attributes, forms to create
 and edit those models from, and an index that'll list them all.

 You don't have to think up all attributes up front, but it's a good idea of
adding just the baseline of what's needed to start really working with the resource.

 Once the generator has run, you'll need to add a declaration to your config/
routes.rb file to hook up the rules that'll point URLs to this new resource. If you
 create a resource like "scaffold_resource post", you'll need to add
"map.resources :posts" (notice the plural form) in the routes file. Then your new
resource is accessible from /posts.

Examples:
 ./script/generate scaffold_resource post # no attributes, view will be anemic
 ./script/generate scaffold_resource post title:string created_on:date ➥

body:text published:boolean
 ./script/generate scaffold_resource purchase order_id:integer ➥

created_at:datetime amount:decimal

7818.book Page 99 Wednesday, October 3, 2007 8:58 PM

100 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Reading through that output should get you pretty excited about just how powerful the
scaffold_resource generator is. From a single command, we can build out a full controller
that’s prebuilt to not only support the full line of CRUD operations but also HTTP verbs that we
need for a REST application. The scaffolding will build our model and a complete set of generic
view templates—yet it goes beyond the normal scaffolding for those items by also allowing us
to pass in the database elements to be used in our migration to create the tables in the data-
base. If it feels like we’ve just turbocharged our speed of development, it’s because we have.
Let’s see it in action as we use scaffold_resource to build the first resource for our application.

Building the Exercise Resource
In our exercise project, whenever we record a workout, we’ll be recording a series of exercises
that we did. So, as we think about the attributes of an exercise, we recognize that what we really
need here is just an object to identify each exercise that we could perform. Examples of exercises
include things such as bench press, leg press, and biceps curl. We’ll want to expose this list of
possible exercises to an end user, so we’ll build it as a resource using the new scaffold_resource
generator.

At its core, an exercise resource should be a fairly simple thing—it will have to have a
name, and a user that it’s associated with. Knowing that, we can build our exercise resource by
running this command:

ruby script/generate scaffold_resource Exercise name:string user_id:integer

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/exercises
 exists test/functional/
 exists test/unit/
 create app/views/exercises/index.rhtml
 create app/views/exercises/show.rhtml
 create app/views/exercises/new.rhtml
 create app/views/exercises/edit.rhtml
 create app/views/layouts/exercises.rhtml
 create public/stylesheets/scaffold.css
 create app/models/exercise.rb
 create app/controllers/exercises_controller.rb
 create test/functional/exercises_controller_test.rb
 create app/helpers/exercises_helper.rb
 create test/unit/exercise_test.rb
 create test/fixtures/exercises.yml
 exists db/migrate
 create db/migrate/001_create_exercises.rb
 route map.resources :exercises

Let’s take a moment to examine a few important things that the scaffold_resource gener-
ator has added to our project.

7818.book Page 100 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 101

First off, the new scaffold_resource generator added a map.resources line to our routes
configuration (/config/routes.rb), which generated all the URL methods that we discussed
previously in Table 6-3:

ActionController::Routing::Routes.draw do |map|
 map.resources :exercises
end

Second, the generator took the extra parameters that we passed it to prepopulate our data-
base migration (/db/migrate/001_create_exercises.rb):

class CreateExercises < ActiveRecord::Migration
 def self.up
 create_table :exercises do |t|
 t.column :name, :string
 t.column :user_id, :integer
 end
 end

 def self.down
 drop_table :exercises
 end
end

When we created our exercise resource via the scaffold_resource generator, the generator
also built a standard REST-based controller for us (we’ll need to make some modifications to
the generated controller code before it will work in our application). The generated controllers
all have the same seven methods (index, show, new, edit, create, update, and destroy). Let’s take
a quick look at the index method in exercises_controller (/app/controllers/
exercies_controller.rb):

 # GET /exercises
 # GET /exercises.xml
 def index
 @exercises = Exercise.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @exercises.to_xml }
 end
 end

At the top of each of these generated methods, Rails added a comment to provide you with
examples of what URLs could be used to access this method. After the comments, you’ll see a
standard find on the exercise model populating an instance variable named @exercises.

The respond_to block, though, is a pretty exciting thing, as it allows us to support multiple
content requests from a single method. Rails has supported these respond_to blocks since
Rails 1.1 came out in the spring of 2006, but it’s within the context of the new RESTful routing
that I think they really come alive.

7818.book Page 101 Wednesday, October 3, 2007 8:58 PM

102 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

One of the big problems with previous versions of the respond_to blocks was that they
responded solely based on what was sent in the request header as the Accept content type.
So a client that sent Accept: text/html was given an HTML template, and a client that sent
Accept: text/xml was sent an XML template.

The trouble would come in, though, when a client sent an incorrect Accept request. RSS is
a great example of that, as technically the client wants to pull down a specially formatted XML
feed, yet many RSS requests come in as Accept: text/html.

Rails 1.2 fixed that by changing the way the routing works to also evaluate the file format
requested—it evaluates the file extensions within the URL and gives those a higher priority over
what’s in the Accept header. In this way, a client that makes a GET request to /exercises.xml will
be served the XML template even if the request came with Accept: text/html in the header. Nifty!

Let’s take a quick glance at the full exercises controller that scaffold_resource generated
for us:

class ExercisesController < ApplicationController
 # GET /exercises
 # GET /exercises.xml
 def index
 @exercises = Exercise.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @exercises.to_xml }
 end
 end

 # GET /exercises/1
 # GET /exercises/1.xml
 def show
 @exercise = Exercise.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @exercise.to_xml }
 end
 end

 # GET /exercises/new
 def new
 @exercise = Exercise.new
 end

 # GET /exercises/1;edit
 def edit
 @exercise = Exercise.find(params[:id])
 end

7818.book Page 102 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 103

 # POST /exercises
 # POST /exercises.xml
 def create
 @exercise = Exercise.new(params[:exercise])

 respond_to do |format|
 if @exercise.save
 flash[:notice] = 'Exercise was successfully created.'
 format.html { redirect_to exercise_url(@exercise) }
 format.xml { head :created, :location => exercise_url(@exercise) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @exercise.errors.to_xml }
 end
 end
 end

 # PUT /exercises/1
 # PUT /exercises/1.xml
 def update
 @exercise = Exercise.find(params[:id])

 respond_to do |format|
 if @exercise.update_attributes(params[:exercise])
 flash[:notice] = 'Exercise was successfully updated.'
 format.html { redirect_to exercise_url(@exercise) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @exercise.errors.to_xml }
 end
 end
 end

 # DELETE /exercises/1
 # DELETE /exercises/1.xml
 def destroy
 @exercise = Exercise.find(params[:id])
 @exercise.destroy

 respond_to do |format|
 format.html { redirect_to exercises_url }
 format.xml { head :ok }
 end
 end
end

7818.book Page 103 Wednesday, October 3, 2007 8:58 PM

104 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Not only did the scaffolding generate a RESTful controller for us but it also built the full
suite of associated templates for this controller. Extra nice is the fact that each of the templates
also takes full advantage of the URL helpers, such as this one that was generated for the new
method in /app/views/exercises/new.rhtml:

<h1>New exercise</h1>

<%= error_messages_for :exercise %>

<% form_for(:exercise, :url => exercises_path) do |f| %>
 <p>
 Name

 <%= f.text_field :name %>
 </p>

 <p>
 User

 <%= f.text_field :user_id %>
 </p>

 <p>
 <%= submit_tag "Create" %>
 </p>
<% end %>

<%= link_to 'Back', exercises_path %>

As you can see, the new scaffold_resource generator can be a huge timesaver for kick-
starting a RESTful application. Now, let’s continue our project development by adding in an
authentication system.

■Note The only thing that I don’t like about the scaffold_resource generator is that it also creates a
corresponding layout file in /app/views/layouts. Since I prefer to create a global layout file named
application.rthml, this scaffold generated layout causes unnecessary issues. Go ahead and remove the
generated exercises.rhtml file.

Adding RESTful Authentication
If experience has taught us anything by now, it’s that if we build anything remotely useful, some-
one else is going to want to use it as well. We’ll anticipate that our friends are also going to want
to use the application by building in multiuser support from the get-go. Fortunately, Rick Olsen
has made our job much easier, as he has already adapted his popular acts_as_authenticated
plug-in to a REST-based implementation named restful_authentication. Using this plug-in will

7818.book Page 104 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 105

allow us to jump start our application with a full multiuser login and authentication system with-
out sacrificing any of our RESTful ideals.

To install restful_authentication, open a command prompt and run the following
command:

ruby script/plugin install http://svn.techno-weenie.net/projects/plugins/ ➥

restful_authentication

./restful_authentication/README

./restful_authentication/Rakefile

./restful_authentication/generators/authenticated/USAGE

./restful_authentication/generators/authenticated/authenticated_generator.rb

./restful_authentication/generators/authenticated/templates/activation.rhtml

./restful_authentication/generators/authenticated/templates/authenticated_system.rb

./restful_authentication/generators/authenticated/templates/ ➥

authenticated_test_helper.rb
./restful_authentication/generators/authenticated/templates/controller.rb
./restful_authentication/generators/authenticated/templates/fixtures.yml
./restful_authentication/generators/authenticated/templates/functional_test.rb
./restful_authentication/generators/authenticated/templates/helper.rb
./restful_authentication/generators/authenticated/templates/login.rhtml
./restful_authentication/generators/authenticated/templates/migration.rb
./restful_authentication/generators/authenticated/templates/model.rb
./restful_authentication/generators/authenticated/templates/model_controller.rb
./restful_authentication/generators/authenticated/templates/model_functional_test.rb
./restful_authentication/generators/authenticated/templates/model_helper.rb
./restful_authentication/generators/authenticated/templates/notifier.rb
./restful_authentication/generators/authenticated/templates/notifier_test.rb
./restful_authentication/generators/authenticated/templates/observer.rb
./restful_authentication/generators/authenticated/templates/signup.rhtml
./restful_authentication/generators/authenticated/templates/ ➥

signup_notification.rhtml
./restful_authentication/generators/authenticated/templates/unit_test.rb
./restful_authentication/install.rb
Restful Authentication Generator
====

This is a basic restful authentication generator for rails, taken from acts as
authenticated. Currently it requires Rails 1.2 (or edge).

To use:

 ./script/generate authenticated user sessions --include-activation

The first parameter specifies the model that gets created in signup (typically a
user or account model). A model with migration is created, as well as a basic
controller with the create method.

7818.book Page 105 Wednesday, October 3, 2007 8:58 PM

106 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

The second parameter specifies the sessions controller name. This is the controller
 that handles the actual login/logout function on the site.

The third parameter (--include-activation) generates the code for a ActionMailer and

its respective Activation Code through email.

You can pass --skip-migration to skip the user migration.

From here, you will need to add the resource routes in config/routes.rb.

 map.resources :users, :sessions

Also, add an observer to config/environment.rb if you chose the --include-activation
 option
 config.active_record.observers = :user_observer # or whatever you named your model

In the same manner that acts_as_authenticated did in our MonkeyTasks projects,
the Restful Authentication plug-in merely installs a generator that we use to create our
authentication system. Documentation for this generator should have been output during
the plug-in installation, but you can also find it in the plug-in’s readme file (/vendor/plugins/
restful_authentication/README). We’re not going to bother with adding the mailer and activa-
tion code functionality, since we already built that functionality in the MonkeyTasks project;
plus, we’re designing this application for a smaller user base (i.e., just our friends and family).
With that said, let’s use the generator to build our authentication system! Back at the command
prompt in the root our application, type the following command:

ruby script/generate authenticated user sessions

Don't forget to:

 - add restful routes in config/routes.rb
 map.resources :users, :sessions
 map.activate '/activate/:activation_code', :controller => 'users',
 :action => 'activate'

Try these for some familiar login URLs if you like:

 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'

--

7818.book Page 106 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 107

 exists app/models/
 exists app/controllers/
 exists app/controllers/
 exists app/helpers/
 create app/views/sessions
 create app/views/user_notifier
 exists test/functional/
 exists app/controllers/
 exists app/helpers/
 create app/views/users
 exists test/functional/
 exists test/unit/
 create app/models/user.rb
 create app/controllers/sessions_controller.rb
 create app/controllers/users_controller.rb
 create lib/authenticated_system.rb
 create lib/authenticated_test_helper.rb
 create test/functional/sessions_controller_test.rb
 create test/functional/users_controller_test.rb
 create app/helpers/sessions_helper.rb
 create app/helpers/users_helper.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create app/views/sessions/new.rhtml
 create app/views/users/new.rhtml
 create db/migrate
 create db/migrate/002_create_users.rb

The generator has added two new controllers to our application: a sessions controller and
a users controller. It’s also added a user model; associated views, helpers, and tests; and the
authentication library to our project. The generator was even nice enough to remind us to add
the necessary resource routes to our routes configuration. We’ll take advantage of that
reminder and go ahead and add those routes now. Edit your routes.rb file to look like this:

ActionController::Routing::Routes.draw do |map|
 map.resources :exercises
 map.home '', :controller => 'sessions', :action => 'new'
 map.resources :users, :sessions
 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

We now need to set up our application to use the authentication system by default. When
the generator ran, it added the necessary commands into the two controllers that it generated
(sessions and users). But since we want all of the controllers in our application to use the
authentication system, we need to move those commands out of those controllers and into

7818.book Page 107 Wednesday, October 3, 2007 8:58 PM

108 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

the application controller (so that all controllers will inherit it). Open our three controllers
(users_controller.rb, sessions_controller.rb, and application_controller.rb) in /app/
controllers; remove the following lines out of the sessions and users controllers and add them
into the application controller:

 # Be sure to include AuthenticationSystem in Application Controller instead
 include AuthenticatedSystem
 # If you want "remember me" functionality, add this before_filter to ➥

 Application Controller
 before_filter :login_from_cookie

Afterward, our application controller (/app/controllers/application.rb) should look
like this:

class ApplicationController < ActionController::Base
 session :session_key => '_exercisr_session_id'
 include AuthenticatedSystem
end

Our application controller currently has two lines. The first line is automatically generated
and is simply used to create the session keys that our application will use for any sessions it cre-
ates. The second line is the one that we just added, and it includes the authenticated system
library from our /lib folder.

If we had wanted to enable a “remember me” level of functionality (i.e., setting a cookie in
the user’s browser that would enable them to be logged into the application without having to
reenter their username and password each time), we could have also placed the before_filter
:login_from_cookie line into this controller like we did for MonkeyTasks.

Meanwhile, our users controller (/app/controllers/users_controller.rb) should look
like this:

class UsersController < ApplicationController
 # render new.rhtml
 def new
 end

 def create
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 redirect_back_or_default('/')
 flash[:notice] = "Thanks for signing up!"
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end
end

The users controller allows users to be added to our application and contains two meth-
ods. The new method is where our /signup route directs to and is used to display the form to
create a new user account, which you can see in Figure 6-1.

7818.book Page 108 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 109

Figure 6-1. The default signup form from Restful Authentication

This signup form will POST to the create method in our users controller, which will create
a new user from the form submission.

Finally, we have our sessions controller (/app/controllers/sessions_controller.rb),
which handles the logging in and logging out functionality of our site:

class SessionsController < ApplicationController
 # render new.rhtml
 def new
 end

 def create
 self.current_user = User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = { :value => self.current_user.remember_token ,
 :expires => self.current_user.remember_token_expires_at }
 end
 redirect_back_or_default('/')
 flash[:notice] = "Logged in successfully"
 else
 render :action => 'new'
 end
 end

 def destroy
 self.current_user.forget_me if logged_in?
 cookies.delete :auth_token
 reset_session
 flash[:notice] = "You have been logged out."
 redirect_back_or_default('/')
 end
end

7818.book Page 109 Wednesday, October 3, 2007 8:58 PM

110 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

The sessions controller contains three methods.

• new: This method is where our /login route is pointed. It displays the basic login form
that a user would submit to log in to our application. That login form submits to the
create method in this controller.

• create: This method is used to actually log in a user by creating a new session once the
user has been authenticated.

• destroy: Finally, we have the destroy method, which removes our authenticated ses-
sion, effectively logging out the user. This is where the /logout route is pointed.

Migrations

Finally, let’s take a quick glance at the migration file that the generator created. Open
002_create_users.rb in /db/migrate:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string
 t.column :email, :string
 t.column :crypted_password, :string, :limit => 40
 t.column :salt, :string, :limit => 40
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :remember_token, :string
 t.column :remember_token_expires_at, :datetime
 end
 end

 def self.down
 drop_table "users"
 end
end

If we wanted to add any custom fields to our users model, such as capturing the first name,
last name, or address, we could add them in here. However, for our application, we’ll be just
fine with the defaults. Go ahead and close this file, and let’s run this migration to add the exer-
cises and users tables to our database:

rake db:migrate

7818.book Page 110 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 111

== CreateExercises: migrating ===
-- create_table(:exercises)
 -> 0.0780s
== CreateExercises: migrated (0.0780s) ==

== CreateUsers: migrating ==
-- create_table("users", {:force=>true})
 -> 0.0620s
== CreateUsers: migrated (0.0620s) ===

Fire up your web server (probably with the mongrel rails_start command) and load our
application (it should be available at http://localhost:3000). You should be greeted by the
login form shown in Figure 6-2.

Figure 6-2. The default login form created by Restful Authentication

Refining the Look
Let’s go ahead and create a layout template to get the visuals of our application more in line
with the original goal as we build out our functionality. You can download the style sheets and
images from the code archive. We need to create a new layout file named application.rhtml in
/app/views/layouts and place the following content in it:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title><%= @title || "Exercisr" %></title>
 <link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com ➥

/2.2.2/build/reset-fonts-grids/reset-fonts-grids.css">
 <%= stylesheet_link_tag 'styles' %>
 <%= javascript_include_tag :defaults %>
 </head>

7818.book Page 111 Wednesday, October 3, 2007 8:58 PM

112 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 <body>
 <div id="doc2" class="yui-t2">
 <div id="hd" class="box grad blue">
 <%= image_tag 'grad_black.png' %>
 <h1 id="masthead"><%= link_to "Exercisr", home_path %></h1>
 </div>

 <div id="bd">
 <div id="yui-main">
 <div class="yui-b">
 <%= yield %>
 </div>
 </div>
 <% if logged_in? %>
 <div class="yui-b sidebar">

 <%= link_to 'Exercises', exercises_path %>
 <%# link_to 'Workouts', workouts_path %>
 <%# link_to 'Goals', goals_path %>
 <%= link_to 'Logout', logout_path %>

 </div>
 <% end %>
 </div>

 <div id="ft" class="box grad blue"><%= image_tag 'grad_white.png' %></div>
 </div>
 </body>
</html>

Assuming that you still have a Mongrel instance running our application, reload the appli-
cation in a web browser, and you should be treated with something like the login form shown
in Figure 6-3, which is a little easier on the eyes (or at least good enough until we can afford to
get a decent graphic artist to design something nicer).

Figure 6-3. The login form with our layout and style sheet applied

7818.book Page 112 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 113

■Note You may have noticed that some of the links in our sidebar are placed within <%# %> tags instead
of the normal <%= %> tags. These tags essentially comment out the code contained within them so that it
isn’t executed. I did this because, otherwise, the application would break if we tried to execute those lines, as
we cheated a little by adding links to resources that we haven’t built yet. But don’t worry; we’ll be building
those resources soon.

Creating a New User
We’re at a good point to go ahead and create our first user account within the system. Before we
do that though, we’ll need to make one minor change to the way that the Restful Authentication
plug-in works. If you open the sessions controller (/app/controllers/session_controller.rb),
you’ll see that there are three methods in this controller (though only two with code). Currently,
both the create and destroy methods utilize a method from the Authenticated System library
(/lib/authenticated_system.rb) named redirect_back_or_default. This method is a great tool
for user friendliness, as it will return users to the original page that they requested once they have
logged in. So if a user bookmarked a page in our application and tried to access it while not logged
in, that user would first be directed to the login page; however, after logging in, this method
would send the user back to the originally requested page. That’s a wonderful user experience,
but to make it work, we need to change the parameter that’s being passed in this method. Cur-
rently, the method is sending users back to the login form by default (even after they’re logged
in), so let’s change that to a basic welcome page. To do that, we’ll first need to build a good start-
ing page.

Creating a Home Page
If this was an application that we wanted to push out professionally, we’d want to build a nice
interactive welcome page that provided users with sample data, tutorials, and so on. However,
since our application is really just for our own use and maybe a few friends, we can make do
with a static page that gives the user a generic welcome to the site at login. To accomplish this,
we’ll simply create an additional method and template within our sessions template. This is a
little bit of a kludge, as it’s not really the session controller’s responsibility to present a wel-
come template to the user, but considering the simple needs of our application, it’s one that we
can live with. If we were going to have more than a single informational page or wanted to add
more functionality to these pages, we would want to create a new controller to mange them.

Let’s add a new welcome method within our sessions controller (/app/controllers/
session_controller.rb):

def welcome
end

And we’ll also create the associated template (/app/views/sessions/welcome.rhtml) for
this method to display the following welcome text:

<h1>Welcome to Exercisr</h1>
<h3>A RESTful place to keep track of your workouts</h3>

7818.book Page 113 Wednesday, October 3, 2007 8:58 PM

114 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

■Note Technically, we didn’t have to create the welcome method within this controller, since there was no
code that needed to be executed within that method. However, I feel that it’s a good practice to always include
a method for any template that you create in an application to avoid confusion when looking at the code at
some point in the future.

With our welcome template defined now, let’s add a named route to our routes configu-
ration (/config/routes.rb) to access it (don’t forget that the order of routes in this file is
important):

ActionController::Routing::Routes.draw do |map|
 map.resources :exercises

 map.home '', :controller => 'sessions', :action => 'new'
 map.resources :users, :sessions
 map.welcome '/welcome', :controller => 'sessions', :action => 'welcome'
 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

Finally, with our new named route to our welcome page, we can modify the default desti-
nations of our methods in the session controller (/app/controllers/session_controller.rb)
by changing the create method to go to our new welcome view and the destroy method to
redirect back to the login page:

class SessionsController < ApplicationController

 def welcome
 end

 def new
 end

 def create
 self.current_user = User.authenticate(params[:login], params[:password])
 if logged_in?
 if params[:remember_me] == "1"
 self.current_user.remember_me
 cookies[:auth_token] = { :value => self.current_user.remember_token ,
 :expires => self.current_user.remember_token_expires_at }
 end
 redirect_back_or_default(welcome_path)
 flash[:notice] = "Logged in successfully"

7818.book Page 114 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 115

 else
 render :action => 'new'
 end
 end

 def destroy
 self.current_user.forget_me if logged_in?
 cookies.delete :auth_token
 reset_session
 flash[:notice] = "You have been logged out."
 redirect_back_or_default(login_path)
 end
end

The users controller (/app/controllers/user_controller.rb) also utilizes
redirect_back_or_default in the create method when a user first signs up, so we’ll need to
also modify its default page:

def create
 @user = User.new(params[:user])
 @user.save!
 self.current_user = @user
 redirect_back_or_default(welcome_path)
 flash[:notice] = "Thanks for signing up!"
 rescue ActiveRecord::RecordInvalid
 render :action => 'new'
 end

With our code changes in place, you can go to localhost:3000/signup and create a new
user account; afterward, you should be directed to our new welcome template, which you can
see in Figure 6-4.

Figure 6-4. Our welcome template

Completing the Exercise Resource
If we’re going to allow our friends and family to also have access to our Exercisr application,
we’ll need to provide some means to keep users’ data separated. For our exercises resource, we
only want each user to be able to view and edit his own list of exercises.

7818.book Page 115 Wednesday, October 3, 2007 8:58 PM

116 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Building the Model Associations
The first step in maintaining separation among each users list of exercises is to build the asso-
ciations between a user and an exercise. So within the user model (/app/models/user.rb) we’ll
add the following association:

has_many :exercises, :dependent => :destroy, :order => 'name asc'

Next, within our exercises model (/app/models/exercise.rb), we’ll add the reciprocal
association back to our user model:

belongs_to :user

With those associations added, we can now make a call to current_user.exercises within
our controllers to pull back a list of the currently logged in user’s exercises. However, before we
start modifying our controllers to utilize that functionality—as long as we’re already in our
exercise model—let’s go ahead and add some important validations to our model. Afterward,
our exercise model will look like this:

class Exercise < ActiveRecord::Base
 belongs_to :user
 validates_presence_of :name
 validates_uniqueness_of :name, :scope => :user_id
end

For an exercise to be valid, we’re going to require that it has a name. Secondly, we also
want to ensure that a user doesn’t submit the same exercise twice (for example, it would be
confusing to allow a user to have bench press in her list twice). That uniqueness, though, has to
be scoped to only a specific user, as we don’t want to block two different users from adding the
same exercise name.

Rescoping the Exercise Controller
While the generated code provided us with all the basic CRUD operations that we need to
interact with each of our resources, it’s doing it on a global level. What we need to do is reduce
the scope, so that each of these actions is only capable of interacting with data that’s associated
to the current user. That way, little sister Susie can’t accidentally (or maliciously) go in and
delete all of our workout results for the last few months.

You should recall that when we created our scaffolded exercises controller (/app/controllers/
exercise_controller.rb), it created a standard set of RESTful methods for us. If you look at them in
your code editor, you’ll notice that each of those methods starts by setting an @exercise instance
variable (or @exercises in the case of the index method). The problem that we have is that the
scaffolding had no idea that we wanted to limit the scope of our finds to only the exercises for a
specific user, so it’s currently set to retrieve any or all exercises regardless of the user, using code like
@exercises = Exercise.find(:all) or @exercise = Exercise.new.

7818.book Page 116 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 117

We’ll modify this to always use the currently logged in user as the scope for these requests
with the new associations that we built. To do that, we’ll first need to ensure that no one could
access this controller without first being logged in, so we’ll add a before_filter :login_required
call to the top of the controller.

Once we’ve added that filter, our next step will be to scope all of those finder methods
based on the current user. We’ll do that by changing our lookups to use our new association
to find the exercises—so @exercises = Exercise.find(:all) will become @exercises =
current_user.exercises.find(:all) and @exercise = Exercise.new will become @exercise =
current_user.exercises.build. With those changes in place, our exercises controller should
look like this:

class ExercisesController < ApplicationController
 before_filter :login_required

 # GET /exercises
 # GET /exercises.xml
 def index
 @exercises = current_user.exercises.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @exercises.to_xml }
 end
 end

 # GET /exercises/1
 # GET /exercises/1.xml
 def show
 @exercise = current_user.exercises.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @exercise.to_xml }
 end
 end

 # GET /exercises/new
 def new
 @exercise = current_user.exercises.build
 end

 # GET /exercises/1;edit
 def edit
 @exercise = current_user.exercises.find(params[:id])
 end

7818.book Page 117 Wednesday, October 3, 2007 8:58 PM

118 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 # POST /exercises
 # POST /exercises.xml
 def create
 @exercise = current_user.exercises.build(params[:exercise])

 respond_to do |format|
 if @exercise.save
 flash[:notice] = 'Exercise was successfully created.'
 format.html { redirect_to exercises_url}
 format.xml { head :created, :location => exercise_url(@exercise) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @exercise.errors.to_xml }
 end
 end
 end

 # PUT /exercises/1
 # PUT /exercises/1.xml
 def update
 @exercise = current_user.exercises.find(params[:id])

 respond_to do |format|
 if @exercise.update_attributes(params[:exercise])
 flash[:notice] = 'Exercise was successfully updated.'
 format.html { redirect_to exercises_url }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @exercise.errors.to_xml }
 end
 end
 end

 # DELETE /exercises/1
 # DELETE /exercises/1.xml
 def destroy
 @exercise = current_user.exercises.find(params[:id])
 @exercise.destroy

 respond_to do |format|
 format.html { redirect_to exercises_url }
 format.xml { head :ok }
 end
 end

end

7818.book Page 118 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 119

The Exercise Views
With our exercises controller finished, it’s merely a matter of making a few modifications to the
templates that were generated by the resource scaffolding to finish out our exercise resource.

One of the things that I like to do to keep my templates clean and DRY is to move the forms
that are used to create and edit a resource into a single, separate partial, so let’s create a new
file in /app/views/exercises named _form.rhtml and place the following code into it:

<p>
 <label for="exercise_name">Name</label>

 <%= f.text_field :name %>
</p>
<p>
 <%= submit_tag "Save" %>
</p>

With our form partial built, we can now rewrite several of our templates to utilize it; for
example, the new template (/app/views/exercises/new.rhtml) can be used to create a new
exercise or to display errors when creating a new exercise fails validation:

<h1>New exercise</h1>

<%= error_messages_for :exercise %>

<% form_for(:exercise, :url => exercises_path) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', exercises_path %>

For editing the name of an exercise once it’s been added to the system, we’ll modify the
edit template found in /app/views/exercises/edit.rhtml to look like this:

<h1>Editing exercise</h1>

<%= error_messages_for :exercise %>

<% form_for(:exercise, :url => exercise_path(@exercise),
 :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Show', exercise_path(@exercise) %> |
<%= link_to 'Back', exercises_path %>

We’ll leave the show template (/app/views/exercises/show.rhtml) as it for now, but in the
next chapter, we’ll look at ways of adding additional value to that view when we add graphing
capabilities to our application.

7818.book Page 119 Wednesday, October 3, 2007 8:58 PM

120 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

That just leaves us with the task of building our index template (/app/views/exercises/
index.rhtml), which will be the main page for our users to interact with the exercises. First,
we’ll want to add some introductory text:

<h1>Exercises</h1>
<p>On this page you can create and manage the exercises that you use in your ➥

workouts.</p>
<p>You can also view reports on your progress for each exercises</p>

After our introductory text, we’re going to want to iterate over the user’s list of exercises
(stored in the @exercises instance variable). We could write that loop directly in our index tem-
plate with something like this:

<% for exercise in @exercises %>
 <tr><td><%=h exercise.name %></td></tr>
<% end %>

But a cleaner way to do it is to move the row content into a partial and pass that partial the
collection. Let’s create a new partial named _exercise.rhtml in /app/views/exercises, and
we’ll place the content that we want to display for every exercise in it. We’ll want to display the
exercise name and links to the view the exercise (show template), edit the exercise (edit tem-
plate) and a link that will allow a user to delete the exercise from their list:

<tr>
 <td><%=h exercise.name %></td>
 <td><%=link_to image_tag("display.gif", {:title => "View Exercise Details"}),
 exercise_path(exercise) %></td>
 <td><%=link_to image_tag("edit_photo.gif", {:title => "Edit Exercise"}),
 edit_exercise_path(exercise) %></td>
 <td><%= link_to image_tag("delete_photo.gif", {:title => "Delete Exercise"}),
 :url => exercise_path(exercise),
 :confirm => 'Are you sure?',
 :method => :delete %></td>
 </tr>

Within our index template, we can render this partial for every exercise in our @exercises
instance variable by calling it like this:

<%= render :partial => 'exercise', :collection => @exercises %>

Finally, to make things easier for the end user, we’ll also include a form to create exer-
cises on the index page, so users can instantly add a new exercise without having to go to yet
another page:

<div id="add_exercise">
 <% form_for(:exercise, :url => exercises_path,
 :html => {:id => 'new_exercise'}) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
 <% end %>
</div>

7818.book Page 120 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 121

Once we put all of that together, we’ll have an index template that looks like this:

<h1>Exercises</h1>
<p>On this page you can create and manage the exercises that you use in ➥

your workouts.</p>
<p>You can also view reports on your progress for each exercises</p>

<table id="exercise_details">
 <tr><th>Name</th></tr>
 <%= render :partial => 'exercise', :collection => @exercises %>
</table>

<h1>Add a New Exercise</h1>

<div id="add_exercise">
 <% form_for(:exercise, :url => exercises_path,
 :html => {:id => 'new_exercise'}) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
 <% end %>
</div>

The template renders in a browser as shown in Figure 6-5.

Figure 6-5. The main index page for our exercises resource

Now that we have an exercise resource, users need to build a way to record the fact that
they worked out on a specific day and capture which exercises they did in each workout, so let’s
build those processes out now.

The Workout Resource
The next resource we’ll build will handle capturing the fact that a user worked out on a specific
day. To keep things simple, we’ll call this new resource a workout resource. All we’ll need to

7818.book Page 121 Wednesday, October 3, 2007 8:58 PM

122 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

capture at this level is simply the date of the workout and an optional text description of what
type of workout it was (e.g, upper body, abdominals, or arms). We’ll create this resource like this:

 ruby script/generate scaffold_resource Workout date:date label:string ➥

 user_id:integer

output omitted for brevity

The first thing we need to do with our new scaffold is to remove the automatically gener-
ated layout (workout.rhtml) from /app/views/layouts so that it won’t override our application
layout. Once the layout is removed, we’ll run our new migration to add the workouts table to
the database:

rake db:migrate

== CreateWorkouts: migrating ====================================
-- create_table(:workouts)
 -> 0.0780s
== CreateWorkouts: migrated (0.0930s) ==============================

The Workout Model and Associations
With the table added to the database, let’s round out the models and associations. Since we
built the workout model to capture the user_id, we’ll add in a belongs_to :user and basic val-
idation to ensure that we receive a date. Edit our workout model (/app/models/workout.rb) to
look like this:

class Workout < ActiveRecord::Base
 belongs_to :user
 validates_presence_of :date
end

We’ll also build out the reciprocal association from the user model (/app/models/user.rb)
to add in a has_many :workouts relationship. We’ll also pass that association a :dependent =>
:destroy option to ensure that Rails will delete all associated workout objects in the event that
we ever delete a user (so we can avoid leaving orphaned data in the database):

has_many :workouts, :dependent => :destroy

7818.book Page 122 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 123

The Workout Controller
The scaffolding added a new route to our routes file as map.resources :workouts, which we’ll
leave as is for now, so we can now turn our attention to modifying our workout controller. For
the most part, we’ll be able to keep the scaffold-generated code; we merely need to add in the
before_filter :login_required call to limit access to the page, and by making the same types
of modifications that we did in our exercises controller, we can scope the results based on the
currently logged in user:

class WorkoutsController < ApplicationController
 before_filter :login_required

 # GET /workouts
 # GET /workouts.xml
 def index
 @workouts = current_user.workouts.find(:all, :order => 'date desc',
 :limit => 10)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @workouts.to_xml }
 end
 end

 # GET /workouts/1
 # GET /workouts/1.xml
 def show
 @workout = current_user.workouts.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @workout.to_xml }
 end
 end

 # GET /workouts/new
 def new
 @workout = current_user.workouts.build
 end

7818.book Page 123 Wednesday, October 3, 2007 8:58 PM

124 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 # GET /workouts/1;edit
 def edit
 @workout = current_user.workouts.find(params[:id])
 end

 # POST /workouts
 # POST /workouts.xml
 def create
 @workout = current_user.workouts.build(params[:workout])

 respond_to do |format|
 if @workout.save
 flash[:notice] = 'Workout was successfully created.'
 format.html { redirect_to workout_url(@workout) }
 format.xml { head :created, :location => workout_url(@workout) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @workout.errors.to_xml }
 end
 end
 end

 # PUT /workouts/1
 # PUT /workouts/1.xml
 def update
 @workout = current_user.workouts.find(params[:id])

 respond_to do |format|
 if @workout.update_attributes(params[:workout])
 flash[:notice] = 'Workout was successfully updated.'
 format.html { redirect_to workout_url(@workout) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @workout.errors.to_xml }
 end
 end
 end

 # DELETE /workouts/1
 # DELETE /workouts/1.xml
 def destroy
 @workout = current_user.workouts.find(params[:id])
 @workout.destroy

7818.book Page 124 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 125

 respond_to do |format|
 format.html { redirect_to workouts_url }
 format.xml { head :ok }
 end
 end
end

Modifying the Views
Our modifications to the workout views will also be very similar to the modifications we did for
exercises. We’ll move the forms for creating and editing a workout into a partial, which we’ll also
include on the index page. For iterating over our list of workouts, we’ll also use another partial.

So our index template (/app/views/workouts/index.rhtml) will look like this:

<h1>Listing workouts</h1>

<table>
 <tr><th>Date</th><th>Label</th></tr>
 <%= render :partial => 'workout', :collection => @workouts %>
</table>

<h1>Add a New Workout</h1>
<div id="add_workout">
 <% form_for(:workout, :url => workouts_path,
 :html => {:id => 'new_workout'}) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
 <% end %>
</div>

Of course, before this template will work, we’ll need to build those workout and form par-
tials, so let’s build those now. The first one that we’ll look at is the workout partial, which we’ll
use to iterate over each workout in the @workouts instance variable.

Create a new file in /app/views/workouts named _workout.rhtml and place the following
content in it to display the basic information for the workout and provide links to the show,
edit, and delete methods:

<tr>
 <td><%= workout.date.to_s(:long) %></td>
 <td><%= workout.label %></td>
 <td>
 <%=link_to image_tag("display.gif", {:title => "View Workout Details"}),
 workout_path(workout) %>
 </td>

7818.book Page 125 Wednesday, October 3, 2007 8:58 PM

126 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 <td>
 <%=link_to image_tag("edit_photo.gif", {:title => "Edit Workout Date/Label"}),
 edit_workout_path(workout) %>
 </td>
 <td>
 <%= link_to image_tag("delete_photo.gif", {:title => "Delete Workout"}),
 workout_path(workout),
 :confirm => 'Are you sure?',
 :method => :delete %>
 </td>
</tr>

The second partial that we’re including on the index page is the form that we use to create
a new workout. Create a new file in /app/views/workouts/ named _form.rhtml and place the
following form content in it:

<p>
 Date

 <%= f.date_select :date %>
</p>

<p>
 Label

 <%= f.text_field :label %>
</p>

<p>
 <%= submit_tag "Save" %>
</p>

Now that we have the workout form partial created, we can also utilize it in our edit and
create templates in /app/views/workouts. So our show.rhtml template will look like this:

<h1>Editing workout</h1>
<%= error_messages_for :workout %>

<% form_for(:workout, :url => workout_path(@workout),
 :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Show', workout_path(@workout) %> |
<%= link_to 'Back', workouts_path %>

7818.book Page 126 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 127

And our new.rhtml template will look like this:

<h1>New workout</h1>
<%= error_messages_for :workout %>

<% form_for(:workout, :url => workouts_path) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', workouts_path %>

Finally, now that we have our workout resource built, we can go back to our application
layout (/app/views/layouts/application.rhtml) and uncomment the line from the sidebar
area that will display the link to the workouts index page:

<% if logged_in? %>
 <div class="yui-b sidebar">

 <%= link_to 'Exercises', exercises_path %>
 <%= link_to 'Workouts', workouts_path %>
 <%# link_to 'Goals', goals_path %>
 <%= link_to 'Logout', logout_path %>

 </div>
<% end %>

Capturing Our Workouts
Now that we’ve built out the process for capturing when a user works out, we need to turn our
attention to capturing what the user did at each workout. So after creating a workout, we will
need to collect the following information:

• The exercises performed

• The number of sets of each exercise

• The weight or resistance used in each set

• The number of repetitions (i.e., how many times the user was able to perform the exer-
cise) in each set

With those goals clearly in mind, determining our database structure should be fairly obvi-
ous. Each row of our table will represent one set of an exercise and capture the workout ID as a
foreign key (so it can be associated back to the workout), the exercise ID as a foreign key (to
associate it back to an exercise from our exercises resource), the amount of resistance used for
the set, and the number of repetitions performed during that set.

7818.book Page 127 Wednesday, October 3, 2007 8:58 PM

128 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

So now all we need to do is determine a good name for this resource. It would be good to
name this resource “exercises,” but we’ve already used that name to maintain our master list
of possible exercises. Another good name might be “sets,” since each row in the database
should match to a single set that we performed. Unfortunately, that would be a path fraught
with pain as the word “set” is a reserved word within Ruby. That eliminates our two most obvi-
ous names for this resource. After much mental strain, I came up with the name of “activities,”
as in each workout we did many activities. With our name and our database structure ready,
we’ll create the resource like this:

ruby script/generate scaffold_resource Activity workout_id:integer ➥

exercise_id:integer resistance:integer repetitions:integer

output omitted for brevity

Once again, we’ll need to delete the scaffold-generated layout (/app/views/layouts/
activity.rhtml) and run our new migration to add the table to our database:

rake db:migrate

== CreateActivities: migrating ========================
-- create_table(:activities)
 -> 0.0780s
== CreateActivities: migrated (0.0780s) ==================

Building Our Activities Model and Associations
The activity model contains foreign keys to our exercise and workout models, so we’ll need to
include a pair of belongs_to methods in our model, and we’ll want to have some basic valida-
tions. Our activity model (/app/models/activity.rb) should look like this:

class Activity < ActiveRecord::Base
 belongs_to :exercise
 belongs_to :workout
 validates_presence_of :resistance, :repetitions
end

We can also modify our workouts model (/app/models/workout.rb) to both recognize that
a workout has many activities and to serve as a :through bridge to exercises:

class Workout < ActiveRecord::Base
 belongs_to :user
 has_many :activities, :dependent => :destroy
 has_many :exercises, :through => :activities
 validates_presence_of :date
end

7818.book Page 128 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 129

With those associations we can now pull down the lists of associated activities or exercises
for a given workout like this:

workout = Workout.find 5

=> #<Workout:0x14b709c @attributes={"date"=>"2007-01-17", "id"=>"5", ➥

"user_id"=>"2", "label"=>"Back / Biceps"}

workout.activities

=> [#<Activity:0x137db04 @attributes={"exercise_id"=>"9", "id"=>"10", ➥

"repetitions"=>"12", "workout_id"=>"5", "resistance"=>"150"}, ➥

#<Activity:0x137d758 @attributes={"exercise_id"=>"9", "id"=>"11", ➥

"repetitions"=>"12", "workout_id"=>"5", "resistance"=>"175"}, ➥

#<Activity:0x137d730 @attributes={"exercise_id"=>"9", "id"=>"12", ➥

"repetitions"=>"12", "workout_id"=>"5", "resistance"=>"180"}]

workout.exercises

=> [#<Exercise:0x27615a0 @attributes={"name"=>"Lat Pulldowns", ➥

"exercise_type"=>nil, "id"=>"9", "user_id"=>"2"}, #<Exercise:0x2761578 ➥

@attributes={"name"=>"Lat Pulldowns", "exercise_type"=>nil, "id"=>"9", ➥

"user_id"=>"2"}, #<Exercise:0x2761550 @attributes={"name"=>"Lat Pulldowns", ➥

 "exercise_type"=>nil, "id"=>"9", "user_id"=>"2"}]

We can also add an association back to our activities model from within the user model
(/app/models/user.rb) by passing through the workouts model:

require 'digest/sha1'
class User < ActiveRecord::Base
 # Virtual attribute for the unencrypted password
 attr_accessor :password

 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation, :if => :password_required?
 validates_length_of :password, :within => 4..40, :if => :password_required?
 validates_confirmation_of :password, :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email, :case_sensitive => false
 before_save :encrypt_password

7818.book Page 129 Wednesday, October 3, 2007 8:58 PM

130 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 has_many :workouts, :dependent => :destroy
 has_many :exercises, :dependent => :destroy, :order => 'name asc'
 has_many :activities, :through => :workouts
 (….remainder of User model ommitted for brevity)

Modifying the Activities Routes
Our activities resource is going to require some custom routing rules, though, so edit /config/
routes.rb to look like this:

ActionController::Routing::Routes.draw do |map|

 map.resources :workouts do |workout|
 workout.resources :activities
 end

 map.resources :exercises

 map.home '', :controller => 'sessions', :action => 'new'
 map.resources :users, :sessions
 map.welcome '/welcome', :controller => 'sessions', :action => 'welcome'
 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

We’ve modified our workouts and exercises resources to place activities as a nested
resource underneath workouts. This is a way of declaring that a particular resource is only valid
within the subcontext of another resource. Let’s use an analogy of parents and children to
hopefully make this clearer.

In a RESTful application, if I wanted to read a list of all parents I could simply issue a GET
request to /parents. While if I wanted to see the details on a specific parent, I might issue a
GET request to /parents/1.

Similarly, if I wanted to see a list of all children, I could use a GET /children request, and to
view the details of a specific child, I would use GET /children/1.

The problem comes in when it doesn’t really make sense for me to access the list of chil-
dren by themselves. What if I don’t have any use for the children outside of their relation to
their parents? In that case, what I need is the ability to make my RESTful routing calls on a child
resource in relation to their parent, and that’s exactly what nested routing provides us.

When we declare children as a nested resource underneath parents, we can avoid having
to pass additional parameters to our GET /children request to specify the specific parent to
whom we want to limit our request. We can now send a GET request to /parents/1/children to
see a list of all the children that belong to a particular parent or a GET request to /parents/1/
children/2 to see the details on a specific child.

Some other ideas of where a nested route might be used can be found in Table 6-4.

7818.book Page 130 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 131

Table 6-4. Nested Route Examples

Obviously, the resource routing capabilities of Rails are pretty exciting stuff, and the ability
to easily nest resources like this is extra cool. In our application, we could make a GET request
to /workout/1 to view the information on a specific workout and to pull in a list of all the exer-
cises that in that workout would be a simple GET request to /workout/1/activities.

Modifying the Activities Controller
As usual, the first thing we’ll need to add is a before_filter :login_required, so we can ensure
that only a user who’s logged in is able to access the methods in this controller. However, after
that, those powerful nested resources changes do come with a small cost for us, as using them
means we’ll have to make a few more changes to the activities controller (/app/controllers/
activities_controller.rb) than we have in previous controllers, primarily in terms of how we
scope our finds. In previous controllers, we scoped all of our finds based on the currently
logged in user, but in a nested resource, we’ll also need to look up the parent resource.

In the case of an activity, we also will want to look up the associated workout to use in scop-
ing our activities. We’ll do this by adding a new before_filter and a new protected method to
our activities controller. At the top of our controller, we’ll add a before_filter like this:

before_filter :find_workout

And down at the bottom, we’ll add a protected method named find_workout, which will
look up the workout object and place it in an @workout instance variable:

protected
def find_workout
 @workout = current_user.workouts.find(params[:workout_id])
end

Now that we have the current user’s workout available in the @workout instance variable,
we can use it in all of our finds within our seven RESTful methods in the activities controller. So
our activities controller will look like this:

class ActivitiesController < ApplicationController
 before_filter :login_required
 before_filter :find_workout

Parent Child

Goal Results

Forum Posts

Article Comments

Book Chapters

State Cities

7818.book Page 131 Wednesday, October 3, 2007 8:58 PM

132 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 # GET /activities
 # GET /activities.xml
 def index
 @activities = @workout.activities.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @activities.to_xml }
 end
 end

 # GET /activities/1
 # GET /activities/1.xml
 def show
 @activity = @workout.activities.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @activity.to_xml }
 end
 end

 # GET /activities/new
 def new
 @activity = @workout.activities.build
 end

 # GET /activities/1;edit
 def edit
 @activity = @workout.activities.find(params[:id])
 end

 # POST /activities
 # POST /activities.xml
 def create
 @activity = @workout.activities.build(params[:activity])

 respond_to do |format|
 if @activity.save
 flash[:notice] = 'Activity was successfully created.'
 format.html { redirect_to workout_url(@workout) }
 format.xml { head :created, :location => activity_url(@workout, @activity)}

7818.book Page 132 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 133

 else
 format.html { render :action => "new" }
 format.xml { render :xml => @activity.errors.to_xml }
 end
 end
 end

 # PUT /activities/1
 # PUT /activities/1.xml
 def update
 @activity = @workout.activities.find(params[:id])

 respond_to do |format|
 if @activity.update_attributes(params[:activity])
 flash[:notice] = 'Activity was successfully updated.'
 format.html { redirect_to workout_url(@workout) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @activity.errors.to_xml }
 end
 end
 end

 # DELETE /activities/1
 # DELETE /activities/1.xml
 def destroy
 @activity = @workout.activities.find(params[:id])
 @activity.destroy

 respond_to do |format|
 format.html { redirect_to activities_url }
 format.xml { head :ok }
 end
 end

 protected
 def find_workout
 @workout = current_user.workouts.find(params[:workout_id])
 end
end

7818.book Page 133 Wednesday, October 3, 2007 8:58 PM

134 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Modifying Activities View Templates
We will modify the view templates for our activities following the pattern we established with
previous resources—with one important difference. Recall that because we’ve established
activities as a nested resource, we’ve essentially said that activities are only valid in the context
of their relationship to a workout. This means that whenever we link to an activity resource, we
must always provide the workout_id as well. So we need to pass in the @workout instance vari-
able as an additional parameter to all of our activities named route methods, such as

new_activity_path(@workout)
edit_activity_path(@workout, @activity)

With that knowledge, we can go ahead and modify our view templates for activities.
We’ll start out by building our two standard partials, the first being the activity partial that
will be used to iterate over our list of activities. Create a new file named _activity.rhtml in
/app/views/activities with the following links in it:

<tr>
 <td><%= activity.exercise.name %></td>
 <td><%= activity.repetitions %></td>
 <td><%= activity.resistance %></td>
 <td>
 <%=link_to image_tag("edit_photo.gif", {:title => "Edit Exercise"}),
 edit_activity_path(@workout, activity) %>
 </td>
 <td>
 <%= link_to image_tag("delete_photo.gif", {:title => "Delete Exercise"}),
 activity_path(@workout, activity),
 :confirm => 'Are you sure?',
 :method => :delete %>
 </td>
</tr>

Next, we’ll create the form partial that we’ll use to create a new activity. Create a new file
named _form.rhtml in /app/views/activities with the following content:

<p>
 <%= f.collection_select :exercise_id, current_user.exercises.find(:all), :id,
 :name, :prompt => "Select an Exercise" %>
</p>
<p>One set of <%= f.text_field :repetitions %> with ➥

 <%= f.text_field :resistance %> pounds of resistance</p>
<p>
 <%= submit_tag "Save" %>
</p>

7818.book Page 134 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 135

We’ll modify the edit template (/app/views/activities/edit.rhtml) to utilize our form
partial like this:

<h1>Editing activity</h1>
<%= error_messages_for :activity %>

<% form_for(:activity, :url => activity_path(@workout, @activity),
 :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', workout_path(@workout) %>

We’ll also modify the index method for activities (/app/views/activities/index.rhtml)
like this:

<h1>Listing activities</h1>

<table>
 <tr><th>Exercise</th><th>Reps</th><th>Resistance</th></tr>
 <%= render :partial => 'activity', :collection => @activities %>
</table>

<%= link_to 'New activity', new_activity_path(@workout) %>

We’ll modify the new template (/app/views/activities/new.rhtml) like this:

<h1>New activity</h1>
<%= error_messages_for :activity %>

<% form_for(:activity, :url => activities_path(@workout)) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', workout_path(@workout) %>

Finally, we’ll change the show template (/app/views/activities/show.rhtml) to look
like this:

<p>
 Exercise:
 <%=h @activity.exercise.name %>
</p>

7818.book Page 135 Wednesday, October 3, 2007 8:58 PM

136 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

<p>
 Resistance:
 <%=h @activity.resistance %>
</p>

<p>
 Repetitions:
 <%=h @activity.repetitions %>
</p>

<%= link_to 'Edit', edit_activity_path(@workout, @activity) %> |
<%= link_to 'Back', activities_path(@workout) %>

Modifying the Show Method for a Workout
Even though we set up all the templates for the activities resource, in reality, we don’t want a
user to have to navigate to those pages—especially since we’ve nested activities underneath
workouts. What we’ll do instead is modify the show template in our workouts resource to serve
as the primary interface for an end user to add activities to a workout.

Our first step in doing that is to modify the show method in our workouts controller
(/app/controllers/workouts_controller.rb) to also generate an @activities instance vari-
able containing a list of that workout’s activities. To avoid doing N+1 queries to pull in the
associated exercise name for each activity, we’ll load the associated exercise object for each
activity using :include => :exercise (you can see the result of this template in Figure 6-6):

def show
 @workout = current_user.workouts.find(params[:id])
 @activities = @workout.activities.find(:all, :include => :exercise)

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @workout.to_xml }
 end
 end

With the @activities instance variable set, we modify the show template for our workouts
(/app/views/workouts/show.rhtml) to render our activity partial to show the exercises that we
performed in that workout and the activity form partial to be able to add a new exercise activity
to the workout:

<h1><%= h @workout.label %> Workout on <%= h @workout.date.to_s(:long) %> </h1>
<table>
 <tr><th>Exercise</th><th>Reps</th><th>Resistance</th></tr>
 <%= render :partial => 'activities/activity', :collection => @activities %>
</table>

7818.book Page 136 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 137

<h3>Add Exercise to this Workout</h3>
<% form_for(:activity, :url => activities_path(@workout)) do |f| %>
 <%= render :partial => 'activities/form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', workouts_path %>

Figure 6-6. Adding Exercises to a Workout

Improving the Add Activity Form
The one thing that I really don’t like about the current process is that if I realize that I’m missing
an exercise in my drop-down list while I’m adding activities to a workout, my only option is to
leave the workouts pages and go add my missing exercise back in the exercises section. Now,
granted, the more I use the application, the less likely that situation will become, but it is still
an irritation that I’d like to avoid if I can.

Fortunately, it is one we can solve with a fairly minor amount of additional code. To start with,
let’s add a new form field to our activity form partial (/app/views/activities/_form.rhtml) that can
be used to capture a new exercise name:

<p>
 <%= f.collection_select :exercise_id, current_user.exercises.find(:all), :id,
 :name, :prompt => "Select an Exercise" %>
 or add a new exercise:
 <%= f.text_field :new_exercise_name %>
</p>
<p>One set of <%= f.text_field :repetitions %> with ➥

 <%= f.text_field :resistance %> pounds of resistance</p>
<p>
 <%= submit_tag "Save" %>
</p>

7818.book Page 137 Wednesday, October 3, 2007 8:58 PM

138 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Because the fields in this form are supposed to tie back to attributes in an activity model, this
would currently generate an error if we tried to render it, since there is no corresponding field in the
activities table named new_exercise_name. What we need to do is create new_exercise_name as a vir-
tual attribute by modifying our activity model (/app/models/activity.rb) with the following line:

attr_accessor :new_exercise_name

Now that we have a way to capture the submitted value in memory, we can simply create
a new method in our activity model named create_exercise_if_submitted. In this method,
we’ll call the create_exercise method (this method is added to our model by our belongs_to
association) from a before_save callback. We’ll pass it the appropriate user.id and the
new_exercise_name virtual attribute to create a new exercise object directly from the activity
model. So our activity model will look like this:

class Activity < ActiveRecord::Base
 belongs_to :exercise
 belongs_to :workout
 validates_presence_of :resistance, :repetitions

 attr_accessor :new_exercise_name
 before_save :create_exercise_if_submitted

 def create_exercise_if_submitted
 create_exercise(:user_id => workout.user_id, :name => new_exercise_name) ➥

unless new_exercise_name.blank?
 end
end

Our new workout view will look like the one shown in Figure 6-7 and will allow a user to
either select an exercise from the drop-down list or create a new exercise directly.

Figure 6-7. Allowing users to create a new exercise while adding an activity

7818.book Page 138 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 139

Tracking Fitness Goals
The initial planning for this project also included supporting the ability to track general health
goals such as weight, blood sugar, and so on. To accomplish this, we’ll add yet another
resource that we’ll name “goals.” Attributes for a goals resource would be the name of the goal
that we’re tracking and the target goal that we’re trying to achieve, and we’ll give ourselves a lit-
tle cheat by storing the last result for this goal in the object as well (that way, we can very simply
do things like calculate the difference between where we are currently and how much further
until we reach our goal). We’ll create our goal resource with this command:

ruby script/generate scaffold_resource Goal name:string value:decimal ➥

last:decimal user_id:integer

output omitted for brevity

Finally, we need a way to capture our individual results toward reaching our goals. For
example, assuming that our goal is tracking our current weight, we’d want a place to capture
weekly weigh-in results. We’ll name this resource “results.” The attributes for a results object
would be to know which goal it’s associated with, the date of this result, and the value that
we’re recording. We’ll create this resource with this command:

ruby script/generate scaffold_resource Result goal_id:integer ➥

date:date value:decimal

output omitted for brevity

And with those few commands, we’ve just generated a significant portion of our applica-
tion code to support tracking fitness goals. We can now go manipulate and massage the
generated code into working the way that we want it to work. Before we do that though, let’s
run the migration files that our scaffolding generated to create our database tables.

rake db:migrate

== CreateGoals: migrating ===================================
-- create_table(:goals)
 -> 0.0780s
== CreateGoals: migrated (0.0780s) =============================
== CreateResults: migrating ==================================
-- create_table(:results)
 -> 0.0780s
== CreateResults: migrated (0.0780s) ============================

7818.book Page 139 Wednesday, October 3, 2007 8:58 PM

140 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

With our database prepped for use, go ahead and remove the scaffold-generated
goals.rhtml and results.rhtml layout files from /app/views/layouts/, and then we can
direct our attention to configuring our models with our necessary associations and valida-
tions for our application.

Modifying Our Models
Our goals model (/app/models/goal.rb) should stay fairly simple for now; we’ll associate it with
our user model with a belongs_to association, add a has_many relationship to results, and add
in some basic validations:

class Goal < ActiveRecord::Base
 belongs_to :user
 has_many :results, :dependent => :destroy
 validates_presence_of :name, :value
end

Next, we’ll modify our results model (/app/models/result.rb) to include a belongs_to
association with our goal, and we’ll add in a basic validates_presence_of requirement for the
date and value elements:

class Result < ActiveRecord::Base
 belongs_to :goal
 validates_presence_of :date, :value
end

Finally—we need to configure our user model (/app/models/user.rb) with an association
back to the Goal mode:

has_many:goals

Setting Up a Nested Route
Open /config/routes.rb, and we’ll modify our goals and results resources as a nested
resource. Afterward, your routes.rb configuration file should look exactly like this:

ActionController::Routing::Routes.draw do |map|
 map.resources :goals do |goal|
 goal.resources :results
 end

 map.resources :workouts do |workout|
 workout.resources :activities
 end

 map.resources :exercises

 map.home '', :controller => 'sessions', :action => 'new'
 map.resources :users, :sessions
 map.welcome '/welcome', :controller => 'sessions', :action => 'welcome'

7818.book Page 140 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 141

 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

Configuring Our Controllers
The modifications that we need to make to the goals controller should be old hat to you by
now. First, we’ll need to add the login_required before filter, so we can control access to the
methods. Second, we’ll need to limit the scope all of our finds to only the currently logged in
users goals. Finally, because we’re going to display goal results on the show template, we need
to generate a list of results in an @results instance variable within the show method.

Edit /app/controllers/goals_controllers.rb to look like this:

class GoalsController < ApplicationController
 before_filter :login_required

 # GET /goals
 # GET /goals.xml
 def index
 @goals = current_user.goals.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @goals.to_xml }
 end
 end

 # GET /goals/1
 # GET /goals/1.xml
 def show
 @goal = current_user.goals.find(params[:id])
 @results = @goal.results.find(:all, :order => 'date desc')

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @goal.to_xml }
 end
 end

 # GET /goals/new
 def new
 @goal = current_user.goals.build
 end

 # GET /goals/1;edit
 def edit
 @goal = current_user.goals.find(params[:id])

7818.book Page 141 Wednesday, October 3, 2007 8:58 PM

142 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 end

 # POST /goals
 # POST /goals.xml
 def create
 @goal = current_user.goals.build(params[:goal])

 respond_to do |format|
 if @goal.save
 flash[:notice] = 'Goal was successfully created.'
 format.html { redirect_to goal_url(@goal) }
 format.xml { head :created, :location => goal_url(@goal) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @goal.errors.to_xml }
 end
 end
 end

 # PUT /goals/1
 # PUT /goals/1.xml
 def update
 @goal = current_user.goals.find(params[:id])

 respond_to do |format|
 if @goal.update_attributes(params[:goal])
 flash[:notice] = 'Goal was successfully updated.'
 format.html { redirect_to goal_url(@goal) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @goal.errors.to_xml }
 end
 end
 end

 # DELETE /goals/1
 # DELETE /goals/1.xml
 def destroy
 @goal = current_user.goals.find(params[:id])
 @goal.destroy

 respond_to do |format|
 format.html { redirect_to goals_url }
 format.xml { head :ok }
 end

7818.book Page 142 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 143

 end
end

Editing the Results Controller

Next, we’ll need to modify the results controller (/app/controllers/results_controller.rb);
because it’s a nested resource, it will require editing in a similar fashion to the activities
controller.

We’ll start out by limiting access with the login_required before filter and then make
another before_filter call to populate the @goals instance variable with the parent goal for
these results. We’ll then use that @goals variable to scope our finders within the standard
RESTful methods. Finally, we’ll need to modify the redirect destinations for the create, update,
and destroy methods to send the user back to the goal detail page.

In the end, your results_controller.rb should look like this:

class ResultsController < ApplicationController
 before_filter :login_required
 before_filter :find_goal

 # GET /results
 # GET /results.xml
 def index
 @results = @goal.results.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @results.to_xml }
 end
 end

 # GET /results/1
 # GET /results/1.xml
 def show
 @result = @goal.results.find(params[:id])

 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @result.to_xml }
 end
 end

 # GET /results/new
 def new
 @result = @goal.results.build
 end

7818.book Page 143 Wednesday, October 3, 2007 8:58 PM

144 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

 # GET /results/1;edit
 def edit
 @result = @goal.results.find(params[:id])
 end

 # POST /results
 # POST /results.xml
 def create
 @result = @goal.results.build(params[:result])

 respond_to do |format|
 if @result.save
 flash[:notice] = 'Result was successfully created.'
 format.html { redirect_to goal_url(@goal) }
 format.xml { head :created, :location => result_url(@result) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @result.errors.to_xml }
 end
 end
 end

 # PUT /results/1
 # PUT /results/1.xml
 def update
 @result = @goal.results.find(params[:id])

 respond_to do |format|
 if @result.update_attributes(params[:result])
 flash[:notice] = 'Result was successfully updated.'
 format.html { redirect_to goal_url(@goal) }
 format.xml { head :ok }
 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @result.errors.to_xml }
 end
 end
 end

 # DELETE /results/1
 # DELETE /results/1.xml
 def destroy
 @result = @goal.results.find(params[:id])
 @result.destroy

7818.book Page 144 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 145

 respond_to do |format|
 format.html { redirect_to goal_url(@goal) }
 format.xml { head :ok }
 end
 end

 protected
 def find_goal
 @goal = current_user.goals.find(params[:goal_id])
 end
end

Configuring Our Views
The first thing we’ll need to do is open our layout (/app/views/layouts/application.rhtml)
and uncomment the line in the sidebar div that provides a link to our goals index page:

<div class="yui-b sidebar">

 <%= link_to 'Exercises', exercises_path %>
 <%= link_to 'Workouts', workouts_path %>
 <%= link_to 'Goals', goals_path %>
 <%= link_to 'Logout', logout_path %>

</div>

The Goals Views

The modifications we made to our goals templates will be nearly identical to the ones that we made
to the workout templates. So let’s jump right in by extracting out a partial named _form.rhtml for
the new and edit pages. Create _form.rhtml in /app/views/goals as follows:

<p><label for="goal_name">Name of the Goal:</label>

<%= f.text_field :name %></p>

<p><label for="goal_value">Goal to Reach:</label>

<%= f.text_field :value %></p>

<p><label for="goal_last">Current Result:</label>

<%= f.text_field :last %></p>

<p><%= submit_tag "Save" %></p>

Now, we’ll modify the edit and new templates to use our new partial. We’ll alter /app/
views/goals/edit.rhtml as follows:

<h1>Editing goal</h1>

7818.book Page 145 Wednesday, October 3, 2007 8:58 PM

146 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

<%= error_messages_for :goal %>

<% form_for(:goal, :url => goal_path(@goal), :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Show', goal_path(@goal) %> |
<%= link_to 'Back', goals_path %>

We’ll alter /app/view/goals/new.rhtml in a similar fashion:

<h1>New goal</h1>

<%= error_messages_for :goal %>

<% form_for(:goal, :url => goals_path) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', goals_path %>

Once again, we’ll extract out the iteration of our goals from the index page to a partial
named _goal.rhtml that we’ll use to render the collection. So create a file named _goal.rhtml
in /app/views/goals with the following content in it:

<tr>
 <td><%=h goal.name %></td>
 <td> </td>
 <td>
 <%= link_to image_tag("display.gif", {:title => "View Report"}),
 goal_path(goal) %>
 </td>
 <td>
 <%=link_to image_tag("edit_photo.gif", {:title => "Edit Goal Details"}),
 edit_goal_path(goal) %>
 </td>
 <td>
 <%= link_to image_tag("delete_photo.gif", {:title => "Delete Goal"}),
 goal_path(goal),
 :confirm => 'Are you sure?',
 :method => :delete %>
 </td>
</tr>

7818.book Page 146 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 147

Finally, we’ll edit the index page (/app/views/goals/index.rhtml) to utilize our two new
partials:

<h1>Listing goals</h1>
<table>
 <tr><th>Name</th></tr>
 <%= render :partial => 'goal', :collection => @goals %>
</table>

<h1>Add a New Goal</h1>

<div id="add_goal">
 <% form_for(:goal, :url => goals_path, :html => {:id => 'new_goal'}) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
 <% end %>
</div>

The Results Views

Editing the templates for the results resource will also be old hat to you at this point, so we’ll
whip through these fairly quickly. First, we’ll generate the same two partials that we have for
previous resources and modify the standard templates to use them. Second, because this is a
nested resource, we’ll also modify any of our named routes to pass the @goals variable as well.

Create a new partial named /app/views/results/_form.rhtml:

<p><label for="">Date</label>

<%= f.date_select :date %></p>

<p><label for="">Value</label>

<%= f.text_field :value %></p>

<p><%= submit_tag "Save" %></p>

Next, we’ll create the results partial to display our collection of results. Create
_result.rhtml in /app/views/results/, and place the following content in it:

<tr>
 <td><%=h result.date.to_s(:long) %></td>
 <td><%=h result.value %></td>
 <td><%=link_to image_tag("edit_photo.gif", {:title => "Edit Result Details"}),
 edit_result_path(@goal, result) %></td>
 <td><%= link_to image_tag("delete_photo.gif", {:title => "Delete Result"}),
 result_path(@goal, result),
 :confirm => 'Are you sure?',
 :method => :delete %></td>
</tr>

7818.book Page 147 Wednesday, October 3, 2007 8:58 PM

148 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Now, we’ll modify our templates to utilize these partials. Edit /app/views/results/
new.rhtml to look like this:

<h1>New result</h1>
<%= error_messages_for :result %>

<% form_for(:result, :url => results_path(@goal)) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', results_path(@goal) %>

And edit /app/views/results/edit.rhtml to look like this:

<h1>Editing result</h1>
<%= error_messages_for :result %>

<% form_for(:result, :url => result_path(@goal, @result),
 :html => { :method => :put }) do |f| %>
 <%= render :partial => 'form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back to Goal', goal_path(@goal) %>

Meanwhile, the results index page (/app/views/results/index.rhtml) should look like
this:

<h1>Listing results for <%= h @goal.name %></h1>

<table>
 <tr><th>Date</th><th>Value</th></tr>
 <%= render :partial => 'result', :collection => @results %>
</table>

<%= link_to 'Back to Goal', goal_path(@goal) %>

Finally, we can wrap up these templates by building the goals show template, which will
utilize our two new results partials. Edit /app/views/goals/show.rhtml to look like this:

<h1>Results for <%= h @goal.name %> </h1>
<table>
 <tr><th>Date</th><th>Value</th></tr>
 <%= render :partial => 'results/result', :collection => @results %>
</table>

7818.book Page 148 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 149

<h3>Record New Result for this Goal</h3>
<% form_for(:result, :url => results_path(@goal)) do |f| %>
 <%= render :partial => 'results/form', :locals => {:f => f} %>
<% end %>

<%= link_to 'Back', workouts_path %>

Capturing the Last Result
When we defined our goals resource, we included that we wanted it to break normalization by
storing the duplicate data of the most recent result, but we haven’t built a way to capture that
data yet. Thanks to Rails’s powerful callback support this is an easy problem to solve, as we can
simply add an after_create callback in our results model to magically populate the last attribute
for the associated goal. Open /app/models/results.rb, and add our functionality like this:

class Result < ActiveRecord::Base
 belongs_to :goal
 validates_presence_of :date, :value
 after_create :update_last_result

 def update_last_result
 goal.last = value
 goal.save
 end
end

Now, whenever we create a new result, its value will also be populated into the goals last
field—incredibly powerful yet seriously easy.

Exploring the RESTful Interface
With that last change, our application is well on its way. We can easily use the HTML interface
to create and manage our workouts and goals, but what if we wanted to play around with the
XML interface that we gained for free with REST?

The easiest way to do that is to simply append a .xml to the end of any the URL strings in our
browser, and Rails will serve us back the XML version of any of any of our resources. You can see the
result of pulling back the list of activities in a specific workout at http://localhost:3000/workouts/
7/activities.xml in Figure 6-8, but some other example URLs are

• http://localhost:3000/exercises.xml

• http://localhost:3000/exercises/6.xml

• http://localhost:3000/goals.xml

• http://localhost:3000/goals/3/results/1.xml

7818.book Page 149 Wednesday, October 3, 2007 8:58 PM

150 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

Figure 6-8. Accessing the XML interface through a browser

Using CURL to Interact with Our API

The limitation of using a web browser to experiment with your RESTful interface is that you’re
limited to mainly GET requests, so you can look but can’t modify. Another alternative for inter-
acting with your application that will allow you full access to read and modify your data is to
use the command line utility curl.

Some common curl options that you should know are

• -X []: Specifies the HTTP verb (i.e., GET, POST, PUT or DELETE)

• -d []: Sets POST variables

• -H []: Sets the content type

• -U []: Sets the username:password for HTTP authentication

Using curl, you could access a list of all the exercises for a user ealameda (obviously, you’ll
need to use the username and password from the account that you created earlier) with the fol-
lowing command:

curl -X GET --Basic -u ealameda:test -H "Accept: text/xml" ➥

http://localhost:3000/exercises

7818.book Page 150 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 151

<?xml version="1.0" encoding="UTF-8"?>
<exercises>
 <exercise>
 <exercise-type></exercise-type>
 <id type="integer">8</id>
 <name>Abdominals</name>
 <user-id type="integer">2</user-id>
 </exercise>
 <exercise>
 <exercise-type></exercise-type>
 <id type="integer">6</id>
 <name>Bench Press</name>
 <user-id type="integer">2</user-id>
 </exercise>
 <exercise>
 <exercise-type></exercise-type>
 <id type="integer">7</id>
 <name>Biceps Curl</name>
 <user-id type="integer">2</user-id>
 </exercise>
 <exercise>
 <exercise-type></exercise-type>
 <id type="integer">9</id>
 <name>Lat Pulldowns</name>
 <user-id type="integer">2</user-id>
 </exercise>
 <exercise>
 <exercise-type></exercise-type>
 <id type="integer">10</id>
 <name>Leg Press</name>
 <user-id type="integer">2</user-id>
 </exercise>
</exercises>

If you wanted to view the details of a specific exercise, you could simply specify it in the URL:

curl -X GET --Basic -u ealameda:test -H "Accept: text/xml" ➥

http://localhost:3000/exercises/6

7818.book Page 151 Wednesday, October 3, 2007 8:58 PM

152 C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A S E D A P P L I C AT I O N

<?xml version="1.0" encoding="UTF-8"?>
<exercise>
 <exercise-type></exercise-type>
 <id type="integer">6</id>
 <name>Bench Press</name>
 <user-id type="integer">2</user-id>
</exercise>

To create a new goal, however, we’ll need to specify that we want to use the HTTP verb
POST instead and use the –d parameter to set our post parameters:

curl -X POST --Basic -u ealameda:test -d "goal[name]=Daily Calories"
-d "goal[value]=1300" -H "Accept: text/xml" http://localhost:3000/goals

Once we’ve created the new goal, we can verify it’s there by viewing the list of goals:

curl -X GET --Basic -u ealameda:test -H "Accept: text/xml" ➥

 http://localhost:3000/goals

<?xml version="1.0" encoding="UTF-8"?>
<goals>
 <goal>
 <id type="integer">3</id>
 <last type="decimal">250.0</last>
 <name>Weight Loss</name>
 <user-id type="integer">2</user-id>
 <value type="decimal">220.0</value>
 </goal>
 <goal>
 <id type="integer">4</id>
 <last type="decimal">110.0</last>
 <name>Blood Sugar (post lunch)</name>
 <user-id type="integer">2</user-id>
 <value type="decimal">100.0</value>
 </goal>
 <goal>
 <id type="integer">5</id>
 <last type="decimal"></last>
 <name>Daily Calories</name>
 <user-id type="integer">2</user-id>
 <value type="decimal">1300.0</value>
 </goal>
</goals>

7818.book Page 152 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 6 ■ D E V E L O P I N G A R E S T - B A SE D AP P L I C A T I O N 153

Summary
In this chapter, we explored the basics of what RESTful applications are and why there’s so
much buzz about them within the Rails community. We even built our very first RESTful appli-
cation in Rails using the scaffold_resource generator.

As a result, we now have a web application where we can enter all of our workout results.
In the next chapter, we’re going to develop another iteration of this application by further
enhancing the interface design, integrating reporting capabilities using several popular Ruby
graphing libraries, and adding some additional MIME types that can be called through the
RESTful interface.

AUTHENTICATION ERRORS?

At this time of this writing, a number of users were complaining of having issues authenticating through
RESTful authentication and were proposing a workaround of making the following modifications to the login
required method in /lib/authenticated_system.rb. Advocates of the modification suggest changing it
from this:

def login_required
 username, passwd = get_auth_data
 self.current_user ||= User.authenticate(username, passwd) || :false ➥

if username && passwd
 logged_in? && authorized? ? true : access_denied
end

to this:

def login_required
 username, passwd = get_auth_data
 if self.current_user == :false && username && passwd
 self.current_user = User.authenticate(username, passwd) || :false
 end
 logged_in? && authorized? ? true : access_denied
end

You can read more about it at http://www.railsweenie.com/forums/3/topics/1258 if you
encounter similar issues.

7818.book Page 153 Wednesday, October 3, 2007 8:58 PM

155

■ ■ ■

C H A P T E R 7

Adding Graphs to
Our Application

In the previous chapter, you learned about RESTful development as we built a basic exercise
tracking application in Ruby on Rails. Unfortunately, we left one glaring hole in the applica-
tion—the inability to review our results in a meaningful way. We’re going to solve that lack in
this chapter, as I’ll provide an overview of several graphing libraries that we can utilize from
Ruby on Rails and then we’ll implement several of them into our application.

Our Next Iteration
Being able to capture our exercise results is a powerful thing but not as powerful as being able
to display those results in an attractive line or bar graph so we can visually track our progress
over time. Fortunately, we have a number of great options available to us for the creation of
attractive graphs and reports. Each solution has its own particular strengths and weaknesses
that make each suitable for different needs. In your typical application, you would probably
never need more than one of these solutions, but in this chapter, we’re going to experiment
with loading several of the most popular solutions into our application so that you’ll have a bit
of experience with each.

Of course, we first need to make sure that you have some data to graph. Since a few weeks
have passed since I wrote the previous chapter, I’ve added several weeks’ worth of data to the
application. Unfortunately, this was during the holidays when sweets were plentiful and exer-
cise wasn’t. So to salvage a little dignity and not show off my holiday five, I’ve created a sample
SQLite 3 database preloaded with data that we’ll be using in this chapter that you can obtain
from the Source Code/Download link on the Apress web site. Just copy this database in your
/db directory over your existing development database, and your application will be loaded
with enough data for our needs.

Graphing Options in Rails
Now that we have a database full of sample data to use, let’s take a look at our options for cre-
ating graphs from our data. Many of these solutions will require that you have ImageMagick
and its corresponding Ruby implementation library RMagick installed onto your development
machine. See the “Installing RMagick” sidebar for tips on how to add it to your machine if
you’re missing it.

7818ch07.fm Page 155 Monday, October 1, 2007 8:31 PM

156 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

CSS Graphs
By far, the easiest option that we have available for adding graphs to our application is the CSS
Graphs plug-in written by Geoffery Grosenbach (host of the Ruby on Rails podcast).

CSS Graphs provides several helper methods for generating pure CSS graphs directly
in our view templates; it’s based on a design from the Apples to Oranges blog (http://
applestooranges.com/blog/post/css-for-bar-graphs/?id=55).

Using the CSS Graphs plug-in has the added benefit that it doesn’t require the installation
of any additional libraries such as RMagick. In addition, since the graphs are rendered on the
client side, they have almost zero impact on our server load.

Unfortunately, the ease of the solution brings with it a number of severe limitations:

• It only supports three different types of graphs, all of which are bar graphs.

• You can’t display more than one graph on a page.

• The graphs do not support numbers outside the 0–100 range.

• CSS graphs may not display correctly across all possible browser and OS combinations.

• CSS graphs don’t print well.

Those limitations aside, if you’re looking for a quick and simple way to add a basic bar
graph to a page, it just doesn’t get much easier than the CSS graphs plug-in.

The CSS graphs plug-in can generate three different types of graphs: bar graphs (see
Figure 7-1), horizontal bar graphs (see Figure 7-2), and complex bar graphs (see Figure 7-3).

Figure 7-1. A CSS bar graph

Figure 7-2. A CSS horizontal bar graph

7818ch07.fm Page 156 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 157

Figure 7-3. A CSS complex bar graph

Installing CSS Graphs

To install CSS graphs, open a command-line prompt within the root directory of our Exercisr
application and run the plugin install command:

ruby script/plugin install http://topfunky.net/svn/plugins/css_graphs

+ ./css_graphs/MIT-LICENSE
+ ./css_graphs/README
+ ./css_graphs/Rakefile
+ ./css_graphs/about.yml
+ ./css_graphs/generators/css_graphs/css_graphs_generator.rb
+ ./css_graphs/generators/css_graphs/templates/colorbar.jpg
+ ./css_graphs/generators/css_graphs/templates/g_colorbar.jpg
+ ./css_graphs/generators/css_graphs/templates/g_colorbar2.jpg
+ ./css_graphs/generators/css_graphs/templates/g_marker.gif
+ ./css_graphs/images/colorbar.jpg
+ ./css_graphs/init.rb
+ ./css_graphs/lib/css_graphs_helper.rb

That’s all we need to do if all we desire are the basic and horizontal bar graphs. However,
if we want to use the complex bar graph with its gradient images, we also need to copy the gra-
dient images included with the plug-in into /public/images. Fortunately, the plug-in also
includes a generator to handle that task for you. Simply run the following command to have the
gradient images copied for you:

ruby script/generate css_graphs

 create public/images/css_graphs
 create public/images/css_graphs/colorbar.jpg
 create public/images/css_graphs/g_colorbar.jpg
 create public/images/css_graphs/g_colorbar2.jpg
 create public/images/css_graphs/g_marker.gif

7818ch07.fm Page 157 Monday, October 1, 2007 8:31 PM

158 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

INSTALLING RMAGICK

In order to utilize a number of these graphing libraries, you’ll need to have RMagick installed onto your devel-
opment machine. RMagick is a library that makes it easy to interface Ruby scripts with the ImageMagick suite
of programs. ImageMagick is a software suite for the creation and editing of bitmap images such as GIF, JPG,
PNG, and so on.

Windows

Windows developers actually have the easiest solution for installing and configuring ImageMagick and
RMagick, as they can utilize a gem that includes a complete bundle of everything they need plus the most
commonly used libraries. This bundled gem must be downloaded manually, as it’s not available from your
standard remote gems installation.

You can download the gem from the RMagick page on RubyForge at http://rubyforge.org/
projects/rmagick. Once you have downloaded the gem, unzip it from its archive, and open a command
shell in the directory where you unzipped the gem. From there, you’ll install the gem from the command line
with the gem install command:

gem install Rmagick-win32-1.13.0-mswin32.gem

After running the gem install command, you’ll need to run an installation script to complete the
installation.

ruby postinstall.rb

And you’re done—easy as pie.

Linux

Most Linux distributions have the ability to install a functional ImageMagick suite via their package manage-
ment solution. If for some reason your distro doesn’t or you just don’t like using those packaged solutions, you
can download the installation files from the ImageMagick web site. There you’ll find binary RPM versions
(http://www.imagemagick.org/script/binary-releases.php), or if you’re the adventurous type,
you could choose to download and install from source (http://www.imagemagick.org/script/
install-source.php).

You’ll also want to install a number of development libraries such as freetype (for font support) and the
support libraries for any graphics formats that you want to be able to support (libjpeg, libpng, libtiff, etc.

Once you have ImageMagick installed, you’ll need to download and install the latest version of RMagick
(http://rubyforge.org/projects/rmagick/) following the directions on that web site.

Mac OS X

If you chose to use Locomotive to build your Mac development system, adding the necessary RMagick support is a
simple matter of downloading and installing the RMagick Rails bundle from http://locomotive.raaum.org/
bundles/index.html; after that, you’re good to go.

If you chose to do a manual install of Rails, your best bet is to follow the very detailed instructions written
by Dan Benjamin available on his web blog at http://hivelogic.com/narrative/articles/
rmagick_os_x.

7818ch07.fm Page 158 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 159

With that simple installation, we now have three graph-generating helper methods avail-
able in our view templates:

<%= bar_graph [["Apple", 10], ["Pear", 30], ["Banana", 100], ["Kiwi", 90] , ➥

["Peach", 50]] %>

<%= horizontal_bar_graph [["Stout", 10], ["IPA", 80], ["Pale Ale", 50], ➥

["Milkshake", 30]]%>

<%= complex_bar_graph [["Stout", 10], ["IPA", 80], ["Pale Ale", 50], ➥

["Milkshake", 30]] %>

Just plug those directly into any view and voilà—instant bar graph!

Sparklines
Another graphing solution that I want to highlight is the Ruby Sparklines library. The spark-
lines graph format was invented by Edward Tufte to create “data-intense, design-simple,
word-sized graphics” that could be embedded inline with text or within small tables. They are
designed to bring additional context to numbers within text, as they can show overall trends
at a glance.

Figure 7-4. An example of a sparkline

The Ruby Sparklines library that we’ll be using was originally coded by Dan Nugent as a
port of the Python Sparklines web service script and later was converted into a module and
modified for Rails integrations by Geoffrey Grosenbach.

Installing Sparklines

The first step in adding Sparklines to our application is to install the Sparklines gem:

gem install sparklines

Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed sparklines-0.4.1
Installing ri documentation for sparklines-0.4.1...
Installing RDoc documentation for sparklines-0.4.1...

Since Sparklines is an external Ruby library, we need to let Rails know that it needs to
load it along with your application by adding the following line to the very bottom of your
environment.rb in /config:

require 'sparklines'

7818ch07.fm Page 159 Monday, October 1, 2007 8:31 PM

160 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

If your application was running, you’ll need to restart it, as changes in environment.rb are
only picked up during the initial startup of Rails.

Next, we need to install the Sparklines generator; the Sparklines generator will automate
the process of adding controllers and helpers to our application to simplify using Sparklines
from within Rails.

gem install sparklines_generator

Successfully installed sparklines_generator-0.2.2

With the generator added, let’s go ahead and run it. The Sparklines generator will add a
new controller and helper file to our application:

ruby script/generate sparklines

 create app/controllers/sparklines_controller.rb
 create app/helpers/sparklines_helper.rb

From here, we merely need to include the Sparklines helper within any controller from
which we want to use Sparklines:

class SampleController < ApplicationController
 before_filter :login_required
 helper :sparklines

Implementing Sparklines into Exercisr

It seems that a good place to demonstrate a sparkline is the main page of our goals controller.
Adding a simple sparkline at the end of each goal would provide a quick visual summary of our
progress. So let’s do a sample implementation of sparklines there.

We want to display a summary of our achievements toward our goals, so we’ll first need to
add the helper to the goals controller (/app/controllers/goals_controller.rb):

class GoalsController < ApplicationController
 before_filter :login_required
 helper :sparklines

 (... many lines ommitted...)
end

Since we want to graph our sparkline as a progression of our results over time, we need to
ensure that we’re pulling back those results in the proper order. We want our results to come
back to us in a date-descending order rather than by ID (which would be the default). We can
set this by adding an order-by conditional onto our association.

7818ch07.fm Page 160 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 161

Open the Goal model (/app/models/goal.rb), and modify our has_many :results associa-
tion like this:

class Goal < ActiveRecord::Base
 belongs_to :user
 has_many :results, :dependent => :destroy, :order => 'date'
 validates_presence_of :name, :value
end

With that, we’re ready to actually add a sparkline to our goals, so open the goal partial
(/app/views/goals/_goal.rhtml). Here, we can create a sparkline graphic by adding a new
table cell with a call to the sparkline_tag helper method to our view:

<tr>
 <td><%=h goal.name %></td>
 <td> </td>
 <td><%= link_to image_tag("display.gif",
 {:title => "View Report"}), goal_path(goal) %></td>
 <td><%=link_to image_tag("edit_photo.gif",
 {:title => "Edit Goal Details"}), edit_goal_path(goal) %></td>
 <td><%= link_to image_tag("delete_photo.gif",
 {:title => "Delete Goal"}), goal_path(goal),
 :confirm => 'Are you sure?', :method => :delete %></td>
 <td><%= sparkline_tag (goal.results.collect {|g| g.value}),
 :type => 'smooth', :height => '20',
 :step => 4, :line_color => 'black' %></td>
</tr>

When we open the web page at http://localhost:3000/goals, the preceding code should
produce a result similar to Figure 7-5.

Figure 7-5. The sparkline_tag helper blows up

It blew up! What’s up with that? Well, a quick glance at the error output on the page shows us
that it’s failing because it can’t find the route to the Sparklines controller (/app/controllers/
sparklines_controller.rb) that was added when we ran the Sparklines generator. A quick glance

7818ch07.fm Page 161 Monday, October 1, 2007 8:31 PM

162 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

at this controller reveals that it only has one method—an index method that will return a PNG
sparkline graph based on the data it receives in the results parameter:

class SparklinesController < ApplicationController
 layout nil

 def index
 # Make array from comma-delimited list of data values
 ary = []
 params['results'].split(',').each do |s|
 ary << s.to_i
 end

 send_data(Sparklines.plot(ary, params),
 :disposition => 'inline',
 :type => 'image/png',
 :filename => "spark_#{params[:type]}.png")
 end
end

All we need to do is add a route to this controller and action, so open routes.rb in /config,
and let’s add a route that will point to the index method of the Sparklines controller.

ActionController::Routing::Routes.draw do |map|
 map.resources :goals do |goal|
 goal.resources :results
 end

 map.resources :workouts do |workout|
 workout.resources :activities
 end

 map.resources :exercises

 map.home '', :controller => 'sessions', :action => 'new'
 map.resources :users, :sessions
 map.welcome '/welcome', :controller => 'sessions', :action => 'welcome'
 map.signup '/signup', :controller => 'users', :action => 'new'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.connect '/sparklines', :controller => 'sparklines', :action => 'index'
end

Alternatively, we could also have solved this issue by simply re-adding the
map.connect ':controller/:action/:id' default route that we removed last chapter,
but I prefer to avoid having that catch-all route when I’m striving to build a pure RESTful
application. So with our new route added to our application, our sparklines should be
working now. We can reload our goals again and see something similar to Figure 7-6.

7818ch07.fm Page 162 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 163

Figure 7-6. Adding a sparkline to our goals

Gruff Graphs
Another library written by Geoffrey Grosenbach is the Gruff graphing library for Ruby, which
supports the creation of a wide variety of graphs including line, bar, pie, and area graphs. Each of
the graphs is highly customizable, as you can specify colors, background images, and even fonts.

Figure 7-7. Sample Gruff graphs

Installing Gruff

Gruff uses RMagick to generate its graphs, so you’ll need to ensure that it has been installed
and configured correctly on your system.

Our first step towards creating graphs with Gruff is to install the Gruff gem:

gem install gruff

Bulk updating Gem source index for: http://gems.rubyforge.org
Successfully installed gruff-0.2.8
Installing ri documentation for gruff-0.2.8...
Installing RDoc documentation for gruff-0.2.8...

Next, we need to add the following line to the very bottom of our environment.rb in
/config to let Rails know it needs to load Gruff when it starts up:

require 'gruff'

7818ch07.fm Page 163 Monday, October 1, 2007 8:31 PM

164 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

Once we restart our web server to load in our new environment.rb, we’ll be all set to use
Gruff graphs in our application.

Implementing a Gruff Graph

We’ve already added a summary view of our goal results, but let’s take it a step further and add
in a larger, detailed graph that a user could view or even save. The obvious place to add this
graph would be in the goals show template, so we’ll add it there. Open show.rhtml in /app/
views/goals/, and you’ll see that currently the page looks like this:

<h1><%=h @goal.name %></h1>
<p>
 Goal:
 <%=h @goal.value %>
</p>

<p>
 Current:
 <%=h @goal.last %>
</p>

<%= link_to 'Back', goals_path %>

The easiest way to add a graph into this existing page would be to embed a request to gen-
erate the graph within an image tag on the page. Let’s add that—while we’re in there, we’ll also
remove the tag to display the last recorded value of the goal, since the graph will now be show-
ing that. So your show.rhtml should now look like this:

<h1><%=h @goal.name %></h1>
<p>
 Goal:
 <%=h @goal.value %>
</p>

<p>
 <img src="<%= url_for(:action => "report", :id => @goal.id) %>" />
</p>

<%= link_to 'Back', goals_path %>

Adding Member Routes to a REST Resource

Unfortunately, that report request will fail, since we have neither a report method in the goals
controller nor any routing configured to direct a request to that method yet.

Remember that the map.resource command in our routes configuration created named
routes for all of our standard methods (index, show, new, edit, create, update, and destroy). But
what do we do when we need to break convention and introduce a new method on top of those

7818ch07.fm Page 164 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 165

standard ones? Fortunately, this is very easy to do by adding a member route onto our goals
route. Open routes.rb in /config, and add a member route like this:

ActionController::Routing::Routes.draw do |map|
 map.resources :goals, :member => {:report => :get} do |goal|
 goal.resources :results
 end
(...lines omitted...)

That single command informs our routing that, within the goals controller, there is also a
method named report that we want to be able to route to, and that requests to that method
should use the HTTP verb of GET. It also introduces a new set of named routes to make it easy to
link to that new resource method. So let’s go ahead and modify /app/views/goals/show.rhtml
to clean up our image tag to use the new named route:

<h1><%=h @goal.name %></h1>
<p>
 Goal:
 <%=h @goal.value %>
</p>

<p>
 <img src="<%= report_goal_url %>" />
</p>

<%= link_to 'Back', goals_path %>

Creating the Graph

Now that we have our view built, all that’s left is the simple matter of adding a report method to
the goals controller (/app/controllers/goals_controller.rb). Within that method, we can cre-
ate a Gruff graph by instantiating a new object of the graph type that want to build such as this:

g = Gruff::Line.new

Once we have a new Gruff object, we can set attributes on it like this:

g.title = "Simpson Family Popularity"

and populate the graph with data like this:

g.data("Homer", [75, 85, 83, 90, 85, 94])
g.data("Marge", [40, 65, 57, 49, 28, 59])
g.data("Bart", [90, 87, 83, 80, 75, 70])
g.labels = {0 => '2003', 2 => '2004', 4 => '2005'}

Finally, we can convert the newly created graph object to an actual graph by choosing
from a pair of methods. If we wanted to save the graph to the server’s local file system, we could
call the write method on the graph object to save it as a PNG image.

g.write('gruff.png')

7818ch07.fm Page 165 Monday, October 1, 2007 8:31 PM

166 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

For our needs, though, we don’t need to store these graphs on the local file system, so
instead, we can call the to_blob method, which will return the graph data back as a binary blob
that we can then send directly back to the web browser using Rails send_data method. The
send_data method supports a number of options:

• :filename: Specifies the file name that we should send to the browser

• :type: Specifies an HTTP content type; default is application/octet-stream

• :disposition: Specifies whether the file will be shown inline or downloaded as an
attachment, which is the default

• :status: Specifies the status code used with the response; default is 200

We could send our graph back to the browser directly with a send_data call like this:

send_data(g.to_blob, :disposition => 'inline', :type => 'image/png', ➥

:filename => "gruff.png")

If we were to run this code within a controller, it would generate a graph like the one
shown in Figure 7-8.

