


Hans Gilgen 
Univariate Time Series in Geosciences 
Theory and Examples 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Hans Gilgen 

 
 
 
 
 
 
 
 
 

Univariate Time Series in 
Geosciences 
 
Theory and Examples 
 

 
 
 
With 220 Figures 
 
 
 
 
 
 
 
 
 
 
 

 



AUTHOR: 
 
Dr. Hans Gilgen
Institute for Atmospheric and Climate Science 
Swiss Federal Institute of Technology (ETH) Zurich
Universitätsstr. 16 
8092 Zurich
Switzerland
 
 
E-MAIL: HANS.GILGEN@ENV.ETHZ.CH 
 
 
 
 
 
 
 
 
 
ISBN 10       3-540-23810-7 Springer Berlin Heidelberg New York 
ISBN 13       978-3-540-23810-2 Springer Berlin Heidelberg New York 
 
Library of Congress Control Number: 2005933719 
 
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of 
this publication or parts thereof is permitted only under the provisions of the German Copyright Law 
of September 9, 1965, in its current version, and permission for use must always be obtained from 
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. 
 
 
 
 
 
 
Springer is a part of Springer Science+Business Media 
springeronline.com 
© Springer-Verlag Berlin Heidelberg 2006 
Printed in The Netherlands 
 
 
The use of general descriptive names, registered names, trademarks, etc. in this publication does not 
imply, even in the absence of a specific statement, that such names are exempt from the relevant pro-
tective laws and regulations and therefore free for general use. 
 
Cover design: E. Kirchner, Heidelberg 
Production: A. Oelschläger 
Typesetting: Camera-ready by the Author 
 
Printed on acid-free paper   30/2132/AO 543210 



in memory of JoJo and MaiMai
to Lüsai



Preface

La théorie des probabilités n’est au fond que le bon sens réduit au calcul.
Probability theory is, basically, nothing but common sense reduced to

calculation.
Laplace, Essai Philosophique sur les Probabilités, 1814.

In Geosciences, variables depending on space and time have been mea-
sured for decades or even centuries. Temperature for example has been ob-
served worldwide since approximately 1860 under international standards
(those of the World Meteorological Organisation (WMO)). A much shorter
instrumental (i.e., measured with instruments) record of the global back-
ground concentration of atmospheric carbon dioxide is available for Hawaii
(Mauna Loa Observatory) only dating back to 1958, owing to difficulties in-
herent in the routine measurement of atmospheric carbon dioxide. Further
examples of long-term records are those obtained from measurements of river
discharge.

In contrast to standardised routine measurements, variables are also mea-
sured in periods and regions confined in time and space. For example, (i)
ground water permeability in a gravel deposit can be approximated from grain
size distributions of a few probes taken (owing to limited financial resources
for exploring the aquifer), (ii) solar radiation at the top of the atmosphere
has been measured by NASA in the Earth Radiation Budget Experiment
for the period from November 1984 through to February 1990 using instru-
ments mounted on satellites (since the lifetime of radiation instruments in
space is limited), (iii) three-dimensional velocities of a turbulent flow in the
atmospheric boundary layer can be measured during an experiment (seeing
that a measurement campaign is too costly to maintain for decades), and last
but not least (iv), measurements have been performed under often extremely
adverse conditions on expeditions.

Many variables analysed in Geosciences depend not only on space and
time but also on chance. Depending on chance means that (i) all records
observed are reconcilable with a probabilistic model and (ii) no determinis-
tic model is available that better fits the observations or is better suited for
practical applications, e.g., allows for better predictions. Deterministic mod-
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els have become more and more sophisticated with the increasing amount
of computing power available, an example being the generations of climate
models developed in the last two decades. Nevertheless, tests, diagnostics
and predictions based on probabilistic models are applied with increasing
frequency in Geosciences. For example, using probabilistic models (i) the
North Atlantic Oscillation (NAO) index has been found to be stationary in
its mean, i.e., its mean neither increases nor decreases systematically within
the observational period, (ii) decadal changes in solar radiation incident at
the Earth’s surface have been estimated for most regions with long-term solar
radiation records, (iii) Geostatistical methods for the optimal interpolation
of spatial random functions, developed and applied by mining engineers for
exploring and exploiting ore deposits, are now used with increasing frequency
in many disciplines, e.g., in water resources management, forestry, agriculture
or meteorology, and (iv) turbulent flows in the atmospheric boundary layer
are described statistically in most cases.

If a variable depending on space and/or time is assumed to be in agree-
ment with a probabilistic model then it is treated as a stochastic process or
random function. Under this assumption, observations stem from a realisa-
tion of a random function and are not independent, precisely because the
variable being observed depends on space and time. Consequently, standard
statistical methods can only be applied under precautions since they assume
independent and identically distributed observations, the assumptions made
in an introduction to Statistics.

Often, geophysical observations of at least one variable are performed at
a fixed location (a site or station) using a constant sampling interval, and
time is recorded together with the measured values. A record thus obtained
is a time series. A univariate time series is a record of observations of only
one variable: a multivariate one of simultaneous observations of at least two
variables. Univariate time series are analysed in this book under the assump-
tion that they stem from discrete-time stochastic processes. The restriction
to univariate series prevents this book from becoming too long.

In contrast to the other examples given, the Mauna Loa atmospheric
carbon dioxide record grows exponentially, a property often found in socio-
economic data. For example, the power consumed in the city of Zurich grows
exponentially, as demonstrated in this book.

Subsequent to introducing time series and stochastic processes in Chaps. 1
and 2, probabilistic models for time series are estimated in the time domain.
An estimation of such models is feasible on condition that the time series ob-
served are reconcilable with suitable assumptions. Among these, stationarity
plays a prominent role. In Chap. 3, a non-constant expectation function of the
stochastic process under analysis is captured by means of estimating a linear
model using regression methods. Chap. 4 introduces the estimation of mod-
els for the covariance function of a spatial random function using techniques
developed in Geostatistics. These models are thereafter used to compute op-
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timal interpolators. Optimal interpolators are a version of optimal predictors,
both being estimators in the statistical sense. In Chap. 5, optimal predictors
for a time series are obtained by applying models for the underlying stochas-
tic process itself. These models are called linear processes, ARMA models
or Box-Jenkins-models. Chap. 3 should be read prior to tackling Chap. 4 or
Chap. 5; it is, however, not necessary to read Chap. 4 prior to accepting the
challenge of Chap. 5.

Chaps. 6, 7, 8, 9 and 10 give an introduction to time series analysis in the
frequency domain. In Chap. 6, Fourier analysis of deterministic functions is
comprehensively (including discussions of aliasing, leakage and the width of
functions in both domains, time and frequency) dealt with in order to build a
solid framework supporting the application of Fourier methods to time series,
which is legitimised by the Fourier representation of stationary stochastic
processes introduced in Chap. 7. Under these preconditions, estimators for the
spectrum of a stationary stochastic process under analysis can be calculated
from a time series observed.

In Chap. 8, the periodogram is introduced. The periodogram has an
asymptotic distribution that can be derived for most discrete-time stationary
stochastic processes. Unfortunately, a periodogram calculated from a realisa-
tion of a process having a spectrum with a large dynamic range is severely
biased and thus the periodogram is generally not a spectral estimator. Spec-
tral estimators are calculated from tapered observations, i.e., observations
modified using a data window, a technique that efficiently reduces the bias
due to leakage. In Chap. 9, an estimator calculated from tapered observations
is convolved with a smoothing kernel to obtain an estimator for a continu-
ous spectrum, and Chap. 10 contains a short introduction to estimators for
discrete spectra.

This book is intended to be an introduction to the analysis of time series
for students of Geosciences, who are assumed to have a mathematical back-
ground of at least two semesters calculus and one semester probability theory
and statistics.

I composed this book using LATEX together with macros made available
by Springer-Verlag and also prepared all figures, except for Fig. 3.10, which
is credited to S. Bischof.

This book appears for the twentieth anniversary of preliminary and in-
complete versions of Chaps. 2, 3, 4, 5, 6, 9 and 10 which I used in courses
given to students of atmospheric and earth sciences at the Swiss Federal In-
stitute of Technology (ETH) and the University, both in Zurich. The students
learnt to estimate models for example time series (of these, the Basel tem-
perature series has “survived” as can be seen in Table 1.1) and I learnt that
clear definitions are important, obviously not a novel concept. My courses
evolved together with the statistical software being available and also perti-
nent to teaching. The major evolutionary step was the changeover to Splus
in the early 1990s. Splus proved to be the first statistical software that could
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be successfully applied by the students subsequent to a short introduction.
Three years ago, a small number of example programs and exercises were
modified so that R could be used. The reasons for these last changes were
twofold: (i) I believed (and still believe) that R will develop more dynamically
than Splus and (ii) R is available under Gnu conditions.

My time series courses improved with the help of H. Künsch of the Statis-
tics Seminar at ETH. He gave a large number of valuable suggestions and
his comments on earlier versions (in German) motivated me to write in such
a way that the mathematics is correct and the text remains readable for
non-mathematicians. The English version was corrected by D. Scherrer who
carefully read the manuscript and patiently transformed German-like con-
structions into English. Without the help of both, H. Künsch and D. Scherrer,
this book could not have been written.

C. Hohenegger’s critical comments helped to fine-tune the definitions and
derivations given in this book.

I am indebted to (i) H. Jensen for entrusting me with preliminary versions
of Sects. 4.3.2, 4.5.2, 4.5.3 and 4.6.3, (ii) K. Hutter for encouraging me to
write this book and (iii) Atsumu Ohmura for both, his confidence in this
project and funding at critical times that helped to finish this book.

I thank M. Andretta, M. Bannert, R. Barry, H. Blatter, C. Breitinger,
S. Brönnimann, N. Bukowieki, P. Calanca, H. Fischer, C. Frei, M. Giansir-
acusa, D. Grebner, J. Gurtz, A. Hänger, H. Jensen, M. Mächler, G. Müller,
Andrée and Atsumu Ohmura, A. Roesch, M. Rotach, M. Roth, W. Sawyer,
P. Stamp, F. Stauffer, H. von Storch, M. Wild and M. Zappa for supplying
data and/or commenting on (parts of) the manuscript. I also thank all stu-
dents whose comments helped to improve the manuscript and the exercises.
Any errors remaining are my responsibility and any comments are welcome.

Zurich, July, 2005 Hans Gilgen
Institute for Atmospheric and Climate Science

Swiss Federal Institute of Technology (ETH) Zurich
Universitätsstrasse 16

CH-8092 Zürich
gilgen@env.ethz.ch
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1 Introduction

In this book, data with a temporal and/or spatial structure are analysed. For
example, in this chapter, a widespread tool for the statistical analysis of data
is used to analyse errors which occur in the measurement of a meteorological
variable. This error analysis

– offers an example of data which reveal their secrets only when the time
dimension is included in the analysis (in Sect. 1.4)

– introduces the statistical software R [114] (in Sect. 1.2)
– reviews the basics of statistical data analysis (in Sects. 1.3 and 1.5). This

review, however, does not act as a substitute to an introduction to Statis-
tics (e.g., [118], [143], [128], [130]).

1.1 Data in Geosciences: for Example, Surface Solar
Radiation Records

Data observed in Geosciences are (i) afflicted with errors, (ii) often incomplete
(i.e., values are missing because a measurement could not be performed at a
given location and time), (iii) sometimes contradictory and (iv) rarely self-
contradictory, namely when values not reconcilable with the body of knowl-
edge available result from the measurement. For example, daily averages of
solar radiation measured at the surface of the earth which are larger than
their corresponding values at the top of the atmosphere are obviously self-
contradictory due to a gross error in the measurement [59]. In addition, the
connection between observations and the properties under analysis is often
only approximately known. What can be inferred under these adverse cir-
cumstances from observations performed in Geosciences? Quite a lot, under
adequate precautions and when the probabilistic properties of the data are
taken into account, as will be demonstrated by the examples given in this
book.

The observations used in this book as examples comprehend climate
data (long-term records of temperature, pressure and radiation), hydro-
meteorological data (precipitation events), micro-meteorological data (wind
speeds measured in the atmospheric boundary layer), soil parameters, seismo-
grams, and hydrological discharge records. The example data sets are given
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Table 1.1. Example data used in this book. The names of the data sets become the
file names in the collection available on the data medium accompanying this book,
provided that the suffix .dat is appended. In the files obtained with the suffix .des
appended to the data set name, descriptions of the data are made available. Data
sets with a ◦ are available in R, the statistical software introduced in Sect. 1.2, those
with a ∗ can be downloaded from the internet address given in the reference(s).

Variable(s) Data sets In this book

agriculture soil parameters stracker Sects. 4.3.1, 4.3.3, 4.5.1
and crop yields

astronomy sun spot numbers ∗[100] Problems 2.31, 9.21
ecology height of tree-line treeline Sects. 3.6, 4.1.2, Problem 4.23

abundance of lynx ◦lynx Problem 9.20
seismology seismic waves earthquake Sect. 9.4.1

nucleartest Problem 9.17
hydro- hydraulic gravel2 Problem 4.6
geology conductivity

hydrology discharge inn7490 Sect. 10.2.2
meteorology/ atmospheric CO2 ∗[84] Problems 3.23, 5.15, 9.24,
climatology Sects. 5.4.1, 5.4.2

precipitation ppitoct592 Sects. 4.1.1, 4.6.5
pressure indices
NAO ∗[76], [69] Problem 2.2, Sects. 2.3.1,

2.5.2, 2.8.4, 8.1, 8.2.2
SO ∗[86] Sects. 5.4.2, 5.4.3, 9.2.5

solar radiation pyrcomp Chap. 1, Problems 2.32, 4.5
swir696 Sect. 3.5
swirhpb Sect. 3.1
swirnorde Sects. 4.3.4, 4.5.3, 4.6.3

temperature
Basel series basel Problem 2.7, Sects. 2.3.4,

3.2.1, 3.4, 5.4.1 and 10.1.3
global averages ∗[75] Problem 2.30

turbulent flow in wind Sects. 2.1, 2.3.2, 5.1.3
boundary layer turwind3 Sect. 9.4.2

economics power consumed zhpower5786 Problem 3.22
in Zurich zhpower8505

in Table 1.1. This selection is clearly biased: solar radiation data dominate
in the subset of climate data, and data sets related to meteorology and/or
climatology dominate in the set of all examples. This bias is ascribable to the
author’s work in radiation climatology.

Measuring data in Geosciences is challenging in most cases, owing to es-
sential limitations (when the measurement disturbs the variable observed) or
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limitations in the instruments, data acquisition systems and/or observational
regions or periods, which can deteriorate the quality of the data. Known lim-
itations and other (possibly unknown) shortcomings in a data set have to be
accounted for when observations are used in Geosciences and consequently,
introductions to the measurement of all data sets used in this book should
be given. However, even abbreviated introductions are beyond the scope of
this book, except for the following three examples:

1. Sect. 9.4.1 introduces the measurement of seismic waves. Seismic waves
are tiny vibrations of the rock that can be recorded by seismometers.
They are caused by an earthquake or an explosion, or, as background
noise in a record, by natural phenomena such as ocean waves.

2. Sect. 9.4.2 introduces the measurement of velocities in a turbulent flow
in the atmospheric boundary layer.

3. This section introduces the measurement of solar radiation at the surface
of the earth.

Solar radiation measurements are more delicate than those of meteorological
variables such as temperature, precipitation, etc., seeing that radiation in-
struments are less stable over longer periods (years) than thermometers, rain
gauges, etc. Nevertheless, maintenance problems and problems arising from
changes in (i) the technology of sensors or data acquisition systems and/or
(ii) the measuring sites are shared by most long-term measurements of mete-
orological variables. Therefore, conclusions drawn from the discussion of solar
radiation records also apply to other climate records, e.g., that changes in the
observed values due to changes in the measurement have to be compensated
when the data are used for climate change studies.

Solar radiation intercepted by our planet will either be absorbed or re-
turned to space by scattering and reflection. Solar radiation is (i) scattered
and reflected by clouds, dry air molecules, water vapour and aerosols in the
atmosphere and (ii) reflected by the surface. The absorbed part of the solar
radiation (242 Wm−2 (watt per square meter) on the average over the globe,
obtained as 71 % (the planetary albedo is 29 % [148]) of 341 Wm−2 (1/4
of the solar constant [53]), all values are approximations) is the source of
energy which drives the processes in the atmosphere and the oceans. Com-
pared to this large amount of energy, the flux of heat generated in the interior
of the earth (mostly from radioactive decay) through the earth’s surface is
negligible on the global average. Although being small, the earth’s internal
heat fuels convection in its mantle (the layer below its crust) and thus drives
plate-tectonics which — over geological periods — allocates oceans and con-
tinents, as described in Sect. 9.4.1. Therefore, solar radiation absorbed in the
atmosphere and at the surface of the earth is the primary energy source for
life on our planet which is shaped by processes driven by its internal heat.

Solar radiation absorbed by our planet can be calculated from the compo-
nents in the radiation budget at the top of the atmosphere: the earth absorbs
and reflects solar radiation incident at the top of the atmosphere and re-
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emits the exhaust heat in the form of terrestrial radiation back into space,
since it is in radiative equilibrium with the sun and space: incoming and
outgoing radiative fluxes balance each other on condition that no energy is
stored/released by heating or cooling the oceans or as latent heat in/from
the ice and snow masses. As a contrasting aside: Jupiter radiates more en-
ergy in space than it receives from the sun. The source of its internal heat
is (along with radioactive decay and the tides generated by its satellites)
gravitational contraction (when a gravitating object contracts, gravitational
potential energy is converted into heat).

The radiative fluxes at the top of the atmophere were measured from
space, using instruments mounted on satellites, in the Earth Radiation Bud-
get Experiment (ERBE) over the period from November 1984 through to
February 1990. Measuring radiative fluxes in space is a formidable task since
(i) instruments have to be built which can be operated in space and, under
the rough conditions prevailing there, will remain stable over relatively long
(a few years) periods, since a re-calibration is too costly (ii) the instruments
have to be mounted on appropriate satellites and (iii) data acquisition and
archival systems have to be maintained ([8], [7]). A continuation (with im-
proved instruments) of the ERBE records is provided by the Clouds and the
Earth’s Radiant Energy System (CERES) [127].

Measuring solar radiation at the surface and maintaining a network of
measuring stations over decades is a task even more difficult than measuring
radiative fluxes at the top of the atmosphere. This task can be accomplished
on condition that

1. a consensus has been reached on the world standard maintained by the
world radiation centre (WRC/PMOD) [52] which is then used to cali-
brate the reference instruments (secondary standards) maintained by the
organisations (in the majority of cases the national weather services) that
measure solar radiation

2. instruments measuring solar radiation are periodically calibrated against
the secondary standards

3. measurements are guided by best practise recommendations regarding
the installation of calibrated instruments, the maintenance schemes, the
data acquisition systems and the data archival procedures ([57], [94])

4. recommendations for the operational measurements account for differ-
ences in climatic regions and are adapted in accordance with the develop-
ment of technology without inducing systematic changes in the measured
records (counter examples are given in Fig. 2.19)

5. the manned or automated stations (sites) where the instruments are
mounted and their neighbourhood remain unchanged over decades

6. the measurements at a site are representative for a larger region, and
7. the data archives are maintained over a substantially long period.

Solar radiation records measured under these conditions are homogeneous
in space and time: spatial and temporal variations in the data are not due
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to changes in the observational system. The conditions enumerated above
establish standard procedures for the observation of radiative fluxes and also
for the subsequent data processing and archiving.

The first international standards for observing meteorological variables
(e.g., temperature, precipitation, pressure) were introduced in the second
half of the 19th century. Observations made with instruments prior to ap-
proximately 1860 were less standardised and are therefore often called early
instrumental records. The reconstruction of a homogeneous climatological
series of, e.g., monthly values, from early instrumental records is a delicate
task. An example is given in Sect. 2.3.4.

Climate records obtained using standard observational procedures are ho-
mogenous and thus allow for monitoring climate change. Often, however, cli-
mate records are afflicted with inhomogeneities. Inhomogeneities stem from
a variety of sources, often they are due to the deficiencies and changes enu-
merated in [82]. Climate data that are not homogenous can be adjusted using
procedures as recommended in [46] or [109]. This difficult task is best done by
the scientist responsible for the measurements since he/she has access to the
station history or the meta data, i.e., the description of the measurements in
the diary kept at the measuring site.

If no detailed station history is available then inhomogeneities (yet not
all) can be detected using statistical methods such as those introduced in
[66], [59], [88] and [140], or they can be found in relevant plots. In Fig. 2.19
for example, the amplitudes of the fluctuations in the differences in solar
radiation recorded at neighbouring stations decrease abruptly, in the years
1975 and 1980, possibly due to the introduction of automated observations.
Subsequent to the detection of such inhomogeneities, an adjustment remains
difficult.

As a substitute for an adjustment, climate data can be flagged as doubtful
due to errors and/or inhomogeneities. For example, the solar radiation data in
the Global Energy Balance Archive (GEBA) [59] and also those measured at
the stations of the Baseline Surface Radiation Network (BSRN) [103] undergo
rigorous quality checks to assure high accuracy as well as homogeneity in
the data, a prerequisite for regression analyses such as those performed in
Sects. 3.1 and 3.5 to estimate decadal changes in these records ([58], [152]).
Due to the quality checks applied, the data in the GEBA and BSRN are, when
used in conjunction with measurements of the radiative fluxes at the top of
the atmosphere, also suitable for calculating a more accurate disposition of
solar radiation in the earth-atmosphere system ([3], [150]).

It remains to take a closer look at the measurement of solar radiation at
the surface of the earth which stands in this book representatively for the
measurement of meteorological variables. Solar radiation is measured using
either a pyrheliometer or a pyranometer. A pyrheliometer is an instrument
designed to measure the direct-beam solar radiation. Its sensor is oriented
perpendicular to the direction of the sun and is inserted in a tube such that
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it intercepts radiation only from the sun and a narrow region of the sky
around the sun. Observations are made when the sky is clear. The quantity
measured is called direct radiation. Pyrheliometer data are used to study the
extinction of solar radiation in an atmosphere free of clouds.

Pyranometers measure the solar radiation from the sun and sky incident
on a horizontal surface. They measure continuously and are exposed to all
kinds of weather. Hence, the detector is shielded by a glass dome which,
notwithstanding, only transmits radiation in wavelengths between 0.3 and
2.8 µm, micrometer, 1 µm = 10−6 m). The glass dome has to be kept clean
and dry. The detector has at least two sensing elements, one blackened such
that most of the incident solar radiation is absorbed and the other coated
with a white paint such that most radiation is reflected (or placed in shade
to avoid solar radiation). The temperature difference between these elements
is approximately proportional to the incident radiation. Annual calibrations
are recommended because the responsivity of pyranometers deteriorates over
time. The meteorological variable measured with a pyranometer is called
global radiation or shortwave incoming radiation (SWIR).

Errors in pyranometer measurements may arise from various sources, of-
ten from instrumental deficiencies during the measurement. There are ran-
dom errors and systematic errors. A random error is zero in the mean of
the measurement period, a systematic error has a non-zero mean. An exam-
ple of a systematic error with a time-dependent mean is the error produced
by a drifting sensitivity of an instrument. Systematic errors can be detected
and possibly corrected, provided that a detailed station history is available.
Random errors cannot be corrected, but their statistical structure can be
taken into account when the data are used, as demonstrated in Sects. 3.1.1,
3.5, 4.6.3, and 4.6.5. With a good instrument the random error of a single
pyranometer measurement is 2% of the measured value.

The maintenance of the instruments, their installation and the data ac-
quisition system is crucial to the quality of the measurements. Errors (sys-
tematic and/or random) can therefore not be excluded. Errors in the single
pyranometer readings propagate to the hourly, daily, monthly, and yearly
means aggregated consecutively from the original data. How much influence
does maintenance have on the quality of pyranometer data? This question
was investigated in a long-term pyranometer comparison project jointly per-
formed by the Federal Office for Meteorology and Climatology (MeteoSwiss)
and the Swiss Federal Institute of Technology (ETH), both in Zurich. In this
project, the shortwave incoming radiation was measured by both institutions
from January 1, 1989 through to December 30, 1992 at the same (Reckenholz)
station, but completely independently. The instruments used in the exper-
iment were both Moll-Gorczynsky-type thermoelectric pyranometers, made
though by different manufacturers. The installation of the instruments, the
maintenance schemes, and the data acquisition systems were chosen delib-
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Table 1.2. A pyranometer comparison experiment was performed at Zurich-
Reckenholz (8031′E, 47025′N, 443 m a.m.s.l.) station jointly by the Federal Office
for Meteorology and Climatology (MeteoSwiss) and the Swiss Federal Institute of
Technology (ETH).

Pyranometer MeteoSwiss ETH

manufacturers Kipp Swissteco

calibrated with the MeteoSwiss at the World Radiation
standard instrument Centre in Davos

installation instrument instrument
lightly ventilated neither ventilated
but not heated nor heated

data acquisition A-net Allgomatic
(MeteoSwiss standard)

averaged over 10 minutes 5 minutes

maintenance daily weekly

erately not to be identical (Table 1.2) to simulate the distinct pyranometer
installations of the institutions that measure and publish SWIR data [58].

From the Reckenholz measurements, hourly and daily averages were cal-
culated consecutively. These daily averages are stored in the following format

89 1 1 13 12

89 1 2 18 18

...

92 12 30 18 18

in the file /path/pyrcomp.dat. This is an example of a text file containing a
table of data as, for each day, it contains a line with five values. The first three
represent time of the measurement as year, month and day. The fourth value
is the daily mean of SWIR calculated from the MeteoSwiss measurements,
and the fifth, the daily mean calculated from the ETH measurements. The
unit of the radiation values is Wm−2. Missing data are represented as NA

(not available). A description of the pyranometer data is given in the file
/path/pyrcomp.des.

This convention is used for all example data sets: the file /path/name.dat

contains the data, the file /path/name.des their description. Please follow the
instructions in Problem 1.1 to read the example data sets from the data
medium accompanying this book.

The example data sets stored on the data medium were prepared in the
years 2003 and 2004 immediately preceding the production of this book.
Updated versions of the example data sets originating from the internet may
be available from the sites referenced. You are encouraged to visit these sites
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and possibly to reproduce the statistical analyses with the updated data sets.
Then, however, you will obtain slightly different results.

Having thus transferred an example data set to your computer, you may
perform a statistical analysis using R. As an example, in Sects. 1.3 and 1.4,
daily averages from the pyranometer comparison experiment described above
are analysed using R. R is introduced in the next section.

1.2 R

R is a programming language for the graphical representation and statistical
analysis of data. Expressions in R usually contain R functions; an example is
given in the following line

result <- function(arg1, arg2, ...) #comment

In this example, result and arg1, arg2, ... are R objects. R objects can be
atomic or non-atomic. Typical non-atomic objects are R vectors and matrices.
R functions and objects R are not, however, explained in detail. R and also

a description of R are available from [114]; to obtain the language reference
start the R help system by typing help.start() in R. R is available for most
operating systems. Depending on the operating system, start an internet
browser before invoking the R help system.

Assuming you have access to R, take advantage of the opportunity and
work through this section. With the following expressions

rholzdayfilename <- "/path/pyrcomp.dat" #filename

rholzdayformat <- list(year=0,month=0,day=0,smi=0,eth=0) #format

rhd <- scan(rholzdayfilename, rholzdayformat) #read file

you can read all values from the file /path/pyrcomp.dat into rhd. The R ob-
ject rhd is a collection of five parallel vectors: rhd$year, rhd$month, rhd$day,

rhd$smi, rhd$eth.
In R, the result of operators (functions) depends on the type of operands

(arguments). For example, R delivers the result 3, if you type
seven <- 7

four <- 4

seven - four

However, if the operands are vectors, R checks if they have the same length
and then performs the same operation on all values. Thus, the result is a
vector again. In the following example,

difsmieth <- rhd$smi - rhd$eth

the first value in the vector rhd$eth is subtracted from the first value in
rhd$smi with the result stored as the first value in difsmieth. This operation
is repeated until the operand vectors are processed to their entire length.

If an R expression contains an R function, the type of the resulting object
depends on the function and its arguments. For example, when a table of
data is read with scan() and a data format, as in the example above, the
result is a collection of vectors. Is the same result delivered by the R function
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read.table()? read.table() is often used to read text files containing tables
of data.

The number of values in an R vector is available with the R function
length(), e.g., as the last day of the pyranometer comparison experiment is
December 30, 1992, and as 1992 is a leap year

length(rhd$eth)

[1] 1460

tells you that there are 1460 values in the vector rhd$eth, in accordance with
the duration of the comparison experiment. The vector values are indexed,
e.g., the R expressions

rhd$smi[1:40]

[1] 13 18 39 55 22 20 15 33 20 16 30 49 73 70 48 18 24 48 19 59

[21] 56 25 11 48 25 NA 31 72 54 29 27 70 65 35 79 79 96 NA 59 NA

rhd$eth[1:40]

[1] 12 18 35 47 21 19 15 32 20 16 29 44 57 58 45 17 24 45 18 55

[21] 52 24 11 46 20 38 30 67 44 29 26 65 62 32 75 75 90 63 53 39

write out the first 40 values in rhd$smi and rhd$eth. On January 1st, 1989, the
first day of the experiment, the MeteoSwiss pyranometer measured 13 Wm−2,
1 Wm−2 more than the ETH instrument. The next day both measurements
were identical. On January 26th, the MeteoSwiss measurement was not avail-
able. How many days with identical values occurred in the pyranometer com-
parison experiment? The expressions

smieth <- rhd$smi[(1:length(rhd$smi))[(rhd$smi == rhd$eth)]]

ethsmi <- rhd$eth[(1:length(rhd$eth))[(rhd$eth == rhd$smi)]]

generate two R vectors, which contain only identical daily values from the
MeteoSwiss and ETH instruments. Both vectors are identical. With the ex-
pressions

length(smieth)

smieth

the length of the vector smieth and its values are written out. smieth con-
tains missing values, because (i) the vectors with the measurements contain
missing values and (ii) the equality condition (rhd$smi == rhd$eth), in the
expressions above, delivers T (true), even if the values compared are NAs, i.e.,
if one or both values are missing. To exclude these cases, use the R function
is.na(), which results in T (true) or F (false) and is negated with !. Using

smi1 <- rhd$smi[(1:length(rhd$smi))[(!is.na(rhd$smi))]]

eth1 <- rhd$eth[(1:length(rhd$eth))[(!is.na(rhd$eth))]]

smi2 <- rhd$smi[(1:length(rhd$smi))

[(!is.na(rhd$smi))&(!is.na(rhd$eth))]]

eth2 <- rhd$eth[(1:length(rhd$eth))

[(!is.na(rhd$eth))&(!is.na(rhd$smi))]]

the vectors smi1, eth1, smi2 and eth2 are generated. The vector smi1 con-
tains the MeteoSwiss measurements for these days only, when the value is
not missing. The length of smi1 is 1358, i.e., MeteoSwiss measurements are
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missing for 102 out of 1460 days. The figures for the ETH measurements are
28 out of 1460 days. The vector smi2 contains the MeteoSwiss pyranometer
values for days when both measurements are available. The length of this
vector is 1330, i.e., during the comparison period there are 1330 days with
both the MeteoSwiss and ETH measurement. Consequently, the two condi-
tions above delivering smi2 and the comparison (rhd$smi == rhd$eth) in the
expressions

smieth1 <- rhd$smi[(1:length(rhd$smi))[(rhd$smi == rhd$eth)&

(!is.na(rhd$smi))&(!is.na(rhd$eth))]]

ethsmi1 <- rhd$eth[(1:length(rhd$eth))[(rhd$eth == rhd$smi)&

(!is.na(rhd$eth))&(!is.na(rhd$smi))]]

are needed to obtain the result, that only for 215 out of 1460 days the same
shortwave incoming radiation value was obtained from the measurements.

Another strength of R is the graphical representation of data. You can
choose where your graphic device will be generated, e.g., with

postscript(file="fig11.ps",horizontal=F,width=4,height=4)

the plots are written to a postscript-file. Then, you may choose how the plots
are depicted. With

par(mfrow=c(1,3))

you receive, e.g., three plots side by side, as shown in Fig. 1.1. With
dev.off()

the graphic device closes (R functions dev.xxx() provide control over multiple
graphics devices). Do not forget to close a postscript-file when the graphical
description is complete.

The MeteoSwiss and ETH pyranometer daily values, made available as
R vectors in this section, are analysed in the next section with mean() and
var(), both R functions, under the usual statistical assumptions.

1.3 Independent Identically Distributed (Iid.) Random
Variables

In this section, the basics of statistical data analysis are reviewed. As an
example, the pyranometer daily values are analysed in Sects. 1.3.1 and 1.3.3
under the assumptions that they are (i) identically distributed and (ii) in-
dependent from one day to the next or previous or any other following or
preceding day, i.e., that they are iid. The statistical analysis under the iid. as-
sumptions is reviewed in Sect. 1.3.2. The pyranometer daily values, however,
are not iid., as follows from a discussion in Sect. 1.3.4.

1.3.1 Univariate Analysis of the Pyranometer Data

As shown in Sect. 1.2, the data resulting from the pyranometer comparison
experiment are erroneous. Do the errors afflict the histograms of the data?
The R expressions
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Fig. 1.1. Histograms of daily pyranometer values calculated from the measure-
ments (in Wm−2) performed by the MeteoSwiss and the ETH at Zurich-Reckenholz
station (Table 1.2), and of their differences.

#the argument main=paste(" "," ") suppresses the title

hist(rhd$smi,breaks=34,xlab="MeteoSwiss",main=paste(" "," "))

hist(rhd$eth,breaks=34,xlab="ETH",main=paste(" "," "))

generate the “MeteoSwiss” and “ETH” histograms shown in Fig. 1.1, which
are the histograms of the daily values of shortwave incoming radiation mea-
sured in the pyranometer comparison experiment. The histograms are very
similar though the values are identical for only 1 out of 7 days. This suggests
that the differences

dif <- rhd$smi - rhd$eth #vector of differences

are small. The histogram of the pyranometer differences is obtained with
hist(dif,breaks=20,xlab="MeteoSwiss - ETH",main=paste(" "," "))

The “MeteoSwiss - ETH” histogram of these differences is also plotted in
Fig. 1.1.

The “MeteoSwiss” and “ETH” histograms in Fig. 1.1, although very sim-
ilar, show small deviations, e.g., in the “ETH” histogram the frequencies of
small values are slightly larger than in the “MeteoSwiss” histogram. The
same conclusion is drawn from the “MeteoSwiss - ETH” histogram. How
much larger, one wonders, are the MeteoSwiss values in the mean?

The answer is found using the empirical moments of the MeteoSwiss and
ETH measurements given in Table 1.3. These moments are calculated with
the R functions mean() and var() after NAs have been removed from the
argument vectors, e.g., with

dif1 <- dif[(1:length(dif))[(!is.na(dif))]]
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Table 1.3. Empirical moments for the daily pyranometer values measured by the
MeteoSwiss and ETH at Zurich-Reckenholz station.

daily number mean variance std. dev. covariance
value Wm−2 (Wm−2)2 Wm−2 correlation

MeteoSwiss 1358 128.2 8924.5 94.5 8842.3 (Wm−2)2

ETH 1432 124.7 8687.3 93.7 .9974
differences 1330 3.4 47.5 6.89

mean(dif1)

the mean of the daily pyranometer differences is calculated.
mean() calculates the empirical mean using µ̂X = (1/N)

∑N
i=1 xi, and us-

ing σ̂2
X = (1/(N−1))

∑N
i=1(xi−µ̂X)2, var() calculates the empirical variance,

where xi are the observations. Both formulas are recognised referring to an
introduction to Statistics. Formulas for calculating the empirical covariance
and correlation are given in (1.7).

After this calculation, some questions concerning the results in Table 1.3
and Fig. 1.1 arise. These can be divided into two groups. In the first group,
questions arise regarding the formulas used for the calculations as well as the
accuracy of the results. In the second group the question arises, whether the
error of the daily pyranometer value is random or systematic.

1. The empirical mean µ̂X is the quotient of the sum of the xi and N ,
however, the empirical variance σ̂2

X is the quotient of the sum of the
squares (xi − µ̂X)2 and N − 1, where N is the number of observations
xi. Why then is the empirical variance calculated with the divisor N − 1
instead of N? How exact are the results calculated by mean() and var()

using these formulas? Would the results be more exact, if more than four
years of data were available?

2. In Sect. 1.1, a random error was defined to be zero in the mean. Assume
that the differences of the MeteoSwiss and ETH daily pyranometer values
are observations of the cumulated random errors in both measurements.
Are then the cumulated errors random? If the empirical mean of the
differences (3.4 Wm−2 in Table 1.3) is not “large enough” (in the sta-
tistical sense), the cumulated errors are then random, even though the
histograms and Table 1.3 suggest that they are systematic.

These questions can be answered using the definitions and propositions
(1.1) to (1.6) and the results (1.15) to (1.24). As a collateral benefit, some
basics from an introduction to Statistics are refreshed.
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1.3.2 Unbiased and Consistent Estimators, Central Limit
Theorem

The daily MeteoSwiss and ETH pyranometer values analysed above were
calculated from the measurements made during the Reckenholz comparison
experiment. Since error free measurements are impossible, it is assumed that
the daily MeteoSwiss and ETH values are random, i.e., observations of ran-
dom variables. Hence, also their differences are random. Under this basic
assumption, the empirical moments in Table 1.3 are examples of estimates,
as defined in (1.1).

The estimate ûX is an observed value of the estimator
ÛX = g(X1, . . . , XN ), on condition that ûX = g(x1, . . . , xN ) is
calculated with the formula g from the observations x1, . . . , xN

of the random variables X1, . . . , XN .

(1.1)

In (1.1), the estimator ÛX is a functional of the (joint) distribution of the
random variables X1, . . . , XN , with the distribution of g(X1, . . . , XN ) being
concentrated in ûX . A functional is a mapping (usually a formula), which
assigns a real number to each function in a set of functions. The concept of
concentration is mentioned in the remarks to the Chebyshev inequality (1.17)
and discussed in an introduction to Statistics.

Often ÛX is written as ûX . Once this simplification has been made, it
becomes clear from the context whether ûX is an estimate or an estimator.
Estimates may be found using different methods, e.g., moment, least squares
and maximum likelihood estimates are known from an introduction to Statis-
tics.

For instance, the empirical means in Table 1.3, calculated from the daily
SWIR observations xi, are estimates as defined in (1.1). In this example,
the formula g is the arithmetic mean, and the estimate is calculated using
ûX = (1/N)

∑N
i=1 xi from the observed values xi. According to definition

(1.1), ûX is the observed value of the estimator ÛX = (1/N)
∑N

i=1Xi, and
Xi is the theoretical daily SWIR at day i, i.e., a random variable.

With definition (1.1) alone, the questions in the remarks to Table 1.3 can-
not be answered. For example, intuition suggests that more accurate means
could be calculated if more than four years of data were available. This can-
not be shown to be either true or false using only (1.1). To find the answers
to this and the other questions in the remarks to Table 1.3, some constraining
properties of the theoretical SWIR Xi at day i are therefore assumed. The
usual statistical assumptions are found in (1.2).

Each observation delivers a possible value xi of the random
variable Xi. The set of the xi is a random sample provided that

1. an arbitrary number of observations is taken
under identical conditions, and

2. each observation is taken independently from one another.

(1.2)
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Under these assumptions, the estimate ûX in (1.1) is calculated using g from
N observations xi, which are possible values of N identically distributed, and
independent random variables Xi. The identical distributions of the Xi are
required in (1.2,1), and the independence of the Xi in (1.2,2). Random vari-
ables Xi with the properties required in (1.2) are said to be independent and
identically distributed (iid.). Therefore, the assumptions in (1.2) are called
iid. assumptions.

Under the iid. assumptions, the estimator ÛX = g(X1, . . . , XN ) as defined
in (1.1) is a function of N random variables Xi, which are iid. Hence, one can
easily calculate its moments EÛX and VarÛX , using the rules in (1.15), if (i)
the estimator is linear (a weighted sum of theXi) and (ii) the expectation EXi

and the variance VarXi of the Xi is known. If, in addition, the distribution
of Xi is known, the distribution of ÛX can then be calculated.

As an example, the moments of the mean of a random sample are calcu-
lated below. Assuming that the xi are iid., and also assuming that µX is the
expectation ofXi, that σ2

X is the variance ofXi and µ̂X is the arithmetic mean
of the xi, you obtain with (1.15,4) Eµ̂X = (1/N)

∑N
i=1 EXi = (1/N)NEXi =

µX and with (1.15,6) and (1.16,4) Varµ̂X = (1/N2)
∑N

i=1 VarXi = (1/N2)N×
VarXi = (1/N)σ2

X .
The mean of a random sample is an example of an estimator without bias,

which is defined in (1.3).

An estimator ÛX has no bias (is unbiased, bias-free), on condition
that EÛX = uX , with uX being the unknown theoretical value.

(1.3)

If the Xi are iid. as required in (1.2), uX in (1.3) is often an unknown pa-
rameter in the distribution of the Xi. For instance, uX stands for µX or σ2

X ,
assuming that Xi is normally distributed, or for λX , assuming that Xi is
Poisson distributed. As another example, it is shown in Problem 1.4, that
the empirical variance is an unbiased estimator of the theoretical variance if
the Xi are iid., since Eσ̂2

X = E
(
(1/(N−1))

∑N
i=1(xi− µ̂X)2

)
= σ2

X . However,
σ̃2

X = (1/N)
∑N

i=1(xi − µ̂X)2
)

is not an unbiased estimate for the variance
of a random sample. If an unbiased estimator is used, you can be certain
that an unknown theoretical value is neither over- nor underestimated in the
mean, when the estimates are calculated from many samples taken. This is
a desirable property.

Another desirable property of an estimator is its consistency as defined
in (1.4). If a consistent estimator ÛX is used, then the probability that the
absolute difference of the estimate ûX and the true value uX , |ûX−uX |, being
less than a small ε, comes close to 1 for an arbitrarily large N . Consequently,
in the mean of many random samples, the estimates become more accurate
if the sample size N increases. For N → ∞, Varµ̂X → 0, since the estimator
is defined for N = 1, 2, 3, . . ..
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It is assumed that ÛX = g(X1, . . . , XN ) is an unbiased estimator
defined for N = 1, 2, 3, . . .. If its variance E(ÛX − uX)2 → 0 for
N → ∞, then, from the Chebyshev inequality (derived in (1.17)),
Pr
(|ÛX − uX | < ε)= 1 − Pr

(|ÛX − uX | ≥ ε
)→ 1 for N → ∞ and

for each ε > 0, is obtained.
Then ÛX is said to be a consistent estimator.

(1.4)

For example, the mean µ̂X of a random sample is a consistent estimator
for the expectation EX = µX of the Xi, since Eµ̂X = µX and Varµ̂X =
E(µ̂X −Eµ̂X)2 = E(µ̂X −µX)2 = (1/N)σ2

X , σ2
X = VarX, the variance of the

Xi, as shown in the remarks to (1.2). Thus µ̂X is unbiased and Varµ̂X → 0
as N → ∞.

In the case of the pyranometer comparison experiment, it is concluded
from (1.4) that the estimated means in Table 1.3 would be more accurate
if the experiment had been performed over a longer period than the four
years from 1989 to 1992. This is true under the assumption that the daily
pyranometer values are in agreement with the iid. assumptions in (1.2).

This completes the answers to the first group of questions in the remarks
to Table 1.3. The remaining question in the second group, i.e., whether the
differences in the pyranometer daily values are due to random errors in both
measurements, can only be answered if the probability distribution of the
mean of the daily differences is known. Using this distribution, a confidence
interval for the mean can be calculated. If then the confidence interval con-
tains the value 0, the cumulative error is assumed to be random. Another
possibility is to perform a statistical test using the distribution of the mean
of the daily differences. Is it possible to assess this distribution?

Under the iid. assumptions in (1.2), it is possible to derive the probability
distribution of an estimator as defined in (1.1) if the estimator, i.e., the
formula g, is not too complicated and if the probability distribution of the Xi

is known. This derivation is straightforward, because the distribution F (y) of
the function Y = g(X1, . . . , XN ) of N random variables Xi can be calculated
in (1.5)

F (y) =
∫

(N). . .

∫
By

(
f(x1, x2, . . . , xN )

)
dx1 . . .dxN

=
∫

(N). . .

∫
By

(
f(x1)f(x2) . . . f(xN )

)
dx1 . . .dxN (1.5)

By = {(x1, . . . , xn)|g(x1, . . . , xn) ≤ y}
as the N -multiple integral of the N -times product of the density f(xi) of
the Xi, if the Xi are independent and identically distributed with F (xi),
i = 1, . . . , N .

For instance, from (1.18) to (1.24) it is concluded that the mean of a
random sample µ̂X = (1/N)

∑N
i=1 xi is normally distributed with Eµ̂X = µX



16 1 Introduction

and Varµ̂X = (1/N)σ2
X , assuming that Xi is normally distributed with µX

and σ2
X . Thus, if the estimator is the mean of a random sample as defined in

(1.2), confidence intervals are easily calculated and straightforward statistical
tests are easily performed on condition that the observed random variables
are normally distributed.

However, as can be seen in the histograms in Fig. 1.1, the daily MeteoSwiss
and ETH pyranometer values are not normally distributed. Although the dis-
tribution of the differences of MeteoSwiss and ETH values is more symmetric,
the differences are still not normally distributed. One option is to fit a distri-
bution model to the histogram of the differences and assume that the fitted
model comes close to the true probability density. Then the distribution of
the sample mean is calculated from the fitted density using (1.5). When the
possibly laborious calculations have been performed, confidence intervals can
be calculated and statistical tests carried out.

Fortunately, this calculation is unnecessary since the mean of a random
sample as defined in (1.2) is approximately normally distributed even if the
distribution of the Xi is not normal. This follows from the central limit the-
orem as proposed in (1.6).

Let X1, X2, . . . , XN be mutually independent random variables
with identical distribution FX(x), and therefore, expectation
EXi = µX and variance VarXi = σ2

X , i = 1, . . . , N .
Then the random variable

YN =
1√
NσX

N∑
i=1

(Xi − µX) with distribution FNY (y)

has asymptotically a standard normal distribution:

lim
N→∞

FNY (y) =
1√
2π

∫ y

−∞
e−v2/2dv.

(1.6)

According to the central limit theorem, the distribution FNY (y) of YN comes
closer to the standard normal distribution, if (i) YN is the arithmetic mean
of N independent random variables Xi which are identically distributed with
FX(x), and (ii) if N increases. It is not required that FX(x) be normal. In
Statistics, the key role of the iid. assumptions and of the normal distribution
originates from the central limit theorem. The central limit theorem (1.6) is
therefore proposed, demonstrated by examples and detailed comments and
possibly proven in an introduction to Statistics.

The practitioner can conclude from the central limit theorem that the nor-
mal distribution is a useful approximation for the distribution of an arithmetic
mean calculated from a random sample as defined in (1.2). This approxima-
tion holds if enough observations are available. Yet, how much is enough?
If a confidence interval either for the expectation µY or variance σ2

Y of the
sample mean is calculated, the minimal N depends on the symmetry of the
distribution FX(x) of the Xi. If a histogram of the observations suggests that
the unknown distribution is not too far from symmetric, then no fewer than
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roughly 30 observations must be made to obtain a fairly good estimator for
µX , and no fewer than approximately 100 observations in the case of σ2

X .
Returning to the pyranometer comparison experiment, it is assumed that

the differences of the MeteoSwiss and ETH daily values are iid. as defined
in (1.2). It can therefore be concluded from the central limit theorem that a
normal distribution is a fairly good approximation for the distribution of the
mean (3.4 Wm−2, in Table 1.3) of the differences. Consequently, confidence
intervals can be calculated and tests performed in Problem 1.5 with the result
that the differences of the pyranometer daily values are not zero in the mean.
This answers the last question in the remarks to Table 1.3.

Having performed a univariate analysis of the pyranometer daily values,
we have refreshed the statistical estimation under the iid. assumptions defined
in (1.2). But are the pyranometer daily values iid.? Were the conditions of
the MeteoSwiss and ETH measurements identical during the four years of the
comparison experiment? Are the daily MeteoSwiss and ETH values and their
differences independent from day to day? We will return to these questions
at the end of this section.

1.3.3 Bivariate Analysis of the Pyranometer Data

The pyranometer daily values stemming from the MeteoSwiss and ETH mea-
surements at Zurich-Reckenholz Station can also be analysed jointly. For each
day in the four year comparison period there are two values available and
thus, a bivariate analysis can be performed. It is assumed that pairs (xi, yi)
and (xj , yj) are independent for days i �= j.

In the scatterplot on the left in Fig. 1.2, the ETH daily values are plotted
against those of the MeteoSwiss for each day using the R function plot()

plot(rhd$smi,rhd$eth,type="p",xlab="MeteoSwiss",ylab="ETH",pch=".")

In this scatterplot, with
x <- c(0,340)

y <- c(0,340)

lines(x,y)

a straight line is drawn. All data points would be on this straight line, assum-
ing the daily MeteoSwiss and ETH values were identical, i.e., if the measure-
ments were not erroneous. This scatterplot shows that the ETH values are
smaller (the differences amount to some Wm−2) than the MeteoSwiss values
in the mean. For a few days, however, differences larger than 30 Wm−2 are
obtained. Another graph suitable for bivariate data is the two-dimensional
histogram. Such a histogram of the pyranometer daily values is plotted on the
right, in Fig. 1.2. In this histogram, the MeteoSwiss-ETH plane is subdivided
in bi-dimensional classes, 10 Wm−2 wide in both dimensions. Remember that
10 Wm−2 is the width of the classes in the univariate histograms in Fig. 1.1.
As the MeteoSwiss-ETH plane is the drawing plane of the scatterplot, on the
left in Fig. 1.2, it is concluded from this scatterplot that most two-dimensional
classes contain no pairs of daily values; classes on or near the diagonal of the
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Fig. 1.2. Scatterplot (on the left) and two-dimensional histogram (on the right) of
the daily pyranometer values measured in Wm−2 at Zurich-Reckenholz station as
described in Sect. 1.1.

MeteoSwiss-ETH plane however contain many pairs. The number of pairs
of daily values in a two-dimensional class is the joint frequency of the ETH
and MeteoSwiss daily values. The joint frequencies are plotted on the vertical
(the z-) axis, resulting in the two-dimensional histogram of the MeteoSwiss
and ETH daily pyranometer values on the right in Fig. 1.2.

Using projections of the joint frequencies on the z-ETH and z-MeteoSwiss
planes, one-dimensional marginal frequencies are obtained. Histograms of
these marginal frequencies are plotted on the left and in the middle in Fig. 1.1.
These histograms, as well as the empirical means and variances of the ETH
and MeteoSwiss daily values in Table 1.3, are both very similar.

From both the one-dimensional histograms and one-dimensional mo-
ments, it is not possible to conclude on the interior of the two-dimensional
scatterplot and of the two-dimensional histogram. Such a conclusion is im-
possible because identical one-dimensional histograms and moments can be
produced by arbitrary numerous patterns of data points in the MeteoSwiss-
ETH plane.

The bivariate analysis of daily pyranometer values aims at a possible
statistical relationship between the ETH and MeteoSwiss values. It aims to
supply some information about the interior of the two-dimensional scatterplot
and of the two-dimensional histogram in Fig. 1.2. A possible solution to
the problem is a reduction in the one-dimensional case by calculating the
differences di = xi−yi from the pairs (xi, yi) of the pyranometer daily values.
If these differences are small, as shown on the right in Fig. 1.1, most of the
data points in a scatterplot will be close to the diagonal, as shown in the
scatterplot on the right in Fig. 1.2. Another possibility would be to plot a two-
dimensional scatterplot and/or histogram and to calculate an estimate which
describes the strength of the statistical relationship between the MeteoSwiss
and ETH pyranometer daily values.
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This is done by calculating the empirical covariance or correlation, as
defined in (1.7).

N observations are performed, each of which delivers a pair (xi, yi) of
possible values of the random variables (Xi, Yi), which are assumed
to be iid. µ̂X and µ̂Y are the empirical means of the xi and the yi,
σ̂2

X and σ̂2
Y are the empirical variances. Then:

1. ĉXY = 1/(N − 1)
∑N

i=1(xi − µ̂X)(yi − µ̂Y ) is the empirical covariance,
2. �̂XY = ĉXY /(σ̂X σ̂Y ) is the empirical correlation of xi and yi.

(1.7)
In definition (1.7), ĉXY depends (as do the empirical variances σ̂2

X and σ̂2
Y )

on the unit of the xi and yi, but not on an additive constant. �̂XY , by
contrast, no longer depends on the units of the measurements. This is due to
the standardisation of the empirical covariance as ĉXY is divided by σ̂X σ̂Y

to obtain �̂XY . �̂XY is also called the empirical correlation coefficient.
For example, under the iid. assumptions (the observations being indepen-

dent from day to day and the distributions identical for every day), the em-
pirical covariance and correlation of the daily pyranometer values at Zurich-
Reckenholz station, given in Table 1.3, are calculated according to (1.7) using
the R functions var() (or cov()) and cor():

var(smi2,eth2)

cor(smi2,eth2).

The argument vectors smi2 and eth2 are generated in Sect. 1.2. They contain
pairs (xi, yi), i = 1, . . . , N , N = 1330, of MeteoSwiss and ETH values mea-
sured at the same day i and both available, cf. Sect. 1.2. Please note that
var() is also used for the calculation of empirical variances in the univariate
case demonstrated in Sect. 1.3.1.

If the empirical covariance is a number which describes the strength of
the statistical linear relationship between xi and yi, then it is likely related
to the differences zi = xi − yi, (xi, yi) as defined in (1.7). This suggests to
calculate the empirical variance of the differences. In (1.8), the differences
zi = xi − yi are iid., if the (xi, yi) are iid. as assumed in (1.7).

(N − 1)σ̂2
Z =

N∑
i=1

(zi − µ̂Z)2 =
N∑

i=1

(
(xi − yi) − (µ̂X − µ̂Y )

)2 (1.8)

=
N∑

i=1

(
(xi − µ̂X) − (yi − µ̂Y )

)2
= (N − 1)σ̂2

X + (N − 1)σ̂2
Y − 2(N − 1)ĉXY (1.9)

(1.9) implies that the empirical variance of the differences zi = xi−yi is small
provided that double the empirical covariance of the (xi, yi) is approximately
the sum of the empirical variances of the xi and yi. This is illustrated by the
example of the daily pyranometer values, as shown in Table 1.3.

The properties of an empirical correlation are listed in (1.10).
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If �̂XY is an empirical correlation as defined in (1.7,2), then:
1. �̂XY does not depend on the units of measurement of the
xi and yi or an additive constant.

2. If �̂XY = ±1, a perfect linear relationship between xi and yi

exists and all pairs (xi, yi) are on a straight line.
3. If �̂XY = 0, no linear relationship between xi and yi exists;

however, another (non-linear) relationship can exist.
4. −1 ≤ �̂XY ≤ 1.
5. |�̂XY | describes the strength of a possible linear relationship

between the xi and the yi.

(1.10)

Properties 1. and 2. in (1.10) follow, assuming yi = bxi + a, directly from
definitions (1.7): straight lines with a positive slope (b > 0) deliver the em-
pirical correlation 1, and straight lines with a negative slope deliver −1.
Property 3. is shown by giving a counter-example, e.g. using yi = x2

i . Prop-
erty 4. follows from the Cauchy-Schwarz inequality |uT v|2 ≤ (uT u)(vT v),
u and v column vectors containing ui = xi − m̂X and vi = yi − m̂Y , or
(
∑

i uivi)2 ≤ (
∑

i u
2
i )(
∑

i v
2
i ). The Cauchy-Schwarz inequality is formulated

as a property of linear vector spaces in (6.4).
The empirical covariance and empirical correlation are not robust esti-

mates: they are sensitive to outliers. Consequently, inspect scatterplots of the
observations before calculating these statistics. Practical correlation analy-
sis is, however, tricky. A non-zero empirical correlation does not necessarily
mean a causal relationship between the two observed variables. In the case
of the pyranometer comparison experiment, a large empirical correlation is
expected for the MeteoSwiss and the ETH daily values because the measure-
ment error is small. Nonetheless, it is not possible to obtain an empirical
correlation �̂XY = 1 since every pyranometer measurement is erroneous.

Under the iid. assumptions formulated in (1.2), �̂XY and ĉXY are esti-
mates of the joint (bivariate) second moments of two random variables X
and Y .

If X and Y are random variables with the expectations µX and µY

and the variances σ2
X and σ2

Y , then
1. cXY = Cov(X,Y ) = E((X − µX)(Y − µY )) is the covariance and
2. �XY = cXY /(σXσY ) is the correlation of X and Y .

(1.11)
The correlation is often estimated. It has favourable properties when the
observed variables are bivariate normally distributed. A bivariate (two-
dimensional) normal distribution is often used to model the frequencies in
the interior of a scatterplot. Examples are given in Table 1.4 and Fig. 1.3.

Two random variablesX1 and X2, with the joint probability density given
in (1.12), are said to be two-dimensional or bivariate normally distributed:

f(x1, x2) = 1

2πσ1σ2

√
1−�2

exp (−a), with (1.12)

a = 1
2(1−�2)

((
x1−µ1

σ1

)2 +
(

x2−µ2
σ2

)2 − 2�
(

x1−µ1
σ1

)(
x2−µ2

σ2

))
.
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Table 1.4. Empirical moments of simulated bivariate normal distributions. Pairs
(x1k, x2k), k = 1, . . . , 5000, were simulated using (1.13) with the parameter values
µ1 = 100, µ2 = 50, σ1 = 10, σ2 = 7, and � = 0.90,−0.5, 0.0.

� �̂ µ̂X1 σ̂X1 µ̂X2 σ̂X1

0.90 0.91 99.70 10.17 49.82 7.13
−0.50 −0.51 99.99 9.98 50.01 6.98

0.00 0.00 99.86 9.89 50.14 7.03

From the special case of the standardised (µ1 = µ2 = 0 and σ1 = σ2 = 1) two-
dimensional normal density, defined in (1.12), the one-dimensional marginal
densities are derived in (1.25) to (1.30). The derived marginal densities are
standard normally distributed. The very same distribution (i.e., standard nor-
mal) is assumed for the random variables X ′

1 and X ′
2 used for the definitions

(1.13).

X1 = µ1 + σ1X
′
1 X2 = µ2 + �σ2X

′
1 +

√
1 − �2σ2X

′
2 (1.13)

In these definitions, the two random variables X1 and X2 are constructed
as linear combinations of X ′

1 and X ′
2, both being two independent random

variables with standard normal distribution. From the definitions (1.13) it is
derived, in Problem 1.7, that µ1 and µ2 are the expectations, σ2

1 and σ2
2 the

variances, and that � is the correlation of X1 and X2.
Definitions (1.13) are used to simulate bivariate normal distributions. For

example, in R you can simulate 5000 observations of X ′
1 and X ′

2 with
xs1 <- rnorm(5000,mean=0.0,sd=1.0)

xs2 <- rnorm(5000,mean=0.0,sd=1.0)

which then are transformed using the definitions (1.13). However, you can
simulate a two-dimensional normal distribution easier with rmvnorm(). Using
rmvnorm(), 5000 values of three example bivariate normal distributions are
simulated. The parameters of the distributions and the empirical moments
calculated from the simulations are listed in Table 1.4, with the scatterplots
and marginal distributions of the simulated pairs (xi, yi) being plotted in
Fig. 1.3. Here, different point patterns in the interior of the scatterplots gen-
erate very similar marginal frequencies.

More generally, from (1.12) and (1.13) it is concluded that two random
variables with a joint density as defined in (1.12) have normal marginal dis-
tributions which do not depend on �.

Assuming X and Y to be jointly normally distributed with the density
given in (1.12), the empirical correlation �̂XY is an estimator for the param-
eter � in (1.12) and (1.13). When observations (xi, yi) in agreement with the
iid. conditions proposed in (1.2) are available, the distribution of �̂XY can be
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Fig. 1.3. Bivariate normal distributions: Scatterplots and marginal frequencies of
the simulations using (1.13) and the values � = 0.90, � = −0.50 and � = 0.00 (from
top to bottom) in Table 1.4.

estimated and therefore, confidence intervals for �̂XY can further be calcu-
lated and tests performed with the procedures described in an introduction
to Statistics.

1.3.4 Are the Pyranometer Daily Values Iid.?

The above uni- and bivariate analyses of data obtained from the pyranome-
ter comparison experiment are performed under the iid. assumptions in (1.2).
The succinct results show that either the MeteoSwiss or the ETH measure-
ments, or both, are afflicted with a systematic error, and that there are,
moreover, random errors in both measurements. An estimate for the system-
atic error is the mean of the differences in Table 1.3, and an estimate for the
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cumulative random error in both measurements is the standard deviation of
these differences.

However, these estimates are viable only if the pyranometer values are
iid., as defined in (1.2); if not iid., they are merely preliminary approxima-
tions. The pyranometer measurements cannot be repeated under identical
conditions and thus are not in agreement with condition (1.2,1).

Are the pyranometer data reconcilable with condition (1.2,2) stipulating
independent measurements? Assuming that xi is the daily value calculated
from the measurements with the MeteoSwiss pyranometer and that yi is
the daily value stemming from the ETH pyranometer, (1.2,2) demands that
pairs (xi, xj) and pairs (yi, yj) be independent for any days i and j over
the period of the comparison experiment. The independence could have been
tested under additional suitable assumptions (e.g., normality), if, for any
days i �= j, the correlations of the pairs (Xi, Xj) and (Yi, Yj) had been avail-
able. Estimates for these correlations are the empirical correlations which are
calculated using (1.7) from pairs (xik, xjk) or (yik, yjk), k = 1, 2, . . . , n(i, j).
However, n(i, j) = 1 for any pair of days (i, j) in the measurement period
because the pyranometer measurements cannot be repeated.

Consequently, the pyranometer daily values are not in line with the condi-
tion (1.2,1) and it is not known whether they agree with the condition (1.2,2).
This question is reconsidered in the remarks to Figs. 1.8 and 1.9.

1.4 Time Series

Plotting the daily pyranometer MeteoSwiss and ETH values xi and yi vs. the
day i, i.e., vs. time, it is shown in Sect. 1.4.1 that pairs (xi, xj) or (yi, yj) are
not independent for days i �= j over the period of the Reckenholz pyranometer
comparison experiment. In Sect. 1.4.2, a statistical model for the error of the
pyranometer daily means is proposed.

1.4.1 Time Series Plots

Each pair of daily pyranometer values has a time, which is given in the
file /path/pyrcomp.dat by the three-tuple (year, month, day) as shown in
Sect. 1.1. Data with the property that each value is associated to the time
of observation are called time series. A time series is a sequence of observed
values, as defined in (2.1). In R, the functions for the analysis of time series
are made available with

library(ts)

and a special data structure is used. For example, using the vectors in the
R object rhd generated in Sect. 1.2 from the text file with the pyranometer
daily values, the expressions

smi <- ts(rhd$smi,start=1989,frequency=365,)
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Fig. 1.4. Time series of daily pyranometer values calculated from the MeteoSwiss
(above) and the ETH (below) measurements at Zurich-Reckenholz station. Time
in years.

eth <- ts(rhd$eth,start=1989,frequency=365,)

produce smi and eth, which are plotted in Fig. 1.4 using
plot(smi,type="l",xlab="year",ylab="W/m2")

plot(eth,type="l",xlab="year",ylab="W/m2")

bearing in mind that smi and eth are R time series objects. In R, a time series
object can be generated from a vector of values obtained by observing with
a constant time step ∆t. In the R function ts(), the argument frequency

= ..., can be replaced by deltat = ...,. deltat = ..., is (the fraction of,
cf. the R help system) the sampling period between the observations.

More technically, in the example above, the R function ts() associates a
time domain with the argument vector rhd$smi, using values for the argu-
ments start and frequency which correspond to the time when the measure-
ments begin and to the number of observations per unit time period. Since
1992 is a leap-year, it would be advisable to generate the R time series objects

smif1 <- ts(rhd$smi,start=1,frequency=1,)

ethf1 <- ts(rhd$eth,start=1,frequency=1,)

from the pyranometer daily values. smif1 is plotted in Fig. 1.5. In Fig. 1.5,
however, the time unit is one day and the first value in the time series, which
was measured on January 1st, 1989, is associated with day 1.

The systematic error in the pyranometer daily values, clearly visible in the
histogram of the differences in Fig. 1.1, cannot be seen in Fig. 1.4, even though
this error amounts to 3.4 Wm−2 in the mean (Table 1.3). From the histogram
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Fig. 1.5. Time series of daily pyranometer values calculated from the MeteoSwiss
measurements at Zurich-Reckenholz station. Time in days, starting January 1, 1989.

of the differences in Fig. 1.1 and also from the scatterplot in Fig. 1.2, it is
known that there are a few differences larger than 50 Wm−2. These larger
differences occurred in Spring 1992. This can been seen when the time series
plots in Fig. 1.4 are compared. Therefore, from the time series plotted in
Fig. 1.4, with the R expressions

smiapr <- window(smi,c(1992,60),c(1992,150))

ethapr <- window(eth,c(1992,60),c(1992,150))

time slices containing the measurements from the Spring months of 1992 are
constructed. These time slices are plotted in Fig. 1.6.

The plots in Fig. 1.6 show that at the beginning of April 1992 (1992.25 on
the time axis), the ETH pyranometer measured 80 Wm−2 less SWIR than
the MeteoSwiss pyranometer did. The period with these large differences
continues until May 1992 (1992.33 on the time axis). At this time and later,
approximately the same SWIR values were obtained with both pyranometers.

What then happened in April 1992 to cause the unusually large differences
measured in this month? Was the error larger than usual for only one or for
both measurements? Which of the two measurements is more accurate in that
month? By only using the available pyranometer data, these questions cannot
be answered, and in the history of the MeteoSwiss and ETH measurements
at Zurich-Reckenholz station, no additional information can be found that
would help to find the source of these large differences.

In Fig. 1.4 you can clearly see the annual (or seasonal) cycle of SWIR at
Zurich-Reckenholz station. In July, with 300 Wm−2, SWIR is approximately
ten times (one order of magnitude) larger than in January. Apart from the
annual cycle, the time series also show large synoptic fluctuations, i.e., fluc-
tuations observed within a few days. Such fluctuations are also found in the
daily cloud cover at Zurich-Reckenholz station (not plotted). Clearly, the syn-
optic fluctuations in the SWIR time series are produced by fluctuations of
the cloud cover.

When synoptic fluctuations are (at least partly) removed from the time
series by smoothing, the seasonal cycle becomes more clearly visible. In R,
use the function filter() to smooth a time series. However, filter() applies
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Fig. 1.6. MeteoSwiss (above) and ETH (below) pyranometer time series measured
at Zurich-Reckenholz station in Spring 1992.

only if no values are missing in the time series. Since numerous pyranometer
daily values are missing, as was learned in Sect. 1.2, there are noticeable gaps
in the time series plots which can be seen in Fig. 1.4 and, even more clearly
in Fig. 1.6.

These gaps stem from failures of the MeteoSwiss or ETH instrument
and/or the corresponding data acquisition system. Generally, the ETH time
series has fewer gaps than the MeteoSwiss time series. The longest period
with no gaps is found in the ETH time series from January 1991 to November
1992. An R time series for this time slice is generated and smoothed with a
running mean covering 11 days using

eth2 <- window(eth,c(1991,1),c(1992,335))

rmean <- c(1/11,...,1/11) #11 identical weights

eth2smo <- filter(eth2,rmean,method="convolution",sides=2)

and then plotted in Fig. 1.7. The R function filter() with argument me-

thod="convolution" is introduced in Sect. 2.4.
In comparison to the unsmoothed time series in Fig. 1.4, the smoothed

time series in Fig. 1.7 shows more clearly that SWIR undergoes a seasonal
cycle. In addition, it is clearly seen in Fig. 1.7 that periods lasting a few days
with large SWIR values are followed by periods with smaller SWIR values.
Large SWIR daily values are measured over periods of sunny weather with
small total cloud amount; during periods with large total cloud amount, on
the other hand, small SWIR values are obtained.
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Fig. 1.7. ETH pyranometer daily values at Zurich-Reckenholz station from January
1991 to November 1992 smoothed with a running mean covering 11 days.

Two R time series with identical time domains can be added, subtracted,
multiplied or divided. The result is a time series with the original time domain
and values calculated from the original series by addition, etc. For instance,
from the smi and eth time series plotted in Fig. 1.4, the time series difference
difts is obtained with

difts <- smi - eth

plot(difts,type="l",xlab=" ",ylab="W/m2")

and then plotted in Fig. 1.8 (above). In this plot, with
lines(c(1989.28,1989.28),c(-15,75), lty=2)

lines(c(1989.43,1989.43),c(-15,75), lty=2)

lines(c(1992.24,1992.24),c(-15,75), lty=2)

lines(c(1992.33,1992.33),c(-15,75), lty=2)

two time slices are marked off with dashed vertical lines. The first starts in
the middle of April and lasts until the end of May 1989, the second is in
April 1992. In the first time slice, unusually small negative differences are
obtained from the measurements; in the second, unusually large differences
were observed, as shown in detail in Fig. 1.6. It is suspected that over both
periods the error of at least one of the two measurements was larger than
usual.

In a duplicate of difts, the values in these periods are set to NA and then
the duplicate is plotted in Fig. 1.8 (below). This plot shows more negative
differences in summer 1989 than during the summers of 1990, 1991 and 1992.
In winter, the differences are generally larger than in summer. An exception is
the summer of 1991, with similar differences in winter 1990/91 and 1991/92.
Thus, with the exception of summer 1991, the differences are large, when
small daily SWIR values were measured, and small, when larger values were
observed.

This discovery gives reason to calculate the relative differences in the
pyranometer measurements with

reldif <- difts/smi



28 1 Introduction

W
/m

^2

1989 1990 1991 1992 1993

0
20

40
60

80

year

W
/m

^2

1989 1990 1991 1992 1993

−
5

0
5

10
20

Fig. 1.8. Differences of the pyranometer daily values from the MeteoSwiss and ETH
at Zurich-Reckenholz station (above), and the same differences (below), however
without the values in the time slices marked off in the above plot.

The relative differences are plotted in Fig. 1.9, which shows that the relative
differences are much larger in winter than in summer and thus undergo a
seasonal cycle.

This annual cycle is due, on the one hand, to the slight ventilation of the
MeteoSwiss pyranometer at Zurich-Reckenholz station. This device prevents
dew or frost from coating the glass dome of the MeteoSwiss pyranometer
provided that the temperature is not below −20C. On the other hand, the
ETH pyranometer is not ventilated, and on cold mornings, possible dew and
frost have to be evaporated, until the full radiation can penetrate the dome to
reach the sensor plate. This can be seen if the original measurements (taken
in intervals of 10 or 5 minutes, Table 1.2) are compared. Hence, in the mean
during the season with cold mornings, the ETH measurements record less
SWIR than do the MeteoSwiss measurements.

With the visual inspection of the time series plots, we have accomplished
two goals. Firstly, an explanation has been found for the non-zero mean of the
differences of the daily MeteoSwiss and ETH pyranometers values, given in
Table 1.3. This corroborates the result from the analyses of the pyranometer
daily values in Sect. 1.3. Thus it is recommended to measure SWIR with a
ventilated pyranometer at least in the middle latitudes. Secondly, the question
concluding Sect. 1.3, i.e., whether the daily ETH and MeteoSwiss values are
independent, can now be answered.
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Fig. 1.9. Relative differences of the MeteoSwiss and ETH pyranometer daily values
measured at Zurich-Reckenholz station.

At Zurich-Reckenholz station, a sunny day is followed by another sunny
day in the majority of the cases. The cloudy days behave in the same way.
Consequently, in the pyranometer time series, a large daily value of SWIR is
followed by another large value and a small value is followed by another small
value, in the majority of cases: the daily values of SWIR are not independent
from one another. This pattern can be seen in plots where the single values
can be easily counted, for example in Fig. 1.6. It is related to changes in
the daily cloud cover, as SWIR is determined by the elevation of the sun
(with its seasonal cycle) and, to a lesser extent, by the cloud cover (with
its synoptic fluctuations). Generally, meteorological variables (SWIR, cloud
cover, temperature, precipitation, etc.) observed at Zurich-Reckenholz station
are not independent from day to day, because often weather conditions are
stable for a few consecutive days.

The differences of the pyranometer daily values are also not independent
from day to day. They mostly stem from measurements taken during the
morning hours, when the unventilated ETH pyranometer is coated by dew
or frost, whereas the MeteoSwiss sensor is exposed to the full radiation as
it is ventilated. Since the presence or absence of dew or frost is not inde-
pendent from day to day at Zurich-Reckenholz station, the differences of the
pyranometer daily values are not independent.

Consequently, the MeteoSwiss and ETH pyranometer daily values ob-
served at Zurich-Reckenholz station, and also their differences, are not in-
dependent from day to day. These values are therefore not in agreement
with assumption (1.2,2). How strong is the dependence? An answer to this
question is given in Problem 2.32. The daily values resulting from the Zurich-
Reckenholz pyranometer comparison experiment are also not in agreement
with assumption (1.2,1), seeing that the measurements cannot be repeated,
as argued in the closing remarks in Sect. 1.3. As the observations are thus
not iid., the empirical moments in Table 1.3 most likely do not estimate the
theoretical moments in the model proposed in (1.14) without bias and con-
sistently. Unbiased and consistent estimators are defined in (1.3) and (1.4).
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1.4.2 A Model for the Error of the Pyranometer Measurements

In the pyranometer comparison experiment described in Sect. 1.1, the daily
means calculated from the ETH measurements are afflicted with a systematic
(non-zero mean) error. This error is due to the missing ventilation of the
ETH pyranometer. In addition, both MeteoSwiss and ETH daily means are
afflicted with a random error, since error-free measurements are not possible.
Both error types are found in the model proposed in (1.14).

In (1.14), X(t) is used for the MeteoSwiss daily means and Y (t) for the
ETH ones. Both are split into the true values EX(t) and EY (t) and the
random errors eX(t) and eY (t), i.e., X(t) = EX(t) + eX(t) and Y (t) =
EY (t) + eY (t). Thus, in this model, the daily value at day t, (for example
X(t)), is the sum of the expectation of X(t) at day t, EX(t), and the error
eX(t) at day t. Thereafter, the differences D(t) = X(t)−Y (t) are calculated.

D(t) = X(t) − Y (t) =
(
EX(t) − EY (t)

)
+
(
eX(t) − eY (t)

)
(1.14)

ED(t) = EX(t) − EY (t)
VarD(t) = VareX(t) + VareY (t)

Under the assumption that the difference EX(t) − EY (t) of the true values
and the difference of the random errors eX(t) − eY (t) add to the difference
D(t) in the first line in (1.14), and because random errors are non-zero in
the mean, i.e., EeX(t) = EeY (t) = 0 as defined in Sect. 1.1, the expection of
the differences ED(t) in the second line is obtained with (1.15,3). Further-
more, the variance of the differences is calculated using (1.15,8), since eX(t)
and eY (t) are independent. This independence is due to the installation of
pyranometers at Zurich-Reckenholz stations, details being given in Table 1.2.

An estimate of the systematic error EX(t)−EY (t) is obtained by calculat-
ing an estimate for the expectation of the differences ED(t). Estimates of the
random errors VareX(t) and VareY (t) are obtained by calculating an estimate
for VarD(t), if it is additionally assumed that the random errors in both mea-
surements are equal: If VareX(t) = VareY (t), then VareX(t) = (1/2)VarD(t).

The empirical moments of the differences in Table 1.3 are, in fact, nei-
ther unbiased nor consistent estimators for the moments ED(t) and VarD(t)
in Model (1.14), as the differences are not iid.. However, these empirical
moments, together with the histogram in Fig. 1.1, on the right, and the scat-
terplot in Fig. 1.2, motivate the diagnosis of a systematic error in either one
or both measurements (in Sect. 1.3). Then, when visually inspecting the time
series plots in Sect. 1.4.1, a possible cause of the systematic error is found.

Is it possible to estimate ED(t) and VarD(t) consistently and without
bias, using the observed pyranometer daily differences plotted in Fig. 1.8
(above)? Do assumptions exist, which are (unlike the iid. ones) in agree-
ment with the differences of the pyranometer daily values? If estimators can
be constructed under suitable assumptions, what about their expectations,
variances and distributions?
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Presumably, the answers to these questions are not easy to find, and
therefore, not surprisingly, prior to the answers given in Sects. 2.5.1 and 2.6,
a solid theoretical framework is to be constructed in Sects. 2.1 to 2.4.

1.5 Supplements

The supplement section contains formulas for calculating the moments of
linear combinations of random variables, a derivation of the Chebyshev in-
equality, a derivation of the distribution of a sum of independent and normally
distributed random variables, a derivation of the marginal densities of a two-
dimensional normal density, and some properties of the multivariate normal
distribution.

1.5.1 Formulas for Calculating the Moments of Random Variables

Formulas for calculating the moments of random variables are normally found
in an introduction to Statistics. Using them, you can calculate the moments
of linear combinations of random variables and, as important examples, the
moments of estimators, as is demonstrated in the remarks to definitions (1.1)
and (1.2). Some formulas which are often used are given in (1.15) and (1.16).

Let X,Y,Xi, Xj be random variables, a, b real constants,
and let E denote an expectation, Var a variance,
Cov a covariance. Then:

1. Ea = a
2. E(aX + b) = aEX + b
3. E(X + Y ) = EX + EY
4. E

∑N
i=1 aiXi =

∑N
i=1 aiEXi

5. VarX = E((X − EX)(X − EX))
6. Var(aX + b) = a2VarX
7. Cov(X,Y ) = E((X − EX)(Y − EY ))
8. Var(X ± Y ) = VarX + VarY ± 2Cov(X,Y )
9. Cov(a1X1 + b1, a2X2 + b2) = a1a2Cov(X1, X2)

10. Var(
∑N

i=1 aiXi) =
∑N

i=1

∑N
j=1 aiajCov(XiXj)

=
∑N

i=1 a
2
i VarXi + 2

∑
i<j aiajCov(XiXj)

(1.15)

If, in addition, the random variables are independent, then:
1. E(XY ) = EXEY
2. E

∏N
i=1Xi =

∏N
i=1 EXi

3. Var(X ± Y ) = VarX + VarY
4. Var

∑N
i=1Xi =

∑N
i=1 VarXi

(1.16)
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Some basic formulas, e.g., (1.15,1,2,3) or (1.16,1,2), follow in an introduction
to Statistics directly from the sums or integrals in the definitions of the
moments, since these operations are linear (Problem 1.2). The basic formulas
are used to derive the remaining ones in (1.15) or (1.16), e.g., (1.15,4) and
(1.15,7) are derived in Problem 1.3.

1.5.2 Chebyshev Inequality

Let X be a random variable with distribution F (x), expectation µX , and
variance σ2

X , and let c and ε > 0 both be constant. Then calculate the
probability Pr

(|X − c| ≥ ε
)

=
∫
|x−c|≥ε

dF (x) by evaluating the Stieltjes-
integral (which is defined in an introduction to Statistics or in (7.19)) from
−∞ to c− ε and from c+ ε to ∞. Since |x− c| ≥ ε, (1/ε2)(x− c)2 ≥ 1, and
consequently∫

|x−c|≥ε

dF (x) ≤
∫

|x−c|≥ε

(x− c)2
ε2

dF (x) ≤ 1
ε2

∫
|x−c|≥ε

(x− c)2dF (x)

Pr
(|X − c| ≥ ε

) ≤ 1
ε2

E
(
(x− c)2) =

1
ε2
σ2

X (1.17)

the Chebyshev inequality is obtained in (1.17). The Chebyshev inequality
sets, in terms of variance or standard deviation, an upper bound on the
probability of extreme deviations from a typical observation of a random
variable. It thus establishes a connection between the variance and the con-
cept of concentration, i.e., the degree to what extent the central tendency
(given, e.g., by the expectation or the median) represents the distribution of
a random variable. The concepts of central tendency and concentration are
discussed in an introduction to Statistics.

1.5.3 Independent and Normally Distributed Random Variables

Let the random variables Xi, i = 1, . . . , N , with the densities fi(xi) =(
1/(σi

√
2π)

)
ea, a = (−1/2)((xi − µi)/σi)2 where EXi = µi and VarXi = σ2

i ,
be independent from each other. Then calculate Y =

∑N
i=1Xi, the sum

of the Xi. You then obtain the moments EY = µY =
∑N

i=1 µi and
VarY = σ2

Y =
∑N

i=1 σ
2
i using the formulas (1.15,4) and (1.15,4). However,

the calculation of the distribution of Y is less straightforward.
In the first step, the distribution of Y = X1 + X2 is calculated. Since

the Xi are independent, (1.5) is used to obtain the density f(y) of Y in
(1.18) as the product of the densities f1(x1) and f2(x2). (1.20) follows by
differentiating F (y) in (1.19).

F (y) =
∫ ∫

x1+x2≤y

f1(x1)f2(x2)dx1dx2 =

∞∫
x2=−∞

y−x2∫
x1=−∞

f1(x1)f2(x2)dx1dx2 (1.18)
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=

∞∫
−∞

(
F1(y − x2) − 0

)
f2(x2)dx2 =

∞∫
−∞

F1(y − x2)f2(x2)dx2 (1.19)

f(y) =

∞∫
−∞

f1(y − x2)f2(x2)dx2 (1.20)

f(y) =
1

2πσ1σ2

∞∫
x2=−∞

exp
(
−1

2

( (y − x2 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

))
dx2 (1.21)

After substituting normal densities for f1(x1) and f2(x2), the density of the
sum of two independent and normally distributed random variables results
in (1.21). If this integral can be transformed into f(y) =

(
1/(σY

√
2π)

)
ea,

a = (−1/2)((y − µY )/σY )2, µY = µ1 + µ2, σ2
Y = σ2

1 + σ2
2 , it implies that

Y = X1 + X2 is normally distributed with expectation µY = µ1 + µ2 and
variance σ2

Y = σ2
1 + σ2

2 . Writing

u =
σY

σ1σ2

(
x2 − σ2

1µ2 + σ2
2(y − µ1)
σ2

Y

)
and v =

y − µY

σY

u2 + v2 =
(y − x2 − µ1)2

σ2
1

+
(x2 − µ2)2

σ2
2

(1.22)

we obtain (1.22) with the substitutions µY = µ1+µ2 and σ2
Y = σ2

1+σ2
2 . Using

this result and (1.21), (1.23) is obtained, since (i) x2 is not in the expression
for v and (ii) du/dx2 = σY /(σ1σ2), and hence dx2 = (σ1σ2)/σY .

f(y) =
1

2πσ1σ2
e−(v2/2)

∞∫
x2=−∞

e−(u2/2)dx2 (1.23)

=
1

2πσY
e−(v2/2)

∞∫
u=−∞

e−(u2/2)du

=
1√

2πσY

exp
(
−1

2
(
(y − µY )/σY

)2) (1.24)

In (1.24), the density f(y) of Y = X1 +X2 follows from the result of Prob-
lem 1.12 (the error integral). Thus, the distribution of the sum of N inde-
pendent and normally distributed variables has been calculated for N = 2 in
the first step.

In the second step, we have N = 3 and, with a small change in notation,
Y3 = X1 + X2 + X3 and thus Y3 = Y2 + X3, if Y2 = X1 + X2. Y2 and X3

are independent and both are normally distributed by the assumptions and
the calculations above. The distribution of Y3 can therefore be calculated
the same way as the distribution of Y is calculated in (1.18) to (1.24). This
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calculation delivers the result that Y3 is normally distributed with expectation
µY3 = µ1 + µ2 + µ3 and variance σ2

Y3
= σ2

1 + σ2
2 + σ2

3 .
In the (N − 1)th step, the distribution of YN =

∑N
i=1Xi is calculated on

condition that, in the previous (N − 2)th step, the distribution of YN−1 =∑N−1
i=1 Xi has been calculated.

1.5.4 Bivariate (two-dimensional) Normal Density

The marginal densities of a two-dimensional normal distribution are normal.
Simulated examples are given in Table 1.4 and Fig. 1.3, and, for the standard-
ised case, this result is derived in (1.25) to (1.30). Thus, with µ1 = µ2 = 0 and
σ1 = σ2 = 1 and the definition in (1.12), the standardised two-dimensional
normal density of the random variables X1 and X2 in (1.25) is obtained. The
two-dimensional normal density is integrated to obtain the marginal distri-
bution of X1 at x1 = a1 in (1.26).

f(x1, x2) =
1

2π
√

1 − �2 exp
(
− 1

2(1 − �2) (x2
1 − 2�x1x2 + x2

2)
)

(1.25)

F1(a1) =

a1∫
x1=−∞

∞∫
x2=−∞

1
2π
√

1 − �2 exp
(
b(x1, x2)

)
dx2dx1 with (1.26)

b(x1, x2) =
(
− 1

2(1 − �2) (x2
1 − 2�x1x2 + x2

2)
)

Using the construction of the two-dimensional normal distribution in (1.13)
as a prototype, x1 = u1 and x2 = u2

√
1 − �2 + �u1 are substituted in (1.25)

and (1.26) to obtain dx1 = du1 and dx2 =
√

1 − �2du2 and thus, dx1dx2 =
du1du2

√
1 − �2, |�| < 1. With these substitutions, the exponent of the e-

function in (1.25) and (1.26) transforms into u2
1/2 + u2

2/2 and ϕ(u1, u2) as
indicated in (1.27).

ϕ(u1, u2) =
1

2π
√

1 − �2 e−(u2
1/2+u2

2/2)du1du2

√
1 − �2 (1.27)

=
1√
2π

e−(u2
1/2) 1√

2π
e−(u2

2/2)du1du2 (1.28)

ϕ(u1, u2) is the joint density of the random variables U1 and U2, U1 = X1

and U2 = (X2 − �x1)/
√

1 − �2, as defined above. U1 and U2 are independent
since their density is the product of the densities obtained in (1.28). These
are standardised one-dimensional normal densities. Assuming � = 0, you have
u2 = x2, and thus, X1 and X2 are independent if the correlation � = 0.

In the next step, the two-dimensional density is integrated to obtain the
marginal distribution of X1 at a1. The inner integral in (1.29) is, however,
not a proper integral.
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F1(a1) =

a1∫
u1=−∞

(
1√
2π

e−
u2
1
2

)⎛⎜⎜⎜⎝
lim

x2→∞
(

x2−�u1√
1−�2

)∫
u2=

lim
x2→−∞

(
x2−�u1√

1−�2

) 1√
2π

e−
u2
2
2 du2

⎞⎟⎟⎟⎠ du1

(1.29)
Nevertheless, since (1/

√
2π)e−u2

2/2 ≥ 0, it can be evaluated as if it were a
proper one (Problem 1.13), and the marginal distribution F1(a1) of X1 at
a1 is obtained in (1.30). With a similar procedure, the marginal distribution
F2(a2) of X2 at a2 is calculated.

F1(a1) =

a1∫
x1=−∞

1√
2π

e−
x2
1
2 dx1 F2(a2) =

a2∫
x2=−∞

1√
2π

e−
x2
1
2 dx2 (1.30)

Due to (1.30), the marginal frequencies of the simulations in Fig. 1.3 are
approximately normal and do not depend on �.

The two-dimensional density in (1.12) can also be written using vectors
and matrices. In (1.31), µ = (µ1, µ2)T is the vector of the expectations of the
random variables X1 and X2 and C is their covariance matrix (the matrix
with the variances c11 and c22 and the covariances c12 = c21 of X1 and X2).
In (1.32) the determinant and the inverse of the covariance matrix is given.

x =
(
x1

x2

)
µ =

(
µ1

µ2

)
C =

(
c11 c12
c21 c22

)
=
(

σ2
1 �σ1σ2

�σ1σ2 σ2
2

)
(1.31)

det|C| = σ2
1σ

2
2(1 − �2) C−1 = 1

1−�2

(
1

σ2
1

−�
σ1σ2

−�
σ1σ2

1
σ2
2

)
(1.32)

f(x) =
1

2π
√

det|C| exp
(
− 1

2

(
(x − µ)T C−1(x − µ)

))
(1.33)

The density in (1.33) is the two-dimensional normal density defined in
(1.12). (1.33) follows immediately if the expressions in (1.31) and (1.32) are
substituted in (1.12).

1.5.5 Multivariate Normal Distribution

Vectors and matrices lend themselves to defining the joint normal density of
n random variables.

x = (x1, x2, . . . , xn )T

µ = (µ1, µ2, . . . , µn )T C =

⎛⎜⎜⎝
c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cn1 cn2 . . . cnn

⎞⎟⎟⎠
f(x) = 1

(2π)n/2
√

(det |C|) exp
(
−1

2

(
(x − µ)T C−1(x − µ)

))
(1.34)



36 1 Introduction

n random variables with a joint density, as given in (1.34), are said to be
multivariate normally distributed. µ is the column vector with the expecta-
tions of n random variables (X1, . . . , Xn)T = X, C being their invertible
covariance matrix and f(x) their n-dimensional density. Often, the notation
X ∼ Nn(µ, C) is used.

Multivariate normally distributed random variables are practical since
linear combinations

∑n(j)
j=1 ajXj , Xj in X, n(j) ≤ n, are normally distributed

as well. For a proof use the following proposition. If X ∼ Nn(µ,C) and A is
an invertible n×nmatrix, then AX ∼ Nn(Aµ,ACAT ). When a matrix with
(a1, . . . , an) is substituted for A, the marginal distributions are obtained. For
the following two special cases of linear combinations of multivariate normally
distributed random variables, the densities have already been calculated.

The first case is the marginal distribution of any random variable in a set
of multivariate normally distributed random variables. The marginal distri-
bution of each random variable Xi in X ∼ Nn(µ, C) is normally distributed
with expectation µi and the variance σ2

i . For n = 2, this has been proved in
(1.25) to (1.30).

In the second case, the random variables in X are assumed to be mutually
independent. Under this assumption, all covariances in C become identically
zero, and C contains the non-zero diagonal elements, which are the variances
σ2

i of the Xi. The determinant and the inverse of such a covariance matrix
are then easily calculated and the density in (1.35) follows.

det|C| = σ2
1σ

2
2 . . . σ

2
n

(
x1 − µ1, . . . , xn − µn

)⎛⎜⎜⎝
σ−2

11 0 . . . 0
0 σ−2

22 . . . 0
...

...
. . .

...
0 . . . . . . σ−2

nn

⎞⎟⎟⎠
⎛⎜⎜⎝
x1 − µ1

x2 − µ2
...

xn − µn

⎞⎟⎟⎠
=
∑n

i=1

(
(xi−µi)

2

σ2
i

)
f(x) = 1

(2π)n/2σ1σ2...σn
exp

(
− 1

2

∑n
i=1

(
(xi−µi)

2

σ2
i

))
(1.35)

For n = 2, this result has been obtained in (1.18) to (1.24).

1.6 Problems

1.1. The data medium accompanying this book contains sub-directories Data

and R in directory UVTS. A variety of example time series used in this book
are found, together with their descriptions, in the Data sub-directory. Copy
these files to your hard disk: /path/ is used in this book as a placeholder for
the directory where your copy of a file is located.

1.2. Are (1.15,1), (1.15,2) and (1.15,3) valid?
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1.3. Are (1.15,4) and (1.15,7) valid?

1.4. Show that, under the iid.-assumptions in (1.2), the empirical variance
σ̂2

X = (1/(N −1))
∑N

i=1(xi − µ̂X)2 is an unbiased estimate for the theoretical
variance. Hint: Varµ̂X = (1/N2)

∑N
i=1 VarXi = (1/N2)NVarXi = (1/N)σ2

X .

1.5. Table 1.3 contains the estimated moments of the daily pyranometer val-
ues calculated from the measurements made by the MeteoSwiss and the ETH
at Zurich-Reckenholz station. a) Why does the difference of the MeteoSwiss
and ETH means (128.2 − 124.7 = 3.5 Wm−2) not equal the mean of the
differences (3.4 Wm−2)? b) Are the MeteoSwiss and the ETH mean signif-
icantly different? Perform a statistical test using the empirical moments in
Table 1.3. Then, perform this test using an appropriate R function. Hint:
help.start() starts the R help system.

1.6. Let dif be the R time series of the pyranometer differences plotted above,
in Fig. 1.8. From dif, construct R time series for the time slices: (a) the
Summer months of 1990 and 1992, and (b) the Winter months of 1989/90,
1991/92 and 1992/93. Then, assuming that the observations are iid., calculate
estimates for the mean and the empirical variance of the differences in each
time slice.

1.7. Let X1 and X2 be the random variables, which are defined in (1.13)
as linear combinations of the random variables X ′

1 and X ′
2. Calculate the

expectations and the variances of X1 and X2. Show that � is the correlation
of X1 and X2 as defined in (1.11).

1.8. Outline the region of integration for the double integral in (1.18).

1.9. In the error model (1.14), the expectation of the differences of the pyra-
nometer daily values is the systematic error, and half of the variance of the
differences is the random error.

1. Find an error model for the pyranometer daily values under the assump-
tion that the measurements are only afflicted with a random error. Hint:
assume the systematic error in (1.14) to be identically zero.

2. Assume that the differences of the pyranometer daily values are iid. and
estimate the random error in the daily pyranometer values with your
model. Compare your estimate with the estimate obtained, when (1.14)
is being used.

1.10. The daily values for the meteorological quantities observed at Zurich-
Reckenholz station are not independent, since weather conditions are likely
to last for a period of a few days, as discussed in Sect. 1.4. Therefore, SWIR
values for those days, which immediately follow each other, are likely to be
correlated. However, estimates are unable to be calculated with (1.7), since
there is only one value available for each day and the measurements cannot
be repeated. Is there another possibility?



38 1 Introduction

1.11. The monthly SWIR values for the stations shown in the following table
are available in the files /path/name.

station: name, coordinates period of filename
altitude in m measurements

from to

Toronto 79 24 W 43 40 N 116 1950 1988 toronto.dat

Toronto Met.Res. 79 33 W 43 48 N 149 1967 1988 tormetres.dat

Bracknell 0 47 W 51 23 N 73 1965 1991 bracknell.dat

London Wea.C. 0 7 W 51 31 N 77 1958 1991 london.dat

These text files contain, in each line, 12 monthly values for a year. Calculate
the monthly differences for the pair (Toronto/Toronto Met.Res.) stations, and
the pair (Bracknell/London Wea.C.) stations over the periods where monthly
means in both time series are available. Are these differences iid. as defined
in (1.2)?

1.12. Evaluate
∫∞
−∞ e−bx2

dx =
√
π/b. Hint: using polar coordinates and as-

suming that dydx = �dφ× d� is a small rectangle, provided that dφ and d�
are small, evaluate

∫∞
−∞

∫∞
−∞ e−b(x2+y2)dydx = π/b. The result then follows

with e−b(x2+y2) = e−bx2
e−by2

.

1.13. Equation (1.29) is repeated below. The inner (improper) integral in
this equation has to be evaluated for both finite and infinite u1. The result
is 1, if u1 is finite, or h, 0 ≤ h ≤ 1, if u1 → −∞. Therefore, in the interval
−∞ ≤ u1 ≤ b1, it is assumed that the inner integral evaluates to h̄(b1) and,
in the second, third and fourth lines, an inequality results.

F1(a1) =
a1∫

u1=−∞

(
1√
2π

e−
u2
1
2

)⎛⎜⎝
lim

x2→∞
(

x2−�u1√
1−�2

)∫
u2=

lim
x2→−∞

(
x2−�u1√

1−�2

) 1√
2π

e−
u2
2
2 du2

⎞⎟⎠ du1

a1∫
u1=−b1

1√
2π

e−
u2
1
2 du1 ≤

−b1∫
u1=−∞

h̄(b1) 1√
2π

e−
u2
1
2 du1 +

a1∫
u1=−b1

1√
2π

e−
u2
1
2 du1 = F1(a1)

≤
a1∫

u1=−∞
1√
2π

e−
u2
1
2 du1

In this inequality, for b1 → ∞ the integral on the left side (in the second line)
tends to the integral on the right side (in the fourth line). Is this derivation
correct?



2 Stationary Stochastic Processes

Observing a geophysical variable, a time series is obtained if time is recorded
together with the values being measured. As a value is a realisation of a ran-
dom variable, a time series is a time slice from a realisation of a double infinite
sequence of random variables, i.e., of a stochastic process. Introductions into
stationary stochastic processes are given in [17], [33], and [22].

The basic definitions are given in Sects. 2.1 and 2.2. In Sect. 2.3, models
for three example time series are found by trial and error. These models are
examples of stochastic processes. They are linear combinations of a sequence
of independent and identically distributed random variables and are treated
as convolutions in Sect. 2.4. The practitioner, who has to decide whether a
time series is stationary, finds some helpful hints in Sect. 2.5. In Sect. 2.6, the
statistical properties of the empirical moments of a time series are derived and
discussed. Sect. 2.7 introduces the optimal linear predictor. As in Chap. 1,
the supplements and the problem set are found in the two last sections.

2.1 Empirical Moments of a Wind Speed Time Series

On March 11, 1987, from 22:30 until 23:00, at a height of 23.3 m (meters)
above Anwandstrasse (a street in Zurich), the horizontal speed of the turbu-
lent air flow was measured with an ultrasonic anemometer in time steps of
∆t = 1 s (second) [119]. (Some remarks on the observation of a turbulent
flow in the atmospheric boundary layer are found in Sect. 9.4.2.) The data
obtained are made available in the text file /path/wind.dat, which contains
180 lines with 10 values in each line. The values are the deviations of the wind
speed from a reference value and result from a Reynold’s decomposition, as
defined in (9.101) and (9.102), of the wind speed measurements. The unit is
ms−1. From this file, with the following R expressions

wfn <- "/path/wind.dat"

wind <- ts(scan(wfn),start=1,frequency=1,)

the time series wind is generated (R time series objects are introduced in
Sect. 1.4). This time series is plotted in Fig. 2.1.

In Fig. 2.1, the wind speed tends to be close in value at adjacent time
points: the time series oscillates with minor fluctuations about some lo-
cal (definition (2.55) also applies to time series) mean, e.g., approximately
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Fig. 2.1. Atmospheric turbulence. Horizontal wind speed (deviations from a refer-
ence value) in ms−1 (meters per second). Time in s (seconds).

−2 ms−1 when the measurements begin at t = 0 s. However, at a few time
points, the local mean of the time series changes abruptly, e.g., for the first
time at approximately t = 50 s, values smaller than −4 ms−1 are measured.
After a few (usually less than approximately 60) seconds have passed, the
local mean of the time series changes again. Thus, the wind speed in a turbu-
lent flow at time t1 is not independent from the wind speed at neighbouring
time points t2, t3, . . .. In the period with measurements, however, the wind
speed appears to remain in a statistical balance, i.e., the local means fluctu-
ate about a global (definition (2.55) also applies to time series) mean. This
suggests that there was no change in the conditions that determined the
turbulent flow within the observational period.

Under this assumption, the following questions are meaningful. What is
the mean wind speed? What is the strength of a possible statistical linear
relationship (the empirical correlation, as defined in 1.7) between wind speeds
measured at adjacent time points t and t+ n∆t, n = 1, 2, 3, . . ., ∆t = 1 s? Is
there an m such that the correlation at t and t+n∆t, n > m, tends to zero?

In Fig. 2.1, the mean wind speed is approximately −2.5 ms−1. This an-
swers the first question: do graphical methods exist which would help to
answer the other questions? Using the R function lag()

windb1 <- lag(wind,1)

windb2 <- lag(wind,2)

...

duplicates of the time series are generated, which are shifted backwards (in
negative direction on the time axis) with displacements of 1, 2, 3, . . . , τ ∆t.
The displacement τ is called lag. Then, from the original time series and its
shifted copies with the lags τ = 1, . . . , 9, with

windmat <- ts.intersect(wind,windb1,windb2, ..., windb9)
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R matrix windmat is constructed, taking into account the shifted time do-
mains. The first column of windmat contains the original time series, the other
columns being the shifted copies.

The values in an R matrix are indexed with the indices written in brackets.
Remember that in Sect. 1.2, the index of an R vector is written in brackets.
The windmat matrix for example has two indices: the first is in the sequence
1, 2, . . . , 1791, the time points in the original time series (−9 to account for the
copy in the maximum lag 9), the second index is in the sequence 1, 2, . . . , 10,
the number of the shifted copy (1 the original time series, 2 the copy in the
lag 1, etc.). When you type windmat[1,1] you obtain the first value in the first
column, with windmat[1,] the values in the first row, and with windmat[,1] the
values in the first column are obtained. By means of this matrix, scatterplots
of the time series and its lagged copies are easily produced. For example,

plot(windmat[,2],windmat[,1],type="p",xlab="Lag 1",ylab="Wind")

generates the scatterplot of the original wind time series, and its copy in the
lag τ = 1. Even more easily, scatterplots of a time series as well as its lagged
copies are generated using lag.plot(). For example,

lag.plot(wind, lags=9, head="", layout=c(3,3))

produces the lag τ scatterplots, τ = 1, . . . , 9, in Fig. 2.2. Fig. 2.2 shows
correlations not near zero between the original time series and its copies
in the lags τ = 1, . . . , 9. These correlations decrease, as the lag increases.
Hence, the properties (1.10) suggest a statistical linear relationship between
wind speeds at small lags; at larger lags, however, the relationship disappears.

You can calculate numerical values, which support the conclusions drawn
from the plots in Figs. 2.1 and 2.2, using the definitions (2.1).

A time series (xt) = (x1, . . . , xN ) is a sequence of observed
values, and τ = 1, 2, . . . , N − 1, where τ = t− u, is a lag,
as mentioned in the remarks above. Then:

1. µ̂X = (1/N)
∑N

t=1 xt is called the arithmetic mean of (xt),

2. σ̂2
X = (1/N)

∑N
t=1 (xt − µ̂X)2 = ĉX(0) the empirical variance,

3. ĉX(τ ) = (1/N)
∑N−τ

t=1 (xt − µ̂X)(xt+τ − µ̂X) the empirical
covariance function, and

4. �̂X(τ ) = ĉX(τ )/ĉX(0) the empirical correlation function of (xt).

(2.1)

If the empirical moments of a time series are calculated using the definitions
(2.1), realisations of the corresponding estimators are obtained. Are these es-
timators unbiased and consistent, as defined in (1.3) and (1.4)? The answer
is given in Sect. 2.6 where the moments of these estimators are derived under
the assumption that the time series is a time slice from a realisation of a
stationary stochastic process, as defined in (2.8). The stationarity assump-
tions replace the iid. assumptions, since the values in a time series usually
are not iid. and their order of succession is important. The iid. assumptions
are formulated in (1.2), with estimates and estimators defined in (1.1).



42 2 Stationary Stochastic Processes

lag 1

w
in

d
−

6
−

4
−

2
0

−6 −4 −2 0

lag 2

w
in

d

lag 3

w
in

d

−6 −4 −2 0

lag 4

w
in

d

lag 5

w
in

d

lag 6

w
in

d

−
6

−
4

−
2

0

lag 7

w
in

d
−

6
−

4
−

2
0

lag 8

w
in

d

−6 −4 −2 0
lag 9

w
in

d

Fig. 2.2. Lag τ scatterplots (lagplots) of the wind speed time series in Fig. 2.1.
The values of the original time series (in lag τ = 0) are plotted on the vertical axes;
on the horizontal axes, the values of the shifted time series (in lags τ = 1, 2, . . . , 9)
are plotted.

The empirical second moment functions of a time series, as defined in
(2.1), are not identical with the empirical variance (in the remarks to (1.2)),
covariance and correlation (as defined in (1.7)) used for the calculations un-
der the iid. assumptions with R functions mean(), var(), cov() and cor().
Unfortunately, these functions do not use the definitions in (2.1) if their ar-
guments are R times series objects. Hence, the empirical second moments of
a time series are calculated, as required in (2.1,2,3,4), using the R function
acf(). For example, the expressions

lmax <- 60 #largest lag

lags <- 0:lmax #a <- 0:5 generates the vector a

ecor <- 0:lmax #with elements 0,1,2,3,4,5
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Fig. 2.3. Empirical correlation functions of the time series wind in Fig. 2.1, calcu-
lated from all 1800 values (a), from the first 900 values (b), and from the last 900
values (c).

#acf(): type="correlation" for the empirical correlations

# type="covariance" for the empirical covariances

acfpl <- acf(wind,lag.max=lmax,type="correlation",plot=F)

for(i in 1:(lmax+1)) {ecor[i] <- acfpl$acf[(i),1,1]}

plot(c(0,lmax),c(-0.3,1),type="no",xlab="lag",

ylab="empirical correlation function")

for(i in 1:lmax1) {lines(c(lags[i],lags[i]),c(0,ecor[i]),lty=1)}

ci <- 0.95 #confidence limit as in the remarks to (2.59)

cc <- (qnorm(0.5 + ci/2)/sqrt(acfpl$n.used))

lines(c(-2,lmax+2),c(cc,cc),lty=2)

lines(c(-2,lmax+2),c(-cc,-cc),lty=2)

calculate the empirical correlations of the wind speed time series using
(2.1,4) and then plot the vertical lines, on the left in Fig. 2.3. The 0.95-
confidence interval for no correlation, as defined in (2.59), is plotted with
dashed horizontal lines. This confidence interval can also be calculated with
1.96/sqrt(acfpl$n.used). The R function acf(..., plot=T) produces the de-
fault plot of the empirical covariance or correlation function. In the default
plot, the vertical axis is labelled ACF (the acronym for autocorrelation func-
tion, mentioned in the remarks to (2.6)) and the 0.95-confidence interval for
no correlation, as defined in (2.59), is plotted.

The empirical correlation or covariance function is usually computed for
the entire time series. Then the time series is split into two parts in the centre
and the moment functions are re-calculated from the first and second half-
series. For example, since there are N = 1800 values in the wind speed series,
with R function window() (introduced in the remarks to Fig. 1.6) two half-
series, each containing 900 values, are generated. The empirical correlations
resulting from these are plotted in the middle and on the right in Fig. 2.3. In
these plots, the empirical correlations are similar for lags τ ≤ 20. However,
for τ > 20, the similarity diminishes. It is recommended that you calculate
and plot the empirical correlation or covariance function using different parts
of a time series to be analysed, and compare the plots using the diagnostics
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introduced in Sect. 2.5. This helps to decide whether the time series is sta-
tionary, as defined in (2.8). Stationarity is assumed if the empirical moments
are calculated with definitions (2.1).

The empirical covariances ĉX(τ ) and correlations �̂X(τ ) of a time se-
ries, as defined in (2.1), have properties similar to empirical covariances
and correlations calculated from iid. observations, as defined in (1.7). Thus
�̂X(τ ) = ĉX(τ )/ĉX(0) describes the linear relationship (demonstrated in
Fig. 2.2 for the wind speed example) of two measurements in lag τ . There
are N − τ pairs of observations with this lag. µ̂X , σ̂2

X , ĉX(τ ) and �̂X(τ ) are
not robust estimates, i.e., they are strongly influenced by extreme values. Ex-
amples are given in Fig. 3.9. Therefore, always produce a histogram of (xt)
before calculating µ̂X or σ̂2

X , and a lag τ scatterplot before calculating ĉX(τ )
or �̂X(τ ).

The empirical covariance or correlation function can be calculated as pre-
scribed in (2.1) provided that there are enough pairs (xt, xt−τ ) in the period
where the original time series (xt) and the lagged duplicate (xt−τ ) overlap.
Box and Jenkins in [16] recommend the calculation of the empirical moment
functions only if a time series is not shorter than N ≈ 50 (approximately)
and the lag not larger than τ ≈ N/4.

Both shifting a duplicate time series by a lag τ , when the empirical covari-
ance function is calculated, and averaging over the period of measurement
when the empirical mean is calculated, only make sense on condition that
the time series is stationary. The stationarity assumptions are formulated in
Sect. 2.2.3. In Sect. 2.6, assuming that a time series is stationary, the expecta-
tions and variances of the estimates defined in (2.1) are calculated. However,
the calculations are no longer as straightforward as when calculating the mo-
ments of the arithmetic mean of a random sample in the remarks to (1.2),
because the observations in a time series are not independent.

2.2 Stationary Stochastic Processes

This section contains the basic definitions for the stochastic process and its
moment functions in Sects. 2.2.1 and 2.2.2, and for the stationarity assump-
tions in Sect. 2.2.3

2.2.1 Stochastic Processes

Many geophysical variables depend on space and time. Thus, the measured
values are often recorded together with their spatial-temporal coordinates,
when a geophysical variable is observed. Examples of geophysical variables
are: the meteorological variables observed worldwide at the synoptic stations,
the salinity in the regions of the North Atlantic where the water freezes to
sea ice, the hydraulic conductivity in an aquifer, and the percentage of humus
in a soil.
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The above examples demonstrate that (i) often two or more variables are
observed at the same place and time and (ii) the variables are observed in a
given region and/or period. If the observed variables are random and if this
property, i.e., the influence of chance, is suspected of playing a role in the
analysis of the measurements, it then is assumed that the observations stem
from a stochastic process.

A stochastic process or a random function (Xt) or X(t), t ∈ T ,
is a sequence of random variables or a function whose values
are random variables. The argument t of the sequence or
function is called parameter.

(2.2)

The definition (2.2) allows for both multi-dimensional stochastic processes
(random functions) and multi-dimensional parameters. A stochastic process
(random function) is multi-dimensional, only if the random variables are
multi-dimensional XT (t) =

(
X

(1)
t , . . . , X

(p)
t

)
. Such sequences or functions

are called multivariate stochastic processes or multivariate random functions.
Most geophysical stochastic processes or random functions are multivari-

ate and their parameter is 4-dimensional, i.e., 3 in space and 1 in time. For
example, an upper-air sounding usually delivers values for the pressure, tem-
perature and humidity which are associated with longitude, latitude, altitude
and time. Often only one variable is measured at a fixed location in constant
time steps. Such a measurement produces a time series, as defined in (2.1).

In contrast to a random sample which delivers observations from a set
of iid. random variables as stipulated in (1.2), the observations in a time
series are generally not independent and their order is essential. Examples
are the pyranometer measurements in Fig. 1.4 and the measurements of the
windspeed in the turbulent air flow in Fig. 2.1.

In this book it is assumed that the observations of a geophysical variable
are a time slice in a realisation of a stochastic process, as defined in (2.2), with
integer parameter t = . . . ,−1, 0, 1, . . .. Under this assumption, a value xt has
been measured for each random variable Xt, t in the observational period,
and the sequence of the values (xt) is a time series. For this discrete-time
stochastic process, usually (Xt) or X(t) is written, and for the parameter, t.
t is the time, with a specified value of t being a point in time.

As an important exception, Chap. 4 treats random functions with a two-
dimensional real parameter, e.g., longitude and latitude. An example is the
climatological yearly means of SWIR in Germany in Fig. 4.16. These random
functions are often measured at non-equidistant sites (sites which are not on a
grid with uniform size of the cells) and, therefore, in (4.6), a spatial random
function (regionalised variable in geostatistic terminology, cf. Chap. 4) is
defined as not being a “spatial series”. As another exception, continuous-time
stochastic processes (with parameter being the time t, t real) are introduced
in Sects. 7.1 and 7.2.

In the example of a stochastic process given in Fig 2.4, 6 out of all possible
realisations of a stochastic process are plotted over the period t = 1, . . . , 400.
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Fig. 2.4. 6 simulated realisations (nos. 100, 200, . . . , 600) of a stochastic process
X(t), plotted in the time slice t = 1, 2, . . . , 400.

If all realisations had been plotted, i.e., all possible observations of the random
variables X(t), t = 1, . . . , 400, the process would have been entirely specified
for this period. However, this is not possible from a practical point of view,
since there is an infinite number of realisations. Hence, a stochastic process
is given by a formula or a procedure with which an arbitrary number of
realisations can be simulated.

With such a procedure, 600 realisations x(t, j), t = 1, . . . , 400, j =
1, . . . , 600, are simulated. Of these, 6 are plotted in Fig. 2.4. These simula-
tions are used to ascertain whether the random variablesX(t), t = 1, . . . , 400,
are iid. as requested in (1.2), since any realisation is simulated independently
of any other and, thus, for each random variable (Xt), t = 1, . . . , 400, 600
simulated values x(t, j), j = 1, . . . , 600, are obtained, all of which are iid.

If, as prescribed in (1.2,1), the X(t) are identically distributed, then the
histograms of x(t, j), j = 1, . . . , 600, are similar for all t. This is true for X(t),
t = 51, 52, 53, 54, 55, 301, 302, 303, 305, as seen in Fig. 2.5, and for any other
X(t), t = 1, . . . , 400 (not plotted). These histograms suggest that all random
variables in the process have the same normal distribution with mean µX ≈ 0
and standard deviation σX ≈ 10.

If further, as prescribed in (1.2,2), the X(t) are independent of each other,
then the scatterplot for any pair (X(t), X(u)), t, u = 1, . . . , 400, t �= u, is
similar to the scatterplot in Fig. 1.3 at the bottom. However, assuming that
pairs (X(t), X(u)) are bivariate normally distributed, as defined in (1.13), it
is concluded from Figs. 2.6 and 2.7 that there are pairs of random variables
(X(t), X(u)) which are not independent, since there are scatterplots similar
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Fig. 2.5. Histograms of 600 realisations (realisations nos. 100, 200, . . . , 600 are
plotted in Fig. 2.4) of a stochastic process (Xt), for the 9 time points t =
51, 52, 53, 54, 55, 301, 302, 303, 305.

to those on top and in the middle of Fig. 1.3. This shows that the X(t),
t = 1, . . . , 400, are not iid.

In Figs. 2.6 and 2.7, there are very similar scatterplots for pairs of random
variables with the same lag, e.g., only small differences can be seen when
comparing the scatterplots for (X(51), X(52)) and for (X(301), X(302)). This
suggests that the scatterplots for (X(t), X(u)), u = t − τ , depend on the
lag τ = t − u, but not on t and u. Quite large correlations are seen in
the scatterplots for small lags, with the exception of the correlation for lag
τ = 4, which is close to zero. In Fig. 2.7 there are also scatterplots for pairs
(X(t), X(u)), (t, u) = (51, 301), (51, 302), (51, 310), which are very similar to
the scatterplot in Fig. 1.3 at the bottom. From these, assuming that pairs
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Fig. 2.6. Scatterplots
(
X(t, j),X(u, j)

)
, j = 1, 600, of 600 realisations (re-

alisations nos. 100, 200, . . . , 600 are plotted in Fig. 2.4) for the pairs (t, u) =
(51, 52), (51, 53), . . . , (51, 60).

(X(t), X(u)) are bivariate normally distributed, as defined in (1.13), it is
concluded that (X(t), X(u)) are approximately independent if the lag is large.

Since the simulations x(t, j), j = 1, . . . , 600, are iid., for any X(t), the
mean µX(t) and the variance σ2

X(t) of X(t) are estimated with µ̂X(t) =
(1/600)

∑600
j=1 x(t, j) and with σ̂2

X(t) = 1/(600 − 1)
∑600

j=1(x(t, j) − µ̂X(t))2;
for any pair (X(t), X(u)), the covariance is estimated using the definition
(1.7). These estimates are realisations of estimators, which are known to be
unbiased, as defined in (1.3), and consistent, as defined in (1.4), from an
introduction to Statistics.

The simulations for the example in Figs. 2.4, 2.5, 2.6 and 2.7 were done
using R function arima.sim() and the AR[2] model given in Problem 2.22.
The AR[2] model, as defined in (2.48), is an example of a linear process. The
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Fig. 2.7. Scatterplots
(
X(t, j),X(u, j)

)
, j = 1, 600, of 600 realisations (re-

alisations nos. 100, 200, . . . , 600 are plotted in Fig. 2.4) for the pairs (t, u) =
(51, 301), (51, 302), (51, 310), (301, 302), . . . , (301, 307).

linear process is introduced in Sect. 2.3.5 and discussed in detail in Chap. 5.
The properties of a linear process and the remarks to definition (1.34) are
used to derive, in Problem 2.22, that the AR[2] model used for the simulations
is normal or Gaussian, as defined in (2.3).

X(t) is a normal or Gaussian process, provided that all one- and multi-
dimensional distributions of finitely many (out of possibly infinitely
many) random variables X(t), X(u), X(v), . . ., t, u, v ∈ T , are uni-
variate, resp. multivariate normal distributions as defined in (1.34).

(2.3)
In this definition, the joint probability distributions of all random variables
in the process is given. If the number n of the random variables is finite, this
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procedure is known from an introduction to Statistics: the joint n-dimensional
distribution or density function is given.

The simulations for the example in Figs. 2.4, 2.5, 2.6 and 2.7 with a for-
mula or procedure and the definition of the normal process in (2.3) demon-
strate that there are two possibilities to specify a stochastic process. First, as
many realisations as you wish are simulated using a formula (an AR[2] model
in the example above). Second, the joint probability distributions (multivari-
ate normal in 2.3) of all random variables in the process are given.

In Sect. 2.2.1, the stochastic process is introduced by illustrating the basic
definition (2.2) with two examples. In Sect. 2.2.3 the stationarity assumptions
are formulated using the moment functions of a stochastic process, which are
defined in Sect. 2.2.2.

2.2.2 1st and 2nd Moment Functions

The moments of the random variables in a stochastic process are functions
of the parameter, since the random variables are functions of the parameter.
Hence, these are called moment functions.

Let (Xt) or X(t), t ∈ T , be a stochastic process. Then:
1. µX(t) = EX(t) is called expectation function,
2. σ2

X(t) = VarX(t) variance function,
3. cX(t, u) = Cov

(
X(t), X(u)

)
=

E
(
(X(t) − µX(t))(X(u)− µX(u))

)
covariance function, and

4. �X(t, u) = cX(t, u)/
√
σ2

X(t)σ2
X(u) correlation function.

(2.4)

The realisations x(t) of a stochastic process or random functionX(t) fluctuate
around the expectation function µX(t) in a band with a height which depends
on the variance function σ2

X(t). If µX(t) and σ2
X(t) exist, for any ordered pair

of time points (t, u), cX(t, u) (�X(t, u)) is the covariance (the correlation) of
the random variables X(t) and X(u). Often, µX(t) is called the expectation
or mean and σ2

X(t) is called the variance, despite both, µX(t) and σ2
X(t),

being functions of t. It is often useful to arrange the covariances cX(t, u) in
the covariance matrix CX :

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . . X(−2) X(−1) X(0) X(1) X(2) . . .

...
X(−2) c(−2,−2) c(−2,−1) c(−2, 0) c(−2, 1) c(−2, 2)
X(−1) c(−1,−2) c(−1,−1) c(−1, 0) c(−1, 1) c(−1, 2)
X(0) c(0,−2) c(0,−1) c(0, 0) c(0, 1) c(0, 2)
X(1) c(1,−2) c(1,−1) c(1, 0) c(1, 1) c(1, 2)
X(2) c(2,−2) c(2,−1) c(2, 0) c(2, 1) c(2, 2)
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= CX .

(2.5)
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A stochastic process is usually described by giving its moment functions.
µX(t) describes the expectation of the random variables in the process, σ2

X(t)
the amplitudes of the fluctuations about µX(t). cX(t, u) and �X(t, u) describe,
because of the properties (1.10), the strength of a statistical linear relation-
ship of the random variables X(t) and X(u).

If the stochastic process is multivariate (i.e., if the random variables
are multi-dimensional), it is often useful to consider the covariances be-
tween the elements X(j)

t of the multi-dimensional random variables XT (t) =(
X

(1)
t , . . . , X

(p)
t

)
. These covariances are functions not only of the time, but

also of the elements of the random variables. This suggests the definitions
(2.6).