Figure 7-8. A Gruff line graph

But what if we wanted to render that graph into a different graph format? Well, that’s just
a simple matter of changing the object type of the graph that we instantiated.

By merely changing the object we instantiate to this:

g = Gruff::Pie.new

we get the pie chart result shown in Figure 7-9.

7818ch07.fm Page 166 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 167

Figure 7-9. A Gruff pie chart

Or we’d get the graph in Figure 7-10 if we changed it to this:

g = Gruff::Area.new

Figure 7-10. A Gruff area chart

Pretty easy, huh?

7818ch07.fm Page 167 Monday, October 1, 2007 8:31 PM

168 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

So let’s go ahead build out the report method in our goals controller to respond to a
request for a goals report:

def report
 g = Gruff::Line.new(400)
 goal = current_user.goals.find(params[:id])
 results = goal.results.collect {|r| r.value}
 g.title = "#{goal.name} to date"
 g.data("#{goal.name}", results)
 send_data(g.to_blob, :disposition => 'inline', :type => 'image/png', ➥

:filename => "gruff.png")
 end

Load our new show page in the application, and you should see something like Figure 7-11.

Figure 7-11. A Gruff graph of weight loss

A RESTful Change

Now, that’s a perfectly workable solution, but the purist in me sure hates that it required us to
muck up our routes with a new member route. While it’s always acceptable to add a member
route, we should always ask ourselves if it’s really necessary. Is there a way we could provide
the same response with our existing methods or by adding a new controller?

In this case, yes, we can. When you really think about it, our graph isn’t really new data—
it’s just a different representation of a goals result data, an image representation. As we
discussed in the last chapter, Rails supports sending different content for the same request
through the responds_to method. So rather than defining a new method to gather this data in
a visual format, it would be a much better solution to simply define this graph as a different for-
mat for a goal’s results.

Defining a Custom MIME Type

The first step is to identify the format request that we need to respond to. Since we configured
Gruff to send back the graph as a PNG, we’ll add the PNG image format into the list of possible

7818ch07.fm Page 168 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 169

MIME types that our Rails application will support. Open environment.rb in /config, and add
the following line to the bottom:

(...lines omitted...)
Add new mime types for use in respond_to blocks:
Mime::Type.register "text/richtext", :rtf
Mime::Type.register "application/x-mobile", :mobile
Mime::Type.register "image/png", :png

Include your application configuration below
require 'sparklines'
require 'gruff'

Now that we’ve registered this MIME type with our application, we’ll need to restart the
application, since changes to environment.rb aren’t picked up automatically.

Responding to PNG

Now that Rails has been informed that it should respond to requests for PNG files, we can config-
ure our results controller to respond to a request for a PNG request by moving the report method
code there. So let’s go ahead and add PNG as a potential response in the show method of the goals
controller and move our Gruff code out of the report method in the goals controller and into the
index method of the results controller (/app/controllers/results_controller.rb).

def index
 @results = @goal.results.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @results.to_xml }
 format.png {
 g = Gruff::Line.new(400, false)
 results = @goal.results.collect {|r| r.value}
 g.title = "#{@goal.name} to date"
 g.data("#{@goal.name}", results)
 send_data(g.to_blob, :disposition => 'inline',
 :type => 'image/png',
 :filename => "gruff.png")
 }
 end
 end

Since we’ve changed where the graph is being created, we also need to change the desti-
nation of our image_tag method in the goals show template (/app/views/goals/show.rhtml) so
that it requests the PNG format from the results controller by calling formatted_results_path
instead. With this change, we’ve now kept our application routes nice, clean, and restful.

<%= image_tag formatted_results_path(@goal, :png) %>

7818ch07.fm Page 169 Monday, October 1, 2007 8:31 PM

170 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

At this point, you can go ahead and remove the report member route from our routes
configuration (/config/routes.rb) and the report method from our goals controller (/app/
controllers/goals_controller.rb), which we originally added to build our graph.

Scruffy
A nice alternative to the Gruff library is a Ruby library developed by Brasten Sager by the name
of Scruffy. Rather than utilizing RMagick to generate its graphs as Gruff does, Scruffy utilizes
SVG. SVG stands for Scalable Vector Graphics and is an XML-based markup language for
describing vector graphics. Vector graphics have a number of advantages over bitmap images,
but the two most important ones for our application are these:

• They can be scaled to virtually any size with no degradation.

• They look wonderful in print.

Utilizing Scruffy within our projects is remarkably similar to using the Gruff graphs, as
once again our first step is to install the Scruffy gem:

gem install scruffy

Successfully installed scruffy-0.2.2
Installing ri documentation for scruffy-0.2.2...
Installing RDoc documentation for scruffy-0.2.2...

Next, we include it in our Rails project by adding it to the bottom of config/environment.rb:

Include your application configuration below
require 'sparklines'
require 'gruff'
require 'scruffy'

We start to see some really interesting differences between Scruffy and Gruff, though, in how
we actually build a new graph. Rather than being limited to a single graph type, as we were in
Gruff graphs, Scruffy takes a very different approach. In Scruffy, we instantiate a generic graph
object, which can be thought of us as a blank canvas that we will be drawing our graphs on.

graph = Scruffy::Graph.new

With the graph object instantiated, we can then set attributes much like we did with
Gruff graphs:

def graph.title = "#{goal.name} to date"

7818ch07.fm Page 170 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 171

However, to draw our graphs, we’ll add individual graphs to our graph within a block.

graph.add :stacked do |stacked|
 stacked.add :line, '', results
end

This is an extremely powerful approach, as we can now mix and match our graphs
together into whatever formats make sense for our data. Once we’ve passed in the data that
we want and set all of our attributes, we can create our graph with a simple render call:

graph.render

That will generate a 600 400 SVG graph for us. Unfortunately, because web browser sup-
port for SVG is still playing catch-up and is currently quite lacking, it’s best to have the SVG
rasterized into a bitmap image that won’t give us any issues when displayed in a browser.
That’s easily accomplished by specifying the format for rendering the graph:

graph.render(:width => 400, :as => 'JPG')

Scruffy supports outputting our graphs into any format that RMagick supports.

Implementing a Scruffy Graph

With that understanding under our belts, we can convert the index method in our results con-
troller to utilize Scruffy instead of Gruff graphs for serving up a PNG graph of our goals’ results:

 # GET /results
 # GET /results.xml
 def index
 @results = @goal.results.find(:all)

 respond_to do |format|
 format.html # index.rhtml
 format.xml { render :xml => @results.to_xml }
 format.png {
 graph = Scruffy::Graph.new
 results = @goal.results.collect {|r| r.value}
 graph.add :stacked, 'Weight' do |stacked|
 stacked.add :line, '', results
 end
 send_data(graph.render(:width => 700, :as => 'PNG'))
 }
 end
 end

And you can see the output in Figure 7-12.

7818ch07.fm Page 171 Monday, October 1, 2007 8:31 PM

172 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

Figure 7-12. A Scruffy graph of our weight

Ziya
A relative newcomer to the Rails graphing solutions, Ziya is a solution that has gained a lot of
acceptance in a short period of time. Ziya takes a completely different approach to graphs by
utilizing the open source XML/SWF charts library (http://www.maani.us/xml_charts/) to build
them. This allows us to move the rendering of our graphs to the client side while adding a
significant number of “wow” features that we can’t get in the previous solutions, such as ani-
mated graphs and making data elements on the graph clickable.

Figure 7-13. Sample graphs from Ziya

7818ch07.fm Page 172 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 173

To begin the process of implementing Ziya graphs, install the plug-in:

ruby script/plugin install svn://rubyforge.org/var/svn/liquidrail/plugins/ziya/trunk

A /Users/darkel/web/exercise/vendor/plugins/ziya
A /Users/darkel/web/exercise/vendor/plugins/ziya/test
A /Users/darkel/web/exercise/vendor/plugins/ziya/test/prefs
(.............pages and pages of output deleted)
A /Users/darkel/web/exercise/vendor/plugins/ziya/README
Exported revision 240.
>>> Copying Ziya charts to /Users/darkel/web/exercise/vendor/plugins/➥

ziya/../../../public directory...
>>> Copying Ziya styles to /Users/darkel/web/exercise/vendor/plugins/➥

ziya/../../../public/charts

With the plug-in installed, after we configure our controller, we’ll be able to insert a Ziya
graph into any of our views with the ziya_chart helper method:

<%= ziya_chart(url_for(:controller => 'blee', :action => 'refresh_my_graph'),
 :id => 'my_chart', :bgcolor => "transparent",
 :width => 400, :height => 250) %>

The ziya_chart helper method requires that we pass a URL, along with a number of
optional parameters:

• :id: The ID that will be set on the flash object; defaults to ziya_chart.

• :source_name: The controller and method that will generate the graph.

• :bgcolor: The background color of the Ziya graph; defaults to 00ff00.

• :align: Defaults to left. At the time of this writing, this option doesn’t appear to have
any effect.

• :class: At the time of this writing, this option doesn’t appear to have any effect.

• :swf_path: Allows you to override where Ziya should look for the SWF files, in case you
moved them to a new location. By default, they’re installed in /public/charts.

• :wmode: Allows you to control the window mode of the Flash movie. Valid options are
window, opaque, and transparent; defaults to transparent.

• :timeout: Allows you to override the amount of time the request should wait for a server
request; defaults to nil.

7818ch07.fm Page 173 Monday, October 1, 2007 8:31 PM

174 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

• :cache: Added to help in some issues where Internet Explorer 6 displayed the charts in
the middle of the canvas. If set to true, this option forces the browser to refresh the URL;
defaults to false.

• :style: At the time of this writing, this option doesn’t appear to have any effect.

• :width: The width of the Ziya graph on the page; defaults to 400. Alternatively, this could
be set by passing it as :size => "400x300".

• :height: The height of the Ziya graph on the page; defaults to 300. Alternatively, this
could be set by passing it as :size => "400x300".

Of course, to keep things RESTful, we’ll first want to set up our application to recognize a
request for a Flash file format (.swf). That way, we won’t have to add any additional methods
to our controller or our routes, and we’ll be able to use a named route to request a Ziya graph.
So open /config/environment.rb, and let’s add the necessary MIME type extension for Flash
movies near the bottom:

Add new mime types for use in respond_to blocks:
Mime::Type.register "text/richtext", :rtf
Mime::Type.register "application/x-mobile", :mobile
Mime::Type.register "image/png", :png
Mime::Type.register "application/x-shockwave-flash", :swf

Include your application configuration below
require 'sparklines'
require 'gruff'
require 'scruffy'

A quick restart of our web server to load the new environment.rb configuration file, and
we’re set to begin adding Ziya graphs to our controllers. Up to this point, we’ve been demon-
strating all of our graphs from within the goals controller. However, for the Ziya graphs, let’s try
something different by graphing our exercise results instead.

Open our exercises controller (/app/controllers/exercises_controller.rb), and add Ziya
to this controller. We do that by first requiring the Ziya library and then including it within our
controller to keep its scope local:

require 'ziya'
class ExercisesController < ApplicationController
 include Ziya
 before_filter :login_required
 (...lines omitted...)
end

With Ziya added to our exercises controller, let’s take a quick look at how we build a Ziya
graph before we implement one. Within the controller, we instantiate a Ziya chart by creating
a new object of the graph type that we wish to create:

graph = Ziya::Charts::Bar.new(nil, "My Cool Graph", 'bar_chart')

7818ch07.fm Page 174 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 175

This object takes three optional parameters:

• License: XML/SWF is free to download and use, but the unlicensed version does have a
few limitations; for example, clicking a chart will take the user to the XML/SWF charts
homepage. You can purchase a license for your application from their page and place
the license here to eliminate that.

• Chart Name: This is the name of your chart.

• Chart_id: This is a YAML-based configuration file stored in /public/charts that we can
use to radically customize our graph. We’ll look into this shortly.

Ziya supports a very large number of possible charts that you can create such as bar, line,
pie, area, and stacked charts as well as 3-D graphs. The best place to learn about all the possible
options is at the online Rdocs at http://ziya.liquidrail.com/rdoc/index.html.

With an instantiated chart object named graph, we can add our data and legends using the
add method:

graph.add(:axis_category_text, ["Dog", "Cat", "Rat"])
graph.add(:series, "Series A", [10, -20, 30])

There are a number of things that we can add to our graphs, such as

• :axis_category_text: This is an array of strings that will be used for the x and y axis ticks.
You must set this parameter for every graph.

• :series: Use this to define the series name and chart’s data points. The series name will
be displayed in the chart legend. It is required that you have at least one of these defined
per chart.

• :axis_value_text: This array of strings represents the ticks on the x and y axes that are
used on the opposite side of the axis_category_text tags.

• :theme: This parameter allows you to specify a custom theme to use.

Next, we’ll return the XML representation of our graph data back to the Flash movie with
a render :xml call:

render :xml => graph.to_xml

In the next step, we need to add a format.swf call to the show method of our
exercises_controller (/app/controllers/exercises_controller_rb):

 # GET /exercises/1
 # GET /exercises/1.xml
 def show
 @exercise = current_user.exercises.find(params[:id])
 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @exercise.to_xml }
 format.swf { }
 end
 end

7818ch07.fm Page 175 Monday, October 1, 2007 8:31 PM

176 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

Now, within that format.swf block, we’re going to want to generate the data necessary for
our report, build the graph object, and render it as XML. Coming up with a good way to evenly
show the results of each time we did an exercise, like the bench press, can be challenging when
you take into account the variations that can occur between sets. In one set, you might lift
200 pounds 12 times, so you up the resistance for the next set to 250 and only lift it 8 times.
What makes sense for me is to calculate the total weight lifted by multiplying the amount
of resistance by the number of times it was lifted. In the examples I just listed, that would be
2,400 pounds and 2,000 pounds respectively. This gives us a nice even number that we can use
to compare workouts.

Within our show method, we’ve already grabbed the exercise that we’re interested in
within the @exercise instance variable. So grabbing a collection of all of the times we per-
formed that exercise is a simple matter of calling @exercise.activities. However, what we
need is to extract the data that we care about for our report from that collection. We can do that
through the use of Ruby’s collect method, which, when called on a collection, will return a
new array containing the results of running a block on each element within the collection. To
create an array of the total weight lifted, we simply call this:

total_weight = @exercise.activities.collect {|e| e.repetitions * e.resistance}

Next, we’ll want to gather an array of the dates of those workouts for populating our axes’
ticks; we’ll do that using the collect method again:

workout_dates = @exercise.activities.collect {|e| e.workout.date.to_s}

With the methods that we’ll use to gather our exercise results, we can complete the show
method like this:

GET /exercises/1
GET /exercises/1.xml
def show
 @exercise = current_user.exercises.find(params[:id])
 respond_to do |format|
 format.html # show.rhtml
 format.xml { render :xml => @exercise.to_xml }
 format.swf {
 total_weight =@exercise.activities.collect {|e| e.repetitions * e.resistance}
 workout_dates = @exercise.activities.collect {|e| e.workout.date.to_s}
 chart = Ziya::Charts::Bar.new
 chart.add(:series, "Total Weight Per Set", total_weight)
 chart.add(:axis_category_text, workout_dates)
 render :xml => chart.to_xml
 }
 end
end

7818ch07.fm Page 176 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 177

At this point, all we need to do is modify the show template for our exercises (/app/views/
exercises/show.rthml) to call our Ziya graph, and we’ll be rewarded with a graph like the one
shown in Figure 7-14:

<p>
 Name:
 <%=h @exercise.name %>
</p>
<p>
 <%= ziya_chart(formatted_exercise_path(@exercise, :swf),
 :id => 'my_chart', :bgcolor => "transparent",
 :width => 400, :height => 250, :align => 'center') %>
</p>
<%= link_to 'Back', exercises_path %>

Figure 7-14. Exercises graphed by Ziya

That’s nice and all, but it is a little bland for something as dynamic as a Flash-based graph.
Fortunately, we don’t have to settle for this. If you recall, there are a number of options that we
can pass when we instantiate the chart object, including a YAML-based configuration file that
we could use to customize our graph. So let’s spice up our graph a little by building a custom
YAML configuration for it.

The first step will be to change the chart instantiation in our show method to call a new
YAML file that we’ll name my_bar_chart.

chart = Ziya::Charts::Bar.new(nil, "", 'my_bar_chart')

That small change means that the method will now look for a YAML file named
my_bar_chart.yml in /public/charts/themes/default/ when it instantiates the new Ziya
graph. If you look in that directory, you’ll see that there are already a set of YAML files in

7818ch07.fm Page 177 Monday, October 1, 2007 8:31 PM

178 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

there, representing many of our basic chart types. Let’s go ahead and open bar_chart.yml,
as we’ll use that as our base. Currently, it contains the following content:

<%= chart :bar %>
 <%=component :chart_border %>
 left_thickness: 3

Nothing too fancy—it just sets a chart type for this file and sets the thickness of the left
border using a chart border component. Save this file in the /public/charts/themes/default/
directory with the new name of my_bar_chart, and populate it with some more interesting con-
figuration options to spice things up a bit:

<%= chart :bar %>

 # Set default chart border
 <%=component :chart_border%>
 left_thickness: 3
 bottom_thickness: 3
 top_thickness: 3
 right_thickness: 3

 <%=component :chart_transition %>
 type: zoom
 duration: 2

 <%=component :series_color%>
 colors: 333333,f8af68

 # Set y axis styles
 <%=component :axis_category%>
 color: ff0000
 skip: 0
 font: arial
 bold: true
 size: 10
 alpha: 90
 orientation: diagonal_up

 # Set x/y axis ticks color
 <%=component :axis_ticks%>
 value_ticks: true
 category_ticks: true
 major_thickness: 1
 major_color: 54544c
 minor_thickness: 1
 minor_color: a19d91
 minor_count: 2

7818ch07.fm Page 178 Monday, October 1, 2007 8:31 PM

C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N 179

 # Set chart background color
 <%=component :chart_rect%>
 x: 60
 y: 35
 width: 300
 height: 195
 positive_color: ff9900
 positive_alpha: 50
 negative_color: f88868
 negative_alpha: 40

 # Set horizontal grid color
 <%=component :chart_grid_h%>
 thickness: 1
 color: 000000
 alpha: 7
 type: solid

 # Set vertical grid color
 <%=component :chart_grid_v%>
 thickness: 1
 color: 000000
 alpha: 7
 type: solid

 # Set legend foreground color
 <%=component :legend_label%>
 color: 000000
 size: 12
 layout: horizontal
 bullet: circle
 font: arial
 bold: true
 alpha: 75

 # Set legend background color
 <%=component :legend_rect%>
 x: 60
 y: 0
 margin: 10
 fill_color: FF9900
 fill_alpha: 80
 line_color: 000000
 line_alpha: 50
 line_thickness: 1

7818ch07.fm Page 179 Monday, October 1, 2007 8:31 PM

180 C H A P T E R 7 ■ A D D I N G G R A P H S T O O U R A P P L I C A T I O N

Save the files and refresh our page; you should see the animated chart shown in Figure 7-15.

Figure 7-15. Our animated, custom Ziya graph

Summary
In this chapter, you learned about expanding our first RESTful application with new reporting
features. Along the way, we explored a number of options that are available for producing
graphs and implemented several of them within our application.

To integrate those graphs into our applications, we discussed how to add a custom MIME
type to our application and set an existing method to respond to that new file type. You also
learned how to expand generated route resources to include your own custom methods
beyond the default CRUD operations.

7818ch07.fm Page 180 Monday, October 1, 2007 8:31 PM

181

■ ■ ■

C H A P T E R 8

Enhancing Exercisr

In this project we explored the exciting (and fun) world of building RESTful web applications
in Rails as we put together a basic workout tracking application. To enhance the application we
also added in a number of graphing libraries and discussed ways to keep our application
RESTful even while supporting and displaying multimedia content. However, it’s time again
for you to enhance your own learning by continuing development on this application yourself.
Below are a number of ideas of things that I would do as my next steps in development.

Add RJS to the Interface
One aspect of RESTful interfaces that we didn’t cover in this project is using RJS actions to
provide AJAX functionality. To be honest, in my first draft of the project, I actually put a fair
amount of RJS into the Exercisr application; I decided to rip it all out, because after I was done,
I realized that it was all too gimmicky and actually detracted from the simplicity of the applica-
tion. So you do need to take caution if you choose to add AJAX functionality.

Calling an RJS template within a RESTful interface is a simple matter of adding a format.js
call within the respond_to block of any controller like this:

def index
 @goals = current_user.goals.find(:all)

 respond_to do |format|
 format.html
 format.xml { render :xml => @goals.to_xml }
 format.js
 end
end

Doing so will cause an AJAX request to look for an index.rjs template to render in response
to this call, so as you can see, adding RJS to our application is a simple matter. Can you think of
any places where AJAX might be useful (such as when adding exercises to a workout)?

7818.book Page 181 Wednesday, September 26, 2007 10:01 PM

182 C H A P T E R 8 ■ E N H A N C I N G E X E R C I S R

Create a Calendar Showing When You Worked Out
Using the same calendar plug-in that we discussed in the Monkey Task exercises, you could
add a useful calendar view that would mark each day of the month on which a user performed
a workout.

Keeping track of your workouts builds a psychological motivation to keep working out,
as after a few days, a user will build up a chain of days and will want to keep working out to
avoid breaking the chain. For more information on this method of motivation (which is
credited to Jerry Seinfeld), check out the blog post at http://lifehacker.com/software/
motivation/jerry-seinfelds-productivity-secret-281626.php.

Cache Reports
While generating our report graphs on demand is nice, it’s a task that is also a bit CPU intensive
for each page view, especially when you consider how rarely the underlying data changes.
There are a number of ways you could solve this. For one, you could explore caching, as we will
do in Chapters 12 and 13. You could also create an external process to generate any necessary
reports on a scheduled basis.

Make the Home Page RESTful
Currently, our application is fairly clean. However, we did cheat a little by generating our home
page as a welcome method within the sessions controller. This is passable, but of course, not a
very beautiful solution, as it undermines some of our ideals. Why don’t you go ahead and cre-
ate a new default controller and move this method over there as the index method so we can
maintain our RESTful ideals?

Develop More Graphs
In Chapter 7, we explored some sample implementations of a number of different graphing
libraries. Why not spend some time building some additional graphs with one or two of the
graphing libraries? You could build additional views of our exercises, show the average weight
lifted per workout, or provide a graph detailing a specific workout or exercise within a workout.
The idea is to get a good feel for how each of the libraries work and what you can build with
them, so that the next time you have a need to build graphs in an application, you’re working
from experience.

Fat Models / Skinny Controllers
We have a little bit of work to do if we want to get our code to the ideal of having our logic in
our models and not in the controllers (like we discussed in Chapter 5). For example, to build a

7818.book Page 182 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 8 ■ E N H A N C I N G E X E R C I S R 183

graph for our goal results, we built the index method in our results controller (/app/controllers/
results_controller.rb) to look like this:

format.png {
 graph = Scruffy::Graph.new
 results = @goal.results.collect {|r| r.value}
 graph.add :stacked, 'Weight' do |stacked|
 stacked.add :line, '', results
 end
 send_data(graph.render(:width => 700, :as => 'PNG'))
}

While that works, a better solution would be to move all that code into the method in the goals
model that will return this graph object. If we were to name this new method scruffy_graph, we
could simplify our controller method to look like this:

def index
 respond_to do |format|
 format.png { send_data(@goal.scruffy_graph.render(:width => 700, :as => 'PNG'))}
 end
end

For more info on this process, check out the outstanding blog post “Skinny Controller,
Fat Model” by Jamis Buck at http://weblog.jamisbuck.org/2006/10/18/skinny-controller-
fat-model.

Develop Social Networking Features
If you want to take the application to a more advanced level, I suggest looking into adding
some level of social networking into the application, such as the following:

• A community portal for sharing workout or goal results

• A “Find a workout partner” link or bulletin board

• A discussion forum

• Some sort of wiki where users could document things such as workout programs, exer-
cise techniques, or even low-calorie recipes

Summary
That should be enough to get you started, but of course with an application like this – I’m sure
you can come up with some creative idea that I haven’t thought of. You could even take some
of the ideas from other projects and apply them here as well (such as an iPhone interface, or
caching the pages). If you come up with something realy cool, please share it with others at the
RailsProjects.com forums.

7818.book Page 183 Wednesday, September 26, 2007 10:01 PM

184 C H A P T E R 8 ■ E N H A N C I N G E X E R C I S R

Extending Monkey Tasks

The following exercises offer additional enhancements for Monkey Tasks.

Convert Monkey Tasks to a RESTful Design

As Monkey Tasks was already designed around CRUD-based methods, it’s already got a decent head start toward
a RESTful interface. Why not take it the rest of the way and rebuild it using the RESTful principles we used here?
After you’re done, compare the two applications. Is the code easier to read or follow when it’s built to REST? Did you
decrease controller methods or lines of code?

Experiment with Adding Reports to Monkey Tasks

Another way you can apply what you’ve learned in this project is to look at adding graphs to Monkey Tasks. Perhaps
a graph that displays the number of tasks completed per day? Or if you followed the exercise to add an estimated
time for each task, you could graph the estimated amount of time you’ve spent working on tasks per week.

7818.book Page 184 Wednesday, September 26, 2007 10:01 PM

■ ■ ■

P A R T 4

Simple Blogs

This project is actually going to be a bit different from the others. We’ll start by exploring

how quick and easy it is to get a blog up and running using an open source solution (we’ll

use Typo in this project). However, since that can be a little boring for programmer types

like us, we’ll take advantage of that project to expand our understanding about how Rails

works and how to trace through someone else’s code.

We’ll wrap up the project by getting back into programming as we build a simple blog

application that supports the MetaWeblog API, so that we can use a desktop blogging cli-

ent to control our blog.

7818.book Page 185 Wednesday, October 3, 2007 8:58 PM

187

■ ■ ■

C H A P T E R 9

Building a Blog Using Typo

In this chapter, we’re going to explore how quick and easy it is to launch a web blog using an
open source Rails application such as Typo (http://typosphere.org/) or Mephisto (http://
mephistoblog.com/). For the purposes of this project, we’ll build a simple blog using the Typo
blog application.

Of course, in reality, this chapter’s purpose isn’t to document how to build a blog using
Typo; rather it’s our opportunity to explore the process of understanding a Rails application
that someone else has built. So as we build the blog, we’ll take a deeper look at the Rails startup
process, how Rails delivers requests to the application, and take a journey into the Typo source
as we trace a request all the way through the application. We’ll start off our project by creating
a fictional backdrop for why we’re creating the blog so that we’ll have a framework for the deci-
sions we make in the application.

Our story starts out one Tuesday morning when Alanna, your company’s new receptionist,
pulls you aside to ask if you would consider building a web site for her.

It turns out that Alanna has dreams of one day becoming a recording artist and spends her
nights and weekends performing at small venues around the state. She’s even recorded her
own CD that she sells when she performs. She’s got all the normal venues covered, such as
accounts on the major social networking sites, and of course, a page on MySpace. However,
she’s been advised by some friends that it’s also a good idea to establish an official site of her
own. As such, she’d like to have a basic web site where she could share thoughts and comments
with her friends and fans, post her upcoming performance dates, and potentially allow people
to sample some of the music from her CD.

You’ve had enough experience with previous receptionists to understand the power that
they have to either be a deflector shield for you or to make your daily work life a living hell of
constant interruptions. You wisely decide that it’s in your best interest to do anything you can
to be on her good side, so you agree to help her out. That’s when she drops the bomb on you—
she needs this web site up by this weekend, as she’s heading out to a conference where she’ll
have the opportunity to meet record producers and would really like to be able to direct them
to her web site for more information. That short time line pretty much rules out custom devel-
opment, as you’ve already got a full week planned, so it’s time to turn to an open source
premade solution that you can customize.

Luckily, you’ve heard of just such a solution built in Ruby on Rails that you could take
advantage of—the Typo blogging engine.

7818.book Page 187 Wednesday, October 3, 2007 8:58 PM

188 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Introducing Typo
Typo was first developed back in January of 2005 (an eternity ago in Rails time) by Tobias
Lütke. The story goes that Tobias had an appointment to meet with a client but had acciden-
tally written the wrong time in his calendar (a typo). To pass the time while he was waiting, he
found a local coffee shop and proceeded to bang out the first version of Typo in approximately
six hours.

There wasn’t a lot to that first version, as his goal was to create “the smallest possible
weblog.” It was built to run solely on the SQLite database, and since there was no administra-
tion interface, the only way to post to it was using XML-RPC via an application like MarsEdit.
Interest and adoption in Typo built up like a tidal wave, and Typo soon became one of the most
popular applications in the budding Ruby on Rails community.

Features of Typo
Two years later, Typo bears very little resemblance to that “smallest possible weblog” anymore,
with approximately 10,000 lines of code and features such as:

• A gem-based installer

• A full backend administration system plus support for external clients

• Caching support

• Support for multiple text filters, including Textile, Markdown, and SmartyPants

• File uploads

• Theme support

• Feed support, including Atom 1.0 and RSS 2.0

• Support for comments and track backs

• E-mail notification of new comments and track backs

• Spam protection, including Askimet support

• Tags and categories

• Friendly URLs

• Migration scripts

• AJAX used for live previews, live search, commenting, sidebar management, and so on

And that’s just the tip of the iceberg.

7818.book Page 188 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 189

Installing Typo
Installing Typo couldn’t be made any easier since the introduction of the gem-based installer
in version 4. All you need to do to obtain the gem installer from RubyGems is to run the follow-
ing command:

gem install typo –v 4.0.3

■Note During the time the book was being written, Typo went through another major release, which
caused a significant amount of changes between the way the application will work as shown in this chapter
and how it will work under the new release.

However, since the purpose of this project wasn’t to document the Typo blog engine, but to use it as a sample
application to obtain a deeper understanding of how Rails works and to demonstrate how to trace through
someone else’s application code, I simply provided the instructions for installing the specific version of Typo
that was used in this project.

Now that you’ve got the installer added to your system, you can create a new Typo instance
by running the installer and telling it where you want to install your new Typo blog:

typo install alanna

Several pages of installation information later, you will see a message similar to this:

Running tests. This may take a minute or two
 All tests pass. Congratulations.
 Starting Typo on port 4533

 Typo is now running on http://eldon-alamedas-computer.local:4533
 Use 'typo start /Users/darkel/test/alanna' to restart after boot.
 Look in installer/*.conf.example to see how to integrate with your web server.

How cool is that? With two simple commands, you’ve now got a fully functioning Typo
instance using SQLite as its database and running Mongrel as its web server.

■Note We’re going to go forward from this point using this default configuration, as this is fine for our
example. However, if you’re rolling this out for production use, go ahead and reconfigure your database set-
tings to your production system and rerun your migration files manually, since all the upcoming configuration
steps will be stored in whichever database Typo is configured to use.

7818.book Page 189 Wednesday, October 3, 2007 8:58 PM

190 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Activating Our Typo Blog
Opening our web browser to the address that Typo started on (http://eldon-alamedas-
computer.local:4533 on my box) presents us with the initial configuration view shown in
Figure 9-1, prompting us to create our primary administrative user.

Figure 9-1. Creating the administrative user in Typo

Once you’ve set up the primary administrative user for your new blog, you’ll be redirected
to the settings configuration page (see Figure 9-2), where you can control how your blog func-
tions. From here, you can set the name of your new Typo blog, enable or disable comments
and track backs, control how many entries appear per page or in your RSS feed, configure spam
protection, and control cache settings—among other things.

Go ahead and fill out the page with some basic settings, and click the Save Settings button
on that page; your Typo blog is now live and serving a public blog. If you go ahead and click the
“your blog” link in the upper right-hand corner, you can check it out; you should see some-
thing like Figure 9-3.

7818.book Page 190 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 191

Figure 9-2. Typo’s general configuration settingsp

Figure 9-3. A default Typo blog

7818.book Page 191 Wednesday, October 3, 2007 8:58 PM

192 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Well, that’s certainly functional, but I seriously doubt that it’s quite the image that Alanna
will want to present to potential record producers. So we’re definitely going to have to spruce
up the visuals for this site before the weekend. Before we go into that though, I think it would
be a good time for us to take a step back and gain a better understanding of what’s happening
in Rails and the Typo application to get us to this point. I’m always amazed at how many devel-
opers never go through the effort to take a peek under the covers of these things, as even the
most basic understanding will certainly save you a lot of frustration if things ever go south in
your application.

The Rails Startup Process
We’ll start by first looking at the most basic (and important) process of the application—the
Rails startup process. After all, if our Rails process doesn’t start up, nothing else in our applica-
tion matters one bit.

In your application’s /public directory, you will find that you have three files named dis-
patch (dispatch.cgi, dispatch.fcgi, and dispatch.rb). The way you’ve configured your web
server to start up your Rails process (as a CGI process, a FastCGI process, or a Ruby process)
will determine which one of these is executed. The dispatch file that’s executed will load our
Rails environment and respond to requests from the web server by calling the dispatcher. Let’s
take a deeper look at one of these dispatch files (doesn’t matter which one, since they’re all
pretty much the same, with only minor differences).

The first thing that we’ll see is a call to read in the current environment.rb in /config with
this line:

require File.dirname(__FILE__) + "/../config/environment" unless ➥

 defined?(RAILS_ROOT)

Let’s go ahead and open environment.rb now. Typically present in a default Rails
environment.rb yet absent from our Typo blogs configuration is the line that would define
which version of Rails we want to use; it looks like this:

RAILS_GEM_VERSION = '1.2.3' unless defined? RAILS_GEM_VERSION

Since we don’t have that element, the first thing we can see happen in this script is a call to
load up the boot.rb script (also found in /config) with this line:

require File.join(File.dirname(__FILE__), 'boot')

We need to open boot.rb now to continue tracing our startup process. Now, boot.rb can
look a bit convoluted at first, but what it’s doing isn’t really that difficult to understand. The
very first thing boot.rb does is ensure that the RAILS_ROOT environment variable has been set.
If it hasn’t, boot.rb will define it as the directory one level beneath /config (i.e., the root direc-
tory of our application).

So now that our RAILS_ROOT constant has been set, boot.rb continues the process of load-
ing up Rails by checking for the existence of a frozen Rails environment in #{RAILS_ROOT}/
vendor/rails. If this folder exists, then boot.rb will require the Rails initializer from there.

7818.book Page 192 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 193

If we don’t have a local (frozen) copy of Rails, boot.rb will load the rubygems library and
scan environment.rb to see if a RAILS_GEM_VERSION constant has been defined. If it has, boot.rb
will load the intializer for that defined version of Rails (and raise an error if that version of Rails
does not exist on the system). If RAILS_GEM_VERSION is not defined, boot.rb will attempt to ini-
tialize the most recent version of Rails installed on the system.

Now that we’ve determined the correct initializer, the final thing that boot.rb does is exe-
cute the run class method for the Initializer class in the Rails module:

Rails::Initializer.run(:set_load_path)

Since Typo includes a frozen version of Rails, let’s load up the initializer.rb from /vendor/
rails/railties/lib/; we can see that it has a module named Rails that contains two classes,
Initializer and Configuration. The Intializer class is a bit boring but an important part of the
startup process, as it’s responsible for processing the settings from the configuration and setting
the paths that Rails will search in when looking for files to load. The Configuration class, though,
is much more interesting, as it maintains the parameters of our Rails environment.

Since boot.rb called the run class method, let’s find it and see what it does:

def self.run(command = :process, configuration = Configuration.new)
 yield configuration if block_given?
 initializer = new configuration
 initializer.send(command)
 initializer
end

The run method accepts two parameters (that each have defaults): a command parameter that
it will execute with the initializer.send(command) line and a configuration parameter that
maps to the Configuration class. Since boot.rb didn’t pass a configuration block, this configura-
tion object will be loaded with the defaults of the Configuration class. So the next important
thing that this method will do is call the set_load_path method in the Initializer class, which
looks like this:

def set_load_path
 configuration.load_paths.reverse.each { |dir| $LOAD_PATH.unshift(dir) if ➥

File.directory?(dir) }
 $LOAD_PATH.uniq!
end

This method loads the $LOAD_PATH variable with the unique values that are in the configu-
ration object’s load_paths variable. So what was in that load_paths variable? Well, to answer
that, we’ll have to scroll down to the Configuration class and look at how it was initialized.
We can see that, in the intialize method, load_paths was set to the value returned from a
default_load_paths method:

def initialize
 self.frameworks = default_frameworks
 self.load_paths = default_load_paths
 (…remainder of method omitted…)

7818.book Page 193 Wednesday, October 3, 2007 8:58 PM

194 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Scrolling down a little bit further into the Configuration class, we can find the
default_load_paths method, which sets us up with a number of directories that Rails
should use when searching for files:

def default_load_paths
 paths = ["#{root_path}/test/mocks/#{environment}"]

 # Add the app's controller directory
 paths.concat(Dir["#{root_path}/app/controllers/"])

 # Then model subdirectories.
 # TODO: Don't include .rb models as load paths
 paths.concat(Dir["#{root_path}/app/models/[_a-z]*"])
 paths.concat(Dir["#{root_path}/components/[_a-z]*"])

 # Followed by the standard includes.
 paths.concat %w(
 app
 app/models
 app/controllers
 app/helpers
 app/services
 app/apis
 components
 config
 lib
 vendor
).map { |dir| "#{root_path}/#{dir}" }.select { |dir| File.directory?(dir) }

 # TODO: Don't include dirs for frameworks that are not used
 paths.concat %w(
 railties
 railties/lib
 actionpack/lib
 activesupport/lib
 activerecord/lib
 actionmailer/lib
 actionwebservice/lib
).map { |dir| "#{framework_root_path}/#{dir}" }.select { |dir| ➥

File.directory?(dir) }
end

7818.book Page 194 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 195

With our $LOAD_PATH assembled, Rails will now be able to load any files in the directories
listed in the preceding code. With that, this run through the intializer is complete, and we
return to environment.rb (well, technically, we return to boot.rb, which ends and returns us
to environment.rb).

Our next step within environment.rb, ironically enough, is to once again call the
Intializers.run method—this time, the method passes in the custom configuration
block from environtment.rb that starts with this line:

Rails::Initializer.run do |config|

We can see some of the custom configuration options that Typo loads, such as loading a
large set of additional directories (where it has frozen a large set of Ruby gems) into the load path:

Add additional load paths for your own custom dirs
config.load_paths += %W(#{RAILS_ROOT}/app/services)
config.load_paths += %W(
 vendor/rubypants
 vendor/akismet
 vendor/redcloth/lib
 vendor/bluecloth/lib
 vendor/flickr
 vendor/syntax/lib
 vendor/sparklines/lib
 vendor/uuidtools/lib
 vendor/jabber4r/lib
 vendor/rails/railties
 vendor/rails/railties/lib
 vendor/rails/actionpack/lib
 vendor/rails/activesupport/lib
 vendor/rails/activerecord/lib
 vendor/rails/actionmailer/lib
 vendor/rails/actionwebservice/lib
).map {|dir| "#{RAILS_ROOT}/#{dir}"}.select { |dir| File.directory?(dir) }

We can also see a little lower where Typo selects that all session data should be stored in
the database via ActiveRecord:

config.action_controller.session_store = :active_record_store

Going back to our run method, also note that, this time, no method was explicitly passed,
so our command parameter will default to the process method:

 def self.run(command = :process, configuration = Configuration.new)

7818.book Page 195 Wednesday, October 3, 2007 8:58 PM

196 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

The process method in the Intializer class sequentially steps through a series of initial-
ization routines, such as:

• set_load_path: This sets the load path again—this time through it also uses the elements
that were added to our load path from the environment.rb.

• set_connection_adapters: Determines which database adapters are loaded.

• require_frameworks: Determines which framework items are loaded (ActiveRecord,
Action Web Service, etc.).

• load_environment: Loads the development.rb, production.rb, or test.rb environment
configuration from /config/environments based on the environment that Rails is start-
ing up with.

• initialize_database: Reads in database.yml and establishes the connection to the
database.

• initialize_logger: Creates a new logger instance.

• initialize_framework_logging: Sets our logger instance as the logger for ActiveRecord,
ActionController, and ActionMailer.

• initialize_framework_views: Configures ActionController::Base and ActionMailer::Base
to look in /app/views for view templates.

• initialize_dependency_mechanism: Sets the dependency loading mechanism.

• initialize_breakpoints: If the breakpoint server setting is true, this will set the port to
be used to listen for breakpoints (the BREAKPOINT_SERVER_PORT).

• initialize_whiny_nils: This configures Rails to complain if we attempt to call a method
on a nil value.

• initialize_framework_settings: Initializes framework-specific settings for each of the
loaded frameworks.

• load_environment: Loads the development.rb, production.rb, or test.rb environment
configuration from /config/environments based on the environment that Rails is starting
in (yes, this is called twice during processing—for supporting legacy configuration styles).

• load_plugins: Loads any plug-ins found in /vendor/plugins. Plug-ins are loaded in
alphabetical order.

• initialize_routing: Loads the routing definitions and prepares to lazily load any
requested controllers.

7818.book Page 196 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 197

Finally, after the process method completes and our configuration is loaded, Rails loads
any custom application configuration items from the bottom of our environment.rb:

Include your application configuration below

Load included libraries.
require 'redcloth'
require 'bluecloth'
require 'rubypants'
require 'flickr'
require 'uuidtools'

And with those final few calls, we’re back to our dispatch file in /public, which finishes out
with a call to the Dispatcher to respond to the incoming request—but we’ll get into how that
works in a few pages. Before we do that, let’s take a deeper look at the Typo configuration.

Understanding Typo
Having a framework that dictates even something as simple as the directory structure makes it
tremendously easy for us to understand code that was written by someone else, so our job of
understanding the code behind Typo has become a hundred times easier.

Understanding the Database
Perhaps because of my background of starting out as a DBA before I moved into web develop-
ment, I always like to start by checking out the database structure that the code base is built on.

If we were using something like Microsoft SQL Server as our primary database, we could
just load up Enterprise Manager and have it build a new diagram to help us to see all the tables
visually. Unfortunately, since Rails migrations abstract the database configuration down to the
lowest common denominator, it doesn’t define any of the referential constraints that would
allow our generated diagram to show the relationships between tables.

■Note So why doesn’t Rails build those relationships in a database that supports referential integrity?
That’s a question that you’ll see come up on mailing lists from time to time. The simple answer is that it would
be repeating the same relationship information that we are creating in our model, so it would be redundant to
create it in the database as well.

7818.book Page 197 Wednesday, October 3, 2007 8:58 PM

198 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Since we’re using SQLite in our application, we don’t have any auto-generated diagram capa-
bilities, so we could simply load the database in SQLite and explore the tables manually like this:

sqlite3 database.sqlite

SQLite version 3.3.7
Enter ".help" for instructions

sqlite> .tables
articles_categories notifications sessions
articles_tags page_caches sidebars
blacklist_patterns pings tags
blogs redirects text_filters
categories resources triggers
contents schema_info users

sqlite> .schema articles_categories
CREATE TABLE articles_categories (
 "article_id" integer,
 "category_id" integer,
 "is_primary" integer
);

But that would get old really fast, wouldn’t it? Another option would be go through each of
the migration files and follow the database as it’s built, but—with 50 different files that add a
column in one file and then remove it three migrations later—that’s not exactly a fun-filled
afternoon either.

Fortunately, Rails comes to our rescue again, as it automatically generates a full schema
definition for us in Ruby migration format. You can find it in /db/schema.rb; here are a few
highlights:

 create_table "articles_categories", :id => false, :force => true do |t|
 t.column "article_id", :integer
 t.column "category_id", :integer
 t.column "is_primary", :integer
 end

 create_table "articles_tags", :id => false, :force => true do |t|
 t.column "article_id", :integer
 t.column "tag_id", :integer
 end

Articles_categories and articles_tags are the join tables for a pair of has-and-belongs-to-
many relationships.

 create_table "blacklist_patterns", :force => true do |t|
 t.column "type", :string
 t.column "pattern", :string
 end

7818.book Page 198 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 199

Blacklist_patterns stores any user-created regular expression or string patterns that we
want to scan new comments for.

 create_table "blogs", :force => true do |t|
 t.column "settings", :text
 end

The blogs table is the primary table about our blog. All of the values from the settings page
are serialized into a hash and stored into the settings field.

 create_table "categories", :force => true do |t|
 t.column "name", :string
 t.column "position", :integer
 t.column "permalink", :string
 end

User-created categories are stored in the categories table. Categories are associated with
articles via the articles_categories table.

 create_table "contents", :force => true do |t|
 t.column "type", :string
 t.column "title", :string
 t.column "author", :string
 t.column "body", :text
 t.column "body_html", :text
 t.column "extended", :text
 t.column "excerpt", :text
 t.column "keywords", :string
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "extended_html", :text
 t.column "user_id", :integer
 t.column "permalink", :string
 t.column "guid", :string
 t.column "text_filter_id", :integer
 t.column "whiteboard", :text
 t.column "article_id", :integer
 t.column "email", :string
 t.column "url", :string
 t.column "ip", :string, :limit => 40
 t.column "blog_name", :string
 t.column "name", :string
 t.column "published", :boolean, :default => false
 t.column "allow_pings", :boolean
 t.column "allow_comments", :boolean
 t.column "blog_id", :integer, :null => false
 t.column "published_at", :datetime
 t.column "state", :text
 t.column "status_confirmed", :boolean
 end

7818.book Page 199 Wednesday, October 3, 2007 8:58 PM

200 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

The contents table is another extremely important table, as this is the table that stores
nearly all our user-created content. It utilizes single table inheritance (note the type field)
to allow this field to be the storage mechanism for the Track Back, Pages, Feedback, Articles,
Comment, and Content models.

 create_table "redirects", :force => true do |t|
 t.column "from_path", :string
 t.column "to_path", :string
 end

Redirects are used to handle upgrades where users might still need to access old blog posts
from a different URL structure.

 create_table "resources", :force => true do |t|
 t.column "size", :integer
 t.column "filename", :string
 t.column "mime", :string
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "article_id", :integer
 t.column "itunes_metadata", :boolean
 t.column "itunes_author", :string
 t.column "itunes_subtitle", :string
 t.column "itunes_duration", :integer
 t.column "itunes_summary", :text
 t.column "itunes_keywords", :string
 t.column "itunes_category", :string
 t.column "itunes_explicit", :boolean
 end

Resources are used for storing information about uploaded files.

 create_table "sidebars", :force => true do |t|
 t.column "controller", :string
 t.column "active_position", :integer
 t.column "config", :text
 t.column "staged_position", :integer
 end

The sidebars table stores our current and activated sidebar components, and their respec-
tive configuration is stored as a serialized hash in the config field.

 create_table "tags", :force => true do |t|
 t.column "name", :string
 t.column "created_at", :datetime
 t.column "updated_at", :datetime
 t.column "display_name", :string
 end

7818.book Page 200 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 201

User-created tags are stored in the tags table. Tags are associated to articles via the
articles_tags table.

 create_table "triggers", :force => true do |t|
 t.column "pending_item_id", :integer
 t.column "pending_item_type", :string
 t.column "due_at", :datetime
 t.column "trigger_method", :string
 end

Triggers are created when an article is set to activate at a future date and time.
I still like things visual, so I usually draw out a quick little diagram like the one in

Figure 9-4, so I can see the relationships.

Figure 9-4. A visual representation of Typo’s database schema

How Rails Routes Requests
After exploring the database schema and model files, I like to trace the full route path of a few
of the key pages to get a good understanding of all that’s going on behind the scenes to build
those pages. The first step in doing that is taking a quick review of how Rails gets a request for
a URL to the correct controller and action.

As I mentioned before, the web server will call the appropriate dispatch file in /public,
which ensures that we have the Rails framework loaded before it calls Dispatcher.dispatch.

What does the dispatcher do? It takes the data passed to it from the web server, such as the
request URL and any CGI parameters, and uses that data to determine the correct controller
and action to respond to the request, instantiates an instance of that controller, sends that
controller instance the request, and returns the response back to the web server. We can watch

7818.book Page 201 Wednesday, October 3, 2007 8:58 PM

202 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

this happen within the interactive console by setting a few environment variables and calling
Dispatcher.dispatch directly:

ruby script/console

Loading development environment.

>> ENV['REQUEST_URI'] = "/"

=> "/"

>> ENV['REQUEST_METHOD'] = "GET"

=> "GET"

>> Dispatcher.dispatch

Content-Type: text/html
Status: 200 OK
Cache-Control: no-cache

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
 <title>Alanna's Site</title>
 <meta http-equiv="content-type" content="text/html; charset=utf-8" />
 (…remainder of response omitted for brevity…)

We can see that a request to the root of our Typo application returned an HTML response.
But let’s go a step further and actually trace out that route request to the home page through
our application controller.

Determining the Path

To start that trace, we need to find out where a default request to the root of the application is
routed. If you open routes.rb in /config, you will find that this is routed to the index method
of the articles controller:

 map.index '', :controller => 'articles', :action => 'index'

7818.book Page 202 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 203

However, you’d be wrong if you thought that our next step was to go straight to the articles
controller. Since all of our controllers inherit from ApplicationController (/app/controllers/
application.rb), we need to first look in ApplicationController for any filters that would be
executed before, after, or around the articles controller execution.

The Application Controller

Here’s the application controller:

class ApplicationController < ActionController::Base
 before_filter :get_the_blog_object
 before_filter :fire_triggers
 after_filter :flush_the_blog_object
 around_filter Blog

Sure enough, we’ve got several filters set to execute along with our request. You need to
find out what these methods are doing if you want to be able understand the request when it
reaches the articles controller, so let’s break them down one by one.

before_filter :get_the_blog_object

Scrolling down into the protected methods of ApplicationController, you’ll find our first filter
method:

 def get_the_blog_object
 @blog = Blog.default || Blog.create!
 true
 end

The first thing our request does is create a @blog instance variable and populate it with
either the result from the default method of the Blog class or with a new Blog object. I’m sure
you can guess that the default method for the Blog class merely returns our Blog object, but to
be safe, we can verify that by opening up the blog.rb in /app/models/ and locating the default
method.

 def self.default
 find(:first, :order => 'id')
 end

before_filter :fire_triggers

The second method that gets kicked off by our request is the fire_triggers method:

 def fire_triggers
 Trigger.fire
 end

Once again, we’re calling a class method in one of the models. Opening trigger.rb in
/app/models reveals that this method destroys any expired objects from the trigger model. You
should remember from our earlier investigation that triggers are references to content that

7818.book Page 203 Wednesday, October 3, 2007 8:58 PM

204 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

needs to activate at a future date. This method merely removes any references after the activa-
tion date has passed.

class Trigger < ActiveRecord::Base
class << self
 def fire
 destroy_all ['due_at <= ?', Time.now]
 true
 end

after_filter :flush_the_blog_object

Finally, you have an after_filter to take a look at. This method is executed after all of our
processing is done and the page has been rendered. In this case, it’s just doing a little house-
cleaning by clearing out the @blog instance variable.

 def flush_the_blog_object
 @blog = nil
 true
 end

around_filter Blog

The final piece of code that we have to worry about from the ApplicationController is an
around_filter from the Blog model that wraps our request. Opening the Blog model, we can
find its relevant methods:

 @@controller_stack = []
 cattr_accessor :controller_stack

 def self.before(controller)
 controller_stack << controller
 end

 def self.after(controller)
 unless controller_stack.last == controller
 raise "Controller stack got out of kilter!"
 end
 controller_stack.pop
 end

In this case, Typo is doing some safety checks to ensure that the controller at the beginning
of the request matches the controller at the end of the request. You can see this error pop up if
you load some bad code in one of your sidebar components.

7818.book Page 204 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 205

The Articles Controller

And with that, you can go ahead and open the articles controller (/app/controllers/
articles_controller.rb). Unfortunately, a quick glance reveals that you still can’t go
straight to the index method just yet, as there are a few more obstacles in our way that
we need to investigate.

class ArticlesController < ContentController
 before_filter :verify_config

ContentController

Our first obstacle is that ArticlesController doesn’t inherit from the ApplicationController like
you might have assumed. It’s inheriting from another controller named ContentController, so
we need to see what’s going on there first.

Opening ContentController (/app/controllers/content_controller.rb), we find some
methods to support Typo’s caching, but it also has two important calls that I want to draw your
attention to:

class ContentController < ApplicationController
 helper :theme
 before_filter :auto_discovery_defaults

The first method is a call to include the helper file from theme. This includes all the meth-
ods from the theme helper (/app/helpers/theme_helper.rb), which provides us with support
for utilizing themes in the theme directory.

Second, it calls out another before_filter called auto_discovery_defaults. This method
just sets up some instance variables that are used for auto-discovery of RSS and Atom feeds.

With that, we’re finally ready to start running code in the articles controller, so let’s go back
to the articles controller and take a look at that last filter that stands between us and our index
method.

before_filter :verify_config

The next method we see is before_filter calling the verify_config method:

 def verify_config
 if User.count == 0
 redirect_to :controller => "accounts", :action => "signup"
 elsif ! this_blog.is_ok?
 redirect_to :controller => "admin/general", :action => "redirect"
 else
 return true
 end
 end

7818.book Page 205 Wednesday, October 3, 2007 8:58 PM

206 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Here’s the method that redirected you to create your administrative user the first time you
accessed the site. The first if condition checked whether we had any users created and saw
that we had none, so it sent us to the signup method in the accounts controller to create one.

The second conditional makes sure that your blog is okay—but what does that mean? This
is the first time we’ve seen a reference to a variable or method named this_blog, so your next
step is determining what object this_blog is referring to. If you go back to the application con-
troller, you’ll find this method:

 def this_blog
 @blog || Blog.default || Blog.new
 End

So this_blog returns a reference to the Blog object, which by this point should always be
returning the @blog variable that we populated earlier.

Now, how do we define if the blog is okay? is_ok? is a method from within the blog model
(/app/models/blog.rb) that merely checks our settings hash to see if we have a key set for the
blog_name. In essence, this is just verifying that you’ve made it past the initial settings screen
and clicked the Save Settings button.

 def is_ok?
 settings.has_key?('blog_name')
 end

And with that, we’re ready to tackle the index method.

index

It’s taken some time to get here, but we’re finally at the method that was called from our route
request:

 def index
 count = Article.count(:conditions => ['published = ? AND ➥

contents.published_at < ? AND blog_id = ?', true, Time.now, this_blog.id])
 @pages = Paginator.new self, count, this_blog.limit_article_display,➥

 @params[:page]
 @articles = Article.find(:all,
 :offset => @pages.current.offset,
 :limit => @pages.items_per_page,
 :order => "contents.published_at DESC",
 :include => [:categories, :tags, :user, :blog],
 :conditions =>
 ['published = ? AND contents.published_at < ? AND blog_id = ?',
 true, Time.now, this_blog.id]
)
 end

Almost simple in comparison to everything that’s come before, isn’t it? Our index method
sets up three variables: a count of the total active articles, a paginator object, and an @articles
instance variable that contains the articles that we’re going to display on the page view (but also
includes the associated categories, tags, and user and blog objects to minimize database hits).

7818.book Page 206 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 207

Displaying the Articles

It’s actually standard fare from here out in the request. We pull in the layout from the currently
selected theme and then open index.rthml in /app/views/articles, which loops through our
@articles.

<% for article in @articles -%>

Within this loop, we can see that index.rhtml makes a call to display each of the articles in
@articles using a partial named _article.rhtml.

<h2><%= article_link article.title, article %></h2>
<p class="auth">Posted by <%= author_link(article) %>
<%= js_distance_of_time_in_words_to_now article.published_at %></p>
<%= article.body_html %>

And, with that, we’ve just rendered our homepage.

■Note Observant readers may notice that we just bypassed exploring the code that renders the sidebar
elements, and yes, that was on purpose. To render the sidebars, Typo still uses a feature of Rails called com-
ponents that is strongly advised to avoid. Components were one of the few elements that added to the Rails
core that weren’t extracted from live production code. As such, there were a large number of issues with
them—most noticeably, they were extremely slow. There is even talk that components will be officially dep-
recated by the 2.0 release of Rails. Don’t worry, though—we will discuss the sidebars later on, and you’ll
even learn how to create your own sidebar component.

Working Out the Design
Now that you have Typo installed and have learned a bit about how Typo works, it’s time to start
putting Alanna’s site together. To do that, though, we need to gain a better understanding of
exactly what she wants. Being the smart one that you are, you’re able to get her to take you out to
lunch one afternoon to go over her requirements. So one free lunch later (at a place that wasn’t
too expensive but wasn’t too cheap either), we’ve got a pretty good idea of what Alanna needs.

Over lunch, Alanna told you that she wants the main page to be the place for her blog posts
to appear as well as any menu links to the extra content, and she’d like there to be some sort of
music player built into the page to allow people to sample her music.

She gave you a few printouts of secondary content that she’d like. She was thinking we
could have a set of secondary pages with names like:

• The Girl: A mini biography

• The Music: Lyrics to songs she’s written

• The Mission: Concert dates

• The Friends: Photos and links to people she knows

• The Extra Bits: A few interviews she’s done

7818.book Page 207 Wednesday, October 3, 2007 8:58 PM

208 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

From a visual standpoint, she asked if we could make the design use “earthy” colors and
she gave us the picture in Figure 9-5 hoping that we could somehow incorporate it into the
design.

Figure 9-5. Our starting image for the blog

After doodling page ideas for a few hours, we’ve come up with something that we think will
work. The header bar will include a custom logo for Alanna and a row of icons linking to each
of her secondary pages. Below that, we’ll make a three-column layout: the left column will con-
tain the Typo sidebar content; the middle column will hold her blog posts or secondary page
data, and the right column will contain this photo that she provided us. Sketching this out, we
expect that we’ll build something that looks like Figure 9-6.

Figure 9-6. A rough sketch of our final layout

7818.book Page 208 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 209

Armed with the information, we’re ready to go ahead and build out the first version of
Alanna’s new site tonight.

Using Typo
Since most of our work for adding the initial content to Alanna’s site is going to be using the admin-
istration system, let’s take a 5,000-foot view of how that system works. The primary page that
Alanna will be using to populate the home page with her blog posts is the Articles tab. The Articles
overview page (see Figure 9-7) will allow her to navigate around all of her active blog posts.

Figure 9-7. The article management section

Adding Articles Creating a new blog post (see Figure 9-8) uses a neat AJAX trick to provide a live
preview of the post as it will be rendered on the page. While we’re creating the article, we can
also associate the articles with any categories that we created in the Categories tab or even
assign custom tags.

■Caution One limitation of the live preview is that, since the administration system uses a different style
sheet than your selected theme, there can be significant differences on how the text will look on the main blog
page versus the live preview, depending on the rules in your style sheet.

Figure 9-8. Creating a new article

7818.book Page 209 Wednesday, October 3, 2007 8:58 PM

210 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Adding Pages Since we can expect that the supplementary content that Alanna would like to
have on her page—such as concert dates, the about Alanna page, and the interview page—
won’t need to be updated very often, it makes sense for you to create them in the Pages menu.

You’ll find that this interface is very similar to the Articles interface with an overview page
and a live preview (see Figure 9-9). This should make sense, since they’re both subclasses of the
Content model. In addition, we can also set the URL location that an end user would use for
navigating to this content page. So we can easily create URLs for Alanna like /pages/girl for
her About the Girl page.

Figure 9-9. Editing a page’s content

Uploading Content If Alanna would like to upload photos or some other type of file to use in any of
her blog posts, she can do that herself using the Resources tab (see Figure 9-10). The resource
page stores any uploaded files in the /public/files folder. An easy shortcut for using these files
in a blog post is to simply right/Ctrl-click the file name, copy the link location, and paste that
into your blog entry.

Figure 9-10. Uploaded image management

Managing Sidebars Finally, we have the sidebar modules that we can manage via the Sidebar tab
(see Figure 9-11). Typo comes with a surprising number of useful items that you can add to
your sidebar by simply dragging and dropping them to the active sidebar column on this page.

7818.book Page 210 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 211

From pulling in content from your Flickr, Del.icio.us, or Tada list accounts to putting up static
content, there’s not a lot you can’t do out of the box.

Figure 9-11. Options for sidebars

Managing the Blog
Creating our blog structure is one thing—but we also need to have a number of tools to manage
our blog. Typo provides several.

Spam Protection Alanna wants to allow her friends and fans to be able to post comments on her
site. Considering the current situation of massive comment spam that plagues most blogs, that
could be a recipe for a lot of aggravation. However, Typo provides us with a number of tools to
assist in managing comments and blocking spam to help keep it from becoming a problem.

First off, you should configure the spam protection settings on the settings page of Alanna’s
blog. From here, you can enable the default spam protection, disable comments after a period of
days, and set the maximum number of allowed links per comment post.

I also highly recommend that you utilize the Akismet integration by entering your Akismet
key. Akismet is a spam protection service that will test any new comment on your site and pro-
vide either a thumbs-up or thumbs-down rating on the probability that the comment is spam.
If you don’t have an Akismet key yet, you can get a free one for personal use by applying at
http://akismet.com/personal/.

7818.book Page 211 Wednesday, October 3, 2007 8:58 PM

212 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Managing Comments Typo also provides a Feedback management page that will allow Alanna to
view all of the comments on her blog in an overview fashion (see Figure 9-12). This makes it
much easier to spot and deal with any comment spam or inappropriate comments that may
have slipped in past the spam protection mechanisms.

Figure 9-12. Typo’s interface for managing comments

Banning Certain Content Finally, Typo also provides you with the ability to define your own black-
list patterns (see Figure 9-13) so that you block comments containing specific content from being
posted to Alanna’s site. You can create new blacklist patterns to match for explicit strings, or you
can create a regular expression to match for more elaborate patterns.

Figure 9-13. Blocking spam with blacklists

Add the Content
Now, we have all the necessary tools needed to populate Alanna’s new blog with all of the
content that she gave us. After a few short hours of entering her content into the system and
formatting it as text using Textile, her page is up and running with the default theme (see
Figure 9-14).

7818.book Page 212 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 213

Figure 9-14. The blog with additional content added

Customizing Typo
So we’ve got Alanna’s site up and running from a content perspective, but let’s do the custom-
ization to truly make it her site now and give it a visual flair that fits with what she needs.
Fortunately, Typo comes with a great theme system that makes customizing surprisingly easy.

Managing Themes
Within the administration system, you can view all of your installed themes within the Themes
tab (see Figure 9-15). Typo comes with two preinstalled themes: Azure, which is the default
theme that we just saw, and Scribbish, a stylish yet clean template that formats the blog posts
using the microformat specification.

You can instantly switch between any installed themes by simply clicking the Activate link
on the themes page.

Figure 9-15. Theme selection and management

7818.book Page 213 Wednesday, October 3, 2007 8:58 PM

214 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Exploring a Theme
Themes are installed into the /themes directory with each theme self-contained in its own
subdirectory there. Navigating into each theme subdirectory, you can see that they follow
a common pattern of using the same folder and file names within each. We have familiar-
sounding folders named things like images, stylesheets, views, and layouts. The reason for
this is that Typo will first check in these folders for the active theme when rendering a page to
the end user. If Typo finds a file it needs here, it will use it; if not, it will search in the normal
Rails paths. This dynamic search is extremely powerful, as it allows us to easily add a new
theme by uncompressing it into this /themes directory without worrying about adding all the
supporting style sheets, images, and so on into our public directories.

■Tip A good place to go to look for new themes for Typo is the Typo theme viewer at http://
www.dev411.com/typo/themes/, which provides thumbnails of all the themes that were submitted to the Typo
theme contest (http://www.typogarden.org/). New themes are typically installed by simply uncompressing the
file into the /themes directory.

One word of caution is that some older themes that were written for prior versions of Typo
will break when you try to use them with the most recent version. A common issue in the older
themes is a change in how the sidebars are rendered. If you see a call like this in the layout
template:

<%= render_component(:controller => 'sidebars/sidebar',
 :action => 'display_plugins') %>

you may be able to fix the theme by changing that previous call to this instead:

<%= render_sidebars %>

Of course, we’re not interested is using an existing theme, we want to build something
unique for Alanna. Fortunately, building a custom theme within Typo is almost as easy as add-
ing a premade one.

Building a Custom Theme
The easiest way to start building our own theme is to copy the contents of an existing theme. So
for our purposes, let’s go ahead and create a new folder named Alanna under /themes and copy
the contents of the azure theme into it. You can also go ahead and delete all the images in the
images folder, as we won’t be using any of those. After you’re done, you should have something
similar to Figure 9-16.

7818.book Page 214 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 215

Figure 9-16. Files for the custom theme for Alanna’s blog

The two files that will be used for the themes page in the administration system are the
preview.png and the about.markdown. We can capture a screenshot of the final design to replace
the preview.png after we’re done, but for now, let’s go ahead and edit about.markdown. This file
contains the description that is displayed about our theme on themes page of the administra-
tion system. We’ll put something basic in there for now:

Alanna

Custom theme for Alanna by Eldon Alameda

If we were going for the simplest way to create a custom theme, we could continue to use
the preexisting page layout and view files from our copied theme and merely replace the exist-
ing style sheet with the styles that we desire.

■Tip If you need some inspiration on what is possible by merely replacing the style sheet, I highly recom-
mend checking out www.csszengarden.com. CSS Zen Garden is a site that demonstrates hundreds of
unique and highly artistic designs—all done using style sheets and without changing a single line of the
underlying HTML code.

As a starting point to help you in creating your own style sheet definitions, I documented
the overall page structure as it is laid out in the azure theme in Figure 9-17.

7818.book Page 215 Wednesday, October 3, 2007 8:58 PM

216 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Figure 9-17. An overview of the HTML structure

I positioned the elements according to how they’re laid out in the azure theme. Obviously,
you’re not limited to this layout, as you can use CSS positioning rules to change where ele-
ments appear on the page. So if you want to move the sidebar to the left side, you certainly can.

The post and the sidebar elements are actually repeated elements from partials that you
may want to style a bit deeper. A breakdown of their structure can be found in Figure 9-18.

Figure 9-18. Analysis of HTML structure for posts and sidebars

7818.book Page 216 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 217

Changing the style sheet gives us a lot of flexibility and power, but it’s not going to easily
allow us to create a three-column layout like we discussed earlier. So let’s go ahead and create
a new layout by changing default.rhtml in /themes/Alanna/layouts to this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">
<head>
<title><%= h page_title </title>
 <%= page_header %>
 <link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/2.2.2/➥

build/reset-fonts-grids/reset-fonts-grids.css">
<%= stylesheet_link_tag "stylesheets/theme/alanna.css", :media => 'all' %>
 <%= javascript_include_tag 'niftycube' %>
 <script type="text/javascript">
 window.onload=function(){
 Nifty("div#sidebar,div#content");
 Nifty("div#hd","top");
 Nifty("div#ft", "bottom");
 }
 </script>
</head>

<body>
<div id="doc2" class="yui-t2">
 <div id="hd">
 <h1>Alanna Thornton</h1>
 <div id="navigation">
 <%= image_tag 'girl_papyrus.png' %>
 <%= image_tag 'guitar_papyrus.png' %>
 <%= image_tag 'music_papyrus.png' %>
 <%= image_tag 'mission_papyrus.png' %>
 <%= image_tag 'friends_papyrus.png' %>
 <%= image_tag 'extraBits_papyrus.png' %>
 </div>
 </div>
 <div id="bd">
 <div id="yui-main">
 <div class="yui-b">
 <div class="yui-gc">
 <div class="yui-u first">
 <div class="mod">
 <div class="wrapper">
 <div class="hd" id="content">
 <%= @content_for_layout %>
 <%= javascript_tag "show_dates_as_local_time()" %>

7818.book Page 217 Wednesday, October 3, 2007 8:58 PM

218 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

 </div>
 </div>
 </div>
 </div>

 <div class="yui-u">
 </div>
 </div>
 </div>
 </div>

 <div class="yui-b">
 <div id="sidebar">
 <% benchmark "BENCHMARK: layout/sidebars" do %>
 <%= render_sidebars %>
 <% end %>
 </div>
 </div>
 </div>

 <div id="ft">
 <p>All music, images, and content copyright Alanna Thornton</p>
 </div>
</div>
</body>
</html>

There are few things to highlight about this layout. Once again, we’re utilizing the YUI
library (http://developer.yahoo.com/yui/) to help us save time in developing a solid three-
column layout that will work across all modern browsers:

<link rel="stylesheet" type="text/css" href="http://yui.yahooapis.com/2.2.2/➥

build/reset-fonts-grids/reset-fonts-grids.css">

Within our layout, we wanted to make the content boxes have rounded corners. We could
do this through background images or by utilizing some complex CSS styling, but I’ve found a
lot of success in taking advantage of a solution called Nifty Corners.

Nifty Corners is a JavaScript solution that dynamically modifies the DOM to create the illu-
sion of rounded corners on block elements. To utilize the function, we first need to download
the library from http://www.html.it/articoli/niftycube/index.html and copy all the .css
and .js files from the archive into our /public/javascripts folder.

■Note We’re putting the Niftycube style sheets in the JavaScript folder because the Niftycube JavaScript
files dynamically load the style sheets—expecting them to be in the same directory. Normally when I deploy
this, I edit the files so that I can maintain proper separation.

7818.book Page 218 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 219

Once we have the files added to our application, our include call from the application lay-
out will load Niftycube:

 <%= javascript_include_tag 'niftycube' %>

And then we have our onload call to the Nifty function, which passes in the elements that
we want rounded along with any options for how we want them rounded.

 <script type="text/javascript">
 window.onload=function(){
 Nifty("div#sidebar,div#content");
 Nifty("div#hd","top");
 Nifty("div#ft", "bottom");
 }
 </script>

All that’s left to add are our own images and style sheets. Going into creating custom style
sheets is really a topic for another book, so you can simply download the remaining style sheets
and images from the code archive and add them to your application to see the final result,
which should look like Figure 9-19.

Figure 9-19. The final blog

■Note In the page that we built, we changed the layout template, but we didn’t take advantage of Typo’s
ability to also override the view templates. We could have also created new templates within the view folder
and changed the markup for how the blogs would be formatted to whatever format we desired. That means
that, within any theme you create, you can have complete control over what the rendered output will be.

7818.book Page 219 Wednesday, October 3, 2007 8:58 PM

220 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Creating a Sidebar Component
As a final customization to Alanna’s new blog, let’s explore how to create our own sidebar com-
ponents. One of the issues that Alanna may encounter with this design is the fact that, because
we’d like to try and keep the page from requiring the user to scroll, we limited the number of
blog posts per page to only two. This means that posts can fall off the front page pretty quickly.
It would be nice if we could provide a shortcut list of the most recent articles that have been
added to the blog in the sidebar as well.

All of the sidebars are installed in the /components/plugins/sidebars directory. Within this
directory, you’ll find a controller for each sidebar element and a subdirectory with the same
name that stores the view file for that sidebar component.

So go ahead and create a new file named recent_posts_controller.rb and a new sub-
directory named recent_posts within this directory. Open your new controller, and put the
following code into it:

class Plugins::Sidebars::RecentPostsController < Sidebars::ComponentPlugin
 display_name "Recent posts"
 description "Displays the most recent posts"

 def content
 @recent_articles = Article.find(:all, :limit => 7,
 :conditions => ['published = ?', true],
 :order => 'created_at DESC')
 end
end

Amazingly simple so far, isn’t it? We merely made a couple of method calls and defined
one new method named content. The display_name method sets the short name that will show
up in the title block in the sidebar administration user interface, while the description method
sets the description that will show there.

Our new content method is the method that will be called when this sidebar is rendered,
so here we simply create a new instance variable named @recent_articles and populate it with
an active record call for the last seven active articles based on the date that they were created.

Since Rails convention is to look for a display template with the same name as the method
that was called, let’s go ahead and create a content.rhtml in our new subdirectory /components/
plugins/sidebars/recent_posts/:

<h3>Recent Posts</h3>
<div>

 <% for article in @recent_articles -%>

 <%= article_link article.title, article %>

 <% end %>

</div>

7818.book Page 220 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 9 ■ B U I L D I N G A B L O G U S I N G T Y P O 221

Now save our two new files, and load the administration system. Sure enough, our new
sidebar plug-in is one of the available sidebar elements. We can activate it and reload our main
blog page to now see a listing of the seven most recent articles added to our sidebar.

Customizing a Sidebar Component
Being able to add the recent blog posts is nice and all, but we chose seven as a rather arbitrary
number of posts to show. What would we do if Alanna ever wanted to change that number to
keep a recent post in the sidebar longer? Wouldn’t it be much nicer if we could make that con-
figurable within the sidebar administration interface?

Obviously, I wouldn’t be asking these questions if it weren’t possible. So reopen your
recent_posts_controller, and modify it to look like this:

class Plugins::Sidebars::RecentPostsController < Sidebars::ComponentPlugin
 display_name "Recent posts"
 description "Displays the most recent posts"

 setting :count, 7, :label => "Number of Posts"

 def content
 @recent_articles = Article.find(:all, :limit => count,
 :conditions => ['published = ?' , true],
 :order => 'created_at DESC')
 end
end

Reloading the sidebar page in the administration system, you can see our new customiz-
able settings (see Figure 9-20). By utilizing the setting method, you can create a wide variety of
variables with custom controls in your sidebar component.

■Tip How does Typo store your customization settings? It stores it in the Sidebar model by creating and
serializing the configuration settings and values as a hash into the config attribute of the Sidebar model.

These variables are accessible in your sidebar controller by name, or you can access them
in your sidebar view by accessing them as hash elements of the @sb_config instance variable
(e.g., @sb_config['count']).

One final note—you can also utilize other form controls besides a simple text box by pass-
ing an input_type option to the settings method. For example, if you want to create a text area
element, you could do it like this:

setting :body, "Enter your text here", :input_type => :text_area

or if you wanted to capture a Boolean value, you can use a check box like so:

setting :show_user, true, :input_type => :checkbox

7818.book Page 221 Wednesday, October 3, 2007 8:58 PM

222 C H A P T E R 9 ■ B U I L D I N G A B LO G U S I N G T Y P O

Figure 9-20. Our custom sidebar

Summary
You did it! You had to give up a few extra hours of free time, but Alanna now has her own blog
page that provides her with all the tools that she needs to keep in touch with her fans.

Best of all, you were able to do it in just a few hours spread out over a few nights and meet
her deadline. Thus she is able to confidently give out her new web address to anyone she meets
at her conference this weekend. Alanna is thrilled, and you’re going to be able to get at least a
couple more free lunches out of this deal—plus, you made an office ally who can shield you
from being interrupted every few minutes.

Along the way, you also gained a good understanding of Typo, one of the most popular
Rails applications to date. The next time someone approaches you about building a blog, you
should feel very confident in your ability to install and customize an instance of Typo for them
in a short amount of time.

7818.book Page 222 Wednesday, October 3, 2007 8:58 PM

223

■ ■ ■

C H A P T E R 1 0

Building a Simple Blog Engine

While building a blog in an open source Rails application such as Typo is certainly easy
enough, something about it just really bothers the programmer in me. Wouldn’t it be more fun
to build our own? That’s the question that we’re going to tackle together in this chapter as we
build a basic blogging system tailored to our own specific needs.

To do that, we’ll focus only on the features that we actually need (or care about) letting the
others fall by the wayside to reduce bloat in our application and keep it streamlined. A blog, by
definition, is a fairly simple thing. When you really break it down, all you need is a way to save
some text to a database and a way to display that text on a web page. This is why we see so many
web development frameworks building blogs for their introductory exvoamples and
screencasts.

So What Are We Going to Build?
First off, our blog will need to be able to support the content that we want to post to it (that is,
our posts), and since a blog is something that we could use for a number of years, it will need
to be able to support a large number of posts. Whenever we start increasing the quantity of an
item in a web application, it’s always a good idea to find ways to classify our posts to make it
easier for readers to find posts on specific subjects. To accomplish this, many blog engines pro-
vide support for tags. However, I think that’s overkill for our blog. Tagging is a great tool for
providing context to a site where many users are adding content or one that’s a visual medium,
such as a photo sharing site. But in every blog application I’ve used that had tagging support, I
found that I ended up only using four or five tags to classify my posts. So we’ll bypass tag sup-
port for our blog and go with the simpler solution of allowing each post to be simply joined to
one or more categories.

Next, I’ve noticed that the blogs that I typically enjoy reading the most are those that
embed a picture or some other graphic along with the posts. It’s a small feature but one that
really seems to add that extra oomph to the blog. So we’ll definitely need to include the capa-
bility to upload images and include them in blog posts.

However, one key aspect of our simple blogging system is that we’re not going to build
a web-based admin for it. Instead, we’ll be using a desktop blogging client to manage the
posts on our new blog. My personal favorite is ecto, which features clients for both Mac and
Windows. Figure 10-1 shows ecto in action.

7818.book Page 223 Monday, October 1, 2007 9:00 PM

224 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Figure 10-1. The ecto blogging application

ecto has all the standard features that we’ll need to write and manage entries on our new
blog, such as WYSIWYG editing and spell checking (see Figure 10-1). And ecto has one key fea-
ture that makes it my favorite—the ability to drag and drop images directly into a post from
anywhere, including from a web browser. That feature alone saves me a huge amount of hassle
when I come across a funny image that I want to share on my blog. In addition, ecto can handle
most of the common image-related tasks that we might need, such as scaling, generating
thumbnails, and converting to different formats. You can download a trial version of ecto from
http://ecto.kung-foo.tv/.

Without further ado, let’s kick things off by creating our new Rails project using the direc-
tions from Chapter 2 and naming it myblog. After that, we’ll start our development by creating
our basic blog and post models as our first models.

Building Our First Models
The first model we’ll build is the blog model. This will be the core model of our blog and will be
used to name the blog and potentially to store configuration settings specific to our blog. At
this point in the project, our blog model doesn’t need to hold a lot, just a name for our blog.
Open a command prompt in the root of your application, and create our blog model with the
following command:

ruby script/generate model Blog name:string

7818.book Page 224 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 225

 create app/models/
 create test/unit/
 exists test/fixtures/
 create app/models/blog.rb
 create test/unit/blog_test.rb
 create test/fixtures/blogs.yml
 exists db/migrate
 create db/migrate/001_create_blogs.rb

Second, our blog will need to have posts (and lots of them). So what are the things that a
post needs to have?

First off, it needs to know which blog it’s associated with, so we’ll need a blog_id reference.
Then, at a bare minimum, a post will need to have both a title and a body (to hold the actual

content of the post), so we’ll add those as well. For good measure, let’s also add the created_at
and updated_at fields.

ruby script/generate model Post blog_id:integer title:string body:text ➥

created_at:datetime updated_at:datetime

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/post.rb
 create test/unit/post_test.rb
 create test/fixtures/posts.yml
 exists db/migrate
 create db/migrate/002_create_posts.rb

From here, let’s go ahead and edit our new blog and post models to add the necessary
associations and validations. Our blog model (/app/models/blog.rb) should look like this:

class Blog < ActiveRecord::Base
 has_many :posts
 validates_presence_of :name
end

while our post model (/app/models/post.rb) should look like this:

class Post < ActiveRecord::Base
 belongs_to :blog
 validates_presence_of :blog_id, :title, :body
end

Before we run our database migrations, let’s save ourselves a little hassle by creating our
initial blog object and a sample post within our migration. So open our create blogs migration

7818.book Page 225 Monday, October 1, 2007 9:00 PM

226 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

file (/db/migrate/001_create_blogs.rb), and add a Blog.create call for when we create the
blog table:

class CreateBlogs < ActiveRecord::Migration
 def self.up
 create_table :blogs do |t|
 t.column :name, :string
 end

 Blog.create(:name => 'My Simple Blog')
 end

 def self.down
 drop_table :blogs
 end
end

Next, let’s also add a sample post to our newly created blog when we create our posts table,
so edit /db/migrate/002_create_posts.rb to do that with these modifications:

class CreatePosts < ActiveRecord::Migration
 def self.up
 create_table :posts do |t|
 t.column :blog_id, :integer
 t.column :title, :string
 t.column :body, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 end

 blog = Blog.find :first
 blog.posts.create(:title => 'My Very First Blog Post',
 :body => 'Nothing Interesting to see here yet')
 end

 def self.down
 drop_table :posts
 end
end

Now, we can go ahead and run our migrations to build the tables for these models in our
database as well as create our blog and a sample post:

rake db:migrate

7818.book Page 226 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 227

== CreateBlogs: migrating
-- create_table(:blogs)
 -> 0.0025s
== CreateBlogs: migrated (0.0027s)

== CreatePosts: migrating
-- create_table(:posts)
 -> 0.0028s
== CreatePosts: migrated (0.0030s)

If you want to make sure that your blog and post records got created, you can quickly do a
double check from within the interactive console:

ruby script/console

Loading development environment.

>> blog = Blog.find :first

=> #<Blog:0x2769520 @attributes={"name"=>"My Simple Blog", "id"=>"1"}

>> blog.posts

=> [#<Post:0x2727bc0 @attributes={"updated_at"=>"2007-07-27 20:06:27",
"title"=>"My Very First Blog Post", "body"=>"Nothing Interesting to see here yet",
 "id"=>"1", "blog_id"=>"1", "created_at"=>"2007-07-27 20:06:27"}]

Building Our API
While we could continue to use migrations or the console to add content to our blog, that
would get old really fast. So let’s get cranking on building an API that ecto can use to control
our blog; ecto can work with a variety of XML-RPC APIs including Blogger, MetaWeblog, and
MovableType—unfortunately, though, there’s no support for a REST-based API yet.

7818.book Page 227 Monday, October 1, 2007 9:00 PM

228 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

For this chapter, we’ll focus on supporting the MetaWeblog API because of it’s support for
multimedia content. To do that, we’ll take advantage of the Action Web Service library, which
provides an easy way to build SOAP and XML-RPC web services in our Rails applications. Our
first step in building a web service with Action Web Service is to use the built-in web service
generator to give us a jump start. The web service generator will create a new API file and a new
controller based on the name that we pass it to support our service. For our purposes, we’ll
name our service xmlrpc, and we’ll create it from the command prompt like this:

ruby script/generate web_service xmlrpc

 create app/apis/
 exists app/controllers/
 exists test/functional/
 create app/apis/xmlrpc_api.rb
 create app/controllers/xmlrpc_controller.rb
 create test/functional/xmlrpc_api_test.rb

Let’s take a quick glance at what our generator built. First, open the xmlrpc controller
(/app/controllers/xmlrpc_controller.rb), and let’s take a quick glance at it:

class XmlrpcController < ApplicationController
 wsdl_service_name 'Xmlrpc'
end

This controller will be used to serve any requests for our new web services. The
wsle_service_name method is used to determine the name used in the SOAP bindings.
We can see that by viewing the current WSDL file by starting up a Mongrel instance of the
application and opening a web browser to http://localhost:3000/xmlrpc/service.wsdl:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="Xmlrpc" xmlns:typens="urn:ActionWebService" xmlns:wsdl=➥

"http://schemas.xmlsoap.org/wsdl/" xmlns:xsd=http://www.w3.org/2001/XMLSchema ➥

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" targetNamespace= ➥

"urn:ActionWebService" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" ➥

xmlns="http://schemas.xmlsoap.org/wsdl/">
 <portType name="XmlrpcXmlrpcPort">
 </portType>
 <binding name="XmlrpcXmlrpcBinding" type="typens:XmlrpcXmlrpcPort">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 </binding>
 <service name="XmlrpcService">
 <port name="XmlrpcXmlrpcPort" binding="typens:XmlrpcXmlrpcBinding">
 <soap:address location="http://localhost:3000/xmlrpc/api"/>

7818.book Page 228 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 229

 </port>
 </service>
</definitions>

Now, if we were to change that wsdl_service_name parameter to 'test' and reload the
WSDL file, we would see the following:

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="test" xmlns:typens="urn:ActionWebService" xmlns:wsdl= ➥

"http://schemas.xmlsoap.org/wsdl/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" ➥

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" targetNamespace= ➥

"urn:ActionWebService" xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" ➥

xmlns="http://schemas.xmlsoap.org/wsdl/">
 <portType name="testXmlrpcPort">
 </portType>
 <binding name="testXmlrpcBinding" type="typens:testXmlrpcPort">
 <soap:binding transport="http://schemas.xmlsoap.org/soap/http" style="rpc"/>
 </binding>
 <service name="testService">
 <port name="testXmlrpcPort" binding="typens:testXmlrpcBinding">
 <soap:address location="http://localhost:3000/xmlrpc/api"/>

 </port>
 </service>
</definitions>

■Note WSDL is short for Web Services Description Language; a WSDL file is an XML-based file that is used
to describe how to access a web service and what operations the service supports. Typically, a client that
wants to consume a web service will read in the WSDL file to create a proxy object for interfacing with the
service.

The second file that the generator created that we’ll look at is the API definition in /app/
apis/xmlrpc_api.rb; after opening it, we can see that there’s not much in there:

class XmlrpcApi < ActionWebService::API::Base
end

At this point, we need to make a decision about what sort of dispatching mode we’d like
our web service to use. The dispatching mode in Action Web Service controls where we want

7818.book Page 229 Monday, October 1, 2007 9:00 PM

230 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

client requests to go in our application and how those requests will be routed to the methods
that will service them. Action Web Service suports three different dispatching modes:

• Direct mode is the default dispatching mode. It works by attaching the API definition
directly to a controller. This means that all methods must be defined within a single
controller. This mode is what you saw generated previously by the generator where the
API file shared the same name as the controller. In this mode, our web service is only
available at a single URL, and all API defintions must be in that single API file.

• Delegated mode is another option for dispatching. It allows your web service to have
multiple API’s that can then be attached to controllers. The downfall of this method,
though, is that it requires each web service to maintain a separate URL.

• Layered mode is the final dispatching mode available for us to choose. It also allows for
multiple APIs to be available to a single controller. However, it has an advantage over
delegated mode in that all attached services are accessible via a single URL.

Even though we only plan to implement the MetaWeblog API for this project, it would be
wise to build our configuration to be able to support other APIs in the future (especially since
adding support for another API will be one of the exercises at the end of this project). Obviously,
the best option for our needs is going to be to use the layered dispatching mode. We’ll select
layered dispaching by adding a web_service_dispatching_mode method to our Xmlrpc controller
(/app/controllers/xmlrpc_controller.rb) and then mounting a MetaWeblog service—edit your
Xmlrpc controller to look like this:

class XmlrpcController < ApplicationController
 web_service_dispatching_mode :layered
 web_service(:metaWeblog) { MetaWeblogService.new() }
end

You may have noticed that, in our web_service call, we instantiated a new MetaWebLogService
object, but we haven’t created it yet—let’s rectify that now.

The MetaWeblog Service API
Before we create the new MetaWeblog service API definition, we first should go ahead and
delete the Xmlrpc API file that was created (/app/apis/xmlrpc_api.rb), since we won’t be using
direct dispatching.

With that file gone, create a new file named meta_weblog_service.rb in that API folder.
We’ll use this file to store all of the necessary classes and modules that we need to support the
MetaWeblog API for our blog. The first step to do that is to add a placeholder module to hold
any structs that we’ll use in our API:

module MetaWeblogStructs
end

Beneath that, we’ll define the MetaWeblog API where Action Web Service requires us to
define each of the methods for our API, including their expected input and output parameters.
By default, ActionWeb Service will camel case the method names in its API definition and
require that any requests use the camel cased version when making requests. We don’t want

7818.book Page 230 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 231

that behavior, since it might cause conflicts with our blogging client, so we’ll disable it with an
inflect_names false call in this class:

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
end

Finally, at the bottom of our file, we’ll define the MetaWeblog service that we instantiated
back in our Xmlrpc controller. Here is where we’ll build the methods defined from our API class
in the last step:

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi
end

Putting that all together, your current meta_weblog_service.rb file should look like this:

module MetaWeblogStructs
end

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
end

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi
end

Why don’t we go ahead and try to connect ecto to our new blog to see what sort of response
we can get even with this most basic of configurations? Make sure that you have your Mongrel
instance running the application and then open ecto and click the Accounts button in the tool-
bar. This will open the Account Manager dialog box where you can see a list of all of the blogs that
ecto is configured to connect to.

Go ahead and click the Add button, so we can create a connection to our new blog. This
opens the dialog shown in Figure 10-2, where we’re asked for the web address of our new blog.

Figure 10-2. Configuring our blog in ecto

7818.book Page 231 Monday, October 1, 2007 9:00 PM

232 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Assuming that you’re running your blog locally for development, you can go ahead and
enter http://localhost:3000 in the dialog box.

Next, ecto is going to ask you to provide information on how and where it can access your
blog (see Figure 10-3).

Figure 10-3. Configuring our API

Since this is our very own custom blog system, leave the system as Other. We’ve already
decided that we’ll use the MetaWeblog API, so select that from API the drop-down, and finally,
we need to provide the URL for our API endpoint in our application. For our development pur-
poses, go ahead and enter http://localhost:3000/xmlrpc/api.

From here, you’ll just need to fill out the username and password that you’ll want to use to
access your API and a name for your blog to finish out our configuration and have ecto attempt
to access our blog.

Unfortunately, once we do, ecto will greet us with the error message in Figure 10-4.

Figure 10-4. Ecto is looking for a blogger API even though we specified MetaWeblog.

Now, your first inclination will probably be to go back and check that you didn’t acciden-
tally select the wrong API when configuring your blog settings. But there’s not really any need
to, as this is expected behavior. Since the MetaWeblog API was originally designed to be an
enhancement to some of the shortcomings in the Blogger API, a number of API methods were
leveraged from the Blogger API and not created in MetaWeblog. It seems that one of our initial
calls to the blog from ecto wants to use one of those, and it’s failing because we have no Blogger
API. So before we can go any further in implementing the MetaWeblog API, we’ll need to add
in support for a few Blogger API calls.

7818.book Page 232 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 233

Adding Blogger Support
Our first step will be to add Blogger as an available web service by modifying our Xmlrpc con-
troller in /app/controllers/xmlrpc_controller.rb to include a call to the Blogger web service:

class XmlrpcController < ApplicationController
 web_service_dispatching_mode :layered

 web_service(:metaWeblog) { MetaWeblogService.new() }
 web_service(:blogger) { BloggerService.new }
end

Now, we’ll need to create a new file in /app/apis named blogger_service.rb, which we’ll
populate with a similar structure as in our meta_weblog_service.rb:

module BloggerStructs
end

class BloggerApi < ActionWebService::API::Base
 inflect_names false
end

class BloggerService < ActionWebService::Base
 web_service_api BloggerApi
end

Fire up our configuration again in ecto, and let’s try saving our account information now.
We get another error message (shown in Figure 10-5), but at least this time it gives us a clearer
picture of which Blogger method we need to build.

Figure 10-5. ecto is looking for the Blogger getUsersBlogs method.

Now ecto needs us to add the getUsersBlogs method from the Blogger API to move forward.
After doing a little research on the Blogger API site, we can find the full documentation for this
method at http://www.blogger.com/developers/api/1_docs/xmlrpc_getUsersBlogs.html.
There, we discover that this method will pass three parameters to our API: an appkey (which is
a unique identifier from the application sending the post), a username, and a password. The
method should return a struct that features the blog ID, the name of the blog, and the URL where
the blog can be found.