µ
(i)
X (t) = EX(i)

t

(
σ

(i)
X (t)

)2 = VarX(i)
t

c
(jk)
X (t, u) = Cov

(
X

(j)
t , X(k)

u

)
= E

((
X

(j)
t − µ(j)

X (t)
)(
X(k)

u − µ(k)
X (u)

))
(2.6)

�
(jk)
X (t, u) = Cov

(
X

(j)
t , X(k)

u

)/√(
σ

(j)
X (t)

)2(
σ

(k)
X (u)

)2
c
(jj)
X (t, u) is called autocovariance function, c(jk)

X (t, u), j �= k, crosscovariance
function. Often, cX(t, u) (rX(t, u)) is called autocovariance (autocorrelation)
function even in the case of an univariate process. In this book, however, the
second moment functions of an univariate process are called covariance and
correlation function.

The symmetry of the covariance matrix (2.7,1) of a stochastic process
follows directly from definition (2.4). However, not every symmetric matrix
is a covariance matrix of a stochastic process, because a covariance matrix
is required to be non-negative definite (positive semidefinite) in (2.7,2). The
non-negative definiteness (positive semidefiniteness) is subsequently derived.

Let CX be the covariance matrix of the stochastic process X(t),
t integer or real, with the covariances cX(t, u). Then CX is:

1. symmetric and
2. positive semidefinite (non-negative definite). This implies

that
∑n

i=1

∑n
j=1 bibjcX(ti, tj) ≥ 0 for any real bi, bj.

(2.7)

The non-negative definiteness (positive definiteness) (2.7,2) is derived by con-
structing an arbitrary linear combination Y =

∑n
i=1 biX(ti) of random vari-

ables Xti
in the stochastic process X(t), whether t integer or real. Being a lin-

ear combination of random variables, Y is also a random variable in L2(Ω,F )
(7.10). Hence, VarY ≥ 0, because a negative variance would be impossible.
If VarY = 0, Y is degenerate, i.e., becomes a constant. Then, the variance of
Y is calculated with (1.15,10) and VarY =

∑n
i=1

∑n
j=1 bibjCov

(
Xti

, Xtj

)
=∑n

i=1

∑n
j=1 bibjcX(ti, tj) is obtained, where cX(ti, tj) is an element in the

covariance matrix CX of the stochastic process X(t). Due to 0 ≤ VarY ,∑n
i=1

∑n
j=1 bibjcX(ti, tj) ≥ 0 is obtained and thus (2.7,2) is proven.
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A matrix C = cij , i, j = 1, . . . , n, is called positive semidefinite or non-
negative definite, if

∑n
i=1

∑n
j=1 bibjcij ≥ 0 for all (b1, . . . , bn) �= (0, . . . , 0).

However, if
∑n

i=1

∑n
j=1 bibjcij > 0, C is called positive definite. A positive

definite matrix has desirable properties, for example, its inverse exists.
The properties (2.7) assert that linear combinations of random variables

are also random variables with a variance that is often positive, seldom zero,
but never negative. Such linear combinations are relatively easy to calculate
and are therefore favoured candidates for a prediction. Generally, a prediction
of a stochastic process is an estimator, as defined in (1.1), for a random
variable in the process at a time point where no observation is available.

For example, X̂t+1 = β0Xt+β1Xt−1+. . .+βpXt−p is a linear prediction for
Xt+1 based on Xt, Xt−1, . . . , Xt−p. Therefore, with (1.15,10) and due to the
properties (2.7), the variance of the prediction errorXt+1−X̂t+1 is calculated.
By minimizing this variance, optimal β0, . . . , βp are found. Linear predictions
are introduced in Sect. 2.7, important special cases of linear predictions being
dealt with in Chaps. 4 and 5.

With the definitions of the stochastic process in Sect. 2.2.1 and its moment
functions in Sect. 2.2.2 you are now equipped to encounter the stationarity
assumptions in Sect. 2.2.3. Under the stationarity assumptions, the empirical
moment functions of the wind speed measurements, in Fig. 2.1, are calculated
in Sect. 2.1.

2.2.3 Stationarity Assumptions

Usually, the expectation function and the covariance function of a stochastic
process, both as defined in (2.4), are not known to the practitioner. Can esti-
mates be found for these moment functions? If a large number of independent
realisations of the process have been observed, you then have many values
for the random variables in the period with observations. These values are
iid., as defined in (1.2), and you can calculate the estimates, known from an
introduction to Statistics. This procedure is proposed in the remarks to the
histograms in Fig. 2.5 and the scatterplots in Figs. 2.6 and 2.7.

However, when a geophysical variable is observed, often a time slice of
only one realisation of the observed stochastic process results, and it is not
possible to estimate the expectation and covariance function of the process,
as (i) only one value for each random variable in the observational period
is available and (ii) the measurements cannot be repeated. Obviously, the
observations are not in agreement with (1.2,1). A possible way out of this
apparent dead end is to assume weak stationarity, i.e., that the stochastic
process, from which the observations stem, has the properties listed in (2.8).

A stochastic process (Xt) or X(t), t integer or real, as defined
in (2.2), is weakly stationary, on condition that for any t, u:

1. µX(t) = µ = constant and
2. cX(t, u) = cX(t− u, 0) = cX(τ ), a function only of

the lag τ = t− u, i.e., of differences of the parameter.

(2.8)
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(2.8,2) requires that the covariance function be a function of the lag only,
i.e., of differences of the parameter only. Hence, cX(t, u) = Cov(Xt, Xu) =
Cov(Xv, Xw) = cX(v, w) results on condition that Xt is weakly stationary
and u − t = w − v for any t, u, v, w ∈ T . For the same reason, you obtain
σ2

X(t) = cX(t, t) = cX(0) = cX(u, u) = σ2
X(u), for any t, u,∈ T . Thus, the

variance function σ2
X(t) of a weakly stationary process is constant.

The first example of a time series stemming from a stationary process is
the wind speed series in Fig. 2.1, as (i) the mean function is approximately
constant in Fig. 2.1, and (ii) the empirical correlation function for lags τ ≤ 20
does not depend on the part of the time series used for the calculations, as
seen in Fig. 2.3. Thus, the plots in Fig. 2.3 indicate that the covariances of
the turbulent air flow are a function of the lag only, as required in (2.8,2).

A second example is the stochastic process with the simulated realisations
in Fig. 2.4. In the simulation period, the realisations remain constant in the
mean, and the histograms in Fig. 2.5 point to a constant expectation and
a constant variance function. And what about the covariance function? The
very similar scatterplots in the lags τ = 1, . . . , 6 in Figs. 2.6 and 2.7 indicate
that covariances depend on the lag only. This indication is confirmed by
the lagplots obtained from the last realisation of this process in Fig. 2.8.
This simulation experiment with a stationary AR[2] model (as defined in
(2.48) and the R expressions for the simulations as given in Problem 2.22)
demonstrates that scatterplots for random variables in lag τ , obtained from
many realisations of a stationary stochastic process, are very similar to lag
plots for τ obtained from only one realisation. Please follow the hints in
Problem 2.22 to demonstrate in a simulation experiment that the empirical
correlations of random variables in lag τ , calculated from many simulated
realisations of a stationary process, are very close in value to the empirical
correlations calculated, using (2.1), from only one realisation.

As a first counter-example, the daily pyranometer values plotted in
Fig. 1.4 are realisations of two stochastic processes, which are not stationary
in the first moment as the summer values are much larger than the winter
values in the mean.

As a second counter-example, the time series of differences of monthly
SWIR values obtained for the pairs of stations in Fig. 2.19 are not stationary
in the second moment, since unexpectedly, in the years 1975 and 1980, the
amplitudes of the fluctuations become abruptly smaller. The abrupt decrease
in amplitude points to a non-constant variance function.

However, many time series only reluctantly reveal whether they stem from
a stationary process, once you look at the plots (time series plot, lag plots and
plots of the empirical correlation functions) introduced in Sect. 2.1. Instruc-
tions that help to decide whether or not a time series is actually a time slice
from a realisation of a stationary stochastic process are given in Sects. 2.5,
4.2 and 5.4.
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Fig. 2.8. Lagplots (cf. Fig. 2.2) obtained from realisation no. 600 produced in the
simulation experiment described in the remarks to Fig. 2.4.

The covariance function of an univariate stationary stochastic process has
the properties (2.9). Properties (2.9,1) and (2.9,2) directly follow from the
definitions (2.4) and (2.8). Property (2.9,3) is shown using (1.15) and (1.16):

Var
(
X(t) ±X(t+ τ )

)
= VarX(t) ± 2Cov

(
X(t), X(t+ τ )

)
+ VarX(t+ τ )

= cX(0) ± 2cX(τ ) + cX(0)
0 ≤ 2

(
cX(0) ± cX(τ )

)
, a variance is non-negative

−cX(0) ≤ cX(τ ) ≤ cX(0).

Property (2.9,4) is shown using the invariance of displacement, as proposed
in the stationarity assumptions (2.8): cX(τ ) = Cov

(
X(t), X(t + τ )

)
=

Cov
(
X(t − t − τ ), X(0)

)
= Cov

(
X(−τ ), X(0)

)
= Cov

(
X(t − τ ), X(t)

)
=

E
(
(X(t − τ ) − µX(t − τ ))(X(t) − µX(t))

)
= E

(
(X(t) − µX(t))(X(t − τ ) −
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µX(t− τ ))) = Cov
(
X(t), X(t− τ )) = cX(−τ ).

The second moment functions of a stationary stochastic
process have the following properties:

1. �X(τ ) = cX(τ )/cX(0)
2. cX(0) = σ2

X �X(0) = 1
3. −cX(0) ≤ cX(τ ) ≤ cX(0) −1 ≤ �X(τ ) ≤ 1
4. cX(−τ ) = cX(τ ) �X(−τ ) = �X(τ )

(2.9)

However, the cross-covariance and cross-correlation functions of a stationary
multivariate process lack the properties (2.9).

If (Xt) is a stationary process with integer parameter t, the covariances in
the covariance matrix CX , as defined in (2.5), depend (due to (2.9)) only on
differences of the indices with every (negative-sloping) diagonal of CX con-
taining identical values, i.e., CX has constant diagonals. In the main diagonal
is the constant variance cX(0) of the process, in the following subdiagonals
are the covariances for the lags τ = 1, τ = 2, etc. Equations with CX are
preferably solved with the procedure mentioned in (5.14).

Properties (2.7) pertaining to the covariance function cX(τ ) of a sta-
tionary stochastic process (Xt) are equivalent to CX(s) ≥ 0. CX(s) is the
Fourier transform of cX(τ ) and is known as the spectrum of (Xt). Because
it is non-negative, the spectrum CX(s) has an interpretation as mean power
per frequency (a power in the physical sense is non-negative). Spectra of sta-
tionary stochastic processes are estimated in Chaps. 8 (special cases only),
9 and 10, after the necessary preparations have been made (in Chaps. 6 and
7). The estimation of a spectrum is often the starting point for the physical
description of the random process that produced the realisation observed.

Summarizing Sect. 2.2.3, the first and second moment functions of a weak
stationary process remain invariant under displacements in the parameter
domain, because the moment functions in (2.8) are functions of differences
of parameter values and not functions of the parameter itself. Beside the
weak stationarity, there is also the strong stationarity. A stochastic process
is strongly stationary if all stochastic properties remain invariant under dis-
placements in the parameter domain, i.e., if the joint probability distributions
of the process do not depend on the parameter, but only on differences of
parameter values. Subsequently in this book, stationarity means weak sta-
tionarity, as defined in (2.8).

Using the basic definitions provided in Sect. 2.2 (stochastic process, its
moment functions, the stationarity assumptions) stochastic processes with
integer parameter are guessed, in Sect. 2.3, as models for the wind speed
observations in Fig. 2.1 and for three more example time series. These are
two indices for the North Atlantic Oscillation (NAO) and the yearly means
of the Basel temperature series. The models are fitted by trial and error, the
standard estimation procedure for these models being allocated to Chap. 5.
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2.3 Discrete-time Stochastic Processes

In this section, example stochastic processes with integer parameter t =
. . . ,−1, 0, 1, . . . are introduced. The general definition of these models (AR[p],
MA[q], ARMA[p, q] models often fitted to time series with integer parameter)
and their estimation is postponed to Chapter 5. These models are constructed
with a white noise process, which is defined in Sect. 2.3.1. In Sects. 2.3.2 and
2.3.4, the AR[1] and MA[1] models are introduced. In Sect. 2.3.3, the ran-
dom walk is defined. Both the stationary AR[1] and MA[1] models are linear
processes which in turn are defined in Sect. 2.3.5.

Parallel to these models, three example time series are introduced: in
Sect. 2.3.1, two indices for the North Atlantic Oscillation (NAO) and in
Sect. 2.3.4, the Basel temperature series.

2.3.1 White Noise Process

The zonal circulation over the North Atlantic controls the flux of heat and
moisture from the North Atlantic into Eurasia and from Eurasia into the
Arctic. The intensity of the advection of sensible and latent energy has a
large influence, particularly in winter, on the temperatures and precipitation
over the Northern Atlantic and surrounding continents. North Atlantic zonal
circulation is maintained by two quasi-permanent pressure centres: the Ice-
landic low and the Azores high. The difference of time averaged sea level
pressure measurements at stations located in the centres of activity, i.e., the
Azores and Iceland, is an index for the strength of the zonal circulation. Such
an index can be constructed back to 1860 (Hurrell’s index in [70], using mea-
surements from the Azores and Iceland), or even back to 1820 (Jones’ index
in [77], using early (defined in Sect. 2.3.4) measurements from Gibraltar and
Iceland). An example of reconstructing a climatological time series from early
instrumental records is given in Sect. 2.3.4, where the Basel temperature se-
ries is introduced.

Hurrell’s index is constructed from the normalised pressure differences
for the months December, January, February and March. It is available from
[69], and plotted on the top in Fig. 2.9. Jones provides in [76] a time series
of the normalised monthly pressure differences. From this time series, the
mean of the pressure differences in December, January, February and March
is computed in Problem 2.2 and is plotted as Jones’ index on the top in
Fig. 2.10.

The NAO indices provide a coarse characterisation of the climatic pro-
cesses in the North Atlantic and surrounding regions, e.g., in winters with
large positive NAO indices, westerly winds are stronger than on the average
over the North Atlantic and produce a more oceanic winter climate in Europe
with higher temperatures than on the average. Reviews of the phenomena re-
lated to the North Atlantic climate variability are given in [90], [141], and
[68].
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Fig. 2.9. NAO index (Hurrell) from 1864 through to 2000 (above, a) with 11-year
running mean and empirical correlation functions calculated from the entire series,
and the first and second half-series (below, b, c, d).

Are the NAO indices stationary? On the top in Figs. 2.9 and 2.10, both
indices fluctuate around a local (cf. definition (2.55)) mean (approximated
by an 11-year moving average, as defined in (2.39) until approximately 1900,
whereas from 1905 through to approximately 1930 the local mean of the
time series is rather high, thereafter decreasing until approximately 1970.
From that time onwards, both time series increase in the local mean.

However, these decadal oscillations in the first moment functions of the
NAO indices are not noticeably large since only small differences are found
in the means of the indices calculated from the first and the second half of
the observational periods (0.1100 and 0.0942 in the case of Hurrell’s index).
This diagnostic, i.e., comparing the means of a time series calculated from
the first and the second half of the observational period, is recommended
in Sect. 2.5.1. The absence of large differences in these means points to a
constant expectation function. It is therefore assumed that both NAO indices
are stationary in the first moment, i.e., the observations are in agreement
with (2.8,1). In the case of Jones’ index, the constant expectation function is
discussed in Sects. 2.5.2 and 2.8.4.
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Fig. 2.10. NAO index (Jones) from 1824 through to 2000 (above, a) with 11-year
running mean and empirical correlation functions calculated from the entire series,
and the first and second half-series (below, b, c, d).

In both time series plots, it can also be seen that the amplitudes of the
fluctuations remain approximately constant over the periods observed, and it
is thus assumed that the variance functions of both indices remain constant.

The empirical correlation functions of Jones’ index, on the bottom in
Fig 2.10, are quite similar and accordingly do not depend on the time-slice
used for the calculations. At the bottom in Fig. 2.9, however, the empirical
correlation function of Hurrell’s index calculated from the second half-series
shows a slightly larger correlation in the first lag than those calculated from
the entire series and the first half-series. If this small deviation is ignored,
the six empirical correlation functions, plotted in Figs. 2.9 and 2.10, are quite
similar. It is then assumed that both NAO indices are stationary in the second
moment function, i.e., that the observations are in agreement with (2.8,2).
Consequently, being stationary in the first and the second moment functions,
both NOA indices are assumed to be stationary.

Unlike the empirical correlation function of the wind speed in the turbu-
lent atmospheric flow in Fig. 2.3, the empirical correlation functions of the
NAO indices remain (with a few exceptions) inside the 0.95-confidence inter-
val for no correlation, as defined in (2.59). In agreement with the small cor-
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relations, there are no discernible patterns in the plots of the indices (unlike
those clearly recognisable in the wind speed measurements plotted Fig. 2.1).

This suggests that the NAO indices are weak white noise processes, as
defined in (2.10). The definition (2.10) is the usual definition of the white
noise process as being a sequence of uncorrelated random variables.

The sequence of random variables (Wt), t = . . . ,−1, 0, 1, . . .,
with its moment functions µW (t), σ2

W (t) and cW (t, u)
is called a weak white noise process, on condition that:

1. µW (t) = µW and σ2
W (t) = σ2

W , i.e., do not depend on t, and
2. cW (t, u) = Cov(Wt,Wu) = 0 for t �= u.

(2.10)

Stronger than (2.10) is the definition (2.11) of the strict white noise process
which uses (joint) distribution functions of its random variables.

The sequence of random variables (Wt), t = . . . ,−1, 0, 1, . . .,
with probability distributions Ft(wt), is called a strict white
noise process, on condition that:

1. Ft(wt) = Fu(wu), for t �= u, and
2. F ...,−1,0,1,...

a finite number

(. . . , w−1, w0, w1, . . .) = . . . F−1(w−1)F0(w0)F1(w1) . . .

(2.11)
Subsequently in this book, a white noise process means a weak white noise
process, as defined in (2.10).

In (2.11), the joint distribution function of the random variables Wt in
an arbitrary finite time slice t1 ≤ t ≤ t2 of the stochastic process is the
product of the distribution functions of the Wt, t1 ≤ t ≤ t2. This is the usual
definition of two or more (but a finite number) independent random variables.
This definition is used, among other respects, for deriving the distribution of
a function of independent random variables in (1.5).

As a direct consequence of (2.11), random variables Wt and Wu in a strict
white noise process are independent for t �= u.

The moment functions of a strict white noise process (Wt) are obtained
easily with (1.15) and (1.16). Since the Wt are identically distributed as
required in (2.11,1), µW (t) = EWt = µW , σ2

W (t) = VarWt = σ2
W and

cW (t, u) = Cov(Wt,Wu) = E
(
(Wt − µW )(Wu − µW )

)
, for t �= u, are ob-

tained. Since the Wt are independent as required in (2.11,2), cW (t, u) =
E(Wt − µW ) × E(Wu − µW ) = (EWt − µW )(EWu − µW ) = 0, for t �= u,
results. Thus, the independence required in (2.11,2) implies that pairs of ran-
dom variables in a strict white noise process are not correlated. The reverse is
however not true, since from Cov(Wt,Wu) = 0 in (2.10,2) it is not possible to
deduce that Wt and Wu are stochastically independent without postulating
additional properties of the process. Hence, the set of stochastic processes as
defined in (2.10) contains the set of processes satisfying (2.11) as a subset.

From both definitions, moment functions µW (t) = µW , cW (t, u) = σ2
W ,

for t = u and cW (t, u) = 0, for t �= u, in agreement with (2.8), are obtained,
and thus the white noise process is stationary.
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In Problem 2.2, a white noise process (Wt) is estimated as a model for
Jones’ NAO index in Fig 2.10. Since cW (t, u) = 0, if t �= u by definition, its
expectation µW , its variance σ2

W and its distribution Ft(wt) remain to be
estimated. Using this model one can calculate the probability that an NAO
index larger than, e.g., 2.0, is observed.

In (7.76) it becomes self-evident why processes as defined in (2.10) or
(2.11) are called “white noise”.

A white noise process is easy to estimate as demonstrated in Problem 2.2;
but unfortunately, it is not suitable as a model for most time series, since in
a time series the observations are usually correlated. This raises the need
for models that incorporate correlations or dependencies between the obser-
vations. Two relatively simple models with this property are introduced in
Sects. 2.3.2 and 2.3.4.

2.3.2 First Order Autoregressive (AR[1]) Process

Fig. 2.1 suggests that the speed xt of the turbulent atmospheric flow at time
t depends on the speeds xt+n at neighbouring times t + n, −10 < n < 10
approximately. The dependence of the observation xi on the neighbour obser-
vations is confirmed by the empirical correlation functions in Fig. 2.3. Apart
from this dependence, abrupt random changes are also seen in the plotted
wind speed time series. In the example first order autoregressive processes
given in (2.12),

Let (Wt) be a white noise process with Wt ∼ N(0, 1). Then:

1. (Xt − µX) =
{

0 t = 1
0.9 × (Xt−1 − µX) +Wt t = 2, 3, 4 . . .

2. (Yt − µY ) =
{

0 t = 1
0.5 × (Yt−1 − µY ) +Wt t = 2, 3, 4 . . .

are examples of first order autoregressive processes.

(2.12)

the dependence is expressed by multiplying the wind speed at time t−1 with a
constant weight in order to obtain the wind speed at time t: Xt = a(1)×Xt−1

or Yt = a(2) ×Yt−1, and the randomness by adding a random variable to this
product: Xt = a(1)×Xt−1+Wt or Yt = a(2)×Yt−1+Wt. (Wt) is a white noise
process, as defined in (2.10). Both processes start in t = 1 with X1 = Y1 = 0,
if µX = µY = 0.

Using (2.12), e.g., (xt) = (0.000, 0.755, −1.726,−3.311,−2.044, . . .) is ob-
tained from the realisation (wt) = (0.090, 0.755,−2.406,−1.757, . . .), t =
1, 2, 3, 4, . . ., of a white noise process with Wt ∼ N(0, 1). With the same
realisation, (yt) = (0.000, 0.755,−2.028,−2.772,−0.449, . . .), is obtained, if
µX = µY = 0.

Assuming a zero mean of the first order autoregressive process (Xt) in
(2.12), i.e., µX = 0, a realisation of (Xt) is obtained with

wnlength <- 1000 #length of realisation



2.3 Discrete-time Stochastic Processes 61

w <- rnorm(wnlength,mean=0.0,sd=1.0) #white noise

ax <- 0.9 #in (2.12)

x <- 1:wnlength #vector for simulated process

x[1] <- 0 #in (2.12)

for (i in 2:wnlength) {x[i] <- ax*x[i-1] + w[i] }

Much more quickly, however, is an autoregressive process simulated with
arima.sim(), as demonstrated in Problem 2.22.

In the R expressions above, rnorm(wnlength,mean=0.0,sd=1.0) generates
a realisation (wt) of a white noise process with Wt ∼ N(0, 1), from whence
(xt) is computed as required in (2.12). In (2.12), the mean of the white noise
process is identically zero, and thus the first order autoregressive process
contains three parameters. As an example, when simulating (Xt) with the R
expressions above, the first parameter is µX = 0, the second σ2

W = 1 and
with the third, a(1) = 0.9, xt is obtained from wt and the previous xt−1. The
parameters in (2.12) should on no account be confused with the parameter
in definition (2.2), which is the argument of a stochastic process or a random
function.

Simulated realisations of both example first order autoregressive processes
(Xt) and (Yt), as specified in (2.12), are plotted in Fig. 2.11. In both plots, the
simulations fluctuate with small random amplitudes within small neighbour-
hoods; in larger neighbourhoods, the amplitudes of the fluctuations become
relatively larger, even though the fluctuations remain random.

When the wind speed time series in Fig. 2.1 is compared with the simu-
lations on the left in Fig. 2.11, it is seen that the simulation of (Xt) is more
similar to the wind speed series than the simulation of (Yt). The same rank-
ing results from a comparison of the empirical correlation functions of the
wind speed series in Fig. 2.3 with the correlation functions on the right in
Fig. 2.11. It follows that X(t) is a more suitable model for the wind speed
series than Y (t).

Nevertheless, the (Xt) model can also be improved upon, since the simu-
lation in Fig. 2.11 (above, on the left) fluctuates between −6 and +6, whereas
the observations in Fig. 2.1 only fluctuate between −6 and 0. An improved
model is obtained in Problem 2.3 comparing the plots in Figs. 2.1 and 2.3
with the plots obtained from simulations with unchanged third parameter
a(1) = 0.9, but with values other than µX = 0 for first (the mean of the
process) and σ2

W = 1 for second (the variance of the white noise process)
parameter of the first order autoregressive model.

When comparing the plots in Figs. 2.1 and 2.3 with those in Fig. 2.11
one tries to fit a model with two parameters (assuming µX = 0 in (2.12)) to
the measurements of the wind speeds in the turbulent atmospheric flow. This
trial and error procedure is very useful to illustrate the roles being played
by the model parameters. Parameter estimates as defined in (1.1), however,
would be a better tool in the hand of the practitioner. Do such estimates
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Fig. 2.11. First order autoregressive processes (Xt) and (Yt), as specified in (2.12).
On the left, simulations of (Xt) and (Yt), on the right, with ◦, the theoretical cor-
relation functions cX(τ) and cY (τ) as derived in (2.16), together with the empirical
correlation functions calculated from the simulations using (2.1).

exist? Answers to this and other questions related to the estimation of an
autoregressive process are found in the concluding remarks of this section.

The definition of the first order autoregressive model is given in (2.13).

If (Wt) is a white noise process with µW = 0 and σ2
W , then

Xt = aXt−1 +Wt is called a first order autoregressive process
(AR[1] process or AR[1] model) with Xt − aXt−1 = Wt being
its difference equation. A process (Vt) with an expectation
function µV (t) �= 0 is an AR[1] model, on condition that
(Xt) = (Vt − µV (t)) is an AR[1] model.

(2.13)

The difference equation of the AR[1] model in (2.13) is linear, of order 1, and
its coefficients are constant. A solution is obtained with repeated substitu-
tions and assuming an initial condition, e.g., X−N = 0 (X1 = 0 is assumed
for the examples given in (2.12)).

Xt = Wt + aXt−1

= Wt + a(Wt−1 + aXt−2) = . . . =
t∑

u=−(N−1)

at−uWu (2.14)
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Thus in definition (2.13), the AR[1] model (Xt) is a linear combination of the
present and past variables of the generating white noise process (Wt).

Is an AR[1] model stationary? The answer is found (as in the case of the
white noise process in the remarks to (2.11)) when the moment functions of
the process are calculated using (1.15) and (1.16). Thus, from the weighted
sum of the Wt in (2.14),

EXt = E
t∑

u=−(N−1)

at−uWu = E(Wu)
t∑

u=−(N−1)

at−u

=
{
µW (1 − at+N )/(1 − a) for a �= 1
µW (t+N) for a = 1

(2.15)

expression (2.15) is obtained for the expectation function, and, therefore,
(Xt) is stationary in the first moment function, if µW = 0, as required in
definition (2.13).

However, allowing for µW �= 0 in this definition, EXt would be a function
of N + t and thus, for |a| < 1, EXt = µX ≈ µW /(1 − a) would result
because a geometric series converges for large N + t. Such a process would be
stationary in the first moment function only if a long time had elapsed since
its initialisation.

The second moment functions of an AR[1] process are derived in (2.66)
with the results (2.16) and (2.17):

cX(t, τ) = Cov(Xt, Xt+τ )

=
{
σ2

Wa
|τ |(1 − a2(t+N))/(1 − a2) for |a| �= 1

σ2
W (t+N) for |a| = 1

(2.16)

σ2
X = Cov(Xt, Xt) =

{
σ2

W (1 − a2(t+N))/(1 − a2) for |a| �= 1
σ2

W (t+N) for |a| = 1
(2.17)

The covariance and the variance functions in (2.16) and (2.17) are functions of
t +N , the time elapsed since the process was initialised. If however |a| < 1,
then for large N + t, σ2

X ≈ σ2
W /(1 − a2) and cX(τ ) = Cov(Xt, Xt+τ ) ≈

σ2
Wa

|τ |/(1 − a2) are obtained, and thus, the covariance function decreases
with increasing lag τ .

Since stationarity means that both the first and second moment functions
of a stochastic process are immune against displacements in the time domain,
it is concluded that an AR[1] model with |a| < 1 is not stationary if the
start time of the process is given. For example, due to (2.14), the AR[1]
model (Xt) starts at time point t = −N with X−N = 0, and consequently,
x−N = 0 is required for all realisations (xt). Nevertheless, an AR[1] process
with |a| < 1 “forgets” its initial condition if “enough” time has elapsed since
its initialisation: the process becomes stationary. This property is formulated
letting N → ∞ in the lower bound u = −(N − 1) of the sum in (2.14). Thus,
the sum on the left side in (2.18) is obtained. Both sums in (2.18) are equal
as shown in Problem 2.4.
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t∑
u=−∞

at−uWu =
∞∑

v=0

avWt−v |a| < 1 (2.18)

A finite number of random variables sums up to a random variable. If
an infinite number of random variables is being summed up, what is ob-
tained? More specifically, does the sum constructed in (2.18) from an infinite
number of weighted white noise variables exist? A plausible answer is found
on having a closer look at the conditions for convergence of

∑∞
v=0 a

vwt−v,
i.e., realisations of

∑∞
v=0 a

vWt−v.
∑∞

v=0 a
vwt−v converges for each realisa-

tion (wt, wt−1, . . . , ) of (Wt,Wt−1, . . . , ), if |wt| ≤ c, |wt−1| ≤ c, etc. Each
(wt, wt−1, . . . , ), however, contains values |wt| > c. As these values are
weighted with the rapidly falling |a|v, their contribution to the sum is small if
the variance of the white noise process is finite, as required in (2.10). This is
an intuitive approach to the convergence in (2.19) which is derived in (7.15).

The sum in (2.19) converges in mean square, as defined in (7.11) (cf. the
remarks to (6.7) and (6.5)) to a limiting random variable Xt,

Xt
ms=

∞∑
u=0

auWt−u with |a| < 1 (2.19)

if the moments of Wt exist, as stipulated in (2.13) and in (2.10).
Summarizing Sect. 2.3.2, the AR[1] process was introduced and the fol-

lowing properties were obtained with a closer investigation:

1. An AR[1] process is stationary, if |a| < 1 and if an infinitely long time has
elapsed since its initialisation. The usual AR[1] models, however, produce
simulations which become stationary after a relatively short initialisation
period, as is learned from the experiments made in Problem 2.3.

2. If |a| > 1, the AR[1] model grows exponentially (Problem 2.3).
3. If a = 1, the process is called a random walk process as defined in

Sect. 2.3.3.

2.3.3 Random Walk

With a = 1 in the difference equation of the AR[1] model as defined in (2.13)
and with repeated substitutions as in (2.14) using the initialisation X1 = W1,
the random walk process as defined in (2.20)

If (Wt) is a white noise process with µW = 0 and σ2
W , then

Xt =
∑t

u=1Wu, with t ≥ 1, is called a random walk process.
(2.20)

is shown to be an AR[1] model with a = 1. Consequently, the moment func-
tions of a random walk process can be obtained with a = 1 in (2.15), (2.16)
and (2.17). Since µW = 0 is required in (2.20), a random walk process is sta-
tionary in the first moment function; in the second moment function, however,
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Fig. 2.12. Six simulations of a random walk as defined in (2.20) with Wu being
normally distributed with µW = 0 and σ2

W = 1 (above, a); and below, for 3950 ≤
t ≤ 4150, simulations x(1)(t) − m(1) with σ2

W = 1 (b) and x(2)(t) − m(2) with
σ2

W = 0.1 (c), m(1) and m(2) being the means of the simulations for the period
3950 ≤ t ≤ 4150.

it is not stationary, as its variance function increases with increasing time
elapsed since its initialisation. As a consequence of the increasing variance
function, simulated realisations of a random walk process diverge, as shown
above in Fig. 2.12. Alternatively, the moment functions of a random walk
process are derived in (2.69) and (2.67) directly from its definition (2.20).

The simulated random walks plotted in Fig. 2.12 (above) show, despite
the constant expectation function of the underlying process, gradual changes
in their local means being typical for random walks. The amplitudes of these
gradual changes depend on the variance σ2

W of the generating white noise
process in (2.20), since, when calculating xt = xt−1 + wt using definition
(2.20), the probability that a wt not close to µW = 0 is added to xt−1 increases
with increasing σ2

W , and decreases with decreasing σ2
W . The dependence of

the changes in the local means on σ2
W is demonstrated below in Fig. 2.12.
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The random walk process and the AR[1] process defined in Sects. 2.3.3
and 2.3.2 have difference equations Xt −Xt−1 = Wt and Xt − aXt−1 = Wt

with Wt being in a white noise process, as defined in Sect. 2.3.1. It is also
possible to construct a stochastic process not using differences of the process
itself, but differences Yt = Wt − bWt−1 of the generating white noise process.
This process is introduced in Sect. 2.3.4.

2.3.4 First Order Moving Average Process

The need to construct the first order moving average process Yt = Wt−bWt−1

using differences of a white noise process (Wt) arises from a closer investiga-
tion of the yearly temperature values measured in Basel from 1755 through
to 1955. This climatological time series is plotted in Fig. 2.13 (above). This
time series is reconstructed in [13] from early instrumental observations, i.e.,
observations made prior to approximately 1860 when the first international
standards for the observations of meteorological variables (e.g., temperature,
precipitation, pressure) were introduced, as discussed in Sect. 1.1.

When reconstructing the Basel temperature series as described in [13],
Bider and co-authors found in the archives of the Federal Office for Me-
teorology and Climatology records of the observations made by d’Annone
from 1755 through to 1804; d’Annone’s instruments, however, were miss-
ing. They circumvented this difficulty by rebuilding the instruments using
the blueprints found together with the temperature records. Then, with the
replicas of d’Annone’s instruments installed in a reconstruction of d’Annone’s
historical site on the one hand, and modern instruments installed according to
the climatological standard on the other, they performed a comparison exper-
iment. With the results from this experiment, they converted the d’Annone
records to meet the modern temperature standard. Thus pushing back the
beginning of the Basel temperature series to 1755, they made a homogeneous
series of monthly temperature values, from January 1755 through to Decem-
ber 1957, available in [13]. From the contiguous series of monthly values, the
yearly temperature values plotted above, in Fig. 2.13, are obtained.

Are the Basel yearly temperature values a time slice from a realisation of
a stationary stochastic process?

Above in Fig. 2.13, the time series fluctuates around a local (cf. definition
(2.55)) mean which is here, in contrast to the NAO indices in Figs. 2.9 and
2.10, not approximated using a moving average. These decadal fluctuations
of the local means are small. On the secular scale however, i.e., over periods
of approximately 100 years, the Basel temperatures increase and a signifi-
cant secular trend is found in Sect. 3.3. Consequently, the time series is not
stationary in the expectation function.

The empirical correlation functions calculated from the entire and the
second half-series and plotted below, in Fig. 2.13, show small positive corre-
lations in the first and second lag, whereas the first half-series together with
its empirical correlation function seems to stem from a white noise process.
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Fig. 2.13. Basel temperature series. Yearly values in 0C (degree Celsius) from
1755 through to 1957 as given in [13] (above, a), with empirical correlation functions
(below, b, c, d) calculated from the entire series, and the first and second half-series.

Thus, the yearly values in the Basel 200-years temperature series are not
stationary in the covariance function.

As the Basel yearly temperature values (xt), 1755 ≤ t ≤ 1957, are not in
agreement with the stationary assumptions (2.8), you may ask whether they
are a time slice from a realisation of a random walk process, the random walk
process being (except for an exponentially growing AR[1] model) the only
non-stationary process introduced so far. This would be the case, reconcilable
with definition (2.20), only if the temperature differences yt = xt − xt−1

could be shown to stem from a white noise process. Hence, these differences
are calculated, as defined in (2.39), using diff() (introduced in Problem 2.1)
and plotted above, in Fig. 2.14.

The time series of the differences (yt) oscillates around an approximately
constant expectation function µY = 0 and thus is assumed to be stationary
in the first moment function. The amplitudes of the oscillations are slightly
larger in the period from 1800 through to 1870 than in the preceding and
following periods, thus pointing to a non-constant variance function. However,
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Fig. 2.14. Differences yt = xt − xt−1 of the yearly values (xt) in the Basel tem-
perature series in 0C (above, a), with empirical correlation function (below, b, c,
d) calculated from the entire series, and the first and second half-series.

from the plots of the empirical correlation functions below, in Fig. 2.14, it is
concluded that (yt) is stationary in its covariance function, and, consequently,
also in its variance function.

Above, in Fig. 2.14, it is seen that large differences yt in year t are fol-
lowed by small yt+1 in the next year t+1 in the average over the observational
period. This clearly discernible sawtooth pattern in (yt) is in line with an em-
pirical correlation �̂Y (1) ≈ −0.5 in the first lag, as seen below in Fig. 2.14.
Since �̂Y (1) ≈ −0.5 is far outside the 0.95-confidence interval for zero cor-
relation, as defined in (2.59), the Basel temperature differences (yt) above,
in Fig. 2.14, obviously do not stem from a white noise process, and, conse-
quently, the Basel yearly temperature values (xt) above, in Fig. 2.13, are not
a time slice from a realisation of a random walk process.

Inspecting the plots in Figs. 2.13 and 2.14, it is concluded that the Basel
yearly temperature values stem neither from a stationary AR[1] model nor
from a random walk process. Since, as a third possibility, no exponential
growth is seen in Fig. 2.13 , a non-stationary AR[1] model with |a| > 1 can
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also be excluded. Therefore, none of the models introduced so far is suitable
for this time series.

The difference time series (yt), as constructed above from the Basel yearly
temperature series (xt), is stationary, as concluded from the plots in Fig. 2.14.
The stationarity suggests that a model (Yt) for the differences (yt) is less
complex (in the sense that no trend in the expectation function has to be
accounted for) than a model (Xt) for the original observations (xt). Assuming
that a model (Yt) does exist, Xt =

∑t
u=1 Yu, t ≥ 1, can then be obtained

adding the Yt.
From the plots in Fig. 2.14 it becomes obvious that (yt) does not stem

from a white noise process due to its too large |�̂Y (1)| ≈ 0.5, as argued above.
It is also apparent that (yt) does not stem from a stationary AR[1] process,
since �̂Y (τ ) ≈ 0.0 for τ > 1, whereas the empirical correlation function �̂X(τ )
of a stationary AR[1] process (Xt) decays exponentially, in accordance with
(2.16) and as demonstrated in Fig. 2.11.

The exponential decay of the correlation function �X(τ ) of a stationary
AR[1] model (Xt) is suspected to originate from Xt which (as shown in
(2.14)) is a weighted sum of the Wt, Wt−1, Wt−2, . . ., i.e., the present and
past random variables in the generating white noise process. When reducing
the number of the Wt in this sum to the present and only one past random
variable as defined in (2.21), it is anticipated that a process with a correlation
function is obtained which will be in agreement with the empirical correlation
function of the differences below, in Fig. 2.14.

If (Wt) is a white noise process with µW = 0 and σ2
W , then

Yt = Wt − bWt−1 is called a first order moving average process
(MA[1] process or MA[1] model).
(Vt) with an expectation function µV (t) �= 0 is an MA[1] model,
on condition that (Yt) = (Vt − µV (t)) is an MA[1] model.

(2.21)

From the definition of the MA[1] process (2.21), using (1.15) and (1.16), the
expectation function (2.22) and the covariance cY (t, τ)

EYt = E(Wt − bWt−1) = EWt − bEWt−1 = 0 (2.22)
cY (t, τ) = Cov(Yt, Yt+τ ) = Cov(Wt − bWt−1,Wt+τ − bWt+τ−1)

= Cov(Wt,Wt+τ ) − bCov(Wt,Wt+τ−1)
−bCov(Wt−1,Wt+τ ) + b2Cov(Wt−1,Wt+τ−1)

are obtained and the covariance and correlation functions (2.23) follow when
summing up cY (t, τ) for the lags τ = 0 and τ = ±1. For lags τ < −1 and
τ > 1, these functions are identically zero:

cY (τ ) =

{
(1 + b2)σ2

W

−bσ2
W

0
�Y (τ ) =

⎧⎨⎩
1 for τ = 0
−b/(1 + b2) for τ = ±1
0 for |τ | > 1

(2.23)
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From (2.22) and (2.23) it is concluded that a MA[1] model is stationary
in the first and second moment functions for finite weights b.

Given �Y (1), b can be obtained as solution of equation b2 + (1/�Y (1))b+
1 = 0, and, consequently, b can be determined only by assuming an additional
property (the invertibility as proposed in (5.32)) of the MA[1] process.

When an MA[1] model is fitted to an observed time series the parameters
b, µY and σ2

W are not known. In the example of the differences (yt) of the
Basel yearly temperature values plotted in Fig. 2.14, the model parameters
are obtained only by trial and error: realisations are simulated with several
values for each parameter and, subsequently, plots of the simulations are com-
pared with the plot of the observed differences (yt). The model contains three
parameters, and, if simulations using five values for each of them are gener-
ated, then 125 simulations have to be compared with the observed differences.
Hence, in Problem 2.8, µY = 0 is assumed with fewer comparisons having to
be made. Using the same assumption, i.e., that the expectation function of
the process is identically zero, the parameters in the AR[1] models (2.12) for
the wind speed measurements in a turbulent air flow are found after a few
attempts.

In Fig. 2.15, simulations of an MA[1] model with b = 0.9, b = 2.0, b = 0.1
as well as µY = 0 and σW = 0.7 are plotted. With b = 0.9, a simulation (in the
second plot from the top) is obtained which is quite similar to the observations
(in the first plot, from the top): the amplitudes of the fluctuations and the
negative correlation of values following each other agree, and, in addition,
the theoretical correlation �Y (1) ≈ −0.5 of the model calculated with (2.23)
is not too far from the empirical correlations �̂(1) shown below, in Fig. 2.14.
In contrast, the simulations with b = 2.0 (b = 0.1) fluctuate with too large
(too small) amplitudes as compared to the observations.

Therefore, the MA[1] process (Yt), as defined in (2.21), with b = 0.9,
µY = 0, σW = 0.7, is preferred for modelling the differences of the Basel
yearly temperature values. Using realisations (yt) of (Yt), the Basel yearly
temperature values are simulated in Problems 2.8 and 2.9 by calculating the
sums xt = xt−1 + yt.

2.3.5 Linear Process

With definitions (2.13) and (2.21), useful models for two example time series
are generated from a white noise process: (i) an AR[1] model with a = 0.9,
µX = 0 and σW = 1 delivers realisations very similar to the wind speeds
measured in a turbulent air flow and plotted in Fig. 2.1, and (ii) simulations
using an MA[1] model with b = 0.9, µY = 0 and σW = 0.7 are very difficult
to distinguish from the observed differences of the Basel yearly temperature
values plotted above, in Fig. 2.15.

Both models are fairly parsimonious as they have only three parameters.
The parsimony improves the ratio N/p (N the length of the time series, p the
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Fig. 2.15. On the top (a), differences yt = xt − xt−1 of the yearly values (xt)
in the Basel temperature series in 0C, as plotted in Fig. 2.14; below (b,c,d), three
simulations with MA[1] models as defined in (2.21) with σW = 0.70C and b = 0.9,
b = 2.0 and b = 0.1.

number of values to be estimated). When N/p increases often (but not al-
ways) the variance of an estimator obtained from (independent) observations
decreases, and, therefore, parsimonious models are often superior to mod-
els with a large number of parameters. For example, the empirical moment
functions of a time series, as defined in (2.1), are estimates for the expecta-
tion and covariance functions of the stationary stochastic process from which
the observations stem, and, as proposed in (2.56) and (2.58), the variances of
these estimates decrease with increasing duration of the observational period.
The very same property is shared by the estimates of the parameters in the
AR[1] and MA[1] models being calculated from a stationary time series, as
derived in Secs. 5.2 and 5.3.4.
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Both, the MA[1] and AR[1] models, are linear combinations of random
variables being in a white noise process. In the case of a MA[1] model, only
two non-zero elements are in the sequence (1,−b, 0, 0, . . .) of the coefficients
being multiplied as weights with the random variables, and there is no doubt
that the sum of weighted white noise variables, as defined in (2.21), exists.
In the case of an AR[1] model, there is an infinite number of weights in
the sequence (a0, a1, a2, . . .) which, however, decays rapidly if |a| < 1. The
rapid decay is used in the derivation of (7.15) to show that the infinite linear
combinations in (2.18) converge, as proposed in (2.19).

In the general case of a process being generated from white noise, the
weights of the white noise variables are no longer in either a finite and short
sequence or in an infinite sequence decaying geometrically, and thus, the
weights are required to converge absolutely, as defined in (2.24).

Sequence (xt), t = . . . ,−1, 0, 1, . . ., converges absolutely provided
that series st = |x−t|+. . .+|x0|+. . .+|xt| converges for t→ ∞. (2.24)

When constructed with a sequence of weights that converges absolutely, the
linear process, as defined below in (2.25), exists as a linear combination of
white noise variables

Let (bt) = (b0, b1, . . .) be a sequence that converges absolutely
and (Wt) a white noise process with µW (t) = 0 and σ2

W (t) = σ2
W .

If Yt =
∑∞

u=0 buWt−u, then (Yt) is called a linear process.
(Vt) with an expectation function µV (t) �= 0 is a linear process
on condition that (Yt) = (Vt − µV (t)) is a linear process.

(2.25)

because the infinite sum in (2.25) converges in mean square to a limiting
random variable Yt. For a proof proceed as demonstrated in Sect. 7.2.1: there,
the convergence in mean square of the sum in (2.19) is shown, using the
absolute convergence of the geometric sequence (au) for |a| < 1

E(Yt) = E

( ∞∑
u=0

buWt−u

)
= µW

∞∑
u=0

bu

cY (τ ) = σ2
W

∞∑
u=0

bubu+τ = σ2
W

∞∑
u=0

bubτ+u τ ≥ 0 (2.26)

σ2
Y = cY (0) = σ2

W

∞∑
u=0

b2u

and, consequently, the linear process is stationary. From (2.26), the expecta-
tion and covariance functions of the AR[1] and MA[1] models can be derived,
both of these models being linear processes (Problem 2.10).

(bt) in definition (2.25) is a one-sided sequence of weights. One-sided se-
quences are most useful for the construction of linear processes, as a time
point t divides the time domain into past and future. It is a property of the
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natural processes governing most variables observed in Geosciences, that the
past influences the present (at time t), and that the future has no influence
on the present. For instance, the present wind speed xt in the turbulent air
flow, analysed in Sect. 2.1, can be modelled, in Sect. 2.3.2, with the past xt−1

and a present realisation of a white noise variable.
Sometimes, a linear process is constructed with a two-sided sequence

(. . . , b−1, b0, b1, . . .). In these alternative constructions, the sums from 0 to
∞ in (2.25) and (2.26) are replaced by sums from −∞ to ∞. An example of
such a two-sided linear process is given in Fig. 7.16.

However, a model generated from a white noise process with a one- or two-
sided sequence is usually not suitable for a stochastic process with a param-
eter not being the time and possibly being multi-dimensional. For instance,
a location given by its geographical coordinates (λ, φ), does not generally di-
vide the surface of the earth into regions with specific properties. In this case,
a rule (implicit or explicit) is used to indicate which points (on the surface)
are neighbours, i.e., are in a (possibly hypothetical) spatial relationship as a
framework for the construction of a model [41].

This section is summarised as follows. The example time series under
analysis are the wind speed measurements in a turbulent air flow plotted in
Fig. 2.1, the NAO indices plotted above, in Figs. 2.9 and 2.10, and the Basel
temperature yearly values plotted above, in Fig. 2.13. A white noise process,
as defined in (2.10), is fitted in Problem 2.2 as a model to the long-term
NAO index (Jones), whereas models constructed from a white noise process
are more suitable for the other example series: by trial and error, an AR[1]
model is fitted to the wind speed series, and a MA[1] model to the differences
of the Basel temperature yearly values.

When the simulated realisations are compared with an example time se-
ries, both guesses, regarding the form of the model (reflecting the depen-
dences as seen in the plots of the time series and its correlation function)
and the values for the model parameters, are evaluated at the same time.
When a simulation is similar to the observations it is assumed that a suitable
model has been surmised, however, when no similarity can be obtained, it is
not known, which guess (the model or the parameter values, or both) is the
source of the dissimilarity. When assessing these models by trial and error,
no estimators for the model parameters with their statistical properties must
be known. The need of little knowledge is an advantage with respect to the
theory introduced so far, however, using trial and error, no attempt is made
to find all suitable models or even the best model.

Given an example time series, how can a linear process be found as a
suitable model? Since it is obvious that there are autoregressive and moving
average models with two and more parameters (AR[p] and MA[q] models, or
combined models, e.g.,Xt = a1Xt−1+a2Xt−2+Wt−b1Wt−1 is an ARMA[2,1]
model), the need for a systematic approach to the selection and identification
of a model suitable for the observed time series arises.
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When is a model a linear process and thus stationary? Assuming that a
model is found to be in agreement with the observations, are computational
procedures for the estimation of its parameters available? Can statistical
properties of the estimates be derived? Answers to these questions are given
in Chap. 5.

2.4 Convolution I

The linear process defined in (2.25) can be written as a convolution. Prior to
giving examples in Sect. 2.4.4, it is shown in Sect. 2.4.1 that a convolution is a
linear and time-invariant transformation and in Sects. 2.4.2 and 2.4.3, some
properties of convolution sums are derived. The properties of the convolution
become more clearly visible in the frequency domain as shown in Sect. 6.8.

2.4.1 Linear and Time-invariant Transformations

The first order linear differential equation x(t) + ax′(t) = w(t) is solved
in Problem 2.11. The stationary solution x(t) =

∫ t

−∞ g(t − u)w(u)du, with
g(t) = 0, for t < 0, and g(t) = (1/a)e−(1/a)t, for t ≥ 0, is obtained. Using the
same procedure, the stochastic first order linear difference equation of the
AR[1] model, Xt − aXt−1 = Wt, as defined in (2.13), can be solved, i.e., if
the following dissimilarities are accounted for:

– the time is integer, t = . . . ,−1, 0, 1, . . ., not real
– the functions are random, not deterministic
– the known function is a white noise process.

Thus, the solution of Xt − aXt−1 = Wt is the sum of the general solution of
Xt − aXt−1 = 0 and of a particular solution of Xt − aXt−1 = Wt. Xt = Cat

is the general solution of Xt − aXt−1 = 0, since Cat − aCat−1 = 0 for all t
and arbitrary random variables or real constants C. Xt =

∑t
u=−∞ a

t−uWu =∑∞
u=0 a

uWt−u is a particular solution of Xt − aXt−1 = Wt, since at−tWt +∑t−1
u=−∞ a

t−uWu−a
∑t−1

u=−∞ a
t−1−uWu = Wt. Thus, the solution of the AR[1]

difference equation, as given in (2.27), is obtained.

Xt = Cat +
∞∑

u=0

auWt−u (2.27)

The solution in (2.27) contains the infinite sum in (2.18) which converges for
|a| < 1, as proposed in (2.19).

In the solution (2.27) of the first order linear difference equation, C de-
pends on the initialisation of the stochastic process (Xt), e.g., with X0 = 0,
C = −∑∞

u=0 a
uW−u is obtained. If |a| < 1, then Cat becomes identically

zero for large t, and the solution reduces to Xt =
∑∞

u=0 a
uWt−u, being

called the stationary solution of the first order linear difference equation.
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Xt =
∑∞

u=0 a
uWt−u, t = . . . ,−1, 0, 1, . . ., is a linear process, as defined in

(2.25), since the sequence (au) converges absolutely with |a| < 1.
The stationary solution of the first order linear difference equation is an

example of a convolution sum. This becomes obvious when the sequence
of the weights is re-expressed:

∑∞
u=0 a

uWt−u =
∑∞

u=−∞ b(u)Wt−u, if b(u) =
(. . . , 0, 0, a0, a1, a2, . . .) with |a| < 1. The stationary solution of the first order
linear differential equation, x(t) =

∫ t

−∞ g(t − u)w(u)du, with g(t) = 0, for
t < 0, and g(t) = (1/a)e−(1/a)t, for t ≥ 0, is an example of a convolution
integral. Convolution sums and integrals are defined in (2.28):

1. h(t) =
(
f(t)

) ∗ (g(t)) = f ∗ g(t) =
∫∞
−∞ f(u)g(t− u)du is

called the convolution of f(t) and g(t), t being a real number.
2. ci = (ai) ∗ (bi) = a ∗ (bi) =

∑∞
j=−∞ ajbi−j is called

the convolution of (ai) and (bi), i being an integer number.

(2.28)

Definitions (2.28) are not restricted to a specific type of sequences or func-
tions. Usually, the sequences and functions are real-valued; however, stochas-
tic processes as defined in (2.2) quite frequently occur in convolutions, e.g.,
in (2.27), where a white noise process is convolved with a real-valued se-
quence. The existence of a convolution sum or integral is dependent on the
type of sequences or functions being convolved, e.g., with |a| < 1, the sum in
(2.27) converges in mean square, as proposed in (2.19). Convolution sums ob-
tained from real-valued sequences converge under the conditions formulated
in (2.36).

What are the properties of convolution sums or integrals? It is recom-
mended to start an investigation with definition (2.29).

Let a function x (here without argument) be a mapping (a rule
or device) which associates a value x(t) in the domain of values,
with each value t in the domain of definition. Both domains are
often a subset of the real numbers. Now define L as a mapping
which associates with each function x in a set of functions a
new function L(x), with x and L(x) being in the same set of
functions. In mathematics, L is called a transformation, trans-
form or an operator, in engineering, L is known as a filter.

(2.29)

For example, the derivative of a function is a transformation: it associates
a new function (d/dt)(x) with each x in a set of functions. The derivative is
also a linear transformation, as defined in (2.30).

Let x1, x2, . . . be functions and L(x1),L(x2), . . . transfor-
mations of x1, x2, . . .; and let a1, a2, . . . be real constants.
If L(a1x1 + a2x2 + . . .) = a1L(x1) + a2L(x2) + . . .,
then L is called linear.

(2.30)

Examples of linear operators (transformations) are the differentiation y =
(d/dt)(x) and the integration x =

∫ t

0
y(s)ds of a real-valued function x of the
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real argument t, if the derivative and the integral exist. Both, differentiation
and integration, are to be found in an introductory course in differential and
integral calculus.

Another example of a transformation is the shift operator, as defined in
(2.31). It usually represents a time delay by τ , i.e., a lag τ .

The operator y = S(x, τ), as defined in (2.29), τ a real number,
is called a shift operator provided that y(t) = x(t− τ ). (2.31)

A straightforward example of a shift operator is obtained with x(t) = cos(t)
and τ = π: y(t) = L(x(t), τ) = cos(t− π) = − cos(t).

The shift operator is a linear transformation, as defined in (2.30). This
proposition is derived in Problem 2.12.

Using the shift operator, as defined in (2.31), time-invariant operators
(transformations) are defined in (2.32).

Let S be a shift operator as defined in (2.31), and L a trans-
formation as defined in (2.29). If L(S(x, τ) = S(L(x), τ ),
then L is said to be time-invariant.

(2.32)

If a time-invariant transformation L is used together with a shift operator
S, then the result of the transformations does not depend on their order of
succession, i.e., applying S and then L delivers the same result as applying L
and then S. For example, the differentiation of a function is a time-invariant
transformation; the multiplication of a function with another function is,
however, not a time-invariant transformation, as derived in Problem 2.12.

Another example of a linear transformation is the convolution integral
y(t) =

∫∞
−∞ g(t − u)x(u)du, as defined in (2.28). Is the convolution integral

not only linear but also time-invariant? If L is the integral transform in (2.33),
with kernel g(t, u) and x(t) being functions such that the integral exists, t
and u real, then a linear transformation, as defined in (2.30), is obtained.
The integral is shifted as defined in (2.31) to obtain the second line. In the
third line, L is required to be time-invariant, as defined in (2.32).

y(t) = L(x(t)) =
∫ b

a

g(t, u)x(u)du, a = −∞ and b = ∞ (2.33)

y(t− τ ) =
∫ ∞

−∞
g(t− τ, u)x(u)du = S(L(x(t)), τ

)
L(S(x, τ)

)
(t) =

∫ ∞

−∞
g(t, u)x(u− τ )du u = v + τ

=
∫ ∞

−∞
g(t, v + τ )x(v)dv w = t− τ

y(w) =
∫ ∞

−∞
g(w + τ, v + τ )x(v)dv g(w − v, v − v) = f(w − v)

y(w) =
∫ ∞

−∞
f(w − v)x(v)dv (2.34)
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With u = v + τ substituted for the integration variable, the fourth line is
obtained, and the fifth results from the substitution w = t − τ [18]. When
comparing the fifth with the first line, g(t, u) = g(t+ τ, u+ τ ) will follow, if
the transformation L is time-invariant. Thus, demanding time invariance, the
set of all functions g(t, u) in the first line is reduced to those functions with
g(t, u) = g(t+τ, u+τ ). Substituting τ = −v in g(w+τ, v+τ ), g(w−v, v−v) =
g(w − v, 0) = f(w − v) is obtained and the integral (2.34) follows.

Accordingly, if an integral transform L (2.33) is required to be a time-
invariant integral of a product with two functions, then L is a convolution
integral, as defined in (2.28). The result is that, both, a convolution integral
and, plausibly, a convolution sum, are linear and time-invariant transforma-
tions.

The convolution integral x(t) =
∫ t

−∞ g(t−u)w(u)du, t, u real, with g(t) =
0, for t < 0 and g(t) = (1/a)e−(1/a)t, for t ≥ 0, is the stationary solution of the
linear differential equation x(t) + ax′(t) = w(t). The convolution sum Xt =∑∞

u=0 a
uWt−u =

∑∞
u=−∞ a

uWt−u, with au = . . . , 0, 0, a0, a1, a2, . . ., t, u an
integer, is the stationary solution of the difference equation Xt−aXt−1 = Wt

in the AR[1] model. These results are derived in Problem 2.11 and in the
remarks to (2.27). Therefore, and because of the convolution being time-
invariant, the stationary solution of the linear differential equation x(t) is
displaced to x(t − τ ), if the known function w(t) changes its position to
w(t− τ ), and the stationary AR[1] model (Xt) is displaced to (Xt−τ ), if the
white noise process (Wt) changes its position to (Wt−τ ).

As a third property, besides being linear and time-invariant, a convolu-
tion integral or sum are both commutative. In the case of the convolution
integral, a proof is straightforward, because the arguments of the functions
being integrated sum up to a constant (= t). If the integral on the left side
in (2.35) exists, with the substitutions t− u = s, u = t− s, (du)/(ds) = −1,
du = −1ds, the upper bound u = −∞ becomes s = +∞, and the lower
bound u = +∞ becomes s = −∞, and thus, the desired result (2.35) is
obtained:∫ +∞

−∞
f(u) g(t− u)du =

∫ −∞

+∞
f(t− s)g(s)(−1ds)

= −
∫ −∞

+∞
f(t− s)g(s)ds =

∫ +∞

−∞
f(t− s)g(s)ds (2.35)

In the case of the convolution sum, however, its commutativity is derived
using a procedure similar to the one applied in Problem 2.4 for the proof
that the convolution sums in (2.18) are equal.

In contrast to the convolution sum ci = (ai) ∗ (bi) =
∑∞

j=−∞ ajbi−j =∑∞
j=−∞ bjai−j = (bi) ∗ (ai), the sum ci = (ai) � (bi) =

∑∞
j=−∞ ajbi+j is not

commutative. This is shown by a counter-example using two short sequences.
The �-operator is defined in (6.102). For example, cY (τ )/σ2

W =
∑∞

u=0 bubτ+u

in (2.26) is a �-transformation.
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Convolution sums of two real-valued sequences, or of a real-valued se-
quence and a stochastic process with integer parameter, occur quite often in
the study of times series and stochastic processes. Besides being linear, time-
invariant and commutative, as shown above, these convolution sums have the
properties which are derived in the following Sects. 2.4.2, 2.4.3 and 2.4.4.

2.4.2 Existence and Calculation of Convolution Sums

A convolution sum, as defined in (2.28) exists if both, possibly infinite, se-
quences to be convolved decay “fast enough” such that their convolution is a
finite real number for each t. For example, a sequence decays “fast enough” if
it converges absolutely, as defined in (2.24). Since absolutely convergent se-
quences remain as such even if their values are re-ordered in any possible way,
and since sums of re-ordered sequences remain absolutely convergent (on con-
dition that the original sequence is absolutely convergent), proposition (2.36)
is obtained.

Let the real-valued sequence (ci) =
∑∞

j=−∞ ajbi−j be the
convolution of the real-valued sequences (ai) and (bi).

1. (ci) converges absolutely on condition that both sequences,
(ai) and (bi), converge absolutely.

2. (ci) exists, provided that at least one of both (ai) and (bi)
converges absolutely and the other one is bounded.

(2.36)

The calculation of convolution sums is demonstrated with the following
examples. All example convolution sums exist, as the sequences convolved
contain a finite number of non-zero elements. These sequences are convolved
in conjunction with zero-padding, i.e., zeros being appended at both ends. Ex-
amples with an infinite number of non-zero elements are given in Sect. 2.4.3.

A convolution sum is calculated as demonstrated in (2.37) where the
convolution sums of two short example sequences, e.g., (ai) = (a1, a2, a3, a4)
and (bi) = (b1, b2) are calculated, as defined in (2.28,2), assuming bi = 0 for
i < 1 and i > 2 and ai = 0 for i < 1 and i > 2, i.e., zero-padded sequences.

c1 = . . .+ a0b1 + a1b0 + a2b−1 + . . . = 0
c2 = . . .+ a0b2 + a1b1 + a2b0 + . . . = a1b1

c3 = . . .+ a0b3 + a1b2 + a2b1 + a3b0 + . . . = a1b2 + a2b1

c4 = . . .+ a0b4 + a1b3 + a2b2 + a3b1 + . . . = a2b2 + a3b1 (2.37)
c5 = . . .+ a2b3 + a3b2 + a4b1 + . . . = a3b2 + a4b1

c6 = . . .+ a2b4 + a3b3 + a4b2 + . . . = a4b2

c7 = . . .+ a2b5 + a3b4 + a4b3 + . . . = 0

Short sequences are easily convolved using paper, pencil and a calculator
by means of the paper strip device as demonstrated in (2.38). The paper strip
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device is found in [18]. When calculating using this method, the values in (ai)
are written in a column on the left margin of a sheet, whereas the values in
(bi) are written on another paper strip in reversed order, from bottom to top.
The order of the values in (bi) is reversed to account for bi−j in (2.28,2), j
the summation variable.

If the values in (ai) and (bi) are written on equi-spaced lines, pairs of
values (ai, bi) appearing on the same line are obtained when the paper strip
is moved stepwise downwards. At each step, the products aibi, ai and bi being
on the same line, are added, and thus the convolution sum is obtained. Four
example positions of (bi) relative to (ai) are given in (2.38), where the short
sequences used for the demonstration (2.37) are convolved using the paper
strip device.

(ai) i = 1 i = 2 i = 3 . . . i = 6 (ci)
. . . b2 . . . . . .
0 b1 b2 . . . −→ c1 = 0b1 + 0b2 = 0
a1 b1 b2 . . . −→ c2 = a1b1 + 0b2 = a1b1
a2 b1 . . . −→ c3 = a2b1 + a1b2
a3 . . . . . .
a4 . . . b2 . . .
0 . . . b1 −→ c6 = 0b1 + a4b2 = a4b2
. . . . . . . . .

(2.38)
Calculating a convolution sum as demonstrated in (2.38) is very instructive:
e.g., a moving average is obtained when the sequences (ak) = (1.7, 1.5, 1.8, 2.0),
k = 1, 2, 3, 4, and (bj) = (0.5, 0.5), j = 1, 2, are convolved:

(ak) i = 1 i = 2 i = 3 . . . i = 6 (ci)
. . . 0.5 . . . . . .
0 0.5 0.5 . . . −→ c1 = 0 × 0.5 + 0 × 0.5 = 0

1.7 0.5 0.5 . . . −→ c2 = 1.7 × 0.5 + 0 × 0.5 = 0.85
1.5 0.5 . . . −→ c3 = 1.5 × 0.5 + 1.7 × 0.5 = 1.6
1.8 . . . . . .
2.0 . . . 0.5 . . .
0 . . . 0.5 −→ c6 = 0 × 0.5 + 2.0 × 0.5 = 1
. . . . . . . . .

Long sequences are convolved using filter() with argument method =

"convolution". For example, R expressions
a <- c(0,0,1.7,1.5,1.8,2.0,0,0)

b <- c(0.5,0.5)

c1 <- as.vector(filter(a,b,method="convolution",sides=1))

> c1 [1] NA, 0.0, 0.85, 1.60, 1.65, 1.90, 1.00, 0.00

compute the convolution sums of the example sequences convolved above
with the paper strip device. In this example,

t <- -0:7 #indices of the convolution sum as defined in (2.28)



80 2 Stationary Stochastic Processes

t

(a)

x(
t)

-20 -10 0 10 20

0
20

60
10

0

•••••••
•
•

•
•
•

•
•••••

•

•

•

•

•
•••••

•

•

•

•

•
•••••

•

•
•
•

•
••••••••

(b)

x(
t)

 s
m

oo
th

ed

-30 -20 -10 0 10 20 30

0
10

30
50

••••••••
•
•
•

•
•••

•

•
•••

•

•

•••

•

•

•••

•

•

•••

•

•

•••
•

•
•••

•

•
•
•••••••••

t

(c)

di
ffe

re
nc

es
 o

f x
(t

)

-20 -10 0 10 20

-4
0

0
20

40

•••••••
•
••

••
••

•••
•

•
•

•
•

•
•••

•
•

•
•

•
•

•
•••

••
••

••
••

••••••

Fig. 2.16. The sequence (xt) (on the left, a) is convolved twice: (i) with a moving
average to obtain the smoothed sequence on the right (above, b), and (ii), with
(1,−1) to obtain the sequence of its differences on the right (below, c).

generates an R vector with indices as defined in (2.28).
R vectors containing the sequences to be convolved are usually zero-

padded using c(). For example, the sequence x, containing N = 51 values
as plotted on the left in Fig. 2.16, is zero-padded prior to being convolved to
the smooth sequence on the right, above, in Fig. 2.16.

#x can be generated with the R expression in /path/runmeandif.R.

xpad <- rep(0,5) #zeroes for padding

x <- c(xpad,x) #on the left

x <- c(x,xpad) #on the right

g <- c(0.2,0.2,0.2,0.2,0.2) #moving average

xsmooth <- as.vector(filter(x,g,method="convolution",sides=2)

tsmooth <- -30:30 #indices for xsmooth

When using R function filter(x,g,...,) with argument ..., sides=2, ...,
the resulting sequence is displaced by τ , τ being half the length of R vector
g. Both at the start of the smoothed sequence and at its end, two values are
missing, because they cannot be calculated. This convolution is an example
of a moving average.

Both, moving averages and differences of time series, are quite often calcu-
lated as convolution sums using definitions (2.39). Note that, when smoothing
a sequence (xt) as defined in (2.39,1), the resulting convolution y(t) becomes
smoother with increasing width T2−T1 of (ft), i.e., with an increasing number
of non-zero values in (ft), and thus, the form of (yt) is strongly influenced by
the width of (ft). Additional possibilities to describe the form (wide, narrow,
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etc.) of a sequence or a function are introduced in Sect. 6.6.

Let (xt) be a time series, (ft) a sequence, and T1 < T2.
1. If ft = 0 for t≤T1 and T2≤t as well as

∑∞
t=−∞ ft = 1, then

(yt) = (xt) ∗ (ft) is called a moving average of (xt). Often,
(ft) is chosen with identical values and with centre in t = 0:
ft = 1/(2T + 1), for −T ≤ t ≤ T , ft = 0, for all other t.

2. If f0 = 1, f1 = −1 and ft = 0 for all other t, then
(yt) = (xt) ∗ (ft) = xt − xt−1 = ∆xt is called the differences
of (xt).

(2.39)

Often, a time series is smoothed to remove fluctuations within short pe-
riods. In the pyranometer daily means obtained in the Zurich-Reckenholz
comparison experiment and plotted in Fig. 1.4, the seasonal cycle becomes
more clearly visible, in Fig. 1.7, after the time series has been convolved to its
11-day moving average. As a second example, the NAO indices in Figs. 2.9
and 2.10 are smoothed to their 11-year moving average in order to see the
decadal fluctuations in these time series more easily.

Thus, when a time series (xt) is smoothed to (yt) by convolving with a
weight sequence (ft), as defined in (2.39,1), only fluctuations with periods
larger than the width T2−T1 of (ft) remain in (yt). Hence, those fluctuations
become (more easily) visible that were previously (at least partly) hidden by
fluctuations with periods shorter than the width of (ft).

Differences, as defined in (2.39,2), are obtained convolving with ∆1 =
(f0 = 1, f1 = −1); differences of differences, i.e., second and higher order
differences are obtained convolving with ∆2 = (f0 = 1, f1 = −2, f2 = 1),
∆3 = (f0 = 1, f1 = −3, f2 = 3, f3 = 1), . . ., ∆d.

∆1(xt) = xt − xt−1

∆2(xt) = ∆1(xt) −∆1(xt−1) = xt − 2xt−1 + xt−2

. . . =
∆d(xt) = ∆d−1(xt) −∆d−1(xt−1) (2.40)

For example, the sequence on the left, in Fig. 2.16, is convolved to its
moving average and its differences on the right, in Fig. 2.16.

Another example for a convolution as defined in (2.39,2), is the first order
differences of the yearly values in the Basel temperature series plotted above,
in Figs. 2.14 and 2.15. These differences are obtained with diff() or with
filter()

#tsbtemp contains the Basel yearly temperature values

#with diff(), differences as defined in (2.39,2), are obtained

diftsbtemp <- diff(tsbtemp,lag=1,differences=1)

#or explicitely as convolution, tsbtemp not zero-padded

diftsbtemp <- filter(tsbtemp,c(1,-1),method="convolution",sides=2)

from the Basel yearly temperature values being plotted in Fig. 2.13. This
example demonstrates that a time series with a constant expectation function
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can be obtained from a time series not being stationary in the first moment,
when the first order differences are calculated. More examples of time series
with stationary differences are given in Sect. 5.4.1.

The introduction of the Fourier transform in Sect. 6.3 provides a means
for a more systematic approach, in Sect. 6.8.2, to the properties of differences
and moving averages defined in (2.39).

2.4.3 Inverse Sequences

A convolution integral is shown to be, in (2.34) and (2.35), a linear, time-
invariant and commutative transformation, and, plausibly, also a convolution
sum is linear, time-invariant and commutative. Under this transform, does an
identity sequence exist? If it does, what are the conditions for the existence
of an inverse sequence?

1. (ei) = (. . . , 0, e0 = 1, 0, . . .) is the identity sequence, since
for any sequence (ai): (ai) ∗ (ei) = (ei) ∗ (ai) = (ai).

2. If (ai)−1 ∗ (ai) = (ei), then (ai)−1 is the inverse of (ai).
3. There are two inverses. If (ai)−1 = 0 for i > 0, then

(ai)−1 is the left-inverse of (ai), if (ai)−1 = 0
for i < 0, then (ai)−1 is the right-inverse of (ai).

4. Subsequently, in this book, (ai)−1 is always the right-inverse.

(2.41)

When convolving the sequences in (2.42) with their left- (L.) and right-
inverses (R.) using the paper strip device (2.38), the identity sequence is
obtained.

(. . . , 0,−a, 1↑
i=0

, 0, 0, . . .)−1 =

⎧⎪⎨⎪⎩
(. . . , a3, a2, a, 1↑

i=0

, 0, . . .) L.

(. . . , 0, 0↑
i=0

,−1/a,−1/a2,−1/a3, . . .) R.

(. . . , 0, 1↑
i=0

,−b, 0, 0, . . .)−1 =

⎧⎪⎨⎪⎩
. . . ,−1/b3,−1/b2,−1/b, 0↑

i=0

, 0, . . .) L.

(. . . , 0, 1↑
i=0

, b, b2, b3, . . .) R.

(2.42)

An inverse (i.e., a right-inverse, reconcilable with convention (2.41,4)) of a
sequence can be obtained with a slightly modified paper strip device (2.38):
the sequence (ai) is written in the left column on the sheet, the identity
sequence (ei) in the right column, both in normal order from top to bottom.
On the paper strip, the values in (ai)−1 are obtained in reverse order, when
the strip is moved downwards step by step with “start” in the initial position,
where the first non-zero value in the inverse is calculated as a−1

0 = 1/a0, since
a0a

−1
0 = n0 = 1. For instance, in Problem 2.18, the sequences on the right
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side in (2.43) are obtained by inverting the sequences on the left side using
the modified paper strip device.

(1, 1)−1 = (1,−1, 1,−1, . . .)
(1, 1, 1)−1 = (1,−1, 0, 1,−1, 0, . . .)
(1, 2, 1)−1 = (1,−2, 3,−4, 5,−6, . . .) (2.43)

(1, 2, 3, 4, 5, . . .)−1 = (1,−2, 1) = (1,−1) ∗ (1,−1)
(1,−a)−1 = (1, a, a2, a3, . . .)

The inverse (ai)−1 of a sequence (ai) is usually found with a polynomial
division as being inverse to polynomial multiplication. When two polynomials
are multiplied, the coefficients of the resulting polynomial are obtained as the
convolution sum of the coefficients of the original polynomials, as shown in
Problem 2.20 and proposed in (2.44).

If (ai), i = 0, . . . , p, is the sequence of the coefficients of a
polynomial in x, x real, A(x) = a0 + a1x

1 + . . .+ apx
p and

(bi), i = 0, . . . , q, the sequence of the coefficients of a polynomial
B(x) = b0 + b1x1 + . . .+ bqxq, then (ci) = (ai) ∗ (bi)
is the sequence of the coefficients of C(x) = A(x)B(x).

(2.44)

From (2.44), A(x)A−1(x) = 1 is obtained, A(x) being the polynomial pertain-
ing to (ai), A−1(x) the polynomial pertaining to (ai)−1, and 1 the polynomial
pertaining to the identity sequence (ei). Consequently, A−1(x) = 1/A(x), and
thus the coefficients of A−1(x) can be obtained using polynomial division. If,
for example, (1,−a)−1 is calculated with a polynomial division

(ai) = (1,−a) A(x) = 1 − ax
(ai)−1 = (1, a, a2, a3, . . .) A−1(x) =

1
1 − ax = 1 + ax+ (ax)2 + (ax)3 + . . .

the result obtained is identical with the last line in (2.43). The sequence
(1,−a)−1 converges absolutely, if |a| < 1, its partial sums being a geometric
series. The root of A(x) = 1 − ax is x0 = 1/a, and thus, |a| < 1, only if
x0 < −1 or if 1 < x0. Consequently, if the root x0 of A(x), A(x) being the
polynomial pertaining to the sequence (1,−a), is not in the interval −1 ≤
x ≤ 1, then the inverse sequence (1,−a)−1 converges absolutely.

A polynomial of degree n has n complex roots, some of which may be
degenerate, and which may be found with a polynomial factorisation into
factors of degree 1. Hence, an inverse to a sequence is found to either converge,
or not to converge, using the characteristic polynomial, as defined in (2.45).

The characteristic polynomial of a real sequence (ak) is a poly-
nomial in z, the elements in the sequence becoming the coef-
ficients of the polynomial: A(z) =

∑
k akz

k; z, A(z) complex.
(2.45)
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When using the characteristic polynomial to check whether the inverse of a
sequence converges, the unit circle |z| ≤ 1 in the complex plane replaces the
real interval −1 ≤ x ≤ 1 used to show the convergence of (1,−a)−1 above.

If the roots of the characteristic polynomial A(z) of a sequence
(ai) are not in the unit circle, then the inverse (ai)−1 to (ai)
converges absolutely (without proof).

(2.46)

The roots of a characteristic polynomial are calculated with polyroot(), as
demonstrated in Problem 2.21.

2.4.4 Examples: AR[1] and AR[2] Models

When calculating the roots of the characteristic polynomial, as proposed in
(2.46), the stationary solution of the AR[1] difference equation, as defined
in (2.13), is obtained with the following calculation. A(z) = 1 − az is the
characteristic polynomial pertaining to the weights of the AR[1] model (Xt)
with difference equation Xt − aXt−1 = Wt or, when written as convolution,
(1,−a) ∗ (Xt) = (Wt). Convolving the difference equation with (1,−a)−1,
(Xt) = (1,−a)−1 ∗ (Wt) is obtained. The root of A(z) = 1 − az is z = 1/a.
If |z| > 1, i.e., if z is outside the unit circle, |a| < 1, and with (1,−a)−1 =
(1, a, a2, a3, . . .), as calculated in (2.43),

Xt =
∞∑

u=0

auWt−u (2.47)

the stationary solution of the first order linear difference equation is obtained.
This result is also derived in the remarks to (2.16) and, alternatively, in the
remarks to (2.27). The convolution sum in (2.47) converges in mean square,
as proposed in (2.19). Consequently, an AR[1] model is stationary for |a| < 1
and t→ ∞.

It is obvious that there are autoregressive models with more than one
parameter, i.e., AR[p] models, as defined in (5.2). Of these models, only
the second order autoregressive process is defined here, with its difference
equation being another example of a convolution sum.

If (Wt) is a white noise process with µW = 0 and σ2
W , then

Xt = a1Xt−1 + a2Xt−2 +Wt is called an AR[2] process or AR[2]
model; and Xt − a1Xt−1 − a2Xt−2 = Wt or, as a convolution
sum, (1,−a1,−a2) ∗ (Xt) = Wt is called its difference equation.
(Vt) with expectation function µV (t) �= 0 is an AR[2] model,
on condition that (Xt) = (Vt − µV (t)) is an AR[2] model.

(2.48)

The solution of the difference equation of the AR[2] model is given in (2.49),
with z1 and z2 being the roots of A(z) = 1−a1z−a2z

2, A(z) the characteristic
polynomial of the sequence (1,−a1,−a2).
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Xt = C1

(
1
z1

)t

+C2

(
1
z2

)t

+
∞∑

u=0

buWt−u (bu) = (1,−a1,−a2)−1 (2.49)

The AR[2] model is stationary with (Xt) = (1,−a1,−a2)−1 ∗ (Wt), if the
solutions z1 and z2 of A(z) = 1−a1z−a2z

2 = 0 are not in the unit circle, i.e.,
1 < |z1, z2|, and if t → ∞. Under these conditions, C1(1/z1)t and C2(1/z2)t

become identically zero, (bu) = (1,−a1,−a2)−1 converges absolutely and
the convolution sum converges in mean square, as defined in (7.11), if the
moments of the Wt exist.

From the stationarity condition 1 < |z1, z2|, A(1) = −a2 − a1 +1 > 0 and
A(−1) = −a2 + a1 + 1 > 0 are obtained, and further, the equations a2 =
−a1 +1 and a2 = a1 +1 for both sides in the triangle plotted in Fig. 2.17 are
arrived at. Consequently, for an AR[2] model with coefficients (a1, a2) in the
region below these sides, stationary solutions of the characteristic polynomial
are obtained.

Substituting a1 = a2 − 1 and/or a1 = 1 − a2 in 1 < |(a1 ± (a2
1 +

4a2)1/2)/(−2a2)|, |1/a2| > 1 and |a2| < 1 are obtained, i.e., the equa-
tions for the third side of the triangle in Fig. 2.17. Thus, an AR[2] model
Xt = a1Xt−1 + a2Xt−2 +Wt, as defined in (2.48), is stationary, if its coeffi-
cients (a1, a2) are within its region of convergence, as defined in (2.50),

a2 < −a1 + 1 and a2 < a1 + 1 and |a2| < 1 (2.50)

i.e., within the triangle as plotted in Fig. 2.17.
From a2

1 + 4a2 ≥ 0, it is concluded that all (a1, a2), being on and above
the curve in the triangle in Fig. 2.17, deliver real roots of the characteristic
polynomial, and that all (a1, a2) below the curve yield complex roots.

With the coefficients (a1, a2) being within the triangle, in Fig. 2.17, the
stationary solution Xt = (1,−a1,−a2)−1 ∗Wt =

∑∞
u=0 buWt−u of the differ-

ence equation of the AR[2]-model is obtained, as (bu) with b0 = 1 converges
absolutely. From this solution, the moment functions of the stationary AR[2]
model can be calculated.

EXt = E
∑∞

u=0 buWt−u = EWt

∑∞
u=0 bu = µW

∑∞
u=0 bu, and thus, the

expectation function µX of the AR[2] model (Xt) is the product of the ex-
pectation EWt = µW of the generating white noise process and the sum of
the inverse (1,−a1,−a2)−1 of the sequence of the weights in the model. The
very same result is obtained from the remarks to (2.15) in the case of the
stationary AR[1] model. Hence, in both cases, µW = 0 implies EXt = 0.

Less straightforward than the derivation of the expectation function is
the derivation of the covariance function. The stationary solution Xt =
Wt +

∑∞
u=1 buWt−u of the AR[2] difference equation is written for the model

variable in lag τ , Xt−τ = Wt−τ +
∑∞

u=1 buWt−τ−u, from whence, with b0 = 1
and bu = 0 for u < 0, Xt−τ = Wt−τ +

∑∞
u=τ+1 bu−τWt−u is obtained. This

equation is multiplied with the AR[2] difference equation
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Fig. 2.17. The coefficients (a1, a2) of a stationary AR[2] model are within the
triangle, as defined in (2.50): with real roots of the characteristic polynomial above
a2 = −(1/4)a2

1 and with complex roots below.

(Xt − a1Xt−1 − a2Xt−2)Xt−τ = Wt

(
Wt−τ +

∞∑
u=τ+1

bu−τWt−u

)
and the expectations

E(XtXt−τ ) − a1E(Xt−1Xt−τ )

−a2E(Xt−2Xt−τ ) = E(WtWt−τ ) +
∞∑

u=τ+1

bu−τE(WtWt−u)

are then calculated. With µX = 0, as obtained above from µW = 0 in defi-
nition (2.48), the expectations of the products become covariances. The co-
variances in the infinite sum are identically zero because of (2.10,2), and,
substituting τ = 0, 1, 2, . . ., the covariances and correlations in (2.51) are
obtained:

cX(0) − a1cX(1) − a2cX(2) = σ2
W

σ2
X

(
�X(0) − a1�X(1) − a2�X(2)

)
= σ2

W

cX(1) − a1cX(0) − a2cX(1) = 0
σ2

X

(
�X(1) − a1�X(0) − a2�X(1)

)
= 0 (2.51)

cX(2) − a1cX(1) − a2cX(0) = 0
σ2

X

(
�X(2) − a1�X(1) − a2�X(0)

)
= 0

using the symmetry cX(τ ) = cX(−τ ), as proposed in (2.9,4). Above, in equa-
tion σ2

X(�X(1) − a1�X(0) − a2�X(1)) = 0 with the correlation for τ = 1,
�X(0) = 1 is substituted and, consequently, �X(1) − a1 − a2�X(1) = 0 and
�X(1) are obtained. �X(2) and σ2

X are calculated with further substitutions.
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�X(1) =
a1

1 − a2

�X(2) =
a2
1

1 − a2
+ a2 =

a2
1 + a2(1 − a2)

1 − a2
(2.52)

σ2
X =

σ2
W (1 − a2)

1 − a2 − a2
1 − a2

1a2 − a2
2 − a3

2

=
σ2

W (1 − a2)
(1 + a2)(1 + a1 − a2)(1 − a1 − a2)

In (2.51), the general equation for the covariances and correlations for τ > 2
is omitted. This equation is a linear difference equation �X(τ ) − a1�X(τ −
1) − a2�X(τ − 2) = 0 for τ > 0 with initial conditions �X(0) = 1 and
�X(1) = a1/(1−a2). With continued substitutions, �X(τ ), τ > 2, follow, e.g.,
�X(3) = a1(a2

1 + 2a2 − a2
2)/(1 − a2). This difference equation has stationary

solutions in the triangular convergence region, as defined in (2.50) and plotted
in Fig. 2.17, since the characteristic polynomial A(z) = 1−a1z−a2z

2 pertains
to both difference equations: the stochastic one, Xt−a1Xt−1−a2Xt−2 = Wt,
of the AR[2] model as defined in (2.48), and the deterministic one, �X(τ ) −
a1�X(τ − 1) − a2�X(τ − 2) = 0, regarding the correlations.

If a2
1 + 4a2 ≥ 0, then z1 and z2 are real and |�X(τ )| damps out exponen-

tially, with �X(τ ) possibly alternating in sign. If a2
1 +4a2 < 0, then z1 and z2

are complex and �X(τ ) is a function that oscillates with variable amplitude
(Problem 2.21). An AR[2] model with this property is called pseudo-periodic.
A pseudo-periodic AR[2] process and its duplicate in lag np, n an integer
number and p the period of the pseudo-periodic behaviour, show quite large
correlations for small n; when n becomes larger, however, the correlations
decrease. A realisation of a pseudo-periodic AR[2] process is similar to a si-
nusoidal oscillation with a variable amplitude, i.e., an oscillation that always
recovers, when its amplitudes have decreased, and thus never damps out.
For instance, the realisations plotted in Fig. 2.4 stem from a pseudo-periodic
AR[2] model.

In (2.51), the equations �X(1) − a1�X(0) − a2�X(1) = 0 and �X(2) −
a1�X(1) − a2�X(0) = 0 are the linear difference equations of the AR[2] cor-
relation function �X(τ ) for the lags τ = 1 and τ = 2. From these equations
�X(1) = a1 + a2�X(1) and �X(2) = a1�X(1) + a2 are obtained, and, when
using double-indexed coefficients in definition (2.53), i.e., a1 and a2 replaced
by a12 and a22,

�X(1)= a12 + a22�X(1)
�X(2)= a12�X(1) + a22

(2.53)

the Yule-Walker equations of the AR[2] model are obtained. In these equa-
tions, the second index of the coefficients is the order of the process. The
Yule-Walker equations can be solved for the model coefficients, i.e., a12 =
�X(1)(1 − �X(2))/(1 − �2X(1)) and a22 = (�2X(1) − �X(2))/(�2X(1) − 1).
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These solutions are known as the Yule-Walker estimates of the coefficients
in an AR[2] model, after estimates �̂X(τ ) have been substituted for the model
correlations �X(τ ). The �̂X(τ ) are computed as empirical correlations from
a time series, using definition (2.1,4).

The AR[1] model as defined in (2.13) and the AR[2] model as defined in
(2.48) are special cases of the AR[p] process, as defined in (5.2). The Yule-
Walker equations of an AR[p] model are derived in (5.4) and (5.5). Besides
the solutions of the Yule-Walker equations (with the theoretical correlations
replaced by the empirical ones), estimates for the coefficients in an AR[p]
model can be obtained with the procedures introduced in Sect. 5.2.

2.5 When Is a Time Series Stationary?

The empirical moments calculated from the time series under analysis using
definition (2.1) are estimates for the expectation and covariance functions of
the stochastic process from which the time series stems on condition that the
process is assumed to be stationary. But when is a process in agreement with
the stationarity assumptions as defined in (2.8)?

For example, yearly values from the Basel temperature series as plotted in
Fig. 2.13 and monthly values of the atmospheric CO2 measured at Mauna Loa
Observatory, Hawaii, as plotted in Fig. 5.9 are assumed to be non-stationary
in their first moment functions. In both cases there is climatological evidence
that the expectation function of the process is not constant because (i) the
temperatures in Europe (and in the global mean) have increased over the last
120 years (Problem 2.30) and (ii) the atmospheric CO2 has increased in the
global mean for which the Mauna Loa measurements are representative.

Examples for processes assumed to be stationary over relatively long pe-
riods (decades) are the number of lynxes caught in the Mackenzie River
District (Canada) as plotted in Fig. 9.38 and the Southern Oscillation (SO)
index as plotted in Fig. 5.14. Other geophysical variables are stationary over
a relatively short period. For example, the horizontal speed in a turbulent
atmospheric flow was measured above Anwandstrasse in Zurich for a few days
in March 1987. From the measurements recorded, the wind speed values in
the time slice from 22:30 until 23:00 on March 11, 1987, as plotted in Fig. 2.1,
were selected due to their stationarity, using the wind direction values which
were measured and recorded together with the wind speed: the constant wind
direction over the selected period points to constant conditions regarding the
turbulent flow.

2.5.1 Diagnostics for the Stationarity of a Time Series

For many geophysical variables, however, it has not yet been ascertained from
geophysical evidence whether or not these variables are stationary. An exam-
ple for such a process is the NAO, resp. its indices plotted above in Figs. 2.9
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Fig. 2.18. North Atlantic Oscillation (NAO) index (Jones) from 1824 through
to 2000 with mean 0.476 and empirical variance 1.161: histogram (on the left)
and normal probability plot (a plot of the quantiles of the NAO index versus the
quantiles of the standard normal distribution [30], on the right).

and 2.10. Hurrell in [70] argues that his NAO index has increased since ap-
proximately 1970 (and consequently, with increasing strength of the zonal
circulation over the North Atlantic, winter temperatures and precipitation
in the Northern Atlantic and the adjacent North Western Europe have also
increased), whereas, in Problem 2.2, a white noise process (Wt) is estimated
as a model for the NAO index (Jones) assuming that the observations in
Fig. 2.10 (above) are a time slice from a realisation of a white noise pro-
cess with expectation function µW and covariance function cW (τ ) = σ2

W for
τ = 0 and cW (τ ) = 0 for τ �= 0. This assumption results from (i) a small
difference in the means 0.496 of the first (1824-1911) and 0.456 of the second
(1912-2000) half-series of Jones’ index, and (ii) a comparison of the empir-
ical correlation functions as plotted in Fig. 2.10 (below) with the empirical
correlation functions of the realisations of a white noise process in Fig. 2.22
as well as, in Problem 2.33, from the Ljung-Box statistic as defined in (2.60).
This model is also assumed to be a normal process as defined in (2.3). This
follows from the plots in Fig. 2.18. From both results it is concluded that
Jones’ NAO record is a time slice from a realisation of a normal white noise
process with estimated expectation 0.476 and variance 1.161.

The NAO example demonstrates that statistical evidence concerning the
stationarity of a process can be obtained even when geophysical evidence is
not available. The properties of a stationary time series as enumerated in
(2.54) follow from assumptions (2.8) since the moment functions of a station-
ary stochastic process are immune against displacements in the parameter
domain. The similarity as required in (2.54,4) can be assessed by means of
t-tests in the case of the first moment function, whereas similar plots of the
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empirical correlation function are indicative of a stationary second moment
function.

A time series (xt), t = 1, . . . , N , is assumed to be stationary
on condition that:

1. its mean remains approximately constant for t = 1, . . . , N ,
2. the amplitudes of its fluctuations remain approximately

constant for t = 1, . . . , N ,
3. its empirical correlation function decays rapidly (examples are

given in Fig. 2.3 as well as below in Figs. 2.23 and 3.1), and
4. empirical moment functions calculated from a-priori defined

time slices of (xt) are similar.

(2.54)

Properties (2.54) are to be found not only in the time series of the NAO
indices (Hurrell and Jones) in Figs. 2.9 and 2.10 as shown above but also
in the wind speed time series as plotted in Fig. 2.1, which, from geophys-
ical evidence, is assumed to be stationary. In the case of the wind speeds
measured in the turbulent atmospheric flow above Anwandstrasse in Zurich,
it is concluded from (i) the small difference in the means (−2.378007 and
−2.69577 ms−1) calculated for the first and second half-series that the first
moment function is constant, and from (ii) the similarity of the empirical
correlation functions as plotted in Fig. 2.3 for the first 20 lags, that the sec-
ond moment function depends solely on the lag. This procedure is repeated in
Problem 2.25 with parts of the time series lasting 600 seconds and originating
from the outset, middle and end of the wind speed time series.

Using the diagnostics as proposed in (2.54) is subject to the following
restrictions:

1. Given the observational period of length N , time slices (e.g., the first and
second half-series) used for calculating the empirical moment functions
are defined prior to the analysis, i.e., before inspecting plots of the time
series under analysis, as argued in Sect. 2.5.2. If no large fluctuations in
the empirical moment functions for different time slices are obtained, it
is then assumed that the time series is stationary. The result depends on
the length of the time slices, i.e., on the scale applied for the comparison
of the empirical moment functions.

2. If a time series is found to be stationary, it is then assumed that the
process from which the observations stem is in fact stationary. However,
the allowances for the fluctuations of the empirical moment functions
can only be calculated if the expectation and covariance functions of the
stochastic process are known. A universal test is not available since (i) the
probability distribution of a test statistic is a function of the dependences
in the stochastic process, and (ii) the transition from being non-stationary
to stationary is continuous. An example of a stochastic process with such
a transition is the AR[1] model as defined in (2.13) with the solution of
its difference equation being found in (2.27).
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Consequently, the assumption that a stochastic process is stationary remains
a mere approximation obtained from geophysical evidence and/or from a time
series found to be stationary using the diagnostics as proposed in (2.54).

These diagnostics can be enhanced by the predictions proposed in (5.70)
for the control of manufacturing processes, an important application that has
promoted the development of many techniques in time series analysis. Man-
ufacturing processes are often required to be stationary to obtain constant
properties of the product. A control of such a process is only possible, when
the product can be described using variables for which values can be easily
measured: when the time series of one or more variables under control are no
longer stationary, the process is re-adjusted. A deviation from stationarity
can be immediately detected by means of the procedures introduced in [17].
For example, the amount of a product formed during a chemical reaction oc-
curring in a batch reactor as plotted in Fig. 5.3 is permitted to fluctuate with
a preset tolerance (i.e., a known constant variance function) around a preset
value (i.e., a known constant expectation function). When the time series is
no longer stationary, the reactor has to be cleaned, or the temperature of the
reactor has to be re-adjusted, etc.

In Geosciences, time series that have been found to be stationary are
useful when analysing data obtained from comparison experiments. When
meteorological instruments and their installations are compared, time series
for the same meteorological variable but measured with different instruments
in possibly different installations at the same or neighbouring stations, are
subtracted from each other. From a stationary difference time series it is
concluded that both instruments and their installations remained unchanged
throughout the period covering the comparison experiment. A transition to
non-stationarity, however, is due to a change in at least one of the measure-
ments. Consequently, non-stationarities in a difference time series obtained
from measurements of a meteorological variable at neighbour stations (with
assumed identical climate) suggest that a climatological time series is not
homogeneous as defined in Sect. 1.1. Procedures for the detection of inhomo-
geneities are given in [66], [59], [88] and [140].

For example, the error model (1.14) can be estimated provided that the
differences of the pyranometer daily values, resulting from the comparison
experiment described in Sect. 1.1 and plotted above, in Fig. 1.8, are assumed
to be stationary (a very risky assumption indeed).

Examples of non-stationary difference time series are those calculated in
Problem 1.11 and plotted in Fig. 2.19, which resulted from subtracting the
time series of monthly values of SWIR measured at the neighbouring stations
Toronto and Toronto Meteorological Research as well as at London Weather
Centre and Bracknell. Both difference time series are non-stationary in their
variance functions as the amplitudes of the fluctuations decrease abruptly in
the years 1975 (Toronto) and 1980 (London) respectively. Supposedly, the
abrupt decreases in the variance functions are due to the transition from
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Fig. 2.19. A comparison experiment of monthly values of SWIR: differences ob-
tained from the stations Toronto and Toronto Meteorological Research (above) as
well as Bracknell and London Weather Centre (below).

manual to automated observations in Canada and the UK. The reader is
invited to estimate, in Problem 2.27, the variance functions before and after
the abrupt decreases.

2.5.2 Locally Stationary Time Series

Ambiguous results can occasionally be obtained from the diagnostic proce-
dures introduced in Sect. 2.5.1 if, by violating (2.54,4), the time slices for the
calculation of the empirical moment functions are defined after an inspection
of the time series under analysis.

For example, R time series object naojonests obtained in Problem 2.2
contains observations of Jones’ NAO index as plotted in Fig. 2.10. Using

t.test(window(naojonests,1901,1930),window(naojonests,1931,1960),

alternative="greater")

the mean in the time slice from 1901 through to 1930 (µ̂(1901) = 0.92) is
found to be significantly larger (at the 0.0026 level, plotted with ◦ for the
year 1930 in Fig. 2.20) than the mean in the time slice from 1931 through to
1960 (µ̂(1931) = 0.23), and thus the conclusion is reached that Jones’ index
is not stationary in its first moment function. The means in these time slices
have been plotted with solid horizontal lines in Fig. 2.20, the year 1930 with a
broken vertical line, and the 0.05 significance level of the t-test with a broken
horizontal line. In contrast, the difference in the means µ̂(1831) = 0.56 and
µ̂(1861) = 0.46 in the time slices from 1831 through to 1860 and from 1861
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Fig. 2.20. Observations of the North Atlantic Oscillation (NAO) index (Jones)
from 1824 through to 2000 with means µ̂(1901) = 0.92 and µ̂(1931) = 0.23 in the
time slices from 1901 through to 1930 and from 1931 through to 1960 (horizontal
solid lines). The significance level of two-sided t-tests comparing the means in time
slices of 30 years in length before and after the years 1854 through to 1970 are
plotted with ◦, the 0.05 level with a horizontal broken line.

through to 1890 appears to be small (significant at the 0.7133 level, plotted in
Fig. 2.20 with ◦ for the year 1860). Thus, contradictory results are obtained
from the time slices from 1831 through to 1860 and from 1901 through to
1960.

For the following discussion, let (Yt) be Jones’ NAO index and (yt) the
time series of observations yt, t = 1824, . . . , 2000 and thus N = 177, as
plotted in Figs. 2.10 and 2.20. Means of (yt) in two contiguous time slices,
from t − (v − 1) through to t and from t + 1 through to t + v, v = 30, for
t = 1824+v, . . . , 2000−v, are compared by means of two-sided t-tests. These
t-tests produce the significance levels plotted with ◦ in Fig. 2.20: n = 20 out of
N − 2v = 117 t-tests result in significance levels below 0.05 (as plotted with
a horizontal broken line in Fig. 2.20). Obviously, significance levels below
0.05 are obtained when time slices with large differences in the means are
compared and significance levels which are clearly above 0.05 result for time
slices with small differences in the means. For example, (yt) (and thus (Yt)
as well) is found to be locally stationary in T ′

1 = (1831, 1832, . . . , 1890) but
locally non-stationary in T ′

2 = (1901, 1902, . . . , 1960), with both T ′
1 and T ′

2
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Fig. 2.21. Two histograms of the number of t-tests significant at the 0.05 level
resulting when the experiment described in the remarks to Fig. 2.20 is repeated
1000 times using realisations of a standard normal white noise process.

being subsets of (i) the domain T = (. . . ,−1, 0, 1 . . .) of the parameter t of
(Yt) and (ii) the observational period.

This example for a local property of a stochastic process as defined in
(2.55,2)

1. Global properties of a stochastic process X(t) as defined
in (2.2) apply for all parameter values t ∈ T .

2. Local properties of a stochastic process X(t) apply for all
parameter values t ∈ T ′ ⊂ T , T ′ often being a time slice
in the observational period.

(2.55)

demonstrates that the outcome of diagnostic procedures as proposed in (2.54)
is influenced by the selection of the time slices from whence the empirical
moment functions are calculated.

Clearly, the number of significant t-tests obtained in Fig. 2.20 depends
on the fluctuating local mean in (yt). Are these fluctuations reconcilable
with hypothesis H0 that (Yt) is a normal white noise process with moments
µY = µ̂Y = 0.476 and σ2

Y = σ̂2
Y = 1.161 as estimated in the remarks to

Fig. 2.18? Or, formulated as a more specific question, what is the probability
of obtaining, under H0, n = 20 out of N−2v = 117 t-tests with a significance
level below 0.05 in (yt)?

The answer could be found if the probability distribution of n could be de-
rived from H0 and the parameters (N = 177, v = 30, contiguous) describing
the selection of the time slices for the comparison of the means in Fig. 2.20.
Since an analytic solution to this problem is not easily obtained, the proba-
bility distribution of n is approximated (subsequent to a normalisation) with
the histograms in Fig. 2.21, resulting with

lts <- 177 #length of time series

#length of time slices, 30 years are used to calculate
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lmv <- 30 #climatological norms

Nexperiment <- 1000 #1000 times in a few minutes on a PC

signsample <- rep(0,Nexperiment)

for (case in (1:Nexperiment)) { #standard normal, since the

w <- rnorm(lts,mean=1.0,sd=1.0) #result of a t-test does

sign <- 0 #not depend on linear

for(jj in (lmv:(lts-lmv)) ) { #transformations of the data

tt <- t.test(w[(jj-(lmv-1)):jj],w[(jj+1):(jj+lmv)],

alternative="two.sided")

if(tt$p.value < 0.05) sign <- sign + 1 }

signsample[case] <- sign }

hist(signsample,breaks=(-1:max(signsample)),xlab="...")

from two simulation experiments. The quite small number (1000) of replica
in each experiment is sufficient to obtain an approximation by computing
a confidence interval that includes the .95 quantile of the simulated sample
with probability .95: if clow = Np − 1.96(Np(1 − p))−1/2 and cupp = Np +
1.96(Np(1 − p))−1/2 then, for N = 1000 and p = 0.95, the .95 quantile
lies with probability 0.95 between the 936-largest and the 964-largest value,
as plotted for both simulated samples in Fig. 2.21. Obviously, n = 20 as
obtained in Fig. 2.20 is at the exterior of these confidence intervals. Hence,
(Yt) is assumed to be, in agreement with the remarks to Fig. 2.18, a normal
white noise process.

The influence of selected time slices (i.e., time slices not defined prior to
the analysis as required in (2.54,4)) on diagnostic procedures for the detection
of instationarities in a time series can be a pitfall when climatological time
series are analysed. Since it is the goal of many climatological projects to
monitor climatic change, i.e., to detect a non-stationary expectation function
in a homogeneous (cf. Sects. 1.1 and 2.3.4) climatological time series, climatol-
ogists are inclined towards selecting time slices with large differences in their
means when applying diagnostic procedures as demonstrated in Fig. 2.20 to
ascertain whether a time series is stationary in the expectation function.

When time slices with large differences in their means are preferred, false
results can be obtained, as demonstrated in the following instance: it is as-
sumed that a climatologist, seeking an instationarity in (Yt),

1. applies diagnostic procedures with, in contradiction to (2.54,4), two se-
lected contiguous time slices, as described in Fig. 2.20, to every reali-
sation obtained from a standard normal white noise process (the model
used above for (Yt) since the result of a t-test is invariant under linear
transformations) and

2. finds two contiguous time slices with a difference in their means, signifi-
cant at the 0.05 level, when there are two such time slices in a realisation.

How often can he/she claim that the realisation under analysis is non-
stationary by merely looking at the plots of the 1000 realisations produced in
the simulation experiments from which the histograms in Fig. 2.21 have been
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obtained? Since there are approximately 700 realisations with at least one sig-
nificant t-test (there are approximately 300 realisations without a significant
t-test as concluded from the histograms) he/she will detect an instationarity
in approximately 7 out of 10 realisations, i.e., much more frequently than in
approximately 1 out of 20 realisations, as corresponding to the significance
level of the t-test. The usual t-test produces this false result since, when
periods for the comparison are selected by the climatologist subsequent to
inspecting plots of the time series, the experimental setup becomes undesir-
able for statistical inference as described in introductory textbooks.

In Geosciences we often find ourselves formulating and/or supporting sci-
entific hypotheses after having measured the variable under study and in-
spected plots of the time series obtained. This setup is frequently out of line
with statistical inference as presented in introductory textbooks. In this situ-
ation caution is called for when statistical tests are applied. For example, if,
by violating the requirement stipulated in (2.54,4), a selection of time slices is
involved in diagnostics for detecting instationarities in a time series, we then
have a situation known in Statistics as multiple comparison (test) problem (in
an analysis of variance for example, the Scheffé test allows for a-posteriori
multiple comparison) combined with a change point problem (e.g., in [88]
a two-phase regression model allows for detecting change points in climate
records). In this situation, the significance of the results can be assessed in
a simulation experiment, on condition that it is possible to model the selec-
tion procedure in some way ([145],[154]). The simulation of realisations of the
stochastic process under analysis and assumed to be stationary is, however,
only feasible if a model, e.g., a linear process as defined in (2.25), has been
estimated with the methods introduced in Sect. 5.4. In R, simulations of lin-
ear processes are straightforward and a larger number of realisations can be
simulated by compensating for the slow for-loops as demonstrated in [136]
and [137].

The usually difficult modelling of a selection procedure and the estimation
of a model for the stochastic process under analysis can be circumvented on
condition that empirical moment functions are compared once they have
been calculated from time slices defined prior to the analysis, as required in
(2.54,4). A simulation experiment reflecting this requirement for the Jones’
NAO time series is performed in Problem 2.36.

In this section it is demonstrated that statistical evidence concerning the
stationarity of a stochastic process under analysis can be obtained using di-
agnostic (2.54) even when geophysical evidence is not available. The results
thus arrived at can be ascertained, under favourable circumstances, by apply-
ing statistical tests and/or performing a simulation experiment. The example
time series analysed is the NOA index (Jones) with the result showing that
this time series is a time slice in a realisation of a white noise process. Impli-
cations of this result are discussed in Sect. 2.8.4.
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2.6 Estimators for the Moment Functions of a
Stationary Stochastic Process

The empirical moment functions µ̂X and ĉX(τ ) of a time series (xt), t =
1, . . . , N , are defined in (2.1). Assuming that (xt) is an observation of a sta-
tionary stochastic process (Xt), the moments of µ̂X and ĉX(τ ) are calculated
in Sect. 2.6.1. For most, but not all, (an example is given in Sect. 2.6.2)
stationary stochastic processes, µ̂X and ĉX(τ ) are unbiased and consistent
estimators of the moment functions µX and cX(τ ).

2.6.1 Properties of the Empirical Moment Functions of a
Stationary Time Series

In Sect. 1.3, the expectation and variance of the arithmetic mean µ̂X of a
random sample xi, i = 1, 2, . . . , N , as defined in (1.2), are calculated and it
is shown that µ̂X is an unbiased and consistent estimator of the expectation
µX of the identically distributed random variables Xi from which the obser-
vations xi stem. Thus, being unbiased and consistent, µ̂X has the desirable
properties defined in (1.3) and (1.4). Due to the iid.-assumptions (1.2), not
only the expectation and variance but also the probability distribution of
µ̂X is easily calculated, if the distribution of the observed Xi is known. If
this distribution is not known then the probability distribution of the arith-
metic mean of a random sample is obtained with the central limit theorem
as proposed in (1.6).

For the arithmetic mean of a random sample, consequently, confidence
limits can be calculated and tests performed. For these desirable properties,
however, we pay with the restrictive iid.-assumptions which are not recon-
cilable with most time series. Although not being iid., time series are often
stationary as defined in (2.8). In Sect. 2.6.1 therefore, the properties of esti-
mators of the moment functions of a stationary stochastic process are derived.
These estimators are the arithmetic mean and empirical variance as well as
the empirical covariance and correlation functions, calculated using (2.1) from
a time series stemming from the stationary process to be estimated.

In (2.72) and (2.73), the properties (2.56) of the arithmetic mean of a
time series as defined in (2.1,1) are derived.

1. The arithmetic mean µ̂X calculated from a time slice (xt),
t = 1, . . . N , of a realisation of a stationary stochastic
process (Xt), t = . . . ,−1, 0, 1, . . ., is an unbiased estimator
for the constant expectation function µX of (Xt).

2. If the covariance function cX(τ ) of (Xt) converges absolutely
as defined in (2.24) then µ̂X is a consistent estimator for µX

as the variance of µ̂X decreases with 1/N when N increases.

(2.56)

From an absolutely convergent covariance function of a stationary stochastic
process it becomes plausible that the dependence of random variables with
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lag τ decreases rapidly with increasing τ . Thus, with increasing length N
of the time series used for the estimation, the number of independent or at
least very weakly dependent observations increases and the variance of the
estimator decreases.

The properties of the empirical covariance function as defined in (2.1,3)
are proposed in (2.58); (2.58,1) follows from (2.57), whereas a derivation of
(2.58,2) is not easy to arrive at and therefore is not given here.

Let (Xt), t = . . . ,−1, 0, 1, . . ., be a stationary stochastic process with
expectation function E(Xt) = µX = 0 and covariance function E(XtXt+τ )
= Cov(Xt, Xt+τ ) = cX(τ ) and let (xt), t = 1, . . . , N , be a time slice from a
realisation of (Xt). cX(τ ) is estimated with the empirical covariance function
ĉX(τ ) as defined in (2.1,3) and thus, substituting µX = 0 for µ̂X in (2.1,3),
ĉX(τ ) = (1/N)

∑N−τ
t=1 XtXt+τ is obtained as an estimator of cX(τ ).

The expectation of this estimator is calculated below: the result in (2.57)
is obtained with the properties of the covariance matrix (2.7).

EĉX(τ ) = E
( 1
N

N−τ∑
t=1

XtXt+τ

)
=

1
N

N−τ∑
t=1

E(Xt, Xt+τ ) =
1
N

N−τ∑
t=1

cX(τ )

=
1
N

(
N − τ)cX(τ ) =

{
(1 − τ/N)cX(τ ) for 0 ≤ |τ | ≤ N
0 for |τ | > N (2.57)

From (2.57) it is concluded that ĉX(τ ) is a biased estimator of cX(τ ). How-
ever, if N is large and τ small then ĉX(τ ) is approximately unbiased, τ/N
being close to zero.

The variance of this estimator is obtained from the covariance of ĉX(τ ),
i.e., Cov

(
ĉX(τ ), ĉX(τ + τ ′)

)
, with lag τ ′ = 0. A derivation of this covariance

is, however, less straightforward than the derivation of the variance of µ̂X

in (2.73) since expectations of products of the covariance function cX(τ )
of (Xt) are involved. From the laborious calculations, it is revealed that the
variance of ĉX(τ ) is a function of, besides other arguments, the fourth moment
function of the process (Xt), and further, that ĉX(τ ) is, under the restrictions
as stipulated in (2.58,2), a consistent estimator for cX(τ ).

1. An empirical covariance function ĉX(τ ) calculated using (2.1,3)
from a time slice (xt), t = 1, . . .N , in a realisation of a stationary
stochastic process (Xt), t = . . . ,−1, 0, 1, . . ., is an approximately
unbiased estimator of the covariance function cX(τ ), on condition
that (i) τ is small as compared to N and (ii) µX = 0.

2. ĉX(τ ) is a consistent estimator for cX(τ ), provided that
(i) (Xt), besides being stationary, is normal as defined (2.3), and
(ii) cX(τ ) converges absolutely.

(2.58)
(2.58,1) and (2.58,2) also apply to a stationary normal process (Xt) with
E(Xt) = µX �= 0 and an absolutely convergent cX(τ ) on condition that the
non-zero expectation function is accounted for.
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There are estimators for the covariance function of a stationary stochas-
tic process with, at least in some aspects, superior statistical properties than
those of ĉX(τ ). For instance, c̃X(τ ) = 1/(N − τ ) ∑N−τ

t=1 XtXt+τ is an unbi-
ased and consistent estimator of cX(τ ). However, ĉX(τ ) as defined in (2.1,3)
is preferred as being positive semidefinite. A positive semidefinite empirical
covariance function is desirable in connection with the linear prediction (in
Sect. 2.7 as well as in Sects. 4.4 and 5.5) and the spectral estimation (in
Chaps. 8, 9 and 10). The covariance function is shown to be positive semidef-
inite in the remarks to (2.7), and in the case of the empirical covariance
function, the positive semidefinite property is derived in Problem 2.34.

Often, the empirical covariance function ĉX(τ ) is not zero for large lags
even though the theoretical covariance function cX(τ ) is zero. For instance,
in Fig. 9.25, the covariances of the example process are considerably over-
estimated for lags τ ≥ 180. This behaviour is due to large correlations of
neighbour ĉX(τ ) which fairly frequently occur. In these cases a plot of ĉX(τ )
is very smooth and therefore suggests a too small variance of the estima-
tor. This property of the empirical covariance function is demonstrated in
Problem 2.3 with simulations of the AR[1] model (2.12). The pitfalls due to
possibly large correlations of neighbouring ĉX(τ ) can be circumvented when
a long time series is observed. With increasing length of a time series stem-
ming from a process with an absolutely convergent covariance function, in
line with the remarks to (2.56), the number of approximately independent
observations used for the estimation increases and, consequently, the variance
of the estimator decreases.

The empirical correlation function �̂X(τ ) calculated, as defined in (2.1,4),
from a time slice (xt), t = 1, . . . N , in a realisation of a stationary stochastic
process (Xt), t = . . . ,−1, 0, 1, . . ., is an estimator for the correlation func-
tion �X(τ ) = cX(τ )/cX(0) of (Xt). The expectation E�̂X(τ ) and covariance
Cov

(
�̂X(τ ), �̂X(τ + τ ′)

)
of the estimator are obtained by calculations that

are even more laborious than those performed for the expectation and co-
variance of the empirical covariance function ĉX(τ ). From these calculations
it is concluded that the properties (2.58), with � substituted for c, etc., also
pertain to the empirical correlation function �̂X(τ ). Note that, in the case of
the empirical correlation function, (2.58,2) applies not only to a stationary
normal process but also to linear processes as defined in (2.25) [21].

If (Wt) is a white noise process then its correlation function �W (τ ) = 1 for
τ = 0 and �W (τ ) = 0 for τ �= 0 is obtained directly from definitions (2.10) or
(2.11). However, the empirical correlation function �̂W (τ ), calculated using
(2.1,4), from a time slice (wt), t = 1, . . .N , of a realisation of a white noise
process (Wt) is not identically zero for lags τ �= 0 as demonstrated with
the examples in Fig. 2.22. In the case of a white noise process (Wt), on the
one hand, the calculation of the expectation and the variance of �̂W (τ ) is
as laborious as the calculation of E�̂X(τ ) and Cov

(
�̂X(τ ), �̂X(τ + τ ′)

)
in the

case of a stationary process (Xt). On the other hand, however, the following
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Fig. 2.22. Simulated realisations (N1 = 100, N2 = 900) of a white noise process
with µW = 0 and σ2

W = 1 and empirical correlation functions calculated from the
simulations.

useful approximation (2.59) is obtained.

The empirical correlations �̂W (τ ) calculated using (2.1,4)
from a time slice (wt), t = 1, . . . N , of a realisation of a
white noise process (Wt), as defined in (2.10) or (2.11) with
µW = 0 and σ2

W , are approximately normally distributed
with E�̂W (τ ) = 0 and Var�̂W (τ ) = 1/N for large N .

(2.59)

Due to (2.59), approximately 95 out of 100 empirical correlations of the
simulations in Fig. 2.22 are within ±1.96 ×N−1/2 with approximately 5 out
of 100 outside this confidence interval. This confidence interval is constructed
as demonstrated in the remarks to Fig. 2.3 or is obtained in the default plot
(default plots are shown in Fig. 2.22) of the empirical correlation function
produced with R function acf().

For example, in the plots of the empirical correlation functions of the
NAO indices (Hurrell in Fig. 2.9) and (Jones in Fig. 2.10), one out of 30
empirical correlations are outside ±1.96 × N−1/2, and thus it is concluded
that both indices stem from white noise processes.

Most time series are not a time slice from a realisation of a white noise
process. Examples are the wind speed series as plotted in Fig. 2.1 with many
empirical correlations outside ±1.96 × N−1/2 (as can be seen in Fig.2.3)
and the differences of the yearly values in the Basel temperature series as
plotted in Fig.2.14 (above) with only a few empirical correlations outside
this confidence interval (as shown below, in Fig. 2.14).
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These examples demonstrate that, in most cases, by using approximation
(2.59), it can be excluded that a time series is a time slice from a realisation of
a white noise process. Approximation (2.59) can also be used in combination
with tests for white noise. For example, the K-lag Ljung-Box statistic

TK = N(N − 2)
K∑

τ=1

�̂2τ
N − τ (2.60)

K being much smaller than N , can be compared to an upper quantile of
a chi-square distribution with K degrees of freedom, as proposed in [87] or
[21]. As another possibility, a test using spectral estimation techniques as
proposed in Sect. 8.2.2 can be performed. The spectrum of a white noise
process is derived in (7.76).

2.6.2 Ergodic Theorems: a Cautionary Remark

(2.56) and (2.58) do not apply to all stationary stochastic processes, seeing
that there are stationary processes (Yt) with the property that µ̂Y , calculated
using (2.1,1) from an observed time slice (yt), t = 1, 2, . . . , N , of a realisation,
is an unbiased (as defined in (1.3)) but not a consistent (as defined in (1.4))
estimator of µY . In Problem 2.29 for example, Eµ̂Y (t) = 0 and Varµ̂Y = σ2

V

for N → ∞ are obtained on condition that Yt = Xt + V , t ∈ T , with (i)
(Xt) being a stationary process with expectation function µX(t) = µX = 0
and absolutely convergent covariance function cX(τ ), (ii) V being a random
variable with µV = 0 and σ2

V , and (iii) Cov(Xt, V ) = 0 for all t ∈ T . Thus,
µ̂Y proves to be an unbiased but not a consistent estimator for µY . Another
example is the harmonic process as defined in (7.30), with its moment func-
tions given in (7.31): it is stationary but its expectation function cannot be
estimated without bias and consistently.

The conditions for a convergence (e.g., in mean square, since (2.73) im-
plies Varµ̂X = E(µ̂X − µX)2 → 0 for N → ∞) of an empirical moment
function (e.g., µ̂X calculated from a time slice from a realisation of a sta-
tionary stochastic process (Xt)) to the theoretical moment function of the
stationary process (e.g., µX), are proposed in the ergodic theorems [155].

The theorist uses the convergence of an empirical moment function to
derive the convergence of further estimators calculated from this moment
function. For example, if �̂X(1) and �̂X(2) are substituted for �X(1) and
�X(2), in the Yule-Walker equations (2.53), and if �̂X(1) and �̂X(2) converge
to �X(1) and �X(2), then the estimators for the coefficients a12 and a22 of
the AR[2] process converge.

The practitioner learns from the examples given above to be cautious
when estimating the moment functions of a stationary stochastic process: the
empirical moment functions as defined in (2.1) have the properties proposed
in (2.56) or (2.58) when calculated from a realisation of most (but not of all)
stationary stochastic processes (Xt).
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2.7 Optimal Linear Predictions

To simplify, there are two kinds of forecasts. Examples for forecasts of the
first kind are the weather forecasts produced with a model of the physical
processes in the atmosphere (a general circulation model, GCM) using the
observations from the synoptic stations as well as those obtained from the
operational weather satellites. The equations in a GCM are solved using
a computer for future time points and, from these solutions, the weather
services produce the weather forecasts. Forecasts of this kind are, however,
not dealt with in this book.

An example for a forecast of the second kind is the estimation of the wind
speed in the turbulent atmospheric flow above the Anwandstrasse in Zurich
for t = 1801, t = 1802, t = . . ., using the time series (xt), t = 1, 2, . . . , 1800
plotted in Fig. 2.1, i.e., forecasts are calculated for the first, the second, etc.,
time point after the observational period. Another example is a forecast of
the NAO index (Jones) for the year 1999 using the observations plotted in
Fig. 2.10. Since this time series stems from a normal white noise process
(Wt) with estimated moments µ̂W = 0.4713 and σ̂2

W = 1.0858 as shown in
the remarks to Figs. 2.18 and 2.20, it is concluded from definitions (2.10) and
(2.11) that the probability distribution of W1999 is normal with mean 0.4713
and variance 1.0858.