7818.book Page 233 Monday, October 1, 2007 9:00 PM

234 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

We’ll start by adding an ActionWebService struct that we’ll use to pass our blog data back
to ecto. Open /app/apis/blogger_service.rb, and modify the BloggerStructs module at the
top of the file to include this new struct:

module BloggerStructs
 class Blog < ActionWebService::Struct
 member :url, :string
 member :blogid, :string
 member :blogName, :string
 end
end

Now, we’ll build our API definition for the getUsersBlog method by adding it to the
BloggerApi section of our Blogger web service:

class BloggerApi < ActionWebService::API::Base
 inflect_names false

 api_method :getUsersBlogs,
 :expects => [{:appkey => :string}, {:username => :string}, ➥

{:password => :string}],
 :returns => [[BloggerStructs::Blog]]
end

All that’s left is to add the actual controller logic that will respond to a getUsersBlogs
request; we’ll build that out as a method in the BloggerService section of our file:

class BloggerService < ActionWebService::Base
 web_service_api BloggerApi

 def getUsersBlogs(appkey, username, password)
 [BloggerStructs::Blog.new(
 :url => 'http://localhost:3000',
 :blogid => 1,
 :blogName => 'My Wonderful Blog'
)]
 end
end

Retesting our configuration in ecto, we no longer see any errors—but we don’t see our
sample post pulled down either. Digging through the end of our development log (tail log/
development.log) we discover this error:

ActionWebService::Dispatcher::DispatcherError (no such method 'getCategories'
on API MetaWeblogApi):

7818.book Page 234 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 235

So the good news is that we’re back on track toward using the MetaWeblog API after add-
ing that one method from the Blogger API. The bad news is that it’s now calling a getCategories
method in the MetaWeblog API looking for a list of categories. Of course, that method doesn’t
exist, since we haven’t even built any support for categories in our blog yet. Let’s fix that by
adding a Category model now:

ruby script/generate model Category name:string

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/category.rb
 create test/unit/category_test.rb
 create test/fixtures/categories.yml
 exists db/migrate
 create db/migrate/003_create_categories.rb

Before we run this migration to create categories, though, we also need to add another
table to make it possible for us to associate a post to one or more of our categories. The simplest
way to do that will be to use a join model that utilizes a has_and_belongs_to_many association.
Let’s edit our /db/migrate/003_create_categories.rb migration file to add that table as well:

class CreateCategories < ActiveRecord::Migration
 def self.up
 create_table :categories do |t|
 t.column :name, :string
 end

 create_table :categories_posts, :id => false do |t|
 t.column :category_id, :integer
 t.column :post_id, :integer
 end

 end

 def self.down
 drop_table :categories
 drop_table :categories_posts
 end
end

With that migration saved, we’ll run our migration to create the new tables:

rake db:migrate

7818.book Page 235 Monday, October 1, 2007 9:00 PM

236 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

(in /Users/darkel/projects/myblog)
== CreateCategories: migrating ==
-- create_table(:categories)
 -> 0.0027s
-- create_table(:categories_posts)
 -> 0.0028s
== CreateCategories: migrated (0.0059s) =======================================

Of course, we now need to modify our Post and Category models to know about each other
by adding our has_and_belongs_to_many association method calls. So edit /app/models/post.rb
to look like this:

class Post < ActiveRecord::Base
 belongs_to :blog
 has_and_belongs_to_many :categories
 validates_presence_of :blog_id, :title, :body
end

and /app/models/category.rb to look like this:

class Category < ActiveRecord::Base
 has_and_belongs_to_many :posts
end

After saving those models, let’s go ahead and use the console to add a few categories to our
blog from the console:

ruby script/console

Loading development environment.

>> Category.create(:name => 'Rails')

=> #<Category:0x2c87530 @new_record_before_save=true, @errors=#<ActiveRecord::Errors
:0x2d8aeb4 @errors={}, @base=#<Category:0x2c87530 ...>, new_recordfalse,
attributes{"name"=>"Rails", "id"=>1}

>> Category.create(:name => 'Personal')

=> #<Category:0x2d65808 @new_record_before_save=true, @errors=#<ActiveRecord::Errors
:0x2d60100 @errors={}, @base=#<Category:0x2d65808 ...>, new_recordfalse,
attributes{"name"=>"Personal", "id"=>2}

mypost = Post.find :first

7818.book Page 236 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 237

=> #<Post:0x2c535f0 @attributes={"updated_at"=>"2007-03-25 13:11:05", "title"=>"My
Very First Blog Post", "body"=>"Nothing interesting to see here", "id"=>"1",
"blog_id"=>"1", "created_at"=>"2007-03-25 13:11:05"}

>> mypost.categories

=> []

>> personal = Category.find 2

=> #<Category:0x2c0ab70 @attributes={"name"=>"Personal", "id"=>"2"}

>> mypost.categories << personal

=> [#<Category:0x2c0ab70 @attributes={"name"=>"Personal", "id"=>"2"}]

>> mypost.save

=> true

>> mypost.categories

=> [#<Category:0x2c0ab70 @attributes={"name"=>"Personal", "id"=>"2"}]

Now that we have a bit of data to pull, let’s build the getCategories method in our
MetaWeblog API. Open /app/apis/meta_weblog_service.rb, and let’s define the method in
the API section:

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string}],
 :returns => [[:string]]
end

7818.book Page 237 Monday, October 1, 2007 9:00 PM

238 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Now, we’ll build the method within the MetaWeblogService class section. The
getCategories method simply returns back a collection of of our category names:

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi

 def getCategories(blogid, username, password)
 Category.find(:all).collect { |c| c.name }
 end
end

With that small addition, a quick check of attempting to save our blog configuration in ecto
again reveals that we are now golden—there are no more errors in our logs, and Figure 10-6
shows that our categories are now available to select when creating a new post.

Figure 10-6. A new blog post shows off our list of categories.

Not bad—but a couple of things are still bothersome to me. First off, even though we cre-
ated our blog configuration in ecto with a username and password and those were passed to
the getCategories method that we just called, our actual API isn’t doing anything with those
parameters. That’s about eight shades of bad, no matter how you look at it. Secondly, our sam-
ple post still hasn’t been pulled down into the ecto application. We’ll solve the mystery of the
missing sample post when we create the methods for managing our posts, but let’s fix that user
authentication issue before we go any further.

7818.book Page 238 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 239

Implementing Simple User Authentication

What we need is a simple way to verify that the username and password that were passed along
in the request match with what we expect. If this was going to be a larger application with more
than a single user, we would want to create a Users model that we would use to contain the
logic to authenticate a user. However for our simple needs, we can get by with just a simple
class method added to our Blog model (/app/models/blog.rb):

class Blog < ActiveRecord::Base
 has_many :posts
 validates_presence_of :name

 def self.authenticate(username, password)
 if username == 'eldon' && password == 'test'
 true
 else
 false
 end
 end
end

We can now modify our getCategories method in /app/apis/meta_weblog_service.rb to
utilize this Blog.authenticate method like this:

module MetaWeblogStructs
end

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string}],
 :returns => [[:string]]
end

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi

 def getCategories(blogid, username, password)
 if Blog.authenticate(username, password)
 Category.find(:all).collect { |c| c.name }
 end
 end
end

7818.book Page 239 Monday, October 1, 2007 9:00 PM

240 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

With that, we’re now all set to begin building out the rest of our MetaWeblog API. Sticking
to our CRUD methodology, we’ll focus first on the basic create, read, update and delete meth-
ods for our blog posts.

Creating a New Post

We’ll start off with the method that we’ll be using the most with our new blog—the one that
provides the ability to create a new post. A new blog post, according to the MetaWeblog API,
will be submitted as a newPost request that passes the blogid, the username and password to use,
a struct that contains the actual post, and a Boolean flag named publish that determines if the
post should be activated or not. So outside of the struct that contains the post—the necessary
values should be pretty straightforward.

That struct, however, is a fairly interesting thing. Rather than simply passing those values
as strings, we instead pass them in as a struct that maintains all of the data fields we need for a
post. In this way, the format of a new post can be modified easily without having to modify our
API. For our purposes, the three basic elements of a post struct are the title, link, and descrip-
tion. This is a standard struct that we’ll use throughout many of our methods for interacting
with a post, so rather than retyping those same elements again and again, let’s go ahead and
create it as an Action Web Service struct in the MetaWeblogStructs module that we created in
/app/apis/meta_weblog_service.rb:

module MetaWeblogStructs
 class Post < ActionWebService::Struct
 member :postid, :string
 member :title, :string
 member :link, :string
 member :dateCreated, :time
 member :description, :string
 member :categories, [:string]
 end
end

Now, with our Post struct defined, we can build the newPost method definition and use
that struct as one of the parameters in the API section of that same file:

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string}],
 :returns => [[:string]]

7818.book Page 240 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 241

 api_method :newPost,
 :expects => [
 {:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:content => MetaWeblogStructs::Post},
 {:publish => :bool}
],
 :returns => [:string]
end

Our actual newPost method should be pretty straightforward—all we need to do is create a
new Post object based on the data we received in the post struct, assigning any categories to
the new post object as well:

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi

 def getCategories(blogid, username, password)
 if Blog.authenticate(username, password)
 Category.find(:all).collect { |c| c.name }
 end
 end

 def newPost(blogid, username, password, content, publish)
 if Blog.authenticate(username, password)
 p = Post.new(:blog_id => blogid, :title => content['title'],
 :body => content['description'])
 if content['categories']
 p.categories.clear
 Category.find(:all).each do |c|
 p.categories << c if content['categories'].include?(c.name)
 end
 end
 if p.save ? p.id.to_s : 'Error: Post cannot be created'
 end
 end
end

If we go ahead and create a new post in ecto and click Publish, our post is added to
the page, but we also get back an error message complaining about a missing method (see
Figure 10-7).

7818.book Page 241 Monday, October 1, 2007 9:00 PM

242 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Figure 10-7. ecto complaining about a missing method

Getting Posts

We’ll solve that problem by building out the getPost method to gather the details from a specific
post. According to the specifications, it should be pretty easy. We’ll issue a request with a postid
(representing the ID of our post), a username, and a password, and in response, we’ll receive
back a Post struct. Still within /app/apis/meta_weblog_service.rb, we’ll add the getPost defini-
tion to the API:

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string}, {:username => :string},
 {:password => :string}],
 :returns => [[:string]]

 api_method :newPost,
 :expects => [
 {:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:content => MetaWeblogStructs::Post},
 {:publish => :bool}
],
 :returns => [:string]

 api_method :getPost,
 :expects => [{:postid => :string}, {:username => :string},
 {:password => :string}],
 :returns => [MetaWeblogStructs::Post]

end

We can build the following getPost method by simply finding the post with the ID that was
passed to us and building out a Post struct to return:

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi

7818.book Page 242 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 243

 def getCategories(blogid, username, password)
 if Blog.authenticate(username, password)
 Category.find(:all).collect { |c| c.name }
 end
 end

 def newPost(blogid, username, password, content, publish)
 if Blog.authenticate(username, password)
 p = Post.new(:blog_id => blogid, :title => content['title'],
 :body => content['description'])
 if content['categories']
 p.categories.clear
 Category.find(:all).each do |c|
 p.categories << c if content['categories'].include?(c.name)
 end
 end
 p.save ? p.id.to_s : 'Error: Post cannot be created'
 end
 end

 def getPost(postid, username, password)
 if Blog.authenticate(username, password)
 post = Post.find(postid)

 MetaWeblogStructs::Post.new(
 :dateCreated => post.created_at || '',
 :postid => post.id.to_s,
 :description => post.body,
 :title => post.title,
 :categories => post.categories.collect { |c| c.name })
 end
 end
end

If we resubmit our new post, everything works like a charm this time.

Getting Recent Posts

We’ll go a step further by building a function that builds on our last post—the getRecentPosts
method. Whereas getPost pulled back a single post, getRecentPosts will deliver back a collection
of recent posts to our requesting client. According to the MetaWeblog API, this function submits
four parameters to us: the blog identifier, the number of posts to return, a username, and a
password. Our method should return an array of Post structs back.

7818.book Page 243 Monday, October 1, 2007 9:00 PM

244 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

So here’s our API definition; note that we wrap our Post struct in the return within an extra
set of array brackets to signify that we want to pass back an array of more than one Post struct:

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string}, {:username => :string},
 {:password => :string}],
 :returns => [[:string]]

 api_method :newPost,
 :expects => [
 {:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:content => MetaWeblogStructs::Post},
 {:publish => :bool}
],
 :returns => [:string]

 api_method :getPost,
 :expects => [{:postid => :string}, {:username => :string},
 {:password => :string}],
 :returns => [MetaWeblogStructs::Post]

 api_method :getRecentPosts,
 :expects => [{:blogid => :string}, {:username => :string},
 {:password => :string}, {:numberOfPosts => :int}],
 :returns => [[MetaWeblogStructs::Post]]

end

Building the actual method will be very similar to creating the getPost method, except this
time, we’ll be returning a collection of posts. But for good measure, let’s abstract the process of
building a Post struct into a separate method named buildPost:

def buildPost(post)
 MetaWeblogStructs::Post.new(
 :dateCreated => post.created_at || '',
 :postid => post.id.to_s,
 :description => post.body,
 :title => post.title,
 :categories => post.categories.collect { |c| c.name })
end

With this abstraction, we can now create the getRecentPosts method like this:

def getRecentPosts(blogid, username, password, numberOfPosts)
 if Blog.authenticate(username, password)

7818.book Page 244 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 245

 Post.find(:all, :order => 'created_at desc',
 :limit => numberOfPosts).collect do |p|
 buildPost(p)
 end
 end
end

We can also simplify the getPost method to use the new buildPost method as well to keep
all of the logic in one place:

def getPost(postid, username, password)
 if Blog.authenticate(username, password)
 post = Post.find(postid)
 buildPost(post)
 end
end

Editing Posts

Even using a nice client like ecto providing built-in spell checking and preview capabilities,
occasionally, we’re going to post something to our blog that will need to be fixed or updated, so
let’s add the ability to edit a post. The MetaWeblog API defines an editPost method for doing
so that requires us to accept a request with a username, password, the ID of the post that we
want to edit, a Post struct containing the updated content, and a publish value (which we won’t
use but would be used to determine if this post should be a viewable on the site or not). In
response, we’ll return a Boolean value indicating that the edit was successful. Our editPost API
definition should look like this:

api_method :editPost,
 :expects => [{:postid => :string}, {:username => :string},
 {:password => :string}, {:struct => MetaWeblogStructs::Post},
 {:publish => :int}],
 :returns => [:bool]

And the actual editPost method should be fairly straightforward: pull back the post based
on the ID, update its content, and return a Boolean true if we didn’t encounter any problems:

def editPost(postid, username, password, content, publish)
 if Blog.authenticate(username, password)
 post = Post.find(postid)
 post.attributes = {:body => content['description'].to_s,
 :title => content['title'].to_s}

 if content['categories']
 post.categories.clear
 Category.find(:all).each do |c|
 post.categories << c if content['categories'].include?(c.name)
 end
 end

7818.book Page 245 Monday, October 1, 2007 9:00 PM

246 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

 post.save
 true
 end
end

Deleting Posts

We’ll round out our CRUD methods of our posts’ management with the ability to delete a post
from the blog. Unfortunately, there doesn’t seem to be a method within the MetaWeblog API
that supports this. Instead the API depends on the Blogger deletePost method. We can confirm
this by trying to delete a post from ecto and looking at the logs to determine what method it
tried to use:

ActionWebService::Dispatcher::DispatcherError (no such method 'deletePost' ➥

on API BloggerApi):

Let’s build this functionality in our Blogger API. Open the blogger.service.rb file in
/app/apis/ that we created earlier, and add the deletePost definition in the BloggerApi class:

class BloggerApi < ActionWebService::API::Base
 inflect_names false

 api_method :getUsersBlogs,
 :expects => [{:appkey => :string}, {:username => :string},
 {:password => :string}],
 :returns => [[BloggerStructs::Blog]]

 api_method :deletePost,
 :expects => [{:appkey => :string}, {:postid => :string},
 {:username => :string}, {:password => :string},
 {:publish => :int}],
 :returns => [:bool]
end

Next, add the deletePost method to the BloggerService class, which will simply pull back
the post based on the ID, delete it, and return true if we don’t have any errors:

def deletePost(appkey, postid, username, password, publish)
 if Blog.authenticate(username, password)
 post = Post.find(postid)
 post.destroy
 true
 end
end

Supporting Images
Now that our basic CRUD operations are built, we can get to the meat of our API and one of
the key reasons we wanted to use the desktop blogging client—the ability to quickly and easily

7818.book Page 246 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 247

add images to our blog. For this support, we’ll have to build in a new API method called
newMediaObject. This method will require us to define two new structs to the MetaWeblog API.

Our first struct will be what the API will use to pass the image data to us. It contains three
members:

• Name: A string that determines how the web log refers to the uploaded object

• Type: A string that includes the standard MIME type, such as image/jpeg

• Bits: A base-64-encoded binary value that contains the content of the uploaded object

Using that information, we’ll create a new struct named MediaObject in /app/apis/
meta_weblog_service.rb and define it like this:

module MetaWeblogStructs
 class Post < ActionWebService::Struct
 member :postid, :string
 member :title, :string
 member :link, :string
 member :dateCreated, :time
 member :description, :string
 member :categories, [:string]
 end

 class MediaObject < ActionWebService::Struct
 member :bits, :string
 member :name, :string
 member :type, :string
 end
end

The second new struct that we’ll add to the MetaWeblog API will only have a single mem-
ber that we’ll use to pass back the URL for how to access the uploaded image:

class Url < ActionWebService::Struct
 member :url, :string
end

Now, with those two new structs added to our MetaWeblog API, we can define the
newMediaObject method in our API definition using those structs like so:

api_method :newMediaObject,
 :expects => [{:blogid => :string}, {:username => :string},
 {:password => :string},
 {:data => MetaWeblogStructs::MediaObject}],
 :returns => [MetaWeblogStructs::Url]

Now, all that’s left is to build the method to handle the uploads. The first step in this pro-
cess is going to be to build out a place to store the files that we upload to the server. For that,
let’s create a new subdirectory named uploaded_images within the /public directory of our

7818.book Page 247 Monday, October 1, 2007 9:00 PM

248 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Rails application. You’ll also need to make sure that you’ve set the appropriate permissions on
this new folder so that your Rails application can write to this directory.

Next, we’ll need to create a new model that will handle the logic for our uploaded images
as well as store a reference to any images that we upload:

ruby script/generate model Image

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/image.rb
 create test/unit/image_test.rb
 create test/fixtures/images.yml
 exists db/migrate
 create db/migrate/004_create_images.rb

We’ll edit the new migration (/db/migrate/004_create_images.rb) to capture the name
and extension of our uploaded image:

class CreateImages < ActiveRecord::Migration
 def self.up
 create_table :images do |t|
 t.column "name", :string
 t.column "extension", :string
 t.column 'created_at', :datetime
 end
 end

 def self.down
 drop_table :images
 end
end

Go ahead and run your migration to create the images table in our database, and then we’ll
edit our Image model. We’ll have to build a few special features into our Image model in order
to support our specific needs.

For one, we need to configure where our images are going to be stored. We could specify this
in environment.rb, but for this project I think it will make more sense to keep that configuration
within the model so that all of the logic is self-contained. Create a constant in the Image model
(/app/models/image.rb) that references our newly created uploaded_images subdirectory:

DIRECTORY = 'public/uploaded_images'

Next, create a method in this model that will return the full file path reference to our
image. We can create this by joining our DIRECTORY constant with the file name and extension:

def path
 File.join(DIRECTORY, "#{self.id}.#{extension}")
end

7818.book Page 248 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 249

Of course, even more useful for our blog will be a URL reference to the image. We can
generate this by simply modifying the result of our path method with a regular expression to
remove the public reference:

def url
 path.sub(/^public/,'')
end

Finally—and probably most importantly of all—we need a method that will actually allow
us to save uploaded image data to our application. We’re going to keep this as simple as possi-
ble, merely accepting whatever is uploaded and saving it to the uploaded_images directory:

def save_file(data)
 File.open(path, 'wb') { |f| f.write(data) }
end

Putting it all together, we end up with an Image model like this:

class Image < ActiveRecord::Base
 validates_presence_of :name, :extension
 validates_uniqueness_of :name

 DIRECTORY = 'public/uploaded_images'

 def path
 File.join(DIRECTORY, "#{self.id}.#{extension}")
 end

 def url
 path.sub(/^public/,'')
 end

 def save_file(data)
 File.open(path, 'wb') { |f| f.write(data) }
 end
end

With our Image model built, let’s finish out our image uploading support by building the
newMediaObject method back in our /app/apis/meta_weblog_service.rb, where we’ll create a
new image object using the name of our uploaded file, and then saving its data to the file system
using the save_file method we created in the Image model. Once we’ve created a new image,
we’ll return the URL to the image as the response:

def newMediaObject(blogid, username, password, data)
 image = Image.create(:name => data['name'],
 :extension => data['name'].split('.').last.downcase)
 image.save_file(data['bits'])
 MetaWeblogStructs::Url.new("url" => image.url)
 end

7818.book Page 249 Monday, October 1, 2007 9:00 PM

250 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

With that, your final MetaWeblog API (/app/apis/meta_weblog_service.rb) should look
like this:

module MetaWeblogStructs
 class Post < ActionWebService::Struct
 member :postid, :string
 member :title, :string
 member :link, :string
 member :dateCreated, :time
 member :description, :string
 member :categories, [:string]
 end

 class MediaObject < ActionWebService::Struct
 member :bits, :string
 member :name, :string
 member :type, :string
 end

 class Url < ActionWebService::Struct
 member :url, :string
 end
end

class MetaWeblogApi < ActionWebService::API::Base
 inflect_names false
 api_method :getCategories,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string}],
 :returns => [[:string]]

 api_method :newPost,
 :expects => [
 {:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:content => MetaWeblogStructs::Post},
 {:publish => :bool}
],
 :returns => [:string]

 api_method :getPost,
 :expects => [{:postid => :string},
 {:username => :string},
 {:password => :string}],
 :returns => [MetaWeblogStructs::Post]

7818.book Page 250 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 251

 api_method :getRecentPosts,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:numberOfPosts => :int}],
 :returns => [[MetaWeblogStructs::Post]]

 api_method :editPost,
 :expects => [{:postid => :string},
 {:username => :string},
 {:password => :string},
 {:struct => MetaWeblogStructs::Post},
 {:publish => :int}],
 :returns => [:bool]

 api_method :newMediaObject,
 :expects => [{:blogid => :string},
 {:username => :string},
 {:password => :string},
 {:data => MetaWeblogStructs::MediaObject}],
 :returns => [MetaWeblogStructs::Url]
end

class MetaWeblogService < ActionWebService::Base
 web_service_api MetaWeblogApi

 def getCategories(blogid, username, password)
 if Blog.authenticate(username, password)
 Category.find(:all).collect { |c| c.name }
 end
 end

 def newPost(blogid, username, password, content, publish)
 if Blog.authenticate(username, password)
 p = Post.new(:blog_id => blogid, :title => content['title'],
 :body => content['description'])
 if content['categories']
 p.categories.clear
 Category.find(:all).each do |c|
 p.categories << c if content['categories'].include?(c.name)
 end
 end
 p.save ? p.id.to_s : 'Error: Post cannot be created'
 end
 end

7818.book Page 251 Monday, October 1, 2007 9:00 PM

252 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

 def getPost(postid, username, password)
 if Blog.authenticate(username, password)
 post = Post.find(postid)
 buildPost(post)
 end
 end

 def getRecentPosts(blogid, username, password, numberOfPosts)
 if Blog.authenticate(username, password)
 Post.find(:all, :order => 'created_at desc',
 :limit => numberOfPosts).collect do |p|
 buildPost(p)
 end
 end
 end

 def editPost(postid, username, password, content, publish)
 if Blog.authenticate(username, password)
 post = Post.find(postid)
 post.attributes = {:body => content['description'].to_s,
 :title => content['title'].to_s}

 if content['categories']
 post.categories.clear
 Category.find(:all).each do |c|
 post.categories << c if content['categories'].include?(c.name)
 end
 end
 post.save
 true
 end
 end

 def newMediaObject(blogid, username, password, data)
 image = Image.create(:name => data['name'],
 :extension => data['name'].split('.').last.downcase)
 image.save_file(data['bits'])
 MetaWeblogStructs::Url.new("url" => image.url)
 end

7818.book Page 252 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 253

 def buildPost(post)
 MetaWeblogStructs::Post.new(
 :dateCreated => post.created_at || '',
 :postid => post.id.to_s,
 :description => post.body,
 :title => post.title,
 :categories => post.categories.collect { |c| c.name })
 end
end

Creating a new blog post with an image gives us the successful result shown in Figure 10-8.

Figure 10-8. A blog post with an image

Building the Public-Facing Side of Our Blog
Now that we have our API built, let’s round things out by putting together the external pages
that will make up our new blog. After all, what good is a blog if no one can see it?

Creating a Basic Layout
The first thing that we need to do is put together a basic layout for our blog. We’ll keep things
really simple by putting together an uncomplicated layout consisting of a header, a main con-
tent area, and a navigation area on the right-hand side. To make things even easier in building
this layout, we’ll take advantage of the page layout capabilities of the Ext JavaScript library. I’ll

7818.book Page 253 Monday, October 1, 2007 9:00 PM

254 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

go into greater detail on how to use that library in Chapter 18 (including how to automate it’s
installation with a generator), but for now, you can get by with merely downloading the latest
version from www.extjs.com. Once you have that file uncompressed, we’ll need to copy over a
few key files into our application:

• Copy ext-all.css from /resources/css into our /public/stylesheets directory.

• Copy ext-all.js from the root of the archive into our /public/javascripts directory.

• Copy ext-base.js from /adapter/base into our /public/javascripts directory.

Once you have those files copied over as well as the application.css style sheet and images
downloaded from the code archive for this project, we can build our layout by creating a new file
in /apps/views/layouts named application.rhtml and placing the following content into it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>My Personal Blog</title>
 <%= javascript_include_tag 'ext-base' %>
 <%= javascript_include_tag 'ext-all' %>
 <%= stylesheet_link_tag 'ext-all' %>
 <%= stylesheet_link_tag 'application' %>
 <script type="text/javascript" charset="utf-8">
 Blog = function(){
 return {
 init : function(){
 var layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize: 105
 },
 east: {
 split:false,
 initialSize: 200
 },
 center: {
 autoScroll: true
 }
 });
 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header', {fitToFrame:true}));
 layout.add('east', new Ext.ContentPanel('navigation',
 {title: 'Navigation', fitToFrame:true, closable:false}));
 layout.add('center', new Ext.ContentPanel('main'));
 layout.endUpdate();
 }
 }

7818.book Page 254 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 255

 }();
 Ext.EventManager.onDocumentReady(Blog.init, Blog, true);
 </script>
</head>

<body>
 <div id="header" class="ylayout-inactive-content">
 <h1 id="welcome_to_my_blog">My Blog</h1>
 </div>

 <div id="main">
 <div id="content" class="ylayout-inactive-content">
 <%= yield %>
 </div>
 </div>

 <div id="navigation" class="ylayout-inactive-content">
 <ul id="nav">
 <%= link_to 'Home', home_path %>
 <% for cat in Category.find(:all).collect { |c| c.name } do %>
 <%= link_to "#{cat}", "/category/#{cat}" %>
 <% end %>

 </div>
</body>
</html>

So our layout will have three main blocks: the header, which displays the name of our blog;
the main block, which is where our content will be inserted via the yield method; and a navi-
gation block, in which we simply iterate over our categories to build the navigation links. Now,
if we were to view this layout (which won’t work until we add some controllers), you would see
that this layout produces an output like the page shown in Figure 10-9

Figure 10-9. Our page layout

7818.book Page 255 Monday, October 1, 2007 9:00 PM

256 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Editing the Application Controller
Now that we have our layout built, we need to set up our application to utilize it and begin to
display our blog posts in it. Open application.rb from /app/controllers/, and let’s modify it
to add a before_filter that will populate an @blog variable with a reference to our blog:

class ApplicationController < ActionController::Base
 session :session_key => '_myblog_session_id'
 before_filter :get_blog

 protected
 def get_blog
 @blog = Blog.find(:first)
 end
end

Creating the Home Page
With the layout built and a reference to our blog obtained, the next thing we should tackle is a
way of presenting our blog posts onto the main page. We’ll start out by first creating a new con-
troller named public with a default method of index:

ruby script/generate controller public index

 exists app/controllers/
 exists app/helpers/
 create app/views/public
 exists test/functional/
 create app/controllers/public_controller.rb
 create test/functional/public_controller_test.rb
 create app/helpers/public_helper.rb
 create app/views/public/index.rhtml

Next, we’ll modify our routes configuration to make the index method of our public con-
troller the default root page by adding the following line to /config/routes.rb:

ActionController::Routing::Routes.draw do |map|

 map.home '', :controller => 'public'

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

7818.book Page 256 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 257

A request to the root of our application will now look for the index method in our public
controller, so let’s edit that method to retrieve a list of the posts now:

class PublicController < ApplicationController

 def index
 @posts = @blog.posts.find(:all, :order => "created_at desc")
 end
end

Afterward, we can edit the index.rhtml view in /app/views/public to add the following
content, which will give us the results that are shown in Figure 10-10:

<% for post in @posts %>
 <h3><%= post.title %></h3>
 <p><%= post.body %></p>
 <hr />
<% end %>

Figure 10-10. Our blog displaying our posts

Adding in Pagination

Our blog page is going to fill up very fast if we’re posting with any regularity, so to keep the con-
tent accessible, we should add in some basic pagination to split up our posts across multiple
pages. If you’ve read a beginning Rails book, you’re probably aware that Rails includes a few
helpers for pagination—unfortunately, they have quickly fallen out of popularity with the Rails
community because of the some scalability issues with the overall design. They will be moved
out of the Rails core and into a separate plug-in named classic_pagination for Rails 2.0, so
even though that pagination code would probably be sufficient for our simple blog, we might
be better served with putting in a more scalable solution, so that we don’t have problems down
the road.

However, there’s no need to be afraid that we’re worrying about premature optimization
too much, as it turns out we can add a better solution with not much more work than it would
take to utilize the current Rails pagination helpers—thanks to the will_paginate plug-in

7818.book Page 257 Monday, October 1, 2007 9:00 PM

258 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

released by Rails developer P.J. Hyett. But enough discussion, let’s go ahead and install the
plug-in to our blog, so you can see it in action:

ruby script/plugin install svn://errtheblog.com/svn/plugins/will_paginate

A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/helper.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/console
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/boot.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/lib
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/lib➥

/activerecord_test_connector.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/lib/➥

load_fixtures.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/➥

finder_test.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test➥

/fixtures/topic.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/user.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/developers_projects.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/topics.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/users.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/replies.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/developer.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/company.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/project.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/projects.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/admin.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/reply.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/companies.yml
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test/fixtures➥

/schema.sql

7818.book Page 258 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 259

A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/test➥

/pagination_test.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/Rakefile
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/init.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib➥

/will_paginate
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib/➥

will_paginate/finder.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib/➥

will_paginate/core_ext.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib➥

/will_paginate/collection.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib/➥

will_paginate/view_helpers.rb
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/lib/core_ext
A /Users/darkel/book/revision/myblog/vendor/plugins/will_paginate/README
Exported revision 313.

Once the plug-in is installed, we need to make a few minor modifications to our applica-
tion to enable some exceptionally nice pagination functionality.

First, let’s modify our finder from the index method in /app/controllers/
public_controller.rb to use the new paginate method added by will_paginate. We’ll
have to pass the paginate method two new parameters: a :per_page option to configure
the number of posts to show per page and a :page option to let will_paginate know which
page in the collection we’re wanting to display:

class PublicController < ApplicationController

 def index
 @posts = @blog.posts.paginate(:per_page => 7, :page => params[:page],
 :order => "created_at desc")
 end
end

Second, in the index view (/app/views/public/index.rhtml), we simply need to add a sin-
gle line at the bottom to include our pagination links:

<% for post in @posts %>
 <h3><%= post.title %></h3>
 <p><%= post.body %></p>
 <hr />
<% end %>

<%= will_paginate @posts %>

7818.book Page 259 Monday, October 1, 2007 9:00 PM

260 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Adding in a small amount of CSS styling (influenced heavily by the sample CSS included in the
will_paginate plug-in), our pagination links end up looking like the ones shown in Figure 10-11.

Figure 10-11. Styled pagination links for our blog

Viewing a Single Post
We also need to create the ability to support viewing a single blog post, so that readers can easily
bookmark or link to a specific post that we have written. We’ll do that by adding a show method and
template to the public controller of our blog—within /app/controllers/public_controller.rb,
add the following method.

class PublicController < ApplicationController

 def index
 @posts = @blog.posts.paginate(:per_page => 2,
 :page => params[:page],
 :order => "created_at desc")
 end

 def show
 @post = @blog.posts.find(params[:id])
 end
end

Next, create a new show.rhtml template under apps/views/public. In here, we’ll simply
display the content of our post within the existing layout:

<h3><%= @post.title %></h3>
<p> <%= @post.body %></p>

Now, we just need to provide a way to route to this page. Open /config/routes.rb, and
add the following named route:

ActionController::Routing::Routes.draw do |map|

 map.home '', :controller => 'public'
 map.post '/:id', :controller => 'public', :action => 'show'

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

7818.book Page 260 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 261

With those simple additions, we can go back and modify the index template (/app/views/
public/index.rhtml) to now make the headline for each post also link to the individual post:

<% for post in @posts %>
 <h3><%= link_to post.title, post_path(post) %></h3>
 <p><%= post.body %></p>
 <hr />
<% end %>

<%= will_paginate @posts %>

Now, if people want to access a single post, they can access the page by simply navigating
to http://localhost:3000/2. That’s fine but not exactly the prettiest URL for a blog post. Typi-
cally, it’s better if the links to our blog posts are a bit more descriptive and user friendly. We can
do that fairly easily by overriding the to_param method in our Post model to return the ID plus
a nice textual description of our post’s title.

Add the following method to your Post model:

class Post < ActiveRecord::Base
 belongs_to :blog
 has_and_belongs_to_many :categories
 validates_presence_of :blog_id, :title, :body

 def to_param
 "#{id}-#{title.gsub(/[^a-z1-9]+/i, '-')}"
 end
end

Now, if we click one of the links from our main page, we’ll see that our URL shows a much
friendlier link like /posts/1-This-is-my-first-blog-post. That’s certainly going to be a lot
nicer for sharing links to our blog and for search engine optimization, but how does that work?

It’s pretty simple actually; we’re taking advantage of a couple of nice features within Rails.
In the link to the show template, we’re passing a Post object to our link_to method (link_to
post.title, post_path(post) rather than explicitly passing the object’s ID to the link_to method
(link_to post.title, post_path(post.id)). By doing it this way, we cause Rails to call its to_param
method on the object to obtain the ID, but we’ve overridden that method in the model to return the
ID plus the post’s title (which we’ve run through a regular expression to convert whitespaces to
hyphens).

Then, when this URL is delivered to the controller to do its lookup, Rails will automatically
convert what it receives as the ID to an integer, stripping off any text that it finds after the last
digit. So what comes after the ID is irrelevant to the find methods.

■Note This solution is a bit on the simplistic side; for a slightly more thorough implementation,
you might consider using another of Rick Olsen’s plug-ins by the name of permalink_fu available at
http://svn.techno-weenie.net/projects/plugins/permalink_fu/.

7818.book Page 261 Monday, October 1, 2007 9:00 PM

262 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

Adding a Category Filter
You might have noticed that we’re using our category listings as our only navigational links
within the sidebar of our layout (/app/views/layouts/application.rhtml):

<% for cat in Category.find(:all).collect { |c| c.name } do %>
 <%= link_to "#{cat}", "/category/#{cat}" %>
<% end %>

This code generates a set of links like /category/Rails and /category/Blog with the idea
that we would use those links to provide a filtered view of our blog posts showing only the posts
that were tagged with that specific category. Now, it’s time to make those links work.

Our first step will be to add a route in our routes.rb in /config that will map these requests
to a category method in our public controller and grab the category name from the URL plac-
ing it in a :name parameter:

ActionController::Routing::Routes.draw do |map|

 map.home '', :controller => 'public'
 map.category '/category/:name', :controller => 'public', :action => 'category'
 map.post '/:id', :controller => 'public', :action => 'show'

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

Within our /app/controllers/public_controller.rb, we’ll add the category method that
we just targeted for these links to search for all the blog posts tagged with the category name
that we received. To avoid duplication, we’ll just render our existing index template to handle
the displaying of blog posts:

class PublicController < ApplicationController

 def index
 @posts = @blog.posts.paginate(:per_page => 7,
 :page => params[:page],
 :order => "created_at desc")
 end

 def show
 @post = @blog.posts.find(params[:id])
 end

 def category
 @category = Category.find_by_name(params[:name])
 @posts = @category.posts.paginate(:per_page => 7, :page => params[:page],
 :conditions => ["blog_id == ?", @blog.id],
 :order => "created_at desc")

7818.book Page 262 Monday, October 1, 2007 9:00 PM

C H A P T E R 1 0 ■ B U I L D I N G A S I M P L E B L O G E N G I N E 263

 render(:action => "index")
 end
end

Building an RSS Feed
Our simple blog has come together pretty nicely in a short time. We just have one last feature
that every blog requires these days—an RSS feed. Just in case you aren’t aware, RSS stands for
Really Simple Syndication and is a way of representing our blog content into a specialized XML
format that external applications can read. End users can configure these applications to sub-
scribe to our site’s content and be notified when a post is added to our site.

To start off, we’ll create a new method in our public_controller.rb named rss, which will
simply pull our most recent 25 posts. Since we want this method to display an XML template,
we’ll also need to disable the layout for this method:

def rss
 @posts = @blog.posts.find(:all, :limit => 25, :order => 'created_at desc')
 render(:layout => false)
end

To keep things a little cleaner, we’ll create a route to our new RSS feed by adding a line to
our routes.rb file (found in /config):

ActionController::Routing::Routes.draw do |map|

 map.home '', :controller => 'public'
 map.category '/category/:name', :controller => 'public', :action => 'category'
 map.feed '/rss', :controller => 'public', :action => 'rss'
 map.post '/:id', :controller => 'public', :action => 'show'

 map.connect ':controller/service.wsdl', :action => 'wsdl'
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

This makes our RSS feed accessible at http://localhost:3000/rss. Now, all we need to do
is build our RSS template to display. Create a new file in /apps/views/public named rss.rxml,
and paste the following code into it:

xml.instruct!
xml.rss "version" => "2.0", "xmlns:dc" => "http://purl.org/dc/elements/1.1/" do
 xml.channel do
 xml.title "My Simple Weblog"
 xml.link posts_url
 xml.pubDate CGI.rfc1123_date(@posts.first.updated_at) if @posts.any?
 xml.description "My Personal weblog"

7818.book Page 263 Monday, October 1, 2007 9:00 PM

264 C H A P T E R 1 0 ■ B U I L D I N G A S I M P LE B L O G E N G I N E

 @posts.each do |post|
 xml.item do
 xml.title post.title
 xml.link post_url(post)
 xml.description post.body
 xml.pubDate CGI.rfc1123_date(post.updated_at)
 xml.guid post_url(post)
 end
 end
 end
end

With that, we’ve got our basic RSS feed built for our blog, which will serve our basic needs
in a nice, no-frills way. Personally, I’ve found a lot of value in taking a basic feed like this and
using the optimizing features and tracking capabilities of a third-party tool like FeedBurner
(http://www.feedburner.com).

Summary
In this chapter, we put together a nice, simple blog that should serve most of our basic needs.
We learned about building a common API like MetaWebLog, adding pagination, creating
friendly URLs by overwriting the to_params method, and supporting a basic RSS feed.

Building our own blog provided us with a much greater sense of accomplishment than
simply using a prebuilt solution—plus we gained a lot more flexibility to modify it however we
see fit.

7818.book Page 264 Monday, October 1, 2007 9:00 PM

265

■ ■ ■

C H A P T E R 1 1

Enhancing Our Blogs

This project was a bit different as we completed two separate blogs. Our first blog was put
together using the open-source blogging engine Typo, and we took some extra time as we went
through that to gain a deeper understanding of how Rails works. Afterward, building our own
blog engine sounded like fun, so we created a simple blogging engine with support for features
like the MetaWeblog API and an RSS feed. This chapter contains a number of ideas that you can
use to continue your own personal development and enhance the applications.

Develop the Blogger API
To build the MetaWeblog API, we were forced to build several methods in the Blogger API as
well. Why not go back and finish the job and implement the remainder of the core functionality
necessary to support posting via the Blogger API?

Build a Blog Using Mephisto
Another popular Rails-based open source blogging system is Mephisto, which was created by
Rick Olsen. You can download a copy of the latest version and read the documentation at the
official site at www.mephistoblog.com. Try to build out a blog using Mephisto; particularly,
spend time getting your feet wet implementing a page layout using the Liquid templating
language. Spend some time digging through the source code for Mephisto, too, and you’ll be
amazed at some of the nifty things you’ll learn.

Customize Typo
In Chapter 7, we spent a bit of time learning how to customize Typo with our own themes and
building out a simple sidebar component. Now, it’s time for you to expand on our little forays
into Typo by customizing your own version.

You can start off by designing and implementing your own theme within the system.
Second, you can build out your own sidebar component. One idea might be a component

to pull in the RSS feed from a Netflix queue and display your most recently watched DVDs. Or
build a component that will pull in your daily tasks into our Monkey Tasks application using
the API that you’ll build in this chapter’s “Extending Monkey Tasks” exercises.

7818.book Page 265 Wednesday, September 26, 2007 10:01 PM

266 C H A P T E R 1 1 ■ E N H A N C I N G O U R B L O G S

Move Authentication Out of Methods
In our simple blog application, one element that should bother you about our current API imple-
mentation is the amount of duplication in our code base for the simple task of authenticating
a user for each method in the API. Each method has to call if Blog.authenticate(username,
password), and this really needs to be abstracted out to keep our code dry.

For a good start on how to do this, check out the API definitions in either Typo or Mephisto,
and you’ll see how they’ve both defined a master WebService API that other web services (such
as Blogger and MetaWeblog) inherit from. In this master API, they define an authenticate method
and then in the individual web services, they simply call before_invocation :authenticate.

Add in Caching
One of the big shortcomings of our simple blog application is that, unless we’re somehow mag-
ically hosting our blog on a set of monster servers, it’s doubtful that our little blog would be able
to survive being Slashdotted or the Digg effect of a popular blog post. The best solution is to
implement a caching system so that each request to our blog content doesn’t have to require a
full hit to our system resources.

Go though the project in Part 5 to learn more about implementing a system with caching
and then come back here and implement a solid dose of caching throughout our simple blog.

Add Comments and Akismet Spam Filtering
We avoided adding a commenting system into our simple blog due to my strong annoyance with
having to deal with blog spam in other blog systems. However, for this exercise, go ahead and add
one to your blog. You could go the automated route and use a plug-in such as acts_as_commentable
(http://juixe.com/svn/acts_as_commentable), but I recommend building your own.

Here are a few things you could consider for your commenting system:

• You should consider disabling comments on blog posts a set number of days after the
post was created.

• You should never trust content that was submitted by users and thus you should filter
it vigorously. A good starting point is a plug-in by the name of white_list (http://
svn.techno-weenie.net/projects/plugins/white_list/). The white listing plug-in does
a number of helpful things, such as HTML encoding all tags and stripping href/src tags
with invalid protocols.

• You could also help eliminate spam by adding a CAPTCHA service from a service like
www.captchator.com.

• Finally, you should look into implementing a spam filter using the Akismet spam
filtering service. Check out Ryan Bates’s excellent screencast on the subject for more
information (http://railscasts.com/episodes/65).

7818.book Page 266 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 1 1 ■ E N H A N C I N G O U R B L O G S 267

Add Web Administration
We built our simple blog with the idea that we’d forgo the usual web administration pages due
to the richer interface and features of using a desktop blogging client. However, there can
always be those odd times when we want to do a little blog administration when we might not
have access to our desktop application. So go ahead and experiment with building a backend
web administration that will allow you to do your basic CRUD operations on blog posts.

RSS Feed for Categories
Currently, we’re providing a generic RSS feed for the site as a whole. However, it’s possible that
some people may only want to subscribe to a certain category of posts (after all, your mother
may want to know about your personal posts, but her eyes would gloss over trying to read your
posts in the Rails category). Solve this problem by building an RSS feed for each category.

Implement Tagging
Now personally, I think tagging on a blog site isn’t a practical use of the technology; that’s why
we opted to use categories to classify our posts instead. However, for those of you who dis-
agree, this exercise is for you.

Add tagging capabilities to your blog. You can easily find a wealth of articles and how-tos for
implementing tagging using the acts_as_taggable plug-in or the acts_as_taggable gem. However,
I’d like to point you in a different (and in my opinion better) direction. Evan Weaver has put
together a very powerful plug-in named acts_as_polymorph that can be used to build a much
more resilient tagging system. You can find detailed information at http://blog.evanweaver.com/
articles/2007/01/13/growing-up-your-acts_as_taggable.

Summary
That should be enough to get you started on enhancing our blogs. Obviously, my preference for
the blog application is to keep it small and simple. However, feel free to enhance it any way that
suits your fancy and share your innovations with others on the RailsProjects.com forums.

Extending Monkey Tasks

The following exercises offer additional enhancements for Monkey Tasks.

Build an API for the CRUD Operations of Daily Tasks

See if you can add a WebService API to MonkeyTasks that will allow you to do all of your standard CRUD operations
or tasks. You’ll need methods such as buildTask, addTask, getTask, editTask, and deleteTask. In addition,
you should have some methods like getTodaysTasks that will pull back a list of today’s task and AddToToday,
which will add a task to the current day’s task list.

7818.book Page 267 Wednesday, September 26, 2007 10:01 PM

268 C H A P T E R 1 1 ■ E N H A N C I N G O U R B L O G S

Of course, you should make sure that API is multiuser safe and is only pulling back the tasks for the authenticated user.

Add an RSS Feed

In addition to building out an API that could allow you to manage your tasks, it will also be good practice to add an
RSS feed of your daily tasks that you could subscribe to.

7818.book Page 268 Wednesday, September 26, 2007 10:01 PM

■ ■ ■

P A R T 5

Building a Web Comic
Using Caching

The question of Rails scalability still seems to surface each and every week in much the

same way that people once questioned the scalability of PHP before Yahoo adopted it.

However, with the recent advent of several high-profile Rails sites, such as Twitter (which

handles spikes of 11,000 requests per second) or the popular gaming comic Penny-Arcade

(serving over 2 million page views a day), the question of whether Rails applications can

scale is no longer valid. The better question is, “How do we scale a Rails application?”

Unfortunately it would be far outside the scope of this book to go over the external things

that we can do to handle those levels of traffic, such as implementing memcache, cluster-

ing our database access, optimizing our databases (tuning indexes and denormalizing for

performance), utilizing content delivery networks, or simply distributing our processing

out among multiple servers into a share-nothing architecture.

Fortunately, most of us won’t ever have to endure the pain that is required to serve such

high amounts of traffic through our Rails applications—even so, that doesn’t prevent us

from having to worry about scalability, as we’ve seen how quickly a front-page link from

the likes of Slashdot, Digg, or Penny Arcade can cause an ill-prepared application to leave

a server screaming for mercy.

Among the most powerful tools within our Rails arsenal for building applications that can

handle a sudden increase in page views are the included caching features. A solid under-

standing of the Rails caching system and a thoughtful implementation of caching can

7818.book Page 269 Wednesday, October 3, 2007 8:58 PM

remove expensive database queries and page generation processing out of each request

and exponentially improve our applications’ availability under load.

In this project, we’ll take a look at building a basic web comic application. We’ll start out

by creating a system for image uploads, and then explore the different caching capabili-

ties that we can add to the application to support the comic as it grows.

7818.book Page 270 Wednesday, October 3, 2007 8:58 PM

271

■ ■ ■

C H A P T E R 1 2

Building Our Base System with
Page Caching

In this first phase of the project, we’re going to build a basic web comic site that will allow us
to upload our comics. Let’s start out by creating a new project named webcomic, using the
instructions from Chapter 2. With our basic application structure ready, we need to start think-
ing about exactly what it is that we want to build. What are some of the key features of a web
comic? Obviously, we’ll need to make it easy to upload and display new comics, but taking a
look around the web at some of the popular web comics, we can see several other key features
that we’ll want to support:

• The default (home) page should always provide the most current comic.

• In order to support the site, most web comics need to provide space for some level of
advertising.

• We need to provide an easy way for visitors to navigate previous comics.

With that high-level understanding, I put together a basic sketch of what our application
should look like; it’s shown in Figure 12-1.

Figure 12-1. Rough sketch of our web comic

7818.book Page 271 Wednesday, October 3, 2007 8:58 PM

272 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

We can reasonably facilitate this layout with YUI grids in a standard layout, so go ahead and
create an application.rhtml layout file in your /app/views/layouts folder with this content:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Method Missing Web Comic</title>
 <link rel="stylesheet" href="http://yui.yahooapis.com/2.2.0/build/➥

reset-fonts-grids/reset-fonts-grids.css" type="text/css">
 <%= stylesheet_link_tag 'styles' %>
</head>
<body>
<div id="doc2" class="yui-t4">
 <div id="hd"><%= image_tag 'methodmissing.jpg' %></div>
 <div id="bd">
 <div id="yui-main">
 <div class="yui-b">
 <div class="yui-g"><%= image_tag 'topbanner.jpg' %></div>
 <div class="yui-g"><%= yield %> </div>
 </div>
 </div>
 <div class="yui-b"><%= image_tag 'sidebanner.jpg' %></div>
 </div>
 <div id="ft"> © Method Missing</div>
</div>
</body>
</html>

It would be a good idea to go ahead and load the style sheets and images from the source
archive now. With those loaded, once we add our first view to the applications (which we’ll do
shortly), this layout should produce a page like the one shown in Figure 12-2.

Figure 12-2. The initial layout for the web comic application

7818.book Page 272 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 273

A Basic Administration System
With a basic layout defined, the first task that we’ll tackle in building our web comic is handling
the administration side of things. This will allow us to begin adding and managing comics on
the site. We’ll keep our administration side fairly simple (leaning on the scaffolding templates)
so that we can spend more time on the meat and potatoes subjects of handling image uploads,
building our own authentication system, and implementing the various types of caching for
this project.

Uploading Comics
Obviously, one of the most important aspects that we’ll need to address is the ability to easily
upload new comics (images) to the site. To handle our image uploading needs, we’ll take
advantage of a plug-in by the name of attachment_fu written by Rick Olsen.

Attachment Fu is actually a significant rewrite of an earlier plug-in named Acts as Attachment,
which extended Active Record models with a number of convenience methods for handling file
uploads. Acts as Attachment had a number of extremely nice features, such as

• Allowing you to select whether to store your uploaded files on a file system or in a
database

• Providing an interface to RMagick for easy image resizing and thumbnail creation

One of the most beautiful things about the rewrite is the way that key components of the
plug-in, such as the storage engine and the image processing system, have been modularized.
This allows us much more flexibility in how Attachment Fu will work in our specific environ-
ment, and it should make adding new options to Attachment Fu much easier in the future. To
give you an idea, before the Attachment Fu rewrite, as you saw previously, there were only two
options for storing images in Acts as Attachment. However, the modularization of the storage
engine has now made it easy to add the Amazon Simple Storage Solution (or S3 for short) as a
third option. Similarly, Attachment Fu has also added new image-processing options so that
now we can choose from RMagick, ImageScience, or even MiniMagick to handle our image
resizing or thumbnailing needs.

Attachment Fu is probably the easiest way to add file upload capabilities to your applica-
tion (especially if you need to be able to handle different upload configurations in each model).
For example, a console games store might use one model for box shots where the images would
be stored in the database and another model for screenshots, which would allow for larger file
sizes, that stores the images on the file system.

Installing Attachment Fu

We can install attachment_fu through the plugin install command like so:

ruby script/plugin install ➥

http://svn.techno-weenie.net/projects/plugins/attachment_fu/

7818.book Page 273 Wednesday, October 3, 2007 8:58 PM

274 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

+ ./attachment_fu/CHANGELOG
+ ./attachment_fu/README
+ ./attachment_fu/Rakefile
+ ./attachment_fu/amazon_s3.yml.tpl
+ ./attachment_fu/init.rb
+ ./attachment_fu/install.rb
+ ./attachment_fu/lib/geometry.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/db_file_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/file_system_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/s3_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/➥

image_science_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/mini_magick_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/rmagick_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu.rb
+ ./attachment_fu/test/amazon_s3.yml
+ ./attachment_fu/test/backends/db_file_test.rb
+ ./attachment_fu/test/backends/file_system_test.rb
+ ./attachment_fu/test/backends/remote/s3_test.rb
+ ./attachment_fu/test/base_attachment_tests.rb
+ ./attachment_fu/test/basic_test.rb
+ ./attachment_fu/test/database.yml
+ ./attachment_fu/test/extra_attachment_test.rb
+ ./attachment_fu/test/fixtures/attachment.rb
+ ./attachment_fu/test/fixtures/files/fake/rails.png
+ ./attachment_fu/test/fixtures/files/foo.txt
+ ./attachment_fu/test/fixtures/files/rails.png
+ ./attachment_fu/test/geometry_test.rb
+ ./attachment_fu/test/processors/image_science_test.rb
+ ./attachment_fu/test/processors/mini_magick_test.rb
+ ./attachment_fu/test/processors/rmagick_test.rb
+ ./attachment_fu/test/schema.rb
+ ./attachment_fu/test/test_helper.rb
+ ./attachment_fu/test/validation_test.rb
attachment-fu
=====================

7818.book Page 274 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 275

Now that we’ve added attachment_fu to our application, all we need to do is build out
some models and configure them to utilize attachment_fu’s functionality.

So let’s go ahead and build the most obvious model that we’ll need—the comic model.

Our Comic Model
The comic model is going to be the core model of our entire application. It’s the model that
we’ll use to track each of our individual comics. Each comic will be stored on the local file sys-
tem for now, and each comic will have a title and basic text description. In addition to those
fields, Attachment Fu requires that we also add the following columns to our database design
for this model:

Content_type: Required for all attachments, this column stores the content type of the
upload. For example, uploading a JPG image would result in image/jpeg being stored here.

Filename: This column is required for all attachments and stores the name of the file being
uploaded.

Size: Required for all attachments, this column stores the size, in bytes, of the file being
uploaded.

Thumbnail: Used for images only if we’re creating thumbnail versions, this column stores
the reference key to the thumbnail we’ve created. If we’re storing the image on the file sys-
tem, attachment_fu will append this key onto the file name when creating the name for the
thumbnail version. If we uploaded an image named avatar.jpg, the thumbnail version
might be called avatar_thumb.jpg.

Parent_id: This column is used only if we’re creating thumbnail versions for images. It
stores a foreign key reference to the ID of the full-sized version of the image.

Width: This column, required only if we’re handling image uploads, stores the width, in
pixels, of our uploaded image.

Height: This column, also required only if we’re handling image uploads, stores the height,
in pixels, of our uploaded image.

Armed with that knowledge, we can go ahead and use the scaffold_resource command to
build out our comics controller and model:

ruby script/generate scaffold_resource Comic content_type:string filename:string➥

 size:integer width:integer height:integer title:string description:text

7818.book Page 275 Wednesday, October 3, 2007 8:58 PM

276 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/comics
 exists test/functional/
 exists test/unit/
 create app/views/comics/index.rhtml
 create app/views/comics/show.rhtml
 create app/views/comics/new.rhtml
 create app/views/comics/edit.rhtml
 create app/views/layouts/comics.rhtml
 create public/stylesheets/scaffold.css
 create app/models/comic.rb
 create app/controllers/comics_controller.rb
 create test/functional/comics_controller_test.rb
 create app/helpers/comics_helper.rb
 create test/unit/comic_test.rb
 create test/fixtures/comics.yml
 create db/migrate
 create db/migrate/001_create_comics.rb
 route map.resources :comics

Unfortunately, the scaffolding also created a layout that we didn’t want, so go ahead and
remove comics.rhtml from /app/views/layouts/:

rm app/views/layouts/comics.rhtml

With that file out of our way, we can now modify our new Comic model to utilize
attachment_fu. We start out by calling the method has_attachment from within our Comic
model to add the attachment_fu functionality. This method takes a number of configurations
options:

:content_type: By default, attachment_fu puts no restrictions on the types of files that can
be uploaded. However, we can (and should) specify the specific file types that we want
to allow through the content type configuration option. As a convenience, we can pass
it :content_type => :image to account for most standard image types. We could also
pass it a specific file type such as :content_type => 'image/jpeg' or :content_type =>
'text/plain'. If we wanted to support a variety of content types, we could pass it an array
like :content_type => '['image/jpeg', 'application/msword', 'application/pdf'].

:min_size: This sets the minimum size that we’ll allow for an uploaded file. The Rails num-
ber helpers are a godsend for this, allowing us to specify parameters in convenient formats
like :min_size => 1.byte or :min_size => 5.megabytes.

:max_size: Just as you’d expect, this sets the maximum size that we’ll allow for an
uploaded file. If nothing is provided, it will default to 1.megabyte.

7818.book Page 276 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 277

:size: This is a more convenient way to specify the minimum and maximum file
sizes allowed; we can pass this configuration option a range of sizes allowed such as
:size => 1.kilobyte..4.megabytes. This configuration option will take precedence
over the min_size and max_size options, so you should use one or the other.

:resize_to: If we’re dealing with images, we can pass this configuration option in to use
our image processing library to resize an image to specified dimensions. We can pass this
configuration option an array containing the height and width to which we want the image
resized (e.g., :resize_to => [640,480]) or, more usefully, we can pass it a geometry string
such as :resize_to => "650x650>".

■Note Geometry strings are a very powerful tool for providing better control over how our images will
resize, especially in regards to ensuring that we maintain aspect ratios.

To resize to a specific width yet maintain the current aspect ratio, simply pass in a geometry string containing
only the desired width (e.g., "x480").

To resize an image only if its dimensions are currently larger or smaller than our target resize ratio, simply
append a greater-than or less-than symbol (< or >) to the number. For example, if we were to pass in
"640x480>" and the image size was only 128 128, then no resizing would take place. However, if we
uploaded an image that was 1024 1024, then it would be resized to 480 480.

:thumbnails: This configuration option allows us to specify additional thumbnails to gen-
erate. The extra nice feature of this option is that it accepts a hash of thumbnail keys and
resize options so that we can generate multiple variants of thumbnails. For example, we
could pass it something like :thumbnails => { :frontpage => '300>', :thumb => '125' }.

:thumbnail_class: By default, if we configure attachment_fu to generate thumbnails, it will
create them as objects of the same class as the full image. This option allows us to specify
a different class for the created thumbnails. This flexibility means that the data for the
thumbnail would be stored, which allows us to specify different validations and so on.

:path_prefix: This option allows us to configure the specific path where we will store the
uploaded images. By default, it will store images in public/[table_name]—so for our
Comic model, it will store comics in /public/comics. We can configure the option like this:
:path_prefix => 'public/uploaded_files'.

:storage: We can specify where we want to store the uploaded files with this option. Cur-
rent options are on the local file system (:storage => :file_system), in the database
(:storage => :db_file), and in the Amazon Simple Storage System (:storage => :s3). If
nothing is chosen, attachment_fu will default to database storage.

:processor: This option allows us to configure the image processor to use. Current options
are ImageScience, RMagick, and MiniMagick.

7818.book Page 277 Wednesday, October 3, 2007 8:58 PM

278 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

Once we have set up our configuration options in our model, we can quickly and easily add
validations for our configuration by adding the validates_as_attachment method to our model.

Initially, we’re going to choose to store our uploaded comics onto the local file system. If
the web site grows substantially, we may consider moving the storage out to Amazon S3, so we
can take advantage of their distributed content delivery network. We’re also going to forgo the
creation of thumbnails for this model, since we’re only interested in displaying the standard
comics. We do want to make sure that our comics are displaying at a standard aspect ratio, so
we’ll resize the comic if necessary as well. With that understanding, we can go ahead and con-
figure our Comic model with the following options:

class Comic < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 500.kilobytes,
 :resize_to => '650x650>'

 validates_as_attachment
 validates_presence_of :title
end

Let’s go ahead and run our migrations now:

rake db:migrate

(in /Users/darkel/book/webcomic)
== CreateComics: migrating ==
-- create_table(:comics)
 -> 0.0028s
== CreateComics: migrated (0.0031s) ===

Modifying Our Routes
Since we don’t want this to be a public-facing controller, we need to add a path_prefix to its
route in our /config/routes.rb file so that our comics controller will only be accessible from
the path /admin/comics:

ActionController::Routing::Routes.draw do |map|
 map.resources :comics, :path_prefix => '/admin'
end

Modifying the Scaffolding
Now that we’ve configured our model and routes, we just need to make a few small changes to
the scaffolding pages that were generated to round out our administration side.

7818.book Page 278 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 279

comics/new

This first section we need to change is the template that is used to create a new comic. Scaffold-
ing created it as merely a set of text fields, but those fields will be automatically populated by
attachment_fu, so we need to modify the view to be a file-upload form instead. Open /app/
views/comics/new.rhtml, and change its content to this:

<h1>New comic</h1>
<%= error_messages_for :comic %>
<% form_for(:comic, :url => comics_path, :html => { :multipart => true }) do |f| %>
 <p>
 <label for="comic_title">Comic Headline:</label>
 <%= f.text_field :title %>
 </p>
 <p>
 <label for="comic_uploaded_data">Upload a new Comic:</label>
 <%= f.file_field :uploaded_data %>
 </p>
 <p>
 <label for="comic_description">Description:</label>
 <%= f.text_area :description %>
 </p>
 <p>
 <%= submit_tag "Create" %>
 </p>
<% end %>
<%= link_to 'Back', comics_path %>

This should give us a simple form like the one shown in Figure 12-3.

Figure 12-3. Creating a new comic

7818.book Page 279 Wednesday, October 3, 2007 8:58 PM

280 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

comics/show

Next, we want to modify the show view to provide us with a view of our uploaded comic and to
remove some of the clutter. We can link to an attachment_fu image by calling the public_filename
method within an image tag like so:

<%= image_tag @comic.public_filename %>

Our show.rhtml in /app/views/comics/ should look like this:

<p>
 Title:
 <%=h @comic.title %>
</p>
<p>
 <%= image_tag @comic.public_filename %>
</p>
<p>
 Description:
 <%=h @comic.description %>
</p>

<%= link_to 'Edit', edit_comic_path(@comic) %> |
<%= link_to 'Back', comics_path %>

comics/index

For our index.rhtml page in /app/views/comics/, we want to simplify our listing of comics by
only displaying the information of interest to us:

<h1>Listing comics</h1>
<table>
 <tr>
 <th>Filename</th>
 <th>Title</th>
 <th>Description</th>
 <th> </th>
 <th> </th>
 </tr>

<% for comic in @comics %>
 <tr>
 <td><%=h comic.filename %></td>
 <td><%=h comic.title %></td>
 <td><%=h truncate(comic.description, 35) %></td>
 <td><%= link_to 'Edit', edit_comic_path(comic) %></td>
 <td><%= link_to 'Destroy', comic_path(comic), :confirm => 'Are you sure?',
 :method => :delete %></td>

7818.book Page 280 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 281

 </tr>
<% end %>
</table>

<%= link_to 'New comic', new_comic_path %>

You can see the results of our modified view in Figure 12-4.

Figure 12-4. Displaying a list of our comics

comics/edit

Finally, we also need to make a few minor modifications to our edit.rhtml template in /app/
views/comics/ to focus it solely on being able to update the headline and description fields
associated with the comic:

<h1>Editing comic</h1>
<%= error_messages_for :comic %>

<% form_for(:comic, :url => comic_path(@comic),
 :html => { :method => :put }) do |f| %>
 <p>
 <%= image_tag @comic.public_filename %>
 </p>

 <p>
 Title

 <%= f.text_field :title %>
 </p>

 <p>
 Description

 <%= f.text_area :description %>
 </p>

7818.book Page 281 Wednesday, October 3, 2007 8:58 PM

282 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

 <p>
 <%= submit_tag "Update" %>
 </p>
<% end %>

<%= link_to 'Show', comic_path(@comic) %> |
<%= link_to 'Back', comics_path %>

Creating a Comic
Now that we have our comics controller built, let’s use it to create our first comic. For the
purpose of illustration in this book, I’m going to be using some of the comics from Why’s
(Poignant) Guide to Ruby (available online at http://poignantguide.net/ruby/), but you can
use any that you want.

■Note If you haven’t read Why’s (Poignant) Guide to Ruby yet, you have no idea how much you’re missing.
The book is not only the absolutely most unique programming book you will probably ever read, but it’s an
excellent guide to understanding some of the features that make Ruby so special.

Make sure that you have your Mongrel instance started. Open a web browser to http://
localhost:3000/admin/comics/new, and you’ll be greeted with the “New comic” page like the
one shown in Figure 12-5.

Figure 12-5. The “New comic” page of our administration system

From here, we’ll fill out the form and select a comic from our local file system. If our image
passes all of our validations, when we click create, the Comic model saves our submission to
the database and saves the modified image into /public/comics/0000/0001 (assuming that the

7818.book Page 282 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 283

ID for our comic was 1). To see the information that is stored about our new comic, we can sim-
ply open a new console session at the command prompt and view our Comic object in it:

ruby script/console

Loading development environment.

>> comic = Comic.find 1

=> #<Comic:0x10b9a30 @attributes={"content_type"=>"image/png", "size"=>"7048",
 "title"=>"Chunky Bacon", "id"=>"1", "description"=>"CHUNKY BACON!!",
 "filename"=>"the.foxes-4c.png", "height"=>"242", "width"=>"286"}

After we have successfully saved our new comic, we should be redirected to the show page
that is shown in Figure 12-6.

Figure 12-6. The show template of the administration system and Chunky Bacon

■Note At the time of this writing, some Windows users of the Attachment Fu plug-in were experiencing an
occasional bug—the image upload would fail with an error message that said “Size is not included in the list”.
The common belief across many forums is that this error seems to be related to issues with Windows incon-
sistently reporting the populated temporary file size, and a number of users have reported that merely adding
a small delay to the process eliminates the issue for them. You can read the most current details and work-
arounds for this issue at http://www.railsweenie.com/forums/3/topics/1257.

7818.book Page 283 Wednesday, October 3, 2007 8:58 PM

284 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

A Simple Authentication System
Now that we have our basic administration system working, we need to ensure that we
keep the administration system secure so that no one else can access our backend and add
unwanted content to our site. A comic declaring the wonders of Chunky Bacon on our site is
certainly acceptable, but offensive images are not.

A full-blown user-registration and authentication system like Acts As Authenticated or
RESTful authentication would be overkill for our simple needs. We don’t need to be able to
support multiple users, nor do we need an automated user registration system or the ability to
scope objects back to the user who created them. Our simple application only needs to allow a
single user to access the system and provide a way to block access to the site to anyone who
doesn’t know the password. That makes this a great opportunity to build our own simple secu-
rity system.

The easiest way to limit access to a page is by setting a session variable with some data that
we can use to determine if a user has authenticated successfully—so logging in and logging out
are really just a matter of creating and destroying a session variable. Let’s try to keep things
clean by building that functionality into a sessions controller:

ruby script/generate controller sessions

 exists app/controllers/
 exists app/helpers/
 create app/views/sessions
 exists test/functional/
 create app/controllers/sessions_controller.rb
 create test/functional/sessions_controller_test.rb
 create app/helpers/sessions_helper.rb

Now, within our new sessions controller, we’ll need to add three methods:

• new: This method will display the login form when someone wants to log in.

• create: This is the destination method of the login form. It should process the submitted
form parameters and create the necessary session variables.

• destroy: This resets all session variables—effectively logging out the user.

Now, let’s edit our session controller and add those three methods:

class SessionsController < ApplicationController
 def new
 end

 def create
 session[:password] = params[:password]
 redirect_to comics_path
 end

7818.book Page 284 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 285

 def destroy
 reset_session
 redirect_to home_path
 end
end

Our new method is the only method within our controller that will need to directly display
a view template. Create new.rhtml in /app/views/session, and place the following login form
within it:

<div id="login_form">
 <p style="color:red;"><%= flash[:notice] %></p>
 <h1>Please enter your access password: </h1>
 <% form_tag sessions_path do %>
 <%= password_field_tag :password %>
 <% end %>
</div>

Let’s also add a pair of named routes to routes.rb in /config to make it easier to access our
login and logout functionality:

ActionController::Routing::Routes.draw do |map|
 map.resources :comics, :path_prefix => '/admin'
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

With those changes, we can now access our login page at http://localhost:3000/login.
When you do, you should see something similar to Figure 12-7.

Figure 12-7. Our login page

However, submitting our form doesn’t currently do us a fat lot of good (security-wise),
because our create method merely stores whatever we submitted into a password session vari-
able and forwards us directly to the administration page. We still need to add some more logic
if we want to actually secure our administration site from mischievous eyes.

7818.book Page 285 Wednesday, October 3, 2007 8:58 PM

286 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

Limiting Access
Now that we have a simple login form, our next task for limiting access is implementing a way
to determine if the submitted password is the correct one. Since the needs of our application
are pretty simple, we can do this by simply comparing what’s in the session variable with the
correct password in a method like this:

def admin?
 session[:password] == "my_ultra_secret_password"
end

Being merely a comparison check between two values, our admin? method will return
either true or false, depending on whether or not the passwords match. Doing it this way
means that anywhere we need to limit access, we can now simply ask the question, if admin?

Now, the question is, where do we put our new admin? method? If we were going to build a
user model, I would probably recommend adding this method within that user model, so that
we could query the administrative status of a specific user:

joe = User.find(params[:id])
if joe.admin?
 // allow joe to do adminy type stuff
else
 // stop it joe!!
end

But we don’t need anything that granular—all we require is a simple way to see if the per-
son requesting the page access knows the current password. Because of that, I recommend
placing the method in your application_controller (/app/controllers/application.rb) so
that our admin? method can be called from any controller:

class ApplicationController < ActionController::Base
 session :session_key => '_webcomic_session_id'

 protected
 def admin?
 session[:password] == "my_ultra_secret_password"
 end
end

■Tip If we needed to be able to call our new admin? method from within one our view templates, we could
simply add a helper_method :admin? line command within our application controller; this would conve-
niently make our controller method accessible as a helper method as well.

7818.book Page 286 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 287

Let’s use our new admin? method to limit access to our administration section. We can do
this easily by adding a before filter into our comics controller that verifies that only an admin-
istrator can access its methods:

class ComicsController < ApplicationController
 before_filter :verify_admin
 (ommitted code)
end

Now, down at the bottom of our comics controller, we’ll add a protected block where we’ll
build our verify_admin method to redirect users to the login form if they’re not administrators:

class ComicsController < ApplicationController
 before_filter :verify_admin
 (ommitted code)
protected
 def verify_admin
 unless admin?
 redirect_to login_path
 return false
 end
 true
 end
end

All that’s left is to expand the create method in our sessions controller (/app/controllers/
sessions_controller.rb) to check that the submitted password and display an error message
if the password doesn’t match:

def create
 session[:password] = params[:password]
 if admin?
 redirect_to comics_path
 else
 flash[:notice] = "That password was incorrect"
 redirect_to login_path
 end
end

The Public-Facing Side
Now that our administration system is working, we can focus on building the forward-facing
(or public-facing) side of our web comic. We can start by defining a public controller:

ruby script/generate controller public webcomic

7818.book Page 287 Wednesday, October 3, 2007 8:58 PM

288 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

 exists app/controllers/
 exists app/helpers/
 create app/views/public
 exists test/functional/
 create app/controllers/public_controller.rb
 create test/functional/public_controller_test.rb
 create app/helpers/public_helper.rb
 create app/views/public/webcomic.rhtml

Our public controller needs only one method named webcomic, which will display a
selected comic or the latest comic if it’s called without a comic ID:

class PublicController < ApplicationController
 def webcomic
 @comic = Comic.find(params[:id])

 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end
end

Our webcomic method has an associated template in /app/views/public named
webcomic.rhtml—place the following code within it to display the current comic and to
build our next and previous comic links (albeit in a fairly brute force manner):

<h1 class="title"><%= @comic.title %></h1>
<%= image_tag @comic.public_filename %>

<hr />
<%= link_to image_tag('prev.jpg'), webcomic_path(@comic.id - 1) unless ➥

@comic.id == 1 %>
<%= link_to image_tag('next.jpg'), webcomic_path(@comic.id + 1) unless ➥

@comic.id >= Comic.count %>
<hr />

We’ll need to add a few routes to our application to send requests to our new method, so
open /config/routes.rb, and add the following bold lines to it:

ActionController::Routing::Routes.draw do |map|
 map.resources :comics, :path_prefix => '/admin'
 map.resources :sessions
 map.webcomic 'comic/:id', :controller => "public", :action => 'webcomic'
 map.home '', :controller => "public", :action => 'webcomic'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

7818.book Page 288 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 289

All of our hard work paid off with a basic web comic site, which is shown in Figure 12-8.
Assuming that this comic is the most recent comic added to the site, it would be accessible at
the root URL http://localhost:3000/. If we wanted to link to its permanent url, we would add
/comic/#{id}, so this example would be at http://locahost:3000/comic/2.

Figure 12-8. Our public-facing comic web site

At this point, we’ve got a nice simple web comic site built that will serve our most basic
needs. However, building our primary comic page with each request is going to be a little
expensive because of the fact that we have at least two database hits occurring with each page
view. In addition, the pages that are going to be viewed are fairly static, as the underlying data
will not change very often.

In situations like that, a common pattern for increasing both scalability and response time
is to implement some level of caching. Caching, in case you aren’t aware, is the process of tem-
porarily storing pre-rendered or precalculated data that is expensive to create in an easily
accessible format so that future use can be made utilizing the cached version rather than
re-rendering or recalculating the original data. Ruby on Rails provides three levels of caching
out of the box: page, action, and fragment caching.

Page Caching
By far, the fastest caching system in Rails is page caching. Page caching works by saving the fully
generated HTML page as a static file on the file system. On any future requests for that controller
or method, the web server would find the static HTML version of the page and serve that saved
copy instead of passing the request to the Rails dispatcher for processing. That means that Rails
is completely removed from the request process, and the web server is just serving a static file.

7818.book Page 289 Wednesday, October 3, 2007 8:58 PM

290 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

The typical Rails request cycle can be seen in Figure 12-9: each request goes through the
web server, which passes the request onto Rails to recognize the request, make queries to the
database to collect data, and then renders a template view utilizing the data from the database.

Figure 12-9. The typical Rails request cycle

Once we implement page caching, however, the request cycle changes, as both Rails and
the database can be completely removed from the process to decrease the response time.
Effectively, this means that we’re going to rely on the speed of the web server to serve static
content. You can see this cycle in Figure 12-10.

Figure 12-10. The page caching request cycle

Page caching sure sounds like a great idea on paper, doesn’t it? Well, it is pretty good, but
it does have some hard limitations that you need to be aware of.

First off, page caching saves the result of a request and then serves that same result to all
subsequent requests. That means that everyone who makes this request will get exactly the
same response, so we can’t have any dynamic content displayed within the page. Since the
subsequent requests are also bypassing Rails, that means that we have no opportunity to do
any level of authentication either. And our final limitation is that page caching requires that the

7818.book Page 290 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 291

full page be rebuilt if we need to refresh the cache, so it’s only going to be a good fit for situa-
tions where the content is going to remain static most of the time. Pages that are constantly
being updated with new content would also be constantly expiring and re-creating their page
caches and could effectively find themselves with lower performance than running Rails with-
out caching.

Enabling Caching
If you’re working in the development environment, you need to make a minor change to your
configuration before we can start implementing caching within your project. You see, within
the development environment, caching is turned off by default; you can modify that by editing
development.rb in /config/environments and setting caching to true:

Show full error reports and disable caching
config.action_controller.consider_all_requests_local = true
config.action_controller.perform_caching = true
config.action_view.cache_template_extensions = false
config.action_view.debug_rjs = true

Now that you have caching enabled within your environment, restart your web server, and
let’s turn on caching for our webcomic project by adding the caches_page method to our public
controller (/app/controllers/public_controller.rb):

class PublicController < ApplicationController
 caches_page :webcomic

 def webcomic
 @comic = Comic.find(params[:id])
 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end
end

Believe it or not, that’s all it takes. If you were to open a browser and hit the site now, that
first page view would go through the Rails system normally, except that now Rails will also save
a copy of the rendered HTML that it is going to send back to the browser in the /public direc-
tory. That means that each subsequent request would be served the cached version of the page,
thereby eliminating the time required for our expensive database calls and template rendering.
But how could we see that happen? After all, to the end user, there would be no difference
between the two requests.

Probably the easiest way to see our page caching in action is to monitor the logs while
we’re accessing the site. So open a web browser, and view one of our comics by navigating to
http://localhost:3000/comic/1.

7818.book Page 291 Wednesday, October 3, 2007 8:58 PM

292 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

Figure 12-11. Viewing a comic on the site

Afterward, we can review development.log (in /logs), and we can see that our page is being
cached (the most recent log entries are at the bottom of the file). Here, we can see our initial
view of the page with our multiple database queries—however, of special note is the line near
the bottom that indicates that Rails has cached the page as /comic/1.html.

Processing PublicController#webcomic (for 127.0.0.1 at 2007-05-27 22:01:03) [GET]
 Session ID: fd2ac7920510a64fa9710dd30f1a1c65
 Parameters: {"action"=>"webcomic", "id"=>"1", "controller"=>"public"}
 Comic Load (0.000318) SELECT * FROM comics WHERE (comics."id" = 1)
Rendering within layouts/application
Rendering public/webcomic
 SQL (0.000225) SELECT count(*) AS count_all FROM comics
Cached page: /comic/1.html (0.00051)
Completed in 0.02260 (44 reqs/sec) | Rendering: 0.00253 (11%) | DB: 0.00054 (2%)
 | 200 OK [http://localhost/comic/1]

From this point on, though, if you were to click refresh on your browser to view the page
again, you might be surprised to see that there are no new log entries for any of your refreshes.
That’s because, once we’ve cached the page, all future hits to the page completely bypass Rails
and are served directly by the web server.

Everything seems to be working splendidly now. Well, almost—because look what hap-
pens if we try to hit the root of our application at http://localhost:3000/:

Processing PublicController#webcomic (for 127.0.0.1 at 2007-05-27 22:04:33) [GET]
 Session ID: e7b4e99338a8bbb8aed9daedfb999567
 Parameters: {"action"=>"webcomic", "controller"=>"public"}
 Comic Load (0.000556) SELECT * FROM comics ORDER BY id desc LIMIT 1

7818.book Page 292 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 293

Rendering within layouts/application
Rendering public/webcomic
 SQL (0.000255) SELECT count(*) AS count_all FROM comics
Cached page: /comic.html (0.00193)
Completed in 0.02541 (39 reqs/sec) | Rendering: 0.00389 (15%) | DB: 0.00081
(3%) | 200 OK [http://localhost/]

And if we refresh again, we’ll see another copy of this same entry get created in the log.
Why’s that? Well, it’s because of the way that our routes are built: the page caching mechanism
doesn’t really understand that this is the root of our application (which would technically be
http://localhost:3000/index), so it tries to save the file with the closest name it can deter-
mine—our named route.

Then when our next request comes in looking for the root (index), it doesn’t find a
match, since the cached page was saved as comic.html. That’s just not going to work for our
needs, because it means that the root page of our application will never be cached. Since that
will also most likely be the most frequently visited page, it’s the page that is the most impor-
tant that we do cache.

I’ve heard of some people solving this problem by creating an after_save filter that copies
the newly rendered comic.html cache file over index.html whenever the cache is created or
updated. But that feels a bit hackish to me, especially when there’s an easier way to solve this
problem. The trade-off for the solution, though, is that we have to be willing to sacrifice a bit of
our DRY methodology and introduce a bit of duplication.

To solve the problem, we can simply add an index method that will pull the most recent
comic from the database (duplicating the same query from our webcomic method) and then
use that result to render our existing webcomic template. So your public controller (/app/
controllers/public_controller.rb) should be modified to look like this:

class PublicController < ApplicationController
 caches_page :webcomic, :index

 def index
 @comic = Comic.find(:first, :order => 'id desc')
 render :template => 'public/webcomic'
 end

 def webcomic
 @comic = Comic.find(params[:id])
 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end
end

Now, to enable this new method, we also need to change the named route home to point
to our new index method instead of to the webcomic method to which it currently routes. Edit
/config/routes.rb like so:

ActionController::Routing::Routes.draw do |map|
 map.resources :comics, :path_prefix => '/admin'
 map.resources :sessions

7818.book Page 293 Wednesday, October 3, 2007 8:58 PM

294 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

 map.webcomic 'comic/:id', :controller => "public", :action => 'webcomic'
 map.home '', :controller => "public", :action => 'index'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

With those quick changes in place, let’s try viewing http://localhost:3000 again; you
should now see our caching working correctly, as the logs show that Rails is saving the cached
page as index.html:

Processing PublicController#index (for 127.0.0.1 at 2007-05-27 22:10:38) [GET]
 Session ID: fd2ac7920510a64fa9710dd30f1a1c65
 Parameters: {"action"=>"index", "controller"=>"public"}
 Comic Load (0.000534) SELECT * FROM comics ORDER BY id desc LIMIT 1
Rendering layoutfalsetemplatepublic/webcomic within layouts/application
Rendering public/webcomic
 SQL (0.000229) SELECT count(*) AS count_all FROM comics
Cached page: /index.html (0.00227)
Completed in 0.02472 (40 reqs/sec) | Rendering: 0.00387 (15%) | DB: 0.00076
(3%) | 200 OK [http://localhost/]

Sure enough, we’re back on track now. But caching the results of our pages is only half the
battle. We also need to have a way of clearing out those cached versions of our pages so that
changes to the underlying data will be reflected in what we display.

Cleaning Up the Cache
Since the page cache files are actually just static HTML files that are stored within the /public
directory, we could clear out our page cache by simply deleting those files manually. But delet-
ing those files every time we added a comic or updated a description would get old pretty
quickly. Fortunately, we don’t have to resort to this, as Rails provides us with several tools that
we can utilize to remove caches.

At the most basic level is the expire_page method, which we can use to delete a specific
cache file. We could be verbose and add this method to all of our controller methods that might
trigger a need to update our cache, so after modifying the update method in our comics con-
troller (/app/controllers/comics_controller.rb), it might look something like this:

def update
 @comic = Comic.find(params[:id])
 @comic.update_attributes(params[:comic])
 expire_page(:controller => 'public, :action => 'webcomic', :id => @comic.id)
 redirect_to comic_url(@comic)
end

7818.book Page 294 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 295

But managing the sheer number of places where we would need to keep track of when to
expire the cache would be both very error-prone (as we could easily miss calling the expire_page
method in one of our methods) and a royal pain in the neck to manage. Fortunately, we have
another tool that can make this process even easier for us—the sweeper.

Sweepers are part of a special class that is half observer and half filter—their whole pur-
pose is to monitor the events on a model and allow us to override the standard filter methods
with cache-expiring actions. That probably sounds a lot more complicated than it really is.
Let’s take a look at a real sweeper, and you’ll see the true power of their simplicity.

Creating a Sweeper

Within your /app/models folder, create a new file named comic_sweeper.rb for our new
sweeper, and let’s put the following code in it:

class ComicSweeper < ActionController::Caching::Sweeper
 observe Comic

 def after_save(comic)
 expire_cache_for(comic)
 end

 def after_destroy(comic)
 expire_cache_for(comic)
 end

 private
 def expire_cache_for(record)
 expire_page(:controller => 'public', :action => 'index')
 expire_page(:controller => 'public', :action => 'webcomic',
 :id => record.id)
 expire_page(:controller => 'public', :action => 'webcomic',
 :id => (record.id - 1))
 end
end

Within our sweeper, the first thing that we had to do was to specify what models it should
be observing, which in our case is just the Comic model—one thing of note is that you do need
to pass this method the name of the actual class that you want observed. That’s why we’re
passing it Comic and not a string like "comics" or a symbol like :comic.

After specifying the models that we’re observing, we override the event methods that we
want to respond to. Typically, you’ll want to create an after_save method that responds to
both create and update calls and an after_destroy method, as these are going to be the core
events that would cause you to need to update the cache. For our purposes here, we extract the
duplicate code that would go into both the after_save and after_destroy methods into a pri-
vate method named expire_cache_for, which is simply calling our expire_page methods.

7818.book Page 295 Wednesday, October 3, 2007 8:58 PM

296 C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G

For our application, anytime we change or update a comic, we’re going to need to update
three page caches:

• The root of our application: This cache needs updating in case our change introduces a
new comic that needs to display as the most current.

• The specific record that is created: We update this cache in case our change alters some of
the data on the page.

• The comic directly preceding the one that triggers the event: This is our safety net to make
sure that our next and previous buttons are working correctly. For example, if the most
recently added comic has an ID of 32, its display cache will not feature the Next Comic
button since it is the last in the series. However, when we add a comic with an ID of 33,
we need to expire the cache for comic 32 so that it will know it is no longer the last in the
series and should now display a Next Comic button.

Before our sweeper will work, though, we also need to register this sweeper into any controllers
that we’ll be using to update our data—in our case, that’s the comics controller. We do that by add-
ing a cache_sweeper command to its related controller and specifying which methods it should be
made aware of. So, open the comics controller (/app/controllers/comics_controller.rb), and add
our cache_sweeper method call:

class ComicsController < ApplicationController
 cache_sweeper :comic_sweeper, :only => [:create, :update, :destroy]
 (lines omitted)
end

With our sweeper created and registered, let’s do a quick test by opening up the administra-
tion site http://locahost/admin/comics/ and making a small modification to the description of
one of the comics that you’ve added to the site. After that, you should be able to see that our exist-
ing page caches are expired in the logs:

Processing ComicsController#create (for 127.0.0.1 at 2007-05-27 22:26:30) [POST]
 Session ID: fd2ac7920510a64fa9710dd30f1a1c65
 Parameters: {"commit"=>"Create", "action"=>"create", "controller"=>"comics",
 "comic"=>{"title"=>"Screenshot", "uploaded_data"=>#<File:/tmp/CGI10356-1>,
 "description"=>"asdfajlksdfjladsf"}}
 SQL (0.000457) INSERT INTO comics ("content_type", "size", "title",
"description", "filename", "height", "width") VALUES('image/png', 83788,
'Screenshot', 'asdfajlksdfjladsf', 'Picture_1.png', 349, 650)
Expired page: /index.html (0.00006)
Expired page: /comic/3.html (0.00004)
Expired page: /comic/2.html (0.00005)
Redirected to http://localhost:3000/admin/comics/3
Completed in 0.17315 (5 reqs/sec) | DB: 0.00046 (0%) |
302 Found [http://localhost/admin/comics]

7818.book Page 296 Wednesday, October 3, 2007 8:58 PM

C H A P T E R 1 2 ■ B U I L D I N G O U R B A S E S Y S T E M W I T H P A G E C A C H I N G 297

Summary
In this chapter, we’ve put together the basics of our own little web comic site. We utilized
Rick Olsen’s fantastic Attachment Fu plug-in to quickly add a powerful and flexible image
uploading solution to our application. We built our own simple authentication system, and we
explored the process of caching the pages of our application to exponentially increase our scal-
ability and performance.

In the next half of our project, we’ll explore some of the limitations that our current cach-
ing solution has introduced and how we can overcome them using Rails’s other two caching
systems: action caching and fragment caching.

7818.book Page 297 Wednesday, October 3, 2007 8:58 PM

299

■ ■ ■

C H A P T E R 1 3

Implementing Advanced
Caching

Things have been going great for our little web comic. The site has been running like a champ,
and our readership has continued to grow. Page caching has served the site extremely well, as
it’s been able to maintain consistent growth without having to add any additional processing.

However, a number of readers have voiced some complaints about the amount of adver-
tising on the site and at the same time expressed desire to help support the site financially. So
we’re going to try an experiment by allowing readers to purchase a subscription to the site,
whereby they’ll be given a password that they can use to view an ad-free version of the site. If
it’s successful, we can look at adding additional features for subscribers later such as exclusive
comics, desktop backgrounds, or even the ability to comment.

Unfortunately, since we want to introduce authentication into these pages, that pretty
much eliminates page caching as an option. Fortunately, we do have a caching solution that
can meet this need though—action caching. In action caching we’ll still cache the full output
of a rendered page so that we can serve that pre-rendered version to subsequent visits to the
same page. If it sounds pretty similar to what we just did in the last chapter for page caching,
that’s because it is. Action caching, however, does provide us with two strong benefits that we
couldn’t get with page caching.

First, in page caching, Rails merely stores a static HTML file and leaves the web server in
charge of finding and utilizing that stored page. This is great in that it eliminates any processing
time from the request, but it completely blocks our ability to limit access to a page. In action
caching, however, Rails maintains full control over the caching process by being the decision
maker for finding and using cached pages.

Second, since the requests are now going through Rails to utilize the cache, we have the
ability to add any number of before, after, or around filters in the processing of the request.
This means that we can easily add a user authentication scheme and still utilize a cache of the
page. Of course, we can’t gain something for nothing—and thus while action caching does pro-
vide us more control over our pages, it comes at a cost of being slower than page caching. You
can see a diagram showing the action caching process in Figure 13-1.

7818.book Page 299 Monday, October 8, 2007 7:03 PM

300 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

Figure 13-1. Action Caching in Action

For our needs, we’ll be implementing a new section of the site that requires authentica-
tion, yet we still want to utilize caching in that section to maximize our performance and
scalability—so action caching is definitely the way to go, so let’s see how to implement action
caching around a new paid members section.

The Members Controller
Our first step in implementing a subscriber’s section of the site is to build a new controller that
we will use to serve our paid members—we’ll name this controller members:

ruby script/generate controller Members

 exists app/controllers/
 exists app/helpers/
 create app/views/members
 exists test/functional/
 create app/controllers/members_controller.rb
 create test/functional/members_controller_test.rb
 create app/helpers/members_helper.rb

Next, since our goal is to provide paying members with an ad-free version of the site, we’ll
need to configure this members controller to utilize a different version of the layout with all ads
removed. So create a new file in /app/views/layouts named adfree.rhtml, and place this lay-
out content inside of it:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"➥

 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title> Method Missing Web Comic</title>
 <link rel="stylesheet" href="http://yui.yahooapis.com/2.2.0/build/ ➥

reset-fonts-grids/reset-fonts-grids.css" type="text/css">
 <%= stylesheet_link_tag 'styles' %>
</head>

7818.book Page 300 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 301

<body>
 <div id="doc2" class="yui-t7">
 <div id="hd"><%= image_tag 'methodmissing.jpg' %></div>
 <div id="bd">
 <div id="yui-main">
 <div class="yui-b">
 <div class="yui-g"> <%= yield %> </div>
 </div>
 </div>
 </div>
 <div id="ft"> © Method Missing</div>
 </div>
</body>
</html>

We can make this new layout the default for our members by calling this layout from
within our members controller (/app/controllers/members_controller.rb) with the simple
addition of a layout method:

class MembersController < ApplicationController
 layout 'adfree'
end

While we’re at it, let’s also slip in this layout as the default in our comics controller
(/app/controllers/comics_controller.rb). That way, we won’t have to stare at advertising
while we’re administering the site:

class ComicsController < ApplicationController
 layout 'adfree'
 (...lines ommitted...)
end

Limiting Access to Subscribers
In order to secure access to the members-only pages, we’ll first need to implement a way to
determine if a user is a paying member or not. To do that, we should be able to reuse a large
portion of the authentication design that we created to secure the administration side of our
site with a few minor changes. We’ll start by adding a member? method to our application con-
troller (/app/controllers/application.rb) just as we did with the admin? method before:

class ApplicationController < ActionController::Base
 session :session_key => '_webcomic_session_id'

 protected

 def admin?
 session[:password] == "my_ultra_secret_password"
 end

7818.book Page 301 Monday, October 8, 2007 7:03 PM

302 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

 def member?
 session[:password] == "lambda-lambda-lambda"
 end
end

■Note Obviously, that’s an awfully long password to type, so feel free to set it to anything that makes sense
to you in your application. You do, however, get bonus points if you can name the movie that inspired that
member password.

With a new member? function firmly in hand, we can now round out the members control-
ler (/app/controllers/members_controller.rb) to mirror most of the same functionality of the
public controller (/app/controllers/public_controller.rb) with the addition of a filter to a
verify_member method that will keep unpaying eyes away from our ad-free pages:

class MembersController < ApplicationController
 layout 'adfree'

 before_filter :verify_member

 def index
 @comic = Comic.find(:first, :order => 'id desc')
 render :template => 'members/webcomic'
 end

 def webcomic
 @comic = Comic.find(params[:id])
 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end

 protected
 def verify_member
 unless member? || admin?
 redirect_to login_path
 return false
 end
 true
 end
end

7818.book Page 302 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 303

The template that corresponds to the webcomic method in the members controller
(/app/views/members/webcomic.rhtml) should be nearly identical to its sibling from the
public controller with a few minor changes to where the next and previous buttons will
redirect the user:

<h1 class="title"><%= @comic.title %></h1>
<%= image_tag @comic.public_filename %>

<hr />
<%= link_to image_tag('prev.jpg'), members_webcomic_path(@comic.id - 1) ➥

 unless @comic.id == 1 %>
<%= link_to image_tag('next.jpg'), members_webcomic_path(@comic.id + 1) ➥
unless @comic.id >= Comic.count %>
<hr />

I don’t know about you, but the lack of DRYness in our implementation so far is really starting
to annoy me. So let’s add a little back by reusing our existing login form to handle subscriber logins
in addition to our own administrator login. Open /app/controller/sessions_controller.rb, and
modify the create method thusly:

def create
 session[:password] = params[:password]
 if admin?
 redirect_to comics_path
 elsif member?
 redirect_to members_path
 else
 flash[:notice] = "That password was incorrect"
 redirect_to login_path
 end
end

All that’s left is to add a few routes to handle our member pages, and we’ll have success-
fully finished our implementation of the subscribers’ pages:

ActionController::Routing::Routes.draw do |map|
 map.resources :comics, :path_prefix => '/admin'
 map.resources :sessions
 map.webcomic 'comic/:id', :controller => "public", :action => 'webcomic'
 map.home '', :controller => "public", :action => 'index'
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.members 'members', :controller => 'members', :action => 'index'
 map.members_webcomic '/members/comic/:id', :controller => 'members', ➥

:action => 'webcomic'
end

7818.book Page 303 Monday, October 8, 2007 7:03 PM

304 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

So now all we have to do is provide the current password and a link to the login form to any
of our readers who choose to donate money to the web comic. It’s a low-tech solution, but one
that will work well for our current needs.

Caching Our Members Pages
As I said earlier, the problem with our members page is that we need to have Rails check the
authentication prior to serving up the page, so that rules out page caching. Instead, we’ll
implement action caching, which should feel very similar—albeit a bit slower.

We can enable action caching on our controller’s methods with the caches_action
method:

class MembersController < ApplicationController
 layout 'adfree'
 before_filter :verify_member

 caches_action :index, :webcomic

 def index
 @comic = Comic.find(:first, :order => 'id desc')
 render :template => 'members/webcomic'
 end

 def webcomic
 @comic = Comic.find(params[:id])
 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end

protected
 def verify_member
 unless member? || admin?
 redirect_to login_path
 return false
 end
 true
 end
end

Just as we did with page caching, we can see our caching in action by monitoring what’s
going in the development.log in /logs while logging into the members-only page via the login
form using the member’s password:

Processing MembersController#index (for 127.0.0.1 at 2007-05-27 23:15:04) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"members"}

7818.book Page 304 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 305

Fragment read: localhost:3000/members (0.00013)
 Comic Load (0.000533) SELECT * FROM comics ORDER BY id desc LIMIT 1
Rendering layoutfalsetemplatemembers/webcomic within layouts/adfree
Rendering members/webcomic
 SQL (0.000231) SELECT count(*) AS count_all FROM comics
Cached fragment: localhost:3000/members (0.00081)
Completed in 0.01014 (98 reqs/sec) | Rendering: 0.00362 (35%) | DB: 0.00076 (7%)
| 200 OK [http://localhost/members]

We can see on our initial view of the members page that we did two database queries and
saved the result as a cached fragment named localhost:3000/members. Let’s click refresh and
check the results in the logs:

Processing MembersController#index (for 127.0.0.1 at 2007-05-27 23:15:41) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"members"}
Fragment read: localhost:3000/members (0.00012)
Completed in 0.00131 (763 reqs/sec) | 200 OK [http://localhost/members]

Nice! So with action caching enabled, when the page is requested, we’re merely reading
the fragment that was stored on the initial page view, and we’ve now removed all of the data-
base hits as well. Another benefit is that Rails, rather than the web server, is now displaying our
cached elements, so we can actually see the results of the cached actions being used within the
Rails log.

Expiring Action Caching
Expiring action cache fragments is just as easy to do as it was with page caching—just a sim-
ple call to an expire_action command. In fact, since our sweeper is already monitoring the
comics model, all we need to do is add a few expire_action calls to our existing sweeper
(/app/models/comic_sweeper.rb):

private
 def expire_cache_for(record)
 prev_version = (record.id - 1)
 expire_page(:controller => 'public', :action => 'index')
 expire_page(:controller => 'public', :action => 'webcomic', :id => record.id)
 expire_page(:controller => 'public', :action => 'webcomic', ➥

:id => prev_version)
 expire_action(members_url)
 expire_action(members_webcomic_url(:id => record.id))
 expire_action(members_webcomic_url(:id => prev_version))
 end

You might have noticed that, while we were in there, I also cleaned up our calls to expire the
previous record. I did that by first moving the calculation to determine the id of the previous record
earlier in the process and to store that id in a variable named prev_version. With that id stored in

7818.book Page 305 Monday, October 8, 2007 7:03 PM

306 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

the prev_version variable, I could then use it in the expire_page method to make it more readable
(expire_page(:controller => 'public', :action => 'webcomic', :id => prev_version).

Once again, if we were to go back to the administration page and update one of the fields
of an existing comic, we would see both our page and action caches being expired in the log:

Processing ComicsController#update (for 127.0.0.1 at 2007-05-27 23:50:44) [PUT]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"commit"=>"Update", "_method"=>"put", "action"=>"update",
"id"=>"2", "controller"=>"comics", "comic"=>{"title"=>"Chunky Bacon 2",
"description"=>"Son of Chunky Bacon"}}
 Comic Load (0.000305) SELECT * FROM comics WHERE (comics."id" = 2)
 Comic Update (0.000458) UPDATE comics SET "content_type" = 'image/jpeg',
"size" = 325032, "height" = 650, "title" = 'Chunky Bacon 2',
"filename" = 'comic.jpg', "width" = 647, "description" = ' Son of Chunky Bacon '
WHERE "id" = 2
Expired page: /index.html (0.00005)
Expired page: /comic/2.html (0.00006)
Expired page: /comic/1.html (0.00023)
Expired fragment: localhost:3000/members (0.00016)
Expired fragment: localhost:3000/members/comic/2 (0.00014)
Expired fragment: localhost:3000/members/comic/1 (0.00014)
Redirected to http://localhost:3000/admin/comics/2
Completed in 0.15052 (6 reqs/sec) | DB: 0.00076 (0%) | 302 Found
[http://localhost/admin/comics/2]

Fragment Caching
While action caching did give us the ability to ensure that only authenticated readers were able
to view the members-only version of the page, it also caused us to introduce a significant
amount of duplication into our application by effectively recreating our public controller and
views. To make matters even worse, the only benefit of all that duplication was merely to serve
a different layout. Unfortunately, though, the inability to customize the pages content is inher-
ent within the implementations of page and action caching. That’s where fragment caching
comes in.

While page and action caching were focused on caching results at the controller level, frag-
ment caching is all about caching elements within a page. Using fragment caching, we can
effectively cache selected portions of the page (such as a header or navigation menu), while
allowing other sections of the page to have dynamic content. This is extremely useful in situa-
tions where certain elements in a page change frequently but others do not. Figure 13-2 shows
a diagram of how fragment caching works.

7818.book Page 306 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 307

Figure 13-2. Fragment Caching in action

Additionally, unlike page caching, where our only option was to have the caches stored in
the file system, fragment caching provides us with a number of options for where our cached
fragments will be stored:

File store: This is the default behavior for fragment caching. Cached files will be stored
within the /tmp/cache directory. This can be a bit slow and doesn’t scale well, as cached
elements are not shared among multiple web servers.

Memory store: Accessing fragments kept within server memory is much faster than access-
ing file-based storage but still suffers from the same scalability issues as storing on the
local file system.

DRb store: A third option is to use a Distributed Ruby (DRb) store. DRb is a library that
allows Ruby programs to communicate and share objects with each other across a net-
work. For this option, we’d have to build and manage a distributed Ruby process that
would store the caches in memory yet be accessible from any machine. This is a bit more
complex to manage but scales very well, since all web servers would be utilizing a common
storage system for cached elements.

Memcached store: Memcached is an open source application developed by Danga interac-
tive (http://www.danga.com/memcached/) designed for sharing objects across multiple
machines. Memcached is an extremely popular solution for large sites that need to be able
to scale, and using it requires that you have both Memcached and the ruby-memcache
library installed.

For our current needs, we’ll keep the default and have our fragment caches stored on the
local file system. If you ever needed to change that, all you need to do is simply add the appro-
priate line to your /config/environment.rb, such as:

ActionController::Base.fragment_cache_store = :memory_store
ActionController::Base.fragment_cache_store = :file_store, "/path/to/cache"
ActionController::Base.fragment_cache_store = :drb_store, "druby://localhost"
ActionController::Base.fragment_cache_store = :mem_cache_store, "localhost"

7818.book Page 307 Monday, October 8, 2007 7:03 PM

308 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

■Note You may have noticed, back when we were discussing action caching, that we never discussed
where action caching stores its cached elements. The reason we didn’t is because action caching actually
uses fragment caching as the underlying solution, so it made more sense to wait until we got to this point and
could discuss the various options for where our action and fragment caches will be stored.

Because additional processing such as database hits, template rendering, and so on can
still occur when we’re using fragment caching, fragment caching is going to be the slowest of
all the caching mechanisms. However, it does provide the wonderful benefit of being able to
pick and choose what sections of our page should be cached. This way we can easily leave por-
tions of our page uncached where we want to display dynamic data such as the users name,
flash messages, or other data that may need to update too frequently to cache—all the while,
caching the sections of the page that are more expensive to render and/or are updated only on
an infrequent basis.

So far in our project, we’ve implemented a little of both page caching and action caching—
but let’s convert those over to fragment caching before we end this project. By converting those
to fragment caching, we’ll be able to simplify our application to serve both members and non-
members from a single controller rather than the being forced to use two, as we are now.

Let’s start the conversion by first eliminating the page caching from our public control-
ler, so either remove or comment out the caches_page :webcomic, :index line from /app/
controllers/public_controller.rb.

With that commented out, we then need to remove any existing page caches from our
/public directory. To do that, we need to delete the index.html file (if it exists) from the /public
directory, as well as any HTML files in the /public/comic directory.

Customizing Our Layout
With those existing cached pages removed and page caching eliminated from our public control-
ler, it’s time to begin customizing our default layout to dynamically display advertising based on
whether or not the reader is a member. Open application.rhtml from /app/views/layouts, and
modify it like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Method Missing Web Comic</title>
 <link rel="stylesheet" href="http://yui.yahooapis.com/2.2.0/build/ ➥

reset-fonts-grids/reset-fonts-grids.css" type="text/css">
 <%= stylesheet_link_tag 'styles' %>
</head>

7818.book Page 308 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 309

<body>
 <% if admin? || member? %>
 <div id="doc2" class="yui-t7">
 <% else %>
 <div id="doc2" class="yui-t4">
 <% end %>

 <div id="hd"><%= image_tag 'methodmissing.jpg' %></div>
 <div id="bd">
 <div id="yui-main">
 <div class="yui-b">
 <% unless admin? || member? %>
 <div class="yui-g"><%= image_tag 'topbanner.jpg' %></div>
 <% end %>
 <div class="yui-g"><%= yield %> </div>
 </div>
 </div>
 <% unless admin? || member? %>
 <div class="yui-b"><%= image_tag 'sidebanner.jpg' %></div>
 <% end %>
 </div>
 <div id="ft"> © Method Missing</div>
 </div>
</body>
</html>

So in our modified layout template, we’ll call the admin? and member? methods to make the
decision of whether or not to display the ads. However, since those are our controller methods
currently, we can’t use them in our view. So before we can attempt to view this page, we need
to enable those methods as helper methods. We do that by adding a helper_method call to our
application controller (/app/controllers/application.rb) like this:

class ApplicationController < ActionController::Base
 session :session_key => '_webcomic_session_id'
 helper_method :admin?, :member?

protected
 def admin?
 session[:password] == "my_ultra_secret_password"
 end

 def member?
 session[:password] == "lambda-lambda-lambda"
 end
end

7818.book Page 309 Monday, October 8, 2007 7:03 PM

310 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

Now that our page is configured to display or not display ads based on whether the user pro-
vided a valid password, our next step is to reconfigure our login method to send logged in members
to the public controller, instead of to our members controller. To do that, we need to modify the
create method in our sessions controller (/app/controllers/sessions_controller.rb), which
processes logins:

def create
 session[:password] = params[:password]
 if admin?
 redirect_to comics_path
 elsif member?
 redirect_to home_path
 else
 flash[:notice] = "That password was incorrect"
 redirect_to login_path
 end
end

So at this point, we’re able to provide an ad-free version of the site to paying members and
an ad-supported version to nonpaying members—all from a single controller—but we’re not
caching the pages. Let’s fix that by adding fragment caching to our view; we’ll do that by adding
a cache block around the section of code in the layout that displays the current comic. Open
webcomic.rhtml in app/views/public, and let’s modify it to look like this:

<% cache do %>
 <h1 class="title"><%= @comic.title %></h1>
 <%= image_tag @comic.public_filename %>

 <hr />
 <%= link_to image_tag('prev.jpg'), webcomic_path(@comic.id - 1) ➥
unless @comic.id == 1 %>
 <%= link_to image_tag('next.jpg'), webcomic_path(@comic.id + 1) ➥
unless @comic.id >= Comic.count %>
 <hr />
<% end %>

Let’s open the main page of our application and look at the logs to see the results of our
modifications. If we open a browser to http://localhost:3000 and view the development log,
we can see that we’re generating the fragment cache correctly:

Processing PublicController#index (for 127.0.0.1 at 2007-05-28 21:32:56) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"public"}
 Comic Load (0.000521) SELECT * FROM comics ORDER BY id desc LIMIT 1
Rendering layoutfalsetemplatepublic/webcomic within layouts/application
Rendering public/webcomic
Fragment read: localhost:3000/ (0.00015)
 SQL (0.000323) SELECT count(*) AS count_all FROM comics

7818.book Page 310 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 311

Cached fragment: localhost:3000/ (0.00050)
Completed in 0.01007 (99 reqs/sec) | Rendering: 0.00618 (61%) | DB: 0.00084 (8%)
| 200 OK [http://localhost/]

Now, if we refresh the page, our log shows that we’re reading in the fragment and reducing
our processing time:

Processing PublicController#index (for 127.0.0.1 at 2007-05-28 21:33:07) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"public"}
 Comic Load (0.000533) SELECT * FROM comics ORDER BY id desc LIMIT 1
Rendering layoutfalsetemplatepublic/webcomic within layouts/application
Rendering public/webcomic
Fragment read: localhost:3000/ (0.00012)
Completed in 0.00533 (187 reqs/sec) | Rendering: 0.00180 (33%) |
DB: 0.00053 (9%) | 200 OK [http://localhost/]

However, we have a problem—did you notice it in the preceding log?
The problem is that, even though we’re caching the results of the fragment’s rendering,

we’re still making a hit to the database to generate the data from our controller. You can see
it in the line SELECT * FROM comics ORDER BY id desc LIMIT 1; that query correlates to the
@comic = Comic.find(:first, :order => 'id desc') line in our index method. However, our
usual database hit, which occurred within the fragment (SELECT count(*) AS count_all FROM
comics, which came from our call for the Comic.count) was bypassed, because its result
was cached.

That’s an important distinction about page caching—it literally only caches the database
queries and processing that occurs within the cached fragment. To solve this, you could consider
moving your relevant database queries out of the controller and into the cache block in the view.
The downfall with doing that, though, is that it really breaks our model-view-controller separa-
tion and has us putting logic that belongs in the model or controller into the view instead.
Fortunately, there’s another option. We can wrap our database calls in the controller with a
method from ActionController by the name of read_fragment, like this:

unless read_fragment({})
 @comic = Comic.find(params[:id])
end

This method essentially says that if we have a matching fragment cache for the current
request, we’ll bypass the calls to the database. Adding these calls to our public controller
(/app/controllers/public_controller.rb) will look like this:

class PublicController < ApplicationController

 def index
 unless read_fragment({})
 @comic = Comic.find(:first, :order => 'id desc')
 end
 render :template => 'public/webcomic'
 end

7818.book Page 311 Monday, October 8, 2007 7:03 PM

312 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

 def webcomic
 unless read_fragment({})
 @comic = Comic.find(params[:id])
 end
 rescue
 @comic = Comic.find(:first, :order => 'id desc')
 end
end

Since we haven’t yet modified our sweepers to clean up our fragment caches, we should
clear out our existing cache by running rake tmp:cache:clear from the root of our application.
Once any existing cached fragments are removed, we can retest our fragment caching by
refreshing the home page again.

We can monitor the logs to see that our request to the page produced the same results but
now it also caches the fragment:

Processing PublicController#index (for 127.0.0.1 at 2007-05-28 22:07:57) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"public"}
Fragment read: localhost:3000/ (0.00013)
 Comic Load (0.000522) SELECT * FROM comics ORDER BY id desc LIMIT 1
Rendering layoutfalsetemplatepublic/webcomic within layouts/application
Rendering public/webcomic
Fragment read: localhost:3000/ (0.00015)
 SQL (0.000250) SELECT count(*) AS count_all FROM comics
Cached fragment: localhost:3000/ (0.00054)
Completed in 0.00971 (103 reqs/sec) | Rendering: 0.00505 (51%) | DB: 0.00077 (7%)
 | 200 OK [http://localhost/]

Now, if we refresh the page again, we should no longer see any requests to the database in
our logs, as the read_fragment method detects the existing cache and prevents any unneces-
sary database hits:

Processing PublicController#index (for 127.0.0.1 at 2007-05-28 22:08:05) [GET]
 Session ID: 06304d6bb8a857c0084d7702ce11b6a8
 Parameters: {"action"=>"index", "controller"=>"public"}
Fragment read: localhost:3000/ (0.00012)
Rendering layoutfalsetemplatepublic/webcomic within layouts/application
Rendering public/webcomic
Fragment read: localhost:3000/ (0.00013)
Completed in 0.00290 (345 reqs/sec) | Rendering: 0.00128 (44%) | 200 OK
 [http://localhost/]

7818.book Page 312 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 3 ■ I M P L E M EN T I N G A D VA N C E D C A C H I N G 313

Clearing Our Fragment Cache
It should come as no surprise that modifying our fragment cache is just a simple matter of
changing the expire_page commands in our comic sweeper to expire_fragment commands
instead:

private
 def expire_cache_for(record)
 prev_version = (record.id - 1)
 expire_fragment(:controller => 'public', :action => 'index')
 expire_fragment(:controller => 'public', :action => 'webcomic', ➥

:id => record.id)
 expire_fragment(:controller => 'public', :action => 'webcomic', ➥
:id => prev_version)
 end

After those changes, if we make a modification to one of the comics (such as changing its
name), we can see our fragments being expired:

Processing ComicsController#update (for 127.0.0.1 at 2007-05-28 22:24:23) [PUT]
 Session ID: 6d22fd6a722d8a707d6803ed16df0539
 Parameters: {"commit"=>"Update", "_method"=>"put", "action"=>"update",
"id"=>"2", "controller"=>"comics", "comic"=>{"title"=>"Chunky Bacon",
"description"=>"Chunky Bacon"}}
 Comic Load (0.000303) SELECT * FROM comics WHERE (comics."id" = 2)
 Comic Update (0.000455) UPDATE comics SET "content_type" = 'image/jpeg',
 "size" = 325742, "height" = 650, "title" = 'Chunky Bacon,
"filename" = 'comic.jpg', "width" = 647, "description" = 'Chunky Bacon'
WHERE "id" = 2
Expired fragment: localhost:3000/ (0.00148)
Expired fragment: localhost:3000/comic/2 (0.00023)
Expired fragment: localhost:3000/comic/1 (0.00016)
Redirected to http://localhost:3000/admin/comics/2
Completed in 0.14893 (6 reqs/sec) | DB: 0.00076 (0%) | 302 Found
[http://localhost/admin/comics/2]

With that, we’ve effectively implemented fragment caching and simplified our application
by reducing duplication. Go ahead and delete the sessions controller and its related routes,
templates, and so forth now, since they’ll no longer be of any use to us.

Summary
Over the course of this project, we’ve explored quite a number of topics. We started out by
implementing a file upload solution using the excellent plug-in attachment_fu. We next dis-
cussed and implemented a simple authentication solution that we could use to protect access

7818.book Page 313 Monday, October 8, 2007 7:03 PM

314 C H A P T E R 1 3 ■ I MP L E M E N T I N G A D V A N C E D C A C H I N G

to our application’s pages and wrapped up our project by experimenting with the three differ-
ent types of caching that are available within Rails.

You saw how page caching is a great solution in situations where the content never (or very
rarely changes) and doesn’t need any level of additional processing, such as inserting dynamic
content or checking authentication.

We then explored action caching as a solution for still providing the benefits of caching
while maintaining the ability to check authentication levels before serving the page. Action
caching is a good solution where you need to be able to run before, after, or around filters for
each request but don’t need to be able to insert dynamic content into the page.

Finally, we explored fragment caching, which allows us to cache data within the page tem-
plate, thereby allowing us to use dynamic data in the pages that we deliver to the end users
while still gaining many of the benefits of caching.

7818.book Page 314 Monday, October 8, 2007 7:03 PM

315

■ ■ ■

C H A P T E R 1 4

Enhancing the Web Comic

In this project, we explored the powerful concepts of caching Rails applications as we put
together a very simple web comic application. I pointed out some of the pros and cons of each
of the different levels of caching that Rails supports and how they affected our application
design. This chapter contains a number of ideas for you to use while enhancing the web comic
application.

Add a Blog
Many web comics these days also communicate with users through blogs. Most often, these
blog posts are located directly beneath the daily comic. However, some sites instead choose to
push the blog to a separate page entirely. We build some basic blog-like functionality in a few
of the projects in this book (such as the simple blog project in Chapter 10)—why not take that
knowledge and add a basic blog to the web comic application? Be mindful of any necessary
changes to your caching, though.

Integrate a Forum
Another key feature that many web comics add is a user forum for the community. While we
could certainly build our own, it’s often easier to simply install an open source one. In my opin-
ion the best Rails-based forum is the Beast forum (which, unsurprisingly, is also written by
Rick Olsen) that you can see in Figure 14-1. You can download the latest version of Beast from
http://svn.techno-weenie.net/projects/beast/.

There’s also a support forum available at http://beast.caboo.se/forums/1.

7818.book Page 315 Wednesday, September 26, 2007 10:01 PM

316 C H A P T E R 1 4 ■ E N H A N C I N G T H E W E B C O M I C

Figure 14-1. The Beast forum

Change Comics to Be Selectable by Date
Currently, our web comics are selectable by the IDs of the comics. However, another popular
pattern is to make web comics accessible by date, so the URL might be something like http://
localhost:3000/comic/2007/12/25. Doing so would require modifying your routes.rb file to
something like this:

map.webcomic "comic/:year/:month/:day",
:controller => "public",
:action => "webcomic",
:requirements => { :year => /(19|20)\d\d/,
:month => /[01]?\d/,
:day => /[0-3]?\d/},

After changing the routes file, you’ll also need to change your controllers to search by date
instead of ID. Why not go ahead and see if you can convert our web comic application to this
pattern?

Enhance the Authentication System
For this project, we implemented an extremely simple authentication system. While this works
for the simple needs of a single user who doesn’t require any advanced functionality, there is
definitely room for us to expand it. For one thing, it would be nice if we could store the pass-
words in the database instead of simply storing them in our code—that way, we could build a
simple web form in the administration section so we could change it on a regular basis. Browse
through the source of the restful_authentication plug-in for ideas on how to expand your
authentication code.

7818.book Page 316 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 1 4 ■ E N H A N C I N G T H E W E B C O M I C 317

Summary
At this point, you should have a fairly decent grasp on how caching works within Rails, and if
you’ve used the ideas in this chapter, your web comic is starting to shape up nicely. Of course,
there’s always more you can do—look around other popular web comic sites and try to find
features to add to this application (some of my favorite sites include xkcd.com, vgcats.com,
penny-arcade.com, and pvponline.com).

To enhance your understanding of caching, go through all the other projects in the book
and try to add caching to each. Often the best caching lessons are in the applications that you
may have initially thought you wouldn’t be able to cache.

Enhancing Monkey Tasks

The following exercise offers additional enhancements for Monkey Tasks.

Add Caching to Monkey Tasks

While the content of Monkey Tasks probably wouldn’t be conducive to page caching, you could implement fragment
caching to improve performance in some areas such as the sidebar containing your lists of upcoming tasks.

7818.book Page 317 Wednesday, September 26, 2007 10:01 PM

■ ■ ■

P A R T 6

Church Community Site

Take one glance at the job opportunities for web development lately and it’s obvious that

the success of social networking sites, such as MySpace and Facebook, have inspired

quite the demand for copycat social networking sites—with good reason too. Social net-

working style sites are lots of fun and a great way to keep in touch with friends and family

or to reconnect with old friends. There’s no denying that social networks are a hot prop-

erty right now. There are already a number of books published (or coming out shortly) that

will take you step-by-step through putting together a large-scale social networking site.

The problem with these sites is that, while they are excellent for large-scale networking,

none of them have very solid tools for allowing a pre-established community of users to

communicate.

For this project, we’re going to put together a mini social network style site that will be

suitable for use by a small community of users, such as a small church, a local Ruby users

group, family members attending a reunion, and so forth. In keeping with our smaller

community, we’ll also provide a much smaller set of features and tools for our site than

you would find on a large-scale social networking site. We’ll primarily focus on the areas

that will matter to a small, private community, such as providing a simple directory of

members and allowing members to share what’s going on in their lives through blog posts

and photo galleries.

7818.book Page 319 Thursday, October 4, 2007 7:56 PM

321

■ ■ ■

C H A P T E R 1 5

Managing Users and Profiles

For the purpose of this application, we’ll pretend that we’re building a site for a small church
consisting of less than a hundred members. We’ll start out by implementing support for users
and user created content in this chapter. Once we have the ability to allow users to login and
create content we’ll move onto creating some simple community focused tools such as a com-
munity home page and a user directory in the next chapter.

So go ahead and create a new Rails application in your projects directory named church
using the directions from Chapter 2.

Installing Restful Authentication
Once again, our first step for creating our new application will be to install the Restful Authenti-
cation plug-in to provide us with the user login and authentication system for our application.

We start by adding the plug-in to our application:

ruby script/plugin install http://svn.techno-weenie.net/projects/plugins/➥

restful_authentication/

+ ./restful_authentication/README
+ ./restful_authentication/Rakefile
+ ./restful_authentication/generators/authenticated/USAGE
+ ./restful_authentication/generators/authenticated/authenticated_generator.rb
+ ./restful_authentication/generators/authenticated/templates/activation.rhtml
+ ./restful_authentication/generators/authenticated/templates/➥

authenticated_system.rb
+ ./restful_authentication/generators/authenticated/templates/➥

authenticated_test_helper.rb
+ ./restful_authentication/generators/authenticated/templates/controller.rb
+ ./restful_authentication/generators/authenticated/templates/fixtures.yml
+ ./restful_authentication/generators/authenticated/templates/functional_test.rb
+ ./restful_authentication/generators/authenticated/templates/helper.rb
+ ./restful_authentication/generators/authenticated/templates/login.rhtml
+ ./restful_authentication/generators/authenticated/templates/migration.rb
+ ./restful_authentication/generators/authenticated/templates/model.rb
+ ./restful_authentication/generators/authenticated/templates/model_controller.rb
+ ./restful_authentication/generators/authenticated/templates/➥

7818.book Page 321 Thursday, October 4, 2007 7:56 PM

322 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

model_functional_test.rb
+ ./restful_authentication/generators/authenticated/templates/model_helper.rb
+ ./restful_authentication/generators/authenticated/templates/notifier.rb
+ ./restful_authentication/generators/authenticated/templates/notifier_test.rb
+ ./restful_authentication/generators/authenticated/templates/observer.rb
+ ./restful_authentication/generators/authenticated/templates/signup.rhtml
+ ./restful_authentication/generators/authenticated/templates/➥

signup_notification.rhtml
+ ./restful_authentication/generators/authenticated/templates/unit_test.rb
+ ./restful_authentication/install.rb

With the plug-in installed, we run the included generator to create our user and ses-
sion models:

ruby script/generate authenticated user sessions

 exists app/models/
 exists app/controllers/
 exists app/controllers/
 exists app/helpers/
 create app/views/sessions
 create app/views/user_notifier
 exists test/functional/
 exists app/controllers/
 exists app/helpers/
 create app/views/users
 exists test/functional/
 exists test/unit/
 create app/models/user.rb
 create app/controllers/sessions_controller.rb
 create app/controllers/users_controller.rb
 create lib/authenticated_system.rb
 create lib/authenticated_test_helper.rb
 create test/functional/sessions_controller_test.rb
 create test/functional/users_controller_test.rb
 create app/helpers/sessions_helper.rb
 create app/helpers/users_helper.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create app/views/sessions/new.rhtml
 create app/views/users/new.rhtml
 create db/migrate
 create db/migrate/001_create_users.rb

However, before we run the create_users migration that was generated by Acts as Authen-
ticated, we’ll want to modify our user model to include a number of other fields that we’d like

7818.book Page 322 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 323

to capture about a user such as the name, gender, and address. So we’ll need to modify the
001_create_users.rb migration in /db/migrate to add these fields:

class CreateUsers < ActiveRecord::Migration
 def self.up
 create_table "users", :force => true do |t|
 t.column :login, :string
 t.column :email, :string
 t.column :crypted_password, :string, :limit => 40
 t.column :salt, :string, :limit => 40
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
 t.column :remember_token, :string
 t.column :remember_token_expires_at, :datetime
 t.column :first_name, :string
 t.column :last_name, :string
 t.column :gender, :string
 t.column :street, :string
 t.column :city, :string
 t.column :state, :string
 t.column :zip, :string
 end
 end

 def self.down
 drop_table "users"
 end
end

With these extra fields added to the user model, we can now run our migration to create
the users table in the database:

rake db:migrate

(in /Users/darkel/book/church/church)
== CreateUsers: migrating ===
-- create_table("users", {:force=>true})
 -> 0.0040s
== CreateUsers: migrated (0.0042s) ==

Next, we’ll want to remove the following lines out of our sessions_controller.rb and
users_controller.rb in /app/controllers/:

Be sure to include AuthenticationSystem in Application Controller instead
 include AuthenticatedSystem

7818.book Page 323 Thursday, October 4, 2007 7:56 PM

324 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

If you want "remember me" functionality, add this before_filter to Application
 Controller
 before_filter :login_from_cookie

The appropriate place for those calls is really in our application controller, so edit /app/
controllers/application.rb to look like this:

class ApplicationController < ActionController::Base
 session :session_key => '_church_session_id'
 include AuthenticatedSystem
end

With the Restful Authentication plugin library now added to our application, we’ll want to
wrap things up by creating a few custom routes in our /config/routes.rb file to provide easy
access to our login/logout functionality, so edit your routes to look like this:

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
end

So What Are We Going to Build?
As we discussed in the opening of the chapter, we want to build a mini community site that
allows users the ability to create blogs and galleries. In addition to this, we’ll also need to add a
few features, such as the ability for each user to create an informational profile about them-
selves and a directory of all users. To support those needs we also want to ensure that our URL
scheme is a friendly one. But what should that look like? If we were to assume that our applica-
tion was hosted under the domain name www.myhost.com, how would we want our URLs to look
for that domain?

For starters, we’ll take a lesson from MySpace in for how to navigate to a user’s profile page
by letting that be a single parameter after the domain name. So assuming a user profile name
of Ash (yes, that’s an Army of Darkness reference), we want to be able to view Ash’s profiles at
www.myhost.com/ash.

From there, we’re going to want secondary pages of content for Ash to show up after his
profile name, like so:

• www.myhost.com/ash/profile: Used to route a request to Ash’s extended profile

• www.myhost.com/ash/profile/edit: Used by Ash to edit his own profile

• www.myhost.com/ash/posts: Provide a list of all of Ash’s blog posts

• www.myhost.com/ash/posts/new: The place that Ash would go to create a new blog post

• www.myhost.com/ash/galleries: The place to view all of Ash’s photo galleries

7818.book Page 324 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 325

And so on and so forth—you get the general idea. In addition, we want to maintain a fairly
standard layout throughout the application for consistency. So putting pencil to paper to
sketch out a simple layout, I came up with the layout in Figure 15-1.

Figure 15-1. Rough sketch of our layout

Creating Our Shared Layout
Now that we have a general idea of what our application should look like, we can start putting
together our default layout for the application. Create a new file named application.rhtml in
/app/views/layouts. As we have in previous projects, we’ll take advantage of the Yahoo CSS
tools to speed up development of our layout and reduce our need to worry about cross-
browser rendering differences. So within our new layout, we’ll include the combined CSS tools
directly from Yahoo with this call:

<link rel="stylesheet" href="http://yui.yahooapis.com/2.2.0/build/➥

reset-fonts-grids/reset-fonts-grids.css" type="text/css">

Next, we’ll need to define our page structure in the containing div of the page. For our pur-
poses, we’ll choose a 950px centered layout (by specifying an id of 'doc2'), and we’ll explicitly
specify that we want to use the full column width by choosing the yui-t7 template:

<div id="doc2" class="yui-t7">

Within the main body (i.e., the 'bd' div) of our layout, we’ll also add a navigation bar. We’ll
specify temporary values for now, just as a way to get to a few key pages and replace them with
real navigational elements as we build out the backend code.

7818.book Page 325 Thursday, October 4, 2007 7:56 PM

326 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

<div class="yui-g navigation">
 Home |
 Eldon |
 Directory |
 login
</div>

Finally, we’ll specify a fairly simple layout across our pages by dividing our column into
two parts by specifying the nested grid template of yui-gc. With that template, we’ll have one
grid that will take up two-thirds of the available column width on one side, and a second grid
that takes up the remaining third. We will use these two grids to put together a main content
area and sidebar styled area on each page.

<div class="yui-gc">
 <div class="yui-u first"> </div>
 <div class="yui-u"> </div>
</div>

After putting it all together, our application.rhtml file will look like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
 "http://www.w3.org/TR/html4/strict.dtd">
<html>
<head>
 <title>Church Family Pages</title>
 <link rel="stylesheet" href="http://yui.yahooapis.com/2.2.0/build/➥

reset-fonts-grids/reset-fonts-grids.css" type="text/css">
 <%= stylesheet_link_tag 'styles' %>
</head>
<body>
<div id="doc2" class="yui-t7">
 <div id="hd"> <h1>Church Family Pages<h1> </div>
 <div id="bd">
 <div class="yui-g navigation">
 Home |
 Directory |
 Logout
 </div>

7818.book Page 326 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 327

 <div class="yui-gc">
 <div class="yui-u first"> <%= yield %> </div>
 <div class="yui-u"> <div class ='sidebar'> <%= yield :sidebar %> </div> </div>
 </div>
 </div>
 <div id="ft"> </div>
</div>
</body>
</html>

The Avatar Model
With our layout built, we can now start creating some of the supplemental models for a user
that we’ll need to build a users page. The first one that we’ll tackle is the avatar model, which
we’ll use to manage the profile picture that is displayed for a user. Open the command prompt,
and let’s create our avatar model:

ruby script/generate model avatar user_id:integer parent_id:integer ➥

content_type:string filename:string thumbnail:string size:integer width:integer ➥

height:integer created_at:datetime

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/avatar.rb
 create test/unit/avatar_test.rb
 create test/fixtures/avatars.yml
 exists db/migrate
 create db/migrate/002_create_avatars.rb

You may recognize those database fields from when we used them in Chapter 12 (for our
web comic project) as a way to simplify our image uploading process. Just like in that project,
we’re going to take advantage of Rick Olsen’s wonderful Attachment Fu plug-in.

To install attachment_fu, we’ll run the following plugin install command from the root
of our application:

ruby script/plugin install http://svn.techno-weenie.net/projects/plugins/➥

attachment_fu/

7818.book Page 327 Thursday, October 4, 2007 7:56 PM

328 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

+ ./attachment_fu/CHANGELOG
+ ./attachment_fu/README
+ ./attachment_fu/Rakefile
+ ./attachment_fu/amazon_s3.yml.tpl
+ ./attachment_fu/init.rb
+ ./attachment_fu/install.rb
+ ./attachment_fu/lib/geometry.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/db_file_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/file_system_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/backends/s3_backend.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/➥

image_science_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/mini_magick_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu/processors/rmagick_processor.rb
+ ./attachment_fu/lib/technoweenie/attachment_fu.rb
+ ./attachment_fu/test/amazon_s3.yml
+ ./attachment_fu/test/backends/db_file_test.rb
+ ./attachment_fu/test/backends/file_system_test.rb
+ ./attachment_fu/test/backends/remote/s3_test.rb
+ ./attachment_fu/test/base_attachment_tests.rb
+ ./attachment_fu/test/basic_test.rb
+ ./attachment_fu/test/database.yml
+ ./attachment_fu/test/extra_attachment_test.rb
+ ./attachment_fu/test/fixtures/attachment.rb
+ ./attachment_fu/test/fixtures/files/fake/rails.png
+ ./attachment_fu/test/fixtures/files/foo.txt
+ ./attachment_fu/test/fixtures/files/rails.png
+ ./attachment_fu/test/geometry_test.rb
+ ./attachment_fu/test/processors/image_science_test.rb
+ ./attachment_fu/test/processors/mini_magick_test.rb
+ ./attachment_fu/test/processors/rmagick_test.rb
+ ./attachment_fu/test/schema.rb
+ ./attachment_fu/test/test_helper.rb
+ ./attachment_fu/test/validation_test.rb
attachment-fu
=====================

7818.book Page 328 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 329

Now that we have the Attachment Fu plug-in loaded, we can add its functionality to our
Avatar model with a small set of configuration options added to our model. Open /app/models/
avatar.rb, and add the following to it:

class Avatar < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 500.kilobytes,
 :resize_to => '110x110',
 :thumbnails => { :comment => '50x50>' }
 validates_as_attachment
end

With this configuration, we’re letting the attachment_fu plug-in know that we’re expecting
an image (:content_type => :image) and that we want it to be stored to the local file system
(:storage => :file_system).

The User Details Model
The second model that we need to add is the user details model. We’ll use this model to allow
users to provide supplementary information about themselves, their interests, and so on:

ruby script/generate model detail user_id:integer headline:string about_me:text➥

like_to_meet:text interests:text music:text movies:text television:text books:text

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/detail.rb
 create test/unit/detail_test.rb
 create test/fixtures/details.yml
 exists db/migrate
 create db/migrate/003_create_details.rb

Now that we have both models created, we need to run our migrations to add all of our
new tables to the database:

rake db:migrate

7818.book Page 329 Thursday, October 4, 2007 7:56 PM

330 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

(in /Users/darkel/book/church/church)
== CreateAvatars: migrating ===
-- create_table(:avatars)
 -> 0.0141s
== CreateAvatars: migrated (0.0143s) ==

== CreateDetails: migrating ===
-- create_table(:details)
 -> 0.0035s
== CreateDetails: migrated (0.0037s) ==

We’ll wrap up adding these models by adding the necessary associations among them and
our user model.

In /app/models/user.rb, we’ll add a set of has_one method calls to build our associations
back to the avatar and details models. We don’t want to allow a user to be created without an
associated detail, so we’ll also add a new method named create_details that will be called by an
after_create filter to ensure that we create an associated detail model for each new customer.

Finally, as long as we’re in there, let’s add a method to our user model named name that will
combine user first and last name into a single result:

require 'digest/sha1'
class User < ActiveRecord::Base
 # Virtual attribute for the unencrypted password
 attr_accessor :password
 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation, :if => :password_required?
 validates_length_of :password, :within => 4..40, :if => :password_required?
 validates_confirmation_of :password, :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email, :case_sensitive => false
 before_save :encrypt_password
 after_create :create_details
 has_one :detail
 has_one :avatar

 def name
 "#{first_name} #{last_name}"
 end
 (...lots of lines ommitted...)

7818.book Page 330 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 331

 protected
 # before filter
 def encrypt_password
 return if password.blank?
 self.salt = Digest::SHA1.hexdigest("--#{Time.now.to_s}--#{login}--")➥

 if new_record?
 self.crypted_password = encrypt(password)
 end

 def password_required?
 crypted_password.blank? || !password.blank?
 end

 def create_details
 self.create_detail
 end
end

Next, we’ll need to add associations from our avatar and details models back to the user
model as well. So edit your avatar model in /app/models/avatar.rb to look like this:

class Avatar < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 500.kilobytes,
 :resize_to => '110x110',
 :thumbnails => { :comment => '50x50>' }
 validates_as_attachment
 belongs_to :user
end

and your detail model in /app/models/detail.rb to look like this:

class Detail < ActiveRecord::Base
 belongs_to :user
end

Creating a Sample User
Due to the variety of methods that we could use for adding users to the application, we’ll be
saving that system as an exercise for the reader. However, even if we’re not going to build the
interface now, we still need to have at least one user in our database while we’re building
the application. So we’ll use the console to allow us to easily add one or more users to the sys-
tem interactively.

ruby script/console

7818.book Page 331 Thursday, October 4, 2007 7:56 PM

332 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Loading development environment.

>> user = User.new(:login => 'ealameda', :email => 'ealameda@email.com',
:first_name => 'Eldon', :last_name => 'Alameda', :gender => 'Male',
:street => '123 Test Lane', :city => 'Chico', :state => 'CA', :zip => '95926',
:password => 'test', :password_confirmation => 'test')

=> #<User:0x241408c @password="test", @new_record=true, @attributes={"city"=>"Chico"
, "salt"=>nil, "zip"=>"95926", "updated_at"=>nil, "crypted_password"=>nil,
"remember_token_expires_at"=>nil, "gender"=>"Male", "street"=>"123 Test Lane",
"remember_token"=>nil, "first_name"=>"Eldon", "last_name"=>"Alameda",
"login"=>"ealameda", "state"=>"CA", "created_at"=>nil,
"email"=>"ealameda@email.com"}, password_confirmation"test"

>> user.save

=> true

user.build_detail(:headline => 'A wild and crazy guy',
:about_me => 'This is my page - there are many like it but this one is mine')

=> #<Detail:0x2b35268 @new_record=true, @attributes={"headline"=>"A wild and crazy
 guy", "like_to_meet"=>nil, "about_me"=>"This is my page - there are many like it
but this one is mine", "music"=>nil, "television"=>nil, "movies"=>nil,
"user_id"=>1, "interests"=>nil, "books"=>nil}

>> user.save

=> true

Now that we have at least one user in our database, the necessary models, and an overall
layout put together, we can shift our focus over to some controllers and views so that we can
actually see some results from our application.

7818.book Page 332 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 333

The Profile Controller
To display information about a user, we’re going to create a new controller named profile that
will contain three methods and associated template pages:

• index: To display users’ pages

• show: To display extended information about users

• edit: To provide users with the ability to edit their profiles

Technically, there will be four methods when we’re done, as we’ll also need an update
method that will be the destination for the form on the edit page, but we don’t want a view tem-
plate to be created, so we’ll just add that method manually later.

ruby script/generate controller profile index show edit

 exists app/controllers/
 exists app/helpers/
 create app/views/profile
 exists test/functional/
 create app/controllers/profile_controller.rb
 create test/functional/profile_controller_test.rb
 create app/helpers/profile_helper.rb
 create app/views/profile/index.rhtml
 create app/views/profile/show.rhtml
 create app/views/profile/edit.rhtml

Now, we need to add a few named routes to our application in /config/routes.rb to facil-
itate our URL schemes and make it easy to create links:

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'

 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
end

With those routes in place, we’ll be able to pull up a user’s page by going to http://
localhost:3000/ealameda; we’ll be able to view that user’s profile at http://localhost:3000/
ealameda/profile or allow that user to edit the profile by navigating to http://localhost:3000/
ealameda/profile/edit. Well, we will once we finish our profile controller methods and views.

7818.book Page 333 Thursday, October 4, 2007 7:56 PM

334 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Because we want to use the username as the key for all of our routing to users’ pages, we’ll
want to create some code that will pull in the User object for the requested user. To eliminate
duplication, we can extract this into a single method that we’ll call from a before_filter in our
application controller so that we will always have the User object populated. Open application.rb
in /app/controllers, and modify it with a find_user method:

class ApplicationController < ActionController::Base
 session :session_key => '_church_session_id'
 include AuthenticatedSystem
 before_filter :get_user

 protected
 def get_user
 if !(@user = User.find_by_login(params[:user]))
 redirect_to :controller => 'welcome', :action => 'directory'
 end
 end
end

This method should be fairly straightforward: We’ll create an @user instance variable with
the user login name that was submitted in the URL. If none is found, we’ll redirect the request
to the user directory in a welcome controller (which we’ll build in just a moment). So with this
method in place, we’ll now have an @user variable available that contains the requested user in
all of the controllers that we build.

We’ll build the full welcome controller in the next chapter as we build out a few commu-
nity tools, but let’s create a simple stub for now:

ruby script/generate controller welcome index directory

 exists app/controllers/
 exists app/helpers/
 create app/views/welcome
 exists test/functional/
 create app/controllers/welcome_controller.rb
 create test/functional/welcome_controller_test.rb
 create app/helpers/welcome_helper.rb
 create app/views/welcome/index.rhtml
 create app/views/welcome/directory.rhtml

7818.book Page 334 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 335

One small problem with our new before_filter, though, is the fact that, because we’re placing
it in the application controller that means it will be executed in all controllers—even those where it
doesn’t make sense to look up a user such as when we display a login page. To fix this, we’ll need to
add a skip_before_filter :get_user method call to the top of our sessions and users controllers
(/app/controllers/sessions_controller.rb and /app/controllers/user_controller.rb).

So now, let’s turn our attention back to our profile controller and add in our index view.
This page will be one of the most important pages in our application, as it will be the main page
for each member of the community. On this page, we’ll provide some basic information and
some links to any recent blog posts or photos that the user has added. Since we don’t have all
the functionality built to support the data on this page just yet, we’ll place some sample con-
tent in a few of the sections. Open /app/views/profile/index, and modify it with the following
content:

<div class="blog">
 <h1 class="section_header">Blog<h1>
 <h3>First Sample Blog Entry</h3>
 <p>This is a sample blog post.</p>
 <p>If it were a real blog post there would be more content here</p>
 <hr />

 <h3>Second Sample Blog Entry</h3>
 <p>This is a sample blog post.</p>
 <p>If it were a real blog post there would be more content here</p>
 <hr />
</div>

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">About Me</h1>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>

 <div class='gallery'>
 <h1 class="section_header">Photo Galleries</h1>
 </div>
<% end %>

7818.book Page 335 Thursday, October 4, 2007 7:56 PM

336 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

The blog section is just placeholder content until we build out the blog post functionality.
However, it’s the sidebar section that we’ve added some real content to; mainly we’re just dis-
playing a few of the user details. However, we do have a little extra method in the image_tag
section with the addition of a helper method named show_avatar.

We want to be able to display the user’s avatar if it’s been added, but if we attempt to dis-
play a nonexistent avatar, the whole page will break as we attempt to call a method on a nil
object. We get around this by moving the necessary checks into a helper method. Open /app/
helpers/application_helper.rb, and let’s add the show_avatar method, which will return the
user’s avatar if it exists or a static image file if there’s no avatar.

module ApplicationHelper
 def show_avatar
 if @user.avatar
 return @user.avatar.public_filename
 else
 return "no_avatar.gif"
 end
 end
end

Ensure that your web server is running and that you’ve copied the style sheets and images
from the source archive for this project into your application, then load http://localhost:3000/
ealameda (or whichever username you created) to see a result like the one shown in Figure 15-2.

Figure 15-2. Our initial user page

Editing User Details and Avatars
Displaying our user page was fairly simple, albeit a bit boring, since we’re using sample con-
tent. What we need now is the functionality to allow users to modify their avatars and user
detail information, so that they can personalize the content on the page. We’ll start by adding
in an avatar controller that we can use to allow users to upload new avatar images:

ruby script/generate controller avatar

7818.book Page 336 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 337

 exists app/controllers/
 exists app/helpers/
 create app/views/avatar
 exists test/functional/
 create app/controllers/avatar_controller.rb
 create test/functional/avatar_controller_test.rb
 create app/helpers/avatar_helper.rb

We’ll modify our new controller to have just one method—the create method—which
we’ll use to save a new avatar image, associate it to the current user and finally redirect the
request back to the user’s profile page.

class AvatarController < ApplicationController
 before_filter :login_required
 def create
 @avatar = current_user.build_avatar(params[:avatar])
 @avatar.save
 redirect_to showprofile_path(:user => current_user.login)
 end
end

■Note You should notice that we used the current_user object that’s provided by the Restful
Authentication plug-in rather than the @user object that we might pick off from the URL parameters.
The reason why is that we want to ensure that any uploaded images will only be modified for the current
logged in user. That way, if someone tries to go around our forms and change the avatar for another user,
he’ll only end up changing his own.

Now that we have our create method in our avatar controller, we’ll also add a named route
for it in /config/routes.rb:

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.addavatar ":user/avatar/create", :controller => 'avatar', :action => 'create'
end

7818.book Page 337 Thursday, October 4, 2007 7:56 PM

338 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Editing a Profile
To allow users to update their profiles, we’ll need to modify the edit method and add an update
method to our profile controller in /app/controllers/profile_controller.rb to be able to
support editing our profile. Also, since we don’t want to allow any users to update a page that
doesn’t belong to them, this would be a good time to add our before_filter :login_required
method call.

class ProfileController < ApplicationController
 before_filter :login_required
 def index
 end

 def show
 end

 def edit
 @detail = @user.detail
 @avatar = @user.avatar
 end

 def update
 @detail = current_user.detail
 @detail.update_attributes(params[:detail])
 redirect_to showprofile_path(:user => @user.login)
 end
end

With our controller methods ready and set to handle editing a user’s profile, let’s go ahead
and modify the edit template for our profile controller in /app/views/profile/edit.rhtml to
have two forms: one that will allow users to update their user details and another in the sidebar
that will allow them to upload new avatar images.

<h1 class="section_header">Editing <%= @user.name.pluralize %> profile</h1>
<%= error_messages_for :detail %>

<% form_for(:detail, :url => updateprofile_path,
 :html => { :method => :put }) do |f| %>
 <p>Profile Headline

 <%= f.text_field :headline %></p>

 <p>About me

 <%= f.text_area :about_me %></p>

 <p>Who I'd like to meet

 <%= f.text_area :like_to_meet %></p>

7818.book Page 338 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 339

 <p>My Interests

 <%= f.text_area :interests %></p>

 <p>Favorite Music

 <%= f.text_area :music %></p>

 <p>Favorite Movies

 <%= f.text_area :movies %></p>

 <p>Favorite Television

 <%= f.text_area :television %></p>

 <p>Favorite Books

 <%= f.text_area :books %></p>

 <p><%= submit_tag "Update" %></p>
<% end %>

<% content_for :sidebar do %>
 <p><%= image_tag show_avatar %></p>
 <% form_for(:avatar, :url => addavatar_path,
 :html => { :multipart => true, :id => 'avatar' }) do |f| -%>
 <p><label for="mugshot">Upload A New Avatar:</label>
 <%= f.file_field :uploaded_data, "size" => 10 %></p>
 <p><%= submit_tag 'Create' %></p>
 <% end -%>
<% end %>

When rendered, the preceding code will give us a page like the one shown in Figure 15-3.

Figure 15-3. Editing a user’s profile

7818.book Page 339 Thursday, October 4, 2007 7:56 PM

340 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

All that’s left is to add in one more named route in /configs/routes.rb for our details form
to use to route to the update method in the profile controller.

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'

 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', :action => 'create'
end

Viewing a Profile
We’ll wrap up our editing of profiles with the simple matter of building out the show template
so that we can display a users profile. Open /app/views/profile/show.rhtml, and place the fol-
lowing content in it:

<% unless @user.detail.headline.blank? %>
 <h1 class="section_header">My Headline</h1>
 <p><%= h @user.detail.headline %></p>
<% end %>

<% unless @user.detail.about_me.blank? %>
 <h1 class="section_header">About Me</h1>
 <p><%= h @user.detail.about_me %></p>
<% end %>

<% unless @user.detail.like_to_meet.blank? %>
 <h1 class="section_header">Who I'd like to meet</h1>
 <p><%= h @user.detail.like_to_meet %></p>
<% end %>

<% unless @user.detail.interests.blank? %>
 <h1 class="section_header">My Interests</h1>
 <p><%= h @user.detail.interests %></p>
<% end %>

<% unless @user.detail.music.blank? %>
 <h1 class="section_header">Favorite Music</h1>
 <p><%= h @user.detail.music %></p>
<% end %>

7818.book Page 340 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 341

<% unless @user.detail.movies.blank? %>
 <h1 class="section_header">Favorite Movies</h1>
 <p><%= h @user.detail.movies %></p>
<% end %>

<% unless @user.detail.television.blank? %>
 <h1 class="section_header">Favorite Television</h1>
 <p><%= h @user.detail.television %></p>
<% end %>

<% unless @user.detail.books.blank? %>
 <h1 class="section_header">Favorite Books</h1>
 <p><%= h @user.detail.books %></p>
<% end %>

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header"><%= h @user.name %></h1>
 <p><%= h @user.street %></p>
 <p><%= h @user.city %>, <%= h @user.state %></p>
 </div>
<% end %>

For this page, we’re going to wrap all of our user details within blocks that check if
the value is set before we try to display it. That way, we’ll only display the user detail fields
for which a user has chosen to provide answers. So when viewing this page by opening
http://localhost:3000/ealameda/profile, you should see a page like the one shown in
Figure 15-4.

Figure 15-4. Viewing a user’s profile

7818.book Page 341 Thursday, October 4, 2007 7:56 PM

342 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Adding Blogs
Now that we’ve allowed users to customize their pages with some basic profile information
and add custom avatars, our next step will be to add some basic blogging support to their
pages, so they can share their thoughts and life events with other members of the community.
We’ll do that by adding a new scaffold resource to our project named post:

ruby script/generate scaffold_resource post user_id:integer headline:string ➥

body:text created_at:datetime updated_at:datetime

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/posts
 exists test/functional/
 exists test/unit/
 create app/views/posts/index.rhtml
 create app/views/posts/show.rhtml
 create app/views/posts/new.rhtml
 create app/views/posts/edit.rhtml
 create app/views/layouts/posts.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/post.rb
 create app/controllers/posts_controller.rb
 create test/functional/posts_controller_test.rb
 create app/helpers/posts_helper.rb
 create test/unit/post_test.rb
 create test/fixtures/posts.yml
 exists db/migrate
 create db/migrate/003_create_posts.rb
 route map.resources :posts

The scaffold_resource command also created a new layout named posts.rhtml in /app/
views/layouts that we don’t want, as it will conflict with the default application layout that we
built. So delete that file.

Next, we’ll want to set up our associations between a post and user, so in the user model
(/app/models/user.rb), we’ll add the following association:

require 'digest/sha1'
class User < ActiveRecord::Base
 # Virtual attribute for the unencrypted password
 attr_accessor :password

 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation, :if => :password_required?

7818.book Page 342 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 343

 validates_length_of :password, :within => 4..40, :if => :password_required?
 validates_confirmation_of :password, :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email, :case_sensitive => false
 before_save :encrypt_password
 after_create :create_details
 has_one :detail
 has_one :avatar
 has_many :posts

 def name
 "#{first_name} #{last_name}"
 end
 (... Lines omitted...)
end

Meanwhile, in our posts model (/app/models/post.rb), we’ll add the corresponding
belongs_to :user association:

class Post < ActiveRecord::Base
 belongs_to :user
end

With our associations defined, let’s go ahead and add the posts table to the database by
running the database migrations:

rake db:migrate

== CreatePosts: migrating ==
-- create_table(:posts)
 -> 0.0033s
== CreatePosts: migrated (0.0047s) ==

For adding the necessary routes for a post to our application, we’ll utilize the map.resources
method so that all of our CRUD style of operations will be supported and to make it match our
routing scheme of #{username}/posts, we’ll add in a path_prefix onto the route as well. So add
the following bold line to /config/routes.rb:

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

7818.book Page 343 Thursday, October 4, 2007 7:56 PM

344 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', :action => 'create'
 map.resources :posts, :path_prefix => ":user"
end

Post Controller Methods and Templates
Obviously, the first thing we’ll need to add to our posts controller (/app/controllers/
posts_controller.rb) is to add the before_filter :login_required method to limit access
to the methods in this controller.

class PostsController < ApplicationController
 before_filter :login_required
 (...lines omitted...)

Now that we’ve limited access to this controller’s methods, we can tackle the first piece of the
CRUD pie that we’ll build in our posts controller—the ability to create a new post.

New

We’ll create our new method in the posts controller to build a new post associated to the current
logged in user that will be used as the object for our data entry form.

def new
 @post = current_user.posts.build
end

And we’ll build out the corresponding template (/app/views/posts/new.rthml) to look like
this:

<div class="editblog">
 <%= javascript_include_tag 'tiny_mce/tiny_mce' %>
 <%= javascript_include_tag 'tinyconfig' %>
 <h1 class="section_header">New post</h1>
 <%= error_messages_for :post %>
 <% form_for(:post, :url => posts_path(:user => @user.login)) do |f| %>
 <p>
 Headline

 <%= f.text_field :headline %>
 </p>
 <p>
 Body

 <%= f.text_area :body %>
 </p>
 <p> <%= submit_tag "Create" %> </p>
 <% end %>
</div>

7818.book Page 344 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 345

This is a fairly standard form; the only thing of note is that that we’re adding in the
TinyMCE JavaScript editor (included in the source archive or downloadable from http://
tinymce/moxiecode.com) to provide a nicer HTML editor for users to format their blog posts.
If we were to go to http://localhost:3000/ealameda/posts/new, we should see a page like the
one shown in Figure 15-5.

Figure 15-5. Creating a new blog post

Create

Our new form won’t work without a method to actually save the new post to the database, so
that’s what our create method will do—edit the create method in the posts controller with this
code, which will save the submitted form and redirect the user to their profile pages:

def create
 @post = current_user.posts.build(params[:post])
 if @post.save
 redirect_to showuser_path(:user => @user.login)
 else
 render :action => "new"
 end
end

Index

We’re not going to be using the index method in our application, so go ahead and delete the
auto-generated index method from the posts controller and the auto-generated index.rthml
file from /app/views/posts/.

7818.book Page 345 Thursday, October 4, 2007 7:56 PM

346 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Show

Now that we have at least one blog post in our database, we can edit the show method and tem-
plate that will be used to display it. Edit the show method in the posts controller to look like this:

def show
 @post = @user.posts.find(params[:id])
end

Now, in the show template (/app/views/posts/show.rhtml), we’ll want to simply display the
blog post in the page in much the same way that we’ll display a summary of blog posts on the
user’s main page. However, we do want to add a touch more functionality though—it will be
extra nice if we could also add in the ability for users to edit or delete their blog posts from this
page, so we’ll also add in a few links to make that possible. To do that, though, we need to make
sure that we only provide those administration links if the person viewing the page is the owner
of that blog post. So we’ll create a new helper method named show_admin_menu that will return
true or false based on whether or not the logged in user matches the user page.

Open /app/helpers/application_helper.rb, and add the show_admin_menu function to it:

module ApplicationHelper
 def show_avatar
 if @user.avatar
 return @user.avatar.public_filename
 else
 return "no_avatar.gif"
 end
 end

 def show_admin_menu
 current_user == @user
 end
end

With our helper method added, we’re now ready to build the show template for a blog
post. Add the following content to /app/views/posts/show.rthml:

<div class="blog">
 <h1 class="section_header"><%= @post.headline %><h1>
 <%= @post.body %>
 <p>written on <%= @post.created_at.to_s(:long) %></p>
 <hr />

 <% if show_admin_menu %>
 <%= link_to 'Edit This Post',
 edit_post_path(:user => @user.login, :id => @post) %>

 <%= link_to 'Destroy This Post', post_path(:user => @user.login,
 :id => @post), :confirm => 'Are you sure?', :method => :delete %>
 <% end %>
</div>

7818.book Page 346 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 347

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">About Me</h1>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>
<% end %>

You can see the results of this template when viewing a page, such as http://
localhost:3000/posts/7, shown in Figure 15-6.

Figure 15-6. Viewing a blog post (“Rifleman’s Creed,” by Major General William H. Rupertus)

Edit

At the bottom of our blog post, we placed a pair of links; one of those was to edit the current
blog post at http://localhost:3000/ealameda/posts/7;edit. Our edit method in the posts
controller should look like this:

def edit
 @post = current_user.posts.find(params[:id])
end

The corresponding template in /app/views/posts/edit.rhtml will look very similar to the
one that we created for the new template:

<div class="editblog">
 <%= javascript_include_tag 'tiny_mce/tiny_mce' %>
 <%= javascript_include_tag 'tinyconfig' %>

7818.book Page 347 Thursday, October 4, 2007 7:56 PM

348 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

 <h1 class="section_header">New post</h1>
 <%= error_messages_for :post %>
 <% form_for(:post, :url => posts_path(:user => @user.login)) do |f| %>
 <p>
 Headline

 <%= f.text_field :headline %>
 </p>
 <p>
 Body

 <%= f.text_area :body %>
 </p>
 <p><%= submit_tag "Create" %> </p>
 <% end %>
</div>

When viewed on a page like http://localhost:3000/ealameda/posts/7;edit, the preced-
ing code gives us the page appearance shown in Figure 15-7.

Figure 15-7. Editing a blog post

Update

The update method in the posts controller will simply be the destination of any posts from the
edit template, so its job will be to simply save the updated post and then redirect the request to
the user profile page.

7818.book Page 348 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 349

def update
 @post = current_user.posts.find(params[:id])
 if @post.update_attributes(params[:post])
 redirect_to showuser_path(:user => @user.login)
 else
 render :action => "edit"
 end
end

Destroy

The final method that we’ll modify in the posts controller is the destroy method, which will be
called from the administration menu we created in the show template. It should look like this:

def destroy
 @post = current_user.posts.find(params[:id])
 @post.destroy
 redirect_to showuser_url(:user => @user.login)
end

The Full Posts Controller

When we combine all those methods, your final posts controller (/app/controllers/
posts_controller.rb) should look like this:

class PostsController < ApplicationController
 before_filter :login_required

 # GET /posts/1
 def show
 @post = @user.posts.find(params[:id])
 end

 # GET /posts/new
 def new
 @post = current_user.posts.build
 end

 # GET /posts/1;edit
 def edit
 @post = current_user.posts.find(params[:id])
 end

7818.book Page 349 Thursday, October 4, 2007 7:56 PM

350 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

 # POST /posts
 def create
 @post = current_user.posts.build(params[:post])
 if @post.save
 redirect_to showuser_path(:user => @user.login)
 else
 render :action => "new"
 end
 end

 # PUT /posts/1
 def update
 @post = current_user.posts.find(params[:id])
 if @post.update_attributes(params[:post])
 redirect_to showuser_path(:user => @user.login)
 else
 render :action => "edit"
 end
 end

 # DELETE /posts/1
 def destroy
 @post = current_user.posts.find(params[:id])
 @post.destroy
 redirect_to showuser_url(:user => @user.login)
 end
end

Adding Blog Summaries to Our User Page
We’re almost done with building our blog functionality; all that’s left is to fill in the main user
page with a list of the most recent blog posts. To do that, we’ll need to come up with a good way
of pulling back the list of recent blog posts. We could be verbose and create an instance vari-
able in our controller that does something like this:

@recentPosts = @user.posts.find(:all, :order => 'created_at desc')

But that adds a bit too much ugliness to the code for my tastes; plus, it could force us into
duplicating code if we needed to pull back that list somewhere else in our application. Instead,
I’d rather build a method onto the association between users and posts. So open /app/models/
user.rb, and let’s modify the has_many posts method like so:

has_many :posts do
 def recent
 find(:all, :order => 'created_at desc', :limit => 6)
 end
end

7818.book Page 350 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 351

Now we can simply call @user.posts.recent from anywhere in our application to retrieve
the six most recent posts for the given user. Not only is this more concise but it improves the
readability of our code. So let’s go ahead and add the method call to the index method in our
profiles controller, so we can utilize that list within the user page. Within /app/controllers/
profile_controller.rb modify the index method, like so:

def index
 @posts = @user.posts.recent
end

Now, we can modify the related index template to replace our sample blog posts with
some real code that will process our @posts instance variable and display those blog posts
within the page. Open /app/views/profile/index.rhtml, and edit it to include the lines below

<div class="blog">
 <h1 class="section_header">Recent Blog Posts<h1>
 <% for post in @posts %>
 <h3>
 <%= link_to post.headline, post_path(:user => @user.login, :id => post) %>
 </h3>
 written on <%= post.created_at.to_s(:long) %>
 <p>
 <%= truncate(post.body.gsub!(%r{</?.*?>}, ""), 130) %>
 <%= link_to "[Read More]", post_path(:user => @user.login, :id => post) %>
 </p>
 <hr />
 <% end %>
</div>

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">About Me</h1>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>

 <div class='gallery'>
 <h1 class="section_header">Photo Galleries</h1>
 </div>
<% end %>

One line in the preceding code that we should discuss is this line:

<%= truncate(post.body.gsub!(%r{</?.*?>}, ""), 130) %>

7818.book Page 351 Thursday, October 4, 2007 7:56 PM

352 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

In this method, we want to display the post.body variable for the given post. However, in
the event that a user was being particularly wordy, we want to limit how much data we display
on the page—otherwise, our six most recent posts might extend the page through several full
page lengths. To prevent that, we’re going to pass the body of the post through the truncate
method, which will evaluate the length of the body text, and if it’s longer than 130 characters, it
will truncate the text and append ellipsis on to the end to indicate that there is more text. How-
ever, that could still cause us some issues since we’re allowing HTML tags into the body of a
post, because if we were to truncate the text and cut off the closing of a tag or truncate in
the middle of an <a href> tag, we could screw up the formatting of the rest of our page. So to
prevent us from having any issues like that, we want to strip out all HTML tags from our page
and effectively convert our extracted blog post into pure text. To do that, we’ll call the global
substitution method on our body passing it the regular expression to convert anything con-
tained within <> tags to an empty space.

Our user page at http://localhost:3000/ealameda will now look like Figure 15-8 with real
blog posts added to the page.

Figure 15-8. Blog posts added to our user page

Adding Galleries
The final piece of functionality that we’ll add to our application in this chapter is the ability
to create and view photos, organized into galleries. Since photos will be children of galleries,
we’ll start out by building the ability to create and manage galleries. Let’s generate a scaffold
resource for gallery:

ruby script/generate scaffold_resource gallery user_id:integer name:string ➥

description:text created_at:datetime photos_count:integer privacy:string

7818.book Page 352 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 353

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/galleries
 exists test/functional/
 exists test/unit/
 create app/views/galleries/index.rhtml
 create app/views/galleries/show.rhtml
 create app/views/galleries/new.rhtml
 create app/views/galleries/edit.rhtml
 create app/views/layouts/galleries.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/gallery.rb
 create app/controllers/galleries_controller.rb
 create test/functional/galleries_controller_test.rb
 create app/helpers/galleries_helper.rb
 create test/unit/gallery_test.rb
 create test/fixtures/galleries.yml
 exists db/migrate
 create db/migrate/005_create_galleries.rb
 route map.resources :galleries

Once again the scaffold_resource generator created a layout file that we don’t need, so go
ahead and delete the file galleries.rhtml from /app/views/layouts. Once that’s deleted, let’s
run our migration and add the galleries table:

rake db:migrate

== CreateGalleries: migrating ===
-- create_table(:galleries)
 -> 0.0033s
== CreateGalleries: migrated (0.0034s) ==

7818.book Page 353 Thursday, October 4, 2007 7:56 PM

354 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

We’ll need to add a route to our galleries as well, and we’ll use a similar pattern as we did
with posts, by adding a path_prefix onto our map.resources method:

ActionController::Routing::Routes.draw do |map|

 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', :action => 'create'
 map.resources :posts, :path_prefix => ":user"
 map.resources :galleries, :path_prefix => ":user"
end

Finally, we’ll wrap the base configuration of galleries by adding in the necessary
associations between users and galleries. Within user.rb in /app/models add the following
has_many :galleries association:

require 'digest/sha1'
class User < ActiveRecord::Base
 # Virtual attribute for the unencrypted password
 attr_accessor :password

 validates_presence_of :login, :email
 validates_presence_of :password, :if => :password_required?
 validates_presence_of :password_confirmation, :if => :password_required?
 validates_length_of :password, :within => 4..40, :if => :password_required?
 validates_confirmation_of :password, :if => :password_required?
 validates_length_of :login, :within => 3..40
 validates_length_of :email, :within => 3..100
 validates_uniqueness_of :login, :email, :case_sensitive => false
 before_save :encrypt_password
 after_create :create_details
 has_one :detail
 has_one :avatar
 has_many :posts do
 def recent
 find(:all, :order => 'created_at desc', :limit => 6)
 end
 end
 has_many :galleries

7818.book Page 354 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 355

 def name
 "#{first_name} #{last_name}"
 end
 (...lines ommited...)
end

Then, within the gallery model (/app/models/gallery.rb), we’ll add the complementary
belongs_to :user association, as well as some basic validations:

class Gallery < ActiveRecord::Base
 belongs_to :user
 validates_presence_of :user_id, :name
end

Adding Photos
Now that we’ve added our model for galleries, our next step is to build support for a photos
model. We’ll build this by utilizing the attachment_fu plug-in once again to simplify our file
upload process:

ruby script/generate scaffold_resource photo user_id:integer gallery_id:integer ➥

parent_id:integer content_type:string filename:string thumbnail:string ➥

size:integer width:integer height:integer created_at:datetime

 exists app/models/
 exists app/controllers/
 exists app/helpers/
 create app/views/photos
 exists test/functional/
 exists test/unit/
 create app/views/photos/index.rhtml
 create app/views/photos/show.rhtml
 create app/views/photos/new.rhtml
 create app/views/photos/edit.rhtml
 create app/views/layouts/photos.rhtml
 identical public/stylesheets/scaffold.css
 create app/models/photo.rb
 create app/controllers/photos_controller.rb
 create test/functional/photos_controller_test.rb
 create app/helpers/photos_helper.rb
 create test/unit/photo_test.rb
 create test/fixtures/photos.yml
 exists db/migrate
 create db/migrate/006_create_photos.rb
 route map.resources :photos

7818.book Page 355 Thursday, October 4, 2007 7:56 PM

356 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

After deleting the photos.rhtml layout from /app/views/layouts, let’s go ahead and run
our migration:

rake db:migrate

== CreatePhotos: migrating =============================
-- create_table(:photos)
 -> 0.0035s
== CreatePhotos: migrated (0.0041s) ===

Finally, we’ll add in our associations in our user model in /app/models/user.rb; we’ll
define that a user can have many photos:

require 'digest/sha1'
class User < ActiveRecord::Base

 (...lines omitted...)

 has_many :posts do
 def recent
 find(:all, :order => 'created_at desc', :limit => 6)
 end
 end
 has_many :galleries
 has_many :photos

 def name
 "#{first_name} #{last_name}"
 end

 (...lines omitted...)
end

While in the gallery model (/app/models/gallery.rb), we’ll define that a gallery can also
have many photos:

class Gallery < ActiveRecord::Base
 belongs_to :user
 has_many :photos
 validates_presence_of :user_id, :name
end

7818.book Page 356 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 357

A photo belongs to both users and galleries and should be configured for attachment_fu to
store the photos to the file system, scale the image to a standard format, and create a thumb-
nail that maintains the correct aspect ratio while resizing the width to 140px:

class Photo < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 2.megabytes,
 :resize_to => '640x360>',
 :thumbnails => { :thumb => '140x105>' }
 validates_as_attachment
 belongs_to :gallery
 belongs_to :user
end

Finally, we’ll add in a new route in /config/routes.rb for our photos using the same
path_prefix as we used in galleries:

ActionController::Routing::Routes.draw do |map|
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', :action => 'create'
 map.resources :posts, :path_prefix => ":user"
 map.resources :galleries, :path_prefix => ":user"
 map.resources :photos, :path_prefix => ":user"
end

Galleries and Photo Controllers
Now that we’ve used the scaffold resource to build our photos and galleries models, and
we’ve set them up with the necessary associations and routes, we’re ready to configure their
controller methods and view templates to implement photo-uploading functionality to our
application. In addition to the modifications we’ll make in the following sections, we’ll also
need to add a before_filter :login_required call to each controller to ensure that we’re
controlling access to these methods.

7818.book Page 357 Thursday, October 4, 2007 7:56 PM

358 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

Creating a New Gallery
Since we’ll have to create a gallery to hold our photos, our first process is to set up the function-
ality to create one. Open galleries_controller in /app/controllers, and let’s edit the new
method like so:

def new
 @gallery = current_user.galleries.build
end

Now, let’s edit the new.rthml file in /app/views/galleries to contain the following form:

<h1 class="section_header">Create A New Gallery</h1>
<%= error_messages_for :gallery %>

<% form_for(:gallery, :url => galleries_path(:user => current_user.login)) do |f| %>
 <p>Name

 <%= f.text_field :name %> </p>

 <p>Description

 <%= f.text_area :description %> </p>

 <p><%= submit_tag "Create" %> </p>
<% end %>

You can see the result of our new create galleries form, as it would appear at http://
localhost:3000/ealameda/galleries/new, in Figure 15-9.

Figure 15-9. Creating a new gallery

7818.book Page 358 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 359

Next, we’ll need to update the create method of our galleries controller to save the submit-
ted gallery, associate it to the current logged in user, and redirect the request to the gallery
show method after successfully saving:

def create
 @gallery = current_user.galleries.build(params[:gallery])
 if @gallery.save
 redirect_to gallery_url(:user => current_user.login, :id => @gallery)
 else
 render :action => "new"
 end
end

Viewing a Specific Gallery
With the ability to create a new gallery completed, we now need the ability to show that gallery
and provide an upload form to add photos to it. A gallery will be available at the URL http://
localhost:3000/ealameda/galleries/1—which will mean it will be routed to the show method
in the galleries controller. Let’s modify that method as so:

def show
 @gallery = @user.galleries.find(params[:id])
end

Now, we can modify the show.rhtml template in /app/views/galleries—this one will have
a few new bits of code, so let’s look at the template as a whole and then we’ll break down a few
of the more interesting parts afterward:

<h1 class="section_header"><%= @gallery.name %><h1>
<% @gallery.photos.in_groups_of(3, false) do |photos| %>
 <ul class="thumbnails">
 <% for photo in photos %>
 <li class="thumb">
 <%= link_to(image_tag(photo.public_filename(:thumb)) + '
' + ➥

 photo.description, photo_path(:user => @user.login, :id => photo)) %>

 <% end %>

<% end %>

7818.book Page 359 Thursday, October 4, 2007 7:56 PM

360 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

<% content_for :sidebar do %>
 <h1 class="section_header">Gallery Description<h1>
 <p><%= @gallery.description %></p>
 <% if show_admin_menu %>
 <hr />
 <% form_for(:photo, :url => photos_path(:user => current_user.login),
 :html => { :multipart => true }) do |f| -%>
 <label for="photo_uploaded_data">Upload New Photo:</label>
 <%= f.file_field :uploaded_data, "size" => 15 %>

 <label for="photo_uploaded_data">Describe Photo:</label>

 <%= f.text_field :description, "size" => 25 %>

 <%= f.hidden_field :gallery_id, :value => @gallery.id %>

 <%= submit_tag 'Upload Photo' %>
 <% end %>
 <% end %>
<% end %>

The interesting bit of code that we haven’t discussed yet was the in_groups_of method
that can be found in this line @gallery.photos.in_groups_of (3, false) do |photos|. This is
a very useful method that we can use to iterate over an array dividing it into groups, which is
extremely useful for building columns. To get a better understanding of it, let’s take a look at
the functioning of this method within script/console:

ruby script/console

Loading development environment.

Now, let’s create an array of numbers 1 to 7 and pass it the in_groups_of method dividing
the array into groups of three:

>> [1, 2, 3, 4, 5, 6, 7].in_groups_of(3)

=> [[1, 2, 3], [4, 5, 6], [7, nil, nil]]

You can see that the in_groups_of method divided our array up into a multidimensional
array, where each of the subarrays holds three of the numbers from our array. Since our origi-
nal array wasn’t divisible equally by three, it padded the last subarray with nils.

Since we want to prevent our arrays from being padded with nils, we can simply pass the
in_groups_of method a second parameter that it will use to pad any remaining slots, or we can
pass it false to prevent it from placing any filler elements:

>> [1, 2, 3, 4, 5, 6, 7].in_groups_of(3, false)

7818.book Page 360 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 361

=> [[1, 2, 3], [4, 5, 6], [7]]

Therefore, in our template, we’re using the in_groups_of method to sort our photos into
rows with three photos each, which gives us a result like you can see in Figure 15-10 when we
view the page at http://localhost/galleries/3 with a few photos added.

Figure 15-10. Displaying the photos of a gallery

Display All Users’ Galleries
The code for displaying a list of all galleries (http://localhost/ealameda/galleries) will be very
similar to the code that we just created to display all the photos in a gallery. First off, we’ll modify the
index method in the galleries controller (/app/controllers/galleries_controller.rb) like this:

def index
 @galleries = @user.galleries.find(:all)
end

And we’ll modify the template file like this (index.rhtml in /app/views/galleries):

<h1 class="section_header">Galleries<h1>
<% @galleries.in_groups_of(3, false) do |galleries| %>
 <ul class="thumbnails">
 <% for gallery in galleries %>
 <% unless gallery.photos.count == 0 %>
 <li class="thumb">
 <%= link_to image_tag(gallery.photos.first.public_filename(:thumb)) + ➥

 '
' + gallery.name + '
' + pluralize(gallery.photos.count, 'Photo'), ➥

gallery_path(:user => 'ealameda', :id => gallery.id) %>

7818.book Page 361 Thursday, October 4, 2007 7:56 PM

362 C H A P T E R 1 5 ■ M A N A G I N G U S E R S A N D P R O F I L E S

 <% else %>
 <li class="thumb">
 <%= link_to gallery.name + '
' + ➥

 pluralize(gallery.photos.count, 'Photo'),
 gallery_path(:user => 'ealameda', :id => gallery.id) %>

 <% end %>
 <% end %>

<% end %>

<% content_for :sidebar do %>
 <p><%= link_to 'Create New Gallery', new_gallery_path %></p>
<% end %>

This template is nearly identical to the one we used for showing the photos in a gallery
except for a couple minor points.

First, by default, we’ll display the thumbnail of the first photo in the gallery, but we want to
check to ensure that there is at least one photo in the gallery first—otherwise, our page will
crash when we try to call the filename of a nil object. We do a quick check by calling unless
gallery.photos.count == 0 and using that response to pick between two different formats for
displaying the gallery.

Second, we’ve added a count of the number of photos in that gallery by passing the
photos.count response into the pluralize method: pluralize(gallery.photos.count, 'Photo').

In Figure 15-11, you can see the result of our gallery listing page as it would appear at
http://localhost:3000/galleries.

Figure 15-11. Displaying a list of galleries

7818.book Page 362 Thursday, October 4, 2007 7:56 PM

C H A P T E R 1 5 ■ M A N A G I N G U S E R S AN D P R O F I L E S 363

Summary
Well, this has certainly been quite a whirlwind chapter, as we’ve built a fairly significant
amount of functionality in just a few short pages. We started this chapter with only a general
idea of what we wanted to build and some HTML mock-ups, and now, we have a fairly func-
tional site that allows users to manage their profiles, change their avatar images, create blog
posts, and upload photos into galleries. Along the way, we picked up a few new tricks and set
ourselves up to wrap up the project in the next chapter.

7818.book Page 363 Thursday, October 4, 2007 7:56 PM

365

■ ■ ■

C H A P T E R 1 6

Rounding out the Community

In our last chapter, we built a fair amount of functionality to allow the users of our mini com-
munity to populate the site with their own content. However, there are few nagging items still
missing from our application. In this chapter, we’re going to finish up our application by add-
ing a common navigation scheme throughout, building a community home page, and adding
in some basic community tools such as a user directory.

Building the Community Home Page
The first task that we’ll want to tackle is building a standardized home page for all users to go
to after logging in. For the purposes of our initial application, we’ll use this page to display a list
of what’s new within the community. However, this page could be expanded in the future to
provide community calendars, community announcements, and so on. For now, though, we’ll
simply populate the page with a list of recently added blog posts and photo galleries. For good
measure, we’ll also provide the profile of a random user as a way of helping ensure that no
one’s profile is accidentally ignored by the community. The home for this page will be the
index method of the welcome controller that we created in the last chapter.

Before we start editing the index method, however, there are a few things we need
to add to our welcome controller. First off, we need to limit access to the pages controlled
by the welcome controller to only members of our community, so we need to add a
before_filter :login_required method call. Second, since the URLs within this controller
are not going to be passing in a username like most of the controllers in the previous chapter,
we’ll need to also add the skip_before_filter :get_user method call to the controller
to prevent an error from occurring. The welcome controller in /app/controllers/welcome_
controller.rb should look like this as we start:

class WelcomeController < ApplicationController
 before_filter :login_required
 skip_before_filter :get_user

 def index
 end

 def directory
 end
end

7818.book Page 365 Monday, October 8, 2007 7:03 PM

366 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

Creating the Default Route
Since the index template in this controller will be the new home page for our application after
someone has logged in, we’ll build a route to map all requests for http://locahost:3000/ to
this index page. We’ll accomplish this by creating a new named route named home within
/config/routes.rb:

ActionController::Routing::Routes.draw do |map|
 map.home '', :controller => 'welcome', :action => 'index'
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', ➥

:action => 'create'
 map.resources :posts, :path_prefix => ":user"
 map.resources :galleries, :path_prefix => ":user"
 map.resources :photos, :path_prefix => ":user"
end

The Index Page
As we discussed earlier, we’ll utilize the home page as the portal page to all the new content
within the community. To keep things consistent, we’ll keep the design of this home page sim-
ilar to the design of the user profile pages. Make just a few minor modifications to the page to
instead display the most recent blog posts from across all users, any galleries that have been
updated with new photos recently, and a random user profile. To accomplish this, we’ll set
three instance variables in the index method of our welcome controller (/app/controllers/
welcome_controller.rb):

def index
 @posts =
 @galleries =
 @user =
end

Now, we just need to build some methods in our models that we can use to populate those
instance variables.

7818.book Page 366 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 367

Grabbing the Most Recent Blog Posts

To grab the most recent blog posts, we’ll add a new class method to our Post model named recent:

class Post < ActiveRecord::Base
 belongs_to :user

 def self.recent
 find(:all, :order => 'Posts.created_at desc', :group => 'user_id',
 :limit => 7, :include => :user)
 end
end

This method will pull back a list of seven (:limit => 7) of the most recent (:order =>
'Posts.created_at desc') blog posts. However, if one user were to post seven short blog posts
all at once, we wouldn’t want to let that person dominate our front page, so we’ll allow each
user to only have one post on the main page by grouping the results by unique users (:group =>
'user_id'). Finally, because we know that we’re going to want to display the users’ names
along with their posts, we’ll avoid doing a separate query for each of our results by eager load-
ing the user record along with the post (:include => :user).

■Tip You may have noticed that, in our order_by clause, we specified the field with the full model name
Posts.created_at instead of just created_at. This is because when we’re eager loading an additional
table (Users) and we need to reference a field name that exists in both tables (Posts and Users tables)—failing
to fully specify which table and field we want would result in a database error for referencing an ambiguous
column name.

We can now use the Post.recent class method within our controller to populate the @posts
instance variable back in the index action of our welcome controller:

def index
 @posts = Post.recent
 @galleries =
 @user =
end

Within the associated template for this index method (/app/views/welcome/index.rhtml),
we’ll display the blog posts like this:

<div class="blog">
 <h1 class="section_header">Newest Blog Posts<h1>
 <% for post in @posts %>

7818.book Page 367 Monday, October 8, 2007 7:03 PM

368 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

 <h3>
 <%= link_to post.headline,
 post_path(:user => post.user.login, :id => post) %>
 </h3>
 Written by <%= post.user.name %>
 <p>
 <%= truncate(post.body.gsub(%r{</?.*?>}, ""), 130) %>
 <%= link_to "[Read More]", post_path(:user => post.user.login, :id => post) %>
 </p>
 <hr />
 <% end %>
</div>

Grabbing the Most Recently Updated Galleries

Gathering our list of the most recently updated photo galleries will be very similar to the pro-
cess that we just used to gather the most recent blog posts. In this case, we’ll create a new
recent class method within the Photo model:

class Photo < ActiveRecord::Base
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 2.megabytes,
 :resize_to => '640x360>',
 :thumbnails => { :thumb => '140x105>' }
 validates_as_attachment
 belongs_to :gallery
 belongs_to :user

 def self.recent
 find(:all, :order => 'Photos.created_at desc', :limit => 4,
 :conditions => 'parent_id is null',
 :group => 'galleries.user_id', :include => :gallery)
 end
end

This recent method, much like the one we created for posts, will return the four most
recently updated user galleries (:order => 'Photos.created_at desc', :limit => 4). Since we
don’t want to let any one user dominate the page, we will once again limit the query to display
only one gallery per user (:group => 'galleries.user_id'). Also, since attachment_fu creates
two records in the photos table for each picture (one for the picture and one for the thumbnail
version), we need to remove the thumbnail images from our results by calling :conditions =>
'parent_id is null'. Finally, we wrap up our method call by eager loading in the gallery name

7818.book Page 368 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 369

as well, so that we don’t have a bunch of extra database calls to obtain the gallery name when
displaying in our view.

Now that we have the recent method added to our Photo model, we can use it within our
welcome controller to populate our @photos instance variable:

def index
 @posts = Post.recent
 @photos = Photo.recent
 @user =
end

The snippet that we’ll use in the index template to display these photos will look like this:

<div class='gallery'>
 <h1 class="section_header">Photo Galleries</h1>
 <% for photo in @photos %>
 <p class="thumb">
 <%= link_to image_tag(photo.public_filename(:thumb)) + '
' +
 photo.gallery.name + '
 by ' + photo.gallery.user.name + '
',
 gallery_path(:user => photo.gallery.user.login, :id => photo.gallery) %>
 </p>
 <% end %>
</div>

Obtaining a Random User’s Profile

The final instance variable left to set in our controller is the @user variable that we want to
populate with a random user from our community. That way, we can ensure that everyone in
the community is given a somewhat equal chance for exposure and hopefully help avoid hurt
feelings.

Grabbing a random user, though, isn’t as easy a task as you might think at first. There’s no
User.find(:random) type of functionality within Rails, so we’ll have to look at how to build our
own random user function.

Getting a Random User with Ruby

We could take advantage of the fact that there’s a randomizing method within Ruby named
rand to try and pull back a random customer using something like this:

class User < ActiveRecord::Base
 def self.random
 random = rand(User.count) + 1
 find(random)
 end
end

7818.book Page 369 Monday, October 8, 2007 7:03 PM

370 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

Unfortunately, there are a few negatives to this approach. For one, it’s dependent on the
idea that our user IDs are sequential, start with 1 (so they’ll match the count), and have no
missing numbers within their sequence.

We could bypass these problems by pulling back an array of all records and using the rand
method to simply be used to specify a key within the array:

class User < ActiveRecord::Base
 def self.random
 users = User.find(:all)
 random = rand(User.count)
 users[random]
 end
end

This approach also has a number of problems with it—most specifically, the fact that it
requires pulling back the complete dataset of our users just to get one record.

Getting a Random User with SQL

Another approach is to use database-specific functionality to pull back a random record. The
function in most databases that provide this is named random() and could be invoked manually
like this:

SELECT * FROM users ORDER BY random() LIMIT 1

We would invoke it using the ActiveRecord helpers like this:

user = User.find(:one, :order => 'random()')

One problem with this approach is that it can be a bit taxing on a database (less taxing than
pulling back all records most likely). Since our goal is to have a solution for a small user base,
that’s an issue we could probably live with for now.

The other major problem with this approach is that it’s not portable across all database
solutions—for example, this function isn’t available in a MySQL database, as MySQL uses a
function named rand() instead. What we need is a solution that will extrapolate the correct
randomize method across multiple database types. Fortunately, someone else already solved
this problem with the Random Finder plug-in, which provides support for abstracting that
database-specific functions into a common method for fetching random records across most
common database types.

Using the Random Finder Plug-in

We can install the Random Finder plug-in like so:

ruby script/plugin install http://source.collectiveidea.com/public/rails/➥

plugins/random_finders/

7818.book Page 370 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 371

+ ./random_finders/MIT-LICENSE
+ ./random_finders/README
+ ./random_finders/Rakefile
+ ./random_finders/init.rb
+ ./random_finders/lib/abstract_adapter.rb
+ ./random_finders/lib/base.rb
+ ./random_finders/lib/mysql_adapter.rb
+ ./random_finders/lib/postgresql_adapter.rb
+ ./random_finders/lib/sqlite_adapter.rb
+ ./random_finders/tasks/random_finders_tasks.rake
+ ./random_finders/test/random_finders_test.rb

Now that the plug-in is installed, we can pull back a random record by simply passing the
:random symbol to the order clause in any finder method.

We can now use this plug-in to pull back a random user in our welcome controller like this:

def index
 @posts = Post.recent
 @photos = Photo.recent
 @user = User.find(:first, :order => :random)
end

As Borat would say, “Nice!”

Building the Home Page
With the index method in the welcome controller completed, we can modify the template we
use to display a user’s profile to instead be the community home page. Open /app/views/
welcome/index.rhtml, and let’s place all those snippets that we just discussed into that view:

<div class="blog">
 <h1 class="section_header">Newest Blog Posts<h1>
 <% for post in @posts %>
 <h3>
 <%= link_to post.headline, post_path(:user => post.user.login, :id => post) %>
 </h3>
 Written by <%= post.user.name %>
 <p>
 <%= truncate(post.body.gsub(%r{</?.*?>}, ""), 130) %>
 <%= link_to "[Read More]", post_path(:user => post.user.login, :id => post) %>
 </p>
 <hr />
 <% end %>
</div>

7818.book Page 371 Monday, October 8, 2007 7:03 PM

372 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">Have you met?</h1>
 <h3><%= link_to @user.name, showprofile_path(:user => @user.login) %></h3>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>
 <div class='gallery'>
 <h1 class="section_header">Newest Photos</h1>
 <% for photo in @photos %>
 <p class="thumb">
 <%= link_to image_tag(photo.public_filename(:thumb)) +
 '
' + photo.gallery.name + '
 by ' +
 photo.gallery.user.name + '
',
 gallery_path(:user => photo.gallery.user.login,
 :id => photo.gallery) %>
 </p>
 <% end %>
 </div>
<% end %>

The preceding code should give us a page similar to the one shown in Figure 16-1.