These examples demonstrate that a forecast of the second kind is a real-
isation of an estimator as defined in (1.1), calculated using an observed time
slice from a realisation of a stochastic process for time points with no observa-
tions (usually for the future) under the assumption that the forecast belongs
to the observed realisation. Such an estimator is called a prediction. Gener-
ally, several predictions can be calculated from the very same observations,
the optimal one minimizing the prediction error.

Let the time series (xt), t = 1, . . . , N , be a time slice from a
realisation of the stochastic process (Xt) with a finite variance
σ2

X(t) for all t ∈ T and let XN+τ be a random variable
pertaining to the future: τ > 0. Then:

1. If x̂N+τ is a realisation of estimator X̂N+τ = X̂N+τ (X1, . . .XN ),
then x̂N+τ is called a predicted value of XN+τ and
X̂N+τ is called a prediction of XN+τ (of (Xt) with lag τ).

2. An optimal prediction minimises the variance of the prediction
error êN+τ = XN+τ − X̂N+τ .
This variance is called the mean square prediction error,
PVarX̂N+τ = VarêN+τ = E

(
(XN+τ − X̂N+τ )2

)
.

(2.61)
Often used predictions X̂N+τ are linear combinations of random variables
Xt in the stochastic process (Xt). The variance of such a prediction is non-
negative because the covariance function of the stochastic process is positive
definite, as proposed in (2.7).
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Let (xt) and (Xt) be as defined in (2.61). Then
X̂N+τ = a0XN + a1XN−1 + . . .+ aN−1X1

=
∑N−1

u=0 auXN−u = aT X
is called a linear prediction, with a = (a0, a1, . . . , aN−1)T and
X = (XN , XN−1, . . . , X1)T being column vectors with N values.
If a minimises the mean square prediction error
PVarX̂N+τ = E

(
(XN+τ − aT X)2

)
then X̂N+τ = aT X

is called an optimal linear prediction of (Xt) with lag τ .

(2.62)

The predicted value x̂N+τ is obtained as a linear combination of the values
in the observed time series (xt), t = 1, . . . , N , and the values in a. The values
in a are called the coefficients (or the weights) of the prediction. They are
calculated as proposed in (2.63) if the process to be predicted is stationary.

If (xt), (Xt), XN+τ , a and X are as defined in (2.62) and (Xt)
is stationary with µX(t) = 0 and covariance matrix CX , then:

1. a = C−1
X

(
Cov(XN+τ , XN ), . . . ,Cov(XN+τ , X1)

)T = C−1
X cN,τ

2. PVarX̂N+τ = E
(
(XN+τ − X̂N+τ )2

)
= cX(0) − cT

N,τa

3. EX̂N+τ = EXN+τ

(2.63)

(2.63) is derived under the assumption that the covariance matrix CX of the
stationary process (Xt) to be predicted is known. Under this assumption the
mean square prediction error is minimised to obtain the optimality condi-
tions. This minimisation is demonstrated in (2.74) for the first optimality
condition. From the optimality conditions, proposition (2.63) is derived in
(2.75), (2.76) and (2.77). For an alternative derivation, the optimality con-
ditions are written as in (2.78) from whence (2.63) is derived in the remarks
to (2.78) and in (2.80). From (2.78), the properties (2.79) and (2.81) of the
optimal linear prediction are obtained, for later use in Sect. 5.5.

With a slightly modified derivation, the coefficients of an optimal linear
prediction are obtained in the case of a stationary process with a constant
expectation function not being identically zero, i.e., µX(t) = µX �= 0. An
unbiased optimal linear prediction is obtained with weights au, which not
only minimise the mean square prediction error but also fulfill the universality
(Sect. 4.5, (4.29) and remarks to (4.22)) condition

∑N−1
u=0 au = 1, since

EXN+τ = µX = EX̂N+τ =
N−1∑
u=0

auµX = µX

N−1∑
u=0

au. (2.64)

With a known covariance matrix of the process to be predicted, the col-
umn vector a containing the weights of the prediction is arrived at using
(2.63,1), i.e., by multiplying the inverse of the covariance matrix CX (as
proposed in the remarks to (2.7), C−1

X exists provided that CX is positive
definite) with the vector cN,τ . cN,τ is the vector containing the covariances
of the random variable to be predicted with the random variables at the time
points with observations.
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Usually, the covariance matrix CX of the process (Xt) to be predicted
is not known and therefore has to be estimated. An estimation is possible
using the procedures introduced in Sect. 2.1 and discussed in Sect. 2.6. The
estimates, i.e., the empirical covariances calculated as defined in (2.1,3), are
substituted for the theoretical covariances, and the estimates â for a are then
calculated. The covariances between the variable (to be predicted) at N + τ
and the variables at the observed time points N time steps, or further back,
Cov(XN+τ , X1), . . . ,Cov(XN+τ , Xτ ), cannot be estimated from x1, . . . , xN .
If, however, cX(τ ) decays rapidly and N is large enough, these covariances
are assumed to be identically zero. The equations thus obtained can be solved
for â in the majority of the cases, namely on condition that the empirical
covariance matrix of a stationary time series is positive definite, and thus is
invertible as proposed in the remarks to (2.7) (Problem 2.34). For example,
in the optimal linear prediction calculated in Problem 2.35, the weights â0,
â1, . . . for the observations xN , xN−1, . . . decrease with increasing distance
from the prediction time N + τ .

If a prediction is calculated from a short time series then, due to (2.63,2),
the large variances of the empirical covariances propagate to the estimates â,
and thus the prediction is said to be statistically not stable. If a prediction
is calculated from a long time series then the solution of the equations for â
is time consuming and can become numerically unstable. Possible solutions
to this problem are the use of models

1. for the expectation function (in which case, the expectation function, not
the process, is estimated), in Chap. 3,

2. for the covariance function, in Chap. 4, or
3. for the process (MA and AR models as demonstrated with the examples

in Sect. 2.3, generally linear processes). Predictions of linear processes are
obtained in Sect. 5.5 with explicit or recursive procedures being preferable
to procedures involving the solution of systems of linear equations.

2.8 Supplements

In Sect. 2.8.1, the moment functions of the AR[1] model, of the random walk
and of the linear process are derived. In Sect. 2.8.2, the moments of the mean
of a stationary time series are calculated. In Sect. 2.8.3, the optimal linear
predictor of a stationary time series is obtained, and in Sect. 2.8.4 it is shown
(at least for the white noise process) that the conditional expectation is the
optimal predictor.

2.8.1 First and/or second Moment Functions of some Processes

The covariance function of an AR[1] model as proposed in (2.16) is arrived
at with the initial condition X−N = 0 from the sum in (2.14). Since µW = 0,
by definition
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Cov(Xt, Xt+τ ) = E
(
(Wt + aWt−1 + . . .+ at+N−1W−N+1)

×(Wt+τ + aWt+τ−1 + . . .+ at+N−1+τW−N+1)
)

and, since the covariances Cov(Wt,Wu) are identically zero for t �= u, the
second moment functions follow for τ ≥ 0:

cX(t, t+ τ ) = Cov(Xt, Xt+τ )
= Cov(Wt,Wt+τ ) + aCov(Wt,Wt+τ−1) + . . .

+aτCov(Wt,Wt+τ−τ ) + . . .
. . .+ aCov(Wt−1,Wt+τ ) + aaCov(Wt−1,Wt+τ−1) + . . .
+aaτ+1Cov(Wt−1,Wt+τ−(τ+1) + . . .

= σ2
W

(
aτ + aτ+2 + . . .+ aτ+2(t+N−1)

)
.

With Cov(Xt, Xt+τ ) = Cov(Xt, Xt−τ ) due to the property (2.9,4)

cX(t, t+ τ ) =
{
σ2

Wa
|τ |(1 − a2(t+N))/(1 − a2) for |a| �= 1

σ2
W (t+N) for |a| = 1

(2.65)

σ2
X = Cov(Xt, Xt)

=
{
σ2

W (1 − a2(t+N))/(1 − a2) for |a| �= 1
σ2

W (t+N) for |a| = 1
(2.66)

the covariance as well as the variance function of an AR[1] model (Xt) under
the initial condition X−N = 0 are obtained.

The moment functions of a random walk process Yt = Yt−1 + Wt, t =
1, 2, . . ., as defined in (2.20), are derived using initial condition Y0 = 0. As
µW = 0, the expectation function E(Yt) is constant, otherwise, E(Yt) would
be non-decreasing (for mW > 0) or non-increasing (for mW < 0), since

E(Yt) = E
t∑

u=1

Wu =
t∑

u=1

EWu = µW × t. (2.67)

As Wi and Wj are independent or uncorrelated for all pairs (i, j), a non-
decreasing variance function

Var(Yt) = Var
t∑

u=1

Wu =
t∑

u=1

VarWu = σ2
W × t (2.68)

is obtained (since σ2
W > 0), and thus the paths of the realisations in

Fig. 2.12 diverge. For the covariances, with Cov(Wi,Wj) = 0 for i �= j and
Cov(Wi,Wj) = σ2

W for i = j,

Cov(Yt, Yu) = Cov

⎛⎝ t∑
i=1

Wi,
u∑

j=1

Wj

⎞⎠
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=
t∑

i=1

u∑
j=1

Cov(Wi,Wj) = σ2
W

(
min(t, u)

)
(2.69)

is obtained since only the terms for i = j remain in the double indexed sum
in (2.69). The number of these terms equals the minimum of t and u. The
variances and covariances of a random walk process are summarised in the
covariance matrix:

⎛⎜⎜⎜⎜⎜⎝

Y1 Y2 Y3 Y4 . . .

Y1 1 1 1 1
Y2 1 2 2 2
Y3 1 2 3 3
Y4 1 2 3 4
...

⎞⎟⎟⎟⎟⎟⎠σ2
W = CY . (2.70)

From the above results, it is concluded that the constant moment functions
of a white noise process become the proportionality factors in the moment
functions of a random walk process constructed from the white noise process.

The moment functions of a linear process as defined in (2.25) can be
derived from the moment functions µW = 0 and σ2

W of the white noise
process since the weights (bt) converge absolutely. The first moment function
is obtained easily, the second with the following calculation. If τ ≥ 0, then

cY (t, u) = Cov(Yt, Yu) = Cov
(∑

v

bvWt−v,
∑
w

bwWu−w

)
=
∑

v

∑
w

bvbwCov
(
Wt−v,Wu−w)

=
∑

v

∑
w

bvbwcW (t− v, u− w) (2.71)

follows. From the stationarity of (Wt), cW (t−v, u−w) = cW (t−v, t−τ−w) =
cW (t− v− (t− τ −w)) is derived and, consequently, cY (t, u) = cY (t, t− τ ) =
cY (τ ) =

∑
v

∑
w bvbwcW (τ + w − v). In this sum remain, since cW = 0 for

τ + w − v �= 0, the terms with w + τ = v: for τ = 0, all terms with w = v,
hence

∑
u bubuσ

2
W , for τ = 1 all terms with w + 1 = v, hence

∑
u bubu+1σ

2
W ,

etc. Thus, (2.26) follows.

2.8.2 Moments of the Mean of a Stationary Time Series

Let (Xt) be a stationary stochastic process with E(Xt) = µX(t) = µX

and Cov(Xt, Xt+τ ) = cX(τ ), and let the time series (xt), t = 1, . . . , N ,
be a time slice from a realisation of (Xt). The arithmetic mean of the
time series as defined in (2.1,1) estimates µX . Therefore, the estimator is
µ̂X = (1/N)

∑N
t=1Xt. For the expectation of this estimator
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Eµ̂X = E

(
1
N

N∑
t=1

Xt

)
=

1
N

N∑
t=1

EXt =
1
N

N∑
t=1

µX = µX (2.72)

is obtained and, thus, µ̂X is an unbiased estimator for µX . For the variance
of this estimator

Varµ̂X = Var

(
1
N

N∑
t=1

Xt

)
=

1
N2

(
N∑

t=1

VarXt + 2
∑
t<u

Cov(Xt, Xu)

)

=
1
N2

N∑
t=1

N∑
u=1

Cov(Xt, Xu) =
1
N2

N∑
t=1

N∑
u=1

cX(t, u)

is calculated by summing the covariances cX(t, u) = ctu in the covariance
matrix

CX =

⎛⎜⎜⎜⎜⎜⎝
c11 c12

. . . c1N

c21 c22
. . . c2N

. . . . . . . . . . . .

cN1 cN2
. . . cNN

⎞⎟⎟⎟⎟⎟⎠ .
CX is symmetric due to (2.7,1) with, (Xt) being stationary, identical values
in each diagonal as proposed in the remarks to (2.9). Hence, the covariances
cX(t, u) depend on the lag τ = t− u alone. When summing the diagonals

Varµ̂X =
1
N2

(
N∑

t=1

cX(0) + 2
N−1∑
τ=1

N−τ∑
t=1

cX(τ )

)

=
1
N2
NcX(0) +

2
N2

N−1∑
τ=1

(N − τ )cX(τ )

=
1
N

N−1∑
τ=−(N−1)

(N − τ
N

)
cX(τ )

is obtained. What happens to Varµ̂X when the time series becomes longer,
i.e., when the number of observations increases?

Varµ̂X =
1
N

N−1∑
τ=−(N−1)

(
N − τ
N

)
cX(τ ) ≤ 1

N

N−1∑
τ=−(N−1)

(
N − |τ |
N

) ∣∣cX(τ )
∣∣

≤ 1
N

N−1∑
τ=−(N−1)

∣∣cX(τ )
∣∣ ≤ 1

N

∞∑
τ=−∞

∣∣cX(τ )
∣∣ (2.73)

If the covariance function cX(τ ) converges absolutely then
∑∞

τ=−∞
∣∣cX(τ )

∣∣ =
a < ∞, and thus limN→∞ Varµ̂X = limN→∞(1/N)

∑∞
τ=−∞

∣∣cX(τ )
∣∣ = 0.

Consequently, using the Chebyshev inequality (1.17), it is concluded that µ̂X

is a consistent estimator for the constant expectation function µX , and (2.56)
follows.
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2.8.3 Properties of the Optimal Linear Prediction

(2.63,1) is derived by minimizing the mean square prediction error as defined
in (2.61,2) under the assumption µX = 0:

PVar(X̂N+τ ) = E
((
XN+τ −

N−1∑
u=0

auXN−u

)2
)

= VarXN+τ − 2
N−1∑
u=0

auCov(XN+τ , XN−u)

+
N−1∑
u=0

N−1∑
v=0

auavCov(XN−u, XN−v).

Thereafter the partial derivatives (d/dau)
(
PVarX̂N+τ

)
are calculated for all

au. For example, if u = 0 then the following expressions are obtained for each
of the three terms in the above sum:

d
da0

(
VarXN+τ

)
= 0,

d
da0

(
−2
(
a0Cov(XN+τ , XN ) + a1Cov(XN+τ , XN−1) + . . .

+aN−1Cov(XN+τ , X1)
))

= −2Cov(XN+τ , XN ),

d
da0

(
a0

(
a0Cov(XN , XN ) + a1Cov(XN , XN−1) + . . .+ aN−1Cov(XN , X1)

)
+a1

(
a0Cov(XN−1, XN ) + a1Cov(XN−1, XN−1) + . . .

)
+a2

(
a0Cov(XN−2, XN ) + a1Cov(XN−2, XN−1) + . . .

)
...
+aN−1

(
a0Cov(X1, XN ) + a1Cov(X1, XN−1) + . . .

))
= 2a0Cov(XN , XN ) + a1Cov(XN , XN−1) + . . .+ aN−1Cov(XN , X1)

+a1Cov(XN−1, XN )
+a2Cov(XN−2, XN )
...
+aN−1Cov(X1, XN )

= 2
(
a0Cov(XN , XN ) + a1Cov(XN , XN−1) + . . .

)
.

Adding the three terms and setting the sum equal to zero, the following
equation (in vector notation) with the first optimality condition of the optimal
linear prediction
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(
Cov(XN , XN ), . . . ,Cov(XN , X1)

)⎛⎜⎜⎝
a0

a1
...

aN−1

⎞⎟⎟⎠ = Cov(XN+τ , XN ) (2.74)

is obtained. This calculation is repeated for the partial derivatives with re-
spect to the remaining weights a1, . . . , aN−1 and the following equations are
arrived at (with C written for the covariance symbol Cov):⎛⎜⎜⎝

C(XN , XN ) . . . C(XN , X1)
C(XN−1, XN ) . . . C(XN−1, X1)

...
. . .

...
C(X1, XN ) . . . C(X1, X1)

⎞⎟⎟⎠
⎛⎜⎜⎝

a0

a1
...

aN−1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
C(XN+τ , XN )

C(XN+τ , XN−1)
...

C(XN+τ , X1)

⎞⎟⎟⎠ .
From these equations, the vector (a0, a1, . . . , aN−1)T = a containing the
weights of the optimal linear prediction is obtained as the product of the in-
verse of the covariance matrix and the vector cN,τ containing the covariances
of the random variable to be predicted with the random variables observed.
If the covariance matrix CX is positive definite as defined in the remarks to
(2.7) then its inverse exists.

CXa = cN,τ a = C−1
X cN,τ (2.75)

Thus, (2.63,1) is derived. (2.63,2) is shown calculating the mean square pre-
diction error from its definition (2.62)

PVarX̂N+τ = E
(
(XN+τ − X̂N+τ )2

)
= E

(
(XN+τ − aT X)2

)
= EX2

N+τ − 2aT
(
E(XN+τXN ), . . . , E(XN+τX1)

)T + E
(
(aT X)2

)
= σ2

X − 2aT cN,τ + aT CXa

and then substituting the solution a obtained in (2.75):

PVar(X̂N+τ ) = σ2
X − 2(C−1

X cN,τ )T cN,τ + C−1
X cN,τ )T CXC−1

X cN,τ

= σ2
X − 2cT

N,τC−1
X cN,τ + cT

N,τC−1
X CXC−1

X cN,τ

= σ2
X − cT

N,τC−1
X cN,τ

= cX(0) − cT
N,τa. (2.76)

The expectation of the prediction as proposed in (2.63,3) is derived using
(1.15).

EX̂N+τ = E(aT X) =
N−1∑
u=0

auEXN−u =
(N−1∑

u=0

au

)
µX = 0 = EXN+τ (2.77)
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Equation (2.74) with the first optimality condition is obtained deriving
the mean square prediction error in (2.62) with respect to the first weight
a0. Since the calculation of the expectation is linear, it can be interchanged
with the calculation of the derivatives also being linear. If we proceed in this
order, i.e., by first calculating the derivatives and then the expectations, we
arrive at optimality condition j as follows:

d
daj

E
((
XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1)

)2)
= −2E

((
XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1)

)
XN−j

)
= 0. (2.78)

Re-arranging

E
(
XN+τXN−j − (a0XNXN−j + a1XN−1XN−j + . . .+ aN−1X1XN−j)

)
= 0

a0E(XNXN−j) + a1E(XN−1XN−j) + . . .
+aN−1(X1XN−j) = E(XN+τXN−j)

and substituting j = 0, 1, . . . , N − 1 the equations for the optimal linear
prediction proposed in (2.75) are arrived at.

The derivative in (2.78) is identically zero, when the prediction error (the
mean square prediction error (2.63,2) is the variance of the prediction error)
êN+τ = XN+τ − X̂N+τ = XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1) is not
correlated with XN−j , and thus the orthogonality conditions of the optimal
linear prediction are obtained in (2.79):

E(êN+τXN−j) = Cov(êN+τ , XN−j) = 0, j = 0, 1, . . . , N − 1 (2.79)

The orthogonality conditions (2.79) can be obtained with linear algebra
when the random variables XN+τ , X1, . . . , XN are assumed to be in a lin-
ear vector space (specifically in L2(Ω,F ), as defined in (7.10)). Under this
assumption, the prediction X̂N+τ is the projection of XN+τ in the subspace
of the linear combinations of X1, . . . , XN as shown in [21]. Using the or-
thogonality conditions the mean square prediction error is easily obtained in
(2.80):

PVarX̂N+τ = VarêN+τ = E(êN+τ êN+τ )

= E
(
XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1)

)2
= E

(
êN+τ

(
XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1)

))
= E

(
êN+τXN+τ

)
= E

((
XN+τ − (a0XN + a1XN−1 + . . .+ aN−1X1)

)
XN+τ

)
= E

(
XN+τXN+τ − (a0XNXN+τ + . . .+ aN−1X1XN+τ )

)
= cX(0) − cT

N,τa (2.80)
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with the vectors cN,τ and a as defined in (2.62) and (2.63). From PVarX̂N+τ =
E(êN+τXN+τ ) = Cov(êN+τ , XN+τ ) in the above derivation of (2.80), it is
concluded that the mean square prediction error is the covariance of the
prediction error and random variable to be estimated.

The orthogonality conditions are the mathematical formulation of the in-
tuitive idea that a linear prediction could be improved if Cov(êN+τ , XN−j) �=
0 for at least one j, by taking advantage of this very same covariance. Hence,
it is also plausible that the covariance of the prediction and the prediction
error are identically zero:

E
(
êN+τ X̂N+τ

)
= Cov

(
êN+τ , X̂N+τ

)
= 0. (2.81)

If this were not the case, a prediction with a smaller mean square error would
become possible, and thus the prediction could be improved. (2.81) is derived
(e.g., in [21]) with linear algebra in the linear vector space L2(Ω,F ) as defined
in (7.10).

2.8.4 The Conditional Expectation as Optimal Prediction

In the definition of the optimal prediction in (2.61) the predicted value
x̂N+τ is assumed to belong to the same realisation as the observed val-
ues. Assuming the realisation with the observations, a prediction can be
obtained if the probability of the event can be calculated that x̂N+τ is a
realisation of the estimator X̂N+τ = X̂N+τ (X1, . . .XN ). With the probabil-
ities of all such events being possible, i.e., with the conditional probability
density fXN+τ

(XN+τ |X1 = x1, . . .XN = xN ), the conditional expectation
E
(
XN+τ |X1, . . . , XN

)
of XN+τ can now be calculated.

Assuming a stationary process (Xt), this conditional expectation is shown
to be, for example in [113], the optimal prediction of (Xt) with lag τ , its mean
square prediction error as proposed in (2.82)

PVarX̂N+τ = E
((
XN+τ − E

(
XN+τ |X1, . . . , XN

))2) (2.82)

being minimal. The conditional expectation E
(
XN+τ |X1, . . . , XN

)
in (2.82)

is usually, however, not a linear combination of the X1, . . . , XN and, thus, in
general, the optimal prediction of a stationary process (the prediction with
the least mean square error as defined in (2.61)) is, generally, not the optimal
linear prediction as defined in (2.62).

The conditional expectation as the optimal prediction is theoretically
straightforward; for practical applications, however, it is only useful for spe-
cial cases as the conditional probability density is calculated from the joint
probability density of the random variables X1, . . . , XN which is usually very
difficult to obtain.

A first exception is the normal process as defined in (2.3) with its condi-
tional expectations being optimal linear predictions. This follows from the re-
mark to the definition of the multivariate normal distribution (1.34), namely,
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that linear combinations of multivariate normally distributed random vari-
ables are normally distributed, as well.

A second exception is the white noise process with a conditional expec-
tation that can be easily calculated. Let (Wt) be a white noise process as
defined in (2.11) with expectation µW , variance σ2

W and the probability den-
sity ft(wt) of a Wt, and let (w1, . . . , wN ) be observations of a realisation of
(Wt). The prediction of (Wt) with lag τ , ŴN+τ , is easily calculated as condi-
tional expectation of the process for a future time point N + τ since the joint
probability density of W1, . . . ,WN is the product of the densities of these
random variables:

ŴN+τ = E(WN+τ |W1 = w1, . . . ,WN = wN )

=
∫ ∞

−∞
wN+τfN+τ (wN+τ |w1, . . . , wN )dwN+τ

=
∫ ∞

−∞
wN+τ

f1,...,N,N+τ (w1, . . . , wN , wN+τ )
f1,...,N (w1, . . . , wN )

dwN+τ

=
∫ ∞

−∞
wN+τ

f1(w1) . . . fN (wN )fN+τ (wN+τ )
f1(w1) . . . fN (wN )

dwN+τ

=
∫ ∞

−∞
wN+τfN+τ (wN+τ )dwN+τ = EWN+τ = µW (2.83)

For the mean square prediction error, PVarŴN+τ = E
(
(WN+τ − µW )2

)
=

VarWN+τ = σ2
W is obtained. A random variable Wt in a white noise process

(Wt) cannot be estimated with a variance less than (its variance) σ2
W . Hence,

prediction (2.83) is optimal.
The mean square prediction error of ŴN+τ as obtained above is identical

with the mean square prediction error (2.63,2) of a linear prediction for a non-
observed random variable in a white noise process, as is concluded from the
following rationale. The negative-sloping diagonals in the covariance matrix
of a stationary stochastic process contain identical values, as proposed in the
remarks to (2.9), with the values in the subdiagonals being not identically
zero in the general case. Consequently, the mean square error of an optimal
linear prediction of a stationary process is less than the constant variance
function of the process due to (2.63,2) or (2.76). In the case of a white noise
process, however, the values in the subdiagonals of the covariance matrix are
identically zero, and, consequently, the mean square error of an optimal linear
prediction is the variance of the process.

For example, the observations of Jones’ NAO index as plotted in Fig. 2.10
are found to be a time slice in a realisation of a white noise process with esti-
mated expectation 0.476 and variance 1.161 in the remarks to Fig. 2.18. This
result is ascertained (i) by the simulation experiment performed in Sect. 2.5.2,
(ii) using the Ljung-Box statistic in Problem 2.33 and (iii) by the periodogram
tests performed in Sect. 8.2.2. Using this model and (2.83), optimal predic-
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tions 0.476 for the years 2001, 2002, . . . are arrived at. These predictions have
mean square error 1.161, as is concluded from the remarks to (2.83).

This prediction for the years following 2000 is clearly below the local
(2.55,2) mean of Jones’ index in the last decade of the last century, as can be
seen in Figs. 2.10 and 2.20, since the mean used in the prediction is calculated
from all observations available. However, a prediction using a local mean will
be superior to the one obtained above using (2.83) on condition that the
index continues to fluctuate about the local level attained in year 2000.

If Jones’ record has the future assumed above then the outcome of the
simulation experiment performed in Sect. 2.5.2 can be extrapolated:

1. an increasing number of two-sided t-tests as those in Fig. 2.20 comparing
the means in time slices of 30 years duration can be performed and

2. those t-tests which are performed in addition to the 117 ones in Fig. 2.20
will result in significance levels below 0.05, as is obvious from Fig. 2.20.

Asssuming the above future therefore, the number of t-tests being significant
at the 0.05 level increases with increasing length of the record. As a further
consequence, it is likely that the H0 hypothesis (the observations stem from
a white noise process having a constant mean) will be discarded. If the H0

hypothesis is discarded then Jones’ index is found to be non-stationary in
its mean. Despite this outcome of the experiment, it could be productive to
assume that the fluctuations in the mean thus found are owed to a stationary
phenomenon. Under this assumption, the model for Jones’ index becomes
a stationary stochastic process having a constant mean and covariances not
being identically zero for lags τ �= 0, and the fluctuations in its mean can be
analysed using the methods introduced in Chaps. 8, 9 and 10.

The reader is invited to repeat this simulation experiment when more data
become available, using contiguous time slices of length 30 (as in Fig. 2.20)
and also of lengths 25, 20 and 15.

2.9 Problems

2.1. Calculate the retreat of the Rhone glacier from the differences in the po-
sition of its tongue given for every year since 1880 in the file /path/rhone.dat.
Hint: use the R function cumsum().

2.2. Assume that the NAO index (Jones), as plotted in Fig. 2.10 and made
available using

naofile <- "path/nao12monthsjones.dat"

naoformat <- list(year=0,jan=0,feb=0,mar=0,apr=0,mai=0,jun=0,

jul=0,aug=0,sep=0,oct=0,nov=0,dec=0,yearave=0)

naoall <- scan(naofile,naoformat)

naoyear <- naoall$year

naojones <- rep(NA,length(naoyear))
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for (i in (1:(length(naoyear)-1))) {naojones[i] <- (naoall$dec[i]+

naoall$jan[i+1]+naoall$feb[i+1]+naoall$mar[i+1])/4 }

naojonests <- ts(naojones[3:179],start=1824,frequency=1,)

stems from a white noise process. Estimate the mean and the variance of this
process. Is the process normal as defined in (2.3)?

2.3. Simulate an AR[1] process using definition (2.13) and the values 0.99,
0.80, 0.3 for the parameter a, the value 0.0 for the expectation µW , and
the values 4.0, 1.0 and 0.25 for variance σ2

W of the generating white noise
process, and then plot the empirical correlation functions obtained from the
simulations. Calculate and plot the theoretical correlation functions of these
AR[1] models.

2.4. Show that the infinite sums in (2.18) are equal.

2.5. Simulate an AR[1] process using definition (2.13) and the values 1.001,
1.01, 1.1 for the parameter a, the value 0.0 for the expectation µW , and the
value 1.0 for the variance σ2

W of the generating white noise process.

2.6. Simulate random walk processes using (2.20). For what time points do
you obtain the mimina of the simulated realisations? For what time points
the maxima?

2.7. Plot the yearly values in the Basel temperature series to obtain the plot
in Fig. 2.13 (above). These data are found in the text file /path/basel.dat.
A line in /path/basel.dat contains 14 values, the first one is the year of the
measurement followed by twelve monthly values and the last one is the yearly
value. This file can be read with the following expressions

bsfn <- "/path/basel.dat"

z <- list(yr=0, jan=0, feb=0, mar=0, apr=0, may=0, jun=0,

jul=0, aug=0, sep=0, oct=0, nov=0, dec=0, year=0)

basel <- scan(bsfn,z)

tsbtemp <- ts(basel$year,start=1755,frequency=1,)

Use diff() to calculate the differences of time series tsbtemp to obtain the
plot in Fig. 2.14 (above).

2.8. Simulate a MA[1] process using definition (2.21) and the values 0.9 and
0.4 for the parameter b, the value 0.0 for the expectation µW , and the values
3.0, 1.0, 0.5 and 0.1 for the variance σ2

W of the generating white noise pro-
cess. Compare the simulated realisations with the differences of the yearly
values in the Basel temperature series as plotted in Fig. 2.15. Plot the em-
pirical correlation functions obtained from the simulations together with the
theoretical correlation functions of these MA[1] models.

2.9. Simulate a few realisations of an MA[1] model with b = 0.9, µW = 0.0
and σW = 0.7 and then compare the simulated realisations with the plot of
the differences of Basel temperature yearly values in Fig. 2.15. Apply cumsum()

to each simulation and then compare the results with the plot of the yearly
values in the Basel temperature series as plotted in Fig. 2.13 (above).
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2.10. Obtain the expectation and covariance functions of the AR[1] and
MA[1] models from the moment functions of the linear process proposed
in (2.26).

2.11. Given is the first order linear differential equation x(t)+ax′(t) = w(t).
Compare your solution with the convolution integral (2.28,1). Roughly draw
the functions in this convolution integral assuming the known function is the
unit step function, i.e., w(t) = 1 for t ≥ 0 and w(t) = 0 for t < 0.

2.12. a) Show that the shift operator, as defined in (2.31), is a linear transfor-
mation, as defined in (2.30). b) Show that the derivation is a time-invariant
transformation as defined in (2.32). c) Show that the multiplication with a
function g is not a time-invariant transformation.

2.13. Calculate (1, 5, 4, 1, 1, 1, 1, 8, 3, 1) ∗ (0.333, 0.333, 0.333) using the paper
strip device as demonstrated in (2.38). Repeat the calculations with filter()

using the arguments sides=1 and sides=2. Modify the paper strip device to
allow for the calculation of the sum ci =

∑∞
j=−∞ ajbi+j in the remarks to

(2.35).

2.14. Calculate (1, 5, 4, 1, 1, 1, 1, 8, 3, 1) ∗ (1,−1) using the paper strip device
as demonstrated in (2.38). Repeat the calculations with filter() and diff().
Calculate the second order differences as defined in the remarks to (2.39).
Why can second and higher order differences be defined recursively?

2.15. Smooth the yearly values in the Basel temperature series with a moving
average over 11 years.

2.16. Smooth the wind speed observations in the turbulent atmospheric flow
above Anwandstrasse as plotted in Fig. 2.1.

2.17. Apply the R function diff() to the yearly values in the Basel temper-
ature series. Then apply cumsum() to the result obtained with diff().

2.18. Check the identities (2.43) using the paper strip device as demonstrated
in (2.38).

2.19. An unknown sequence (st) is convolved with (at) = (1, 2a, 3a2, . . . , (t+
1)at, . . .), t = 0, 1, 2, . . ., to a sequence (rt). Show that (st) can be obtained
from (rt) and (at)−1 using the absolute convergence of (at) = (. . . , (t +
1)at, . . .) for |a| < 1, since

lim
t→∞

(
(t+ 2)at+1

(t+ 1)at

)
= |a| lim

t→∞

∣∣∣ t+ 2
t+ 1

∣∣∣ = |a|

Hint: the solution can be found by trial and error. The examples in (2.41)
and (2.43) (with minor changes) are possible inverse sequences (at)−1 and
can be checked with the paper strip device as demonstrated in (2.38).
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2.20. Show (2.44) by multiplying the polynomials A(x) = a0 + a1x+ a2x
2 +

a3x
3 + . . .+ apx

p and B(x) = b0 + b1x+ b2x2 + b3x3 + . . .+ bqxq

C(x) = A(x)B(x) = a0b0 + a0b1x+ a0b2x
2 + a0b3x

3 + a0b4x
4 + . . .

. . .

=
p+q∑
i=0

cix
i, where ci =

i∑
j=0

ajbi−j

and comparing the result with (2.28).

2.21. Select weights from different regions of the a1-a2-plane in Fig. 2.17,
e.g., a <- c(1.0, -.5), a <- c(1.0, 1.5) and a <- c(-0.2, 0.5), and obtain
the roots of the characteristic polynom of the AR[2] model with R function
polyroot(). Simulate realisations of the (stationary) stochastic processes and
plot the empirical correlation functions of the realisations. Compare their
theoretical with their empirical correlation functions.

2.22. The simulations for the example in Figs. 2.4, 2.5, 2.6 and 2.7 were
obtained using the R function arima.sim() and the AR[2] model Xt =
−1.8Xt−1 − 0.95Xt−2 + Wt, Wt ∼ N(0.0, 1.148412). The AR[2] model is
defined in (2.48), the simulations being produced with

wnlength <- 400

wnvar <- 1.148412

w <- rnorm(wnlength,mean=0,sd=sqrt(wnvar))

wts <- ts(w,start=1,frequency=1,)

ar2 <- arima.sim(model=list(order=c(2,0,0),

ar=c(-1.8,-0.95)), n=wnlength, innov=wts)

Show that (Xt) is stationary. Show that (Xt) is a normal process.

2.23. Xt = 2.7607Xt−1 − 3.8106Xt−2 − 2.6535Xt−3 − 0.9838Xt−4 +Wt with
µW = 0 and σ2

W = 1 is an AR[4] process. Is this process stationary?

2.24. Find the weights of a stationary AR[3] model by trial and error. How
many stationary models do you obtain within five minutes?

2.25. Do the wind speed observations (xt) in Fig. 2.1 stem from a process
stationary in the expectation function? Hint: calculate the empirical means
µ̂X and standard deviations σ̂X (i) from the first and second half-series and
(ii) from the first, second and third part of the series each of which contain
600 observations. Then plot µ̂X together with µ̂X ±2σ̂X for the periods from
which the empirical moments are calculated.

2.26. Consider the time series of the differences in Fig. 1.8 obtained from
the Zurich-Reckenholz pyranometer comparison experiment. Are there any
periods in which the differences are stationary in the expectation function?
Calculate the empirical first moment function using (2.1) from the observa-
tions in the selected period (periods).



2.9 Problems 117

2.27. The differences of the monthly values of SWIR as plotted in Fig. 2.19
are calculated in Problem 1.11. Calculate the empirical variances of the dif-
ference time series from the parts before and after 1975, resp. 1980.

2.28. Re-evaluate your answers to the questions in Problem 1.11 using the
results from Problem 2.27.

2.29. Let (Xt), t ∈ T , be a stationary stochastic process with µX(t) = µX =
0 and an absolutely convergent covariance function cX(τ ), and let V be a
random variable with µV = 0 and σ2

V , together with Cov(Xt, V ) = 0 for all
t ∈ T . Show that Yt = Xt + V , t ∈ T , is a stationary process, and calculate
Eµ̂Y (t) (using (2.72)) and Varµ̂Y (using(2.73)).

2.30. The Climate Research Unit, University of East Anglia, Norwich, UK,
makes some climate datasets available which can be downloaded from the
internet address given in [75]. For example, when downloading the time series
of the global average temperatures, the text file /path/tavegl.dat with two
lines for each year is obtained: the first line contains deviations of the global
temperature averages from a reference value for the months and the year,
the second line codes indicating how representative the values in the first line
are.

1856 -0.22 ... february through to december ... -0.36

1856 14 16 15 14 14 13 13 14 16 15 15 16

1857 -0.30 ... february through to december ... -0.48

1857 18 16 18 16 17 16 16 15 17 17 15 15

1858 -0.62 ... february through to december ... -0.43

1858 17 15 16 14 16 15 16 15 15 14 14 15

...

...

This file is read with the R expressions
tempgafile <- "/path/tavegl.dat"

tempgaformat <- list(year=0, jan=0, feb=0, mar=0, apr=0, mai=0,

jun=0, jul=0, aug=0, sep=0, oct=0, nov=0, dec=0, tjm=0,

year1=0, jan1=0, feb1=0, mar1=0, apr1=0, mai1=0, jun1=0,

jul1=0, aug1=0, sep1=0, oct1=0, nov1=0, dec1=0)

tempga <- scan(tempgafile,tempgaformat,multi.line=T)

to obtain the R object tempga with the vectors of the monthly and yearly
values of global temperature anomalies (deviations from a reference value).
The time series of the yearly values and the time series of their differences
as defined in (2.39,2) are plotted in Fig. 2.23 together with the empirical
correlation functions.

The empirical correlation function of the yearly global temperature values
decays slowly (until lag 40) with regard to the length of the time series
(150 years). For a comparison, the empirical correlation function of the wind
speeds as plotted in Fig. 2.3 decays rapidly (until lag 30) with regard to the
length of the time series (1800 seconds). Why do the empirical correlations of
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Fig. 2.23. Global average temperature since 1856: deviations from a reference value
(anomalies) in 0Celsius (above) and differences (below) with empirical correlation
functions.

the yearly global temperature values decay so slowly? Is a stationary AR[1]
model suitable for this time series?

Are the differences of the yearly global temperature anomalies as plotted
below, in Fig. 2.23, a time slice from a realisation of a white noise process?

2.31. A description of the sunspot numbers can be obtained from [100]. From
the address given there the sunspot numbers can be downloaded, and, after
minor changes using a text editor, made available as R time series of the
yearly and monthly values. Do the yearly values of the sunspot numbers
stem from a stationary process?

2.32. The differences of the daily values obtained in the Zurich-Reckenholz
comparison experiment described in Sect. 1.1 are plotted in Fig. 2.24 (above)
for the year 1991. Are these differences a time slice from a realisation of a
stationary stochastic process? The difference time series difts for the period
of the comparison experiment is obtained using the R expressions described
in Sect. 1.4; from this R time series object, and with

dif1991 <- window(difts,c(1991,1),c(1991,365))

the differences as plotted in Fig. 2.24 (above) are obtained. Unfortunately,
difts as well as dif1991 contain missing values, and, thus, using

acf(dif1991, lag.max=20, type="correlation", plot=T)

> Problem in acf(dif1991, lag.max = 20, type = "correla..:

There are missing values in midst of time series
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Fig. 2.24. Time series of the differences of the daily MeteoSwiss and ETH pyra-
nometer values obtained in the Zurich-Reckenholz comparison experiment for the
year 1991 in Wm−2 (above), lag τ scatterplots of the differences for τ = 1, . . . , 6
(below).

the empirical correlation functions cannot be successfully obtained with
acf(). Consequently,

1. estimate these empirical correlations from the lag τ , t = 1, . . . , 6, scatter-
plots in Fig. 2.24 (below), after having compared the lag τ scatterplots
in Fig. 2.2 with the empirical correlations in Fig. 2.3

2. use lag τ scatterplots to see if these differences are a time slice from a
realisation of a stationary stochastic process.

2.33. Compute the Ljung-Box statistic as defined in (2.60) for the NAO index
(Jones) as plotted in Fig. 2.10 for K = 10 and K = 20 and then perform the
tests.

2.34. The covariance function of a stochastic process is positive semi-definite
and symmetric, these properties being required in (2.7). If the process (Xt)
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is stationary and if t = . . . ,−1, 0, 1, . . ., then
∑n

t=1

∑n
u=1 btbucX(t, u) ≥ 0

and cX(τ ) = cX(−τ ) are obtained. Are these properties also pertinent to the
empirical covariance function ĉX(τ ) calculated using (2.1,3) from a time slice
(xt), t = 1, . . . , N , of a realisation (xt), t = . . . ,−1, 0, 1, . . . of a stationary
stochastic process X(t)?∑n

t=1

∑n
u=1 btbuĉX(t, u) ≥ 0 is obtained as shown in [95]. Let (i) bu = xu,

with xu being observations ofXu, u = 1, . . . , N , and (ii) (Wt) be a white noise
process with µW = 0 and σ2

W = 1/N . Further, assume µX = 0 and µ̂X =
µX = 0 as in (2.1,3). Under these assumptions, Yt =

∑N
u=1 buWt−u exists

since a finite linear combination of random variables becomes itself a random
variable. Thus, (Yt) is a linear process as required in (2.25) and cY (τ ) can
be calculated using (2.26): cY (τ ) = σ2

W

∑N−τ
u=1 bubu+τ = 1

N

∑N−τ
t=1 xtxt+τ =

ĉX(τ ) is obtained, because bu = xu, σ2
W = 1/N and µ̂X = µX = 0. Derive

from these results that ĉX(τ ) is positive semidefinite. Show that ĉX(τ ) =
ĉX(−τ ).
2.35. Calculate an optimal linear prediction for the wind speed in the turbu-
lent atmospheric flow above the Anwandstrasse in Zurich at the time points
t = 1801 and t = 1802 using (xt), t = 1781, 1782, . . . , 1800, from the time
series (xt), t = 1, 2, . . . , 1800, as plotted in Fig. 2.1 and using the empirical
correlation function in Fig. 2.3.

2.36. The diagnostic graphical procedures and diagnostic tests for the sta-
tionarity of a time series as described in Sect. 2.5.1 require that the time
slices for the calculation and comparison of the empirical moment functions
are defined prior to the analysis. In a simulation experiment reflecting this
requirement for the NOA index (Jones) time series as plotted in Fig. 2.10, a-
priori defined time slices, e.g., from 71 through to 100 and from 101 through
to 130, of every realised sequence of values from the normal white noise pro-
cess estimated in the remarks to Fig. 2.18, are compared with a t-test as
follows:

countsign <- 0 #counter

for (case in (1:1000)) { #1000 simulations in a few seconds on a PC

w <- rnorm(175, mean=0.4713,sd=sqrt(1.0858))

tt <- t.test(w[71:100],w[101:130],alternative="two.sided")

if(tt$p.value < 0.05) countsign <- countsign + 1 }.

Is the result in agreement with the 0.05 significance level of the t-test? Repeat
the experiment for time slices from 1 through to 30 and from 101 through to
130.



3 Linear Models for the Expectation Function

Many stochastic processes are not stationary due to a systematically increas-
ing or decreasing expectation function. A systematic increase or decrease in
an expectation function is called a trend. A trend is estimated, in this chap-
ter, by means of estimating a linear model for the expectation function of a
stochastic process using regression methods.

In Sects. 3.1 and 3.2, both, simple and multiple linear regression methods,
are introduced by estimating linear models for the trends in two example time
series: (i) in the yearly values of shortwave incoming radiation measured at
Hohenpeissenberg station as plotted in Fig. 3.1 and (ii) in the yearly values
in the Basel temperature series as plotted in Fig. 2.13. Are the estimates
reconcilable with the time series? Are the trends significant? Answers to
these questions can be found when the diagnostics introduced in Sect. 3.3 are
applied to the estimates.

In Sect. 3.4, seasonal linear models are introduced. A seasonal linear model
is fitted to a time series stemming from a stochastic process with seasonal
fluctuations in its expectation function, i.e., the expectation function is as-
sumed to be periodic as defined in (6.1), with a constant and known period.
It is also possible to fit a linear model to a time series showing a trend and
seasonal fluctuations or a trend and fluctuations due to some other influence.
Examples are given in Sects. 3.4.2 and 3.5. Linear models for the expectation
function of a stochastic process with bi-dimensional parameter are estimated
in Sect. 3.6. The Problems follow in Sect. 3.7.

Having estimated a linear model for the expectation function µX(t) of a
stochastic process X(t), µX(t) can then be estimated for time points without
observations. Estimating µX(t) (not X(t)) is a means to circumvent the in-
version of the empirical covariance matrix ĉX(τ ) when an optimal linear pre-
diction is calculated as required in (2.63,1). Inverting ĉX(τ ) is often judged to
be time-consuming and possibly delicate, in the remarks concluding Sect. 2.7.
Other prediction methods are introduced in Chaps. 4 and 5.

Regression methods are comprehensively dealt with in [44]. An introduc-
tion to the estimation of linear models in Splus (and in R, since the function
lm() is also available in R) is given in [31].
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3.1 Simple Linear Regression

Simple linear regression, as defined in Sect. 3.1.2, models a response variable
as a linear function of a predictor variable. When the expectation function of a
stochastic process is estimated, the response variable becomes the stochastic
process and the predictor variable its parameter, as demonstrated with an
introductory example in Sect. 3.1.1.

3.1.1 An Introductory Example

As an introductory example, a trend in the yearly means of shortwave in-
coming radiation (SWIR) at Hohenpeissenberg station (1101′ E, 47048′ N,
990 m above mean sea level) is estimated. At Hohenpeissenberg station,
SWIR has been measured since 1953 using a Kipp pyranometer. The yearly
values calculated from these measurements are available up to year 1993 in
/path/swirhpb.dat. From this file, the following R expressions

hpbfn <- "/path/swirhpb.dat"

z <- list(year=0, swir=0)

hohenpeissenberg <- scan(hpbfn,z)

hpbyear <- hohenpeissenberg$year

hpbswir <- hohenpeissenberg$swir

hpb <- ts(hpbswir,start=1953,end=1993,frequency=1)

produce R vectors hpbyear and hpbswir as well as R time series hpb. Using
acf(hpb,lag.max=10, type="correlation", plot=T)

plot(hpbyear,hpbswir,type="b",xlab="year",ylab="W/m^2")

the time series and its empirical correlation function are plotted above, in
Fig. 3.1.

The yearly means of SWIR at Hohenpeissenberg station are not station-
ary since the time series decreases at a constant rate over the observational
period lasting four decades: i.e., it has a negative decadal trend. A decadal
trend (either positive or negative) in SWIR is due to a (possibly local) climate
change: the atmosphere becomes more or less transparent to solar radiation
as the cloud amount, the aerosols, etc. increase and/or decrease. The empir-
ical correlation function (plot (b) in Fig. 3.1) of this time series is calculated
as required in (2.1,4) even though the process is not stationary in its expec-
tation function. Since the stationarity assumption is violated, the estimate is
presumably erroneous.

Assume that the trend in SWIR at Hohenpeissenberg station can be de-
scribed, in the mean, as a straight line and that the following R expression

hpbswir.fit <- lm(hpbswir ~ hpbyear)

computes the coefficients of this straight line. Then, hpbswir ~ hpbyear is a
linear model (here a straight line) for the expectation function of SWIR at
Hohenpeissenberg as written in R: ~ separates the response variable hpbswir

on its left from the predictor variable hpbyear on its right. The coefficients of
the straight line, however, are not written in R. This model is the argument
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Fig. 3.1. Yearly values (in Wm−2) of shortwave incoming radiation at Hohenpeis-
senberg station with estimated trend (above, a) with correlation function (above,
b), and residuals (in Wm−2) of the trend with correlation function (below, c, d).

in R function lm() generating hpbswir.fit as a result. Applying coef() to
this resulting R object

coef(hpbswir.fit)

the coefficients are arrived at, and applying predict()
lines(hpbyear,predict(hpbswir.fit))

the estimated straight line is obtained (in plot (a) in Fig. 3.1). Exemplary,
this straight line is a linear model for the expectation function of a stochastic
process which is not stationary in its first moment function. The intercept
of the linear model is 777 Wm−2, i.e., the estimate for the expectation of
SWIR at Hohenpeissenberg in year 0. This estimate is not feasible since
the largest yearly values of SWIR at the surface of the earth measured so
far amount to 280 Wm−2. The estimate for the slope of the straight line is
−0.3239 Wm−2y−1. Consequently, SWIR at Hohenpeissenberg station de-
creases in the mean by approximately 2.34% over 10 years in the period from
1953 through to 1993, its mean being 138 Wm−2.

A negative trend of SWIR in the time slice from approximately 1950
through to approximately 1990 has been recorded at many stations in Europe
[58]. Does this trend last until the year 2000? A preliminary answer is given
in [152].

The yearly means of SWIR at Hohenpeissenberg station oscillate around
the estimate for the expectation function: the differences between the ob-
served values and the estimated expectations being called empirical residu-
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als. These are the stochastic part in the linear model; in the linear model as
written in R, however, they do not appear. The empirical residuals of a linear
model estimated in R are calculated applying resid() to an object generated
by lm(). For example, with

residts <- ts(resid(hpbswir.fit),start=1953,end=1993,frequency=1)

plot(hpbyear,resid(hpbswir.fit),type="b",xlab="year",ylab="W/m^2")

acf(residts, lag.max=10, type="correlation", plot=T)

the plots (c) and (d) below in Fig. 3.1 are obtained. Comparing plots (c)
and (d) in Fig. 3.1 with those given in Fig. 2.22, it is concluded from (2.59)
that the empirical residuals of the linear model for the yearly values of SWIR
at Hohenpeissenberg station are a time slice from the realisation of a white
noise process and are thus not correlated. Small correlations for lags 1 and
2, however, are seen in the empirical correlation function of the time series
(plot (b) in Fig. 3.1). These correlations are obviously generated by the trend
in SWIR at Hohenpeissenberg.

Another example for correlations generated by a trend is given in Fig. 2.23;
there, however, the trend is removed by calculating the first differences of the
time series, and not by calculating the residuals of a linear model. Further
examples for removing a trend from a time series are given in Sect. 5.4.1.

The fluctuations of a meteorological variable from year to year, i.e., its
inter-annual variability, is a property of the climate which is as important as
the mean and a possible trend. An estimate for the inter-annual variability
is the empirical variance of a stationary climatological time series, calculated
as required in (2.1,2). If, however, a time series is not stationary in its first
moment function, this estimate can be biased. For example, the empirical
variance of the Hohenpeissenberg SWIR time series (60 (Wm−2)2) is larger
than that of its residuals (45 (Wm−2)2), both calculated as required in (2.1,2).
Both estimates of SWIR inter-annual variability include the contribution of
the error in the measurements (Chap. 1).

By estimating a linear model for the expectation function of the yearly
SWIR values measured at Hohenpeissenberg station, the following goals are
achieved:

1. The time series is decomposed into a trend (the systematic component)
and the residuals (the random component).

2. The systematic decrease of SWIR at Hohenpeissenberg station points to
a possible climate change. Is the decrease significant?

3. The variance of the empirical residuals of the linear model is smaller
than the variance of the time series. Is the variance of the empirical
residuals a better estimate for the inter-annual variability of SWIR at
Hohenpeissenberg station than the variance of the time series?

Answers to these questions can be obtained by means of simple linear regres-
sion methods as introduced in Sect. 3.1.2.
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3.1.2 Simple Linear Regression

Simple linear regression models a response variable Y as a linear function
of a predictor variable x. The response variable is random, the predictor
variable, however, usually not. If the predictor variable is a random variable
or a stochastic process then the estimates are conditional, given the real-
isation available. Y and x are observed jointly to obtain N pairs (yi, xi),
i = 1, 2, . . . , N . If a formula Y = f(x) with unknown constants is available
from prior evidence then estimates for the unknown constants are computed.
If f is not available, then f is devined from a plot of the observations and
constants in f are estimated. Very often, f is a straight line: this is the model
introduced in (3.1). In Sect. 3.1.1, for example, SWIR at Hohenpeissenberg
is the response variable, time (i.e., the parameter of the stochastic process)
is the predictor variable, and f is a straight line.

For all observations (y1, x1), (y2, x2), . . . (yN , xN ) available,
a continuous (i.e., non-discrete) random variable Y (the
response variable) is a linear model of the predictor variable x:

1. Yi = f(x) = b0 + b1xi + ei.
The model is fitted by computing estimates b̂0 and b̂1 for the
model coefficients b0 and b1 such that the sum of the squares
of the theoretical residuals,

2.
∑N

i=1 e
2
i =

∑N
i=1

(
Yi − (b0 + b1xi)

)2,
becomes as small as possible (i.e., using least squares),
assuming that:

3. the ei are a white noise process as defined in (2.11) with
(Eei = 0) (with expectation function identically zero) and
Varei = σ2

e) (with constant finite variance), and
4. the ei are normally distributed.

(3.1)

In (3.1,1), b0+b1xi = µY (xi) are the expectations of the response variable
Y depending on x, and the ei are the random (due to measurement errors
and/or the natural variability of Y ) deviations of the expectations from the
observations. Please note that no assumptions regarding x are made, e.g., a
data type (i.e., numeric or categorical) is not assumed.

In Problem 3.1, the estimators

b̂0 = y − b̂1x and b̂1 =
∑N

i=1(yi − y)(xi − x)∑N
i=1(xi − x)2

with (3.2)

x = (1/N)
N∑

i=1

xi y = (1/N)
N∑

i=1

yi

are obtained by minimizing (3.1,2). In Problem 3.2 it is shown, using only
(3.1,1,2), that the estimate b̂1 is not biased. From the result Eb̂1 = b1, it
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is concluded that the slope of the straight line is estimated without bias
provided that the linear model (3.1,1) is the true model, i.e., provided that
(i) b0 + b1xi = µY (xi) and (ii) (3.1,2) is minimised using the method of least
squares.

The main theme is now interrupted by a short intermezzo. The assumption
that a stochastic process is stationary in its expectation function can be
expressed as special case EYt = f(t) = µY = constant of a linear model: b1 in
EYt = b0+b1xt becomes identically zero and

∑N
t=1(yt−b̂0)2 becomes minimal

for b̂0 = (1/N)
∑N

t=1 yt, b̂0 being the mean of the time series as defined in
(2.1,1).

In Problem 3.3, the variance of b̂1 is calculated using (3.1,3) to arrive at
Varb̂1 = σ2

e/
∑N

i=1(xi − x)2. σ2
e , the variance of the ei = Yi − (b0 + b1xi),

cannot be estimated directly since the ei can not be observed. Therefore, the
empirical residuals êi = yi−(b̂0 + b̂1xi), i.e., the difference of the observations
and the estimated expectations, act as a substitute: σ̂2

e = (1/(N−2))
∑N

i=1 ê
2
i

is the usual unbiased estimator for σ2
e . There are N − 2 degrees of freedom

since two coefficients, b0 and b1, are estimated.
In Problem 3.4 it is shown, using the last assumption (3.1,2,4), that b̂1

is a linear combination of normally distributed random variables and is thus
normally distributed with the moments as calculated above, provided that
the ei are a normal white noise process. The expectation and the variance of
b̂0 are more difficult to obtain [44].

Statistical tests can be performed using the above results if the observa-
tions are in agreement with all assumptions in (3.1). These tests suffice to
answer, e.g., the questions in the remarks concluding Sect. 3.1.1.

The question whether the systematic decrease of SWIR at Hohenpeis-
senberg station is significant during the observational period gives reason
to formulate the null hypothesis H0 that this stochastic process is station-
ary in the expectation function, i.e., that the observations neither increase
nor decrease systematically in the mean and, thus, H0: b1 = b

(0)
1 = 0 is

tested versus the alternative H1: b1 �= 0. The standardised test statistic
(b̂1−b(0)1 )/(σ2

e/
∑N

i=1(xi−x)2)1/2 is compared with the normal distribution if
σ2

e is known; usually, however, σ2
e is not known and therefore is substituted by

the empirical variance of the residuals σ̂2
e , as defined above, and the statistic

t =

(
b̂1 − b(0)1

)(
σ̂2

e/
∑N

i=1(xi − x)2
)1/2

where (3.3)

σ̂2
e = (1/(N − 2))

N∑
i=1

ê2i and êi = yi − (b̂0 + b̂1xi)

then has a t-distribution with N − 2 degrees of freedom. Regression software
usually computes t together with its significance level. In the case of SWIR
at Hohenpeissenberg station, for example, the following results are obtained
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Call: lm(formula = hpbswir ~ hpbyear)

Residuals:

Min 1Q Median 3Q Max

-19.49 -4.523 1.011 5.164 11.74

Coefficients: Value Std.Error t value Pr(>|t|)

(Intercept) 777.3322 177.0772 4.3898 0.0009

hpbyear -0.3239 0.0897 -3.6086 0.0009

Residual standard error: 6.8 on 39 degrees of freedom

Multiple R-Squared: 0.2503

F-Statistic: 13.02 on 1 and 39 degrees of freedom,

the p-value is 0.0008649

when summary() is applied to hpbswir.fit being generated using lm() in
Sect. 3.1.1. summary() repeats the linear model given as argument to lm(),
summarises the distribution of the residuals, and then gives the usual regres-
sion statistics.

The estimates for b0 in line “(Intercept)” are not of interest in this case.
The estimates for b1 are given in line “hpbyear”. To the estimate b̂1 = −0.3239
belongs a t-value of −3.6086 which is to be plotted, in Problem 3.5, in a plot
of a t-distribution with 39 degrees of freedom (the difference of the number
of observations and the number of estimated coefficients) available in line
“Residual standard error”. From the plot obtained, it is concluded that the
trend is highly significant in accordance with the two-tailed probability value
given in line “hpbyear”.

The line “Multiple R-Squared” contains the R2-statistic, for the above
example, R2 = 0.2503 is obtained. R2 can be approximated by calculating
(a − b)/a, with a = 60 (Wm−2)2, the empirical variance of the Hohenpeis-
senberg SWIR time series, and b = 45 (Wm−2)2, the variance of the empirical
residuals of the linear model fitted in in Sect. 3.1, both calculated using (2.1,2)
in Sect. 3.1. R2 is defined in (3.4) as the proportion of “total variation” of
the response variable “explained by the regression”:

R2 =
SSM

SSY
=

SSY − SSE

SSY

N∑
i=1

(Yi − Y )2 = b̂21

N∑
i=1

(xi − x)2 +
N∑

i=1

ê2i (3.4)

SSY = SSM + SSE

In (3.4), the sum of squares of the response variable Y about its mean (or
the total sum squares), SSY , is obtained as the sum of (i) the sum of squares
due to regression (or sum of squares of the model), SSM , and (ii) the sum
of squares about regression (or the sum of squared residuals), SSE . (3.4) is
derived, in Problem 3.7, starting from SSE which is used in (3.3) to compute
the estimate for σ2

e .
For example in Fig. 3.1, the yearly values of SWIR at Hohenpeissenberg

station strongly fluctuate about the regression line, due to their inter-annual
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variability, and therefore a large proportion of SSY remains in the residuals of
the linear model, as is obvious from the results obtained when summary(aov())

is applied to hpbswir.fit, the R object being generated in Sect. 3.1.1:
Df Sum of Sq Mean Sq F Value Pr(F)

hpbyear 1 602.07 602.0699 13.02206 0.000864918

Residuals 39 1803.15 46.2346

Using (3.4), SSM = 602.07 (in line “hpbyear” above) and SSE = 1803.15
(in line “Residuals” above) are added to arrive at SSY = 2405.22, all in
(Wm−2)2. The table obtained above from summary(aov()) is an analysis of
variance table. The ratio of the mean SSM and the mean SSE is the F -
statistic. In the example above, the calculated F -value is large since the
variation due to regression (“explained by regression”) is large as compared
to the variation about regression (“random” variation).

σ̂2
e = 46 (Wm−2)2, the mean SSE (in line “Residuals” above), is com-

puted as required in (3.3) and thus is an unbiased estimate for the variance of
the residuals. In contrast, the estimate 45 (Wm−2)2, calculated in Sect. 3.1.1
as required in (2.1,2), is biased (Problem 3.6).

A confidence interval for the estimate µ̂Y (x) = b̂0 + b̂1x of µY (x) can
be calculated assuming (3.1,1,2,3,4). Under these assumptions, (i) µ̂Y (x) is
a linear combination of normally distributed random variables, and thus is
normally distributed as concluded from the remarks to definition (1.34), and
(ii) the moments of this distribution are derived in Problem 3.8 using (1.15)
and (1.16), b̂0 not being correlated with b̂1:

Eµ̂Y (x) = b0 + b1x = µY (x), (3.5)

Varµ̂Y (x) = σ2
e

(
1
N

+
(x− x)2∑N

i=1(xi − x)2
)
. (3.6)

From (3.5) and (3.6), it is concluded that µ̂Y (x) estimates without bias and
with a variance that increases when

∑N
i=1(xi − x)2 decreases. This sum is,

with 1/N , proportional to the variance of the xi in case of the xi being
realisations of a random variable X, and thus is related to the concentration
of X as concluded from the Chebyshev inequality (1.17).

Usually σ2
e is not known and is therefore substituted by its estimate as

required in (3.3) and thus, usually, µ̂Y (x) has a t-distribution.
In the SWIR at Hohenpeissenberg station example, the estimates for the

trend are obtained, together with their standard deviations, when predict()

is applied to hpbswir.fit, i.e., the R object that is generated using lm() in
Sect. 3.1.1:

hpbswirexpect <- predict(hpbswir.fit, se=T)

From hpbswirexpect, the R object obtained, using the .975 quantile of a t-
distribution with 39 degrees of freedom,

hpbswirexpect$fit + 2.02*hpbswirexpect$se.fit

hpbswirexpect$fit - 2.02*hpbswirexpect$se.fit
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Fig. 3.2. Yearly values of shortwave incoming radiation at Hohenpeissenberg sta-
tion with a .95 confidence interval for the trend.

produces intervals including the trend µY (x) with probability .95, provided
that the observations are in agreement with all assumptions in (3.1). The
observations, the estimated trend and its confidence intervals are plotted in
Fig. 3.2.

Confidence intervals as plotted in Fig. 3.2 pertain to the expectation func-
tion of SWIR at Hohenpeissenberg station and thus include, when extrap-
olated beyond the observational period, the expectation of SWIR with a
probability of .95 in years with no observations. However, these years should
not be too far from the observational period, e.g., b̂0 = 777 Wm−2 in year 0
is physically impossible.

Confidence intervals for the trend, however, do not apply to predictions.
For example, it cannot be concluded from Fig. 3.2 that, in years with no
observations prior to 1953 or past 1993, yearly values of SWIR at Hohenpeis-
senberg are with probability .95 in extrapolations of the confidence intervals.
0.95 confidence intervals for the stochastic process itself (prediction inter-
vals), calculated as required in e.g., [44], would be much wider because only
14 out of 41 yearly SWIR values measured at this station are within the .95
confidence intervals for the trend.

Being able to predict the expectation function of a stochastic process from
an estimated linear model, a first possibility to circumvent the difficulties
mentioned in the remarks concluding Sect. 2.7 is arrived at provided that the
observed time series is reconcilable with all assumptions in (3.1). The linear
model for SWIR at Hohenpeissenberg station, for example, is in agreement
with (3.1,1,2,3), because µY = b0 + b1t, as plotted in Figs. 3.1 and 3.2,
(i) obviously fits the data, (ii) is estimated using least squares, and (iii)
its empirical residuals are not correlated. Do the empirical residuals also
stem from a normal distribution as required in (3.1,4)? An answer to this
question can be obtained using the diagnostics introduced in Sect. 3.3. As a
prerequisite, the multiple linear regression is introduced in Sect. 3.2.
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3.2 Multiple Regression

Multiple linear regression as introduced in Sect. 3.2 models a response vari-
able as a linear function of at least two predictor variables. More specifically,
the expectation function of a stochastic process (Yt) is estimated as a linear
function of m predictor variables (Xt1), . . . , (Xtj), . . . , (Xtm). If the (Xtj) are
stochastic processes themselves then the distributions and estimates derived
in this section are conditional, given the realisation of the (Xtj) observed.
If the (Xtj) are not sequences of random variables then they are usually a
multi-dimensional parameter of (Yt). These two cases, however, are not dis-
cerned when a linear model is written, in this section, using capital letters
for the m predictor variables.

The assumptions in Sect. 3.1.2 are adapted, in Sect. 3.2, for the case of
m predictor variables. The expectations of the response variable are assumed
to be, in (3.7) and (3.8), a linear function of m predictor variables. The
coefficients in this linear function are estimated using least squares in (3.9)
and (3.10) under the assumption (3.11), i.e., that the residuals of the model
are not correlated. If, however, the residuals are correlated, then estimates
can be obtained by applying (3.14), (3.15) and (3.16). Tests are available
provided that the residuals are normally distributed as required in (3.17).

3.2.1 A Linear Model for the Expectation Function

The expectation function µY (t) of the response variable Y (t) is assumed to
be a linear combination of m predictor variables Xt1, . . . , Xtm with constant
coefficients b0, b1, b2, . . . , bm. Non-linear terms, e.g., ebjXtj , are not allowed
and constraints on the coefficients, e.g., b4 = b2b1, are ignored. Such a linear
combination, as defined in (3.7) or, alternatively, in (3.8)

µY (t) = EYt = b0 + b1Xt1 + . . .+ bmXtm or EY = Xb (3.7)
Yt = b0 + b1Xt1 + . . .+ bmXtm + et or Y = Xb + e (3.8)

is called a linear model, the constants in the linear model are called coefficients
or parameters.

Linear models are often written with matrices and, therefore, the matrices
and vectors in (3.7) and (3.8) are described in detail as follows: e is the
column vector with the residuals, eT = (et); b is the column vector with
the model coefficients, bT = (b0, . . . , bm), for which estimators b̂ are to be
calculated; Y is the column vector of the stochastic process, Y T = (Yt),
with the expectation function µY (t) to be estimated, and X is the matrix of
the predictor variables with exclusively 1 in the first column vector, X.1 =
(1, . . . , 1)T , and row vectors Xt. containing the observations for m predictor
variables for a time point t.

If linear, quadratic, etc. trends in a stochastic process Y with parameter
t are supposed, then X is constructed raising t to powers j−1, j = 1, . . . ,m:
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Fig. 3.3. Yearly values in the Basel temperature series as plotted in Fig. 2.13 in
degree Celsius with linear models of the first (a straight line), second (a quadratic
function) and third degree (a cubic function) for the expectation function.

the first column vector becomes X.1 = (t01, . . . , t0N )T , the second X.2 =
(t11, . . . , t1N )T , the third X.3 = (t21, . . . , t2N )T , etc. These linear models are
formulated in R as demonstrated with the following examples.

In Problem 2.7, R object basel is constructed from the values in the Basel
temperature series. From basel, with

byeartemp <- basel$year

byeartime <- basel$yr

R vectors byeartemp and byeartime are obtained to be used in
byeartemp ~ byeartime

the first order linear model (a straight line) for the expectation function
of the yearly values in the Basel temperature series as plotted in Fig 3.3.
This is an example of a simple linear regression comparable to the SWIR
at Hohenpeissenberg station example in Sect. 3.1.1 where ~ separates the
response variable byeartemp from the predictor variable byeartime.

Applying +, one more predictor variable is added to a linear model as
written in R, thus allowing for models with two or more predictor variables
in the multiple regression case. In a linear model as formulated in R, symbols
+, -, :, *, ... do not have their normal arithmetic meaning. For example,
-1 means that (i) b0 is identically zero in the simple regression case, and
(ii) the first column vector (X.1) in X is omitted in the multiple regression
case; therefore, in both cases, the linear model is fitted through the origin.
These operators, however, keep their original arithmetic meaning when used
in I(...). Consequently, linear models with time raised to the second, third,
etc. power can be formulated in R. In

byeartemp ~ byeartime + I(byeartime^2)

for example, byeartime occurs twice as predictor variable, the first time raised
to its first and the second time raised to its second power, and in
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baseltemp ~ byeartime + I(byeartime^2) + I(byeartime^3)

byeartime raised to its third power is added to the linear model as third
predictor variable. The estimates for these models are plotted in Fig. 3.3.
The second-last and last linear models proposed above for the expectation
function of the yearly values in the Basel temperature series are multiple
regression models with two (t1 and t2) or three (t1, t2 and t3) predictor
variables.

Not only t raised to power p but also any other variables having been
observed jointly with the stochastic process (the response variable) Y can
be used as predictor variables X.j in a linear model as defined in (3.7) and
(3.8). A special case of a predictor variable is a copy of the time series of the
response variable with lag τ as introduced in Sect. 5.2.2 for the estimation of
an AR[p] model.

If a formula Y = f(X1, . . . , Xm) is known from prior evidence then esti-
mates for the coefficients in f are computed. If, however, f is not available
then f is devined from a time series plot. As a rule of thumb, estimate a linear
model for the expectation function of a stochastic process only if you dare
to draw a line representing the expection function in a time series plot. The
selection of a model is usually not as straightforward as in the SWIR at Ho-
henpeissenberg station case, used as an introductory example in Sect. 3.1.1.
Which of the linear models for the expectation function of the yearly values
in the Basel temperature series in Fig. 3.3 is to be preferred? An answer to
this question can be given, applying the diagnostics introduced in Sect. 3.3
to the estimates obtained using least squares (Sect. 3.2.2) possibly under the
wishful assumptions that the residuals are iid. (Sect. 3.2.3) and normally
distributed (Sect. 3.2.5).

3.2.2 Least Squares

Estimators b̂ for b in (3.7) and (3.8) are arrived at by minimizing the sum of
the squared residuals eeT . Using least squares, the estimators are obtained as
solutions of the normal equations provided that the inverse of the symmetric
matrix XT X exists.

XT Xb̂ = XT Y b̂ = (XT X)−1XT Y (3.9)

If the expectation function µY (t) is represented by the linear model (3.8)
(“if the linear model is true”) then the least squares estimates calculated as
required in (3.9) are not biased.

Eb̂ = E
(
(XT X)−1XT Y

)
= (XT X)−1XT EY

= (XT X)−1XT Xb = b (3.10)

A linear model fitting the data (possibly after a transformation) can often
be found and the normal equations can be solved, in most cases, to arrive at
the estimates for the model coefficients.
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3.2.3 Independent Observations with Constant Variance

Assumption (3.1,3) also applies to the multiple regression case: the residuals
(et) are a white noise process with µe = 0 and σ2

e or, using matrices,

Ee = 0 and Cov(eeT ) = Ce =

⎛⎜⎝σ
2
e 0

. . .
0 σ2

e

⎞⎟⎠ = Iσ2
e . (3.11)

Assumption (3.11) is the usual statistical assumption as stipulated in (1.2,2)
which implies, specifically, that (i) the variance of the residuals is constant
and (ii) the residuals are non-correlated.

The residual variance can be assumed to be constant, either using knowl-
edge obtained from prior measurements or statistically by calculating es-
timates σ̃2

e(t), for each time point t, from more than one (possibly many)
independent measurements ytk of Yt, and then comparing σ̃2

e(t) with σ̂2
e , the

regression estimate for σ2
e . Usually, however, this comparison cannot be per-

formed since only one realisation is available. In this case, the variance σ̂2
e

of the empirical residuals ê can be assumed to be constant by applying the
diagnostics introduced in Sect. 3.3. An analysis of ê using these diagnostics
should always be performed because an answer to the question can be ob-
tained as to whether the assumptions (3.8) and (3.9) are in agreement with
the observations, i.e., whether a linear model has been estimated that cap-
tures the systematic changes in the unknown expectation function µY (t) of
the stochastic process (Yt).

Assuming non-correlated residuals, the covariance matrix Covb̂ pertaining
to the estimators b̂ for the coefficients b in the linear model is arrived at in
(3.12):

Covb̂ = (XT X)−1σ̂2
e . (3.12)

The diagonal of Covb̂ contains the variances of the estimators, and the subdi-
agonals the covariances of pairs of the estimators. If (i) the residuals are not
correlated as required (3.11), (ii) the b̂ are least squares estimates as required
in (3.9), and (iii) the linear model is the “true” model, then the b̂ have the
smallest variance among all unbiased linear estimators.

3.2.4 Generalised least squares

If the observations are not in agreement with (3.11) (this can be obvious
prior to the estimation or becomes manifest from diagnostics applied to the
estimates as proposed in Sect. 3.3), then

1. the b̂ are unbiased estimators for b, but
2. the variance of the b̂ has been under-estimated since no N−p (p being the

number of coefficients in the linear model, N the number of observations)
independent observations are available as required in (3.9) for calculating
a least squares estimation.
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The least squares estimates can be corrected for possible dependent obser-
vations or, alternatively, dependent observations can be accounted for using
generalised least squares as proposed in (3.14), both, however, only if the
dependences are known.

In order to derive (3.14), the sequence of residuals (et) is assumed to be
a stationary stochastic process with expectation function µe(t) = µe = 0
and known covariance matrix Ce = Cσ2

e . If C is positive definite ((2.7)
requires that C be non-negative definite and symmetric) then there is a ma-
trix D such that DT D = DD = C. Using such a D, a vector e′ = D−1e
is constructed with the properties (i) Ee′ = 0 since Ee = 0, and (ii)
Cove′ = E

(
(e′ − Ee′)(e′ − Ee′)T

)
= E

(
e′e′T ). Substituting, Cove′ =

E
(
(D−1e)(D−1e)T

)
= E

(
D−1eeT D−1

)
is obtained since (D−1)T = D−1,

and Cove′ = D−1E(eeT )D−1 = D−1Cσ2
eD−1 = Iσ2

e is arrived at. Conse-
quently, (e′t) is a white noise process with expectation function µe′ = µe = 0
and variance σ2

e′ = σ2
e . Pre-multiplying all terms in the linear model as de-

fined in (3.8), the model (3.13) is arrived at. The sum of the squared residu-
als in (3.13) is thereafter minimised to obtain, in (3.14), the generalised least
squares estimators for b,

D−1Y = D−1Xb + D−1e (3.13)
XT C−1Xb = XT C−1Y

b̂ = (XT C−1X)−1XT C−1Y (3.14)
Covb̂ = (XT C−1X)−1σ̂2

e (3.15)

having the variances and covariances in (3.15).
The properties of the residuals D−1e = e′ in (3.13) often deviate from

those of the original residuals e. This has to be accounted for when the
diagnostics introduced in Sect. 3.3 are applied to empirical residuals obtained
from an estimation of the model (3.13), i.e., from a generalised least squares
estimation.

Only when the covariances Cσ2
e of the residuals are known can estimates b̂

be calculated using (3.14). Usually, however, b as well as Cσ2
e are not known.

How can both, the coefficients of the linear model and the covariance matrix
of its residuals, be estimated? The solution to this problem is an iterative
estimation.

For the first step in an iterative generalised least squares estimation, it is
assumed that the residuals (et) are not correlated as required in (3.11) and a
preliminary estimate b̂(1) is calculated using (3.9), i.e., ordinary least squares.
To this estimate pertain preliminary empirical residuals (ê(1)t ) as estimates
for the true residuals (et). In the second step, the (et) are assumed to be
a stationary stochastic process as defined in (2.8) with a covariance matrix
which is estimated by calculating, using (2.1,3), the empirical Ĉ(1)σ2

e
(1) from

the preliminary (ê(1)t ) obtained in the first step. Ĉ(1)σ2
e
(1) is then substituted

for C in (3.14) and a second, now generalised least squares estimate b̂(2) is
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arrived at. This second b̂(2) is again used to calculate preliminary empirical
residuals (ê(2)t ) and the pertaining preliminary empirical covariance matrix
Ĉ(2)σ2

e
(2). In step k, Ĉ(k−1)σ2

e
(k−1) is substituted for C in (3.14) and the

b̂(k) obtained are used for calculating (ê(k)
t ) and Ĉ(k)σ2

e
(k) The generalised

least squares estimations are repeated until Ĉ(k−1)σ2
e
(k−1) ≈ Ĉ(k)σ2

e
(k), i.e.,

until the estimates for the covariance matrix become stable.
When a linear model is estimated using generalised least squares itera-

tively, the pitfalls in the remarks concluding Sect. 2.7 are prevalent: either
possible large variances of the empirical covariances calculated from a short
time series (xt) and thus short (êt) propagate to the estimates b̂ for the
model coefficients, or the time needed to solve (3.14) (with the empirical co-
variances substituted for the theoretical ones) becomes prohibitive when a
long time series is applicable. These pitfalls are circumvented by (i) mod-
elling the residuals (e.g., using an AR[1] model with known parameter a and
therefore, as concluded from (2.16), known covariance function) or (ii) esti-
mating a model for the covariances of the residuals (an example is given in
Sect. 4.3.3, Figs. 4.17 and 4.18 and in Sect. 4.5.3, Fig. 4.21).

If the observations are independent and stem from distributions which do
not have identical variances then the covariance matrix Ce of the residuals is
a diagonal matrix as proposed in (3.16): the covariances in the subdiagonals
are thus identically zero. When b is estimated using (3.14), i.e., generalised
least squares, the observations contribute with weights C−1

e to the estimate
and, hence, this special case of generalised least squares is called weighted
least squares or weighted regression.

Ce =

⎛⎜⎝σ
2
1 0

. . .
0 σ2

N

⎞⎟⎠ C−1
e =

⎛⎜⎝ 1/σ2
1 0

. . .
0 1/σ2

N

⎞⎟⎠ (3.16)

In R, a weighted least squares estimate can be calculated when the weights
are given as argument to function lm(), e.g., lm(..., weights=w, ...). Then,
a generalised least squares estimation is performed using a covariance matrix
with w as diagonal and subdiagonals which are identically zero, and thus each
observation contributes with the weight given to the estimates.

Please note that weight 0 is not allowed in lm() to exclude an observa-
tion from the estimate. The suggested procedure is to construct, from the R
vectors or matrices containing the observations, R objects without the ob-
servation to be omitted in the estimate and then to use these new R vectors
and matrices in lm(). An example is given in Problem 3.10.

Often, however, an estimation using weighted least squares can be cir-
cumvented by taking the logarithms of the response variable. Logarithmising
is the usual transformation performed to obtain a more stable variance of the
response variable, and thus residuals which will then have a variance that is
in (a better) agreement with (3.11). An example is given in Problem 3.22.
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3.2.5 Normally distributed residuals

The probability distributions of the estimators are easily derived if the resid-
uals are assumed to be not only iid. as required in (3.11) but also normally
distributed, as stipulated in (3.17). Using these distributions, confidence in-
tervals can be calculated and tests performed.

The residuals (et) are normally distributed (0, σ2
e). (3.17)

Are the assumptions proposed in Sects. 3.2.1, 3.2.2, 3.2.3 and 3.2.5 in
agreement with an observed time series? This question can be answered,
subsequent to the estimation of a linear model, by applying the diagnostics
introduced in the next section.

3.3 Diagnostics for Linear Models

Using simple or multiple regression methods, a linear model for the expecta-
tion function µY (t) of the stochastic process (Yt) (the response variable) is
estimated in accordance with at least the first and second assumptions in-
troduced in Sect. 3.2. The first assumption (3.1,1) or (3.8) requires that the
systematic changes in µY (t) are captured by a linear combination of the pre-
dictor variables, i.e., a linear model. The coefficients in the linear model are
estimated (the model is fitted) using least squares, as required by the second
assumption stipulated in (3.1,2) or (3.9). As a rule it is further assumed (as-
sumption no. 3) that the residuals are not correlated and that their variance
is constant, as required in (3.1,3) or (3.11). On condition that the residuals
are normally distributed as required in (3.1,4) or (3.17) (assumption no. 4),
confidence intervals for the estimates then can be calculated.

Since at least the first and second assumptions above are required to be
in line with the observations when a linear model is estimated, the estimate
is always subject to the diagnostics introduced in this section. These diag-
nostics allow for detecting deviations from the assumptions as a prerequisite
to either improve the model or to select a model from a small number of
candidate estimates. For example, the diagnostics to be introduced allow for
the selection, in Table 3.1, of one of the linear models estimated for yearly
values in the Basel temperature series and plotted in Fig. 3.3.

3.3.1 Plots

The empirical residuals are plotted versus (i) (transformations of) the esti-
mated model, (ii) a predictor variable, and (iii) as a sequence in the same
order as the observations. These plots can give answers to the questions
of whether the observations are in line with assumptions (3.8), (3.9) and
(3.11). Plots of the empirical correlation function of the empirical residuals
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are compared with the plots in Fig. 2.22 to ascertain whether the residuals
are reconcilable with (3.11), and normal probability plots as introduced in
Fig. 2.18 allow for checking assumption (3.17). It is also possible to assess
the “influence” exerted by each observation on the estimate and to plot these
“influences”.

Plot (d) in Fig. 3.1 contains the empirical correlation function, calculated
from the empirical residuals (plot (c) in Fig. 3.1) of the linear model (plot (a)
in Fig. 3.1), which captures the trend in the SWIR yearly means measured
at Hohenpeissenberg station. Further diagnostic plots for this linear model
are obtained in Fig. 3.4 applying R functions

par(mfrow=c(2,2))

plot(hpbswir.fit, ask=T)

to R object hpbswir.fit estimated in Sect. 3.1.1 for the trend in the SWIR
yearly means measured at Hohenpeissenberg station. Fig. 3.4 contains four
plots:

1. the empirical residuals ê(t) versus the estimated expectation function
(the fitted values) µ̂Y (t) (above, on the left)

2. the normal probability plot of the ê(t) (above, on the right)
3. the |ê|1/2(t) versus µ̂Y (t) (below, on the left)
4. Cook’s distance plots (below, on the right).

The question of whether or not a linear model (3.8) is in agreement with
the observations can be answered using plots of the empirical residuals versus
the fitted model and/or versus the parameter of the time series. For example,
the plot above, on the left in Fig. 3.4 and plot (c) in Fig. 3.1, both show that
the linear model estimated in Sect. 3.1.1 is reconcilable with SWIR at Ho-
henpeissenberg station. For the yearly values in the Basel temperature series,
the plots in the first and second columns in Fig. 3.5 indicate that the linear
models estimated in Sect. 3.2.1 and plotted in Fig. 3.3 are all reconcilable
with the observations since the residuals fluctuate with approximately con-
stant amplitudes, i.e., they show an =-pattern or only small deviations from
an =-pattern.

Fig. 3.5 contains an array of nine plots: the first row contains the plots for
the first order linear model fitted to the yearly values in the Basel tempera-
tures series, the second row those for the second order model, and the plots
in the third row pertain to the third order model. In the first column, the
empirical residuals of the estimates calculated in Sect. 3.2.1 for these models
are plotted versus the parameter of the stochastic process (i.e., the year), in
the second column versus the estimate, and the third column contains normal
probability plots of the empirical residuals.

(3.11) requires that the residuals are a white noise process with constant
moment functions µe and σ2

e . Hence, the diagnostics introduced in Sect. 2.5
can be applied to detect non-constant moment functions µe(t) �= µe and/or
σ2

e(t) �= σ2
e . Examples for time series with non-constant moment functions

are given in Fig. 2.19.
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Fig. 3.4. Diagnostics plots for the trend in the shortwave incoming radiation at
Hohenpeissenberg station as estimated in Figs. 3.1 and 3.2

Quite often in regression applications the variance of the observations
increases with increasing mean of the response variable (Yt) since the error
introduced when (Yt) is measured and/or the natural variability inherent
in (Yt) is proportional to its expectation function µY (t). For example, the
relative random error in the measurements of SWIR at Hohenpeissenberg
station amounts to approximately 2% of the mean [58] and is thus much
smaller than the inter-annual variability of SWIR at Hohenpeissenberg sta-
tion. Consequently, the plots of the residuals in Figs. 3.1 and 3.4 show an
=-pattern, i.e., the measurement error remains hidden in these plots. A larger
measurement error proportional to µY (t), however, would produce residuals
fluctuating with increasing amplitudes, i.e., a <-pattern would be obtained.
Consequently, it is assumed that the empirical residuals of a linear model
for SWIR at Hohenpeissenberg station stem from a stochastic process with
constant moment functions.
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Fig. 3.5. Diagnostic plots for linear models as plotted in Fig. 3.3 for the expectation
function of the yearly values in the Basel temperature series.

A <-pattern in a plot of the empirical residuals versus the fitted model
(the estimated expectation function) is a strong point, generally, for a non-
constant variance of the response variable. In this case, a linear model with
a constant residual variance reconcilable with (3.1,3) or (3.11) is obtained
when the response variable undergoes, prior to estimation, a transformation
deliberately chosen to stabilise its variance. Often, the logarithms of the re-
sponse variable (an example is given in Problem 3.22) are taken or a power
transformation (e.g., Y 1/2, Y −1, etc.) is applied [44]. In general, a variance
stabilising transformation is preferred to a weighted least squares estimation
using (3.16).

Empirical residuals of an estimated linear model can be plotted against
any predictor variable in order to detect whether the variance in the observa-
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tions depends on a predictor variable. A variance changing with a predictor
variable can be stabilised by applying a power transformation to this pre-
dictor variable and then substituting the variable with its transformation or
adding the transformation to the model.

Assumption (3.11) requires that the residuals (et) of a linear model (i)
have constant moment functions µe(t) and σ2

e(t), and (ii) are independent.
Plots of the empirical residuals (êt) versus the fitted model are applied as
diagnostics to see whether µe(t) = µe and/or σ2

e(t) = σ2
e , as demonstrated

above. Plots of the (êt) versus the parameter of the time series as well as
plots of the empirical correlations in the (êt) are used to see whether the (et)
are independent.

Note that the empirical residuals (êt) are not independent since they have
only N − p degrees of freedom, N being the number of observations and p
the number of parameters in the model. If, however, (N − p)/N ≈ 1, it is
then assumed that any correlations in the (êt) stem from correlations in the
(et) and therefore indicate observations that are not independent.

Successive random variables in a stochastic process (Yt) are usually corre-
lated. Correlations not induced by a trend remain in the residuals of a linear
model for µY (t) which, in this case, are not in agreement with (3.11). Con-
sequently, the inspection of plots of the empirical residuals (êt) versus the
parameter of the time series and of plots of the empirical correlation function
of the (êt) are compulsory when a linear model for the expection function
µY (t) is being estimated. The joint application of both diagnostics is thus
compulsory since stationarity is assumed when calculating the empirical cor-
relation function of the (êt) using (2.1,4). For example, the residuals of the
linear model for the yearly values of SWIR at Hohenpeissenberg station are
assumed to stem from a white noise process when plots (c) and (d) in Fig. 3.1
are compared with the plots in Fig. 2.22 using (2.59).

As an additional diagnostic, the Ljung-Box statistic (2.60) may be com-
puted. If the response variable in a linear model is not a stochastic process
then the numbers of the observations can be associated with the observed
values to obtain the sequence (yi), i = 1, . . . , N , and, once the model has
been estimated, the sequence of empirical residuals (êi), i = 1, . . . , N . Cor-
relations for (êi) can be calculated using (2.1,3,4) with i, i.e., the number of
the observation, substituted for parameter t. In regression terminology, these
correlations are called serial correlations of the empirical residuals.

As a second example, the empirical residuals of the linear models for the
yearly values in the Basel temperature series are plotted versus the parameter
of the time series in the first column in Fig. 3.5, and, for the first order linear
model, the empirical residuals are re-plotted, together with their correlation
function, in Fig. 5.7, plots (a) and (b). From these plots, it becomes obvious
that small correlations remain in the empirical residuals of the first order
linear model due to a non-constant first moment function of the residuals
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and, therefore, it is assumed that this model does not capture the decadal
fluctuations in yearly temperature values.

If substantial correlations remain in the empirical residuals of a linear
model which — apart from this disadvantage — has been found to be rec-
oncilable with the observations using the diagnostics introduced above, then:
(i) the estimators b̂ for the model coefficients b are not biased as concluded
from (3.10) but (ii) the estimates for variances pertaining to b̂ are too small,
as concluded from Sect. 3.2.4. Underestimated variances of the estimators are
usually corrected by means of calculating, under the stationarity assumption,
the empirical covariance matrix of empirical residuals, and then substituting
for C in (3.14). A second possibility to account for correlations in the ob-
servations is performing an iterative generalised least squares estimation as
introduced in the remarks to (3.14). This iteration is routine when a spa-
tial random function with the properties (4.27) and (4.39) is estimated using
universal kriging.

A normal probability plot (as introduced in Fig. 2.18) of the empirical
residuals allows to check whether the residuals are normally distributed as is
required in (3.17). For example, the normal probability plots for the empirical
residuals pertaining to the linear models for the yearly values in the Basel
temperature series (in the column on the right in Fig. 3.5) show that the
distributions of the first and second order residuals (plots c,f) are skewer than
the distribution of the third order model (plot i). However, from these normal
probability plots, the residuals pertaining to all models can be assumed to
be approximately normal. As a consequence, the third order linear model is
preferred to the second and first order ones. If, indeed, a very simple model
is required with a trend remaining constant throughout the observational
period (two centuries in the Basel temperature series example) then the first
order linear model is preferred.

Three empirical residuals plotted in Fig. 3.4 (but not in Fig. 3.5) are given
numbers. These numbers correspond to the numbers of the observations in R
vectors hpbyear and hpbswir used in Sect. 3.1.1 to estimate the linear model
hpbswir.fit, and thus are available when the plots in Fig. 3.4 are generated
using plot(hpbswir.fit,ask=T). Consequently, as is obvious from plots (a)
and (c) in Fig. 3.1, residual no. 2 belongs to the yearly value of SWIR at
Hohenpeissenberg station in year 1954, residual no. 12 pertains to the value
measured in year 1964, and residual no. 35 to the 1987 value.

The observation in 1954 is approximately 20 Wm−2 smaller than its neigh-
bour values and therefore is an example of an extreme value. Extreme values
can be the result of gross measurement errors. The history of the measure-
ments at Hohenpeissenberg station, however, reveals that the 1954 value was
obtained by means of routine measurements performed according to the man-
ual and therefore is an extreme value not due to a measurement error.

Extreme values have a large influence on estimators calculated using least
squares: the estimates for the coefficients in the linear models (3.1,1) or (3.8)
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are not robust. The influence exerted by an extreme value on a least square
estimate can be assessed simply by repeating the estimate without the ex-
treme value and then comparing the results. In Problem 3.10 for example,
a larger decrease of SWIR at Hohenpeissenberg station is obtained when a
linear model is estimated from a time series without the extreme 1954 value.

More sophisticated than simply repeating the estimation without the ex-
treme values are the influence diagnostics for regressions models. For example,
Cook’s distances as introduced in [38] and calculated as described in [31] for
the first order linear model for the Hohenpeissenberg SWIR values are plot-
ted in Fig. 3.4. It is obvious from this plot that observation no. 2 (the 1954
SWIR value) influences the estimates to a much larger extent than do the
other observations.

3.3.2 Model Selection

When two or more linear models for the expectation function of a stochastic
process are estimated the question arises which of the estimates is to be pre-
ferred. An answer can be found by comparing the estimates using the statis-
tics and diagnostics introduced in Sects. 3.1, 3.2 and 3.3.1 as demonstrated
in Table 3.1 for the example of the yearly values in the Basel temperature
series.

It is assumed that the expectation function of the yearly values in the
Basel temperature series can be modelled using a linear function of powers
of the parameter, i.e., the time in years, and, under this assumption, the
estimates for the first, second and third order linear models are calculated
using least squares in Sect. 3.2.1. These estimates are plotted together with
the time series in Fig. 3.3.

Are the estimates reconcilable with the assumptions as stipulated in (3.8),
(3.9), (3.11) and (3.17)? Possible answers should allow for excluding models
which are not (or to a lesser degree than others) in agreement with the as-
sumptions and thus for reducing the number of candidate models. Such an-
swers can be obtained from a combination of the diagnostic plots introduced
in Sect. 3.3.1 and the statistics (used as diagnostics) introduced in Sects. 3.1
and 3.2. For example, the diagnostics in Table 3.1 are applied in order to se-
lect one of the linear models for the expectation function of the yearly means
in the Basel temperature series. Remarks to some of these diagnostics are
given in the following paragraphs.

Evidence obtained from Geosciences should always be applied to the es-
timates. Often some knowledge of the observed variable is available which
can then be transformed into a linear model with the innateness such that a
unit and an interval of physically possible values can be associated to each
coefficient. In Sect. 3.1, for example, SWIR at Hohenpeissenberg station is
estimated to decrease with 2.34% over 10 years, clearly between −4% and
4% in 10 years, i.e., the trends of SWIR estimated in [58] and attributed to
natural phenomena. A decrease of more than 5% in 10 years would be a very
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Table 3.1. Diagnostics for the linear models for the expectation function of the
yearly means in the Basel temperature series as estimated in Sect. 3.2.1 and plotted
in Fig. 3.3. Geophysical evidence: (n.r.) r.: (not) reconcilable with the knowledge al-
ready available. Analysis of residuals: +, (−): normally (not normally) distributed;
=: constant variance; <, (>): variance increases (decreases); �=: variance not con-
stant.

linear model of order 1 2 3

geophysical evidence r. r. r.
number of coefficents 2 3 4
p.-values of the 0.02 0.001 0.08
t-statistics for the coefficients 0.0007 0.002 0.07

0.001 0.07
0.07

F -statistic 11.74 11.41 8.807
R2 0.0552 0.102 0.1172
σ̂e 0.6945 0.6786 0.6747
analysis of residuals:
plots in Fig. 3.5

- normal probability plot + + +
- plot vs. xt = = =
- plot vs. µ̂Y (t) = = =

Cook’s distance no observations with large influence

doubtful result due to an insufficient maintenance (cf. Chap. 1) of the instru-
ments at Hohenpeissenberg station. The knowledge available can, however,
be vague: for example, most temperature time series measured at a station
at the surface (of the earth) increase in the mean since global temperature
increases in the mean, as shown in Fig. 2.23, or, it is known that the expec-
tation function to be estimated increases when a predictor variable increases
and that this relationship is hidden by a large measurement error, etc.

The sum of squares of the response variable about its mean can be split
in two parts, as proposed in (3.4), i.e., the sum of squares due to regression
and the sum of squares about regression, even when the time series is not
reconcilable with all assumptions in (3.1) (or in (3.8), (3.9), (3.11) and (3.17)
in the multiple regression case). Subsequently, the usual analysis of variance
table and an F -value can be computed for diagnostic use.

The R2 in (3.4) and the empirical variance of the residuals σ̂2
e in (3.3)

should be used with caution because both are influenced by the structure
of the stochastic process: from a low (< 0.5) R2, it cannot be concluded
that a linear model does not fit the observed time series. In Sect. 3.1.1,
for example, the first order linear model for the yearly values of SWIR at
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Hohenpeissenberg station is estimated with a significant trend (−2.34% in 10
years), an R2 = 0.25 and a σ̂2

e = 46 (Wm−2)2 due to the strong inter-annual
variability of SWIR at this station.

The empirical residuals should be analysed using diagnostic plots as intro-
duced in Sect. 3.3.1 to ascertain whether (i) the linear model is reconcilable
with the observations and (ii) they stem from a normal white noise process
as required in (3.11) and (3.17). From an inspection of the plots in Fig. 3.5
the results discussed in Sect. 3.3.1 and summarised in Table 3.1 are obtained.

From Table 3.1 it is concluded that all linear models estimated are desir-
able. If statistical significance of the trend is required then the third order
linear model is preferred to the first and second order one since the plots in
Fig. 3.5 show that the distributions of the first and second order residuals
(plots c,f) are less symmetric than the distribution of the third order model
(plot i). However, the coefficients in the third order model are not significant
at the .95 level, as is seen in Table 3.1. If a very simple model is required then
the first order model is preferred, in which case the change in temperature is
assumed to be constant over the observational period.

If no linear model fitting all observations is found then local linear models
can be estimated as an alternative, i.e., models which, in agreement with
definition (2.55,2), fit the observations in time slices T ′ of the observational
period selected to obtain a locally constant mean increase or decrease of
the expectation function. Such a partition of a time series can be found by
smoothing, for example using a moving average as defined in (2.39). Examples
of time series smoothed using a moving average are given in Fig. 1.7 as well
as in Figs. 2.9 and 2.10. Local linear models for the yearly means in the Basel
temperature series are estimated in Problem 3.11.

However, when estimating linear models for the expectation function in
parts of a time series selected after having measured and analysed the data
to some extent, the usual statistical tests cannot be performed since the
time slice thus selected has not been obtained as a result of a well-defined
repeatable experiment to test a scientific hypothesis and, therefore, the ex-
perimental setup is not up to the standard required for the usual statistical
inference, i.e., the statistical inference as described in introductory textbooks.
As a substitute, simulation experiments can be performed. In Sect. 2.5.2 for
example, the selection procedure of a climatologist eager to detect a non-
stationary expectation function in the NAO index (Jones), is modelled using
a sequence of t-tests on the realisations of a white noise process and thus a
more realistic significance of the results is obtained.

Generally, [58] and [142] recommend that caution is called for when sta-
tistical significance is claimed for a trend estimated.
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Fig. 3.6. Monthly values in the Basel temperature series from January, 1931
through to December, 1950.

3.4 Seasonal and Component Models

The homogeneous Basel temperature series made available in [13] contains
yearly and monthly values in 0C (degree Celsius) from 1755 through to 1957:
the yearly values are plotted above, in Fig. 2.13 (together with fitted linear
models, in Fig. 3.3) for the full observational period, and the monthly values
plotted in Fig. 3.6 for the time slice from January 1931 through to Decem-
ber 1950. Fig. 3.6 shows seasonal fluctuations with a known (12 months)
constant period. Seasonal fluctuations with a constant period of 12 months
can be seen not only in climatological but also in many socio-economic time
series because seasonal fluctuations of the atmospheric conditions have an
influence on consumption (e.g., on holidays) and production (e.g., in farming
or construction).

3.4.1 Seasonal Models

In a first step, it is assumed that the expectation function µX(u) of a stochas-
tic process (Xu) fluctuates with a constant period and that the period is
known. Then a random variable Xu can be associated to a season j and a
period t and thus can be written using a two-dimensional parameter, i.e.,
(Xtj), and, vice-versa, each pair (t, j) of the two-dimensional parameter is
associated with a unique time point u of the one-dimensional parameter.

In the second step, (Xtj), the one-dimensional process with two-dimensional
parameter obtained in the first step, is assumed to be an r-dimensional pro-
cess with parameter t: in Table 3.2 the stochastic process (Xu) is split into r
stochastic processes, (X(j)

t ), which are called seasonal processes. Assumptions
regarding the seasonal processes can now be made.

As a first assumption, the seasonal processes are often required to be
stationary. Then the seasonal expectation functions E(X(j)

t ) = µ
(j)
X (t) = µ(j)
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Table 3.2. Splitting up into seasonal processes

period season 1 season 2 . . . season j . . . season r − 1 season r

...

t X
(1)
t X

(2)
t . . . X

(j)
t . . . X

(r−1)
t X

(r)
t

...

and the seasonal covariance functions Cov
(
X

(j)
t , X

(j)
t+τ

)
= c

(j)
X (τ ) can be

estimated. With the following R expressions, for example,
bsfn <- "/path/basel.dat"

basel200 <- read.table(bsfn,col.names=c("yr","jan","feb","mar",

"apr","may","jun","jul","aug","sep","oct","nov","dec","year"))

#basel200 is a dataframe in R, making the data available as R vec-

#tors and as R matrix (matrices in R are introduced in the remarks

#to Fig. 2.1): column vector basel200[,2] is vector basel200$jan)

> is.matrix(basel200)

[1] T

> length(basel200$jan)

[1] 203

#the monthly processes are assumed to be stationary: estimates for

#their constant expectation functions are obtained using mean():

mon <- 1:12

monmean <- 1:12

for (j in mon) { monmean[j] <- mean(basel200[,j+1]) }

> monmean

[1] -0.36009 1.32167 4.36896 8.85073 13.21231 16.49261

[7] 18.21724 17.55517 14.07389 8.90689 3.92068 0.70541

estimates are obtained for the mean monthly temperatures in Basel for the
period 1755 through to 1957: this is the estimated annual cycle of the tem-
perature in Basel for the observational period.

basel200 is an R dataframe. A dataframe in R makes the observations
available, on the one hand, in a matrix with rows containing the values of each
observation and columns containing all observations of a variable, and, on the
other hand, as R vectors, as demonstrated in the R expressions above. Both
possibilities allow for easier calculations with multivariate data sets. A data
frame is generated using R function read.table() from a data set available as
a table in a text file. Alternatively, a data frame is generated using R function
data.frame() from R vectors as demonstrated in the remarks to Fig. 3.7. In
R, a data frame is preferably used together with function lm() for estimating
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Table 3.3. Estimating a seasonal model for the Basel temperature series

period (year) Jan. Feb. . . . Nov.. Dec. yearly

temperature values

t1
...

tn

mean µ̂
(Jan.)
X µ̂

(Feb.)
X . . . µ̂

(Nov.)
X µ̂

(Dec.)
X µ̂X

seasonal
fluctuation µ̂

(∆Jan.)
X µ̂

(∆Feb.)
X . . . µ̂

(∆Nov.)
X µ̂

(∆Dez.)
X

a linear model, e.g., the linear models in Figs. 3.7 and 3.11 are estimated
using data frames.

The annual cycle of the temperature in Basel is estimated above, under
the assumption that the seasonal (monthly) processes are stationary. Can the
monthly values in the Basel temperature series be stationary albeit that the
yearly values are not stationary, as shown in Fig. 3.3? An answer is found by
applying the diagnostics introduced in Sect. 2.5.1 to each monthly process
or by estimating linear models for the monthly expectation functions using
the methods introduced in Sects. 3.1, 3.2 and 3.3. For example, linear models
for the trends in the expectation functions of the January, April, July and
October values in the Basel temperature series are estimated in Problem 3.12.

A second assumption requires (i) that the stochastic process (Xu) as well
as the seasonal processes (X(j)

t ) be stationary with constant expectation func-
tions E(Xu) = µX(u) = µX as well as E(X(j)

t ) = µ
(j)
X (t) = µ

(j)
X and (ii) that

µ
(j)
X can be obtained as sum of µX and the mean seasonal fluctuations as

defined in (3.18).
µ

(∆j)
X = µ

(j)
X − µX (3.18)

(3.18) is called a seasonal model and the µ(∆j)
X are called mean seasonal

fluctuations, or often simply seasonal fluctuations. Estimates for the mean
seasonal fluctuations are obtained as differences of the corresponding means:
µ̂

(∆j)
X = µ̂

(j)
X − µ̂X .

µ̂
(j)
X and µ̂X are easily obtained when the original time series (xu) is

given in a table. Each line in Table 3.3, for example, contains the period in
the first column, then twelve monthly temperature values followed by their
mean, i.e., the yearly value, in the last column. This scheme is often used
to write seasonal data in a text file, examples being the time series of the
global average temperatures available in file /path/tavegl.dat and analysed
in Problem 2.30 and also the values in the Basel temperature series avail-
able in file /path/basel.dat from which R dataframe basel200 is generated
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above using read.table(). From this dataframe the monthly means are made
available above in R vector monmean. Therefore, with

overallmean <- mean(basel200[,14]) #mean of the yearly values

monmean - overallmean

[1] -9.245418 -7.563645 -4.516354 -0.034581 4.326995 7.607290

[7] 9.331921 8.669852 5.188571 0.021576 -4.964630 -8.179901

the mean seasonal fluctuations as required in (3.18) are arrived at as differ-
ences between the means of the monthly values and the mean of the yearly
values.

3.4.2 Component Models

If the stochastic process (Xu) under analysis is not stationary in the first
moment function then a seasonal model (3.18) cannot be estimated using
µ̂

(∆j)
X = µ̂

(j)
X − µ̂X , since µ̂X cannot be calculated and the seasonal processes

are likely to be not stationary. For example, the Basel temperature series is
shown to stem from such a process, in Problem 3.12, and thus the estimates
calculated above, in Sect. 3.4.1, can possibly be improved upon by estimating
the trend and the mean seasonal fluctuations (i.e., the annual cycle) jointly,
using a component model as defined in (3.19):

Let Y (t) = µY (t) + e(t) be a stochastic process with a non-con-
stant expectation function µY (t) and the residuals e(t). The
residuals are called random component. Let further µY (t)
result from an operation on µ(T )

Y (t) and µ(S)
Y (t). The trend

µ
(T )
Y (t) is a systematic and long-term change in µY (t).

The seasonal component µ(S)
Y (t) is a systematic and periodic

fluctuation in µY (t) (periodic functions are defined in (6.1)).
Then:

1. Y (t) = µ
(T )
Y (t) + µ(S)

Y (t) + e(t) is called an additive and
2. Y (t) = µ

(T )
Y (t) × µ(S)

Y (t) × e(t) is called a multiplicative
component model.

(3.19)

A multiplicative component model becomes an additive one once the loga-
rithms have been taken. As a side effect, a residual variance increasing with
Y (t) becomes more stable, such that the data are in a better agreement with
(3.11) since taking the logarithms results in a variance stabilising transforma-
tion, as mentioned in the remarks to Fig. 3.4. For example, a multiplicative
model is estimated in Problem 3.22.

In stochastic processes of monthly temperature values, µ(S)
Y (t) is the an-

nual cycle of the temperature and µ
(T )
Y (t) is a secular trend (secular and

long-term are used interchangeably) in temperature. A very simple compo-
nent model for the monthly values in the Basel temperature series is obtained,
for example, assuming that the trends are identical for each month: twelve
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first order linear models b(1)0 + b1 × t, . . . , b(j)0 + b1 × t, . . . , b(12)0 + b1 × t with
identical coefficient b1 are to be estimated.

The yearly values in the Basel temperature series are plotted for the full
observational period in Fig. 3.3, whereas the monthly values are plotted in
the time slice from January 1931 through to December 1950 in Fig. 3.6 to
make the annual cycle clearly visible. The data are made available in R as
dataframe basel200 using the R expressions in the remarks to Table 3.2.
From basel200, in a first step, R vectors temp for the one-dimensional process
and idx for its one-dimensional parameter are obtained using the following
R expressions:

temp <- 1:(length(basel200$jan)*12)

idx <- 1:(length(basel200$jan)*12)

#month 0 is in the mean of the observational period: June 1856

lagidx <- (length(basel200$jan)*12)/2

k <- 0 #fill in new vectors from data frame

for(i in 1:length(basel200$jan)) {

for (j in mon) { #generated in the remarks to Table 3.2

k <- k + 1

idx[k] <- k - lagidx

temp[k] <- basel200[i,j+1]

}

}

In a second step, a categorical R vector (i.e., a vector with values from a set
of possible non-numeric values) is generated with

lab <- as.factor(rep(c("JAN","FEB","MAR","APR","MAY","JUN","JUL",

"AUG","SEP","OCT","NOV","DEC"), length(basel200$jan) ) )

such that the monthly temperature values in temp can be associated with
the month using lab. Such a vector is called a factor with values from a set
of possible levels when used as a predictor variable in a linear model. For
example, R expressions

plot(c(-1200,1200),c(-12,22),type="no",xlab="month",

ylab="degree Celsius")

lines(idx[lab=="JAN"],temp[lab=="JAN"])

points(idx[lab=="JAN"],temp[lab=="JAN"],pch="1")

...

produce the seasonal time series for the months January, April and July
plotted in Fig. 3.7. In the third step, dataframe bm200 is obtained with

bm200 <- data.frame(idx,lab,temp)

as a collection of R vectors idx, lab and temp.
Having completed these preparations, an additive component model for

the trend and annual cycle in the Basel temperature series is estimated in R,
using the following linear model

baselcomp.fit <- lm(temp ~ lab -1 + idx, data=bm200)

baselcomp.erw <- predict(baselcomp.fit, se=T)
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Fig. 3.7. Monthly values in the Basel temperature series: parallel first order linear
models for the January, April and July values. Time in months with origin in June,
1856.

and with
lines(bm200$idx[bm200$lab=="JAN"],

baselcomp.erw$fit[bm200$lab=="JAN"])

...

the estimates for the January, April and July expectation functions are plot-
ted in Fig. 3.7. As required in (3.19,1), all models for the monthly expectation
functions increase at an identical rate (parallel regression).

Vector temp in bm200 is the response variable, and vectors idx as well as
lab are predictor variables. lab is a categorical vector. Categorical predic-
tor variables are not excluded in definitions (3.1) and (3.8) where only the
response variable is required to be numeric. In the R expression above, the
model is written temp ~ lab -1 + idx where -1 means that the first column
vector X.1 = (1, . . . , 1)T , X being the matrix of the predictor variables in
(3.8), is omitted: R calculates for each month a straight line with slope b̂1 and
intercepts b̂(j)0 , j = 1, . . . , 12. b̂1 is the estimate for the trend in an additive
component model, as defined in (3.19,2) for the Basel temperature series, and
the b̂(1)0 , . . . , b̂

(12)
0 are estimates of the seasonal component, i.e., annual cycle.

The estimates obtained
> summary(baselcomp.fit)

Call: lm(formula = baseltemp baselmlab - 1 + baselmindex)

Residuals: Min 1Q Median 3Q Max

-10.87 -1.109 0.08246 1.221 10.96
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Coefficients: Value Std. Error t value Pr(>|t|)

labAPR 8.8511 0.1348 65.6500 0.0000

labAUG 17.5548 0.1348 130.2057 0.0000

labDEC 0.7042 0.1348 5.2231 0.0000

labFEB 1.3225 0.1348 9.8091 0.0000

labJAN -0.3591 0.1348 -2.6633 0.0078

labJUL 18.2170 0.1348 135.1179 0.0000

labJUN 16.4926 0.1348 122.3276 0.0000

labMAR 4.3696 0.1348 32.4097 0.0000

labMAY 13.2125 0.1348 97.9988 0.0000

labNOV 3.9197 0.1348 29.0726 0.0000

labOCT 8.9061 0.1348 66.0573 0.0000

labSEP 14.0733 0.1348 104.3831 0.0000

idx 0.0002 0.0001 3.6944 0.0002

Residual standard error: 1.921 on 2423 degrees of freedom

Multiple R-Squared: 0.9711

F-statistic: 6261 on 13 and 2423 degrees of freedom,

the p-value is 0

are close in value to (i) the seasonal model (i.e., the annual cycle) for the
Basel temperature series, as estimated in the remarks to Table 3.2, and (ii)
the trends of the yearly and monthly values in the Basel temperature series as
calculated in Problem 3.19. Please compare the estimates of the component
model obtained above with those obtained in Problem 3.21.

The systematic components in a model as defined in (3.19) are required
to capture Geophysical phenomena (e.g., a trend and an annual cycle), and
the random component is required to be reconcilable with (3.11) and (3.17).
Therefore, diagnostics as introduced in Sects. 3.3.1 and 3.3.2 should be care-
fully applied whenever a component model is estimated, as demonstrated in
Sect. 3.5 where linear models for the regional trend (first systematic compo-
nent) and the station effects (second systematic component) of SWIR mea-
sured at more than one station in Germany are estimated.

3.5 Trends and Station Effects of Shortwave Incoming
Radiation

Measurements of meteorological variables are often analysed in a grid, e.g.,
when observations made at the surface (of the earth) are compared with re-
sults obtained from a general circulation model or from weather and/or other
satellites. Examples for gridded temperature data are given in Problem 2.30,
and, in Sects. 4.1.1 and 4.6.5, methods are introduced that allow to obtain
areal precipitation means from precipitation data measured at stations. As a
third example, [58] makes available means and trends of shortwave incoming
radiation at the earth’s surface (SWIR) in the cells of a 2.50 grid. In this
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Table 3.4. Climatologies (means and empirical variances) for the yearly values of
SWIR measured in the period from 1950 through to 1993 at the stations in grid
box

(
(100E, 500N), (150E, 52.50N)

)
.

name and coordinates of station observational mean empirical in in
period variance Fig. s

(degrees and minutes, m a.m.s.l.) Wm−2 (Wm−2)2 3.8

Praha 14 26 E 50 4 N 262 1985 1991 112 1 A
Coburg 10 57 E 50 16 N 357 1981 1992 119 42 2 B
Fichtelberg 12 57 E 50 26 N 1214 1964 1993 109 67 3 C
Zinnwald 13 45 E 50 44 N 877 1991 1993 133 4 D
Chemnitz 12 52 E 50 48 N 418 1991 1993 137 5 E
Weimar 11 19 E 50 59 N 257 1991 1993 117 6 F
Wahnsdorf 13 41 E 51 7 N 271 1964 1993 114 35 7 G
Halle/Saale 11 57 E 51 31 N 96 1991 1993 124 8 H
Harzgerode 11 8 E 51 39 N 404 1991 1993 124 9 I
Braunlage 10 37 E 51 43 N 615 1957 1993 111 66 0 J
Lindenberg 14 7 E 52 13 N ??? 1991 1993 118 a K
Braunschweig 10 27 E 52 18 N 81 1958 1993 113 37 b L
Potsdam 13 6 E 52 23 N 33 1937 1993 117 38 c M

section, the method applied in [58] to estimate climatologies for the trends
and station effects in grid cells is demonstrated by estimating a linear model
for trend and station effects in grid cell

(
(100E, 500N), (150E, 52.50N)

)
.

The stations with SWIR measurements appearing in this grid cell are
given in Table 3.4, and the time series of yearly values of SWIR measured at
these stations are plotted in Fig. 3.8 for the period from 1950 through to 1993.
The climatological mean of SWIR in this grid cell amounts to 114 Wm−2,
and is calculated as the mean of all yearly values measured at the stations
in Table 3.4. An estimate for a climatological trend of SWIR in the above-
mentioned grid cell is calculated in this section using a linear model.

The monthly and yearly values of SWIR measured at the stations given in
Table 3.4 are available in text file /path/swir696.dat, with the SWIR values
in lines identified using the number of the grid cell, the station number, the
station identification within the cell, and the year of measurement. With R
expressions

format <- list(gridnum=0,stnum=0,stcellid="",year=0,jan=0,feb=0,

mar=0,apr=0,may=0,jun=0,jul=0,aug=0,sep=0,oct=0,

nov=0,dec=0,yearlyswir=0)

filename <- "/path/swir696.dat"

t1 <- scan(filename,format)

y <- t1$yearlyswir
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Fig. 3.8. Yearly values of SWIR measured at the stations given in Table 3.4 to-
gether with estimates for linear models as required in (3.20) (an increase of SWIR)
as well as in (3.21) (a decrease of SWIR and station effects, plotted only for the
stations Praha (1), Coburg (2), Fichtelberg (3), Chemnitz (5) and Potsdam (c)).

t <- t1$year

s <- t1$stcellid

the yearly SWIR values are made available together with their identification
in three R vectors y, t and s. y contains the yearly values, t the year of the
measurement and s the station identification as given in Table 3.4: A for
Praha, B for Coburg, etc. s is a factor as introduced in Sect. 3.4.2 with the
levels A, B, . . ., M. s is not ordered since no natural order of the stations in
a grid cell is available. The yearly SWIR values in this grid cell are plotted
as times series in Fig. 3.8 with

xm <- matrix(NA,50,30) #less than 50 years at a station

ym <- matrix(NA,50,30) #less than 30 stations in a grid cell
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for(i in 1:length(unique(s))) {

xm[1:length(t[s==unique(s)[i]]),i] <- t[s==unique(s)[i]]

ym[1:length(y[s==unique(s)[i]]),i] <- y[s==unique(s)[i]] }

matplot(xm,ym,type="bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb",

xlab=" ",cex=0.8,ylab=" ",lty=1)

mtext(side=1,line=2,cex=0.8,"year")

mtext(side=2,line=3,cex=0.8,"W/m^2")

From y, t and s, missing values are removed with
yy <- y[(1:length(y))[!is.na(y)]]

tt <- t[(1:length(y))[!is.na(y)]]

ss <- s[(1:length(y))[!is.na(y)]]

and the mean 114 Wm−2, as well as the empirical variance 65.9 (Wm−2)2

of the yearly means of SWIR in this grid cell, are obtained with mean() and
var().

Using a linear model, the expectation functions of SWIR at the stations in
Table 3.4 in grid cell

(
(100E, 500N), (150E, 52.50N)

)
are easily estimated after

the response variable (the yearly values of SWIR) and the predictor variables
(the time in years, and the station identification), as obtained above, are
organised in R dataframe gridbox696:

gridbox696 <- data.frame(ss,tt,yy).

The means and empirical variances of SWIR as given in Table 3.4 are
calculated using

mean(yy[(1:length(yy))[ss=="A"]])

...

var(yy[(1:length(yy))[ss=="M"]])

however, the empirical variances are calculated only for those stations where
more than 10 yearly values of SWIR are available.

The variance 65.9
(
Wm−2

)2 of SWIR in grid cell
(
(100E, 500N), (150E,

52.50N)
)
, i.e., the variance calculated above from the yearly values of SWIR

measured at the stations in Table 3.4, is, as seen in Fig. 3.8, due to the
following sources of variability:

1. a decadal trend as SWIR decreases in the observational period, i.e., from
1950 through to 1993

2. non-identical local radiation climates at the stations generating devia-
tions of the local means from the grid cell mean of SWIR, these deviations
being the station effects

3. fluctuations in SWIR from year to year, i.e., the inter-annual variability
as introduced in Sect. 3.1.1, and

4. an error in the pyranometer (introduced in Sect. 1.1) measurement of
SWIR.

How can estimates for the decadal trend, station effects, inter-annual vari-
ability and the error of measurement be obtained?

Neglecting the station effects, a decadal trend is estimated using the linear
model as defined in (3.20)
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Table 3.5. Means m in Wm−2 and variances s2 in (Wm−2)2 of the difference time
series of SWIR calculated for pairs in the subset (Potsdam, Braunlage, Braun-
schweig, Fichtelberg) of the set of stations given in Table 3.4 and result of the
diagnostics applied to see whether these difference time series are stationary in
their first moment function (yes/no in columns stationary).

Station Potsdam Braunlage Braunschweig
− m s2 stationary m s2 stationary m s2 stationary

Station

Braunlage 4.4 19.6 yes
Braunschweig 2.2 19.5 yes -2.3 26.4 yes
Fichtelberg 5.5 28.6 no 0.7 24.2 yes 3.3 26.2 yes

EYi = a0 + a1ti i = 1, . . . , N (3.20)

which requires that the expectation of the yearly SWIR increases or decreases
with constant rate in grid cell

(
(100E, 500N), (150E, 52.50N)

)
from 1950

through to 1993 with
onlytrend.fit <- lm(yy ~ tt, data=gridbox696) #model (3.20)

to obtain
Value Std.Err. t value Pr(>|t|)

(Intercept) -52.1942 104.1452 -0.5012 0.6168

tt 0.0841 0.0527 1.5968 0.1120

a positive trend of 0.0841 Wm−2/year, and the results given in Table 3.6.
With

onlytrend.exp <- predict(onlytrend.fit,se=T)

lines(gridbox696$tt,onlytrend.exp$fit,lty=1)

this model is plotted as a solid line in Fig. 3.8. Since the residuals of this
model contain fluctuations due to station effects, inter-annual variability and
an error of measurement, the model needs to be improved.