Figure 16-1. Our community home page

7818.book Page 372 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 373

Adding a Directory of Users
The next important feature that we’ll tackle is to provide our users with a way to find other
users’ pages within the site. To accomplish this, we’ll build a basic user directory that can be
used to navigate the list of users sorted by their last name. We expect that the directory will
contain an alphabetical index that will look like Figure 16-2.

Figure 16-2. The user directory navigation

Generating an Alphabetical Index
The first challenge in solving this problem is in generating the list of alphabet characters for our
directory index. Granted, we could build it by hand-typing all those links in HTML, but that
would be a lot more pain than I’m willing to endure—especially when the problem can be
solved with a simple array. What we need is an array containing all the letters of the alphabet
which we can generate fairly simply by using Ruby’s support for ranges to create a range of let-
ters (alphabet = 'A'..'Z') and then converting that range into an array with the to_a method.
So we’ll end up with something like this in our controller:

@alphabet = ('A'..'Z').to_a

Creating a Route
With the process of generating the alphabet index out of the way, let’s add a route to our
/config/routes.rb that will allow us to send requests to the directory method in our welcome
controller.

What we want is a way for users to be able to go to http://localhost/directory/B to
collect a list of users whose last name begins with the letter “B.” However, we also want
to support routing to the same method without an error if they omit the letter and simply
request http://localhost/directory. We can accomplish this with a route that provides a
default value:

map.directory '/directory/:char', :controller => 'welcome', ➥

:action => 'directory', :char => 'A'

The preceding route will support both of our needs: if a letter is provided, we’ll pass that
along to our controller method in the :char parameter; if a letter isn’t provided, the route will
pass “A” as the default value. Adding to this new route to our /config/routes.rb will look like this:

ActionController::Routing::Routes.draw do |map|
 map.home '', :controller => 'welcome', :action => 'index'
 map.resources :sessions

7818.book Page 373 Monday, October 8, 2007 7:03 PM

374 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.directory '/directory/:char', :controller => 'welcome', ➥

:action => 'directory', :char => 'A'

 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', ➥

:action => 'create'
 map.resources :posts, :path_prefix => ":user"
 map.resources :galleries, :path_prefix => ":user"
 map.resources :photos, :path_prefix => ":user"
end

Adding the Directory Method
Finally, the directory method of our welcome controller (/app/controllers/welcome_
controller.rb) is completed and should be set up like this:

def directory
 @alphabet = ('A'..'Z').to_a
 @user = User.find(:first, :order => :random)
 @character = params[:char]
 @users = User.find(:all, :order => "last_name ASC",
 :conditions => ["last_name like ?", params[:char] + "%"])
end

This directory method builds an @alphabet instance variable by converting a range of let-
ters into an array. It creates an @user instance variable, which grabs a random user from the
database. It captures the current search character that was submitted into the @characters
instance variable, and finally, it performs a search against the users table for users whose last
names begin with our search character; if it finds any users that match, it places those results
into the @users instance variable.

Editing Our View Template
So with our variables set, we’ll set up a simple display of the results in the /app/views/welcome/
directory.rhtml template file:

<h1 class="section_header">Alphabetical Index</h1>
<div class="directory">
 <% @alphabet.each do |letter| %>
 <% if letter == @character %>
 <%= letter %>

7818.book Page 374 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 375

 <% else %>
 <%= link_to letter, directory_path(:char => letter), :class => "letter" %>
 <% end %>
 <% end %>
</div>
<hr/>

<% for user in @users %>
 <div class="result">
 <div class="userImage"><%= image_tag show_small_avatar(user) %></div>
 <div class="userInfo">
 Name: <%= user.name %>

 </div>
 <div class="userActions">
 <%= link_to "View", showprofile_path(:user => user.login) %>
 </div>
 </div>
<% end %>

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">Have you met?</h1>
 <h3><%= link_to @user.name, showprofile_path(:user => @user.login) %></h3>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>
<% end %>

For the most part, that template is pretty similar to everything that we’ve done so far. How-
ever, there is one small section that I want to discuss:

<% @alphabet.each do |letter| %>
 <% if letter == @character %>
 <%= letter %>
 <% else %>
 <%= link_to letter, directory_path(:char => letter), :class => "letter" %>
 <% end %>
<% end %>

In this block, we start out by looping over each letter in the alphabet instance variable.
Within that loop, we check to see if the current letter matches the character that was received
in the request with a letter == @character statement. If they match, we’ll display the letter in
a custom span; if not, we’ll display the letter as a link to the directory method in the welcome
controller.

7818.book Page 375 Monday, October 8, 2007 7:03 PM

376 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

Adding Navigation
The one major component of our site that is still missing is a common navigational structure.
We’ll add one now by building a split navigation scheme: we’ll populate the upper navigation
div that we created in our layout with the primary navigation, which will be the same for all
users of the community, and we’ll add a secondary navigation with user-specific links down in
the footer.

The Upper Navigation
Our common navigation scheme should be fairly simple; we’ll provide just three simple links:
a link to the community home page, a link to the user directory page, and a link to log out of the
application. Open /app/views/layout/application.rhtml, and edit the navigation div to look
like this:

<div class="yui-g navigation">
 Home |
 Directory |
 Logout
</div>

which should provide us with a common navigation scheme, as shown in Figure 16-3.

Figure 16-3. The common navigation scheme

The Footer Navigation
While the upper navigation provides some generic navigational items, we need to provide our
users with links to perform common tasks that will be specific to their own content. To do that,
we’ll place those links in the footer, so that as the application and community continue to grow
over the years, we’ll have plenty of room to add new functionality.

Since we only want to display this user-centric menu if we actually know who the user is
(i.e., if the user’s logged in), we’ll wrap the whole navigation section in a if logged_in? block.

Once inside that block, we’ll provide the users with links to their user pages, the pages to edit
their own profiles, the page for creating a new post, and the page to add galleries and photos.

<div id="ft">
 <% if logged_in? %>
 <div class="admin_menu">
 <%= link_to 'Your Page',
 showuser_path(:user => current_user.login) %>

7818.book Page 376 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 377

 <%= link_to 'Edit your Profile',
 editprofile_path(:user => current_user.login) %>
 <%= link_to 'Create Blog Post',
 new_post_path(:user => current_user.login) %>
 <%= link_to 'Manage Photo Galleries',
 galleries_path(:user => current_user.login) %>
 </div>
 <% end %>
</div>

When our new footer is displayed to a user , it should look something like Figure 16-4
(assuming you have the style sheets from the code archive).

Figure 16-4. User navigational links in the footer

Adding Comments
The final thing that our site is missing is the ability for users to post comments about each
other’s content. For the purposes of this project, we only need to be able to place comments
onto blog posts and photos, but we want to have a solution that can grow with us to support
other types of contents as well. For that reason, we’ll take advantage of a plug-in by the name
of acts_as_commentable, which creates a single comment model that uses polymorphic associ-
ations, so that we can use it with any number of models.

Installing acts_as_commentable
To use the plug-in we’ll first need to install it via the command line:

script/plugin install http://juixe.com/svn/acts_as_commentable

+ ./acts_as_commentable/CHANGELOG
+ ./acts_as_commentable/MIT-LICENSE
+ ./acts_as_commentable/README
+ ./acts_as_commentable/init.rb
+ ./acts_as_commentable/install.rb
+ ./acts_as_commentable/lib/acts_as_commentable.rb
+ ./acts_as_commentable/lib/comment.rb
+ ./acts_as_commentable/tasks/acts_as_commentable_tasks.rake
+ ./acts_as_commentable/test/acts_as_commentable_test.rb

7818.book Page 377 Monday, October 8, 2007 7:03 PM

378 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

Next, we need to generate a migration to create our comments table:

ruby script/generate migration add_comments

 exists db/migrate
 create db/migrate/007_add_comments.rb

We’ll need to define the structure of our comments table by editing the new migration files
that we just created (/db/migrate/007_add_comments.rb) to build the columns required by the
plug-in:

class AddComments < ActiveRecord::Migration
 def self.up
 create_table :comments, :force => true do |t|
 t.column :title, :string, :limit => 50, :default => ""
 t.column :comment, :string, :default => ""
 t.column :created_at, :datetime, :null => false
 t.column :commentable_id, :integer, :default => 0, :null => false
 t.column :commentable_type, :string, :limit => 15, :default => "", ➥

:null => false
 t.column :user_id, :integer, :default => 0, :null => false
 end

 add_index :comments, ["user_id"], :name => "fk_comments_user"
 end

 def self.down
 drop_table :comments
 end
end

With our migration created, we just need to run the migrate command to add our com-
ments table to our database:

rake db:migrate

== AddComments: migrating =====================================
-- create_table(:comments, {:force=>true})
 -> 0.0045s
-- add_index(:comments, ["user_id"], {:name=>"fk_comments_user"})
 -> 0.0029s
== AddComments: migrated (0.0078s) ============================

Now, to add comments to a model within our application, we merely need to add a single
call to the acts_as_commentable method (added by the plug-in) to each model that we want to be

7818.book Page 378 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 379

able to support comments. Since we want to add comments to our Post model (/app/models/
post.rb), we’ll edit like so:

class Post < ActiveRecord::Base
 acts_as_commentable
 belongs_to :user

 def self.recent
 find(:all, :order => 'Posts.created_at desc', :group => 'user_id',
 :limit => 7, :include => :user)
 end
end

We are also going to want to allow comments on the Photo model (/app/models/photo.rb),
so we’ll need to add it there as well:

class Photo < ActiveRecord::Base
 acts_as_commentable
 has_attachment :content_type => :image,
 :storage => :file_system,
 :max_size => 2.megabytes,
 :resize_to => '640x360>',
 :thumbnails => { :thumb => '140x105>' }
 validates_as_attachment
 belongs_to :gallery
 belongs_to :user

 def self.recent
 find(:all, :order => 'Photos.created_at desc', :limit => 4,
 :conditions => 'parent_id is null',
 :group => 'galleries.user_id', :include => :gallery)
 end
end

Displaying Comments
Since the purpose of the commenting system was to be a way of communication, I really
wanted to display the comments using speech bubbles.

There are a number of implementations out there that we can learn from, such as the open
source CSS ones available on www.willmayo.com or the CSS-only versions at www.cssplay.co.uk/
menu/bubbles.html, but in the end, I wanted something with a little more cartoonish look to it, so
I built something that was heavily inspired by the code used to create the speech bubbles in an
older version of a Rails-powered a forum application named Opinion. A pure HTML view of the
source required to provide these speech bubbles looks like this:

<div id ="comments">
 <h1 class="section_header">Comments</h1>
 <ol id="comment-list">

7818.book Page 379 Monday, October 8, 2007 7:03 PM

380 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

 <div class="comment-head">
 <div class="comment-author-details">
 <h3>
 <div class="user-img">
 <img alt="Underdog" ➥

src="/images/avatars/underdog.jpg" />
 </div>
 Underdog posted
 </h3>
 </div>
 </div>

 <div class="comment-body">
 <div class="comment-body-paragraph">
 <p>This is a great shot! </p>
 <p>You should print it out</p>
 </div>
 </div>
 <p class="comment-link small"> </p>

</div>

When this HTML is rendered in a browser, you’ll see it display a speech bubble like the one
shown in Figure 16-5. To add some extra sizzle to the page, we’ll also enhance the form to add
a comment with a JavaScript-based rich text editor.

Figure 16-5. Our commenting system with speech bubbles

7818.book Page 380 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 381

So now that we have the HTML structure for our comments defined, we just need to mod-
ify that structure to use Rails to populate it with content.

We’ll first want to wrap the whole thing in an @post.comments.any? block so that we’ll only
try to display comments when there actually are some.

Next, if we have any comments, then we’re going to want to create a loop to add each to
the page, so we’ll add for comment in @post.comments to our page.

Finally, we’ll want to convert all of our hard-coded href and image tags to the Rails helper
methods for generating those tags for the current comment:

<% if @post.comments.any? %>
<div id ="comments">
 <h1 class="section_header">Comments</h1>
 <ol id="comment-list">
 <% for comment in @post.comments %>

 <div class="comment-head">
 <div class="comment-author-details">
 <h3>
 <div class="user-img">
 <%= link_to(image_tag(comment.user.small_avatar),
 showuser_path(:user => comment.user)) %>
 </div>
 <%= link_to comment.user.name,
 showuser_path(:user => comment.user) %> posted
 </h3>
 </div>
 </div>

 <div class="comment-body">
 <div class="comment-body-paragraph">
 <p><%= comment.comment %></p>
 </div>
 </div>
 <p class="comment-link small"> </p>

 <% end %>

</div>
<% end %>

The preceding code provides us a comment display like the one shown in Figure 16-6.

7818.book Page 381 Monday, October 8, 2007 7:03 PM

382 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

Figure 16-6. Displaying a comment

Adding Comments
So we’ve built a way to display comments, but we still need to add a way for users to create com-
ments. The first step in that process is determining where we want our comment forms to post.
We’ll keep it simple and just add an addcomment method within our Post and Photo controllers.

However, to make those methods work, we’ll also need to create routes to those methods.
Since we defined both of those models as RESTful resources, we’ll add them to those routes by
defining a member action, such as :member => { :addcomment => :post }, onto each those
routes. Afterward, your /config/routes.rb will look like this:

ActionController::Routing::Routes.draw do |map|
 map.home '', :controller => 'welcome', :action => 'index'
 map.resources :sessions
 map.login '/login', :controller => 'sessions', :action => 'new'
 map.logout '/logout', :controller => 'sessions', :action => 'destroy'
 map.directory '/directory/:char', :controller => 'welcome', ➥

:action => 'directory', :char => 'A'

 map.showuser ":user", :controller => 'profile', :action => 'index'
 map.showprofile ":user/profile", :controller => 'profile', :action => 'show'
 map.editprofile ":user/profile/edit", :controller => 'profile', :action => 'edit'
 map.updateprofile ":user/profile/update", :controller => 'profile', ➥

:action => 'update'
 map.addavatar ":user/avatar/create", :controller => 'avatar', ➥

:action => 'create'
 map.resources :posts, :path_prefix => ":user", :member => { :addcomment => :post }
 map.resources :galleries, :path_prefix => ":user"
 map.resources :photos, :path_prefix => ":user", :member => ➥

{ :addcomment => :post }
end

7818.book Page 382 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 383

Creating the Add Comment Form

With those new routes, we can access our controller methods through the addcomment_post_path
or an addcomment_photo_path named route helper method; let’s use those named routes as we
create our comment forms now. Within the show template for the posts controller (/app/views/
posts/show.rhtml), we’ll add this form:

<div id="comment_form">
 <h1 class="section_header">Post a Comment</h1>
 <% form_for :comment, :url => addcomment_post_path do |c| %>
 <p>
 <label for "comment_body">Comment:</label>

 <%= c.text_area 'comment', "cols" => 70, "rows" => 5 %>
 <%= c.hidden_field 'user_id', :value => current_user.id %>
 </p>
 <p>
 <%= submit_tag 'Add Comment' %>
 </p>
 <% end %>
</div>

Enhancing the Form with a Rich Text Editor

You should recall that when we first discussed the add comment form we wanted to enhance
the form with a JavaScript-based rich text editor. In cases like these, I’ve had really good luck
with implementing an open source solution named TinyMCE. It’s a highly configurable yet
lightweight solution, and in my experience, it produces HTML that is a lot cleaner than many
of the other solutions available. As an additional bonus, you can also configure TinyMCE with
an explicit list of allowed tags—so we can easily prevent users from submitting text with
embedded styles that might cause issues with the site’s style sheets.

You can download TinyMCE from http://tinymce.moxiecode.com/download.php. Once
you uncompress the TinyMCE archive, copy the entire tiny_mce folder from the archive’s
/jscripts subdirectory into our application’s /public/javascripts/ folder.

With TinyMCE installed, adding a TinyMCE editor to a page is simply a matter of including
the main file and adding in a few lines of configuration options for the editor. Because those
options are typically the same across any pages on which I use the editor, I usually push that
configuration into a separate JavaScript file that I include on any relevant pages. Go ahead and
create a new JavaScript file named tinyconfig.js in our /public/javascripts subdirectory
and place this configuration in it:

tinyMCE.init({
 mode : "textareas",
 theme : "advanced",
 theme_advanced_buttons1 : "bold,italic,underline,separator,strikethrough,➥

justifyleft,justifycenter,justifyright, justifyfull,bullist,numlist,undo,redo,➥

link,unlink,cleanup,code",

7818.book Page 383 Monday, October 8, 2007 7:03 PM

384 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

 theme_advanced_buttons2 : "",
 theme_advanced_buttons3 : "",
 theme_advanced_toolbar_location : "top",
 theme_advanced_toolbar_align : "left",
 extended_valid_elements : "a[name|href|target|title|onclick],➥

img[class|src|border=0|alt|title|hspace|vspace|width|height|align|➥

onmouseover|onmouseout|name],hr[class|width|size|noshade],➥

font[face|size|color|style],span[class|align|style]"
 });

Now, back in our show template (/app/views/posts/show.rhtml), we’ll include the
TinyMCE configuration at the top of the page like this:

<%= javascript_include_tag 'tiny_mce/tiny_mce' %>
<%= javascript_include_tag 'tinyconfig' %>

When we display our final page, the result of this comment form will look like the one
shown in Figure 16-7.

Figure 16-7. Our Post A Comment form

The Final show Templates

Let’s put all of our views together now. The show template for the posts controller (/app/views/
posts/show.rhtml) will look like this:

<%= javascript_include_tag 'tiny_mce/tiny_mce' %>
<%= javascript_include_tag 'tinyconfig' %>

<div class="blog">
 <h1 class="section_header"><%= @post.headline %><h1>
 <%= @post.body %>
 <p>written on <%= @post.created_at.to_s(:long) %></p>
 <hr />
 <% if show_admin_menu %>
 <%= link_to 'Edit This Post',
 edit_post_path(:user => @user.login, :id => @post) %>

7818.book Page 384 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 385

 <%= link_to 'Destroy This Post',
 post_path(:user => @user.login, :id => @post),
 :confirm => 'Are you sure?', :method => :delete %>
 <% end %>
</div>

<% if @post.comments.any? %>
 <div id ="comments">
 <h1 class="section_header">Comments</h1>
 <ol id="comment-list">
 <% for comment in @post.comments %>
 <% user = comment.user %>

 <div class="comment-head">
 <div class="comment-author-details">
 <h3><div class="user-img"><%= link_to(image_tag(user.small_avatar),
 showuser_path(:user => user)) %></div>
 <%= link_to user.name, showuser_path(:user => user) %> posted</h3>
 </div>
 </div>

 <div class="comment-body">
 <div class="comment-body-paragraph"><p><%= comment.comment %></p></div>
 </div>
 <p class="comment-link small"> </p>

 <% end %>

 </div>
<% end %>

<div id="comment_form">
 <h1 class="section_header">Post a Comment</h1>
 <% form_for :comment, :url => addcomment_post_path do |c| %>
 <p>
 <label for "comment_body">Comment:</label>

 <%= c.text_area 'comment', "cols" => 70, "rows" => 5 %>
 <%= c.hidden_field 'user_id', :value => current_user.id %>
 </p>
 <p>
 <%= submit_tag 'Add Comment' %>
 </p>
 <% end %>
</div>

7818.book Page 385 Monday, October 8, 2007 7:03 PM

386 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

<% content_for :sidebar do %>
 <div class='about'>
 <h1 class="section_header">About Me</h1>
 <p><%= @user.detail.headline %></p>
 <p><%= image_tag show_avatar %></p>
 <p><%= @user.detail.about_me %></p>
 <p><%= link_to '[Learn More About Me]',
 showprofile_path(:user => @user.login) %></p>
 </div>
<% end %>

And the show template for our photos controller (/app/views/photos/show.rhtml) will
look like this:

<%= javascript_include_tag 'tiny_mce/tiny_mce' %>
<%= javascript_include_tag 'tinyconfig' %>

<h1 class="section_header">View Photo<h1>
<%= image_tag @photo.public_filename %>

<% if @post.comments.any? %>
 <div id ="comments">
 <h1 class="section_header">Comments</h1>
 <ol id="comment-list">
 <% for comment in @post.comments %>
 <% user = comment.user %>

 <div class="comment-head">
 <div class="comment-author-details">
 <h3><div class="user-img"><%= link_to(image_tag(user.small_avatar),➥

showuser_path(:user => user)) %></div>
 <%= link_to user.name, showuser_path(:user => user) %> posted</h3>
 </div>
 </div>

 <div class="comment-body">
 <div class="comment-body-paragraph"><p><%= comment.comment %></p></div>
 </div>
 <p class="comment-link small"> </p>

 <% end %>

 </div>
<% end %>

7818.book Page 386 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y 387

<div id="comment_form">
 <h1 class="section_header">Post a Comment</h1>
 <% form_for :comment, :url => addcomment_post_path do |c| %>
 <p>
 <label for "comment_body">Comment:</label>

 <%= c.text_area 'comment', "cols" => 70, "rows" => 5 %>
 <%= c.hidden_field 'user_id', :value => current_user.id %>
 </p>
 <p>
 <%= submit_tag 'Add Comment' %>
 </p>
 <% end %>
</div>

<% content_for :sidebar do %>
 <%= @photo.description %>
 <% if show_admin_menu %>
 <h1 class="section_header">Photo Admin<h1>
 <%= link_to "Delete Photo", photo_path(:user => @user.login, :id => @photo),➥

 :confirm => 'Are you sure?', :method => :delete %>
 <% end %>
<% end %>

The Add Comment Methods

Now that we have everything configured to display a comment form for our posts and photos, we
just need to build the addcomment methods in our controllers that will actually add the submitted
comments to the database. This is made even easier, as our acts_as_commentable plug-in also
added a method to each of our models named add_comment. So we can simply add the following
methods.

Within our posts controller, we’ll add this method:

def addcomment
 post = current_user.posts.find(params[:id])
 comment = Comment.new(params[:comment])
 post.add_comment comment
 redirect_to post_path(:user => params[:user], :id => post)
end

And within our photos controller, we’ll add the addcomment method like this:

def addcomment
 photo = Photo.find(params[:id])
 comment = Comment.new(params[:comment])
 photo.add_comment comment
 redirect_to photo_path(:user => params[:user], :id => photo)
end

7818.book Page 387 Monday, October 8, 2007 7:03 PM

388 C H A P T E R 1 6 ■ R O U N D I N G O U T T H E C O M M U N I T Y

And with that, our comment functionality is complete.

Summary
In this chapter, we put together the few remaining elements of our application that will allow
us to go live and let users start playing with it. While the elements that we added in this chapter,
such as the user directory and commenting abilities, are going to be universal enough to go
with most any community that might want to use an application like this, we’re far from done.
Individual communities’ needs will drive the development directions of the application from
here forward. A community that meets in lots of different places would probably benefit from
a Google or Yahoo Maps integration, whereas a community that is technocentric might benefit
from items such as tagging and instant message integration.

7818.book Page 388 Monday, October 8, 2007 7:03 PM

389

■ ■ ■

C H A P T E R 1 7

Enhancing the Church
Community Application

In this project, we put together a simple community application designed to foster commu-
nity within a small group of users such as a local church, family, or users group. We provided a
few basic tools for this community, including a user directory, photo galleries, blogging, and
commenting. These are the generic things that would be useful for any mini community.

While I was building the application, you should have noticed that I had a fairly clear pic-
ture of my imaginary church group for which I was building the application, and thus I allowed
the needs of that group to influence several key decisions while I was building the application.

For you to take the application further, I would strongly recommend you either find a
group that could benefit from features like this or do your best to imagine a very specific group
of people. An application like this really needs to be laser focused onto the users and their
needs in order for it have any value at all. That being said, here are a number of additional ideas
for you to consider while continuing to develop this application.

Create a User Import or Sign-Up Process
One key element that we touched on in the chapter was the need to build in a way to add users
to our mini community site. I’m leaving this one up to you, as each community focus is going
to have different needs for creating users. Some communities are going to want a traditional
web sign-up process, which RESTful Authentication can provide for you. Other communities
might want an administration page where only a single administrator is able to control who
has access and who doesn’t.

Yet others might want to bypass the administration portion completely and deal solely
with creating users from a data import from a vendor application, such as Act or Outlook con-
tacts. Some good libraries to look at for inputting from vCard or CSV are:

• http://rubyforge.org/projects/vpim/

• http://fastercsv.rubyforge.org/

Or you could go a completely different route and implement one of those hot new
OpenID-based solutions. For a great tutorial on those, check out http://railscasts.com/
episodes/68.

7818.book Page 389 Monday, October 1, 2007 9:54 PM

390 C H A P T E R 1 7 ■ E N H A N C I N G T H E CH U R C H C O M M U N I T Y A P P L I C A T I O N

Batch Upload Photos Using SWFupload
One problem with the photo galleries that we’re sure to hear about from our users is the fact
that, currently, users can only upload a single photo at a time. There was a time not too many
years back when we could have easily ignored that complaint and asserted that it’s just the
way things are, but too many sites allow batch uploads to overlook this complaint now. One
interesting solution to this problem is an open source JavaScript and Flash solution named
SWFupload that allows you to easily add batch file uploads. You can see a demonstration of the
solution in Figure 17-1.

Figure 17-1. An example of using SWFupload to upload multiple files

For more information on using SWFupload, check out these sites:

• http://swfupload.mammon.se/index.php

• http://blog.flornet.fr/2007/05/29/swfupload-using-ruby-on-rails-demo/

• http://code.google.com/p/activeupload/

• http://developer.assaydepot.com/?p=6

• http://blog.inquirylabs.com/2006/12/09/getting-the-_session_id-from-swfupload/

Add an RSS Feed for Each User
Another area that we could easily expand on is the ability to create an RSS feed for each user
that would contain the latest blog posts and photo uploads. This way, a user could simply sub-
scribe to friends’ RSS feeds to keep up on specific people. Check out our simple blog project
(see Chapter 10) for an example of building an RSS feed using an rxml template.

7818.book Page 390 Monday, October 1, 2007 9:54 PM

C H A P T E R 1 7 ■ E N H A N C I N G T H E CH U R CH C O M M U N I T Y AP P L I C A T I O N 391

Add Friends List Functionality
Of course, as long as we’re talking about friends, we might also consider building in some basic
friends list functionality. However, doing this in a small community is going to require a very
delicate touch, as the potential for hurt feeling increases exponentially (“No one has asked to
be my friend on the site!”). So you need to weigh the risks of adding a solution like this against
your own desire to build something fun.

If I were to tackle this solution, I would probably hit it from the reverse angle and instead
make it a permissions list of what you’re willing to share with people. For example, with my
close friends, I might be willing to share the fact that I’m looking for a new job or a funny (but
unflattering) photo of myself. But I’d probably not want to share that information with every-
one in the community.

For that scenario, I would create the ability for me to mark another user as my friend.
Then, I would create a flag on all my content to specify whether it’s available to the community
at large or to my friends only. Of course, to keep jealousy and hurt feeling to a minimum, I
would not give any indication to other users as to whether or not they are on my friends list.
Users could simply see all of the content or only some of it.

Enhance the Home Page
Currently, our home page is informational but not very useful to the community. What it needs
is some more content. Why don’t you try to add some content and tools to populate that con-
tent? Some examples of content would be community announcements (which could probably
be supported in the same manner as our blogs), a community calendar of upcoming events
(perhaps reading in from a Google calendar feed), or even something as simple as a community
bulletin board or classified ads. The goal here is to develop more enticement for users to visit
the homepage (beyond the fact that we force them to when they log in).

Clean Up Some of Our Ruby Code
If you look back at the code in our galleries index template (/app/views/galleries/index.rhtml),
you’ll notice that we have a line in our code like this:

<% unless gallery.photos.count == 0 %>

While this is perfectly valid and acceptable code, it’s not exactly the Ruby way of doing
things. What we should be doing instead is taking advantage of enumerable methods such as
empty? or any? that are available whenever we’re dealing with hashes or arrays.

Doing so would allow us to change our code to something nicer such as:

<% if gallery.photos.any? %>

Sometimes those old C habits are hard to break. Look around the application—who knows
what else you might find?

7818.book Page 391 Monday, October 1, 2007 9:54 PM

392 C H A P T E R 1 7 ■ E N H A N C I N G T H E CH U R C H C O M M U N I T Y A P P L I C A T I O N

Move Code into Partials
As long as we’re already in the galleries index template, did you happen to notice how noisy our
template is? I mean, look at all this code we have in there to simply display our gallery thumbnails:

<h1 class="section_header">Galleries<h1>
<% @galleries.in_groups_of(3, false) do |galleries| %>
 <ul class="thumbnails">
 <% for gallery in galleries %>
 <% if gallery.photos.any? %>
 <li class="thumb">
 <%= link_to image_tag(gallery.photos.first.public_filename(:thumb)) +➥

 '
' + gallery.name + '
' + pluralize(gallery.photos.count, 'Photo'),➥

 gallery_path(:user => @user.login, :id => gallery.id) %>

 <% else %>
 <li class="thumb">
 <%= link_to gallery.name + '
' + pluralize(gallery.photos.count,➥

 'Photo'), gallery_path(:user => @user.login, :id => gallery.id) %>

 <% end %>
 <% end %>

<% end %>

Considering that all we’re doing here is looping over a collection of galleries, doesn’t it
make more sense that this should be moved into a partial? Do that, and this template could be
made to look like this:

<h1 class="section_header">Galleries<h1>
<% @galleries.in_groups_of(3, false) do |galleries| %>
 <ul class="thumbnails">
 <% render :partial => 'gallery, :collection => galleries %>

<% end %>

Which is just a tad nicer on the old eyes, don’t you think? I left a few other areas in the
application that you can convert to partials. Why don’t you go through and see how much you
can clean up the code by converting to partials? As a hint, almost anytime you see that you’re
coding a for foo in bars type of loop, you’re probably looking at a candidate for a partial.

For advanced credit, why not also see if you can convert some of the code so that different
pages can share the same partial?

7818.book Page 392 Monday, October 1, 2007 9:54 PM

C H A P T E R 1 7 ■ E N H A N C I N G T H E CH U R CH C O M M U N I T Y AP P L I C A T I O N 393

Implement Kropper for User Profile Images
Another potential problem for our users is going to come with the way that we’re currently
handling the profile pictures. Currently, we simply accept what they upload, which is a
perfectly workable solution but can cause our less technically inclined users to have a nonop-
timized profile picture. This would be the case especially for those users who may not have
access to photo editing software.

A really interesting solution that came out as this book was getting close to completion is a
tool named Kropper developed by Jonathon Wolfe of Kolossus Interactive (www.kolossus.com).
Kropper provides a set of JavaScript, CSS, and Ruby functions to provide our Rails applications
with an interactive photo cropping tool similar to what we would find in Apple’s iChat applica-
tion. Best of all, it was designed to work with the attachment_fu plug-in. You can see Kropper in
action in Figure 17-2.

Figure 17-2. Add Kropper to your application to optimize your profile’s pictures.

You can play with an online demonstration of Kropper at kropper.captchr.com, and you
can download the latest version from rubyforge.org/projects/kropper. At the time of this
writing, Kropper is only available as an open source application that you would have to manu-
ally integrate into your application. However, the creator has commented in his blog that he
and Tim Lucas are working on converting it into a Rails plug-in.

7818.book Page 393 Monday, October 1, 2007 9:54 PM

394 C H A P T E R 1 7 ■ E N H A N C I N G T H E CH U R C H C O M M U N I T Y A P P L I C A T I O N

Add Caching
Since we have a large amount of content in our community that won’t be changing once it’s
been added, adding some intelligent caching into our application really makes a lot of sense. If
our community isn’t a group of comment-posting fiends, we should be able to get away with
page caching the show methods of blog posts and photos. Other sections of the site, such as the
community home page, would probably benefit best from a nice dose of fragment caching.

Summary
The ideas listed in this chapter should be more than enough to get you started and give you
some tools to delight your user community. Visit the RailsProjects.com forums and share your
enhancements with others. Every community is going to be different, but there are always
things we can learn from each other.

7818.book Page 394 Monday, October 1, 2007 9:54 PM

■ ■ ■

P A R T 7

GamingTrend

In a perfect world, all Rails applications that we create would be greenfield applications

with brand new databases that we could build from scratch according to the Rails con-

ventions. Unfortunately, though, in the real world, we often either inherit or have

previously written applications that we still need to maintain and support. In those situa-

tions, the temptation to rewrite those applications is hard to resist. Perhaps it’s because

somewhere deep down inside we believe that code slowly rusts over time, or perhaps we

want to apply a new trick that we’ve learned about, or perhaps sometimes it’s just

because we want to have the opportunity to fix past mistakes.

In this project, we’re going to succumb to that desire and take a look at one application

that justifiably requires a rewrite. While the underlying data for the application is still good

and must be maintained, the web application itself was written years ago in PHP/MySQL

and is now too hard to maintain and unable to keep up with the needs of the client. As we

build out a new version of this application, we’ll explore some of the quirks that come into

play when we develop to a nonstandard database structure.

Our application’s story begins with an old college buddy named Ron who started his own

web site a few years back. Originally, the site was created merely to track the release

dates of upcoming video games, but as the readership grew, so did the site—today, it is

a full-fledged gaming news and reviews web site.

A while ago, Ron decided that hand-editing every single page on the site was becoming

far too painful as the quantity and frequency of the content grew, so he hired somebody to

create a custom administration system for the site using PHP 4 and MySQL. That custom

administration system was created to maintain data on all console games, as well as

7818.book Page 395 Monday, October 8, 2007 7:03 PM

provide systems for adding reviews of those games and daily news. That little administra-

tion system has served the site pretty well for a number of years through the maintenance

of a handful of developers. Unfortunately, the application is definitely showing its age.

Staff members on the site have been complaining about the unwieldiness of the interface,

and through the numerous developers (of varying quality), the applications code itself has

degraded into a nightmare full of spaghetti code and one-off hacks.

That’s where we come in—Ron is calling in some old favors (some might say it’s black-

mail—so much for that “what happens in Vegas stays in Vegas” line) to get our help in

updating the backend administration of the site before he demonstrates the full site to

some potential buyers.

Our mission, should we choose to accept it, is to build a new Rails application to replace

the aging PHP administrative one. The legacy database must be used and maintained.

Should we find ourselves buried deep in any legacy PHP code, the Secretary will disavow

all knowledge of our actions. This book will self-destruct in five seconds.

7818.book Page 396 Monday, October 8, 2007 7:03 PM

397

■ ■ ■

C H A P T E R 1 8

Understanding the Problems of
the Legacy PHP Site

As I stated, the current administrative system was written years ago in PHP4 with a MySQL
backend and has served our buddy’s site well, but the application’s code has been maintained
by a variety of pasta-loving amateur developers, which has led to a number of maintenance
issues. For one, the site is an incredible hassle to maintain—even simple changes to the
application often take days to complete and cause many other things to break. Second, the
application’s interface hasn’t adapted and evolved with the needs of the site and has now
become rather cumbersome for the staff to use. So Ron (the owner of the site) has opted that
his best option before talking to any more buyers is to refresh the site, starting with the admin-
istrative tools that the staff uses on a daily basis.

While doing a complete rewrite of an existing application can sound very fun and exciting
in the beginning, the reality is that rewrites can often degrade into a festering project from the
very darkest bowels of hell itself. Fortunately for us, though, we’re not going to have to spend
our time digging through pages and pages of PHP code, as our emphasis is not on converting
the actual PHP code that was originally used but on building a new Rails application that can
speak effectively with the existing database. Rewriting the application into Rails won’t be too
terribly difficult, but the legacy database will almost certainly present some unique challenges
that we’ll have to deal with along the way.

Our goals for this rewrite are fairly straightforward:

• We want to make the code maintainable again, taking advantage of code reuse and
cleaning up the database as necessary.

• A number of features that have been supported by the site no longer fit with the future
direction of the web site, and Ron has decided that it’s time to get rid of them during this
rewrite.

• We want to update the user interface to make it modern as well as create an easier work-
flow for the staff.

7818.book Page 397 Monday, October 8, 2007 7:03 PM

398 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

• We want to make changes to the database only where absolutely necessary so as to min-
imize any impacts to existing code on the primary (public-facing) site.

• The site originally launched under the name ConsoleGold but ran into some issues with
using that name a few years back and was forced to rename. The administration site,
however, was written before the naming issues and has remained a constant reminder of
some painful times for the site. Ensuring that all references to ConsoleGold are removed
from the new administration site is a feature that the staff has been longing for.

From its humble roots as a list of upcoming console games and expected release dates, the
site has grown in leaps and bounds over the years. From originally having Ron as the sole con-
tributor to the site, it now has over 20 volunteers on staff creating and adding content to the site
daily. Today, the site maintains database records on approximately 4,000 PC and console
games and generates a tremendous amount of daily content in the form of news, reviews, and
previews.

There’s a lot going on in this site and even a rewrite of the administration system alone
would be a very large project that could easily fill up this whole book by itself. Some strategy
will be necessary in what to convert in this project, as we won’t be able to go over the complete
application rewrite. Instead, I’ll focus our efforts on covering several of the key features of the
application, explore concepts for connecting Rails to a legacy database, and introduce you to
some advanced tools that would be useful in a project like this. When we’re done, you should
have the tools that you need to feel confident addressing such a rewrite yourself one day. So,
without further ado, let’s take a look at what we’re starting out with.

A Quick Tour of the Current System
At the core of the system are the game records—every game that the site covers has a record
in the database. A game record includes information such as a description of the game, what
genre a game belongs to (e.g., role playing, action, or sports), the publishers and developers for
the game, and so on. You can see an example of a game record from the existing administration
site in Figure 18-1.

Historically, the site has also tracked the release dates of each title as well as a list of
advanced features that each title supports (such as which games run in HD, support 5.1 sur-
round, or have online multiplayer components). However, as the site has evolved toward
becoming a content-driven site rather than a reference-based site, those legacy features have
become a burden on the staff to maintain. Ron has decided that maintaining that level of detail
about each game has a decreasing value for the site’s future and has asked us to eliminate sup-
port for release dates and features in our redesign. Only time will tell whether or not that was a
good idea.

All content on the site (news, reviews, interviews, screenshots, etc.) is associated to at least
one game record. In Figure 18-2, you can see the current administration page for editing a news
story and see how it’s been associated to several items in the database in the left side column.

7818.book Page 398 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 399

Figure 18-1. A game record in the old system

Currently, the staff is tasked with associating content such as news posts and game reviews
to multiple items—games, consoles, publishers, and developers. However, only the associa-
tion to the game record is actually being used on the public site, thus Ron has asked that we
simplify the interface by removing the other associations.

Figure 18-2. A news story from the old system

7818.book Page 399 Monday, October 8, 2007 7:03 PM

400 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

A Look at the Existing Code
To give you an idea of the mess that we’re cleaning up, let’s take a quick glance at a few lines of
the code from the edit news post page. The first thing we notice is that each page in the admin-
istration application is actually its own self-contained mini application. Copy and paste seems
to be the only method of code reuse in this application, and this is actually an above-average
page in the application.

Forms on each page submit data to the same page for processing. At the very top of this
page, there are seven blocks of SQL containing insert and update calls like the following ones—
each one responding to a different form submission from this page:

if ((isset($HTTP_POST_VARS["MM_insert"])) && ($HTTP_POST_VARS["MM_insert"] == ➥

"adddev"))
 {
 $insertSQL = sprintf("INSERT INTO DevNews (NewsID,DevID) VALUES(%s, %s)",
 GetSQLValueString($HTTP_POST_VARS['hiddenNewsID'], "int"),
 GetSQLValueString($HTTP_POST_VARS['Developer'], "int"));
 mysql_select_db($database_SQL, $SQL);
 $Result1 = mysql_query($insertSQL, $SQL) or die(mysql_error());
 }

if ((isset($HTTP_POST_VARS["MM_insert"])) && ($HTTP_POST_VARS["MM_insert"] == ➥

 "addpub"))
 {
 $insertSQL = sprintf("INSERT INTO PubNews (NewsID,PubID) VALUES(%s, %s)",
 GetSQLValueString($HTTP_POST_VARS['hiddenNewsID'], "int"),
 GetSQLValueString($HTTP_POST_VARS['Publisher'], "int"));
 mysql_select_db($database_SQL, $SQL);
 $Result1 = mysql_query($insertSQL, $SQL) or die(mysql_error());
 }

if ((isset($HTTP_POST_VARS["MM_update"])) && ($HTTP_POST_VARS["MM_update"] ==➥

"activate"))
 {
 $updateSQL = sprintf("Update News Set Active=1, DateAdded = NOW() ➥

where NewsID = %s",
 GetSQLValueString($HTTP_POST_VARS['hiddenNewsID'], "text"));
 mysql_select_db($database_SQL, $SQL);
 $Result1 = mysql_query($updateSQL, $SQL) or die(mysql_error());
 }

After the page takes care of any form submissions, it runs though the following series of
SQL select statements to populate content on the page; there are nine unique SQL select calls
that all look like the following ones:

mysql_select_db($database_SQL, $SQL);
$query_PubPRList = sprintf("SELECT Publishers.Name, PubNews.PubID, PubNews.NewsID➥

FROM Publishers, PubNews where Publishers.PubID = PubNews.PubID ➥

and PubNews.NewsID = %s", $colname_PRList);

7818.book Page 400 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 401

$PubPRList = mysql_query($query_PubPRList, $SQL) or die(mysql_error());
$row_PubPRList = mysql_fetch_assoc($PubPRList);
$totalRows_PubPRList = mysql_num_rows($PubPRList);

mysql_select_db($database_SQL, $SQL);
$query_ConsPRList = sprintf("SELECT Console, ConsNews.NewsID FROM ➥

ConsNews where ConsNews.NewsID = %s", $colname_PRList);
$ConsPRList = mysql_query($query_ConsPRList, $SQL) or die(mysql_error());
$row_ConsPRList = mysql_fetch_assoc($ConsPRList);
$totalRows_ConsPRList = mysql_num_rows($ConsPRList);

mysql_select_db($database_SQL, $SQL);
$query_GamesList = "SELECT GameID, Title, Console FROM Games ORDER BY Title ASC";
$GamesList = mysql_query($query_GamesList, $SQL) or die(mysql_error());
$row_GamesList = mysql_fetch_assoc($GamesList);
$totalRows_GamesList = mysql_num_rows($GamesList);

Finally, after all those SQL calls, we get into the HTML for the page, which has been made quite
difficult to read thanks to a metric ton of embedded PHP intermixed with the HTML tags (though it
could be worse; I have seen sites that have all the SQL queries mixed in with the HTML):

<form name="addgame" method="POST" action="<?php echo $editFormAction; ?>" id="add">
 Associate Game(s) to this news Item
 <input name="hiddenNewsID" type="hidden" value="➥

<?php echo $row_PRList['NewsID']; ?>">

 <select name="GameID[]" size="10" multiple id="select" class="Xlongtext">
 <?php
 do {
 ?>
 <option value="<?php echo $row_GamesList['GameID']?>">
 <?php echo stripslashes($row_GamesList['Title']) . " (" . ➥

$row_GamesList['Console'] .")"?>
 </option>
 <?php
 }
 while ($row_GamesList = mysql_fetch_assoc($GamesList));
 $rows = mysql_num_rows($GamesList);
 if($rows > 0) {
 mysql_data_seek($GamesList, 0);
 $row_GamesList = mysql_fetch_assoc($GamesList);
 }
 ?>
 </select>
<div align="right">
 <input name="Submit" type="submit" value="Associate Game(s)" class="button">
</div>
 <input type="hidden" name="MM_insert" value="addgame">
</form>

7818.book Page 401 Monday, October 8, 2007 7:03 PM

402 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

Issues with the Old System
While it might seem funny and easy to poke fun at this code, it’s always good to remember that
sometime in all of our lives we’ve probably written code like this (or possibly even worse code).
It’s important to remember that this code has worked for the site for a number of years without
many issues, so let’s switch our focus instead to the issues that we need to solve:

• The first issue is that is that code is incredibly hard to maintain with its current design. A
design like this might be okay for a small two- or three-page application but not when
you’re looking at trying to maintain several hundred pages like this. Suddenly, it’s not a
great mystery why the code hasn’t been updated much over the years, is it?

• A minor but annoying issue is that the administration site still uses the old site name,
which the site can no longer use. The administration page needs to be rebranded to use
the site’s new name GamingTrend.

• Currently, no code is reused at all. Each page is its own self-contained application with
the same functions (apparently) copied and pasted from page to page.

• There are slow loading pages because the complete list of 4,000+ game titles is loaded
into drop-down selection lists, which wasn’t a problem when the site was first created
and the complete list was only a few hundred records long.

• A number of times, staff members have copied and pasted in badly formed HTML from
external sources that has caused issues with the layout of the main site. For example,
they tried implementing a JavaScript-based WYSIWYG text area solution a few years
back, but it only worked with Internet Explorer and produced horribly invalid HTML.

• There are a large number of historical features on the site that no longer make sense
to support. While we’re rewriting the backend application, we should also do a bit of
housecleaning to remove those features.

• Staff members have complained that navigating around the content for a game can be
pain. There’s no easy way to get back to a game record after uploading screenshots for it
without going back to a page that lists all games.

Setting Up Our Application
Throughout this book, I’ve preached the benefits of using smaller database solutions such as
SQLite for our development purposes. However, when recoding to a legacy database, I’ve often
found that it’s best to match the database system of the source system, if possible. One reasons
for this is that oftentimes a legacy system will utilize database-specific fields, features, and
options that may not easily translate into another database solution. In addition, some legacy
databases offer advanced features, such as views, that we can utilize to make our integration
efforts easier that just aren’t available in SQLite. For example, one of my first Rails applications
was an interface to a legacy Microsoft SQL Server 2000 database. That database had an abso-
lutely horrendous design with common data fields spread out among many tables (and in a few
cases across multiple databases) and with each table using its own naming conventions. How-
ever, I was able to make my integration efforts tremendously easier by building a few views that

7818.book Page 402 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 403

could combine the data that I wanted into a cohesive whole (and using names that made my
integration a thousand times easier).

For this project, I’ll be utilizing a MySQL database on my development machine and will
provide the sample data as a MySQL database export for your use as well. In the source archive
for the application, you’ll also find a MySQL import script that you can use to build a local copy
of a smaller version of the legacy database. For maximum ease of use, I highly recommend
using a MySQL management application by the name of Navicat (http://www.navicat.com).
It’s available for Windows, Mac, and Linux OS, and it offers a 30-day demonstration version for
you to try it out. I use it on a daily basis for managing my production MySQL databases and
truly believe it’s worth the investment to purchase.

Let’s go ahead and create our new Rails application according to the standard setup that
we’ve used from Chapter 2 and call it “gaming”. Once we have that new application config-
ured, you’ll want to ensure that you’ve loaded the sample database and downloaded the CSS
and image elements that I’ve included in the archive. Within that archive, you’ll find instruc-
tions on where all those elements will need to be placed, as well as some extra help detailing
how to import the database for those who aren’t familiar with the process.

Utilizing the Console
Now that we have an application created and the legacy database loaded, how do we ensure
that the two can communicate? We’ll do it using a tool that doesn’t get nearly the attention that
it deserves—the interactive console that comes with Rails. The console is a powerful tool that
allows you to work directly with your Rails application from an interactive shell. Rather than
wasting your time making changes and reloading your web pages to see if things are working
correctly, you’re able to work directly with your data using the same Rails method calls and see
the explicit results that are returned from each method. It wouldn’t be a stretch to say that I
probably use the console on a daily basis. It’s a great tool to learn from, an easy way to interact
with my applications, and an especially powerful ally when building a configuration to a legacy
database.

You initiate the console by opening a command prompt in the root of your project and
entering the following command:

ruby script/console

Loading development environment.
>>

Once we’re in the console, we’ll be able to experiment with our model configuration by
simply entering the same commands that we might enter into the code of our models and con-
trollers. Let’s start by defining a new Game model that we can use for the duration of this
console session:

>> class Game < ActiveRecord::Base
>> end

=> nil

7818.book Page 403 Monday, October 8, 2007 7:03 PM

404 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

Now that we’ve built a simple Game model, let’s see if it can read in a record from the leg-
acy database:

>> @game = Game.find(:first)

=> #<Game:0x281ee68 @attributes={"updated_at"=>nil, "AddedBy"=>"0", "ESRB"=>"T",
 "SiteURL"=>nil, "BoximagePath"=>"shots/baldursgate_da.jpg", "Console"=>"Xbox",
 "PubID"=>"33", "Title"=>"Baldur's Gate: Dark Alliance", "GameID"=>"1",
"GenreID"=>"4", "DevID"=>"15", "created_at"=>"0000-00-00", "Description"=>"It's
the massively popular world of Baldur's Gate as you have never seen it before.
Baldur's Gate: Dark Alliance is a revolutionary action adventure with an epic
tale of intrigue, fierce alliances, explosive spell effects and highly detailed
creatures and environments. Baldur's Gate: Dark Alliance is a benchmark of
technology and gameplay. (...Lines Omitted...)"}

That’s very promising—we’re able to connect to the database and pull back a record, but
what happens if we attempt to make a change to the record?

>> @game.Title

HAVING PROBLEMS?

When you’re using a MySQL database you can run into minor issues of case sensitivity with regard to table
names when using certain operating systems. This is due to the fact that, in MySQL, each table in the data-
base will correspond to (at least) one file on the file system—if the file system is case sensitive, so are your
queries.

This means that when running MySQL databases on most Unix-based distributions such as Ubuntu and
Fedora, that your database and table names are case sensitive. Meanwhile, those same elements are case
insensitive when running MySQL on Windows.

Mac-based systems can vary depending on the file system installed. Queries to the default file system
(HFS+) are not case sensitive; however, if the file system is UFS, they will be.

Because the tables in this legacy database all begin with a capital letter and Rails expects that table
names are all lowercase, we might run into some errors when attempting to query a table on a case-sensitive
system.

In those situations, we’ll need to explicitly tell Rails our table name using the set_table_name method,
so we’d define our game model like this:

class Game < ActiveRecord::Base
 set_table_name 'Games'
end

Throughout this project, I’ll include that set_table_name method in model definitions for those whose
operating system may require it.

7818.book Page 404 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 405

=> "Baldur's Gate: Dark Alliance"

>> @game.Title = "Kung Fu Phooey"

=> "Kung Fu Phooey"

>> @game.save

ActiveRecord::StatementInvalid: Mysql::Error: #42S22Unknown column 'id' in 'where
clause': UPDATE games SET `created_at` = NULL, `Title` = 'Kung Fu Phooey',
`GenreID` = 4, `SiteURL` = NULL, `AddedBy` = 0,

Boom! It blows up. Obviously, we’re going to have to do a bit more work than normal to
make our connection to Rails and this legacy database communicate correctly. We’ll tackle
those problems in the next chapter when we really build our Game model, but for now, I just
wanted you to have a quick introduction to the console and see that we could connect to the
legacy database even before we’ve written any code.

Utilizing Ext-JS to Create a Better Interface
Now that we know that we can connect to the legacy database (even though it’s not working
100 percent perfectly), let’s discuss how we’re going to solve the problem of creating a new
interface. Because we have full control over who’s going to be utilizing this application, we can
force some heftier requirements onto our users (modern, JavaScript-enabled browsers, etc.) so
that we can take advantage of some new JavaScript libraries and add in some extra special fea-
tures. We’ll greatly enhance the look and feel of our application by utilizing a fairly new open
source JavaScript framework by the name of Ext-JS.

Ext-JS began its life as the YUI-Ext (an extension to the Yahoo User Interface library) but
has since developed into a full-fledged framework of its own that can be used to extend not
only the Yahoo UI library but also jquery or Prototype/script.aculo.us. Ext is an incredible set
of code that provides us not only with the standard JavaScript framework features such as Ajax,
DOM utilities, and animations but also a wealth of impressive widgets such as grids, tabs, dia-
logs, and message boxes.

In our application, we’ll be taking advantage of a basic implementation of several of those
widgets to give our administration system a real cutting edge look and feel. In essence, many of
our view templates for this application will be built almost entirely in JavaScript and will simply
communicate with a Rails backend via XML or JSON (this is not entirely dissimilar to Flex/Rails
applications in which there’s been a recent surge of popularity). Before we start building our
application’s interface, let me whet your appetite for what we can do in Ext-JS by giving a quick
overview of some of its key features.

7818.book Page 405 Monday, October 8, 2007 7:03 PM

406 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

Border Layout
Border layout is a widget for putting together advanced web interface layouts through some
fairly simple JavaScript configuration. Using border layout, you build your application layout
by defining a series of two to five panels (center, north, south, east, and west) and specifying
what content you want to populate each panel. You can even include another border layout
within a panel to build increasingly complex layouts.

To build a new layout, we create a new border layout and specify the container that the
layout should be bound to and a configuration object, which defines the options particular to
each of our panels.

var layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize: 35
 },
 west: {
 split:true,
 initialSize: 200,
 titlebar: true,
 collapsible: true,
 minSize: 100,
 maxSize: 400
 },
 center: {
 autoScroll: true
 }
});

With that layout object, we build our page by assigning what content we want in each of
the panels we created:

layout.beginUpdate();
layout.add('north', new Ext.ContentPanel('header', {fitToFrame:true}));
layout.add('west', new Ext.ContentPanel('nav', {title: 'Navigation', ➥

fitToFrame:true}));
layout.add('center', new Ext.ContentPanel('content'));
layout.endUpdate();

And with that simple bit of code, we suddenly have the advanced web page layout shown
in Figure 18-3, which provides a consistent look and feel across browsers.

7818.book Page 406 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 407

Figure 18-3. An example of a border layout

Grid
Another powerful tool that we’ll be using is the Grid widget. Grids are a way of creating stylized
tables that look similar to Excel spreadsheets. Grids can be configured to be sortable (on either
the client or server side); have headers or footers that can house toolbars, buttons, or even pag-
ing controls; and are completely stylable via CSS.

To create a grid, the first thing we do is define the data store that will be used to populate
the grid. A data store consists of a proxy object that fetches the data we’ll use. Some of the avail-
able proxies include an in-memory proxy, an external proxy over HTTP, and an external proxy
through a script (for pulling in data from another domain).

Second, we need to define a reader object for the data store. The reader is used to convert
the data from the store into a format that the grid will understand. Available readers include
array, JSON, and XML.

var ds = new Ext.data.Store({
 proxy: new Ext.data.MemoryProxy(myData),
 reader: new Ext.data.ArrayReader({id: 0}, [
 {name: 'company'},
 {name: 'price', type: 'float'},
 {name: 'change', type: 'float'},
 {name: 'pctChange', type: 'float'},
 {name: 'lastChange', type: 'date', dateFormat: 'n/j h:ia'}
])
 });
 ds.load();

7818.book Page 407 Monday, October 8, 2007 7:03 PM

408 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

The next element to configure for the grid is the column model. The column model can be
thought of as simply defining what columns we want to display in our grid, how they should
look, and what fields they map to from our data store.

var colModel = new Ext.grid.ColumnModel([
 {header: "Company", width: 200, sortable: true, locked:false, dataIndex: ➥

'company'},
 {header: "Price", width: 75, sortable: true, renderer: Ext.util.Format.usMoney,➥

 dataIndex: 'price'},
 {header: "Change", width: 75, sortable: true, renderer: change, dataIndex:➥

 'change'},
 {header: "% Change", width: 75, sortable: true, renderer: pctChange, dataIndex:➥

 'pctChange'},
 {header: "Last Updated", width: 85, sortable: true, ➥

renderer: Ext.util.Format.dateRenderer('m/d/Y'), dataIndex: 'lastChange'}]);

Once we have our data store and column model defined, we simply instantiate a new grid
object and pass it the HTML container to use for our grid on the page, as well as our data store
and column model objects.

var grid = new Ext.grid.Grid('grid-example', {
 ds: ds,
 cm: colModel
});

Finally, we merely give a call to the render method to display our grid, which is shown in
Figure 18-4:

grid.render();

Figure 18-4. A grid widget from Ext-JS

7818.book Page 408 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 409

Dialogs
Ext-JS also has a powerful set of libraries for building interactive dialogs within our application.
These dialogs can be draggable, resizable, and even configured with advanced layouts using
border layout. Figure 18-5 shows an example.

dialog = new Ext.BasicDialog("hello-dlg", {
 autoTabs:true,
 width:500,
 height:300,
 shadow:true,
 minWidth:300,
 minHeight:250,
 proxyDrag: true
});

Figure 18-5. An example of an Ext-JS modal dialog with a border layout applied

Message Box
Similar to the dialog box functionality is the ability to simply create common modal message
boxes such as alerts, confirmations (see Figure 18-6), and even progress bars (see Figure 18-7).
These are much more attractive than your standard alert box, and adding one is as simple as
typing a single line of code:

Ext.MessageBox.confirm('Confirm', 'Are you sure you want to do that?', showResult);

7818.book Page 409 Monday, October 8, 2007 7:03 PM

410 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

Figure 18-6. A confirmation message box

Figure 18-7. A progress message box

Installing Ext-JS into Our Rails Application
There’s obviously a lot of power available within Ext-JS, so let’s add it to our new application. You
can download the current version of the library from the official site at http://www.extjs.com/
download (I’m using version 1.1). Once you download and uncompress the archive, it creates the
directory structure shown in Figure 18-8. I’ll quickly explain what’s where and discuss what we
need to copy over into our Rails application.

Figure 18-8. The directory structure of Ext-JS

7818.book Page 410 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 411

There are obviously a number of folders within the archive but, fortunately, only a select
few that we need to be concerned with:

• adapter/: Ext-JS works by extending a base library. In this folder, you’ll find the neces-
sary base libraries that you might want to use such as jQuery, Prototype/script.aculo.us,
Yahoo UI, or the new Ext Base.

• docs/: This folder contains a fully functional copy of the online API docs and links to all
of the examples.

• resources/: Here, you’ll find any of the extra assets that you might need when using
Ext-JS, such as CSS style sheets, images, and so on.

So let’s go ahead and copy over the files that we’ll need in our application:

1. In the root directory, there is the main Ext-JavaScript file named ext-all.js. Copy this
file into the /public/javascripts folder of our application.

2. Next, we need to select one of the base libraries from the adapter folder. Since we’ll probably
be using a few of the Rails helper methods, it makes sense to use the prototype adapter.
You’ll need to copy all of the JavaScript files in here (effects,js,ext-prototype-adapter.js,
prototype.js, and scriptaculous.js) into our application’s /public/javascripts folder.

3. From the /resources/css folder, we’ll need to copy the ext-all.css file and the three
xtheme*.css files into our application’s /public/stylesheets folder. The xtheme style
sheets are custom color schemes for the standard Ext-JS widgets. We’ll be using the
xtheme-vista theme in our application, but I like to have them all installed in case I ever
want to switch.

4. Finally, from /resources/images, you’ll want to copy over all four folders (aero, default,
gray, and vista) and all of the files within each into our application’s /public/images
directory. These are the associated background images, icons, and so on that are used
by Ext-JS’s widgets, based on the theme you specify.

Automating Ext-JS Installation
Copying those files over manually is well and good, but since this is a library that we’re proba-
bly going to want to use again in future projects, it sure would be nice if we didn’t have to do all
that copying and pasting by hand, wouldn’t it? Wouldn’t it be great if we could simply run a
generator like we do to create a new controller or model that would place all these files into the
appropriate places in any application that we build? Well, let’s stop dreaming about it, and go
ahead and build one.

7818.book Page 411 Monday, October 8, 2007 7:03 PM

412 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

The first thing we need to decide is where we want to place our new generator. When you
run the script/generate command, Rails will search in four places for a generator:

• The application’s vendor/plugins directory

• Any installed Ruby gems

• The application’s /lib directory

• The user’s home directory on the system

Since we’re not going to be building a new plug-in or a gem, those first two options are out.
That just leaves the /lib directory or our home directory. If we place the generator in the /lib
directory, it will only be available for use in this one application. If we place it in the user’s
home directory, we can use it across any of our applications. So placing it in the home directory
seems to be the best option for this generator, unless of course you’re using Windows, in which
case there isn’t a home directory defined by default.

Creating the Generator Files
Within our home directory, there should be a directory named .rails; you’ll need to create it if
it doesn’t exist. Within this folder, we need to create a folder named generators and another
subfolder named extjs, which will hold our new generator code.

Within our new extjs folder, we need to create three things:

• A file named USAGE that should contain information about how to use the generator

• A file named extjs_generator.rb that will hold all our generator code to copy over the
Ext-JS resources

• A folder named templates where we’ll place all of our Ext-JS files

The next step is to copy the files that we would have previously copied manually into our
templates folder, as shown in Figure 18-9.

Figure 18-9. Our Ext-JS files copied in the templates folder

7818.book Page 412 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 413

With our files copied into the templates directory, our next step is to add the necessary
code into our new extjs_generator.rb. To start off, we’ll need to create a new class that inher-
its from Rails::Generator::Base:

class ExtjsGenerator < Rails::Generator::Base
end

Within that class, we must have a method named manifest, which will be called automat-
ically when the generator is executed:

class ExtjsGenerator < Rails::Generator::Base
 def manifest
 record do |m|
 end
 end
end

Within that manifiest block, we have a few core methods that we can call, but the two that
we’ll call most often are file and directory; file is used to copy a file from our templates
folder into the Rails application:

m.file "shadow.png", "/public/images/shadow.png"

while directory is used to create a new folder within our application:

m.directory "/public/images/uploads"

So we could easily build out most of our generator by adding calls to copy files like this:

m.file "ext-all.js", "/public/javascripts/ext-all.js"
m.file "ext-all.css", "/public/stylesheets/ext-all.css"
m.file "prototype.js", "/public/javascripts/prototype.js"
m.file "scriptaculous.js", "/public/javascripts/scriptaculous.js"
m.file "effects.js", "/public/javascripts/effects.js"
m.file "ext-prototype-adapter.js", "/public/javascripts/ext-prototype-adapter.js"

But that’s going to get really old once we start trying to copy the image folders, where each
has multiple subfolders containing multiple images. But we can work around that with a sim-
ple loop. First, we can create an array of the subfolders from which we need to copy:

aero_images = %w(basic-dialog grid layout menu sizer tabs toolbar)

That array can then be looped over, so each array value is used to call a new method:

aero_images.each do |folder|
 copy_image_files(m, "aero/#{folder}")
end

Next, we need to create that copy_image_files method, which will create the subfolder (if
it doesn’t exist). Then it will open that folder in templates and loop over the files in the direc-
tory, copying each file into the local applications folders.

7818.book Page 413 Monday, October 8, 2007 7:03 PM

414 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

def copy_image_files(m, folder)
 m.directory "/public/images/#{folder}"
 Dir.open(File.join(File.dirname(__FILE__), "templates/#{folder}")).entries.each ➥

do |file|
 m.file "/#{folder}/#{file}", "/public/images/#{folder}/#{file}" unless ➥

File.directory?(file)
 end
end

With that, here’s the final version of the new generator task:

class ExtjsGenerator < Rails::Generator::Base
 def manifest
 record do |m|
 m.file "ext-all.js", "/public/javascripts/ext-all.js"
 m.file "ext-all.css", "/public/stylesheets/ext-all.css"
 m.file "prototype.js", "/public/javascripts/prototype.js"
 m.file "scriptaculous.js", "/public/javascripts/scriptaculous.js"
 m.file "effects.js", "/public/javascripts/effects.js"
 m.file "ext-prototype-adapter.js", ➥

"/public/javascripts/ext-prototype-adapter.js"
 m.file "xtheme-aero.css", "/public/stylesheets/xtheme-aero.css"
 m.file "xtheme-gray.css", "/public/stylesheets/xtheme-gray.css"
 m.file "xtheme-vista.css", "/public/stylesheets/xtheme-vista.css"

 # CREATE IMAGE DIRECTORIES
 directories = %w(aero default gray vista)
 directories.each do |directory|
 m.directory "/public/images/#{directory}"
 m.file "/#{directory}/gradient-bg.gif", "/public/images/#{directory}/➥

gradient-bg.gif"
 m.file "/#{directory}/s.gif", "/public/images/#{directory}/s.gif"
 end

 # COPY AERO THEME IMAGES
 aero_images = %w(basic-dialog grid layout menu sizer tabs toolbar)
 aero_images.each do |folder|
 copy_image_files(m, "aero/#{folder}")
 end

7818.book Page 414 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 415

 # COPY AERO THEME IMAGES
 default_images = %w(basic-dialog box dd editor form grid layout menu panel➥

 qtip shared sizer tabs toolbar tree)
 m.file "/default/shadow-c.png", "/public/images/default/shadow-c.png"
 m.file "/default/shadow-lr.png", "/public/images/default/shadow-lr.png"
 m.file "/default/shadow.png", "/public/images/default/shadow.png"
 default_images.each do |folder|
 copy_image_files(m, "default/#{folder}")
 end

 # COPY GRAY THEME IMAGES
 gray_images = %w(basic-dialog grid layout menu qtip sizer tabs toolbar)
 gray_images.each do |folder|
 copy_image_files(m, "gray/#{folder}")
 end

 # COPY VISTA THEME IMAGES
 vista_images = %w(basic-dialog grid layout qtip sizer tabs toolbar)
 vista_images.each do |folder|
 copy_image_files(m, "vista/#{folder}")
 end
 end
 end

 def copy_image_files(m, folder)
 m.directory "/public/images/#{folder}"
 Dir.open(File.join(File.dirname(__FILE__),"templates/#{folder}")).entries.each➥

 do |file|
 m.file "/#{folder}/#{file}", "/public/images/#{folder}/#{file}" unless ➥

File.directory?(file)
 end
 end
end

You can validate that the gem system is able to see your new generator by running the
ruby/script/generate task with no options to view a list of at the available gems:

ruby script/generate
Usage: script/generate generator [options] [args]

7818.book Page 415 Monday, October 8, 2007 7:03 PM

416 C H A P T E R 1 8 ■ U N D E R S T A N D I N G T H E P R O B L E M S O F T H E L E G A C Y P H P S I T E

Rails Info:
 -v, --version Show the Rails version number and quit.
 -h, --help Show this help message and quit.

General Options:
 -p, --pretend Run but do not make any changes.
 -f, --force Overwrite files that already exist.
 -s, --skip Skip files that already exist.
 -q, --quiet Suppress normal output.
 -t, --backtrace Debugging: show backtrace on errors.
 -c, --svn Modify files with subversion. (Note: svn➥

 must be in path)

Installed Generators
 User: extjs
 Rubygems: sparklines
 Builtin: controller, integration_test, mailer, migration, model, observer, ➥

plugin, resource, scaffold, scaffold_resource, session_migration, web_service

(lines ommtted)

With the generator saved, we can now run it from any Rails application like this:

ruby script/generate extjs

 create /public/javascripts/ext-all.js
 create /public/stylesheets/ext-all.css
overwrite /public/javascripts/prototype.js? [Ynaqd] a
forcing extjs
 force /public/javascripts/prototype.js
 create /public/javascripts/scriptaculous.js
 force /public/javascripts/effects.js
 create /public/javascripts/ext-prototype-adapter.js
 create /public/stylesheets/xtheme-aero.css
 create /public/stylesheets/xtheme-gray.css
 create /public/stylesheets/xtheme-vista.css
 create /public/images/aero
 create /public/images/aero/gradient-bg.gif
 create /public/images/aero/s.gif
 create /public/images/default
 create /public/images/default/gradient-bg.gif
 create /public/images/default/s.gif
 create /public/images/gray
 create /public/images/gray/gradient-bg.gif
 create /public/images/gray/s.gif
 (...Lines Omitted...)

7818.book Page 416 Monday, October 8, 2007 7:03 PM

C H A P T E R 1 8 ■ U N D E R ST A N D I N G T H E P R O B L E MS O F T H E L E G A C Y P H P S I T E 417

With that change, we’ll call this chapter a wrap.

Summary
In this chapter, we began our journey into connecting our Rails application to a legacy data-
base. We looked at some of the old PHP code that was being used and tested that we could
connect to the legacy database from Rails. We then took a high-level overview of the powerful
features available in Ext-JS and discussed how we were going to be using that library to power
our new application. Finally, we closed out the chapter by creating a new generator that we can
use to install the Ext-JS files and resources into our applications

7818.book Page 417 Monday, October 8, 2007 7:03 PM

419

■ ■ ■

C H A P T E R 1 9

Converting Game Records

As you saw in the last chapter, even with no configuration or code added, our basic Rails
application was able to connect to and read in some simple data from the legacy database—at
least, it could until we attempted to do anything more useful than pulling in the first record. In
this chapter, we’re going to solve that problem as we build the necessary models to allow our
Rails application to communicate correctly with some of the core models of the gaming site.
Once we have the models speaking correctly, we’ll move onto building the first few pages of our
administration application, which will be used to manage those records. We’ll start in the most
obviously useful place with building support for the games records, as they are the core
resource of our application.

Converting Our Database to Migrations
Even though our database is already defined for us, I always think it’s a good idea to convert it
to a Rails migration format—that way, we can have a record not only of where the database
structure is currently but also a baseline we can revert to as we make changes to the schema.
The actual process for converting an existing database to a migration is a bit involved, but the
end results are worth it.

Our first step is to gather a proper dump of the current schema by running the following
command from the root of our application:

rake db:schema:dump

This rake task will create a fresh version of our schema.rb (found in /db) from the currently
defined database. Once we have this, we can use it to set up our application to believe that this
was our first migration. Let’s start that process by creating an initial migration file to place our
existing schema into:

ruby script/generate migration ExistingSchema

 create db/migrate
 create db/migrate/001_existing_schema.rb

7818.book Page 419 Tuesday, October 2, 2007 9:37 PM

420 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Now, we merely need to copy all those create_table and add_index calls from /db/
schema.rb and paste them into the self.up block of our new migration (/db/migrate/
001_existing_schema.rb):

class ExistingSchema < ActiveRecord::Migration
 def self.up
 create_table "ArtGame", :id => false, :force => true do |t|
 t.column "ArtID", :integer, :default => 0, :null => false
 t.column "GameID", :integer, :default => 0, :null => false
 end

 add_index "ArtGame", ["ArtID"], :name => "ArtID"
 add_index "ArtGame", ["GameID"], :name => "GameID"

 (...Lines Omitted...)
 end

 def self.down
 end
end

We don’t need to put anything into the self.down block, because we would never want to
revert beyond this point. Don’t try to run this migration just yet, unless you want to experience
a complete loss of all the data in that database. That’s because the schema dump added a bit of
a bomb in the commands it created if they’re used in a migration. That bomb goes by the name
of the :force => true command appended at the top of each table creation. If you were to run
your migration at this point, it would essentially drop all the existing tables (with their data)
and create nice clean empty tables to replace them. So to save us from having to solve the mys-
tery of the disappearing data, we’ll simply need to remove that :force => true statement (and
the comma in front of it) from each table creation in our migration (at times like this, a good
code editor with a “search and replace all” feature can be your best friend). After all those
:force => true commands are removed and you’ve saved the migration, we can go ahead and
run our migration. The migration will fail but not before helping us out by creating the
schema_info table in our database:

rake db:migrate

(in /Users/darkel/consolegold)
== ExistingSchema: migrating ==
-- create_table("Announcements")
rake aborted!
Mysql::Error: #42S01Table 'announcements' already exists: CREATE TABLE ➥

Announcements (`id` int(11) DEFAULT NULL auto_increment PRIMARY KEY, ➥

`announcement` text DEFAULT '' NOT NULL, `date_added` datetime NOT NULL) ➥

ENGINE=InnoDB

(See full trace by running task with --trace)

7818.book Page 420 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 421

It failed because the tables already existed, which is a good thing. Now that our
schema_info table has been added, we can set it to 1 to reflect the current state of the database
with our migration files. To do that, simply run the following command from the command
line at the root of your application or edit the value manually using a tool such as Navicat:

ruby script/runner 'ActiveRecord::Base.connection.execute("UPDATE schema_info ➥

 SET version = 1")'

■Note In case you don’t recall, the schema_info table is an automatically generated table added to all
Rails databases that utilize migrations. It contains only a single field named version. The value of this field
will match the current migration that has been executed. In our case, we’re setting it to 1 to match the fact
that the database currently matches the schema in 001_existing_schema.rb.

The Games Table
Now that we have our database migrations set to mirror the current configuration, we can start
work on actually connecting our application to the games table. The first step is to take a look
at what we have to work with. In our schema in /db/schema.rb, the current structure for the
games record is like this:

create_table "Games", :id => false, :force => true do |t|
 t.column "GameID", :integer, :null => false
 t.column "Title", :string, :limit => 100, :default => "", :null => false
 t.column "Console", :string, :limit => 15, :default => "", :null => false
 t.column "DevID", :integer
 t.column "PubID", :integer
 t.column "SiteURL", :string
 t.column "BoximagePath", :string
 t.column "Description", :text
 t.column "ESRB", :string, :limit => 2
 t.column "AvgReview", :integer, :limit => 4
 t.column "GenreID", :integer, :default => 0, :null => false
 t.column "AddedBy", :integer, :default => 0, :null => false
 t.column "DateAdded", :date, :null => false
 t.column "LastEditedBy", :integer, :default => 0, :null => false
 t.column "DateEdited", :date, :null => false
 t.column "AssignedTo", :integer, :default => 0, :null => false
 t.column "Verified", :date, :null => false
 t.column "E304", :integer, :limit => 4, :default => 0, :null => false
 end

7818.book Page 421 Tuesday, October 2, 2007 9:37 PM

422 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Also notice that the schema shows that there are a number of indexes that have been built
on our Games table:

add_index "Games", ["Title", "Console"], :name => "NoDups", :unique => true
add_index "Games", ["Title"], :name => "Title"
add_index "Games", ["E304"], :name => "E304"
add_index "Games", ["Description"], :name => "descrip"

Doing a little research with Ron (the site owner) reveals the meaning behind each of
these fields:

• GameID: This is the primary key used to identify the game record. It is an integer and
auto-generated by the database.

• Title: The field stores the name of the game and is required.

• Console: The field indicates the console platform that this game runs on (e.g., Xbox 360,
PlayStation 3). It is configured to store this information as a string, rather than as a for-
eign key to a separate consoles table (supposedly to avoid an extra join every time the
game record is accessed).

• DevID: This is an integer foreign key reference to a Developers table to identify the devel-
oper of this game.

• PubID: This integer foreign key references the Publishers table to identify the publisher
of this game.

• SiteURL: If there is an official web site for this game, this text field holds the URL to it.

• BoximagePath: Every game has a picture of the box uploaded along with it and stored on
the file system. This text field holds the URL path to that file.

• Description: This field holds a synopsis of the game; it can hold paragraphs of text and
HTML.

• ESRB: The Electronic Software Review Board rates all games with a recommendation of
what age levels they are appropriate for. The rating for each game is stored here.

• AvgReview: Originally, there were plans to store the review scores of each game from
other gaming sites and magazines. This field was supposed to store the computed aver-
age score of all reviews. A nice idea—sadly, it was never implemented, so this field is
empty for all game records.

• GenreID: This field stores a foreign key reference to the Genres table, referencing the
associated genre for this game.

• AddedBy: This stores the User ID of the staff member who initially created this record.

• DateAdded: The date that this game was added to the database is stored in this field.

7818.book Page 422 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 423

• LastEditedBy: This stores the User ID of the staff member who last updated this game
record.

• DateEdited: This is the date that this game record was last updated.

• AssignedTo: Before the database first launched on the site, Ron wanted to verify that
there weren’t any errors with data in the database. Every record was assigned to a staff
member who was responsible for ensuring that the data was accurate. This field stored a
foreign key reference to the Users table of the staff member responsible for validating
the data in each. This field hasn’t been used since that first push for complete verifica-
tion and no longer serves any purpose.

• Verified: During the push for verification, staff members clicked a button that said “mark
complete” whenever records were verified. That button stored the current date in this
field to flag the record as verified and simultaneously record when it was checked. This
field also hasn’t been used since that first big push.

• E304: The Electronics Entertainment Expo (E3) used to be a huge annual gaming indus-
try event at which a large number of new games were revealed or announced. This field
was an experiment in marking that a game was first announced at the 2004 E3. Obvi-
ously, since there aren’t any entries for the years since, this is another field that’s just
wasted space now.

Cleaning Up the Games Table
Overall, our games database isn’t too bad; sure, it’s not in line with the Rails conventions and it
has a number of fields that need to be removed, but it’s also got a few good points.

For one, it’s got a nice integer primary key that’s auto-generated (even if it is named differ-
ently than Rails would prefer). Second, whoever designed this schema recognized the need to
prevent duplicate entries of a title/console combination, and fortunately, they solved that need
by adding a unique index constraint on those fields, rather than going down the dark, dirty
road of composite primary keys.

But that also leads us into one of the problems that we face: Because when the system was
originally built, the majority of its validation logic was maintained in the database and not in
the application itself, we have many rows that have restrictions on them, such as not allowing
NULL values or forcing limits on the data entered (e.g., the 100-character limit on a game’s title).
Making matters worse is the fact that a good number of these fields aren’t even being used—yet
they’re configured to not accept NULL.

As we build the new backend, we could choose to either continue to pump worthless data
into those fields to satisfy the database constraints or do a little housekeeping on the database
to eliminate these problems. Since I despise bad database designs, I chose housekeeping. Let’s
create a new migration that we can use to clean up those records from our games table:

ruby script/generate migration cleanup_games

exists db/migrate
create db/migrate/002_cleanup_games.rb

7818.book Page 423 Tuesday, October 2, 2007 9:37 PM

424 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

In keeping with the Rails way of doing things (and my own personal preference), I’d rather
have the validation logic controlled by my models and not my database, so let’s move all of
those constraints out of the database and into the model.

Open our newly created 002_cleanup_games.rb migration in /db/migrate/, and let’s take
care of the low hanging fruit by eliminating all of the unused fields from this table:

remove_column "Games", "AvgReview"
remove_column "Games", "LastEditedBy"
remove_column "Games", "AssignedTo"
remove_column "Games", "Verified"
remove_column "Games", "E304"

Next, we also have a pair of indexes that we can safely remove: the index on E304, since
we’re removing that field, and the index on the descrip field, since it makes no sense to have a
standard index on a text field and a quick review of the current queries executed on this table
reveals that it’s not being used either.

remove_index "Games", :name => "E304"
remove_index "Games", :name => "descrip"

The old backend administration system was capturing, for its own use, the date that a
game was created or last edited with the DateAdded and DateEdited fields. While we could con-
tinue to support those, it would make things easier for us if we were to change those to the Rails
conventions of created_at and updated_at, so that they would be auto-populated. Checking
with Ron confirms that those fields aren’t used on the main site at all, so we can safely modify
those without fear of breaking anything on the primary site.

rename_column "Games", "DateAdded", "created_at"
rename_column "Games", "DateEdited", "updated_at"

Finally, we can modify the existing columns that have validation style rules on them and
move them to our games model. We can start by first eliminating the no null values require-
ment and size limits from several of the columns.

change_column "Games", "Title", :string, :null => true
change_column "Games", "Console", :string, :null => true
change_column "Games", "ESRB", :string
change_column "Games", "GenreID", :integer, :null => true
change_column "Games", "AddedBy", :integer, :null => true

7818.book Page 424 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 425

Since this migration is really all about cleanup and we don’t want to ever go back to the
yucky state the database was in before, we can set Rails to throw an error if anyone ever tries to
revert back by declaring that this migration is an irreversible migration, like this:

def self.down
 raise ActiveRecord::IrreversibleMigration
end

After putting all of that together, our 002_cleanup_games.rb migration should look like this
(do take note that I reversed the order of the E304 migrations to first remove the index and then
remove the column; otherwise, you may get an error when you try to run this migration):

class CleanupGames < ActiveRecord::Migration
 def self.up
 remove_column "Games", "AvgReview"
 remove_column "Games", "LastEditedBy"
 remove_column "Games", "AssignedTo"
 remove_column "Games", "Verified"
 remove_index "Games", :name => "E304"
 remove_column "Games", "E304"
 remove_index "Games", :name => "descrip"
 rename_column "Games", "DateAdded", "created_at"
 rename_column "Games", "DateEdited", "updated_at"
 change_column "Games", "Title", :string, :null => true
 change_column "Games", "Console", :string, :null => true
 change_column "Games", "ESRB", :string
 change_column "Games", "GenreID", :integer, :null => true
 change_column "Games", "AddedBy", :integer, :null => true
 end

 def self.down
 raise ActiveRecord::IrreversibleMigration
 end
end

Let’s go ahead and run our newly created migration:

rake db:migrate

7818.book Page 425 Tuesday, October 2, 2007 9:37 PM

426 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

== CleanupGames: migrating ===========================
-- remove_column("Games", "AvgReview")
 -> 0.6623s
-- remove_column("Games", "LastEditedBy")
 -> 0.3534s
-- remove_column("Games", "AssignedTo")
 -> 0.3785s
-- remove_column("Games", "Verified")
 -> 0.3515s
-- remove_index("Games", {:name=>"E304"})
-> 0.3209s
-- remove_column("Games", "E304")
 -> 0.3704s
-- remove_index("Games", {:name=>"descrip"})
 -> 0.2168s
-- rename_column("Games", "DateAdded", "created_at")
 -> 0.3709s
-- rename_column("Games", "DateEdited", "updated_at")
 -> 0.3955s
-- change_column("Games", "Title", :string, {:null=>true})
 -> 0.3773s
-- change_column("Games", "Console", :string, {:null=>true})
 -> 0.3457s
-- change_column("Games", "ESRB", :string)
 -> 0.3917s
-- change_column("Games", "GenreID", :integer, {:null=>true})
 -> 0.3507s
-- change_column("Games", "AddedBy", :integer, {:null=>true})
 -> 0.3634s
== CleanupGames: migrated (2.8129s) ===

Creating the Games Model
Since we’ve now prepared the games table, let’s create the Games model and add the valida-
tion rules that we just removed in our previous migration:

ruby script/generate model Game --skip-migration

 create app/models/
 create test/unit/
 create test/fixtures/
 create app/models/game.rb
 create test/unit/game_test.rb
 create test/fixtures/games.yml

7818.book Page 426 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 427

Go ahead and open our new Game model, and set it up with our validation; also set the
table name for MySQL variations that are case sensitive:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 validates_length_of :Title, :maximum => 100, :message => " must be less ➥

 than 100 characters"
 validates_presence_of :Title, :Console
end

Save the model, and let’s fire up a console session to see if our new model is working:

ruby script/console

Loading development environment.

>> Game.new

=> #<Game:0x2038cc8 @attributes={"updated_at"=>nil, "AddedBy"=>0, "ESRB"=>nil,
 "SiteURL"=>nil, "BoximagePath"=>nil, "Console"=>"", "PubID"=>nil, "Title"=>"", "
GameID"=>nil, "GenreID"=>0, "DevID"=>nil, "created_at"=>nil, "Description"=>nil},
 new_recordtrue

>> g = Game.find :first

=> #<Game:0x27c820c @attributes={"updated_at"=>"2005-10-06", "AddedBy"=>"0",
"ESRB"=>"T", "SiteURL"=>nil, "BoximagePath"=>"shots/baldursgate_da.jpg",
"Console"=>"Xbox", "PubID"=>"33", "Title"=>"Baldur's Gate: Dark Alliance",
"GameID"=>"1", "GenreID"=>"4", "DevID"=>"15", "created_at"=>"0000-00-00",
"Description"=>"It's the massively popular world of Baldur's Gate as you have
 never seen it before. Baldur's Gate: Dark Alliance is a revolutionary action
adventure ..."}
(...lines ommited...)

>> Game.find 123

ActiveRecord::StatementInvalid: Mysql::Error: #42S22Unknown column 'Games.id' in
'where clause': SELECT * FROM games WHERE (games.id = 123)
 from /usr/local/lib/ruby/gems/1.8/gems/activerecord-
1.15.2/lib/active_record/connection_adapters/abstract_adapter.rb:128:in `log'
(...lines ommited...)

7818.book Page 427 Tuesday, October 2, 2007 9:37 PM

428 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Look at the error that’s generated by our last command; it indicates that Games.id is an
unknown column. The obvious culprit is that nonstandard primary key named GameID instead
of id. While it may be tempting to create a new migration to rename that column, the devasta-
tion of such a change to the front end would be on par with a plague of locusts. Plus, a new
migration is unnecessary, as we can fix this issue fairly easily by telling our model which field
to use as the primary key with the following method:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 validates_length_of :Title, :maximum => 100, :message => " must be less ➥

 than 100 characters"
 validates_presence_of :Title, :Console
end

Go back to our console session, and reload our configuration using the reload! command
to test our model now:

reload!

Reloading...
=> {"ActiveRecord::Base"=>#<ActiveRecord::ConnectionAdapters::MysqlAdapter:0x281bc54
 (...Lines Ommited...)

>> Game.find 123

=> #<Game:0x26238d4 @attributes={"updated_at"=>"0000-00-00", "AddedBy"=>"0",
"ESRB"=>"E", "SiteURL"=>"http://www.sega.com/games/xbox/post_xboxgame.jhtml?
PRODID=10087", "BoximagePath"=>"shots/segasoccerslam.jpg", "Console"=>"Xbox",
"PubID"=>"8", "Title"=>"Soccer Slam", "GameID"=>"123", "GenreID"=>"6", "DevID"
=>"95", "created_at"=>"0000-00-00", "Description"=>"In Soccer Slam you'll unleash
 merciless kicks, tackles, and steals against excitable, colorful characters
from all over the world. Each character in this anything-but-ordinary soccer game
 wields special powers and moves that if executed properly earn the big score"}

Woohoo—success!

Creating the Developer and Publisher Models
Since, within the games table, there are several foreign key references to other tables in the
database, let’s also add those models. We’ll start by building the models for the developers and
publishers tables so that we can reference the names of each for a given game record.

7818.book Page 428 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 429

The schema for the Developers and Publishers tables reveal that they are nearly identical
to each outside of different primary key names.

create_table "Developers", :id => false, :force => true do |t|
 t.column "DevID", :integer, :limit => 10, :null => false
 t.column "Name", :string, :limit => 200, :default => "", :null => false
 t.column "URL", :string, :limit => 200
 end

create_table "Publishers", :id => false, :force => true do |t|
 t.column "PubID", :integer, :limit => 10, :null => false
 t.column "Name", :string, :limit => 200, :default => "", :null => false
 t.column "URL", :string, :limit => 200
 end

Each table has a primary key field, which we’ll have to explicitly set in our models since
neither follows convention. Each has a name field, which stores the name of the company, and
a URL field, which stores the URL to that company’s home page.

We’ll start off by once again removing the validation logic from these tables with a new
migration:

ruby script/generate migration cleanup_devs_pubs

 exists db/migrate
 create db/migrate/003_cleanup_devs_pubs.rb

We’ll edit that new migration (/db/migrate/003_cleanup_devs_pubs.rb) to remove the “no
null” requirements from our name fields and the field length limits from the name and URL
fields.

class CleanupDevsPubs < ActiveRecord::Migration
 def self.up
 change_column "Publishers", "Name", :string, :null => true
 change_column "Publishers", "URL", :string
 change_column "Developers", "Name", :string, :null => true
 change_column "Developers", "URL", :string
 end

 def self.down
 raise ActiveRecord::IrreversibleMigration
 end
end

We’ll then run our new cleanup migration:

rake db:migrate

7818.book Page 429 Tuesday, October 2, 2007 9:37 PM

430 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

== CleanupDevsPubs: migrating ==========================
-- change_column("Publishers", "Name", :string, {:null=>true})
 -> 0.1365s
-- change_column("Publishers", "URL", :string)
 -> 0.0297s
-- change_column("Developers", "Name", :string, {:null=>true})
 -> 0.0402s
-- change_column("Developers", "URL", :string)
 -> 0.0567s
== CleanupDevsPubs: migrated (0.2637s) ===========================

With those validations removed, we can now create our models and add our validation
logic to them:

ruby script/generate model Developer --skip-migration

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/developer.rb
 create test/unit/developer_test.rb
 create test/fixtures/developers.yml

ruby script/generate model Publisher --skip-migration

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/publisher.rb
 create test/unit/publisher_test.rb
 create test/fixtures/publishers.yml

As for the models, we’ll apply the lessons we learned about the primary key from the
Games table and set our primary keys correctly on the first pass this time. While we’re at it, let’s
also create an association back to our game model (a developer would have many games and
each game would belong to one developer) and add in the validations based on what was in the
current schema.

7818.book Page 430 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 431

Our developer model (/app/models/developer.rb) will look like this:

class Developer < ActiveRecord::Base
 set_table_name 'Developers'
 set_primary_key :DevID
 has_many :games, :foreign_key => 'DevID'

 validates_presence_of :Name
 validates_uniqueness_of :Name
 validates_length_of :Name, :maximum => 200, :message => " must be less ➥

 than 200 characters"
 validates_length_of :URL, :maximum => 200, :message => " must be less ➥

 than 200 characters"
 end

and our publisher model (/app/models/publisher.rb) will look like this:

class Publisher < ActiveRecord::Base
 set_table_name 'Publishers'
 set_primary_key :PubID
 has_many :games, :foreign_key => 'PubID'

 validates_presence_of :Name
 validates_uniqueness_of :Name
 validates_length_of :Name, :maximum => 200, :message => " must be less ➥

 than 200 characters"
 validates_length_of :URL, :maximum => 200, :message => " must be less ➥

 than 200 characters"
end

Let’s also modify our game model to map to the publisher and developer models and add
in some validations to require that we can’t create a game without providing a Title and a
Console that it’s being released on:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 belongs_to :publisher, :foreign_key => 'PubID'
 belongs_to :developer, :foreign_key => 'DevID'
 validates_length_of :Title, :maximum => 100, :message => " must be less ➥

 than 100 characters"
 validates_presence_of :Title, :Console
end

7818.book Page 431 Tuesday, October 2, 2007 9:37 PM

432 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Saving all of our models and firing up a new console allows us to easily verify that our con-
figuration is working correctly now:

ruby script/console

Loading development environment.

>> g = Game.find 123

=> #<Game:0x27f0e14 @attributes={"updated_at"=>"0000-00-00", "AddedBy"=>"0",
"ESRB"=>"E", "SiteURL"=>"http://www.sega.com/games/xbox/post_xboxgame.jhtml?
PRODID=10087", "BoximagePath"=>"shots/segasoccerslam.jpg", "Console"=>"Xbox",
"PubID"=>"8", "Title"=>"Soccer Slam", "GameID"=>"123", "GenreID"=>"6",
"DevID"=>"95", "created_at"=>"0000-00-00", "Description"=>"In Soccer Slam you'll
 unleash merciless kicks, tackles, and steals against excitable, colorful
characters from all over the world. Each character in this anything-but-ordinary
 soccer game wields special powers and moves that if executed properly earn
the big score"}

>> g.publisher.Name

=> "Sega"

>> g.developer.Name

=> "Visual Concepts"

>> g.publisher.id

=> 8

>> p = Publisher.find 8

=> #<Publisher:0x2728b30 @attributes={"Name"=>"Sega", "URL"=>
"http://www.sega.com/", "PubID"=>"8"}

>> p.games.count

7818.book Page 432 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 433

=> 188

>> g.developer.id

=> 95

>> d = Developer.find 95

=> #<Developer:0x270a7fc @attributes={"Name"=>"Visual Concepts", "URL"=>
"http://www.segasports.com/", "DevID"=>"95"}

>> d.games.count

=> 83

■Note The results that you get for the counts in the console session will differ from the results I listed in
the examples, as I’m using the full 50MB database, and you’ll be using a much smaller version from the
source archive.