A linear model for both the trend and station effects can be estimated
under the assumption that the station effects remain constant in the obser-
vational period. This assumption is in approximate agreement with the ob-
servations for the pairs of stations with the longer time series of yearly SWIR
values in Table 3.4, i.e., Potsdam, Braunlage, Braunschweig and Fichtelberg
stations, as is concluded from Table 3.5. Thus, a linear model for the trend
and station effects as defined in (3.21)

EYi = a0 + a1ti +

{
a2A for si = A
. . .
a2M for si = M

i = 1, . . . , N (3.21)
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is assumed to be reconcilable with the yearly values of SWIR measured at
the stations in grid cell

(
(100E, 500N), (150E, 52.50N)

)
from 1950 through

to 1993.
A linear model with a factor (a categorical predictor variable as introduced

in Sect. 3.4.2) generally contains more parameters than can be estimated. In
the linear model as defined in (3.21), for example, a0 can be substituted with
a0 + c, c fixed, provided that a2A, . . ., a2M are substituted with a2A + c, . . .,
a2M + c. Consequently, the model is not determined because it has too many
coefficients due to its definition (and not because of an insufficient amount
of data being available as compared with the number of coefficients to be
estimated): the linear model is said to be functionally over-parametrised.
This is a consequence of (3.22)

EYi = a0 + a1ti + xiA + . . .+ xiM i = 1, . . . , N (3.22)

xiA =
{ 1 if ssi = “A”

0 else
. . . xiM =

{ 1 if ssi = “M”
0 else

where the factor s in (3.21) is replaced by 13 indicator variables xiA, . . .,
xiM with xiA + . . .+ xiM = (1, . . . , 1)T , the first column vector X.1 in the
matrix of the predictor variables in (3.7). This vector, however, pertains to
coefficient a0 (i.e., the intercept) and, consequently, the sum of all indicator
variables for the levels of the factor estimates the intercept, too.

In R, prior to estimating a linear model with a k-level factor as predictor
variable, a functional over-parametrisation is resolved by generating k − 1
indicator variables which are functionally independent of their sum [31]. Such
a parametrisation is called a set of contrasts. By default, Helmert contrasts
are used for a non-ordered factor. More suitable for the linear model (3.21)
are the following contrasts

contrasts(C(ss,sum))

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

A 1 0 0 0 0 0 0 0 0 0 0 0

B 0 1 0 0 0 0 0 0 0 0 0 0

C 0 0 1 0 0 0 0 0 0 0 0 0

D 0 0 0 1 0 0 0 0 0 0 0 0

E 0 0 0 0 1 0 0 0 0 0 0 0

F 0 0 0 0 0 1 0 0 0 0 0 0

G 0 0 0 0 0 0 1 0 0 0 0 0

H 0 0 0 0 0 0 0 1 0 0 0 0

I 0 0 0 0 0 0 0 0 1 0 0 0

J 0 0 0 0 0 0 0 0 0 1 0 0

K 0 0 0 0 0 0 0 0 0 0 1 0

L 0 0 0 0 0 0 0 0 0 0 0 1

M -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

with which the station effects for all stations are easily obtained, as shown
below. Using these contrasts,
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trendandsteff.fit <- lm(yy ~ tt+C(ss,sum),data=gridbox696)

calculates the following estimates for model (3.21)
Value Std. Error t value Pr(>|t|)

(Intercept) 173.0659 101.9348 1.6978 0.0913

tt -0.0273 0.0514 -0.5315 0.5957

C(ss, sum)1 -6.8335 3.6902 -1.8518 0.0657

C(ss, sum)2 0.3692 2.1620 0.1708 0.8646

C(ss, sum)3 -10.1861 1.5555 -6.5483 0.0000

C(ss, sum)4 13.8166 4.4884 3.0783 0.0024

C(ss, sum)5 17.9696 3.7064 4.8482 0.0000

C(ss, sum)6 -1.3637 3.7064 -0.3679 0.7134

C(ss, sum)7 -5.3756 1.5298 -3.5140 0.0006

C(ss, sum)8 4.7893 4.4843 1.0680 0.2870

C(ss, sum)9 5.3030 3.7064 1.4308 0.1543

C(ss, sum)10 -8.5886 1.4805 -5.8010 0.0000

C(ss, sum)11 -0.6970 4.4863 -0.1554 0.8767

C(ss, sum)12 -6.4662 1.4834 -4.3591 0.0000

and with
trendandsteff.exp <- predict(trendandsteff.fit,se=T)

lines(tt[ss == "A"],trendandsteff.exp$fit[ss == "A"],lty=2)

...

the estimated linear models for the expectation functions at the stations
Praha, Coburg, Fichtelberg, Chemnitz and Potsdam are plotted in Fig. 3.8.

â2,1, . . ., â2,12, calculated above, are estimates for a2,1, . . ., a2,12, the
station effects in the parametrisation C(ss,sum) for the factor ss in yy ~

tt+C(ss,sum), i.e., the formulation of model (3.21) in R. Therefore, â2,1, . . .,
â2,12 are estimates for the vertical displacements of the trends for stations A,
. . ., L in Table 3.4 with respect to the overall trend of the grid cell. At Braun-
schweig station (L in Table 3.4), for example, the trend is −6.4662 Wm−2

lower than the overall trend for the grid cell with intercept 173.0659 Wm−2,
and thus 173.0659 − 6.4662 = 166.5997 Wm−2 is obtained for the intercept
of the trend at Braunschweig station. The estimate for the station effect of
the last station (Potsdam, M in Table 3.4) is obtained using

∑12
k=1(−1)â2,k

in accordance with the above parametrisation.
The usual (cf. Fig. 3.4) diagnostic plots (a), (b), (c) and (d) in Fig. 3.9

for these estimates are arrived at with R expression
plot(trendandsteff.fit)

whereas plots (e) and (f) in Fig. 3.9 are generated by plotting the empir-
ical residuals of the linear model against the predictor variables. Plot (g)
in Fig. 3.9 results from the application of acf() to a R time series gener-
ated from the empirical residuals in the order of the observations. Plot (g)
is called, in regression terminology, a serial correlation plot, as introduced in
Sect. 3.3.1. Plot (h) in Fig. 3.9 is obtained with qqnorm() from the empirical
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Fig. 3.9. Diagnostic plots for the trend and station effects of SWIR in grid cell(
(100E, 500N), (150E, 52.50N)

)
estimated using model (3.21). Plots (b) and (h) are

normal probability plots, (b) using all residuals, (h) without the residuals pertaining
to observations nos. 82, 117, 159 with large Cook’s distances in (d).
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residuals after those pertaining to observations nos. 82, 117 and 159 have
been removed.

Observations nos. 82, 117 and 159 with very high yearly values (132, 129
and 137 Wm−2) measured in year 1959 at stations Potsdam, Braunschweig
and Braunlage (Fig. 3.8) have a large influence on the estimates (Cook’s
distances, plot (d) in Fig. 3.9). Since, in 1959, extraordinarily high yearly
values of SWIR were measured at all stations in neighbour grid cells with
measurements available for that year, it is concluded that these observations
are correct due to a year with very abundant SWIR in this region.

The unusually high 1959 values also produce, in the empirical residuals of
model (3.21) for the yearly values of SWIR measured at the stations in Ta-
ble 3.4, serial correlations of approximately 0.2, shown in plot (g) in Fig. 3.9,
for lags 35 = 117 − 82 and 42 = 159 − 117, i.e., the differences in numbers
of those observations with the large 1959 values (observations with nos. 82
and 117 as well as with nos. 117 and 159). These correlations are due to
(2.1,4) being non-robust, as mentioned in the remarks concluding Sect. 2.1.
If these empirical correlations due to 1959 values and the non-robust esti-
mates are neglected when plot (g) in Fig. 3.9 is compared with the templates
in Fig. 2.22, it is then concluded from (2.59) that the empirical residuals in
the order of the observations stem from a white noise process as required in
(3.11) despite the >-pattern seen in plots (a) and (c) in Fig. 3.9.

This >-pattern is generated by the empirical residuals pertaining to sta-
tions Halle/Saale and Harzgerode, both with means of 124 Wm−2, as well
as for Zinnwald and Chemnitz with means of 133 and 137 Wm−2. At these
stations, however, the time series of the yearly values of SWIR are of insuf-
ficient length to claim that their inter-annual variability of SWIR is smaller
than at the other stations.

The very large values measured in 1959 at stations Potsdam, Braun-
schweig and Braunlage can also be seen in plots (e) and (f) in Fig. 3.9 (there,
however, the numbers of these observations are omitted). The -pattern in
plot (e) suggests that a slightly better fit could be obtained with a second
order (i.e., a quadratic) linear model for the trend in this grid cell. The dif-
ferences in the variances at the stations seen in plot (f) (boxplots are default
when a numeric variable is plotted vs. a factor [31]) are assumed to be due
to the differences in the number of observations available at the stations in
Table 3.4.

From the normal probability plot (b) in Fig. 3.9 it is obvious that the tail
of the empirical distribution of the residuals is too long to be normal, due to
the residuals pertaining to the 1959 observations. When these residuals are
omitted, the empirical distribution becomes approximately normal as is seen
in plot (h).

Further results for model (3.21) are given in Table 3.6. Table 3.6 shows
that the total sum of squares SSY = 65.9 × 189 = 12455 (Wm−2)2 (defined
in (3.4), the sum of squares pertaining to the grid cell) is split into
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Table 3.6. Estimating the linear models as defined in (3.20) and (3.21) for SWIR
measured at the stations in Table 3.4. DF: degrees of freedom, SS: sum of squares,
MSS: mean square, i.e., SS/DF

model N mean std.dev. std.dev. Trend t p-
in grid in grid of value

cell cell residuals Wm−2 /
Wm−2 Wm−2 Wm−2 year

(3.20) 190 114 8.1 8.1 0.084 1.6 0.11
(3.21) 190 114 8.1 6.7 -0.027 -0.5 0.59

FG QS MS F p-
(Wm−2)2 (Wm−2)2 value

(3.20) 1 166 166 2.5 0.11
188 12279 65

(3.21) 1 166 166 3.7 0.05
12 4306 359 7.8 0.00
176 7973 45

1. SST = 166 (Wm−2)2, the sum of squares of the trend, and SSE =
12279 (Wm−2)2, the residual sum of squares when model (3.20) is esti-
mated, and

2. SST = 166 (Wm−2)2, and SSS = 4306 (Wm−2)2, the sum of squares
due to station effects and SSE = 7973 (Wm−2)2 when model (3.21) is
estimated.

From the F -statistic given in Table 3.6 it is also concluded, under the —
admittedly risky, as is obvious from plots (b) and (h) in Fig. 3.9 — assumption
that the residuals are normally distributed, that the negative trend obtained
for (3.21) is significant at the α = 0.05 test level. The positive trend estimated
for (3.20) is, however, not significant even for a “10% climatologist”, i.e., a
person prepared to run the risk of rejecting the hypothesis of no trend wrongly
once in every 10 tests and not once in every 20 tests as usual.

If a linear model for both decadal trend and station effects can be es-
timated, then the residuals of this model will contain, as the residuals of
the linear model for the yearly values of SWIR at Hohenpeissenberg sta-
tion estimated in Sect. 3.1, the fluctuations generated by the inter-annual
variability and the measurement error. The measurement error amounts to
2% of the mean as shown in [58], i.e., 2.3 Wm−2 for the mean 114 Wm−2

in the grid cell, and is assumed not to depend on the inter-annual variabil-
ity. Under this assumption, the inter-annual variability is calculated, using
(1.16,3), from the variance of the residuals of model (3.21) in Table 3.6:
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45 − 2.3 × 2.3 = 39.6 (Wm−2)2 is obtained for the variance of the inter-
annual variability of SWIR in grid cell

(
(100E, 500N), (150E, 52.50N)

)
.

The trend, station effects and inter-annual variability estimated using
(3.21) for the yearly values of SWIR measured at the stations in grid cell(
(100E, 500N), (150E, 52.50N)

)
(Table 3.4) are all reconcilable with the Geo-

physical knowledge available.
The station effects estimated above result from (i) the differences in al-

titude of the stations and (ii) the spatial trend of SWIR. This spatial trend
can be seen in Fig. 4.16 where the SWIR means have been plotted for those
stations where at least five yearly values of SWIR are available. The sources
of this trend are the top-of-the-atmosphere solar radiation increasing in a
southward direction and the total cloud amount decreasing with increasing
distance from the ocean. This spatial trend is also supposed in the remarks
to Figs. 4.17 and 4.18 and accounted for when the SWIR climatologies as
plotted in Fig. 4.16 are interpolated, in Sect. 4.5.3, using universal kriging.

For the observational period from 1950 through to 1990 negative trends
have been observed in Europe, except for regions which have become de-
industrialised in those years [58]. Attempts to attribute this negative trend
to changes in the energy balance at the surface are made in [151]. A reversal
of these trends, i.e., from negative to positive, is found in [152].

The inter-annual variability of SWIR estimated for this grid cell is in line
with the values estimated for the neighbour grid cells.

3.6 Trend Surfaces for the Tree-line in the Valais Alps

The expectation function EZ(x, y) = µZ(x, y) of a random function Z(x, y)
with two-dimensional parameter (x, y), x and y being coordinates, is called
a trend surface. In this section, linear models for trend surfaces as defined
in (3.23) are estimated for the alpine tree-line in the Valais alps. The alpine
tree-line is the highest altitude at which trees can grow on mountains, higher
up, the vegetation period being of too short a duration to sustain trees.

The tree-lines in the Valais alps as plotted in Fig. 3.10, were observed in
the field by the author in summer 1973, taking into account the absence or
presence of trees and/or larger areas with typical plant associations of small
shrubs, e.g., rhododendron ferrugineum or rhododendron hirsutum, species of
alpine roses. The coordinates pertaining to observations (x for the West-East
direction, the horizontal axis in Fig. 3.10, y for the South-North direction,
the vertical axis in Fig. 3.10, z for the altitude) were obtained from excellent
maps produced in scale 1:25000 by the Swiss Federal Office of Topography
(SWISSTOPO) and, reading a mechanical altimeter (as electronic equipment
was not available at that stage). The error in the z coordinate, originating
from the limited accuracy of the altimeter, contributes to the non-systematic
variability in the tree-line observations brought about by micro-scale vari-
ations in the conditions under which trees can grow at the alpine tree-line
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Fig. 3.10. 70 observations (in meter a.m.s.l.) of the tree-line in the Valais alps:
the area under study is defined by the closed polygon. Coordinates of the Swiss
Federal Office of Topography (SWISSTOPO) are in km. No digital terrain model
was available for the SW and SE corners of the map.

[5]; the errors in the x and y coordinates are accounted for, bearing in mind
that the estimates calculated in this section are conditional to the observed
realisation (cf. the remarks introducing Sect. 3.2).

The observations of the tree-line fluctuate about a local (local properties
are defined in (2.55,2)) mean, being low (approximately 2200 m a.m.s.l) in
the western part of the area under study, then increasing in easterly direction
until its maximum (approximately 2500 m) is arrived at in the Visp valley
(including Zermatt), and then decreasing, since lower values (approximately
2350 m a.m.s.l) were observed in the most easterly part of the area under
study. Obviously, the observations of the tree-line are not stationary in their
mean, and, therefore, a linear model is assumed to be reconcilable with the
tree-line observations as plotted in Fig. 3.10.

It is assumed that the observed tree-lines z(xi, yi), i = 1, . . . , 70, are a real-
isation of a random function Z(x, y) as defined in (2.2) with two-dimensional
parameter (x, y) ∈ U , U the area under study. Both the observations and
the area under study are plotted in Fig. 3.10. The expectation function of
the tree-line, EZ(x, y) = µZ(x, y), is assumed to be a function with contin-
uous derivatives with respect to x and y, i.e., µZ(x, y) is assumed to be a
smooth surface. The fluctuations of the z(xi, yi) about µZ(x, y) are due to (i)
small-scale variations in the terrain, producing micro-climates more or less
favourable to the growth of trees and (ii) the error in the readings of the
altimeter.
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Often, polynomials in x and y are used as linear models for µZ(x, y)
because their form is known (at least in the case of low order polynomials)
and because they are invariant under translation and rotation when complete,
with respect to the order as defined in (3.23):

zero order: EZ(x, y) = a0 (constant)
first order: EZ(x, y) = b0 + b1x+ b2y
second order: EZ(x, y) = c0 + c1x+ c2y + c3x2 + c4xy + c5y2

. . . . . .

(3.23)

The zero order model is a horizontal plane, the first order one a plane inclined
in an arbitrary direction, and the second order model has an extremum, i.e.,
the trend surface becomes more flexible with increasing order.

The observed tree-lines as plotted in Fig. 3.10 are stored in text file
/path/treeline.dat with three coordinates x, y and z as introduced above

646.000 120.700 2330

....

in each line. These observations are made available, with R expressions
treelinefn <- "/path/treeline.dat"

treelineformat <- list(x=0, y=0, z=0)

treeline <- scan(treelinefn, treelineformat)

x <- treeline$x - 600.000 #origin approximalety in the

y <- treeline$y - 100.000 #centre of the area under study

z <- treeline$z

tl.frame <- data.frame(x,y,z)

in a dataframe tl.frame (dataframes are introduced in Sect. 3.4.1) after the
origin of the two-dimensional parameter (x, y) has been moved into the centre
of the area under study. Using tl.frame, together with:

tl1.fit <- lm(z ~ x+y, tl.frame)

tl2.fit <- lm(z ~ x+y+I(x^2)+I(x*y)+I(y^2),tl.frame)

...

trend surfaces as defined in (3.23) are estimated as linear models for the
expectation function µZ(x, y) of the tree-line in the Valais alps, and the
results and diagnostics in Table 3.7 are obtained. When trend surfaces are
estimated, in addition to the usual diagnostic plots introduced in Sect. 3.3.1,
the empirical residuals are plotted against the two-dimensional parameter:
e.g., in Fig. 3.11, no systematic pattern is seen in the empirical residuals
pertaining to the trend surface of order five for the tree-line.

The plots in Figs. 3.11 and 3.12 are obtained with R function contour().
contour() requires a grid with the values to be represented. For the plots in
Figs. 3.11 and 3.12, this grid is obtained as the cross product of R vectors

xnull <- c(-52, -48, ..., -4, 0, 4, ..., 48, 52)

ynull <- c(-24, -20, ..., -4, 0, 4, ..., 20, 24)

calculated with R expressions
xynewdim <- length(xnull)*length(ynull)

x <- rep(0,xynewdim)
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Table 3.7. Assesment of the linear models as defined in (3.23) for the height of
the tree-line in the Valais alps (slightly modified using the example in Table 3.1).

order 1 2 3 4 5 6

number of coefficients 3 6 10 15 21 28
F statistic 26.1 24.2 19.6 15.6 16.9 12.3
R2 statistic 0.44 0.65 0.75 0.80 .87 .89
σ̂e 76 61 54 50 42 43
êi vs. xi �= �= = = = =

yi �= = = = = =
(xi, yi) �= �= �= = = =
µ̂Z(xi, yi) �= = �= = = =

normal probability plot − + + − + −
number of extreme values 3 4 3 4 3 3

y <- rep(0,xynewdim)

k <- 0

for(i in 1:length(xnull)) {

for(j in 1:length(ynull)) {

k <- k + 1

x[k] <- xnull[i]

y[k] <- ynull[j]

}

}

grid.frame <- data.frame(x,y)

grid.frame contains coordinates x and y which are used as predictor variables
together with the models estimated above, i.e., at the points with coordinates
in grid.frame, within and outside the area under study, trend surfaces as
defined in (3.23) are estimated with

tl1pr <- predict(tl1.fit, grid.frame)

tl2pr <- predict(tl1.fit, grid.frame)

...

using the linear models tl1.fit, tl2.fit, ... obtained above. Estimates
calculated with predict() are numerically stable, an asset when calculating
higher order trend surfaces.

As an aside, the numerical stability of the estimates calculated with R
functions lm() and predict() is improved by re-defining the origin of the
two-dimensional parameter (x, y), i.e., by subtracting 600.000 from the x-
coordinates and 200.000 from the y-coordinates, when preparing, above, data
frame tl.frame for the estimation of the linear models.

The size of the grid is chosen to be 4 km in length, because, within this
distance, only small changes are supposed to occur in the mean of the ob-
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Fig. 3.11. Fifth order trend surface as defined in (3.23) for the tree-line in the Valais
alps together with its residuals as estimated from the observations in Fig. 3.10.
Coordinates in km, coordinate origins in SWISSTOPO coordinates, altitudes of
contours in m, area under study as convex hull of the points with observations.

served tree-lines as plotted in Fig. 3.10. The changes in the mean tree-line are
bounded within the area under study; outside these borders, however, larger
changes can occur in the estimates and then a too low or too high (i.e., not
reconcilable with the growth conditions) expectation function of the tree-line
can be estimated. Therefore, from the estimates obtained above in tl1pr,

tl2pr, ..., only those with 2000 < z < 2600 m are selected using
#build matrix with predicted values for contour()

#include only points with values between 2000 and 2600 m

zpredmat <- matrix(NA,(length(xnull)),(length(ynull)))

k <- 0

for(i in 1:length(xnull)) {

for(j in 1:length(ynull)) {

k <- k + 1

#for the fifth order trend surface

if((tl5pr[k]<2600)&&(tl5pr[k]>2000)) zpredmat[i,j]<-tl5pr[k]

}

}

to be represented in Figs. 3.11 and 3.12.
When plotting spatial data which depend on equi-scaled coordinates x and

y, i.e., coordinates with equal scales, then the scales on both axes should also
be equal in the plot. Equi-scaled plots can be obtained in R using eqscplot(),
i.e., a scatterplot version with scales chosen to be equal on both axes, to set
up the coordinate system

library(MASS) #makes eqscplot() available

eqscplot(c(-52,52),c(-24,24),type="no",ratio=1,tol=0.04,
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Fig. 3.12. As in Fig. 3.11, for trend surfaces of order 1 through to order 6. An
additional contour (2425 m) is plotted for the trend surfaces of the second, third
and fourth order.

xlab="origin: coord. value 600 SWISSTOPO",

ylab="origin: coord. value 100 SWISSTOPO")

for R-function contour(), which is thereafter used with
contour(xnull,ynull,zpredmat,levels=c(2000,2100,2200,2250,2300,

2350,2400,2450,2500,2600),add=TRUE)

#plot coordinates of observations and their convex hull as a

#substitute for the area under study as defined in Fig. 3.10

xmat <- cbind(tl.frame$x,tl.frame$y)

#points(xmat) plots points with observations as shown in

#Fig. 3.12, do not use when the observed z-values or the

#residuals are plotted as below and shown in Fig. 3.11

#text(tl.frame$x,tl.frame$y,label=round(predict(tl5.fit)))

text(tl.frame$x,tl.frame$y,label=round(resid(tl5.fit)))

hpts <- chull(xmat) #convex hull

hpts <- c(hpts, hpts[1])

lines(xmat[hpts, ])

to obtain the contour plots in Figs. 3.11 and 3.12.
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The estimated trend surfaces of orders 1, 2, . . . , 6 for the tree-line in the
Valais alps are plotted in Fig. 3.12. The first order trend surface does not
capture the systematically decreasing tree-line in the most easterly part of
the area under study, as is concluded from a comparison of Figs. 3.10 and 3.12
and the diagnostics summarised in Table 3.7. Systematic patterns indicating
a model not reconcilable with the observations are also seen in the diagnostic
plots of the empirical residuals pertaining to the estimated second and third
order trend surfaces.

With an increasing number of coefficients in the model, the estimates come
closer to the observations. Consequently, the R2 statistic increases when σ̂e,
the empirical standard deviation of the residuals, decreases until it reaches
its minimum of 42 m for the fifth order trend surface. However, when the
sixth order model is fitted, the minor decrease (as compared to the fifth
order model) in the sum of the squared residuals does not compensate for
the increase in p, i.e., the number of coefficients estimated (the empirical
variance of the residuals having N − p degrees of freedom): both, R2 and σ̂e,
increase, as is seen in Table 3.7. Although the fourth, fifth and sixth order
trend surfaces are all reconcilable with the observations, as is seen in the
diagnostic plots of their empirical residuals, the fifth order one is preferred
because its empirical residuals have minimal variance and stem from a normal
distribution.

Therefore, the fifth order trend surface for the tree-line in the Valais alps
as plotted in Fig. 3.11 is found to be in agreement with all assumptions in
Sect. 3.2 and thus is preferred to the other models in Table 3.7. The fifth order
trend surface is also reconcilable with the knowledge available from plant
ecology. For example, Aulitzky and Turner found in [5] that the alpine tree-
line is determined by the duration of the vegetation period. The vegetation
period (the period without snow cover) at constant altitude, e.g., 2200 m, is
of longer duration in the interior of the alps than it is on the exterior slopes,
as can be seen from the maps available in the season with snow cover for the
Swiss alps from [131].

3.7 Problems

3.1. Derive the estimators in (3.2).

3.2. Apply (1.15) to show that the estimate b̂1 in (3.2) is not biased.

3.3. Calculate the variance of b̂1 in (3.2).

3.4. When is b̂1 normally distributed? A hint is given in the remarks to the
definition of the multivariate normal distribution in (1.34).
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3.5. Plot the density of the standardised normal distribution including the
quantiles −4.0 and 4.0. Then add, to this plot, the densities of the t-
distributions with 4 and 39 degrees of freedom. Further, plot the t-value
−3.6086, i.e., the t-statistic as defined in (3.3) pertaining to the linear model
estimated in Sect. 3.1.2 for trend in SWIR at Hohenpeissenberg station. What
is the probability of obtaining a t ≤ −3.6086 for this trend?

3.6. lm() calculates, as required in (3.3), the empirical variance for the esti-
mated residuals of a linear model. If, in the remarks to Fig. 3.1, the empirical
residuals are assumed to be a time series, then their variance is calculated as
required in (2.1,2). Which estimate do you prefer?

3.7. Prove (3.4).

3.8. Calculate the moments of the estimated expectation function µ̂Y (x) in
(3.5) and (3.6).

3.9. Plot confidence intervals for the trend of SWIR at Hohenpeissenberg
station as shown in Fig. 3.2. (Often, alternative graphical representations are
used for these confidence intervals.)

3.10. Estimate the trend of SWIR at Hohenpeissenberg station without using
the 1959 observation.

3.11. In Problem 2.7, as well as in the remarks to Table 3.2, the values in the
Basel temperature series are made available as objects in R and, in Fig. 3.3,
linear models for the expectation function of the yearly values in the Basel
temperature series are shown. Split the series of the yearly values into parts
suitable for estimating local first order linear models and then estimate the
local linear models. Can the usual significance tests be applied? Possible
answers can be obtained from arguments similar to those used in Sect. 2.5.2.

3.12. Plot the values for January, April, July and October available in the
Basel temperature series and estimate a first order linear model for each
of these months. Which monthly series are stationary in the first moment
function?

3.13. The yearly values for SWIR at Hamburg station are available in a file
with 17 values in each line: the first, second and third values are identifi-
cations, the fourth is the year of measurement, the remaining ones are the
monthly and yearly values of SWIR in Wm−2. These values are made avail-
able in R vectors using

fn <- "/path/hamburg.dat"

format <- list(gridnum=0,stnum=0,stcellid="",year=0,jan=0,feb=0,

mar=0,apr=0,may=0,jun=0,jul=0,aug=0,sep=0,oct=0,

nov=0,dez=0,yearlyswir=0)

hamburg <- scan(fn,format)

Plot the time series of the yearly values of SWIR at Hamburg station and its
empirical correlation function.
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3.14. The plot generated in Problem 3.13 shows that the yearly values of
SWIR at Hamburg station are not stationary in the first moment function.
Estimate the trend suggested by the plot.

3.15. Are the differences in the monthly values of SWIR calculated in Prob-
lem 1.11 stationary in their first moment functions? The differences for the
Toronto and Toronto Met. Res. stations as well as for the London Weather
Centre and Bracknell stations are plotted in Fig. 2.19. The following R ex-
pressions generate from diftor, the R time series with the Toronto differences
obtained in Problem 1.11,

diftor1 <- as.array(diftor)

time1 <- time(diftor)

plot(time1,diftor1,type="l",xlab="year ",ylab="W/m^2")

R vectors for the differences and for the time, from which missing values are
removed with

diftor2 <- diftor1[(1:length(diftor1))[!is.na(diftor1)]]
time2 <- time1[(1:length(time1))[!is.na(diftor1)]]

to obtain R vectors that can be used as the response and predictor variable
in lm(). Is the estimate for the trend significant?

From the remarks to Fig. 2.19 it is concluded that the time series of the
Toronto differences is not reconcilable with all assumptions in (3.1). Which
of the assumptions is not met? What follows for the trend estimated above?

3.16. Estimate a linear model for the trend in the global mean temperatures
obtained in Problem 2.30.

3.17. The mean annual cycle of the temperature in Basel for the period from
1755 through to 1957 is estimated in the remarks to Table 3.2 under the
assumption that the monthly processes are stationary. Plot the mean annual
cycle, i.e., plot the means of the monthly time series vs. the months. Then
plot the empirical variances of the monthly series vs. the months. Do the
empirical variances have an annual cycle?

3.18. Subtract the means calculated in Problem 3.17 from the values in the
monthly series to obtain a seasonally de-meaned time series of the monthly
values in the Basel temperature series.

3.19. Estimate linear models for the trend in the monthly and yearly values
in the Basel temperature series and compare your results with the trend
estimated in the remarks to Table 3.7 using an additive component model.

3.20. Estimate a linear model for the trend in the seasonally de-meaned time
series obtained in Problem 3.18.

3.21. Estimate an additive component model for trend and annual cycle in
the Basel temperature series using the R expressions in the remarks to Ta-
ble 3.7, but with the origin of R vector idx at the start of the observational
period, i.e., month 0 is December, 1754.
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Fig. 3.13. Above, monthly values of power consumed in the city of Zurich in
105 kWh; below, the logarithms of the above values. The trends are drawn as
straight lines using trial and error.

3.22. File /path/zhpower5786.dat contains the Zurich monthly consumption
of power in 105 kWh for the period 1957 through to 1986. The first value in
the file pertains to January 1957. From this file, using R expressions

zhpower <- ts(scan("/pfad/zhpower5786.dat"),

start=1957,frequency=12,)

plot(c(1957,1987),c(800,2400), type="n",xlab="",ylab="10^5 kWh")

lines(zhpower, type="l")

lines(c(1957,1987),c(800,2150), type="l") #the fourth attempt

the monthly values of power consumed in the city of Zurich are made available
as R time series zhpower and then plotted above, in Fig. 3.13. Next, the
logarithms are taken and plotted below in Fig. 3.13 with the straight line
plotted in the second attempt. Estimate a component model as defined in
(3.19) for the logarithms of the Zurich power consumption.

File /path/zhpower8505.dat contains the Zurich quarterly consumption of
power in 103 kWh for the period 1985 through to 2004. Construct a homoge-
neous time series for the power consumption in Zurich since 1957. Estimate
a component model for the logarithms of this time series.

The data in these files are a courtesy of ewz, Zurich Municipal Electric
Utility, Tramstrasse 35, P.O. Box, 8050 Zurich.

3.23. The atmospheric carbon dioxide monthly values measured at Mauna
Loa Observatory (Hawaii) can be downloaded from the internet address given
in [84]. Estimate a component model.



4 Interpolation

An interpolation aims at approximating (the estimation of) a (random) func-
tion Z(x), x being a multi-dimensional argument (parameter if the function
is random, as defined in (2.2)), for argument (parameter) values without
observations or, more generally, at the approximation (estimation) of linear
functionals (mentioned in the remarks to (1.1)) of Z(x), e.g., of integrals of
Z(x) over subsets in the argument (parameter) domain. Often, the argument
(parameter) is two-dimensional. For example, the tree-line observations plot-
ted in Fig. 3.10 are a realisation of a random function with a two-dimensional
parameter.

A sharp distinction between interpolation and extrapolation is not ad-
vantageous when applied to functions with a multi-dimensional argument
because mostly a multi-dimensional area with observations cannot be de-
fined unambiguously as has been demonstrated for the two-dimensional case
by the tree-line observations in the Valais alps: the area as defined in Fig. 3.10
is not identical with the convex hull of the points with observations in the
(x, y)-plane, obtained in the remarks to Fig. 3.11. Hence, extrapolation is
only used to emphasise that the function under study, namely Z(x), x multi-
dimensional, is approximated or estimated for x being a larger distance away
from the observations z(xi), i = 1, 2, . . . , N , (compared with the average
distance between the xi), i.e., for x not surrounded by xi.

There are probabilistic and deterministic interpolation methods. Deter-
ministic interpolation methods can be used when the function Z(x) to be
interpolated is quite smooth and the observations are afflicted with only a
small measurement error. For example, a freehand drawing of contours on a
map when interpolating a set of observations z(xi), i = 1, . . . , N , is a deter-
ministic interpolation method. Freehand contouring is often called subjective
interpolation, whereas objective interpolation is used when a mathematically
defined interpolation function is applied, regardless of whether the method
is probabilistic or deterministic. Sect. 4.1 introduces two groups of usual de-
terministic interpolation methods.

If a random function Z(x) is interpolated with a probabilistic method
then the properties of Z(x) as described by its moment functions EZ(x)
and Cov

(
Z(x1), Z(x2)

)
are explicitly taken into account, as is shown in the

remaining sections in this chapter.
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In Sect. 4.2 the stationary and intrinsically stationary spatial random
functions are defined. The second moment function of an (intrinsically) sta-
tionary random function can be estimated by calculating the empirical vari-
ogram, as demonstrated in Sect. 4.3. Using the empirical moments as defined
in Sect. 4.3 and the estimators as defined in Sect. 4.4, interpolation meth-
ods for spatial random functions are thereafter introduced in Sect. 4.5 where
the equations for the interpolation of a stationary, an intrinsically stationary
and a spatial random function with a non-constant expectation function are
given. Sect. 4.6 contains the supplements, including (i) the interpolation of
spatial random functions from observations afflicted with an error, (ii) the
possibility to define an interpolation neighbourhood, and (iii) the estimation
of spatial averages.

The problems are posed in Sect. 4.7.
In the second half of the last century, methods for the optimal interpo-

lation of spatial random functions were developed and applied by mining
engineers for exploring ore deposits: Geostatistics emerged as a discipline
with its own technique for the analysis of ore deposit data and with its own
terminology. Comprehensive textbooks on Geostatistics are [41] and [35].

Optimal interpolation techniques as developed in Geostatistics have, when
compared with deterministic interpolation methods, many advantages which
are enumerated in the remarks concluding Sect. 4.5. Hence, optimal interpola-
tion is the best choice when ore deposits are explored/exploited: the expensive
measurements (often obtained from drilling cores) are used exhaustively (i.e.,
maximal use of the measurements is made) and the estimated interpolation
error allows for assessing the risks of production when investing in the mining
of deposits. Apart from mining, optimal interpolation is used with increasing
frequency in many disciplines, e.g., in water resources management, forestry
or agriculture.

Meteorological variables have been optimally interpolated since about
1960 [54]. Today, optimal (but also deterministic) interpolation procedures
are an integral part of the data assimilation. Data assimilation is the process
of combining observations (as obtained at the surface, from upper-air sound-
ings, and from satellites) with the dynamics (as implemented in a model,
usually a GCM, in the introduction to Sect. 2.7) of the atmosphere in order
to obtain a comprehensive and dynamically consistent data set as an estimate
of the state of the atmosphere at the time of observations [56]. The assimi-
lated data set is (i) comprehensive, i.e., estimates are available at all model
grid points, not only at those near the observations, and (ii) dynamically
consistent, i.e., a sequence of assimilated data sets for time points t1, t2, . . .
is reconcilable with the dynamic principles relevant to the atmosphere. Data
sets obtained from assimilation are then used to calculate weather forecasts
with GCMs. Clearly, data assimilation methods can also be applied to other
dynamic systems (e.g., the ocean, a glacier or the Martian atmosphere) to
obtain a “movie” of their evolution in time and space.
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4.1 Deterministic Interpolation

In (4.1), a variable z(x) is interpolated using a deterministic method. Some
terms in (4.1) are repeated in (4.6) where a random function is interpolated
by way of a probabilistic method.

1. z(x) is a deterministic function of the argument x, with x being a one-
two- or n-tuple of coordinates x∗, y∗, . . ., e.g., x = (x∗1, x∗2, x∗3) or
x = (x∗, y∗). z(x) has been measured at points x1, x2, . . . , xN , and thus
xi, i = 1, . . . , N , are called points with measurements. The xi are in a
bounded and known multi-dimensional domain D in which z(x) is
assumed to exist. Extending the two-dimensional terminology, D is
often called area under study or area with observations.

2. z(x1), z(x2), . . . , z(xN ) or z1, z2, . . . , zN are called data, observations,
measured values or values.

3. The point x0 or x is an interpolation point provided that (i) it is not
a point with measurements and (ii) z(x) is not known.

4. The interpolation of z(x) at x0 or x is a function
ẑ
(
x0, x1, . . . xN , z(x1), . . . , z(xN )

)
which approximates z(x0) as good

as possible; the criteria used for the approximation, however, depend
on the interpolation method.

5. Linear functionals of z(x) are calculated by applying further operations
on z(x), e.g., by calculating integrals.

6. If ẑ(xi) = z(xi) for i = 1, . . . , N , then the interpolation is called exact.
(4.1)

Distance weighted methods interpolate using an interpolation function as
defined in (4.1,4) with arguments calculated from distances between x and
xi, two examples being given in Sect. 4.1.1. Other interpolation methods use
xi, i = 1, 2, . . . , N , to obtain a tessellation of D (i.e., in the case of two-
dimensional coordinates, a collection of figures, e.g., triangles, that fill D
excluding gaps and overlaps). Thereafter, the z(xi) are interpolated in the
figures of the tessellation obtained, an example being given in Sect. 4.1.2.

4.1.1 Distance Weighted Interpolation

A very straightforward interpolation is a linear combination of the observa-
tions using weights which are a function of the distance ri = r(x0, xi) between
the xi and x0 as defined in (4.2).

ẑ(x0) =
N∑

i=1

aiz(xi) ai =
g
(
r(x0, xi)

)∑N
j=1 g

(
r(x0, xj)

) (4.2)

In (4.2), the distance ri = r(x0, xi) is often chosen to be |x0−xi|, the absolute
value of the difference of xi and x0, with g(r) being a function of the distance.
From (4.2) it becomes obvious that an interpolation weight ai depends only
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Table 4.1. Distance weighted interpolation of climatological mean SWIR. SWIR
is measured at the stations and simulated using a climate model at the grid points.

station ob- inter- gridpoint distance weight
coordinates served polated long. lat. model km

Wm−2 Wm−2 Wm−2

Leopoldville/ 179.8 188.6 14.625 −5.046 196.8 104.1 0.2096
Kinshasa-Binza 15.750 −5.046 192.8 95.4 0.2293
15.250 E 15.750 −3.925 182.1 72.7 0.3013
4.3470 S 14.625 −3.925 185.9 83.7 0.2598

St. Petersburg/ 108.6 87.6 29.250 58.878 90.4 134.8 0.0345
Leningrad 30.375 58.878 90.7 121.5 0.0382
30.30 E 30.375 59.999 87.3 5.5 0.8479
59.9670 N 29.25 59.999 87.7 58.5 0.0793

on r(x0, xi), and not on r(xi, xk), i.e., the distances between the points with
observations.

∑N
i=1 ai = 1 is required in (4.2) to obtain ẑ(x) = c for z(x) = c,

c a constant.
In a first example, distance weighted interpolation allows for calculating,

in [149], the differences of observed (obtained from pyranometer measure-
ments, cf. Sect. 1.1) and simulated (from a climate model) values of shortwave
incoming radiation (SWIR) at 720 stations worldwide. Since (i) climatologi-
cal means of SWIR do not change abruptly, as seen in Table 3.4 and Fig. 4.16,
and (ii) the error in the measurements is not large (2% of the mean for yearly
SWIR values, from which the climatologies are calculated [58]), SWIR can
be interpolated with the distance weighted method in the grid cells of a T106
grid with grid size 1.125 degree latitude and longitude (i.e., a high-resolution
GCM grid, as shown in Table 4.1.

In this distance weighted interpolation, the interpolation neighbourhood
is defined by the grid of the climate model since each station with SWIR
measurements is in a grid cell: a station (located in x as defined in (4.1,3))
is surrounded by four grid points (the xi as defined in (4.1,1)) and the in-
terpolation distances are smaller than the diagonal of a grid cell. The in-
verse of the four distances calculated on a sphere with radius 6371 km is
applied as interpolation function (4.1,4). For example, Table 4.1 shows that,
for Leopoldville/Kinshasa-Binza station, the value interpolated from the sim-
ulated values is not too far from the observed one, whereas for St. Peters-
burg/Leningrad station, the observed value is much larger than the interpo-
lated one, provided that the interpolation error is approximately the concen-
tration (in the remarks to (1.17)) of the four simulated values about their
mean.
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Usually, and therefore in opposition to the above SWIR example, the
xi are irregularly scattered in D, the x are grid points and, in addition to
having the properties as required in (4.2), an interpolation ẑ(x, . . .) as defined
in (4.1,4) should meet the following demands:

1. When not calculating spatial averages, ẑ(x . . .) is exact, as de-
fined in (4.1,6) or, at least, approximates the z(xi) close to x.

2. The interpolation neighbourhood depends on xi: often, z(xi) at
a larger distance from x can be neglected without losing accu-
racy in order to reduce the time needed for the calculations.

3. ẑ(x, . . .) should depend not only on the distances between x and
xi but also on the directions of xi as seen from x:
ẑ(x, . . .) should not depend on x− xi solely but also on xi − xk.

(4.3)

For example, the SYMAP algorithm [123] is reconcilable with the require-
ments stipulated in (4.1) and (4.3): its interpolation function depends on the
absolute values and the directions of the x−xi as well as on the xi−xk taking
into account a possibly varying density of the xi in D. Using a SYMAP ver-
sion with spherical (introduced in the remarks to Table 4.1) distances, some
world-wide precipitation climatologies are obtained [121]. Another SYMAP
version is in use to produce daily precipitation maps for the Alps and, from
these maps, a precipitation climatology for the period from 1971 through to
1990 and region

(
(20E, 420N), (190E, 50.00N)

)
was calculated [50].

The SYMAP algorithm as described in [123] and modified as described
in [50] is used to produce an areal precipitation map (shown in Fig. 4.1)
from observations (rain gauge measurements) for October, 5, 1992 and region(
(20E, 420N), (190E, 50.00N)

)
. The interpolation points are on a grid with

distances of 0.30 in easterly and 0.220 in northerly directions, resulting in a
grid size of approximately 25 km as seen in Fig. 4.3.

The stations with rain gauge measurements used for the interpolation as
mapped in Fig. 4.1 are plotted in Fig. 4.2. From Fig. 4.2 it is obvious that the
spatial density of the rain gauge stations decreases rapidly in Italy and thus
cannot be assumed to be constant in the region under study. The varying
density of the xi is accounted for by using the scaled interpolation distance
rs as defined in (4.4)

rs =

√(x∗0 − x∗i
s∆x∗

)2

+
(y∗0 − y∗i
s∆y∗

)2

s = 1, 2, 3, 4 (4.4)

with (x∗0, y
∗
0) being the coordinates of the interpolation point x0 on the 25 km

grid, (x∗i , y
∗
i ) the coordinates of a xi, i = 1, 2, . . . , N , ∆x∗ = 0.3 and ∆y∗ =

0.22 the size of the grid in easterly (x∗) and northerly (y∗) directions. The
algorithm tries s = 1, s = 2, s = 3 and as a last possibility s = 4, until at
least three xi are obtained within a distance of less or equal rs = 1 from x0. If
s ≤ 4 does not exist then an interpolation is not possible. For each x0, rs = 1
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Fig. 4.1. Areal precipitation in mm for October, 5, 1992 and region
(
(20E, 420N),

(190E, 50.00N)
)

interpolated as described in [50].

describes an ellipse with half-axes s∆x∗ and s∆y∗ being the interpolation
neighbourhood of the SYMAP algorithm as described in [123] and modified
in [50].

The original SYMAP algorithm described in [123] determines the interpo-
lation neighbourhood, i.e., s in (4.4), by trial and error until at least four but
not more than ten observations are found in its interior. Then, in this interpo-
lation neighbourhood, a rapidly decreasing interpolation function g(r) = 1/r2

is applied by (i) neglecting observations outside and (ii) giving equal weights
to observations very close to the interpolation location. This results in a
“quite exact” (cf. (4.1,4)) interpolation when the interpolation location is
close to locations with observations. From the interpolated values, areal av-
erages are then obtained by smoothing, i.e., by calculating averages from the
interpolated values in defined areas.

Applying a slowly decreasing interpolation function (for example, the
function (4.5) as described in [50])

g(rs) =
{(

1 + cos(πrs)
)
/2 for rs ≤ 1

0 for rs > 1
rs as defined in (4.4) (4.5)

averages are obtained directly for areas dependent on s∆x∗ and s∆y∗ in
(4.4), i.e., on the interpolation neighbourhood, which, obviously, depends on
the size of the interpolation grid and the density of the observations.
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Fig. 4.2. 6623 locations with observations (rain gauge stations) used for the inter-
polation of the areal precipitation shown in Fig. 4.1.

The directions of the xi as seen from x is accounted for, in the usual
SYMAP algorithm, by calculating 1 − cos(θik) from the angle θik between
x − xi and x − xk and then multiplying the weight 1 − cos(θik) with g(rs)
obtained for pairs of stations using (4.5). Weighting with 1−cos(θik) becomes
plausible when three cases are distinguished: (i) if, seen from x, the angle
between xi and xk is small then 1 − cos(θik) ≈ 0, (ii) if xi and xk are in
approximately opposite directions then 1− cos(θik) ≈ 2, and (iii) if the angle
of xi and xk is approximately 900 then 1 − cos(θik) ≈ 1. These weights are
also applied in the SYMAP version described in [50].

(4.4) and (4.5) in the SYMAP version described in [50] act together when
the areal precipitation for October 5, 1992 and region

(
(20E, 420N), (190E,

50.00N)
)

is interpolated with the result as mapped in Fig. 4.1: as shown in
detail in Fig. 4.3, the interpolation produces (i) using (4.4), an areal precip-
itation even in regions with a small density of rain gauge stations and (ii)
due to (4.5), an areal precipitation smooth enough, even in regions with a
high density of stations. Hence, the areal precipitation is of constant smooth-
ness in the area under study, despite the changing density of observations.
If these precipitation data were interpolated without using a variable inter-
polation neighbourhood then the resulting areal precipitation would appear
to be smooth in regions with a low density of stations and rough in regions
with a high density of stations.
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Fig. 4.3. Zooming into Figs. 4.1 and 4.2: region
(
(100E, 460N), (120E, 47.00N)

)
with lower density of rain gauge stations in Italy than in Switzerland and Austria.
∗ locations with observations, + interpolation location on a grid with sizes 0.30 (in
west-east direction) and 0.220 (in south-north direction).

The areal precipitation interpolated using the modified SYMAP algorithm
in Fig. 4.1 is similar to the estimate as mapped in Fig. 4.34 obtained when
using block kriging, the standard probabilistic method for estimating areal
means. The probabilistic method, however, also estimates the variance of the
interpolation as mapped in Fig. 4.35.

4.1.2 Tessellation of the Area under Study

As an alternative to using an interpolation function which depends on the
distances between interpolation points x and points with observations xi,
i = 1, 2, . . . , N , deterministic interpolation methods are available that par-
tition, using all xi, the domain D into subsets that exhaust D and do not
intersect, i.e. in the two-dimensional case, into triangles, rectangles or other
polygons that fill D (excluding gaps and overlaps). The set of polygons thus
obtained is called a tessellation of D. These polygons are then used for the
interpolation: linearly on the sides, using low order polynoms in the coordi-
nates in the interior. For example, a polygon whose interior consists of all
points in D closer to xk than to any xi �= xk, xi and xk being points with
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observations, is called a Voronoi polygon [6] and the resulting tessellation a
Dirichlet tessellation. As a second example, a set of triangles that tessellate
D is used in Akima’s interpolation.

Akima, in [2], triangulates D being in the x∗-y∗-plane such that xi, i =
1, 2, . . . , N , become vertices of the triangles. The first side in the first triangle
is defined by the pair (xi, xk) most close to each other. Then the centre c of
this side is determined. From the remaining xi, the one closest to c becomes
the third vertex of the first triangle. When the first triangle is complete,
further triangles are added: one for each of the remaining xi ordered with
increasing distance from c. The sides of the triangle added are obtained by
drawing lines from xi to the vertices of those triangles that are “visible”, i.e.,
the sides of the triangle added do not intersect with any side of the triangles
already existing. This order asserts that each xi added is outside the convex
hull of the xk already triangulated, i.e., having become vertices of one or
more triangles.

Then, in the interior of the triangles, Akima’s algorithm calculates low-
order polynomials in x∗ and y∗ from the partial derivatives (d/dx∗)z,
(d2/dx∗2)z, (d/dy∗)z, (d2/dy∗2)z and (d/dy∗)

(
(d/dx∗)z

)
such that the func-

tion defined by the polynomials becomes smooth on the sides of the triangles.
The partial derivatives at an xk are calculated using the observed zi and the
z(xi) at the n nearest xi. Usually, 3 ≤ n ≤ 10 is chosen.

For example, when the observations of the tree-line in the Valais alps as
plotted in Fig. 3.10 are interpolated using Akima’s algorithm with n = 5:

#function interp(), an implementation of Akima’s interpolation

#algorithm, is available in Splus [11], an ancestor of R.

#tl.frame observations of the tree-line (Sect. 3.6)

#xnull,ynull grid with interpolation locations: interp()

# generates the objects for contour() (Sect. 3.6)

#n number of observations used for the

# calculation of the partial derivatives:

# the interpolation becomes smoother with

# increasing n

w <- interp(tl.frame$x,tl.frame$y,tl.frame$z,

xnull,ynull,n=5,extrap=F)

contour(w, levels=c(1800,1900,2000,2100,2200,2250,2300,2350,2400,

2450,2500),xlab="0:600 SWISSTOPO",ylab="0:100 SWISSTOPO")

points(tl.frame)

text(tl.frame,label=z)

the result in Fig. 4.4 is obtained. Above, n = 5 was selected by trial and error
to make Akima’s interpolation similar to the fifth order trend surface for the
tree-line in the Valais alps as plotted in Fig. 3.11. A smoother interpolation
is, however, obtained with n > 5.
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Fig. 4.4. Tree-line in the Valais alps interpolated using Akima’s algorithm from the
observations in Fig. 3.10. Coordinates (approximately equi-scaled) and contours as
in Fig. 3.11.

4.1.3 Discussion

Often, when not high accuracy is called for, a distance weighted interpola-
tion method is used which is simple to implement and fast. Most distance
weighted methods can be easily tailored to suit specific applications: dis-
tances, interpolation neighbourhoods and interpolation functions are chosen
to arrive at the desired result. An example is the version of the SYMAP algo-
rithm introduced in Sect. 4.1.1. A tessellation of D (the domain in which the
variable under analysis z(x) is assumed to exist) can be useful when D is to
be partitioned into subsets influenced by the xi using, e.g., Voronoi polygons.

Deterministic interpolation methods, however, have the following disad-
vantages:

1. The interpolation neighbourhood is defined by the method, e.g., using
(4.4) when interpolating with the SYMAP version as described in [50]
or by n = 5 when using Akima’s method for the interpolation of the
tree-line in the Valais alps as demonstrated in Fig. 4.4.

2. The interpolation function (used in distance weighted methods) or the
partition of D (used in tessellation methods) depend on the algorithm
selected and not solely on the data.

3. The interpolation error is not explicitly part of the algorithm and thus has
to be assessed somehow from the known variability of z(x): the method
is not optimal when applied to a random function, i.e., does not predict
with the least mean square prediction error (cf. definition (2.61,2)).
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4.2 The Spatial Random Function and its Variogram

It is assumed that the observations z(xi) to be interpolated stem from a real-
isation of a spatial random function Z(x). The moments of a spatial random
function can be estimated (Sect. 4.3) and then used for an interpolation of
Z(x) with probabilistic methods (Sect. 4.5).
1. A random function Z(x) with a (generally) four-dimensional

parameter being the coordinates in space and time is called
a spatial random function or regionalised variable. Often,
the parameter is two-dimensional.

2. x, y, . . . are points (locations) in the parameter space, and
x∗, y∗, z∗, x∗1, x

∗
2, . . . are coordinates.

3. A realisation z(x) of Z(x) is observed at points xi,
i = 1, . . . , N , to obtain observations zi = z(xi).

4. Z(x) is assumed to exist in a known parameter domain D.
5. x0 or x is an interpolation point as defined in (4.1).

(4.6)

D is usually given by its geographical boundaries in longitude, latitude
and altitude and by specifying a period if time is a dimension of x.

In D, Z(x) is often assumed to be continuous. This assumption applies to
many meteorological (temperature, humidity, etc.) and geometric (altitude,
thickness of a deposit, etc.) variables for physical reasons. An example of a
variable being non-continuous is the shortwave downward radiation absorbed
at the surface: it jumps at a coast because the albedos (the fractions of
radiation reflected from the ground) of water and a solid surface differ. In D,
Z(x) is usually non-isotropic, i.e., the properties of Z(x) are not independent
of direction. Temperature, for example, changes more rapidly with increasing
altitude than with increasing horizontal distance.

The moment functions of a spatial random function Z(x) are functions of
the parameter x, as can be seen in (4.7).

Let Z(x) be a spatial random function as defined in (4.6), Then:
1. EZ(x) = µZ(x) = µ(x) is called expectation function or drift,
2. Cov

(
Z(xi), Z(xk)

)
= cZ(xi, xk) = c(xi, xk) = cik

or Cov
(
Z(xi), Z(x0)

)
= cZ(xi, x0) = c(xi, x0) = ci0

or Cov
(
Z(xi), Z(x)

)
= cZ(xi, x) = c(xi, x) = ci0

or Cov
(
Z(x), Z(y)

)
= cZ(x, y) = c(x, y) covariance function,

3. VarZ(x) = σ2
Z(x) = σ2(x) variance function and

4. Var
(
Z(x) − Z(y)

)
= 2γZ(x, y) = 2γ(x, y) variogram

and γZ(x, y) or γ(x, y) semivariogram of Z(x). From (1.15,8)
2γZ(x, y) = σ2

Z(x) + σ2
Z(y) − 2cZ(x, y) is obtained.

(4.7)

(4.7) contains, when compared with (2.4), additional definitions often used in
Geostatistics: (i) “drift” is used to avoid “trend” for an expectation function
EZ(x) that is possibly not constant, and (ii) (half of) the variance of differ-
ences of Z(x) calculated for differences in the parameter x, i.e., displacements,
is called (semi-) variogram.
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If a large number of independent realisations of the spatial random func-
tion Z(x) have been observed then many values z(xi) are available. Since the
z(xi) are iid., as defined in (1.2), the estimates known from an introduction
to Statistics can be calculated for the moment functions of Z(x) defined in
(4.7). Usually, however, observations z(xi) stemming from only one realisa-
tion are available and, consequently, estimates can be calculated only under
additional assumptions. Usually, the spatial random function Z(x) under
analysis is assumed to be stationary in (4.8), or intrinsic in (4.9).

The moment functions of a stationary spatial random function are invari-
ant under translations as defined in (4.8):

A spatial random function Z(x) as defined in (4.6) with moment
functions as defined in (4.7) is stationary on condition that:

1. EZ(x) = µZ(x) = µ, i.e., its expectation function is constant, and
2. Cov

(
Z(y), Z(x)

)
= Cov

(
Z(x+ h), Z(x)

)
= cZ(h) = cZ(y − x),

its covariance function depends, for x and y in D, on the
translation h = y − x and not on x and/or y.

(4.8)
The translations h in (4.8) are multi-dimensional as the parameter x is multi-
dimensional and, therefore, translations are possible in more than one direc-
tion whereas, in definition (2.8), the parameter t of the stochastic process
X(t) is one-dimensional and translations τ are only possible in time.

Many random functions are found to be not stationary: using the diag-
nostics introduced in Sect. 2.5, for example, a random walk process (Xt) as
defined in (2.20) with µW = 0 is not stationary since its covariance function
cX(t, u) = min(t, u) �= cX(t − u) as obtained in (2.69) is not a function of
the translation t− u. Consequently, the moment functions of these processes
cannot be estimated under the stationarity assumptions as required in (2.8)
or (4.8).

Are estimates possible under other, less restrictive, assumptions? Less
restrictive than the stationarity is the intrinsic hypothesis as defined in (4.9)

A stationary random function Z(x), as defined in (4.6), with
constant expectation function µZ(x) = µX satisfies the intrinsic
hypothesis, (or, equivalently, is intrinsically stationary) on
condition that its differences Z(x+h)−Z(x) are stationary:

1. E
(
(Z(y)−Z(x)

)
= E

(
(Z(x+h)−Z(x)

)
= 0 and

2. Var
(
Z(y)−Z(x)

)
= Var

(
Z(x+h)−Z(x)

)
= E

(
Z(x+h)−Z(x)

)2
= 2γZ(h) = 2γZ(y − x) for all x and x+h in D.

(4.9)

which requires differences Z(x + h) − Z(x) of the spatial random function
to be stationary. Comparing definitions (4.8) and (4.9) it is immediately
concluded that a stationary random function satisfies the intrinsic hypothesis;
the inverse, however, is not true.

For example, the random walk process X(t) = X(t − 1) + W (t), W (t)
being a normally distributed white noise process with µW = 0 and σ2

W = 1,
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(b): not bounded
c(o) not defined

direction 1

(c): anisotropic (d): hole effect

c(0)

direction 2

a

(a): bounded
sill c(0)
range a

Fig. 4.5. Variogram types according to its behaviour for |h| not close to 0. |h| is
plotted on the horizontal axis, 2γ(|h|) on the vertical axis.

is intrinsically stationary, since (i) its drift µX(t) = 0 is constant, as ob-
tained in (2.67), and (ii) the variance of differences X(t)−X(u) depends on
h = u− t solely: Var

(
X(t+ h)−X(t)

)
= Var

(∑t+h
u=1W (u)−∑t

u=1W (u)
)

=
Var

∑t+h
u=t+1W (u) =

∑h
u=1 σ

2
W = h = 2γX(h), as is derived from its covari-

ance function cX(t, u) = min(t, u) in (2.69). Thus, as the variogram of a ran-
dom walk process increases linearly and is not bounded (plot (b) in Fig. 4.5),
both properties are in agreement with the divergence of those realisations of
a random walk process demonstrated in Fig. 2.12.

In contrast, the variogram of a stationary random function Z(x) is
bounded, as derived in Problem 4.4: γZ(h) = cZ(0) − cZ(h), cZ(0) = σ2

Z(x)
being the constant variance function of Z(x). Hence, the variogram γZ(h) of
a stationary random function Z(x) increases (plot (a) in Fig. 4.5) and comes
closer to its sill c(0) with increasing h, provided that the covariance function
cZ(h) decreases with increasing h: γZ(h) = cZ(0) for h ≥ a, a being the range
of the variogram.

Two additional variogram types can be distinguished by following the be-
haviour of 2γ(h) for translations h not close to zero. A variogram with a peak
(plot (d) in Fig. 4.5) corresponds to a possibly existing (when Z(x) is station-
ary) covariance function with a hole effect, pointing to a periodic second mo-
ment function. An anisotropic variogram (plot (c) in Fig. 4.5) depends on the
translation h = y−x, i.e., the direction and the distance |h| = |y−x|, whereas
an isotropic variogram depends solely on the distance: 2γ(h) = 2γ(|h|). A ge-
ometric anisotropy can be captured using the generalised distance as defined
in (4.10) for spatial random functions with two-dimensional parameter.

Let x∗i and y∗i be the coordinates of x ∈ D and y ∈ D,
gik be constant and let h∗i = x∗i − y∗i . Then
|h(g)| =

(
g11h

∗2
1 + g12h∗1h∗2 + g22h∗22 + . . .

)1/2

is called generalised distance of x and y.

(4.10)

Points at identical generalised distance away from a point x0 ∈ D are on an
ellipse described by γ(x − x0) = a or γ(x − x0) = a, a constant (plot (b) in
Fig. 4.6).
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Fig. 4.6. For an isotropic spatial random function, the covariance of points on the
circle and its centre x0 is constant (plot a); for a geometrically anisotropic one, the
covariance of points on the ellipse and x0 is constant, the points on the ellipse being
at identical generalised distance (4.10) away from x0 (plot b).

In addition to terms such as sill, range, etc. used in Geostatistics to de-
scribe a variogram for translations not close to zero, the terms smooth, con-
tinuous and nugget effect are used to describe a variogram for very small
translations, i.e., for h close to zero: variograms with 2γZ(h) = 0 are either
smooth in |h| = 0 (plot a in Fig. 4.7) or continuous (plot b in Fig. 4.7),
whereas variograms increasing over a very short distance from 0 to a finite
number and thereafter showing a moderate increase, as shown in plots (c)
and (f) in Fig. 4.7, are said to have a nugget effect. The estimate for a vari-
ogram having a nugget effect, however, jumps in |h| = 0, as shown in plot (e)
in Fig. 4.7 (variograms are estimated by calculating the empirical variogram
as introduced in Sect. 4.3).

The term nugget effect was coined by Geostatisticians to describe var-
iograms for Z(x), Z(x) being the amount of gold per unit volume, in de-
posits where gold is found in the form of nuggets. In such a deposit, Z(x)
jumps when moving into the interior of a nugget and, therefore, its variogram
2γZ(h) = 2γZ(y−x) = Var

(
Z(y)−Z(x)

)
changes very rapidly for very small

differences of x and y. In contrast, the empirical variogram, being calculated
from measurements of Z(x) in volumes larger than the nuggets (Sect. 4.6.2),
jumps in |h| = 0. In general, an empirical variogram with a jump in |h| = 0
which is not due to a measurement error (Sect. 4.6.3) is said to have a nugget
effect, i.e., a spatial random function with a large natural variability for very
small translations has a variogram with a nugget effect.

A white noise process has a variogram with a pure nugget effect as shown
in plot (d) in Fig. 4.7. The white noise process (Wt) with integer parameter t
is defined in (2.10) or (2.11). If, however, t is real, then a stochastic continuous
(defined in (7.16,1))) white noise process does not exist: in the remarks to
(7.22) it is shown that Cov

(
Z(xi), Z(xk)

)
= 0 for xi �= xk, with |xi−xk| very

small and close to zero, is not possible on condition that Z(x) is a stochastic
continuous random function with real parameter x.
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(f):nugget effect:
true variogram

(e): nugget effect: empirical
variogram with estimated values

(a): the derivative of
Z(x) is continuous

(b): Z(x) is
continuous

(c): Z(x) with
nugget effect

(d): Z(x) with
pure nugget effect

Fig. 4.7. Variogram types according to its behaviour for |h| not close to 0. |h| is
plotted on the horizontal axis, 2γ(|h|) on the vertical axis. Below, nugget effect in
the (empirical) variogram for h in higher resolution.

4.3 Estimating the Variogram

The variogram 2γZ(h) of a spatial random function Z(x) is estimated with
the empirical variances of differences z(xi)− z(xk) provided that many inde-
pendent observations are available for all xi. In Geosciences, however, often
only one realisation of Z(x) has been observed and, therefore, only one z(xi)
is available for all xi. In this case, it is assumed that Z(x) is intrinsically
stationary and the empirical variogram 2γ̂Z(h) is calculated as an estimate
for 2γZ(h) by partitioning the set of all differences xi − xk using direction
and distance.

The empirical variogram 2γ̂Z(h) is an estimator for the vario-
gram 2γZ(h) of a spatial random function Z(x), satisfying the
intrinsic hypothesis as defined in (4.9), provided that
2γ̂Z(h) =

(
1/n(h)

)∑
xi−xk ∈ class(h)

(
Z(xi) − Z(xk)

)2
is calculated for those n(h) pairs (xi, xk) with differences
xi − xk ≈ ±h in the anisotropic case and
xi − xk ≈ |h| in the isotropic case.

(4.11)

Differences xi −xk ≈ ±h as required in (4.11) are obtained by sorting the
xi −xk into classes of distance and direction as shown in Fig. 4.8; thereafter,
values 2γ̂Z(h) are calculated for each distance class in the isotropic case and
for each combined distance and direction class in the anisotropic case.

In the isotropic case, an empirical variogram can be calculated without
using direction and distance classes as demonstrated in (4.40).

Definition (4.11) is, even in combination with Fig. 4.8, a skeleton, the body
of the variogram estimation only becoming visible when empirical variograms
are calculated for the examples given in Sects. 4.3.1, 4.3.3 and 4.3.4.
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y*

x*

points with measurements centroid of
classes

delta y*

delta x*

Fig. 4.8. Sorting the xi − xk into classes of distance and direction shown for
two-dimensional x: three differences in the (x∗, y∗)-plane (on the left), the same
differences in the (∆x∗, ∆y∗)-plane being partitioned into classes of distance and
direction as required in (4.11) (on the right).

4.3.1 Empirical Variograms I: the Isotropic Case

Cereals used for bread making and forage crops are cultivated under crop
rotation on plot “Strassenacker” of the Inforama Rütti located in Zollikofen
(near Berne, Switzerland). On this plot, the soil type undergoes variations
and, consequently, also soil parameters show spatial variations. For exam-
ple, potassium, in water soluble and exchangeable form (K, written as oxide
K2O in this chapter) which can be taken up by the roots via diffusion, has
values varying between 1.6 and 7.1 mg in 100 g of soil, i.e, a range from a
medium to a very abundant K2O content. As K2O is important for many
physiological processes (including photosynthesis), crop growth may not be
constant over the plot and, consequently, also biomass and grain yield may
show spatial variations. If the spatial variability of soil properties and yield
within a plot are known from measurements and interpolation then soil and
crop management can be carefully chosen to arrive at a sustained yield.

In plot “Strassenacker”, soil parameters and crop yields depend on past
and present natural (peri-glacial sedimentation at the end of the last ice-age
and subsequent climate and vegetation history) and antropogenic processes
(farming methods practised since the plot became arable land during Celtic or
Roman times) with intricate inter-dependencies and are, therefore, assumed
to be spatial random functions. These random functions can be predicted
using the methods introduced in Sect. 4.5 provided that their covariance
functions or their variograms are known. As estimates, empirical variograms
are calculated using (4.11) on condition that observations are available for a
sufficiently large number of points in the “Strassenacker” plot.

In year 1995 (the crop was oats), the yield (biomass and grain) and some
soil parameters were measured in plot “Strassenacker” [63]. The grain yield
and biomass were obtained by mowing a square with side 1 m about each
point xi with measurements, threshing and then weighing immediately (to
obtain the fresh weight) as well as after some time in the compartment drier



4.3 Estimating the Variogram 187

(to obtain the dry weight). Consequently, the yield values are averages cov-
ering 1 m2. Values for the soil parameters were obtained from probes with
5 cm diameter in the first 20 cm of soil, and, consequently, soil parameter
values are averages over approximately 400 cm3 of soil. The resulting data
are available in text file /pfad/stracker.dat, one line for each measurement
with comma-separated values, in the first line the abbreviated names (short
names in the following paragraphs) of the variables measured:

X,Y,pH,OrgMat,Ntot,CNratio,grain,biomass,potass,phosph

0,0,6.9,4.1,0.29,8.2,587.5,1147.3,7.1,0.73

8,0,6.2,2.7,0.29,5.4,450.4,909.3,3.9,0.56

...

This file is read with
stracker <- read.table("/path/stracker.dat", sep=",", header=T)

to obtain R dataframe stracker with vectors
#X coordinate, distances of observations are 15 m, and

# 8 m and 12 m at margins of plot

#Y coordinate, distances of observations are 15.66 m

#pH pH-value

#OrgMat organic matter (in %)

#Ntot total nitrogen (in %)

#CNratio ratio of C (carbon) and N (nitrogen)

#grain grain yield (g dry matter per m2)

#biomass biomass (plants without roots, g dry matter per m2)

#potass potassium in water soluble and exchangeable

# form K2O (mg per 100 g of soil)

#phosph phosphorus in water soluble and exchangeable

# form P205, (mg per 100 g of soil)

from which, for example, histograms of the K2O measurements as plotted
above, in Fig. 4.9, are obtained with

hist(stracker$po,xlab="potassium") #...$po for ...$potass

hist(log(stracker$po),xlab="log(potassium)")

and the plot below, in Fig. 4.9, of the logarithms of the K2O measurements
is obtained using

plot(c(0,160), c(0,160), type = "no", xlab = "m", ylab="m")

title("log(potassium)")

text(stracker$X, stracker$Y,label=round(log(stracker$po),2))

with R function log() calculating the logarithm.
Do the K2O observations z(xi) as plotted below, in Fig. 4.9, stem from a

realisation of a stationary spatial random function Z(x)? No systematic in-
crease or decrease is seen in the z(xi) and, therefore, the expectation function
µZ(x) is assumed to be constant over the “Strassenacker” plot, as required
in (4.8,1) or (4.9,1). Is Z(x) stationary in its covariance function as required
in (4.8,2)? An answer to this question is given by calculating the empirical
variogram 2γ̂Z(h): if 2γ̂Z(h) is bounded, i.e., increases until it reaches a sill
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Fig. 4.9. Observations of potassium, in water soluble and exchangeable form K2O
(log(mg in 100 g of soil)) in plot “Strassenacker’ (below) and its histograms prior
and subsequent to taking the logarithm (above).
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as shown in Fig. 4.5 (a), then Z(x) is assumed to be stationary in the second
moment function.

In R, functions for spatial analysis are made available by invoking li-

brary(spatial). In 1999, when the examples in this chapter were analysed,
the functions in the spatial library [136] available at that time for Splus were
found to be inferior in performance to those available in Gstat as described in
[107] and [105]. Since 2003, Gstat is also available as R package ([106] and link
“R spatial projects” available under [114]), the author, however, prefers the
Gstat stand-alone version [105] because of its interfaces with Geographical
Information Systems (GIS) as argued in the remarks concluding Sect. 4.5.1.

Gstat in its stand-alone version reads the observations from text files
with all values pertaining to one observation in one line, separated by spaces,
provided that these files contain GeoEAS header lines as described in [105]:
the first header line contains a description of the data, the second the number
of the variables, the third and following header lines contain the descriptions
of the variables, one line for each variable. For example, the following GeoEAS
file /path/stracker.eas

stracker

11

number of observation

X

...

short names as in the first line in file /path/stracker.dat above

...

phosph

1 0 0.00 6.9 4.1 0.29 8.2 587.5 1147.3 7.1 0.73

...

with the “Strassenacker” observations is obtained by writing R dataframe
stracker generated above on file /path/stracker.eas and thereafter adding
the header lines using a text editor. The numbers in the first column in
/path/stracker.eas are generated when the observations are read into R
dataframe stracker, as the lines have no numbers in file /path/stracker.dat.

Having prepared the GeoEAS table file /path/stracker.eas, please invoke
the Gstat user interface for the variogram estimation by typing

gstat -i

and thereafter select one of the following possibilities from the menu:

1. enter/modify data to read a GeoEAS file with one or more variables,
as Gstat is designed for the estimation of multivariate spatial random
functions

2. choose variable to select one or two variables
3. calculate what to select the moment to be estimated
4. cutoff, width to choose the maximum distance and width of the distance

classes to be used for computing the empirical variogram as defined in
(4.11) and Fig. 4.8
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5. direction to choose the direction classes to be used for calculating the
empirical variogram

6. variogram model to select the model to be fitted to the empirical vari-
ogram (examples are given in Fig. 4.10)

7. fit method to select the method for the fitting of the model selected
8. show plot to calculate and plot the results.

Select enter/modify data and then answer the following questions
Choose identifier or enter new one [] : Potassium

definition of ‘Potassium’ (variable 1):

Enter data file name [] : /path/stracker.eas

Enter x coordinate column number [0] : 2

Enter y coordinate column number [0] : 3

Enter variable column number [0] : 10

Log transform data [n] : Yes

Average duplicate observations [n] : Yes

/path/stracker.eas (GeoEAS file)

attribute: log(potass) [x:] X: [ 0, 157]

n: 140 [y:] Y: [ 0, 141]

sample mean: 1.16752 sample std.: 0.284795

Press any key to continue...

to initialise Gstat for calculating the empirical variogram of the K2O obser-
vations in the “Strassenacker” soil:

1. The identifier Potassium is used for the K2O observations (observation of
potassium in water soluble and exchangeable form) in the “Strassenacker”
soil by specifying the columns with the observations of the variable under
analysis in the GeoEAS file /path/stracker.eas.

2. The logarithm of the observations is taken since the histogram on the
right in Fig. 4.9 is more symmetric than the histogram on the left.

3. The mean of observations with identical coordinates is calculated to pre-
pare for a possible interpolation which applies the kriging systems as
derived in Sect. 4.5.

Gstat then calculates the mean and the standard deviations given above and
is ready to compute the empirical variogram of the variable under analysis
as required in (4.11) and Fig. 4.8.

It is supposed that K2O is globally (as defined in a version of (2.55) for
spatial random functions) stationary and, therefore, empirical variograms are
meant to cover a maximal distance of 140 m, i.e., the length of the shorter side
of the “Strassenacker” plot becomes the maximal distance in the (∆x∗, ∆y∗)-
plane on the right in Fig. 4.8. This maximal distance is called cutoff in Gstat.
The (∆x∗, ∆y∗)-plane is then partitioned into classes 450 wide for directions
(direction in gstat) 00 (positive y∗ axis), 450, 900 (positive x∗ axis) and 1350,
as well as distance classes 10 m wide (width in Gstat). Then, Gstat computes
the empirical variograms in Fig. 4.10, plots (a), (b), (c) and (d).
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Fig. 4.10. Empirical semivariograms γ̂(h) in (log(mg in 100 g soil))2 of K2O in
the “Strassenacker” soil are plotted with + and n(h), n(h) being the number of
the differences h = xi − xk, xi and xk being points with observations, in a distance
and/or direction class. (a), (b), (c) and (d): calculated for |h| ≤ 140 m with 10 m
wide distance classes for the directions 00, 450, 900 and 1350 clockwise from the
direction of positive y; (e) and (f): for all directions with widths 10 and 2.5 m.

There are 20 differences h = xi − xk (xi and xk being points with ob-
servations) with |h| = 8 m, which are calculated from pairs (xi, xk) at the
left and right margins of “Strassenacker” plot as can be seen in Fig. 4.9.
Hence, the estimate for the smallest distance class for direction 900 (plot (c)
in Fig. 4.10) (i) is not representative for the “Strassenacker” plot, and (ii)
has a larger variance than those pertaining to the remaining distance and di-
rection classes being calculated from larger numbers (between 100 and 300)
of pairs (xi, xk).
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The points with observations xi in the “Strassenacker” plot are on a grid
with identical cells (except those points close to the left and right margins
where the cells become smaller in x∗-direction). An allocation of the xi in a
grid is an advantage when interpolating and a disadvantage when calculating
the empirical variogram as no estimates are obtained for |h| smaller than
the size of the grid. This disadvantage could have been avoided when in
1995, in addition to probing at 140 grid points, observations were made at
approximately 30 points irregularly scattered over the “Strassenacker” plot.

The empirical semivariograms for directions 00, 450, 900 and 1350 (plots
(a), (b), (c) and (d) in Fig. 4.10) increase, from approximately 0.06 (log(mg
in 100 g of soil))2 (this unit is omitted in the following paragraphs) for |h| ≈
20 m, until they arrive at their sills between 0.08 and 0.10 for ranges 40 ≤
|h| ≤ 60 m. Because these sills and ranges are approximately identical for
all four directions, the K2O variogram is assumed to be isotropic from a
comparison with plot (c) in Fig. 4.5 and, therefore, empirical semivariograms
are calculated by partitioning the (∆x∗, ∆y∗)-plane on the right in Fig. 4.8
solely into distance classes, being 10 and 2.5 m wide (plots (e) and (f) in
Fig. 4.10). These statistics are often called isotropic empirical semivariograms
or empirical semivariograms for all directions.

When calculating an isotropic empirical variogram, the number of the
differences |h| in a distance class decreases with decreasing width and, there-
fore, the empirical variance of the estimates γ̂(h) calculated as required in
(4.11) increases when the width of the classes decreases, as fewer observations
are available for each estimate. For example, when estimating the isotropic
K2O variogram, the estimates calculated for 10 m classes are closer to an
assumed theoretical smooth model than those for classes being 2.5 m wide,
as is obvious from plots (e) and (f) in Fig. 4.10.

Using distance classes being 2.5 m wide, estimates γ̂(h) ≈ 0.04 are calcu-
lated for 10 ≤ |h| < 20 m. Thus, more evidence is obtained to substantiate
that the K2O variogram increases for increasing distances |h|; in this general
pattern, however, γ̂(h) ≈ 0.12 for 7.5 ≤ |h| < 10 m (calculated solely from
observations at the left and right margins of the “Strassenacker” plot) does
not fit. Neglecting this estimate, the K2O semivariogram is assumed to have a
sill of 0.08 and a range of 50 m and, consequently, to be bounded, reconcilable
with a stationary spatial random function as shown in plot (a) in Fig. 4.5.

Summarizing these results, K2O in the “Strassenacker” soil is assumed to
be isotropic and stationary in its covariance function.

The observations of the “Strassenacker” soil parameters are averages cov-
ering approximately 400 cm3 soil resulting from probes with 5 cm diameter
and 20 cm depth. This diameter is small when compared to the side of the
“Strassenacker” plot and thus the soil values are assumed to be point obser-
vations as required, in Sect. 4.6.2, when an empirical variogram is calculated.
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4.3.2 Variogram Models

An analytical function (an analytical variogram or variogram model) is
(preferably, as shown in the remarks concluding Sect. 4.4) fitted to an em-
pirical variogram prior to interpolating a spatial random function with the
kriging systems derived in Sect. 4.5. Frequently used variogram models are
introduced in Fig. 4.11.

The variogram model to be fitted to an empirical variogram is selected
and its parameters can be “estimated” by trial and error when advantage is
taken of the following hints:

1. The slope in |h| = 0 is obtained by drawing a straight line through the
first values of the empirical variogram. For example, a model for the
isotropic and bounded K2O semivariogram is not smooth in |h| = 0 as
can be seen in plots (e) and (f) in Fig. 4.10: a spherical or an exponential
model is fitted and not a Gaussian model.

2. The intersection of the straight line (obtained above) with the vertical
axis is an approximation of the nugget effect, provided that the observa-
tions are not afflicted with a measurement error. For example, the K2O
semivariogram has a nugget effect of approximately 0.015 (log(mg in 100 g
of soil))2 (this unit is omitted in the following paragraphs) when the es-
timates 0.12 for 7.5 ≤ |h| < 10 m are neglected because they stem solely
from observations at the left and right margins of the “Strassenacker”
plot.

3. The sill and also range of the model (the range is identical with parameter
a in the case of both spherical and cubic models) are seen in the plot of
the empirical variogram. For example, in plots (e) and (f) in Fig. 4.10,
the sill of the K2O semivariogram is approximately 0.08 and its range
approximately 50 m.

For example, using this guideline, a spherical model with sill 0.08, range 50 m
and nugget effect 0.015 is fitted to the empirical K2O semivariograms in plots
(e) and (f) in Fig. 4.10.

All variogram models frequently used for the interpolation of spatial ran-
dom functions are available in Gstat [105]. For example, when fitting a model
to the empirical variogram of K2O in the “Strassenacker” soil as calculated
in plot (f) in Fig. 4.10, variogram model is selected in the menu of the Gstat
interface for the variogram estimation introduced in Sect. 4.3.1: Gstat is
now ready to accept 0.015 Nug(0) + 0.065 Sph(50), i.e., the notation used in
Gstat for a spherical model with sill 0.08 = 0.015 + 0.065, range 50 m and a
nugget effect 0.015 (these “estimates” are obtained above by trial and error).
When, however, the jump in |h| = 0 would be found to be due to an error in
the measurements, a model 0.015 Err(0) + 0.065 Sph(50) would rather be
fitted. Gstat also provides for models with both a nugget effect and an error
in the measurements, as introduced in Sect. 4.6.3.
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linear variogram for b = 1

(ii) spherical

γ(h) =

{
c(0)F (|h|/a) for |h| ≤ a
c(0) for |h| > a

where F (v) = (3/2)v − (1/2)v3

with a covariance c(h) = c(0) − γ(h) being pro-
portional to the volume of the intersection
of two spheres

(iii) exponential
γ(h) = c(0)
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)
with a tangent in the origin that intersects the
sill c(0) in a limiting the interpolation distance:
do not interpolate for distances larger than 3a
where γ(h) ≈ 0.95c(0)
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γ(h) = c(0)
(
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with a limiting the interpolation distance: do
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(v) cubic

γ(h) =
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c(0)F (|h|/a) for |h| ≤ a
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with F (v) = 7v2 − (35/4)v3 + (7/2)v5 − (3/4)v7

being smooth (like the Gaussian) in the origin

Fig. 4.11. Variogram models. On the horizontal axis |h|, the absolute value of
translations as defined in (4.8) or (4.9), on the vertical axis the semivariogram
γ(|h|). The power variogram (i) is plotted for d = 1, the other models are bounded
with sill c(0) = 2, a is the range in the spherical (ii) and cubic (v) models.

When fitting a variogram model by trial and error (no fit in Gstat), the
parameters of the model are corrected until the best fit (as judged from the
plot) is obtained. For example, a spherical model with sill 0.08 = 0.015+0.065,
range 50 m and nugget effect 0.015 is fitted to the K2O empirical variogram
(plot (a) in Fig. 4.12) provided that the estimates 0.12 for 7.5 ≤ |h| < 10 m
are neglected due to them stemming solely from observations at the left
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Fig. 4.12. Spherical models, both with a nugget effect, fitted to the empirical
semivariogram (in (log(mg in 100 g soil))2) of K2O in the “Strassenacker” soil as
in plot (f) in Fig. 4.10: fitted by trial and error (a) and using the WLS method as
implemented in Gstat (b).

and right margins of the “Strassenacker” plot. When, however, a fit is not
obtained after a few attempts, the trial and error fitting is repeated using
another model.

Fitting by trial and error is preferred when the values in the empirical
variogram are given subjective weights, as seen above in the K2O exam-
ple. Usually, however, a variogram model is fitted in Gstat using iterative
reweighted least squares (WLS) or restricted maximum likelihood (REML)
estimates [105]. For example when, as shown in plot (b) in Fig. 4.12, a spher-
ical model is fitted using WLS to the empirical variogram of K2O, a nugget
effect amounting to 0.045 is obtained, — much larger than in the model
fitted by trial and error and neglecting the empirical variogram values for
7.5 ≤ |h| < 10 m (plot (a) in Fig. 4.12).

The spherical model with a nugget effect 0.015 fitted by trial and error is
believed to be closer to the true variogram of K2O in the “Strassenacker” soil
than the model with a larger nugget effect fitted using WLS. Unfortunately,
no better estimate for the variogram close to |h| = 0 can be obtained because
no empirical variogram values are available for small |h|, due to the lack of
observations with |xi − xk| < 7.5 m in the “Strassenacker” plot.

In Sects. 4.3.1 and 4.3.2, K2O in the soil of the “Strassenacker” plot
is used as an introductory example for variogram estimation. It is demon-
strated that definitions (4.8) and (4.9) of stationary and intrinsically station-
ary random functions, as well as the definition of the empirical variogram
in (4.11) and Fig. 4.8, are easily applied to the K2O observations: it is ob-
vious, in Fig. 4.9, that the mean of K2O is approximately constant in the
“Strassenacker” plot, and, in Fig. 4.10, that the empirical variogram of K2O
is isotropic and bounded. Hence, K2O is assumed to be a globally (i.e., all over
the “Strassenacker” plot) stationary spatial random function. Less straight-
forward, however, is the fitting of a model to the empirical variogram of K2O:
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the amount of the nugget effect remains uncertain because no variogram es-
timates are available for |h| < 7.5 m.

Often, a variogram estimation is more intricate, and it is recommended
to proceed as proposed in (4.12).

When a variogram is estimated answers to the following
questions have to be found:

1. Is the logarithm of the observations taken?
2. Is the mean constant? Globally? Locally? Is there a trend?
3. How is the empirical variogram calculated:

3.1 for what maximal distance? for which directions?
3.2 using distance and direction classes how wide?
3.3 When the empirical variogram is not isotropic, is the

anisotropy geometric?
4. Which analytical variogram is fitted applying which method?

(4.12)

When estimating, in Sect. 4.3.3, the variogram of grain yield in the
“Strassenacker” plot, a constant mean of the observations, as required in
(4.8) and (4.9), is found. The task, however, becomes difficult when the em-
pirical variogram is calculated and answers to the questions (4.12,3) have to
be given. Even more intricate is, in Sect. 4.3.4, estimating the variogram of
the yearly SWIR in Germany and parts of the adjacent countries owing to
difficulties originating from a non-constant mean of the observations.

4.3.3 Empirical Variograms II: the Anisotropic Case

The measurements of the soil parameters and yields (grain and biomass) in
the “Strassenacker” plot are introduced in the remarks to Figs. 4.9 and 4.10.
The observed grain yields are plotted in Fig. 4.13 from which it is concluded
that grain yield has a constant expectation function since no systematic in-
creases or decreases are seen. Hence, the observed grain yields are assumed
to stem from a globally stationary or intrinsically stationary spatial random
function on condition that its second moment function is reconcilable with
(4.8) or (4.9). Thus, answers to the questions (4.12,1,2) have been found.
To give answers to the questions (4.12,3) empirical semivariograms are cal-
culated for difference vectors h = xi − xk, with |h| ≤ 140 m for directions
00 (positive y∗ coordinate) and 900 (positive x∗ coordinate). The empirical
variogram for direction 00 (plot (a) in Fig. 4.14) remains constant for dis-
tances |h| ≤ 100 m and thereafter decreases slightly, whereas the empirical
variogram for direction 900 (plot (b) in Fig. 4.14) increases approximately
linearly. Is grain yield a white noise process in direction 00 as suggested by
plot (a) in Fig. 4.14 (this plot resembles a realisation of a variogram with
a pure nugget effect as shown in plot (d) in Fig. 4.7)? Furthermore, since
the variogram of a random walk process is shown to increase linearly in the
remarks to (4.9), is grain yield a random walk process in direction 900 as
suggested by plot (b) in Fig. 4.14?
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Fig. 4.13. Observations of grain yield (in gm−2) in the “Strassenacker” plot. Above,
histograms of the observations and of the logarithms of the observations plotted
below.
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Fig. 4.14. Empirical semivariograms γ̂(h) in (gm−2)2 of the “Strassenacker” grain
yield calculated with 2.5 m wide distance classes. (a) and (b): for |h| ≤ 140 m for
directions 00 and 900; (c), (d), (e) and (f): for |h| ≤ 80 m with fitted spherical
models for directions 00, 450, 900 and 1350.

The empirical semivariogram of grain yield for direction 900 remains con-
stant for 50 ≤ |h| < 80 m as can be seen in plot (b) in Fig. 4.14, but increases
for larger |h|. Is this increase due to an anisotropy? An answer is found by
calculating empirical semivariograms for |h| = |xi−xk| ≤ 80 m and directions
00, 450, 900 and 1350. These semivariograms are shown to arrive, in plots (c),
(d), (e) and (f) in Fig. 4.14 emphasised by fitted spherical models, at their
sills (between 14000 and 18000 (gm−2)2) within ranges of 30.95 (direction
00) and 78.39 m (direction 900). When these empirical variograms are com-
pared with the prototype in Fig. 4.5 (c), it is concluded that the empirical
semivariogram of grain yield is anisotropic.
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Fig. 4.15. Above, empirical semivariograms of the “Strassenacker” grain yield for
all directions, (a) with a fitted isotropic model, (b) with a fitted anisotropic model
as defined in (4.10) and Fig. 4.6. Below, empirical semivariograms for the directions
00 (c,d) and 900 (e,f), with the models in (a) and (b). The width of the distance
classes is 2.5 m, the unit of the semivariograms is (gm−2)2.

In Gstat, an anisotropy is modelled geometrically using an ellipse, as
described in (4.10) and Fig. 4.6. For example, in Fig. 4.14, the empirical
variogram of grain yield in direction 00 arrives at its sill for 30 ≤ |h| < 32.5 m
and, in direction 900, for 75 ≤ |h| < 80 m: the ratio of the ranges of the fitted
spherical models being 0.4 ≈ 30.95/78.39 becomes the ratio (short axis/long
axis) of an ellipse provided that the variogram is assumed to be geometrically
anisotropic. A variogram model with such an anisotropy is fitted by selecting,
in the Gstat interface for the variogram estimation introduced in Sect. 4.3.1,
direction and typing in 00 for the direction and 1800 for the width of the
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direction classes thus urging Gstat to calculate a variogram without using
direction classes. Then, a spherical model with a nugget effect and geometrical
anisotropy is defined with 3000 Nug(0) + 13000 Sph(75,90,0.4). The sill of
this model at 3000 + 13000 = 16000 (gm−2)2 is arrived at translations of
75 m in direction 900 but 30 m in direction 900, the anisotropy ratio being
0.4. Thereafter, this model is fitted with the WLS method and plot (b) in
Fig. 4.15 is obtained.

Once estimated, this model is plotted for diagnostic purposes in the em-
pirical semivariograms for the grain yield for directions 00 and 900 (plots (d)
and (f) in Fig. 4.15). These diagnostic plots show that the fit of the model
is adequate in both directions, although slightly better fits are obtained, in
plots (c) and (e) in Fig. 4.14, when using models fitted to the empirical var-
iograms calculated for these directions solely. Diagnostic plots for directions
450 and 1350 are generated in Problem 4.25.

As a second diagnostic, a spherical model with nugget effect but without
geometrical anisotropy is fitted to the empirical semivariogram of grain yield
calculated for all directions (plot (a) in Fig. 4.15). This model is then plotted
in the empirical semivariograms for directions 00 and 900. In direction 00,
this isotropic model fits, as does the geometrically anisotropic model (plots
(c) and (d) in Fig. 4.15). In direction 900, however, the isotropic model does
not fit (plot (e) in Fig. 4.15) whereas the geometrically anisotropic model
shows a good fit (plot (f) in Fig. 4.15).

Hence, grain yield in plot “Strassenacker” is assumed to be globally sta-
tionary and anisotropic in its second moment function since a spherical model
as shown in plot (b) in Fig. 4.15, with sill ≈ 16000 (gm−2)2 and geometrical
anisotropy (range a0 ≈ 32 m in direction 00 and a90 ≈ 80 m in direction 900),
fits the empirical semivariogram of grain yield. This empirical semivariogram
is calculated for |h| = |xi − xk| ≤ 80 m using all pairs (xi, xk), xi, xk being
the points with observations as plotted in Fig. 4.13.

Admittedly, some intuition is needed when trying empirical semivari-
ograms for |h| = |xi − xk| ≤ 80 m after having calculated the ones for
|h| = |xi −xk| ≤ 140 m (plots (a) and (b) in Fig. 4.14). Empirical variograms
looking even more intimidating than the ones in plots (a) and (b) in Fig. 4.14
are calculated for the spatial random function analysed in Sect. 4.3.4.

4.3.4 Empirical Variograms III: the Case with Non-constant Drift

The spatial random function under analysis is SWIR (more precisely, the
climatological means of the yearly values of SWIR) in the region bounded
by 40 and 160 (eastern) longitude and by 480 and 540 (northern) latitude.
In this region, there are 39 stations with at least 5 yearly values of SWIR
measured in the period from 1948 through to 1993. From the yearly values
of SWIR measured at these stations, the climatologies as plotted in Fig. 4.16
are calculated and made available in file /path/swirnorde.eas:

yearly climatologies of SWIR in Germany
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7

longitude (degree)

latitude (degree)

number of yearly values used for the climatologies

mean (W/m2)

standard deviation (W/m2)

station number

name of station

4.033 49.300 11 123.27 9.62 1241 Reims

...

From Fig. 4.16 it is concluded that the surface (of the earth) receives more
than 120 Wm−2 of SWIR in the mean during the period with measurements
south of 500 and less than 110 Wm−2 north of 530 (except Norderney station
on the East Friesian islands). This systematic increase from north to south is
due to the increase of solar radiation incident on a horizontal surface at the
top of the atmosphere. Being subject to a trend, the expectation function of
SWIR in this region is not constant and, therefore, neither (4.8) nor (4.8) are
reconcilable with SWIR.

The non-constant first moment function of SWIR is the first obstacle to
overcome when the second moment function is estimated by means of empiri-
cal semivariograms. The second obstacle is due to a deficiency in the software
used: Gstat does not provide for spherical distances on the surface of the earth
since it calculates the differences h = xi − xk, xi, xk points with observa-
tions, assuming that x∗ and y∗ (i.e., longitude and latitude in the SWIR
case) span an orthogonal coordinate system. The distortions resulting from
the use of orthogonal coordinates can be disregarded provided that the region
under analysis is not large or on higher latitudes, i.e., properties pertaining
to the region with SWIR observations as plotted in Fig. 4.16. If, however,
a spatial random function is analysed in a large region on higher latitudes,
the coordinates are transformed prior to using Gstat. In [27], for example,
before calculating empirical variograms of precipitation in Greenland using
Gstat, the coordinates underwent an affine transformation with the pole in
the centre of Greenland.

Bearing in mind that the expectation function of SWIR is not constant,
empirical semivariograms of SWIR are calculated in Gstat without a prior
coordinate transformation, and, as always in Gstat, using the residuals of
the mean of the observations as plotted in Fig. 4.16, for maximal distances
|h| = |xi − xk| ≤ 50, distance classes 0.250 and 0.50 wide and all directions,
as well as directions 00, 450, 900 and 1350, i.e., north, north-east, east, and
south-east. The results of all these calculations are plotted in Fig. 4.17. In
direction 900 (Fig. 4.17, e), the empirical semivariogram arrives at a sill of
≈ 20 (Wm−2)2 within a range of 2.50; in direction 00 (Fig. 4.17, c) at a sill
of ≈ 80 (Wm−2)2 within a range 3.50: the empirical variogram appears to be
anisotropic when compared with the prototype (Fig. 4.5, c). For directions
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Fig. 4.16. Climatological means of SWIR in Wm−2 measured at 39 stations (plot-
ted with +) in the region bounded by 40 and 160 (eastern) longitude and by 480

and 540 (northern) latitude.

450 and 1350 (Fig. 4.17, d,f), however, the empirical semivariograms do not
arrive at a possible sill within the maximal distance of 50. All empirical
semivariograms are smooth close to |h| = 0, and, therefore, Gaussian models
can be fitted where sills do exist. Are the differences in the sills and ranges
of these empirical semivariograms due to an anisotropy or due to the trend
in the observations as plotted in Fig. 4.16?

The examples in Figs. 2.23 and 3.1 demonstrate that a slowly decaying
empirical covariance function (corresponding to a slowly increasing empirical
variogram not arriving at a sill in a short distance, e.g., the semivariograms
shown in plots (d) and (f) in Fig. 4.17) can be due to a trend. This suggests
that the differences in the ranges and sills of the empirical semivariograms as
plotted in Fig. 4.17 will become smaller when estimates are calculated from
the residuals of a first order trend surface fitted to the observations. The
decomposition of the data into a trend (the systematic increase of SWIR in
southward direction) and (possibly spatially correlated) random residuals is
also favoured, by climatological evidence.
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Fig. 4.17. Empirical semivariograms γ̂(h) in (Wm−2)2 of SWIR measured at the
stations in Fig. 4.16 calculated from the residuals of the mean (116.67 Wm−2) of all
stations using distances in 0 of longitude and latitude. (a) and (b): for all directions,
using distance classes 0.250 (a) and 0.50 (b) wide; (c), (d), (e) and (f): for directions
00, 450, 900 and 1350 and distance classes 0.50 wide.

Gstat estimates trend surfaces as defined in (3.23) of order 0, (i.e., the
mean of the observations), 1, 2 and 3, and then calculates the empirical
variogram of the residuals. Fig. 4.18, for example, contains plots of empirical
semivariograms calculated from the residuals of a first order trend surface
fitted to the SWIR observations in Fig. 4.16. The empirical semivariograms in
Fig. 4.18 are approximately isotropic and continuous (no longer smooth as are
the semivariograms in Fig. 4.17) in |h| = 0, and, therefore, spherical models
without nugget effect are fitted to those calculated for all directions (plots (a)
and (b) in Fig. 4.18) by means of the WLS method. These estimates, i.e., first
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Fig. 4.18. Empirical semivariograms γ̂(h) in (Wm−2)2 of SWIR measured at the
stations in Fig. 4.16 calculated from the residuals of a first order trendsurface fitted
to the data using distances in 0 of longitude and latitude. (a) and (b): for all
directions, with fitted spherical models, using distance classes 0.250 (a) and 0.50

(b) wide; (c), (d), (e) and (f): for directions 00, 450, 900 and 1350 and distance
classes 0.50 wide.

order trend surface, empirical variograms and fitted models, are calculated
from the SWIR observations as demonstrated in the following paragraph.

Having calculated the empirical semivariogram as plotted in Fig. 4.17
(a), the work is saved and then the Gstat interface for the variogram estima-
tion is quit: Gstat saves the parameters for the calculation of the empirical
semivariogram by writing file swir.cmd (header lines are omitted)

data(SWIR): ’/path/swirnorde.eas’,x=1,y=2,v=4;

set cutoff = 5;
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set width = 0.25;

with Gstat expressions (a description of the expressions available in Gstat is
available in [105]) in format

expression(identifier): parameters as required;

separated by ;. When these Gstat expressions are read by Gstat

1. data() prompts Gstat to read the observations for spatial random func-
tion SWIR from file /path/swirnorde.eas with the coordinates in the first
and second columns (x=1,y=2) and the observations in the fourth column
(v=4) and, implicitly, to calculate the empirical semivariograms from the
residuals of the mean of the observations

2. set cutoff = 5 together with set width = 0.25 define the partition of the
(∆x∗, ∆y∗)-plane into classes of distance and direction as required on the
right, in Fig. 4.8: the empirical variogram is assumed to be isotropic (no
direction classes are given) and is calculated for a maximal distance of 50

and distance classes 0.250 wide.

The expressions in file swir.cmd are then modified to prompt Gstat to cal-
culate the empirical semivariograms using the residuals of a first order trend
surface by inserting d=1 (default is d=0) in the data(SWIR) command:

data(SWIR): ’/path/swirnorde.eas’,x=1,y=2,v=4,d=1;

File swir.cmd with a data() expression as modified above is read by Gstat
when you type in

gstat swir.cmd

(recall that you typed gstat -i when invoking Gstat for the estimation of
the empirical variograms in Fig. 4.17). This causes Gstat to open the user
interface for the variogram estimation since nothing else (other than read-
ing the data) is required. Now, with d=1 in the data() expression, empirical
semivariograms as plotted in Fig. 4.18 are calculated using the residuals of a
first order trend surface.

A first order trend surface as calculated above is only a preliminary esti-
mate using (3.9), i.e., ordinary least squares, under the assumption that the
residuals are not correlated as required in (3.11). Since the residuals are cor-
related as shown in Fig. 4.18, these calculations are considered to be the first
step in an iterated generalised least squares estimation as proposed in the re-
marks to (3.15). When further steps are performed in Sect. 4.5.3, they result
in the empirical semivariogram and the fitted spherical model as plotted in
Fig. 4.21, which is then used, together with the estimated trend surface, for
the interpolation of the SWIR observations.

A successful estimation of a variogram pertaining to a spatial random
function answers the questions in (4.12) and thus permits, in principle, an
estimation of the spatial random function at points without observations
using the methods introduced in Sect. 2.7. These methods are refined and
adapted for the interpolation of spatial random functions in Sects. 4.4 and
4.5.
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4.4 Optimal Linear Predictors for Spatial Random
Functions

A spatial random function Z(x) as defined in (4.6) is estimated, in Sect. 4.5,
at an interpolation point x0, provided that (i) the estimate belongs to the
observed realisation, (ii) the variogram γZ(h) of Z(x) is known or has been
estimated using the methods introduced in Sect. 4.3, (iii) the observations
are assumed to be point observations as required in Sect. 4.6.2, and (iv)
linear combinations of the observations as defined in (4.13) are available as
estimators. Do linear combinations exist that can be used as estimators of a
stationary Z(x) as required in (4.8) and of a Z(x) that satisfies the intrinsic
hypothesis defined in (4.9)?

The optimal linear prediction of a stochastic process as defined in (2.62)
is a linear combination of the observations. Being mathematically simple,
linear combinations of the observations are also used for the interpolation of
a spatial random function.

The interpolator Ẑ(x0) =
∑N

i=1 λiZ(xi) is linear in the
observations Z(xi) (the observed values z(xi) stem from a
realisation of Z(x)) and the unknown weights λi, depending
on the points with observations xi and the interpolation
point x0. Ẑ(x0) is optimal provided that:

1. E
(
Ẑ(x0) − Z(x0)

)
= 0, i.e., it is not biased, and

2. Var
(
Ẑ(x0) − Z(x0)

)
= E

(
(Ẑ(x0) − Z(x0))2

)
= min(λi),

i.e., its variance is minimal with respect to the weights λi.
This variance is called variance of the interpolation error,
interpolation variance or, as in definitions (2.62) and
(2.61), mean square prediction error.

(4.13)

As a prerequisite for the following definitions and derivations it is assumed
that Z(x) is a spatial random function with known moment functions µZ(x)
and γZ(h).

The optimal linear interpolator Ẑ(x0) for a spatial random function
Z(x) as defined in (4.13) is one of many possible linear combinations Y =∑N

i=1 λiZ(xi), namely the element Ẑ(x0) in the set of the Y that delivers an
interpolator with a minimal variance of the interpolation error Ẑ(x0)−Z(x0).
Which Y are candidates for interpolators? Clearly, the Y must be constrained
to those having a non-negative and finite variance because an interpolator
with a variance that can be calculated is required.

If a spatial random function Z(x) is stationary as defined in (4.8) then
the variance of any linear combination Y =

∑N
i=1 λiZ(xi) is non-negative

because the covariance function of Z(x) exists and is positive definite,
as proposed in (2.7). Hence, as shown in the remarks to (2.7), VarY =
Var

(∑N
i=1 λiZ(xi)

)
=

∑N
i=1

∑N
k=1 λiλkc(xi, xk) =

∑N
i=1

∑N
k=1 λiλkc(xi −
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xk) =
∑N

i=1

∑N
k=1 λiλkc(hik) ≥ 0 for arbitrary λi. Substituting the vari-

ogram for the covariance function γ(h) = c(0) − c(h) as derived in Prob-
lem 4.4, (4.14) is arrived at.

If Y =
∑N

i=1 λiZ(xi) is a linear combination of random
variables Z(xi) from a spatial random function Z(x) being
stationary as defined in (4.8), then for arbitrary λi and xi:
VarY =cZ(0)

∑N
i=1

∑N
k=1 λiλk−

∑N
i=1

∑N
k=1 λiλkγZ(xi−xk) ≥ 0.

(4.14)

If, however, a spatial random function Z(x) is intrinsically stationary as
defined in (4.9) then not all possible linear combinations Y =

∑N
i=1 λiZ(xi)

have a variance that is non-negative, as stipulated in (4.15)

If Y =
∑N

i=1 λiZ(xi) is a linear combination of random
variables Z(xi) from a spatial random function Z(x)
satisfying the intrinsic hypothesis as required in (4.9) and
with weights satisfying

∑N
i=1 λi = 0, then for arbitrary xi:

VarY = −∑N
i=1

∑N
k=1 λiλkγZ(xi − xk) ≥ 0.

(4.15)

and derived below in (4.16), (4.17), (4.18), (4.19) and (4.20) by calculating
the variance of the linear combination using the assumptions.

The condition constraining the weights λi,
∑N

i=1 λi = 0, is multiplied with
Z(x0) to obtain Z(x0)×

∑N
i=1 λi = Z(x0)× 0 and further

∑N
i=1 λiZ(x0) = 0

for arbitrary x0. Thus,

N∑
i=1

λiZ(xi) =
N∑

i=1

λiZ(xi) −
N∑

i=1

λiZ(x0)

=
N∑

i=1

λi

(
Z(xi) − Z(x0)

)
=

N∑
i=1

λi∆(xi) (4.16)

is arrived at. The differences ∆(xi) = Z(xi) − Z(x0) are a stationary spatial
random function as required in (4.9) since Z(x) is assumed to be intrinsically
stationary. Hence, the covariance function of the differences, c∆(xi, xk) =
Cov

(
∆(xi), ∆(xk)

)
, is positive semidefinite as required in (2.7,2).

In the next step, c∆(xi, xk) is written using the variogram 2γZ(h) =
2γZ(x− y) of the intrinsically spatial random function Z(x).

2γZ(x− y) = Var
(
Z(x) − Z(y)

)
= Var

(
Z(x) − Z(x0) − Z(y) + Z(x0)

)
= Var

(
Z(x) − Z(x0)

)− 2Cov
(
Z(x) − Z(x0), Z(y) − Z(x0)

)
+Var

(
Z(y) − Z(x0)

)
= 2γZ(x− x0) − 2c∆(x, y) + 2γZ(y − x0)

c∆(x, y) = γZ(x− x0) + γZ(y − x0) − γZ(x− y) (4.17)
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Using these results the variance of the linear combination Var
∑N

i=1 λiZ(xi)
is easily calculated as variance of the differences Var

∑N
i=1 λi∆(xi), since, with∑N

i=1 λi = 0,

N∑
i=1

N∑
k=1

λiλkγ(xk − x0) =
N∑

i=1

(
λi ×

N∑
k=1

λkγ(xk − x0)

)

=

(
N∑

k=1

λkγ(xk − x0)

)
N∑

i=1

λi = 0 (4.18)

N∑
i=1

N∑
k=1

λiλkγ(yk − x0) = 0 (4.19)

are obtained for the variances, due to the first and second term in (4.17);
however, the variance due to the third term remains:

Var
N∑

i=1

λi∆(xi) =
N∑

i=1

N∑
i=1

λiλkc∆(xi, xk)

= −
N∑

i=1

N∑
k=1

λiλkγZ(xi − xk). (4.20)

The non-negative definite covariance function (in the remarks to (4.16)) of the
∆(xi) = Z(xi)−Z(x0) implies a non-negative variance of a linear combination∑N

i=1 λi∆(xi) and, further, −∑N
i=1

∑N
k=1 λiλkγZ(xi − xk) ≥ 0, as proposed

in (4.15). Variograms with this property are called conditionally negative
definite.

When comparing (4.15) with (4.14) it becomes obvious that the set of
possible interpolators

∑N
i=1 λiZ(xi) is constrained to the subset with weights

satisfying
∑N

i=1 λi = 0, when the spatial random function to be interpolated
is no longer stationary even though intrinsically stationary. This constraint
is compensated by including all spatial random functions which satisfy the
intrinsic hypothesis in the set of random functions that can be interpolated.
(The set of all random functions satisfying the intrinsic hypothesis contains
the set of the stationary random functions as a subset).

If the second moment function of the spatial random function Z(x) to be
interpolated is not known then Z(x) is assumed to be intrinsically stationary
and the empirical semivariogram γ̂Z(h) is calculated using (4.11) and Fig. 4.8.
γ̂Z(h) is then used for the interpolation, and variances of the interpolator are
calculated as required in (4.14) or (4.15), with γ̂Z(h) substituted for γZ(h).
Negative variances can be avoided on condition that γ̂Z(h), when substituted
in (4.14) or (4.15), delivers non-negative variances for the xi and arbitrary λi

and stationary Z(x) (for λi with the
∑N

i=1 λi = 0 and intrinsically stationary
Z(x)). An (empirical) variogram with this property is called, as in the remarks
to (4.20), conditionally negative definite.
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Consequently, an empirical variogram is required to be conditionally neg-
ative definite. This is not easily proved subsequent to a variogram estimation
and prior to an interpolation; however, the difficult task can be avoided by
fitting a model known to be conditionally negative definite (an analytical
variogram, examples being given in Fig. 4.11) to an empirical variogram es-
timated using (4.11) and Fig. 4.8, as demonstrated in Sect. 4.3.

Having fitted a conditionally negative definite variogram model γZ(xi −
xk), the variance of a linear combination of random variables Z(xi), satisfy-
ing the intrinsic hypothesis, is calculated using (4.15): Var

(∑N
i=1 λiZ(xi)

)
=

−∑N
i=1

∑N
k=1 λiλkγZ(xi−xk) ≥ 0, for all points with observations x1, . . . , xN

and weights λ1, . . . , λN with
∑N

i=1 λi = 0. When Z(x) is stationary the vari-
ogram is bounded and the variance is calculated using (4.14). Due to (4.14)
and (4.15), Var

(∑N
i=1 λiZ(xi)

)
is non-negative for intrinsically stationary and

stationary Z(x).
The condition in (4.14), where Z(x) is required to be stationary, is

stronger than the condition stipulated in (4.15) where intrinsic stationar-
ity is demanded: the set of all variograms 2γZ(h) contains bounded and not
bounded variograms (prototypes (i) and (ii) in Fig. 4.5). If 2γZ(h) is bounded,
then γ(h) = c(0)− c(h) as derived in Problem 4.4, with the covariance func-
tion cZ(h) of Z(x) being absolutely convergent as defined in (2.24). If 2γZ(h)
is not bounded then cZ(h) does not converge absolutely.

4.5 Optimal Interpolation of Spatial Random Functions

A spatial random function Z(x) as defined in (4.6) is estimated at an in-
terpolation point x0 with interpolators Ẑ(x0) =

∑N
i=1 λiZ(xi) as defined in

(4.13) being linear in their weights λi and observations Z(xi), provided that
(i) the estimate belongs to the observed realisation and (ii) the second mo-
ment function of Z(x) is known or has been estimated using the methods
introduced in Sect. 4.3. Optimal interpolators with a non-negative variance
are derived for three cases, i.e., when

1. Z(x) is stationary as defined in (4.8) (in Sect. 4.5.1)
2. Z(x) satisfies the intrinsic hypothesis (4.9), (in Sect. 4.5.2), and
3. Z(x) has a non-constant first moment function (in Sect. 4.5.3).

4.5.1 The Stationary Case: Simple Kriging

In the most straightforward case, the spatial random function (4.6) to be
interpolated is assumed to be stationary. Under this assumption and with an
interpolator (4.13),

∑N
i=1 λi = 1 (as in (2.64)) is obtained when the inter-

polator is required to be not biased for all x in D. Then, as in Sect. 2.8.3,
the mean square prediction error (4.13,2) is minimised with respect to the
weights λi,
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Var
(
Ẑ(x0) − Z(x0)

)
= VarẐ(x0) − 2Cov

(
Ẑ(x0), Z(x0)

)
+ VarZ(x0)

=
N∑

i=1

N∑
k=1

λiλkcZ(xi − xk) − 2
N∑

i=1

λicZ(xi − x0) + cZ(0) (4.21)

under the constraint
∑N

i=1 λi − 1 = 0. Consequently, the partial derivatives
Var

(
Ẑ(x0)−Z(x0)

)− 2m(
∑N

i=1 λi − 1) with respect to λk, k = 1, . . . , N and
m are calculated and set = 0. Thus, 2

∑N
i λicik − 2m = 2ck0, i.e., equation

k, is obtained.

If Z(x) is a stationary random function as defined in (4.8) and
Ẑ(x0) =

∑N
i=1 λiZ(xi) an interpolator as defined in (4.13),

then the weights λi are the solution of the system:
1.
∑N

i=1 λicik −m = ck0, for k = 1, . . . , N , ci,k = cZ(xi − xk), and

2.
∑N

i=1 λi = 1,
3. or, written with matrices⎛⎜⎜⎜⎜⎝

c11 c12 . . . c1N −1
c21 c22 . . . c2N −1
...

...
. . .

...
...

cN1 cN2 . . . cNN −1
1 1 . . . 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
λ1

λ2
...
λN

m

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
c10
c20
...
cN0

1

⎞⎟⎟⎟⎟⎠
4. Var

(
Ẑ(x0) − Z(x0)

)
= cZ(0) −∑N

k=1 λkck0 +m
5. The equations as in (4.22,1,2) or (4.22,3) are called

simple kriging system.
(4.22)

2m is the Lagrange multiplier used for the minimisation of the mean
square prediction error with respect to the weights λi under

∑N
i=1 λi = 1. This

constraint ensures that the interpolator is not biased for all x in D, D being
the parameter domain as defined in (4.6), and, therefore, it is called univer-
sality condition. Lagrange multiplier methods allow for calculating maxima
and minima of a function under constraints (Problem 4.10).

The matrix in (4.22,3) is non-negative definite due to (2.7,2); if positive
definite then its inverse exists which is used for writing, as in (2.75), the
solution of the equations. In Problem 4.11, the solution is substituted in
(4.21) to obtain the mean square prediction error (4.22,4). This prediction
error is the variance of the process (the first term on the right side in (4.22,4))
reduced by the weighted covariances of Z(x) between the interpolation point
x0 and the points with observations xi (the second term) and augmented by
half of the Lagrange multiplier (the third term).

In Geostatistics, the interpolation of a spatial random function is called
kriging, and therefore, to be more specific, the equations as in (4.22,2) or
(4.22,3) are called simple kriging system and the mean squared prediction
error is called kriging variance.
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The interpolator Ẑ(x0) behaves, close to points with observations xi, as
the covariance function Cov

(
Z(x), Z(y)

)
for y → x. Ẑ(x0) = z(xi) on con-

dition that x0 = xi, i.e., Ẑ(x0) is exact as required in (4.1,6), because the
mean square prediction error (4.21) becomes identically zero for x0 = xk and
is therefore minimal. Consequently, λk = 1 for x0 = xi and λi = 0 for i �= k
are obtained, with i = 1, . . . , N and k = 1, . . . , N .

The kriging variance in (4.21) can be written using the variogram be-
cause, for stationary random functions, γZ(h) = cZ(0) − cZ(h) as shown in
Problem 4.4. Substituting and using the universality condition

∑N
i=1 λi = 1

Var(Ẑ(x0) − Z(x0)) =
N∑

i=1

N∑
k=1

λiλk

(
cZ(0) − γZ(xi − xk)

)
−2

N∑
i=1

λi

(
cZ(0) − γZ(xi − x0)

)
+ cZ(0)

= −
N∑

i=1

N∑
k=1

λiλkγZ(xi − xk) + 2
N∑

i=1

λiγZ(xi − x0) (4.23)

is arrived at. From a comparison of (4.23) and (4.21) it is concluded that,
in kriging system (4.22), c(h) can be substituted with −γ(h) (for stationary
Z(x) and universality condition

∑N
i=1 λi = 1).

When substituting the variogram for the covariance function, it is not
required to estimate the constant first moment function µZ(x) = µZ = µ
of Z(x) prior to estimating the second moment function. µZ is obtained,
subsequent to the variogram estimation, using the kriging system (4.24) which
is derived in Problem 4.12. In addition to this derivation, in Problem 4.12,
the properties of both estimators for the expectation function of a stationary
random function, as proposed in (4.24) and (2.56), are compared.

If Z(x) is a stationary spatial random function as in (4.8) and
µ̂ =

∑N
i=1 λ

′
iZ(xi) an estimator as defined in (4.13), then:

1.
∑N

i=1 λ
′
iγ(xi − xk) +m′ = 0, for k = 1, . . . , N

2.
∑N

i=1 λ
′
i − 1 = 0, the universality condition, and

3. Var(µ̂− µ) = m′, the kriging variance.

(4.24)

Usually, when interpolating a stationary spatial random function, the
covariances in (4.22) are not known and, therefore, a covariance model
cZ(h) = cZ(0) − γZ(h) is substituted, γZ(h) being an analytical variogram
(examples are given in Sect. 4.3.2) fitted to the empirical variogram that has
been calculated as required in (4.11) and Fig. 4.8.

For example, a spherical model with sill 0.08, range 50 m and a nugget
effect 0.015 (plot (a) in Fig. 4.12) is fitted to the empirical semivariograms
estimated for K2O in the “Strassenacker” soil in Sect. 4.3.1. Using this model
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and simple kriging as defined in (4.22), Gstat interpolates K2O when invoked
with the following command file

data(Potassium): ’stracker.eas’,x=2,y=3,v=10,log,sk mean=1.16;

variogram(Potassium): 0.015 Nug(0) + 0.065 Sph(50);

data(): ’stracker.grid.eas’, x=1, y=2;

set cutoff = 140;

set width = 2.5;

set output = ’potassiumstracker.rep.eas’;

The above command file is generated by inserting option sk mean=1.16 in the
data(Potassium) command and lines

data(): ’stracker.grid.eas’, x=1, y=2;

set output = ’potassiumstracker.rep.eas’;

in the Gstat command file, obtained when quitting Gstat after having fitted
the model in Fig. 4.12 (a). The inserted lines describe the files with the in-
terpolation points and the results, and option sk mean=1.16 gives an estimate
for the unknown expectation function which is assumed to be constant. The
value given is the mean of the observations calculated by Gstat when reading
the data for the variogram estimation in Sect. 4.3.1. This option omitted,
Gstat estimates the expectation function as required in (4.24).

A grid with interpolation points (an interpolation grid) for plot “Strasse-
nacker” is generated by calculating the cross product of R vectors

#interpolation grid with distances 5 m for ’Strassenacker’ plot

xnull <- c(0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,

90,95,100,105,110,115,120,125,130,135,140,145,150,155)

ynull <- c(0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,

90,95,100,105,110,115,120,125,130,135,140,145,150,155)

... #as demonstrated in Sect. 3.6 when the grid for the estima-

... #tion of the trend surfaces for the tree line is calculated

stracker.grid <- data.frame(x,y)

write(t(stracker.grid),file="stracker.grid",

ncol = ncol(stracker.grid))

and then writing file stracker.grid. This file is renamed in stracker.grid.eas

once the .eas header lines (an example is given in Sect. 4.3.1) have been
inserted.

Executing the Gstat command file above, Gstat interpolates with the
results plotted in Figs. 4.19 and 4.20. These plots are generated from result
file potassiumstracker.rep.eas from which, after having removed the .eas

header lines, an R data frame is generated. Then, the optimal interpolation
of K2O and its kriging variance are plotted using R expressions similar to
those in the remarks to Fig. 3.11.

The optimal interpolation of K2O, as plotted in Fig. 4.19, resembles a
plot obtained by way of freehand contouring the observations in Fig. 4.9, a
deterministic interpolation method (cf. the introduction to this chapter). In
contrast to deterministic methods, optimal interpolation estimates the mean
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Fig. 4.19. K2O (log(mg in 100 g soil)) in plot “Strassenacker” interpolated with
simple kriging using the variogram model as fitted in Fig. 4.12 (a).

square prediction error: the kriging variance of K2O in the “Strassenacker”
soil as plotted in Fig. 4.20 is (i) less than 0.025 (log(mg in 100 g of soil))2

close to the interpolation points, (ii) between 0.025 and 0.03 in the interior of
the plot (except a few points), however (iii), increases rapidly at the lower and
upper margins of the plot since, there, the distances between the interpolation
points and the points with observations increase.

The interpolation points used for the estimation of K2O in the “Strassen-
acker” soil and the results obtained from Gstat are transferred from R to
the Gstat stand-alone executable (and also in opposite direction) using .eas

table files as introduced in Sect. 4.3.1. Besides .eas table files, Gstat reads
and writes gridded data from and to files in the formats frequently used in
Geographical Information Systems (GIS) and other software systems for the
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Fig. 4.20. Variance
(
(log(mg in 100 g of soil))2

)
pertaining to the interpolation

of K2O in Fig. 4.19.

analysis of spatially referenced data. It is recommended to use a GIS (or
another suitable software) together with Gstat in projects involving large
amounts of spatially referenced data (cf. link “R spatial projects” available
under [114]). Using such a software system,

1. masks can be easily defined to limit an interpolation to the area under
study: for example, the area with the observed tree-lines as plotted in
Fig. 3.10 is easily defined in a GIS; in R, however, the area with the
observations as plotted in Fig. 3.11 is constructed as the convex hull of
the points with observations

2. contour maps (including base maps and in the usual projections, examples
being given in Figs. 4.22 and 4.34) are readily produced from the Gstat
results.
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4.5.2 The Intrinsic Case: Ordinary Kriging

An optimal linear interpolator Ẑ(x0) =
∑N

i=1 λiZ(xi) as defined in (4.13),
with x0 being in the parameter domain D of a spatial random function Z(x)
satisfying the intrinsic hypothesis defined in (4.9), is derived here. From the
interpolation error Ẑ(x0) − Z(x0) =

∑N
i=1 λiZ(xi) − Z(x0) =

∑N
i=0 λiZ(xi)

with λ0 = −1, the interpolation variance in (4.25) is obtained using (4.15).

Var
(
Ẑ(x0) − Z(x0)

)
= −

N∑
i=0

N∑
k=0

λiλkγZ(xi − xk) (4.25)

(4.15) also implies that the variance in (4.25) is non-negative provided that∑N
i=0 λi = 0, i.e., provided that

∑N
i=1 λi = 1 since λ0 = −1. Further, the

universality condition in (4.26,2) is obtained, because E
∑N

i=0 λiZ(xi) =
E
∑N

i=1 λi

(
Z(xi) − Z(x0)

)
=
∑N

i=1 λiE
(
Z(xi) − Z(x0)

)
using (4.15). This

sum is concluded, from (4.9,1), to be identically zero: the estimator has no
bias.

As in the stationary case in Sect. 4.5.1, the mean square prediction error
in (4.25) is minimised under the universality condition using a Lagrange mul-
tiplier: in Problem 4.13, the partial derivatives of −∑N

i=0

∑N
k=0 λiλkγZ(xi −

xk)−2m(
∑N

i=1 λi−1) with respect to λk, k = 1, . . . , N and m are calculated,
set = 0 to obtain 2

∑N
i=1 λiγZ(xi−xk)+2λ0γZ(xk −x0)+2m = 0, and, with

λ0 = −1, equation k in kriging system (4.26) is arrived at.

If Z(x) is an intrinsically stationary spatial random function as
in (4.9) and if Ẑ(x) =

∑N
i=1 λiZ(xi) an interpolator as in (4.13),

then the weights λi are the solution of the following equations:
1.
∑N

i=1 λiγ(xi − xk) +m = γ(xk − x0), for k = 1, . . . , N and

2.
∑N

i=1 λi = 1, the universality condition;
3. or, written with matrices⎛⎜⎜⎜⎜⎝

0 . . . γ(x1 − xN ) 1
γ(x2 − x1) . . . γ(x2 − xN ) 1

...
. . .

...
...

γ(xN − x1) . . . 0 1
1 . . . 1 0

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
λ1

λ2
...
λN

m

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
γ(x1 − x0)
γ(x2 − x0)

...
γ(xN − x0)

1

⎞⎟⎟⎟⎟⎠
4. Var

(
Ẑ(x0) − Z(x0)

)
=
∑N

k=1 λkγ(xi − x0) +m,
the mean square prediction error, is called kriging variance.

5. The equations as in (4.26,1,2) or (4.26,3) are called
ordinary kriging system.

(4.26)
If 2γ(h) is conditionally negative definite (in the remarks to (4.20)) then

Var
∑N

i=1 λiZ(xi) ≥ 0 is obtained in (4.15) and the inverse of the matrix
with the variograms in (4.26) exists. However, the variogram-matrix is not
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positive semidefinite, as its diagonal elements are identically zero. The kriging
variance in (4.26,4) is derived in Problem 4.14.

Formally, the kriging systems (4.26) and (4.22) are very similar when,
subsequent to a comparison of (4.21) and (4.23), −γ(h) is substituted for
c(h) in (4.22). Mathematically, however, the kriging systems are different:
in (4.22), the spatial random function Z(x) is assumed to be stationary; in
(4.26), however, its differences Z(x+h)−Z(x) are assumed to be stationary.
For example, universality condition (4.22,2) is obtained from the constant
expectation function of a stationary random function, whereas universality
condition (4.26,2) is obtained from the first moment function of differences
of a random function satisfying the intrinsic hypothesis, i.e., the expectation
function being identically zero by definition (4.9).

The intrinsic hypothesis is weaker than the stationarity assumption and
the variogram is more general than the covariance functions as shown in the
remarks concluding Sect. 4.4: the variogram describes the second moment
functions in cases where no useful covariance function can be estimated. This
advantage is paid for with the disadvantage of more restricted operational
possibilities: the set of all linear combinations acting as interpolators for
a stationary spatial random function in (4.14) is constrained, in (4.15), to
those linear combinations with

∑N
i=1 λi = 0 when an intrinsically stationary

random function is interpolated.

4.5.3 The Case with a Non-constant Drift: Universal Kriging

Kriging systems for stationary or intrinsically stationary spatial random func-
tions Z(x) as proposed in (4.22) and (4.26) allow for interpolating Z(x) with
a constant expectation function (drift) µZ(x) = µZ , as is concluded from
definitions (4.8) and (4.9). There are, however, Z(x) with µZ(x) that are
not constant: for example, the SWIR climatologies as plotted in Fig. 4.16
stem from a realisation of Z(x) with µZ(x) �= µZ . Such a spatial random
function Z(x) has a drift EZ(x) = µZ(x) = µ(x) which is a function of x
and a covariance Cov

(
Z(y), Z(x)

)
= E

(
(Z(y) − µ(y))(Z(x) − µ(x))

)
which

is a function of x and y, i.e., both moment functions depend on parameter
x. Under this assumption, estimators µ̂(x0) for the non-constant drift and
Ẑ(x0) for the random function are to be calculated in Sect. 4.5.3, x0 being
in the parameter domain D. This estimation is called universal kriging.

When kriging universally, it is further assumed that the spatial random
function Z(x) can be decomposed into a rather systematic and smooth drift
µ(x) and the residual component Y (x) with random fluctuations. Such a
decomposition is often used, for example, where a random function is decom-
posed into a systematic and a random component in (1.14), (3.1), (3.8) and
for the estimation of the variogram in Fig. 4.18 of the SWIR climatologies
as plotted in Fig. 4.16. The decomposition assumption for spatial random
functions with a non-constant drift is usually formulated as in (4.27).
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When interpolating a spatial random function Z(x) with a
non-constant drift EZ(x) = µ(x), it is assumed that:

1. Z(x) = Y (x) + EZ(x) = Y (x) + µ(x), with
2. µY (x) = 0 and cY (y, x) = cY (x+ h, x) = cY (h) = cY (y − x)

as well as
3. EZ(x) = µ(x) =

∑p
i=1 bifi(x) at least locally as defined in

(2.55), with bi being unknown possibly random coefficients,
and fi(x) being base functions, usually monomials in the
coordinates, e.g., 1, x∗, y∗, z∗, x∗2, . . ..

(4.27)

To model the drift µ(x), a function (usually a polynomial in the coordi-
nates) is chosen, as in Chap. 3, that fits the observations. The coefficients bj
in the model for the drift are not known and neither is the covariance func-
tion. As a consequence, when interpolating a spatial random function Z(x)
with universal kriging, (i) Z(x), (ii) its non-constant drift EZ(x) = µ(x), and
(iii) the stationary covariance function cY (h) of the random component Y (x)
as defined in (4.27,1,2) are to be estimated simultaneously. When posed in
this form, the problem cannot be solved.

Hence, in the following derivation of the system for universal kriging as
proposed in (4.33) and (4.34), or alternatively written with matrices in (4.35),
Z(x) and EZ(x) are estimated under the assumption that the stationary co-
variance function cY (h) is known. Then, in (4.39), an additional assumption is
postulated under which EZ(x) and cY (h) can be estimated using generalised
least squares as introduced in Sect. 3.2.4.

The interpolator used in universal kriging is, as in simple and ordinary
kriging, (i) linear in the observations z(xi) and the unknown weights λi, (ii)
universal (i.e., free from bias for all x in D albeit the drift), and (iii) optimal.
By substituting (4.27) in (4.13,1) and then applying the linearity and the
no-bias property,

0 = E
(
Ẑ(x0) − Z(x0)

)
= E

∑
λiZ(xi) − EZ(x0)

=
N∑

i=1

λi

p∑
j=1

bjfj(xi) −
p∑

j=1

bjfj(x0)

=
p∑

j=1

bj

( N∑
i=1

λifj(xi) − fj(x0)
)

(4.28)

N∑
i=1

λifj(xi) = fj(x0) j = 1, . . . , p (4.29)

(4.28) is obtained, and further the universality conditions in (4.29) are met
because (4.28) holds, due to (4.27,3), for arbitrary bj �= 0.

As the interpolator is required to be not only linear and universal but also
optimal, the universal kriging equations are derived from the optimality, the
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property which has not yet been applied. In the first step, the interpolation
error in (4.30) is calculated using (4.28) and (4.29),

∆ =
N∑

i=1

λiZ(xi) − Z(x0)

=
N∑

i=1

λi

⎛⎝Y (xi) +
p∑

j=1

bjfj(xi)

⎞⎠−
⎛⎝Y (x0) +

p∑
j=1

bjfj(x0)

⎞⎠
=

N∑
i=1

λiY (xi) − Y (x0) +
p∑

j=1

bj

(
fj(x0) −

N∑
i=1

λifj(xi)

)

=
N∑

i=1

λiY (xi) − Y (x0) (4.30)

then, in the second step, its variance, i.e., the kriging variance or the mean
square prediction error, is arrived at in (4.31).

Var∆ = Var
N∑

i=1

λiY (xi) − Y (x0)

=
N∑

i=1

N∑
k=1

λiλkcY (xi − xk) − 2
N∑

i=1

λicY (xi − x0) + cY (0)

=
N∑

i=1

N∑
k=1

λiλkcik − 2
N∑

i=1

λici0 + c0 (4.31)

with cik = cY (xi − xk)

The kriging variance in (4.31) is minimised using the universality conditions
(4.29) as constraints in order to arrive at the weights λi pertaining to an
optimal interpolator: using a Lagrange multiplier mj for any constraint,

N∑
i=1

N∑
k=1

λiλkcik − 2
N∑

i=1

λici0 + c0 − 2
p∑

j=1

mj

(
N∑

i=1

λifj(xi) − fj(x0)

)
(4.32)

(4.32) is obtained, with unknowns λi and mj . Then, the partial derivatives
of (4.32) with respect to λi, d/dλi(. . .) for i = 1, . . . , N , and mj , d/dmj(. . .)
for j = 1, . . . , p, are calculated, and set = 0 in Problem 4.17. The result of
these straightforward but rather lengthy calculations are the equations for
the universal kriging in (4.33) and (4.34):

N∑
i=1

λicik −
p∑

j=1

mjfj(xk) = ck0, k = 1, . . . , N (4.33)

N∑
i=1

λifj(xi) = fj(x0), j = 1, . . . , p (4.34)
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which contain N optimality conditions and p universality conditions, one
for each bj in (4.27,3). Hence, the possibility to interpolate spatial random
functions with a non-constant drift is paid for by more coefficients having
to be estimated as compared with the equations for the simple and ordinary
kriging (4.22) and (4.26). Using matrices, equations (4.33) and (4.34) become⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎝
c11 . . . c1N

c21 . . . c2N
...

. . .
...

cN1 . . . cNN

⎞⎟⎟⎠
⎛⎜⎜⎝

−f1(x1) . . . −fp(x1)
−f1(x2) . . . −fp(x2)

...
. . .

...
−f1(xN ) . . . −fp(xN )

⎞⎟⎟⎠
⎛⎜⎜⎝
f1(x1) . . . f1(xN )
f2(x1) . . . f2(xN )

...
. . .

...
fp(x1) . . . fp(xN )

⎞⎟⎟⎠
⎛⎜⎜⎝

0 . . . 0
0 . . . 0
...

. . .
...

0 . . . 0

⎞⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

λ1

λ2
...
λN

m1

m2
...
mp

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c10
c20
...
cN0

f1(x0)
f2(x0)

...
fp(x0)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or, more concisely, (

Cik −F
F T 0

)(
λ
m

)
=

(
c0

f0

)
(4.35)

with f0 =
(
f1(x0), . . . , fp(x0)

)T being the column vector of the base func-

tions as in (4.27) for interpolation point x0, f i =
(
f1(xi), . . . , fp(xi)

)T the
column vector of the base functions for points with observations xi, F =(
fT

1 , . . . ,f
T
N

)T the matrix of the base functions for all xi, Cik = (cik) the ma-

trix of the covariances between the observations, c0 =
(
c10, . . . , cN0

)T the col-

umn vector of the covariances between the x0 and the xi, λ =
(
λ1, . . . , λN

)T

the column vector of the kriging weights, and m = (m1, . . . ,mp)T the column
vector of the Lagrange multipliers.

Solving the equations for the universal kriging,(
λ
m

)
=

(
Cik −F
F T 0

)−1(
c0

f0

)
(4.36)

is obtained, and furthermore, the interpolator

Ẑ(x) = (λT ,mT )
(

zi

f0

)
=

((
Cik −F
F T 0

)−1(
c0

f0

))T (
zi

f0

)
(4.37)

with zi = (z1, . . . , zN )T being the column vector of the observations. Thus,
Ẑ(x) in (4.37) is a linear combination of functions ci0 = cY (xi − x0) =
Cov

(
Y (xi), Y (x0)

)
and fj(x0) with constant coefficients. The solution (4.36)

is unique, provided that the covariance matrix is positive definite and the
base functions f0 are linearly independent with respect to the points with
observations xi.
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As a direct consequence of (4.37), the interpolator is exact: if x = xi, x
an interpolation point, and xi, i = 1, . . . , N , the points with observations,
then λi = 1 and λk = 0, k = 1, . . . , N , k �= i, and mj = 0, j = 1, . . . , p,
is a solution (and the only one) of the system. For this solution, the inter-
polation error becomes identically zero, which implies a zero (i.e., minimal)
kriging variance. Exact interpolators are also obtained when interpolating a
stationary or intrinsically stationary spatial random function by solving the
simple or ordinary kriging systems in (4.22) or (4.26). This property of op-
timal interpolators is reconcilable with (i) the optimality of the conditional
expectation as proposed in (2.82) because the conditional expectation of an
observed random variable is the observed value and (ii) the intuitive notion
that the best interpolation of Z(x) for x = xi is the observation z(xi).

The interpolation variance as in (4.38) is calculated in Problem 4.18.

Var
(
Ẑ(x) − Z(x)

)
= cY (0) −

N∑
k=1

λkcY (xi − x0) +
p∑

j=1

mjfj(x) (4.38)

The universal kriging equations (4.33) and (4.34) are derived, above, by
assuming decomposition Z(x) = Y (x)+µ(x) in (4.27) and a known covariance
function cY (h). Consequently, the equations can be solved in order to obtain
the interpolator Ẑ(x) in (4.37) provided that cY (h) is known or, as in the
more realistic case, an estimate ĉY (h) is substituted for cY (h). An empirical
covariance function ĉY (h) can be calculated from the residuals zi − µ̂(xi),
i = 1, . . . , N , obtained by subtracting the drift from the observations. An
estimator for the drift is arrived at, in Problem 4.19, by applying universal
kriging with a slight modification in (4.33) and (4.34): 0 is substituted for ci0
and fj(xi) is substituted for fj(x0) on the right side of the equations.

Consequently, if cY (h) is known then µ(x) can be estimated, and, if µ(x)
is known then cY (h) can be estimated. This is the setting encountered when
a linear model with correlated residuals is estimated using generalised least
squares as introduced in Sect. 3.2.4: a joint estimation of both µ(x) and cY (h)
is not possible. However, an iterated estimation as proposed in the remarks
to (3.14) and (3.15) is feasible provided that Z(x) is not only in agreement
with assumptions (4.27) but also with assumption (4.39).

Let Z(x) = Y (x) + µ(x) be a spatial random function as in
(4.27) having a variogram 2γY (h) with a range a that is small
when compared with D. Then cY (h) ≈ cZ(h) can be assumed
and, under this assumption, generalised least squares estimates
(Sect. 3.2.4) can be calculated for µ(x) and cY (h).

(4.39)

In a first step, a linear model for the drift µ(x) is estimated as required in
(3.7) and (3.8) and the empirical covariance function ĉ(1)Y (h) of the residuals
is calculated as a first estimate for cY (h). In a second step, the drift is again
estimated but now the covariances in the residuals are accounted for using
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(3.14), with ĉ(1)Y (h) substituted for cY (h), i.e., using generalised least squares.
These generalised least squares estimates are repeated until the estimates for
cY (h) become stable, i.e., until ĉ(k−1)

Y (h) ≈ ĉ
(k)
Y (h).

A generalised least squares estimation is, however, not feasible in the fol-
lowing cases: (i) when Z(x) is not reconcilable with (4.39) because the range
of the empirical variogram calculated from the observations is approximately
the same size as the area under study, and (ii), when Z(x) cannot be de-
composed as required (4.27) because no base functions can be found. These
difficulties can be circumvented when local (as defined in (2.55)) estimates
are calculated provided that enough observations are available.

For example, the climatological means of SWIR as plotted in Fig. 4.16
are assumed to be in agreement with assumption (4.39): the range of the
empirical variograms calculated from the residuals of a first order trend sur-
face (i.e., monomials 1, x∗, y∗ and x∗ × y∗ in (4.27,3)) is approximately 30

as shown in Fig. 4.18, and thus is small when compared with the region un-
der study bounded by 40 and 160 (eastern) longitude and by 480 and 540

(northern) latitude. Hence, the spherical model fitted to the empirical vari-
ogram of SWIR in Fig. 4.18 (a) is refitted using generalised least squares as
implemented in Gstat.

Assuming that estimates in plot (a) in Fig. 4.18 are saved in a Gstat
command file subsequent to the calculations as demonstrated in the remarks
to Fig. 4.18, the line for a generalised least squares estimation is inserted

data(SWIR): ’/pfad/swirnorde.eas’,x=1,y=2,v=4,d=1;

variogram(SWIR): 19.935 Sph(2.885);

set cutoff = 5;

set fit = 1;

set width = 0.25;

set gls residuals = 1; #(generalised least squares, gls)

and the variogram estimation is repeated resulting, with only a few iterations,
in the fitted spherical model as plotted Fig. 4.21.

The generalised least squares estimate of the base functions (a first order
trend surface) for the drift of SWIR deviates slightly, as shown in Prob-
lem 4.26, from the estimate obtained when using ordinary least squares and,
therefore, also the empirical residuals of both estimates are not identical. Be-
cause in Gstat, a semivariogram is calculated from the residuals, the empirical
semivariograms in plot (a) in Fig. 4.18 and in Fig. 4.21 are not identical.

Since a generalised least squares estimate as introduced in Sect. 3.2.4 ac-
counts for correlations in the residuals, it has, on condition that the residuals
are not iid. as required in (3.11), a smaller residual variance than an ordinary
least squares estimate (Problem 4.26): the spherical model in Fig. 4.21 shows
a better fit than the one in Fig. 4.18 (a). Consequently, using generalised
least squares under the assumption that the SWIR climatologies in Fig. 4.16
are reconcilable with (4.27) and (4.39), the estimates for the drift µ(x) and
the covariances cY (h) are improved.
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Fig. 4.21. Empirical semivariogram in (Wm−2)2 of the residuals of a trend surface
as defined in (3.23) for the universal kriging of SWIR climatologies as plotted in
Fig. 4.16. The trend surface and the covariances (the variogram) are estimated
using generalised least squares under the assumption (4.39) and for all directions,
a maximal distance of 50 and distance classes 0.250 wide.

The variogram model as estimated in Fig. 4.21 is saved in a Gstat com-
mand file which then is used (with lines inserted describing the interpolation
grid and the result file) for interpolating the SWIR climatologies by universal
kriging. This interpolation results in the maps plotted in Figs. 4.22 and 4.23.

In Fig. 4.22, SWIR increases, in the mean, from North to South. The
kriging variance, in Fig. 4.23, is less than 5 (Wm−2)2 near the points with
observations xi, from whence it increases with increasing distance from the
xi. Interpolation variances of approximately 25 (Wm−2)2 (this corresponds
to a relative error of approximately 5%) are obtained in the north-east of the
area under study, where all xi are on the West of the interpolation points. In
the interior of the area with observations, however, the interpolation variance
is less than 10 (Wm−2)2, owing to abundant observations.

4.5.4 Summary

Kriging is the optimal prediction of a (spatial) random function. Hence,
when interpolating with kriging methods, the basic assumption known from
Sect. 2.7 is made: the observations stem from a realisation of a random func-
tion and the estimate belongs to the observed realisation.

In most cases, only one realisation has been observed. This imposes ad-
ditional assumptions reconcilable with the observations when the moment
functions of the random function under analysis are estimated. Usual assump-
tions are (i) the stationarity as defined in (4.8), (ii) the intrinsic hypothesis
as defined in (4.9), and (iii), applied to random functions with a non-constant
expectation function, also the assumptions (4.27) and (4.39), which require
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Fig. 4.22. SWIR climatology in Wm−2 universally kriged from SWIR climatologi-
cal means as plotted in Fig. 4.16 using the variogram model estimated in Fig. 4.21.

a decomposition of the random function into a relatively smooth first mo-
ment function and a residual component assumed to be random. Further, it
can be assumed that the random function under study is intrinsic of order
k, i.e., an IRFk as proposed in [92]. IRFks include random functions with a
non-constant drift. An introduction to IRFks is found in [41] and [35].

Kriging has some advantages when compared with deterministic interpo-
lation methods, for example, those introduced in Sect. 4.1:

1. The assumptions used for the interpolation are stated explicitly.
2. The interpolator is calculated from covariances (variograms) of differences
x0 − xi, x0 being an interpolation point, and xi, i = 1, . . . , N , the points
with observations (on the right side of the kriging systems (4.22), (4.26)
and (4.35)), and also from differences xi − xk (in the matrices in these
kriging systems). On the one hand, xi in short distances of each other
(as compared with their average distance to x0) are “downweighted”; on
the other hand, no xi is neglected.

3. The functions used for the interpolation, i.e., the expectation and the
covariance function (the variogram) are estimated from the observations:
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Fig. 4.23. Kriging variance in (Wm−2)2 of the interpolated SWIR climatology in
Fig. 4.22.

fitting a model to an empirical variogram is less arbitrary than the selec-
tion of a weight function.

4. The interpolator is linear and optimal: the interpolation weights are cal-
culated such that the mean square prediction error (the interpolation
variance) becomes minimal. The interpolation variance is estimated to-
gether with the random function.

5. The equations in (4.22), (4.26) and (4.35) depend on the covariance func-
tion (the variogram) of differences x0 − xi and xi − xk as shown in item
2., above, and not on the observations (or only indirectly on the observa-
tions when an empirical variogram or covariance function is substituted
for the theoretical second moment function).

6. The kriging interpolators as obtained from (4.22), (4.26) and (4.35) are
point estimates. Areal estimates are introduced in Sect. 4.6.5.

7. A measurement error can be accounted for, as shown in Sect. 4.6.3.
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4.6 Supplements

Isotropic empirical semivariograms are calculated, in Sect. 4.6.1, without par-
titioning the (x∗, y∗)-plane (on the right in Fig. 4.8) into distance classes.
In Sect. 4.6.2 it is argued that estimates for the second moment function
calculated from observations of a random function depend on the sampling
interval. Hence, an interpolation calculated using a variogram or covariance
estimate will also depend on the sampling interval. In Sect. 4.6.3 it is shown
that a measurement error that satisfies certain conditions can be accounted
for in optimal interpolation. In Sec. 4.6.4 and 4.6.5, an example for both a
local interpolation and an areal estimate are given.

4.6.1 Isotropic Empirical Variograms

An empirical semivariogram is calculated, as required in (4.11) and Fig. 4.8,
by partitioning the (x∗, y∗)-plane (on the right, in Fig. 4.8) into direction
as well as distance classes which are then used to aggregate the differences
h = xi−xk for computing the empirical semivariogram, xi and xk being points
with observations. In the isotropic case, no direction classes are required to
aggregate the |h| = |xi − xk|, as is demonstrated in Sects. 4.3.1 and 4.3.4,
and, as demonstrated in this subsection, an empirical semivariogram can be
calculated even without using distance classes.

An estimator for an isotropic empirical variogram 2γ̂Z(h) of an
intrinsically stationary random function Z(x) can be calculated
by plotting (z(xi) − z(xk))2 versus |xi − xk| as scatterplot
and subsequently fitting an analytical variogram.

(4.40)

For example, plot (f) in Fig. 4.24 shows an empirical semivariogram that
is estimated, without distance classes as required in (4.40), from the residuals
of a first order trend surface for the SWIR climatologies in Fig. 4.16. This
result is obtained in Gstat under the assumptions (4.27) and (4.39) using
generalised least squares and with very small distance classes containing only
one |xi − xk|. Under the same assumptions and using the same method but
with distance classes 0.250 wide, the empirical semivariogram (but not the
fitted model) in Fig. 4.28 is obtained.

Often, when calculating an empirical semivariogram as required in (4.40),
the plot contains a large amount of strongly scattering points and it becomes
impossible to guess an analytical variogram using the recommendations in
Sect. 4.3.2: in Fig. 4.24, a model cannot be devined from plot (f) despite this
empirical variogram having been calculated from only 39 observations shown
in Fig. 4.16.

An isotropic empirical semivariogram calculated using (4.40) is compared
with estimates calculated using (4.11) and Fig. 4.8 in the following exper-
iment. Isotropic empirical semivariograms are calculated from the residuals
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Fig. 4.24. Empirical semivariograms γ̂(h) and Gaussian models in (Wm−2)2 esti-
mated as in Fig. 4.28 but using using widths 0.200 (a), 0.150 (b), 0.080 (c), 0.040

(d), 0.020 (e) and 0.10 (f) for the distance classes.

of a first order trend surface for the SWIR climatologies in Fig. 4.16, and
Gaussian analytical variograms are fitted using generalised least squares for
distance classes 0.250 (in Fig. 4.28) as well as 0.20, 0.150, 0.080, 0.040, 0.020

and 0.010 (in Fig. 4.24) wide. The fitted models have very similar parameter
estimates. The small differences in the estimated parameters suggest that
the model is reconcilable with the covariance function of the spatial random
function from which a realisation has been observed. This experiment also
demonstrates that an analytical variogram can be guessed from empirical
variograms calculated for distance classes wider than 0.040. Consequently,
in case of the SWIR climatologies in Fig. 4.16, estimates for the empirical
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variogram calculated using (4.11) and Fig. 4.8 are preferred to the estimates
obtained applying (4.40).

As a general conclusion, it is recommended to calculate an empirical semi-
variogram as required in (4.11) by partitioning the (x∗, y∗)-plane, as plotted
on the right in Fig. 4.8, into classes of direction and distance with different
widths. Thereafter, for these partitions, variogram models are guessed and
estimated. Approximately identical estimates, if obtained at all, are then as-
sumed to be reconcilable with the second moment function of the random
function under analysis.

4.6.2 Support

The observations for the soil parameters in the “Strassenacker” plot (e.g.,
the K2O values as plotted in Fig. 4.9) are obtained from a chemical analysis
of probes with diameter 5 cm in the first 20 cm of soil, and, consequently,
the observed values are averages over approximately 400 cm3 of soil (in three
dimensions) or over approximately 20 cm2 of the surface (in two dimensions).
The measurements of the “Strassenacker” yields, both grain and biomass,
(e.g., the grain yields as plotted in Fig. 4.13) are averages over a square
with side 1 m. The precipitation values measured on October 5, 1992 at the
stations shown in Fig. 4.2 are sums accumulated over 24 hours and covering
the catchment areas of the rain gauges having a diameter of a few cm. The
climatological yearly means of SWIR at the stations in Fig. 4.16 are means
over the period with measurements and spanning the active plate of the
pyranometer with a diameter of a few mm. However, these observations are
assumed to be point (in an idealised sense) observations for the variogram
estimation (in the remarks concluding Sect. 4.3.1) and for the interpolation
of these random functions (in the introduction to Sect. 4.4). Does neglecting
the physical dimensions associated with a measurement have an effect on the
estimations?

Observations of a (spatial) random function are usually obtained
from a physical sample associated with a period (in time) and
a length, area or volume (in space). This period, length, area or
volume is called support in Geostatistics.

(4.41)

Using definition (4.41), it is demonstrated in Fig. 4.25 that the histogram,
empirical variance and empirical covariance functions of the turbulent wind
speed as plotted in Fig. 2.1 undergo changes when the support is increased:
the empirical variance decreases and, accordingly, the sill of the variogram
decreases as the time series is assumed to be stationary. Consequently, the
support has an influence on an interpolation using an estimated variogram.
This influence can be accounted for in the kriging interpolators, if required,
as described in [35].

For example, when the supports are compared with the ranges of the
variogram estimates, assuming point observations is:
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Fig. 4.25. Second moment and support. Histograms, empirical covariance functions
and plots of wind speeds sampled from the wind speeds in Fig. 2.1 (on the top)
for supports (i.e., time intervals) ∆t = 2 s, ∆t = 4 s and ∆t = 8 s (from top to
bottom). (The time series for supports ∆t = 2, 4, 8 are averages calculated from
the original time series with ∆t = 1). Wind speeds in ms−1 (meter per second) and
time in s (seconds).

1. an excellent approximation when the empirical semivariogram for the
SWIR climatologies is estimated in Sects. 4.3.4, 4.5.3 and 4.6.3

2. a very good approximation when the empirical semivariogram for the
precipitation measurements is calculated in Sect. 4.6.5

3. a good approximation when the empirical semivariogram for K2O in the
“Strassenacker” plot is calculated in Sect. 4.3.1, and

4. a sufficing approximation when the empirical semivariogram for the grain
yield in the “Strassenacker” plot is calculated in 4.3.3.
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4.6.3 Measurement Errors

Every measurement is subject to error. There are random and systematic
errors as defined in Sect. 1.1. Random errors cannot be corrected, but their
statistical structure can be taken into account when the data are used. For ex-
ample, when interpolating a spatial random function Z(x) using observations
z(xi) which are afflicted with errors e(xi), then e(xi) having certain advan-
tageous properties can be incorporated in the kriging systems. Properties of
e(xi) as given in (4.42) are discussed in this subsection.

Let Z(x) be a spatial random function and z(xi) + e(xi) be
observations of a realisation of Z(x) at points xi in D,
i = 1, . . . , N , e(xi) being an error in the measurement:
the sum Z(x) + e(x) of the random variables Z(x) and e(x)
is observed. The measurement error e(x) is:

1. random, provided that Ee(xi) = 0 (as in (1.14)),
2. not correlated with Z(x) (except at the xi),

provided that Cov
(
Z(x), e(xk)

)
= 0, x �= xk,

3. stationary, provided that Cov
(
e(xi), e(xk)

)
= ce(xi − xk), and

4. white noise, provided that Cov
(
e(xi), e(xk)

)
= 0 for xi �= xk.

(4.42)

When a spatial random function Z(x) is interpolated from observations
z(xi) + e(xi), as defined in (4.42), then the error has an influence on the
interpolator: when z(xi) + e(xi) (and not xi) is measured, then the interpo-
lator becomes Ẑ(x0) =

∑N
i=1 λi

(
Z(xi)+ e(xi)

)
. Since Ẑ(x0) is required to be

not biased in (4.13), EẐ(x0) =
∑N

i=1 λiEZ(xi) +
∑N

i=1 λiEe(xi) = EZ(x0) is
obtained.

The second term in this sum becomes identically zero,
∑N

i=1 λiEe(xi) = 0,
provided that the measurement error is random as required in (4.42,1). Con-
sequently, under this condition, Ẑ(x0) is not biased, and, making use of the
favourable properties (e.g., intrinsic stationarity) of Z(x), the interpolation
weights λi can be obtained by solving the kriging equations. These equations
(e.g., as in (4.26)) contain either the covariances or the variograms between
the interpolation point x0 and the points with observations xi. If the mea-
surement error is reconcilable with (4.42,2) then, in Problem 4.20, (4.43) and
(4.44) as well as (4.45) and (4.46) are arrived at.

2γZ+e(xi, xk) = 2γ
(
Z(xi) + e(xi), Z(xk) + e(xk)

)
=
(
VarZ(xi) + VarZ(xk) + Vare(xi) + Vare(xk)

)
+2Cov

(
Z(xi), e(xi)

)
+ 2Cov

(
Z(xk), e(xk)

)
−2Cov

(
Z(xi), Z(xk)

)− 2Cov
(
e(xi), e(xk)

)
(4.43)

2γZ+e(xi, x0) = 2γ
(
Z(xi) + e(xi), Z(x0)

)
=
(
VarZ(xi) + VarZ(x0) + Vare(xi)

)
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|x   -  x  |i k

Fig. 4.26. Variogram 2γZ+e(xi, xk) of a stationary random function Z(x) whose
observations z(xi) are afflicted with a non-stationary error e(xi). The variation due
to the measurement error is superposed to the variogram of Z(x).

+2Cov
(
Z(xi), e(xi)

)− 2Cov
(
Z(xi), Z(x0)

)
(4.44)

cZ+e(xi, xk) = Cov
(
Z(xi) + e(xi), Z(xk) + e(xk)

)
= Cov

(
Z(xi), Z(xk)

)
+ Cov

(
e(xi), e(xk)

)
(4.45)

cZ+e(xi, x0) = Cov
(
Z(xi) + e(xi), Z(x0)

)
= Cov

(
Z(xi), Z(x0)

)
(4.46)

If, in addition to assumptions (4.42,1,2) it is assumed that Z(x) is station-
ary, then the terms Cov

(
Z(xi), Z(xk)

)
= cZ(xi−xk) and Cov

(
Z(xi), Z(x0)

)
=

cZ(xi − x0) in the above expressions for the variograms and covariances of
the sum Z(xi) + e(xi) in (4.43), (4.44), (4.45) and (4.46) become stationary;
the remaining covariances in these expressions are, however, not stationary.
Consequently, the empirical variogram is not an estimator for the variogram
2γZ+e(xi, xk) since the measurement error is non-stationary, as shown in
Fig. 4.26. This result also applies to the empirical covariance function.

In Problem 4.21 it is easily derived that, under assumptions (4.42,1,2,3),
2γZ+e(xi, xk) = 2γZ(xi − xk) + 2γe(xi − xk) = 2γZ(h) + 2γe(h).

If the measurement error is reconcilable with all assumptions as in (4.42),
and if Z(x) is stationary, then cZ+e(xi, xk) = cZ(xi − xk) + ce(0). Under
these assumptions, the variogram and the covariances of the spatial random
function, together with the measurement error, behave as shown in Fig. 4.27.

Under assumptions (4.42,1,2), the variograms in (4.43) and (4.44) as well
as the covariances in (4.45) and (4.46) have been arrived at. Hence, a krig-
ing system for the interpolation of observations afflicted with an error as
defined in (4.42) can be obtained, provided that (i) Z(x) is stationary, i.e.,
EZ(x) = µZ(x) = µZ and cZ(y, x) = cZ(y− x) = cZ(h) for all x and y in D,
and (ii) the measurement error is random and not correlated with the observa-
tions as required in (4.42,1,2). Under these assumptions and proceeding as in
the derivation of the simple kriging system (4.22), the universality condition∑N

i=1 λi = 1 is obtained, which is then used as a constraint to minimise the
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Fig. 4.27. Variogram 2γZ+e(xi, xk) and covariance function cZ+e(xi, xk), on con-
dition that all properties as defined in (4.42) apply to a measurement error e(xi)
and that Z(x) is stationary.

mean square prediction error Var
(
Ẑ(x0)−Z(x0)

)
=
∑N

i=1

∑N
k=1 λiλk

(
cZ(xi−

xk) + Cov(e(xi), e(xk))
)−2

∑N
i=1 cZ(xk − x0) + VarZ(x0).

Let Z(x) be a stationary random function with observations
z(xi) + e(xi) as required in (4.42,1,2) and let
Ẑ(x0) =

∑N
i=1 λi

(
Z(xi) + e(xi)

)
be an interpolator as

in (4.13). Then the weights λi are obtained when solving:

1.
∑N

i=1 λi

(
cZ(xi − xk) + Cov

(
e(xi), e(xk)

))−m = cZ(xk − x0),

k = 1, . . . , N , the optimality conditions, and
2.
∑N

i=1 λi = 1, the universality condition.

3. Var
(
Ẑ(x0) − Z(x0)

)
= VarZ(x) −∑N

k=1 λkcZ(xk − x0) +m
is the mean square prediction error (interpolation variance).

(4.47)

An interpolator obtained from the solution of (4.47) is not exact, i.e., it
is not implied that Ẑ(xk) = z(xk) + e(xk). This is shown by assuming that
the interpolator is exact and then, from this assumption, deriving a contra-
diction. If x0 = xk, then λi = 0 for all i �= k and λk = 1 and, further, for
equation k in (4.47), 1 × Cov

(
Z(xk), Z(xk)

)
+ 1 × Cov

(
e(xk), e(xk)

) −m =
Cov

(
Z(xk), Z(xk)

)
is obtained which implies m = Cov

(
e(xk), e(xk)

)
. Un-

der these (identical) assumptions, for equation i in (4.47), i �= k, 1 ×
Cov

(
Z(xk), Z(xi)

)
+ 1 × Cov

(
e(xk), e(xi)

) −m = Cov
(
Z(xk), Z(xi)

)
is ob-

tained implying m = Cov
(
e(xk), e(xi)

)
. m = Cov

(
e(xk), e(xi)

)
is, however,

in contradiction to m = Cov
(
e(xk), e(xk)

)
derived above.
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Gstat interpolates as required in (4.47) provided that an error in the
measurements (i) satisfies (4.42,1,2) and (ii) is known for all points with
observations xi. The intricacy of the covariance matrix in (4.47) is strongly
reduced when the error is assumed to stem from a white noise process as
required in (4.42,4): (4.47) becomes (4.22) except for the diagonal of the
covariance matrix, where VarZ(x) + Vare(x) is substituted for VarZ(x). In
this case, the measurement error is accounted for in the variogram model
when interpolating with Gstat.

For example, the SWIR climatologies plotted in Fig. 4.16 are afflicted
with errors due to deficiencies in the maintenance of the instruments and/or
the data acquisition systems, as discussed in Sect. 1.1. These climatolo-
gies are means of the time series of yearly values of SWIR for each station
and are available, together with their empirical standard deviations, in file
/pfad/globradnorde.eas as described in Sect. 4.3.4. The empirical variances
of a few stations are also given in Table 3.4. These estimates for the second
moment, however, are not estimates for the measurement error, because, as
demonstrated in Sect. 3.1.1, the variability in SWIR yearly values is owed to
three sources: a possible trend, the interannual variability and errors in the
measurement.

A fourth source of variability is taken into account when time series at
neighbouring stations in a region are analysed. In Fig. 3.8 and Table 3.6 it is
shown, for example, that the variability of SWIR yearly values due to station
effects are not to be neglected. In this example, the total variation of yearly
SWIR values measured at stations in grid box

(
(100E, 500N), (150E, 52.50N)

)
amount to (65.9 Wm−2)−2; of these, approximately (45 Wm−2)−2 are shown
to be due to both the interannual variability and the measurement error in
the comments to Table 3.6, and consequently, assuming independent sources
of variability, (20 Wm−2)−2 are due to the trend and station effects.

Approximately (20 Wm−2)−2 is also obtained at the sill of the empirical
semivariogram for the SWIR climatologies in Fig. 4.21, from which approxi-
mately (40 Wm−2)−2 is obtained as an estimate for the variance of the SWIR
climatologies plotted in Fig. 4.16. Obviously, this variance is due to the trend,
the part of the interannual variability that had not been captured when the
climatologies were calculated, the station effects and the measurement error.
For simplicity, this variance is assumed to be due solely to the measurement
error and the station effects, and both sources are assumed to be independent
of each other for the following variogram estimation and interpolation. It is
further assumed that the error is reconcilable with (4.42,1,2,3,4). In this case,
the SWIR climatologies are interpolated by applying universal kriging with
the measurement error incorporated in the variogram model.

In Gstat, a measurement error as required in (4.42,1,2,3,4) is incorporated
in a variogram estimation by specifying an error term in a variogram model.
For example, when an error term is included in the variogram model as
plotted in Fig. 4.18 (a), then 2γ(0) = 0, enforced when estimating the model
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Fig. 4.28. Empirical semivariogram in (Wm−2)2 as estimated in Fig. 4.21 but
using a Gaussian model with a term for the measurement error (in (Wm−2)2) for
the universal kriging of SWIR climatological yearly means at stations in Fig. 4.16.

as plotted Fig. 4.21 with generalised least squares, is no longer required: the
model is changed to

variogram(SWIR): 1.0 Err() + 19.935 Sph(2.885)

and generalised least squares estimations are repeated until the estimate be-
comes stable: with

variogram(SWIR): -4.185 Err(@ 0) + 25.531 Sph(2.839)

a negative variance for the measurement error is estimated. The negative
error term is due to the spherical model not being well enough suited for
these data. A better model for SWIR that undergoes very small changes
within short distances (e.g., identical radiation climates are assumed for the
pairs of stations in short distances of each other given in Problem 1.11 when
checking for homogeneity in Fig. 2.19) is an analytical variogram that is
smooth in |h| = 0. When a Gaussian model, for example, is fitted using
generalised least squares, the result plotted in Fig. 4.28 is obtained.

Under the assumptions stipulated above and with a Gaussian variogram
model, the measurement error in the SWIR climatologies plotted in Fig. 4.16
is estimated to be 4.3 (Wm−2)2, close to the 5 (Wm−2)2 obtained for the
measurement error in SWIR yearly values at the stations in Fig. 4.16 using the
relative error (2% of the mean) as estimated in [58]. Admittedly, to account
for the above simplification, the result thus obtained includes contributions
due to the trend and that part of the interannual variability which had not
been captured when the climatologies were calculated.

Using the Gaussian variogram model with an error term as estimated in
Fig. 4.28 and universal kriging, the SWIR climatologies plotted in Fig. 4.16
are interpolated with the Gstat command file

data(SWIR): ’/path/swirnorde.eas’,x=1,y=2,v=4,d=1;
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Fig. 4.29. SWIR climatology in Wm−2 interpolated from the observations in
Fig. 4.16 using universal kriging and the Gaussian model with the measurement
error term as plotted in Fig. 4.28.

variogram(SWIR): 2.14231 Err(@ 0) + 19.896 Gau(1.55642);

set cutoff = 5;

set fit = 1;

set gls residuals = 1;

set width = 0.25;

data(): ’swirnorde.grid.eas’, x=1, y=2;

set output = ’swirnordeerr.rep.eas’;

and the results in Figs. 4.29 and 4.30 are obtained.
These estimates are then compared with the estimates in Figs. 4.22 and

4.23 which were obtained by universal kriging with the variogram model
without error term as plotted in Fig. 4.21. The estimates in Figs. 4.29 (using
a variogram model with an error term) and 4.22 (using a variogram model
without error term) are close to each other in the interior of the region with
observations. Outside this region, however, small differences are seen when
the estimates are compared.

The interpolation variances in Fig. 4.30 (using a variogram model with
an error term) are smaller than those in Fig. 4.23 (using a variogram model
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Fig. 4.30. Variance in (Wm−2)2 of the interpolation of SWIR climatologies in
Fig. 4.29.

without error term): when interpolating using 2.14231 Err(@ 0) + 19.896

Gau(1.55642) as plotted in Fig. 4.28, the measurement error is not included
in the interpolation variance. Consequently, when the error is added to the
interpolation variance in Fig. 4.30, an interpolation variance very close to
that plotted in Fig. 4.23 is obtained.

When interpolating the SWIR climatology in Fig. 4.29 using the Gaus-
sian variogram model with an error term as estimated in Fig. 4.28, the es-
timate is calculated, at every interpolation point in the region bounded by
40 and 160 (eastern) longitude and by 480 and 540 (northern) latitude, using
all observations plotted in Fig. 4.16, and, therefore, the distances between
the interpolation points and the points with observations (the interpolation
distances) are often larger than 50, being (approximately) the maximal dis-
tance for which an empirical semivariogram value is calculated, as shown in
Fig. 4.28. Thus, the interpolation distances are twice as large as the maxi-
mal distance recommended, in Fig. 4.11, when interpolating with a Gaussian
model (1.73 × a = 2.690 longitude or latitude, a = 1.554620 in Fig. 4.28).
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Fig. 4.31. SWIR climatology in Wm−2 locally (|h| ≤ 40) interpolated from the
observations in Fig. 4.16 using universal kriging and the Gaussian model with the
measurement term as plotted in Fig. 4.28.

4.6.4 Local Interpolation

An interpolation with too large interpolation distances (as found to be in-
adequate, in the remarks concluding Sect. 4.6.3, for the universal kriging of
the SWIR climatoloy with the Gaussian model in Fig. 4.28) can be circum-
vented by a local interpolation using a moving interpolation neighbourhood.
For example, results as in Figs. 4.31 and 4.32 are obtained when the SWIR
climatologies are interpolated, applying universal kriging with the variogram
model in Fig. 4.28, at each interpolation point x0, from those observations
xi with interpolation distance |h| = |x0 − xi| ≤ 40 longitude or latitude, i.e.,
performing a local (as defined in (2.55), more specifically: not calculated from
all observations) interpolation with a circular interpolation neighbourhood of
radius 40 longitude or latitude.

For this interpolation, the data() expression in the Gstat command file
as used in Sect. 4.6.3 is modified by adding the radius option

data(SWIR): ’/path/swirnorde.eas’, x=1,y=2,v=4,d=1,radius=4;

prior to interpolating. Despite this constraint, the estimates in Figs. 4.31 and
4.32 are calculated using larger interpolation distances than recommended
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Fig. 4.32. Variance in (Wm−2)2 of the interpolation of SWIR climatologies in
Fig. 4.31.

in Fig. 4.11 for a Gaussian model (1.73 × a = 2.690 longitude or latitude,
a = 1.554620 in Fig. 4.28). The Gaussian model in Fig. 4.28 is however safely
within the estimates for the empirical variogram for |h| ≤ 50, and, therefore,
interpolation distances up to 40 longitude or latitude are arguable.

When the interpolations in Figs. 4.29 and 4.31 are compared, only small
deviations in the interpolated SWIR climatologies are noticed in the interior
of the area with observations; at the margins however, the deviations become
substantial. Over the North Sea and close to the Oder river in the northeast, a
too large SWIR climatology results, in Fig. 4.31, from the local interpolation:
a SWIR climatology as obtained in Fig. 4.29 is more realistic.

If a stationary spatial random function Z(x) or a function with a non-
constant expectation function µZ(x) and stationary residuals is estimated,
using simple or ordinary kriging, at interpolation points x0 in larger dis-
tances from the points with observations xi (usually at the margins of the
area with observations), then, with an increasing interpolation neighbour-
hood, the interpolator Ẑ(x) comes closer to µZ(x). Hence, at these x0, the
interpolation variance of a local interpolation is larger than those of a global
interpolation using all xi. In Fig. 4.32 for example, at the margins of the area
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with observations as seen in Fig. 4.16, the interpolation variance of the locally
interpolated SWIR climatology (in Fig. 4.32) is larger than the variance of
the globally interpolated SWIR climatology (in Fig. 4.30).

If the SWIR climatology is universally kriged in interpolation neighbour-
hoods with radius 40 longitude and latitude, then a variogram model (as
plotted in Fig. 4.28) and a linear model for the trend are used that are ob-
tained from global generalised least squares estimates. These estimates are
global (as defined in (2.55), more specifically: calculated from all observa-
tions) because no interpolation neighbourhood is defined in the data(SWIR):

’/path/swirnorde.eas’,x=1,y=2,v=4,d=1; line in the Gstat command file in
Sect. 4.6.3. In this case, one faces the choice between global interpolation
(with results in Figs. 4.29 and 4.30) or local interpolation (with results in
Figs. 4.31 and 4.32).

Only a local interpolation is, however, feasible in cases where the moment
functions are estimated for distances |h| ≤ d solely, with d much smaller than
the shorter side of the area with observations, though globally using all pairs
of observations

(
z(xi), z(xk)

)
with |xi − xk| = |h| ≤ d. In Sect. 4.3.3, for

example, an empirical variogram for the grain yield in the “Strassenacker”
plot is estimated for |h| = |xi − xk| ≤ 80 m, being only approximately
half of 140 m, i.e., the shorter side of the area with observations as plotted
in Fig. 4.13, to obtain the estimates as plotted in Fig. 4.15. This is to be
accounted for in Problem 4.25 where the grain yield in the “Strassenacker”
plot is interpolated locally using the variogram model obtained in Fig. 4.15.

The choice between local or global interpolation becomes easier with the
guideline given in (4.48).

A local (as defined in (2.55), more specifically: not using all
observations in the interpolator) interpolation of a spatial
random function Z(x) with expectation function µZ(x) is
recommended when:

1. Z(x) is only locally (intrinsically) stationary,
2. a non-constant µX(x) cannot be estimated globally

using generalised least squares,
3. enough observations are available, and
4. a large number of observations is available and the kriging

system becomes too large for a global estimation.

(4.48)

Gstat allows for defining of interpolation neighbourhoods that depend on
the interpolation point x0 and the points with observations xi. A local in-
terpolation in neighbourhoods depending on x0 and xi allows for challenging
unfavourable constellations of the interpolation point and the points with
observations which occur, for example, when the density of the xi changes.
Hence, areal precipitation is estimated, in Figs. 4.34 and 4.34, using local
simple kriging with an interpolation neighbourhood that depends on the xi

that are neighbours to x0.
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4.6.5 Spatial Averages

Under the assumptions stipulated in the introduction to Sect. 4.5, with sim-
ple, ordinary or universal kriging as defined in (4.22), (4.26) or (4.35) interpo-
lators that are linear in their weights and the observations are obtained. For
the derivation of these kriging systems it is assumed implicitly that the inter-
polation points and the points with observations are idealised points in the
mathematical sense. Hence, the estimation of areal means is straightforward,
on condition that the means are linear.

Let Z(x) be a spatial random function as defined in (4.6)
with x being in the domain D and let V (x) ⊂ D with centre
in x. Then:

1. ZV (x) =
(
1/V (x)

) ∫
V (x)

Z(x′)dx′ is the mean of Z(x) in V (x).

2. ZV (x) ≈ (
1/n(V )

)∑n(V )
j=1 Z(x′j), x

′
j being n(V ) points in V (x).

(4.49)

An areal mean is approximated, in (4.49,2), by interpolating Z(x) for n(V )
points x′j in V (x) and then calculating the arithmetic mean of the estimated
values. If the estimates for all interpolation points x′j are computed from the
same points with observations xi then, in the kriging systems (4.22), (4.26)
or (4.35), the matrices remain unchanged as only the right sides undergo
changes: the covariances or variograms (in (4.35) together with the values of
the base functions for the x′j) between the x′j and xi change. These point-to-
point covariances are averaged, in (4.50),

c̄V (x) =
1

n(V )

n(V )∑
j=1

(
1

N(V )

N(V )∑
i=1

c(x′j − xi)

)
(4.50)

to a point-to-area covariance which is then substituted for the right side in the
kriging systems (together with, in (4.35), the averages of the base functions
for the x′j). The systems thus modified are then solved to obtain directly the
areal mean. This technique is restricted to the estimation of linear functionals
(as introduced in the remarks to (1.1)) of a spatial random function.

For example, areal precipitation means for October 5, 1992 as seen in
Fig. 4.1 are calculated, using the SYMAP algorithm (a deterministic inter-
polation method introduced in Sect. 4.1.1), from the observations at the
stations as plotted in Fig. 4.2. What is obtained when areal estimates are
calculated from the same observations but using optimal interpolation?

Applying (4.48,4) to Fig. 4.2 showing the rain gauge stations, it becomes
obvious that a local interpolation is called for. For simplicity, the areas for
estimating the mean precipitation are assumed to be cells with sides ∆x∗ =
0.30 and ∆y∗ = 0.220 centred in the interpolation points shown in Fig. 4.3.
Additionally, precipitation for October 5, 1992 is assumed to be a spatial
random function satisfying locally the intrinsic hypothesis.

Then, empirical semivariograms are calculated for |h| = |xi − xi| ≤ 30

using distance classes 0.10 wide and for directions 00, 450, 900 and 1350
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(not shown). From these variograms it is concluded that precipitation for
October 5, 1992 is not isotropic and that the anisotropy can be captured
geometrically using an ellipse with the longer axis in direction 900, i.e., from
west to east, and the shorter axis half as long, i.e., an anisotropy ratio 0.5
is obtained. These variograms also jump in |h| = 0, accounted for by fitting
a preliminary spherical model with a nugget effect. This model is considered
to be preliminary because, in Problem 4.22, the jump is assumed to be due
to a measurement error. Under these assumptions, the anisotropic empirical
semivariogram as shown in plot (f) in Fig. 4.33 is estimated for |h| = |xi −
xi| ≤ 20 given that this distance is assumed to be the largest interpolation
distance.

Thereafter, the spherical model with nugget effect and geometric anisotropy
obtained above is plotted in empirical semivariograms calculated for direc-
tions 00, 450, 900 and 1350, and direction classes 450 wide, to obtain the
diagnostics in Fig. 4.33, plots (a), (b) (c) and (d). Obviously, the relatively
good overall fit (plot (e) in Fig. 4.33) becomes unfavourable for directions 00

and 1350 (plots (a) and (d) in Fig. 4.33). Neglecting those directions with a
lack of fit (item 1. below), the variogram model as in plot (e) in Fig. 4.33 is
used to estimate the areal precipitation for October, 5, 1992.

In Gstat, the precipitation observations are interpolated with the follow-
ing Gstat command file obtained by editing the results from the variogram
estimation, i.e., the model in Fig. 4.33 (e). The following changes are made:

1. In the line with data(precipit), the interpolation neighbourhood is de-
fined: observations from at least 10 and at most 30 stations, being in a
generalised distance (as defined in the variogram model) of less than 20

from the interpolation point, are used to calculate the interpolator. Due
to these restrictions, the generalised interpolation distances are smaller
than 0.50 in regions with a large density of rain gauge stations (Figs. 4.2
and 4.3), and the estimates are calculated using a model that fits well for
all directions as is obvious from Fig. 4.33. In regions with a small density
of rain gauge stations, the above restrictions ensure that an estimate is
computed from at least 10 observations with generalised distances smaller
than 20 from the interpolation point, otherwise no estimate is obtained.

2. The file with the interpolation grid as specified in the line with data()

defines the interpolation points as shown in Fig. 4.3.
3. The results are written to file precipit.rep.
4. In Geostatistics, a block is a volume in the form of a parallelepiped in

a deposit that is to be mined (with the ore extracted to be predicted).
Hence, “block” is used in connection with areal means, e.g., the optimal
prediction of spatial means (in areas or volumes) is called block kriging.
In Gstat, areas with means to be estimated are defined in the line with
blocksize: the areas have sides 0.30 in west-east direction, 0.220 in south-
north direction and their centre in the interpolation points.
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Fig. 4.33. Empirical semivariograms γ̂(h) in (mm)2 of the rain gauge measure-
ments for October 5, 1992 at the stations in Fig. 4.2 with cutoff 20 and width 0.10.
(e): γ̂(h) for all directions and fitted spherical model with nugget effect and geo-
metric anisotropy; (a), (b), (c) and (d): the same model as in (e) plotted in γ̂(h)
for the directions 00, 450, 900 and 1350.

5. set nblockdiscr=10 describes the discretisation of the areas to be esti-
mated. The mean variogram for each area is calculated as required in
(4.50) using 100 (10 in each direction) x′j . Alternative schemes as de-
scribed in [105] are also available in Gstat.

so as to obtain Gstat commandfile
data(precipit): ’/path/ppitoct592.dat’, x=2, y=1, v=3, average,

radius=2, max=30, min=10;

variogram(precipit): 1.66117 Nug(0) + 95.279 Sph(4.27132,90,0.5);



242 4 Interpolation

Fig. 4.34. Precipitation in mm for October 5, 1992 and region
(
(20E, 420N), (190E,

50.00N)
)

interpolated from the observations at the stations in Fig. 4.2 using local
block kriging and the variogram model in Fig. 4.33 (e).

set cutoff = 2;

set fit = 1;

set width = 0.1;

data(): ’ppitoct592.grid’, x=1, y=2;

set output = ’precipit.rep’;

blocksize: dx=0.3, dy=0.22; #sides of the area

set nblockdiscr = 10; #n(V) = 10×10, n(V) as in (4.50)

for estimating the areal precipitation for October 5, 1992.
Using this command file, Gstat estimates, for each interpolation point, the

mean variogram with a discretisation as defined above from the variogram
model in Fig. 4.33 (e), substitutes the estimate for the right side in the
ordinary kriging system (4.26), and solving the system, obtains the mean
precipitation and its interpolation variance for an area as defined above, as
shown in Figs. 4.34 and 4.35.

The block kriging estimate as shown in Fig. 4.34 resembles the SYMAP
interpolation as seen in Fig. 4.1 in those regions where both results are avail-
able. The interpolation variance, as in Fig. 4.35, depends on the density of the
stations with rain gauge observations. The interpolation variance is smaller
than 1 (mm)2 in regions with a large density of observations and increases to
approximately 5 (mm)2 in northern Italy where observations are sparse. At
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Fig. 4.35. Variance in (mm)2 of the areal precipitation estimates as obtained in
Fig. 4.34.

the margin of the area with observations which is shown in Fig. 4.2, interpo-
lation variance increases rapidly and is no longer plotted when larger than
15 (mm)2.

4.6.6 Optimal Interpolation: Summary

When a spatial random function is interpolated using simple, ordinary or
universal kriging then anwers to questions (4.51) must be given.

Prior to an interpolation of a spatial random function Z(x)
answers to the following questions are required:

1. Is the interpolation local or global?
2. In case of a local interpolation: which interpolation neighbour-

hood is used?
3. In the case of a non-constant drift: Is a random function with

a non-constant drift in agreement with assumptions (4.27)
and (4.39)?

4. When estimating spatial means: how is the mean variogram
calculated?

5. Can a possible measurement error be incorporated in the
kriging systems?

6. Is a coordinate transform required prior to the interpolation?

(4.51)
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These answers depend often on those given to questions (4.12), prior to esti-
mating the moment functions of the spatial random function under analysis,
and also on those to questions (4.51). For example, the empirical variograms
in Fig. 4.33 are estimated for generalised distances |h| ≤ 20, 20 being the
maximal interpolation distance, which is a part of the answer to question
(4.51,2). If an uncertainty due to these interdependencies remains then it is
recommended to validate an interpolation using resampling methods.

For example, the variogram 2γZ(h) (and, when the expectation function
µZ(x) is not constant and universal kriging is called for, the drift µZ(x)) is
(are) estimated without using observation z(xk). Thereafter the interpolator
Ẑ(xk) is compared with z(xk). This procedure is repeated for each observa-
tion. It is also possible to construct two subsets from the set of observations.
In this case, using one subset, the spatial random function is predicted for the
points with observations in the other subset, and vice-versa. The estimates
are then compared with the observations.

4.7 Problems

4.1. Interpolate the climatological means of SWIR measured at stations as
given in Table 4.1 using weight functions alternative to g(r) = r−1, for ex-
ample g(r) = r−2, g(r) = e−2r, and g(r) = e−r2

.

4.2. For Splus users only: in Sect. 4.1.2, the tree-line in the Valais alps is
interpolated with Akima’s method using m = 5, with the result given in
Fig. 4.4. Try m = 7, m = 10, m = 3, etc.

4.3. For Splus users only: Interpolate the precipitation measurements for Oc-
tober 5, 1992 in file /path/ppitoct592.dat using Akima’s method as demon-
strated in Sect. 4.1.2. Akima’s method fails in this case. Why?

4.4. Show that γZ(h) = cZ(0) − cZ(h), provided that Z(x) is stationary.

4.5. Estimate the empirical variogram of the differences in the pyranometer
measurements for 1991 as obtained in the comparison experiment described in
Sect. 1.1. The empirical covariances of this time series are estimated in Prob-
lem 2.32. The pyranometer differences are available in file /path/difpyr.eas.

4.6. Sediment samples with a dry weight of about 20 kg were taken in a gravel
deposit [80]. Based on grain size analysis, the hydraulic conductivity of the
sediment was estimated using Kozeny’s model, which was calibrated with the
parameters of two undisturbed samples. These estimates are available in file
/path/gravel2.dat. Is the hydraulic conductivity (intrinsically) stationary?
Estimate its second moment with Gstat.

A spatial sampling interval ∆x can be associated with the hydraulic con-
ductivity values because the samples are taken at points in identical distances
on a straight line. Are there alternatives to an estimation using Gstat?
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4.7. Simulate a realisation of an AR[1] process (Xt) with N = 1000 and
a = 0.9 using (2.13), and plot, as in Fig. 2.11, the empirical covariance
function estimated from the simulation. Then draw random samples x(i)

t ,
i = 1, 2, . . . , n, n = 10, 30, 50, 100, 200, 300, . . . from the simulated values and
estimate the empirical variogram of (Xt) using these samples. A random
sample of the simulated values obtained in R vector ar1samp1 is written to
file ar1samp1.dat using

sink("ar1samp1.dat")

for (i in (1:length(ar1samp1)) {cat(i, ar1samp1[i], "#n")}

sink()

and, from this file, subsequent to adding the .eas header lines, an empirical
variogram can be calculated with Gstat.

4.8. Repeat this, i.e., the performance in Problem 4.7, but this time for a
random walk process as defined in (2.20).

4.9. Fit an analytical variogram to the empirical variograms obtained in
Problems 4.7 and 4.8.

4.10. Lagrange multipliers. The position of the extreme value of a function
changes under an additional assumption (acting as a constraint) as shown
in Fig. 4.36. Solving equations (4.52) the extreme of function F (x, y) under
constraint f(x, y) = 0 is obtained, x and y being real.

d
dx

(
F (x, y) −m(f(x, y) = 0

))
= 0

d
dy

(
F (x, y) −m(f(x, y) = 0

))
= 0 (4.52)

d
dm

(
F (x, y) −m(f(x, y) = 0

))
= 0

Write dF (x, y)/dx = Fx, dF (x, y)/dy = Fy, d
(
f(x, y) = 0

)
/dx = fx as well

as d
(
f(x, y) = 0

)
/dy = fy, and thus (4.52) becomes (4.53)

Fx = mfx Fy = mfy
d

dm

(
F (x, y) −m(f(x, y) = 0

))
= 0 (4.53)

Fy

Fx
=

fy

fx
(4.54)

The condition for an extreme under constraint f(x, y) = 0 in (4.54) is ob-
tained from the first two equations in (4.53) in a few steps.

4.11. (4.22,4) is obtained by substituting the solution of (4.22), the interpola-
tion variance as written in (4.21). Let Cik be the matrix with the covariances
in (4.22), λ = (λ1, λ2, . . . , λN ,m)T the column vector with the solution of
the system, and ci0 = (c10, c20, . . . , cN0, 1)T the column vector of its right
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y

x

F(x,y) = constant

f(x,y) = 0

extreme of F(x,y) if f(x,y) = 0

extreme of F(x,y)

Fig. 4.36. Lagrange multipliers: the position of the extreme value of a function
F (x, y) changes under the additional assumption f(x, y) = 0.

side. Using this matrix and these vectors, (4.21) is written in the first line of
the following derivation, and, in the second line, the solution λ = C−1

ik ci0 is
substituted.

Var
(
Ẑ(x0) − Z(x0)

)
= λT Cikλ − 2λT ci0 + 2m+ cZ(0)

= (C−1
ik ci0)T CikC−1

ik ci0 − 2(C−1
ik ci0)T ci0 + 2m+ cZ(0)

The result is obtained in a few steps.

4.12. Derive the kriging system in (4.24). The expression being minimised to
obtain the system is derived as follows: (i) Because µ̂ is required to be not bi-
ased, universality condition

∑N
i=1 λ

′
i−1 = 0 is obtained from E(µ̂−µ) = 0 as

in (2.64), and (ii) because µ̂ is further required to be optimal, the interpola-
tion variance Var(µ̂−µ) =

∑N
i=1

∑N
k=1 λ

′
iλ

′
kcZ(xi−xk)−2Cov(µ̂, µ)+Varµ =∑N

i=1

∑N
k=1 λ

′
iλ

′
kcZ(xi−xk) is minimised under the constraint

∑N
i=1 λ

′
i−1 =

0. The derivatives
∑N

i=1

∑N
k=1 λ

′
iλ

′
kcZ(xi − xk) − 2m′(∑N

i=1 λ
′
i − 1

)
with re-

spect to λ′k, k = 1, . . . , N and m′ are calculated and set = 0.
You are to estimate the expectation function of a stationary random func-

tion. When do you solve the kriging system in (4.24)? When do you calculate
the arithmetic mean? The arithmetic mean of a time series as defined in (2.1)
has the properties (2.56).

4.13. Derive the kriging system in (4.26).

4.14. Derive (4.26,4). As in Problem 4.11: Let λ = (λ1, λ2, . . . , λN , µ)T be
the column vector with the solution of (4.26), γik be the variogram matrix in
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the system, and γi0 = (γ(x1−x0), . . . , γ(xN−x0), 1)T the column vector of its
right side. Then (4.26,4) is obtained subsequent to substituting λ = γ−1

ik γi0

in −λT γikλ + 2λT γi0, the interpolation variance as in (4.25).

4.15. When an empirical semivariogram is calculated using Gstat, as demon-
strated in Sect. 4.3.1, the analyst is asked whether duplicate observations
should be averaged. Write a kriging system as in (4.22) for a point with
observations (for example, x1) occurring twice. A system with two identical
equations is obtained that does not have a unique solution on condition that
the system with only one equation for x1 does (have a unique solution).

4.16. Calculate the kriging weights and the interpolation variance for EZ(x) =
µZ (being constant) and

a) Cov
(
Z(x), Z(y)

)
= c0 for x = y

Cov
(
Z(x), Z(y)

)
= 0 for x �= y

b) Cov
(
Z(x), Z(y)

)
= c0 for x = y

Cov
(
Z(x), Z(y)

)
= kc0, 0 ≤ k ≤ 1 for x �= y

c) Assuming (b), calculate the kriging weights and the
the variance of the estimate for µZ .

Hints: a) Write equation k in the kriging system (4.22): a covariance matrix
for white noise is a diagonal matrix with c0. The results are obtained using
the universality condition and the symmetry of the system. b) The diagonal
of the covariance matrix contains c0, the other elements are kc0.

4.17. Derive the universal kriging system in (4.35).

4.18. Derive the variance of the universal kriging system in (4.38).

4.19. The system (4.24) for optimally estimating a constant expectation is
derived in Problem 4.12. Now derive the system for the optimal estimation
of an expectation function that is not constant by applying

1.
∑N

i=1 λ
′
i

∑p
j=1 bjfj(xi) =

∑p
j=1 bjfj(xi), j = 1, . . . , p, i.e., universality

conditions as in (4.29), and
2. Var

(
µ̂(x) − µ(x)

)
=
∑N

i=1

∑N
k=1 λ

′
iλ

′
kcik, i.e., optimality conditions as in

(4.31).

From these,
∑N

i=1

∑N
k=1 λ

′
iλ

′
kcik − 2

∑p
j=1m

′
j

(∑N
i=1 λ

′
ifj(xi) − fj(xi)

)
is ar-

rived at using Lagrange multipliers. Thereafter, equating the partial deriva-
tions with zero, the system:

N∑
i=1

λicik −
p∑

j=1

mjfj(xk) = 0, k = 1, . . . , N (4.55)

N∑
i=1

λifj(xi) = fj(xi), j = 1, . . . , p (4.56)
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is obtained.

4.20. Derive (4.43), (4.44), (4.45) and (4.46) using (1.15) and (1.16).

4.21. Show that 2γZ+e(xi, xk) = 2γZ(xi − xk) + 2γe(xi − xk) = 2γZ(h) +
2γe(h), provided that the measurement error is as required in (4.42,1,2,3).

4.22. The precipitations observed for October 5, 1992 at the stations plot-
ted in Fig. 4.2 are afflicted with a random error. Estimate this error. The
precipitation observations are available in file /path/ppitoct592.dat and are
locally interpolated, using the variogram in Fig. 4.33, to obtain the areal
precipitation as shown in Fig. 4.34.

4.23. Interpolate the tree-line observations plotted in Fig. 3.10. Select a trend
surface as a model for the drift and then estimate the drift and the variogram
of the residuals using generalised least squares.

4.24. Compare the result obtained in Problem 4.23 with the results in
Sect. 3.6.

4.25. Interpolate the observations of “Strassenacker” grain yield as plotted
in Fig. 4.13 using the variogram model in Fig. 4.15.

4.26. Estimate a first order linear model for expectation function of the
SWIR climatologies in Fig. 4.16 using generalised least squares. Calculate
the residuals and then estimate the variance of the residuals. Repeat these
estimations using ordinary least squares, i.e., without incorporating the cor-
relations of the residuals in the estimator. Hint: Gstat allows for estimating
the random function and its expectation function.
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In Sect. 2.3.2, an AR[1] model is fitted to the wind speed values of the turbu-
lent atmospheric flow plotted in Fig. 2.1, and, in Sect. 2.3.4, an MA[1] model
is fitted to the differences of the yearly values in the Basel temperature series
plotted above in Fig. 2.14. Both models have been fitted by trial and error
and both are linear processes generated from a white noise process as defined
in (2.25), i.e., they are linear combinations of a sequence of independent and
identically distributed random variables. In the closing remarks in Sect. 2.3.5,
it is supposed that there are autoregressive and moving average models with
two or more parameters, AR[p] and MA[q] models, and even combined mod-
els; and, to circumvent the shortcomings of the fitting by trial and error, a
systematic fitting procedure is wished for.

This wish will be granted once you work through this chapter in which
you will find an introduction to the usual procedure for fitting a linear process
to a time series. This procedure involves the steps in (5.1), i.e.,

1. the identification of a small number of candidate models
2. the estimation of the parameters in the candidate models
3. the diagnostic of the estimated models, and
4. the selection of a model.

(5.1)

It should be noted that the sequence of the steps is not fixed: often one
advances one step and is then forced to retreat one or even several steps.

The result of procedure (5.1) is a model that can later be used to predict
the time series under analysis. With this third possibility to calculate predic-
tions, the desire declared when concluding Sect. 2.7 is fulfilled: a stochastic
process can be predicted using (i) linear models for its first moment function
(in Chap. 3), (ii) analytical variograms for its second moment function (in
Chap. 4), or (iii) models for the process itself (in Sect. 5.5 of this chapter).

Sects. 5.1 and 5.2 introduce estimators for AR[p] models and Sect. 5.3 in-
troduces estimators for both ARMA[p, q] and ARIMA[p, d, q] models. There-
after, in Sect. 5.4, the systematic estimation of a linear process as pro-
posed in (5.1) is demonstrated using three example time series: AR[p],
MA[q] and ARMA[p, q] models are fitted to the stationary examples, and
an ARIMA[p, d, q] model is fitted to an example with a non-constant mean.
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In Sect. 5.5, a fitted model is used to calculate predictions for time points
with no observations. The supplements are given in Sect. 5.6, and the chapter
closes with the problems in Sect. 5.7.

Introductions to linear processes are given, e.g., in [16], [21], [17] and [22],
and a summary is given in [79].

5.1 AR[p] Models

In Sect. 2.3.2, it is assumed that the time series (xt), t = 1, . . . , 1800, xt

being the wind speed values measured in a turbulent atmospheric flow and
plotted in Fig. 2.1, is a time slice from a realisation of a stationary stochastic
process (Xt) as defined in (2.8). Under this assumption, an AR[1] process
(Xt − µX) = a(Xt−1 − µX) + Wt, (Wt) being a white noise process with
µW = 0 and σ2

W = 1 as well as a = 0.9, is then found to be a suitable model
for this process. The autogressive coefficient a = 0.9 is obtained by comparing
the plots in Fig. 2.11 with the plots in Figs. 2.1 and 2.3, i.e., by trial and
error. As |a| < 1, the fitted AR[1] model is stationary if sufficient time has
elapsed since the process (simulation) started. This is concluded from (2.15),
(2.16), (2.17) and (2.18) or, alternatively, from Xt =

∑∞
u=0 a

uWt−u, i.e., the
representation of (Xt) as a linear process (2.25), which is obtained since Xt

is the stationary (the general solution is given in (2.27)) solution of the linear
difference equation pertaining to the AR[1] model.

The AR[2] model (Xt − µX) = a1(Xt−1 − µX) + a2(Xt−2 − µX) + Wt,
(Wt) a white noise process with µW = 0 and σ2

W , is defined in (2.48), and
the solution of its difference equation is given in (2.49). From (2.49) it is
concluded that an AR[2] model is stationary provided that (i) the moments
of the Wt exist, (ii) the roots z1 and z2 of the characteristic polynomials
pertaining to the model coefficients A(z) = 1 − a1z − a2z

2 = 0 are not in
the unit circle, 1 < |z1, z2|, as required in (2.46), and (iii) t → ∞. These
conditions fulfilled, the general solution of (Xt − µX) − a1(Xt−1 − µX) −
a2(Xt−2 − µX) = 0 becomes identically zero and the particular solution of
(Xt − µX) − a1(Xt−1 − µX) − a2(Xt−2 − µX) = Wt then converges in mean
square, as defined in (7.11).

The difference equation of the AR[2] model is written alternatively as
convolution (1,−a1,−a2)∗ (Xt −µX) = Wt in (2.48). In the case of an AR[1]
model, (1,−a)∗ (Xt−µX) = Wt is obtained. If these difference equations are
written as convolutions, then their stationary solutions are convolution sums∑∞

u=0 buWt−u = (bu) ∗ (Wt) of a white noise process with sequences (bu) =
(1,−a1 − a2)−1 or (bu) = (1,−a1)−1 being the inverses as defined in (2.41)
to the sequences of the model coefficients. These convolution sums converge
in mean square, provided that (i) the moments of the Wt exist, (ii) the roots
of the characteristic polynomials pertaining to the model coefficients, i.e.,
(1,−a1 − a2) or (1,−a1), are not in the unit circle, as is required in (2.46),
and (iii) a very long time has elapsed since the initialisation of the models.
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The second condition is satisfied for |a| < 1 in the case of an AR[1] model,
and a1 and a2 within the triangular region of convergence plotted in Fig. 2.17
in the case of an AR[2] model.

In the remarks closing Sect. 2.3.5,

1. it is supposed that there are autoregressive and moving average models
with two or more parameters, i.e., AR[p] and MA[q] models

2. the absence of a procedure is felt that would allow to assess the order of
the model from the observations, and

3. the need for an estimator for the coefficients in the models arises.

A first procedure for the estimation of an autoregressive model is the solution
of the Yule-Walker equations in (2.53) in the case of a stationary AR[2] model
(or cX(1) = acX(0) directly from (2.16) in the case of a stationary AR[1]
model) subsequent to substituting the empirical correlations (covariances)
for the theoretical ones.

In this section, the AR[p] model is defined in Sect. 5.1.1 as being a general
model for stationary autoregressive processes, and the pertaining Yule-Walker
equations are derived. The Yule-Walker equations connect, as in the case of
the AR[1]- and AR[2] models, the model coefficients with the covariances of
the process. Once the equations are solved, with empirical covariances substi-
tuted for the theoretical ones, the Yule-Walker estimates for the coefficients
are obtained. A solution of the Yule-Walker equations is calculated very effi-
ciently with the Levinson-Durbin recursion which is introduced together with
the partial correlation function of a stationary AR[p] model in Sect. 5.1.2.

5.1.1 The Yule-Walker-Equations of an AR[p] Model

The AR[p] model is defined by giving its difference equation in (5.2,2,3).

If (Wt) is a white noise process with µW = 0 and σ2
W , and if

the solutions to A(z) = 1 − a1pz − . . .− appz
p are outside the

complex unit circle, then:
1. Xt − µX = (1,−a1p, . . . ,−app)−1 ∗ (Wt)

= (bu) ∗ (Wt) =
∑∞

u=0 buWt−u

is the stationary solution to the linear difference equation
2. (Xt − µX) − a1p(Xt−1 − µX) − a2p(Xt−2 − µX) − . . .

−app(Xt−p − µX) = Wt

or, written as a convolution,
3. (1,−a1p,−a2p,− . . . ,−app) ∗ (Xt − µX) = (Wt)

pertaining to the autoregressive process of order p
(AR[p] process, AR[p] model).

(5.2)

Due to (2.46), the inverse (1,−a1p, . . . ,−app)−1 = (bu) to the sequence of the
model coefficients converges absolutely, and, consequently, the convolution
sum (5.2,3) converges in mean square to the limiting random variableXt−µX .
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A proof is constructed using the template in Sect. 7.2.1 where the convergence
of an AR[1] model with |a| < 1 is shown. As a second consequence, (Xt−µX)
becomes a linear process as defined in (2.25) and thus the AR[p] model (5.2)
is reconcilable with a stationary process: the model as defined in (5.2) is
called a stationary AR[p] model.

If the expectation function µX of a stationary process (Xt) is not identi-
cally zero then the de-meaned process is modelled, as required in (5.2,2). µX

is estimated with µ̂X defined in (2.1,1), the properties of this estimate being
summarised in (2.56).

Unlike in definitions (2.13) and (2.48), the coefficients of the AR[p] model
are written, in definition (5.2,2), using two indices, the second index being
the order of the model. You will find many forms of the AR[p] model in
articles and books: often the model is written using only one index for the
coefficients and not as difference equation (in difference equation (5.2,2), all
process variables are on the left side, and the white noise variable is on the
right side of the equation), often φ (not a) is used for the coefficients, and
sometimes the signs are inverted. (In R expressions the signs are used as in
(5.2,2,3)). It is straightforward and comfortable, however not in use elsewhere,
to write an AR[p] model as a convolution sum in (5.2,3).

An AR[p] model is called causal on condition that Wt is not
correlated with Xs, s < t. As a consequence, the influence
of the past to the present is contained in

∑p
j=1 ajpXt−j

solely, i.e., in the linear (autoregressive) part of the model.

(5.3)

An AR[p] model as defined in (5.2) is causal since Cov((Xt−j − µX),Wt

)
=

Cov
(∑∞

u=0 buWt−j−u,Wt

)
= 0, j = 1, 2, . . ., as Cov(Ws,Wt) = 0 for s < t.

Hence, the Wt are often called innovations.. The causality of an AR[p] model
is desirable with respect to its use for predictions: it asserts the orthogonality
conditions (2.79) of an optimal linear prediction.

The Yule-Walker equations (2.53) pertaining to an AR[2] model are de-
rived from (2.51). (2.51) is obtained, for its part, by multiplying two equa-
tions: (i) the stationary solution of the AR[2] difference equation for the
model variable with lag τ , Xt−τ = Wt−τ +

∑∞
u=1 buWt−τ−u, and (ii) the dif-

ference equation of the model, and then taking the expectations. Proceeding
as demonstrated in the AR[2] case and substituting k for τ (the lag), (5.4) is
obtained for an AR[p] model with µX = 0.

(Xt − a1pXt−1 − . . .− appXt−p)Xt−k = Wt

(
Wt−k +

∞∑
u=k+1

bu−kWt−u

)
E(XtXt−k) − a1pE(Xt−1Xt−k) − . . .− appE(Xt−pXt−k)

= E(WtWt−k) +
∞∑

u=k+1

bu−kE(WtWt−u) =
{

0 for k > 0
σ2

W for k = 0 (5.4)
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Assuming µX = 0 and since cX(k) = cX(−k), the Yule-Walker equations
(5.5) pertaining to an AR[p] model are derived by substituting p = 1 and
k = 1, p = 2 and k = 1, 2, p = 3 and k = 1, 2, 3, . . ., p = p and k = 1, 2, . . . , p
in (5.4). The Yule-Walker equations also hold for de-meaned processes, being
in agreement with (5.2).

cX(1) = a11cX(0) p = 1

cX(1) = a12cX(0) + a22cX(1)
cX(2) = a12cX(1) + a22cX(0) p = 2

cX(1) = a1pcX(0) + a2pcX(1) + . . . + appcX(p− 1)
cX(2) = a1pcX(1) + a2pcX(0) + . . . + appcX(p− 2)

. . .
cX(p) = a1pcX(p− 1) + a2pcX(p− 2) + . . . + appcX(0)

p = p

(5.5)
With cX(p) =

(
cX(1), cX(2), . . . , cX(p)

)T and a(p) = (a1p, a2p, . . . , app)T ,
and with CX(p) being the covariance matrix of (Xt) including the correla-
tions until (but without) lag p, the Yule-Walker equations and their solutions
are obtained in (5.6):

cX(p) = CX(p)a(p) a(p) =
(
CX(p)

)−1
cX(p) p = 1, 2, . . . (5.6)

since
(
CX(p)

)−1 exists for positive definite CX(p) (in the remarks to (2.7,2)).
Assuming that an AR[p] model as defined in (5.2) is reconcilable with

the stationary stochastic process (Xt) and that a time series (xt) is a time
slice from a realisation of (Xt), the empirical covariances with the properties
(2.58,1) are substituted in (5.6) and the Yule-Walker estimates (5.7,1) for
the coefficients in (5.2) are obtained. The variance of the innovations (Wt) is
estimated by substituting k = 0 in (5.4): cX(0) − a1pcX(1) − . . .− appcX(p)
= σ2

W (p) follows and, by substituting the empirical covariances and the esti-
mated coefficients, the estimate (5.7,2) is arrived at.

Let (Xt) be an AR[p] model, ĉX(p) and ĈX(p) the empirical
versions of the covariances in (5.6), â(p) the estimates
for a1p, . . . , app and σ̂2

W (p) the estimate for σ2
W . Then:

1. â(p) =
(
ĈX(p)

)−1
ĉX(p)

2. σ̂2
W (p) = ĉX(0) − (

â(p)
)T

ĉX(p)

(5.7)

When comparing the Yule-Walker equations (5.6) with the equations
(2.75) for an optimal linear prediction of a stationary stochastic process,
the following question may be asked: are the coefficients of an AR[p] model
(Xt) as defined in (5.2) the weights of an optimal linear prediction for Xt,
given observations for Xt−1, Xt−2, . . ., Xt−p? If the answer is yes, then the
right side Wt of the difference equation (5.2,3) is, using the terms defined
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in (2.61), the prediction error Xt − X̂t. The answer to the above question is
given in the following paragraphs.

The optimal linear prediction of a stationary process (Xt) for the time
point N + τ as defined in (2.62) is a linear combination of the observed
values for (X1, . . . , XN ). In the actual case, however, a de-meaned (µX = 0)
stationary process (Xt) is to be predicted for time point t with a linear
combination of k (k acting as a substitute for p in (5.2)) values for the past
Xt−1, . . . , Xt−k.

If (Xt) is stationary with µX = 0 then:
1. X̂(v)

t (k) = a1kXt−1 + a2kXt−2 + . . .+ akkXt−k is
a linear forward prediction for Xt, given Xt−1, . . ., Xt−k,

2. Xt − X̂(v)
t (k) = ê

(v)
t (k) is the prediction error, and

3. PVarX̂(v)
t (k) = E

((
ê
(v)
t (k)

)2) = E
((
Xt − X̂(v)

t (k)
)2) becoming

minimal is required to obtain an optimal prediction.

(5.8)

The superscript (v) in (5.8) denotes that Xt is predicted looking forward (into
the future) and using past Xt−j , j = 1, . . . , k. (5.8,3) is then evaluated using
the template (2.78) to arrive at optimality condition j in (5.9):

d
daj

PVarX̂(v)
t (k) =

d
daj

E
((
Xt − (a1kXt−1 + . . .+ akkXt−k)

)2)
= −2E

((
Xt − (a1kXt−1 + . . .+ akkXt−k)

)
Xt−j

)
= 0 (5.9)

The optimality conditions are evaluated and the covariances are substituted
for the expectations of the products with two variables to obtain, in (5.10),
the equations for the optimal linear forward prediction X̂(v)

t (k) for Xt, given
observed values for (X1, . . . , XN ).

cX(1) = a1kcX(0) + a2kcX(1) + . . . + akkcX(k − 1)
cX(2) = a1kcX(1) + a2kcX(0) + . . . + akkcX(k − 2)

. . .
cX(k) = a1kcX(k − 1) + a2kcX(k − 2) + . . . + akkcX(0)

(5.10)

For positive definite CX(p) (introduced in the remarks to (2.7,2)), the
equations (5.10) deliver the weights of the optimal linear prediction X̂(v)

t (k)
in (5.8,1). The mean square prediction error (5.12) is derived in Problem 5.2.

PVarX̂(v)
t (k) = E

(
ê
(v)
t (k)Xt

)
= Cov

(
ê
(v)
t (k), Xt

)
(5.11)

= cX(0) − a1kcX(1) − . . .− akkcX(k) (5.12)

(5.11) implies that the mean square prediction error is the covariance of
the prediction error and the variable to be predicted. (5.10) and (5.5) as well
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as (5.12) and (5.7,2) are identical if the empirical correlations are substituted
for the theoretical ones and if, in (5.5) and (5.7,2), k is substituted for p.

Thus, the answer to the question in the remarks to (5.7) is yes, i.e., the
coefficients of an AR[p] model are the weights of an optimal linear prediction
for Xt, given observations for Xt−1, Xt−2, . . ., Xt−p, and the Yule-Walker
equations become Janus-faced as summarised in (5.13):

1. If (Xt) is an AR[p] model (5.2) then the Yule-Walker equations
connect the covariances with the coefficients. When substituting
empirical covariances for the theoretical ones and by solving
the equations, estimates for the coefficients can be obtained.

2. If (Xt) is a stationary stochastic process with µX = 0 and
cX(τ ) then the Yule-Walker equations connect the covariances
with the weights of an optimal linear forward prediction
X̂

(v)
t (k) for Xt, given observed values for Xt−1, . . . , Xt−k.

3. The variance of the innovations in the AR[p] model equals the
mean square prediction error: σ2

W (p) = PVarX̂(v)
t (k), k = p.

(5.13)

5.1.2 Levinson-Durbin Recursion, Partial Correlation Function

The Yule-Walker equations are solved, as a first possibility, using one of the
usual algorithms for solving systems of linear equations. More expeditious
however, is a solution calculated using the Levinson-Durbin recursion as pro-
posed in (5.14) and being derived in Sect. 5.6.1.

The Yule-Walker equations (5.6) can be solved using
the Levinson-Durbin recursion:

1. akk = θk =
(
cX(k) −∑k−1

j=1 aj,k−1cX(k − j)
)/

PVar(k − 1)

2. ajk = aj,k−1 − θkak−j,k−1, j = 1, . . . , k − 1

3. PVar(k) = cX(0) −∑k
j=1 ajkcX(j) =

(
PVar(k − 1)

)
(1 − a2

kk)

(5.14)

Recursion k uses aj,k−1, j = 1, . . . , k − 1 and PVar(k − 1) obtained in the
preceding recursion k−1 to calculate akk, ajk, j = 1, . . . , k−1, and PVar(k).
The recursion is initialised with a11 = cX(1)/cX(0) and PVar(1) = cX(0) −
a11cX(1) as derived in (5.5).

Having substituted the empirical covariances ĉx(1), . . . , ĉX(p) for the
model covariances in (5.5) or (5.6), the coefficients of an AR[p] model can be
estimated using the Levinson-Durbin recursion as follows: Start with k = 1
and calculate â11 = ĉX(1)/ĉX(0) as well as σ̂2

W (1) = ĉX(0) − â11ĉX(1) =
ĉX(0)(1− â2

11) = PVar(1). Then, for k = 2, â22 =
(
ĉX(2)− â11ĉX(1)

)
/σ̂2

W (1),
â12 = â11−â22â11, and PVar(2) = ĉX(0)−â12ĉX(1)−â22ĉX(2) = PVar(1)(1−
â2
22) = σ̂2

W (2) are obtained. Proceed until k = p to obtain the Yule-Walker
estimates â1p, â2p, . . . , âpp and σ̂2

W (p).
If an AR[p] model is fitted to a time series (xt), t = 1, 2, . . . , N , by calcu-

lating the Yule-Walker estimates, then the covariances of the fitted model are



256 5 Linear Processes

identical with the empirical covariances up to lag p. The bias of the empirical
covariances is small provided that N is large, as concluded in (2.58,1), and
this property propagates to the Yule-Walker estimates. For small N however,
the estimates can be biased.

In the Yule-Walker equations pertaining to a stationary stochastic process
(Xt) and also in the Levinson-Durbin recursion, the sequence (akk) occurs.
(akk) is the partial correlation function of (Xt) as defined in (5.15):

The sequence of the aX(k, k) = (akk) occurring in (5.5) and
in (5.14) is called the sequence of partial correlations or
the partial correlation function of (Xt), akk being the partial
correlation of Xt and Xt−k:

aX(k, k) =
Cov

(
Xt − X̂(v)

t (k − 1), Xt−k − X̂(r)
t−k(k − 1)

)(
Var

(
Xt − X̂(v)

t (k−1)
)
Var

(
Xt−k − X̂(r)

t−k(k−1)
))1/2

(5.15)

(5.15) is derived in Sect. 5.6.2. aX(k, k) is the covariance of the differences
ê
(v)
t (k− 1) = Xt − X̂(v)

t (k− 1) and ê(r)
t−k(k− 1) = Xt−k − X̂(r)

t−k(k− 1), scaled
by the variances.

ê
(v)
t (k − 1) and ê(r)

t−k(k − 1) are the differences of Xt and Xt−k as well as
the pertaining predictions calculated from the variables between time points
t − k and t, as is obvious in Fig. 5.19, since X̂(v)

t (k − 1) estimates Xt using
k − 1 preceding variables as required in (5.8), and X̂(r)

t−k(k − 1) estimates
Xt−k using k − 1 following variables as required in (5.72). Consequently,
akk is the correlation of Xt and Xt−k corrected for the influence exerted by
Xt−1, . . . , Xt−k+1.

−1 ≤ aX(k, k) = akk = θk ≤ 1, obtained in the remarks to (5.79), is a
desired property of a partial correlation.

The sequence (âkk) =
(
âX(k, k)

)
, k small as compared to N in order to

account for (2.58), is called the empirical partial correlation function of a
time series (xt), t = 1, . . . , N , being a time slice from a realisation of the
stationary stochastic process (Xt). From (xt), (âkk) is calculated, without
using the Levinson-Durbin recursion, by solving the empirical Yule-Walker
equations (5.5) for p = 1, p = 2, p = 3, . . ., to obtain â11; â12, â22; â13, â23,
â33, etc. Usually however, (âkk) is calculated much faster with the Levinson-
Durbin recursion, e.g., applying R function acf(...,type="partial", ...).

The Levinson-Durbin recursion is, in general, an algorithm for solving
efficiently a system of linear equations containing a Toeplitz matrix. The
values in a Toeplitz matrix are a function of only the differences of the indices
implying identical values in each subdiagonal. For instance, the covariance
matrix of a stationary stochastic process is a symmetric Toeplitz matrix,
as concluded from (2.9). From both properties, i.e., the covariances being a
function of the lag only and the symmetry, the Levinson-Durbin recursion
(5.15) is derived in Sect. 5.6.2.
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The partial correlations akk of an AR[p] model (Xt) become identically
zero for lags k larger than the order p: aX(k, k) = 0, for k > p. This is
obtained from (5.8) and (5.72) once the numerator in (5.15) is written for
k > p,

Cov
(
Xt−

p∑
j=1

ajpXt−j , Xt−k−
p∑

j=1

ajpXt−k+j

)
= Cov

(
Wt,Wt−k

)
= 0 (5.16)

because the coefficients (. . . , 0, 0, 1,−a1p,−a2,p, . . . ,−app, 0, 0, . . .) in a sta-
tionary AR[p] model, as defined in (5.2), are identically zero for lags k > p
(this property is shared by the sequence (. . . , 0, 1,−b, 0, 0, . . .) with its right-
inverse (. . . , 0, 1, b, b2, b3, . . .) given as an example in (2.42)) and because the
model is causal, as defined in (5.3).

Property (5.16) allows for assessing the order p of an autoregressive model
to be fitted to a time series stemming from a stationary process: the empirical
correlation and empirical partial correlation functions are calculated and p
is assumed to be lag, after which the empirical partial correlations become
approximately zero.

5.1.3 Examples

The time series of wind speed values measured in a turbulent atmospheric
flow and plotted in Fig. 2.1, with its empirical correlation function plotted in
Fig. 2.3, is assumed to be stationary in the remarks to (2.8) and in Sect. 2.5.
If wind is the R time series object generated from the wind speed data in the
remarks to Fig. 2.1, then the de-meaned time series (xt) and its empirical
second moment functions ĉX(τ ) and âX(k, k), as plotted in Fig. 5.1, are
obtained with the R expressions

wmb <- wind - mean(wind)

plot(wmb,type="l",xlab="s", ylab="m/s")

acf(wmb,lag.max=60,type="correlation",plot=T)

acf(wmb,lag.max=60,type="partial",plot=T)

In Fig. 5.1, the empirical partial correlations âX(k, k) become approximately
zero for lags k > 2 and the empirical correlations decay approximatively
exponentially until lag 30.

A stationary AR[p] model for the de-meaned wind speed series can be
estimated, as proposed in the remarks to (5.14), by solving the Yule-Walker
equations. The order p of the model is assessed by applying (5.16) to the
plots below in Fig. 5.1: with âX(2, 2) being outside and âX(3, 3), âX(4, 4),
. . ., inside the .95 confidence interval, p = 2 is obtained. However, to allow
for a comparison with the AR[1] model fitted to the wind speed observations
using trial and error in Sect. 2.3.2, an AR[1] model is estimated using the R
expression

wmb.ar1ywfit <- ar.yw(wmb, aic=F, order=1) #.yw for Yule-Walker
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Fig. 5.1. De-meaned horizontal winds speeds (a) calculated from the original time
series as plotted in Fig. 2.1 together with estimates of its second moment functions:
empirical correlation (b) and empirical partial correlation (c) functions.

to obtain â11 = 0.8503 for the autoregressive coefficient and σ̂2
W (1) = 0.405

for the variance of the empirical residuals of the model. â11 is close to a∗ = 0.9
but σ̂2

W (1) is smaller than σ∗2W = 1, a∗ and σ∗2W being found by trial and error
in Sect. 2.3.2 by comparing the plots in Figs. 2.1 and 2.3 with the plots in
Fig. 2.11. An AR[1] model with a∗ and σ∗2W , however, produces simulations
with too large fluctuations as shown in Fig. 2.11 (on the top, to the left), and
thus σ̂2

W (1) = 0.405 is a better estimate.
With ...,aic=T,... in ar.yw(), the estimate is calculated taking into

account the AIC. The AIC is introduced in (5.61) as a diagnostic tool for
autoregressive (and other) models for linear processes.

The estimates computed by ar.yw() are made available as R matrices
(introduced in the remarks to Fig. 2.1) since ar.yw() allows for fitting au-
toregressive models to multivariate stochastic processes (the random variables
are multi-dimensional, in the remarks to (2.2)): the empirical residuals, for
example, become available as wmb.ar1ywfit$resid[,1].

The empirical residuals of a fitted AR[p] model are, as can be concluded
from (5.13), the empirical innovations of the fitted model and also the es-
timates for the prediction errors in (5.8). If the fitted model is suitable for
the time series, then its empirical residuals are not (or only very weakly)
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Fig. 5.2. Sequences of the empirical and partial empirical correlation functions of
the residuals obtained from an AR[1] model (above, plots (a) and (b)) as well as
from an AR[2] model (below, plots (c) and (d)) for the de-meaned wind speed series
plotted at the top, in Fig. 5.1.

correlated, seeing that an AR[p] model (5.2) is causal, as stipulated in (5.3).
Hence, the empirical correlation and the empirical partial correlation func-
tions calculated from the empirical residuals of the AR[1] model fitted to
the wind speed time series are plotted above in Fig. 5.2, plots (a) and (b).
Since these plots show empirical correlations and partial correlations outside
the .95 confidence intervals, it becomes obvious that an AR[1] model is not
reconcilable with the observations. However, since the estimates outside the
.95 confidence intervals are small, it is concluded that the tentatively fitted
AR[1] model is not too far off from being the best suited model and therefore,
an AR[2] model is fitted with

wmb.ar2ywfit <- ar.yw(wmb, aic=F, order=2)

to obtain â12 = 0.7236, â22 = 0.1492 and σ̂2
W (2) = 0.396. The empirical

correlation and empirical partial correlation functions calculated from the
empirical residuals of this AR[2] model are plotted below in Fig. 5.2, plots
(c) and (d). Comparing plot (c) with the example plots in Fig. 2.22, it is
concluded from (2.59) that the empirical residuals of the AR[2] model could
be a time slice from a realisation of a white noise process and, thus, the AR[2]
model fits the wind speed data.

Since (i) an AR[2] model is reconcilable with the wind speed data, (ii) in
Fig. 5.1 (c), âX(k, k) ≈ 0, for k > 2, i.e., the empirical partial correlation
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Fig. 5.3. De-meaned time series of the amount of a product formed during a
chemical reaction occurring in a batch reactor (plot a) together with estimates of
its second moment functions: empirical correlation and empirical partial correlation
functions (plots b and c).

function cuts off after lag 2, and (iii) in Fig. 5.1 (b), the empirical correlation
function decays exponentially, it is concluded that the order p of an AR[p]
model to be fitted to a time series is chosen such that p = k, k being the lag
after which the empirical partial correlation function cuts off. This choice is
in line with (5.16) which proposes that the partial correlations of an autore-
gressive process become identically zero for lags larger than the order of the
process, and also in line with the properties of the correlation function of an
AR[2] process in the remarks to (2.52).

As a second example, the amount of a product formed during a chemical
reaction occurring in a batch reactor is analysed. Using the R expressions

chemrea <- ts(scan("/path/chemrea.dat"))

chemreamb <- chemrea - mean(chemrea)

plot(chemreamb,type="l",xlab="batch no.", ylab="product")

acf(chemreamb,lag.max=10,type="correlation",plot=T)

acf(chemreamb,lag.max=10,type="partial",plot=T)

plots of the de-meaned time series and plots of the pertaining empirical cor-
relation and partial correlation functions are obtained in Fig. 5.3. Applying
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Fig. 5.4. Empirical second moment functions of the residuals of an AR[2] model
fitted to the amounts of the product obtained in a chemical reaction as plotted in
Fig. 5.3 (a).

the diagnostics (2.54,4) to the plots in Fig. 5.3, the process is assumed to be
stationary.

These data are available as time series F in the set of example time se-
ries given in [16]. When the chemical reaction terminates, the reactor is dis-
charged, the substance produced is weighted, the reactor is re-filled and the
reaction re-initiated. The observed random variable is the amount of the
product obtained per batch (the unit is not given in [16] being considered
unimportant when fitting an AR[p] model), and the parameter of this time
series is the batch number.

Since (i) in Fig. 5.3 (b), the empirical correlation function decays expo-
nentially and (ii) in Fig. 5.3 (c), the empirical partial correlation function
cuts off after lag 2, an AR[2] model for the amounts of the product obtained
in a chemical batch reactor is estimated using

chemreamb.ar2ywfit <- ar.yw(chemreamb, aic=F, order=2).

The estimates are â12 = −0.3198, â22 = 0.1797 and σ̂2
W (2) = 115.88, and

the empirical correlation and partial correlation functions calculated from
the empirical residuals of this model are plotted in Fig. 5.4. Comparing these
plots with the example plots in Fig. 2.22, it is concluded that they stem from
a white noise process and thus that the AR[2] model fitted above is suitable
for the product obtained in a chemical batch reactor.

The example time series analysed above, i.e., the wind speeds measured
in a turbulent atmospheric flow and the amounts of the product obtained in
a chemical batch reactor, demonstrate that

1. the order of an AR[p] model reconcilable with the observations can be
found by analysing plots of the empirical correlation and empirical partial
correlation functions calculated from the time series, and

2. diagnostics can be obtained by analysing its empirical residuals.

The diagnostics for an AR[p] model are introduced systematically in Sect. 5.4.
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5.2 Estimating an AR[p] Model

In Sect. 5.1, an AR[p] model is estimated by applying the Levinson-Durbin
recursion to solve the Yule-Walker equations (with empirical covariances sub-
stituting the model covariances). A solution is obtained if the empirical co-
variance function is positive definite (introduced in the remarks to (2.7,2)).
(The empirical covariance function calculated from a time slice of a realisa-
tion of a stationary stochastic process is non-negative definite as proposed in
the remarks to (2.58) and derived in Problem 2.34.) The Yule-Walker esti-
mates inherit the properties (2.58) of the empirical covariance function and
thus are not unbiased when calculated from a short time series.

Estimates superior to the Yule-Walker ones are obtained with the follow-
ing methods: Burg’s algorithm as defined in Sect. 5.2.1, regression techniques
as proposed in Sect. 5.2.2, and maximum-likelihood procedures as introduced
in Sect. 5.2.3. For a Burg estimate the symbol ˜ is used, for a regression es-
timate the ,̌ and for a maximum-likelihood estimate the .̆

5.2.1 Burg’s Algorithm

Burg’s algorithm is a version of the Levinson-Durbin recursion. In the original
version as defined in (5.14,1) and (5.79), the θk = akk are estimated such that
the expectations (5.80) and (5.81) become identically zero, a precondition for
applying the recursion to obtain the error of the forward prediction (5.78).
Since (5.80) and (5.81) hold for arbitrary θk = akk and j = 1, . . . , k − 1, it
is feasible to estimate akk such that (i) the prediction errors in (5.80) and
(5.81) become minimal, and (ii) the other properties of the Levinson-Durbin
recursion still apply [26]. In the following derivation of Burg’s algorithm it is
shown that (5.78) still holds when akk is not estimated as required in (5.14,1),
and, thereafter, Burg’s estimator is defined.

Given the time slice (xt), t = 1, . . . , N , from a realisation of a stationary
stochastic process (Xt), the parameters in an AR[p] model (5.2) for (Xt) are
estimated by solving the pertaining empirical Yule-Walker equations using
the Levinson-Durbin recursion. Assume that á1,k−1, . . . , ák−1,k−1 is an ar-
bitrary estimate (the Yule-Walker estimate (5.7,1) is not required) for the
coefficients a1,k−1, . . . , ak−1,k−1 in a AR[k − 1] model for (Xt), provided
that 2 ≤ k ≤ p. Then substitute ák−1,k−1 in (5.8) and (5.72) to obtain the
prediction errors for 2 ≤ k ≤ p:

é
(v)
t (k−1) = Xt − X́(v)

t (k−1) = Xt −
k−1∑
j=1

áj,k−1Xt−j , k ≤ t ≤ N (5.17)

é
(r)
t−k(k−1) = Xt−k − X́(r)

t−k(k−1)

= Xt−k −
k−1∑
j=1

áj,k−1Xt−k+j , k+1 ≤ t ≤ N+1 (5.18)
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In the next recursion k, an arbitrary estimate ákk is used (it is not necessary
to use (5.14,1)); the ájk, j = 1, . . . , k − 1, however, is calculated as required
in (5.14,2). The error of the forward prediction at time point t for 2 ≤ k ≤ p,
é
(v)
t (k) obtained in (5.19),

é
(v)
t (k) = Xt −

k∑
j=1

ájkXt−j

= Xt −
k−1∑
j=1

(
áj,k−1 − ákkák−j,k−1

)
Xt−j − ákkXt−k

= Xt −
k−1∑
j=1

áj,k−1Xt−j − ákk

(
Xt−k −

k−1∑
j=1

ák−j,k−1Xt−j

)
= é

(v)
t (k − 1) − ákké

(r)
t−k(k − 1) k + 1 ≤ t ≤ N + 1 (5.19)

é
(r)
t−k(k) = é

(r)
t−k(k − 1) − ákké

(v)
t−k(k − 1) derived as é(v)

t (k−1) (5.20)

is the reconstruction of an empirical version of (5.78) for arbitrary estimates
ákk. Both errors (5.19) and (5.20) apply to arbitrary estimates for akk, pro-
vided that (i) ajk, j = 1, . . . , k − 1, is calculated as required in (5.14,2) and
(ii) 2 ≤ k ≤ p. Thus, in recursion k, other estimates for akk than those given
in (5.14,1) are possible. In [26], Burg proposes the estimator (5.21):

If (xt), t = 1, . . . , N , is a time slice from a realisation of an
AR[p] model (Xt) as defined in (5.2), then Burg’s estimator
ãkk for akk in (5.5), (5.14) and (5.15) minimises the sum of
the squared errors of the forward and backward predictions:

1.
N∑

t=k+1

((
ẽ
(v)
t (k)

)2

+
(
ẽ
(r)
t−k(k)

)2
)

minimal for 2 ≤ k ≤ p

2. ãkk =
2
∑N

t=k+1

(
ẽ
(v)
t (k − 1)

)(
ẽ
(r)
t−k(k − 1)

)
∑N

t=k+1

((
ẽ
(v)
t (k − 1)

)2

+
(
ẽ
(r)
t−k(k − 1)

)2
)

(5.21)

(5.21,2) is derived from (5.21,1) in Problem 5.8. Further, |ãkk| ≤ 1 is a
desirable property of an estimator for the partial correlations (5.15), since
0 ≤ (

ẽ
(v)
t (k− 1)± ẽ(r)

t−k(k− 1)
)2 =

(
ẽ
(v)
t (k− 1)

)2 +
(
ẽ
(r)
t−k(k− 1)

)2 ± 2ẽ(v)
t (k−

1)ẽ(r)
t−k(k−1) implies |2ẽ(v)

t (k−1)ẽ(r)
t−k(k−1)| ≤ (

ẽ
(v)
t (k−1)

)2+
(
ẽ
(r)
t−k(k−1)

)2.
The recursion is initialised by minimizing (possibly subsequent to de-

meaning the time series), the sum
∑N

t=2

(
(ẽ(v)

t (1))2+(ẽ(r)
t−k(1))2

)
=
∑N

t=2

(
(Xt−

ã11Xt−1)2 + (Xt−1 − ã11Xt)2
)

to obtain ã11 = 2
∑N

t=2

(
(XtXt−1)/(X2

t +
X2

t−1)
)
. The variance of the innovations is estimated by applying (5.14,3)

to obtain σ̃2
W (k) = σ̃2

W (k−1)(1− ãkk), where σ̃2
W (0) = (1/N)

∑N
t=1X

2
t is the

estimator for the variance of the de-meaned time series as defined in (2.1,2).
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Using Burg’s algorithm to solve the Yule-Walker equations, an AR[p]
model as defined in (5.2) is obtained, i.e., with the roots of A(z) = 1−a1pz−
. . .− appz

p (with estimates substituted for the model coefficients) being out-
side the unit circle in the complex plane. Consequently, the estimated model
is stationary. Stationary estimates are also obtained when the Yule-Walker
equations are solved using another algorithm, e.g., the Levinson-Durbin re-
cursion. However, Burg’s estimates are superior to the Yule-Walker estimates
obtained solving (5.7,1) since (5.7,1) contains empirical covariances which are
possibly biased when the time series is short, cf. the warnings in the remarks
to (2.58). Using

chemrea.ar2burgfit <- ar.burg(chemrea, order=2) #Burg’s estimate,

an AR[2] model for the de-meaned amounts of the product obtained in a
chemical batch reactor in Fig. 5.3 is estimated to obtain ã12 = −0.3324,
ã22 = 0.1831 and σ̃2

W (1) = 115.80 (̃ for Burg’s estimate), being slightly
different from the Yule-Walker estimates obtained in Sect. 5.1.3 since the
time series is short.

5.2.2 Regression Estimates

For an estimation with regression techniques, the AR[p] model as defined in
(5.2) is re-written below, in (5.22), with et substituting Wt and using only
one index for the coefficients.

Xt−µX = a1(Xt−1−µX) + a2(Xt−2−µX) + . . .+ ap(Xt−p−µX) + et (5.22)

(5.22) is a linear model, however without parameter b0, as defined in (3.7),
since the innovations (Wt) as defined in (5.2) share the properties of the
residuals et of a linear model as required in (3.11).

The coefficients a1, . . . , ap of the linear model in (5.22), and the vari-
ance of the residuals σ2

e , are estimated using regression methods, as intro-
duced in Sect. 3.2, from a time series (xt), t = 1, . . . , N . The predictor
variables in (5.22) are the de-meaned random variables Xt−1 − µX , Xt−2 −
µX , . . . , Xt−p − µX . Hence, the estimates are conditional, given the realisa-
tions xt−1 − µ̂X , xt−2 − µ̂X , . . . , xt−p − µ̂X .

To arrive at the regression estimates ǎ of the coefficients in (5.22), the
time slice t = 1, . . . , N from the model (Xt) to be estimated, and its copies
with lags 1, 2, . . . , p (i.e., displaced backwards by 1, 2, . . . , p time steps), are
written in matrix

(
Xt,X

(↑)
p

)
in (5.23).

(
Xt,X

(↑)
p

)
contains N + p rows and

p columns, NA for missing values.
For the part of

(
Xt,X

(↑)
p

)
without NAs the symbol (Xt,Xp) is used, and

the matrix of the explanatory variables Xp is defined as (Xt,Xp) without
the column containing the variable Xt to be predicted. (Xt,Xp) can be used
to obtain least squares estimates ǎ =

(
XT

p Xp

)−1
XT

p Xt as required in (3.9).
These are the regression estimates for the coefficients in an AR[p] model.
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⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t Xt Xt−1 Xt−2 . . . Xt−p

−p NA NA NA X1
...
−1 NA NA X1 Xp−1

0 NA X1 X2 Xp

1 X1 X2 X3 Xp+1

...
N − p XN−p XN−p+1 XN−p+2 XN

...
N − 1 XN−1 XN NA NA
N XN NA NA NA

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=
(
Xt,X

(↑)
p

)

(5.23)
When the estimates are calculated from a de-meaned time series then(

1/(N−p+1)
)
XT

p Xp = ČX(p) is an estimate for the covariance matrix until
(but without) lag p, obtained from Xp with lagged copies of (Xt), i.e., copies
of (Xt) displaced in backward direction. Using XT

p Xp, where Xp is a matrix
containing time slices t = 1, . . . , N of the process (Xt) displaced in forward
direction by 1, 2, . . . , p time steps, estimates close to ČX(p) are obtained.
Both estimates are close to each other in values since, although the covariance
matrix of a stationary process is a symmetric Toeplitz matrix (introduced in
the remarks to (5.15)), Xp does not contain exactly identical values when
calculated from copies of a time slice of a realisation (i) displaced backwards
and (ii) displaced forwards. Does the direction influence the estimates in the
case of the de-meaned wind speed series as plotted in Fig. 5.1 (a)? An answer
is given in Problem 5.10.

ČX(p) is, however, not identical with ĈX(p) in (5.7), since ĈX(p) contains
the empirical covariances calculated as required in (2.1,3). The difference
between ĈX(p) and ČX(p) is to be analysed further on in Problem 5.9.

In applications, ČX(p) depends on the construction of the matrix (Xt,Xp)
in (5.23): in R for example, using ts.intersect() introduced in the remarks
to Fig. 2.2.

For instance, an AR[2] model for the de-meaned wind speeds in a tur-
bulent atmospheric flow plotted in Fig. 5.1 is estimated using the regression
methods available in R. From the de-meaned R time series wmb generated
in the remarks to Fig. 5.1 and its lagged (i.e., displaced backwards) copies,
using

wmbb1 <- lag(wmb,1)

wmbb2 <- lag(wmb,2)

wmb.frame <- data.frame(ts.intersect(wmb,wmbb1,wmbb2))

the R dataframe wmb.frame is constructed. Then, applying the linear model
wmb.ar2lmmod <- wmb ~ wmbb1 + wmbb2 -1

wmb.ar2lmfit <- lm(wmb.ar2lmmod, wmb.frame)
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estimates ǎ1 = 0.7240, ǎ2 = 0.1488 and σ̌2
ε = 0.3951 are obtained, ˇ denoting

a regression estimate for an AR[p] model. The regression estimates are, for
practical purposes, identical with the Yule-Walker estimates â12 = 0.7236,
â22 = 0.1492 and σ̂2

W (2) = 0.396 computed in the remarks to Fig. 5.2.
When an AR[p] model is estimated with regression methods as proposed

in the remarks to (5.23), i.e., when a linear model for a de-meaned time series
with its lagged copies as explanatory variables is estimated using R function
lm() as demonstrated above, then

1. no special software for the analysis of time series is needed
2. (Xt,Xp) can be constructed from copies of the time series under analysis,

displaced either forwards or backwards
3. the usual regression statistics (including the residuals) are calculated from

which, as demonstrated in Sect. 3.3, diagnostics for the estimated lin-
ear model can be obtained; furthermore, confidence intervals for the es-
timated autoregressive coefficients can be calculated provided that the
residuals are found to be normally distributed.

The analysis of the residuals plays a prominent role in the diagnostics of
an estimated AR[p] model, as is demonstrated in the remarks to Figs. 5.2
and 5.4. If the residuals are found to be a time slice from the realisation
of a white noise process then the stochastic part of the model fitted is in
agreement with (i) the properties of the innovations as required in (5.2) and
(5.3) in the case of a Yule-Walker or Burg’s estimate, and (ii) the properties
of the residuals as required in (3.11) in the case of a regression estimate.
The diagnostics introduced in Sect. 5.4.4 can be systematically applied to
the estimates for an AR[p] model, calculated using whatever method selected
(not only regression estimates).

Contrary to the Yule-Walker or Burg’s estimates, regressions methods
do not always result in an stationary model as required in (5.2). Therefore,
having estimated an AR[p] model using R function lm(), apply R function
polyroot() to ensure that the estimated model is stationary. polyroot() cal-
culates the roots of the characteristic polynomial pertaining to (the sequence
of) the estimated coefficients as defined in (2.46). For example,

plot(polyroot(c(1, -0.7240, -0.1488))) #Problem 2.21

shows that the regression estimates ǎ1 = 0.7240 and ǎ2 = 0.1488, obtained
above for the coefficients in the AR[2] model for the de-meaned wind speeds,
result in a stationary model.

5.2.3 Maximum Likelihood Estimates

An AR[p] model (5.2) can also be estimated using the maximum likelihood
(ML) method. When the likelihood function for the covariances of an AR[p]
process is calculated, the very same difficulties are encountered as when the
likelihood function for the covariances of an stationary process in (5.24)
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1. Let (X1, . . . , XN )T = X be a time slice from a stationary (as
defined in (2.8)) stochastic process (Xt) with µX = 0 as well as
cX(τ ) and let (x1, . . . , xN ) be observations of X.

2. In addition, let (Xt) be a normal process as defined in (2.3)
and thus X be multivariate normally distributed with
covariance matrix CX(N) with determinant |CX(N)|. Then

3. L
(
CX(N)|X)

=
1

(2π)N/2|CX(N)|1/2
exp

(
−(1/2)XT

(
CX(N)

)−1
X
)

is the likelihood function of CX(N), given X.
(5.24)

is calculated, i.e., the time needed for the computation of the determinant and
the inverse of CX(N) in (5.24,3) is prohibitively large. To make a computation
of the likelihood function L

(
CX(N)|X)

in (5.24,2) feasible, algorithms had
to be invented. A first possibility is to use the properties of CX(N) (the
covariance matrix of a stationary stochastic process is a symmetric Toeplitz
matrix as introduced in the remarks to (5.15)) and to compute L

(
CX(N)|X)

using a Cholesky decomposition of CX(N). A description of these algorithms
can be found in [21]. As a second possibility, the AR[p] process is written as
a state space model ([85], [45]) and its likelihood function is computed using
Kalman recursion as described in [55]. Using Kalman recursion, the likelihood
function L

(
CX(N)|X)

in (5.24,2) can also be computed from a time series
with missing values as shown in [78].

Taking for granted that the likelihood function L
(
CX(N)|X)

in (5.24,2)
can be computed quickly enough for the usual applications, it is assumed
that (i) an AR[p] model is reconcilable with a stationary stochastic process
(Xt) from whence a realisation (xt) is available for the time slice t = 1, . . . , N
and (ii) the innovations of the AR[p] model are normally distributed. Under
these assumptions, X in (5.24) is, as concluded from the remarks to (1.34),
multivariate normally distributed and, since the Yule-Walker equations con-
nect the covariances with the coefficients in an AR[p] model as proposed in
(5.13,1), CX(N) in (5.24) is a function of the parameters a(p) and σ2

W (p)
to be estimated. Consequently, under the above assumptions, the likelihood
function (5.25) is a function of the parameters to be estimated:

L
(
a(p), σ2

W (p)|X)
=

1
(2π)N/2|CX(N)|1/2

exp
(
−(1/2)XT

(
CX(N)

)−1
X
)

(5.25)
The ML estimate (denoted with )̆ of the AR[p] model are those values

ă(p) and σ̆2
W (p) for which L

(
ă(p), σ̆2

W (p)|X) in (5.25) becomes as large as
possible. A necessary condition for a maximum in L

(
ă(p), σ̆2

W (p)|X) is that
its partial derivatives with respect to ă(p) become identically zero. However,
the likelihood function in (5.25) is not linear in ă(p) and therefore, using
the partial derivatives, the equations obtained are not a linear system with
a straightforward solution. Nevertheless, if initial values for ă(p) and σ̆2

W (p)
are available for which (5.25) is close to the maximum, then the estimates
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ă(p) and σ̆2
W (p) can be obtained iteratively. Initial values become available

by (i) solving the Yule-Walker equations using Burg’s algorithm, (ii) apply-
ing regression methods, or (iii) calculating least squares estimators for the
conditional model in (5.25) as described in [16]. These estimators are usually,
e.g., in [62], known as conditional sum of squares estimators.

In R, ML estimates of an AR[p] model are calculated using arima().
arima() initialises the parameters with conditional sum of squares estimates
and then computes the likelihood function via a state space representation
of the model and Kalman recursion. An AR[p] model estimate computed
using arima(...,transform.pars=T,...) is, due to constraints applied to the
estimated coefficients, always stationary.

R function arima(...,order=c(p,d,q),...) is designed for estimating the
ARIMA[p, d, q] model defined in (5.55). From this definition as well as from
the remarks to (5.27) it is learned that an AR[p] model corresponds to an
ARIMA[p, 0, 0] model. arima() can be applied to stationary time series having
a non-zero mean; when doing so, an ML estimate for the mean of the time
series under analysis is calculated. arima() is used, in Sects. 5.3.4 and 5.4.3,
to compute ML estimates for both an ARIMA[0,1,1] and an ARIMA[1,0,1]
model.

For example, from the original time series wind as plotted in Fig. 2.1 (wind
is de-meaned to obtain wmb in the remarks to Fig. 5.1), R expression

windar2mlefit <- arima(wind, order=c(2,0,0),transform.pars=T)

computes the following ML estimates (for the variance of the innovations,
two autoregressive coefficients and the mean) with their variances, as in the
following covariance matrix:

> windar2mlefit$sigma2

[1] 0.3950631

windar2mlefit$coef

ar1 ar2 intercept

0.7231758 0.1489845 -2.5368581

windar2mlefit$var.coef

ar1 ar2 intercept

ar1 5.432651e-04 -4.626752e-04 -6.041764e-07

ar2 -4.626752e-04 5.436351e-04 -2.848889e-06

intercept -6.041764e-07 -2.848889e-06 1.331152e-02.

In the case of the wind speeds in a turbulent atmospheric flow, the ML
estimates obtained above are very close to the Yule-Walker estimates obtained
in Sect. 5.1.3 as well as to those estimates calculated with Burg’s algorithm
and regression methods in Sects. 5.2.1 and 5.2.2.