That takes care of our Developer and Publisher models; now we just have one foreign key
relationship left to model—the genres table, which stores a list of genres (role playing, action,
puzzle, etc.) that are used to categorize each game.

Creating Our Genres Model
The table schema for genres is once again very simple, merely a primary key and a genre name
(as the TYPE field):

create_table "Genres", :id => false, :force => true do |t|
 t.column "GenreID", :integer, :null => false
 t.column "TYPE", :string, :limit => 16, :default => "", :null => false
end

Once again, we’ll want to clean up our database with a migration to remove the validation
logic from the database:

ruby script/generate migration cleanup_genres

7818.book Page 433 Tuesday, October 2, 2007 9:37 PM

434 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 exists db/migrate
 create db/migrate/004_cleanup_genres.rb

In this migration, we’ll remove the null and field length requirements like this:

class CleanupGenres < ActiveRecord::Migration
 def self.up
 change_column "Genres", "TYPE", :string, :null => true
 end

 def self.down
 raise ActiveRecord::IrreversibleMigration
 end
end

Next, we’ll run our cleanup_genres migration:

rake db:migrate

== CleanupGenres: migrating =============================
change_column("Genres", "TYPE", :string, {:null=>true})
 -> 0.0494s
== CleanupGenres: migrated (0.0495s) =======================

At this point, we’re ready to build our genre model:

ruby script/generate model Genre --skip-migration

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/genre.rb
 create test/unit/genre_test.rb
 create test/fixtures/genres.yml

We can edit the Genre model (/app/models/genre.rb) to define its table name and primary
key, to recognize that one genre will have many games, and to place some validations onto the
genres name. Your genre model should look like this:

class Genre < ActiveRecord::Base
 set_table_name 'Genres'
 set_primary_key :GenreID
 has_many :games, :foreign_key => "GenreID"
 validates_length_of :TYPE, :within => 1..16
 validates_uniqueness_of :TYPE
end

7818.book Page 434 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 435

After creating the genre model, we’ll also want to go back to our games model (/app/
models/game.rb) and add our reciprocal belongs_to :genre method:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 belongs_to :publisher, :foreign_key => 'PubID'
 belongs_to :developer, :foreign_key => 'DevID'
 belongs_to :genre, :foreign_key => 'GenreID'
 validates_length_of :Title, :maximum => 100, :message => " must be less than ➥

 100 characters"
 validates_presence_of :Title, :Console
end

By opening a new console window, or running reload! in an existing one to load in the
new configuration, we should be able to easily view the associated genre for a game:

g = Game.find 123

=> #<Game:0xb7d1cb0 @attributes={"updated_at"=>"0000-00-00", "AddedBy"=>"0",
"ESRB"=>"E", "SiteURL"=>"http://www.sega.com/games/xbox/post_xboxgame.jhtml?
PRODID=10087", "BoximagePath"=>"shots/segasoccerslam.jpg", "Console"=>"Xbox",
"PubID"=>"8", "Title"=>"Soccer Slam", "GameID"=>"123", "GenreID"=>"6",
"DevID"=>"95", "created_at"=>"0000-00-00", "Description"=>"In Soccer Slam you'll
 unleash merciless kicks, tackles, and steals against excitable, colorful
characters from all over the world. Each character in this anything-but-ordinary
soccer game wields special powers and moves that if executed properly earn
the big score"}

>> g.genre.TYPE

=> "Sports"

>> genre = Genre.find 1

=> #<Genre:0xb7bdaf8 @attributes={"TYPE"=>"Action/Adventure", "GenreID"=>"1"}

>> genre.games.count

=> 2181

7818.book Page 435 Tuesday, October 2, 2007 9:37 PM

436 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Setting Our Routes
Even though we’re not building the new backend as a purely RESTful application, we can still
benefit from some of the RESTful tools by using the map.resources method in our routes to gen-
erate the suite of friendly named routes. Open routes.rb in /config, and add the following lines.

ActionController::Routing::Routes.draw do |map|
 map.resources :games
 map.resources :publishers, :developers, :genres
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

Creating Our Controllers
With our models built, our new administration system is now primed to connect to the legacy
database and manage the existing records, so now it’s time to build our controllers and views
so we can start interacting with the data outside of simply using the interactive console.

By now, you’ve seen the value of building our controllers according to the philosophy of
limiting ourselves to basic CRUD actions. We’ll definitely want to take advantage of those ben-
efits in this application as well—especially considering that our backend will need to respond
to normal HTML requests as well as XML or JSON requests from the Ext front end. We’ll start
by generating our controllers with the following commands (output of each omitted):

ruby script/generate controller Publishers
ruby script/generate controller Developers
ruby script/generate controller Genres
ruby script/generate controller Games

At this point, we’ve got four new controllers that we need to populate with our standard
RESTful actions, so we could do the usual boring thing and simply do a great big copy/paste
and place slight variations of the following into each of them:

class GamesController < ApplicationController

 def index
 @games = Game.find(:all)

 respond_to do |format|
 format.html
 format.xml { render :xml => @games.to_xml }
 end
 end

7818.book Page 436 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 437

 def show
 @game = Game.find(params[:id])

 respond_to do |format|
 format.html
 format.xml { render :xml => @game.to_xml }
 end
 end

 def new
 @game = Game.new
 end

 def edit
 @game = Game.find(params[:id])
 end

 def create
 @game = Game.new(params[:game])

 respond_to do |format|
 if @game.save
 flash[:notice] = 'Game was successfully created.'
 format.html { redirect_to game_url(@game) }
 format.xml { head :created, :location => game_url(@game) }
 else
 format.html { render :action => "new" }
 format.xml { render :xml => @game.errors.to_xml }
 end
 end
 end

 def update
 @game = Game.find(params[:id])

 respond_to do |format|
 if @game.update_attributes(params[:game])
 flash[:notice] = 'Game was successfully updated.'
 format.html { redirect_to game_url(@game) }
 format.xml { head :ok }

7818.book Page 437 Tuesday, October 2, 2007 9:37 PM

438 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 else
 format.html { render :action => "edit" }
 format.xml { render :xml => @game.errors.to_xml }
 end
 end
 end

 def destroy
 @game = Game.find(params[:id])
 @game.destroy

 respond_to do |format|
 format.html { redirect_to games_url }
 format.xml { head :ok }
 end
 end
end

That sure feels like a lot of duplication, doesn’t it? It’s not so bad when we use the
scaffold_resource generator to build all those methods, but when faced with building them
manually, the very idea of doing all that copying and pasting just makes me feel dirty inside. It
sure seems like there should be a better way, doesn’t it?

Well, there have been a number of attempts by different developers to come up with a
solution for all that duplication; most of them have met with limited success at providing a DRY
solution to RESTful controllers while maintaining the necessary flexibility to be useful in more
than the most generic applications. One new solution seems to fill that need through the
make_resourceful plug-in that was first announced at RailsConf 2007 by Hampton Caitlin (you
can view the presentation slides of that announcement at http://www.hamptoncatlin.com/
assets/2007/5/21/make_resourceful.pdf). With the make_resourceful plug-in installed, our
games controller could be reduced to simply this:

class GamesController < ApplicationController
 make_resourceful do
 build :all
 end
end

That’s much simpler, isn’t it? Yet taking it even further is the fact that the make_resourceful
plug-in also features a tremendous amount of additional flexibility, which you can see in the
announcement presentation, to adapt to our applications needs. For now, though, let’s see
how we can use it within our application. Obviously, the first step to doing that will be to install
the plug-in:

ruby script/plugin install http://svn.hamptoncatlin.com/make_resourceful/trunk

7818.book Page 438 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 439

+ ./trunk/LICENSE
+ ./trunk/README
+ ./trunk/Rakefile
+ ./trunk/generators/resourceful_scaffold/resourceful_scaffold_generator.rb
+ ./trunk/generators/resourceful_scaffold/templates/controller.rb
+ ./trunk/generators/resourceful_scaffold/templates/functional_test.rb
+ ./trunk/generators/resourceful_scaffold/templates/helper.rb
+ ./trunk/generators/resourceful_scaffold/templates/layout.haml
+ ./trunk/generators/resourceful_scaffold/templates/partial.haml
+ ./trunk/generators/resourceful_scaffold/templates/view_edit.haml
+ ./trunk/generators/resourceful_scaffold/templates/view_form.haml
+ ./trunk/generators/resourceful_scaffold/templates/view_index.haml
+ ./trunk/generators/resourceful_scaffold/templates/view_new.haml
+ ./trunk/generators/resourceful_scaffold/templates/view_show.haml
+ ./trunk/init.rb
(...Lines Ommitted...)

After a quick restart of our web server, we can now build our four controllers the
make_resourceful way. The games controller at /app/controllers/games_controller.rb will
look like this initially:

class GamesController < ApplicationController
 make_resourceful do
 build :all
 end
end

The developers controller at /app/controllers/developers_controller.rb will look like
this initially:

class DevelopersController < ApplicationController
 make_resourceful do
 build :all
 end
end

The publishers controller at /app/controllers/publishers_controller.rb will look like
this:

class PublishersController < ApplicationController
 make_resourceful do
 build :all
 end
end

7818.book Page 439 Tuesday, October 2, 2007 9:37 PM

440 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

And finally, the genres controller at /app/controllers/genres_controller.rb will look
like this:

class GenresController < ApplicationController
 make_resourceful do
 build :all
 end
end

Creating Our Views
We’re in a really good position now. Our models are mapped to the database tables, and thanks
to make_resourceful, our controllers are now configured to support all the common actions
that we might need to perform on our models. So the sky is really the limit for what we want to
do with the view templates. As I stated when we started this project, we’re going to be using the
Ext-JS framework to build our views and take them to a whole new dimension beyond the old
administration system.

A Standard Layout
The first thing we should do is build a common layout that will be used by all of our site’s pages.
Create a new file named application.rhtml in /app/views/layouts. In this layout, we’ll include
all of our Ext JavaScript files and style sheets, a common header logo, and our standard naviga-
tion links for the application.

One important thing to keep in mind when using Ext is that it’s very important to load the
JavaScript files that you’ll use in the correct order. To ensure that we do that correctly in this
layout and any future layouts that we may add, I like to build a helper method that will add in
the appropriate files. Open application_helper.rb in /app/helpers/, and add the following
methods, which will add our Ext and Prototype JavaScript files in the correct order:

module ApplicationHelper

 def ext_javascript_tags
 sources = %w(prototype effects dragdrop controls ext-prototype-adapter ext-all)
 sources.collect do |source|
 source = javascript_path(source)
 content_tag("script", "", { "type" => "text/javascript", "src" => source })
 end.join("\n")
 end
end

When called from our layout, that helper method will essentially generate the following:

<script src="/javascripts/prototype.js?1178311282" type="text/javascript"></script>
<script src="/javascripts/effects.js?1178311282" type="text/javascript"></script>
<script src="/javascripts/dragdrop.js?1186705127" type="text/javascript"></script>
<script src="/javascripts/controls.js?1186705127" type="text/javascript"></script>

7818.book Page 440 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 441

<script src="/javascripts/ext-prototype-adapter.js?1185915690" ➥

type="text/javascript"></script>
<script src="/javascripts/ext-all.js?1185915726" type="text/javascript"></script>

But why stop with just generating the necessary includes for our JavaScript files? In Ext, we
also have a number of style sheets that we can use. So why not build a similar method for
including our style sheets? In it, we’ll include the ext-all.css style sheet, which provides all the
standard formatting for the Ext widgets. Also, since we’re going to be using the Vista theme
that’s included with Ext, we’ll include the xtheme-vista.css style sheet, and for extra measure,
we’ll also include the blank style sheet for our own styles that we copied over in our generator.
We’ll name this helper method ext_stylesheet_tags:

module ApplicationHelper

 def ext_javascript_tags
 sources = %w(prototype effects dragdrop controls ext-prototype-adapter ext-all)
 sources.collect do |source|
 source = javascript_path(source)
 content_tag("script", "", { "type" => "text/javascript", "src" => source })
 end.join("\n")
 end

 def ext_stylesheet_tags
 sources = %w(ext-all.css xtheme-vista.css application.css)
 sources.collect do |source|
 source = stylesheet_path(source)
 tag("link", { "rel" => "Stylesheet", "type" => "text/css",
 "media" => "screen", "href" => source })
 end.join("\n")
 end
end

So with our helper methods ready, we can use them in our newly created
application.rhtml layout that looks like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
 <meta http-equiv="content-type" content="text/html;charset=UTF-8" />
 <%= ext_javascript_tags %>
 <%= ext_stylesheet_tags %>
</head>
<body>
 <div id='header' class="ylayout-inactive-content">
 <%= image_tag 'logo.gif' %>
 </div>

7818.book Page 441 Tuesday, October 2, 2007 9:37 PM

442 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 <%= yield %>

 <div id="sidebar" class="ylayout-inactive-content">
 <div id="sidebar-nav">
 <%= link_to image_tag('button_news.gif'), :controller => "news" %>

 <%= link_to image_tag('button_games.gif'), :controller => 'games' %>

 <%= link_to image_tag('button_publishers.gif'), :controller => "publishers" %>

 <%= link_to image_tag('button_developers.gif'), :controller => "developers" %>

 <%= link_to image_tag('button_genres.gif'), :controller => "genres" %>

 </div>
 </div>
</body>
</html>

Enhancing Our Layout with Ext Border Layout
As we discussed in the previous chapter, Ext includes a very powerful widget named border lay-
out that allows us to easily put together an advanced interface with some very simple
JavaScript. We’ll want to use that to convert our simple block elements in our layout into some-
thing that will give us an impressive look and feel. So what is it that we want to build? Well, in
our layout that we just built, we defined a header div, a navigation div, and a block that we yield
to for each page’s content. Putting together a rough sketch of our application, I came up with
Figure 19-1.

Figure 19-1. A rough sketch of our general layout

7818.book Page 442 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 443

Building a page like this in Ext-JS is as easy as pie. We can even add interactivity to the nav-
igation area by making it collapsible. We could build a page layout configuration using border
layout like this:

var PageLayout = function() {
 var layout;
 return{
 init : function(){
 var layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize:65
 },
 center: {
 titlebar: true,
 autoScroll:true
 },
 west: {
 initialSize: 125,
 minSize: 125,
 maxSize:125,
 titlebar: true,
 split:true,
 collapsible:true,
 animate:true
 }
 });
 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header'));
 layout.add('center', new Ext.ContentPanel('content', {title:'Games'}));
 layout.add('west', new Ext.ContentPanel('sidebar', {title: 'Navigation'}));
 layout.endUpdate();
 }
 };
}();
Ext.EventManager.onDocumentReady(PageLayout.init, PageLayout, true);

To maintain a consistent look and feel throughout the application, all we have to do is add
that border layout configuration to each page in our application. There’s one important thing
to note however: the line that adds a content div to the border layouts center area:

layout.add('center', new Ext.ContentPanel('content', {title:'Games'}));

7818.book Page 443 Tuesday, October 2, 2007 9:37 PM

444 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

also defines a title for that center block area, which we’ll probably want to customize on each
page to reflect the context of that specific page. We have a number of options for how we could
add this border layout to our application:

• We could simply copy and paste the border layout configuration into every single page,
modifying the header as necessary—blech!

• We could place the border layout into its own JavaScript file that we include in the page;
however, that would make customizing the content header a pain in the rear.

• We could place the JavaScript into a partial that’s included in each page. Doing that, we
pass in the custom header using a local variable in the partial call. This solution’s work-
able, but it’s definetly been hit a couple of times with the ugly stick.

• We could place the JavaScript code in the application layout and pass in the custom
header as an instance variable—not a bad idea but it does add some noise to our layout.

• We could generate a helper method that generates this JavaScript in each view template.

Of all those options, I like creating a new helper method the best, as it feels like the cleanest
solution for this need. So open application_helper.rb in /app/helpers, and add the following
method, which merely generates the same border layout configuration we created previously
and accepts a single parameter that will be used to popualte the content header:

def ext_layout(titlebar)
 function = "var PageLayout = function() {"
 function << "var layout;"
 function << "return{"
 function << "init : function(){"
 function << "var layout = new Ext.BorderLayout(document.body, {"
 function << "north: {split:false,initialSize:65},"
 function << "center: {titlebar: true,autoScroll:true},"
 function << "west: {initialSize: 125,minSize: 125, maxSize:125,titlebar: ➥

true, split:true, collapsible:true, animate:true}"
 function << "});"
 function << "layout.beginUpdate();"
 function << "layout.add('north', new Ext.ContentPanel('header'));"
 function << "layout.add('center', new Ext.ContentPanel('content', ➥

{title:'#{titlebar}'}));"
 function << "layout.add('west', new Ext.ContentPanel('sidebar', ➥

{title: 'Navigation'}));"
 function << "layout.endUpdate();"
 function << "}};}();"
 function << "Ext.EventManager.onDocumentReady(PageLayout.init, ➥

PageLayout, true);"
 javascript_tag(function)
 end

7818.book Page 444 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 445

Let’s test our new helper method (and see our border layout) by creating a simple view
template. Create a new file named index.rhtml in /app/views/games, and place this content
inside it:

<%= ext_layout('Games') %>

<div id="content"> </div>

Save the files, and fire up your web server; you should then be able to go to http://
localhost:3000/games and see the frame of our new administration system (see Figure 19-2).

Figure 19-2. Administration interface built with Ext border layout

I’m always impressed by how simple it is to use border layout and how it feels more like
I’m defining a configuration for a layout rather than writing JavaScript. You can also see in that
screenshot that when we passed the string "Games" to the ext_layout helper method, this string
shows up in the title bar directly over our content. Now that our application’s layout is ready,
let’s take a momemt to further define how the new administration system should work and
then get to work building some of the view templates so we can start using our application.

Defining the Workflow
With a standard layout defined for our application, we’ll now turn our attention toward defin-
ing how we want the workflow of our application to go. Because each page in the previous
administration system was its own mini application, there was a fair amount of inconsistency
in how things worked from page to page. We’re going to go exactly the opposite way in our
application by creating a common system that will be used to manage all of the resources
(games, publishers, genres, etc.) of the gaming site. As users go from page to page, they should
always be presented with pages that are as similar in appearance and functionality as possible.
Let’s define how we’re going to solve some of the common actions (such as listing a resource,
editing a resource, etc.) in the following sections.

7818.book Page 445 Tuesday, October 2, 2007 9:37 PM

446 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Listing the Current Resource
Obviously, we need to provide a way for staff members to view a list of all resources within the
database, and the Ext grid components are the perfect solution to attractively and efficiently
solve that problem. We’ll be utilizing Ext grids on the index page of each resource (see
Figure 19-3).

Figure 19-3. We’ll use Ext grids to display a list of records.

Creating a New Resource
We’ll make the process of creating a new resource easily available by adding a button to the
toolbar above each grid component (see Figure 19-4).

Figure 19-4. A button to add a new record

When that button is clicked, we’ll pop open a dialog over the page that will provide the
necessary fields to quickly and easily create a new record in the database.

Deleting a Specific Resource
Following the same logic as adding a new record, we’ll make removing a record from the data-
base easily accessible by adding a second button to the toolbar (see Figure 19-5).

7818.book Page 446 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 447

Figure 19-5. Adding a delete record button to the toolbar

Clicking this button will first check that a row in the grid has been highlighted. If one
hasn’t, we’ll open a message box alerting the user about the error.

If a row has been selected, we’ll open a confirmation message box asking the user to con-
firm that this record should truly be deleted, and we’ll only delete the record if the user clicks
the yes button.

Editing a Specific Resource
Finally, for editing a record in the database, we’ll attach an event handler onto the grid rows
such that, if a user double-clicks any of the rows, we’ll navigate the browser to the show tem-
plate for the record that was double-clicked. That show template will need to be configured to
support features such as in-place editing, so that the record can be both viewed and edited
from the same place.

That show page will also have to be customized a bit, depending on the needs of each
resource, but we’ll try and keep things fairly consistent in our efforts here.

Building the Developer Pages
So with a basic understanding of how the system should work, we’ll kick off the development
of our view templates by first discussing how we can build the workflow in Ext for one of our
resources. We’ll then take that discussion and build some helper methods to simplify our
deployment of that workflow to all the pages. We’ll start by focusing on the needs of one of the
reference tables—the developers model.

Listing Our Developers
The first problem that we’ll address is the process of building an Ext grid to list all of our devel-
opers in the index page. Create a new file named index.rhtml in /app/views/developers, and
place the following content into it to generate our surrounding layout:

<%= ext_layout('Developers') %>

<div id="content"> </div>

Adding a grid to the page is a fairly easy task; we’ll start by defining a new empty JavaScript
object named pageGrid, which will be used to build all of our functionality. Within this
pageGrid object, we’ll define a grid and a data store (ds) variable that will be used to reference
the grid and data store objects from within all the various functions that we’ll add. We’ll also
build a shell of this object’s initialization with the init function. Finally, we’ll close this block

7818.book Page 447 Tuesday, October 2, 2007 9:37 PM

448 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

by calling an event handler to create our pageGrid object once the page is ready (i.e., when the
page has fully loaded). Putting that all together will look like this:

<%= ext_layout('Developers') %>

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 }
 };
 Ext.onReady(pageGrid.init, pageGrid, true);
</script>

<div id="content"> </div>

You may recall, from our previous discussion on Ext grids, that the grid component
displays a data store object, which can be configured to read its data from XML, JSON, a
JavaScript array, and so on. So our next step is to establish a new Ext data store into which
we’ll pass two objects: We’ll pass in a data proxy object specified as an HTTP proxy that
will be used to pull back to the XML format of our developers list from Rails (proxy: new
Ext.data.HttpProxy({url: 'developers.xml'})). Second, we’ll pass in a reader object that is
used to interpret the XML list of developers and map the fields that we’re interested in into
elements we can use in the grid (reader: new Ext.data.XmlReader({record: 'developer',
id: 'DevID'}, ['DevID', 'Name', 'URL']). Putting that together will look like this:

ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.xml'}),
 reader: new Ext.data.XmlReader({
 record: 'developer',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
});

Next, we’ll establish the column model, which defines the fields that we’ll display on the
grid and how they’ll look. You’ll notice that it uses the data fields that we defined in the previ-
ous reader object. For good measure, we’ll also set defaultSortable to true to enable client-
side sorting of the records in the grid:

var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
cm.defaultSortable = true;

7818.book Page 448 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 449

Now that all of our data is defined, we build the new grid on our page by creating a new
Grid object and passing it its destination container, our data store, and the column model
objects and then calling render on it.

grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
grid.render();

Finally, we call the ds.load method to make the request to the /developers.xml URL and
pull in our list of developers, so the current developers index page (/app/views/developers/
index.rhtml) should look like this:

<%= ext_layout('Developers') %>

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.xml'}),
 reader: new Ext.data.XmlReader({
 record: 'developer',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 ds.load();
 }
 }
}();
 Ext.onReady(pageGrid.init, pageGrid, true);
</script>

<div id="content"> </div>

But the page won’t work just yet, as we still have one more change to make—this time to
our controller. You see, when we used the make_resourceful plug-in to build out RESTful con-
trollers, it built the full suite of RESTful actions but only for standard HTML requests. We need

7818.book Page 449 Tuesday, October 2, 2007 9:37 PM

450 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

to configure it to return an XML representation using the response_for method, so open /app/
controllers/developers_controller.rb, and edit it to look like this:

class DevelopersController < ApplicationController

 make_resourceful do
 build :all

 response_for :index do |format|
 format.html {}
 format.xml { render :xml => @developers.to_xml }
 end
 end
end

If we open our web browser again and view http://localhost:3000/developers, our page
now displays a basic grid of all of our developers (see Figure 19-6).

Figure 19-6. Ext grid added to our Developers index page

Unfortunately, we have a small problem with this page, as it’s returning its results in order
of DevID instead of by name. If we had built the index method, we could fix this by simply add-
ing an order parameter to our finder like this:

@developers = Developer.find(:all, :order => 'Name ASC')

But what would be really cool is if we could define the default order that records should be
returned in the model. While there are no methods within Rails that provide that functionality;
fortunately, there is a plug-in that we can use by the name of the default_order plug-in. Unfor-
tunately, at the time of this writing, the only way to install it is to check out the code from the
Subversion repository, which you can do by opening a command prompt at the root of your
application and running the subversion checkout command:

svn co http://svn.gwikzone.org/public/default_order/trunk vendor/plugins ➥

/default_order

7818.book Page 450 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 451

A vendor/plugins/default_order/trunk
A vendor/plugins/default_order/trunk/test
A vendor/plugins/default_order/trunk/test/default_order_test.rb
A vendor/plugins/default_order/trunk/Rakefile
A vendor/plugins/default_order/trunk/init.rb
A vendor/plugins/default_order/trunk/lib
A vendor/plugins/default_order/trunk/lib/default_order.rb
A vendor/plugins/default_order/trunk/README
Checked out revision 2.

With the plug-in installed, we can now define the default order for any model by adding an
order_by call to our models. So let’s add that functionality to each of our models. We’ll fix the
developers model (/app/models/developer.rb) like this:

class Developer < ActiveRecord::Base
 set_table_name 'Developers'
 set_primary_key :DevID
 has_many :games, :foreign_key => 'DevID'
 order_by "Name"

 validates_presence_of :Name
 validates_uniqueness_of :Name
 validates_length_of :Name, :maximum => 200, :message => " must be less ➥

 than 200 characters"
 validates_length_of :URL, :maximum => 200, :message => " must be less ➥

 than 200 characters"
end

The publishers model (/app/models/publisher.rb) will be nearly identical and will also
sort by name:

class Publisher < ActiveRecord::Base
 set_table_name 'Publishers'
 set_primary_key :PubID
 has_many :games, :foreign_key => 'PubID'
 order_by "Name"

 validates_presence_of :Name
 validates_uniqueness_of :Name
 validates_length_of :Name, :maximum => 200, :message => " must be less ➥

 than 200 characters"
 validates_length_of :URL, :maximum => 200, :message => " must be less ➥

 than 200 characters"
end

7818.book Page 451 Tuesday, October 2, 2007 9:37 PM

452 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

We’ll sort the genres model (/app/models/genre.rb) by the genre type:

class Genre < ActiveRecord::Base
 set_table_name 'Genres'
 set_primary_key :GenreID
 order_by "TYPE"

 has_many :games, :foreign_key => "GenreID"
 validates_length_of :TYPE, :within => 1..16
 validates_uniqueness_of :TYPE
end

And finally, we’ll sort the games model (/app/models/game.rb) by the game title:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 belongs_to :publisher, :foreign_key => 'PubID'
 belongs_to :developer, :foreign_key => 'DevID'
 belongs_to :genre, :foreign_key => 'GenreID'
 order_by :title

 validates_length_of :Title, :maximum => 100, :message => " must be ➥

less than 100 characters"
 validates_presence_of :Title, :Console
end

After restarting our web server and saving all those models, a quick refresh of our develop-
ers index page reveals that our page is now sorting the developers correctly.

Editing a Developer
As long as we have our grid loaded, let’s add the functionality to it that will enable double-
clicking a row in the grid to cause the browser to navigate to the show view for this selected
record. We do this by first adding an event listener onto our grid for a double-click that will call
the editResource method:

grid.on('rowdblclick', editResource);

Of course, we’ll need to build an editResource method for this to work, which we’ll add at
the bottom of our pageGrid. The editResource method should be fairly simple; we’ll simply
grab the currently selected grid row and change the browser’s destination with a
window.location.href call:

function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
}

7818.book Page 452 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 453

So our current script in /app/view/developers/index.rhtml looks like this:

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.xml'}),
 reader: new Ext.data.XmlReader({
 record: 'developer',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 ds.load();

 grid.on('rowdblclick', editResource);
 }
 }
 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
 }
}();
Ext.onReady(pageGrid.init, pageGrid, true);
</script>

Of course, we haven’t built the show page yet, so double-clicking the grids won’t do any-
thing useful for us at the moment, but that functionality is ready for us once we do add that
show template.

Enhancing the Grid
Before we go any further in our implementation, I’m really annoyed by the fact that the grid, in
its current state, is pulling down an awfully big list of developers to display (over 1,000 in the

7818.book Page 453 Tuesday, October 2, 2007 9:37 PM

454 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

full database). With that many records getting down to a developer whose name begins with
the letter “S” currently involves a painful amount of scrolling. Not to mention that pulling
down all those records is causing the load time for the grid to be increased to a near uncomfort-
able level. Enhancing our grid to support pagination can solve both of those problems, so let’s
go through that process now.

Adding Pagination

To support paging of our records, we’re going to have to make a number of changes to our
current implementation. Our first step is that to support pagination we need to convert
our finder to support two new parameters that will be passed with each query from Ext’s pag-
inator: a limit parameter will be used to determine the number of records that should be
returned, and a start parameter will be used to determine the starting point (or offset) for the
first row to be returned. In our controller (/app/controllers/developers_controller.rb),
we’ll capture those parameters like this:

limit = params[:limit] || 25
start = params[:start] || 0

Second, we’ll have to modify the way that the finder in the index method works by writing
it to utilize our limit and start parameters:

@developers = Developer.find(:all, :limit => limit, :offset => start)

Next, we’ll need to provide an additional field in the response that we send from Rails that
will contain the total number of records in the collection; Ext can use that count to determine
the number of possible pages. We’ll name this field totalCount, and it will need to be provided
before the collection of developers in our response. While it’s possible to add this totalCount
field to our XML response by overriding the default to_xml method in Rails, I’ve found that it’s
a significantly easier task if we use JSON as the transport mechanism instead. Using JSON also
provides us with extra benefits: since it is a much more compact transport, it will also help
speed up our response times. Adding JSON support will be a simple matter of adding a
format.json block to our responses. In this block, we’ll create a new hash and populate it with
the data from our Developers collection and the count of all developer records before sending
it back to the client with the to_json method:

format.json {
 griddata = Hash.new
 griddata[:developers] = @developers.collect {|d|
 {:DevID => d.DevID, :Name => d.Name, :URL => d.URL}}
 griddata[:totalCount] = Developer.count
 render :text => griddata.to_json()
}

7818.book Page 454 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 455

So we could put all of this together in our /app/controllers/developers_controller.rb to
look like this:

class DevelopersController < ApplicationController
 make_resourceful do
 build :all
 end

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0
 @developers = Developer.find(:all, :limit => limit, :offset => start)

 respond_to do |format|
 format.html
 format.json {
 griddata = Hash.new
 griddata[:developers] = @developers.collect {|d|
 {:DevID => d.DevID, :Name => d.Name, :URL => d.URL}}
 griddata[:totalCount] = Developer.count
 render :text => griddata.to_json()
 }
 end
 end
end

You should notice that, in the preceding changes, we removed the response_for block and
instead redefined our index method manually; we did this because of our need to modify the
default finder to utilize the limit and start parameters in its query. This highlights another of
the great features of the make_resourceful plug-in—we’re able to overwrite any of its imple-
mentations with our own. However, there is a subtle problem with this implementation. Have
you noticed it?

The problem comes in the fact that, in our workflow, a request will be made to the index
method, which will follow the HTML path and display the index view template. This view (once
we modify it) will generate a request back to this same index method for the JSON representa-
tion of our developers list. The problem with all of this, though, is that we’re making a database
hit to generate the list of developers during both requests (even though we don’t do anything
with it for the HTML response). We can fix this by simply moving that query into the
format.json request like this:

class DevelopersController < ApplicationController
 make_resourceful do
 build :all
 end

7818.book Page 455 Tuesday, October 2, 2007 9:37 PM

456 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 @developers = Developer.find(:all, :limit => limit, :offset => start)
 griddata = Hash.new
 griddata[:developers] = @developers.collect {|d|
 {:DevID => d.DevID, :Name => d.Name, :URL => d.URL}}
 griddata[:totalCount] = Developer.count
 render :text => griddata.to_json()
 }
 end
 end
end

With our controller set to deliver a JSON response, we can modify the pageGrid object back
in our index template (/app/views/developers/index.rhtml) to process the JSON and display
our results paginated. The first step in doing that will be to change our reader object from an
Xmlreader to a JsonReader instead. Within that reader, we’ll also define that it should recognize
our totalCount variable:

reader: new Ext.data.JsonReader({
 root: 'developers',
 totalProperty: 'totalCount',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
});

Next, we’ll need to add a paging toolbar to our grid in the footer using the prebuilt one
included with Ext:

var gridFoot = grid.getView().getFooterPanel(true);
var paging = new Ext.PagingToolbar(gridFoot, ds, {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
});

7818.book Page 456 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 457

Finally, we’ll need to modify our ds.load method to now pass along the start and limit
parameters when it makes its initial request for data:

ds.load({params:{start:0, limit:20}});

After putting all of that together, our current pageGrid script should look like this:

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.json'}),
 reader: new Ext.data.JsonReader({
 root: 'developers',
 totalProperty: 'totalCount',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds, {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 });
 ds.load({params:{start:0, limit:20}});

7818.book Page 457 Tuesday, October 2, 2007 9:37 PM

458 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 grid.on('rowdblclick', editResource);
 }
 }
 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
 }
}();
Ext.onReady(pageGrid.init, pageGrid, true);
</script>

Save the scripts, fire up your web browser to view the developers index page again, and
voilà—we get an empty grid (albeit one with a paginating footer). Troubleshooting this issue
requires a bit more detective work than usual, because in all actuality, the code is working cor-
rectly. The easiest way to see the problem is to view the page in the Firefox web browser and
use what I feel is one of the greatest gifts to the web developer—the Firebug extension (http:/
/www.getfirebug.com/). Firebug provides a wealth of features such as the ability to tweak live
CSS, debug and profile JavaScript, log JavaScript errors, and on and on. Seriously, I can’t imag-
ine how I used to do web development before Firebug, so if you don’t have it installed yet, you
need to go get it right now. Another of the features that makes Firebug essential is that it allows
you to view AJAX requests as they occur. The result of our ds.load method in Firebug is shown
in Figure 19-7.

Figure 19-7. Troubleshooting our error using Firebug

If you recall our discussions of how RESTful routing works, you’ll recall that in RESTful
routing, it’s not just the URLs that determine how the request is routed but the HTTP verb
that’s used as well. To access the index method of the developers controller, we need to use a
GET request to /developers. However, the ds.load method is issuing the request as a POST
(which would essentially cause the request to be routed to the create method). This happens
because when we pass parameters to the ds.load method, Ext defaults to using the POST
method (obviously, it wasn’t designed around RESTful principles). Fortunately, this is a very

7818.book Page 458 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 459

easy fix, as all we need to do is make a small modification to our proxy object to use GET when
it requests JSON representation of our developers.

proxy: new Ext.data.HttpProxy({method: 'GET', url: 'developers.json'}),

Make that change to our script, and reload the web page to see the fruits of our labors (as
shown in Figure 19-8).

Figure 19-8. Paginating our list of developers

Adding a Filter

That pagination goes a long way toward making navigating our records easier, but getting to a
specific record way back in the list can still be a bit of a pain. Let’s fix that by enhancing the grid
to support filtering the results. We’ll start by first adding a text box to our grid that can be used
by a user to enter a filter string.

var gridHead = grid.getView().getHeaderPanel(true);
var tb = new Ext.Toolbar(gridHead);
tb.add('-', 'Filter: ', "<input type='text' id='text_filter'>");
Ext.get('text_filter').on('keyup', filterResource);

In the preceding code, we first grabbed a reference to the header panel of grid, in which we
then created a new Ext.Toolbar. Once we had that new toolbar, we added a text input to it and
attached an event listener to call the filterResource method on it whenever the keyup event
occurs (keyup is the event that is called whenever a keyboard key is pressed and released).

Now, let’s build the filterResource method for handling our search.

7818.book Page 459 Tuesday, October 2, 2007 9:37 PM

460 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET', url: 'developers.json? ➥

search=' + filtervalue});
 ds.reload();
}

This method is pretty simple. We’ll grab whatever text is currently in the filter box and then
use this method as a search parameter as we redefine the proxy URL to pass our search text.
Then, we reload the data store. At this point, the full script should look like this:

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.json'}),
 reader: new Ext.data.JsonReader({
 root: 'developers',
 totalProperty: 'totalCount',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds, {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 });
 ds.load({params:{start:0, limit:20}});

 grid.on('rowdblclick', editResource);

7818.book Page 460 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 461

 var gridHead = grid.getView().getHeaderPanel(true);
 var tb = new Ext.Toolbar(gridHead);
 tb.add({ text: 'Create New Developer', handler: createResource }, '-', ➥

{ text: 'Delete Selected Developer', handler: deleteResource });
 tb.add('-', 'Filter: ', "<input type='text' id='text_filter'>");
 Ext.get('text_filter').on('keyup', filterResource);

 }
 }

 function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET',
 url: 'developers.json?search=' + filtervalue});
 ds.reload();
 }

 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
 }
}();
Ext.onReady(pageGrid.init, pageGrid, true);
</script>

Back in our developers controller, we need to modify our index method to also check for
the presence of a search parameter:

def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 if(params[:search])
 @developers = Developer.find(:all, :limit => limit, :offset => start,
 :conditions => ["Name like ?","%" + params[:search] + "%"])

 dev_count = Developer.count(:conditions => ["Name like ?","%" ➥

+ params[:search] + "%"])
 else
 @developers = Developer.find(:all, :limit => limit, :offset => start)
 dev_count = Developer.count
 end

7818.book Page 461 Tuesday, October 2, 2007 9:37 PM

462 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 griddata = Hash.new
 griddata[:developers] = @developers.collect {|d|
 {:DevID => d.DevID, :Name => d.Name, :URL => d.URL}}
 griddata[:totalCount] = dev_count

 render :text => griddata.to_json()
 }
 end
 end

Our filtered results are shown in Figure 19-9.

Figure 19-9. Filtering our results of developers

Adding Buttons to Our Toolbar
With the enhancements to our grid navigation completed, we can get back to implementing
our core functionality. All that we have left for this workflow is to add the ability to delete a
record and the ability to create a new record. Since we already have a toolbar added to our grid,
why don’t we enhance it by placing buttons for those two functionalities onto the toolbar? We
can do that easily by adding them with the add method within our existing toolbar definition:

var gridHead = grid.getView().getHeaderPanel(true);
var tb = new Ext.Toolbar(gridHead);

tb.add({ text: 'Create New Developer', handler: createResource }, '-', ➥

{ text: 'Delete Selected Developer', handler: deleteResource });

tb.add('-', 'Filter: ', "<input type='text' id='text_filter'>");
Ext.get('text_filter').on('keyup', filterResource);

Figure 19-10 shows what the buttons will look in our toolbar once we’re done.

7818.book Page 462 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 463

Figure 19-10. Adding buttons to our toolbar

■Note Of course, if you actually try to view the page without those functions defined, it will generate
an error. So if you want to view the toolbar before we’re done building the createResource and
deleteResource functions, you’ll need to define empty versions of the functions like this: function
createResource() {} and function deleteResource() {} until we’ve populated them both.

Deleting a Developer
So what happens if a user clicks the delete button we just created? Nothing at the moment.
Because, even though we set up the button to call a function named deleteResource when
pressed, we haven’t yet added the deleteResource function. So let’s build it now:

function deleteResource() {
 var id = grid.getSelectionModel().getSelected();
 if(id){
 var news = id.get('DevID');
 Ext.MessageBox.confirm('Confirm', 'Are you sure you want to delete this ➥

Developer?', postDelete);
 } else {
 Ext.MessageBox.alert('DOH!', 'Maybe you want to try again after ACTUALLY ➥

selecting something?')
 }
 }

That function should be fairly easy to follow. Once the function is called, we grab the
selected row from the grid. If a row has not been selected, we pop open a message box and let the
user know (using what is hopefully perceived as a little bit of humor), as shown in Figure 19-11.

Figure 19-11. Capturing a user error

7818.book Page 463 Tuesday, October 2, 2007 9:37 PM

464 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

If a row has been selected, we simply prompt the user to confirm to the intention to delete
this resource and then pass control to yet another function postDelete:

function postDelete(btn){
 if(btn == 'yes') {
 var id = grid.getSelectionModel().getSelected();
 var deleteme = id.get('DevID');
 window.location.href = '/developers/destroy/' + deleteme;
 }
 }

In postDelete, we check that the user did choose yes on the confirmation button, and if so,
we redirect the page to our destroy method, which will destroy the specified resource and redi-
rect the user to our current page.

Add those functions to our script, and it now looks like this:

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({url: 'developers.json'}),
 reader: new Ext.data.JsonReader({
 root: 'developers',
 totalProperty: 'totalCount',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds, {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 });

7818.book Page 464 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 465

 ds.load({params:{start:0, limit:20}});

 grid.on('rowdblclick', editResource);

 var gridHead = grid.getView().getHeaderPanel(true);
 var tb = new Ext.Toolbar(gridHead);
 tb.add({ text: 'Create New Developer', handler: createResource }, '-', ➥

{ text: 'Delete Selected Developer', handler: deleteResource });
 tb.add('-', 'Filter: ', "<input type='text' id='text_filter'>");
 Ext.get('text_filter').on('keyup', filterResource);

 }
 }

 function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET',
 url: 'developers.json?search=' + filtervalue});
 ds.reload();
 }

 function deleteResource() {
 var id = grid.getSelectionModel().getSelected();
 if(id){
 Ext.MessageBox.confirm('Confirm', 'Are you sure you want to delete this ➥

Developer?', postDelete);
 } else {
 Ext.MessageBox.alert('DOH!', 'Maybe you want to try again after ACTUALLY ➥

selecting something?')
 }
 }

 function postDelete(btn){
 if(btn == 'yes') {
 var id = grid.getSelectionModel().getSelected();
 var deleteme = id.get('DevID');
 window.location.href = '/developers/destroy/' + deleteme;
 }
 }

 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
 }
}();

7818.book Page 465 Tuesday, October 2, 2007 9:37 PM

466 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Ext.onReady(pageGrid.init, pageGrid, true);
</script>

Creating a New Developer
The last feature we want to add to this page is the ability to open a dialog box to create a new
developer. We’ll build the content of the dialog for the form in the HTML structure of our page
and merely use Ext to display it in a dialog when someone clicks the button, so in our index
template (/app/developers/index.rhtml), add the following to the bottom:

<div id="newDialog">
 <div class="x-dlg-hd">Create New Developer</div>
 <div class="x-dlg-bd">
 <% form_for(:developer, Developer.new, :url => developers_path, :html =>
 {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="developer_Name">Developer Name:</label>
 <%= f.text_field :Name %>
 </p>
 <p>
 <label for="develoer_URL">Developer Home Page</label>
 <%= f.text_field :URL %>
 </p>
 <% end %>
 </div>
</div>

We already added a button to our toolbar in our last step to launch the dialog. When the
button is clicked, it calls the function createResource. Before we build that function, we need
to add a variable to our pageGrid object—this one will store a reference to the dialog object that
we can use to reference that value from anywhere in our code:

var pageGrid = function() {
 var grid;
 var dialog;
 var ds;

With that variable set, we can now build our createResource method like this:

function createResource() {
 if(!dialog) {
 dialog = new Ext.BasicDialog('newDialog', {
 width:300, height:170, shadow:true, minWidth:300, minHeight:170,
 proxyDrag:true, autoScroll:false, animEl:true
 });

7818.book Page 466 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 467

 dialog.addKeyListener(27, dialog.hide, dialog);
 postBtn = dialog.addButton('Submit', submitResource, this);
 dialog.addButton('Close', dialog.hide, dialog);
 }

 dialog.show();
 dialog.on('hide', function(){
 document.create_resource.reset();
 })
 }

That function is a little bit bigger than our previous examples. Let’s break down a few of
the high points of this function. The first thing we do is check to see if we have a dialog created
yet; if not, we’ll create it from that form in our page:

if(!dialog) {
 dialog = new Ext.BasicDialog('newDialog', {
 width:300, height:170, shadow:true, minWidth:300, minHeight:170,
 proxyDrag:true, autoScroll:false, animEl:true
 });

Now that we have a dialog object created, we’ll add a little functionality, including the abil-
ity to close the dialog box if the Esc key is pressed, and add a pair of buttons to our dialog. When
a user clicks the submit button, it will call the submitResource function. If the user clicks the
close button, we’ll hide the dialog again.

dialog.addKeyListener(27, dialog.hide, dialog);
postBtn = dialog.addButton('Submit', submitResource, this);
dialog.addButton('Close', dialog.hide, dialog);

From here, we’ll display the dialog and add in an event handler to reset the fields whenever
the dialog is closed.

dialog.show();
 dialog.on('hide', function(){
 document.create_resource.reset();
 })

All that’s left is to add in our submitResource function, and we’ll have completed this func-
tionality. Our submitResource function doesn’t have to do anything fancy, merely submit the
form.

function submitResource(){
 document.create_resource.submit();
}

The Create New Developer dialog box is shown in Figure 19-12.

7818.book Page 467 Tuesday, October 2, 2007 9:37 PM

468 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Figure 19-12. Pop-up dialog box to create a new developer

Abstracting Our Workflow into a Helper
We added quite a lot of functionality to support in the previous section. However, it required
us to build a fairly substantial amount of code. That wouldn’t be too much of an issue if it
wasn’t going to be duplicated, but we’ve already stated that we want to be able to use pretty
much an identical set of code to also manage the index pages for other resources in our appli-
cation such as the Publishers, Genres, and Games resources.

Let’s take another look at the final version of our index page for developers (/app/views/
developers/index.rhtml):

<%= ext_layout('Developers') %>

<script type="text/javascript" charset="utf-8">
var pageGrid = function() {
 var grid;
 var dialog;
 var ds;
 return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({method: 'GET', url: 'developers.json'}),
 reader: new Ext.data.JsonReader({
 root: 'developers',
 totalProperty: 'totalCount',
 id: 'DevID'
 }, ['DevID', 'Name', 'URL'])
 });

 var cm = new Ext.grid.ColumnModel([
 {header: "Name", width: 300, dataIndex: 'Name'},
 {header: "URL", width: 250, dataIndex: 'URL'}
]);
 cm.defaultSortable = true;

7818.book Page 468 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 469

 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds, {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 });
 ds.load({params:{start:0, limit:20}});

 grid.on('rowdblclick', editResource);

 var gridHead = grid.getView().getHeaderPanel(true);
 var tb = new Ext.Toolbar(gridHead);
 tb.add({ text: 'Create New Developer', handler: createResource }, '-', ➥

{ text: 'Delete Selected Developer', handler: deleteResource });
 tb.add('-', 'Filter: ', "<input type='text' id='text_filter'>");
 Ext.get('text_filter').on('keyup', filterResource);

 }
 }

 function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET',
 url: 'developers.json?search=' + filtervalue});
 ds.reload();
 }

 function submitResource(){
 document.create_resource.submit();
 }

 function createResource() {
 if(!dialog) {
 dialog = new Ext.BasicDialog('newDialog', {
 width:300, height:170, shadow:true, minWidth:300, minHeight:170,
 proxyDrag:true, autoScroll:false, animEl:true
 });
 dialog.addKeyListener(27, dialog.hide, dialog);
 postBtn = dialog.addButton('Submit', submitResource, this);
 dialog.addButton('Close', dialog.hide, dialog);
 }

7818.book Page 469 Tuesday, October 2, 2007 9:37 PM

470 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 dialog.show();
 dialog.on('hide', function(){
 document.create_resource.reset();
 })
 }

 function deleteResource() {
 var id = grid.getSelectionModel().getSelected();
 if(id){
 Ext.MessageBox.confirm('Confirm', 'Are you sure you want to delete this ➥

Developer?', postDelete);
 } else {
 Ext.MessageBox.alert('DOH!', 'Maybe you want to try again after ACTUALLY ➥

selecting something?')
 }
 }

 function postDelete(btn){
 if(btn == 'yes') {
 var id = grid.getSelectionModel().getSelected();
 var deleteme = id.get('DevID');
 window.location.href = '/developers/destroy/' + deleteme;
 }
 }

 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = 'developers/' + id.get('DevID');
 }
 }
}();
Ext.onReady(pageGrid.init, pageGrid, true);
</script>
<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Developer</div>
 <div class="x-dlg-bd">
 <% form_for(:developer, Developer.new, :url => developers_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="developer_Name">Developer Name:</label>
 <%= f.text_field :Name %>
 </p>

7818.book Page 470 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 471

 <p>
 <label for="developer_URL">Developer Home Page</label>
 <%= f.text_field :URL %>
 </p>
 <% end %>
 </div>
</div>

Sigh—that’s an awful lot of code to copy and paste from index page to index page, and it
sure adds a lot of visual noise to our template. Since I knew that was code that we were going to
want to repeat, I did try and be a little more generic in the names of the function by naming
them things like deleteResource rather than deleteDeveloper. By doing that, there’s a lot less
within these blocks of code that will need to be modified when we reuse them—mainly just
things like URL paths and descriptive text.

So a good first step in abstracting out this code would be to determine exactly which items
are going to be different if this same block of code were used in a Publishers index page versus
a Games index page.

• The name of the resource will be different. We use this name in various places such as in
our buttons like Create New Developer.

• The URL that it uses to pull down the JSON collection will need to change. However, this
could also be derived by pluralizing the resource name.

• The primary key field will be different from resource to resource. If this was a standard
Rails application that used id as the primary key for every resource, we wouldn’t have
that problem, but as it sits, we have primary keys like DevID, PubID, and GameID.

• The fields that will need to be mapped out of the JSON response in the column model
will be unique from page to page.

• Our column model definitions in our grid are going to be unique from page to page as
well.

• The height of our display dialog will need to be a variable based on the number of fields
that may be passed to it.

That list isn’t too long, as we could simply pass into a method the name of the resource and
the majority of the unique elements could be derived from it. The primary key would have to
also be passed to the method, as there would be no way to derive it from the resource name,
since it doesn’t follow conventions. As for the list of fields to map in our JSON response or our
column model definitions, those could both be passed in as arrays or strings, which would be
a little ugly but a vast improvement over where things are currently. So let’s create a new helper
method that will simply generate that same pageGrid JavaScript code based on the parameters
we pass to it. Open /app/helpers/application_helper.rb, and create a new method named
ext_grid like so:

def ext_grid(model, primary_key, fields, columns, height)
 xml_fields = fields
 xml_fields << primary_key
 xml_fields.collect! {|x| "'#{x}'"}

7818.book Page 471 Tuesday, October 2, 2007 9:37 PM

472 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 function = "var pageGrid = function() {"
 function << " var grid; var dialog; var ds;"
 function << " return{ init : function(){"
 function << " ds = new Ext.data.Store({"
 function << " proxy: new Ext.data.HttpProxy({method: 'GET', ➥

url: '#{model.pluralize}.json'}),"

 function << "reader: new Ext.data.JsonReader({"
 function << "root: '#{model.pluralize}',"
 function << " totalProperty: 'totalCount',"
 function << " id: '#{primary_key}'"
 function << "}, [#{xml_fields.to_sentence(:connector => '')}])"
 function << " });"

 function << " var cm = new Ext.grid.ColumnModel([#{columns}]);"
 function << " cm.defaultSortable = true;"
 function << " grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });"
 function << " grid.render();"

 function << "var gridFoot = grid.getView().getFooterPanel(true);"
 function << "var paging = new Ext.PagingToolbar(gridFoot, ds, {"
 function << "pageSize: 20,"
 function << "displayInfo: true,"
 function << "displayMsg: 'Displaying topics {0} - {1} of {2}',"
 function << "emptyMsg: 'No topics to display'});"
 function << "ds.load({params:{start:0, limit:20}});"

 function << " grid.on('rowdblclick', editResource);"

 function << " var gridHead = grid.getView().getHeaderPanel(true);"
 function << " var tb = new Ext.Toolbar(gridHead);"
 function << " tb.add({ text: 'Create New #{model.capitalize}', ➥

handler: createResource }, '-', { text: 'Delete Selected #{model.capitalize}', ➥

handler: deleteResource });"
 function << " tb.add('-', 'Filter: ', \"<input type='text' ➥

id='text_filter'>\");"
 function << " Ext.get('text_filter').on('keyup', filterResource);"
 function << " }}"
 function << "\n"
 function << " function filterResource() {"
 function << " filtervalue = Ext.get('text_filter').dom.value;"
 function << " ds.proxy = new Ext.data.HttpProxy({method: 'GET', url:

7818.book Page 472 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 473

#{model.pluralize}.json?search=' + filtervalue});"
 function << " ds.reload();}"
 function << "\n"
 function << " function deleteResource() {"
 function << " var id = grid.getSelectionModel().getSelected(); "
 function << " if(id){"
 function << " Ext.MessageBox.confirm('Confirm', 'Are you sure you want to ➥

delete this #{model}?', postDelete);"
 function << " } else {"
 function << " Ext.MessageBox.alert('DOH!', 'Maybe you want to try ➥

again after ACTUALLY selecting something?')}}"
 function << "\n"
 function << " function submitResource(){"
 function << " document.create_resource.submit();}"
 function << "\n"
 function << " function postDelete(btn){"
 function << " if(btn == 'yes') {"
 function << " var id = grid.getSelectionModel().getSelected();"
 function << " var deleteme = id.get('#{primary_key}');"
 function << " window.location.href = '/#{model.pluralize}/destroy/' + ➥

 deleteme;}} "
 function << "\n"
 function << " function editResource(grid, rowIndex) {"
 function << " var id = grid.getSelectionModel().getSelected();"
 function << " if(id) { "
 function << " window.location.href = '/#{model.pluralize}/' + ➥

id.get('#{primary_key}'); }}"
 function << "\n"
 function << " function createResource() {"
 function << " if(!dialog) {"
 function << " dialog = new Ext.BasicDialog('newDialog', {"
 function << " width:500, height:#{height}, shadow:true, minWidth:300, ➥

minHeight:#{height}, proxyDrag:true, autoScroll:false, animEl:true });"
 function << " dialog.addKeyListener(27, dialog.hide, dialog);"
 function << " postBtn = dialog.addButton('Submit', submitResource, this);"
 function << " dialog.addButton('Close', dialog.hide, dialog); }"
 function << "\n"
 function << " dialog.show();"
 function << " dialog.on('hide', function(){"
 function << " document.create_resource.reset();})"
 function << " } }();"
 function << " Ext.onReady(pageGrid.init, pageGrid, true);"
 javascript_tag(function)
 end

7818.book Page 473 Tuesday, October 2, 2007 9:37 PM

474 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Using that helper method, we could easily reduce the index method for our developers
down to just this:

<%= ext_layout('Developers') %>

<%= ext_grid("developer", "DevID", %w(Name URL),
 "{header: 'Name', width: 300, dataIndex: 'Name'},
 {header: 'URL', width: 250, dataIndex: 'URL'}") %>

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Developer</div>
 <div class="x-dlg-bd">
 <% form_for(:developer, Developer.new, :url => developers_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="developer_Name">Developer Name:</label>
 <%= f.text_field :Name %>
 </p>
 <p>
 <label for="developer_URL">Developer Home Page</label>
 <%= f.text_field :URL %>
 </p>
 <% end %>
 </div>
</div>

That’s a lot nicer, and we if were to convert the create resource form at the bottom to a
partial, we could reduce the code even further, but there’s no reason to be greedy. In the mean-
time, though, let’s use our new helper to finish the rest of the index methods for our resources.

Managing Games

Previously, we created an /app/views/games/index.rhtml template to demonstrate our layout;
let’s modify it now to use our new helper method and provide a fully functional page like this:

<%= ext_layout('Games') %>
<%= ext_grid("game", "GameID", %w(Title Console),
 "{header: 'Title', width: 300, dataIndex: 'Title'},
 {header: 'Console', width: 250, dataIndex: 'Console'}", 340) %>

<div id="content"> </div>

7818.book Page 474 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 475

<div id="newDialog">
 <div class="x-dlg-hd">Create New Game</div>
 <div class="x-dlg-bd">
 <% form_for(:game, Game.new, :url => games_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="game_Title">Title:</label>
 <%= f.text_field :Title %>
 </p>
 <p>
 <label for="game_Console">Console:</label>
 <%= f.select :Console, %w(Xbox 360 PS2 ps3 PSP Cube GBA DS ➥

WII PC Nokia) %>
 </p>
 <p>
 <label for="game_Description">Description:</label>
 <%= f.text_area :Description %>
 </p>
 <% end %>
 </div>
</div>

Also, we’ll edit our games controller (/app/controllers/games_controller.rb) to look like
this:

class GamesController < ApplicationController
 make_resourceful do
 build :all
 end

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 if(params[:search])
 @games = Game.find(:all, :limit => limit, :offset => start,
 :conditions => ["Title like ?","%" + params[:search] + "%"])
 game_count = Game.count(:conditions => ["Title like ?","%" + ➥

params[:search] + "%"])
 else
 @games = Game.find(:all, :limit => limit, :offset => start)
 game_count = Game.count
 end

7818.book Page 475 Tuesday, October 2, 2007 9:37 PM

476 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 griddata = Hash.new
 griddata[:games] = @games.collect {|g|
 {:GameID => g.GameID, :Console => g.Console, :Title => g.Title}}
 griddata[:totalCount] = game_count

 render :text => griddata.to_json()
 }
 end
 end
end

Managing Publishers

We can manage our Publishers by creating a new index.rhtml template in /app/views/
publishers and placing the following content in it:

<%= ext_layout('Publishers') %>
<%= ext_grid("publisher", "PubID", %w(Name URL),
 "{header: 'Name', width: 300, dataIndex: 'Name'},
 {header: 'URL', width: 250, dataIndex: 'URL'}", 170) %>

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Publisher</div>
 <div class="x-dlg-bd">
 <% form_for(:publisher, Publisher.new, :url => publishers_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="publisher_Name">Publisher Name:</label>
 <%= f.text_field :Name %>
 </p>
 <p>
 <label for="publisher_URL">Publisher Home Page</label>
 <%= f.text_field :URL %>
 </p>
 <% end %>
 </div>
</div>

We’ll need to modify the Publishers controller to support our filter and paginating results
features as well, so edit /app/controllers/publishers_controller.rb to look like this:

class PublishersController < ApplicationController
 make_resourceful do
 build :all
 end

7818.book Page 476 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 477

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html {}
 format.json {
 if(params[:search])
 @publishers = Publisher.find(:all, :limit => limit, :offset => start,
 :conditions => ["Name like ?","%" + params[:search] + "%"])

 dev_count = Publisher.count(:conditions => ["Name like ?","%" + ➥

params[:search] + "%"])
 else
 @publishers = Publisher.find(:all, :limit => limit, :offset => start)
 dev_count = Publisher.count
 end

 griddata = Hash.new
 griddata[:publishers] = @publishers.collect {|p|
 {:PubID => p.PubID, :Name => p.Name, :URL => p.URL}}
 griddata[:totalCount] = dev_count

 render :text => griddata.to_json()
 }
 end
 end
end

Managing Genres

Finally, we’ll pull our workflow into the index template for our genres resource as well, so cre-
ate a new index.rhtml in /app/views/genres, and place the following content in it:

<%= ext_layout('Genres') %>
<%= ext_grid("genre", "GenreID", %w(TYPE GenreID),
 "{header: 'Genre', width: 300, dataIndex: 'TYPE'}", 120) %>

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Genre</div>
 <div class="x-dlg-bd">
 <% form_for(:genre, Genre.new, :url => genres_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>

7818.book Page 477 Tuesday, October 2, 2007 9:37 PM

478 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 <p>
 <label for="genre_TYPE">Genre Name:</label>
 <%= f.text_field :TYPE %>
 </p>
 <% end %>
 </div>
</div>

And modify the Genres controller (/app/controllers/genres_controller.rb) to look like
this:

class GenresController < ApplicationController
 make_resourceful do
 build :all
 end

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 if(params[:search])
 @genres = Genre.find(:all, :limit => limit, :offset => start,
 :conditions => ["Name like ?","%" + params[:search] + "%"])

 genre_count = Genre.count(:conditions => ["Name like ?","%" + ➥

params[:search] + "%"])
 else
 @genres = Genre.find(:all, :limit => limit, :offset => start)
 genre_count = Genre.count
 end

 griddata = Hash.new
 griddata[:genres] = @genres.collect {|g|
 {:GenreID => g.GenreID, :TYPE => g.TYPE}}
 griddata[:totalCount] = genre_count

 render :text => griddata.to_json()
 }
 end
 end
end

7818.book Page 478 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 479

Building the Show / Edit Template
Now that we have all of our index pages built to display lists of all of their records and provide
functionality to create and delete as well, we need to build a way to interact with a single
resource (e.g., the destination page when a row is double-clicked). Once again, let’s start with
building this page for the developer resource, and then we’ll have a base set of code that we can
migrate to other resources.

We’ll need to create a new file named show.rhtml in /app/views/developers. After all that
work building out our index page, you’ll be happy to know that our next page will be much less
involved. This will be the primary page from which a user will interact with an individual devel-
oper record. The page will display the information on a specific developer, but we’ll add a little
extra functionality to it by making all the fields editable in place.

In order to support in-place editing, we need to add the in_place_edit method for each
field that we want to edit in place. So within the Developers controller (/app/controllers/
developers_controller.rb), we’ll add these methods for the Name and URL fields:

class DevelopersController < ApplicationController
 in_place_edit_for :developer, :Name
 in_place_edit_for :developer, :URL

 make_resourceful do
 build :all
 end

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 if(params[:search])
 @developers = Developer.find(:all, :limit => limit, :offset => start,
 :conditions => ["Name like ?","%" + params[:search] + "%"])

 dev_count = Developer.count(:conditions => ["Name like ?","%" + ➥

 params[:search] + "%"])
 else
 @developers = Developer.find(:all, :limit => limit, :offset => start)
 dev_count = Developer.count
 end

 griddata = Hash.new
 griddata[:developers] = @developers.collect {|d| {:DevID => d.DevID, ➥

:Name => d.Name, :URL => d.URL}}
 griddata[:totalCount] = dev_count

7818.book Page 479 Tuesday, October 2, 2007 9:37 PM

480 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 render :text => griddata.to_json()
 }
 end
 end
end

Now, it’s simply a matter of creating the show.rthml page in /apps/views/developers/:

<%= ext_layout('Edit Developer') %>

<div id='content' class="ylayout-inactive-content">
 <p>
 <label for="developer_Name">Company Name:</label>
 <%= in_place_editor_field :developer, :Name %>
 </p>
 <p>
 <label for="developer_URL">Developers Home Page:</label>
 <%= in_place_editor_field :developer, :URL %>
 </p>
 <%= button_to 'Back', developers_path, :method => :get %>
</div>

Firing up our new show page gives us a result like the one in Figure 19-13.

Figure 19-13. In-place editing a developer’s home page URL

Nice and simple, huh? You should be able to take that example and extend it into creating
the show.rthml pages for the Publishers and Genres sections by yourself at this point.

Capturing Failed Creations
Although “capturing failed creations” may sound like we’re out hunting Frankenstein’s mon-
ster, in reality, what I’m talking about is creating a new.rthml page for all of our resources. You
see, even though we’re using a dialog on the index page to create our new developers, our one

7818.book Page 480 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 481

big lack is determining how to respond to the user if the developer creation fails. While we
could rewrite our index page to submit the new developer as a remote form via AJAX, doing that
would introduce a significant amount of additional complexity without adding any additional
value. It’s much easier to just set up a standard new.rhtml page that will redisplay the creation
form and any errors that occurred with the creation of the resource.

<%= ext_layout('Create New Developer') %>

<div id="content">
 <%= error_messages_for :developer %>
 <% form_for(:developer, Developer.new, :url => developers_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="developer_Name">Developer Name:</label>
 <%= f.text_field :Name %>
 </p>

 <p>
 <label for="developer_URL">Developer Home Page</label>
 <%= f.text_field :URL %>
 </p>

 <p><%= submit_tag "Create" %></p>
 <% end %>
</div>

With that, we’re done creating our tools to manage our developer resources. From here,
you can either duplicate this process for the publisher and genre resources (modifying it to fit
those resources obviously) or you can download the files straight from the source archive for
this project. You’ll need to create versions of this template for the Publishers and genres mod-
els as well.

Games
Now that we’ve built the pages necessary to mange our associated tables, it’s finally time to
tackle our page for displaying a specific game. While there will be some similarities among the
games pages and our previous pages, the games detail pages will need to display a significant
amount of additional data, as we’d like to make them the one-stop shop for any interactions
with a game.

Building the Show Template

Sketching out a rough page layout, I came up with Figure 19-14, where the main content area
is broken into a few new sections. We’ll have a game information area, which will display infor-
mation about the game and a picture of the game box. Below that, we’ll have an area with
multiple tabs. Within each tab, we’ll display a different piece of data associated with this spe-
cific game, such as screenshots.

7818.book Page 481 Tuesday, October 2, 2007 9:37 PM

482 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Figure 19-14. A rough sketch of our game detail layout

To accomplish this plan, we’re going to have to make some modifications to our layout
files and embed a nested layout into our center panel. To build this layout, we’ll need to define
the following new Ext border layout within the /app/views/games/show.rhtml template:

<script type="text/javascript" charset="utf-8">
 gameLayout = function() {
 var layout;
 return{

 init : function(){
 var layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize:65
 },
 center: {
 titlebar:false,
 tabPosition: 'top',
 alwaysShowTab: true,
 autoScroll:true
 },

7818.book Page 482 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 483

 west: {
 initialSize: 125,
 minSize: 125,
 maxSize:125,
 titlebar: true,
 split:true,
 collapsible:true,
 animate:true
 }
 });
 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header'));

 var innerLayout = new Ext.BorderLayout('main', {
 north: {
 split:true,
 initialSize:155,
 titlebar:true,
 collapsible:true,
 animate:true
 },
 center: {
 autoScroll:true,
 tabPosition:'top'
 }
 });

 innerLayout.add('north', new Ext.ContentPanel('game_header', ➥

{title:"<%= h @game.Title %>"}));
 var tab1 = new Ext.ContentPanel('content', {title:'Description'});
 innerLayout.add('center', tab1);

 var tab2 = new Ext.ContentPanel('screenshots',{title:'ScreenShots'});
 innerLayout.add('center', tab2);

 layout.add('center', new Ext.NestedLayoutPanel(innerLayout));
 innerLayout.getRegion('center').showPanel('content');
 layout.add('west', new Ext.ContentPanel('sidebar', {title: 'Navigation'}));
 layout.endUpdate();}
 }
 }();
 Ext.EventManager.onDocumentReady(gameLayout.init, gameLayout, true);
</script>

7818.book Page 483 Tuesday, October 2, 2007 9:37 PM

484 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

Also, the HTML content of the page (directly beneath the script we just built) will need to
have a structure like this:

<div id="container">
 <div id="game_header"> </div>

 <div id="main">
 <div id='content' class="ylayout-inactive-content"> </div>

 <div id="screenshots" class="ylayout-inactive-content">
 <h1>Screenshots will Go here</h1>
 </div>
 </div>
</div>

Putting these together produces the page layout shown in Figure 19-15.

Figure 19-15. Building our game display page

Let’s see about pulling in the appropriate data to each of those blocks now. We’ll start by
populating the game header:

<div id="game_header"> </div>

The first thing that we’re going to want to display here is the box art for this game from the
boximagepath attribute of the game record. When this field is populated, it will store the local
file system path to the box art. However, if there is no box art uploaded, this attribute will be
blank, and we’ll need to display a “coming soon” image instead. Since we’re dealing with the
response of an object attribute, this sounds like the perfect place to add a new method to our

7818.book Page 484 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 485

games model (/app/models/game.rb). Let’s add a simple boxart method that will test if the
BoximagePath attribute is blank and return either the image path or our static empty image:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 belongs_to :publisher, :foreign_key => 'PubID'
 belongs_to :developer, :foreign_key => 'DevID'
 belongs_to :genre, :foreign_key => 'GenreID'
 order_by :title

 validates_length_of :Title, :maximum => 100, :message => " must be ➥

less than 100 characters"
 validates_presence_of :Title, :Console, :PubID, :DevID, :GenreID

 def boxart
 self.BoximagePath.blank? ? "/boxshots/empty.jpg" : self.BoximagePath
 end
end

We can now use that method and our associations to populate our game header with gen-
eral information about the game:

<div id="game_header">
 <table border="0" cellspacing="5" cellpadding="5">
 <tr>
 <td rowspan='6'> <%= image_tag "#{@game.boxart}" %> </td>
 <td> <label for="game_Console">Console</label> </td>
 <td> <%= @game.Console %> </td>
 <td> <label for="game_PubID">Publisher</label> </td>
 <td><%= @game.publisher.Name %> </td>
 </tr>
 <tr>
 <td> <label for="game_Genre">Genre</label> </td>
 <td> <%= @game.genre.TYPE %> </td>
 <td> <label for="game_DevID">Developer</label> </td>
 <td> <%= @game.developer.Name %></td>
 </tr>
 <tr>
 <td> <label for="game_ESRB">ESRB Rating</label> </td>
 <td> <%= @game.ESRB %></td>
 <td><label for="game_SiteURL">Official Site</label></td>
 <td> <%= @game.SiteURL %></td>
 </tr>
 </table>
 </div>

7818.book Page 485 Tuesday, October 2, 2007 9:37 PM

486 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

which will give us a display like the one shown in Figure 19-16 when viewing a game record.

Figure 19-16. The game header

That’s well and good, but what about making those fields editable? After all, we did intend
to maximize the functionality of each page by making each of the fields editable in place. This
will make it so that any changes are instantly saved. Our first step in accomplishing this is to
add the in_place_edit method calls to our games controller:

class GamesController < ApplicationController
 in_place_edit_for :game, :Console
 in_place_edit_for :game, :DevID
 in_place_edit_for :game, :PubID
 in_place_edit_for :game, :ESRB
 in_place_edit_for :game, :GenreID
 in_place_edit_for :game, :SiteURL

 make_resourceful do
 build :all
 end
 (...lines omitted...)
end

Unfortunately, we’ve also got a new challenge in making many of these fields editable in
place. For many of the fields, using a text field won’t make sense, because we don’t actually
store text but rather a foreign key to another table, and we need to control the available
options. So, allowing a user to enter random text would be unacceptable and potentially disas-
trous. What we need to do instead is provide our users with a list of valid options in a select box.

Handling Select Boxes
Even though support for building in-place collection editors was added to the script.aculo.us
library in the late spring of 2006, there are still no Rails helper methods built to use them. No
worries though, as we have another option. A friend of mine and fellow Kansas City Ruby pro-
grammer named Sean Cribbs created a Rails plug-in that provides in-place editing with
controls such as select boxes, check boxes, and radio buttons. We can install it by running the
following command:

ruby script/plugin install svn://rubyforge.org/var/svn/inplacecontrols

7818.book Page 486 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 487

A /Users/darkel/consolegold/vendor/plugins/inplacecontrols
A /Users/darkel/consolegold/vendor/plugins/inplacecontrols/test
A /Users/darkel/consolegold/vendor/plugins/inplacecontrols/test/ ➥

in_place_controls_test.rb
A /Users/darkel/consolegold/vendor/plugins/inplacecontrols/doc/classes/ ➥

InPlaceControls.html
...Many Lines Omitted...
A /Users/darkel/consolegold/vendor/plugins/inplacecontrols/install.rb
A /Users/darkel/consolegold/vendor/plugins/inplacecontrols/README
Exported revision 9.

Now that we have the plug-in installed, we can begin changing all the selection box areas
in our games header with the new helper method in_place_select that our plug-in added to
our application:

<div id="game_header">
 <table border="0" cellspacing="5" cellpadding="5">
 <tr>
 <td rowspan='6'>
 <%= image_tag "http://www.gamingtrend.com/#{@game.boxart}" %>
 </td>
 <td> <label for="game_Console">Console</label> </td>
 <td>
 <%= in_place_select :game, :Console, :choices => %w(Xbox 360 PS2 ps3 PSP ➥

 Cube GBA DS WII PC Nokia) %>
 </td>
 <td> <label for="game_PubID">Publisher</label> </td>
 <td> <%= in_place_select :game, :PubID, :choices => ➥

Publisher.find(:all).collect {|p| [p.Name, p.PubID] }.sort %>
 </td>
 </tr>
 <tr>
 <td> <label for="game_Genre">Genre</label> </td>
 <td> <%= in_place_select :game, :GenreID, :choices => ➥

Genre.find(:all).collect {|p| [p.TYPE, p.GenreID] }.sort %>
 </td>
 <td> <label for="game_DevID">Developer</label> </td>
 <td> <%= in_place_select :game, :DevID, :choices => ➥

Developer.find(:all).collect {|d| [d.Name, d.DevID] }.sort %>
 </td>
 </tr>
 <tr>
 <td> <label for="game_ESRB">ESRB Rating</label> </td>
 <td>
 <%= in_place_select :game, :ESRB, :choices => %w(U T M EC E 10 AO RP) %>
 </td>

7818.book Page 487 Tuesday, October 2, 2007 9:37 PM

488 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 <td> <label for="game_SiteURL">Official Site</label> </td>
 <td> <%= in_place_editor_field :game, :SiteURL %> </td>
 </tr>
</table>
</div>

Now our header displays a list of selection boxes that will immediately make an AJAX call
to the server whenever their values are changed. Figure 19-17 shows the result of the change.

Figure 19-17. Implementing in-place editors in our header

We have introduced another minor problem, which you can see in Figure 19-17, when we
made the SiteURL field editable. The problem lies in the fact that the SiteURL field is not
required to be populated by any of our validation rules, so it’s possible that it could be empty
(as it is in the preceding record). Unfortunately, with an in_place_edit, if there’s no text to dis-
play, there’s also nothing that a user could click to add an entry. So what we need to do is find
a way to return a default string that will still work with our in_place_edit control. We can fix
this fairly easily by creating a virtual attribute in our Games model that has getter and setter
methods and will populate the SiteURL attribute. Doing so is simply a matter of adding another
pair of methods to our games model (/app/models/game.rb):

def homepage
 self.SiteURL || "Not Set"
end

def homepage=(value)
 self.SiteURL = value
end

Now, we can simply change our field on the page to reference homepage instead of
SiteURL, and we’ll always have some editable text displayed:

<%= in_place_editor_field :game, :homepage %>

The result of this change is shown in Figure 19-18.

7818.book Page 488 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 489

Figure 19-18. Displaying a default value for the SiteURL attribute

Providing WYSIWYG Functionality
Now that we have our game header completed, we need to turn our attention toward creating
editing capabilities for the game title and game description in the content div. Assume that
we’ve discussed with Ron how the new administration site was to provide a better solution for
formatting large blocks of text like this. If this were a brand new application with no legacy
data, we’d probably have been able to implement a text-based formatting language like Textile
or Markdown. As it stands, though, the staff has grown quite accustomed to using a WYSIWYG
text area replacement (even though the one they currently use has a significant number of
problems) and would be resistant to learning a formatting language. So it looks like our hands
are tied; we’ll have to implement an HTML WYSIWYG editor and deal with storing HTML in the
database. In cases like these, I’ve typically had good luck with implementing an open source
JavaScript solution named TinyMCE (http://tinymce.moxiecode.com/). TinyMCE is a highly
configurable, lightweight solution that, in my experience, produces pretty decent HTML. In
fact, when I first wrote this chapter, I used that solution for this project. However, I was never
very happy with the extra weight of adding yet another JavaScript library to the page.

Fortunately for us, though, just as the book was getting ready to go to print the new Ext 1.1
was released, which now includes its own HTML WYSIWYG editor, so I converted this section
of the project to use it, so you could have the latest and greatest features.

Still working within our /app/views/games/show.rhtml page, we have a div named content
that currently looks like this:

<div id='content' class="ylayout-inactive-content">
</div>

We’re going to use Ext to build a new form within this content block and populate it with a
text field to edit the game’s title and an HTML editor to edit the game’s description. Our first
step in doing so will be to create a new Ext.form named game within an Ext.onReady block:

<div id='content' class="ylayout-inactive-content">
 <script type="text/javascript" charset="utf-8">
 Ext.onReady(function(){

 Ext.form.Field.prototype.msgTarget = 'side';

7818.book Page 489 Tuesday, October 2, 2007 9:37 PM

490 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 var game = new Ext.form.Form({
 labelAlign: 'top',
 url:'<%= game_url(@game) %>'
 });

 });
 </script>
</div>

The beautiful thing about this code is that even without knowing Ext, the code reads well
and should be fairly self-explanatory. The only thing that might need a bit of explanation is the
Ext.form.Field.prototype.msgTarget = 'side'; line, which is merely used to indicate where
we want to display any field validation errors (in this case, we’ll display them next to the field).
You’ll also notice that in the Ext.form creation we specified the URL that the form should post
to using one of our named helpers. With our new form created, we can add our title and game
description fields to it with the add function:

game.add(
 new Ext.form.TextField({
 fieldLabel: 'Title',
 name: 'game[Title]',
 width:225,
 allowBlank:false,
 maxLength:100,
 value:'<%= @game.Title %>'
 }),

 new Ext.form.HtmlEditor({
 id:'description',
 fieldLabel:'Description',
 name: 'game[Description]',
 value: "<%= @game.Description %>",
 width:550,
 height:200
 })
);

Again, this should be fairly easy to read with only a few lines that we need to discuss. You
may have noticed that we named both fields as elements of a game array (name: 'game[Title]'
and name: 'game[Description]'). We do this to make our elements compatible with the default
way that the Rails methods work. By passing all form elements in as elements of a game array,
the controller can simply grab params[:game] to have access to the form data. The second bit to
highlight is in our Title text field, where we’ve added a pair of validations to match our models
validations: allowBlank:false will match our validates_presence_of, while maxLength:100
maps back to our validates_length_of requirement.

7818.book Page 490 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 491

With our form fields created, it’s now time to create a button that will submit the data to
the server. We’ll do this with a simple addButton method, which will call the submit method if
the form has passed its own validation checks:

game.addButton('Save', function(){
 if(game.isValid()){
 game.submit({
 params:{
 action: "update",
 _method: "put",
 commit:"Save",
 id: <%= @game.id %>
 }, waitMsg:'Saving Description Now...'
 });
 } else {
 Ext.MessageBox.alert('Errors', 'Please fix the errors noted.');
 }
}, game);

The key things to note in this block are the parameters that we pass along with the form
submission—most notably the _method: "put" parameter, as that lets Rails know that we want
to be routed to the update method. If we didn’t have that parameter, this form would look like
a request to create a new element rather than to edit an existing game record.

With our form built, all that’s left is to render it out to the page—specifying the div element
where we want form to display:

game.render('content');

After our modifications, our final function within the content div of /app/views/games/
show.rhtml looks like this:

<div id='content' class="ylayout-inactive-content">
 <script type="text/javascript" charset="utf-8">
 Ext.onReady(function(){

 var game = new Ext.form.Form({
 labelAlign: 'top',
 url:'<%= game_url(@game) %>'
 });

 game.add(
 new Ext.form.TextField({
 fieldLabel: 'Title',
 name: 'game[Title]',
 width:225,
 allowBlank:false,
 value:'<%= @game.Title %>'
 }),

7818.book Page 491 Tuesday, October 2, 2007 9:37 PM

492 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 new Ext.form.HtmlEditor({
 id:'description',
 fieldLabel:'Description',
 name: 'game[Description]',
 value: "<%= @game.Description %>",
 width:550,
 height:200
 })
);

 game.addButton('Save', function(){
 if(game.isValid()){
 game.submit({
 params:{
 action: "update",
 _method: "put",
 commit:"Save",
 id: <%= @game.id %>
 }, waitMsg:'Saving Description Now...'
 });
 } else {
 Ext.MessageBox.alert('Errors', 'Please fix the errors noted.');
 }
 }, game);

 game.render('content');
 });
 </script>
</div>

The rendering of our new Ext form is shown in Figure 19-19.
If you were to click through numerous game records in the system, you would find that

some of the records do not display our Ext form at all. If we pull up the Firebug console, on
those pages, we see a JavaScript error being reported: missing } after property list. We see
that error because many of the records existing in the database contain a bit of junk such as
new line breaks and unescaped quotes, which are causing issues when it gets output in the
value: "<%= @game.Description %>" line of our HtmlEditor. There are a number of approaches
that we could take to solve this problem, but perhaps the easiest is to simply do a little chain of
substitutions on our description when we display it. So we simply need to change that line to
read as follows:

value: "<%= @game.Description.gsub("\n", "").gsub('"', '\"').gsub("'", "\'") ➥

.gsub("\r", "") %>",

In that chain, we remove all new lines (\n) and carriage returns (\r); meanwhile, we escape
any double (") or single quotes(') found within the text as well

7818.book Page 492 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 493

Figure 19-19. An Ext form added to our game detail page to provide WYSIWYG functionality

Viewing Screenshots
Before this chapter closes, let’s throw one last piece of content onto our detail page—the
thumbnails of any screenshots for a game. You should have noticed that we already added a
tab to display the screenshots for a specific game into our initial layout. We’ve already done
several projects that supported image uploads, so I’ll leave adding images to the record as a
good practice exercise for you, but we can have a little fun by building the screenshot model
and adding a few functions to enable displaying them in our application.

The Screenshot Model
Our first step is, of course, to take a glance at the current schema for the screenshots:

t.column "shotID", :integer, :limit => 20, :null => false
t.column "filepath", :string, :default => "", :null => false
t.column "filename", :string, :default => "", :null => false
t.column "caption", :text, :default => "", :null => false
t.column "GameID", :integer, :default => 0, :null => false
t.column "DateAdded", :date, :null => false
t.column "E3year", :integer, :limit => 4, :default => 2006, :null => false

Nothing too fancy—we have the path to the image on our file system stored in the
filepath attribute and the name of the image on the file system stored in the filename
attribute, and we’ve got a foreign key reference back to the Game model in the GameID attribute.
We can add a basic model for accessing this table like so:

ruby script/generate model Screenshot --skip-migration

7818.book Page 493 Tuesday, October 2, 2007 9:37 PM

494 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/screenshot.rb
 create test/unit/screenshot_test.rb
 create test/fixtures/screenshots.yml

Let’s think about the associations—a game can have many screenshots, but each screen-
shot can only belong to a single game. We also have no need to call set_table_name for this
model, as the table name (screenshots) is already lowercase. We can then build our screenshot
model (/app/models/screenshot.rb) like this:

class Screenshot < ActiveRecord::Base
 set_primary_key :shotID
 belongs_to :game, :foreign_key => 'GameID'
end

And we’ll have to add the following line to our Game model (/app/models/game.rb) so that
we can call @game.screenshots:

has_many :screenshots, :foreign_key => 'GameID'

With our models configured, all we have left to do now is add the display logic to pull in our
screenshots. We’ll start by generating an empty screenshots controller.

ruby script/generate controller Screenshots

 exists app/controllers/
 exists app/helpers/
 create app/views/screenshots
 exists test/functional/
 create app/controllers/screenshots_controller.rb
 create test/functional/screenshots_controller_test.rb
 create app/helpers/screenshots_helper.rb

Creating this controller does two things for us: one, it sets up for the future when we’ll
build support for doing the full set of CRUD operations on our screenshots, and two (and more
importantly to what we’re doing right now), it created a screenshots folder under /app/views
for us.

Within that screenshots folder, let’s create a new partial that we’ll use to display our
screenshots. Create a new file named _screenshots.rhtml, and place the following line in it:

<img src="http://www.gamingtrend.com/<%= screenshots.filepath %>tb_<%= ➥

screenshots.filename %>">

7818.book Page 494 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 495

In this line, all we’re doing is building a link to the image by combining the filepath with
the filename adding in a tb_ in front of the filename to indicate that we want the thumbnail-
sized version (as that was how they were saved by the old administration system).

Going back to our games detail page (/app/views/games/show.rthml), we’ll change the
content of our screenshots div to this:

<div id="screenshots" class="ylayout-inactive-content">
 <%= render :partial => '/screenshots/screenshots', :collection => ➥

@game.screenshots %>
</div>

Open a web browser, and view the ScreenShots tab from a game detail page; you should
have something similar to Figure 19-20.

Figure 19-20. Displaying associated screenshots

Our final /app/views/games/show.rhtml template looks like this:

<script type="text/javascript" charset="utf-8">
 gameLayout = function() {
 var layout;
 return{

 init : function(){
 var layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize:65
 },
 center: {
 titlebar:false,
 tabPosition: 'top',
 alwaysShowTab: true,
 autoScroll:true
 },

7818.book Page 495 Tuesday, October 2, 2007 9:37 PM

496 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 west: {
 initialSize: 125,
 minSize: 125,
 maxSize:125,
 titlebar: true,
 split:true,
 collapsible:true,
 animate:true
 }
 });
 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header'));

 var innerLayout = new Ext.BorderLayout('main', {
 north: {
 split:true,
 initialSize:155,
 titlebar:true,
 collapsible:true,
 animate:true
 },
 center: {
 autoScroll:true,
 tabPosition:'top'
 }
 });

 innerLayout.add('north', new Ext.ContentPanel('game_header', ➥

{title:"<%= h @game.Title %>"}));
 var tab1 = new Ext.ContentPanel('content', {title:'Description'});
 innerLayout.add('center', tab1);

 var tab2 = new Ext.ContentPanel('screenshots',{title:'ScreenShots'});
 innerLayout.add('center', tab2);

 layout.add('center', new Ext.NestedLayoutPanel(innerLayout));
 innerLayout.getRegion('center').showPanel('content');
 layout.add('west', new Ext.ContentPanel('sidebar', {title: 'Navigation'}));
 layout.endUpdate();}
 }
 }();
 Ext.EventManager.onDocumentReady(gameLayout.init, gameLayout, true);
</script>

7818.book Page 496 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 497

<div id="container">
 <div id="game_header">
 <table border="0" cellspacing="5" cellpadding="5">
 <tr>
 <td rowspan='6'> <%= image_tag "#{@game.boxart}" %> </td>
 <td> <label for="game_Console">Console</label> </td>
 <td> <%= in_place_select :game, :Console, :choices => ➥

["Xbox", "360", "PS2", "ps3", "PSP", "Cube", "GBA", "DS", "WII", "PC", ➥

"Nokia"] %> </td>

 <td> <label for="game_PubID">Publisher</label> </td>
 <td><%= in_place_select :game, :PubID, :choices => ➥

Publisher.find(:all).collect {|p| [p.Name, p.PubID] }.sort %> </td>
 </tr>
 <tr>
 <td> <label for="game_Genre">Genre</label> </td>
 <td> <%= in_place_select :game, :GenreID, :choices => ➥

Genre.find(:all).collect {|p| [p.TYPE, p.GenreID] }.sort %> </td>
 <td> <label for="game_DevID">Developer</label> </td>
 <td> <%= in_place_select :game, :DevID, :choices => ➥

Developer.find(:all).collect {|d| [d.Name, d.DevID] }.sort %></td>
 </tr>
 <tr>
 <td> <label for="game_ESRB">ESRB Rating</label> </td>
 <td> <%= in_place_select :game, :ESRB, :choices => ➥

%w(U T M EC E 10 AO RP) %></td>
 <td><label for="game_SiteURL">Official Site</label></td>
 <td> <%= in_place_editor_field :game, :homepage %></td>
 </tr>
 </table>
 </div>

 <div id="main">
 <div id='content' class="ylayout-inactive-content">
<script type="text/javascript" charset="utf-8">
Ext.onReady(function(){

 Ext.form.Field.prototype.msgTarget = 'side';

7818.book Page 497 Tuesday, October 2, 2007 9:37 PM

498 C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S

 var game = new Ext.form.Form({
 labelAlign: 'top',
 url:'<%= game_url(@game) %>'
 });
 game.add(
 new Ext.form.TextField({
 fieldLabel: 'Title',
 name: 'game[Title]',
 width:225,
 allowBlank:false,
 maxLength:100,
 value:"<%= @game.Title.gsub("\n", "").gsub('"', '\"').gsub("'", ➥

 "\'").gsub("\r", "") %>"
 }),

 new Ext.form.HtmlEditor({
 id:'description',
 fieldLabel:'Description',
 name: 'game[Description]',
 value: "<%= @game.Description.gsub("\n", "").gsub('"', '\"').gsub("'", ➥

 "\'").gsub("\r", "") %>",
 width:550,
 height:200
 })
);

 game.addButton('Save', function(){
 if(game.isValid()){
 game.submit({
 params:{
 action: "update",
 _method: "put",
 commit:"Save",
 id: <%= @game.id %>
 }, waitMsg:'Saving Description Now...'
 });
 } else {
 Ext.MessageBox.alert('Errors', 'Please fix the errors noted.');
 }
 }, game);

7818.book Page 498 Tuesday, October 2, 2007 9:37 PM

C H A P T E R 1 9 ■ C O N V E R T I N G G A M E R E C O R D S 499

 game.render('content');
 });

</script>

 </div>

 <div id="screenshots" class="ylayout-inactive-content">
 <%= render :partial => '/screenshots/screenshots', :collection => ➥

 @game.screenshots %>
 </div>
 </div>
</div>

Summary
We’ve configured our new Rails application to effectively communicate with our legacy data-
base as we’ve built the beginning of our administration system. In building our administration
system, you’ve learned about creating an advanced interface using the Ext JavaScript library
using features such as border layout, grids, and dialog boxes. We came across a number of
errors along the way, and we talked about how to troubleshoot and solve them. We’ve covered
a lot of ground in this chapter, and at the end, we’ve put together a basic system for managing
games, developers, publishers, and genres. All that we have left to do now is implement a solu-
tion for managing user-created content as well—which we’ll do in the next chapter.

7818.book Page 499 Tuesday, October 2, 2007 9:37 PM

501

■ ■ ■

C H A P T E R 2 0

Supporting News

In the previous chapter, we built the capacity for our new administration system to manage
the game records for our friend’s gaming web site. While maintaining a database of all the
games is important, since this is primarily a content site, it’s critically important that new con-
tent is pumped through the site in order to keep visitors coming back on a regular basis. Ron
keeps the site fresh through a variety of content such as daily news, press releases, reviews and
previews of games, interviews with developers, and so forth. While each of those is important
for the success of the site, the one that keeps readers coming back every day is the news—Ron
and his staff provide daily content on the latest gaming news and information as it’s occurring.
Whether it’s reporting about a newly revealed feature in an upcoming PlayStation 3 game or
rumors of a potential price drop on the Nintendo Wii, daily news is a huge draw of the site; it’s
one of the most visited pages. It’s also the page that cycles through the most content daily. On
any given day, the staff can add two to twenty news stories.

So we’re going to finish our project by building support for that core piece of the site in our
new administration system. The nice thing about doing this, though, is that the other content
pieces such as press releases, reviews, and so on are extremely similar to the news system, and
you should have no problems building out the rest yourself.

Modifying the Database
Currently, the news is stored in a database table named news (oddly appropriate). Viewing the
schema for this table in our /db/schema.rb gives us a good overview of the current structure for
this news table:

create_table "News", :id => false, :force => true do |t|
 t.column "NewsID", :integer, :null => false
 t.column "Headline", :string, :default => "", :null => false
 t.column "FrontPage", :string, :limit => 26, :default => "", :null => false
 t.column "Body", :text, :default => "", :null => false
 t.column "Summary", :string, :default => "", :null => false
 t.column "DateAdded", :datetime, :null => false
 t.column "UserID", :integer, :limit => 8, :default => 0, :null => false
 t.column "E3year", :integer, :limit => 4, :default => 0, :null => false
 t.column "Active", :integer, :limit => 4, :default => 0, :null => false
 end

7818.book Page 501 Monday, October 1, 2007 8:02 PM

502 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

Doing a little research on the history of these fields with Ron revealed this information:

• NewsID: This is the primary key used to identify the news post.

• Headline: This is the headline for the news post. It is displayed at the top of each news
post.

• FrontPage: This is an abbreviated version of the headline used on the front page of the
site, where it must fit within a very narrow column—hence the 26-character limitation.

• Body: This is the content of the news post.