When the likelihood function is computed as required in (5.25) then
C̆X(N) is obtained as a by-product. Since C̆X(N) is an estimate for CX(N),
i.e., the covariance matrix of the process, C̆X(p) becomes available. C̆X(p) is
an estimate for CX(p), i.e., the covariance matrix (until but without lag p) in
(5.6). From C̆X(p), confidence intervals for the estimates can be calculated
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using (5.26).

The asymptotic distributions of the ML estimates for an
AR[p] model are derived in, e.g., [21]: For large N ,

1. a multivariate normal distribution with expectations
(a1p, . . . , app)T = a(p) and covariances (1/N)σ2

W (p)
(
CX(p)

)−1,
CX(p) as in (5.6), is an approximation for the distribution
of the maximum likelihood estimates for a(p),

2. a normal distribution with expectation σ2
W (p) and

variance 2σ2
W (p)/N is an approximation for the distribution

of a maximum likelihood estimate for σ2
W (p), and

3. both maximum likelihood estimates are approximately
independent.

(5.26)

Approximation (5.26,2) strongly depends on (Xt) being a normal process as
required in (5.24). (Xt) is a normal process on condition that the innovations
are normally distributed, as argued in the remarks to (5.25). Hence, approxi-
mation (5.26,2) is applicable only if the innovations are found to be normally
distributed from diagnostic plots of the empirical residuals as demonstrated
in Sect. 5.4.4 by the examples in Figs. 5.16, and 5.17.

5.2.4 Summary of Sects. 5.1 and 5.2

Proceeding as recommended in (5.1), in Sects. 5.1 and 5.2, AR[2] models are
proposed for the de-meaned wind speeds plotted in Fig. 5.1 and also for the
de-meaned amounts of the product obtained from a chemical reaction plotted
in Fig. 5.3. The order of the model is found by applying (5.16) and then
comparing the correlation and partial correlation functions of the empirical
residuals of the fitted models with the plots in Fig. 2.22.

The models are estimated using the methods introduced, i.e., by (i) solving
the Yule-Walker equations with the Durbin-Levinson recursion, (ii) applying
Burg’s algorithm, (iii) using regression techniques, and (iv) calculating the
maximum-likelihood estimates. When the Yule-Walker equations are solved
(or when the estimates are computed using Burg’s algorithm), a stationary
AR[p] model as required in (5.2) is obtained. Regression and ML estimates
are, however, not always stationary: arima(...,transform.pars=T,...) pro-
duces stationary estimates due to built-in constraints. When confidence in-
tervals for the estimated coefficients are required, regression or ML estimates
can be computed provided that, following the recommendations in the re-
marks to (5.26), the innovations can be shown to be normally distributed
using diagnostic plots of the residuals. Then, the assumptions in (3.17) (in
the case of a regression estimate) or in (5.24) (in the case of an ML estimate)
apply.

The approximations as proposed in (5.26) for the distributions of the ML
estimates for the parameters in an AR[p] model do not only apply to ML
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Table 5.1. Estimated AR[2] models for the de-meaned time series of the wind
speeds in a turbulent atmospheric flow and of the amounts of the product of a
chemical reaction as plotted above, in Figs. 5.1 and 5.3.

time series para- Yule-Walker Burg regression maximum-
meter likelihood

ar.yw() ar.burg() lm() arima()

wind speeds a12 0.7236 0.7237 0.7240 0.7232
in a turbu- σa12 0.0233 0.0233
lent atmos- a22 0.1492 0.1489 0.1488 0.1490
pheric flow σa22 0.0233 0.0233
N = 1800 σ2

W 0.3959 0.3951 0.3951 0.3951

product a12 −0.3198 −0.3324 −0.3422 −0.3407
of a σa12 0.1204 0.1218
chemical a22 0.1797 0.1831 0.1761 0.1873
reaction σa22 0.1165 0.1223
N = 70 σ2

W 115.88 115.80 108.78 112.72

estimates but also, as is shown in [21], to the other estimates (Yule-Walker,
Burg’s and regression estimates) introduced in Sects. 5.1 and 5.2, provided
that the innovations are normally distributed. Hence, these estimates are close
in value to the ML ones if the observed time series is long and the empirical
residuals of the model are approximately normally distributed. Yule-Walker
estimates, calculated from a short time series, are inferior to those obtained
using the other methods since the empirical covariances obtained from a short
time series are possibly biased, as argued in the remarks to (2.58).

Table 5.1 contains four estimated AR[2] models for the de-meaned time
series of (i) the wind speed measurements in a turbulent atmospheric flow
as plotted in Fig. 5.1, and (ii) the amounts of the product obtained from a
chemical reaction as plotted in Fig. 5.3. The estimates for the long time series
are considered to be identical for practical purposes, e.g., the calculation of
predictions. The estimates for the short times series are, however, not close
in value for the reason given above.

Thereafter, as proposed in (5.1,3,4), diagnostics are applied to the esti-
mates and a model is selected. Prior to further demonstrations of (5.1) in
Sect. 5.4, ARMA[p, q] and ARIMA[p, d, q] models are introduced in Sect. 5.3.
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5.3 MA[q] , ARMA[p, q] and ARIMA[p, d, q] Models

In Sect. 2.3.4, an MA[1] process (Yt) as defined below, in (5.27), is found to
be a suitable model for the differences of the Basel yearly temperature values,
as plotted above in Fig. 2.14.

∆1(Xt) = Xt −Xt−1 = Yt = Wt − 0.9 ×Wt−1, (Wt) being
a white noise process with µW = 0 and σW = 0.70C.

(5.27)

The model (5.27) is an example of an ARIMA[p, d, q] process with (i)
d = 1: the first differences ∆1(Xt) of (Xt), as defined in(2.39,2), are required
to be (ii) q = 1: an MA[1] process with b = 0.9, as defined in (2.21), and, (iii)
p = 0: the model does not contain any autogressive terms as defined in (5.2).
ARIMA[p, d, q] models are introduced in Sect. 5.3.3.

With d = 0 and p > 0 and q > 0, the process becomes an ARIMA[p, 0, q]
model or an ARMA[p, q] model, i.e., a combination of an AR[p] with an
MA[q] model, as defined in Sect. 5.3.2. The existence of ARMA[p, q] models
is supposed in the remarks closing Sect. 2.3.5.

With d = 0 and p = 0 and q > 0, the process reduces to an MA[q] model
as defined in Sect. 5.3.1.

5.3.1 MA[q] Model

The moving-average process is constructed as a weighted sum of a white noise
process using a one-sided sequence of weights as defined in (5.28):

(Yt) is called a moving average process of order q,
(MA[q] process, MA[q] model) provided that:

1. Yt−µY = Wt−b1Wt−1−. . .−bqWt−q =
∑q

u=0 buWt−u = (bt) ∗ (Wt)

2. (bt) =
{ 1,−b1,−b2, . . . ,−bq for t = 0, 1, . . . , q

0 otherwise
3. (Wt) is a white noise process with µW = 0 and σ2

W .
(5.28)

If the expectation function µY of a stationary stochastic process (Yt) is not
identically zero, µY �= 0, then the MA[q] model is fitted to the de-meaned pro-
cess, as required in (5.28,1), using µ̂X as defined in (2.1,1) with the properties
(2.56) as an estimate for µY .

The moment functions of an MA[q] model are calculated using (2.26) with
b0 = −1, i.e., the sequence of weights becomes (bt) = (−b0,−b1, . . . ,−bq)):

E(Yt − µY ) = E
( q∑

u=0

buWt−u

)
= µW

q∑
u=0

(bu) = 0 (5.29)

cY (τ ) =
q∑

v=0

q∑
w=0

bvbwcW (τ + w − v) (5.30)
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=

⎧⎨⎩
0 for τ > q
σ2

W

∑q−τ
u=0 bubu+τ for 0 ≤ τ ≤ q

cY (−τ ) for τ < 0
(5.31)

From (5.29) and (5.31) it is concluded that an MA[q] model is stationary
for weights (bt) being absolutely convergent as defined in (2.24). The covari-
ance function cuts off after lag q: cY (τ ) = 0 for τ > q and is thus, with
σ2

W , proportional to the autocorrelation as defined in (6.103) of the weights
(1,−b1, . . . ,−bq). The covariance function cY (τ ) is scaled with the variance
σ2

Y = cY (0) = σ2
W

∑q
u=0(bu)2 to obtain the correlation function �Y (τ ).

(5.30) relates the covariance function of an MA[q] model to its weights.
Given the weights (bu), q equations are obtained with the substitution q =
1, 2, . . . , q. These equations can be solved for the weights (bu) with iterative
procedures (except for q = 1 in (2.23)) since they are, unlike the Yule-Walker
equations introduced in Sect. 5.1.1, not linear. Besides being non-linear, these
equations have multiple solutions, e.g., the quadratic equation pertaining to
the MA[1] model in the remarks to (2.23) has two solutions. Only by assuming
an additional property, i.e., the invertibility of the MA[q] model, the number
of solutions for each coefficient in (bt) can be be restricted to one.

A MA[q] model Yt − µY =
∑q

u=0 buWt−u = (bt) ∗ (Wt) with
(bt) = (1,−b1, . . . ,−bq) is invertible provided that
(1,−b1, . . . ,−bq)−1 converges absolutely.

(5.32)

If Yt − µY is assumed to be an invertible MA[q] model then Wt, the
innovation at time point t, can be calculated from Yt, Yt−1, Yt−2, . . ., and,
if the complete past of the process is known, the sum

(
(1,−b1, . . . ,−bq)−1

) ∗
(Yt − µY ) can be calculated. This favourable property allows for calculating
predictions, as proposed in Sect. 5.5, from a finite past of the process, as
stipulated in (5.33,1).

The following properties belong to an invertible MA[q] model
(Yt) =

∑q
u=0 buWt−u = (bt) ∗ (Wt):

1. Wt can be calculated from Yt, Yt−1, Yt−2, . . . for use
in a prediction.

2. Its covariance function cY (τ ) and thus also its
correlation function ρY (τ ) cut off after lag q.

3. Its partial correlation function aY (k, k) damps out.

(5.33)

(5.33,1) is derived using the AR[∞] representation (an AR[p] model as
defined in (5.2) with p → ∞) of an invertible MA[q] model: convolve Yt −
µY = (bt) ∗ (Wt) on both sides with (at) = (bt)−1 to obtain (at) ∗ (Yt −
µY ) = Wt, because the convolution sum converges in mean square to the
limiting random variable Wt. For a derivation, use the template in Sect. 7.2.1
where the convergence of the convolution sum (2.19) is shown. Further, using
the AR[∞] representation of an invertible MA[q] model together with (5.15)



5.3 MA[q] , ARMA[p, q] and ARIMA[p, d, q] Models 273

and (5.16), property (5.33,3) is arrived at, i.e., it is shown that the partial
correlation function of the model does not cut off, as (bt)−1 contains an
infinite number of weights. Property (5.33,2) directly follows from (5.31).

For instance the MA[1] model (5.27) is invertible since 1/0.9 > 1.
If the model contains two or more weights, then the characteristic poly-
nomom B(z) = 1 − b1z − b2z

2 − . . . − bqz
q pertaining to its coefficients

(bt) = (1,−b1, . . . ,−bq) is constructed, and (2.46) is applied using R function
polyroot(), as demonstrated in Problem 2.21 and in the remarks concluding
Sect. 5.2.2.

The covariance and correlation functions pertaining to an invertible MA[1]
model are calculated in (2.23). In (5.34), the partial correlation function for
lag 1 of this model is obtained using the Levinson-Durbin recursion (5.14),
and, for lag k, the partial correlation function is derived in (5.86). It is justified
to calculate the partial correlation function with the Levinson-Durbin recur-
sion in the above case because, due to (5.13), the Levinson-Durbin recursion
applies when calculating the partial correlation function of any stationary
stochastic process.

aY (1, 1) = cY (1)/cY (0) =
−b

1 + b2
(5.34)

aY (k, k) =
−bk(1 − b2)
1 − b2(k+1)

(5.35)

It can be seen that the partial correlation function aY (k, k) of an MA[1] model
(Yt), obtained in both (5.34) and (5.35), decays exponentially. All aY (k, k)
are negative for 0 < b < 1 but aY (k, k) changes its signs for −1 < b < 0.

The MA[2] model Yt − µY = Wt − b1Wt−1 − b2Wt−2 is invertible on
condition that the roots z1 and z2 of B(z) = 1 − b1z − b2z2 = 0 are outside
the unit circle in the complex plane. This condition also applies to the roots
of A(z) = 1 − a1z − a2z

2 = 0, a1 and a2 being the weights of a stationary
AR[2] process. Therefore, an MA[2] model with weights (b1, b2) inside the
triangle in Fig. 2.17 (substituting b1 and b2 for a1 and a2) is invertible and
its AR[∞] representation

(
(1,−b1,−b2)−1

) ∗ (Yt − µY ) converges.
The covariance function cY (τ ) of the MA[2] model is calculated from

(5.31) to obtain cY (0) = σ2
W (1 + b21 + b22), cY (1) = σ2

W (−b1(1 − b2)),
cY (2) = σ2

W (−b2), cY (3) = 0, cY (4) = 0, . . . and thus, cY (τ ) cuts off after
lag 2. The partial correlation function aY (k, k), however, cannot be arrived
at as easily as in the case of the MA[1] model. The properties of aY (k, k),
(Yt) an invertible MA[2] model, are therefore demonstrated in the simulation
experiments to be performed in Problem 5.11. There, some realisations of
an invertible MA[2] model (Yt) are simulated, and for each simulation the
empirical partial correlation function âY (k, k) is calculated. The âY (k, k) are
then compared with the empirical correlation functions ĉX(τ ) obtained, in
Problem 2.21, from simulated realisations of a stationary AR[2] model (Xt).
From these comparisons, it is concluded that the empirical partial correlation
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Table 5.2. Properties of the correlation and partial correlation functions of a
stationary AR[p] model as defined in (5.2), of an invertible MA[q] model as defined
in (5.28) and (5.32) and of a stationary and invertible ARMA[p, q] model as defined
in (5.36).

model correlation function partial
covariance function correlation function

AR[p] decays exponentially cuts off after lag p
with or without oscillation

MA[q] cuts off after lag q decays exponentially
with or without oscillation

ARMA[p, q] exponential decay or exponential decay or
damped oscillation damped oscillation
after lag q after lag p

functions calculated from simulations of an invertible MA[2] model behave
in the same manner as the empirical correlation functions calculated from
simulations of a stationary AR[2] model, i.e., as described in the remarks to
(2.52) where the covariance and correlation functions of a stationary AR[2]
model are discussed.

As a second example, in Problem 5.11, empirical correlation and empir-
ical partial correlation functions are calculated from simulated realisations
of an invertible MA[4] and a stationary AR[4] model and then plotted. As
concluded from the plots, the empirical partial correlation functions obtained
from the MA[4] model behave identically to those obtained from the AR[4]
model.

If the MA[q] model (5.28) is compared with the linear process (2.25), it is
then concluded that the linear process is a MA[q] model. However, definition
(2.25) includes all stationary AR[p] models as argued in the introduction to
Sect. 5.1. Thus, a stationary AR[p] model (Xt) as defined in (5.2), with cor-
relation and partial correlation functions cX(τ ) and aX(k, k), has an MA[∞]
representation, and, vice-versa, an invertible MA[q] model (Yt) as defined in
(5.28) and (5.32) with correlation and partial correlation functions cY (τ ) and
aY (k, k), has an AR[∞] representation, as shown in the remarks to (5.32).
Therefore it becomes plausible that (i) cX(τ ) behaves as aY (k, k) and (ii)
aX(k, k) behaves as cY (τ ). This behaviour is deduced, for AR[1]- and MA[1]
models on the one hand, from a comparison of (2.16) and (2.23) as well as
(5.16) and (5.35); for AR[2] and MA[2] as well as for AR[4] and MA[4] models
on the other hand, it is demonstrated by the simulations in Problem 5.11.
Thus, the first and second lines in Table 5.2 are obtained.
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5.3.2 ARMA[p, q] Model

If both representations, the autoregressive and the moving average one, are
used for a linear process, then the properties of the process can be derived
from the more suitable representation: in Sect. 2.4.4, the expectation and co-
variance functions of a stationary AR[2] model are calculated from its MA[∞]
representation Xt = (1,−a1,−a2)−1 ∗Wt =

∑∞
u=0 buWt−u, i.e., the station-

ary solution of its difference equation, and in the remarks to definition (5.32),
the AR[∞] representation of an invertible MA[q] model is used to derive that
the partial correlation function of an MA[q] model decays exponentially, as
proposed in (5.33,3). Both models are linear processes and thus can also be
joined to an ARMA[p, q] model, as defined in (5.36).

Let (Wt) be a white noise process with µW = 0 and σ2
W , and

let (ai) = (1,−a1, . . . ,−ap) as well as (bi) = (1,−b1, . . . ,−bp)
both be real-valued sequences with the solutions of their
characteristic polynomials outside the complex unit circle. Then
(Xt − µX) − a1(Xt−1 − µX) − . . .− ap(Xt−p − µX)

= Wt − b1Wt−1 − . . .− bqWt−q

is called an autoregressive moving average process of order p
and q (ARMA[p, q] process or model, mixed process or model).

(5.36)

If the expectation function µX of a stationary stochastic process (Xt) is not
identically zero, µX �= 0, then an ARMA[p, q] model is fitted to the de-meaned
process, as required in (5.36).

Usually, an ARMA[p, q] model is parsimonious and is thus preferably fit-
ted to a short time series, as argued in the introduction to Sect. 2.3.5. If
a model with m parameters is fitted to a fixed number N of observations,
then N/p is larger for a parsimonious model containing a small number of
parameters as compared to a non-parsimonious one containing a large num-
ber of parameters. Hence, in general, if models with a varying number of
parameters are fitted to a time series (examples are given in Table 5.3) then
the variances of the estimated parameters will be smaller for parsimonious
models, and, as a further consequence, predictions are preferably calculated
using that model having the minimal number of parameters (an example is
given in Sect. 5.5.2).

The stationary solution of the equation defining the ARMA[p, q] model
is a linear process as defined in (2.25), as is concluded from (5.38). (5.38) is
obtained using the assumptions in (5.36): subsequent to writing the model
as in (5.37), both sides are convolved with the inverse to (at):

(at) ∗ (Xt − µX) = (bt) ∗ (Wt) (5.37)
(at)−1 ∗ (at) ∗ (Xt − µX) = (at)−1 ∗ (bt) ∗ (Wt)

Xt − µX =
(
(at)−1 ∗ (bt)

) ∗ (Wt)

= (1,−ψ1,−ψ2, . . .) ∗ (Wt) =
∞∑

u=0

ψuWt−u (5.38)



276 5 Linear Processes

to arrive, in (5.38), at the MA[∞] representation of the ARMA[p, q] model.
(5.38) converges since (ψt) = (at)−1 ∗ (bt), being the convolution of two
absolutely convergent sequences, converges absolutely with the roots of
Ψ(z) = (1 − ψ1z − ψ2z

2 − . . .) outside the unit circle in the complex plane.
(5.38) also implies that an ARMA[p, q] model (5.36) is causal, as defined in
(5.3), since its autoregressive part is causal.

From (5.38) the expectation and the covariance functions pertaining to
an ARMA[p, q] model can be calculated using (2.26).

E(Xt − µX) = E
( ∞∑

u=0

ψuWt−u

)
= µW

∞∑
u=0

ψu = 0 (5.39)

cX(τ ) =
∞∑

v=0

∞∑
w=0

ψvψwcW (τ + w − v)

=

⎧⎨⎩σ
2
W

∑∞
u=0 ψ

2
u for τ = 0

σ2
W

∑∞
u=0 ψuψu+τ for τ > 0

cX(−τ ) for τ < 0
(5.40)

(ψt) is obtained as in the derivation of (5.38) or, alternatively, using the char-
acteristic polynomials (2.45) pertaining to the sequences of weights: with
A(z) = 1 − a1z

1 − . . . − apz
p being the characteristic polynomial pertain-

ing to (at) and B(z) = 1 − b1z1 − . . . − bqzq the characteristic polynomial
pertaining to (bt), using (ψt) = (at)−1 ∗ (bt) in the derivation of (5.38),
Ψ(z) = B(z)/A(z), or A(z)Ψ(z) = B(z) are obtained:

(ψ0 + ψ1z + ψ2z
2 + . . .)(1 − a1z − . . .− apz

p)
= (1 − b1z − . . .− bqzq − 0 × zq+1 − . . .)

provided that bi = 0 for i > q. In Problem 5.12, the left side of this equation
is evaluated to obtain the equations for each zi, i = 0, 1, . . ., in the left column
in (5.41). Substituting their solutions sequentially, the weights in the centre
column in (5.41)

ψ0 = 1 ψ0 = 1 i = 0
ψ1 − ψ0a1 = −b1 ψ1 = a1 − b1 i = 1
ψ2 − ψ1a1 − ψ0a2 = −b2 ψ2 = a2 + a2

1 − a1b1 − b2 i = 2
. . . . . . . . .

(5.41)

as well as the general solution in (5.42)

ψi −
∑p

j=1 ψi−jaj = 0 i = q + 1, q + 2, . . .
ψi −

∑i
j=1 ψi−jaj = −bi i = 1, . . . , p and p ≤ q

ψi −
∑p

j=1 ψi−jaj = −bi i = p+ 1, . . . , q and p ≤ q

ψi −
∑i

j=1 ψi−jaj = −bi i = 1, . . . , q and p > q

(5.42)

are arrived at. (5.42) contains, in the second and third lines, the weights ψi,
i = 1, . . . , q, being a function of (bi) and (ai) for p ≤ q. In the first and fourth
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lines in (5.42), the weights ψi, i = 1, . . . , q, are a function of (bi) and (ai) for
p > q; however, the ψi, i = q, q+1, . . . , p, are only a function of the (ai). The
dependences of the ψ-weights are inherited by the covariances cX(τ ) of an
ARMA[p, q] model (Xt), cX(τ ) being calculated from the ψ-weights in (5.42).

For the case p > q, this result is also arrived at by multiplying both
sides of definition (5.36) with Xt−k and then taking the expectations (for
simplicity, µX = 0 is assumed):

E
((
Xt − a1Xt−1 − . . .− apXt−p

)
Xt−k

)
= E

((
Wt − b1Wt−1 − . . .− bqWt−q

)
Xt−k

)
(5.43)

E(XtXt−k) − a1E(Xt−1Xt−k) − . . .− apE(Xt−pXt−k)
= E(WtXt−k) − b1E(Wt−1Xt−k) − . . .− bqE(Wt−qXt−k) (5.44)

Since Xt−k = a1Xt−k−1−. . .−apXt−k−p+Wt−k−b1Wt−k−1−. . .−bqWt−k−1

only depends on the innovations until and including time point t − k, the
covariances on the right side become identically zero for lags k > q, and

cX(k)− a1cX(k−1)− . . .− apcX(k−p) = 0 k = q+1, . . . p, p > q (5.45)

is obtained. The equations in (5.45) connect the covariances of an ARMA[p, q]
model (5.36) with its autoregressive weights (at) for lags k > q, provided
that p > q. For q = 0, however, the equations (5.45) become the Yule-Walker
equations as defined in (5.5): the covariance function of an ARMA[p, q] model
behaves, for lags k > q, as the covariance function of an AR[p] model (Ta-
ble 5.2).

An ARMA[p, q] model as defined in (5.36) is not only stationary, as con-
cluded from (5.39) and (5.40), but also invertible, because the sum (5.47)
converges in mean square, as shown below. This sum, i.e., the AR[∞] repre-
sentation of an ARMA[p, q] model, is derived from the model written, as in
in (5.37), as a convolution in (5.46):

(1,−a1, . . . ,−ap) ∗ (Xt − µX) = (1,−b1, . . . ,−bq) ∗ (Wt) (5.46)
(1,−b1, . . . , bq)−1 ∗ (1,−a1, . . . ,−ap) ∗ (Xt − µX) = (Wt)

(1,−π1,−π2,−π3, . . .) ∗ (Xt − µX) = (Wt)
(Xt − µX) − π1(Xt−1 − µX) − π2(Xt−2 − µX) − . . . = Wt (5.47)

The π-weights, (1,−π1,−π2,−π3, . . .), converge absolutely, with the solutions
of its characteristic polynomial Π(z) = (1−π1z−π2z

2−π3z
3−. . .) being out-

side |z| ≤ 1, since (1,−π1,−π2,−π3, . . .) is generated from (1,−b1, . . . , bq)−1

and (1,−a1, . . . ,−ap), both being absolutely convergent as required in (5.36).
Hence, the sum (5.47) converges in mean square to the limiting random vari-
able Wt.

From the AR[∞] representation of the ARMA[p, q] model it is concluded,
using (5.16), that the pertaining partial correlation function decays expo-
nentially (and thus does not cut off) since there is an infinite number of



278 5 Linear Processes

π-weights. Can the partial correlation function aX(k, k) of an ARMA[p, q]
model (Xt) be calculated from its covariance function using the Levinson-
Durbin recursion (5.14)? This calculation is successfully performed in (5.35)
and (5.86) in the case of an MA[1] model, but be warned that very compli-
cated expressions result after a few steps even in the case of the most simple
mixed process, i.e., the ARMA[1,1] model. Nevertheless, it is plausible that
aX(k, k) behaves, for lags k > p, as the partial correlation function of an
MA[q] model does (Table 5.2).

For example, the properties of an ARMA[1,1] model are deduced from
its correlation and partial correlation functions calculated below, in (5.50),
(5.51) and (5.53) as well as in (5.54). The ARMA[1,1] model (Xt),

(Xt − µX) − a(Xt−1 − µX) = Wt − bWt−1 or (5.48)
(1,−a) ∗ (Xt − µX) = (1,−b) ∗ (Wt) (5.49)

as written in (5.48) or (5.49) (for simplicity, µX = 0 is assumed), is sta-
tionary and invertible for |a| < 1 and |b| < 1. Its covariance function
cX(τ ) is calculated in (5.50), (5.51) and (5.53) using (5.40), the sequence
(ψi) being calculated as required in (5.41) and (5.42): ψ0 = 1, ψ1 = a − b,
ψ2 = (a − b)a, ψ3 = (a − b)a2, . . .; or by convolving (1,−a)−1 ∗ (1,−b) =
(1, a, a2, a3, . . .) ∗ (1,−b) =

(
1, a− b, a(a− b), a2(a− b), . . .).

cX(0)/σ2
W = 12 + (a− b)2 + a2(a− b)2 + a4(a− b)2 + . . .

= 1 + (a− b)2(1 + a2 + a4 + . . .
)

cX(0) = σ2
W × 1 − 2ab+ b2

1 − a2
(5.50)

cX(1) = σ2
W × (a− b)(1 − ab)

1 − a2
(5.51)

cX(2) = σ2
W × a(a− b)(1 − ab)

1 − a2
= acX(1) (5.52)

. . .

cX(τ ) = acX(τ − 1), for τ ≥ 2. (5.53)

Thus, cX(τ ) depends on weights a and b and decays exponentially. This
exponential decay starts after lag 1, whereas decay of the covariance function
of an AR[1] process, as proposed in (2.16), starts with lag 1. The rate of
decay and the possibly alternating signs of the covariances depend on both
coefficients a and b.

From cX(τ ), using the Levinson-Durbin recursion (5.14), the partial corre-
lation function aX(k, k) of the ARMA[1,1] model for the first lag is calculated
from the covariances in (5.50) and (5.51):

aX(1, 1) = cX(1)/cX(0) =
(a− b)(1 − ab)
1 − 2ab+ b2

(5.54)
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For the following lags, however, the calculations become intricate and there-
fore, to circumvent these calculations, the exponential decay of aX(k, k) after
the first lag is assessed in the simulation experiment to be performed in Prob-
lem 5.13. The partial correlation function of an MA[1] model, as obtained in
(5.34) and (5.35), also decays exponentially, however, starting with lag 1.

5.3.3 ARIMA[p, d, q] Model

Fluctuations in the expectation function of a stochastic process generate co-
variances which disappear when the fluctuations are removed and the expec-
tation function becomes constant as required in (2.8,1). Hence, an empirical
correlation function calculated from a time series changes when trends and/or
other fluctuations are removed. Examples are given in Figs. 2.23 and 3.1 and
also in Figs. 4.17, 4.18 and 4.21.

As a first possibility, a non-stationarity in the first moment function can
be removed by subtracting a linear model for a trend estimated using the
regression techniques introduced in Chap. 3. When a trend is estimated,
(3.1,3) and (3.11) require non-correlated residuals. Correlations remaining in
the residuals can be accounted for by calculating a generalised least squares
estimate as proposed in (3.14).

As a second possibility, often to be preferred to the first one, a non-
stationarity in the first moment function can be removed by calculating the
first, second, etc. differences. The first differences are defined in (2.39,2),
and differences of a higher order in the remarks to (2.40). For example, in
(5.27), an ARIMA[0,1,1] model is proposed for the yearly values in the Basel
temperature series.

(Xt) is called an ARIMA[p, d, q] process or an ARIMA[p, d, q]
model (ARIMA: autoregressive integrated moving average), pro-
vided that (Yt) = ∆d(Xt) is an ARMA[p, q] model as defined
in (5.36) with (Yt) = ∆d(Xt), d = 1, 2, . . ., being the differences
of order d of (Xt). ∆d(Xt) is defined in (2.40).

(5.55)

Substituting (5.55) in (5.36), the difference equation of an ARIMA[p, d, q]
model is obtained. If d = 0, then (Xt) becomes an ARMA[p, q] model with
its stationary solution as in (5.38). If d ≥ 1, then (Xt) is not stationary in
the first moment function and therefore, an ARIMA[p, d, q] model is suitable
for a time series with a non-constant first moment function.

An ARIMA[p, d, q] model with d = 1 is, however, also suitable for stochas-
tic processes satisfying the intrinsic hypothesis as defined in (4.9) (but with
one-dimensional integer parameter) since (5.55) requires ∆d(Xt) (and not
(Xt)) to be stationary. For example, the random walk process (Xt) as de-
fined in (2.20) is an intrinsically stationary process with a parameter being
one-dimensional and integer. In passing, as a very short excercise, re-define
the random walk process using (5.55).
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5.3.4 Estimators for an ARMA[p, q] Model

In the remarks to definition (1.34) it is shown that linear combinations of mul-
tivariate normally distributed random variables are multivariate normally dis-
tributed as well. Hence, the MA[∞] representation (5.38) of the ARMA[p, q]
model (Xt) defined in (5.36) implies proposition (5.56):

Let (X1, . . . , XN )T = X be a sequence of random variables in an
ARMA[p, q] model as defined in (5.36) with normally distributed
innovations (Wt). Then X is multivariate normally distributed.

(5.56)

from which it is concluded below, in the remarks to (5.57), that the maximum-
likelihood estimates of an ARMA[p, q] model are normally distributed subject
to the condition that the model innovations are normally distributed.

Maximum-likelihood estimates for the parameters in MA[q], ARMA[p, q]
and ARIMA[p, d, q] models are obtained using R function arima(), which
is introduced in Sect. 5.2.3. In arima(), however, an ARMA[p, q] model
is written as (Xt − µX) − a1(Xt−1 − µX) − . . . − ap(Xt−p − µX) = Wt +
b1Wt−1 + . . .+ bqWt−q with moving-average coefficients differing in sign from
definition (5.36). arima() calculates efficiently L

(
CX(N)|X)

as defined in
(5.24), i.e., the likelihood function of the covariance matrix CX(N) of a sta-
tionary stochastic process (Xt), given X = (X1, . . . , XN )T . If (Xt) is an
ARMA[p, q] process as defined in (5.36) then CX(N) is, due to (5.40) and
(5.38), a function of (i) the model coefficients (a1, a2, . . . , ap)T = a(p) and
(b1, b2, . . . , bq)T = b(q), as well as (ii) the variance of the innovations σ2

W (p, q).
Consequently, the likelihood function of an ARMA[p, q] model is arrived at
in (5.57):

L
(
a(p), b(q), σ2

W (p, q)|X)
=

1
(2π)N/2|CX(N)|1/2

exp
(
−(1/2)XT

(
CX(N)

)−1
X
)

(5.57)

The maximum likelihood estimates of the parameters in the ARMA[p, q]
model are those ă(p), b̆(q) and σ̆2

W (p, q), for which (5.57) reaches a maxi-
mum.

If an ARIMA[p, d, q] model is reconcilable with X then the differences (of
order d) of X are assumed be a time slice from an ARMA[p, q] model.

If the innovations (Wt) in the ARMA[p, q] model are normally distributed
then the estimates ă(p), b̆(q) and σ̆2

W (p, q) are multivariate normally dis-
tributed since X is multivariate normally distributed as proposed in (5.56)
and thus, the properties enumerated in (5.25) also apply to the maximum-
likelihood estimates of an ARMA[p, q] model. If, however, the innovations
(Wt) are not normally distributed, then the estimates are not multivariate
normally distributed either, and the calculation of confidence intervals be-
comes hazardous: caution is recommended, as proposed in the remarks to
(5.26).
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Fig. 5.5. Above, the empirical residuals of an ARIMA[0,1,1] model fitted to the
Basel yearly temperature values plotted in Fig. 2.13 (a); below, the moment func-
tions of the empirical residuals.

For example, the ARIMA[0,1,1] process given in (5.27) as an introductory
example is found, in Sect. 2.3.4, to be a suitable model for the yearly means
in the Basel temperature series as plotted in Fig. 2.14. Can the estimates
σ∗W = 0.70C and b∗ = 0.9, obtained by trial and and error in Sect. 2.3.4, be
improved upon using the theory and methods now available?

Assuming that an ARIMA[0,1,1] model is suitable for Basel yearly tem-
perature values being stored in R time series tsbtemp as constructed in Prob-
lem 2.7:

bstemp.fit <- arima(tsbtemp,order=c(0,1,1),transform.pars=T)

calculates the maximum-likelihood estimates b̆ = 0.881 and σ̆2
W = 0.469,

both close to the estimates assessed by trial and error in Sect. 2.3.4.
The empirical residuals of this model are plotted together with their cor-

relation and partial correlation functions in Fig. 5.5 using
plot(bstemp.fit$resid,type="l",xlab="year",ylab="degree Celsius")

acf(bstemp.fit$resid,lag.max=60,type="correlation",plot=T)

acf(bstemp.fit$resid,lag.max=60,type="partial",plot=T).
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When plots (a) and (b) in Fig. 5.5 are compared with the templates in
Fig. 2.22, it is concluded from (2.59) that the empirical residuals are a time
slice from a realisation of a white noise process as required in (5.55), (5.36)
and (5.28). Thus, the Basel yearly temperature values are found to be a time
slice from a realisation of an ARIMA[0,1,1] process with parameters b = 0.881
and σ2

W = 0.469.
Further diagnostic plots and statistics to be applied, as required in (5.1,3),

to an estimated ARIMA[p, d, q] model can now be obtained as demonstrated
in Sect. 5.4.

5.4 Fitting an ARIMA[p, d, q] Model

In Sects. 5.1 and 5.2, AR[2] models for the de-meaned times series of the wind
speed measurements in a turbulent atmospheric flow and the amounts of a
product formed during a chemical reaction occurring in a batch reactor, as
plotted in Figs. 5.1 and 5.3, are estimated using four methods, with the results
given in Table 5.1. In Sect. 5.3.4, an IMA[1,1], i.e., an ARIMA[0,1,1] model,
for the Basel yearly temperature values plotted in Fig. 2.13 is estimated
using the maximum likelihood method. Since the empirical residuals of these
models, as plotted in Figs. 5.2, 5.4 and 5.5, are not correlated, it is concluded
that the models are in agreement with the observations.

However, these models are not arrived at by systematically applying the
steps as proposed in (5.1) since the models are found by trial and error
using only one diagnostic: the fit is claimed to be successful once the second
moment functions of the model residuals suggest that the residuals stem
from a white noise process. The systematic approach to the identification,
estimation, diagnostics and selection of an ARIMA[p, d, q] model therefore
remains to be introduced in this section. Comprehensive descriptions of these
methods are given in, e.g., [16], [61], [36], [17], and [22].

The first step required in (5.1) is the identification of candidate models
suitable for the process from which the time series under analysis stems. If
it stems from a stationary process then possible values for p and q in an
ARMA[p, q] model as defined in (5.36) are determined with the procedures
introduced in Sect. 5.4.2, else the non-stationarity is removed using the tech-
niques introduced in Sect. 5.4.1. In the steps following the first one in (5.1),
candidate models are estimated in Sect. 5.4.3 to which the diagnostics intro-
duced in Sect. 5.4.4 are then applied.

5.4.1 Removing Trends or other Fluctuations from a Time Series

If the time series under analysis stems from a process with a non-constant
expectation function, the trend or the fluctuations in the first moment func-
tion is (are) removed by calculating (i) the residuals of a linear model for the
expectation function or (ii) its differences.



5.4 Fitting an ARIMA[p, d, q] Model 283

year

(a)

de
gr

ee
 C

el
si

us

1750 1800 1850 1900 1950

-1
0

1

lag

(b)

em
p.

 c
or

r.
 fu

nc
tio

n

0 10 20 30 40 50 60

0.
0

0.
4

0.
8

lag

(c)

pa
rt

ia
l e

m
p.

 c
or

r.
 fu

nc
tio

n

0 10 20 30 40 50 60

-0
.1

0.
0

0.
1

0.
2

Fig. 5.6. Basel yearly temperature values originally plotted in Fig. 2.13: de-meaned
time series (above) with its empirical second moment functions (below).

When using the diagnostics introduced in Sect. 2.5.1, a sto-
chastic process is assumed to be stationary or non-stationary
in its expectation function. A time series stemming from a
process with a non-constant expectation function becomes
possibly stationary with the properties required in (2.54)
and the time series is said to be de-trended on condition that:

1. its differences as defined in (2.39) and (2.40) are calculated or
2. the residuals of a linear model (including the mean) for the

expectation function are calculated. The linear model is fitted
using the regression techniques introduced in Chap. 3.

(5.58)

The removal of a non-stationarity in the expectation function, as proposed
in (5.58,1,2), is demonstrated in Figs. 5.6, 5.7 and 5.8 using the Basel yearly
temperature values as a straightforward example. More can be learned from
a second example time series: in Figs. 5.9, 5.10 and 5.11, the exponential
increase and the annual cycle are removed from the monthly values of the at-
mospheric carbon dioxide measured at the Mauna Loa Observatory (Hawaii)
and downloaded in Problem 3.23.

The Basel yearly temperature values are not stationary in the expectation
function as can be concluded from the plots in Figs. 2.13, 2.14 and 3.3. The
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Fig. 5.7. Basel yearly temperature values originally plotted in Fig. 2.13: time series
de-trended using a linear model of order 1 (above) with its empirical second moment
functions (below).

same result is obtained by comparing the plots shown in Figs. 5.6, 5.7 and
5.8. The de-trended time series as plotted in Fig. 5.7 (a) lacks the secular
trend shown in Fig. 2.13 which is still present in the de-meaned time series
as plotted in Fig. 5.6 (a). Hence, the empirical correlations and empirical
partial correlations plotted in Fig. 5.7 (b,c) are somewhat smaller than those
plotted in Fig. 5.6 (b,c). The deviations in the empirical second moment
functions are, however, small since the decadal fluctuations in the annual
Basel temperature values are not captured by the first order linear model for
the secular trend.

These decadal fluctuations, however, can no longer be seen in Fig. 5.8
which contains plots of the first order differences calculated, as required in
(2.39), from the yearly values in the Basel temperature series. Here, the first
moment function of the differences remains constant, as is seen in plot (a),
and the pertaining empirical second moment functions shown in plots (b)
and (c) behave, as concluded from Table 5.2, as the correlation and partial
correlation function of an MA[1] model: the empirical correlation function
(plot b) cuts off after lag 1 and the empirical partial correlation function
(plot c) decays exponentially. This points to a stationary second moment
function since an MA[1] model is stationary. Consequently, in the case of the
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Fig. 5.8. Basel yearly temperature values originally plotted in Fig. 2.13: time series
of the first order differences (above) with its empirical second moment functions
(below).

yearly means in the Basel temperature series, (5.58,1), i.e., calculating the
first order differences, is preferred to (5.58,2), i.e., de-trending the time series,
for removing the fluctuations in the expectation function. De-trending using
linear models of higher order will not produce a better result, as can be seen
from the plots in Figs. 3.3 and 3.5 since these models, like the first order
linear model, do not capture the decadal fluctuations.

Are the first differences of the Basel temperature yearly values as plot-
ted above in Fig. 5.8, a stationary time series with properties as required in
(2.54)? These differences oscillate around an approximately constant expec-
tation function and thus are assumed to be stationary in the first moment
function. From the plots of the empirical correlation functions calculated
from the entire series of the differences, as well as from the first and second
half-series plotted below, in Fig. 2.14, it is concluded that the differences
are stationary in their covariance function, and, consequently, also in their
variance function.

As a second example, trends and other fluctuations are removed from the
expectation function of the atmospheric carbon dioxide (CO2) monthly values
measured at Mauna Loa Observatory (MLO) [84]. MLO is located at a high
altitude (approximately 3400 m) on the north slope of the Mauna Loa Vol-
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Fig. 5.9. Monthly values of the atmospheric carbon dioxide (CO2) measured at
Mauna Loa Observatory (MLO) in ppm (parts per million), before (above) and
after (below) taking the logarithm.

cano, Hawaii. Since the mid 1950’s MLO has been collecting data related to
changes in the atmosphere. The MLO record, as downloaded in Problem 3.23,
is considered to be representative for the global mean of atmospheric CO2.

The exponential growth of the atmospheric CO2, shown in Fig. 5.9 (a),
becomes linear after taking the logarithms. The logarithmic transformation
also stabilises the variance (remarks to (3.16) and (3.19), Problems 3.22 and
3.23): the resulting time series increases approximately linearly and the am-
plitudes of its annual fluctuations remain approximately constant, as can be
seen in Fig. 5.9 (b).

In Problem 3.23, a component model (3.19) for the trend and yearly
cycle of the logarithm of the atmospheric CO2 is estimated. The empirical
residuals of this component model are plotted together with their second
moment functions in Fig. 5.10. Figs. 5.10 and 5.11 contain plots (b) and (c)
of the empirical correlation and empirical partial correlation functions with
the lags in years, e.g., lag 1 corresponds to a displacement amounting to 12
months.

In Fig. 5.10, the residuals of the component model decrease until 1977
and then increase in the period from 1978 through to 1990 since the decadal
fluctuations are not captured by the component model (a linear model for
the trend and the seasonal cycle). Therefore, due to the decadal fluctuations
in the logarithm of the atmospheric CO2, (i) the residuals of the component
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Fig. 5.10. Logarithm of the atmospheric CO2: residuals of a component model as
defined in (3.19) for the decadal trend and the yearly cycle (above) with empirical
second moment functions (below, lag in years).

model are non-constant in the first moment function and thus are not sta-
tionary, and (ii) the correlation function decays very slowly (the lag is given
in years). The empirical partial correlation function, however, cuts off after
lag 0.166 years, i.e., two months.

The second possibility for removing fluctuations in the first moment func-
tion is, as proposed in (5.58,1), to calculate the differences of a time series.
The first differences with lag 12 of the logarithm of the atmospheric CO2 are
obtained using

mauna <- ts(scan("/path/maunaloa.datshort"),

start=1965,frequency=12,)

lmauna <- log(mauna)

d1lmauna <- diff(lmauna, lag=12, differences=1)

and then are plotted together with their empirical second moment functions
in Fig. 5.11.

The first order differences of the logarithm of the atmospheric CO2 calcu-
lated with lag 12 are, as can be seen in the plot above in Fig. 5.11, no longer
afflicted with decadal fluctuations and thus are assumed to be stationary in
their first moment function.

Is the time series of these differences also stationary in their second mo-
ment function? Since plots (not shown) of the empirical correlation functions
calculated from the first and second half-series are damped sinusoidal oscil-
lations similar to the empirical correlation function obtained from the entire
series (plot (b) in Fig. 5.11), it is concluded that the difference time series
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Fig. 5.11. Logarithm of the atmospheric CO2: first order differences calculated
with lag 12 (above) together with the pertaining empirical second moment functions
(below, lag in years).

is stationary in the second moment function. Hence, having used the diag-
nostics proposed in (2.54), the first order differences of the logarithm of the
atmospheric CO2 calculated with lag 12, as plotted above in Fig. 5.11, are
assumed to be a time slice from the realisation of a stationary stochastic
process.

From a comparison of Figs. 5.7 with 5.8 as well as Figs. 5.10 with 5.11,
it is concluded that the decadal fluctuations have been removed from both
example time series when the first differences are calculated but are still
present in the residuals of the linear models for the expectation function
fitted to these time series. It is therefore concluded from these examples,
that both methods can be combined: if a linear model for the expectation
function is estimated (e.g., because an estimate for a trend is required), then
fluctuations still present in its residuals can be removed by calculating the
differences of the residuals (Problem 5.14).

Using the yearly values in the Basel temperature series and the MLO
atmospheric CO2 monthly values as example time series, it is demonstrated
above that a trend and/or less systematic fluctuations in the first moment
function of a time series can be removed when the methods proposed in
(5.58) are applied to obtain a de-trended time series. Sometimes, however,
these methods need to be combined to arrive at the desired result.

A de-trended time series is supposed to be constant in its mean function
and thus is possibly stationary in its first and second moment functions. Then,
using the diagnostics introduced in Sect. 2.5.1, the time series under analysis
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can possibly be assumed to stem from a stochastic process that becomes
stationary after it has undergone the same operations (i.e., transformations,
calculating the residuals of a linear model, or differencing) as the time series.
However, the assumption that a stochastic process is stationary remains a
mere approximation for the reasons given in Sect. 2.5.1.

5.4.2 Identification

Candidate AR[p], MA[q] or ARMA[p, q] models for a stationary time series,
or a time series that has become stationary after applying the methods intro-
duced in Sect. 5.4.1, are found using plots of the empirical correlation and the
empirical partial correlation functions calculated from the time series under
analysis as diagnostic tools:

Candidate AR[p], MA[q] or ARMA[p, q] models for a stationary
process from which a time series is available are those models
whose correlation and partial correlation functions behave, in
accordance with Table 5.2, similarly to the empirical correlation
and partial correlation functions calculated from the observations.

(5.59)

The diagnostics proposed in (5.59) exploit the properties of the correlation
and partial correlation functions of a linear process as derived in Sect. 5.3
and summarised in Table 5.2.

Using (5.59), a candidate model is easily identified on condition that the
observations stem from a stationary stochastic process reconcilable with an
AR[p] or MA[q] model because these models imply a cutoff in either the
correlation or partial correlation functions calculated from the observations.
In the following cases, using:

1. an AR[2] model for the wind speed measurements in the turbulent at-
mospheric flow as plotted (together with its empirical second moment
functions) in Fig. 5.1,

2. an AR[2] model for the product formed in a chemical reaction as plotted
in Fig. 5.3, and

3. an IMA[1,1] model for the Basel yearly temperature values as plotted in
Fig. 2.13, i.e., an MA[1] model for the first order differences of this time
series as plotted in Figs. 2.14 and 5.8,

an identification is straightforward and only one candidate model is obtained.
More challenging is the identification of stationary candidate models if

both, the empirical correlation and the partial correlation functions, do not
cut off. This behaviour pertains only, as is learned from Table 5.2, to the
second moment functions of an ARMA[p, q] model. Two examples for such
processes are given: only one candidate model is found to be suitable, in the
remarks to Figs. 5.12 and 5.13, for the first order differences calculated with
lag 12 of the MLO atmospheric CO2 monthly values, whereas more than 10
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candidate models are found to be suitable, in the remarks to Fig. 5.14, for
the monthly values of the Southern Oscillation (SO) index.

The monthly values of the atmospheric CO2, plotted above in Fig. 5.9,
first undergo a logarithmic transformation to obtain time series (yu), where-
after the first differences with lag 12 are calculated to obtain time series
(xu) = ∆1

12(yu), as plotted above in Fig. 5.11.
(xu) is found to be stationary in the remarks to Fig. 5.11 and is thus

assumed to stem from a linear process (Xu). Can candidate models for (Xu)
be identified using the diagnostics proposed in (5.59)? Does a model with
second moment functions similar to the empirical correlation and partial
correlation functions, ĉX(τ ) and âX(k, k), plotted below in Fig. 5.11, exist?

ĉX(τ ) (plot (b) in Fig. 5.11) is a damped sinusoidal oscillation, and
âX(k, k) (plot (c) in Fig. 5.11) amounts to 0.8 and 0.2 for lags 0.0833 and
0.1666 years (1 and 2 months) and does not cut off after lag 0.1666, as values
outside the .95 confidence interval for no correlation are calculated for lags
of approximately 1, 2, 3, and 4 years. No model implying this behaviour of
the empirical second moment functions is found in Table 5.2.

To find a way out, the partial correlations after the lag 0.1666 years are
ignored, and with R expressions

maunaar2 <- arima(d1lmauna,order=c(2,0,0),transform.pars=T) #fit

acf(maunaar2$residuals,type="partial",lag.max=60) #diagnostics

acf(maunaar2$residuals,type="corr",lag.max=60)

an AR[2] model is fitted to (xu) and the residuals of this model are estimated.
These estimates are plotted together with their empirical second moment
functions in Fig. 5.12.

The empirical correlations (plot (b) in Fig. 5.12) remain, except for lag 1
year, inside the .95 confidence interval for no correlation, and the empirical
partial correlations (plot (c) in Fig. 5.12) decay exponentially for lags 1, 2,
3, and 4 years; for the lags inbetween, they remain approximately inside the
.95 confidence interval for no correlation. Comparing these plots with the
descriptions of the behaviour of the second moment functions in Table 5.2,
an MA[1] model (but with time step ∆t = 12∆u, i.e., one year, since ∆u =
ui − ui−1, i.e., one month) is found to be in agreement with the correlations
in the residuals of the AR[2] model.

Thus, from the plots in Figs. 5.11 and 5.12 it is concluded that (xu), i.e.,
the time series of the first order differences with lag 12 of the logarithm of
the atmospheric CO2 monthly values, is in agreement with a combination
of an AR[2] model and an MA[1] model, on condition that the time step is
calculated in months in the case of the AR[2] model but in years in the case
of the MA[1] model.

An ARIMA[0,1,1] model with time step one year for (yu), i.e., the log-
arithm of the atmospheric CO2 monthly values with (xu) = ∆1

12(yu), is a
joint MA[1] model for the first differences of the seasonal processes, resulting
from splitting (yu) as defined in Table 3.2. This model is called a seasonal
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Fig. 5.12. Empirical residuals of an AR[2] model fitted to the first order differences
with lag 12 of the logarithm of the atmospheric CO2, as plotted above in Fig. 5.11,
(above), with the pertaining empirical second moment functions (below, lag in
months).

ARIMA[0, 1, 1]12 model. In general, a seasonal linear process is called ei-
ther a seasonal ARIMA[P,D,Q]s model, a SARIMA[P,D,Q]s model or an
ARIMA[P,D,Q]s model, with s being the number of the seasonal processes
and P,D and Q the parameters of the joint model for the seasonal processes.
Such a model is often fitted to a time series with a seasonal cycle, e.g., the
seasonal cycle and trend in the logarithms of the atmospheric CO2 monthly
values, as shown below in Fig. 5.9, are captured with an ARIMA[0, 1, 1]12 in
Problem 5.15.

If an ARIMA[P,D,Q]s model is fitted to the process (Xu), then

1. (Xu) is split into, using the template in Table 3.2, s seasonal processes(
X

(r)
t

)
, r = 1, . . . , s the season and t the period,

2. the innovations (Vu) are split into s seasonal processes
(
V

(r)
t

)
, r =

1, . . . , s, such that the
(
V

(r)
t

)
are white noise processes; for both splittings

into seasonal processes, it is assumed that
3. the differences of order D of each seasonal process are reconcilable with

an ARMA[P,Q] model, and that
4. these models are approximately identical such that only one parameter

set has to be estimated.
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Often, however, the residuals of an ARIMA[P,D,Q]s model are still corre-
lated for lags τ �= ns, n = 1, 2, . . ., since the time step of the process (Xu)
under analysis is ∆u = ui−ui−1. For example, plots of the empirical residuals
(together with their second moment functions) of the ARIMA[0, 1, 1]12 model
fitted in Problem 5.15 to (yu), (i.e., the logarithm of the atmospheric CO2,)
show that yu is also correlated with yu−τ , τ = 1, 2, . . .. This suggests that the
correlations in the residuals of the ARIMA[0, 1, 1]12 model are reconcilable
with an AR[2] model. Therefore, both models are combined to constitute a
multiplicative ARIMA[2, 0, 0]× [0, 1, 1]12 model, i.e., the candidate model for
(yu).

A multiplicative ARIMA[p, d, q] × [P,D,Q]s model is introduced in [16],
where an ARIMA[0, 1, 1]×[0, 1, 1]12 model (today called a Box-Jenkins airline
model) is fitted to the number of passengers transported by the international
airlines in the years 1952, 1953 and 1954.

The multiplicative ARIMA[p, d, q]× [P,D,Q]s model is estimated, as are
any of the others models for a linear process, using R functions arima(). The
candidate ARIMA[2, 0, 0]× [0, 1, 1]12 model for (yu), i.e., the logarithm of the
atmospheric CO2, is estimated using

maunaseasonal <- arima(lmauna, seasonal=list(order=c(0,1,1),

period=12), order=c(2,0,0), transform.pars=T) #seasonal model

#diagnostics: do not use tsdiag(maunaseasonal) here:

res <- window(maunaseasonal$residuals,c(1966,1),c(1998,12))

plot(res)

acf(res,type="corr",lag.max=60)

acf(res,type="partial",lag.max=60)

and the time series of the empirical residuals is plotted together with its
second moment functions in Fig. 5.13.

Comparing the plots in Fig. 5.13 with the template plots in Fig. 2.22, it is
concluded that the residuals of the multiplicative ARIMA[2, 0, 0] × [0, 1, 1]12
model are a time slice from the realisation of a white noise process, and thus
this model is found to be suitable for (yt). This result surprises: a very par-
simonious model with only five parameters (the variance of the innovations,
the order of the seasonal differences, two AR coefficients and one seasonal
MA coefficient) is found to account for the trend, seasonal cycle and correla-
tions with lags in the monthly scale in the logarithm of the MLO atmospheric
CO2 monthly values, which, being representative for the global atmospheric
CO2, are the result of coupled physical, chemical, biological, geological and
anthropogenic processes in the atmosphere, the oceans and on the surface of
the earth (Problem 5.31).

As a second example, the Southern Oscillation (SO) index is analysed in
search of candidate ARIMA[p, d, q] models. The SO index is the difference
in the standardised atmospheric pressure measured at Pepeete (Tahiti) and
Darwin (Australia) stations. It measures the strength of the so-called Walker
circulation in the tropical Pacific atmosphere. The Walker circulation is an
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Fig. 5.13. Empirical residuals of a multiplicative ARIMA[2, 0, 0]× [0, 1, 1]12 model
for the logarithm of the atmospheric CO2, as plotted below in Fig. 5.9, (above)
together with their empirical second moment functions (below, lag in months).

east-west oriented circulation consisting of low-level convergence and rising
motion over the western tropical Pacific (low pressure at Darwin), eastward
flow at upper-levels, sinking motion over the eastern tropical Pacific (high
pressure at Tahiti and east thereof) and westward flow at the surface along
the equator as trade winds.

The westward flow drives divergent oceanic surface currents, producing
a pronounced west-east gradient in tropical Pacific sea surface temperatures
due to upwelling of cold water. These anomalies tend to reinforce the atmo-
spheric flow. Changes in the Walker circulation, as measured by the SO index,
have a considerable effect on precipitation in the tropical Pacific region, and
influence the climate over large distances in other parts of the world ([98],
[99], [110], [43], [24]).

Plots (a) and (b) of the SO index in Fig. 5.14 show that relatively long
periods with large differences in the atmospheric pressure between the south-
eastern Pacific and Indonesia are interrupted by shorter periods with smaller
differences. In these shorter periods, changes in the sea surface temperatures,
precipitation, etc. are observed. A prominent change is the increasing sea sur-
face temperature at the coast of South America, inducing changes in ecology
(e.g., the fish become less abundant) and economy. A traditional fishermen’s
name for this increase is El Niño. The connection between El Niño and the
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Fig. 5.14. SO index: monthly values from January 1882 through to January 1996
(a), monthly values from January 1933 through to January 1996 (b), as well as
empirical correlation (c), and partial correlation (d) functions calculated from the
observations plotted in (b).

Southern Oscillation has been known for decades: El Niño - Southern Oscil-
lation (ENSO) is a term often used.

The strength of the SO is measured using several indices. Among these is
the SO index introduced above. There are slight variations in the SO index
values, obtained from various sources. The SO index, as plotted in Fig. 5.14
and available as file /path/soi.dat, was downloaded in 1999 from [86]. It
is recommended to repeat the analyses made in this section as well as in
Sects. 5.4.3 and 5.4.4, with time slices from an SO index time series extended
further back using the methods described in [116]. This SO index can be
obtained from the addresses given in [115]. The R expressions

sofmt <- list(month="",year=0,so=0)

sofn <- "/path/soi.dat"
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soframe <- scan(sofn,sofmt)

so <- ts(soframe$so,start=1882,frequency=12,)

soshort <- window(so,c(1933,1),c(1996,1))

generate the R time series so and soshort shown in plots (a) and (b) in
Fig. 5.14. From plot (a) in Fig. 5.14 it is concluded that the last period
where no measurements were recorded occurred from August 1931 through to
August 1932 and therefore, the empirical correlation and partial correlation
functions (plots (c) and (d) in Fig. 5.14) are calculated from observations
made since January 1933.

Using (5.59), it is concluded from the plots in Fig. 5.14 that

1. AR[p] models with 3 ≤ p ≤ 10 (with emphasis on the empirical partial
correlation function being small for lags larger than 0.25 years and re-
maining practically inside the .95 confidence interval for no correlation
for lags larger than 0.833 years) and

2. ARMA[p, q] models with p, q < 3 (with emphasis on the damped sinu-
soidal oscillations in both empirical second moment functions, using the
remark to (5.45))

are candidate models for the SO index. From this fairly large number of
candidate models, a few are selected as being suitable for the SO index when
the diagnostics introduced in Sect. 5.4.4 are applied to the model estimates
obtained as demonstrated in Sect. 5.4.3.

5.4.3 Estimation

The first step of procedure (5.1) results in a small number of candidate mod-
els (AR[p], MA[q], ARMA[p, d, q],ARIMA[p, d, q] or seasonal models) to be
estimated for the time series under analysis, as demonstrated in Sects. 5.4.1
and 5.4.2. These models are estimated, in the second step, using arima() as
introduced in Sects. 5.2.3 and 5.3.4. In the ARMA[p, d, q] definition underly-
ing arima() (given in Sect. 5.3.4), the sign of the moving-average coefficients
is +, whereas in definitions (5.28), (5.36) and (5.55), the sign is −. Therefore,
the sign of the moving-average estimates obtained from arima() is changed
when used in connection with definitions (5.28), (5.36) and (5.55).

For instance, ARMA[p, q] models (with p ≤ 2 and q ≤ 2) and AR[p]
models (with 3 ≤ p ≤ 10) are estimated for the SO index as shown in plot
(b) in Fig. 5.14. These models are the candidate ones proposed in the remarks
to Fig. 5.14. In addition, for the reasons given in the remarks to Table 5.3,
AR[11] and AR[12] models are estimated.

Using Burg’s algorithm (5.21) (ar.burg() de-means prior to estimating)
sosh.ar12burgfit <- ar.burg(soshort,aic=F, order.max=12) #AR[12]

sosh.ar12burgfit$ar

[1] 0.405185999 0.156836645 0.103714905 0.095897832

[5] 0.058366544 0.108357691 -0.056266337 -0.060071795

[9] -0.016843724 -0.069007548 -0.009667824 -0.008072675
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soshres <- window(sosh.ar12burgfit$resid,c(1934,1),c(1996,1))

mean(soshres) #possible, since first 12 missing residuals are

[1] -0.001216903 #cut above (sosh.ar12burgfit$resid begins

var(soshres) #with 1933, so does R time series soshort)

[1] 0.5820025

the estimates for the autoregressive coefficients as well as the mean and vari-
ance of the empirical residuals as estimates for the moments of the innovations
are obtained.

The ML estimates (5.25) for the autoregressive candidate models are cal-
culated using arima() (below, for the AR[12] model)

sosh.ar12mlefit <- arima(soshort,order=c(12,0,0),transform.pars=T)

sosh.ar12mlefit$coef

ar1 ar2 ar3 ar4 ar5

0.404335405 0.156808030 0.103423985 0.096245233 0.057768104

ar6 ar7 ar8 ar9 ar10

0.108804279 -0.055641957 -0.059951813 -0.016378461 -0.068732625

ar11 ar12 intercept

-0.009575356 -0.008043253 -0.143235509

sosh.ar12mlefit$sigma2

[1] 0.5788384

to arrive at the same values (at least for practical purposes, i.e., for the cal-
culation of predictions) as those obtained with Burg’s algorithm. The ML
estimated AR[p] models for the SO index are stationary, due to constraints
applied when calculating with arima( ..., transform.pars=T, ...). Diag-
nostics for these models are to be found in Table 5.3.

The ML estimates (5.57) for the candidate ARMA[p, q] models, p, q < 3,
are then calculated, also using R function arima() (below, for the ARMA[1,1]
model)

sosh.arma11fit <- arima(soshort,order=c(1,0,1),transform.pars=T)

sosh.arma11fit$coef #change sign of moving average

ar1 ma1 intercept #coefficients when used with

0.8828684 -0.4648837 -0.1411459 #(5.55), (5.36) or (5.28)

sosh.arma11fit$sigma2

[1] 0.5997365

sosh.arma11fit$var.coef #covariance matrix of estimates:

#change sign of covariances involving moving average coefficients

#when used with (5.55), (5.36) or (5.28)

ar1 ma1 intercept

ar1 5.434013e-04 -6.913596e-04 7.151109e-06

ma1 -6.913596e-04 1.865348e-03 -7.658224e-06

intercept 7.151109e-06 -7.658224e-06 1.624915e-02

-2*sosh.arma11fit$loglik #dignostic (5.61)

[1] 1761.944
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to obtain the results and diagnostics in Table 5.3. The ARMA[p, q] models
with the ML estimated parameters are stationary and invertible due to the
constraints applied with option arima( ..., transform.pars=T, ...).

5.4.4 Diagnostics

Is a candidate model in agreement with the observed time series? Answers to
this question are found by applying diagnostics to the estimated models for
a linear process in the third step proposed in (5.1).

As a first diagnostic, asymptotic .95 confidence intervals for the estimated
model coefficients are approximated in (5.60):

âi ± 1.96 × σ̂ai
, i = 1, . . . , p b̂j ± 1.96 × σ̂bj

, j = 1, . . . , q (5.60)

If an interval as proposed in (5.60) does not contain zero, it is then assumed
that the model coefficient (i.e., the true coefficient) is not identically zero. If
intervals for all coefficients in a model do not contain zero, it is then assumed
that all model coefficients are not identically zero and are, thus, essential.
The standard deviations for the calculation of the .95 confidence intervals as
proposed in (5.60) are obtained from the diagonal in the covariance matrix of
the estimated coefficients, which is among the results obtained from arima(),
as demonstrated in Sect. 5.2.3.

The approximations for the asymptotic .95 confidence intervals as pro-
posed in (5.60) are preferably combined with the second diagnostic, i.e., the
AIC [1] and BIC [122] values as proposed in (5.61) being calculated in arima().
This is demonstrated in Table 5.3 using the SO index example. The AIC and
BIC values in (5.61) are calculated

(arg) =
(
ă(p), b̆(q), σ̆2

W (p, q)|X)
AIC(arg) = −2log

(
L(arg)

)
+ 2(p+ q) (5.61)

BIC(arg) = −2log
(
L(arg)

)
+
(
log(N)

)
(p+ q)

by doubling the negative logarithm of L
(
a(p), b(q), σ2

W (p, q)|X)
, i.e., the like-

lihood function in (5.57) which is maximised when an ARMA[p, q] model is
fitted to a stationary time series (xt), t = 1, . . . , N , with a correction added.

Small AIC and BIC values (calculated from a large likelihood function)
point to a good fit of the model. Since a model with a large number of
coefficients usually fits better than a parsimonious one, corrections are applied
to the value obtained from the likelihood function. These corrections depend
on the number of parameters estimated (and also, in case of a BIC value, on
the length N of the time series) and thus, acting in response to the remarks
to (5.36): recompense parsimonious and punish non-parsimonious models!

The diagnostics as proposed in (5.60) and (5.61) are applied to the es-
timated candidate models for the SO index in Table 5.3. The AIC values
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decrease from 1770 (as calculated for the ARMA[p, q] models, p, q < 3, and
also for the AR[3] and AR[4] models) to a mininum of 1755 (as calculated for
the AR[10] model) and then increase for models with more than 10 autogres-
sive coefficients. To demonstrate this increase, AR[11] and AR[12] models are
estimated in Sect. 5.4.3, though, using the diagnostics (5.59), it is concluded
from the plots in Fig. 5.14 that AR[p] models, 3 ≤ p ≤ 10, are candidate ones
for the SO index.

The BIC values have a minimum for the ARMA[1,1] model and then
increase for the models with a larger number of coefficients, except the AR[3]
model which is comparable to the AR[4] one in the BIC value.

From the AIC values in Table 5.3, it is concluded that the AR[10]
model is most suitable for the SO index; from the BIC values, however,
the ARMA[2,1], ARMA[1,1] or the ARMA[1,2] models, possibly even the
AR[3] or AR[4] models, are judged to be better suited. To arrive at a further
reduction of the number of candidate models, diagnostic (5.60) is applied.
Except for the AR[3], AR[4] and ARMA[1,1] models, all candidate models
have estimated coefficients with .95 confidence intervals including zero and
thus contain non-essential parameters. The ARMA[2,1] model, for example,
has an estimate for coefficient a2 being close to 0 and all its coefficients are
estimated with relatively large (as compared with the AR[4] and ARMA[1,1]
models) variances, as is concluded from the standard deviations of these es-
timates given below, in Table 5.3.

Thereafter, the AIC and BIC values pertaining to the remaining candi-
dates, i.e., the AR[3], AR[4] and ARMA[1,1] models containing only essential
coefficients, are compared. From this comparison it is concluded that, from
all candidate models in Table 5.3, only the AR[4] and ARMA[1,1] models are
in agreement with both diagnostics (5.60) and (5.61). This result is confirmed
using properties of the AIC and BIC values obtained from simulation experi-
ments. From such experiments, it becomes evident that, using the AIC value,
the order of the model is often overestimated, whereas, using the BIC value,
one comes closer to the order of the model, but risks an underestimation.

The diagnostics (5.60) and (5.61), i.e., the calculation of asymptotic .95
confidence intervals for the estimated coefficients and the comparison of the
AIC and BIC values, often help to reduce the number of estimated candidate
models for the time series under analysis. An additional reduction can then
be arrived at by applying further diagnostics using the empirical residuals of
the models estimated.

However, the empirical residuals of a fitted model should always (not
only in order to reduce the number of candidate models) be analysed for the
following reason. The definitions of the AR[p], MA[q] and ARMA[p, q] models
in (5.2), (5.28) and (5.36), and also those of the ARIMA[p, d, q] model in
(5.55), contain two parts: linear formulae with the coefficients to be estimated
in the first part, and the properties of the innovations in the second part. Since
(5.60) and (5.61) apply to the first part only, additional diagnostics must be
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Table 5.3. Diagnostics of the candidate models for the SO index in the period
from January 1933 through to January 1996 (plot (b) in Fig. 5.14) using (5.60)
and (5.61) and ML estimates for the AR[4], ARMA[1,1] and ARMA[2,1] models.
−2log

(
L(arg)

)
in (5.61) is obtained from arima(), N = 757.

candidate −2log AIC BIC parameter with a confidence

model
(
L(arg)

)
interval calculated using (5.61),

that includes 0

AR[12] 1735.37 1759.37 1814.92 a12, a11, a10, a9, a8, a7, a5

AR[11] 1737.42 1757.42 1808.34 a11, a10, a9, a8, a7, a5

AR[10] 1735.54 1755.54 1808.84 a9, a8, a7, a5

AR[9] 1739.82 1757.82 1799.48 a9, a7, a5

AR[8] 1741.74 1757.74 1794.78 a7, a5

AR[7] 1748.62 1762.62 1795.02 a5

AR[6] 1758.68 1770.68 1798.46 a6, a5

AR[5] 1759.39 1769.39 1792.53 a5, a4

AR[4] 1760.27 1768.66 1786.78
AR[3] 1766.19 1772.15 1786.04

ARMA[1,1] 1761.94 1765.94 1775.20
ARMA[2,1] 1761.82 1767.82 1781.71 a2

ARMA[1,2] 1761.80 1767.80 1781.69 b2

ARMA[2,2] 1761.63 1769.63 1788.15 a1, a2, b1, b2

model estimator variance of coefficients estimates for coefficients
innovations with standard deviations

AR[4] (5.21) 0.5976 a1, . . . , a4 0.4283 0.1640 0.1029 0.0899

(5.25) 0.5977 a1, . . . , a4 0.4307 0.1610 0.1049 0.0899
0.0364 0.0394 0.0363 0.0337

ARMA[1,1] (5.57) 0.5997 a1, b1 0.8829 0.4649
0.0233 0.0432

ARMA[2,1] (5.57) 0.5982 a1, a2, b1 0.9105 −0.0187 0.4841
0.0920 0.0640 0.0730

applied to assert that the properties of the empirical residuals are not too far
from the properties of the innovations as required in the definitions.

The residuals of a model are the differences of the estimated and true
values. Estimates for the residuals are the empirical residuals, i.e., the dif-
ferences r∗u = xu −X∗

u of the observations xu and the values X∗
u calculated

using an estimated model. Assuming that

1. X∗
u is an estimate (Yule-Walker with Levinson-Durbin recursion, Burg’s,

regression, or ML) introduced in Sects. 5.2 and 5.3.4
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2. (x1, . . . , xN ) is a stationary time series in case of an ARMA[p, q] model
(however, in case of an ARIMA[p, d, q] model, the stationary differences
of order d of the original time series)

3. (a∗1, . . . , a
∗
q) and (b∗1, . . . , b

∗
q) are the estimated coefficients of the fitted

model, and
4. xu and r∗u are identically zero for the time points prior to the period with

observations,

the empirical residuals are arrived at using the difference equation pertaining
to the ARMA[p, q] model in (5.36), with xu substituting Xt and past r∗u−j

substituting past Wt−j , by applying (5.62) recursively for u = 1, 2, . . . , N ,

xu = 0 and r∗u = 0 for u < 1; EWu = µW = 0

r∗u = xu −
p∑

i=1

a∗i xu−i +
q∑

j=1

b∗jr
∗
u−j , u = 1, 2, 3, . . . , N (5.62)

provided that, as a last assumption, the present innovationsWt in (5.36) have
been substituted by their expectations µW (µW is shown to be, in (2.83), the
optimal prediction for Wt). This last assumption is required, as Wu cannot
be estimated from past r∗u−j , j > 0, the Wt being non-correlated.

In applications, the empirical residuals are usually calculated by the
algorithm implemented in the software used for estimation. For example,
Table 5.4 contains the empirical residuals pertaining to the AR[4] and
ARMA[1,1] models as estimated in Table 5.3, using ar.burg() to obtain
Burg’s estimates for the AR[4] model and arima() to obtain the ML esti-
mates for the ARMA[1,1] model. In addition, Table 5.4 contains in its last
column the empirical residuals of the ARMA[1,1] model. These are to be
calculated, as required in (5.62) and using the estimates in Table 5.3, in
Problem 5.17. The empirical residuals as required in (5.62) come closer, with
increasing time having elapsed since January, 1933, to the empirical resid-
uals as obtained using arima(). The deviations are due to the fairly rough
initialisation in (5.62).

The empirical residuals, being estimates for the theoretical ones, should
have the following properties given in (5.63)

The empirical residuals of an AR[p], MA[q], ARMA[p, q] or
ARIMA[p, d, q] candidate model are approximately stationary
and not correlated and stem, in the case of a maximum likelihood
estimation, from a distribution being approximately normal.

(5.63)

since the innovations in the causal models defined in (5.2), (5.28) and (5.55)
are a (normal) white noise process. The properties stipulated in (5.63) are
comparable to those claimed for the empirical residuals of a linear model in
Sects. 3.2.3 and 3.2.5, for which diagnostics are introduced in Sect. 3.3.

Diagnostics for the empirical residuals of an estimated AR[p], MA[q],
ARMA[p, q] or ARIMA[p, d, q] model are obtained, in this chapter, from plots
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Table 5.4. Empirical residuals of the AR[4] and ARMA[1,1] models in Table 5.3
for the de-meaned (using µ̆X = −1.1411459 as estimated for the ARMA[1,1] model
in Sect. 5.4.3) SO index. NA: not available.

time SO index AR[4] model ARMA[1,1] model
de-meaned Burg ML ML (5.62)

1933 Jan. −1.4588 NA −1.0870 −1.0897 −1.4588
1933 Feb. 0.5411 NA 1.3905 1.3860 1.1509
1933 March −0.2588 NA −0.1540 −0.1199 −0.2016
1933 April 0.4411 NA 0.6570 0.6132 0.5759
1933 May 0.6411 0.5688 0.5702 0.5360 0.5194
1933 June −0.2588 −0.6254 −0.6247 −0.5758 −0.5834
1933 July 0.3411 0.3252 0.3252 0.3020 0.2985
1933 August −0.0588 −0.2662 −0.2653 −0.2196 −0.2213
1933 September 0.4411 0.3805 0.3806 0.3910 0.3902
1933 October 0.3411 0.1508 0.1518 0.1334 0.1331

of the empirical residuals as well as their correlation and partial correlation
functions. Examples are given in Figs. 5.2, 5.4, 5.12 and 5.13. (5.63) requires,
basically, that the empirical residuals are assessed as being (i) stationary (us-
ing the diagnostics introduced in Sect. 2.5.1) and (ii) not correlated (using the
diagnostics in the remarks to (2.59) and Fig. 2.22). These diagnostics involve
the inspection of plots of the empirical residuals, their correlation function
and, compulsory in the case of an ML estimate, their normal probabilility
plot as introduced in Fig. 2.18.

Plots of the partial correlation function of the empirical residuals are not
required here, in the third step proposed in (5.1), however, they often contain
useful hints for the model identification in the first step, as demonstrated in
Sects. 5.1.3 and 5.4.2.

Plots of the empirical residuals of the AR[4] and ARMA[1,1] models for
the SO index, with the estimates given in Table 5.3, are available, together
with plots of their empirical correlation functions and their normal proba-
bility plots, in Figs. 5.15, 5.16 and 5.17. These are the diagnostics used to
judge whether or not the empirical residuals stem from a normally distributed
white noise process, as required in (5.63).

The empirical residuals obtained from Burg’s estimate for the AR[4]
model are plotted in Fig. 5.15. Figs. 5.16 and 5.17 contain plots of the empir-
ical residuals obtained from ML estimates for an AR[4] and an ARMA[1,1]
model using arima().

The time series of the empirical residuals, as shown in plots (a) in
Figs. 5.15, 5.16, and 5.17, are found to be stationary using the diagnos-
tics introduced in Sect. 2.5.1. From plots (b) in these figures, it is concluded
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Fig. 5.15. SO index from January, 1933, through to January 1966. (a) Empirical
residuals of an AR[4] model estimated using Burg’s algorithm together with their
(b) correlation function and (c) normal probability plot. (The normal probability
plot is introduced in Fig. 2.18).

that the empirical residuals are afflicted, in lag 0.5 years, i.e., six months,
with a small correlation being, however, outside the .95 confidence interval
for no correlation: the empirical residuals do not stem from a white noise
process. From plots (c) in these figures, it is concluded that the empirical
residuals are approximately normally distributed. Therefore, the AR[4] and
ARMA[1,1] estimates in Table 5.3 are only approximately reconcilable with
(5.63). The performance of both models is comparable when all diagnostics,
(5.60), (5.61) and (5.63), are applied.

In Problem 5.18, the models in Table 5.3 are re-assessed to arrive possi-
bly at a model with un-correlated and normally distributed residuals. Models
other than the AR[4], AR[3] and ARMA[1,1] ones, however, will have coef-
ficients with asymptotically .95 confidence intervals that contain zero, as is
obvious from Table 5.3. Consequently, no candidate model in Table 5.3 has
(i) coefficients with .95 invervals not containing zero as required in (5.60),
(ii) minimal AIC and BIC values as required in (5.61) and also (iii) em-
pirical residuals stemming from a normally distributed white noise process
as required in (5.63). The ARMA[1,1] and the AR[4] models, however, are
preferred as they are the most parsimonious.

A model chosen by applying diagnostics (5.60), (5.61) and (5.63) as de-
monstrated above, should undergo a last diagnostic. This diagnostic is a
version of the one used in Sect. 2.3 to compare AR[1] and MA[1] models
fitted to stationary time series using trial and error: in Fig. 2.15, for example,
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Fig. 5.16. SO index from January, 1933, through to January 1966. (a) Empirical
residuals of an AR[4] model estimated using the maximum likelihood (ML) method
together with their (b) correlation function and (c) normal probability plot.

the first differences of the yearly values in the Basel temperature series are
plotted together with simulations obtained from three MA[1] models in order
to find a model reconcilable with the observations. One notices the strength of
the diagnostic increasing when the time series is compared with simulations
obtained from only one model, as required in (5.64).

Using the estimated model, several realisations are simulated
and, among their plots, a plot of the observations is hidden.
If a person not initiated detects these observations, then an
alternative model should be estimated.

(5.64)

Is the ARMA[1,1] model for the SO index as estimated in Table 5.3 in
agreement with the diagnostic proposed in (5.64)? Realisations from an esti-
mated ARMA[p, q] model are calculated with arima.sim(). This R function
in introduced in Problems 2.22 and 5.11. From the ARMA[1,1] model as
estimated in Table 5.3, with

wnlength <- 757 #length of time series

wnvar <- 0.6009 #variance of innovations

w <- rnorm(wnlength,mean=0,sd=sqrt(wnvar)) #white noise

wts <- ts(w,start=1933,frequency=12,) #as time series in R

soarma11sim <- arima.sim(model=list(order=c(1,0,1),

ar=c(-0.8829), ma=c(0.4649)), n=wnlength, innov=wts)

seven simulated realisations are generated and then plotted in Fig. 5.18.
Fig. 5.18 also contains a plot of the observed time series.
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Fig. 5.17. SO index from January, 1933, through to January 1966. (a) Empirical
residuals of an ARMA[1,1] model estimated using the ML method together with
their (b) correlation function and (c) normal probability plot.

In Fig. 5.18, the time series hidden in the simulations can hardly be
detected without consulting Fig. 5.14. Therefore, an ARMA[1,1] model as
estimated in Table 5.3 is in agreement with the SO index plotted in Fig. 5.18.
The same result is obtained for an AR[4] model as estimated in Table 5.3
applying diagnostic (5.64) in Problem 5.30.

Additional diagnostics for ARMA[p, q] models are proposed in [16], [21],
[17], and [22]. However, by increasing the number of diagnostics applied to
a set of candidate models, the probability increases that no candidate model
is reconcilable with the observations. This situation is arrived at, in the case
of the SO index, applying the diagnostics (5.60), (5.61), (5.63) and (5.64) to
the candidate models in Table 5.3.

5.4.5 Selection and Summary

When two or more candidate models are found to be reconcilable with the
diagnostics proposed above, in Sect. 5.4.4: which one is preferred? An answer
to this question is to be found in the fourth and last step in (5.1).

Often this step is straightforward, i.e., if a clear and non-ambigouous
result has already been arrived at when identifying the model in the first
step (5.1,1). For example, only one candidate model is found, in Sect. 5.1.3,
for each of the example time series, i.e., the wind speed values measured in
a turbulent atmospheric flow and the amounts of a product formed during a
chemical reaction and, in Sects. 5.4.2 and 5.4.1, for the yearly values in the
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Fig. 5.18. SO index from January, 1933, through to January 1966. The observed
time series is hidden in seven simulations calculated using the ARMA[1,1] model
as estimated in Table 5.3.

Basel temperature series and the monthly values in the MLO atmospheric
CO2 series. These models can be shown to be in agreement with the observed
time series by applying the diagnostics (5.60), (5.61), (5.63) and (5.64).

Far more difficult, however, is the selection of a model for the SO in-
dex from those estimated in Table 5.3. The AR[4] and ARMA[1,1] models
have empirical residuals that are correlated with lag 0.5 years as seen in
Figs. 5.15, 5.16 and 5.17, whereas the less parsimonious ones have coeffi-
cients with .95 confidence intervals including zero. These ambiguities can be
avoided when the diagnostics are weighted. If a very parsimonious model is
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preferred and the small correlations in the empirical residuals are ignored
then the ARMA[1,1] model is selected. However, if a model with a larger
number of possibly non-essential parameters can be used then an autoregres-
sive model of higher order but with no correlations in its empirical residuals
is selected.

In this section, proceeding stepwise guided by (5.1), the following models
are found to be reconcilable with the example time series:

1. an ARIMA[0, 1, 1] with the Basel temperature yearly values
2. an ARIMA[2, 0, 0]× [0, 1, 1]12 with the atmospheric CO2 monthly values
3. an ARMA[1,1] with the SO index monthly values.

These models do not reveal much of the properties of the natural phenomena
involved (Problem 5.31). Making use of them, however, predictions can be
calculated very efficiently as demonstrated in Sect. 5.5.

5.5 Predictions

Using an ARIMA[p, d, q] model reconcilable with an observed time series, pre-
dictions can be calculated assuming that the predicted values belong to the
realisation observed. The very same assumption is made in Sect. 2.7 where
optimal linear predictions for stationary processes are derived. The problems
mentioned in the remarks concluding Sect. 2.7 can be solved when a pre-
diction is calculated for a linear process as defined in (2.25): the reduction
of the set of processes for which predictions are possible is compensated by
efficient algorithms for their calculation. A linear process is written parsimo-
niously as an ARMA[p, q] model (5.36). Assuming that the true coefficients
in an ARMA[p, q] model are known, two prediction formulae are derived in
Sect. 5.5.1. Thereafter, in Sect. 5.5.2, predictions are calculated with esti-
mates substituted for the true coefficients.

5.5.1 Predictions Using a Theoretical ARMA[p, q] Model

In this subsection, two predictions using an ARMA[p, q] model as defined in
(5.36) are derived from (i) the AR[∞] representation and (ii) the difference
equation of the model. From the AR[∞] representation proposed in (5.47)
a prediction is derived in order to show that the innovation Wt can be cal-
culated from Xt, Xt−1, . . ., i.e., both the present and past model variables.
Consequently, provided that the model reduces to an MA[q] process, (5.33,1)
holds. The results of this derivation are given in (5.65), (5.66) and (5.68). For
practical purposes, however, predictions are calculated from the ARMA[p, q]
model as defined in (5.36), i.e., from its difference equation. The result is the
recursion (5.70).

A derivation of a prediction using the AR[∞] representation (5.47) of an
ARMA[p, q] model is motived by propositions (5.7), (5.8), (5.9) and (5.10),
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from which it is concluded that the coefficients in an AR[p] model are the
weights of an optimal linear prediction for Xt, provided that Xt−1, Xt−2,
. . ., Xt−p are known. The result obtained in Sect. 5.6.3 is summarised in
(5.13): there, an optimal linear prediction for an AR[p] model has been found
provided that there is only one time step between the random variable to be
predicted and the last random variable known.

Are the π-weights in the AR[∞] representation (5.47) of an ARMA[p, q]
model (5.36), Xt − π1Xt−1 − π2Xt−2 − π3Xt−3 − . . . = Wt, the weights of an
optimal linear prediction Xt provided that Xt−1, Xt−2, . . . are known?

If (Xt) is an ARMA[p, q] model as defined in (5.36)
with its AR[∞] representation in (5.47), then:

1. the one-step prediction forward from time point t for Xt+1,
X̂t+1(∞) = π1Xt + π2Xt−1 + . . ., is linear and optimal
for all t,

2. the errors
(
êt+1(∞)

)
of a sequence of one-step

predictions are a white noise process (Wt), and
3. the mean square prediction error is the variance of (Wt):

PVarX̂t+1(∞) = σ2
W .

(5.65)

In (5.65,1), as well as in (5.13), there is only one time step between the ran-
dom variable to be predicted and the last random variable known: a one-step
prediction X̂t+1(∞) for Xt+1 is calculated. The prediction is a linear com-
bination of the π-weights in the AR[∞] representation and of the present
and past random variables. The errors êt+j+1(∞) pertaining to a sequence of
one-step predictions forward from time points t+j, j = 0, 1, 2 . . ., are not cor-
related, and the variance of these errors is the mean square prediction error.
The properties of the one-step prediction in (5.65) are derived in Sect. 5.6.3.

Optimal k-step predictions forward from time point t can be calculated
using optimal one-step predictions:

X̂t+1(∞) = π1Xt + π2Xt−1 + π3Xt−2 + . . .

X̂t+2(∞) = π1X̂t+1(∞) + π2Xt + π3Xt−1 + π4Xt−2 . . .

X̂t+3(∞) = π1X̂t+2(∞) + π2X̂t+1(∞) + π3Xt + π4Xt−1 . . .

. . .

(5.66)

In the first one-step prediction given in (5.66), X̂t+1(∞) is calculated as a
substitute for Xt+1. In the second one-step prediction, X̂t+2(∞) is obtained
from X̂t+1(∞), Xt, Xt−1, . . ., as a substitute for Xt+2. In one-step prediction
no. k, the optimal k-step prediction X̂t+k(∞) is arrived at using the prior
predictions for X̂t+k−1(∞), . . ., X̂t+1(∞) and the known variables Xt, Xt−1,
Xt−2, Xt−3, . . ., assuming that the infinite past of the process is known.

Using (5.65) and (5.66), optimal predictions for t + 1, t + 2, t + 3, . . .
are obtained. These predictions as linear combinations of (i) the variables (in
applications, the observations) in an ARMA[p, q] model for t, t− 1, t− 2, . . .
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and (ii) the π-weights in the AR[∞] representation of the model. The linear
combinations converge, provided that the ARMA[p, q] model is invertible.
The predictions are, as required in (5.87,3), optimal in the mean over all
possible realisations of the linear process provided that the ARMA[p, q] model
is the true model. If this is the case then there is no prediction (possibly not
even a non-linear one) with constant weights (i.e., weights not varying in
time) to which a smaller mean square error pertains since the prediction is
calculated using the definition of the linear process.

The error and the mean square error of a k-step prediction in (5.67) and
(5.68)

êt+k(∞) = Xt+k − X̂t+k(∞) =
k−1∑
u=0

ψuWt+k−u (5.67)

PVarX̂t+k(∞) = σ2
W

k−1∑
u=0

ψ2
u (5.68)

are obtained, in (5.94) and (5.95), using the k-step prediction derived in
(5.94) from the MA[∞] representation of the ARMA[p, q] model.

êt+k(∞) in (5.67) is an MA[k− 1] model, with the ψ-weights as obtained
in the MA[∞] representation of the ARMA[p, q] model. Thus, due to (5.40),
the prediction errors êt+1(∞), . . ., êt+k−1(∞), êt+k(∞) are correlated when
predicting in forward direction from a fixed time point t.

Despite (5.65), (5.66) and (5.68) only being applicable when the infinite
past of the process (i.e., the variables Xt−j and the innovations Wt−j , j =
1, 2, . . .) is known, these formulae can still be used to calculate predictions in
applications, i.e., with observations limited to a finite past, provided that

1. the π weights decay rapidly since only a finite past is available, and
2. the estimated coefficients in the ARMA[p, q] model are assumed to be

the true ones.

The π weights usually decay very rapidly in applications and thus allow for
the calculation of a prediction from a relatively short past. The error origi-
nating from substituting estimates for the true coefficients can be accounted
for, as demonstrated in Sect. 5.5.2.

For example, an ARMA[1,1] model as estimated in Table 5.3 for the SO
index is reconcilable with the first condition stipulated above and therefore,
in Problem 5.21, optimal linear predictions and the pertaining errors are
calculated for the months following January 1996, the last month for which
an observation is available. As a second example, in Problem 5.22, assuming
σ̆2

W = 0.489 and b̆ = 0.881 as estimated in the remarks to Fig. 5.5 to be the
true parameters in an MA[1] model for the differences of the yearly means in
the Basel temperature series, these differences are predicted for the years 1958
and 1959. The predicted differences are then added, to obtain the predictions
for the yearly temperature values.
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These examples demonstrate that calculations of optimal linear predic-
tions using (5.65) and (5.66) can be lengthy. Less time is needed for a calcu-
lation using the difference equation of the ARMA[p, q] model in (5.36).

A derivation of a prediction using the definition of the ARMA[p, q] model
is motived by the hope of finding a prediction that can be calculated speed-
ily for use in time-critical applications, e.g., for controlling a manufacturing
process. Using the results obtained in Sect. 2.8.4, the k-step prediction of an
ARMA[p, q] model is calculated, in Sect. 5.6.4, as a conditional expectation
from the difference equation of the model to obtain the optimal one-step
prediction proposed in (5.69):

If the time series (xt, xt−1, . . . , xt−N+1 = xN,t) is a time slice
from a realisation of (Xt), (Xt) being an ARMA[p, q] model
as defined in (5.36), then
X̂t+1(X−∞,t) = E

(
Xt+1|X−∞,t

)
=

p∑
i=1

aixt+1−i −
q∑

j=1

bi
(
Xt+1−j − X̂t+1−j(X−∞,t)

)
is the optimal one-step step prediction of (Xt),

(5.69)

and the optimal k-step prediction in (5.70):

Under the assumptions in (5.69),

X̂t+k(X−∞,t) = E
(
Xt+k|X−∞,t

)
=

p∑
i=1

aiE
(
Xt+k−i|X−∞,t

)
+E

(
Wt+k|X−∞,t

)− q∑
j=1

bjE
(
Wt+k−j |X−∞,t

)
is the optimal k-step prediction of (Xt), with, due to
the finite past using xN,t:

1. E
(
Xu|X−∞,t

)
=
{
xu for 1 ≤ u ≤ t
X̂u(X−∞,t) for u > t

2. E
(
Wu|X−∞,t

)
=
{
Ŵu = Xu − X̂u(X−∞,t) for 1 ≤ u ≤ t
µW = 0, for u > t

3. Ŵu = r∗u as defined in (5.62).

(5.70)

An optimal k-step prediction of an ARMA[p, q] model is calculated us-
ing recursion (5.70) provided that the infinite past of the process is known.
Although this is not the case in applications, predictions can be calculated
using the past of the model, as far back as it is known, by substituting the ob-
served xu for E

(
Xu|X−∞,t

)
, and the empirical residuals r∗u for Ŵu, because

the optimal estimation of a random variable is an observation as argued in
the remarks to (4.37) and (5.97). Therefore, by calculating as required in
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Table 5.5. Predictions for the de-meaned SO index obtained from an ARMA[1,1]
model as estimated in Table 5.3 under the assumption that the estimated σ̆2

W =
0.5997, µ̆X = −0.1411, ă = 0.8829 and b̆ = 0.4649 are the true model parameters.

. . . t − 4 t − 3 t − 2 t − 1 t t + 1 t + 2 t + 3

. . . 1995 1996

. . . Sep. Oct. Nov. Dec. Jan. Feb. March April

SO index −µ̆X . . . .4411 −0.0588 .1411 −.7588 1.2411

π weights . . . .0195 .0420 .0903 .1943 .4180

X̂ (5.65) .3913

π weights . . . .0091 .0195 .0420 .0903 .1943 .4180

X̂(5.66) .3455

π weights . . . .0042 .0091 .0195 .0420 .0903 .1943 .4180

X̂ (5.66) .3051

r∗u (5.62) . . . .3543 −.3011 .0373 −.8827 1.4870

X̂ (5.70) 0.3914 0.3456 0.3051

PVar (5.65) .5997
PVar (5.68) .7045 .7861

(5.69) and (5.70), often good predictions are obtained even without using all
observations (xt, xt−1, . . . , xt−N+1).

The SO index, for example, can be predicted, using an ARMA[1,1] model
as estimated in Table 5.3, from January 1996 in forward direction for Febru-
ary, March and April 1996, under the assumption that the estimates are the
true coefficients. The results in Table 5.5 are obtained using (5.70) as well as
(5.65) and (5.66) assuming the following pasts:

1. when predicting with (5.70): the empirical residuals calculated, in Prob-
lem 5.23 forward from time point January 1995 as required in (5.62), act
as substitutes for the past innovations;

2. when predicting with (5.65) and (5.66): the predictions are calculated
with 19 observations using the π-weights 0.4180, 0.1943, 0.0903, 0.0420,
0.0195, . . . obtained from the convolution (1,−0.4649)−1 ∗ (1,−0.8829)
(Problem 5.21).

Assuming these pasts, both predictions obtained in Table 5.5 are very close in
their values. The mean square prediction errors are calculated as required in
(5.65) and (5.68) using the ψ-weights −0.4211, −0.3730, −0.3304, −0.2927,
. . ., which are obtained from the convolution (1,−0.8829)−1 ∗ (1,−0.4649).

The predictions arrived at in Table 5.5, applying (5.65) and (5.66), be-
come, after compensating for µ̆X = −0.1411 and calculating the roots of the
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mean square prediction errors, identical with those obtained from R function
predict()

predict(so.arma11fit, n.ahead=3)

$pred Feb Mar Apr #predictions

1996 0.2502408 0.2043970 0.1639230

$se Feb Mar Apr #errors

1996 0.7744265 0.8393552 0.8866731

that predicts under the assumption that the estimated coefficients are the
true coefficients.

Confidence intervals for optimal predictions (prediction intervals) of an
ARMA[p, q] model can be calculated if the probability distribution of the
prediction error êt+k(∞) =

∑k−1
u=0 ψuWt+k−u obtained in (5.67) is known. If

the innovations (Wt) are normally distributed, then êt+k(∞), being a linear
combination of normally distributed random variables, is also normally dis-
tributed (the very same argument is used to derive (5.56)) and, therefore, the
prediction interval (5.71) follows.

Let (Xt) be an ARMA[p, q] model as defined in (5.36) with nor-
mally distributed innovations (Wt) and X̂t+k(∞) be a prediction
calculated using either (5.65) and (5.66) or (5.70) with mean
square error PVarX̂t+k(∞) as required in (5.68). Then

X̂t+k(∞)±1.96
√

PVarX̂t+k(∞) is a .95 prediction interval

for X̂t+k(∞).

(5.71)

Prediction intervals as defined in (5.71) apply for each prediction individually.

5.5.2 Predictions Using an Estimated ARMA[p, q] Model

Predictions are calculated above, in Sect. 5.5.1, under the assumption that an
estimated ARMA[p, q] model is the true model. Do these predictions change
when the estimates are not assumed to be the true model coefficients?

Uncertain estimates for the standard deviation σW of the innovations
cascade linearly to the prediction intervals calculated using (5.71). The dis-
tribution of an ML estimate for σW is approximated using (5.26,2), provided
that the innovations are normally distributed.

Uncertainties in estimated autoregressive and moving-average coefficients
can also be accounted for. If the innovations are normally distributed or,
asymptotically, if the number of observations is large, then, since (5.26,1) also
applies for ARMA[p, q] models, ML estimates for ARMA[p, q] coefficients are
multivariate normally distributed. Applying these approximations together
with the variances and covariances of the estimates, diagnostics can be con-
structed that allow to assess the uncertainties introduced when a prediction
is calculated using an estimated model.
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Table 5.6. Predicting the de-meaned SO index using the ARMA[1,1] model esti-
mated in Table 5.3 taking into account the uncertainties of the estimated ă = 0.8829
and b̆ = 0.4649, and assuming that (i) σ̆2

W = 0.5997 is the true value and (ii) ă and
b̆ are normally distributed with σ̆a = 0.0233 and σ̆b = 0.0432.

predictions using (5.70) 1996
.95 prediction intervals (5.71) Feb. March April

.95 interval “expected” 1.9092 1.9908 2.0430

“very high” ă + 1.96σ̆a, b̆ − 1.96σ̆b .5763 .5353 .4971

“high” ă − 1.96σ̆a, b̆ − 1.96σ̆b .4330 .3877 .3245

“expected” ă, b̆ .3914 .3456 .3051√
PVar .7744 .8394 .8867

“low” ă + 1.96σ̆a, b̆ + 1.96σ̆b .3120 .2971 .2759

“very low” ă − 1.96σ̆a, b̆ + 1.96σ̆b .2065 .1729 .1448

.95 interval “expected” -1.1264 -1.2996 -1.4328

For instance, the properties discussed in the remarks to (5.26) apply to
the covariance matrix of the ARMA[1,1] model estimates in Table 5.3, ob-
tained using arima() in Sect. 5.4.3. From the variances in the diagonal of
this covariance matrix, the standard deviations σ̆a = 0.0233 (̆ denotes an
ML estimate) and σ̆b = 0.0432 pertaining to the estimates ă = 0.8829 and
b̆ = 0.4649 (in Table 5.3 and Sect. 5.4.3) together with the empirical correla-
tion of ă and b̆, r̆ab = c̆ab/(σ̆aσ̆b) = 0.006914/(0.0233 × 0.0432) = 0.6867 are
obtained, and these results are then used to construct .95 confidence intervals
ă± 1.96σ̆a = (0.8372, 0.9286) and b̆± 1.96σ̆b = (0.3802, 0.5495).

For values in these .95 confidence intervals, the predictions given in Ta-
ble 5.6 are calculated using (5.70) with empirical residuals, as obtained for
the predictions in Table 5.5. The predictions, under the assumption that the
estimated parameters are the true ones, stem from Table 5.5 and are shown
in the line “expected” in Table 5.6. The coefficients being linear in a sequence
of predictions calculated using (5.70) for t + 1, t + 2, . . ., larger predictions
(in lines “very high” in Table 5.6) are arrived at for values for a closer to
the upper bound and values for b closer to the lower bound of the pertaining
.95 confidence intervals than for any other values from these intervals. Vice-
versa, the smallest predictions (in lines “very low” in Table 5.6) are obtained
for values close to the lower bound for a and close to the upper bound for b.

It is not very likely to obtain the values in lines “very high” and “very
low” since the correlation of ă and b̆ is positive (r̆ab = 0.6867). Due to this
positive correlation, an underestimation of a (i.e., ă < a) is often arrived
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at together with an underestimation of b, and vice-versa. In these cases, the
effects compensate (lines “low” and “high” in Table 5.6).

From Table 5.6 it is concluded that the predictions for the de-meaned SO
index, as given in Table 5.5, can change slightly when uncertainties due to
predicting with an estimated model are accounted for. These changes how-
ever are small compared to the .95 confidence interval (lines “.95 interval
predicted” in Table 5.6) pertaining to the predictions obtained under the
assumption that the estimated coefficients (ă and b̆) are the true ones (a
and b). Hence, when using the ARMA[1,1] model estimates in Table 5.3 for
predicting the SO index, the uncertainties due to the assumption that the
estimated coefficients are the true ones can be neglected.

This approximation is feasible because the variances of the estimated
coefficients (their standard deviations are calculated above in the remarks
to Table 5.6) are small. It is therefore recommended to bear in mind that
an AR[p], MA[q] or ARMA[p, q] model will be used for predicting, when the
diagnostics introduced in Sect. 5.4.4 are applied to select one of the candidate
models identified and estimated as demonstrated in Sects. 5.4.2 and 5.4.3: the
estimates for the coefficients in a parsimonious model usually (not always,
counter-examples being the ARMA[2,1] and AR[4] models in Table 5.3) have
smaller variances than the estimates for the coefficients in a non-parsimonious
model.

5.5.3 Summary

AR[p], MA[q] and ARMA[p, q] models as defined in (5.2), (5.28) and (5.36) are
linear processes as defined in (2.25). The ARIMA[p, d, q] model as defined in
(5.55) becomes a linear process when its differences of order d are calculated
using definition (2.40). An AR[p], MA[q] or ARMA[p, q] model is fitted to
a stationary time series (or a time series having become stationary after
calculating its differences) by performing the steps in (5.1) which require
a de-meaning or de-trending of the time series and then the identification,
estimation, diagnostic and selection of a model as described in Sect. 5.4.

Then, using the estimated coefficients in recursion (5.70), predictions for
time points with no observations can be calculated under the assumption
that the predicted values belong to the very same realisation as the observed
ones. The prediction is obtained using an explicit or recursive procedure. This
is a massive advantage as compared to the calculation of an optimal linear
prediction using (2.63), since (2.63,1) requires the inversion of the empirical
covariance matrix of the process. This inversion is considered to be time-
consuming and possibly delicate in the remarks concluding Sect. 2.7.
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5.6 Supplements

The Levinson-Durbin recursion, the partial correlation function of a station-
ary process and the predictions using an ARMA[p, q] model are obtained, in
Sects. 5.6.1, 5.6.2, 5.6.3 and 5.6.4, using longer derivations. The arguments
involved are quite straightforward if considered individually; in the chain
of the derivations, however, they become powerful enough to prove, e.g., in
Sect. 5.6.1, the Levinson-Durbin recursion proposed in (5.14).

5.6.1 Levinson-Durbin Recursion

To arrive at the Levinson-Durbin recursion, we start with the properties
proposed in (2.9), i.e., that the covariance function of a stationary stochastic
process (Xt) depends on the lag t − j only and is symmetric in its origin:
cX(t, t − j) = cX(t − j) and cX(t, t − j) = cX(t, t + j), j = 1, 2, . . . , k.
Additionally, µX = 0 is assumed. Hence, in the backward prediction X̂(r)

t of
Xt as defined in (5.72):

X̂
(r)
t = a1kXt+1 + a2kXt+2 + . . .+ akkXt+k (5.72)

ê
(r)
t (k) = Xt − X̂(r)

t (k) (5.73)

PVarX̂(r)
t (k) = E

((
ê
(r)
t (k)

)2) = E
((
Xt − X̂(r)

t (k)
)2) minimal (5.74)

the random variablesXt are multiplied with weights a1k, . . . , akk being identi-
cal with the weights used in the forward prediction (5.8), since, by evaluating
the optimality conditions (2.74), a system of equations with identical covari-
ances is obtained in both cases. In applications, (5.72) allows for estimating
the variable immediately prior to the first observation, whereas (5.8) allows
for estimating the variable immediately after the last observation, in both
cases with k values following or preceding the variable to be estimated.

Both predictions (5.8) and (5.72) are evaluated, as demonstrated in (2.75)
and (2.76), to arrive at the Yule-Walker equations until lag k. These have one
and only one solution, and thus (5.75), (5.76) and (5.77) hold.

E
((
ê
(v)
t (k)

)
Xt−j

)
= E

((
ê
(r)
t (k)

)
Xt+j

)
= 0, j = 1, . . . , k (5.75)

PVarX̂(v)
t (k) = E

((
ê
(v)
t (k)

)(
ê
(v)
t (k)

))
= E

((
ê
(r)
t (k)

)(
ê
(r)
t (k)

))
= PVarX̂(r)

t (k) = PVar(k) (5.76)

PVarX̂(v)
t (k) = E

((
ê
(v)
t (k)

)
Xt

)
= E

((
ê
(r)
t (k)

)
Xt

)
= PVarX̂(r)

t (k) = PVar(k) (5.77)

(5.75), (5.76) and (5.77), however, also follow from (5.13,2) where it is stipu-
lated that the Yule-Walker equations connect the covariances of a stationary
process with the weights of its optimal linear forward prediction.
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... | | | ... | | | ...
Xt−k Xt−k+1 Xt−k+2 Xt−2 Xt−1 Xt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ X̂
(v)
t (k)

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ X̂
(v)
t (k − 1)

X̂
(r)
t−k(k − 1) ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Fig. 5.19. Forward predictions X̂
(v)
t (k) and X̂

(v)
t (k − 1) for time Xt using k and

k − 1 variables preceding t; backward prediction X̂
(r)
t−k(k − 1) for Xt−k using k − 1

following variables. The errors of these predictions are related by equation (5.78).

If the set of the stationary (Xt) is restricted to the set of AR[p] models
defined in (5.2), then the Yule-Walker equations connect the covariances of
the model with its coefficients as proposed in (5.13,1), and, because in a
version of (5.75) applying for causal (as defined in (5.3)) AR[p] models, the
white noise variable for time t replaces the prediction error, and we can
argue that the covariances E(WtXt−j) and E(WtXt+j), j = 1, . . . , k, become
identically zero.

It has been shown above, that (5.75), (5.76) and (5.77) are implied by
the properties of the covariance function of a stationary stochastic process as
proposed in (2.9). From these properties, also (5.78) with θk as required in
(5.79) is obtained in the remarks to (5.82) and (5.83). Then, from (5.78), the
Levinson-Durbin recursion as proposed in (5.14) is obtained in Problems 5.4
and 5.5.

ê
(v)
t (k) = ê

(v)
t (k − 1) − θk

(
ê
(r)
t−k(k − 1)

)
(5.78)

The error ê(v)
t (k) of the forward prediction for Xt using k preceding variables

is calculated, in (5.78), by correcting the error ê(v)
t (k − 1) of the forward

prediction for Xt using only k − 1 preceding Xt. The correction applied to
ê
(v)
t (k − 1) is obtained by multiplying the error of the backward prediction
ê
(r)
t−k(k− 1) for Xt−k with the weight θk. Xt−k is the variable contributing to

X̂
(v)
t (k) but not to X̂(v)

t (k−1). The intervals containing the variables used in
these predictions, i.e., the predictions to which the errors in (5.78) pertain,
are drawn as arrows in Fig. 5.19.

Fig. 5.19 shows that the predictions X̂(v)
t (k − 1) and X̂

(r)
t−k(k − 1) are

calculated using an identical set of variables Xt−j , j = 1, . . . , k − 1, being
betweenXt−k andXt. This implies, using the orthogonality conditions (2.79),
that both prediction errors ê(v)

t (k−1) and ê(r)
t−k(k−1) are not correlated with

Xt−j , j = 1, . . . , k − 1, and therefore, both (5.82) as well as (5.83) follow for
j = 1, . . . , k − 1 and arbitrary real θk. Does a θk exist such that (5.82) and
(5.83) also hold for j = k? Can we calculate this θk?
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Assume that this θk can be calculated from the left side in (5.79).
In (5.79), E

((
ê
(v)
t (k − 1)

)
Xt−k

)
then becomes, using (5.8,1,2), E

((
(Xt −∑k−1

j=1 aj,k−1Xt−j

)
Xt−k

)
, and E

((
(ê(r)

t−k(k − 1)
)
Xt−k

)
, becomes, with (5.77),

PVarX̂(r)
t−k(k − 1). (5.79) and (5.80) then follow with µX = 0. Like a cor-

relation, −1 ≤ θk ≤ 1, seeing that (i) identical coefficients and covariances
cX(1), . . . , cX(k−1) occur in

∑k−1
j=1 aj,k−1cX(k− j) =

∑k−1
j=1 aj,k−1cX(j) and

(ii) −cX(0) ≤ cX(k) ≤ cX(0), as proposed in (2.9,3).

E
((
ê
(v)
t (k − 1)

)
Xt−k

)
E
((
ê
(r)
t−k(k − 1)

)
Xt−k

) =
E
((
Xt −

∑k−1
j=1 aj,k−1Xt−j

)
Xt−k

)
PVarX̂(r)

t−k(k − 1)
(5.79)

=
E
(
XtXt−k −∑k−1

j=1 aj,k−1Xt−jXt−k

)
PVar(k − 1)

(5.80)

=
cX(k) −∑k−1

j=1 aj,k−1cX(k − j)
cX(0) −∑k−1

j=1 aj,k−1cX(j)
= θk (5.81)

When θk as obtained in (5.81) is substituted in (5.78), then (5.82) and (5.83)
follow for j = 1, . . . , k. For j = 1, . . . , k − 1, however, (5.82) and (5.83) hold
for arbitrary θk, as shown above.

E
((
ê
(v)
t (k − 1)

)
Xt−j

)
= 0 and E

((
ê
(r)
t−k(k − 1)

)
Xt−j

)
= 0 (5.82)

E
((
ê
(v)
t (k − 1) − θkê(r)

t−k(k − 1)
)
Xt−j

)
= E

((
∆t(k)

)
Xt−j

)
= 0 (5.83)

Both, the differences ∆t(k) in (5.83) and the prediction errors ê(v)
t (k) in

(5.75), are not correlated with the Xt−j , j = 1, . . . , k. This implies, using
(2.78) and (2.79), that linear predictions for Xt with the errors ê(v)

t (k) (on
the left side in (5.78)) and ∆t(k) (on the right sides in (5.83) and in (5.78))
are calculated by evaluating identical optimality conditions. Therefore, the
systems of equations, and thus the predictions, together with their errors, are
identical. Thus (5.78), with θk being calculated using predictions and their
errors with argument k−1 as required in (5.81), allows for calculating ê(v)

t (k)
recursively.

From the recursion (5.78), the Levinson-Durbin recursion as proposed in
(5.14) is obtained in Problems 5.4 and 5.5.

5.6.2 Partial Correlation Function

By substituting definitions (5.8) and (5.72) in the covariance in the numerator
in (5.15),
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Cov
(
Xt − X̂(v)

t (k − 1), Xt−k − X̂(r)
t−k(k − 1)

)
= E

((
ê
(v)
t (k − 1)

)(
ê
(r)
t−k(k − 1)

))
= E

((
ê
(v)
t (k − 1)

)(
Xt−k − a1,k−1Xt−k+1 − . . .− ak−1,k−1Xt−1

))
= E

((
ê
(v)
t (k − 1)

)
Xt−k

)
− a1,k−1E

((
ê
(v)
t (k − 1)

)
Xt−k+1

)
− . . .

−ak−1,k−1E
((
ê
(v)
t (k − 1)

)
Xt−1

)
= E

((
ê
(v)
t (k − 1)

)
Xt−k

)
(5.84)

the numerator in (5.79), (5.80) and (5.81) as well as in (5.14,1) is obtained.
Then, substituting definitions (5.8) and (5.72) in the denominator in (5.15),(

Var
(
Xt −X(v)

t (k − 1)
)
Var

(
Xt−k −X(r)

t−k(k − 1)
))1/2

=
(

E
((
ê
(v)
t (k − 1)

)(
ê
(v)
t (k − 1)

))
E
((
ê
(r)
t−k(k − 1)

)(
ê
(r)
t−k(k − 1)

)))1/2

=
(
PVar(k − 1)PVar(k − 1)

)1/2

= PVar(k − 1) (5.85)

the denominator in (5.79), (5.80) and (5.81) as well as in (5.14,1) is obtained.
Consequently, the sequence (akk) generated when the Yule-Walker equations
are solved using, for example the Levinson-Durbin recursion, is the sequence
of partial correlations aX(kk).

The partial correlation function of the MA[1] model as proposed in (5.34)
and (5.35) is obtained from the correlation function of the model as proposed
in (2.23). Applying definition (5.15), the Levinson-Durbin recursion is used
to solve the Yule-Walker equations:

aY (1, 1) = cY (1)/cY (0) =
−b

1 + b2

PVar(1) =
1 + b2 + b4

1 + b2
=

(1 + b2 + b4)(1 − b2)
(1 + b2)(1 − b2) =

1 − b6
(1 + b2)(1 − b2)

aY (2, 2) =
−b2

1 + b2 + b4
=

−b2(1 − b2)
1 − b6

PVar(2) =
1 + b2 + b4

1 + b2

(
1 −

( −b2
1 + b2 + b4

)2
)

= . . .

=
1 + 2b2 + 2b4 + 2b6 + b8

(1 + b2)(1 + b2 + b4)
=

1 + b2 − b8 − b10
(1 − b2)(1 + b2)(1 + b2 + b4)

=
1 − b8

(1 − b2)(1 + b2 + b4)
=

(1 − b8)(1 − b2)
(1 − b2)(1 − b6) =

1 − b8
1 − b6

aY (3, 3) =
−b3(1 − b2)

1 − b6 × 1 − b6
1 − b8 =

−b3(1 − b2)
1 − b8
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PVar(3) = . . .

. . .

aY (k, k) =
−bk(1 − b2)
1 − b2(k+1)

, k > 1 (5.86)

5.6.3 Predictions Derived from the AR[∞] and MA[∞]
representations of an ARMA[p, q] Model

The one-step prediction of an ARMA[p, q] model as proposed in (5.65) is
derived from the AR[∞] representation (5.47) in the remarks to (5.88) and
(5.89). The k-step prediction together with its error are obtained in (5.93),
(5.94) and (5.95).

Assuming stationarity of the stochastic process (Xt), a linear prediction
is formulated in (5.87), using (2.62) and (5.8) as templates. The prediction
is calculated for time point t from all past variables Xt−1, Xt−2, . . . since
an infinite number of weights πt (unlike in (5.8), the weights have only one
index) is assumed to be in the absolutely convergent sequence of weights, and
therefore X̂t(∞) is written for the prediction.

Let (Xt) be stationary with µX = 0 and the sequence of weights
(πt) absolutely convergent. Then:

1. X̂t(∞) = π1Xt−1 + π2Xt−2 + π3Xt−3 + . . . is the
linear forward prediction for Xt, given Xt−1, Xt−2, . . .

2. Xt − X̂t(∞) = êt(∞) is the prediction error
3. PVarX̂t(∞) = E

((
êt(∞)

)2) = E
((
Xt − X̂t(∞)

)2) is
required to be minimal to arrive at an optimal estimation.

(5.87)

From (5.87), infinitely many optimality conditions with infinite linear combi-
nations π1Xt−1 + π2Xt−2 + π3Xt−3 + . . . are obtained. These sums converge
since (πt) absolutely converges. Thus, as (5.10) is calculated from (5.9), the
equations in (5.88) are calculated from the optimality conditions pertaining
to (5.87).

cX(1) = π1cX(0) + π2cX(1) + π3cX(2) + . . .
cX(2) = π1cX(1) + π2cX(0) + π3cX(1) + . . .
cX(3) = π1cX(2) + π2cX(1) + π3cX(0) + . . .

. . .
cX(k) = π1cX(k − 1) + π2cX(k − 2) + π3cX(k − 3) + . . .
cX(k + 1) = π1cX(k) + π2cX(k − 1) + π3cX(k − 2) + . . .

. . .

(5.88)

The system (5.88) contains infinitely many equations with infinite linear com-
binations of covariances on the right sides. The linear combinations converge
since the sequence (πt) is assumed to converge absolutely in (5.87).
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Proceeding as demonstrated in (5.4) and (5.5), but by substituting π-
weights for a-weights, the Yule-Walker equations for lag k pertaining to an
AR[∞] model are obtained in (5.89).

cX(1) = π1kcX(0) + π2kcX(1) + . . . + πkkcX(k − 1)
cX(2) = π1kcX(1) + π2kcX(0) + . . . + πkkcX(k − 2)

. . .
cX(k) = π1kcX(k − 1) + π2kcX(k − 2) + . . . + πkkcX(0)

(5.89)

The equations in (5.89) above are identical with those equations in the portion
of the system (5.88), being confined by row k and column k on the right side
and assuming that the weights are written with only one index.

Continuing to derive the Yule-Walker equations pertaining to an AR[∞]
model for lags k+1, k+2, k+3, . . ., the system (5.88) is reconstructed, and it
is thus shown that the weights π1, π2, . . . , in the AR[∞] representation of an
ARMA[p,q] model are also the weights of an optimal linear prediction X̂t(∞)
for Xt calculated from Xt−1, Xt−2, . . .. The prediction error êt(∞) is not
correlated with the random variables in the prediction, i.e., E

(
êt(∞)Xt−j

)
=

0 for j = 1, 2, 3, . . .. This result follows from the infinite linear combinations
in the optimality conditions and (2.79).

When comparing E
(
êt(∞)Xt−j

)
= 0, j = 1, 2, 3, . . ., obtained above with

Cov(Wt, Xt−j) = E(WtXt−j) = 0, j = 1, 2, 3, . . . as implied by the MA[∞]
representation (5.38) of the ARMA[p, q] model, it is concluded that the pre-
diction error êt(∞) is reconcilable with the causality of the ARMA[p, q] model
which requires that the innovation at time point t is not correlated with the
past variables in the process. A further comparison of the AR[∞] representa-
tion of the ARMA[p,q] model, Xt − π1Xt−1 − π2Xt−2 − π3Xt−3 − . . . = Wt,
with the prediction (5.87), shows that the prediction error is the innovation
at time point t, êt(∞) = Wt, and the mean square prediction error is the
variance of the innovations, PVarX̂t(∞) = σ2

W .
(5.87) defines the prediction for time point t starting at t − 1. Now, the

start time of the prediction is displaced to time point t and the process is
predicted for t + 1 to obtain a one-step prediction for t + 1. In this one-
step prediction, (i) the weights π1, π2, . . . , in the AR[∞] representation of an
ARMA[p, q] model are the weights of an optimal linear prediction X̂t+1(∞)
for Xt+1, calculated from Xt, Xt−1, Xt−2, . . ., (ii) the prediction error is the
innovation at time point t + 1, and (iii) the mean square prediction error is
the variance of the innovations. In a one-step prediction for t+2, X̂t+2(∞) =
π1Xt+1+π2Xt+π3Xt−1+ . . ., êt+2(∞) = Wt+2 and PVarX̂t+2(∞) = σ2

W are
arrived at. Thus, the errors

(
êt+1+j(∞)

)
in a sequence of one-step predictions(

X̂t+1+j(∞)
)

for
(
Xt+1+j

)
, j = 0, 1, 2, 3, . . ., are a white noise process.

The results obtained above are summarised in (5.65).
The error and the mean square error of a k-step prediction in (5.67) and

(5.68) are obtained from the MA[∞] representation (5.38) of the ARMA[p, q]
model variable at time point t+ k (remember: ψ0 = 1) in (5.90).
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Xt+k =
∞∑

u=0

ψuWt+k−u (5.90)

X̂t+k(∞) =
k−1∑
u=0

ψuWt+k−u +
∞∑

u=k

ψuWt+k−u (5.91)

=
k−1∑
u=0

ψuEWt+k−u +
∞∑

u=k

ψuWt+k−u (5.92)

=
∞∑

u=k

ψuWt+k−u (5.93)

êt+k(∞) = Xt+k − X̂t+k(∞) =
k−1∑
u=0

ψuWt+k−u (5.94)

PVarX̂t+k(∞) = σ2
W

k−1∑
u=0

ψ2
u (5.95)

In (5.91), the prediction for a future time point t + k, starting from the
present time point t, X̂t+k(∞), is the sum of two sums: (i) the sum of the
weighted future innovations at t+k, . . ., t+1, and (ii) the sum of the present
innovation at t and the past innovations at t−1, t−2, . . .. This linear combi-
nation of the ψ-weights and the innovations is shown to be, in Problem 5.20,
an optimal linear prediction for Xt+k. Substituting the expectations for the
future innovations Wt+1, . . ., Wt+k, (5.92) is arrived at. How can this step be
justified, the innovations not being observable either in the past or present
nor in the future? In an application, i.e., when calculating X̂t+k(∞) with an
estimated model,

1. the present innovationWt and past innovationsWt−1, . . ., can be replaced
by estimates for the residuals of the estimated model as defined in (5.62)
and

2. the innovations in the future, Wt+1, . . ., Wt+k, cannot be estimated since
the innovations are non-correlated:Wt+1, . . .,Wt+k, are replaced by their
expectations, being optimal predictions as shown in (2.83).

Since the expectations of the innovations are, as required in (5.36) identically
zero, (5.93) is obtained. The error and the mean square error of the k-step
prediction in (5.94) and (5.95) immediately follow from (5.93).

5.6.4 Predictions Derived from the Difference Equation of an
ARMA[p, q] Model

An optimal prediction is calculated, using (2.82), as a conditional expecta-
tion from the conditional probability density of the random variable to be
predicted, given the observations. The conditional expectation can be used as



5.6 Supplements 321

optimal prediction only for special cases because the conditional probability
density is calculated from the joint probability density of the random vari-
ables X1, . . . , XN which is usually very difficult to obtain. When these den-
sities are not available, however, a conditional expectation can be calculated
(for special cases) using the same formulae for calculating the expectations of
random variables as proposed in (1.15) and (1.16), as these formulae also ap-
ply for conditional expectations. Using these formulae, the optimal one-step
prediction (5.96) of an ARMA[p, q] model (Xt) is derived below.

X̂t+1(XN,t) = E
(
Xt+1|XN,t

)
(5.96)

=
p∑

i=1

aiE
(
Xt+1−i|XN,t

)
(5.97)

+E
(
Wt+1|XN,t

)
(5.98)

−
q∑

j=1

bjE
(
Wt+1−j |XN,t

)
(5.99)

To arrive at (5.97), (5.98) and (5.99), we start by writing the definition (i.e.,
the difference equation) of the ARMA[p, q] model in (5.36) for time point t+1:
Xt+1 =

∑p
i=1 aiXt+1−i +Wt+1−

∑q
j=1 bjWt+1−j , assume that the prediction

is calculated from the N observed values (xt, xt−1, . . . , xt−N+1) = xN,t of the
random variables (Xt, Xt−1, . . . , Xt−N+1) = XN,t, and then write the one-
step prediction X̂t+1(XN,t) as conditional expectation in (5.96).

Under the assumption that the coefficients in the ARMA[p, q] model are
known, X̂t+1(XN,t) becomes the sum of three conditional expections that are
calculated as follows:

1.
∑p

i=1 aiE
(
Xt+1−i|XN,t

)
in (5.97) is obtained using the optimality of the

conditional expectation as proposed in (2.82) because the conditional
expectation of an observed random variable is the observed value. For
this prediction, the prediction error and thus the mean square prediction
error are identically zero, as argued in the remarks to (4.37).

2. E
(
Wt+1|XN,t

)
in (5.98) follows since Wt+1 is not correlated with Xt,

Xt−1, . . ., the model being causal: E
(
Wt+1|XN,t

)
= EWt+1 = µW = 0.

3.
∑q

j=1 bjE
(
Wt+1−j |XN,t

)
in (5.99) contains the conditional expectations

in the first column of the table below which can be calculated using the
random variables in the second column (and additional random variables
further back in the past):

b1E
(
Wt|(Xt, Xt−1, . . . , Xt−N+1)

)
Wt and Xt

b1E
(
Wt|(Xt, Xt−1, . . . , Xt−N+1)

)
Wt−1 and Xt, Xt−1

bqE
(
Wt+1−q|(Xt, Xt−1, . . . , Xt−N+1)

)
Wt+1−q and Xt, . . . , Xt+1−q

The random variables in the pairs (Wt, Xt), (Wt−1, Xt), (Wt−1, Xt−1), . . .
are dependent, Xt being, in (5.38), a function of theWt, Wt−1, Wt−2, . . .,
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and thus a calculation of the conditional expectations in (5.99) becomes
difficult.

This obstacle can, however, be circumvented by substituting observed in-
novations wt, wt−1, . . ., wt+1−q for the conditional expectations. The wt,
wt−1, . . ., wt+1−q are available in simulation experiments; in applications,
however, they are not available. This second obstacle is circumvented by
substituting estimates of the innovations Ŵt(XN,t) = Xt − X̂t(XN,t),
Ŵt−1(XN,t) = Xt−1 − X̂t−1(XN,t), . . . in the prediction. Hence, the predic-
tion becomes recursive, and a non-finite past (Xt, Xt−1, Xt−2, . . .) = X−∞,t

becomes a prerequisite.
Consequently, the one-step prediction in (5.69) and k-step prediction

in (5.70) become recursions substituting, as required in (5.97), (5.98) and
(5.99), (i) the future conditional expectations of the model variables with
their predictions, (ii) the future conditional expectations of the innovations
with µW = 0 (the expectations in the model (5.36)), (iii) the past conditional
expectations of the model variables with the observed values and, (iv) the
past conditional expectations of the innovations with the empirical residuals
of the model calculated using (5.62).

5.7 Problems

5.1. Select an AR[1] model for the measurements of the wind speeds in the
turbulent atmospheric flow in Fig. 2.1 with their empirical correlation func-
tion in Fig. 2.3. Then calculate, using (5.5) and (5.6), the Yule-Walker esti-
mate for the coefficient in this model. Plot a simulation obtained from the
estimated model together with its empirical correlation function and compare
with the plots in Fig. 2.11.

5.2. Calculate the mean square prediction error PVarX̂(v)
t (k) in (5.11).

PVarX̂(v)
t (k) = E

((
Xt − X̂(v)

t (k)
)2)

= E
((
Xt − (a1kXt−1 + a2kXt−2 + . . .+ akkXt−k)

)2)
= E

((
ê
(v)
t (k)

(
Xt − (a1kXt−1 + a2kXt−2 + . . .+ akkXt−k)

))
= E

(
ê
(v)
t (k)Xt

)− a1kE
(
ê
(v)
t (k)Xt−1

)− . . .− akkE
(
ê
(v)
t (k)Xt−k

)
= E

(
ê
(v)
t (k)Xt

)
(5.100)

= . . .

(5.100) follows from the optimality conditions (5.9). Compare with the opti-
mality conditions (2.74).
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5.3. From (5.8), (5.11) and (5.12)

PVarX(v)
t (k) = E

((
Xt − X̂(v)

t (k)
)2)

= cX(0) − (
a1kcX(1) + a2kcX(2) + . . .+ akkcX(k)

)
is obtained, from which the optimality conditions (5.9) can be derived.

5.4. Prove (5.14,1,2). In a first step, substitute definitions (5.72) and (5.73)
for X̂(r)

t (k) and ê(r)
t (k), as well as definition (5.8,1) for X̂(v)

t (k) in recursion
(5.78), to derive

k∑
j=1

ajkXt−j =
k−1∑
j=1

aj,k−1Xt−j + θk

(
Xt−k −

k∑
j=1

aj,k−1Xt−k+j

)
Evaluating this sum in the second step,

a1kXt−1 a1,k−1Xt−1 −θka1,k−1Xt−k+1

+ + +
a2kXt−2 a2,k−1Xt−2 −θka2,k−1Xt−k+2

+ + +
...

...
...

+ + +
ak−1,kXt−k+1 ak−1,k−1Xt−k+1 −θkak−1,k−1Xt−1

+
akkXt−k θkXt−k

∑k
j=1 ajkXt−j=

∑k−1
j=1 aj,k−1Xt−j+θkXt−k−θk

∑k
j=1 aj,k−1Xt−k+j

is arrived at. Derive (5.14,1,2) by evaluating the equations for Xt−j , j =
1, . . . , k.

5.5. From (5.72), (5.73) and (5.74) as well as (5.11) and (5.12), the first =
in (5.14,3) is obtained. Prove the second = by multiplying (5.78) with Xt,

ê
(v)
t (k)Xt = ê

(v)
t (k − 1)Xt − θkê(r)

t−k(k − 1)Xt

taking the expectations, and, using (5.77) to arrive at

PVar(k) = PVar(k − 1) − θkE
(
ê
(r)
t−k(k − 1)Xt

)
.

Compare this result with definition (5.72).

5.6. Show that the Yule-Walker estimates â12 and â22 as obtained in the
remarks to (5.14) are identical with an empirical version of (2.53).
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5.7. Calculate the differences of the yearly values of shortwave incoming radi-
ation at Hohenpeissenberg station in Fig. 3.1, and then plot these differences
together with their empirical correlation and partial correlation functions.
Compare them with the plots in Figs. 5.1 and 5.3.

5.8. Show that ãkk as proposed in (5.21,2) minimises the sum in (5.21,1).
Substitute the forward and backward predictions in (5.21,1) with the expres-
sions obtained in (5.19) and (5.20)

N∑
t=k+1

((
ẽ
(v)
t (k)

)2

+
(
ẽ
(r)
t−k(k)

)2
)

N∑
t=k+1

((
ẽ
(v)
t (k − 1) − ãkkẽ

(r)
t−k(k − 1)

)2

+
(
ẽ
(r)
t−k(k − 1) − ãkkẽ

(v)
t (k − 1)

)2

N∑
t=k+1

((
e1 − ãkke2

)2 +
(
e2 − ãkke1

)2)
. . .

and then evaluate

d
dakk

(
N∑

t=k+1

(
e21 + e22

)− 4ãkk

N∑
t=k+1

(
e1e2

)
+ ã2

kk

N∑
t=k+1

(
e21 + e22

))
= 0.

5.9.
(
Xt,X

(↑)
p

)
is the matrix in (5.23). What is the difference between(

(Xt,X
(↑)
p )

)T ((Xt,X
(↑)
p )

)
= C

(↑)
X and ĈX(p) in the empirical Yule-Walker

equations (5.7)? (Xt,Xp) is the matrix in the remarks to (5.23). What is
the difference between (Xt,Xp) and ĈX(p)?

5.10. Estimate an AR[2] model for the de-meaned horizontal wind speeds
as plotted in Fig. 5.1 using regression techniques and forward displacements
of the time series. Compare your results with the regression estimates in
Table 5.1 obtained with backward displacements of the time series. Repeat
this investigation for the de-meaned time series of the amount of a product
formed during a chemical reaction as plotted in Fig. 5.3.

5.11. Simulate a few realisations using
#white noise with 0 expectation and unit variance

a1 <- 2.7607 #AR[4] coefficients

a2 <- -3.8200

a3 <- 2.6535

a4 <- -0.9238

arsim <- arima.sim(model=list(ar=c(a1,a2,a3,a4)),n=20000,sd=1.0)

#
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b1 <- 2.7607 #MA[4] model

b2 <- -3.8200 #change signs of moving

b3 <- 2.6535 #average coefficients as

b4 <- -0.9238 #demonstrated in Sect. 5.4.3

masim <- arima.sim(model=list(ma=-c(b1,b2,b3,b4)),n=40000,sd=1.0)

and plot the empirical correlation and partial correlation functions calculated
from the simulated realisations.

Then simulate an invertible MA[2] process. Choose the weights (b1, b2),
after substituting b1 and b2 for a1 and a2 in Fig. 2.17, from different regions
in the (b1, b2)-plane. Calculate the empirical correlation and partial correla-
tion functions from the simulated realisations and compare with the results
obtained in Problem 2.21.

5.12. Please multiply the left side of the following equation

(ψ0 + ψ1z + ψ2z
2 + . . .)(1 − a1z − . . .− apz

p)
= (1 − b1z − . . .− bqzq − 0 × zq+1 − . . .) (5.101)

as follows

ψ0 +ψ1z +ψ2z
2 +ψ3z

3 + . . . +ψpz
p +ψp+1z

p+1 + . . .
−ψ0a1z −ψ1a1z

2 −ψ2a1z
3 + . . . −ψp−1a1z

p −ψpa1z
p+1 − . . .

. . .
−ψ0apz

p −ψ1apz
p+1 − . . .

and compare, for identical powers of z, the sums on the left side with the
coefficients on the right side of (5.101). Performing this, (5.41) and (5.42) are
arrived at.

5.13. Apply arima.sim() to simulate a stationary and invertible ARMA[1,1]
model. Choose the weights a and b such that the pairs (a, b) are in the quad-
rants of the region −1 < a < 1 and −1 < b < 1 for each pair (a − b) > 0
or (a − b) < 0. From the simulated realisations, now calculate and plot the
empirical correlation and partial correlation functions.

5.14. Estimate an ARIMA[p, d, q] model for the residuals, as plotted in
Fig. 5.7, of a first order linear model for the trend in Basel yearly temperature
values plotted in Fig. 2.13.

5.15. Estimate a seasonal ARIMA[0,1,1]12 model for the logarithms of the
MLO atmospheric CO2 monthly values, plotted below in Fig. 5.9.

5.16. Estimate candidate models for the SO index given in Table 5.3, using all
available data (plot (a) in Fig. 5.14). Compare your results with the estimates
in Table 5.3 obtained from the contiguous SO index monthly values (plot (b)
in Fig. 5.14).
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5.17. Calculate the empirical residuals of the ARMA[1,1] model in Table 5.3
fitted to the SO index, using a calculator and the recursion (5.62). (The result
is given in Table 5.4). For time points later than July 1933, your results come
closer and closer to the residuals calculated by arima(). Why?

5.18. Is there a model in the set of candidate models given in Table 5.3 that
is completely in agreement with (5.63)?

5.19. Using arima(), estimate

1. AR[1] and AR[2] models for the wind speeds plotted in Fig. 2.1
2. an AR[2] model for the product of a chemical reaction plotted in Fig. 5.3
3. an ARIMA[0,1,1] model for the yearly values in the Basel temperature

series plotted in Fig. 2.13, and
4. an ARIMA[2,0,0]×[0,1,1]12 for the logarithms of the monthly CO2 con-

centrations plotted in Fig. 5.9 (b).

Then calculate and plot, for each estimated model, the diagnostics as pro-
posed in (5.60), (5.61) and (5.63).

5.20. Show that linear combinations constructed from the innovations of an
ARMA[p, q] process and the ψ-weights in its MA[∞] representation (5.38),
X̂t+1 = Wt+1 − ψ1Wt − ψ2Wt−1 − . . ., are optimal linear predictions for
Xt+1, given the innovations. Obtain the optimality conditions by calculating
the partial derivatives for ψj , j = 1, 2, 3, . . .:

d
dψj

E
((
Xt+1 − (Wt+1 − ψ1Wt − ψ2Wt−1 − . . .)

)2) = 0
. . .

2ψjσ
2
W = 0

5.21. Using (5.65) and (5.66), predict the SO index for three months following
the month with the last observation, i.e., for February, March and April 1996,
under the assumption that the ARMA[1,1] model estimated in Sect. 5.4.3 is
the true model, i.e., that σ2

W = 0.5997, a = 0.8829 and b = 0.4649 as well as
µX = −0.1411.

Calculate the π-weights 0.4180, 0.1943, 0.0903, 0.0420, 0.0195, 0.0091,
0.0042, 0.0020, . . . in the AR[∞] representation (5.47) of the model by con-
volving (1,−0.4649)−1 ∗ (1,−0.8829) = (1,−π1,−π2, . . .), and then the ψ
weights −0.4180, −0.3690, −0.3258, −0.2876, . . . in the MA[∞] represen-
tation (5.38) of the model by convolving (1,−0.8829)−1 ∗ (1,−0.4649) =
(1,−ψ1,−ψ2, . . .). The SO index observations in the years 1995 and 1996
follow:

year Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.
1995 −0.6 −0.5 0.2 −1.1 −0.7 −0.2 0.3 −0.1 0.3 −0.2 0.0 −0.9
1996 1.1

Multiply four and then eight π-weights with the de-meaned observations to
obtain the de-meaned predictions. Compare with the de-meaned predictions
as calculated in Table 5.5.
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5.22. Using (5.65) and (5.66), predict the differences Xt = Yt − Yt−1 of the
Basel temperature yearly means. Assume that the estimates obtained in the
remarks to (5.57) and Fig. 5.5 are the true parameters σ2

W = 0.469 and
b = 0.881 of an MA[1] model for (Xt), and estimate X1958 and X1959. From
these, calculate estimates for Y1958 and Y1959. The Basel yearly temperature
values for the years 1947 through to 1957 follow:
year 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957
(Yt), 0C 10.57 9.98 10.48 10.02 9.70 9.78 9.63 9.01 9.17 7.92 9.51
(Xt), 0C 0.98 −0.59 0.5 −0.46 −0.32 0.08 −0.15 0.62 0.16 −1.25 1.59

5.23. As Problem 5.21, but using (5.70).

5.24. As Problem 5.22, but using (5.70).

5.25. Predict the SO index for February, March and April 1996 using one
of the autoregressive models of higher order in Table 5.3 and assuming that
the estimated model is the true model. If the residuals of the model are not
correlated then, as argued in Sect. 5.4.5, the model is an alternative to a very
parsimonious ARMA[1,1] or AR[4] model. Use arima() and predict(). Com-
pare your predictions with those in Table 5.5 calculated with an ARMA[1,1]
model.

5.26. The predictions in Problem 5.25 are calculated with estimated param-
eters and thus are afflicted with additional uncertainties. Try to assess these
uncertainties qualitatively and compare with the additional uncertainties ob-
tained in Table 5.6 for the predictions calculated using the ARMA[1, 1] model.

5.27. Calculate, using predict() and the model estimated in Problem 5.15,
one-, two-, three- and four-step predictions for the logarithms of the monthly
CO2 concentrations in Fig. 5.9 (b).

5.28. The definitions of the AR[p], MA[q] and ARMA[p, q] models in (5.2),
(5.28) and (5.36) as well as the definition of the ARIMA[p, d, q] model in (5.55)
consist of two parts: a formula with the model coefficients (the “deterministic”
part) and the properties of the innovations (the “stochastic” part). These two
parts usually occur in statistical models. Give examples of such models and
compare their “stochastic” parts with the properties of the innovations.

5.29. The duration of extreme El Niño events is usually longer than one
month. For example, the last events (August 1982 through to March 1983,
and December 1991 through to March 1992) shown in Fig. 5.14 are captured
by the AR[4] and ARMA[1,1] models in Table 5.3 and thus are no longer
visible in the residuals of these models as plotted above, in Figs. 5.15, 5.16
and 5.17. In these plots, however, three extremely small values are visible.
Could these be outliers due to gross measurement errors? Compare the SO
index values with these residuals (the SO index time series downloaded from
the address in [86] is used in Sects. 5.4.3 and 5.4.4) with the values in the SO
index time series which can be obtained from the addresses given in [115].
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5.30. Apply (5.64) to the estimated AR[4] candidate model in Table 5.3.

5.31. The very parsimonious ARIMA[2,0,0]×[0,1,1]12 model fits, as can be
concluded from Fig. 5.13, the logarithms of the monthly CO2 concentrations
in Fig. 5.9 (b). These concentrations are the result of the transport of carbon,
in its many forms, between many reservoirs (atmosphere, surface water of the
oceans, deep water of the oceans, biomass, fossil oil and coal reservoirs, as well
as other rocks containing carbon) [71]. One property of the ARIMA[2, 0, 0]×
[0, 1, 1]12 model pertains to one of these carbon cycles.



6 Fourier Transforms of Deterministic
Functions

A variable (e.g., the temperature at a point on the earth’s surface) is de-
terministic on condition that (i) it can be incorporated in a deterministic
model (e.g., a general circulation model), and (ii) no probabilistic model ex-
ists (examples are given in Chaps. 1 through to 5, and in Chaps. 7, 9 and 10),
that better fits the data or allows for better predictions. Once a deterministic
variable is observed, a deterministic function is obtained.

Can a deterministic function f(t) be represented using a linear combina-
tion of trigonometric functions? A linear combination of trigonometric func-
tions is a sum of trigonometric oscillations, defined by their periods or fre-
quencies and by their coefficients. If such a linear combination exists then it
is called a Fourier representation or a Fourier transform of f(t), and the co-
efficients of the trigonometric oscillations are called Fourier coefficients. The
Fourier coefficients and also the squares of their absolute values can be plot-
ted against the frequencies of the oscillations. The squared absolute values of
the Fourier coefficients as function of the frequencies are called spectrum. A
spectrum is usually the key to an in-depth analysis of the observed variable.

In Sect. 6.1, a function is reconstructed using a linear combination of
trigonometric values with coefficients that are easily obtained provided that
the trigonometric functions are orthogonal, i.e., are elements of the sets de-
fined in Sect. 6.2. Fourier transforms are introduced in Sect. 6.3 and the
spectrum in Sect. 6.4.

Usually, in applications, a real-valued function f(t) with real argument t
is observed at discrete time points to obtain a sequence (gt∆t), ∆t being the
sampling interval, in a finite interval for N time points. These restrictions
imposed by the observation can produce distortions in the Fourier transform
calculated from (gt∆t) as compared with the Fourier transform of f(t), i.e.,
the Fourier transform that could be obtained assuming that f(t) is known
for all real t. These distortions are dealt with in Sects. 6.5, 6.6 and 6.7.

Convolution, as introduced in Sect. 2.4, is revisited in Sect. 6.8.
The last two sections contain, as usual, the supplements and the problems.
Fourier transforms are dealt with in [18] and [32]. In [18], however, the

examples stem from Electrical Engineering.
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6.1 Adding Trigonometric Functions

In this section, the basic idea behind Fourier theory is demonstrated, i.e.,
that a real- or complex-valued deterministic function f(t), or sequence (ft),
can be represented as a linear combination of a set of trigonometric oscilla-
tions, called a Fourier representation. The trigonometric oscillations together
with their Fourier coefficients result from a Fourier analysis, and the Fourier
representation is obtained in a Fourier synthesis. The pertaining proposi-
tions will be given in Sects. 6.2 and 6.3. As a first example, a periodic se-
quence is represented as a linear combination of trigonometric oscillations
with complex-valued coefficients that are easily obtained using R function
fft(). For each oscillation thus obtained, the squared absolute value of its
coefficient is plotted against its frequency to arrive at the spectrum of the
sequence. In the spectrum, periodicities become visible that cannot be easily
spotted in a plot of the sequence.

6.1.1 Representation of a Sequence using Trigonometric Functions

A periodic function g(x) as defined in (6.1)

A real-valued function g(x) is called periodic with period p,
on condition that g(x) = g(x+ np), x, p real, n integer. (6.1)

is known for all x provided that it is known in an arbitrary interval of length
p, p the period of g(x). Prominent examples are the trigonometric functions:
sin(x) is periodic with period 2π since . . . = sin(x − 4π) = sin(x − 2π) =
sin(x) = sin(x + 2π) = sin(x + 4π) = . . ., whereas sin(2πx) is periodic with
period 1 since sin(2πx) = sin(2π(x)) = sin(2π(x + 1)) = sin(2π(x − 1)) =
sin(2π(x+ 2)) = . . ..

As a second example, the sawtooth-shaped sequence (ft) = (gt)+(ht), as
shown in Fig. 6.1 (a), is generated using the following R expressions

Vlu <- (4:0)/5 #lu: left below

Vru <- (0:4)/5 #ru: right below

Vlo <- (9:1) #lo: left above

Vro <- (1:9) #ro: right above

V <- c(Vlu,Vru) #as in the remarks

V <- c(V,Vro) #to Fig. 2.16

V <- c(V,Vlo) #V has now 28 values

V5 <- rep(V,5) #sequence g with period 28

v <- c(1.0,0.5,0.0,0.5,1.0) #v has 5 values

v28 <- rep(v,28) #sequence h with period 5

saw <- V5 + v28 #sequence f with periods 28 and 5

t <- 0:(length(saw)-1) #time from 0 through to 139

which do not contain a random number generator, and, consequently, se-
quence (ft) is deterministic and periodic with period 140. R vector t con-
tains time points chosen from 0 through to 139 due to the reasons given in
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Sect. 6.2.3. (ft) is the sum of two periodic sequences (gt) and (ht) with peri-
ods pg = 28 and ph = 5 time units. pg is readily seen in Fig. 6.1 (a), whereas
ph can be detected only when the plot is analysed in detail.

Can the sawtooth-shaped sequence (ft) be represented using trigonomet-
ric functions? If a Fourier representation of (ft) exists then, hopefully, the
periodic properties of (ft) become more clearly visible in a plot constructed
from the Fourier coefficients than in a plot of (ft).

In R, Fourier coefficients are calculated using a time-saving algorithm
which is implemented in R function fft(). fft() calculates a discrete Fourier
transform as defined in (6.22,4). Using fft(), the Fourier coefficients are
obtained in a complex-valued R vector. Hence, some elementary properties
of complex numbers are refreshed in (6.2).

Let z = a+ ib be in the plain of complex numbers. Then:
1. a = re(z), is called the real part z
2. b = im(z), the imaginary part of z
3. z = a− ib, the complex-conjugate to z,
4. |z| = mod(z) =

√
a2 + b2, the absolute value or modulus of z,

5. ϕ = arg(z), tan(ϕ) = b/a, the phase of z,
6. z = |z|(cos(ϕ) + i sin(ϕ)

)
= |z|eiϕ, a = |z| cos(ϕ), b = |z| sin(ϕ),

where mod(z), arg(z), re(z), im(z) are real numbers.

(6.2)

The sawtooth-shaped sequence in Fig. 6.1 (a) is Fourier analysed using
the following R expressions. (In a first reading, please ignore the references
to Sect. 6.3).

x <- saw #sawtooth-shaped sequence Fig. 6.1 (a)

N <- length(x)

#discrete Fourier transform as in (6.22,4), xfft being

xfft <- fft(x, inverse=T) #a complex R vector

xtscaled <- (xfft/N)*2 #scale as in (6.21),

xtscaled[1] <- xtscaled[1]/2 #(6.22) and (6.25)

xtscaled[N/2+1] <- xtscaled[N/2+1]/2 #for even N only

#the complex coefficients of (N/2+1) trigonometric

#oscillations are in the first half of xtscaled

xt <- xtscaled[1:(N/2+1)]

sk <- (0:(N/2))/N #the frequencies sk of the oscillations

A <- Re(xt) #cos()-coefficients Ak of the oscillations

B <- Im(xt) #sin()-coefficients Bk of the oscillations

absval <- Mod(xt) #moduli of the complex xt[1], ...

phase <- Arg(xt) #phase of the complex xt[1], ...

#A, B, absval qnd phase are now real-valued R vectors

This Fourier analysis results in the Fourier coefficientsAk and Bk ofN/2+1 =
71 trigonometric oscillations with frequencies sk = k/N , k = 0, 1, . . . , 70 (in
sk with indices from 1 through to 71) since there are N = 140 values in
the sequence. The number of the trigonometric oscillations is related to N
because a trigonometric oscillation of a given frequency is determined by two



332 6 Fourier Transforms of Deterministic Functions

(a)
sa

w
to

ot
h

0 20 40 60 80 100 120 140

0
2

4
6

8
10

•
•
••

••••
•
••

•
•

•

•

•
•
•

•
•

•

•

•
•
•

•

•

••
••

•
•
•
••••

•

•

•
•
•

•

•

•
•
•
•
•

•

•

•
•
•

•
•
••

••
••

•
•••

•

•

•

•
•
•

•

••

•

•
•
•

•

•

•
•••

•
••

••••
•
•

•
•
•

•

•

•
•
•
•
•

•

•

•
•
•

•

•
••

••
•
•
•
••••

•

•

•
•
•

•

•

•
•

•
•
•

•

•

•
•
•

(b)

th
re

e 
tr

ig
on

om
et

ric
 fu

nc
tio

ns

5/
14

0
10

/1
40

65
/1

40

0 20 40 60 80 100 120 140

-4
-2

0
2

4

(c)

sa
w

 to
ot

h

0 10 20 30 40 50

0
2

4
6

8
10

•
•
• •• • • •

•
• •

•
•

•

•

•
•
•

•
•

•

•

•
•
•

•

•

• • • •
•
•
•
•• • •

•

•

•
•
•

•

•

•
•
•
•
•

•

•

•

90 100 110 120 130 140

•
••• •

•
•

•
•
•

•

•

•
•
•
•
•

•

•

•
•
•

•

•
• •• •

•
•
•
• •• •

•

•

•
•
•

•

•

•
•

•
•
•

•

•

•
•
•

time

Fig. 6.1. A sawtooth-shaped sequence (plot a) is reconstructed by means of adding
trigonometric functions (those with frequencies 5/140, 10/140 and 65/140 are shown
in plot (b)) to obtain its Fourier representation in plot (c).
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points. The first oscillation has frequency s0 = 0 and is thus a constant A0,
A0 being the mean of the sawtooth-shaped sequence.

Using Ak and Bk in the following R expressions
res <- 10 #resolution of time

hrlen <- res*N #time 0 at index 1, time 1 at index 11, etc.

timehr <- (0:(hrlen-1))/res #vector for the time

xhr <- 1:hrlen #vector for an oscillation

#here the oscillation with frequency 5/140 = 0.0375 in Fig. 6.1 (b)

k <- 6

xhr <- (rep(A[k],hrlen))*cos(2*pi*sk[k]*timehr) +

(rep(B[k],hrlen))*sin(2*pi*sk[k]*timehr)

trigonometric oscillations are obtained, three of which are plotted in Fig. 6.1
(b), i.e., those with frequencies s5 = 5/140 = 0.0357, s10 = 10/140 = 0.0714
and s65 = 65/140 = 0.4643 and therefore with periods of 28, 14 and 2.1538
time units. These oscillations are calculated and plotted for the time points
0.0, 0.1, 0.2, . . . , 0.9, 1.0, 1.1, . . . , 139.0, 139.1, . . . , 139.9.

The Fourier representation of the sawtooth-shaped sequence is arrived at
by adding the oscillations obtained above

#oscillation no. 1 has frequency zero and thus is constant A0

xhracc <- rep(A[1], hrlen) #vector for summation (accumulator)

for(k in (2:(N/2)+1) ) { #add oscillations

xhr <- (rep(A[k],hrlen))*cos(2*pi*sk[k]*timehr) +

(rep(B[k],hrlen))*sin(2*pi*sk[k]*timehr)

xhracc <- xhracc + xhr }

and then plotting the sum as a solid line in Fig. 6.1 (c), where the sawtooth-
shaped sequence is plotted with symbol •, as above, in plot (a). From plot (c)
in Fig. 6.1 it is obvious that the sequence is reconstructed, for t = 0, . . . , 139,
from the trigonometric oscillations, as required in (6.22,3).

When all trigonometric oscillations are plotted (only those with frequen-
cies 5/140, 10/140 and 65/140 are shown in Fig. 6.1 (b), as more than three
oscillations cannot be distinguished clearly when plotted), it becomes obvious
that (i) most oscillations are negligibly small in their absolute values, i.e., in
|Fk| = (A2

k + B2
k)−1/2, (ii) a few have small |Fk| and (iii) two or three have

large |Fk|.
On the one hand, an oscillation is found to be not negligibly small in its

absolute value on condition that its period is “somehow reconcilable” with the
period of a fluctuation in the sawtooth-shaped sequence (ft). For example,
the absolute value of the oscillation with frequency 5/140 is quite large as
can be seen in Fig. 6.1 (b). The period of this oscillation is 28 time units,
and thus identical with period pg of sequence (gt) which is added to sequence
(ht) to obtain (ft) as plotted in Fig. 6.1 (a). Like this oscillation, those with
frequencies 10/140 (with period 14 = 28/2) and 65/140 (with period 2.1538
= 28/13) have absolute values that are not negligible, even though there
are no fluctuations with periods 14 or 2.1538 in (ft). On the other hand,
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oscillations with periods not being “somehow reconcilable” with the period
of a fluctuation in (ft) are found to be negligibly small or identically zero in
their absolute values. For example, the oscillation with frequency 1/140 (not
plotted in Fig. 6.1 (a)) has a zero amplitude.

This behaviour is plausible since the oscillations belong to the Fourier
representation of (ft). The meaning of “somehow reconcilable” will be more
precisely described in the remarks to Fig. 6.2.

Since the periods of the fluctuations in the sawtooth-shaped sequence (ft)
are found by comparing the absolute values of the trigonometric oscillations
in the Fourier representation of (ft), the idea arises to associate the absolute
value |Fk| = (A2

k + B2
k)−1/2 with the frequency sk of each oscillation in a

table, as is demonstrated in Table 6.1. Usually, however, the squared absolute
values |Fk|2 = A2

k + B2
k are plotted against the frequencies sk as shown in

Fig. 6.2 (b). |Fk|2 as function of the sk is called the spectrum of (ft). The
reasons for plotting the squared absolute values of the oscillations and also
the definition of the spectrum are given in Sect. 6.4. In Fig. 6.2 (b), the ratios
of the spectral values |Fk|2 cannot be seen since most |Fk|2 are small. This
obstacle is circumvented by plotting the logarithms of |Fk|2 (if larger than −4
to avoid an overloaded plot) against the frequencies as shown in Fig. 6.2 (a).
When the logarithms are plotted, ratios become differences and therefore, in
Fig. 6.2, the logarithmic plot (a) is preferred to the non-logarithmic plot (b).

It is obvious from Fig. 6.2 and Table 6.1 that the oscillation with frequency
0.0357 (and thus a period of 28 time units) has a large absolute value |Fk|, and
that there are oscillations with spectral values |Fk|2 ≥ 0.05 (log10(0.052) ≈
−2.60) pertaining to frequencies 0.0714, 0.1074, 0.1438, 0.1785 and 0.2857
(all multiples of 0.0357, and thus having periods of 14, 9.33, 7, 5.6 and 3.5
time units). These oscillations are marked with ◦ in Table 6.1 and their sum
as obtained in Problem 6.1 approximates sequence (gt). (gt) is used above to
construct the sawtooth-shaped sequence (ft) = (gt) + (ht) and has a period
of 28 time units. In Fig. 6.2 and Table 6.1, also oscillations with frequencies
0.2 and its twofold 0.4 (and thus with periods of 5 and 2.5 time units) have
large spectral values. These are marked with ∗ in Table 6.1 and their sum
approximates sequence (ht) with period 5 time units used to construct (ft)
above. Remember that the Fourier representation of (ft) in Fig. 6.1 (c) is the
sum of all oscillations.

Hence, when Fig. 6.1 (a) is compared with Fig. 6.2 (a), it becomes obvious
that the periods of the fluctuations in the sawtooth-shaped sequence are more
easily detected in the plot of the spectrum than in the plot of the sequence.

The first trigonometric oscillation in the Fourier representation of a se-
quence with N values (e.g., there are N = 140 values in the sawtooth-shaped
sequence (ft) as plotted in Fig. 6.1 (a)) has frequency s1 = 1/N and period
p1 = N . This oscillation is called fundamental oscillation pertaining to the
sequence and its frequency is called fundamental frequency (pertaining to the
sequence). All further oscillations in the Fourier representation have frequen-



6.1 Adding Trigonometric Functions 335

Table 6.1. Frequencies sk, periods and absolute values |Fk| = (A2
k +B2

k)−1/2 of the
trigonometric oscillations in the Fourier representation of sequence (ft) = (gt)+(ht)
as plotted in Fig. 6.1 (c). Only the values pertaining to oscillations with |Fk|2 ≥ 0.05
are given. They belong to two families with frequencies being multiples of 0.0357
(◦) and 0.2 (∗) (time units)−1.

frequency 0 0.0357 0.0714 0.1074 0.1438 0.1785 0.2000 0.2857 0.4000
period ∞ 28 14 9.33 7 5.6 5 3.5 2.5
absolute value 3.95 4.15 1.01 0.15 0.10 0.23 0.53 0.07 0.08

◦ ◦ ◦ ◦ ◦ ∗ ◦ ∗
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Fig. 6.2. Spectrum of (ft) in Fig. 6.1 (a), i.e., squares of the absolute values of the
trigonometric oscillations in the Fourier representation of (ft) in Fig. 6.1 (c) (on
the right, plot (b)), and their logarithms, if larger than −4 (on the left, plot (a)),
plotted against the frequencies.

cies sk = k/N , k = 2, . . . ,m, as defined in (6.21,1), that are multiples of
the fundamental frequency, i.e., sk = ks1, and thus have periods pk such that
kpk = N . They are therefore also periodic with period N . The frequency sk+1

is called the kth harmonic of the fundamental frequency s1, i.e., s2 is the first
harmonic of s1. For example, the Fourier representation fp(t) of the sawtooth-
shaped sequence (ft), as plotted in Fig. 6.1 (c), is a periodic function with
period N = 140, i.e., . . . = fp(0) = fp(−140) = fp(140) . . . = fp(0+n×140),
n = . . . ,−1, 0, 1, . . .. The periodicity of fp is demonstrated in Fig. 6.3.

In a Fourier representation gp(t) of a sequence (gt), to any trigonomet-
ric oscillation with frequency sk pertain oscillations with harmonic frequen-
cies lsk, l = 2, 3, . . ., that are multiples of sk; however, only those with
lsk ≤ 1/2 can be calculated as shown in Sect. 6.5. These harmonic oscil-
lations are periodic with period 1/sk. This is the reason why a fluctuation of
non-trigonometric shape that is repeated with period 1/sk in the sequence
(gt) under analysis can be represented by the sum of the oscillation with fre-
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Fig. 6.3. The Fourier representation fp(t) of the sawtooth-shaped sequence (ft) as
plotted in Fig. 6.1 (c) is periodic with period of 140 time units. (ft) is plotted for
t = 0, 1, . . . , 139, fp(t) for −140.0,−139.9, . . . through to 279.8, 279.9

quency 1/sk and the pertaining harmonics, as demonstrated in Problem 6.1
using the example sawtooth-shaped sequence (ft) as plotted in Fig. 6.1 (a).
Obviously, on the one hand, a strong (with large amplitudes) fluctuation in
(gt) with period 1/sk induces, in gp(t), a trigonometric oscillation with fre-
quency sk and the pertaining harmonics such that the sum of the squared
absolute values of their coefficients is large. These are the oscillations in gp(t)
having periods being “somehow reconcilable” as argued above, in the remarks
to Fig. 6.1, with periodic fluctuations in (gt), gp(t) being the Fourier represen-
tation of (gt). On the other hand, a weak (with small amplitudes) fluctuation
in (gt) with period 1/sk induces in gp(t) a family of trigonometric oscillations
with frequency sk and its multiples such that the sum of the squared absolute
values of their coefficients is small.

It is demonstrated, above in this section, that the periods of the fluctu-
ations in the sawtooth-shaped sequence (ft) are more easily detected in a
plot of its spectrum |Fk|2 than in a plot of (ft) (the sequence is plotted in
Fig. 6.1 (a), its spectrum in Fig. 6.1 (a)). This is an example of a successful
application of a Fourier analysis for detecting periodic fluctuations “hidden”
in sequence (ft).

Fourier analysis is also able to detect “hidden periodicities” in real data
when the following recipe is applied. (i) Given a sequence of observations
(gt), calculate the coefficients Ak and Bk of the trigonometric oscillations in
the Fourier representation gp(t) of (gt) using R expressions as in the remarks
to Fig. 6.1. (ii) Plot the spectrum of (gt), i.e., the squared absolute values of
the oscillations, |Gk|2 = A2

k +B2
k, against their frequencies sk in logarithmic

scale. (iii) In the spectrum, try to identify sets of large values having frequen-
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Fig. 6.4. Fourier transform (in plots (c) and (d)) of a deterministic sequence (gt)
as shown in plot (a), and its spectrum in plot (b).

cies sk and multiples thereof. Such a set of oscillations can be induced by a
fluctuation with period 1/sk in (gt). However, when this recipe is applied to
observations of a deterministic or a random function, some pitfalls have to
be circumvented using the theory and procedures introduced in this and the
following chapters.

6.1.2 Fouriertransforms: a Preview to Chap. 6

The Fourier representation of the saw-tooth shaped sequence that is success-
fully computed in Sect. 6.1.1 (in the remarks to Fig. 6.1) suggests that a real-
valued deterministic sequence of finite length N given for t = 0, 1, . . . , N − 1
can be represented by adding the mean of the sequence and N/2 trigonomet-
ric oscillations. The N/2 complex coefficients of the oscillations are the result
of a discrete Fourier transform of the sequence. The discrete Fourier trans-
form is defined in (6.22). As a second example, the deterministic real-valued
sequence available in /path/fig64.dat and plotted in Fig. 6.4 (a) is Fourier
transformed to arrive at the complex-valued sequence as plotted in Fig. 6.4
(c) and (d) for positive and negative frequencies. Negative frequencies are
introduced in the remarks to (6.24). Fig. 6.4 also contains the spectrum of
the sequence in plot (b). Obviously, the spectrum is symmetric since it is a
quadratic function, and therefore, it is often plotted only against the positive
frequencies, as shown in Fig. 6.2.
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Why are trigonometric oscillations of the frequencies 1/N , 2/N , . . . used
in a Fourier representation? Do these allow for a representation with the
smallest number of oscillations? How are the coefficients of the oscillations
computed? Do also functions f(t) defined for real t have a Fourier represen-
tation? Answers to these questions are given in Sects. 6.2 and 6.3.

6.1.3 Spectra of Time Series: a Preview to Chaps. 7, 9 and 10

Using R expressions as proposed in Sect. 6.1.1 (in the remarks to Fig. 6.1), a
preliminary empirical spectrum of a time series can be calculated and plotted.
In this case, plotting the logarithms of the squared absolute values of the
trigonometric oscillations is desirable because (i), as in the deterministic case,
ratios become differences, and (ii), there are statistical reasons (becoming
obvious in Figs. 9.3 and 9.4, as well as in Fig. 9.23) for plotting a spectrum
in logarithmic scale. To give examples, four preliminary empirical spectra of
four time series are computed as demonstrated in Sect. 6.1.1 and thereafter
plotted in Fig. 6.5, i.e., those of the

1. NAO index as plotted in Fig. 2.10, in plot (a)
2. amount of a product formed during a chemical reaction as plotted in

Fig. 5.3, in plot (b)
3. horizontal wind speeds measured in a turbulent atmospheric flow as plot-

ted in Fig. 2.1, in plot (c)
4. SO index from January 1933 through to January 1996 as plotted in

Fig. 5.14, in plot (d).

It is obvious from these preliminary empirical spectra that, in a local
(local properties are defined in (2.55,1)) mean, the absolute values of the
trigonometric oscillations with low frequencies are larger than those with
high frequencies in plot (c), whereas, in plot (b), the absolute values of the
trigonometric oscillations increase with increasing frequency. Contrary to the
above preliminary empirical spectra that increase or decrease in a local mean,
the spectrum in plot (a) remains constant, and the one in plot (d) has a peak
a for frequencies ≈ 0.02 month−1, both in their local means.

The trigonometric oscillations in a Fourier representation of a time series
have frequencies that depend on the sampling interval used for the measure-
ments of the time series, i.e., one year in the case of the NAO index, one
second in the case of the wind speed series, and one month in the case of
the SO index monthly values. In the case of the amount of a product formed
during a chemical reaction there is no time unit.

The preliminary empirical spectra in Fig. 6.5 are calculated under the
assumption that the time series are deterministic sequences as those, for
example, plotted in Figs. 6.1 (a) and 6.4 (a). However, the time series used
for the calculation of the empirical spectra in Fig. 6.5 are realisations of linear
processes (2.25), as shown in Chap. 2 in the remarks to Figs. 2.10 and 2.18
(for the NAO index) as well as in Chap. 5 in Sects. 5.1.3 (for the wind speed
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Fig. 6.5. Preliminary empirical spectra of following time series: (a) the NAO in-
dex (Jones) as plotted in Fig. 2.10, (b) the amount of a product formed during a
chemical reaction as plotted in Fig. 5.3, (c) the horizontal wind speeds as plotted
in Fig. 2.1, (d) SO index from January 1933 through to January 1996 as plotted in
Fig. 5.14.

series and the amount of a product formed during a chemical reaction) and
5.4.4 (for the SO index).

Does this assumption, clearly not being reconcilable with the probabilistic
properties of the observed variables, induce the extremely strong fluctuations
in the preliminary empirical spectra in Fig. 6.5? This question arises because
these preliminary empirical spectra neither resemble plot (a) in Fig. 6.2,
showing the spectrum of the sequence in Fig. 6.1 (a) with a few oscillations
having large absolute values, nor plot (b) in Fig. 6.4 which shows the relatively
smooth spectrum of the sequence in Fig. 6.4 (a).
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Since a linear process has a smooth spectrum, as shown in Sect. 7.4, it
is supposed that the probabilistic properties of the variable observed have
to be accounted for when the spectrum of the process is estimated from a
realisation. Such estimators are introduced in Chap. 9.

6.2 Linear Vector Spaces

This section introduces us to the properties of linear combinations of trigono-
metric functions used in a Fourier representation (an example is plotted in
Fig. 6.1 (c)). The trigonometric functions in a Fourier representation are
orthogonal, as summarised in Sect. 6.2.3 and derived in Sect. 6.9.1. The or-
thogonality of sine and cosine functions with Fourier frequencies is shown, in
Sect. 6.2.2, to favour the relatively straightforward calculation of their coef-
ficients. The orthogonality of functions or sequences is a concept borrowed
from geometry and is meaningful on condition that functions or sequences
are considered to be vectors (in Sect. 6.2.1).

6.2.1 Linear Vector Spaces

When constructing linear combinations of functions, initial problems have to
be solved which are similar to those encountered when constructing linear
combinations of vectors in three-dimensional Euclidean space: a point with
coordinates x, y, z is a three-tuple (x, y, z), and the position (radius) vector
from the origin to this point can be written as linear combination v = xi+
yj + zk of the basis vectors i, j, k. (In this section, vectors are not written
bold). This is geometrically clear and physically meaningful as the basis is
defined by unit distances on the three axes being perpendicular to each other.

Despite being geometrically no longer obvious and physically no longer
immediately meaningful, the generalisation of the above linear combinations
of functions to higher dimensional vector spaces RN is known from algebra.
In the higher dimensional case, the points areN -tuples φ = (ϕ1, . . . , ϕN )T , ϕi

real numbers, and the pertaining “position” vectors are linear combinations
of N mutually independent basis vectors b1, b2, . . . , bN : v = ϕ1b1+. . .+ϕNbN ,
N being the dimension of the vector space. Operations are then defined on
the vectors in RN ; from these operations, the addition, the multiplication
with a real number (i.e., with a scalar), the scalar product and the norm are
used in this section.

The geometric concepts originating from Euclidean space are now applied
to functions φ(t), a ≤ t ≤ b, in a N - or ∞-dimensional vector space: the φ(t)
can be added and/or multiplied with a scalar and thus linear combinations
of the φ(t) can be obtained. For example, the Fourier representation of the
sawtooth-shaped sequence (ft), t = 0, 1, . . . , 139, as plotted in Fig. 6.1 (c),
is a linear combination of (trigonometric) functions in a vector space with
N = 140.
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If the argument t of the functions φ(t), a ≤ t ≤ b, is a real number,
then the φ(t) have an infinite number of components, i.e., values of φ(t),
a ≤ t ≤ b. In this case, the φ(t) are infinite-dimensional vectors in an infinite-
dimensional vector space. If the argument t of the functions φ(t), a ≤ t ≤ b,
is an integer number, then the φ(t) have a finite number of components, one
for each t in a ≤ t ≤ b. In Chaps. 1 through to 5 and also in Sect. 6.1,
such functions are called sequences (xt), (ft), etc., usually with argument
t = 1, . . . , N . In this section, and further on in this chapter, the term function
is also used for sequences φ(t), ψ(t), φn(t), y(x), z(x), f(t), x(t), etc., the
argument t being a real or an integer number (if integer, then usually t =
0, 1, . . . , N − 1). For example, using this terminology and assuming that the
origin in the time domain is arbitrary, a time series (xt), t = 1, 2, . . . , N , is a
vector x(t) with components x(0), x(1), . . . , x(N − 1).

For each t, there is a vector in the basis of the vector space. If t is integer
then there are N basis vectors, if t is real then there are an infinite number
of basis vectors. Functions in a linear vector space can be multiplied with
each other to obtain the scalar product of a pair of functions, and, when a
function is multiplied with itself, its “length” (borrowing from the original
geometric concepts), i.e., its norm is obtained.

These properties are summarised in (6.3), where the set of functions with
finite norm in the interval a ≤ t ≤ b is defined.

Let φ(t), φk(t), ψ(t), ψk(t), k = 1, 2, . . . be real-valued functions
of t, a≤t≤b, t integer or real, and a, b, dk real constants. Then:

1. ψ(t) = d1φ1(t) + d2φ2(t) is a linear combination
of φ1(t) and φ2(t).

2. 〈φψ〉 =

{∑
a≤t≤b φ(t)ψ(t) for integer t∫ b

a
φ(t)ψ(t)dt for real t

is the scalar (or dot) product of φ(t) and ψ(t). 〈 〉 usually
denote the inner product in a vector space.

3. ‖φ(t)‖2 =

{∑
a≤t≤b

(
φ(t)

)2 for integer t∫ b

a

(
φ(t)

)2dt for real t
is the squared norm of φ(t).

4. The set of functions
(
φk(t)

)
(sets of functions are enclosed in

parentheses ( ) and not braces { } in this chapter) with
‖φk(t)‖2 <∞ is called L2(a, b). L2(a, b) is the linear vector
space of functions with finite norm on the real a ≤ t ≤ b.

(6.3)

For example, the sawtooth-shaped sequence (ft) as plotted in Fig. 6.1 (a)
is in L2(0, 139), and the sequence (gt) as plotted in Fig. 6.4 (a) is in L2(0, 160),
the argument t being integer in both cases. The result of Problem 1.12 implies
that the Gaussian function y(x) = e−bx2

, x real, is in L2(−∞,∞) for b > 0.
Function y(x) = d×x, x real and d a real constant, is in L2(a, b), yet neither
in L2(−∞,∞) nor in L2(a,∞) nor in L2(−∞, b).
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In L2(a, b), the Cauchy-Schwarz inequality as proposed in (6.4) holds(∫ b

a

φ(t)ψ(t)dt

)2

≤
∫ b

a

(
φ(t)

)2dt ∫ b

a

(
ψ(t)

)2dt (6.4)

which is used, for example, to show (1.10,4). (6.4) also holds for the absolute
values of complex-valued functions as shown in [18]. Applying the Cauchy-
Schwarz inequality, the triangle inequality ‖φ(t) +ψ(t)‖ ≤ ‖φ(t)‖+ ‖ψ(t)‖ is
easily obtained in Problem 6.2.

Using the “vector properties” of functions as defined in (6.3), an answer
to the question can be given, whether a function can be approximated by a
sequence of functions. In a (linear) vector space, usually the norm is applied
to find out how accurately a vector has been approximated by means of a
sequence of vectors, as defined in (6.5).

In L2(a, b), a sequence of functions φn(t), n = 1, 2, . . ., converges
in mean square to a function φ(t) ∈ L2(a, b), on condition that
limn→∞

∫ b

a

(
φn(t) − φ(t))2dt = 0. To denote convergence in mean

square, φn(t) ms→ φ(t) is used or, alternatively, (i) φn(t) converges
in mean square to φ(t), (ii) φn(t) converges in L2(a, b) to φ(t)
or (iii) φn(t) converges in the norm to φ(t).

(6.5)

In Fig. 6.1 (c), for example, the sawtooth-shaped sequence (ft) is the
function φ(t), t = 0, . . . , 139, to be approximated, and φn(t) is the sum of
the trigonometric oscillations subsequent to the addition of oscillation k = n:
convergence in the norm is arrived at with k = n = 70. In this example,
(ft) = φ(t) and all φn(t), n = 1, . . . , 70, are in L2(0, 139), t being integer.

Examples for sequences of functions in L2(−∞,∞) and with real argu-
ment t are plotted in Fig. 6.6. These plots are generated in Problem 6.3. The
Gaussian functions yk(x) = e−(1/10)kx2

in plot (a) are in L2(−∞,∞) for fi-
nite k; for k → ∞, however, functions yk(x) degenerate to a constant (plotted
with a solid line) not being in L2(−∞,∞). The functions zk(x) = e−10kx2

in
plot (b) are in L2(−∞,∞) for k = 1, 2, 3, . . . and the sequence of functions
zk(x) converges in L2(−∞,∞) to the constant 0, i.e., zk(x) ms→ 0 for k → ∞,
although zk(0) = 1 for all k. In these examples, the limiting functions (solid
lines in Fig. 6.6) can be deduced directly from the definitions of yk(x) and
zk(x).

The convergence in mean square of a sequence of functions φn(t) to a
limiting function φ(t) can be shown even when φ(t) is not known. In this
case, φn(t) can be proved to converge using a Cauchy sequence. In general,
a Cauchy sequence allows for proving a mean-square convergence in arbi-
trary vector spaces (an example for a Cauchy sequence in the vector space
of random variables L2(Ω,F ) defined in (7.10) is given in (7.12); in (6.6),
however, it is defined for the case of a convergence in L2(a, b). (6.6,1) is the
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Fig. 6.6. Sequences of functions: (a) yk(x) = e−(1/10)kx2
, (b): zk(x) = e−10kx2

,
k = 0, 1, 2, . . .. The functions for k → ∞ are plotted with solid lines.

definition of the Cauchy sequence in L2(a, b), (6.6,2) is a property of L2(a, b)
(see, e.g., [126]) and (6.6,3) is the definition of the complete vector space.

Let φn(t), n = 1, 2, . . ., be a sequence of functions in L2(a, b),
and ε a real number, positive and arbitrarily small. Then:

1. φn(t) is called a Cauchy sequence in L2(a, b) on condition
that, given an ε, a positive integer number N(ε) exists
such that

∫ b

a

(
φn(t) − φm(t)

)2dt < ε for n,m > N(ε).
2. Every Cauchy sequence φn(t) in L2(a, b) is associated with a

function φ(t) in L2(a, b) such that φn(t) ms→ φ(t).
3. A vector space with property (6.6,2) is called complete or

a Hilbert space, e.g., L2(a, b) is a complete vector space.

(6.6)

For example, zk(x) = e−10kx2
, k = 1, 2, 3, . . ., in Fig. 6.6 (b) is a Cauchy

sequence in L2(−∞,∞), whereas yk(x) = e−(1/10)kx2
, k = 1, 2, 3, . . ., in

Fig. 6.6 (a) is not a Cauchy sequence in L2(−∞,∞), as shown in Problem 6.3.
Since L2(−∞,∞) is complete, zk(x) converges in L2(−∞,∞), whereas yk(x)
does not converge. In both cases, the limiting functions are known (plot-
ted with solid lines in Fig. 6.6) and therefore, in Problem 6.3, the Cauchy
sequences are calculated for illustrating definition (6.6,1).

6.2.2 Orthogonal Functions

Applying definitions (6.3,2,3), the angle θ between functions φ(t) and ψ(t)
in L2(a, b) is obtained as cos θ = 〈φψ〉/(‖φ(t)‖ × ‖ψ(t)‖). If 〈φψ〉 = 0 then
θ = π/2, and the functions are said to be orthogonal, as defined in (6.7,1).

In (6.7,3.1), δkl = 1 for k = l and δkl = 0 for k �= l, k, l = 1, 2, . . ., is called
Kronecker δ.
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In (6.7,3.2), Φ(t) ms=
∑∞

k=1 dkφk(t) means that a linear combination of the
φk(t) converges in mean square as defined in (6.5) to Φ(t): Φ(t) ms=

∑∞
k=1 dkφk(t)

is written for
∑n

k=1 dkφk(t) ms→ Φ(t), n = 1, 2, . . ..

1. Two functions φ1(t) and φ2(t) in L2(a, b) are said to be
orthogonal on condition that their scalar product is
identically zero, i.e., 〈φ1φ2〉 = 0.

2. A function φ(t) in L2(a, b) is called normalised on condition
that its norm amounts to unity, i.e., ‖φ(t)‖ = 1.

3. A set of functions
(
φk(t) ∈ L2(a, b)

)
, k = 1, 2, ..., is called:

3.1 orthonormal on condition that 〈φkφl〉 = δkl, k, l = 1, 2, . . .,
δkl being the Kronecker δ as in the above remarks;

3.2 an orthonormal basis in L2(a, b) on condition that, besides
being orthonormal, Φ(t) ms=

∑∞
k=1 dkφk(t) holds for any

function Φ(t) in L2(a, b), ms= as in the above remarks.

(6.7)

For example, definitions (6.7) are applied to the Fourier representation in
Fig. 6.1 (c) of the sawtooth-shaped sequence (ft). (ft), being in L2(0, 139),
plays the role of Φ(t) in L2(a, b) in (6.7); the trigonometric functions, pairs of
which are amalgamated in the trigonometric oscillations, play the role of the
φk(t), with the Fourier coefficients Ak and Bk, obtained with the R expres-
sions in the remarks to Fig. 6.1 (c), acting as the dk. Obviously, in Fig. 6.1
(c), the Fourier representation converges in L2(0, 139) to (ft). Trigonometric
functions with identical frequencies, i.e., the Fourier frequencies, but having
distinct Fourier coefficients, are used in the Fourier representations when the
experiment is repeated with any other sequence in L2(0, 139). This suggests
that trigonometric functions with Fourier frequencies, properly normalised,
are an orthonormal basis in L2(0, 139), as can be deduced from the sums and
orthogonality relations below in (6.10), (6.11), (6.12) and (6.13).

Prior to introducing orthogonal trigonometric functions in Sect. 6.2.3,
an answer to the following question has to be found: given a function Φ(t)
and an orthonormal basis, both in L2(a, b), how can the coefficients dk in
(6.7,3.2) be calculated such that the linear combination of functions φk(t)
in the basis converges in mean square to Φ(t)? In the case of the sawtooth-
shaped sequence (ft) in Fig. 6.1: how can the Fourier coefficients Ak and Bk

be obtained?
In general, a coefficient dl (l=1, 2, . . . substituted in (6.7,3) for k=1, 2, . . .)

is calculated by multiplying both sides of ms= in (6.7,3.2) with φl(t), integrating
from a to b and taking advantage of the properties of the orthonormal basis∫ b

a

Φ(t)φl(t)dt
ms=
∫ b

a

φl(t)
∞∑

	=1

d	φ	(t)dt =
∞∑

	=1

d	

∫ b

a

φl(t)φ	(t)dt = dl (6.8)

since
∫ b

a
φl(t)φ	(t)dt = 0, for l �= � and

∫ b

a
φl(t)φ	(t)dt = 1, for l = �. In (6.8),

the order of the sum and integral can be changed due to dk = 〈Φ(t)φk(t)〉,
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provided that any representation Φ(t) ms=
∑∞

k=1 dkφk(t) does exist at all. If
such a representation exists, then

∑n
k=1 φk(t), n = 1, 2, . . ., being a special

case of a linear combination, converges in mean square and the order of the
sum and the integral can be reversed.

The conditions for a convergence depend on function Φ(t) and the or-
thonormal basis

(
φk(t)

)
. For a proof of a possible convergence, usually coeffi-

cients dl are calculated as required in (6.8), and then the linear combination of
the functions in the basis is shown to converge in mean square. If it converges
then the coefficients have been determined.

6.2.3 Orthogonal Trigonometric Functions

Are trigonometric functions with Fourier frequencies, possibly subsequent to
having been normalised, an orthonormal basis in L2(a, b) as defined in (6.7)?
To give an answer, two cases are distinguished: either the argument is an
integer or a real number.

In the first case, an orthonormal basis can be obtained, subsequent to an
adequate normalisation, from the set of trigonometric functions as defined in
(6.9).(

cos
(
2π
k

N
t
)
, sin

(
2π
k

N
t
)) t, k = . . . ,−1, 0, 1, . . . and

0 ≤ t ≤ N − 1, 0 ≤ k ≤ (N/2) (6.9)

For k = 0, the cosine function becomes identically 1 and the sine function
identically 0. For k = N/2 and evenN , the argument of the functions becomes
πt and, consequently, the cosine has alternating values 1 or −1 whereas the
sine becomes identically 0, as for k = 0. The set (6.9) therefore contains
2(m + 1) trigonometric functions, m the largest integer number such that
m ≤ (N/2). When the sine functions being identically 0 are excluded, the
number of functions in (6.9) is reduced by 2 functions for even N and by 1
function for odd N . Due to this reduction, the set defined in (6.9) contains
N trigonometric functions with properties (6.10), (6.11), (6.12) and (6.13).

N−1∑
t=0

cos
(
2π
k

N
t
)

=
{ 0 for k �= 0
N for k = 0

and
N−1∑
t=0

sin
(
2π
k

N
t
)

= 0 (6.10)

N−1∑
t=0

sin
(
2π
k

N
t
)
cos

(
2π

l

N
t
)

= 0 for k, l = 0, 1, ...,m (6.11)

N−1∑
t=0

cos
(
2π
k

N
t
)
cos

(
2π

l

N
t
)

=

⎧⎨⎩
0 for k �= l
N/2 for k = l �= 0, N/2
N for k = l = 0, N/2

(6.12)

N−1∑
t=0

sin
(
2π
k

N
t
)
sin
(
2π

l

N
t
)

=
{

0 for k �= l
N/2 for k = l �= 0, N/2 (6.13)
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In (6.10), the sums of the functions in (6.9) are identically zero for k �= 0 as
derived in (6.128) and (6.129). In (6.130), the cosine functions are shown to be
orthogonal as required in (6.12); orthogonality relations (6.11) and (6.13) are
obtained with similar derivations. In these sums and orthogonality relations,
k, l = 0, 1, ...m, m the largest integer number such that m ≤ (N/2). Thus,
although the trigonometric functions in the set (6.9) are orthogonal, they are,
however, not an orthonormal basis.

The trigonometric functions in the Fourier representation in Fig. 6.1 (c)
of the sawtooth-shaped sequence (ft), for example, are in the set defined in
(6.9) with N = 140, m = 70, t = 0, 1, . . . , 139 and k = 0, 1, . . . , 70.

In the second case, the argument of the functions is real and an orthonor-
mal basis can be obtained, subsequent to adequately normalising, from the
set as defined in (6.14)(

cos
(
2π
k

T
t
)
, sin

(
2π
k

T
t
))

t real, k = 0, 1, 2, ... (6.14)

which contains an infinite number of trigonometric functions being periodic
in an interval of length T . Their integrals in (6.15) and (6.16) are arrived at
in (6.131). Using these integrals, the orthogonality relations in (6.17), (6.18)
and (6.19) can be derived. Prior to these derivations, the products are written
as sums applying the elementary trigonometric identities.∫ T/2

−T/2

cos
(
2π
k

T
t
)
dt =

{ 0 for k �= 0
T for k = 0

(6.15)∫ T/2

−T/2

sin
(
2π
k

T
t
)
dt = 0 for k = 1, 2, 3, ... (6.16)∫ T/2

−T/2

sin
(
2π
k

T
t
)
cos

(
2π
l

T
t
)
dt = 0 for k, l = 0, 1, ... (6.17)

∫ T/2

−T/2

cos
(
2π
k

T
t
)
cos

(
2π
l

T
t
)
dt =

{ 0 for k �= l
T/2 for k = l �= 0
T for k = l = 0

(6.18)

∫ T/2

−T/2

sin
(
2π
k

T
t
)
sin
(
2π
l

T
t
)
dt =

{
0 for k �= l oder k = l = 0
T/2 for k = l �= 0 (6.19)

Using three trigonometric functions from the set (6.14), for example, func-
tion f(t) = 2t, −1/2 ≤ t ≤ 1/2, is approximated in Fig. 6.8.

In the following section, a function f(t) being in L2(a, b) is approximated
in the sense that the norm of differences becomes minimal, as required in
(6.5), using trigonometric functions. The trigonometric functions are in the
set (6.14) for real t, and in the set (6.9) for t = . . . ,−1, 0, 1, . . .. However, the
norms of the functions in both sets are not unity, as required in (6.7) and
(6.8). This has to be accounted for in the approximations.
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6.3 Fourier Transforms

A Fourier transform generates, using a formula F−i( ), from a function f(t)
(t usually being the time) a function F (s) (s being the frequency of trigono-
metric oscillations): F (s) = F−i

(
f(t)

)
. f(t) and F (s) are called a Fourier

transform pair: usually a small letter is used for the function with argument
t, and a capital letter for the function with argument s. In this section, four
cases of Fourier transform pairs are introduced:

1. t integer, (ft) in L2(0, N − 1), F (sk) for a finite number of sk,
2. t real, f(t) in L2(−T/2, T/2), F (sk) for an infinite number of sk,
3. t real, f(t) in L2(−∞,∞), s real, F (s) in L2(−∞,∞), and
4. t integer, (ft) in L2(−∞,∞), s real, F (s) in L2(−1/2, 1/2).

(6.20)

6.3.1 Case 1: Discrete Fourier Transform

The calculation of the Fourier coefficients Ak and Bk in the Fourier repre-
sentation of the sawtooth-shaped sequence in Fig. 6.1 (c) demonstrates the
first case in (6.20,1).

Let (ft), t = 0, 1, 2, . . . , N − 1, be a sequence in L2(0, N − 1). Then:
1. The frequencies sk = k/N , with k = 0, 1, . . . ,m, m the largest

integer ≤ N/2, are called Fourier frequencies of (ft), and
∆sk = sk+1 − sk = (k + 1)/N − k/N = 1/N is the distance of the sk.

2. In case of even N :

Ak =
{

(2/N)
∑N−1

t=0 ft cos(2πskt) for k = 1, 2, . . . ,m− 1
(1/N)

∑N−1
t=0 ft cos(2πskt) for k = 0,m

Bk =
{

(2/N)
∑N−1

t=0 ft sin(2πskt) for k = 1, 2, . . . ,m− 1
0 for k = 0,m

and, in case of odd N :

Ak =
{

(2/N)
∑N−1

t=0 ft cos(2πskt) for k = 1, 2, . . . ,m
(1/N)

∑N−1
t=0 ft cos(2πskt) for k = 0

Bk =
{

(2/N)
∑N−1

t=0 ft sin(2πskt) for k = 1, 2, . . . ,m
0 for k = 0

are called Fourier coefficients of the sequence (ft), t = 0, 1, . . . , N − 1.
3. If (ft), k, m, N , sk, Ak, and Bk are defined as above, then
fm(t) =

∑m
k=0

(
Ak cos(2πskt) +Bk sin(2πskt)

)
is called

finite Fourier series and fm(t) = (ft), for t = 0, 1, ..., N − 1.
(6.21)

Since the sine and cosine functions with argument 2πskt are in the set of
trigonometric functions (6.9) and thus are orthogonal in L2(0, N − 1) as
proposed in (6.11), (6.12) and (6.13), and since (ft) is also in L2(0, N−1), the
Fourier coefficients Ak and Bk are obtained applying (6.8) and thus (6.21,2) is
arrived at, provided it is taken into account that (i) t is an integer number and
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(ii) the trigonometric functions in (6.9) are orthogonal but not normalised.
Using the Ak and Bk as coefficients in a linear combination of the sines and
cosines, the finite Fourier series in (6.21,3) is arrived at, which converges
in mean square to (ft). In (6.21,3), = substitutes ms= as, obviously, fm(t)
converges in L2(0, N − 1) to (ft). When it is obvious that a sequence of
functions converges in L2(. . . , . . .) to a limiting function, then often = is
written for ms= and even for ms→ .

The convergence in mean square (6.21,3) is implied by (6.22,3) (with
due substitutions applying (6.25)). (6.22,3) is derived in (6.135) and (6.136).
Consequently, any (ft), t = 0, 1, . . . , N − 1, has a Fourier representation
as linear combination of the orthogonal trigonometric functions (6.9). The
existence of a Fourier representation is assumed in Sect. 6.1.2.

For example, the Fourier representation, i.e., the finite Fourier series
fm(t) (6.21,3), t an integer number, converges in L2(0, 139), i.e., for t =
0, 1, . . . , 139, to the sawtooth-shaped sequence (ft), as demonstrated in
Fig. 6.1 (c). In Fig. 6.1 (c), fm(t) is plotted with a solid line, it is calcu-
lated for t = 0.0, 0.1, 0.2, . . . , 139.8, 139.9, and, being a linear combination of
the trigonometric functions (6.9), is a smooth function. As demonstrated in
Fig. 6.1 (c), fm(t) can be calculated for real t; convergence to the sawtooth-
shaped sequence (ft), however, is arrived at for t = 0, 1, . . . , 138, 139.

The sequences of the Fourier coefficients (Ak) and (Bk) pertaining to the
sequence (ft) are not arrived at, in practical applications, from computations
as required in (6.21,2), but by way of normalising the Fourier transform (Fk)
of (ft) as defined in (6.22):

1. If (ft) is a sequence in L2(0, N − 1) then

(Fk) = F−i

(
ft

)
= 1

N

∑N−1
t=0 fte−i2π(k/N)t, for k = . . . ,−1, 0, 1, . . .

= 1
N

∑N−1
t=0 ft cos

(
2π(k/N)t

)− i
N

∑N−1
t=0 ft sin

(
2π(k/N)t

)
is called discrete Fourier−i-transform of (ft).

2. If (Fk) is a sequence in L2(0, N − 1) then
(ft) = F+i

(
Fk) =

∑N−1
k=0 Fke+i2π(t/N)k, for t = . . . ,−1, 0, 1, . . .

is called discrete Fourier+i-transform of (Fk).
3. (ft) and (Fk) are a Fourier transform pair,

since (ft) = F+i

(
Fk

)
, where (Fk) = F−i

(
ft

)
.

4. Often, the +i-transform is normalised, not the −i-transform:
(Fk) = F−i

(
ft

)
=
∑N−1

t=0 fte−i2π(k/N)t, for k = . . . ,−1, 0, 1, . . .

(ft) = F+i

(
Fk

)
= 1

N

∑N−1
k=0 Fke+i2π(t/N)k, for t = . . . ,−1, 0, 1, . . .

(6.22)
F−i( ) and F+i( ), used for Fourier transforms, are operators, similar to the
derivative (d/dt)( ). Since the trigonometric functions (6.9) are orthogonal,
but not normalised, either the −i- or the +i-transform are normalised such
that (6.22,3) holds. (6.22,3) is derived in (6.135) and (6.136).
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R function fft(...,inverse=T) transforms as required in the first line
in (6.22,4), i.e., without normalising in the −i-transform. Consequently, the
complex R vector resulting from fft(...,inverse=T) is normalised as demon-
strated in the remarks to Fig. 6.1 to obtain the Fourier coefficients. The
Fourier coefficients are defined in (6.21,2) for Fourier frequencies sk ≤ 1/2
because 0 ≤ k ≤ m; whereas, in (6.22,1), the Fourier −i-transform is defined
for all integer k, i.e., also for k < 0 and therefore also for negative frequen-
cies. This allows for a definition that is symmetric to those of the Fourier
+i-transform in (6.22,2). Symmetric definitions are desirable and also possi-
ble because the transforms are periodic (6.1) with period N .

The Fourier −i-transform (Fk) as in (6.22,1) is shown to be periodic with
period N in Problem 6.4: (Fk) = (Fk+nN), for integer k, n,N . Since also
ei2π(t/N)k is periodic with period N for k = . . . ,−1, 0, 1, . . ., the product
Fkei2π(t/N)k is periodic with period N , and therefore, being a sum of such
products, F+i(Fk) is periodic with period N , t, k = . . . ,−1, 0, 1, . . .. Conse-
quently, at the exterior of the interval t = 0, 1, . . . , N −1, F+i(Fk) becomes a
periodic version of (ft), since F+i(Fk) = ft for t = 0, 1, . . . , N −1 as required
in (6.22,3).

For example, the sawtooth-shaped sequence (ft) in Fig. 6.1 (a) is defined
for t = 0, 1, . . . , 139. From its Fourier transform (Fk), calculated as required
in (6.22,1), the Fourier representation (ft) = F+i(Fk), t = 0, 1, . . . , 139, as
shown in Fig. 6.1 (c), is obtained by applying (6.22,2) and (6.22,3). F+i(Fk)
is periodic with period 140, three periods being plotted in Fig. 6.3. Since the
sawtooth-shaped sequence (ft) is constructed, in the remarks to Fig. 6.1 (a),
as a periodic function with period 140, (ft) = F+i(Fk) for t = . . . ,−1, 0, 1, . . ..

The Fourier representation of a non-periodic sequence, however, converges
for t = 0, 1, . . . , N−1, although not for all t. For example, F+i(Gk) of the non-
periodic sequence (gt) in Fig. 6.4 (a) converges to (gt) for t = 0, 1, . . . , 160,
for t < 0 and t > 160; however, (gt) �= F+i(Gk), since (gt) is not periodic.

Since Fkei2π(t/N)k, with Fk = F−i(ft), k = . . . ,−1, 0, 1, . . ., is periodic
with period N , (i) the Fourier representation of (ft), F+i(Fk), is periodic
with period N , as shown above, and (ii), using the remark to (6.1), the sum
in (6.23) can be evaluated in arbitrary intervals of length N

ft =
N+n−1∑

k=n

Fkei2π(t/N)k with n, t = . . . ,−1, 0, 1, . . . (6.23)

=

{∑(N−1)/2
k=−(N−1)/2 Fkei2π(t/N)k for odd N∑N/2
k=−(N/2−1) Fkei2π(t/N)k for even N

(6.24)

which implies that the sequence Fkei2π(t/N)k in (6.22,2) can be summed
within arbitrary intervals of length N , e.g., in (6.24), within the interval
k = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2, with k = 0 in its centre, by as-
suming that N is odd and then substituting n = −(N − 1)/2 in (6.23). If the
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sums are calculated for arbitrary intervals then negative frequencies are in-
troduced (the Fourier frequencies sk as defined in (6.21,1) are non-negative):
. . . ,−s2 = −2/N,−s1 = −1/N, s0 = 0, s1 = 1/N, s2 = 2/N, . . .. For sym-
metry reasons, a Fourier transform is often plotted against the negative and
positive frequencies in the sums (6.24), as demonstrated in Fig. 6.4.

The periodic Fourier transform (Fk) = (Fk+nN ) of (ft) implies Fk =
Fk+N = Fk−N and, therefore, directly from (6.22,1): Fk = F−k = FN−k (z
being, as defined in (6.2,3), the complex-conjugate to z) is obtained. Multi-
plying both sides of (6.22,1) with the factor 2, the first line in (6.25) is arrived
at. Comparing this line with (6.21), the second and third lines are derived.

2Fk =
2
N

N−1∑
t=0

ft cos
(
2π(k/N)t

)− 2i
N

N−1∑
t=0

ft sin
(
2π(k/N)t

)
2Fk = Fk + FN−k = Fk + F−k = Ak − iBk

2Fk =

⎧⎨⎩
Ak − iBk for k ≥ 1
2A0 for k = 0
A|k| + iB|k| for k =≤ −1

Ak = 2re(Fk), for k �= 0; Am = Fm, for even N ; A0 = F0

Bk = 2im(Fk), for k �= 0,m; Bm = 0, for even N ; B0 = 0

(6.25)

Ak in the fourth line is obtained usingAk = ((1/2)Ak−(1/2)iBk)+((1/2)Ak+
(1/2)iBk) = Fk + Fk = Fk + F−k = 2re(Fk), re(z) being the real part of a
complex number z, as defined in (6.2,1). Bk in the fifth line follows from a
similar argument. Applying (6.25), Fourier coefficientsAk andBk (6.21,2) can
be computed from a discrete Fourier transform Fk (6.22,1), and vice-versa.
If, however, the Fk are calculated as required in (6.22,4), they then have
to be normalised before applying (6.25), as demonstrated in the remarks to
Fig. 6.1.

If a sequence (ft) =
(
f0, f1, . . . , fN−2, fN−1

)
is concatenated, on its right

side, with a sequence (0, 0, . . . , 0) containing N ′ −N values which are identi-
cally zero, then a sequence (gt) =

(
g0 =f0, g1 =f1, . . . , gN−2 =fN−2, gN−1 =

fN−1, gN = 0, . . . , gN ′−1 = 0
)

with N ′ values is obtained, i.e., (gt) is in
L2(0, N ′ − 1). It is said that (ft) is zero-padded to obtain (gt). From a dis-
crete Fourier transform of a zero-padded sequence as defined in (6.22,4) a
Fourier transform pair with frequencies s′k as in (6.26) and (6.27) is obtained.
If s′k = k/N ′ in (6.26) and (6.27) is identical with sk = k/N in (6.22,4), then
both sums Fk =

∑N−1
t=0 fte−i2π(k/N)t and Gk =

∑N ′−1
t=0 gte−i2π(k/N ′)t, contain

identical non-zero terms, and, consequently, Gk = Fk.

(Gk) = F−i

(
gt) =

N ′−1∑
t=0

gte−i2π(k/N ′)t, for k = . . . ,−1, 0, 1, . . . (6.26)

(gt) = F+i

(
Gk) =

1
N ′

N ′−1∑
k=0

Gke+i2π(t/N ′)k for t = . . . ,−1, 0, 1, . . . (6.27)
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Consequently, by zero-padding a sequence, its Fourier transform could be
calculated using a finer grid of frequencies than would be the case without
zero-padding. With, e.g., N ′ = 2N , the distance of the frequencies reduces
to ∆s′k = 1/N ′ = 1/(2N), i.e., to half the distance of the Fourier frequencies
pertaining to the original sequence, i.e., ∆sk = 1/N as defined in (6.21,1).
Examples are given in Problem 6.5.

Both pairs of sequences, (ft) and (Fk) = F (sk) in (6.22) and (6.24) as
well as (gt) and (Gk) = G(sk) in (6.26) and (6.27), are Fourier transform
pairs. If no distinction is made between F+i( ) and F−i( ), then the type, i.e.,
+i or −i, of the Fourier transform will become obvious from the context. In
(6.22) and (6.21), as a first convention, t is used for the time and sk = t/N
for the frequencies, and, as a second convention, a Fourier transform pair is
written using the same letter: with a small letter when the argument is the
time, with a capital letter when the argument is the frequency.

In (6.22), each complex Fk is the sum of N complex multiplications.
Since (Fk) is periodic with period N , as proposed in the remarks to (6.22),
a Fourier transform is arrived at by means of N2 complex multiplications,
and, therefore, the time required for the calculations increases in relation to
N2, N the number of observations. The increase with the square of N can be
reduced without loss in the accuracy of the result by using the fast Fourier
transform (FFT) algorithm as introduced in [39]. When this sophisticated
algorithm is applied to compute a discrete Fourier transform, the number
of multiplications is reduced, depending on how N can be factorised. For
example, N = 140 (the number of values in the sawtooth-shaped sequence
in Fig. 6.1) is the product of the factors 2 × 2 × 5 × 7. If N = 2r, i.e., the
number of values in the sequence to be transformed is a power of two, then
the Fourier transform is computed with only 2rN complex multiplications,
on condition that the FFT algorithm is applied. For example, the discrete
Fourier transform of a sequence with N = 512 = 29 is obtained by way of
2× 9× 512 = 9216 complex multiplications, whereas, when computing using
(6.22,1) without modifications, 512 × 512 = 262144 complex multiplications
have to be performed to arrive at the same result. The FFT is described, e.g.,
in [18]. The FFT algorithm is made available in R as function fft(), and
applied as demonstrated in the following examples. Experiments with fft()

are to be performed in Problem 6.6. Favourable factorisations are obtained
with nextn().

As a first example, the sequence (gt) with an odd number of values (N =
161), as plotted in Fig. 6.4 (a), is Fourier transformed using fft(). xt <-

fft(x,inverse=T), x a real-valued vector containing (gt), computes, using the
FFT algorithm, the discrete Fourier transform (Gk) = G(sk) = F−i(gt) as
required in (6.22,4) with the result in xt.

#x is a real R vector with the sequence in Fig. 6.4 (a)

#as available in file /path/fig64.dat

N <- length(x)
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m <- floor(N/2) #as required in (6.21)

xt <- fft(x, inverse=T) #discrete -i-transform (6.22,4)

xt is a complex-valued R vector having the same length as x. The first value
in xt is G0, the discrete Fourier transform for s0 = 0. The next values are
G1, . . . , Gm, pertaining to frequencies s1 = 1/N, . . . , sm = m/N , followed by
Gm+1, . . . , GN , pertaining to frequencies −sm = −m/N, . . . ,−s1 = −1/N
being negative. In the above example, the complex-valued vector xt resulting
from fft() contains values

...

[79] 0.0239256- 0.49006583i -0.0142419+ 0.48643952i

[81] 0.0047249- 0.48426303i 0.0047249+ 0.48426303i

[83] -0.0142419- 0.48643952i 0.0239256+ 0.49006583i

...

with indices from 1 through to N = 161, whereas, in (6.21,4), the sums are
calculated for k = 0, 1, . . . , N − 1. From these values, it is concluded that
xt[81] = xt[82] = xt[161−81+2], xt[79] = xt[84] = xt[161−79+2], as
required in the third line in (6.25).

The same order of values has to be adhered to in vector x used as argument
for fft(x,...), on condition that the sequence to be transformed is given for
negative time points, as demonstrated in Sect. 6.9.8, Figs. 6.33 and 6.34.

The order of the values in xt is inherited by its real and imaginary parts
as well as by its absolute value and its phase as defined in (6.2), all of which
are obtained as real R vectors using Re(xt), Im(xt), Mod(xt), Arg(xt). This is
accounted for when, for example using the following R expressions,

#Fourier frequencies as defined in (6.21,1) in the same order

#as the values in xt; c() concatenates R vectors,

sk <- c( (0:m)/N,-(m:1)/N ) #odd N

#sk <- c( (0:m)/N,-((m-1):1)/N ) #even N

plot(sk, (Mod(xt)*Mod(xt)), type="n", xlab=" ", ylab=" ")

for(k in 1:N ) { #plot vertical lines in Fig. 6.4

lines( c(sk[k],sk[k]), c(0.0,(Mod(xt)*Mod(xt))[k]) ) }
#another possible plot

lines(sk[1:(m+1)],(Mod(xt)*Mod(xt))[1:(m+1)]) #sk >= 0

lines(sk[(m+2):N],(Mod(xt)*Mod(xt))[(m+2):N]) #sk < 0

lines(c(sk[1],sk[N]),

c((Mod(xt)*Mod(xt))[1],(Mod(xt)*Mod(xt))[N])) #gap

#end another possible plot

the squared absolute values in the Fourier transform of the sequence (gt) in
Fig. 6.4 (a) are plotted against the frequencies −sm, . . . ,−s1, 0, s1, . . . , sm to
obtain the spectrum in Fig. 6.4 (b).

As a second example, the sawtooth-shaped sequence in Fig. 6.1 (a), with
an even (N = 140) number of values, is Fourier transformed as required in
(6.21,4) using the R expressions in the remarks to Fig. 6.1 (c). Here, a part
of the complex-valued result is given.
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...

[57] -1.652476e+00+5.085798e+00i -2.289524e-15+6.637337e-15i

[59] 1.384425e-16-1.736015e-16i -3.884569e-15+8.655689e-15i

[61] 1.603875e+00-7.723857e-01i 1.063581e-14-3.017723e-15i

...

[81] 1.603875e+00+7.723857e-01i -2.612836e-15-8.103348e-15i

[83] -2.154693e-17+3.691674e-16i 4.060969e-15-4.772066e-15i

[85] -1.652476e+00-5.085798e+00i -2.582466e-01-2.292002e+00i

...

Using the indices of this R vector which run from 1 through to N = 140 (and
not from 0 through to 139), one obtains, for example, xfft[57] = xfft[85] =
xfft[140−57+2], and it is clearly seen that the Fk are identically zero for
practical purposes, with two exceptions: (i) Fn×5, n = 1, 2, . . . , 13, the co-
efficients of the trigonometric oscillation with frequency 5/140 and the per-
taining harmonics, (ii) F28 and F56, the coefficients for the oscillation with
frequency 28/140 and its first harmonic. This finding is in agreement with
the spectrum plotted in Fig. 6.2.

Sect. 6.3.1 is summarised as follows. A sequence (ft) being in L2(0, N −
1) is represented by its finite Fourier series fm(t) (6.21,3) which converges
in mean square to (ft). fm(t) is a linear combination of the trigonometric
functions (6.9) with Fourier coefficients Ak and Bk. The Ak and Bk are
calculated, using (6.25), either from a discrete Fourier transform (Fk) of (ft)
as defined in (6.22,1), or, when (Fk) is calculated as required in (6.22,4),
subsequent to normalising (Fk). From (Fk) = F−i(ft) and (ft) = F+i(Fk)
in (6.22,3) it is concluded that (ft) and (Fk) are a Fourier transform pair as
required in (6.20,1), since (Fk) can be written as F (sk), with sk = k/N , the
Fourier frequencies as defined in (6.21,1).

In this first case (6.20,1) of a Fourier transform pair, the time is dis-
crete, and, when the sampling interval ∆t is set to unity and the first ob-
servation is taken at zero time, the observations become a sequence (ft),
t = 0, 1, 2, . . . , N − 1. F (sk), the Fourier transform of (ft), is a sequence de-
fined for a finite number of discrete frequencies sk, i.e., the Fourier frequencies
as in (6.21,1).

6.3.2 Case 2: Fourier Series

In the second case (6.20,2) of a Fourier transform pair, a real-valued function
f(t) with real argument t, being in L2(−T/2, T/2), is approximated using
a linear combination of the orthogonal trigonometric functions (6.14). The
frequencies k/T , k = 1, 2, . . ., of these functions are discrete and not bounded,
as there is an infinite number of functions in this set.

The functions in (6.14) are orthogonal, but not normalised as concluded
from (6.15) and (6.16). This has to be accounted for (as in (6.21) and (6.22)
when approximating sequence (ft) using the functions (6.9)) when f(t) is ap-
proximated in L2(−T/2, T/2) using the functions (6.14) together with Fourier
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coefficients Ak and Bk which are obtained, in (6.28,2), by applying (6.8). A0,
for example, is normalised with (2/T ) in (6.28,2) though (1/T ) would be
correct as deduced from (6.15). This error is compensated in (6.28,4).

Let f(t), t real, be a real-valued function in L2(−T/2, T/2). Then:
1. sk = k/T , with k = 0, 1, . . ., are the Fourier frequencies of f(t).
2. Ak = (2/T )

∫ T/2

−T/2
f(t) cos(2πskt)dt, for k = 0, 1, . . ., and

Bk = (2/T )
∫ T/2

−T/2
f(t) sin(2πskt)dt, for k = 1, 2, . . .,

are the Fourier coefficients of f(t).
3. fM (t) = A0/2 +

∑M
k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

)
is the

Fourier partial sum pertaining to f(t), 0 < M <∞ and integer.
4. fM→∞(t) = A0/2 +

∑∞
k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

)
is

the Fourier series pertaining to f(t) with the property fM→∞(t) = f(t).
If f(t) jumps in ti then fM→∞(t) converges to

(
f(t−i ) + f(t+i )

)
/2,

f(t−i ), f(t+i ) the left and right limits of f(t) in ti.
5. If (ft) is periodic with period T then fM→∞(t) = f(t) also

at the exterior of L2(−T/2, T/2), i.e., for all t.
(6.28)

The Fourier series (6.28,4) converges in L2(−T/2, T/2) to f(t), a result ob-
tained in the basic lectures in calculus.

Most functions f(t) have a finite norm in −T/2 ≤ t ≤ T/2 and are, there-
fore, in L2(−T/2, T/2). For example, a function is in L2(−T/2, T/2), even
though it has a finite number of jumps (i.e., a finite number of discontinuities)
and/or is not smooth in a finite number of points (i.e., has a finite number of
discontinuities in its first derivative) in −T/2 ≤ t ≤ T/2. Examples are plot-
ted in Fig. 6.7. For applications, it is important to know that most functions
are well-behaved in the sense that their Fourier series converges.

The Fourier series in (6.28,4) can be written in complex notation. Ap-
plying identities eix = cosx + i × sin x, cosx = (1/2)(eix + e−ix) and
sin x = (1/2i)(eix − e−ix) to sequences Ak and Bk in (6.28,2), the Fourier
transform pair f(t) and (Fk) in (6.29) and (6.30) is obtained.

f(t) = F+i(Fk) = F+i

(
F (sk)

)
=

∞∑
k=−∞

Fkei2πskt −T
2

≤ t ≤ T

2
(6.29)

(Fk) = F−i

(
f(t)

)
=

1
T

∫ T/2

−T/2

f(t)e−i2πsktdt (6.30)

=

⎧⎨⎩ (1/2)
(
Ak − iBk)

)
k ≥ 1

(1/2)A0 k = 0
(1/2)

(
A|k| + iB|k|

)
k ≤ −1

(6.31)

The Fourier transform pair in (6.29) and (6.30) is a more symmetric for-
mulation of the convergence of the Fourier series in (6.28,4), similar to the
Fourier transform pair in (6.22,3) which is a more symmetric formulation of
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Fig. 6.7. Periodic functions of the real argument t which are reconcilable with
(6.28), i.e., which are well-behaved in the sense that their Fourier series exists.

the convergence of the finite Fourier series in (6.21,3). The mathematically
wishful symmetry in the formulation is, however, counterbalanced with the
introduction of negative frequencies.

A periodic function with period T can always be defined in the interval
−T/2 ≤ t ≤ T/2, as concluded from the remarks to (6.1). This interval is
required in definitions (6.28) as well as (6.29) and (6.30). For examples, the
functions in Fig. 6.7 plots (a) and (c) are defined in −1 ≤ t ≤ 1, whereas
−1/2 ≤ t ≤ 1/2 lends itself for the definition of the functions in Fig. 6.7,
plots (b) and (d).

When a function f(t) to be transformed is symmetric, the calculations of
the sums and integrals in (6.28) as well as (6.29) and (6.30) becomes easier.
A catalogue of symmetries favouring the evaluation of sums and integrals is
given in (6.32).

Let f(x) be a real-valued function. Then:
1. f(x) is an even function on condition that f(x) = f(−x).
2. f(x) is an odd function on condition that f(x) = −f(−x).
3. f(x) is a mixed function if f(x) is neither even nor odd.
4. A product of either two even or two odd functions is even.
5. A product of an even and an odd function is odd.
6. Every f(x) can be split into an even part even(f(x))

and an odd part odd(f(x)).

(6.32)

(6.32,4,5) directly follow from definitions (6.32,1,2). (6.32,6) is also obtained
from (6.32,1,2): f(x) = even(f(x)) + odd(f(x)) and f(−x) = even(f(−x)) +
odd(f(−x)) = even(f(−x))−odd(f(x)) imply even(f(x)) =

(
f(x)+f(−x))/2
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Fig. 6.8. Function f(t) = 2t, −1/2 ≤ t ≤ 1/2, and periodically repeated at the
exterior of this interval, i.e., f(t) = f(t+n), n = . . . ,−1, 0, 1, . . . (solid line) together
with the pertaining Fourier series for M = 3.

and odd(f(x)) =
(
f(x)− f(−x))/2. In the case of complex-valued functions,

both the real and the imaginary part can be even, odd or mixed, and there-
fore more cases are distinguished to describe the symmetry of a product of
complex-valued functions [18].

For example, the Fourier series pertaining to function f(t) = 2t, −1/2 ≤
t ≤ 1/2, f(t) = f(t+ n), n = . . . ,−1, 0, 1, . . ., is computed using its periodic
and symmetric properties. f(t) is plotted with solid lines in Fig. 6.8.

The Ak and Bk in the Fourier series of f(t) are calculated as required in
(6.28,2) by taking advantage of f(t) being odd (6.32,2). The integrals for Ak

Ak =
2
1

∫ 0

−1/2

2t cos(2π
k

1
t)dt+

2
1

∫ 1/2

0

2t cos(2π
k

1
t)dt = 0

become identically zero for k = 0, 1, . . ., since f(x) cos(x) = −f(−x) cos(−x)
as implied by (6.32,5). No separate calculation for A0 is required, as the
error in (6.28,2) is compensated in (6.28,4). The second = in the following
calculation for Bk

Bk =
2
1

∫ 1/2

−1/2

2t sin(2π
k

1
t)dt = 8

∫ 1/2

0

t sin(2π
k

1
t)dt = − 2

πk
cos(πk)

is obtained since f(t) sin(t) = f(−t) sin(−t), and the third = from an eval-
uation of the expression

[
(−t/(2πk)) cos(2πkt) + (1/(4π2k2)) sin(2πkt)

]1/2

0
,

resulting from integration by parts. Thereafter, the Fourier series is arrived
at by substituting Bk in (6.28,4).

fM (t) =
M∑

k=1

− 2
πk

cos(πk) sin(2πkt) M → ∞

=
2
π

(
sin(2πt) − (1/2) sin(4πt) + (1/3) sin(6πt) − . . .

The approximation as obtained above is plotted, for M = 3, with a broken
line in Fig. 6.8. This approximation comes closer to f(t) with increasing
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M , and convergence in mean square as required in (6.28) is arrived at for
M → ∞. Further examples are given in Problems 6.7 and 6.8.

Sect. 6.3.2 is summarised as follows. In both cases of Fourier transforms
(6.20,1,2), a sequence (ft) or function f(t), both defined in a closed interval
and possibly periodic, are represented as a linear combination of trigonomet-
ric functions. If t = . . . ,−1, 0, 1, . . . and (ft) is in L2(0, N − 1), then the
finite Fourier series (6.21,3), being a linear combination of N (i.e., a finite
number) of trigonometric functions in basis (6.9), converges in L2(0, N − 1)
to (ft); whereas, if t is real and f(t) in L2(−T/2, T/2) then the Fourier series
(6.28,4), being a linear combination of an infinite number of trigonometric
functions in basis (6.14), converges in L2(−T/2, T/2) to f(t). These results
are summarised as Fourier transform pairs proposed in (6.22), as well as in
(6.29) and (6.30), both having discrete Fourier frequencies sk.

However, the following distinction should be made. In the case of the
transform pair as defined in (6.22,3), (Fk) is periodic with period N and is
therefore completely determined, i.e., known for k = . . . ,−1, 0, 1, . . ., on con-
dition that N complex-valued Fk are calculated as Fourier transform of (ft),
t = 0, 1, . . . , N−1. Consequently, (ft) results from the +i-transform as a sum
of N terms, i.e., F+i(Fk) converges in mean square for t = 0, 1, . . . , N − 1 to
(ft). In the case of the transform pair as defined in (6.29) and (6.30), in con-
trast, (Fk) will be completely determined on condition that an infinite num-
ber of complex Fk are calculated as Fourier transform of f(t). Consequently,
in the +i-transform, f(t) is obtained as the sum of an infinite number of
terms, i.e., F+i(Fk) converges in mean square for −T/2 ≤ t ≤ T/2 to f(t). In
both cases however, F+i(Fk) is periodic because the trigonometric functions
in either (6.9) or (6.14) are periodic with periods N or T . For that reason,
convergence is obtained even at the exterior of the intervals 0, 1, . . . , N − 1
or −T/2 ≤ t ≤ T/2 provided that (ft) or f(t) are periodic with periods N
or T , as shown in Figs. 6.3 and 6.8.

6.3.3 Case 3: Fourier Integrals

Does a real-valued function f(t) in L2(−∞,∞), t real, have a Fourier trans-
form, as postulated in (6.20,3)? A plausible answer to this question is given
by deducing case (6.20,3) from (6.20,2) and then letting T → ∞. In this
manoeuvre, f(t) in (6.28) as well as in (6.29) and (6.30) is replaced with a
function fT (t) = f(t) in −T/2 ≤ t ≤ T/2 and being periodic with period T ,
fT (t+ nT ), at the exterior of this interval. For T → ∞, fT (t) has a Fourier
transform as defined in (6.30) on condition that, in the limit for T → ∞,
the integrals for the Ak and Bk in the Fourier series (6.28,4) do exist, and,
therefore, the Fourier series converges in L2(−T/2, T/2) to fT (t). When T
increases, the distance ∆sk = sk+1 − sk decreases, sk being the Fourier fre-
quencies defined in (6.28,1) and used in (6.29) and (6.30). This suggests that,
for T → ∞, the set of the discrete sk becomes the set of all points s in the
real frequency domain.
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Hence, the Fourier integrals in (6.35) can be made plausible in the follow-
ing steps. The integral in (6.31) is substituted for Fk in the sum in (6.29),
and, since f(t) = fT (t) in −T/2 ≤ t ≤ T/2, (6.33) is obtained. (6.34) follows
since 1/T = sk − sk−1 = ∆sk. If T → ∞ then ∆sk → 0 and, believably, the
series in (6.33) becomes the first integral in (6.35).

f(t) = fT (t) =
∞∑

k=−∞

(
1
T

∫ T/2

−T/2

f(t)e−i2πsktdt

)
ei2πskt (6.33)

f(t) = fT (t) =
∞∑

k=−∞

(∫ T/2

−T/2

f(t)e−i2πsktdt

)
ei2πskt∆sk (6.34)

f(t) =
∫ ∞

−∞
F (s)ei2πstds, with F (s) =

∫ ∞

−∞
f(t)e−i2πstdt (6.35)

In (6.35), F (s) = F−i(f(t)) and f(t) = F+i(F (s)) are a Fourier transform
pair. (6.35) is derived, as is (6.28,4), in the basic lectures in calculus, provided
that f(t) has the properties required in (6.36).

f(t) is a function defined for all real t. If
‖ f(t) ‖2=

∫∞
−∞

(
f(t)

)2dt <∞, i.e., if f(t) is in L2(−∞,∞),
then the integrals in (6.35) converge in L2(−∞,∞).

(6.36)

Many functions dealt with in applications are in L2(−∞,∞) as required in
(6.36): the functions in Fig. 6.9, for example, decay rapidly enough to 0 for
−∞ ← t and t→ ∞ such that they are in L2(−∞,∞).

Prior to demonstrating (6.35) with the Fourier transform pairs in Figs. 6.9
and 6.10, it is helpful to derive, applying symmetries (6.32) and definitions
(6.37,1,2), the properties as proposed in (6.37,3,4,5,6).

Let evenf(t) and oddf(t) be the even and odd parts as defined in
(6.32,6) of a function f(t) in L2(−∞,∞). Then:

1.
∫∞

t=0
even

(
f(t)

)
cos(2πst)dt = Fcos

(
f(t)

)
is the Fourier cosine-transform,

2.
∫∞

t=0
odd

(
f(t)

)
sin(2πst)dt = Fsin

(
f(t)

)
the Fourier sine-transform

of f(t), and the following hold:
3. F (s)=F−i

(
f(t)

)
= re

(
F (s)

)−im
(
F (s)

)
i = 2Fcos

(
f(t)

)−2Fsin

(
f(t)

)
i

4. F (s)=F+i

(
f(t)

)
= re

(
F (s)

)
+im

(
F (s)

)
i = 2Fcos

(
f(t)

)
+2Fsin

(
f(t)

)
i

5. f(t)=F+i

(
F (s)

)
= re

(
f(t)

)
+im

(
f(t)

)
i = 2Fcos

(
F (s)

)
+2Fsin

(
F (s)

)
i

6. f(t)=F−i

(
F (s)

)
= re

(
f(t)

)−im
(
f(t)

)
i = 2Fcos

(
F (s)

)−2Fsin

(
F (s)

)
i
(6.37)

The derivation of (6.37,3,4,5,6) is straightforward. For example, the second
= in decomposition (6.37,4) is arrived at in Problem 6.9 and, thereafter, the
result follows from the definitions of the Fourier cosine- and sine-transforms.
Definitions and properties (6.37) are formulated for Fourier integrals (6.35),
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i.e., for case (6.20,3), they however also apply to Fourier transform pairs
(6.20,1), (6.20,2), and (6.20,4).

(6.37) implies that even functions have a real Fourier transform, odd func-
tions a pure imaginary one and mixed functions a complex transform. Hence,
if e.g., f(t) is an even function, F (s) = F−i

(
f(t)

)
= F+i

(
f(t)

)
= F(f(t)) =

2Fcos

(
f(t)

)
is obtained for its Fourier transform F (s).

For instance, the real-valued functions f(t) in the left column in Fig. 6.9
(plots a,d,g) are Fourier transformed to the complex-valued functions F (s),
whose real and imaginary parts are plotted in the centre (plots b,h) and right
columns (plots f,i) in this figure. All f(t) as well as re

(
F (s)

)
and im

(
F (s)

)
are

in L2(−∞,∞), as required in (6.36), and a Fourier −i-transform is performed:
from f(t) in the time domain the pertaining F (s) in the frequency domain is
obtained as required in (6.35).

As a first example, the rectangle function h(t) with height a and width
2b as defined in (6.38) and plotted in Fig. 6.9 (a) (for a = 1 and b = 1/2 and
therefore with unit integral), is Fourier transformed to H(s) in (6.39).

h(t) =
{
a for −b ≤ t ≤ b
0 for |t| > b (6.38)

H(s) = F−i

(
h(t)

)
=
∫ ∞

−∞
ae−i2πstdt =

∫ b

−b

ae−i2πstdt

= 2a
∫ b

0

cos(2πst)dt = 2a
[

1
2πs

sin(2πst)
]t=b

t=0

= 2ab
sin(2πbs)

2πbs
(6.39)

If x is substituted for the argument s in H(s) and the factor 2ab is omit-
ted, then the (sinx)/x function is arrived at. The (sinx)/x function has its
properties enumerated in (6.40)

1. (2πbx)−1 sin(2πbx) = 0 for bx = . . . ,−2,−1, 1, 2, . . .
2. limx→0(2πbx)−1 sin(2πbx) = 1
3. (2πbx)−1 sin(2πbx) is not the derivative of a simple function
4.
∫∞
−∞

(
(2πbx)−1 sin(2πbx)

)
dx = 1/|2b|,

(6.40)

which are derived in Problem 6.10. (6.40,2) asserts the existence of the
(sinx)/x function for x = 0, difficulties arising from (6.40,3) are circum-
vented by calculating definite integrals using a series expansion, and, due
to (6.40,4), the (sinx)/x function is in L2(−∞,∞) which implies that also
H(s) in (6.39) is in L2(−∞,∞). Consequently, (6.36) and (6.35) are applied
to obtain h(t) as Fourier +i-transform from H(s):

h(t) = F+i

(
H(s)

)
=
∫ ∞

−∞
H(s)e+i2πtsds =

∫ ∞

−∞
2ab

sin(2πbs)
2πbs

e+i2πtsds

= 2ab
∫ ∞

−∞

sin(2πbs) cos(2πst)
2πbs

ds with (6.32,4)
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Fig. 6.9. Real and imaginary parts of Fourier transforms F (s) of functions: (i)
f(t) = 1 for −1/2 ≤ t ≤ 1/2, f(t) = 0 at the exterior of this interval (plots a,b);
(ii) f(t) = e−t for t ≥ 0, f(t) = −et for t < 0 (plots d,f); (iii) f(t) = e−t for t ≥ 0,
f(t) = 0 for t < 0 (plots g,h,i)
.

= 2ab
∫ ∞

−∞

(
sin(2πbs− 2πst)

4πbs
+

sin(2πbs+ 2πst)
4πbs

)
ds

= 2ab
∫ ∞

−∞

(
b− t
2b

sin(2π(b− t)s)
2π(b− t)s +

b+ t
2b

sin(2π(b+ t)s
2π(b+ t)s)

)
ds

=
a(b− t)
2|b− t| +

a(b+ t)
2|b+ t| =

{
a for −b ≤ t ≤ b
0 for |t| > b with (6.40,4) (6.41)

and thus, h(t) and H(s) in (6.38) and (6.39) are a Fourier transform pair as
required in (6.35). This example demonstrates that a harmless function with
two jump discontinuities can have a Fourier transform that does not jump
and is smooth but has the remarkable properties of the (sinx)/x function,
enumerated in (6.40).



6.3 Fourier Transforms 361

As a second example, the Fourier transform F (s) of the negative exponen-
tial function f(t) in (6.42) is calculated. f(t) is an odd function and, there-
fore, in its transform F (s) = F−i(f(t)) remains only the imaginary part, as
concluded from (6.37). F (s) is calculated as Fourier sine-transform applying
(6.37,2), or, with less effort, as exponential transform. In this case, F (s) in
(6.43) is the imaginary part of two times the integral for t > 0.

f(t) =
{

e−at for t ≥ 0
−eat for t < 0

(6.42)

F (s) = F−i

(
f(t)

)
=
∫ 0

−∞
−eate−i2πstdt+

∫ ∞

0

e−ate−i2πstdt

= im
(

2
∫ ∞

0

e−ate−i2πstdt
)

= 2im
∫ ∞

0

e−t(a+i2πs)dt (6.43)

= 2im
[

1
a+ i2πs

(−1)e−t(a+i2πs)

]t=∞

t=0

= 2im
(

1
a+ i2πs

)
= 2im

(
(a− i2πs)
a2 + (2πs)2

)
=

−i4πs
a2 + (2πs)2

(6.44)

f(t) and F (s) are plotted, for a = 1, in Fig. 6.9, (d) and (f).
As a third example, the Fourier transform F (s) = F−i

(
f(t)

)
of the func-

tion f(t) in (6.45) is calculated. f(t) is mixed, which implies that F (s) has
a real and an imaginary part. The integration is performed as above, for the
second example, however, now F (s) is the full complex integral, not only its
imaginary part.

f(t) =
{

e−at for t ≥ 0
0 for t < 0

(6.45)

F (s) = F−i

(
f(t)

)
=
∫ ∞

0

e−ate−i2πstdt =
(a− i2πs)
a2 + (2πs)2

(6.46)

f(t) and F (s) are plotted for a = 1 in Fig. 6.9, (g), (h) and (i).
As a last example, the Gaussian function f(t) = e−dπt2 , d > 0, is Fourier

transformed. f(t) is even and its Fourier transform F (s) is obtained as func-
tion G(u, r) of arguments u and r,

1
2
F (s) =

1
2
F−i

(
f(t)

)
=

1
2
F−i

(
e−πdt2

)
=
∫ ∞

0

e−πdt2 cos(2πst)dt

=
∫ ∞

0

e−ut2 cos(rt)dt = G(u, r) u = dπ
r = 2πs

subsequent to substituting u = dπ and r = 2πs. The derivative of G(u, r)
with respect to r is integrated by parts to obtain a first order linear differential
equation, which is thereafter solved using c2 as obtained in Problem 1.12.
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Fig. 6.10. There are functions which are their own Fourier transforms. An example

is the Gaussian function f(t) = e−πdt2 with d = 1. Plots of the transform pairs f(t)
and F (s) for d = 1, d = 1/4 and d = 4.

d
dr
G(u, r) =

∫ ∞

0

e−ut2(−t) sin(rt)dt

=

(
1
2u

e−ut2 sin(rt)
∣∣∣∣∞
0

− r

2u

∫ ∞

0

e−ut2 cos(rt)dt

)
= − r

2u
G(u, r)

1
G(u, r)

dG = − r

2u
dr lnG(u, r) = − r

2

4u
+ c1 G(u, r) = c2e−r2/(4u)

c2 = G(u, 0) =
∫ ∞

0

e−ut2dt =
√
π

2
√
u

F (s) = 2G(u, r) =
√
π√
u

e−r2/(4u) =
1√
d
e−πd−1s2

(6.47)

Parameter d in f(t) and F (s) (in F (s) its inverse 1/d is multiplied with s2)
scales either the time axis t with

√
d or the frequency axis s with 1/

√
d. If d

increases then f(t) becomes narrower and the area under f(t) decreases; if,
however, d decreases then F (s) becomes narrower and higher, with the area
under F (s) remaining constant. For d = 1, f(t) = e−πt2 and F (s) = e−πs2

are obtained. Consequently, f(t) for d = 1 is a function which is its own
Fourier transform, as demonstrated in Fig. 6.10.

Fourier transform pairs as defined in (6.35) (examples are plotted in
Figs. 6.9 and 6.10) have the properties proposed in (6.48) which are derived
in Sect. 6.9.4. However, properties (6.48,1,. . .,7) apply to Fourier transform
pairs for all cases in (6.20). Derivations are straightforward, e.g., (6.48,7) is
obtained in (6.145) for case (6.20,4).
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1. F (0) =
∫∞
−∞ f(t)e

−i2π0tdt =
∫∞
−∞ f(t)dt

2. F (−s) = F (s)
3. F−i

(
f(at)

)
= (1/|a|)F (s/a), for a �= 0

4. F−i

(
f(t− b)) = F (s)e−i2πbs

5. h(t) = af(t) + bg(t) implies H(s) = aF (s) + bG(s)
6. h(t) = f(t) ∗ g(t) implies H(s) = F (s)G(s)
7. h(t) = f(t)g(t) implies H(s) = F (s) ∗G(s)

(6.48)

In (6.48,3), a stretching of the time dimension is related to a shrinking of
the frequency dimension, and vice-versa, as demonstrated using the Gaussian
function in Fig. 6.10. In this example,

√
d (

√
d×t×√

d×t = d×t2) substitutes
a in (6.48,3). A more symmetric version of (6.48,3) is given in (6.98).

In (6.48,4), a translation of f(t) produces changes in the phase (6.2,5)
of its transform F (s), whereas the absolute value (6.2,4) of F (s) remains
unchanged. When, for example, (6.48,4) is applied to the rectangle function
(6.38), a result is obtained that is identical to the one arrived at in Prob-
lem 6.11. In Problem 6.11, the Fourier transform of the displaced rectangle
function f(t) = a, for c− b ≤ t ≤ c+ b, and f(t) = 0, for t at the exterior of
this interval, is arrived at by direct integration.

Both convolution theorems (6.48,6,7) are often used, as demonstrated in
Problem 6.12 as well as in (6.57), (6.75), (6.94) and (6.113).

6.3.4 Case 4: Fourier Series with t and s Reversed

In Sects. 6.3.1, 6.3.2, and 6.3.3, Fourier transform pairs are introduced for
the cases (6.20,1,2,3). The last case remains: t = . . . ,−1, 0, 1, . . ., (ft) is a
sequence in L2(−∞,∞), s is real, F (s) is in L2(−1/2, 1/2) and periodic with
period 1, with the Fourier transform pair as proposed in (6.49) and (6.50):

(ft) = F+i

(F−i(ft)
)

=
∫ 1/2

−1/2

( ∞∑
u=−∞

fue−i2πsu

)
ei2πstds (6.49)

F (s) = F−i

(
F+i

(
F (s)

))
=

∞∑
t=−∞

(∫ 1/2

−1/2

F (r)ei2πrtdr
)

e−i2πst (6.50)

with t, u integer and s, r real

(6.49) is derived by evaluating the integral of the sum as a sum of integrals.
This is possible for the reason that (ft) is required to be in L2(−∞,∞),

(ft) = F+i

(F−i(ft)
)

=
∫ 1/2

−1/2

( ∞∑
u=−∞

fue−i2πsu
)
ei2πstds

=
∞∑

u=−∞
fu

∫ 1/2

−1/2

e−i2πsuei2πstds =
∞∑

u=−∞
fu

∫ 1/2

−1/2

e−i2π(u−t)sds
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=
∞∑

u=−∞
fu

sin
(
π(u− t))
π(u− t) t, u = . . . ,−1, 0, 1, . . .

=
∞∑

u=−∞
fu

{
1, for u = t
0, for u �= t

t, u = . . . ,−1, 0, 1, . . . (6.51)

and (6.51) is arrived at using the properties (6.40) of the (sinx)/x function.
(6.50) is obtained assuming that a real-valued function G(s), s real, is in

L2(−1/2, 1/2) and periodic with period 1. G(s) shares these properties with
(i) function F (s) as required above as a precondition for (6.49) and (6.50)
and (ii) function f(t) as required in (6.28) (with T = 1). Consequently, G(s)
has a Fourier series that converges as proposed in (6.28,4), implying that also
F (s) has a convergent Fourier series. The Fourier series pertaining to F (s) is
the infinite sum for t = . . . ,−1, 0, 1, . . . over the integrals

∫ 1/2

−1/2
F (r)ei2πrtdr

in (6.50). This is obtained with T = 1 from (6.29) and (6.30).
Above, F (s) in (6.50) is associated with f(t) in (6.28) although the roles

that time and frequency play in the Fourier transform pair (6.49) and (6.50)
are interchanged when compared with the Fourier series (6.28) or the more
symmetric Fourier transform pair (6.29) and (6.30): in (6.49) and (6.50), the
time t = . . . ,−1, 0, 1, . . . is discrete and the frequency s is real, whereas, in
(6.29) and (6.30), the time t is real and the frequency sk = k/T is discrete
(with sk = k, k = . . . ,−1, 0, 1, . . . on condition that T = 1).

For example, the Fourier transforms of the rectangle and triangle se-
quences are derived in the following paragraphs. These sequences are, to-
gether with their Fourier transforms, the focal point of the discussions in
Sects. 6.5, 8.3 and 8.5.

1. ΠN (t) =
{

1 for t = 0, 1, . . . , N − 1
0 for t < 0 and N − 1 < t

is called rectangle sequence,

2. Π(e)
N (t) =

{
1 for t = −N−1

2 , . . . ,−1, 0, 1, . . . , N−1
2

0 for t < −N−1
2 and N−1

2 < t
is called even rectangle sequence.

(6.52)

ΠN (t) in (6.52,1) has N elements with value 1, the first one in time point
t = 0, the last one in t = N−1.Π(e)

N in (6.52,2) also hasN elements with value
1, however with centre in t = 0 which implies that N is odd. For example,
Π

(e)
7 (t) = (. . . , 0, 1, 1, 1, 1, 1, 1, 1, 0, . . .) for t = (. . . ,−4,−3,−2,−1, 0, 1, 2, 3,

4, . . .) is the even rectangle sequence with 7 non-zero values. Π(e)
N (t) is even

and ΠN (t) is mixed, as defined in (6.32).
The Fourier transforms of the rectangle sequences in (6.52) are calculated

as required in (6.49): F (s) =
∑∞

t=−∞ΠN (t)e−i2πst =
∑N−1

t=0 1 × e−i2πst, for

(ft) = ΠN (t), and F (s) =
∑∞

t=−∞Π
(e)
N ei2πst =

∑(N−1)/2
t=−(N−1)/2 1 × e−i2πst, for

(ft) = Π
(e)
N (t), are obtained; both transforms are given in (6.53).



6.3 Fourier Transforms 365

F−i

(
ΠN (t)

)
=

N−1∑
t=0

1 × e−i2πst F−i

(
Π

(e)
N (t)

)
=

(N−1)/2∑
t=−(N−1)/2

1 × e−i2πst

(6.53)
The sum on the left in (6.53) is evaluated and the Fourier transform of the
rectangle sequence

F−i

(
ΠN (t)

)
=
{

sin(πNs)
sin(πs) e−iπ(N−1)s for −1/2 ≤ s ≤ 1/2 and s �= 0
N for s = 0

(6.54)
is arrived at in Problem 6.15. From (6.54), the Fourier transform of the
even rectangle sequence is obtained using e−i2πst = e−i2πs(t+(N−1)/2) ×
ei2πs(N−1)/2. This Fourier transform is called Dirichlet kernel DN (s).

F−i

(
Π

(e)
N (t)

)
= DN (s) =

(N−1)/2∑
t=−(N−1)/2

1 × e−i2πst

= ei2πs(N−1)/2

(N−1)/2∑
t=−(N−1)/2

1 × e−i2πs(t+(N−1)/2)

= eiπs(N−1)
N−1∑
t=0

1 × e−i2πst

=
{

sin(πNs)
sin(πs) for −1/2 ≤ s ≤ 1/2 and s �= 0
N for s = 0

(6.55)

DN (s) in (6.55) is a real-valued function since it is the Fourier transform
F−i(Π

(e)
N (t)) of an even sequence, whereas F−i(ΠN (t)) in (6.54) is a complex-

valued function.
The even triangle sequence Λ(e)

2N+1 is defined in (6.56). Λ(e)
2N+1 has 2N −

1 (i.e., an odd number) non-zero values with centre t = 0. For example,
Λ

(e)
7 (t) = (. . . , 0, 0, 1/3, 2/3, 1, 2/3, 1/3, 0, 0, . . .) for t = (. . . ,−4, −3,−2,−1,

0, 1, 2, 3, 4, . . .) is the even triangle sequence with N = 3.

Λ
(e)
2N+1(t) =

{
1 − |t|

N for t = −N, . . . ,−1, 0, 1, . . . , N
0 for t at the exterior of this interval

is called an even triangle sequence.
(6.56)

In (6.56), N is the number of non-zero values in one half of Λ(e)
2N+1, whereas,

in (6.52), N is the total number of non-zero values.
The Fourier transform of the even triangle sequence is called Fejer ker-

nel FN (s). FN (s) = F−i

(
Λ

(e)
2N+1(t)

)
is obtained in (6.57) by convolving the

even rectangle sequence with itself using the paper strip device (2.38), apply-
ing convolution theorem (6.48,6), and then substituting DN (s) as defined in
(6.55).
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1
N

((
Π

(e)
N (t)

) ∗ (Π(e)
N (t)

))
= Λ

(e)
2N+1(t)

1
N

(
F−i

(
Π

(e)
N (t)

))(F−i

(
Π

(e)
N (t)

))
= F−i

(
Λ

(e)
2N+1(t)

)
1
N

(
sin(πNs)
sin(πs)

)(
sin(πNs)
sin(πs)

)
=

1
N

(
sin(πNs)
sin(πs)

)2

FN (s)=

{
1
N

(
sin(πNs)
sin(πs)

)2

−1
2 ≤ s ≤ 1

2 , s �= 0
N s = 0

}
= F−i

(
Λ

(e)
2N+1(t)

)
(6.57)

Both kernels DN (s) and FN (s) have similar properties which can be de-
duced directly from their definitions and which are summarised in (6.58) and
demonstrated in Fig. 6.11.

1. DN (s) and FN (s) are periodic with period 1
2. DN (s) and FN (s) are even
3. FN (s) ≥ 0 (not true for DN (s))
4. DN (s) = 0 and FN (s) = 0 for s = ±1/N,±2/N,±3/N, . . .
5. DN (s) = N and FN (s) = N for s→ 0 and 0 ← s.

(6.58)

Both, DN (s) and FN (s), are quotients of odd (sine) functions and therefore
are even, as concluded from (6.32,4), and both are periodic with period 1.
Consequently, they are known for all s provided that they are known in the
interval 0 ≤ s ≤ 1/2. For s → 0, DN (s) = FN (s) = N , as obtained in
(6.55) and (6.57). Since sin(πNs) = 0 for s = ±1/N,±2/N,±3/N, . . ., also
DN (s) and FN (s) become identically zero for these s. However, there are
two differences between DN (s) and FN (s): (i) FN (s) ≥ 0 for all s whereas
DN (s) < 0 for, e.g., 1/N < s < 2/N , and (ii) in DN (s), N is the number of
non-zero values in the even rectangle sequence, whereas, in FN (s), N is the
number of non-zero values in half the even triangle sequence.

Further properties ofDN (s) and FN (s) as proposed in (6.59) do not follow
directly from the definitions but are still easily derived:

1.
∫ 1/2

−1/2
DN (s)ds = 1 and

∫ 1/2

−1/2
FN (s)ds = 1, and

2. FN (s) → 0 for −1/2 ≤ s ≤ 1/2 and s �= 0,
provided that N → ∞.

(6.59)

(6.59,1) results from (6.48,1) since Π(e)
N (t) andDN (s) as well as Λ(e)

2N+1(t) and
FN (s) are Fourier transform pairs with Π(e)

N (t) = Λ
(e)
2N+1(t) = 1 for t = 0.

(6.59,2) holds since (1/N)
(
(sin(πNs))2/(sin(πs))2

) ≤ (1/N)
(
1/(sin(πs))2

)
and (1/N)

(
1/(sin(πs))2

) → 0 for −1/2 ≤ s ≤ 1/2 and s �= 0, on condition
that N → ∞.
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Fig. 6.11. Dirichlet kernels DN (s) (a) and Fejer kernels (b) for N = 4 (broken
lines) and N = 32 (solid lines). Below, plots (c) and (d), base-10 logarithms of
D32(s) and F32(s) (negative side lobes of DN (s) using at dotted line).

6.3.5 Delta Function

The Fourier transform of a function as required in (6.20) is obtained using
the appropriate definition, as introduced in Sects. 6.3.1, 6.3.2, 6.3.3 and 6.3.4.
There are, however, functions which are not in L2(−∞,∞) and thus have no
Fourier transform. Examples are a real constant f(t) = a, or the trigonomet-
ric function f(t) = cos(2πs1t), s1 a constant frequency. Fourier transforms of
functions not being in L2(−∞,∞) can be defined provided that the notion
of function is expanded by introducing the delta or impulse function δ(x).