• Summary: This was originally intended to be a short version of the news post. However,
it ended up not being used. Adding to the annoyance factor, though, is the fact that the
current system requires that staff members enter something into this field every time
they create a news post.

• DateAdded: The time stamp field that records when the news post was added to the sys-
tem. It’s updated again when the post is activated.

• UserID: This foreign key references the users table to record which staff member created
the news post.

• E3year: This is another historical field for tracking if a news article was associated with a
particular year’s E3 exposition; it’s not used anymore.

• Active: This is used to determine whether or not the article is active on the primary site.
If the field’s value is 0, then the article won’t be showed; if the field’s set to 1, the article
will appear.

We obviously have a few cleanup needs here. Let’s start by creating a new migration:

ruby script/generate migration cleanup_news

 exists db/migrate
 create db/migrate/003_cleanup_news.rb

We’ll use this new migration to remove those unused fields, remove the database man-
aged validations, and rename the DateAdded field to created_at so that Rails can manage
keeping it populated for us. As long as we’re in here, we’ll also make one final change: we’ll
convert our active field from an integer to a Boolean—within the database. Doing so won’t
break the front end, as the data will still be stored as a 1 or a 0, but within our application, it will
allow us to reference the field as true or false. In the end, our 003_cleanup_news.rb in /db/
migrate will look like this:

class CleanupNews < ActiveRecord::Migration
 def self.up
 remove_index "News", :name => "E3year"
 change_column "News", "Headline", :string, :null => true
 change_column "News", "FrontPage", :string, :null => true

7818.book Page 502 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 503

 change_column "News", "Body", :text, :null => true
 add_column "News", "Extended", :text
 remove_column "News", "Summary"
 rename_column "News", "DateAdded", "created_at"
 add_column "News", "updated_at", :datetime
 change_column "News", "UserID", :integer, :null => true
 remove_column "News", "E3year"
 change_column "News", "Active", :boolean
 add_index "News", "created_at"
 end

 def self.down
 raise ActiveRecord::IrreversibleMigration
 end
end

Now, we can run our migration to clean up our table:

rake db:migrate

== CleanupNews: migrating =============================
-- remove_index("News", {:name=>"E3year"})
 -> 1.3279s
-- change_column("News", "Headline", :string, {:null=>true})
 -> 0.1115s
-- change_column("News", "FrontPage", :string, {:null=>true})
 -> 0.0137s
-- change_column("News", "Body", :text, {:null=>true})
 -> 0.0151s
-- add_column("News", "Extended", :text)
 -> 0.0096s
-- remove_column("News", "Summary")
 -> 0.0081s
-- rename_column("News", "DateAdded", "created_at")
 -> 0.1677s
-- add_column("News", "updated_at", :datetime)
 -> 0.0654s
-- change_column("News", "UserID", :integer, {:null=>true})
 -> 0.0224s
-- remove_column("News", "E3year")
 -> 0.0094s
-- change_column("News", "Active", :boolean)
 -> 0.0233s
-- add_index("News", "created_at")
 -> 0.0109s
== CleanupNews: migrated (1.7877s) ==========================

7818.book Page 503 Monday, October 1, 2007 8:02 PM

504 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

Creating a Model for News
In creating a model for the daily news, the first problem that we’ll have to address is the name
of the object itself. While it might feel tempting to build our model and try to name it News, in
the end, that would be a path fraught with frustration. “Why?” you might ask. It has to do with
Rails conventions of using singular and pluralized versions of names, and surely you can imag-
ine what’s going to happen when it tries to singularize “news”? Besides, we can’t easily declare
a New.new, can we?

Instead, we’ll have to name our model something that won’t cause us issues in our appli-
cation. To keep it relevant, I decided to name the model Post:

ruby script/generate model Post --skip-migration

 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/post.rb
 create test/unit/post_test.rb
 create test/fixtures/posts.yml

In our model configuration, we need to configure our model to know that it should look for
its data in the News table by using the set_table_name method and by defining that its primary
key should be NewsID. We’ll also move our validations that we removed from the database into
the model while we’re in here. Our Post model (/app/models/post.rb) should look like this:

class Post < ActiveRecord::Base
 set_table_name 'News'
 set_primary_key :NewsID

 validates_presence_of :Headline, :Body
 validates_length_of :FrontPage, :within => 1..26, :on => :create, :message => ➥

 "must be present"
end

Firing up our console validates that we’re able to connect to the data without any issues:

ruby script/console -s

Loading development environment in sandbox.
Any modifications you make will be rolled back on exit.

>> Post.find 9805

7818.book Page 504 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 505

=> #<Post:0x24b19a4 @attributes={"updated_at"=>nil, "Body"=>"With <a href=
"http://www.e3expo.com">E3 out of the way, it's time for awards. Today, Activision has announced that Call of Duty
4: Modern Combat has been awarded <a href="http://www.gamingtrend.com/PressReleases
/index.php?PRID=6108">Best Action Game from Game Critics Awards: Best of E3
2007.<blockquote>\223It\222s a tremendous honor to have Call of Duty 4: Modern
Warfare recognized as a best in class title by such experienced and knowledgeable
 individuals in the gaming community,\224 said Robin Kaminsky, executive vice
president of publishing, Activision, Inc. \223Infinity Ward is committed to
setting the benchmark for action and these awards and honors are a testament to
their hard work and talent.\224</blockquote>Call of Duty 4: Modern Combat will be
out later this year.", "FrontPage"=>"CoD4 Best Action Game @ E3", "Extended"=>nil,
 "NewsID"=>"9805", "Active"=>"1", "UserID"=>"27", "Headline"=>"Call of Duty 4 Named
 Best Action Game At E3", "created_at"=>"2007-08-03 02:21:33"}

>> p = Post.new

=> #<Post:0x2458d04 @new_record=true, @attributes={"updated_at"=>nil, "Body"=>nil,
 "FrontPage"=>"", "Extended"=>nil, "Active"=>false, "UserID"=>0, "Headline"=>"",
 "created_at"=>nil}

>> p.Body = 'test'

=> "test"

>> p.save

=> false

>> p.Headline = 'test'

=> "test"

>> p.save

7818.book Page 505 Monday, October 1, 2007 8:02 PM

506 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

=> false

>> p.FrontPage = 'test'

=> "test"

>> p.save

=> true

>> p.id

=> 9861

Looks like we’re off to a good start. We’ll come back to this model a little later on when
we’re ready to map its associations back to the games records, but we’re good for now.

Creating Our Controller
With the Post model ready and working, we’re ready to create a Posts controller that we can use
for all of our standard CRUD actions to the Post model. We’ll create our controller like this:

ruby script/generate controller Posts

 exists app/controllers/
 exists app/helpers/
 create app/views/posts
 exists test/functional/
 create app/controllers/posts_controller.rb
 create test/functional/posts_controller_test.rb
 create app/helpers/posts_helper.rb

7818.book Page 506 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 507

Once again, we’ll take advantage of our Make Resourceful plug-in to provide our control-
ler with the standard REST actions (and keep us out of copy/paste hell). So our /app/
controllers/posts_controller.rb will look like this:

class PostsController < ApplicationController
 make_resourceful do
 build :all
 end
end

Creating Our Resource
With our controller built, we just need to add our new posts resource to our routes.rb in /
config so that we can take advantage of all the automatically generated named paths:

ActionController::Routing::Routes.draw do |map|
 map.resources :games
 map.resources :publishers, :developers, :genres, :posts
 map.connect ':controller/:action/:id.:format'
 map.connect ':controller/:action/:id'
end

Building Our List View
Once again, we’ll be leveraging the layout and grid code that we’ve used on previous pages for
many of the features of managing our news posts. Doing so not only helps speed up our devel-
opment but also helps maintain a common and consistent interface throughout the
application. However, the needs of a news post are going to require us to address a few key dif-
ferences between a news post and previous resource pages by modifying our code and
enhancing the view.

Redefining the Index Method
Since we want to reuse the grid code that we built in the previous chapter, we’ll need to modify
our Posts controller to redefine the index method to return our results into the JSON format
again. So modify /app/controllers/posts_controller.rb to look like this:

class PostsController < ApplicationController
 make_resourceful do
 build :all
 end

7818.book Page 507 Monday, October 1, 2007 8:02 PM

508 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 @posts = Post.find(:all, :limit => limit, :offset => start)
 griddata = Hash.new
 griddata[:posts] = @posts.collect {|p|
 {:NewsID => p.NewsID, :Headline => p.Headline, :Body => p.Body, ➥

:created_at => p.created_at.to_s, :Active => p.Active}}
 griddata[:totalCount] = Post.count
 render :text => griddata.to_json()
 }
 end
 end
end

A First Pass at the Index Page
Create a new page in /apps/views/posts named index.rhtml as the main view. In this file, we’ll
start out by including our common layout code again:

<%= ext_layout('News') %>
<%=ext_grid("post", "NewsID", %w(Headline Body created_at Active),
 "{header: 'Headline', width: 300, dataIndex: 'Headline'},
 {header: 'Body', width: 650, dataIndex: 'Body'},
 {header: 'Created At', width: 200, dataIndex: 'created_at'},
 {header: 'Active?', width: 60, dataIndex: 'Active'}", 340) %>

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Game</div>
 <div class="x-dlg-bd">
 <% form_for(:post, Post.new, :url => posts_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="post_Headline">Story Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_FrontPage">Frontpage Headline:</label>
 <%= f.text_field :Headline %>
 </p>

7818.book Page 508 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 509

 <p>
 <label for="post_Body">News Story:</label>
 <%= f.text_field :Body %>
 </p>
 <% end %>
 </div>
</div>

The preceding code, of course, will generate a view like the one shown in Figure 20-1 when
accessed at http://localhost:3000/posts.

Figure 20-1. Reusing our existing code to build the news post index page

That was quick and easy, wasn’t it? Too bad we’re not done; we need to make a number of
changes before this will be ready for use.

Changing the Default Order

The first thing we notice is that the news posts are being returned in a default order. To be use-
ful for managing the posts, though, the news posts really should be delivered in newest to
oldest. So we’ll need to modify our Posts model (/app/models/post.rb) to include an order_by
clause:

class Post < ActiveRecord::Base
 set_table_name 'News'
 set_primary_key :NewsID
 order_by "created_at DESC"

 validates_presence_of :Headline, :Body
 validates_length_of :FrontPage, :within => 1..26, :on => :create, ➥

:message => "must be present"
end

A quick refresh of the page, and we’ll see that our news posts are now being returned in the
correct order.

7818.book Page 509 Monday, October 1, 2007 8:02 PM

510 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

Modifying the Grid
Reordering the results in the grid was a small victory, but now, it’s time to go onto some bigger
things. We need to enhance the grid for the specific features that will be more in line with the
type of content that we’ll be displaying here. That means we’re going to have to make modifi-
cations to the JavaScript grid code that we moved into a helper in the last chapter.

Perhaps the easiest place to begin our modifications is to take another look at the
JavaScript code that our ext_grid helper method is generating for us and then make our
modifications to that JavaScript. When we called

<%=ext_grid("post", "NewsID", %w(Headline Body created_at Active),
 "{header: 'Headline', width: 300, dataIndex: 'Headline'},
 {header: 'Body', width: 650, dataIndex: 'Body'},
 {header: 'Created At', width: 200, dataIndex: 'created_at'},
 {header: 'Active?', width: 60, dataIndex: 'Active'}", 340) %>

this is the JavaScript that was generated:

<script type="text/javascript" charset="utf-8">
 var pageGrid = function() {
 var grid;
 var dialog;
 var ds; return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({method: 'GET',
 url: 'posts.json'}),
 reader: new Ext.data.JsonReader({root: 'posts',
 totalProperty: 'totalCount',
 id: 'NewsID'},
 ['Headline', 'Body', 'Active', 'NewsID'])
 });
 var cm = new Ext.grid.ColumnModel([
 {header: 'Headline', width: 300, dataIndex: 'Headline'},
 {header: 'Body', width: 650, dataIndex: 'Body'},
 {header: 'Active?', width: 60, dataIndex: 'Active'}
]);

 cm.defaultSortable = true;
 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds,

7818.book Page 510 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 511

 {
 pageSize: 20,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 }
);
 ds.load({params:{start:0, limit:20}});
 grid.on('rowdblclick', editResource);
 var gridHead = grid.getView().getHeaderPanel(true);
 var tb = new Ext.Toolbar(gridHead);
 tb.add(
 { text: 'Create New Post', handler: createResource },
 '-',
 { text: 'Delete Selected Post', handler: deleteResource }
);
 tb.add('-', 'Filter: ', \"<input type='text' id='text_filter'>\");
 Ext.get('text_filter').on('keyup', filterResource);
 }}

 function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET', ➥

url: '#{model.pluralize}.json?search=' + filtervalue});
 ds.reload();
 }

 function deleteResource() {
 var id = grid.getSelectionModel().getSelected();
 if(id){
 Ext.MessageBox.confirm('Confirm', 'Are you sure you want to delete ➥

 this post?', postDelete);
 } else {
 Ext.MessageBox.alert('DOH!', 'Maybe you want to try again after ➥

ACTUALLY selecting something?')
 }
 }

 function submitResource(){
 document.create_resource.submit();
 }

7818.book Page 511 Monday, October 1, 2007 8:02 PM

512 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 function postDelete(btn){
 if(btn == 'yes') {
 var id = grid.getSelectionModel().getSelected();
 var deleteme = id.get('NewsID');
 window.location.href = '/posts/destroy/' + deleteme;
 }
 }

 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = '/posts/' + id.get('NewsID');
 }
 }

 function createResource() {
 if(!dialog) {
 dialog = new Ext.BasicDialog('newDialog', {
 width:500,
 height:340,
 shadow:true,
 minWidth:300,
 minHeight:340,
 proxyDrag:true,
 autoScroll:false,
 animEl:true
 });
 dialog.addKeyListener(27, dialog.hide, dialog);
 postBtn = dialog.addButton('Submit', submitResource, this);
 dialog.addButton('Close', dialog.hide, dialog);
 }
 dialog.show();
 dialog.on('hide', function(){
 document.create_resource.reset();
 })
 }
 }();
 Ext.onReady(pageGrid.init, pageGrid, true);
</script>

Removing the Filter

One of the first things we’ll do is remove the text filtering option from our grid (we removed it
from the controllers index method when we created it). While there might be some moderate
value in being able to search through the news posts, there are a couple of factors that make it
unwieldy for our purposes. First off, the only field that really makes sense to do a search on
would be the Body field, which is defined as a text field in the database. Second, the sheer

7818.book Page 512 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 513

number of news posts added to the system daily means that, before long, our searches would
have to sort through too many records to be able to respond in a useful amount of time. If this
was a feature that would be more useful for our application, we could solve this problem by
implementing a full text search engine such as Sphinx using the Sphincter gem (http://
seattlerb.rubyforge.org/Sphincter/).

Since we don’t have a need to implement a full text search engine, we’ll need to change our
grid code by removing the lines that create the filter bar:

tb.add('-', 'Filter: ', \"<input type='text' id='text_filter'>\");
Ext.get('text_filter').on('keyup', filterResource);

We’ll also need to remove the filterResource function, since it serves no purpose in this
case:

function filterResource() {
 filtervalue = Ext.get('text_filter').dom.value;
 ds.proxy = new Ext.data.HttpProxy({method: 'GET', ➥

url: '#{model.pluralize}.json?search=' + filtervalue});
 ds.reload();
}

Formatting the Active Field

The next thing that we’re going to want to do is format the Active field in our grid. Currently, it’s
converting the flag to display either “true” or “false”. That’s okay, but it would be a little bit
nicer if we could make that display a “yes” or “no” instead. We’ll do this by adding a new
formatBoolean function that will simply test the value and return “yes” or “no.”

function formatBoolean(value) {
 return (value == 1) ? 'Yes' : 'No';
}

Now that we have that function, we simply need to make our grid use it. Back in the col-
umn model definition, we need to define a renderer for the Active? column, which will cause
Ext to call our formatBoolean function when it attempts to display each of these values:

{header: "Active?", width: 60, dataIndex: 'Active', renderer: formatBoolean}

Formatting News

The next enhancement to make to our news display is to reformat the way that a news article
displays in the grid. Currently, we’re displaying the headline of each news post in one column
and the body text in a separate column. It would be much nicer if we could, instead, combine
the two into a single column. We’ll do that by again defining a new function that we’ll call as a
renderer within the column definition. This function will be named renderNews and will look
like this:

function renderNews(value, p, record) {
 return String.format('{0}
{1}', value, record.data['Body']);
}

7818.book Page 513 Monday, October 1, 2007 8:02 PM

514 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

So with that function available, we’ll redefine our Headline column to use the renderNews
function as its renderer, so our column model definition will look like this:

var cm = new Ext.grid.ColumnModel([
 {header: 'News Story', width: 610, dataIndex: 'Headline', id: 'Headline', ➥

renderer: renderNews},
 {header: 'Created At', width: 200, dataIndex: 'created_at', id: 'created_at'},
 {header: "Active?", width: 60, dataIndex: 'Active', renderer: formatBoolean}
]);

That’s all well and good, but we have another issue we need to fix—we’re still displaying
the full news post, but that seems like a bit of overkill for the index page. It also causes issues
with the display of the page when you consider that some news posts can be quite long. Let’s
fix that by reducing the amount of the news story that we display down to a preview. We’ll do
this by first stripping the body text of any HTML tags like this:

Ext.util.Format.stripTags(record.data['Body'])

Next, we’ll truncate the text that’s displayed using an Ext substring function to limit the
results down to only the first 100 characters:

Ext.util.Format.stripTags(record.data['Body']).substr(0,100) + "...."

Putting that all together, our renderNews function should look like this and give us a display
like Figure 20-2:

function renderNews(value, p, record) {
 return String.format('{0}
{1}', value, ➥

Ext.util.Format.stripTags(record.data['Body']).substr(0,100) + "....");
}

Figure 20-2. Improving the display of our news posts

Adding a Toggle

Another item that’s not really a necessity but would be kind of nice to add is a toggle for the dis-
play of our news posts that turns on and off the display of the news post preview.

Our first step toward doing that will be to define a new renderer function that will display
the news headline sans the news body preview:

function renderNewsPlain(value) {
 return String.format('<i>{0}</i>', value);
}

7818.book Page 514 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 515

With two different renderers available, we need a way to rotate between them. We can do
this fairly easily by adding a button to our toolbar that toggles between the two. Clicking the
button will call a function named toggleNews:

tb.add('-',{ pressed: false,
 enableToggle: true, text: 'Detailed View',
 toggleHandler: toggleNews
});

Our new toggleNews function will simply call an if statement on the button-press state
and use that to pick which renderer to apply:

function toggleNews(btn, pressed) {
 cm.getColumnById('Headline').renderer = pressed ? renderNews : renderNewsPlain;
 grid.getView().refresh();
}

So adding in a few minor size modifications, our page should look like this (building it all
manually):

<%= ext_layout('News') %>
<script type="text/javascript" charset="utf-8">
 var pageGrid = function() {
 var grid;
 var dialog;
 var ds; return{
 init : function(){
 ds = new Ext.data.Store({
 proxy: new Ext.data.HttpProxy({method: 'GET', url: 'posts.json'}),
 reader: new Ext.data.JsonReader(
 {root: 'posts', totalProperty: 'totalCount', id: 'NewsID'},
 ['Headline', 'Body', 'Active', 'created_at', 'NewsID'])
 });

 function renderNews(value, p, record) {
 return String.format('{0}
{1}', value, ➥

Ext.util.Format.stripTags(record.data['Body']).substr(0,100) + "....");
 }

 function renderNewsPlain(value) {
 return String.format('<i>{0}</i>', value);
 }

 var cm = new Ext.grid.ColumnModel([
 {header: 'News Story', width: 610, dataIndex: 'Headline', id: ➥

'Headline', renderer: renderNews},
 {header: 'Created At', width: 200, dataIndex: 'created_at', id: ➥

 'created_at'},

7818.book Page 515 Monday, October 1, 2007 8:02 PM

516 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 {header: "Active?", width: 60, dataIndex: 'Active', renderer: ➥

formatBoolean}
]);

 cm.defaultSortable = true;
 grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });
 grid.render();

 var gridFoot = grid.getView().getFooterPanel(true);
 var paging = new Ext.PagingToolbar(gridFoot, ds,
 {
 pageSize: 13,
 displayInfo: true,
 displayMsg: 'Displaying topics {0} - {1} of {2}',
 emptyMsg: 'No topics to display'
 }
);
 ds.load({params:{start:0, limit:13}});

 function toggleNews(btn, pressed) {
 cm.getColumnById('Headline').renderer = pressed ? renderNews : ➥

renderNewsPlain;
 grid.getView().refresh();
 }

 grid.on('rowdblclick', editResource);
 var gridHead = grid.getView().getHeaderPanel(true);
 var tb = new Ext.Toolbar(gridHead);
 tb.add(
 { text: 'Create New Post', handler: createResource },
 '-',
 { text: 'Delete Selected Post', handler: deleteResource }
);
 tb.add('-',{ pressed: true,
 enableToggle: true, text: 'Detailed View',
 toggleHandler: toggleNews
 });

 }}

 function formatBoolean(value) {
 return (value == 1) ? 'Yes' : 'No';
 }

7818.book Page 516 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 517

 function deleteResource() {
 var id = grid.getSelectionModel().getSelected();
 if(id){
 Ext.MessageBox.confirm('Confirm', 'Are you sure you want to delete ➥

this post?', postDelete);
 } else {
 Ext.MessageBox.alert('DOH!', 'Maybe you want to try again after ➥

ACTUALLY selecting something?')
 }
 }

 function submitResource(){
 document.create_resource.submit();
 }

 function postDelete(btn){
 if(btn == 'yes') {
 var id = grid.getSelectionModel().getSelected();
 var deleteme = id.get('NewsID');
 window.location.href = '/posts/destroy/' + deleteme;
 }
 }

 function editResource(grid, rowIndex) {
 var id = grid.getSelectionModel().getSelected();
 if(id) {
 window.location.href = '/posts/' + id.get('NewsID');
 }
 }

 function createResource() {
 if(!dialog) {
 dialog = new Ext.BasicDialog('newDialog', {
 width:630,
 height:420,
 shadow:true,
 minWidth:300,
 minHeight:340,
 proxyDrag:true,
 autoScroll:false,
 animEl:true
 });
 dialog.addKeyListener(27, dialog.hide, dialog);
 postBtn = dialog.addButton('Submit', submitResource, this);
 dialog.addButton('Close', dialog.hide, dialog);

7818.book Page 517 Monday, October 1, 2007 8:02 PM

518 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 }
 dialog.show();
 dialog.on('hide', function(){
 document.create_resource.reset();
 })
 }
 }();
 Ext.onReady(pageGrid.init, pageGrid, true);
</script>

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Game</div>
 <div class="x-dlg-bd">
 <% form_for(:post, Post.new, :url => posts_path, :html => {:id => ➥

'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="post_Headline">Story Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_FrontPage">Frontpage Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_Body">News Story:</label>
 <%= f.text_area :Body %>
 </p>
 <% end %>
 </div>
</div>

The preceding code gives us a nice clean page, like the one shown in Figure 20-3.
Since there’s a good chance we’ll reuse this interface to manage other content, let’s go

ahead and convert our JavaScript grid into a helper method again. This one will be nearly iden-
tical to the previous one, except for the changes we made in this chapter.

7818.book Page 518 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 519

Figure 20-3. The new index interface

Back in /app/helpers/application_helper.rb, we’ll create a new function named
ext_news_grid, which will simply output our new JavaScript:

def ext_news_grid(model, primary_key, fields, columns, height)
 xml_fields = fields
 xml_fields << primary_key
 xml_fields.collect! {|x| "'#{x}'"}

 function = "var pageGrid = function() {"
 function << " var grid; var dialog; var ds;"
 function << " return{ init : function(){"
 function << " ds = new Ext.data.Store({"
 function << " proxy: new Ext.data.HttpProxy({method: 'GET', url: ➥

'#{model.pluralize}.json'}),"

 function << "reader: new Ext.data.JsonReader({"
 function << "root: '#{model.pluralize}',"
 function << " totalProperty: 'totalCount',"
 function << " id: '#{primary_key}'"
 function << "}, [#{xml_fields.to_sentence(:connector => '')}])"
 function << " });"

7818.book Page 519 Monday, October 1, 2007 8:02 PM

520 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 function << "function renderNews(value, p, record) {"
 function << "return String.format('{0}
{1}', value, Ext.util. ➥

Format.stripTags(record.data['Body']).substr(0,100) + \"....\");}"

 function << "function renderNewsPlain(value) {"
 function << "return String.format('<i>{0}</i>', value); }"

 function << " var cm = new Ext.grid.ColumnModel([#{columns}]);"
 function << " cm.defaultSortable = true;"
 function << " grid = new Ext.grid.Grid('content', { ds: ds, cm: cm });"
 function << " grid.render();"

 function << "var gridFoot = grid.getView().getFooterPanel(true);"
 function << "var paging = new Ext.PagingToolbar(gridFoot, ds, {"
 function << "pageSize: 13,"
 function << "displayInfo: true,"
 function << "displayMsg: 'Displaying topics {0} - {1} of {2}',"
 function << "emptyMsg: 'No topics to display'});"
 function << "ds.load({params:{start:0, limit:13}});"

 function << "function toggleNews(btn, pressed) {"
 function << "cm.getColumnById('Headline').renderer = pressed ? renderNews : ➥

renderNewsPlain;"
 function << "grid.getView().refresh(); }"

 function << " grid.on('rowdblclick', editResource);"

 function << " var gridHead = grid.getView().getHeaderPanel(true);"
 function << " var tb = new Ext.Toolbar(gridHead);"
 function << " tb.add({ text: 'Create New #{model.capitalize}', handler: ➥

 createResource }, '-', { text: 'Delete Selected #{model.capitalize}', handler: ➥

 deleteResource });"
 function << " tb.add('-',{ pressed: true,"
 function << " enableToggle: true, text: 'Detailed View',"
 function << " toggleHandler: toggleNews });"
 function << " }}\n"

 function << "function formatBoolean(value) {"
 function << "return (value == 1) ? 'Yes' : 'No';}"

 function << " function deleteResource() {"
 function << " var id = grid.getSelectionModel().getSelected(); "
 function << " if(id){"
 function << " Ext.MessageBox.confirm('Confirm', 'Are you sure you want to ➥

delete this #{model}?', postDelete);"
 function << " } else {"

7818.book Page 520 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 521

 function << " Ext.MessageBox.alert('DOH!', 'Maybe you want to try again ➥

after ACTUALLY selecting something?')}}\n"

 function << " function submitResource(){"
 function << " document.create_resource.submit();}\n"

 function << " function postDelete(btn){"
 function << " if(btn == 'yes') {"
 function << " var id = grid.getSelectionModel().getSelected();"
 function << " var deleteme = id.get('#{primary_key}');"
 function << " window.location.href = '/#{model.pluralize}/destroy/' + ➥

 deleteme;}}\n"

 function << " function editResource(grid, rowIndex) {"
 function << " var id = grid.getSelectionModel().getSelected();"
 function << " if(id) { "
 function << " window.location.href = '/#{model.pluralize}/' + ➥

id.get('#{primary_key}'); }}\n"

 function << " function createResource() {"
 function << " if(!dialog) {"
 function << " dialog = new Ext.BasicDialog('newDialog', {"
 function << " width:630, height:#{height}, shadow:true, minWidth:300, ➥

minHeight:#{height}, proxyDrag:true, autoScroll:false, animEl:true });"
 function << " dialog.addKeyListener(27, dialog.hide, dialog);"
 function << " postBtn = dialog.addButton('Submit', submitResource, this);"
 function << " dialog.addButton('Close', dialog.hide, dialog); }\n"

 function << " dialog.show();"
 function << " dialog.on('hide', function(){"
 function << " document.create_resource.reset();})"
 function << " } }();"
 function << " Ext.onReady(pageGrid.init, pageGrid, true);"
 javascript_tag(function)
 end

We’ll utilize the ext_news_grid function in our index page (/app/views/posts/
index.rhtml) like this:

<%= ext_layout('News') %>
<%= ext_news_grid("post", "NewsID", %w(Headline Body created_at Active),
"{header: 'News Story', width: 610, dataIndex: 'Headline', id: 'Headline', ➥

renderer: renderNews},
{header: 'Created At', width: 200, dataIndex: 'created_at', id: 'created_at'},
{header: 'Active?', width: 60, dataIndex: 'Active', renderer: formatBoolean}", ➥

 420) %>

7818.book Page 521 Monday, October 1, 2007 8:02 PM

522 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

<div id="content"> </div>

<div id="newDialog">
 <div class="x-dlg-hd">Create New Game</div>
 <div class="x-dlg-bd">
 <% form_for(:post, Post.new, :url => posts_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="post_Headline">Story Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_FrontPage">Frontpage Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_Body">News Story:</label>
 <%= f.text_area :Body %>
 </p>
 <% end %>
 </div>
</div>

Capturing Creation Errors
Once again, if a new post can’t be created, we’ll direct the user to a default page to correct any
mistakes and resubmit. Create a new file named new.rthml in /app/views/posts directory, and
place the following content in it:

<%= ext_layout('Create News Post') %>

<div id='content'>
 <%= error_messages_for :post %>
 <% form_for(:post, :url => posts_path,
 :html => {:id => 'create_resource', :name => 'create_resource'}) do |f| %>
 <p>
 <label for="post_Headline">Story Headline:</label>
 <%= f.text_field :Headline %>
 </p>
 <p>
 <label for="post_FrontPage">Frontpage Headline:</label>
 <%= f.text_field :Headline %>
 </p>

7818.book Page 522 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 523

 <p>
 <label for="post_Body">News Story:</label>
 <%= f.text_area :Body %>
 </p>
 <% end %>
</div>

The Edit News Page
The final page that we’ll add is the edit news page. This is the page that users will see if they dou-
ble-click a news story on the index page, and it will be the page that they will be redirected to after
successfully creating a new post. On this page, we’ll obviously need to provide users with the abil-
ity to reedit the news post if necessary, but we also want to provide staff members with the ability
to control with which resources this news post should be associated.

Let’s create a new template named show.rhtml in /app/views/posts, and in this new page,
we’ll add our layout helper and build our forms to edit the news post in a combination of Ext
forms and Rails helpers. We’ll also take advantage of the In-Place Controls plug-in again by
creating an in_place_checkbox to allow toggling of the news post from active to deactivated.

We’ll start with the most basic things that we need for our page to work by placing this into
our new page:

<%= ext_layout('Edit News Post') %>

<div id="content">
</div>

Editing the News Post
We’ll add to this page by adding in an Ext form to edit our news post headline, front page head-
line, and post text. To keep things nice and neat, we’ll place this form in an edit_form div. This
will be very similar to the form that we built in the previous chapter, so we’ll focus solely on the
implementation here.

<%= ext_layout('Edit News Post') %>

<div id="content">
 <div id="edit_form">
 <script type="text/javascript" charset="utf-8">
 Ext.onReady(function(){
 Ext.form.Field.prototype.msgTarget = 'side';
 var post = new Ext.form.Form({
 labelAlign: 'top',
 url:'<%= post_url(@post) %>'
 });

7818.book Page 523 Monday, October 1, 2007 8:02 PM

524 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 post.add(
 post.fieldset(
 {legend:'Edit News Post'},
 new Ext.form.TextField({
 fieldLabel: 'Headline',
 name: 'post[Headline]',
 growMin:225,
 allowBlank:false,
 grow: true,
 value:"<%= @post.Headline.gsub("\n", "").gsub('"', '\"'). ➥

gsub("'", "\'").gsub("\r", "") %>"
 }),

 new Ext.form.TextField({
 fieldLabel: 'FrontPage',
 name: 'post[FrontPage]',
 width:225,
 allowBlank:false,
 maxLength:26,
 value:"<%= @post.FrontPage.gsub("\n", "").gsub('"', '\"'). ➥

gsub("'", "\'").gsub("\r", "") %>"
 }),

 new Ext.form.HtmlEditor({
 id:'Body',
 fieldLabel:'Body',
 name: 'post[Body]',
 enableFont: false,
 value: "<%= @post.Body.gsub("\n", "").gsub('"', '\"'). ➥

gsub("'", "\'").gsub("\r", "") %>",
 width:750,
 height:200
 })
)
);

 post.addButton('Save', function(){
 if(post.isValid()){
 post.submit({
 params:{
 action: "update",
 _method: "put",
 commit:"Save",
 id: <%= @post.id %>
 }, waitMsg:'Saving News Post Now...'
 });

7818.book Page 524 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 525

 } else {
 Ext.MessageBox.alert('Errors', 'Please fix the errors noted.');
 }
 }, post);

 post.render('edit_form');
 });
 </script>
 </div>
</div>

You can see the results of our new form element in Figure 20-4.

Figure 20-4. Editing a news post

Activating the Post
We have a process for editing the content of a news post now—but that won’t do us any good
unless we also have the ability to activate the post so that it will show up on the main site. You
should remember that we control the activated status through a simple Boolean flag set to
either 0 or 1. An easy way to solve this is to take advantage of the in_place_checkbox method
that was added by our In-Place Controls plug-in again.

We’ll first need to configure our posts controller (/app/controller/posts_controller.rb)
to accept in-place edits of the Active field:

class PostsController < ApplicationController
 in_place_edit_for :post, :Active

 make_resourceful do
 build :all
 end

7818.book Page 525 Monday, October 1, 2007 8:02 PM

526 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 def index
 limit = params[:limit] || 25
 start = params[:start] || 0

 respond_to do |format|
 format.html
 format.json {
 @posts = Post.find(:all, :limit => limit, :offset => start)
 posts_count = Post.count
 griddata = Hash.new
 griddata[:posts] = @posts.collect {|p| {:NewsID => p.NewsID, ➥

:Headline => p.Headline, :created_at => p.created_at.to_s, :Body => p.Body, ➥

:Active => p.Active}}
 griddata[:totalCount] = posts_count
 render :text => griddata.to_json()
 }
 end
 end
end

Next, we can go back to our show.rhtml in /app/views/posts, add a new activated div in
our content div, and place our in_place_checkbox method there:

<%= ext_layout('Edit News Post') %>

<div id="content">
 <div id="activated">
 <label for="post_Active" style="display: inline; margin-right: 5px;">Active ➥

 on Site?</label>
 <%= in_place_checkbox :post, :Active, :checked => true, :unchecked => false %>
 </div>
 <div id="edit_form">
 <script type="text/javascript" charset="utf-8">
 Ext.onReady(function(){
 (...Remaining Output Omitted...)

This enhances our edit news post page, as shown in Figure 20-5.

Figure 20-5. Adding an activation control to our news post

7818.book Page 526 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 527

Building Associations to the Post
We’re not done with our edit news page just yet though. As you may recall from our earlier dis-
cussions about how the current news system works, once a news post has been created, staff
members are expected to associate that story with one or many game records as well. The table
for storing these associations is merely a join table named GameNews; looking in db/schema.rb,
we can see that it does have a traditional many-to-many relationship:

create_table "GameNews", :id => false, :force => true do |t|
 t.column "GameID", :integer, :default => 0, :null => false
 t.column "NewsID", :integer, :default => 0, :null => false
end

So this should just be a simple matter of establishing a has_and_belongs_to_many associa-
tion between the Game model and the Post model. Of course, I say “should be” because
building that association is going to be a little bit more work because of the unconventional ID
fields.

In our Games model, we can create an association to our Posts model by adding the fol-
lowing line:

has_and_belongs_to_many :posts

However, because the legacy databases join table GameNews doesn’t follow conventions
(otherwise, it would be named game_news), we’ll need to define the name of the join table like
this:

 :join_table => "GameNews"

Now that the model knows which table to look in for its associations, we still have the issue
of mapping to our nonstandard ID fields. A has-and-belongs-to-many (HABTM) association
expects that it will find fields named post_id and game_id in the GameNews table. We’ll have to
override these assumptions by manually specifying the foreign keys to look for.

The first value that we’ll override is the :foreign_key, which is used to specify the key that
maps back to this model. Its default assumption is that it will be the name of this class lower-
cased and with and _id appended. So within the Games model, it would expect that the foreign
key in GamesNews would be game_id. We’ll override this by setting :foreign_key => "GameID".

Second, we need to define the value that is used to map to the other table we’re joining to.
Rails assumes that this will be the lowercase version of the name of the associated class with an
_id appended. So Rails expects this to be news_id, and we’ll override it to NewsID by setting
:association_foreign_key => 'NewsID'.

So putting that all together and our HABTM association in the Games model (/app/
models/game.rb) should look like this:

class Game < ActiveRecord::Base
 set_table_name 'Games'
 set_primary_key :GameID
 belongs_to :publisher, :foreign_key => 'PubID'
 belongs_to :developer, :foreign_key => 'DevID'
 belongs_to :genre, :foreign_key => 'GenreID'

7818.book Page 527 Monday, October 1, 2007 8:02 PM

528 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 has_many :screenshots, :foreign_key => 'GameID'
 has_and_belongs_to_many :posts, :join_table => "GameNews",
 :foreign_key => "GameID", :association_foreign_key => 'NewsID'

 order_by :title
 validates_length_of :Title, :maximum => 100, :message => " must be less than ➥

 100 characters"
 validates_presence_of :Title, :Console

 def boxart
 self.BoximagePath.blank? ? "/boxshots/empty.jpg" : self.BoximagePath
 end

 def homepage
 self.SiteURL || "Not Set"
 end

 def homepage=(value)
 self.SiteURL = value
 end
end

Meanwhile, in our Posts model (/app/models/post.rb), we can map back to the Games
model by adding the reciprocal version:

class Post < ActiveRecord::Base
 set_table_name 'News'
 set_primary_key :NewsID

 has_and_belongs_to_many :games, :join_table => "GameNews",
 :foreign_key => "NewsID", :association_foreign_key => 'GameID'
 order_by "created_at DESC"

 validates_presence_of :Headline, :Body
 validates_length_of :FrontPage, :within => 1..26, :on => :create, :message => ➥

"must be present"
end

Now that we have our HABTM association mapped correctly, what we need to have is a
simple way of maintaining the associations among game records and news posts in our edit
news page. However, we’d like to be able to do it without having to resort to pulling in a full list
of games again. We’ll make this happen by adding a pair of new forms to our page and a little
AJAX magic. The first form we’ll add to the show.rhtml in /app/views/posts is a form that pro-
vides a list of any currently associated games to this news post as a check box.

<%= ext_layout('Edit News Post') %>
<div id="content">
 <div id="activated">

7818.book Page 528 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 529

 <label for="post_Active" style="display: inline; margin-right: 5px;">Active ➥

 on Site?</label>
 <%= in_place_checkbox :post, :Active, :checked => true, :unchecked => false %>
 </div>
 <div id="edit_form">
 (…code omitted for brevity…)
 </div>

 <div id="add_game_associations">
 <label>Associated Games</label>
 <% form_for :post, :url => { :action => "associate", :id => @post } do |f| %>

 <% @post.games.each do |g| %>
 <%= check_box_tag 'post[game_ids][]', g.id, 1 %>
 <%= "#{g.Title} (#{g.Console})" %>

 <% end %>
 <div id="results"></div>

 <%= submit_tag 'Associate' %>
 <% end %>
 </div>
</div>

which will give us a list of associated games to each news post like, as shown in Figure 20-6.

Figure 20-6. Displaying our associated games

7818.book Page 529 Monday, October 1, 2007 8:02 PM

530 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

Of course, you may have noticed that the form we just added pointed to a mythical associ-
ate method that doesn’t yet exist. We’ll need to create this associate method in /app/
controllers/posts_controller.rb and we’ll want it to set the associated games for this news
post to whatever was submitted in our form. In the posts controller, add the following method:

def associate
 @post = Post.find(params[:id])
 @post.update_attributes(@params['post'])
 redirect_to post_url(@post)
 end

An added bonus of this method is that any previous association entries will be wiped out
by our update_attributes call, so this one method can also be used to remove an association
from the game when a staff member simply unchecks a value in the form. Of course, what we
need now is a way to add new games to the list of associated games. We’ll do that by adding a
new AJAX-based form to our page. We’ll use this new form to allow a staff member to search
against the games database and have the results of that search inserted as additional options in
the associated games form. In essence, we’ll dynamically add options to the associate form, so
we’ll add the new form to our existing list like this:

<div id="add_game_associations">
 <label>Associated Games</label>
 <% form_for :post, :url => { :action => "associate", :id => @post } do |f| %>

 <% @post.games.each do |g| %>

 <%= check_box_tag 'post[game_ids][]', g.id, 1 %>
 <%= "#{g.Title} (#{g.Console})" %>

 <% end %>
 <div id="results"></div>

 <%= submit_tag 'Associate' %>
 <% end %>

 <label>Add Games to Associate </label>
 <% form_remote_tag :url => '/games/search', :html => {:id => "search"} do -%>
 Search: <input type="text" id="search_form" name="search" />
 <%= submit_tag 'Search' %>
 <% end -%>
 </div>

7818.book Page 530 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 531

This form will submit whatever was entered into its text field to another missing method.
This time, the missing method is the search method in the games controller (/app/
controllers/games_controller.rb), so let’s add that method now:

def search
 @results = Game.find(:all,
 :conditions => ["Title like ?", "%" + params[:search] + "%"],
 :limit => 20)
end

This method will take the submitted parameter and use it in a search against the Title
field in the games table. To push those results back into our existing page, we’ll create an RJS
template—create a new file named search.rjs in /app/views/games, and place the following
commands in it:

page['search'].reset
page['results'].replace_html(:partial => 'association', :collection => @results)

All we’re doing in this RJS template is erasing the content from the search form and dump-
ing our results into the result div on the current page (which you should remember was inside
our associate games form). To keep things simple, we’re using a partial to render the output of
our results collection, so we need to create a new partial in /app/views/games named
_association.rhtml. That partial should look like this:

 <%= check_box_tag 'post[game_ids][]', association.id, nil %>
 <%= "#{association.Title} (#{association.Console})" %>

It should look familiar, because that’s exactly the same format that we’re using for the
associated games in our first form. The only difference is that we are setting the check boxes on
these elements to be unchecked. You can see the display of the page in Figure 20-7.

Figure 20-7. The new add game associations form

If we submit that form to search for games named “splinter cell”, the results appear in the
associated games form that you can see in Figure 20-8.

7818.book Page 531 Monday, October 1, 2007 8:02 PM

532 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

Figure 20-8. Search results added to our associated games form

Simply check a few of the games, and click the Associate button to submit the form and
associate our additional games to this news post (see Figure 20-9).

Figure 20-9. Additional games are now associated to our news post.

It’s a nice little solution that makes it easy to associate a large number of records without
having to dump the full list of games into the page. Our final show page (/app/views/posts/
show.rhtml) should look like this:

<%= ext_layout('Edit News Post') %>

<div id="content">
 <div id="activated">
 <label for="post_Active" style="display: inline; margin-right: 5px;">Active ➥

 on Site?</label>
 <%= in_place_checkbox :post, :Active, :checked => true, :unchecked => false %>
 </div>
 <div id="edit_form">
 <script type="text/javascript" charset="utf-8">
 Ext.onReady(function(){
 Ext.form.Field.prototype.msgTarget = 'side';
 var post = new Ext.form.Form({
 labelAlign: 'top',
 url:'<%= post_url(@post) %>'
 });
 post.add(
 post.fieldset(
 {legend:'Edit News Post'},
 new Ext.form.TextField({
 fieldLabel: 'Headline',

7818.book Page 532 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 0 ■ S U P P O R T I N G N E W S 533

 name: 'post[Headline]',
 growMin:225,
 allowBlank:false,
 grow: true,
 value:"<%= @post.Headline.gsub("\n", "").gsub('"', '\"'). ➥

gsub("'", "\'").gsub("\r", "") %>"
 }),

 new Ext.form.TextField({
 fieldLabel: 'FrontPage',
 name: 'post[FrontPage]',
 width:225,
 allowBlank:false,
 maxLength:26,
 value:"<%= @post.FrontPage.gsub("\n", "").gsub('"', '\"'). ➥

gsub("'", "\'").gsub("\r", "") %>"
 }),

 new Ext.form.HtmlEditor({
 id:'Body',
 fieldLabel:'Body',
 name: 'post[Body]',
 enableFont: false,
 value: "<%= @post.Body.gsub("\n", "").gsub('"', '\"').gsub("'", "\'").➥

gsub("\r", "") %>",
 width:750,
 height:200
 })
)
);

 post.addButton('Save', function(){
 if(post.isValid()){
 post.submit({
 params:{
 action: "update",
 _method: "put",
 commit:"Save",
 id: <%= @post.id %>
 }, waitMsg:'Saving News Post Now...'
 });
 } else {
 Ext.MessageBox.alert('Errors', 'Please fix the errors noted.');
 }
 }, post);

 post.render('edit_form');

7818.book Page 533 Monday, October 1, 2007 8:02 PM

534 C H A P T E R 2 0 ■ S U P P O R T I N G N E W S

 });
 </script>
 </div>

 <div id="add_game_associations">
 <label>Associated Games</label>
 <% form_for :post, :url => { :action => "associate", :id => @post } do |f| %>

 <% @post.games.each do |g| %>

 <%= check_box_tag 'post[game_ids][]', g.id, 1 %>
 <%= "#{g.Title} (#{g.Console})" %>

 <% end %>
 <div id="results"></div>

 <%= submit_tag 'Associate' %>
 <% end %>

 <label>Add Games to Associate </label>
 <% form_remote_tag :url => '/games/search', :html => {:id => "search"} do -%>
 Search: <input type="text" id="search_form" name="search" />
 <%= submit_tag 'Search' %>
 <% end -%>
 </div>
</div>

Summary
With that last little touch, we’re at a good stopping point, as we’ve finished up a solid base for
the new administration system. We’ve connected our models to the legacy database, cleaned
up a lot of worthless fields, and created a new standard set of interfaces to give the administra-
tion site a new sheen. Along the way, you learned about some of the issues that come into play
when the database doesn’t match Rails conventions and how you can work around them. You
also learned about building a more advanced interface using Ext and looked at ways to opti-
mize the workflow to create a new administration interface that not only looks good but should
respond faster and make the daily workload a bit easier on the staff as well.

7818.book Page 534 Monday, October 1, 2007 8:02 PM

535

■ ■ ■

C H A P T E R 2 1

Enhancing the Gaming Site

This was certainly a large project, wasn’t it? It’s the kind of project that we could really fill up a
whole book with on its own, as we moved into other areas of the application such as supporting
reviews, video uploads, and an article review/approval system—and this is just the backend
administration system. You can imagine the fun we could have if we roll Rails out to the main site
and explore the challenges of deploying a Rails application that handles a pretty fair amount of
traffic onto a typical single-server scenario (handling issues such as fine-tuning our database
queries and indexes, implementing caching, and of course, monitoring the performance of our
application).

In the meantime, however, there are still plenty of fun things to do in the administrative
application that we built. This chapter contains a few ideas to get you started.

Build Your Own Generator
As you saw in Chapter 18, generators can be a great tool for automating routine installation
tasks. One aspect that we didn’t cover in that chapter was the ability to create a generator that
we could pass additional parameters into. The way we do this is by making the generator
inherit from Rails::Generator::NamedBase instead of Rails::Generator::Base. Doing so
allows us to use parameters passed in from the command line in our generator. You can read
more about this at http://wiki.rubyonrails.org/rails/pages/UnderstandingGenerators.
Experiment with this, and modify your generator to install only a single theme based on a
parameter that is passed in when the generator is called.

Add Login Capabilities
One area that we didn’t address for our application is the user authentication and administra-
tion needs of the application. Of course, by this point we’ve implemented those so many times
you could probably add them blindfolded, so I thought it would be good practice for you to
implement the user authentication for this application yourself. If you look at the current data-
base schema for users, you can see that it has a structure like this:

create_table "Users", :id => false, :force => true do |t|
 t.column "userID", :integer, :limit => 8, :null => false
 t.column "username", :string, :limit => 20, :default => "", :null => false
 t.column "password", :string, :limit => 20, :default => "", :null => false
 t.column "firstname", :string, :limit => 30, :default => "", :null => false

7818.book Page 535 Monday, October 1, 2007 8:02 PM

536 C H A P T E R 2 1 ■ E N H A N C I N G T H E G A M I N G S I T E

 t.column "lastname", :string, :limit => 30, :default => "",:null => false
 t.column "status", :string, :limit => 10, :default => "", :null => false
 t.column "email", :string, :limit => 100, :default => "news@consolegold.com"
 t.column "last_login_ip", :string, :limit => 15
 t.column "last_login_host", :string, :limit => 100, :default => "", ➥

 :null => false
 t.column "last_login_dt", :datetime, :null => false
 end

Currently those fields are used like this:

• userID: This is the primary key used to identify the user.

• username: This is the user’s login name. This field cannot be renamed, as it’s used on the
front end as well.

• password: This is the user’s password stored as an MD5 hash.

• firstname: This is the user’s first name. This field cannot be renamed, as it’s used on the
front end as well.

• lastname: This is the user’s last name. This field cannot be renamed, as it’s used on the
front end as well.

• status: This is used to indicate the status of the user. In the old system, there were three
possible statuses: Admin, Staff, and Deactivated. The Admin and Staff levels were used
for some basic role-based permission settings.

• email: The e-mail address of the user is stored here. This field cannot be renamed, as it’s
used on the front end as well.

• last_login_ip: This was used as a tracking mechanism to capture the IP address that the user
last logged in from. You should be able to capture this from request.env['REMOTE_ADDR'].

• last_login_host: This was used to capture the remote host name based on the IP address
using PHP’s gethostbyaddr function. Because this merely slows down the login process
while this remote host is looked up and doesn’t really provide any additional value, I’d
recommend removing this field.

• last_login_dt: This captures the datetime that this user last logged into the administra-
tion system. Of course, because you’re already going to be updating this record with the
last_login_ip every time users log in, you could simply change this to an updated_at
field and not have to bother with it.

With that information, you should be able to do any necessary conversions of the table and
create the user model that will allow it to hook into our legacy database. On the positive side—
other than a few fields that need to be present for display on the front end of the web site—you
have a fair amount of freedom to reinvent this area. In fact, you could even implement a solu-
tion like the restful_authentication plug-in (as long as you added in those required fields).

7818.book Page 536 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 1 ■ E N H A N C I N G T H E G A M I N G S I T E 537

Of course, you’ll also notice that the users model touches most of the other tables that
we’ve built, so be sure to test out your relationships among the models. Also, you’ll want to
modify your create methods for things such as news posts and game records to capture the
user ID of the staff member who created them.

You might also want to think about how you’ll handle removing somebody from the staff.

Associate Publishers, Developers, and Consoles
to News Posts
In our news post administration, we built a tool to display and modify the association of games
to each news post. However, you might recall that earlier we discussed how the site associates
multiple items to each news post. Why don’t you see if you can finish out this process by adding
the ability to associate publishers, developers, and consoles to a news post? Associations
among publishers and developers would probably benefit from using the same process that we
used for associating games; however, the list of possible consoles is much shorter (possible
options within the database include Xbox, 360, PS2, PS3, PSP, Cube, GBA, DS, WII, PC, and
Nokia) and therefore probably doesn’t need to bother with any AJAX lookups. See if you can
come up with an alternative approach for this list.

Create a Consoles Constant
Of course, now that you’ve built that interface to associate a console to a news post, allow me
to point out a potential point of pain for the code. What’s going to happen in a few years when
Sony announces the PlayStation 4 (PS4)? Currently, that means we’d have to go through every
place in the code where we’re generating this list of options—such as on the news post editing
page, the form to create a new game, or the page to edit an existing game—and add that addi-
tional option. That’s not exactly efficient, and it opens up the opportunity for mistakes where
we might forget to add the PS4 to one of the lists.

A better solution would be to move this list of potential consoles to either the database or
into a constant that can be edited in one place. To make things simple for now, why don’t you
go ahead and create a new constant named CONSOLES that will contain this array of possible
consoles and modify all of our code to use that constant instead?

Add Box Art and Screenshot Uploads
In our games show template (/app/views/games/show.rhtml), we added the ability to display the
box artwork for a game and any screenshots that have already been uploaded for it. Because
we’ve already covered image uploads in several other projects, we didn’t address adding the abil-
ity to upload box shots or screenshots in this application. Why don’t you see if you can add the
attachment_fu plug-in to this project and incorporate it into the design to accommodate this
need? For screenshots, you may also want to take another look at adding an option for batch file
uploads using SWFupload (we discussed this in Chapter 17). Be sure that, when you create the
images, you’re associating them correctly to the game record.

7818.book Page 537 Monday, October 1, 2007 8:02 PM

538 C H A P T E R 2 1 ■ E N H A N C I N G T H E G A M I N G S I T E

Add Support for Games Reviews
The site has developed into a full-fledged gaming news and reviews site, and while we’ve built
the news portion of our gaming site, we’re still missing the reviews portion. This is an impor-
tant feature of the site that helps to drive a lot of traffic through it. On the plus side, the staff has
been fairly unhappy with the old review process, so we have the opportunity to re-create the
reviews table any way we want—we just need to import the existing reviews into the new for-
mat after we’re done. The requirements for a game review are fairly simple: we need to capture
a large amount of text for the actual review and a set of numeric scores to rate things such as
graphics, sound, controls, game play, value, overall score, and of course, an active/inactive
flag. The review form itself will need to have rich text editor support in order to allow the staff
to format the text.

Think also about how you will handle the associations. A game review will only need to
be associated with a single game. For that reason, I would probably recommend that you
implement the ability to create the game review as an additional tab on the games’ show tem-
plate—perhaps just a single tab that will display either the current review or a form to create a
new review. Another idea would be to include the ability to add revisions of the review using
the acts_as_versioned plug-in.

Add Long Content Support
The site will also need the ability to create content that can span multiple pages, such as arti-
cles and press releases. Adding these will probably require you to add new navigation links into
the application. The forms themselves will probably look fairly similar to the form that we’re
using to create a new game review, as they’ll need to have rich text editor support. Both of these
will need to be associated with multiple elements in the same way that we associate news
posts. You’ll find the tables that you’ll need to use for these named PressReleases and Articles.
So go ahead and build support for these in your version of the application. Keep in mind that
you’ll also probably need to do some cleanup on each table’s schema first.

Add the Acts as Paranoid Plug-In
One concern that the site owner has about the site is the risk of staff members deleting records
inadvertently (or maliciously). The old administration system handled this by limiting access
to the delete button to only administrative members of the staff. For the redesign, though, it
would be better if anyone could delete a record without needing to notify an administrator.
You can do this fairly easily (and safely) through the use of another Rick Olsen plug-in by the
name of Acts as Paranoid, which overrides ActiveRecord’s delete method to simply set a
deleted_at field in the table to the current timestamp. This would require a change to the basic
finders used on the front end to look for only records where deleted_at is NULL, but it’s a minor
SQL change that we can live with considering the additional benefits that it provides us (as a
side note, Acts as Paranoid also overrides the default find method for the model as well to only
find records that aren’t marked as deleted).

Here’s the interesting challenge: how will you provide a means for the site owner to go
back through and permanently delete a record after it’s been marked for deletion by the staff?
In this application, where the number of deletes from the database is a fairly small number, I

7818.book Page 538 Monday, October 1, 2007 8:02 PM

C H A P T E R 2 1 ■ E N H A N C I N G T H E G A M I N G S I T E 539

would probably build an observer watching for deletes on the models and kick off an e-mail to
the site owner that specifies the records that were deleted. In that e-mail, I would probably
build a hidden link to permanently delete the record using the destroy! method.

Move Logic to Models
Did you notice that in our news post show template (/app/views/posts.show.rhtml) we’ve got
this really big and ugly gsub method thats whole purpose is to simply clean up our data?

{legend:'Edit News Post'},
 new Ext.form.TextField({
 fieldLabel: 'Headline',
 name: 'post[Headline]',
 growMin:225,
 allowBlank:false,
 grow: true,
 value:"<%= @post.Headline.gsub("\n", "").gsub('"', '\"').gsub("'", "\'").➥

gsub("\r", "") %>"
 }),

Even worse, it’s repeated three times in this same page. That shouldn’t mesh well with our
sensibilities to keep things clean or DRY, so try moving this cleanup process into either a
method in the Post class or a helper method. Keep in mind that the goal is to avoid duplicating
this code—not just simply move it out of the view.

Summary
With those tasks, you’re well on your way to having the core administrative needs of the applica-
tion completed. But don’t stop now—there are plenty of other areas that we haven’t addressed
yet, such as how to support video uploads, staff blogs, and reports on staff productivity (i.e., pro-
viding our friend Ron with a report of who’s adding content to the site and who’s not).

Beyond that, keeping an eye on Ext-JS is a very good idea. The library seems to be in a con-
stant state of development (a point that has not always made writing a book that uses it very
much fun), and new features are constantly being added. Even as this book is going to print,
there’s already a preview of an upcoming 2.0 release that adds some exciting new features,
such as grouping rows in grids, multiple document interface (MDI) features, anchored layouts,
and scrolling tabs.

Extending Monkey Tasks

The following exercise offers additional enhancements for Monkey Tasks.

Enhance with Ext-JS

Fortunately, we don’t have any legacy database issues to deal with in Monkey Tasks. However, I’m sure we could
benefit from implementing some of the Ext widgets. For example, you could convert your daily task lists to be

7818.book Page 539 Monday, October 1, 2007 8:02 PM

540 C H A P T E R 2 1 ■ E N H A N C I N G T H E G A M I N G S I T E

displayed in a grid component, you could add support for dialogs to create new tasks and message boxes to notify
users when things have changed, or you could go hog wild and completely change the entire application’s look and
feel into something more like a desktop application using the Ext border layout component.

7818.book Page 540 Monday, October 1, 2007 8:02 PM

■ ■ ■

P A R T 8

Integrating with a RESTful
Application Using Edge
Rails (Rails 2.0)

One of the biggest challenges in writing a book of Rails projects is the fact that Rails has

always been something of a moving target. What was once the standard way of accom-

plishing a task can be dramatically changed in an upcoming version of Rails. While this

can make writing a book more difficult, it does make developing applications in Rails fun

and exciting as new solutions to common web development pains are added to our

arsenal.

With that being said, we’re going to close out this book with a project using the latest ver-

sion of the upcoming Rails 2.0 development code (called edge Rails). To make it interesting,

we’ll take advantage of one the coolest new features in Rails 2.0—Active Resource, a

library for integrating with RESTful APIs—and we’ll discuss some of the interesting

changes coming to our beloved framework.

7818ch22.fm Page 541 Thursday, October 4, 2007 8:09 PM

543

■ ■ ■

C H A P T E R 2 2

Brief Overview of Highrise

In March of 2007, 37signals released their latest product—an online contact relationship man-
ager by the name of Highrise. Highrise is an absolutely fantastic marriage of Rails development
and product design that brings a much simpler and relevant paradigm to the idea of relation-
ship management. It brings the focus back on the people—the contacts that we have with them
and the things that we need to do to keep those relationships moving forward.

To quote 37signals’s own blog when they officially announced the product, Highrise was
designed to handle common scenarios, such as:

• See all follow-ups scheduled for this week

• Review Susan’s notes before calling her contact at the printer

• Set a reminder to write Steve a thank-you note next Friday

• Review all conversations I’ve had with Chris from Apple

• Organize interview responses for potential candidates online

• See a list of all the designers your company has hired in the past

• Enter notes from a call with a potential client

• See all the people your company knows at the New York Times

• Schedule a follow-up sales call with Jim in three months

• Review all the people tagged “Leads 2006”

However, even better than Highrise’s feature list is the fact that the application was written
with the same REST-based design principles that we’ve explored in earlier chapters—so the
interface is its own API. This provides us with a solid and easy-to-explore method of integrating
our applications with Highrise. Before we can start integrating Highrise, though, let’s do a brief
overview of what Highrise is and how a normal user would use it.

7818ch22.fm Page 543 Thursday, October 4, 2007 8:09 PM

544 C H A P T E R 2 2 ■ B R I E F O V E R V I E W O F H I G H R I S E

Creating a Highrise Account
Our first step to using and integrating Highrise is to create a new Highrise account. So go to
www.highrisehq.com and follow the steps to pick a plan (Highrise offers several different plans
ranging in cost from free to $149 a month).

After you pick a plan, you’ll be asked to create the main administrative user for your
account as well as to configure a few key settings such as the time zone and web address that
will be used to access your account (see Figure 22-1). Once your account is created, you’ll
receive an e-mail confirmation with the details of your new Highrise account and be prompted
to log in.

Figure 22-1. Creating a new account

Sign in for the first time, and you’ll notice that you’re immediately presented with one of
the key design patterns that 37signals advocates—a highly interactive and informative blank
slate. Rather than presenting an utterly empty first page, waiting for the user to add his or her
data to the system, 37signals uses this area as an opportunity to provide links to tutorials,
helpful tips, and screenshots to hold the hand of someone who’s just starting out with the
application. With one glance at the page in Figure 22-2, you should immediately be able to see
what a difference this can make for a new user.

7818ch22.fm Page 544 Thursday, October 4, 2007 8:09 PM

C H A P T E R 2 2 ■ B R I E F O V E R V I E W O F H I G H R I S E 545

Figure 22-2. The starting page

Within the application, you’ll notice that in addition to the Welcome tab, that there are
four main tabs:

• Dashboard: The Dashboard tab provides you with a high-level overview of the latest
activities within your account. This page allows you to quickly preview all of your
upcoming tasks and recent contacts.

• Contacts: In the Contacts tab, you can view and manage all of your contacts. From here,
you can also create tasks, enter notes, or associate people with companies.

• Tasks: The Tasks tab enables you to edit and view the tasks that you have created in
Highrise.

• Cases: The Case section provides a simple way of grouping together related notes, files,
and so forth. So if I were planning a birthday party for my daughter, I might create a new
case where I could store contact information from party supply vendors, pictures of
potential birthday cake designs, and invitation lists.

As much fun as it might be to go over everything that is available within the Highrise appli-
cation, doing so would be far outside of the scope of this projects book, so let’s just hit a few
highpoints that you’ll need to understand when we start integrating our Rails application to
Highrise. The features that we’ll need to be concerned with are the abilities to create contacts
within Highrise, to maintain a history of our interactions with each contact via notes, and to be
proactive in our dealings with each contact by creating tasks that keep the relationships mov-
ing forward.

Creating Contacts
As I stated before, the primary focus of Highrise is on people, so it makes sense that one of our
first tasks within our new Highrise account will be to add our own contacts. Highrise makes

7818ch22.fm Page 545 Thursday, October 4, 2007 8:09 PM

546 C H A P T E R 2 2 ■ B R I E F O V E R V I E W O F H I G H R I S E

this easy by providing several ways we can add contacts to the application. First, we could enter
contacts manually within the application, as you can see in Figure 22-3.

Figure 22-3. Adding contacts to Highrise

But, if you have a large pool of contacts, adding each contact manually could become a
fairly painful task of copying and pasting each person’s information from your existing address
books into Highrise. Fortunately, Highrise also supports bulk importing of contacts from a
variety of popular systems including Basecamp, Microsoft Outlook, ACT, or even a simple
vCard (see Figure 22-4).

Figure 22-4. Import options

Once we have some contacts added to your Highrise account, we can begin to manage
those relationships from a “what do I need to do next” perspective.

The idea is that, as soon as you complete an interaction with a contact, you should log it as
a note within Highrise and immediately schedule the next to-do item for that person. For
example, if I were a used car salesman, I would immediately create an account for a recent con-
tact and place information about what the potential sucker customer was looking for, what his
price range was, and so on. Then, I would create a task for myself to make a follow up call to
that person in a few days and try to talk him into buying a car.

7818ch22.fm Page 546 Thursday, October 4, 2007 8:09 PM

C H A P T E R 2 2 ■ B R I E F O V E R V I E W O F H I G H R I S E 547

Creating Tasks
Speaking of creating tasks, tasks are amazingly easy to deal with within Highrise. Not only can
a simple task be created within the Tasks panel but tasks can be created from all the major
areas of the application so that they can be directly associated with a person, a company, or
even a case.

Another core feature of creating tasks is the ease with which we can specify a timeline for
that task’s completion. We can specify general ranges such as Today, Tomorrow, This week,
Next week, and Later, or we can choose to set a specific date and time, as shown in Figure 22-5.

Figure 22-5. Creating a new task

Finally, we can also assign each new task a specific category. By default, the application
comes with a common set of categories (such as call, demonstration, e-mail, lunch, meeting,
and thank-you), but we can also create our own categories to further customize the application
to our specific needs. Assigning categories to our tasks makes it easier to visually identify them
when looking at our upcoming tasks list, as Figure 22-6 shows.

Figure 22-6. An upcoming task list

Highrise Has More to Offer
With that basic understanding of contacts and tasks, we’ve covered enough information for
our purposes in this project. Yet we’ve just barely touched the tip of the iceberg of all the fea-
tures of Highrise. We didn’t even cover some of the cool things such as the e-mail drop boxes,

7818ch22.fm Page 547 Thursday, October 4, 2007 8:09 PM

548 C H A P T E R 2 2 ■ B R I E F O V E R V I E W O F H I G H R I S E

managing permissions with groups, or using tags to keep things organized. For that reason, I
highly recommend that you take the time to go through the product tour on the main Highrise
web site and explore the application yourself. There are a lot of features that have been done
right in Highrise, and that means that there’s a lot that we can glean from Highrise for design-
ing our own application.

A Special Note About Permissions
One of the important features to be aware of within Highrise is the permissions system: when-
ever a new resource is created within Highrise, the creator has the ability to set a variety of
permission options for that resource, which restricts the people who can view or edit it. The
available options are shown in Figure 22-7.

Figure 22-7. Setting permissions for a person

Ensuring correct permissions for your user account is important because, when we con-
nect our application to Highrise via the API, you’ll be connecting with that user account. So
your requests via the API will only be able to view the items that your user account has permis-
sion to see. Therefore, if you decide to set permissions on resources that you create in Highrise,
make sure that you don’t deny access to the account that you’ll be using later when we connect
via the Highrise API.

Summary
In this chapter, we covered a few of the core principles of the Highrise application, such as peo-
ple and tasks and how those should be used. In the next chapter, we’ll dig a bit deeper into the
application as we explore the API that is inherent within the interface, and we’ll set things up
for building our own application that pulls its data from Highrise.

7818ch22.fm Page 548 Thursday, October 4, 2007 8:09 PM

549

■ ■ ■

C H A P T E R 2 3

Integrating to the Highrise
REST API

In the last chapter, we took a birds-eye view of Highrise: what it is, what it was designed for,
and some of the common actions that we need to understand to use the application. With that
simple understanding of how Highrise works, its time for us to begin exploring the fun world of
integrating Highrise’s data into our own applications. Highrise was created with the goal that
the interface would also be the API, so it falls right in line with the RESTful design patterns
we’ve explored in previous projects.

Exploring the API
If you haven’t already, open a web browser to your Highrise account, and navigate to the
Contacts tab. Once there, go ahead and click one of your contacts, so we can view the informa-
tion. You should be looking at a screen similar to mine, shown in Figure 23-1.

Figure 23-1. Viewing a contact in Highrise

7818.book Page 549 Wednesday, September 26, 2007 10:01 PM

550 C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I

If you notice, your URL should look something like http://railsprojects.highrisehq.com/
people/1129096. Now, let’s modify that by adding a .xml to the very end of the URL string, so it
will look like this: http://railsprojects.highrisehq.com/people/1129096.xml. When you load
that page, the browser should display an XML format of our contact that looks like this:

<?xml version="1.0" encoding="UTF-8"?>
<person>
 <author-id type="integer">27034</author-id>
 <background></background>
 <company-id type="integer"></company-id>
 <created-at type="datetime">2007-06-02T17:11:26Z</created-at>
 <first-name>Paul</first-name>
 <group-id type="integer"></group-id>

 <id type="integer">1129096</id>
 <last-name>Bentley</last-name>
 <owner-id type="integer"></owner-id>
 <title>Tech Reviewer</title>
 <updated-at type="datetime">2007-06-04T01:15:10Z</updated-at>
 <visible-to>Everyone</visible-to>

<contact-data>
 <phone-numbers>
 <phone-number>
 <id type="integer">849120</id>
 <location>Work</location>
 <number>555-55-5555</number>
 </phone-number>
 </phone-numbers>

 <web-addresses>
 </web-addresses>
 <email-addresses>
 <email-address>
 <address>paul@apress.com</address>
 <id type="integer">519484</id>
 <location>Work</location>

 </email-address>
 </email-addresses>
 <instant-messengers>
 <instant-messenger>
 <id type="integer">849121</id>
 <location>Work</location>
 <protocol>AIM</protocol>

7818.book Page 550 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I 551

 <address>Paul</address>
 </instant-messenger>
 </instant-messengers>
 <addresses>
 <address>
 <city>Kansas City</city>
 <country></country>
 <id type="integer">312057</id>

 <location>Work</location>
 <state>MO</state>
 <street>1005 Walnut St</street>
 <zip></zip>
 </address>
 </addresses>
</contact-data>
</person>

■Note Some browsers (e.g., Internet Explorer) may try to hide the XML content and show only a blank
white page. If yours does this, simply view the source of the page to see the XML content.

Now, change that extension from .xml to .atom to see the RSS feed available for this con-
tact, or change it to .vcf to receive a vCard format. By now, you should have figured out that all
this magic is happening because of our good friend from previous RESTful Rails projects—the
respond_to block.

As cool as it is to be able to discover the API elements ourselves by exploring the interface,
it would get old to go through the process of finding all the elements that we would need for our
integration. Fortunately, though, we don’t have to, as 37signals has released official API docu-
mentation that you can read at http://developer.37signals.com/highrise/. There, you can
find information about accessing all the resources, using HTTP Basic authentication to log in,
and even a sample Ruby script that can be used to explore the API from an irb (interactive
Ruby) console.

Consuming RESTful APIs
Throughout the course of this book, you’ve seen how easy it is to create RESTful APIs within
modern Rails applications, but the one area that we haven’t really covered is how to consume
external RESTful data directly into our applications.

If we wanted to be hard core, we could build something ourselves using the Net::HTTP
Ruby library or even making system calls out to cURL and reading back the responses. However,
there’s no need to reinvent the wheel when we’ve already got a powerful library by the name of
Active Resource.

7818.book Page 551 Wednesday, September 26, 2007 10:01 PM

552 C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I

Active Resource, which was first announced during DHH’s keynote address at RailsConf
2006, is an easy library for consuming REST-based resources. In fact, you could almost con-
sider Active Resource to be a simpler cousin of Active Record, except instead of providing an
interface to databases, it provides the interface to RESTful applications. With Active Resource,
we can simply define a model class for an external REST resource like so:

class Post < ActiveResource::Base
 self.site = http://localhost:3000/blog/post
end

And that little three-line class method suddenly opens up a world of connectivity, so that inter-
acting with the REST-based API at the other end can be as simple as making calls such as these:

posts = Post.find :all # retrieve back a list of all posts
post = Post.find(5) # retrieve the post with the id of 5
post = Post.find :first # retrieve the first post

And we’re not limited to merely retrieving data either; Active Resource also provides us
with familiar methods for creating new data as well:

post = Post.new(:title => 'My AR based Post',
 :body => 'This is my first post via ActiveResource')
post.save

Obviously, Active Resource is an amazing library for interacting with RESTful applications,
and thus it’s the perfect library for us to utilize in our integration. The downfall of using Active
Resource is that, at the time of this writing, it is still in a prerelease state and is currently
planned for inclusion with Rails 2.0 (it will actually replace Action Web Service). Until Rails 2.0
comes out and Active Resource is automatically included with the install, we have to do a bit
more work than usual to set up an application to use the latest version of edge rails with Active
Resource.

■Note Because we’re going to be using code from the edge version of Rails, there is a much greater risk
of changes to the core that could invalidate our project in this module. The project was tested with the latest
version of edge rails as late in the process as possible, so it should be fine. However, it’s always a good idea
to check both the errata for the book and the RailsProjects.com forums, as I’ll be doing my best to peri-
odically retest the application and make any necessary modifications to the code available for download until
Rails 2.0 comes out.

Creating a New Edge Rails Project
In the past, the changes between stable and edge Rails releases were less dramatic, and we
would normally be able to make our application use edge Rails by simply running the com-
mand rake rails:freeze:edge from within an existing Rails application. That freeze:edge task
pulls down the latest version of Rails into the /vendor/rails directory, and the next time we
start up our Rails application, it utilizes that local copy of the framework.

7818.book Page 552 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I 553

Unfortunately, though, that process won’t work for us in this case. We need to create an
edge Rails project using the lates edge Rails. Rails 2.0 will bring a fairly large number of changes
to not only the main Rails libraries but also to the structure of our Rails applications them-
selves. Therefore, we need to instead pull down a local copy of edge Rails and use the rails
command from that library to create our new application (so that the application’s structure is
created correctly).

Pulling Down the Edge Version of Rails
We could pull down our initial copy of edge Rails by checking out the latest Rails trunk via a
Subversion (SVN) checkout:

svn co http://dev.rubyonrails.org/svn/rails/trunk src/railsedge

However, I didn’t want to assume that everyone is comfortable with Subversion, so
instead, we’ll use a process that will provide us with the easiest (from a technical understand-
ing) method for creating our edge Rails application, though it may require an extra step or two.

Our first step is to create a new project from scratch; its name will be irrelevant since we’ll
really only be using this application to store the latest version of Rails:

rails edgerails

Now that we have a base application, go ahead and open a command prompt in the root
of our new application, and run the freeze edge task to pull down the latest version of Rails:

rake rails:freeze:edge

(in /Users/darkel/projects/edgerails)
rm -rf vendor/rails
mkdir -p vendor/rails
REVISION not set. Using HEAD, which is revision 6937.
touch vendor/rails/REVISION_6937
A vendor/rails/railties
A vendor/rails/railties/test
(...output ommited for brevity...)

■Note In working through the examples in this chapter, I noticed an oddity occurring when freezing rails. For
some reason, the first attempt to freeze the edge version of Rails would pull down all the latest libraries yet
include Action Web Service instead of Active Resource. Immediately running the rake rails:freeze:edge
command again correctly pulled down Active Resource instead of Action Web Service.

As you freeze your Rails application to the edge version, keep an eye on the libraries that are being copied to
ensure that you do get Active Resource (otherwise, this project won’t work). You may need to run the com-
mand twice.

7818.book Page 553 Wednesday, September 26, 2007 10:01 PM

554 C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I

Creating an Edge Rails Application
Now that we have a local copy of the current edge version Rails, let’s use this version to create
our new development project. Go back to your main projects folder, and let’s create a new
project named scheduler:

ruby edgerails/vendor/rails/railties/bin/rails scheduler

create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
(...Output ommitted for brevity...)

But we’re not quite done just yet—even though our scheduler application was built using
edge Rails, if we were to start it up now, it simply uses the current version of Rails installed onto
our system (and will most likely crash). We need to freeze the edge Rails into our scheduler appli-
cation as well. While we could simply run the edge:freeze task again from within our scheduler
application, that would be a little wasteful, as it would mean that we would now have two or more
copies of the Rails edge code on our hard drive (depending on how many edge applications we
were developing). If you’re running Rails on a Mac or Linux/Unix-based system, you can bypass
that wastefulness by simply creating a symbolic link from the /vendor/rails folder of your sched-
uler application that points to the frozen Rails that’s stored in your edgerails folder.

ln-s ~/projects/edgerails/vendor/rails vendor/rails

If you’re running Windows, you’ll have to run rake rails:freeze:edge in your application.

■Caution There seem to be some compatibility issues when attempting to run an edge Rails project from
prepackaged Rails solutions such as Instant Rails on Windows. It’s best to avoid these types of solutions for
doing edge development, so if you’re currently using InstantRails on Windows, I recommend building this
project somewhere else, such as on an inexpensive virtual private server available from web sites such as
www.rimuhosting.com or www.slicehost.com.

We can test that our application is using the edge version of Rails by starting our web server
(mongrel_rails start) and viewing the default index.html page at http://localhost:3000. When
you click the “About your application’s environment” link, you should see a line that indicates
that you’re running on Edge Rails like in Figure 23-2.

7818.book Page 554 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I 555

Figure 23-2. Viewing that our application is running edge Rails

Alternatively, if you’ve gotten in the habit of automatically deleting the index.html file
from /public, you can still obtain this information from the command line. Open a command
line prompt in the root of your application, and run ruby script/about:

About your application's environment
Ruby version 1.8.4 (i686-darwin8.8.2)
RubyGems version 0.9.2
Rails version 1.2.3
Active Record version 1.15.3
Action Pack version 1.13.3
Action Web Service version 1.2.3
Active Resource version 0.9.0
Action Mailer version 1.3.3
Active Support version 1.4.2
Edge Rails revision 7358
Application root /Users/darkel/test/scheduler
Environment development
Database adapter sqlite3

Testing Our Connectivity
Now that we have a new edge Rails application installed, we can begin setting up a couple of
basic models so we can test our connectivity to Highrise and validate that we have Active
Resource working before we start building out our new application.

The first step in testing our connectivity is to grab your authentication token from within
your Highrise account. Go to the User Account tab in the My Info section, and find the “Reveal
authentication token for feeds/api” link. Once you click the link, you’ll see something like
Figure 23-3.

7818.book Page 555 Wednesday, September 26, 2007 10:01 PM

556 C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I

Figure 23-3. An authentication token for the API

Copy your authentication token, and use it to create a base model in our application that
you’ll use to make your connection to Highrise. Create a new model named highrise.rb in /
app/models/ and place the following content in it:

class Highrise < ActiveResource::Base
 self.site = "http://5cc9fd607d62d429359676c53ce4373d5eaf2cd3:X@railsprojects.➥

highrisehq.com"
end

There's not a lot to this model—basically, all we’re doing is setting the site variable with
the address of our external API. We’ll then use this model as the primary model that all of our
other models will inherit from, so that we only have to set this site value once. Obviously, you’ll
need to replace the authentication token used in my example with the one from your own
account, as well as setting your own subdomain key.

Now that we have our base Highrise model created, let’s create a model that will map to a
resource in Highrise. Create a new model in app/models named person.rb, and we’ll leave it
fairly empty for now:

class Person < Highrise
end

Now, let’s open script/console, so we can test that our person model is able to connect to
our Highrise account:

ruby script/console

Loading development environment.

>> Person.find :first

7818.book Page 556 Wednesday, September 26, 2007 10:01 PM

C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I 557

=> #<Person:0x26f5968 @prefix_options={}, @attributes={"updated_at"=>
Sun Jun 03 21:14:12 UTC 2007, "title"=>nil, "contact_data"=>#➥

<Person::ContactData:0x26f1340 @prefix_options={}, @attributes=➥

{"web_addresses"=>nil, "addresses"=>[#<Person::ContactData::Address:0x26cb8c0➥

@prefix_options={}, @attributes={"city"=>"Kansas City", "zip"=>"66213", ➥

"country"=>"United States", "id"=>312059, "street"=>"123 test lane", ➥

"location"=>"Home", "state"=>"KS"}], "email_addresses"=>[#<Person::ContactData::➥

EmailAddress:0x26e2098 @prefix_options={}, @attributes={"id"=>517659, "address"=>➥

"eldon@email.com", "location"=>"Work"}], "phone_numbers"=>nil, ➥

"instant_messengers"=>nil}, "background"=>nil, "id"=>1128922, "group_id"=>nil, ➥

"company_id"=>1128921, "owner_id"=>nil, "first_name"=>"Eldon", "author_id"=>nil, ➥

"visible_to"=>"Everyone", "last_name"=>"Alameda", "created_at"=>Sat Jun 02 ➥

17:06:26 UTC 2007}

>> joecool = Person.new(:first_name => 'Joe', :last_name => 'Cool')

=> #<Person:0x2618220 @prefix_options={}, @attributes={"first_name"=>"Joe",➥

 "last_name"=>"Cool"}

>> joecool.save

=> true

If we go back to our Highrise account now, we can validate that our new user, Joe Cool, was
created successfully within Highrise (see Figure 23-4).

Figure 23-4. A new user created via ActiveResource

7818.book Page 557 Wednesday, September 26, 2007 10:01 PM

558 C H A P T E R 2 3 ■ I N T E G R A T I N G T O T H E H I G H R I S E R E S T A P I

Summary
In this chapter, we’ve set up a new Rails project based on edge Rails and set ourselves up to uti-
lize the upcoming Active Resource library within our new project. To test our configuration, we
also began setting up the connection to our Highrise account and validated that we could both
pull data out and push new data into our Highrise account. In the next chapter, we’ll take our
new configuration and build a simple application based on the data from that account.

7818.book Page 558 Wednesday, September 26, 2007 10:01 PM

559

■ ■ ■

C H A P T E R 2 4

Building the Appointment
Scheduler

In the last chapter, we took some giant steps towards our final application by building out
some of the models that we can use to connect to Highrise via Active Resource. Now, let’s finish
things up by putting together a little application that will utilize the data from our Highrise
account for all of its data.

What Are We Going to Build?
For this last project, we’re going to build a simple application for a friend who is starting up a home-
based business selling vitamin and other health-related drinks, pills, and powders. The nature of
his business, though, requires one-on-one consultation, so he spends half of his days at his home
office calling leads and responding to e-mails and the other half on the road going from customer
to customer to review results, take and deliver orders, and give samples of new products.

Highrise provides him pretty much all the functionality he needs for keeping track of his
customers and maintaining a proactive approach towards his interactions with them. For each
customer, he records all of his interactions into the notes field in Highrise. Then, after he com-
pletes each interaction with a customer, he sets up a new task to follow up with that customer
using a generic timeframe (e.g., next week). When the specified time arrives, he uses that
reminder to contact customers and nail down a specific date and time for follow-up visits. So
at any time, his upcoming task list is composed of customers with generic timeframes for con-
tacts and customers with appointments on specific dates and times. This seems to work really
well for him, and overall, he’s extremely happy with Highrise.

 The one thing that he wishes he had in Highrise, though, is a single display showing him
all of his upcoming appointments and where they are physically located on a map. He believes
that this visual display would be a vital tool for him, as it would help him to more efficiently
schedule appointments during the days that he is already in the general area visiting another
customer.

Fortunately for us, he doesn’t see the need in completely reinventing the wheel though, as
he is really happy with the Highrise interface, so we only need to extend a limited amount of
functionality into our application for him. First off, our application needs to pull down a list of
his upcoming tasks and map each of the customer addresses onto an interactive map that he
can use. Ideally, he’d also like to be able to view any notes for each of those specific customers
and have the ability to create notes about the person as well.

7818.book Page 559 Monday, October 8, 2007 7:03 PM

560 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

Putting Together Our Layout
With this basic understanding of what we want to build, I put together the high-level layout for
our application shown in Figure 24-1.

Figure 24-1. A simple layout for our application

To accomplish this layout, we’ll need to pull in a few extra JavaScript resources.
For one, we’ll implement the interactive map functionality through the use of the Yahoo

Maps API. Second, once again we’ll utilize the Ext-JS framework to help us put together an
advanced layout for our friend. We’ll take advantage of Ext’s border layout support to build the
look and feel of our application, while we’ll use the grid component to provide a clean way to
display our list of upcoming tasks.

Installing Ext
You should remember the overview of the Ext-JS framework back in Chapter 18 (if not, it would
be a good idea to review that chapter). If you followed along with that chapter, you should still
have a generator that you can use to install Ext into our application with a simple command
like this:

ruby script/generate extjs

If you didn’t build that generator, then you’ll need to download the Ext framework from
http://extjs.com/download (I’m using version 1.1 in this application). Once you unzip the
archive, you’ll need to copy a few key files out of there and into our application:

• Copy the four adapter JavaScript files (effects.js, prototype.js, scripatculous.js, and
ext-prototype-adapter.js) out of /adapter/prototype, and paste them into the
/public/javascripts folder, overwriting the existing versions with the ones from the
Ext archive.

• Copy the ext-all.js file from the root of the archive folder into /public/javascripts.

• Copy ext-all.css from /resources/css into /public/stylesheets.

• Copy the default folder and all its contents from /resources/images into /public/
images.

7818.book Page 560 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 561

These files along with the application.css file from the code archive for this project are all
we need from Ext to build the look and feel of our application.

Using Yahoo Maps
Sure, Google Maps is the more commonly used option in Rails examples. In fact, there are lit-
erally hundreds of tutorials, plug-ins, and so on for using Google Maps, available online and in
print. Perhaps that’s why so many people overlook the nice features that Yahoo Maps offers.
For example, in my experience, I’ve found that the Yahoo Maps license has traditionally been
easier to use for personal or intranet applications. Second, Yahoo Maps also offers the option
of a Flash-based map in addition to the standard AJAX-based version. I actually prefer the
Flash-based map, as it seems to offer better performance, and I’ve been able to take advantage
of the additional drawing capabilities.

Obtaining an Application ID
The first step in using Yahoo Maps is to obtain an application ID from Yahoo. This application
uniquely identifies your application when you make requests to the Yahoo Maps API. To
obtain your application ID, you’ll need to go to https://developer.yahoo.com/wsregapp/
index.php and complete the application. Once you have your ID, you’ll include it in any calls
that we make to Yahoo Maps, such as this call to include Yahoo Maps in a page directly from
the Yahoo servers (so there’s no need to download it locally):

<script type="text/javascript" src="http://maps.yahooapis.com/v3.04/fl/➥

javascript/apiloader.js?appid=[YOUR APP ID HERE]"> </script>

Instantiating a Map

After you’ve included the Yahoo Maps library in your page, you can create a new map within
your page with a few simple commands:

var map = new Map("mapContainer","[YOUR APP ID]","66213",5);

This function creates a new map object within the specified target mapContainer, using
your application ID, with the map centered on zip code 66213, and at a zoom level of 5.

Our Layout Script
With our necessary JavaScript libraries installed, our Yahoo application ID, and that quick
overview of how we can create a Yahoo map, let’s go ahead and put together our layout file,
which will pull in our JavaScript libraries and style sheets.

Create a new file named application.html.erb in /app/views/layouts/. Within this file,
place the following content:

<html>
<head>
 <meta http-equiv="Content-type" content="text/html; charset=utf-8">
 <title>Welcome to the Party</title>

7818.book Page 561 Monday, October 8, 2007 7:03 PM

562 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 <script type="text/javascript" src="http://maps.yahooapis.com/v3.04/fl/➥

javascript/apiloader.js?appid=[YOUR APP ID]"> </script>
 <%= javascript_include_tag 'prototype' %>
 <%= javascript_include_tag 'scriptaculous' %>
 <%= javascript_include_tag 'ext-prototype-adapter' %>
 <%= javascript_include_tag 'ext-all' %>

 <%= stylesheet_link_tag 'ext-all' %>
 <%= stylesheet_link_tag 'application' %>
</head>
 <body>
 <div id="container">
 <%= yield %>
 </div>
 </body>
</html>

■Tip You probably noticed that we’re using a new file extension for our layout template. That’s because
Rails 2.0 will begin the deprecation of our beloved .rhtml and .rxml file extensions. Instead, we’ll be using
file extensions like .html.erb and .xml.builder in their place. Why, you may ask? It’s designed to do
some cleanup of the way that our templates work by baking the MIME convention into the template name and
making the purpose of our templates clearer. So rather than using the same .rhtml file extension to handle
multiple needs such as view files, e-mail templates, and so on, we’ll now use these extended file extensions.

It’s a good practice to start using this new format. However, there’s not a huge rush as our “old” extensions
will still work until Rails 3.0.

The Home Controller
With our layout created, the next thing we’ll do is add a controller that will serve as the home
page for our application (aptly naming it home):

ruby script/generate controller Home index

 exists app/controllers/
 exists app/helpers/
 create app/views/home
 exists test/functional/
 create app/controllers/home_controller.rb
 create test/functional/home_controller_test.rb
 create app/helpers/home_helper.rb
 create app/views/home/index.html.erb

7818.book Page 562 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 563

We’ll also configure the root of our application to point to our new home by adding the fol-
lowing line to our routes.rb in /config:

ActionController::Routing::Routes.draw do |map|
 map.root :controller => "home"
 map.connect ':controller/:action/:id'
 map.connect ':controller/:action/:id.:format'
end

Next, we’ll edit the index.html.erb file that our generator created in /app/views/home to
house our initial layout divs:

<div id='header' class="ylayout-inactive-content">
 <h1>Welcome to the Party</h1>
</div>
<div id="content">
 <div id="map_pane" class="ylayout-inactive-content">
 <div id="mapContainer"> </div>
 </div>
 <div id="add_note" class="ylayout-inactive-content"> </div>
 <div id="notes" class="ylayout-inactive-content"> </div>
 <div id="customers_grid"class="ylayout-inactive-content"> </div>
</div>

Let’s quickly break down the divs that we created in this template and what content we
plan to place in each:

• map_pane: Used to display the Yahoo map

• add_note: Used to hold the form for creating a note for a customer

• notes: Used to display any notes for a customer

• customers_grid: Used to display a list of customers with upcoming tasks

To meet our initial application design, we’ll utilize the border layout component from the
Ext-JS framework to pull these divs together into our layout. To do that, we can add a small bit
of JavaScript to the top of this template:

<script type="text/javascript" charset="utf-8">
 Ext.onReady(function() {
 layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize:50
 },
 center: {
 titlebar:false,
 autoScroll: true
 }
 });

7818.book Page 563 Monday, October 8, 2007 7:03 PM

564 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header'));
 var innerLayout = new Ext.BorderLayout('content', {
 south: {
 split:true,
 initialSize: 300,
 minSize: 200,
 maxSize: 500,
 autoScroll:true,
 collapsible:true,
 titlebar:true
 },
 center: {
 autoScroll:true,
 titlebar:true
 },
 east: {
 split:true,
 autoScroll:true,
 titlebar:true,
 initialSize: 470,
 }
 });
 innerLayout.add('east', new Ext.ContentPanel('notes', {title: 'Notes'}));
 innerLayout.add('east', new Ext.ContentPanel('add_note',➥

 {title: 'Add Note'}));
 innerLayout.add('center', new Ext.ContentPanel('customers_grid',➥

 {title: 'Customers'}));
 innerLayout.add('south', new Ext.ContentPanel('map_pane', {title:'Map'}));
 layout.add('center', new Ext.NestedLayoutPanel(innerLayout));
 layout.endUpdate();
 });
</script>

<div id='header' class="ylayout-inactive-content">
 <h1>Welcome to the Party</h1>
</div>
<div id="content">
 <div id="map_pane" class="ylayout-inactive-content">
 <div id="mapContainer"> </div>
 </div>
 <div id="add_note" class="ylayout-inactive-content"> </div>
 <div id="notes" class="ylayout-inactive-content"> </div>
 <div id="customers_grid"class="ylayout-inactive-content"> </div>
</div>

7818.book Page 564 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 565

And with that little bit of JavaScript, our page currently looks like Figure 24-2.

Figure 24-2. Our page layout after adding the Ext border layout

Plugging In Our Map
With our layout well on its way, we can now focus on adding some actual content to our page.
We’ll start by adding our Yahoo Maps component into the map_pane div. Since you already
included the Yahoo Maps JavaScript file from our application layout file, it’s now just a matter
of creating a Map object within our page and having it target the mapContainer div (which is
inside the map_pane div).

We can do this simply by adding a bit of JavaScript into the map_page div:

<div id="map_pane" class="ylayout-inactive-content">
 <div id="mapContainer"> </div>
 <script type="text/javascript">
 var map = new Map("mapContainer","[YOUR APP ID]","66213", 5);
 map.addEventListener(Map.EVENT_INITIALIZE, onInitialize);

 function onInitialize(eventData) {
 map.addTool (new PanTool(), true);
 navWidget = new NavigatorWidget("close");
 map.addWidget(navWidget);
 }
 </script>
</div>

7818.book Page 565 Monday, October 8, 2007 7:03 PM

566 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

All we’ve done here is create a new Map object as we had discussed earlier, but to enhance
the usability of the map, we added a few extras as well. First off, we added the ability for the user
to click and drag the map to pan the map in different direction by adding the PanTool with the
map.addTool (new PanTool(), true); line. We also added a Yahoo-provided navigator widget
into the map (navWidget = new NavigatorWidget("close");), which provides a tool that can be
used to control the current zoom of the map.

Because we didn’t want to risk those widgets failing to load while we were waiting for the
map to finish loading, we used the ability to attach event listeners to wait for the map to fully
initialize before adding those widgets to our new map.

With those changes to our page, Figure 24-3 shows the map loaded into our map pane. We
also get some extra cool points for the fact that if we resize that container frame, the Yahoo map
resizes accordingly as well (no scroll bars for us).

Figure 24-3. Yahoo maps added to our application

Adding Our Task List
In the last chapter, we created a Person model that we could use to connect to our Highrise
data. Now, we need to create a way to connect our application to the list of tasks within High-
rise. According to the Highrise API, a task is represented like this:

<task>
 <id type="integer">1</id>
 <recording-id type="integer"></recording-id>
 <subject-id type="integer"></subject-id>
 <subject-type></subject-type>
 <category-id type="integer"></category-id>
 <body>An untimed task for today</body>

7818.book Page 566 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 567

 <frame>today</frame>
 <alert-at type="datetime"></alert-at>
 <created-at type="datetime"></created-at>
 <author-id type="integer">1</author-id>
 <updated-at type="datetime"></updated-at>
</task>

We’ll only be interested in a few of these fields:

• id: This is (obviously) the ID of the task used by Highrise.

• subject-id: This stores the ID of the record this task is associated with. If the subject_type
is Party, this is the ID of a person. If the subject_type is Kase, this ID refers to a case.

• body: This is the actual text of the task.

• frame: If a task was created with a generic timeframe, it will be returned here. Possible
values include today, tomorrow, this_week, next_week, or later.

• alert-at: If a task was given a specific date and time, it will be stored here.

Now that we know what data we want out of Highrise, let’s build an Active Resource model
for interacting with our tasks. Create a new file named task.rb in /app/models, and set it up like
this for now:

class Task < Highrise
end

Once you’ve saved that Task model, we can fire up a script/console to test that our new
model is able to talk to Highrise:

ruby script/console

Loading development environment.

>> t = Task.find :first

=> #<Task:0x274a1c0 @prefix_options={}, @attributes={"alert_at"=>nil, "updated_at"
=>Tue Jun 05 17:46:53 UTC 2007, "recording_id"=>nil, "body"=>"Evaluate Results",
"id"=>157688, "subject_type"=>"Party", "frame"=>"this_week", "category_id"=>200290,
 "owner_id"=>27034, "subject_id"=>1169836, "author_id"=>27034, "done_at"=>nil,
 "created_at"=>Tue Jun 05 17:46:53 UTC 2007}

Getting the Upcoming Tasks
It looks like we’re on our way, as we’re able to communicate with our Highrise account to pull
down the tasks. However, for the purposes of our application, doing a Task:find :all would
give us too much data, as it would return all tasks including those that are already completed.

7818.book Page 567 Monday, October 8, 2007 7:03 PM

568 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

What we need is a way to pull back only the tasks that are currently incomplete (regardless of
whether they’re overdue or not). Fortunately, there’s a method available within the API that
allows us to retrieve only the upcoming tasks. We just need to change our requests to instead
pull from /tasks/upcoming.xml. We’ll map to that from our model by creating a new class
method named upcoming:

class Task < Highrise
 def self.upcoming
 find(:all, :from => :upcoming)
 end
end

Armed with that new method, let’s modify our controller to retrieve that list of upcoming
tasks into the current page. Open home_controller.rb, and edit the index method:

class HomeController < ApplicationController
 def index
 @tasks = Task.upcoming
 end
end

The only problem with this list is that it will only provide us with the upcoming tasks—
what we really need is a way to also retrieve in the associated person for each task; otherwise,
we won’t be able to display the necessary customer name or display the customer on our map.
Unfortunately, Active Resource doesn’t have a powerful associations mapping feature like
Active Record, so we can’t just put in anything like a :has_one :person. Instead, we’ll have to
build a method to manually pull in the associated person for a given task. We can do this by
adding a person method to our Task model:

class Task < Highrise
 def self.upcoming
 find(:all, :from => :upcoming)
 end

 def person
 Person.find(subject_id)
 end
end

So now if we have a task within an instance variable named @task, we can find the name of
the person associated to that task by calling @task.person.first_name and
@task.person.last_name. That wasn’t too painful, was it?

Now, this method works, but there is a problem with it: each time we make one of those
calls to the person method, our application is going to make a new request back to Highrise for
the associated person data. That’s not exactly a very good use of our network resources, and it
will almost certainly add unnecessary delay to our application. We can fix this by making a
small modification to that person method to locally cache the person object we retrieve and

7818.book Page 568 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 569

use that cached version in response to all subsequent requests. So let’s modify our person
method like this:

def person
 @person ||= Person.find(subject_id)
end

It’s a small change, but oftentimes, the littlest things like this add up to huge gains or hits
on the performance of an application.

As long we’re modifying our models, having to call @person.first_name and
@person.last_name as separate requests is a bit terse, since we know that we’re going to want to
display customer names in our application. Let’s create a new method within the Person
model that will join those together for us. Add a name method to our Person model that looks
like this:

class Person < Highrise
 def name
 "#{first_name} #{last_name}".strip
 end
end

Displaying Our Upcoming Tasks
Now that we’ve got an @tasks instance variable loaded with our upcoming tasks, it’s time for us
to add the necessary code to display that list of tasks within our page. To do this, though, will
require us to go a bit deeper into some JavaScript configuration, since we want to display our
list of upcoming tasks in an Ext grid component as well as map each customer’s location on our
Yahoo map.

Rather than just dumping the whole JavaScript code here, I’ll try to make it a little easier to
follow by breaking down some of the critical steps involved with creating this functionality and
showing the full template with the new JavaScript added at the end.

Setting Up Our Variables
Our first step is to create a few JavaScript variables to store the data we’ll use for our grid:

var ds; // holds our data store
var grid; //reference to our grid component
var columnModel; // definition of the columns

To make it easier for us to get our task list into the grid’s data store, we’ll create a JavaScript
array to store our upcoming tasks. We’ll then populate this array by iterating over our @tasks
instance variable—pushing each task into the JavaScript array.

var gridData = [
 <% for task in @tasks %>
 <% for address in task.person.contact_data.addresses %>

7818.book Page 569 Monday, October 8, 2007 7:03 PM

570 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 [
 '<%= task.subject_id %>',
 '<%= task.person.name %>',
 '<%= task.body %>',
 '<%= task.frame || task.alert_at.localtime.to_s(:appt) %>',
 '<%= address.street %>',
 '<%= address.city %>',
 '<%= address.state %>',
 '<%= address.zip %>'
],
 <% end %>
 <% end %>
];

That should seem pretty straightforward, with the exception of the section where we
attempt to populate the array with the due date.

You see, each task will either have a generic timeframe that it’s due (e.g., tomorrow, next
week), which will be stored as the frame, or it will have a specific datetime variable stored as the
alert_at variable. Since we want to display whichever one isn’t blank, we’ll need to utilize the
|| (or) method like this:

task.frame || task.alert_at

However, if we need to display the alert_at variable, we’ll want to clean it up a bit for bet-
ter display. We’ll clean it up by first converting it to our application’s local time zone by calling
task.alert_at.localtime. Once we have the variable in the local time zone, we can reformat it
into a form that makes sense for us, which we’ll do by creating a new custom time format
extension.

■Tip Traditionally, we would add a configuration item like a custom time format to the bottom of our
environment.rb. However, that’s no longer going to be the case in future version of Rails. You’ll notice that,
in our config folder, we now have a folder named initializers. Rather than cluttering up our
environment.rb file with a large amount of miscellaneous bits of code, we can store each of those custom
configuration items into separate files stored in this initializers folder, and they’ll automatically be
included and loaded when Rails::Initializer runs.

This change should keep our configuration files a bit more organized and make it easier for plug-in authors to
add custom configuration items into our Rails environment.

You need to create a new file named timeextensions.rb in /config/initializers, and
we’ll place our custom time conversion extension in that file:

ActiveSupport::CoreExtensions::Time::Conversions::DATE_FORMATS.merge!(:appt =>➥

 "%I:%M%p on %a, %B %d")

7818.book Page 570 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 571

After that, we’ll need to restart our application so that our new Time extension will be
loaded. Once we do, we could then call task.alert_at.localtime.to_s(:appt) to have a
response like 3:00pm on Thu, June 07, which is certainly a lot easier on the eyes than the stan-
dard datetime format.

Building the Data Store
Going back to our JavaScript configuration, the next major step will be to build a function that
we can call to read that new gridData array that we just created and use it to build an Ext data
store:

function setupDataSource() {
 ds = new Ext.data.Store({
 proxy: new Ext.data.MemoryProxy(gridData),
 reader: new Ext.data.ArrayReader(
 {id: 0},
 [
 {name: 'id'},
 {name: 'customer'},
 {name: 'task'},
 {name: 'dueDate'},
 {name: 'street'},
 {name: 'city'},
 {name: 'state'},
 {name: 'zip'}
]
)
 });
 ds.load();
}

This function will create a new data store and store it in the ds variable. Now that we have
a data store created, our next step is to create a ColumnModel object to store our configuration of
which fields we want to display in our grid. All we need to display in the grid is the customer’s
name, the task that we need to do for that customer, and the current timeframe or appoint-
ment time for that task. We’ll configure this data by creating another function that will build
our column model object with the fields that we want to display:

function getColumnModel() {
 if(!columnModel) {
 columnModel = new Ext.grid.ColumnModel(
 [
 {
 header: 'Customer',
 width: 250,
 sortable: true,
 dataIndex: 'customer'
 },

7818.book Page 571 Monday, October 8, 2007 7:03 PM

572 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 {
 header: 'Task',
 width:250,
 sortable: true,
 dataIndex: 'task'
 },
 {
 header: 'Date Due',
 width:100,
 sortable: true,
 dataIndex: 'dueDate'
 }
]
);
 }
 return columnModel;
}

Now that we have functions to build the data store and column models, we’ll create a func-
tion that will build the grid for us and display it in the customers_grid div:

function buildGrid() {
 grid = new Ext.grid.Grid(
 'customers_grid',
 {
 ds: ds,
 cm: getColumnModel(),
 autoSizeColumns: true
 }
);
 grid.render();
}

With all of those functions built, we can create our grid with just two simple function calls:

setupDataSource();
buildGrid();

So after putting all of this together in our /app/view/home/index.html.erb, it currently
looks like this:

<script type="text/javascript" charset="utf-8">
 Ext.onReady(function() {
 var ds; //hold our data
 var grid; //component
 var columnModel; // definition of the columns

7818.book Page 572 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 573

 var gridData = [
 <% for task in @tasks %>
 <% for address in task.person.contact_data.addresses %>
 '<%= task.subject_id %>',
 '<%= task.person.name %>',
 '<%= task.body %>',
 '<%= task.frame || task.alert_at.localtime.to_s(:appt) %>',
 '<%= address.street %>',
 '<%= address.city %>',
 '<%= address.state %>',
 '<%= address.zip %>'
],
 <% end %>
 <% end %>
];

 function setupDataSource() {
 ds = new Ext.data.Store({
 proxy: new Ext.data.MemoryProxy(gridData),
 reader: new Ext.data.ArrayReader(
 {id: 0},
 [
 {name: 'id'},
 {name: 'customer'},
 {name: 'task'},
 {name: 'dueDate'},
 {name: 'street'},
 {name: 'city'},
 {name: 'state'},
 {name: 'zip'},
]
)
 });
 ds.load();
 }

 function getColumnModel() {
 if(!columnModel) {
 columnModel = new Ext.grid.ColumnModel(
 [
 {
 header: 'Customer',
 width: 250,
 sortable: true,
 dataIndex: 'customer'
 },

7818.book Page 573 Monday, October 8, 2007 7:03 PM

574 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 {
 header: 'Task',
 width:250,
 sortable: true,
 dataIndex: 'task'
 },
 {
 header: 'Date Due',
 width:100,
 sortable: true,
 dataIndex: 'dueDate'
 }
]
);
 }
 return columnModel;
 }

 function buildGrid() {
 grid = new Ext.grid.Grid(
 'customers_grid',
 {
 ds: ds,
 cm: getColumnModel(),
 autoSizeColumns: true
 }
);
 grid.render();
 }

 setupDataSource();
 buildGrid();

 layout = new Ext.BorderLayout(document.body, {
 north: {
 split:false,
 initialSize:50
 },
 center: {
 titlebar:false,
 autoScroll: true
 }
 });

7818.book Page 574 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 575

 layout.beginUpdate();
 layout.add('north', new Ext.ContentPanel('header'));
 var innerLayout = new Ext.BorderLayout('content', {
 south: {
 split:true,
 initialSize: 300,
 minSize: 200,
 maxSize: 500,
 autoScroll:true,
 collapsible:true,
 titlebar:true
 },
 center: {
 autoScroll:true,
 titlebar:true
 },
 east: {
 split:true,
 autoScroll:true,
 titlebar:true,
 initialSize: 470,
 }
 });
 innerLayout.add('east', new Ext.ContentPanel('notes', {title: 'Notes'}));
 innerLayout.add('east', new Ext.ContentPanel('add_note', ➥

{title: 'Add Note'}));
 innerLayout.add('center', new Ext.GridPanel(grid, {title: 'Customers'}));
 innerLayout.add('south', new Ext.ContentPanel('map_pane', {title:'Map'}));
 layout.add('center', new Ext.NestedLayoutPanel(innerLayout));
 layout.endUpdate();
 });
</script>

<div id='header' class="ylayout-inactive-content">
 <h1>Welcome to the Party</h1>
</div>

<div id="content">
 <div id="map_pane" class="ylayout-inactive-content">
 <div id="mapContainer"> </div>
 <script type="text/javascript">
 var map = new Map("mapContainer","wlsfitters","66213",5);
 map.addEventListener(Map.EVENT_INITIALIZE, onInitialize);

7818.book Page 575 Monday, October 8, 2007 7:03 PM

576 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 function onInitialize(eventData) {
 map.addTool (new PanTool(), true);
 navWidget = new NavigatorWidget("close");
 map.addWidget(navWidget);
 }
 </script>
 </div>

 <div id="add_note" class="ylayout-inactive-content"> </div>
 <div id="notes" class="ylayout-inactive-content"> </div>
 <div id="customers_grid"class="ylayout-inactive-content"> </div>
</div>

The preceding code will display our upcoming task in a grid on the page, like you can see
in Figure 24-4.

Figure 24-4. Displaying our upcoming tasks in a grid

Displaying Customers on the Map
There are a number of different ways to display a location on a Yahoo map, but they all fall into
the same basic pattern. We first create a new marker object that contains the information that
we want to display. We then place that marker on our map by using methods such as
addMarkerByLatLon (if we have the latitude and longitude) or addMarkerByAddress (which will
attempt to geocode the address into a latitude and longitude coordinated for us).

7818.book Page 576 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 577

Creating the Marker

There are a number of different methods that we can use to create markers within the Yahoo
Maps API:

• CustomImageMarker: Allows us to specify a custom image to use as a marker

• CustomPOIMarker: A prebuilt marker that expands when the user clicks it

• CustomSWFMarker: Allows us to specify a custom SWF marker

The easiest of those solutions, and the one that we’ll use, is the CustomPOIMarker method
(POI stands for point of interest, in case you were wondering).

To create a new marker using the customPOIMarker method, we’ll need to pass the method
a few variables:

• index: The label the marker will display

• title: The text that will display when the marker is moused over

• description: The text that will display when the marker is clicked or expanded

• marker color: The color of the marker on the map

• stroke color: The color of the marker in its expanded state

To add markers to our map, we’ll create another function in our JavaScript to cycle
through all of the records in the data store, create a marker for each of them, and add them to
our map using the addMarkerByAddress method. We’ll add this method to our configuration
directly after the place where we create the gridData array and before our setupDataSource
function:

<% end %>
];

function displayOnMap() {
 totalRecords = ds.getCount();
 for (var x=0; x < ds.getCount(); x++) {
 marker = new CustomPOIMarker(ds.getAt(x).data.customer, ➥

ds.getAt(x).data.task, ds.getAt(x).data.street + '
' +ds.getAt(x).data.city➥

 + ' ' + ds.getAt(x).data.state + ' ' + ds.getAt(x).data.zip, '0xFF0000', ➥

'0xFFFFFF');
 address = ds.getAt(x).data.street + ' ' + ds.getAt(x).data.city + ' ' + ➥

ds.getAt(x).data.state + ' ' + ds.getAt(x).data.zip;
 map.addMarkerByAddress(marker, address);
 }
}

function setupDataSource() {
 ds = new Ext.data.Store({

7818.book Page 577 Monday, October 8, 2007 7:03 PM

578 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

With that function built, we just need to call it. However, we want to make sure that we
don’t call it until our data store is fully loaded, so we’ll attach it to the on load event of the data
store and call it after we build our grid:

setupDataSource();
buildGrid();
ds.on('load', displayOnMap());

With that last touch, our application now looks like Figure 24-5.

Figure 24-5. Displaying customer tasks in the grid and on the map

Managing Notes
All that’s left for our little application is to build in the ability to view and add notes for a spe-
cific customer. Our first step in doing that is to create a model to interface to our customers’
notes residing in the Highrise application. Create a new file named note.rb in /app/models, and
place the following code in it:

class Note < Highrise
end

Next, we’ll add a method to our Person model to pull in the associated notes for a
customer.

7818.book Page 578 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 579

class Person < Highrise
 def notes
 Note.find(:all, :from => "/people/#{id}/notes.xml")
 end

 def name
 "#{first_name} #{last_name}".strip
 end
end

With the method added, we can now make a call to @person.notes to pull back an array of
all notes for a specific customer. Let’s go ahead and modify our page to display our list of notes.

Displaying Notes
In our index.html.erb template, we created a div named notes, which is where we’ll display the
notes for a selected customer. In a few moments, we’ll make some modifications to our grid
component to allow our friend to simply click a customer to view the notes for that selected
customer using an AJAX call, but we’ll set up the initial display of the page to show the first
record from the data store.

For now, let’s modify the notes div to contain an H1 header and a call to render a collection
partial to iterate over our notes array. For both of these calls, we’ll set the initial display of our
notes to use the first record from the data store by calling index 0 of our @tasks array (i.e., the
first record):

<div id="notes" class="ylayout-inactive-content">
 <h1 id="notes_name">Notes for <%= @tasks[0].person.name if @tasks.any? %></h1>
 <div id="notes_list">
 <%= render :partial => 'notes', :collection => @tasks[0].person.notes if ➥

@tasks.any? %>
 </div>
</div>

Now, we simply need to create a partial to display our notes. Create a new file named
_notes.html.erb in /app/views/home, and place the following line of code in it:

<p><%= notes.body %></p>

Adding Notes
Adding a note is equally easy, as once again we’ll use a partial. Locate the add_notes div in our
index page, and let’s add the following line to it:

<div id="add_note" class="ylayout-inactive-content">
 <%= render :partial => 'add_note', :locals => {:subject_id => ➥

 @tasks[0].person.id} if @tasks.any? %>
</div>

7818.book Page 579 Monday, October 8, 2007 7:03 PM

580 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

Now, we’ll create a new partial named _add_note.html.erb in /app/views/home in which
we’ll place the following form:

<% form_for :note, :url => {:controller => "notes", :action => "create"} do |n| %>
 <fieldset>
 <legend>Add A Note</legend>

 <label for="body">Add a Note:</label><%= n.text_field 'body' %>
 <%= n.hidden_field :subject_type, :value => 'Party' %>
 <%= n.hidden_field :subject_id, :value => subject_id %>
 <%= submit_tag 'Create', :class => 'submit' %>

 </fieldset>
<% end %>

This form should be pretty standard fare for you at this point, though I’d like to point out
that there are two hidden fields that we’re passing along with the form submission. First is the
subject_type that we’ll always set to Party, since we want this note to be associated to a person.
Next, we have the subject_id value, which is the ID of the person that we want this note to be
associated with—you’ll notice that we’re passing this value into the partial as a local variable.

Someone very observant might have noticed that we’re missing an important part of cre-
ating a note—a place to post the note. The form in our partial is pointed to the create method
in a notes controller. Unfortunately, that controller doesn’t exist yet, so we need to create it:

ruby script/generate controller notes

 exists app/controllers/
 exists app/helpers/
 create app/views/notes
 exists test/functional/
 create app/controllers/notes_controller.rb
 create test/functional/notes_controller_test.rb
 create app/helpers/notes_helper.rb

Now, with our new notes controller built, let’s add in our create method so that our form
has a destination:

class NotesController < ApplicationController
 def create
 @note = Note.new(params[:note])
 @note.save
 redirect_to root_url
 end
end

7818.book Page 580 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 581

Our method is fairly straightforward: we’ll simply create a new note based on the parame-
ters submitted in the form, save it (which will push it up to Highrise), and then redirect the
request to the home page.

With those modifications, our page now looks like Figure 24-6, as it displays the notes for
a customer.

Figure 24-6. The page displaying a customer’s notes

Using AJAX to Update Displayed Notes
All that’s left to finish up our application for our friend is some minor RJS and AJAX calls to
allow him to view and add notes for more than just the top record. We’ll do that by changing
the notes that are displayed and the subject_id in the add note form when our friend selects a
customer in the grid component. To do that, we’ll attach an on-click event to the grid.

Let’s go back into our JavaScript, find our buildGrid function again, and add an event lis-
tener for a row click on the grid:

function buildGrid() {
 grid = new Ext.grid.Grid(
 'customers_grid',
 {
 ds: ds,
 cm: getColumnModel(),
 autoSizeColumns: true
 }
);

7818.book Page 581 Monday, October 8, 2007 7:03 PM

582 C H A P T E R 2 4 ■ B U I L D I N G T H E A P P O I N T M E N T S C H E D U L E R

 grid.on("rowclick", function(grid) {
 new Ajax.Request('/notes/update_page/' + grid.getSelectionModel().➥

getSelected().data.id, {asynchronous:true, evalScripts:true}); return false;
 });

 grid.render();
}

When our friend clicks a row in the grid, he will kick off an AJAX call back to the
update_page method in the notes controller—passing in the ID of the person we want to use
(note/update_page/#{person_id}). Now, we need to create that update_page method in the
notes controller:

class NotesController < ApplicationController
 def create
 @note = Note.new(params[:note])
 @note.save
 redirect_to root_url
 end

 def update_page
 @person = Person.find(params[:id])
 end
end

The update_page method merely pulls back the person object that we’re interested in from
Highrise and passes control over to an RJS template. So let’s create our RJS template—a file
named update_page.rjs in /app/views/notes—which should have the following RJS
commands:

page.replace_html 'notes_name', "Notes for #{@person.name}"
page.replace_html 'notes_list', :partial => 'home/notes', :collection => ➥

 @person.notes
page.replace_html 'add_note', :partial => 'home/add_note', :locals => ➥

{ :subject_id => @person.id }

Our RJS template just replaces the contents of three sections: it updates the header area of
our notes to display to show the correct customer name, updates the notes list using the same
partial, and replaces the add note form with a new one using the correct person’s ID.

■Tip Actually, in Rails 2.0, the proper file extension for an RJS template like this should be
update_page.js.rjs in much the same manner as we’re changing our .rthml templates to html.erb.
However, templates with these new extensions are not being found by default when the renderer tries to dis-
play the associated template currently, so to use our RJS file would require adding an explicit render call at
the end of our controller.

7818.book Page 582 Monday, October 8, 2007 7:03 PM

C H A P T E R 2 4 ■ B U I L D I N G T H E AP P O I N T ME N T S C H E D U LE R 583

Summary
With that final addition, we’ve completed our Active Resource application. This was a great
application to play with, because not only did we get to play with the upcoming Active
Resource library but we also go to take a look at some of the upcoming changes to Rails by
using edge Rails. To add the cherry on top, we also put together some pretty nice interface ele-
ments using the Ext-JS framework and the Yahoo Maps API. All in all, although it wasn’t a very
complex application, since it only has one page, it was probably the most fun for me to build,
and it’s one that has plenty of opportunities for you to expand on and build a deeper integra-
tion with Highrise.

7818.book Page 583 Monday, October 8, 2007 7:03 PM

585

■ ■ ■

C H A P T E R 2 5

Enhancing Our Rails 2.0
Application

This project was a fun (albeit at times frustrating) one to create. Rails 2.0 is going to have a
significant number of changes to some of the common ways that we do things within the
framework. While these changes might require a shift in the way that we develop our applica-
tions, I have to say that most of these changes are going to be for the best. It is a perfectly
acceptable thing to break backward compatibility to keep the framework fresh and relevant
and drop that “freshman fifteen.”

With that in mind, I’ve added only a few additional exercises relevant to our specific
project, but I also added a list of some of the cool and exciting new features of Rails 2.0 that
you can experiment with in our edge Rails application.

Enhancing the Highrise Project
This section contains exercises to enhance our Highrise project.

Cache Customer Data
While our example application allows us to always ensure that we have the most up-to-date data
out of Highrise, it’s not exactly an efficient use of our resources. A better approach would be to
work in some logic to locally store (or cache) information to reduce the number of requests to
Highrise and most likely improve the response times of our application.

For example, you could set up a cron job to automatically update a locally stored version
of customer data every hour, or you could set up a user-managed “refresh my content” button.

Create Appointments
While we created the necessary models and interface to view and create notes in Highrise, we
limited ourselves to only creating a view of upcoming appointments. What if our friend liked
the application so much that he also wanted to use it to create the appointments directly?

To do that, you would need to create a view of all customers—not just the ones with
appointments already scheduled—and you would need to create an interface within the appli-
cation that would allow our friend to create a new task and schedule a time. If you do this, I

7818ch25.fm Page 585 Monday, October 1, 2007 8:32 PM

586 C H A P T E R 2 5 ■ E N H A N C I N G O U R R A I L S 2 . 0 A P P L I C A T I O N

would try to create something comparable to the same manner in which tasks are scheduled
within Highrise already. Also, make sure that you create your tasks as associated to the correct
customer.

Edit a Customer
Going along with the theme of expanding our integration to Highrise, how about creating the
ability to edit a customer’s address or phone number details directly from this interface?

New Features in Edge Rails
As an added bonus, here’s a list of some of the other new Rails 2.0 features that you can use to
enhance the Highrise project or just experiment with.

Sexy Migrations
One feature that I’m particularly excited to begin implementing is Rails support for what are
called sexy migrations; see http://dev.rubyonrails.org/changeset/6667. Sexy migrations
provide enhancements to our migration process, so where traditionally we might create a
migration for a post table like this:

create_table :posts do |t|
 t.column :blog_id, :integer
 t.column :user_id, :integer
 t.column :title, :string
 t.column :permalink, :string
 t.column :body, :text
 t.column :created_at, :datetime
 t.column :updated_at, :datetime
end

sexy migrations allow us to create the exact same table structure like this:

create_table :posts do |t|
 t.integer :blog_id, :user_id
 t.string :title, :permalink
 t.text :body
 t.timestamps
end

Sexy, indeed.

7818ch25.fm Page 586 Monday, October 1, 2007 8:32 PM

C H A P T E R 2 5 ■ E N H A N C I N G O U R R A I L S 2 . 0 A P P L I C A T I O N 587

Automatically Generated Migrations
Another nice new migration feature is the one that adds the ability to automatically generate the
add/remove column names from a well-named migration; see http://dev.rubyonrails.org/
changeset/7216. If you created a new migration like this:

ruby script/generate migration AddSslFlagToAccount

you would find that your newly created migration would already contain this in the up
migration:

add_column :accounts, :ssl_flag, :type, :null => :no?, :default => :maybe?

and this in the down migration:

remove_column :accounts, :ssl_flag

Pretty sweet, huh? Your migrations can either have camel case names or use underscores
as the separators for this functionality.

Database Commands
A new set of rake tasks was added for basic database management (see http://
dev.rubyonrails.org/changeset/6849), so we can now manage our databases without
having to run any of those external database utilities (like mysqladmin).

So you can now create the database defined in database.yml with a simple rake db:create
call or remove that database from your system with a rake db:drop command.

We can completely remove that database and rebuild it using our migrations with a single
rake db:reset command—even cooler still.

View Routes
Another new rake task has been added (see http://dev.rubyonrails.org/changeset/7149) for
viewing all of the named routes that your routes files have generated—very useful when you’re
dealing with RESTful routes and can’t remember the exact format for how to link to a new
nested resource.

Query Caching
In the current version of Rails, if you were to make a request for a record like this:

User.find 123

and then later in that same request made the same query again:

User.find 123

7818ch25.fm Page 587 Monday, October 1, 2007 8:32 PM

588 C H A P T E R 2 5 ■ E N H A N C I N G O U R R A I L S 2 . 0 A P P L I C A T I O N

Rails would simply obey your request and make two hits to the database in response to your
requests. In Rails 2.0, however, we have a new feature named query caching that, quite simply,
will remember that you’ve already retrieved that data and return a cached version of that result
in response to the second query (assuming that no inserts, deletes, or updates have occurred
between the two requests).

RESTful Routing Improvements
Rails 2.0 also adds support for declaring :has_many and :has_one relationships within our
routes for RESTful resources (see http://dev.rubyonrails.org/changeset/6588). Before,
where we might have declared a nested resource like this:

map.resources :posts do |posts|
 posts.resources :comments
 posts.resources :images
 posts.resource :user
end

with Rails 2.0, we’ll be able to declare it like this:

map.resources :posts, :has_many => [:comments, :images], :has_one => :user

Features Removed from the Framework
One of the goals of Rails 2.0 was also to remove some of the bloat from the core framework and
make features that should be optional available as plug-ins rather than automatically bundled
into every Rails application.

Some of the more interesting features that are being moved into a plug-in or removed
entirely are explained in the following sections.

Pagination (http://dev.rubyonrails.org/changeset/6992)

Pagination has been removed from Rails 2.0 and moved into a plug-in named Classic Pagination.
Of course, most Rails developers recommend using the Will Paginate plug-in instead.

Scaffold (http://dev.rubyonrails.org/changeset/7429)

The scaffold command has been removed completely from Rails 2.0. The recommendation is
to use the scaffolding generator from now on.

JavaScript Helpers

Many of the script.aculo.us JavaScript helpers are also being removed and pushed into plug-
ins, including these:

• In-place Editing (http://dev.rubyonrails.org/changeset/7442)

• Auto-completion (http://dev.rubyonrails.org/changeset/7450)

7818ch25.fm Page 588 Monday, October 1, 2007 8:32 PM

C H A P T E R 2 5 ■ E N H A N C I N G O U R R A I L S 2 . 0 A P P L I C A T I O N 589

“Acts as” Features

The common “Acts as” features have been removed from the Rails core and moved into sepa-
rate plug-ins:

• Acts as List (http://dev.rubyonrails.org/changeset/7443)

• Acts as Nested Set (http://dev.rubyonrails.org/changeset/7453)

• Acts as Tree (http://dev.rubyonrails.org/changeset/7454)

Summary
As you can see, Rails 2.0 is going to offer a fairly significant number of changes that should both
reduce the size of the framework itself and reduce the amount of code that we need to create to
configure our applications. If I had to describe Rails 2.0 in a single word, I would call it “stream-
lined.” As you complete the exercises I suggested for the scheduler application and experiment
with the new features I highlighted, I think that you’ll agree with me—Rails 2.0 is a good thing.

If you want to keep current with what’s going on in edge Rails development, you should keep
an eye on any change sets from the official tracking RSS feed at http://dev.rubyonrails.org/
timeline or on Ryan Daigle’s excellent site (http://ryandaigle.com/), where he provides peri-
odic summaries of edge Rails changes.

7818ch25.fm Page 589 Monday, October 1, 2007 8:32 PM

591

Index

■Symbols
<%# %> tags, 113

@post.comments.any? block, 381

@user variable, 369

■A
abstracting code

for Games index page, 474–475

for Genres index page, 477–479

for index page for developers, 471–474

for Publishers index page, 476–477

Accept request, 102

account

activating, 54

Highrise

creating and signing in to, 544

setting permissions for, 548

account controller, modifying, 52–55

action caching

description of, 299

expiring, 305–306

fragment caching compared to, 306

limiting access to subscribers, 301–304

members controller, 300–301

of Members pages, 304–305

Action Web Service

description of, 228

dispatching modes, 229

MetaWeblog API and, 230

activate method, 53

activating

account, 54

news post, 525–527

Typo blog, 190–192

Active field for gaming news page,
formatting, 513

Active Record library (Rails), 6

Active Resource library, 551–552

Active Resource model (appointment
scheduler), 567

activity resource

controller, modifying, 131–134

model and associations, 128–130

overview of, 127–128

routes, modifying, 130–131

view templates, modifying, 134–135

Acts as * features, 589

Acts as Authenticated plug-in

church social networking site and,
321–322

configuring, 43–46

description of, 40, 104, 261

installing, 41

mailer functionality, configuring, 42

User model, 42

Acts as Paranoid plug-in, 538

acts_as_commentable plug-in, 266, 377–379

acts_as_polymorph plug-in, 267

acts_as_taggable plug-in, 267

Add Activity Form for workout resource,
improving, 137–138

Add Comment Form, creating, 383–386

Add Game Association Form

displaying, 531

search results added to, 532

add method, 462

7818Index.fm Page 591 Sunday, October 7, 2007 10:26 PM

592 ■I N D E X

Add Task Form

converting to partial, 76–78

creating, 62

toggling, 81–82

addcomment method, 387–388

adding

comments, 382–388

developers to developer pages, 466–467

ad-free version of site. See also action caching

adding, 299

clearing out cache, 313

default layout, customizing, 308–313

limiting access to subscribers, 301–304

members controller, 300–301

admin? method, 286

administration interface with Ext border
layout, 445

administration of web comic site, 273–275

administrative user, creating in Typo, 190

after_create callback, 149

after_destroy method, 295

after_filterflush_the_blog_object method, 204

after_save method, 295

Agile Web Development with Rails (Thomas), 3

Ajax and To-Do Manager

RJS templates, 80–82

sortable elements, 79–80

Akismet spam filtering service, 211, 266

alphabetical index, generating, 373

any? method, 391

APIs

Blogger

adding support for, to blog engine
application, 233–236

developing, 265

Highrise

account, creating, 544

appointment scheduler and, 559–560

contacts, adding, 545–546

description of, 543

enhancing project, 585–588

permissions system, 548

product tour, 547

signing in to account, 544

tabs on starting page, 545

task list and, 566–569

tasks, creating and assigning to
category, 547

testing connectivity to, 555–557

viewing contact in, 549–551

MetaWeblog

deletePost method, 246

ecto and, 232

editPost method, 245–246

getCategories method, 237–238

getPost method, 242–243

getRecentPosts method, 243–244

newMediaObject method, 246–249, 253

newPost request, 240–241

overview of, 230–231

Yahoo Maps

application ID, obtaining, 561

displaying customers on map, 576–578

instantiating map, 561

plugging in map, 565–566

app directory, 25

app/apis directory, 26

app/controllers directory, 25

app/helpers directory, 26

app/models directory, 25

app/views directory, 25

application. See also specific applications

built by someone else, understanding, 187

rewriting

automating Ext-JS installation, 411–417

creating better interface, 405–409

existing code, looking at, 400–401

goals for, 397–398

installing Ext-JS into application, 410–411

7818Index.fm Page 592 Sunday, October 7, 2007 10:26 PM

593■I N D E X

Find it faster at http://superindex.apress.com

issues to resolve, 402

legacy PHP site, description of, 397

overview of, 395

recoding to legacy database, 402

tour of current system, 398

utilizing interactive console, 403–405

testing, 28–29

application controller

after_filterflush_the_blog_object
method, 204

around_filter method, 204

authentication system, 108

before_filterfire_triggers method, 203

before_filterget_the_blog_object
method, 203

for blog pages, editing, 256

application.rhtml file, creating, 37

appointment scheduler

automatically generated migrations, 587

caching customer data, 585

creating appointments, 585

database commands and, 587

displaying customers on map, 576–578

displaying upcoming tasks

data store, building up, 571–576

variables, setting up, 569–571

editing customer data, 586

Ext-JS, installing, 560

home controller, 562–565

layout for, 560–562

notes

adding and viewing, 578–580

updating, 581–582

overview of, 559–560

plugging in map, 565–566

query caching, 587

RESTful routing, 588

sexy migrations, 586

task list

adding, 566–567

getting upcoming tasks, 567–569

viewing routes, 587

Yahoo Maps API, 561

Apress web site, Source Code/Download
section, 37

area charts (Gruff graphing library), 167

around_filter method, 204

articles

adding to blog site, 209

displaying, and request routing, 207

articles controller, 205–206

Articles overview page of blog site, 209

assigning task to category (Highrise API), 547

associating multiple items to news posts, 537

associations to Post model, building,
527–534

.atom extension, 551

@post.comments.any? block, 381

Attachment Fu plug-in

bug in, 283

church social networking site and, 327

gaming administration site and, 537

web comic site and, 273

@user variable, 369

authentication functionality, adding, 40

authentication system

adding to RESTful application with
restful_authentication plug-in,
104–111

home page, creating, 113–115

new user, creating, 113

RESTful, errors with, 153

for web comic site, 284–285

authentication token for Highrise account, 555

automatically generated migrations, 587

automating deployment, 20–22

avatar controller for church social
networking site, creating, 336–337

avatar model for church social networking
site, creating, 327–329

Find it faster at http://superindex.apress.com

7818Index.fm Page 593 Sunday, October 7, 2007 10:26 PM

594 ■I N D E X

■B
bar graphs (CSS Graphs plug-in), 156

batch uploading photos, 390

Bates, Ryan, 266

Beast forum, 315

before filter, 61

before_filter command, 44

before_filterfire_triggers method, 203

before_filterget_the_blog_object method, 203

before_filterverify_config method, 205–207

belongs_to :genre method, 435

blacklist patterns, defining, 212

blocks

@post.comments?, 381

cache, for fragment caching, 310

format.json, 454–455

respond_to, 101, 551

blog. See also blog engine; blog section of
church social networking site; ecto
blogging application

activating, 190–192

building, 187, 209–210

content, adding, 212

customizing Typo

building custom themes, 214–219

exploring themes, 214

managing themes, 213

sidebar component, creating and
customizing, 220–222

default, 190

designing, 207–209

managing, 211–212

Mephisto blogging system, 265

Typo

database of, 197–201

features of, 188

installing, 189

blog engine

API, building

Blogger support, adding, 233–235

deleting posts, 246

editing posts, 245–246

images, supporting, 246–253

MetaWeblog API, 230–238

new post, creating, 240–241

overview of, 227–230

post, getting, 242–243

recent post, getting, 243–244

simple user authentication,
implementing, 239–240

table, adding, 235

blog model, building, 224–227

Blogger API, developing, 265

caching, adding, 266

categories, adding to, 236

category model, 235–236

comments and spam filtering, adding, 266

external pages, building

application controller, editing, 256

category filter, adding, 262

home page, 256–257

layout, creating, 253–255

pagination, adding, 257–260

single post, viewing, 260–261

image model, creating, 248–249

Mephisto and, 265

moving authentication out of
methods, 266

overview of, 223–224

post model

building, 225

modifying, 236

overriding to_param method in, 261

RSS feed, building, 263–264

RSS feed for categories, adding, 267

tagging and, 223, 267

Typo, customizing, 265

web administration, adding, 267

blog posts, grabbing most recent, 367

7818Index.fm Page 594 Sunday, October 7, 2007 10:26 PM

595■I N D E X

Find it faster at http://superindex.apress.com

blog section of church social
networking site

adding, 342–343

links, adding, 335

posts controller

code for, 349

create method, 345

destroy method, 349

edit method, 347–348

index method, 345

new method, 344–345

show method, 346–347

update method, 348

summaries, adding, 350–352

Blogger API

adding support for, to blog engine
application, 233–236

developing, 265

boot.rb file, 192

border layout (Ext-JS), 406, 563

border layout widget (Ext-Js), 442–445

boxart method, 485

boximagepath attribute of games record, 484

Buck, Jamis, 88

buildPost method (MetaWeblog API), 244

buttons, adding to toolbar, 462–463

■C
cache block for fragment caching, 310

caches_action method, 304

caches_page method, 291

caching. See also action caching; fragment
caching; page caching

adding to applications, 182, 266, 394

customer data, 585

web comic site and, 289

Calendar Helper plug-in, 85

callback support, 149

Capistrano, 20–22

CAPTCHA service, 266

capturing

creation errors for gaming news page, 522

failed creations, 480–481

user error, 463

case sensitivity of MySQL database, 404

category, assigning task to (Highrise API), 547

category filter for blog, adding, 262

Chronic (Ruby gem)

description of, 63

freezing, 88

installing, 64

using, 64–66

church social networking site

Acts as Authenticated plug-in, installing,
321–322

avatar controller, creating, 336–337

avatar model, creating, 327–329

batch uploading photos, 390

blogging summaries, adding, 350–352

blogging support, adding

overview of, 342–343

posts controller, 344–349

caching, adding, 394

cleaning up code, 391

comments

acts_as_commentable plug-in, 377–379

adding, 377, 382–388

displaying, 379–381

controllers, modifying, 323

custom routes, adding, 324

description of, 321

focusing on users and needs when
developing, 389

friends list functionality, adding, 391

galleries, adding, 352–355

galleries controller

all user galleries, displaying, 361–362

new gallery, creating, 358–359

overview of, 357

specific gallery, viewing, 359–361

7818Index.fm Page 595 Sunday, October 7, 2007 10:26 PM

596 ■I N D E X

church social networking site (continued)

galleries index template code, moving to
partial, 392

home page

building, 371–372

default route, changing, 366

enhancing, 391

index method and, 366–371

overview of, 365

initial user page, 336

layout, creating, 325–327

navigation, 376–377

pages of, 324–325

photo controller, 357–362

photos, adding, 355–357

profile controller

creating, 333–336

edit template, 338

show template, 340–341

update method, 340

RSS feed for users, adding, 390

sample user, creating, 331–332

user and session models, 322–323

user details model, creating, 329–331

user directory, 373–375

user profile images, using Kropper for, 393

user profiles, 338–341

users import or sign-up process,
creating, 389

classes

Configuration

default_load_paths method, 194

description of, 193

Initializer

process method, 196–197

run method, 193

set_load_path method, 193

UserNotifier, 50–51

Classic Pagination plug-in, 257, 588

cleaning up

code, 391

games table, 423–426

clearing cache, 294–297, 313

code editors

installing, 8

Linux-only, 13

Mac-only, 14

recommended, 15

Windows-only, 9–12

column model

for developer pages, creating, 448

for grid, 408

columns for database for web comic site, 275

comic model for web comic site, 275–278

comics site

administration of, 273–275

authentication system for, 284–285, 316

blog, adding, 315

caching and, 289

comic, creating, 282–283

comic model, 275–278

description of, 271

forum, integrating, 315

layout of, 272

login page, 285

page caching

clearing cache, 294–297

enabling, 291–294

overview of, 289–290

passwords to limit access to, 286–287

public controller, 287–288, 291–293

routes, modifying, 278

scaffolding, modifying

comics/edit, 281–282

comics/index, 280–281

comics/new, 279

comics/show, 280

overview of, 278

7818Index.fm Page 596 Sunday, October 7, 2007 10:26 PM

597■I N D E X

Find it faster at http://superindex.apress.com

selecting comics by date, 316

command-line options for rails command, 27

commands

before_filter, 44

database, 587

expire_action, 305

expire_fragment, 313

generate model, 58

plugin install, 273, 327

rails

command-line options for, 27

creating directory structure, 25–26

starting new project, 23–25

rake rails:freeze:edge, 552

reload!, 428

scaffold, 588

scaffold resource, 342

script/generate, 412

commenting system, adding to blogging
engine application, 266

comments area for church social networking
site

acts_as_commentable plug-in, 377–379

adding, 377

adding comments, 382–388

displaying comments, 379–381

comments, managing with Typo, 212

complete? method, 88

complex bar graphs (CSS Graphs plug-in), 156

components/ directory, 26

config/ directory, 26

Configuration class, 193–194

configuration page (Typo), 190

configuring

Acts as Authenticated plug-in

limiting access, 44–46

mailer functionality, 42

overview of, 43

blog in ecto blogging application, 231–232

database settings, 27–28

goals resource controller, 141–143

outbound e-mails, 49–51

posts controller to accept in-place edits, 525

results resource controller, 143–145

confirmation message boxes (Ext-JS), 409

connectivity to Highrise, testing, 555–557

consistency and RESTful application, 95

console, utilizing, 403–405

CONSOLES constant, creating, 537

contacts (Highrise API)

adding, 545–546

viewing, 549–551

content

adding to blog site, 212

uploading to blog site, 210

content controller in request routing, 205

controllers

application

after_filterflush_the_blog_object
method, 204

around_filter method, 204

authentication system, 108

before_filterfire_triggers method, 203

before_filterget_the_blog_object
method, 203

for blog pages, editing, 256

articles, 205–206

avatar, 336–337

for church social networking site,
modifying, 323

content, in request routing, 205

creating for games record, 436–440

developers, 439, 461

exercise, rescoping, 116–119

galleries

all user galleries, displaying, 361–362

new gallery, creating, 358–359

overview of, 357

specific gallery, viewing, 359–361

games, 436–438, 475

7818Index.fm Page 597 Sunday, October 7, 2007 10:26 PM

598 ■I N D E X

controllers (continued)

games record, creating, 436–440

generated, methods of, 101

genres, 440, 478

goals resource, configuring, 141–143

home, 562–565

members, 300–301

photo, 357–362

posts

code for, 349

configuring to accept in-place edits, 525

create method, 345

creating, 506

destroy method, 349

edit method, 347–348

index method, 345

new method, 344–345

show method, 346–347

update method, 348

profile

creating, 333–336

edit template, 338

show template, 340–341

update method, 340

publishers

creating, 439

modifying, 476

registering sweeper into, 296

results resource, configuring, 143–145

sessions

authentication system, 109–110

web comic site, 284

welcome method, adding within, 113

task, creating, 60–62

today

creating, 36

limiting access to, 44–46

sort method, 80

todo, 72

users, 108

for web comic site

public, 287–293

registering sweeper into, 296

sessions, 284

welcome

editing, 365

index method of, 366–371

workout resource, 123–125

xmlrpc, 228

converting

Add Task Form to partial, 76–78

legacy database to migration format,
419–421

copy_image_files method, 413

create method

posts controller, 345

sessions controller, 110

Create New Developer dialog box, 467

createResource method, 466–467

creation errors for gaming news page,
capturing, 522

Cribbs, Sean, 486

CRUD (create, read, update, destroy)
operations, 61

CSS Graphs plug-in

description of, 156–157

installing, 157–159

CSS style sheet, helper method to generate
standard link tag to, 38

CSS Zen Garden site, 215

CSV, inputting from, 389

CURL, using to interact with RESTful
application, 150–152

current_user object (Restful Authentication
plug-in), 337

current_user.tasks.overdue method, 69

customers, displaying on map, 576–578

customizing Typo

building custom themes, 214–219

exploring themes, 214

7818Index.fm Page 598 Sunday, October 7, 2007 10:26 PM

599■I N D E X

Find it faster at http://superindex.apress.com

managing themes, 213

sidebar component, creating and
customizing, 220–222

CustomPOIMarker method, 577

■D
Daigle, Ryan, 589

daily news page (gaming news)

creation errors, capturing, 522

edit news page

activating news post, 525–527

building associations to Post model,
527–534

editing news post, 523–525

list view

Active field, formatting, 513

default order, changing, 509

filter, removing, 512–513

first pass at index page, 508–509

grid, enhancing, 510–512

news display, formatting, 513–514

redefining index method, 507

toggle for news display, adding, 514,
518–521

modifying database for, 501–504

Post model, creating, 504–506

posts controller

configuring to accept in-place edits, 525

creating, 506

posts resource, adding, 507

daily schedule

displaying, 74–76

implementing helper method, 73–74

moving tasks to, 72–73

overview of, 71

daily task manager, 85–88

data store for grid, 407

database

installing

overview of, 6–7

SQLite, 7–8

SQLite Ruby gem, 8

MySQL, 404

recoding to legacy

automating Ext-JS installation, 411–417

creating better interface, 405–409

installing Ext-JS into application,
410–411

overview of, 402

utilizing interactive console, 403–405

of Typo

blogs table, 199

categories table, 199

content table, 200

schema definition, 198

sidebars table, 200

studying, 197

tags table, 201

visual representation of, 201

database commands, 587

database migration

editing, 58

running, 59

database settings, configuring and testing,
27–28

database.yml file, 27–28

date selector

Chronic, 64–66

overview of, 63

db/ directory, 26

default_load_paths method (Configuration
class), 194

default_order plug-in, 450

delegated mode, 230

deletePost method (MetaWeblog API), 246

deleteResource function, 463

deleting

blog posts, 246

developers, 463–464

record from database, 446

7818Index.fm Page 599 Sunday, October 7, 2007 10:26 PM

600 ■I N D E X

deployment, automating, 20–22

designing blog site, 207–209

destroy method

posts controller, 349

sessions controller, 110

detail page for games record, displaying
screenshots, 493–499

Developer model

creating, 428–433

default order and, 451

developer pages for games record

buttons, adding to toolbar, 462–463

creating developer, 466–467

deleting developer, 463–464

editing developers, 452–453

enhancing grid, 453–462

listing developers, 447–452

developers controller

creating, 439

index method, modifying, 461

development environment, building

automating deployment with Capistrano,
20–22

code editors

Linux-only, 13

Mac-only, 14

overview of, 8

recommended, 15

Windows-only, 9–12

database, installing

overview of, 6–7

SQLite, 7–8

SQLite Ruby gem, 8

Ruby and Rails, installing

Linux and, 4

Mac OS X and, 5

overview of, 3

Windows and, 4–5

technologies for, 3

version control system, using, 19–20

Web server, installing

Mongrel, 17–18

WEBrick, 16–17

development.log, reviewing, 292

dialogs (Ext-JS), 409

direct mode, 230

directory of users of church social
networking site, 373–375

directory method, 374

directory structure

creating, 25–26

of Ext-JS, 410

discoverability and RESTful application, 95

dispatch files, 192, 201

dispatching modes (Action Web Service), 229

display for gaming news page

formatting, 513–514

toggle, adding, 514–521

displaying

all user galleries, 361–362

articles and request routing, 207

associated games, 529

comments, 379–381

customers on map, 576–578

daily schedule, 74–76

information about users, 333–336

lists

of comics, 280–281

of developers, 447–452

of games records, 446

notes on customers, 579

photos in gallery, 359–361

thumbnails of screenshots, 493–499

upcoming tasks

data store, building, 571–576

variables, setting up, 569–571

Distributed Ruby (DRb) store, 307

div, adding to login template, 45

doc/ directory, 26

Don’t Repeat Yourself principle, 23

7818Index.fm Page 600 Sunday, October 7, 2007 10:26 PM

601■I N D E X

Find it faster at http://superindex.apress.com

DRb (Distributed Ruby) store, 307

ds.load method, 449, 458

■E
E text editor, 12

ecto blogging application

Blogger getUsersBlogs method and, 233

configuring blog in, 231–232

description of, 223–224

error message, 241

edge version of Rails

application, creating, 554–555

overview of, 552

pulling down, 553

edit method, posts controller, 347–348

edit news page

activating news post, 525–527

building associations to Post model,
527–534

editing news post, 523–525

edit template

activity resource, 135

exercise resource, 119

for games record, building, 479–480

goals resource, 145

results resource, 148

web comic site, 281–282

editing

application controller for blog pages, 256

blog posts, 245–246

customer data, 586

database migration, 58

developers, 452–453

in-place editing home page URL, 480

news post, 523–525

record in database, 447

user details and avatars in church social
networking site

avatar controller, 336–337

profiles, 338–341

editPost method (MetaWeblog API), 245–246

editResource method, 452

Electronic Software Review Board, 422

e-mail notifications

account controller, modifying, 52–55

configuring outbound e-mails, 49–51

sending, 49

User model, modifying, 51–52

enabling page caching, 291–294

environment.rb file, 192

exercise goals and results, tracking. See
exercise resource; Exercisr
application

exercise resource

building, 100–104

completing, 115

controller, rescoping, 116–119

exercise views, 121

main index page for, 121

model associations, building, 116

views, 119–121

Exercisr application. See also RESTful
application

caching, adding, 182

calendar view, adding, 182

goals resource

capturing last result, 149

controller, configuring, 141–143

model, modifying, 140

nested route, setting up, 140

overview of, 139–140

views, 145–147

graphs

adding, 182

CSS Graphs plug-in, 156–159

Gruff graphing library, 163–170

overview of, 155

Scruffy graphing library, 170–171

Sparklines, 159–162

Ziya, 172–180

7818Index.fm Page 601 Sunday, October 7, 2007 10:26 PM

602 ■I N D E X

Exercisr application (continued)

home page, making RESTful, 182

models, having code in, 182

overview of, 93

results resource

controller, configuring, 143–145

model, modifying, 140

nested route, setting up, 140

views, 147–148

RJS, adding, 181

social networking, adding, 183

expire_action command, 305

expire_fragment command, 313

expire_page method, 294

expiring action caching, 305–306

Ext data store, building, 571–576

Ext grids

displaying list of developers using,
447–452

displaying list of games records using, 446

enhancing

filter, adding, 459–462

overview of, 453

pagination, adding, 454–459

Ext JavaScript library, 253

ext_grid method, 471–475, 510

ext_news_grid function, 519–521

ext_stylesheet_tags method, 441

ext-all.css style sheet, 441

Ext-JS

automating installation, 411–417

border layout, 406, 563

creating better interface using, 405–409

dialogs, 409

Grid widget, 407–408

installing, 410–411, 560

message boxes, 409

views, building

border layout, 442–445

standard layout, 440–442

WYSIWYG functionality, providing with,
489–492

■F
failed creations, capturing, 480–481

FeedBurner tool, 264

file extensions, depreciation and
replacement of, 562

files

application.rhtml, creating, 37

batch, uploading photos in, 390

boot.rb, 192

database.yml, 27–28

dispatch, 192, 201

environment.rb, 192

generator, creating, 412–417, 535

storing uploaded, 247

uploading to web comic site, 273–275

user_observer.rb, 50

filterResource method, 459

filters

adding to Ext grids, 459–462

before, 61

find schedule, 71

for gaming news page, removing, 512–513

find schedule filter, 71

Firebox web browser, 458

Firebug extension, 458

fitness goals and results, tracking (Exercisr
application)

caching, adding, 182

calendar view, adding, 182

goals resource

capturing last result, 149

controller, configuring, 141–143

model, modifying, 140

nested route, setting up, 140

overview of, 139–140

views, 145–147

7818Index.fm Page 602 Sunday, October 7, 2007 10:26 PM

603■I N D E X

Find it faster at http://superindex.apress.com

graphs

adding, 182

CSS Graphs plug-in, 156–159

Gruff graphing library, 163–170

overview of, 155

Scruffy graphing library, 170–171

Sparklines, 159–162

Ziya, 172–180

home page, making RESTful, 182

models, having code in, 182

overview of, 93

results resource

controller, configuring, 143–145

model, modifying, 140

nested route, setting up, 140

views, 147–148

RJS, adding, 181

social networking, adding, 183

Fonts.css style sheet, 30

footer navigation, 376–377

for foo in bars loop, 392

form for method, 62

format.json block, 454–455

formatting in grid, 513–514

fragment caching

benefits of, 308

clearing out cache, 313

converting page caching to, 308

default layout, customizing, 308–313

overview of, 306

storage options, 307

framework, features removed from, 588–589

freezing

applications to specific version of Rails, 27

Chronic gem, 88

project to Rails 1.2 release, 30

rails, 553

Ruby gems, 31

friends list functionality, adding, 391

functions

deleteResource, 463

ext_news_grid, 519–521

postDelete, 464

random(), 370

renderNews, 514

setupDataSource(), 571

toggleNews, 515

■G
galleries

adding to church social networking site,
352–355

grabbing most recently updated, 368–369

viewing all, 361–362

galleries controller for church social
networking site

all user galleries, displaying, 361–362

new gallery, creating, 358–359

overview of, 357

specific gallery, viewing, 359–361

game record in legacy PHP site, 398

games controller

creating, 436–438

editing, 475

Games index page, 474

Games model

belongs_to :genre method, 435

creating, 426–428

HABTM association in, 527

modifying, 431

sorting, 452

games page

header, populating, 485–486

layout, building, 481–486

select boxes, handling, 486–488

WYSIWYG functionality, providing,
489–492

games record

boximagepath attribute, 484

7818Index.fm Page 603 Sunday, October 7, 2007 10:26 PM

604 ■I N D E X

games record (continued)

building support for

controllers, creating, 436–440

converting database to migration
format, 419–421

deleting developers, 463–464

Developer and Publisher models,
creating, 428–433

developer pages, building, 447, 456

developers, creating, 466–467

editing developers, 452–453

Ext grids, enhancing, 453–462

Games model, creating, 426–428

Games model, modifying, 431

Genres model, creating, 433–436

listing developers, 447–452

routes, setting, 436

toolbar buttons, adding, 462–463

views, creating, 440–445

workflow, defining, 445–447

capturing failed creations, 480–481

Games index page, abstracting code for,
474–475

Genres index page, abstracting code for,
477–479

index page for developers

abstracting code for, 471–474

code for, 468–471

Publishers index page, abstracting code
for, 476–477

show and edit templates, building,
479–480

structure for, 421–423

games table

cleaning up, 423–426

connecting application to, 421–423

gaming administration site

Acts as Paranoid plug-in and, 538

associating multiple items to news
posts, 537

attachment_fu plug-in and, 537

CONSOLES constant, creating, 537

generator, creating, 535

login capabilities, adding, 535–536

long content, adding support for, 538

moving logic to models, 539

reviews, adding support for, 538

gaming news page

creation errors, capturing, 522

edit news page

activating news post, 525–527

building associations to Post model,
527–534

editing news post, 523–525

list view

Active field, formatting, 513

default order, changing, 509

filter, removing, 512–513

first pass at index page, 508–509

grid, enhancing, 510–512

news display, formatting, 513–514

redefining index method, 507

toggle for news display, adding, 514,
518–521

modifying database for, 501–504

Post model, creating, 504–506

posts controller

configuring to accept in-place edits, 525

creating, 506

posts resource, adding, 507

Gedit, 13

gems

Chronic, 63–66, 88

freezing, 31, 88

SQLite, 7–8|

generate model command, 58

generated controllers, methods of, 101

generated routes, 96

generator files, creating, 412–417, 535

genres controller

creating, 440

7818Index.fm Page 604 Sunday, October 7, 2007 10:26 PM

605■I N D E X

Find it faster at http://superindex.apress.com

modifying, 478

Genres index page, 477–479

Genres model

creating, 433–436

sorting, 452

geometry strings, 277

getCategories method (MetaWeblog API),
237–238

getPost method (MetaWeblog API), 242–243

getRecentPosts method (MetaWeblog API),
243–244

getUsersBlogs method (Blogger API), 233

goals resource

capturing last result, 149

controller, configuring, 141–143

model, modifying, 140

nested route, setting up, 140

overview of, 139–140

views, 145–147

grabbing

most recent blog posts, 367

most recently updated galleries, 368–369

graphs

CSS Graphs plug-in, 156–159

Gruff graphing library

creating graph, 165–168

defining custom MIME type, 168

implementing, 164

installing, 163

member routes, adding to REST
resource, 164

responding to PNG, 169–170

options for, 155

Scruffy graphing library, 170–171

Sparklines, 159–162

Ziya, 172–180

grid for gaming news page, enhancing,
510–512

Grid widget (Ext-JS), 407–408

Grids.css style sheet, 30

Grosenbach, Geoffrey, 31, 156, 159, 163

Gruff graphing library

creating graph, 165–168

defining custom MIME type, 168

implementing, 164

installing, 163

member routes, adding to REST
resource, 164

responding to PNG, 169–170

gsub method, 539

■H
HABTM association in Games model, 527

Hansson, David Heinemeier (DHH), 93, 95

has many relationship, 69

has many :through associations, 67

has_attachment method (Comic model),
276–277

header, implementing in-place editors in, 488

helper methods

image_tag, 38

implementing for daily schedule, 73–74

logged_in?, 45

sparkline_tag, 161

to generate HTML links to controller
methods, 38

to generate standard link tag to CSS style
sheet, 38

ziya_chart, 173

Hewitt, Joe, 87

Highrise API (37signals)

account, creating, 544

appointment scheduler and, 559–560

contacts, adding, 545–546

description of, 543

enhancing project, 585–588

permissions system, 548

product tour, 547

signing in to account, 544

tabs on starting page, 545

task list and, 566–569

7818Index.fm Page 605 Sunday, October 7, 2007 10:26 PM

606 ■I N D E X

Highrise API (37signals) (continued)

tasks, creating and assigning to
category, 547

testing connectivity to, 555–557

viewing contact in, 549–551

home controller for appointment scheduler,
562–565

home page, creating

for blog, 256–257

for RESTful application, 113–115

home page for church social networking site

building, 371–372

default route, changing, 366

index method and

overview of, 366

random user profile, obtaining, 369–371

recent method, 367–369

overview of, 365

horizontal bar graphs (CSS Graphs
plug-in), 156

.html.erb file extension, 562

Hyett, P. J., 258

■I
image_tag helper method, 38

images

resizing, 277

supporting in blog posts, 246–249, 253

implementing

Gruff graphing library into Exercisr
program, 164

Scruffy graph into Exercisr program, 171

simple user authentication, 239–240

Sparklines into Exercisr program, 160–162

importing contacts into Highrise, 546

in_groups_of method, 360

in_place_checkbox method, 523–525

in_place_edit method, 479, 486–488

in_place_select method, 487

index method

articles controller, 206

posts controller, 345

redefining for gaming news page, 507

for web comic site, 293

welcome controller

overview of, 366

random user profile, obtaining, 369–371

recent method, 367–369

index page

for developers

abstracting code for, 471–479

code for, 468–471

for gaming news page, 508–509

index template

activity resource, 135

exercise resource views, 120

galleries, moving to partial, 392

goals resource, 147

results resource, 148

web comic site, 280–281

workout resource views, 125

index view for profile controller, adding, 335

indexes

in games table, 422

generating alphabetical, 373

Initializer class

process method, 196–197

run method, 193

set_load_path method, 193

initializers folder, 570

in-place controls plug-in, 486, 523

in-place editing home page URL, 480

installing

Acts as Authenticated plug-in, 41, 321–322

acts_as_commentable plug-in, 377–379

Attachment Fu plug-in, 273–275, 327

Chronic, 64

code editors, 8

CSS Graphs plug-in, 157–159

database

overview of, 6–7

7818Index.fm Page 606 Sunday, October 7, 2007 10:26 PM

607■I N D E X

Find it faster at http://superindex.apress.com

SQLite, 7–8

SQLite Ruby gem, 8

Ext-JS

into application, 410–411, 560

automating installation, 411–417

Gruff graphing library, 163

Random Finder plug-in, 370–371

restful_authentication plug-in, 105

RMagick, 158

Ruby and Rails

on Linux, 4

on Mac OS X, 5

on Windows, 4–5

overview of, 3

Sparklines library, 159–160

style sheets, 29–30

Typo, 189

Web server

Mongrel, 17–18

WEBrick, 16–17

Instant Rails, 4–5

interactive console, utilizing, 403–405

interface

administration, with Ext border layout, 445

creating better using Ext-JS, 405–409

iPhone user, 87

RESTful, 149–152

iPhone user interface, 87

■J
JavaScript helpers, 588

javascript_include_tag method, 38

jEdit text editor, 10

■K
Kate text editor, 13

Kropper tool, 393

■L
layered mode, 230

layout

for appointment scheduler, 560–562

for blog pages, 253–255

for blog site, 208

for church social networking site, 325–327

for games page, 481–486

for games record site

border, 442–445

standard, 440–442

for user registration and authentication
system, 36–39

layout template for RESTful application,
creating, 111–112

legacy database, converting to migration
format, 419–421

legacy PHP site

automating Ext-JS installation, 411–417

connecting to games table, 421–423

creating better interface, 405–409

description of, 395–397

existing code for, 400–401

installing Ext-JS into application, 410–411

issues to resolve, 402

recoding to legacy database, 402

rewriting, goals for, 397–398

tour of, 398

utilizing interactive console, 403–405

lib/ directory, 26

libraries

Active Record, 6

Active Resource, 551–552

Ext JavaScript, 253

Gruff graphing, 163–170

Scruffy graphing, 170–171

Sparklines, 159–160

XML/SWF charts, 172

Yahoo User Interface (YUI), 29–30, 218

line graphs (Gruff graphing library), 166

Linux

code editors, 13

database, installing on, 8

RMagick, installing on, 158

7818Index.fm Page 607 Sunday, October 7, 2007 10:26 PM

608 ■I N D E X

Linux (continued)

Ruby and Rails, installing on, 4

list view for gaming news page

Active field, formatting, 513

default order, changing, 509

filter, removing, 512–513

first pass at index page, 508–509

grid, enhancing, 510–512

news display, formatting, 513–514

redefining index method, 507

toggle for news display, adding, 514,
518–521

lists. See also list view for gaming news page;
tasks list

displaying in

comics, 280–281

developers, 447–452

game records, 446

friends list functionality, adding, 391

reordering elements in, 79–80

live preview of blog posts, 209

Locomotive, 5

log/ directory, 26

log entries, monitoring, 291–292

logged_in? helper method, 45

login form

from restful_authentication plug-in, 111

with layout and style sheet applied, 112

login page for web comic site, 285

login screen

corrected version of, 45

with display problems, 44

login template, adding div to, 45

Lütke, Tobias, 188

■M
Mac OS X

code editors, 14

database, installing on, 8

RMagick, installing on, 158

Ruby and Rails, installing on, 5

MacPorts tool, 8

make_resourceful plug-in, 438, 455

managing with Typo

blog, 211–212

comments, 212

sidebars on blog site, 210

themes, 213

map.connect method, 95

map.resources method, 96–98, 343–436

maps (Yahoo Maps API)

application ID, obtaining, 561

displaying customers on map, 576–578

instantiating map, 561

plugging in map, 565–566

mark_complete method, 78–81, 87

marking task complete, 78

MediaObject struct, creating, 247

member routes, adding to REST resource, 164

member? method, 301

Members pages, caching, 304–305

Memcached application, 307

Mephisto blogging system, 265

message boxes (Ext-JS), 409

MetaWeblog API

deletePost method, 246

ecto and, 232

editPost method, 245–246

getCategories method, 237–238

getPost method, 242–243

getRecentPosts method, 243–244

newMediaObject method, 246–249, 253

newPost request, 240–241

overview of, 230–231

methods. See also helper methods

activate, 53

add, 462

addcomment, 387–388

admin?, 286

7818Index.fm Page 608 Sunday, October 7, 2007 10:26 PM

609■I N D E X

Find it faster at http://superindex.apress.com

after_destroy, 295

after_filterflush_the_blog_object, 204

after_save, 295

any?, 391

around_filter, 204

before_filterfire_triggers, 203

before_filterget_the_blog_object, 203

before_filterverify_config, 205–206

belongs_to :genre, 435

boxart, 485

caches_action, 304

caches_page, 291

complete?, 88

copy_image_files, 413

create

posts controller, 345

sessions controller, 110

createResource, 466–467

current_user.tasks.overdue, 69

CustomPOIMarker, 577

default_load_paths (Configuration
class), 194

destroy

posts controller, 349

sessions controller, 110

directory, 374

ds.load, 449, 458

edit (posts controller), 347–348

editResource, 452

expire_page, 294

ext_grid, 471–475, 510

ext_stylesheet_tags, 441

filterResource, 459

form for, 62

of generated controllers, 101

getCategories (MetaWeblog API), 237–238

getUsersBlogs (Blogger API), 233

gsub, 539

has_attachment (Comic model), 276–277

in_groups_of, 360

in_place_checkbox, 523–525

in_place_edit, 479, 486–488

in_place_select, 487

index

articles controller, 206

posts controller, 345

redefining for gaming news page, 507

for web comic site, 293

welcome controller, 366–371

javascript_include_tag, 38

map.connect, 95

map.resources, 96–98, 343–346

mark_complete, 78–81, 87

member?, 301

MetaWeblog API

buildPost, 244

deletePost, 246

editPost, 245–246

getPost, 242–243

getRecentPosts, 243–244

newMediaObject, 246–249, 253

newPost, 240–241

name, 330

new

posts controller, 344–345

sessions controller, 110

person, 568

Post.recent, 367

process (Initializer class), 196–197

for profile controller, 333

rand, 369

read_fragment, 311–312

recent, 367–369

recently_activated?, 51

redirect_back_or_default, 53

respond_to, 98

responds_to, 168

response_for, 450

7818Index.fm Page 609 Sunday, October 7, 2007 10:26 PM

610 ■I N D E X

methods (continued)

run (Initializer class), 193

scaffold_resource

exercise resource, building, 100–104

overview of, 98–100

search, 531

sessions controller

authentication system, 110

for web comic site, 284

set_load_path (Initializer class), 193

set_table_name, 404, 504

setting, 221

show (posts controller), 346–347

show avatar, 336

sidebar-tasks, 73

signup, 52

sort, 80

submitResource, 467

task.complete!, 88

task.incomplete!, 88

to_json, 454

toggle_complete, 88

update

posts controller, 348

profile controller, 340

update_page, 582

validate_as_attachment (Comic
model), 278

verify_admin, 287

verify_member, 302

webcomic, 288, 303

welcome, 113

yield, 38

migrate subdirectory, 26

migration file, authentication system,
110–111

migration format, converting legacy
database to, 419–421

MIME type, defining custom, 168

models

Active Resource, 567

avatar, 327–329

column, 408, 448

comic, 275–278

Developer, 428–433, 451

Games

belongs_to :genre method, 435

creating, 426–428

HABTM association in, 527

modifying, 431

sorting, 452

Genres, 433–436, 478

Post, 504–506, 527–534

posts, 342–343

Publisher, 428–433, 451

schedule, 66, 68

session, 322

task, 57, 59–60, 68

todo, 67–68

user

Acts as Authenticated plug-in, 42

for church social networking site,
322–323

modifying, 51–52

updating, 69

user details, 329–331

User Notifier, 50

Mongrel, 17–18, 28–29

Monkey Tasks, enhancements to, 184, 267,
317, 539

MySQL database, 8, 404

■N
name method, 330

named routes, building, 96

natural language processing, 63

navigation items

for church social networking site, 376–377

disabling, 45

7818Index.fm Page 610 Sunday, October 7, 2007 10:26 PM

611■I N D E X

Find it faster at http://superindex.apress.com

navigator widget (Yahoo Maps API), 566

nested routing, 130–131

new method

posts controller, 344–345

sessions controller, 110

new template

activity resource, 135

Exercisr application, 119

goals resource, 145

results resource, 148

web comic site, 279

new user for RESTful application, creating, 113

new.rthml page, 480–481

new.rhtml template, workout resource
views, 127

newMediaObject method (MetaWeblog API),
246–249, 253

newPost method (MetaWeblog API), 240–241

news posts, associating multiple items to, 537

news story in legacy PHP site, 399

Nifty Corners, 218

Niftycube style sheets, 218

notes about customers in appointment
scheduler

updating, 581–582

viewing and adding, 578–580

Nugent, Dan, 159

■O
Olsen, Rick. See also Acts as Authenticated

plug-in

Acts as Paranoid plug-in, 538

Attachment Fu plug-in, 273, 283, 327, 537

Beast forum, 315

Mephisto blogging system, 265

online contact relationship manager. See
Highrise API

order_by clause, 509

ordering and todo model, 68

outbound e-mails, configuring, 49–51

■P
page caching

action caching compared to, 299

clearing cache, 294–297

converting to fragment caching, 308

enabling, 291–294

fragment caching compared to, 306

limitations of, 290

overview of, 289

request cycle, 290

pageGrid object, 447

pages, adding to blog site, 210

pagination

for blog, adding, 257–260

classic_pagination plug-in, 257, 588

for Ext grids adding, 454–459

PanTool (Yahoo Maps API), 566

partials

converting code to, 392

utilizing, 76–78

passwords for web comic site, 286–287

Penny-Arcade gaming comic, 269

permalink_fu plug-in, 261

permissions system (Highrise API), 548

person method, 568

photo controller for church social
networking site, 357–362

photos

adding to church social networking site,
355–357

displaying in gallery, 359–361

PHP site, legacy

automating Ext-JS installation, 411–417

connecting to games table, 421–423

creating better interface, 405–409

description of, 395–397

existing code for, 400–401

installing Ext-JS into application, 410–411

issues to resolve, 402

recoding to legacy database, 402

7818Index.fm Page 611 Sunday, October 7, 2007 10:26 PM

612 ■I N D E X

PHP site, legacy (continued)

rewriting, goals for, 397–398

tour of, 398

utilizing interactive console, 403–405

pie charts (Gruff graphing library), 166

plugin install command, 273, 327

plug-ins

Acts as * features and, 589

Acts as Authenticated

church social networking site and,
321–322

configuring, 43–46

description of, 40

installing, 41

mailer functionality, configuring, 42

User model, 42

Acts as Paranoid, 538

acts_as_commentable, 266, 377–379

acts_as_polymorph, 267

acts_as_taggable, 267

Attachment Fu

bug in, 283

church social networking site and, 327

for gaming administration site, 537

web comic site and, 273

Calendar Helper, 85

classic_pagination, 257, 588

CSS Graphs, 156–159

default_order, 450

in-place controls, 486, 523

make_resourceful, 438, 455

permalink_fu, 261

Random Finder, 370–371

Restful Authentication, current_user
object, 337

white_list, 266

will_paginate, 257–260, 588

PNG, responding to, 169–170

Post model

building associations to, 527–534

creating, 504–506

post scaffold resource, adding, 342

Post.recent class method, 367

postDelete function, 464

posts, HTML structure for, 216

posts controller

for church social networking site

code for, 349

create method, 345

destroy method, 349

edit method, 347–348

index method, 345

modifying, 344

new method, 344–345

show method, 346–347

update method, 348

configuring to accept in-place edits, 525

creating, 506

posts model for church social networking
site, creating, 342–343

posts resource, adding, 507

process method (Initializer class), 196–197

profile controller for church social
networking site

creating, 333–336

edit template, 338

show template, 340–341

update method, 340

progress message boxes (Ext-JS), 409

project

application, testing, 28–29

database settings, 27–28

freezing

to Rails 1.2 release, 30

Ruby gems, 31

installing style sheets, 29–30

starting new

command-line options for rails
command, 27

commands for, 23–25

7818Index.fm Page 612 Sunday, October 7, 2007 10:26 PM

613■I N D E X

Find it faster at http://superindex.apress.com

directory structure, creating, 25–26

public controller for web comic site, 287–293

public/ directory, 26

Publisher model

creating, 428–433

sorting, 451

publishers controller

creating, 439

modifying, 476

Publishers index page, 476–477

■Q
query caching, 587

■R
RadRails, 11, 16

rails command

command-line options for, 27

creating directory structure, 25–26

starting new project, 23–25

Rails edge version

application, creating, 554–555

overview of, 552

pulling down, 553

Rails 1.2, freezing project to, 30

Rails request routing. See request routing

Rails 2.0

features of

automatically generated migrations, 587

database commands, 587

query caching, 587

RESTful routing, 588

sexy migrations, 586

viewing routes, 587

features removed from framework,
588–589

installing

on Linux, 4

on Mac OS X, 5

on Windows, 4–5

overview of, 3

startup process, 192–197

Welcome aboard page, 29

rake db:migrate task, 28

rake rails:freeze:edge command, 552

rake tasks for database management, 587

rand method, 369

Random Finder plug-in, 370–371

random user profile, obtaining, 369–371

random() function, 370

read_fragment method, 311–312

reader object for data store, 407

Really Simple Syndication (RSS) feed for
blog, building, 263

recent method, 367–369

recently_activated? method, 51

recoding to legacy database

automating Ext-JS installation, 411–417

creating better interface, 405–409

installing Ext-JS into application, 410–411

overview of, 402

utilizing interactive console, 403–405

record in database. See also games record

creating or deleting, 446

editing, 447

redirect_back_or_default method, 53

referential integrity, 197

registering sweeper into controllers, 296

registration for user, building, 46–49

reload! command, 428

renderNews function, 514

reordering elements in lists, 79–80

repetition in code, avoiding, 61

replacing style sheet, 215

Representational State Transfer (REST), 94–95

request cycle, 290

request routing

application controller

after_filterflush_the_blog_object
method, 204

around_filter method, 204

7818Index.fm Page 613 Sunday, October 7, 2007 10:26 PM

614 ■I N D E X

request routing, application controller
(continued)

before_filterfire_triggers method, 203

before_filterget_the_blog_object
method, 203

articles controller, 205–206

content controller, 205

determining path, 202

displaying articles, 207

overview of, 201–202

rescoping exercise controller, 116–119

Reset.css style sheet, 30

reset-fonts-grids.css style sheet, 30

resizing images, 277

respond_to block, 101, 551

respond_to method, 98

responding to PNG, 169–170

responds_to method, 168

response_for method, 450

REST (Representational State Transfer),
94–95

REST resource, adding member routes to, 164

RESTful application

activity resource

controller, modifying, 131–134

model and associations, 128–130

overview of, 127–128

routes, modifying, 130–131

view templates, modifying, 134–135

add activity form, improving, 137–138

authentication system

adding with restful_authentication
plug-in, 104–111

errors with, 153

building, 95

exercise resource

completing, 115

controller, rescoping, 116–119

exercise views, 121

model associations, building, 116

views, 119–121

goals resource

capturing last result, 149

controller, configuring, 141–143

model, modifying, 140

nested route, setting up, 140

overview of, 139–140

views, 145–147

home page, creating, 113–115

layout template, creating, 111–112

map.connect method, 95

map.resources method, 96–98

new user, creating, 113

respond_to method, 98

results resource

controller, configuring, 143–145

model, modifying, 140

nested route, setting up, 140

views, 147–148

scaffold_resource method

exercise resource, building, 100–104

overview of, 98–100

workout resource

controller, 123–125

model and associations, 122

overview of, 121

show template, modifying, 136

views, 125–127

Restful Authentication plug-in, current_user
object, 337

RESTful data, pulling directly into
application, 551–552

RESTful development, 93

RESTful interface, 149–152

RESTful routing, 588

restful_authentication plug-in, 104–111

results resource

controller, configuring, 143–145

model, modifying, 140

nested route, setting up, 140

7818Index.fm Page 614 Sunday, October 7, 2007 10:26 PM

615■I N D E X

Find it faster at http://superindex.apress.com

overview of, 139

views, 147–148

rewriting application

automating Ext-JS installation, 411–417

creating better interface, 405–409

existing code, looking at, 400–401

goals for, 397–398

installing Ext-JS into application, 410–411

issues to resolve, 402

legacy PHP site, description of, 397

overview of, 395

recoding to legacy database, 402

tour of current system, 398

utilizing interactive console, 403–405

.rhtml file extension, 562

rich text editor, enhancing Add Comment
Form with, 383–384

RIDE-ME editor, 10

RJS actions, using to provide AJAX
functionality, 181–183

RJS templates, 80–82

RMagick, installing, 158

routes

authentication system and, 107

names, building, 96

nested, 130–131

setting for games record, 436

for user directory, creating, 373–374

viewing, 587

routing request. See request routing

RSS feed for blog, building, 263–264

Ruby, installing

on Linux, 4

on Mac OS X, 5

on Windows, 4–5

overview of, 3

ruby/script/generate task, running, 415

run method (Initializer class), 193

running

database migration, 59

ruby/script/generate task, 415

.rxml file extension, 562

■S
Sager, Brasten, 170

scaffold command, 588

scaffold resource command, 342

scaffold_resource method

exercise resource, building, 100–104

overview of, 98–100

scaffolding, modifying for web comic site

comics/edit, 281–282

comics/index, 280–281

comics/new, 279

comics/show, 280

overview of, 278

scalability, 269

schedule model

creating, 66

updating, 68

schema definition, 198

schema_info table, 421

Scite Text Editor, 9

screenshots, displaying, 493–495, 499

script/ directory, 26

script/console tool, 47

script/generate command, 412

Scruffy graphing library, 170–171

search method, 531

select boxes for games page, handling,
486–488

session model for church social networking
site, creating, 322

sessions controller

authentication system, 109–110

web comic site, 284

welcome method, adding within, 113

set_load_path method (Initializer class), 193

set_table_name method, 404, 504

setting method, 221

7818Index.fm Page 615 Sunday, October 7, 2007 10:26 PM

616 ■I N D E X

setupDataSource() function, 571

sexy migrations, 586

Shaw, Zed, 17

show avatar method, 336

show method (posts controller), 346–347

show template

activity resource, 135

Add Comment Form, 384–386

for games record, building, 479–480

profile controller, 340–341

results resource, 148

web comic site, 280

for workout resource, modifying, 136

show.rhtml template, workout resource
views, 126

sidebars

on blog site, 210

HTML structure for, 216

in Typo, creating and customizing,
220–222

sidebar-tasks method, 73

signing in to Highrise account, 544

signup form from restful_authentication
plug-in, 108

signup method, 52

sign-up page, 54

simple user authentication, implementing,
239–240

simplicity and RESTful application, 95

SMTP configuration, 49

social networking sites, popularity of, 319. See
also church social networking site

sort method, 80

spam protection, 211, 266

Sparklines

implementing into program, 160–162

installing, 159–160

sparkline_tag helper method, 161

speech bubbles, HTML view of source for, 379

SQLite Ruby gem, 7–8

starting new project

command-line options for rails
command, 27

commands for, 23–25

directory structure, creating, 25–26

startup process, 192–197

storing

cached fragments, 307

uploaded files, 247

style sheets

CSS, 38

ext-all.css, 441

Fonts.css, 30

Grids.css, 30

installing, 29–30

login form and, 112

Niftycube, 218

replacing, 215

Reset.css, 30

reset-fonts-grids.css, 30

xtheme-vista.css, 441

submitResource method, 467

subscription option. See also action caching

adding, 299

clearing out cache, 313

default layout, customizing, 308–313

limiting access to subscribers, 301–304

members controller, 300–301

Subversion version control system, 19–20

sweeper for cache, creating, 295–297

SWFupload, 390

■T
tables, schema_info, 421

tagging

<%# %> tag, 113

blog, 223

implementing, 267

task controller, creating, 60–62

task fields for database, 58

7818Index.fm Page 616 Sunday, October 7, 2007 10:26 PM

617■I N D E X

Find it faster at http://superindex.apress.com

task model

creating, 57

modifying, 59–60

updating, 68

task.complete! method, 88

task.incomplete! method, 88

tasks

attributes of, 57

Highrise API, 547

marking complete, 78

moving to daily schedule, 72–73

tasks list. See also To-Do Manager

adding to appointment scheduler, 566–567

building out support for, 69–70

displaying upcoming tasks

data store, building, 571–576

variables, setting up, 569–571

getting upcoming tasks, 567–569

templates

edit

activity resource, 135

exercise resource, 119

for games record, building, 479–480

goals resource, 145

results resource, 148

web comic site, 281–282

index

activity resource, 135

exercise resource views, 120

galleries, moving to partial, 392

goals resource, 147

results resource, 148

web comic site, 280–281

workout resource views, 125

layout, for RESTful application, creating,
111–112

login, adding div to, 45

new

activity resource, 135

Exercisr application, 119

goals resource, 145

results resource, 148

web comic site, 279

new.rhtml, workout resource views, 127

RJS, 80–82

show

activity resource, 135

Add Comment Form, 384–386

for games record, building, 479–480

profile controller, 340–341

results resource, 148

web comic site, 280

for workout resource, modifying, 136

show.rhtml, workout resource views, 126

view

for user directory, editing, 374–375

for user registration and authentication
system, 39–40

welcome, 115

test/ directory, 26

testing

application, 28–29

connectivity to Highrise, 555–557

database settings, 28

text editors

installing, 8

Linux-only, 13

Mac-only, 14

recommended, 15

rich, enhancing Add Comment Form with,
383–384

Windows-only, 9–12

TextMate editor, 14–15

themes in Typo

building custom, 214–219

exploring, 214

managing, 213

37signals. See Highrise API

7818Index.fm Page 617 Sunday, October 7, 2007 10:26 PM

618 ■I N D E X

Thomas, Dave, Agile Web Development with
Rails, 3

thumbnails of screenshots, displaying,
493–495, 499

TinyMCE JavaScript editor

description of, 345, 489

enhancing Add Comment Form with,
383–384

tmp/ directory, 26

to_json method, 454

today controller

creating, 36

limiting access to, 44–46

sort method, 80

todo controller, 72

To-Do Manager

Add Task Form

converting to partial, 76–78

creating, 62

toggling, 81–82

Ajaxification of, 79–82

daily schedule

displaying, 74–76

implementing helper method, 73–74

moving tasks to, 72–73

overview of, 71

date selection fields, 63–66

marking tasks complete, 78

partials, utilizing, 76

schedule model, 66, 68

task controller, creating, 60–62

task model

creating, 57–59

modifying, 59

updating, 68

tasks list, building out support for, 69–70

todo model, 67–68

user model, updating, 69

todo model, 67–68

toggle for news display, adding, 514, 518–521

toggle_complete method, 88

toggleNews function, 515

toggling, Add Task Form, 81–82

toolbar buttons, adding, 462–463

tracing request route, 202

tracking fitness goals and results

goals resource

capturing last result, 149

controller, configuring, 141–143

model, modifying, 140

nested route, setting up, 140

overview of, 139–140

views, 145–147

graphs

CSS Graphs plug-in, 156–159

Gruff graphing library, 163–170

overview of, 155

Scruffy graphing library, 170–171

Sparklines, 159–162

Ziya, 172–177, 180

overview of, 93

results resource

controller, configuring, 143–145

model, modifying, 140

nested route, setting up, 140

views, 147–148

troubleshooting using Firebug, 458

Tufte, Edward, 159

Twitter site, 269

Typo

activating blog, 190–192

Articles overview page, 209

articles, adding, 209

content, uploading, 210

customizing

building custom themes, 214–219

exploring themes, 214

managing themes, 213

sidebar component, creating and
customizing, 220–222

7818Index.fm Page 618 Sunday, October 7, 2007 10:26 PM

619■I N D E X

Find it faster at http://superindex.apress.com

database of

blogs table, 199

categories table, 199

content table, 200

schema definition, 198

sidebars table, 200

studying, 197

tags table, 201

visual representation of, 201

features of, 188

installing, 189

managing blog with, 211–212

pages, adding, 210

sidebars

managing, 210

rendering, 207

■U
Unix, installing database on, 8

upcoming tasks

displaying

data store, building, 571–572, 576

variables, setting up, 569–571

getting from task list, 567–569

update method

posts controller, 348

profile controller, 340

update_page method, 582

updating notes on customers, 581–582

uploaded files, storing, 247

uploading

content to blog site, 210

files to web comic site, 273–275

photos in batch files, 390

upper navigation, 376

URL for blog, changing, 261

URL helpers, 104

user authentication

for gaming site, adding, 535–536

implementing, 239–240

user details model for church social
networking site, creating, 329–331

user directory for church social networking
site, 373–375

user error, capturing, 463

user model

Acts as Authenticated plug-in, 42

for church social networking site, 322–323

modifying, 51–52

updating, 69

User Notifier model, 50

user page for church social networking site

blog summaries, adding, 350–352

example, viewing, 336

user profile images, using Kropper for, 393

user profiles for church social networking
site

editing, 338–340

viewing, 340–341

user registration and authentication system

Acts as Authenticated plug-in,
configuring, 43–46

adding user registration and
authentication, 40–43

e-mail notification

account controller, modifying, 52–55

configuring outbound e-mails, 49–51

sending, 49

User model, modifying, 51–52

flow of, 46

layout, building, 36–39

overview of, 35–36

user registration, building, 46–49

view template, creating first, 39–40

user_observer.rb file, 50

UserNotifier class, 50–51

users for church social networking site

creating, 331–332

displaying information about, 333–336

users controller (authentication system), 108

7818Index.fm Page 619 Sunday, October 7, 2007 10:26 PM

620 ■I N D E X

■V
validate_as_attachment method (Comic

model), 278

vCard, inputting from, 389

.vcf extension, 551

vendor/ directory, 26

verify_admin method, 287

verify_member method, 302

version control system, using, 19–20

view template

for user directory, editing, 374–375

for user registration and authentication
system, 39–40

viewing

all user galleries, 361–362

blog posts, 347

comics on web comic site, 291

contact in Highrise, 549–551

gallery, 359–361

notes on customers, 578–580

routes, 587

single blog post, 260–261

user profiles, 340–341

views, creating for games record

border layout, 442–445

standard layout, 440–442

■W
Weaver, Evan, 267

web administration, adding to blogging
engine application, 267

web comic site

administration of, 273–275

authentication system for, 284–285, 316

blog, adding, 315

caching and, 289

comic, creating, 282–283

comic model, 275–278

description of, 271

forum, integrating, 315

layout of, 272

login page, 285

page caching

clearing cache, 294–297

enabling, 291–294

overview of, 289–290

passwords to limit access to, 286–287

public controller, 287–288, 291–293

routes, modifying, 278

scaffolding, modifying

comics/edit, 281–282

comics/index, 280–281

comics/new, 279

comics/show, 280

overview of, 278

selecting comics by date, 316

Web server, installing

Mongrel, 17–18

WEBrick, 16–17

web service, building with Action Web
Service, 228

Web Services Description Language
(WSDL), 229

web sign-up process, 389

web sites

Apress Source Code/Download
section, 37

CSS Zen Garden, 215

37signals, Highrise API, 551

Typo themes, 214

webcomic method, 288, 303

WEBrick, 16–17

welcome controller for church social
networking site

editing, 365

index method of

overview of, 366

random user profile, obtaining,
369–371

recent method, 367–369

7818Index.fm Page 620 Sunday, October 7, 2007 10:26 PM

621■I N D E X

Find it faster at http://superindex.apress.com

welcome method, 113

welcome template, 115

white_list plug-in, 266

Why’s (Poignant) Guide to Ruby, 282

will_paginate plug-in, 257–260, 588

Windows

code editors, 9–12

database, installing on, 7

RMagick, installing on, 158

Ruby and Rails, installing on, 4–5

Wolfe, Jonathon, 393

workflow, defining for games record,
445–447

workout resource

add activity form, improving, 137–138

controller, 123–125

model and associations, 122

overview of, 121

show template, modifying, 136

views, 125–127

WSDL (Web Services Description
Language), 229

WYSIWYG functionality for games page,
providing, 489–492

■X
.xml.builder file extension, 562

XMLHTTP request, 79–80

xmlrpc controller, 228

XML/SWF charts library, 172

xtheme-vista.css style sheet, 441

■Y
Yahoo CSS tools and church social

networking site, 325

Yahoo Maps API

application ID, obtaining, 561

displaying customers on map, 576–578

instantiating map, 561

plugging in map, 565–566

Yahoo User Interface (YUI) library, 29–30,
218

yield method, 38

■Z
Ziya graphs, 172–177, 180

ziya_chart helper method, 173

7818Index.fm Page 621 Sunday, October 7, 2007 10:26 PM

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /DetectCurves 0.100000
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /PreserveDICMYKValues true
 /PreserveFlatness true
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /ColorImageMinDownsampleDepth 1
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /GrayImageMinDownsampleDepth 2
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /CheckCompliance [
 /None
]
 /PDFXOutputConditionIdentifier ()
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