δ(x) is called delta function, impulse function or Dirac δ,
on condition that:

1. δ(x) = lim
n→∞ δn(x) =

{
0 for x �= 0
∞ for x = 0

2.
∫∞
−∞ δn(x)dx = 1, for n = 1, 2, . . .

(6.60)

δ(x) in (6.60) is defined as the limiting case of δn(x), with δn(x) being
a sequence of functions having the properties required in (6.60): δ(x) is not
a function in the usual sense as, for example, f(t) = cos(2πs1t), s1 a real
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Fig. 6.12. On the left, in plot (a), functions for a = 0.5, 1, 2, 8, 32 and thus ba =
1, 0.5, 0.25, 0.0625, 0.015625 in the sequence ga(x) in (6.61); on the right, plot (b),
functions for n = 1, 2, 4, 8, 32 in the sequence fn(y) in (6.62).

constant, or f(x) = (1/(σ
√

2π))e−(1/2)((x−µ)/σ)2 , µ, σ real constants with
σ > 0.

Quite often, the sequences of functions (6.61) and (6.62) are used as
defining sequences for δ(x). If, in (6.61), a = 1, 2, . . . is assumed then
ba = 1/2, 1/4, . . . is implied since 2ab = 1, and, therefore, ga(x) becomes
a sequence of rectangles with decreasing widths and increasing heights, yet
all having unit area, as plotted in Fig. 6.12 (a). In the limit, ga(x) becomes
a “rectangle” with infinite height and zero width, still with unit area. Thus,
ga(x) is a defining sequence for δ(x).

δa(x) = ga(x) =
{
a for |x| ≤ ba
0 else

with 2aba = 1 for a = 1, 2, 3, . . . (6.61)

δn(y) = fn(y) =
(1/n)

π(y2 + (1/n)2)
n = 1, 2, 3, . . . (6.62)

If, in (6.62), n = 1, 2, 3, 4, 5, . . . is assumed then a sequence of functions with
increasing height n/π for y = 0 is obtained, as plotted in Fig. 6.12 (b). Since,
as derived in Problem 6.18, (i)

∫∞
−∞ fn(y)dy = 1 for all n and (ii) fn(y) → 0,

for n → ∞ and y �= 0, fn(y) has the properties required in (6.60). Hence,
fn(y) is a defining sequence for δ(x).

Other sequences of functions with properties as required in (6.60) are
feasible as a defining sequence for δ(x), e.g., a sequence of Gaussian functions
F (s) as proposed in (6.47), d = 1, 2, . . .. The functions in a defining sequence
for δ(x) resemble, in the limit, a spike possessing unit area but “infinite”
height and “zero” diameter, independent from the form of the functions, i.e.,
Gaussian, rectangle, etc., in the non-limiting cases.

A periodic version of the delta function δ(s + n), n = . . . ,−1, 0, 1, . . .
can be defined when the functions in the defining sequence (i) are periodic
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Fig. 6.13. A constant and its Fourier transform defined by the sequence aGb(s) in
(6.63): sequences of triangle functions (plot a) and their Fourier transforms (plot
b) for a = 8.5, b = 1, 2, 4, 8, 16.

with period 1, and (ii) have, in definition interval −1/2 ≤ s ≤ 1/2, the
properties required in (6.60). For example, a sequence of Fejer kernels FN (s),
N = 1, 2, . . ., having the properties (6.59) is a defining sequence for the
periodic delta function.

With the definition of the delta function in (6.60) you are now prepared
to calculate Fourier transforms of functions that are not in L2(−∞,∞). For
example, f(t) = a is arrived at as the limiting case of the sequence of triangle
functions agb(t) in (6.63) which increase in width for increasing b, as plotted
in Fig. 6.13 (a). agb(t) is Fourier transformed, in Problem 6.12, to aGb(s),

agb(t) = a

{
1− 1

b |t| |t| ≤ b
0 |t| > b aGb(s) = a

{
1
b

(
sin(πbs)

πs

)2

s �= 0
b s = 0

(6.63)

also in (6.63). When b increases, the oscillations in aGb(s) increase in height
and number, as plotted in Fig. 6.13 (b). In the limit, i.e., if b → ∞ then
Gb(s) → ∞ for s = 0 andGb(s) → 0 for s �= 0, since (1/b)

(
(sin(πbs))/(πs)

)2 ≤
(1/b)

(
1/(πs)

)2 and (1/b)
(
1/(πs)

)2 → 0, s �= 0, on condition that b → ∞.
Further, (6.48,1) implies that

∫∞
−∞Gb(s)ds = gb(0) = 1 for b = 1, 2, . . ., i.e.,

also in the limiting case when b→ ∞. Hence, Gb(s), b = 1, 2, 3, . . ., is a defin-
ing sequence for δ(s) as required in (6.60). Consequently, in (6.63), agb(t) = a
and aGb(s) = aδ(s), on condition that b → ∞, implying that aδ(s) is the
Fourier transform of the constant f(t) = a.

This example suggests the following procedure to obtain the Fourier trans-
form of a function f(t) that is not in L2(−∞,∞). Approximate f(t) using
a sequence of functions fn(t) which are (i) in L2(−∞,∞) and, (ii) converge
to f(t). fn(t) is chosen such that the sequence of Fourier transforms Fn(s) =
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Fig. 6.14. On the left, in plot (a), rectangle functions with height a and width
2ba in the sequence δa(x) as defined in (6.61) for a = 0.5, 1.0, 2.0, 8.0, 32.0 to-
gether with function f(x). On the right, in plot (b), products f(x)δa(x) for
a = 0.5, 1.0, 2.0, 8.0, 32.0.

F−i

(
fn(t)

)
is a defining sequence for δn(s) as required in (6.60), which im-

plies that, for all n including the limiting case, Fn(s) is in L2(−∞,∞).
Using this procedure, the constant a is Fourier transformed, above, to
aδ(s), and, in Problem 6.19, the trigonometric functions a1 cos(2πs1t) and
a2 sin(2πs2t), a1, a2, s1, s2 real constants, are shown to have Fourier trans-
forms (a1/2)δ(s− s1)+ (a1/2)δ(s+ s1) and (a2/2)δ(s− s2)− (a2/2)δ(s+ s2).

aδ(s) and (a2/2)δ(s−s2), and also δ(c1x+c2), f(x)δ(x),
∫∞
−∞ f(x)δ(x)dx

and G(y) ∗ δ(y) are examples given to illustrate terms incorporating a Dirac
δ. To evaluate such a term, substitute an appropriate δn(x) for δ(x), add,
multiply, integrate, etc. and thereafter obtain the result in the limiting case,
as demonstrated by the following examples.

As a first example, the evaluation of the product f(x)δ(x) is demonstrated
in Fig. 6.14. Plot (a) shows functions in sequence δa(x) as defined in (6.61) for
a = 0.5, 1.0, 2.0, 8.0, 32.0, and function f(x). f(x) is continuous in x = 0 with
f(0) > 0. If the delta function in the product f(x)δ(x) is substituted by the
sequence δa(x) (6.61), then the sequence of functions �a(x) = f(x)δa(x) =
af(x), for |x| < ba, and �a(x) = f(x)δa(x) = 0, for x at the exterior of this
interval, is obtained. Functions �a(x) for a = 0.5, 1.0, 2.0, 8.0, 32.0 are plotted
in Fig. 6.14 (b). Like δa(x), �a(x) becomes identically zero for x < −ba and
ba < x; for −ba ≤ x ≤ ba, however, �a(x) is an approximate rectangle
having width 2ba and height af(−ba) ≈ af(0) ≈ af(ba). For its integral,∫∞
−∞ �a(x)dx ≈ af(0) × 2ba ≈ f(0) is obtained, since 2aba = 1 as required

in (6.61). Consequently,
∫∞
−∞ �a(x)dx =

∫∞
−∞ f(x)δa(x)dx ≈ f(0) results.

The approximations of the height of �a(x), and therefore also of its inte-
gral, improve when its width 2ba decreases as a increases. In the limiting case
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for a → ∞, −ba → 0 and 0 ← ba are arrived at and, consequently, 2ba → 0
as well as af(−ba) = af(0) = af(ba), implying �a(x) = af(0) for x = 0 and
�a(x) = 0 for x �= 0 on condition that a → ∞.

∫∞
−∞ �a(x)dx = f(0) also

holds in this case, since, in (6.61), 2aba = 1 in the limiting case as well.
The same argument is used when assumption f(0) > 0 is omitted. If, for

example, f(x) < 0 in a small neighbourhood about 0 where f(x) is intersected
by the rectangle functions δa(x), negative products f(x)δa(x) are obtained
(imagine the positive products in Fig. 6.14 (b) as being symmetric to the
x-axis). This completes the derivation of (6.64).

f(x)δ(x) = f(0)δ(x) and
∫∞
−∞ δ(x)f(x)dx = f(0)

on condition that f(x) is continuous in x = 0.
(6.64)

(6.64) implies (6.65), (6.66), (6.67) and (6.68) provided that f(x) is continu-
ous for all x.∫ ∞

−∞
δ(a− x)f(x)dx = f(a) =

∫ ∞

−∞
δ(x)f(a− x)dx (6.65)∫ ∞

−∞
δ(a+ x)f(x)dx = f(−a) =

∫ ∞

−∞
δ(x)f(x+ a)dx (6.66)∫ ∞

−∞
δ(x− y)f(y)dy = f(x) = δ(x) ∗ f(x) (6.67)∫ ∞

−∞
f(x− y)δ(y)dy = f(x) = f(x) ∗ δ(x) (6.68)

In propositions (6.67) and (6.68), the convolution of f(x) with δ(x) results
in f(x). If, in convolution integral (2.28,1), function g(x) is substituted with
sequence δn(x) defining δ(x), then the integral exists since one of its functions
stems from a defining sequence δn(x) for δ(x) and is thus in L2(−∞,∞) by
definition. Hence, δ(x) is the identity element under convolution (2.28,1) for
functions with a real argument. In contrast, (ei) in (2.41) is the identity
element under convolution (2.28,2) for sequences.

As a second example, the evaluation of δ(c1x+ c2), i.e., a delta function
with an argument being a linear combination of variable x and constants c1
and c2, is demonstrated in the following derivation of (6.73). By substituting
δa(x) as defined in (6.61) for δ(x) in δ(c1x+ c2), (6.69) is obtained. In (6.70),
ga(x) is a rectangle with height a and width 2ba/c1, a, ba, c1 > 0, with an area
identical to those of the rectangle with height a/c1 and width 2ba, a, ba, c1 >
0, as given by gac(x) in (6.71).

ga(x) =
{
a for |c1x+ c2| ≤ ba
0 for x at the exterior of this interval

(6.69)

=
{
a for (−ba/c1 − c2/c1) ≤ x ≤ (ba/c1 − c2/c1)
0 for x at the exterior of this interval

(6.70)

gac(x) =
{
a/|c1| for (−ba − c2/c1) ≤ x ≤ (ba − c2/c1)
0 for x at the exterior of this interval

(6.71)
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=
{
a/|c1| for |x+ c2/c1| ≤ ba
0 for x at the exterior of this interval

(6.72)

δ(c1x+ c2) =
1
|c1|δ(x+ c2/c1) (6.73)

ga(x) in (6.70) can be substituted by gac(x) in (6.71), because in a defining
sequence δn(x) for δ(x), the form of the functions is not important in the
limiting case, as argued in the remarks to (6.62). Clearly, both ga(x) and
gac(x), resemble a spike having unit area but “infinite” height and “zero”
diameter in the limiting case, and thus have the properties required in (6.60).
Consequently, both sequences define the delta function, and (6.73) follows
easily by comparing (6.72) with (6.69).

(6.73) can also be obtained with the following plausible argument. The
integrals of the functions in a defining sequence for the delta functions are the
c1-fold of the unit area when the x-axis expands with factor c1. The too large
integrals are compensated by multiplying the functions with factor 1/c1, e.g.,
in the case of rectangle functions, reducing the height of the rectangles by the
same factor that expands their widths. The translation c2 of the functions in
the defining sequence does not, however, influence their form.

As a third example, the derivative δ̇(x) of δ(x) is obtained in Problem 6.20.
Obviously, to arrive at the derivative of the delta function, a sequence of
functions is substituted whose first derivatives can be easily calculated.

How can I envisage a mental picture of the delta function, you may ask
at the end of this section introducing the delta function. Imagine a sequence
of unit-area impulses (as used in Mechanics) which are measured with an
instrument having a limited resolution. When the impulses become more and
more concentrated, although their form can no longer be resolved, their inte-
gral can still be measured. When the impulses become infinitely concentrated
and infinitely strong, you will have conceptualized a sequence of delta func-
tions. Important is the integral of the impulses; their form is unimportant.
In Mathematics and Physics, similar idealised notions such as point obser-
vations (examples are given in Sect. 4.6.2), point masses, point charges, etc.,
are frequently used; clearly, however, these objects do not exist.

6.4 Spectra

In Sect. 6.1, the squared absolute values of the Fourier transform of a deter-
ministic sequence are called spectrum (plural: spectra) when plotted against
their frequencies. In such a plot, the frequencies of the oscillations in a se-
quence become visible, as demonstrated for the sawtooth-shaped sequence
in Figs. 6.1 and 6.2. “Hidden periodicities” in a sequence or function can be
revealed by calculating a Fourier transform and then a spectrum, not only
when dealing with sequences as required in (6.21,1) but in all cases in (6.20).
In this section, however, spectra are defined only for the cases (6.20,2,3).
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When, in case (6.20,2), a function is approximated in L2(−∞,∞) by its
Fourier series, the pertaining mean square error is analysed and the result in
(6.74) is arrived at.

1. If f(t) and fM (t) are as required in (6.28) then from the mean
square approximation error

∫ T/2

−T/2

(
f(t) − fM (t)

)2dt ≥ 0,

2. (2/T )
∫ T/2

−T/2
(f(t))2dt ≥ A2

0/2 +
∑M

k=1(A
2
k +B2

k)
is obtained, which is called Parseval’s identity (=)
or Bessel’s inequality (>).

3. If (i) f(t) and fM (t) are as required in (6.28) and
(ii) M → ∞, then the series of squared Fourier coefficients
A2

0/2 +
∑∞

k=1(A
2
k +B2

k) converges to (2/T )
∫ T/2

−T/2
(f(t))2dt.

(6.74)

(6.74,3) follows from the remarks to (6.149) where Bessel’s inequality
is obtained. Parseval’s identity is shown by multiplying both sides of f(t) =
limM→∞ fM (t) = A0/2+

∑∞
k=1(Ak cos(2πskt)+Bk sin(2πskt)) in (6.28) with

f(t), and thereafter integrating from −T/2 to T/2. Due to the convergence in
L2(−T/2, T/2), the integral of the series becomes the series of the integrals
of the terms and the result is obtained as in the derivation of (6.147) where
the term 2

∫ T/2

−T/2
f(t)fM (t)dt is integrated for finite M .

In case (6.20,3), function f(t) is L2(∞,∞) as required in (6.36), and
therefore in (6.35), its Fourier transform F (s) and thus |F (s)|2 are functions
of the real frequencies s. Fourier transform pairs as in (6.35) have properties
(6.48). Hence, applying (6.48,7), from the first line in (6.75), the convolution
integral in the second line is obtained, and Parseval’s identity follows with
(6.48,2).∫ ∞

−∞

(
f(t)

)2dt =
∫ ∞

−∞

((
f(t)

)
(
(
f(t)

))
e−i2πrtdt for r = 0

=
∫ ∞

−∞
F (s)F (r − s)dr =

∫ ∞

−∞
|F (s)|2ds for r = 0 (6.75)

|F (s)|2 is an even function of s provided that f(t) is a real-valued function
of t.

The left-side integrals in (6.75) and (6.74,2, Parseval’s identity) are often
proportional to the total energy of a physical system, e.g., when f(t) is a
speed or a voltage. In (6.75), the total energy is dissipated in −∞ < t <
∞, and in (6.74,2) in −T/2 ≤ t ≤ T/2. Consequently, the power of the
system is integrated on both sides in (6.75) and (6.74,2, Parseval’s identity) to
obtain the total energy: on the left sides over the time, and on the right sides
over the frequencies. In both cases (6.20,2,3), therefore, Parseval’s identity
distributes the energy dissipated in −T/2 ≤ t ≤ T/2 or −∞ < t < ∞ over
the frequencies. Even when

(
f(t)

)2 is not the power of a physical system, the
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power of a function f(t) with real argument t is said to be distributed over
the frequencies in (6.74,2) and (6.75).

This distribution cannot be separated from the Fourier representation
F (sk) or F (s) of f(t), i.e., from the representation of f(t) as a linear com-
bination of trigonometric functions. Also sequences (ft) (i.e., functions with
integer argument t) have Fourier representations F (sk) or F (s), as in (6.22)
or (6.49) and, consequently, also the power of sequences can be distributed
over the frequencies.

Let f(t) be a function with Fourier transform F−i

(
f(t)

)
or (ft) be a sequence with Fourier transform F−i(ft)
as defined in (6.22), (6.30), (6.35) or (6.49). Then:

1.
∣∣F−i

(
f(t)

)∣∣2 or
∣∣F−i(ft)

∣∣2is called spectrum or
power spectrum of f(t). Less frequently used are:

2. discrete power spectrum for |F (sk)|2 as function of the
Fourier frequencies sk in case (6.20,2) with F−i

(
f(t)

)
= F (sk),

3. energy density spectrum for |F (s)|2 as function of frequency s,
s real, in case (6.20,3) with F−i

(
f(t)

)
= F (s).

(6.76)

Definition (6.76,3) reflects the following considerations: |F (s)|2ds is, in (6.75),
the part of the total energy of f(t) that pertains to oscillations in the Fourier
representation of f(t) having frequencies between s and s+ds. Thus, |F (s)|2
is an energy density, with properties similar to the probability density of
a random variable: |F (s)|2 is the energy density in a small neighbourhood
about s, and not the energy in point s.

In applications, a spectrum is computed in two steps as demonstrated in
Sect. 6.1. In a first step, the observations (gt) are discretely Fourier trans-
formed using (6.22) or (6.26) to arrive at G(sk) or G(s′k). In the second
step, |G(sk)|2 or |G(s′k)|2 are plotted against the frequencies, preferably, as
demonstrated in Fig. 6.2 and recommended in the introductory remarks to
Sect. 6.1.3, after taking the logarithm.

6.5 Aliasing and Leakage

Time is a real dimension. In Geosciences therefore, variables that depend on
time are functions f(t) of the real argument t, on condition that they are, as
is the case in this chapter, assumed to be deterministic. Furthermore, f(t)
is assumed to be in L2(−∞,∞). This second assumption is not unrealistic
for the following reason. Usually, f(t) is observed for a finite interval (i.e.,
during a finite period) and, therefore, can be modified at the exterior of the
observational interval such that it is in L2(−∞,∞). If f(t) is in L2(−∞,∞)
then it has a Fourier transform F (s) as in (6.35), F (s) being a complex-valued
function of the real argument s.

f(t) is measured to obtain the sequence of observations (gt) by discretis-
ing the time and confining the measurements to a finite interval. The Fourier
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transform of (gt), i.e., G(sk) as required in (6.28), is a complex-valued func-
tion of the Fourier frequencies sk, thus being a function of a discrete ar-
gument, whereas F (s) is a complex-valued function of the real argument s.
G(sk) = F (s) for sk = s would be a wishful result. This remains however,
unless adequate precautions are taken, a wish, as shown in this section.

6.5.1 Measuring a Function f(t) with Real Argument t

For example, a Fourier transform pair f(t) and F (s), with both f(t) and F (s)
in L2(−∞,∞), is plotted in Fig. 6.15 (a) and (b) in the intervals −20.0 ≤ t ≤
20.0 and −2.0 ≤ s ≤ 2.0. The damped real-valued oscillation f(t) is chosen
to be even (6.32,1), and consequently, F (s) is also real-valued and even as
concluded from (6.37,1) and (6.32,4). f(t) and F (s) in Fig. 6.15 result with
s1 = 0.1, s2 = 0.7, a1 = 0.05 and a2 = 0.15 in (6.77) and (6.78).

f(t) =
2∑

l=1

fl(t) with fl(t) = 2e−|alt| cos(2πslt) (6.77)

F (s) =
2∑

l=1

Fl(s) with Fl(s) =
2al

a2
l +

(
2π(s−sl)

) +
2al

a2
l +
(
2π(s+sl)

) (6.78)

(gt) = f(t) for t = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2 (6.79)

G(sk) = 2
(N−1)/2∑

t=0

gt cos(2πskt) k = 0, 1, . . . , (N − 1)/2 (6.80)

f(t) is the sum of two cosine functions with frequencies sl which are damped
using negative exponential functions with exponent al, l = 1, 2. F (s) has
peaks at frequencies sl and decreases for |s| > max(sl), max(sl) the maximum
frequency sl. fl(t) is Fourier transformed, in Problem 6.23, to Fl(s) in (6.78).
F (s), the Fourier transform of f(t), is obtained using (6.48,5).

Geophysical variables are often measured with constant sampling intervals
∆t during a finite period T . In this chapter as well as in Chaps. 7, 8, 9 and
10, ∆t = 1 is assumed. This does not imply a basic restriction, as discussed
in the remarks to (6.92) in Sect. 6.5.2. From observations of f(t), beginning
at an integer time point, a sequence (gt) as defined in (6.79) is obtained. (gt)
is even, a property inherited from f(t), and, therefore, its Fourier transform
G(sk) is computed as required in (6.80) for frequencies 0 ≤ sk ≤ 1/2. G(sk)
is even and periodic with period 1.

In Fig. 6.15, for example, N = 41 and the measurement of f(t) as in plot
(a) produces sequence (gt), t = −20, . . . ,−1, 0, 1, . . . , 20, as in plot (c). By
Fourier transforming (gt) as required in (6.80), G(sk) in plot (d) is obtained.
G(sk) is defined for discrete −1/2 ≤ sk ≤ 1/2 and is periodic with period 1.
In contrast, F (s) is defined for real −∞ ≤ s ≤ ∞. Comparing plots (b) and
(d) in Fig. 6.15, it is concluded that G(sk) �= F (sk), −1/2 ≤ sk ≤ 1/2, for
the following two reasons:
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Fig. 6.15. Pairs of fourier transforms as defined in (6.77) and (6.78) (above, plots
(a) and (b)) as well as in (6.79) and (6.80) (below, plots (c) and (d)) in the intervals
−20.0 ≤ t ≤ 20.0 as well as 2.0 ≤ s ≤ 2.0 and 0.5 ≤ s ≤ 0.5, for s1 = 0.1, s2 = 0.7,
a1 = 0.05 and a2 = 0.15 as well as N = 41.

1. the peak in F (s) at frequency 0.1 appears inG(sk) at frequencies sk ≈ 0.1,
however with reduced height;

2. the peak in F (s) at frequency 0.7 appears in G(sk) at frequencies s ≈ 0.3
with approximately the same height as in F (s).

In this example, the first distortion in F (s) is judged to be a less serious distor-
tion than the second one. Consequently, prior to giving a second demonstra-
tion of the first distortion in Fig. 6.17, the second one, i.e., the displacement
of a peak, is made plausible.

To f(t), as plotted in Fig. 6.15 (a), pertains the real-valued Fourier trans-
form F (s) as plotted in Fig. 6.15 (b). F (s) is, because real-valued and positive
for all s, the absolute value of the trigonometric oscillations in the Fourier
representation (6.35) of f(t). The oscillations with frequencies s ≈ 0.7 in
F (s) are clearly apparent in G(sk), as plotted in Fig. 6.15 (d), with discrete
frequencies sk ≈ −0.3 or sk ≈ 0.3, both F (s) and G(sk) being even. The
reason for this phenomenon is made plausible in Fig. 6.16. If, for example,
the trigonometric oscillations as plotted in Fig. 6.16 are observed, using a
sampling interval ∆t = 1 at integer time points, oscillations with frequencies
s2, s3 and s4 appear as if they had frequency s1. s1 is called alias frequency
of s2, s3 and s4.

In general, aliasing occurs when oscillations in F (s) with |s| > 1/2 appear
in G(sk), −1/2 ≤ sk ≤ 1/2, with (f(t) and F (s) as well as (gt) and G(sk)
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Fig. 6.16. Functions cos(2πsit), s1 = 0.3, s2 = 0.7, s3 = 1.3, s4 = 1.7, cannot
be distinguished from each other when measuring at time points . . . ,−4,−3,−2,
−1, 0, 1, 2, 3, 4, . . . (plotted with symbol 0).

being Fourier transform pairs as demonstrated in Fig. 6.15. The aliasing is
thoroughly dealt with in Sect. 6.5.2. In applications, a possible distortion of
a Fourier transform or spectrum due to aliasing can be avoided or substan-
tially reduced on condition that the sampling interval ∆t is chosen to be
small enough, as proposed in the remarks to (6.92). This is feasible when an
instrument is available that allows for measuring with a sufficiently small ∆t.
Examples are given in Sect. 9.4.

When a function f(t) in L2(−∞,∞) is observed in order to obtain its
Fourier transform F (s), distortions which are not due to aliasing can also
occur. These distortions arise from observing f(t), which is defined for all
real −∞ < t <∞, in a finite interval. An observation interval is always finite
because resources available for a measurement are limited. For example, f(t)
is assumed as in (6.77) for −∞ < t <∞ with s1 = 0.01, s2 = 0.02, a1 = 0.002
and a2 = 0.0001. f(t) is shown in Fig. 6.17, plot (a), for −100.0 ≤ t ≤ 100.0,
and the logarithm of its Fourier transform F (s) below, in plots (c) and (e),
for −0.06 ≤ s ≤ 0.06 and 0.20 ≤ s ≤ 0.32. F (s) has two sharp and narrow
peaks close to frequency 0, and f(t) is only slightly damped.

f(t) is observed at time points t = −100, . . . ,−1, 0, 1, . . . , 100 to obtain
sequence (gt) as defined in (6.79). (gt) is shown in Fig. 6.17 (b). Thereafter,
(gt) is zero-padded symmetrically on both sides until N ′ = 401 to obtain
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Fig. 6.17. Fourier transform pairs f(t) and F (s) as defined in (6.77) (6.78) (on the
left) as well as (gt) and G(s′k) as defined in (6.79) (6.80)(on the right) for s1 = 0.01,
s2 = 0.02, a1 = 0.002, a2 = 0.0001, N = 201 and N ′ = 401; N ′ and G(s′k) as
required in (6.26) and (6.26). log10

(
|G(s′k)|

)
for G(s′k) > 0 is plotted using symbol

+, for G(s′k) < 0 using −.

its discrete Fourier transform G(s′k) at frequencies s′k in distance ∆s′k =
1/N ′ = 1/401 ≈ 0.0025, as concluded from (6.26), i.e., a reduction to half
of the distance ∆sk = 1/N = 1/201 ≈ 0.005 of the Fourier frequencies as in
(6.21,1). Thus, using a finer grid of frequencies, hopefully, the sharp peaks in
F (s) become better visible in G(s′k). log10|G(s′k)| is shown in Fig. 6.17, plots
(d) and (f), for −0.06 ≤ sk ≤ 0.06 and 0.20 ≤ sk ≤ 0.32, with both intervals
containing approximately 50 discrete frequencies s′k.
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In both intervals, G(s′k) is a very poor approximation of F (s). This (not
very encouraging) result is obtained when plots (d) and (f) are compared
with plots (c) and (e), in Fig. 6.17. It particularly irritates that:

1. G(s′k) takes negative values whereas F (s) > 0 for all s, and
2. |G(s′k)| � F (s) at the peaks of F (s), but |G(s′k|)| � F (s) between and

even in larger distance from the peaks (� (�) smaller (larger) by orders
of magnitude).

These distortions are said to be due to leakage. Clearly, they cannot be ne-
glected and, therefore, they are analysed in Sects. 6.5.3 and 6.7.

Examples such as those given in Figs. 6.15 and 6.17 demonstrate that
there are Fourier transform pairs F (s) = F−i

(
f(t)

)
as defined in (6.35) having

the following property: F (s) cannot be obtained without distortions from
observations of f(t). These distortions occur when f(t) is observed at N
discrete time points to obtain sequence (gt), after which the Fourier transform
G(sk) of (gt) is calculated. In both examples, G(sk) �= F (sk), −1/2 ≤ sk ≤
1/2, due to aliasing and leakage, both are described in Sects. 6.5.2 and 6.5.3.

As a prerequisite for the derivations in Sects. 6.5.2 and 6.5.3, the dis-
cretisation of time, when observing with sampling interval ∆t, is modelled in
(6.81), (6.82) and (6.84), assuming a non-finite duration of the observations.
In (6.81), f(t) is assumed to be (i) a real-valued function with the real ar-
gument t, and (ii) in L2(−∞,∞). Its Fourier transform F (s), as required in
(6.35), is also in L2(−∞,∞) and is defined for all real s.

F−i

(
f(t)

)
= F (s) =

∫ ∞

−∞
f(t)e−i2πstdt s, t real (6.81)

(gt) = f(t) for t = . . . ,−1, 0, 1, . . . with (6.82)

(gt) = F+i
(
G(s)

)
=
∫ 1/2

−1/2

G(s)ei2πstds (6.83)

(gt∆t) = f(t∆t) for t = . . . ,−1, 0, 1, . . .with (6.84)

(gt∆t) = F+i
(
G(s)

)
=
∫ 1/(2∆t)

−1/(2∆t)

G(s)ei2πst∆tds (6.85)

When f(t) is measured at time points t = . . . ,−1, 0, 1, . . ., i.e., using sampling
interval ∆t = 1, sequence (gt) in (6.82) is obtained, and, when using a general
sampling interval ∆t not required to be 1, (gt∆t) in (6.84) is arrived at.
Since both (gt) and (gt∆t) are in L2(−∞,∞), a property inherited from f(t),
both have periodic Fourier transforms G(s) as defined in (6.49) and (6.50)
(modified for a general ∆t in the case of (gt∆t)). Consequently, (6.83) and
(6.85) are obtained. In contrast, (gt) and G(sk) in (6.79) and (6.80) are a
Fourier transform pair as defined in (6.22).

In applications, an observation is restricted to a finite interval in the
time domain, as demonstrated in Figs. 6.15 and 6.17. For the descriptions
of aliasing and leakage, following in Sects. 6.5.2 and 6.5.3, it is however,
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assumed that, in (6.82) and (6.84), (gt) and (gt∆t) are available for all t and
t∆t, t = . . . ,−1, 0, 1, . . ..

6.5.2 Aliasing

Experiments such as those in Figs. 6.15 and 6.16 suggest that aliasing occurs
once the time is discretised when a variable is observed. A discretisation of
time solely (i.e., without confining the measurements to a finite period) is
modelled in (6.82) or (6.84). Assuming f(t), (gt∆t) and F (s) as defined in
(6.81) and (6.84), (gt∆t) is represented, in (6.86), as a Fourier transform of
F (s). Clearly, the derivation starts with this Fourier representation because
(gt∆t) is contructed from f(t).

(gt∆t) =
∫ ∞

−∞
F (s)ei2πst∆tds t,j integer, s real (6.86)

=
∞∑

j=−∞

(∫ (2j+1)/(2∆t)

s=−(2j−1)/(2∆t)

F (s)ei2πst∆tds
)

(6.87)

=
∞∑

j=−∞

(∫ +1/(2∆t)

r=−1/(2∆t)

F (r + j/∆t)ei2π(r+j/∆t)t∆tdr
)

(6.88)

=
∞∑

j=−∞

(∫ +1/(2∆t)

r=−1/(2∆t)

F (r + j/∆t)ei2πrt∆tdr
)

(6.89)

=
∫ +1/(2∆t)

r=−1/(2∆t)

( ∞∑
j=−∞

F (r + j/∆t)
)

ei2πrt∆tdr (6.90)

F−i(gt∆t) = G(s) =
∞∑

j=−∞
F (s+ j/∆t) for |s| ≤ 1

2∆t
(6.91)

(6.87) holds, since an integral can be evaluated as a sum of integrals. (6.88) is
obtained by substituting s = r+ j/∆t for s, to obtain an inner integral with
bounds that no longer depend on j. This advantage is paid for by having
j/∆t in the exponent of the e function. For kt = . . . ,−1, 0, 1, . . ., ei2πkt =
cos(2πkt) + i × sin(2πkt) = 1, and thus ei2π(s+j/∆t)t∆t = ei2πs∆tei2πjt =
ei2πs∆t is arrived at. Using this result, (6.89) follows with re

(
F (s)

)
and

im
(
F (s)

)
being in L2(−∞,∞). Hence, the summation and integration can

be performed in reversed order, and (6.90) is arrived at.
When comparing (6.90) with (6.85), it follows that

∑∞
j=−∞ F (r + j/∆t)

is the Fourier transform G(r) of (gt∆t), r substituted for s, as stipulated in
(6.91). In the above derivation of (6.91), F (s) is the Fourier transform of
f(t), the function being observed at time points t∆t, t = . . . ,−1, 0, 1, . . .
to obtain sequence (gt∆t). Consequently, G(s) in (6.91) is a sum of F (s)
and its duplicates which are displaced by j/∆t, j = . . . ,−1, 0, 1, . . .. For
every frequency s in −1/(2∆t) ≤ s ≤ 1/(2∆t), therefore, G(s) is the sum
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of the values of F (s) for frequencies s± 1/∆t, s ± 2/∆t, s ± 3/∆t, . . .. Thus,
trigonometric oscillations in F (s) with frequencies s ± 1/∆t, s ± 2/∆t, s ±
3/∆t, . . ., appear with frequency s in G(s).

Let f(t), (gt∆t), F (s) and G(s) be as in (6.81), (6.84)
and (6.91). Then:

1. s is called alias frequency of s± j/∆t, j �= 0.
2. The highest frequency that is not an alias of a lower one

is called Nyquist frequency: s(Ny) = 1/(2∆t).

(6.92)

Using the Nyquist frequency (6.92,2), two cases can be distinguished. In
the first case, F (s) = 0 for |s| > 1/(2∆t). This implies that F (s) in (6.91) re-
mains invariant once its displaced copies are added, resulting in G(s) = F (s)
for −1/(2∆t) ≤ s ≤ 1/(2∆t). In this case, G(s) will be a periodic version of
F (s) and no information on the oscillations inherent in f(t) will be lost when t
is discretised to obtain (gt∆t). Hence, f(t) can be interpolated from (gt∆t). An
interpolation function is obtained in the following calculation, assuming∆t =
1 and, therefore, observations (gu), u = . . . ,−1, 0, 1, . . .. Then, G(s) = F (s)
for −1/2 ≤ s ≤ 1/2 implies f(t) =

∫ 1/2

−1/2
F (s)ei2πstds =

∫ 1/2

−1/2
G(s)ei2πstds,

t and s real. Substituting G(s) = F−i(gu) =
∑∞

u=−∞ gue−i2πsu, u integer,

s real, f(t) =
∫ 1/2

−1/2

(∑∞
u=−∞ gue−i2πsu

)
ei2πstds is arrived at. The order of

integration and summation is reversed, as in the derivation of (6.51), and
f(t) =

∑∞
u=−∞ gu

(
sin(π(u − t))/(π(u − t))

)
is obtained, u integer, s real,

which can be used for interpolating f(t) from (gu).
In the second case, F (s) �= 0 for s < −1/(2∆t) and s > 1/(2∆t), implying

F (s) �= 0 for frequencies s ± 1/∆t, s ± 2/∆t, s ± 3/∆t, . . .. Since, in (6.91),
G(s) is the sum of F (s) and its displaced duplicates, G(s) is not a periodic
version of F (s) in −1/(2∆t) ≤ s ≤ 1/(2∆t) due to aliasing. This case (with
∆t = 1) is demonstrated using the Fourier transform pair f(t) and F (s)
in Fig. 6.15, (a) and (b). F (s) is re-plotted with higher resolution of the
time domain in Fig. 6.18 (a), and G(s), obtained as required in (6.91) from
F (s), is plotted in Fig. 6.18 (b). F (s) has a peak at frequency 0.7 which
appears in G(s) at its alias frequency −0.3 or 0.3, F (s) and G(s) being
even. Aliasing is also seen in the spectra |G(s)|2 and |G(sk)|2. |G(s)|2 in
Fig. 6.18 (c) is calculated using G(s), and |G(sk)|2 in plot (d) is calculated
using a discrete Fourier transform, as in (6.80), from (gt) in the time slice
t = −80, . . . ,−1, 0, 1, . . . , 80. Consequently, with N = 161, this time slice is
four times longer than the one used in Fig. 6.15 (c) and (d), where G(sk) has
been calculated from (gt) for t = −20, . . . ,−1, 0, 1, . . . , 20.

Let F (s) be a function in the frequency domain that cannot be measured
but which is known to be approximately identically zero for |s| > s0, i.e.,
F (s) ≈ 0 for |s| > s0, and let the Fourier transform of F (s), i.e., f(t) =
F+i

(
F (s)

)
, be a function such that it can be measured in the time domain.

Then, using the sampling interval ∆t = 1/(2s0), F (s) ≈ 0 at the exterior of
−1/(2∆t) ≤ s ≤ 1/(2∆t) and thus almost all oscillations in f(t) are captured
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Fig. 6.18. Fourier transform F (s) (plot a) of the function f(t) in Fig. 6.15 (a),
G(s) calculated from F (s) using (6.91) (plot b), spectrum |G(s)|2 calculated from
G(s) (plot c), and |G(sk)|2 calculated from a time slice of the observations (gt)
(plot d).

by the measurement. In applications, ∆t is chosen such that F (s) is small
at the exterior of −1/(2∆t) ≤ s ≤ 1/(2∆t). This usually is feasible since a
function F (s) being in L2(−∞,∞) becomes approximately identically zero
for −∞ ← s and s → ∞. Examples for choosing the sampling interval with
respect to the Nyquist frequency are given in Sect. 9.4, in the remarks to
Figs. 9.28 and 9.34.

Subsequent to the measurement, the observations are dealt with as se-
quence (gt) with argument t = . . . ,−1, 0, 1, . . .. This is not a principal restric-
tion, because a sampling interval ∆t �= 1 can be adapted, as implemented in
spec.univariate() introduced in Sect. 9.5.6.
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Fig. 6.19. Function F (s) (solid line) and discrete Fourier transforms G(s′k) (broken
lines) as in Fig. 6.17, for N = 301 and N ′ = 601 as well as N = 2401 and N ′ = 4801.

6.5.3 Leakage

A discrete Fourier transform of (gt), (gt) being observations of the damped
oscillations f(t) as required in (6.79), generates G(sk) = F−i(gt), and, as
demonstrated in Figs. 6.15 and 6.17, G(sk) �= F (sk), −1/2 ≤ sk ≤ 1/2, due
to aliasing and leakage. Distortions in G(sk) due to leakage are assumed to
be caused, in the remarks to Fig. 6.17, by an observational period confined to
N = 201. Does a further experiment with N > 201 confirm this speculation?

F (s) as in Fig. 6.17 (c) and (e) is drawn again, using a solid line, in
Figs. 6.19 and 6.20. At the exterior of −1/2 ≤ s ≤ 1/2, F (s) < 10−3 and the
function then decreases with increasing |s|. Hence, F (s) < 10−3 for s± 1, s±
2, . . ., −1/2 ≤ s ≤ 1/2, and, applying (6.91), it is concluded that G(s) ≈ F (s)
in −1/2 ≤ s ≤ 1/2, G(s) being the Fourier transform of (gt). Consequently,
distortions in G(s) due to aliasing can be neglected. Remember that: (gt) is
obtained from f(t) for t = . . . ,−1, 0, 1, . . . as defined in (6.83), i.e., that (gt)
is not confined to an observational period.

From (gt), three time slices (g(s)t ), (g(m)
t ) and (g(l)t ) as defined in (6.79)

are selected, with N (s) = 301, N (m) = 2401 and N (l) = 65535, all three
with ∆t = 1 since the sampling interval is inherited from (gt). (g(s)t ) and
(g(m)

t ) are symmetrically zero-padded (a sequence is zero-padded, in (6.26)
and (6.27), only on the right side) to obtain sequences with N (s)′ = 601 and
N (m)′ = 4801 values, whereas, following the recommendations in the remarks
to (6.27), (g(l)t ) is padded with only one zero on the right side, to arrive at
a sequence with N (l)′ = 65536 = 216 values. Thereafter, the discrete Fourier
transforms G(s)(s′k), G(m)(s′k) and G(l)(s′k) are computed from (g(s)t ), (g(m)

t )
and (g(l)t ) using fft(), as demonstrated in Sects. 6.3.1 and 6.9.8.
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Fig. 6.20. Function F (s) (solid line) and discrete Fourier transforms G(s′k) (broken
lines) as in Fig. 6.17, for N = 65535 and N ′ = 65536 (b), (c) and (d).

Since these Fourier transforms take positive and negative values, the loga-
rithms of their absolute values are plotted in Figs. 6.19 and 6.20, using a solid
line when positive, a broken line when negative (not visible in plot Fig. 6.20
(a)). Obviously, ∆s′k decreases with increasing length of the sequence, and
|G(s′k)| comes closer to F (s) ≈ G(s) at least in a small neighbourhood of
the peaks in F (s): G(m)(s′k) traces the secondary peak, G(l)(s′k) the primary
peak. At large distances away from those peaks (i.e., for higher frequencies),
however, the absolute values of all three discrete Fourier transforms, G(s)(s′k),
G(m)(s′k) and G(l)(s′k), are much larger than F (s).

The experiments shown in Figs. 6.17, 6.19 and 6.20 are repeated, in Prob-
lem 6.25, using functions F (s) as defined in (6.78). The F (s) used in Prob-
lem 6.25 are required to (i) be still small for s > 0.5 such that aliasing can be
neglected, and (ii) have peaks of moderate heights. From these experiments,
leakage is concluded to have the following appearance:

1. G(sk) or G(s′k) deviate from F (s) due to distortions that cannot be ne-
glected on condition that the peaks in F (s) are rather high. Higher peaks
generate larger distortions than smaller ones, thereby suggesting that the
distortions depend on the differences of the maxima and minima in F (s).

2. Peaks in F (s) are traced by G(sk) with negligible distortions provided
that enough observations are available. To resolve a narrow peak, more
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observations are needed than for resolving a wide peak, since ∆sk = 1/N
in (6.21).

3. Distortions are not confined to a small neighbourhood of the peaks, rather
|G(s′k)| � F (s) at larger distances away from the peaks. These distortions
even occur when N is large enough to trace the narrowest peak.

Since leakage depends (at least partially) on N , i.e., on the number of ob-
servations in applications, restricting observations to a finite time slice, e.g.,
−(N − 1)/2 ≤ t ≤ (N − 1)/2, of sequence (gt) is modelled in (6.94).

Sequence (gt), as used below in (6.93), (6.94) and (6.95), is defined in
(6.82) for t = . . . ,−1, 0, 1, . . ., and consequently, its Fourier transform G(s)
is obtained using (6.49). (gt) originates from f(t) as required in (6.82), i.e.,
f(t) is a function with real argument t, being in L2(−∞,∞), and having
Fourier transform F (s) as defined in (6.81). Please bear in mind that f(t)
and F (s) are a Fourier transform pair as defined in (6.35), whereas (gt)
and G(s) are a Fourier transform pair as defined in (6.49) and (6.50). In
−1/2 ≤ s ≤ 1/2, F (s) ≈ G(s), as concluded from (6.91), on condition that
a possible aliasing can be neglected, as demonstrated in Figs. 6.17, 6.19 and
6.20. The mathematical model for limiting the observational period to a finite
time slice of (gt), e.g., −(N − 1)/2 ≤ t ≤ (N − 1)/2 as proposed in (6.94),
applies, however, to every (gt) as obtained in (6.82) from f(t); in particular,
it does not depend on F (s) and a possible aliasing. These assumptions are
not restrictive.

G(s) = F−i(gt) =
∞∑

t=−∞
gte−i2πst (gt) as in (6.82) (6.93)

G(s) ∗DN (s) =
∞∑

t=−∞

(
(gt)

(
Π

(e)
N (t)

))
e−i2πst (6.94)

∫ 1/2

−1/2

G(r)DN(s− r)dr =
(N−1)/2∑

t=−(N−1)/2

gte−i2πst convolved as
in (6.144) (6.95)

The finite duration of a measurement is modelled in (6.94) by multiplying (gt)
with the even rectangle sequence Π(e)

N (t) as defined in (6.52): the observed
(gt), t = −(N−1)/2, . . . ,−1, 0, 1, . . . , (N−1)/2, are weighted with Π(e)

N (t) =
1, the non-observed (gt) with Π(e)

N (t) = 0. Consequently, only the observed
(gt) contribute to the Fourier sum on the right side in (6.94).

The left side in (6.94) is obtained with a version of the convolution theo-
rem (6.48,7) as derived in (6.145) for the case of a Fourier transform pair as in
(6.49) and (6.50): convolving G(s) and DN (s) in the frequency domain is the
counterpart of multiplying (gt) and Π(e)

N (t) in the time domain, since G(s)
and DN (s) are the Fourier transforms of (gt) and Π(e)

N (t). Thereafter, (6.95)
follows. From (6.95) it is concluded that G(sk) =

∫ 1/2

−1/2
G(r)DN (sk − r)dr,
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Fig. 6.21. Effects of the main lobe in DN (s) in (6.95). Function F (s) ≈ G(s) as
in Figs. 6.17 as well as in Figs. 6.19 and 6.20 together with the absolute value of
convolutions G(s) ∗ DN (s) as required in (6.95) for N = 301 (solid when positive,
broken when negative) and N = 2401 (with dots).

with G(sk) being a discrete Fourier transform of (gt) in a finite time interval
t = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N + 1)/2, i.e., that G(sk) is a distortion
of G(s) generated by its convolution with the Dirichlet kernel DN (s) (6.55),
having properties (6.58) and (6.59). This distortion is called leakage.

For example, the sums in (6.95) (in the exponential version of the discrete
Fourier transform) and (6.80) (in the cosine version) become identical for
frequencies sk provided that (gt) as defined in (6.79) is substituted in (6.95).

The main lobe and the side lobes of DN (s) have distinct effects on the
convolution integral

∫ 1/2

−1/2
G(r)DN (s− r)dr in (6.95). When convolved with

DN (s), peaks in G(s) that are narrower than the main lobe in DN (s) are
blurred, i.e., they become less high and wider. In Fig. 6.21, for example, F (s)
as in Figs. 6.19 and 6.20 is plotted together with convolutions G(s)∗DN (s) in
(6.95) for N = 301 and N = 2401. Remember that F (s) ≈ G(s) since aliasing
can be neglected, as argued in the remarks to Fig. 6.19. The width of the
secondary peak in G(s) is larger than the width of the main lobe in DN (s)
for N = 2401, and thus the secondary peak persists under the convolution
with DN (s): G(s) ∗ DN (s) ≈ G(s) ≈ F (s) in Fig. 6.21 and G(s′k) ≈ F (s′k)
in Fig. 6.19 locally within a small neighbourhood of the secondary peak of
F (s). ForN = 301 however, the secondary peak is blurred by the convolution,
as seen in Figs. 6.19 and 6.21. The primary peak of F (s), being narrow, is
blurred when convolved with DN (s) for both N = 301 and N = 2401. For
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Fig. 6.22. Effects of the side lobes in DN (s) in (6.95). Function F (s) ≈ G(s) as in
Figs. 6.17 as well as Figs. 6.19 and 6.20 together with DN (s − s1) and DN (s − s2)
for N = 301 and displacements s1 = 31/601 ≈ 0.01516 and s2 = 264/601 ≈ 0.4393.

N larger by an order of magnitude, however, even the primary peak persists
when convolved with DN (s), as shown for N = 65535 in Fig. 6.20 (b).

A side lobe in DN (s) becomes coincident with a peak in G(s) when the
displacement s in convolution integral

∫ 1/2

−1/2
G(r)DN (s−r)dr (6.95) becomes

larger than approximately the widths of the main lobe in DN (s) and the
peak in G(s). For these displacements, this convolution integral oscillates
and, possibly, | ∫ 1/2

−1/2
G(r)DN(s − r)dr| � |F (s)| for frequencies in a large

distance from a peak in F (s), since (i) the convolution integral is dominated
by the primary peak in G(s), and (ii) the side lobes in DN (s) alternate in
their sign with very slowly decaying absolute values.

In Fig. 6.22, for example, F (s) ≈ G(s) (as in Fig. 6.21) is plotted together
with duplicates of DN (s), N = 301, for displacements s1 = 31/601 ≈ 0.0516
and s2 = 264/601 ≈ 0.4393. Displacements being multiples of 1/601 =
1/N ′ = ∆s′k are chosen because s′k is the resolution of the discrete Fourier
transform G(s)(s′k) of the time slice (g(s)t ) for N = 301 (and zero-padded
until N ′ = 601) as plotted in Fig. 6.19. Shifting DN (s) by s1, a negative
side lobe becomes coincident with the primary peak in F (s) and, therefore,
convolution integral

∫ 1/2

−1/2
G(r)DN(s − r)dr (6.95) becomes negative, as is

apparent in Fig. 6.21. For a slightly larger displacement of DN (s), however,
a positive side lobe becomes coincident with the primary peak in F (s) and
the convolution integral becomes positive.

∫ 1/2

−1/2
G(r)DN (s− r)dr fluctuates

from positive to negative values and vice-versa because it is dominated by
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the primary peak located at frequency s = 0.02 in F (s) as F (0.02) � F (s)
for s not in a very small neighbourhood of s = 0.02. The primary peak in
F (s) dominates, however, the convolution integral not only for moderate but
also for large displacements of DN (s), e.g., for s2 = 264/601 ≈ 0.4393, a
side lobe, still being relatively high, aligns with the primary peak in F (s),
as is obvious from Fig. 6.22. For this reason, |G(s′k)| � F (s) for N = 301,
N = 2401 and N = 65535 in Figs. 6.19 and 6.20.

Convolution G(s) ∗ DN (s) in (6.94) and (6.95) is derived for functions
f(t), F (s) and G(s) as well as for sequence (gt) as in (6.81), (6.82) and (6.83).
Possible consequences of G(s) ∗DN (s) are: (i) a blurring of high and sharp
peaks in G(s), (ii) oscillations in G(s) ∗ DN (s), and (iii) |G(s) ∗ DN (s)| �
|G(s)| for frequencies in large distances from a peak in F (s). These distortions
are due to leakage. Extending the observational period by increasingN ,G(s)∗
DN (s) ≈ G(s) at the peaks in F (s) is arrived at; for large N , however, still
|G(s) ∗DN (s)| � |G(s)| results for frequencies in a larger distance from the
peaks. This leakage can be reduced as demonstrated in Figs. 6.27 and 6.28
on condition that DN (s) in G(s)∗DN (s) is substituted with an even function
H

(e)
N (s) which has smaller side lobes that DN (s).

Convolution G(s) ∗DN (s) in (6.94) and (6.95) not only produces distor-
tions when F (s) in (6.81) and (6.82) has sharp peaks and large differences
in its maximum and minimum but also when F (s) has a jump discontinu-
ity. For example, sequence (gt) = sin(0.1πt)/(0.1π), t = . . . ,−1, 0, 1, . . . in
Fig. 6.23 (a) and function G(s) in Fig. 6.23 (b) are a Fourier transform pair
as proposed in (6.49) and (6.50). G(s) is the rectangle function (6.38) with
b = 0.05 and a = 10 defined in −1/2 ≤ s ≤ 1/2 and periodic with period
1. The Fourier sum of (gt) for t = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2,∑(N−1)/2

t=−(N−1)/2 gte
−i2πst is identical with the Fourier sum

∑∞
t=−∞(g
t�

t )e−i2πst

on condition that (g
t�
t ) = (gt)

(
Π

(e)
N (t)

)
, i.e., (g
t�

t ) being the product of (gt)
with the even rectangle sequence Π(e)

N (t), as plotted for N = 127 in Fig. 6.23
(c). The Fourier transform of (g
t�

t ) is G
t�(s). For N = 127, log10|G
t�(s)|
is plotted in 0 ≤ s ≤ 1/2 in Fig. 6.23 (d).

Bearing in mind that G(s) in Fig. 6.23 (b) is plotted in usual scale whereas
the logarithms of the absolute values of G
t�(s) are plotted in Fig. 6.23 (d),
the effect of the convolution of G(s) with DN (s), N = 127, to arrive at
G
t�(s), becomes apparent when these plots are compared. The main lobe
in DN (s) blurs the jump of G(s) in s = 0.05 and, due to the side lobes in
DN (s), |G
t�(s)| ≈ 10−1 for s ≥ 0.05 despite G(s) = 0 for s ≥ 0.05. In
addition, the side lobes in DN (s) generate small oscillations in G
t�(s) for
s smaller than (but close to) the frequency s = 0.05 with the discontinuity
in G(s). These small oscillations which are often visible as an overshoot in
G
t�(s) are called Gibbs phenomenon.

Aliasing and leakage have been introduced in this section using math-
ematical models describing (i) the discretisation of time when observing a
function f(t) with real argument t and being in L2(−∞,∞) as defined in
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Fig. 6.23. Fourier transform pairs as in (6.49) and (6.50). On the left in plots (a)
and (c), sequences of the argument t = . . . ,−1, 0, 1, . . .; on the right in plots (b)
and (d), functions defined in −1/2 ≤ s ≤ 1/2 and periodically continued on the

exterior of this interval: (gt) and G(s) (a,b) as well as (g�t�
t ) = (gt)

(
Π

(e)
127(t)

)
and

G�t�(s) (c,d). Plot (d) shows log10|G�t�(s)| for 0 ≤ s ≤ 1/2, using broken lines
when G�t�(s) < 0.

(6.82) and (6.84) and (ii) the finite duration of the period with observations
in (6.94). Both, aliasing and leakage, depend on the form of F (s), i.e., the
Fourier transform of the function being observed, as demonstrated by the ex-
amples in Figs. 6.15, 6.17, 6.19, 6.20 and 6.23. How can the form of a function
be described?

6.6 Width of Functions in a Fourier Transform Pair

The form of a function or sequence can be described using the characteris-
tics to be defined in this section. For functions with at least one peak, the
dynamic range and the width at half height as defined in Sect. 6.6.1 can be
calculated. Other widths (equivalent, σ-, and autocorrelation) are defined in
Sects. 6.6.2 and 6.6.3 for functions in L2(−∞,∞) (with further restrictions
in the event of the equivalent width and σ-width). Using these definitions,
more light is shed on the observation that “wide” functions have a “narrow”
Fourier transform, and vice-versa. This reciprocity relationship is captured
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by, e.g., the similarity theorem (6.98) or the fundamental uncertainty rela-
tionship (6.107). For sequences, a related formulation can be obtained using
the definitions of band- and time-limited sequences in Sect. 6.6.4. Both terms,
wide and narrow, although being somewhat vague, will be used without quo-
tation marks to describe roughly the form of a function in the following parts
of the book.

6.6.1 Dynamic Range and Width at Half Height

The dynamic range and the width at half height are used to describe the form
of a real-valued function f(x) with real argument x having at least one peak.
The dynamic range is defined in (6.96), the width at half height in (6.97).

A function having either a high peak or a deep valley with steep sides
has a large dynamic range, whereas a function having only small peaks and
valleys has a small dynamic range.

Let f(x) be a real-valued function with f(x) > 0 in x1 ≤ x ≤ x2.

Then dyn
(
f(x)

)
= 10log10

(
maxx1≤x≤x2f(x)
minx1≤x≤x2f(x)

)
is called dynamic range of f(x) in x1 ≤ x ≤ x2.

(6.96)

dyn
(
f(x)

)
is measured in decibel (dB). The dB is a logarithmic unit used to

describe a ratio, e.g., 10 dB are an order of magnitude.
For example, F (s) as plotted in Figs. 6.19 and 6.20 has a large dynamic

range: approximately (10(4 − (−1)) = 50 dB for 0 ≤ s ≤ 0.06, and approxi-
mately (10(4 − (−3)) = 70 dB for 0 ≤ s ≤ 0.5 as is obvious from the plots
in logarithmic scale. In contrast, the Gaussian function f(t) = e−dπt2 with
d = 1/4 as plotted in Fig. 6.10 has a small dynamic range as it increases,
in −1 ≤ t ≤ 1, from 0.5 to 1.0 and thereafter decreases to 0.5: the dynamic
range of f(t) in this interval is approximately 3 dB.

Using the dynamic range, i.e., the logarithm of the ratio of the maxima
and minima of a function, details in the form of a function can no longer be
captured. For example, the twin peak of F (s) as plotted in Figs. 6.19 and 6.20
or the jump discontinuity of G(s) in Fig. 6.23 (b) cannot be inferred from
the large dynamic range of both functions. Consequently, a further definition
is required for the description of functions with peaks and valleys.

Let F (s) be a real-valued function with a maximum (a peak) in si.
Then B�

(
F (s)

)
= sj − sı is called width at half height of F (s)

on condition that sı < si and si < sj do exist such that
F (sı) = F (sj) = F (si)/2. The width at half height of
a minimum (a valley) in F (s) is calculated accordingly.

(6.97)

The width at half height of a function with more than one peak and/or valley
is the width at half height of the narrowest peak or valley. If a function H(s)
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Fig. 6.24. Dirichlet kernels for N = 301 (a) and N = 2401 (b) together with their
widths at half height.

has main and side lobes as do the Dirichlet and the Fejer kernels in (6.55)
and (6.57), then B∩

�
(
H(s)

)
is the width at half height of the main lobe of

H(s).
As a first example, B∩

�
(
DN (s)

)
, the width at half height of the main

lobe of the Dirichlet kernel (6.55), is obtained by plotting DN (s) in non-
logarithmic scale (as required in (6.97)) in the interval −2/N ≤ s ≤ 2/N for
N = 301 and N = 2401 in Fig. 6.24. The main lobe of DN (s) with height
DN (s) = N for s = 0 as in (6.58,5) is confined symmetrically on both sides
by defining DN (s) = 0 as base height, and, given this base height, (6.58,4)
implies the interval −1/N ≤ s ≤ 1/N . In this interval, DN (s) = N/2 for
sı ≈ −3/(5N) and sj ≈ 3/(5N) and, therefore, B∩

�
(
DN (s)

) ≈ 6/(5N). In
Fig. 6.24, B∩

�
(
D301(s)

)≈ 0.004 and B∩
�
(
D2401(s)

)≈ 0.0005.
An alternative base height could be used to confine the main lobe of

DN (s). For example, using the minima of the valleys on both sides of the
main lobe, another value for B∩

�
(
DN (s)

)
would be obtained. This example

demonstrates that the width at half height of a function f(x) depends on
how the peaks in f(x) are confined. For the Fejer kernel FN (s) in (6.57),
B∩
�
(
FN (s)

)≈ 7/(8N) is obtained also using base height FN (s) = 0.
As a second example, the width at half height of F (s) in (6.78) with

s1 = 0.01, s2 = 0.02, a1 = 0.002 and a2 = 0.0001 is determined. F (s) is
plotted in Figs. 6.17, 6.19 and 6.20, and, because it has two peaks, its width
at half height is the minima of those widths obtained for the two peaks
and the valley in-between, as required in the remark to (6.97). To calculate
these widths, F (s) is plotted with a sufficiently high resolution, e.g., as in
Fig. 6.25, base height 0 is chosen (although F (s) ≈ 0 in 0.01 ≤ s ≤ 0.02 as
seen in Fig. 6.21), and

1. for the left peak with F (s) ≈ 1000 for s1 = 0.01, F (s) ≈ 500 for s1l =
0.0097 and s1r = 0.0103, implying s1r − s1l = 6 × 10−4,
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Fig. 6.25. Function F (s) in Figs. 6.17, 6.19 and 6.20 (there plotted in logarithmic
scale) for the interval 0.08 ≤ s ≤ 0.022 (a); below peaks of F (s) together with their
widths at half height and Fourier frequencies for N = 8000 (c) and N = 80000 (d).
The rationale for plotting the Fourier frequencies is diagnostic (6.116).

2. for the right peak with F (s) ≈ 20000 for s2 = 0.02, F (s) ≈ 10000 for
s2l = 0.019985 and s2r = 0.020015, implying s2r − s2l = 3 × 10−5, and

3. for the valley in-between as difference of the frequencies at which F (s) is
at half heights of the left and the right peak, s2l − s1r ≈ 1 × 10−2,

are arrived at. Frequencies s1l, s1, s1r, s2l, s2 and s2r are shown in plots (c)
and (d) in Fig. 6.25. Consequently, B�

(
F (s)

)
= 3 × 10−5, as required in the

remark to (6.97).

6.6.2 Equivalent Width and σ-Width

Let F (s) = F−i

(
f(t)

)
be a Fourier transform pair as defined in (6.35). Then

f(t) is narrow on condition that F (s) is wide, and vice-versa, as demonstrated
by (i) the Gaussian functions in Fig. 6.10, (ii) the damped oscillations f(t)
and their Fourier transforms F (s) in Figs. 6.15 and 6.17, and (iii), for a
Fourier transform pair as defined in (6.49) and (6.50), the even rectangle se-
quence Π(e)

N (t) (6.52) and the Dirichlet kernel DN (s) (6.55). This reciprocity
is described by propositions (6.48,3), (6.99,2), (6.107) and (6.109). The in-
troduction of these reciprocity relationships for Fourier transform pairs com-
mences in this section with (6.98) (a version of (6.48,3)) and (6.99,2), whereas
(6.107) and (6.109) are proposed in Sects. 6.6.3 and 6.6.4.
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(6.48,3) is derived in (6.139), where, in the remarks, also a more symmetric
version of (6.48,3) is given, which is used to reformulate (6.48,3) in (6.98).

Similarity theorem: If F (s) = F−i

(
f(t)

)
as defined

in (6.35) then F−i

(|a|1/2f(at)
)

= (1/|a|1/2)F (s/a).
(6.98)

From (6.98) it is concluded that |a|1/2f(at) and (1/|a|1/2)F (s/a) are a Fourier
transform pair on condition that f(t) and F (s) are a Fourier transform pair,
i.e., that f(t) shrinks when F (s) expands, and vice-versa, as demonstrated in
Fig. 6.10 using the Gaussian functions. (6.98) applies to all cases of Fourier
transform pairs as defined in (6.20), not only for pairs as defined in (6.35).

In (6.99), the reciprocity in a pair of Fourier transforms as defined in (6.35)
is described, using the equivalent widths of f(t) and F (s). The equivalent
width B�

(
f(t)

)
of function f(t) is defined, in (6.99,1), as the width of a

rectangle with height f(0) and area
∫∞
−∞ f(t)dt, i.e., a rectangle function as

defined in (6.38), having height f(0), width B�
(
f(t)

)
and area

∫∞
−∞ f(t)dt,

acts as a substitute for f(t). Hence, a geometrically meaningful equivalent
width can be calculated only for functions with properties as required in
(6.99,1), provided that f(0) and the integral exist.

1. Let f(t) be in L2(−∞,∞), real-valued, continuous and positive
for all t, and have its maximum in t = 0, then
B�
(
f(t)

)
=
(∫∞

−∞ f(t)dt
)
/f(0) is called equivalent width of f(t).

2. If, in addition, F (s) = F−i

(
f(t)

)
then (6.48,1) implies

B�
(
f(t)

)
=

∫∞
−∞ f(t)dt
f(0)

=
F (0)∫∞

−∞ F (s)ds
=

1
B�
(
F (s)

)
(6.99)

(6.99,2), which can be also be written B�
(
f(t)

)×B�
(
F (s)

)
= 1, also holds

for Fourier transform pairs as defined in (6.49) and (6.50) having a sum of
f(t) substituted for the integral, since (6.48,1) also applies in this case. For
example, the equivalent widths of the even triangle sequence Λ(e)

2N+1(t) as
defined in (6.56) and of its Fourier transform FN (s) as proposed in (6.57) are
calculated, resulting in B�

(
Λ

(e)
2N+1(t)

)
= N/1 = N and B�

(
FN (s)

)
= 1/N ,

owing to (i)
∑∞

t=−∞ Λ
(e)
2N+1(t) = N as well as FN (s) = N for s = 0, and (ii)

Λ
(e)
2N+1(t)

)
= 1 for t = 0 as well as

∫∞
−∞ FN (s)ds = 1 as proposed in (6.59).

Consequently, B�
(
Λ

(e)
2N+1(t)

)×B�
(
FN (s)

)
= 1 as required in (6.99,2). Please

show, as a straightforward exercise, that (6.99,2) holds for Π(e)
N (6.52,2) and

its Fourier transform DN (s) (6.55).
In the case of a Fourier transform pair as in (6.35), (6.99,2) is demon-

strated by calculating the equivalent widths of Gaussian functions (6.47)
being plotted for some d in Fig. 6.10. Using (6.99,1), B�

(
f(t)

)
= 1/

√
d and

B�
(
F (s)

)
=

√
d are obtained, in accordance with (6.99,2).
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Gaussian function F (s) in Fig. 6.10 (b) becomes, subsequent to substi-
tuting σ

√
2π for

√
d, f for F and x for s, f(x) = (σ

√
2π)−1e−(1/2)(x/σ)2 ,

the probability density of the normal distribution with expectation µ = 0
and standard deviation σ. Consequently, B�

(
f(x)

)
= σ

√
2π is obtained as

the equivalent width of this normal density, and clearly, B�
(
f(x)

) �= σ2, i.e.,
the equivalent width is not identical with the second moment of f(x), even
though both are connected to the concentration of this distribution, as shown
in the remarks to (1.17).

An equivalent width can be calculated for every probability density with
expectation being identically zero, because a probability density has, provided
that µ = 0, the properties required in (6.99,1). In general, however, the
equivalent width is not identical with the second moment of a function, as is
obvious from a comparison of definitions (6.99,1) and (6.100).

Let f(t) be in L2(−∞,∞), real-valued and positive for all t.
Then:

1. µf =
∫∞
−∞ tf(t)dt is called the first moment, and

2. σ2
f =

∫∞
−∞(t− µf )2f(t)dt the second moment of f(t).

(6.100)

Using the second moment of a function with a first moment being identi-
cally zero, the σ-width of a function is defined in (6.101).

Let f(t) be in L2(−∞,∞), real-valued and positive for all t
with µf = 0 and

∫∞
−∞ f(t)dt = 1. Then

Bσ

(
f(t)

)
=
(
12
∫∞
−∞ t

2f(t)dt
)1/2 is called σ-width of f(t).

(6.101)

When definitions (6.101) and (6.100),2) are compared, it is concluded that
Bσ

(
f(t)

)
is proportional with 2

√
3 to σf , the root of the second moment of

f(t). The factor 2
√

3 makes the σ-width comparable to the width of a rect-
angle function with unit area. This is easily shown by integrating a rectangle
function f(t) as defined in (6.38) with a = 1/(2b) to obtain its second moment
σ2

f = b2/3 from which
√

12σf = 2
√

3σf = 2b is obtained as its σ-width.

6.6.3 Autocorrelation Width and Uncertainty Relationship

Since µf = 0 is assumed in (6.101), the σ-width is geometrically meaningful
only when computed for a function f(x) having its maximum in or close to
x = 0, a property shared with the equivalent width as defined in (6.99,1). To
describe a function f(x) having a peak not close to x = 0, either the width
at half height (6.97) is calculated, or, as an alternative, the autocorrelation
width as defined in (6.104), subsequent to the preliminaries in (6.102) and
(6.103).

When convolving sequences (ai) and (bi) as required in (2.28,2), the order
of the values in either (ai) or (bi) is reversed, as demonstrated when convolv-
ing using the paper strip device (2.38). When convolving functions f(t) and
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g(t) with real argument t as required in (2.28,1), the direction of the t-axis in
either f(t) or (g(t) is reversed, as demonstrated in Problem 2.11. In a similar
manner, however without changing the sign of the argument in one of the
sequences or functions, the �-transformation is defined in (6.102).

Let f(t) and g(t) be real-valued functions as well as
(ft) and (gt) be real-valued sequences in L2(−∞,∞). Then:

1. h(t) =
(
f(t)

)
�
(
g(t)

)
=
∫∞
−∞ f(u)g(t+ u)du

2. (ht) = (ft) � (gt) =
∑∞

u=−∞ fugt+u

(6.102)

The �-transformation has properties similar to those of the convolution,
with the following differences.

Convolution theorem (6.48,7) is derived twice: (i) in (6.143) for Fourier
transform pairs as in (6.35), and (ii) in (6.145) for Fourier transform pairs as
in (6.49) and (6.50). A corresponding theorem is derived in (6.150) for the
�-transformation: if (ht) = (ft)�(gt) then H(s) = F (s)G(s) on condition that
F (s) = F−i

(
f(t)

)
, G(s) = F−i

(
g(t)

)
and H(s) = F−i

(
h(t)

)
. This theorem

also applies to sequences being �-transformed.
The convolution is commutative whereas the �-transformation is not com-

mutative, as shown in the remarks to (2.35).
Using the �-transformation, the autocorrelation of a deterministic func-

tion is defined in (6.103).

Let f(t) be a real-valued function in L2(−∞,∞). Then

f �f(t) =
(
f(t)

)
�
(
f(t)

)
=
{∫∞

−∞ f(u)f(u+ t)du for real t∑∞
u=−∞ fufu+t for integer t

is called autocorrelation of f(t).

(6.103)

For example, h�h(t) = 10 for t = 0 in Fig. 6.34 (c) and, as implied by this
example, f � f(t) > 1 is not excluded in (6.103) whereas, in Statistics, a
correlation is always between −1 and 1.

From definition (6.103) it is concluded that f � f(t) = f � f(−t), and
therefore, f � f(t) is an even function as defined in (6.32). Consequently,
applying (6.37,1), the Fourier transform of f�f(t) is real-valued, with F−i

(
f�

f(t)
)

= F (s)F (s) = |F (s)|2, with F (s) = F−i

(
f(t)

)
, as shown in the remarks

to (6.150). Further, f �f(t) is maximal in t = 0 as derived in (6.151).
As an aside, an autocorrelation shares the property of being an even

function with (i) the covariance and correlation functions of a stochastic
process since (2.4,3) implies (2.7,1), and (ii) the empirical covariance and
correlation functions of a time series as a direct consequence of (2.1,3). In
contrast, the self-convolution f∗f(t) of a function f(t) is, in general, a mixed
function as defined in (6.32), and F−i

(
f ∗f(t)) = F (s)F (s) in (6.48,6) is

complex-valued. Examples are plotted in Figs. 6.33, 6.34 and 6.35.
Owing to these properties, i.e.,

∫∞
−∞ f �f(t)dt < ∞, f �f(0) > 0 and

f �f(0) ≥ f �f(t), the equivalent width of an autocorrelation as defined in
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(6.104) is geometrically meaningful in most cases. The third = in (6.104) is
obtained applying (6.48,1) and F−i

(
f �f(t)

)
= F (s)F (s) = |F (s)|2 as shown

in the remarks to (6.150).

Let f(t) be a real-valued function in L2(−∞,∞). Then

B�

(
f(t)

)
= B�

(
f �f(t)

)
=

∫∞
−∞ f �f(t)dt
f �f(0)

=
F (0)F (0)∫∞

−∞
(
F (s)F (s)

)
ds

is called autocorrelation width of f(t).

(6.104)

For example, the equivalent width, the σ-width and the autocorrelation width
of the sequences on the left in Fig. 6.36 are computed in Problem 6.27.

The functions and/or sequences in a Fourier transform pair are subject
to a reciprocity: the function or sequence in the time domain is narrow on
condition that its Fourier transform in the frequency domain is wide, and
vice-versa, as demonstrated by the examples listed in the introduction to
Sect. 6.6.2. This reciprocity is described by the similarity theorem in (6.98),
applying the equivalent widths in (6.99,2) or, as a third possibility, by the
fundamental uncertainty relationship in (6.107). In (6.107), the somewhat
special second moments (written as in [18]) are arrived at under the assump-
tion that f(t) and F (s) are a Fourier transform pair as defined in (6.35)
using the following arguments. Since, in (6.35), F (s) can be complex-valued
when, e.g., f(t) is real-valued, the second moment of both functions cannot be
calculated using (6.100), a definition applying to real-valued functions only.
However, the squares of the absolute values of both functions, |f(t)|2 and
|F (s)|2, are (i) even as required in (6.32) and (ii) real-valued owing to (6.37).
Additionally,

∫∞
−∞ |f(t)|2dt =

∫∞
−∞ |F (s)|2ds is implied by (6.75).

In addition,
∫∞
−∞ |f(t)|2dt =

∫∞
−∞ |F (s)|2ds = 1 is assumed. This prop-

erty is arrived at by standardising f(t) = f(t)/Σ(f2), with Σ(f2) =∫∞
−∞ |f(t)|2dt. Then |f(t)|2 as well as |F (s)|2 have the properties of a prob-

ability density function, and the second moments of both |f(t)|2 as well as
|F (s)|2 are obtained in (6.105), provided that µ2

|f2| = µ2
|F 2| = 0, as required

in (6.101). These moments are then multiplied in (6.106).

σ2
|f2| =

∫ ∞

−∞
t2|f(t)|2dt σ2

|F 2| =
∫ ∞

−∞
s2|F (s)|2ds (6.105)

σ2
|f2|σ

2
|F 2| =

(∫ ∞

−∞
t2|f(t)|2dt

)(∫ ∞

−∞
s2|F (s)|2ds

)
(6.106)

σ2
|f2|σ

2
|F 2| ≥

1
16π2

(6.107)

From (6.106), inequality (6.107) is obtained, e.g., in [18]. This inequality
is called uncertainty relationship, fundamental uncertainty relationship or
Heisenberg’s uncertainty relationship.

Assume that {f(t)} is the set of all real-valued f(t) in L2(−∞,∞)
and {F (s)} the set of all possibly complex-valued F (s) with re(F (s)) and
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im(F (s)) in L2(−∞,∞). Then the uncertainty relationship restricts the pairs
of functions

(
f(t), F (s)

)
in the cross-product of {f(t)} and {F (s)} to those

with σ2
|f2|σ

2
|F 2| ≥ 1/16π2 as being feasible in a Fourier transform pair. Thus,

the uncertainty relationship sets a lower bound to σ2
|f2|σ

2
|F 2|, f(t) and F (s)

being a Fourier transform pair (6.35). The uncertainty relationship has multi-
faceted consequences [40], when the lower bound is interpreted as physical
limit in Quantum Mechanics by Heisenberg, cf. [65] or [64].

When applied to F (s) = F−i

(
f(t)

)
as defined in (6.35), the uncertainty

relationship implies that f(t) is narrow on condition that F (s) is wide, and
vice-versa, since, obviously, |f(t)|2 is wide provided that f(t) is also wide and
|f(t)|2 is narrow provided that f(t) is narrow as well. Thus, the uncertainty
relationship is the third reciprocity relationship for Fourier transform pairs,
the first one being (6.98) and the second one (6.99,2). The fourth reciprocity
relationship (6.109) is proposed using definitions (6.108) in Sect. 6.6.4.

6.6.4 Time-limited and Band-limited Sequences

With a = 1, the rectangle function (6.38) becomes �b(t) = 1, for |t| ≤ b,
and �b(t) = 0, for |t| > b. The Fourier transform of �b(t) is F−i

(�b(t)
)

=(
2b sin(2πbs)

)
/(2πbs). �b(t) has two discontinuities: it jumps from 0 to 1

in t = −b and then back to 0 in t = b. In contrast,
(
2b sin(2πbs)

)
/(2πbs)

oscillates on both sides of its primary peak taking positive and negative
values in −∞ < s < ∞. Consequently, no frequency s1 > 0 exists such
that

(
2b sin(2πbs)

)
/(2πbs) = 0 for |s| > s1.

Similarly, the triangle function gb(t) in (6.63) becomes identically zero at
the exterior of −b ≤ t ≤ b and its Fourier transform Gb(s), being positive
for −∞ < s < ∞, has an infinite number of secondary peaks separated by
Gb(s) = 0 on both sides of the main peak, as demonstrated in Fig. 6.13. This
behaviour is shared by Fourier transform pairs as defined in (6.49) and (6.50),
as demonstrated by the even rectangle and triangle sequences Π(e)

N (t) and
Λ

(e)
N (t) as defined in (6.52) and (6.56) together with their Fourier transforms,

i.e., the Dirichlet and the Fejer kernels DN (s) and FN (s) in (6.55) and (6.57).
However, there are Fourier transform pairs that do not behave in this

manner. In both domains, the Gaussian functions f(t) = e−dπt2 and F (s) =
(1/

√
d)e−π 1

d s2
in Fig. 6.10, for example, are continuous and smooth and do

not become identically zero for intervals |t| > t1 or |s| > s1. The difference in
their behaviour suggests that the oscillations in the Fourier transforms of the
rectangle and triangle functions and sequences are generated by the property
that these functions become abruptly identically zero at the exterior of a
finite interval in the time domain.

This suggestion is accepted because, hopefully, a closer look at the be-
haviour of Π(e)

N (t) and DN (s) and similar Fourier transform pairs could result
in a means to reduce the height of the side lobes of DN (s) and, consequently,
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any leakage produced by the side lobes of DN (s) in (6.93) and (6.94). The
following investigation begins with definitions (6.108):

1. A real-valued sequence (g
t�
t ), t = . . . ,−1, 0, 1, . . ., is called

time- or index-limited, on condition that (g
t�
t ) = 0 for

|t| > (N − 1)/2, N a positive and odd integer number.
2. A real-valued sequence (g
s�

t ), t = . . . ,−1, 0, 1, . . ., is called
frequency- or band-limited, on condition that (i) G
s�(s) = 0
for |s| > s0, 0 < s0 < 1/2 and (ii) (g
s�

t ) and G
s�(s)
are a Fourier transform pair as in (6.49) and (6.50).

(6.108)

In (6.108), a superscript 
t� denotes a finite interval in the time domain and
a 
s� denotes a finite interval in the frequency domain. A finite interval in
the frequency domain is called a frequency band or band. Consequently, a
sequence having property (6.108,2) is called band-limited.

The interval |t| ≤ (N − 1)/2 in (6.108,1) with its centre in t = 0 does
not induce a fundamental restriction, since the origin of the time domain can
be shifted, e.g., in the centre of N1 ≤ t ≤ N2 in case of a sequence being
identically zero at the exterior of t = N1, . . . , N2 with N1 < N2 such that the
interval contains an odd number of time points. For example, the rectangle
sequence ΠN (t) in (6.52) is time-limited as defined in (6.108,1), on condition
that the origin of the time domain is shifted in the centre of ΠN (t) and N is
odd.

Without shifting the origin of the time domain, the even rectangle and
triangle sequences as defined in (6.52) and (6.56), as well as the sequence
(g
t�

t ) in Fig. 6.23 (c), are time-limited sequences as defined in (6.108,1).
The Fourier transforms of these sequences are the Dirichlet and the Fejer
kernels as well as function (G
t�(s) = F−i(g
t�

t ) as plotted in Fig. 6.23 (d),
all of which are not identically zero (except their nulls) in −1/2 ≤ s ≤ 1/2.
Consequently, these sequences are not band-limited. In contrast, sequence (gt)
in Fig. 6.23 (a) is band-limited because its Fourier transform G(s) in Fig. 6.23
(b), being a rectangle function as defined in (6.38), becomes identically zero
for |s| > b = 0.05. Sequence (gt) is, however, not time-limited.

The above examples demonstrate property (6.109) of real-valued se-
quences.

A real-valued sequence is either time- or band-limited,
i.e., it does not have both properties. (6.109)

(6.109) is easily derived using convolution theorems (6.48,6,7) which also
apply to Fourier transform pairs as defined in (6.49) and (6.50).

Firstly, it is shown that a time-limited sequence is not band-limited.
Let (g
t�

t ) be a time-limited sequence as required in (6.108,1). Then a
sequence (gt), t = . . . ,−1, 0, 1, . . ., exists such that g
t�

t = gt for t =
−(N−1)/2, . . . ,−1, 0, 1, . . . , (N−1)/2. At the exterior of this interval, (gt) is
arbitrary, possibly it may even have the property that a frequency s0 exists
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such that G(s) = 0 for |s| > s0, 0 < s0 < 1/2, i.e., (gt) may be band-
limited. From (gt), (g
t�

t ) is obtained as (g
t�
t ) = (gt)Π

(e)
N (t) in the time

domain, and the convolution theorems imply G
t�(s) = G(s) ∗ DN (s) in
the frequency domain. In −1/2 ≤ s ≤ 1/2, DN (s) becomes identically zero
only for s = ±1/N,±2/N,±3/N, . . . as required in (6.58) which implies that
G(s) ∗ DN (s) = 0 only for isolated frequencies s, i.e., at its nulls. Conse-
quently, there is no 0 < s0 < 1/2 such that G
t�(s) = 0 for |s| > s0 i.e.,
(g
t�

t ) is not band limited. This is demonstrated by the sequences (gt) and
(g
t�

t ) and their Fourier transforms G(s) and G
t�(s) in Fig. 6.23.
Secondly, it is shown, in Problem 6.29, that a band-limited sequence is

not time-limited.
The definitions introduced in this section are used to describe the form

of a function or sequence. When they are applied to functions and/or se-
quences pertaining to a Fourier transform pair, four reciprocity relationships
can be proposed which all imply, in different ways, that wide functions have a
narrow Fourier transform, and vice-versa. The fourth reciprocity relationship
(6.109), requiring that a real-valued sequence is either time- or band-limited,
is connected with the property that a time-limited sequence has a Fourier
transform which oscillates, i.e., has a primary peak flanked by secondary
peaks on both sides. Obviously, a time-limited sequence (g
t�

t ) as defined in
(6.108,1) can approach zero, close to the endpoints of interval |t| ≤ (N−1)/2
where (g
t�

t ) �= 0, in many possible ways. Does the form of (g
t�
t ) close to

−(N − 1)/2 and (N − 1)/2, have an impact on the secondary peaks in its
Fourier transform G
t�(s)? An answer is given in Sect. 6.7.

6.7 Using a Data Taper to Reduce Leakage

Damped oscillation f(t) and its Fourier transform F (s) as defined in (6.77)
and (6.78) are plotted for s1 = 0.01, s2 = 0.02, a1 = 0.002 and a2 = 0.0001
in Figs. 6.17, 6.19 and 6.20. f(t) is an even (6.32) function and, because f(t)
is even, F (s) is real-valued and even as concluded from (6.37). In (6.79), se-
quence (gt) is constructed from f(t) such that (gt) is both real-valued and
even, and thus has a discrete Fourier transform G(sk) = F−i(gt) with these
properties. These even example functions are special cases selected to demon-
strate, in Sect. 6.5, aliasing and leakage using a relatively small number of
plots (when dealing with complex-valued functions, their real as well as imagi-
nary parts have to be plotted). Aliasing is reduced, as proposed in the remarks
to (6.92), by choosing a sampling interval∆t such that F (s) is small at the ex-
terior of −1/(2∆t) ≤ s ≤ 1/(2∆t), on condition that an instrument and data
acquisition system is available that allows for the possibly small ∆t required.
Leakage due to the main lobe of DN (s) in (6.94) and (6.95) is reduced by
increasing N as demonstrated in Fig. 6.21, whereas leakage due to the side
lobes of DN (s) remains substantial with increasing N as demonstrated in
Figs. 6.20 and 6.22.



400 6 Fourier Transforms of Deterministic Functions

6.7.1 Data Taper

Leakage due to the side lobes of DN (s) can be reduced on condition that
DN (s) in the convolution integral G(s)∗DN (s) proposed in (6.94) and (6.95)
is substituted with an even function H(e)

N (s), having smaller side lobes than
DN (s). H(e)

N (s) is the Fourier transform of the data taper h(e)
N (t) being intro-

duced in (6.110).

Let (i) H(e)
N (s) = F−i

(
h

(e)
N (t)

)
be a Fourier transform pair as defined

in (6.49) and (6.50), with N = 1, 2, 3, . . ., and (ii) w be a smooth (i.e.,
with continuous derivative) function that maps the real numbers into
the closed interval [0, 1] such that w

(−(x− 1)
)

= w(x− 1), w(1) = 1
and w(x) = 0 for x at the exterior of 0 ≤ x ≤ 2. Then:

1. h(e)
N (t) = w

(
(2t)/N + 1

)
is an even data taper provided that N is odd,

and H(e)
N (s) is the kernel pertaining to h(e)

N (t),
2. hN (t) = w

(
(2t)/N

)
is a data taper with HN (s) being its kernel.

Other names for hN (s) and h(e)
N (s) are data window or fader.

(6.110)
Both, h(e)

N (t) and H(e)
N (s), are real-valued and even and thus are special cases.

This minor disadvantage is overcompensated, as in Sect. 6.5, by the reduction
of the number of plots needed for demonstrating convolutions with kernel
H

(e)
N (s), e.g., G(s) ∗ H(e)

N (s) as in 6.114. A general real-valued data taper,
i.e., a data taper that is not restricted to being even, is obtained in (6.110,2)
by shifting h(e)

N (t). hN (t) can be applied to observations available for time
points t = 0, 1, . . . , N − 1.

The kernel g(t, u) and the limits a and b, in (2.33), distinguish one par-
ticular integral transform from another. The convolution integral as defined
in (2.28,1) is shown to be, in (2.34), time-invariant as defined in (2.32). For
example, DN (s) and FN (s), when used in a convolution integral, are the ker-
nels pertaining to Π(e)

N (t) and Λ(e)
N (t), i.e., the even rectangle and triangle

sequences as defined in (6.52) and (6.56).
An even data taper h(e)

N (t) as defined in (6.110) is a time-limited sequence
as required in (6.108). Consequently, h(e)

N (t) is not band-limited, as concluded
from (6.109), a property which implies that no frequency 0 < s0 < 1/2 does
exist such that the pertaining kernel H(e)

N (s) = 0 for |s| > s0. As a second
property, inferred from the examples in Sect. 6.6.4, H(e)

N (s) oscillates, i.e.,
has a primary peak flanked by secondary peaks on both sides.

From h
(e)
N (0) = 1,

∫ 1/2

−1/2
H

(e)
N (s)ds = 1 is obtained applying (6.48,1).

Definition (6.110) is relatively strict. In particular, w is required to be a
smooth function: this excludes Π(e)

N (t) and Λ(e)
N (t) from being an even data

taper as required in (6.110). The property that w is a smooth function is
“inherited” by h(e)

N (t) (in the sense that h(e)
N (t) appears smooth when plotted)
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and thus, hopefully, asserts that the side lobes of H(e)
N (s) are smaller than

those of DN (s). This favourable property is hoped for because the Gaussian
functions f(t) = e−dπt2 and F (s) = d−1/2e−π 1

d s2
in Fig. 6.10, although not

becoming identically zero for intervals t1 ≤ t ≤ t2 or s1 ≤ s ≤ 22, are smooth
in both domains.

As an example for a sequence having the properties required in (6.110),
the even cosine taper is defined in (6.111,2).

Let t be an integer, N a positive integer, p real with
0 ≤ p ≤ 0.5, and q the largest integer with q ≤ pN . Then

1. h
�

N (t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 for t < 0
1
2

(
1 − cos

(
π(2t+1)

2q

))
for 0 ≤ t < q

1 for q ≤ t < N − q
1
2

(
1 − cos

(
π(2(N−1−t)+1)

2q

))
for N − q ≤ t < N

0 for N ≤ t
is called cosine taper (or cosine bell taper) for N and p.
If, in addition, N is odd and M = (N − 1)/2, then

2. h(e)�
N (t) = h

�
N (t+M) is called even cosine taper

(or even cosine bell taper) for N and p.

(6.111)

An (even) cosine taper as defined in (6.111) is obtained in R using
spec.taper(). With, for example,

h <- as.vector(spec.taper(rep(1,65),p=0.10) #N=65 and p=0.10

t1 <- 0:64 #time points for cosine taper

hg <- c(rep(0,10),h) #for plotting

hg <- c(hg,rep(0,10) #R vector hg now has 85 values

t2 <- -42:42 #time points for even cosine taper

plot(t2,hg)

the even cosine taper for N = 65 and p = 0.10 is plotted in Fig. 6.26 (c).
The pertaining kernel in Fig. 6.26 (d) is obtained, in R, as demonstrated in
Sect. 6.9.8. Despite being calculated as discrete Fourier transforms, the even
sequences on the left side in Fig. 6.26, and the pertaining kernels on the right
side, are Fourier transform pairs as defined in (6.49) and (6.50).

pN in (6.111) is the length of the flattened tails on both ends of the cosine
taper h

�
N (t) or the even cosine taper h(e)�

N (t). For p close to 0, the tails in h
�

N (t)

or h(e)�
N (t) are shorter than those obtained for larger p, and the side lobes in

the pertaining kernels H
�

N (s) = F−i

(
h
�

N (t)
)

and H(e)�
N (s) = F−i

(
h(e)�

N (t)
)

are

higher than those in the kernels pertaining to h
�

N (t) or h(e)�
N (t) with larger p.

If p = 0, then h(e)�
N (t) = Π

(e)
N (t) implying H(e)�

N (s) = DN (s). With p increasing

and finally coming close to 0.5, the tails in h(e)�
N (t) increase in length and the

side lobes in H(e)�
N (s) decrease in height, as demonstrated in Fig. 6.26. The

decreasing height of the side lobes in H(e)�
N (s) is, however, paid for by the
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Fig. 6.26. Even cosine tapers h(e)	
N (t) as defined in (6.111,2) (on the left) together

with their kernels H(e)	
N (s) (on the right, in dB, negative secondary peaks with broken

lines), for p = 0.00, 0.10, 0.25 and N = 65 (from top to bottom).

main lobe decreasing in height and increasing in width, as is obvious from
Table 6.2.

The even cosine tapers and the pertaining kernels given as examples in
Fig. 6.26 and Table 6.2 suggest that the absolute values of first order differ-
ences, calculated as required in (2.39,2) for the tails in an even data taper
h

(e)
N (t), influence the height of the side lobes in the pertaining kernel H(e)

N (s):
large side lobes in H(e)

N (s) pertain to steep tails in h(e)
N (t). Further examples

for this dependence are given in Problem 6.27.
Subsequent to the above discussion of the even data taper and the per-

taining kernel as defined in (6.110), you are now prepared to reconsider the
derivation of the convolution integral in (6.95). This convolution produces
the distortions due to leakage, which are discussed at length in Sect. 6.5.3.

Assume that (gt) and G(s), in (6.112), have the same properties as in
(6.93), thereafter substitute an even data taper h(e)

N (t) for the even rectangle
sequence Π(e)

N (t) and, consequently, the pertaining kernel H(e)
N (s) for the
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Table 6.2. Height and width at half height B∩
�
(
H(e)	

N (s)
)

of the main peaks of kernels

H(e)	
N (s) as defined in (6.110) pertaining to even cosine tapers h(e)	

N (t) as defined in

(6.111,2) for N = 65. B∩
�
(
H(e)	

N (s)
)

is computed as required in the remarks to (6.97).

p 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
height ≈ 65 62 59 55 52 49 46 39 33

B∩
�
(
H
	

N (s)
)
≈ .0186 .0196 .0206 .0218 .0230 .0242 .0254 .0281 .0308

Dirichlet kernel DN (s) in (6.94) and (6.95) to obtain (6.113) and (6.114).

G(s) = F−i(gt) =
∞∑

t=−∞
gte−i2πst (gt) as in (6.82) (6.112)

G(s) ∗H(e)
N (s) =

∞∑
t=−∞

(
(gt)

(
h

(e)
N (t)

))
e−i2πst

convolved
as in
(6.144)

(6.113)

∫ 1/2

−1/2

G(r)H(e)
N (s− r)dr =

(N−1)/2∑
t=−(N−1)/2

(
h

(e)
N (t)

)
(gt)e−i2πst (6.114)

A high peak in G(s) dominates the convolution integrals on the left sides
in (6.95) and (6.114), as demonstrated for the case of convolving with DN (s)
in Figs. 6.21 and 6.22. Consequently, the distortions of G(s), due to the side
lobes of the kernels in the convolution integrals, will be smaller in (6.114) than
in (6.95) on condition that H(e)

N (s) has smaller side lobes than DN (s). This
desired reduction of the leakage is arrived at, applying convolution theorem
(6.48,7), when, in the time domain, (gt) is multiplied with h(e)

N (t) (and not
with Π(e)

N (t)). A substitution of Π(e)
N (t) with h(e)

N (t) aiming at the reduction
of the leakage due to the side lobes of the kernels in convolution integrals
(6.95) and (6.114) is called tapering.

If H(e)
N (s), N = 1, 2, . . ., is a defining sequence for delta function δ(s)

as required in (6.60), then
∫ 1/2

−1/2
G(r)H(e)

N (s − r)dr = G(s) for N → ∞,
as concluded from (6.68). For example, FN (s), the Fourier transform of the
triangle sequence (6.56), is a kernel with this property, as is obvious from the
remarks to (6.63).

For finite N in (6.114), however, sequence (gt), t = . . . ,−1, 0, 1, . . .,
is seen through the data window h

(e)
N (t) in a finite interval t = −(N −

1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2 as product (gt)h
(e)
N (t). “Data window” as

alternative to “data taper” originates from this perception of the right side
in (6.114). As a consequence of the Fourier sum being calculated from a
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limited and weighted part of (gt), G(s) is distorted by the convolution with
H

(e)
N (s), resulting in leakage. The leakage depends on G(s), H(e)

N (s) and N
since the results obtained in the experiments with DN (s) in Figs. 6.17, 6.19,
6.20, 6.21, and 6.22, as well as in Problem 6.24, also apply to convolution
integrals with kernel H(e)

N (s).
Having assimilated the Nyquist frequency as defined in (6.92), the dy-

namic range and width at half height as in (6.96) and (6.97), and also the
tapering as in the remarks to (6.114), you are now able to successfully cir-
cumvent the traps set by aliasing and leakage as demonstrated in Sect. 6.7.2.

6.7.2 Aliasing and Leakage Circumvented

In applications, an even function F (s) is often not known in detail, however,
approximations for its dynamic range (6.96) and its width at half height (6.97)
are available and it is known that F (s) is in L2(−∞,∞) with F (s) ≈ 0 for
|s| > s0. This knowledge stems from previous experiments and/or is derived
from theory. F (s) is obtained as Fourier transform of f(t) on condition that
(i) f(t) and F (s) are a Fourier transform pair as defined in (6.35), and (ii)
f(t) can be measured in the time domain whereas F (s) is not observable in
the frequency domain.

f(t) is observed using a sampling interval ∆t < 1/(2s0) as proposed in
the remarks to (6.92), to obtain (gt), t = . . . ,−1, 0, 1 . . ., provided that (i) an
instrument and a data acquisition system exist that allow for measurements
using the required small ∆t, and (ii) it is assumed, admittedly not being
realistic, that the period of measurement is not limited. To (gt), the sequence
of observations defined for all integer t, pertains G(s) = F−i(gt), its Fourier
transform as defined in (6.49) and (6.50). Since F (s) ≈ 0 for |s| > s0 and∆t <
1/(2s0), aliasing becomes negligible implying G(s) ≈ F (s) and, therefore,
dyn

(
F (s)

) ≈ dyn
(
G(s)

)
as well as B�

(
F (s)

)≈ B�
(
G(s)

)
, with dyn

(
F (s)

)
being the dynamic range (6.96) and B�

(
F (s)

)
the width at half height (6.97)

of function F (s). In applications, to become realistic, the observational period
is limited, in this example to t = −(N−1)/2, . . . ,−1, 0, 1, . . . , (N−1)/2, and,
consequently, the measurement suffers from leakage due to the convolution
with kernel H(e)

N (s) on the left side in (6.114) distorting G(s) when, on the
right side in (6.114), (gt) is multiplied with an even data taper h(e)

N (t) as
defined in (6.110).

Diagnostics for the leakage attributed to the main lobe in H(e)
N (s) and

also for that due to the side lobes in H(e)
N (s) can be obtained from B�

(
F (s)

)
and dyn

(
F (s)

)
, since B�

(
F (s)

)≈ B�
(
G(s)

)
and dyn

(
F (s)

) ≈ dyn
(
G(s)

)
, as

argued above. However, these diagnostics can only be calculated on condition
that both are available: on the one hand the dynamic range dyn

(
F (s)

)
(6.96)

as well as the width at half height B�
(
F (s)

)
(6.97) of F (s), and on the other

hand B∩
�
(
H

(e)
N (s)

)
, i.e., the width at half height of the main lobe ofH(e)

N (s), as
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defined in the remarks to (6.97). In this example, dyn
(
F (s)

)
and B�

(
F (s)

)
are, above, assumed to be known, and B∩

�
(
H

(e)
N (s)

)
can be determined as

demonstrated in Fig. 6.24 for the case of the Dirichlet kernel.
To obtain a diagnostic for the leakage resulting from the main lobe in

H
(e)
N (s), Priestley in [113] argues that a sharp peak in G(s), when con-

volved with H
(e)
N (s) on the left side in (6.114), (i) becomes blunt when

B�
(
G(s)

)
< B∩

�
(
H

(e)
N (s)

)
but (ii) suffers less and remains tolerably sharp

when B�
(
G(s)

)
> B∩

�
(
H

(e)
N (s)

)
. Consequently, narrow forms in G(s) are not

distorted (or only to a negligible extent) when convolved with H(e)
N (s) on

condition that
B∩
�
(
H

(e)
N (s)

) ≤ B�
(
G(s)

)
/2. (6.115)

Diagnostic (6.115) allows for approximating the length of the observational
period to obtain a tolerably small resolution in the frequency domain, pro-
vided that parameter N in (6.110), i.e., the width of the even data taper
h

(e)
N (t), can be computed from B∩

�
(
H

(e)
N (s)

)
.

For example, F (s), f(t) and (gt) as defined in (6.77), (6.78) and (6.79)
with s1 = 0.01, s2 = 0.02, a1 = 0.002 and a2 = 0.0001, are plotted in
Figs. 6.17, 6.19 and 6.20. For this example, aliasing is negligible, as argued
in Sect. 6.5.3. The width at half height of F (s) is determined in Fig. 6.25:
B�
(
F (s)

)
= B�

(
F (s), sharper peak

)
= 3 × 10−5. How many observations of

f(t) have to be made to resolve F (s) without tapering?
When no data taper is applied to the observations, then G(s) is convolved

with DN (s) as in (6.95). Consequently, B∩
�
(
DN (s)

) ≈ 6/(5N), as determined
in the remarks to Fig. 6.24, and B�

(
F (s)

)
, as obtained above, are substituted

in diagnostic (6.115) to obtain 6/(5N) ≤ 1.5 × 10−5, and thus N ≥ 80000
is arrived at. With N = 65535, a smaller N , a quite good resolution of the
primary peak of F (s) is obtained in Fig. 6.20 (b).

Neglecting the finer details of the kernel in (6.114) (i.e., the accurate
width of its main lobe), the length of the observational period can also be
approximated using simply the distance between the Fourier frequencies, i.e.,
∆sk = 1/N as defined in (6.21,1). For example, the Fourier frequencies for
N = 80000 drawn in Fig. 6.25 (d) and those for N = 8000 in Fig. 6.25 (c),
demonstrate that the forms in a function F (s) are approximately captured
with an N such that

1/N = ∆sk < B�
(
F (s)

)
/2. (6.116)

In most applications, N is approximated using diagnostic (6.116) with the
result that narrow peaks in F (s) are not unduly flattened when G(s) ≈ F (s)
is convolved with kernel H(e)

N (s), on the left side in (6.114). Consequently,
and because it can be easily calculated, (6.116) is often preferred to (6.115).

A diagnostic for the leakage due to the side lobes inDN (s) is feasible using
dyn

(
G(s)

) ≈ dyn
(
F (s)

)
since a high peak or a high jump in F (s) not only



406 6 Fourier Transforms of Deterministic Functions

dominates
∫ 1/2

−1/2
G(r)DN (s−r)dr in (6.95) but also generates a large dynamic

range in F (s). From extensive experiments with damped oscillations f(t) as
defined in (6.77) and (6.78) (e.g., these functions are plotted for s1 = 0.01,
s2 = 0.02, a1 = 0.002, a2 = 0.0001 in Fig. 6.17) the threshold in diagnostic
(6.117) is obtained.

Let f(t) and F (s) as well as (gt) and G(s) be as defined in
(6.81) and (6.82) and used in (6.93), ∆t small enough such
that an aliasing can be neglected and thus F (s) ≈ G(s),
Π

(e)
N (t) the even rectangle sequence and DN (s) the Dirichlet

kernel as used in (6.94) and (6.95). Then the side lobes of
DN (s) in

∫ 1/2

−1/2
G(r)DN (s− r)dr on the left side in (6.95)

generate distortions that are:
1. negligibly small for dyn

(
G(s)

) ≤ 10 dB but
2. cannot be neglected for dyn

(
G(s)

)
> 10 dB.

(6.117)

Often, functions F (s) have a dynamic range larger than 10 dB. Consequently,
a leakage due to the side lobes of DN (s) cannot, in most cases, be neglected.

If diagnostic (6.117) arouses suspicion of leakage, then observations (gt),
t = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2 are multiplied with a sequence
of even cosine tapers h(e)�

N (t) for p0 = 0.00 (in this case, the observations
are multiplied with the even rectangle sequence), p1 = 0.05, p2 = 0.10, . . .,
h(e)�

N (t) as defined in (6.111,2). These products are Fourier transformed using
(6.22) or (6.26) to obtain G(p0)(s′k) G(p1)(s′k), G(p2)(s′k), . . ., which are then
plotted. h(e)�

N (t) with increasing p are applied, until
∣∣G(pn)(s′k)

∣∣ ≈ ∣∣G(pn−1)(s′k)
∣∣

is arrived at: G(pn)(s′k) is assumed to be the best approximation of G(s) that
can be obtained using an even cosine taper.

For example, (gt) generated as required in (6.82) from the damped os-
cillations f(t) as defined in (6.77) and (6.78) with s1 = 0.01, s2 = 0.02,
a1 = 0.002, a2 = 0.0001 (this is the example in Figs. 6.17 and 6.19) is multi-
plied with the even cosine taper h(e)�

N (t) for N = 65565 and p1 = 0.05 which is
plotted in Fig. 6.27. The product (gt)

(
h(e)�

N (t)
)

thus obtained for the time slice
t = −(N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2 is zero-padded on its right side
to obtain N ′ = 65536 values which then are Fourier transformed to arrive at
(finally) G(p1)(s′k) as plotted in Fig. 6.28.

From Fig. 6.28 it becomes evident that (i) G(p1=0.05)(s′k) is much closer
to F (s) than G(p0=0)(s′k) as plotted in Figs. 6.17, 6.19 and 6.20, and (ii)
G(p1)(s′k) > 0 for 0 ≤ s′k ≤ 1/2. Hence, G(p1)(s′k) performs much better
than G(p0)(s′k). However, G(p1)(s′k) is still subject to leakage: (i) it has small
oscillations due to the side lobes in H(e)�

N (s), the kernel pertaining to h(e)�
N (t)

as is demonstrated in Fig. 6.28 (b), and (ii) G(p1)(s′k) > F (s) substantially
(though not by orders of magnitude) for frequencies not close to the peaks
in F (s), as is seen in Fig. 6.28 plots (a) and (c). Trying h(e)�

N (t) for p2 = 0.10,
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Fig. 6.27. Sequence (gt) as in Fig. 6.17 for N = 65535 (broken line) and even

cosine taper h(e)	
N (t) (6.111,2) for p = 0.05 and N = 65535 (solid line).

p3 = 0.15, p4 = 0.20, . . ., as recommended above, a G(pn)(s′k) close to F (s)
for all 0 ≤ s′k ≤ 1/2 is obtained in Problem 6.28.

Comparing
∣∣G(p0)(s′k)

∣∣ with
∣∣G(pn)(s′k)

∣∣, an approximation for the error
due to leakage is obtained that would result were the observations not mul-
tiplied with an even data taper as defined in (6.110). In the above example,
it is concluded from Figs. 6.19 and 6.20 on the one hand, as well as from
Fig. 6.28 and the plots obtained in Problem 6.28 on the other hand, that a
leakage in the order of magnitudes has to be taken into account on condition
that no suitable data taper has been applied.

This section is summarised as follows. The problem described in Sect. 6.5.1,
i.e., to determine F (s) = F−i

(
f(t)

)
, both f(t) and F (s) real-valued and even,

from observations (gt) = f(t) for t = (N − 1)/2, . . . ,−1, 0, 1, . . . , (N − 1)/2,
is tackled in two steps, as shown above, in Sect. 6.7.2.

In the first step, by (i) applying (6.92), a sampling interval ∆t < 1/(2s0)
small enough to avoid aliasing, and, (ii) applying (6.116), the number 1/N =
∆sk < B�

(
F (s)

)
/2 of observations to be made to resolve narrow peaks in

F (s), are obtained. ∆t imposes restrictions on the equipment used for the
measurement and from N depend its operating costs, i.e., these diagnostics
allow for assessing the resources needed to arrive at F (s).

In the second step, observations (gt) are multiplied with an even data ta-
per h(e)

N (t) as defined in (6.110) since, in most cases, dyn
(
F (s)

) ≈ dyn
(
G(s)

)
>

10 dB and tapering is called for, as concluded from diagnostic (6.117). h(e)
N (t)

has a kernel H(e)
N (s) with smaller side lobes than DN (s). H(e)

N (s) is the kernel
in the convolution integral in (6.114), and DN (s) is the kernel in (6.95).

Even example functions are used to introduce, in Sect. 6.5, the traps set
by aliasing and leakage, and to demonstrate, in Sect. 6.7, how these pitfalls
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Fig. 6.28. F (s) (solid line) and discrete Fourier transform (broken line) of the

product (gt)h
(e)	
N (t), (gt) and h(e)	

N (t) as in Fig. 6.27.

can be circumvented. In applications however, a data taper as defined in
(6.110,2) is used, i.e., a data taper that is not restricted to being even.

6.8 Convolution II

The stationary solution of the first order linear difference equation derived
in the remarks to (2.27) is an example of a convolution sum as defined in
(2.28,2). With observed values xt and wt acting as substitutes for the random
variables Xt and Wt in (2.27), the deterministic difference equation and the
convolution sum in (6.118) are obtained.

xt − axt−1 = wt and xt =
∞∑

u=0

auwt−u for integer t (6.118)

y(t) = −aẏ(t) + x(t) and y(t) =
∫ t

−∞
f(t− u)x(u)du for real t (6.119)

with f(t) =
{

0 for t < 0
(1/a)e−(1/a)t for t ≥ 0
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The first order linear differential equation and its stationary solution resulting
from Problem 2.11 are given in (6.119). The convolutions in (6.118) and
(6.119) are transformations, as defined in (2.29).

Convolution theorem (6.48,6) stipulates that a convolution of two func-
tions, e.g., f(t) and g(t), in the time domain is equivalent to a multiplication
of their Fourier transforms, e.g., F (s) and G(s), in the frequency domain.
Examining F (s) and G(s) in the frequency domain, it is often easier to un-
derstand the effects generated by convolving f(t) and g(t) in the time do-
main. In this section therefore, using definitions and propositions in (6.120)
and (6.121), the moving average and the first order differences, as defined in
(2.39), are analysed in the frequency domain.

6.8.1 Linear and Time-invariant (LTI) Systems

Systems as proposed in (6.118) and (6.119) are often described using the
terms introduced in (6.120).

If the convolution integral (sum) as defined in (2.28)
y(t) =

∫∞
−∞ f(t− u)x(u)du =

(
f(t)

) ∗ (x(t))
yt =

∑∞
−∞ f(t− u)x(u) = (ft) ∗ (xt)

converges, then it is called a linear and time-invariant (LTI)
system or an LTI filter. x is called input, y output, f impulse
response function (sequence), and the Fourier transform of f
is called transfer function or frequency response function.

(6.120)

Impulse response function is a plausible term for f , as shown in the follow-
ing rationale. Let δ(x), i.e., the delta or impulse function (6.60), be the input
in the LTI filter (6.120). Applying (6.67) and (6.68), the output of the filter
is y(t) =

∫∞
−∞ f(u)δ(t − u)du = f(t), because δ(x) is the identity function

pertaining to the convolution integral. Consequently, f(t) is the response of
the system to the impulse function.

The impulse response function determines the domain of the LTI filter,
i.e., the set of all input functions or sequences, for which the convolution
integral or sum (6.120) converges. A convergence depends on the impulse
response function and on the input, e.g., a convolution sum exists when both,
the impulse response sequence and input sequence, possess the properties
required in (2.36).

The order of the impulse response function and of the input can be re-
versed in both convolution integral and sum because convolution is commu-
tative as derived in (2.35) and Problem 2.4.

The convolution integral is shown to be LTI in (2.34), and plausibly,
the convolution sum is also LTI. The LTI transformation (filter, operator)
is defined in (2.29), (2.30), (2.31) and (2.32), examples being given in the
remarks to (2.34).
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An LTI filter can be described in both, the time and the frequency domain.
Examples for the effects of an LTI filter observable in the time domain are
the smoothing of a sequence using a moving average in Problem 2.15, and
the removal of a trend in a time series by computing its first differences as
demonstrated in Figs. 5.8 and 5.11. Both LTI filters, the moving average and
the first order differences, are defined in (2.39). In the frequency domain, the
effects of an LTI filter are described using definitions (6.121). There, the time
t or u is assumed to be integer.

If t is integer, then the impulse response sequence and frequency re-
sponse function in an LTI filter are a Fourier transform pair as defined
in (6.49) and (6.50). This property is inherited by the input (xt) and
the output y(s) of the filter, i.e., (xt) is a sequence in L2(−∞,∞) hav-
ing a Fourier transform X(s) = F−i(xt) =

∑∞
t=−∞ xte−i2πst, such that

(xt) = F+i

(
F (s)

)
=
∫ 1/2

−1/2
X(s)ei2πtsds. Consequently, (xt) can be repre-

sented as a linear combination of trigonometric oscillations. Now assume
that (xt) contains the oscillation

(
x

(s0)
t

)
= X(s0)ei2πs0t, −1/2 ≤ s0 ≤ 1/2 a

real constant and t = . . . ,−1, 0, 1, . . .. What happens to
(
x

(s0)
t

)
in an LTI

filter? An answer to this question can be obtained when the definitions and
propositions in (6.121) are applied.

Let a real-valued sequence (xt), t = . . . ,−1, 0, 1, . . ., with
Fourier transform X(s) = F−i(xt), be the input in LTI
filter (6.120) having impulse response sequence (ft) and
frequency response function F (s) = F−i(ft), and let (xt)
and (ft) have the properties required in (2.36,2). Then

1. (yt)=
∞∑
−∞

ft−uxu =(ft)∗(xt)=(xt)∗f(t) for integer t, u

i.e., the output is in L2(−∞,∞), and its Fourier transform

2. Y (s) =
∞∑
−∞

(
(ft) ∗ (xt)

)
e−i2πst = F (s)X(s) for − 1

2
≤s≤ 1

2
is calculated using (6.48,6). Now define:

3.1 |G(s)| = |F (s)| =
(
F (s)F (s)

)1/2 is called gain function, and
3.2 P (s) =

(−1/(2π)
)
ϕ(s) is called phase shift function, with

|F (s)| being the absolute value and ϕ(s) the phase of F (s),
as defined in (6.2,6). Using these definitions, the following
product becomes:
Y (s)ei2πst =

(
F (s)X(s)

)
ei2πst = |F (s)|(X(s)ei2πst

)
eiϕ(s)

= |G(s)|(X(s)ei2πst+ϕ(s)
)

=
(|G(s)|X(s)

)
ei2π(s−P (s))t

(6.121)

From (6.121,2), it is concluded that Y (s0)ei2πs0t =
(
F (s0)X(s0)

)
ei2πs0t,

with
(
x

(s0)
t

)
= X(s0)ei2πs0t being a trigonometric oscillation with fre-

quency s0 in the input (xt) of an LTI filter, as assumed above, and F (s)
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its complex-valued frequency response function. More meaningful in ap-
plications, however, are the results obtained applying definitions (6.121,3):(
x

(s0)
t

)
changes its absolute value and its phase when it becomes

(
y
(s0)
t

)
=(|G(s0)|X(s0)

)
ei2π(s0−P (s0))t in the output. The sign of the gain function

G(s) in (6.121,3) is positive, and consequently G(s) allows for computing an
amplification (G(s) > 1) or damping (G(s) < 1) of a trigonometric oscilla-
tion in the input of an LTI filter. Plots of G(s) and P (s) are also called filter
characteristics.

Using an LTI filter for example, the cosine oscillations (x(si)
t ), i = 1, 2, 3,

on the left side in Fig. 6.29 are transformed into the oscillations (y(si)
t ) on

the right side in this figure. These pairs of input and output sequences are
used to demonstrate definitions (6.121).

Changes in the absolute value (6.2,4) of
(
x

(si)
t

)
are obtained from the gain

function of the LTI filter. For G(si) > 1, the absolute value of oscillation si is
smaller in the input than in the output and si is amplified, as demonstrated
in Fig. 6.29 plots (e) and (f). For G(si) < 1, the absolute value of oscillation
si is larger in the input that in the output and si is damped, as demonstrated
in Fig. 6.29, plots (a) and (b).

Changes in the phase (6.2,5) of
(
x

(si)
t

)
are obtained in units of s from

the phase shift function P (s) of the LTI filter. In time units, changes in the
phase amount to P (s)/s = P (s)T , on condition that T = 1/s, the period of
oscillation X(s)ei2πst with frequency s in the input. Hence, a trigonometric
oscillation is shifted in an LTI filter by a fraction P (s) of its period. For
example, the oscillation in Fig. 6.29 (a), having frequency s1 = 0.05 and
therefore period T1 = 20, is shifted by −5 < P (s1)/T1 < −4, i.e., 15 <
P (s1)/T1 < 16 time units, as obtained from a comparison of plots (a) and
(b) in Fig. 6.29.

Above, for the demonstrations in Fig. 6.29, a single trigonometric oscilla-
tion is used as input in an LTI filter. Usually, however, the input is a linear
combination (xt) =

∫ 1/2

−1/2
X(s)ei2πtsds of trigonometric oscillations. In this

case, the filter generates (yt) =
∫ 1/2

−1/2
G(s)X(s)ei2π(s−P (s))tds as output. In

general, the output of an LTI filter is consequently a linear combination of
the oscillations in the input that undergo amplifications or dampings in their
absolute values as well as changes in their phases.

For example, the moving average and the first order difference (2.39) are
LTI filters (6.121,1), with their impulse response sequence and frequency
response function being a Fourier transform pair as defined in (6.49) and
(6.50). In the time domain, the effects of moving averages are demonstrated in
Figs. 2.9, 2.10 and 2.16, and the effects of first order differences in Figs. 2.16,
5.8 and 5.11. In the frequency domain, the effects of these LTI filters are
analysed in Sect. 6.8.2.



412 6 Fourier Transforms of Deterministic Functions

0 10 20 30 40 50

(a)
-1

.0
0.

0
0.

5
1.

0 • •
•
•

•

•

•

•
•
• ••

•
•

•

•

•

•
•
• ••

•
•

•

•

•

•
•
• ••

•
•

•

•

•

•
•
• ••

•
•

•

•

•

•
•
• ••

s 
=

 0
.0

5

0 10 20 30 40 50

(b)

-0
.3

-0
.1

0.
1

0.
3

•

•
•
•• • •

•
•

•

•

•
•
• • ••

•
•

•

•

•
•
•• • •

•
•

•

•

•
•
• •• •

•
•

•

•

•
•
• • • •

•
•

•

•

0 10 20 30 40 50

(c)

-1
.0

0.
0

0.
5

1.
0 •

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

s 
=

 0
.1

66
6

0 10 20 30 40 50

(d)

-1
.0

0.
0

0.
5

1.
0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

t

0 10 20 30 40 50

(e)

-1
.0

0.
0

0.
5

1.
0 •

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

• •

•

•

•

t

s 
=

 0
.2

0 10 20 30 40 50

(f)

-1
.0

0.
0

1.
0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Fig. 6.29. Oscillations xt = cos(2πst), t = . . . ,−1, 0, 1, . . ., with s = s1 = 0.05,
s = s2 = 0.1666 and s = s3 = 0.2 (on the left) together with their first order
differences yt = xt −xt−1 (on the right). The oscillations are sequences and plotted
with symbol •, the symbols are connected where necessary.

6.8.2 First Order Differences and Moving Average

Impulse response sequence (fu) = (f0 = 1, f1 = −1) and fu = 0 for u �=
0, 1, as in the first order differences (2.39,2), is plotted in Fig. 6.30 (a). The
pertaining frequency response function

F (s) =
∞∑

u=−∞
fue−i2πsu = 1ei2πs(0) − 1e−i2πs(+1) = 1 − e−i2πs (6.122)

is obtained as a Fourier transform of (ft) as required in (6.49). In this case,
(ft) is mixed (6.32,3) and F (s) is complex-valued, as concluded from (6.37).
The cosine oscillations on the left side in Fig. 6.29, for example, are trans-
formed by calculating their first order differences to obtain the trigonometric
oscillations on the right side in Fig. 6.29.
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Fig. 6.30. First order differences (2.39,2) with frequency response function (6.122):
impulse response sequence (a), gain (b) and phase shift (c) functions.

From (6.122), gain function G(s) = 2 sin(πs) and phase shift function
P (s) = s/2 − 1/4 of the first order differences are obtained in (6.123), when
identities sin(x) = (1/2i)(eix − e−ix) and i = cis(π/2) = ei2π(1/4) and defini-
tions (6.121,3) are applied.

F (s) = e−i2π(s/2−s/2) − e−i2π(s/2+s/2) − 1/2 ≤ s ≤ 1/2
= ei2πs/2e−i2πs/2 − e−i2πs/2e−i2πs/2

= e−i2πs/2
(
ei2πs/2 − e−i2πs/2

)
= e−i2πs/2

(
2i × sin

(
2π(s/2)

))
= e−i2πs/2

((
ei2π(1/4)

)
2 sin

(
2π(s/2)

))
= 2 sin

(
2π(s/2)

)
e−i2π(s/2−1/4) = G(s)e−i2πP (s) (6.123)

G(s) and P (s) are plotted against 0 ≤ s ≤ 1/2 in Fig. 6.30 (b) and (c).
Since |G(s)| = |2 sin(πs)| = 1 for s = 1/6, as well as |G(s)| < 1 for

|s| < 1/6 and |G(s)| > 1 for −1/2 ≤ s < −1/6, and also 1/6 < s ≤ 1/2,
first order differences (i) damp, e.g., an oscillation with frequency s1 = 0.05
as demonstrated in Fig. 6.29, plots (a) and (b), and (ii) amplify, e.g., an
oscillation with frequency s3 = 0.2 as demonstrated in Fig. 6.29, plots (e)
and (f). Due to these properties, a time series being non-stationary in its first
moment function often has stationary first order differences, as demonstrated
in Figs. 5.8 and 5.11. Trends in the first moment function of a time series
are very efficiently removed by calculating differences as in (2.39,2) or (2.40).
This is the rationale for defining the ARIMA[p, d, q] model in (5.55), with d
the order of the differences.

First order differences, having a complex-valued frequency response func-
tion, also generate changes in the phases of the input oscillations. In Fig. 6.29
plots (a) and (b), for example, the cosine oscillation with frequency s1 =
1/20 = 0.05 is shifted by P (s = 0.05) = 1/40 − 1/4 = −9/40 (with P (s) as
in (6.123)) of its period T1 = 20, i.e., by −4.5 time units. This phase shift is
seen in the remarks to Fig. 6.29, when plots (a) and (b) are compared.

The impulse response sequence (fu) = (1/3)Π(e)
3 (u) (6.52) in the moving

average over three time points with identical weights, constructed as required
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Fig. 6.31. Moving average over three time points as in (6.124): impulse response
sequence (a), gain function (b) and phase shift function (c).

in (2.39,1), is plotted in Fig. 6.31 (a). Its Fourier transform

F (s) = F−i(fu) =
∞∑

u=−∞
fue−i2πsu − 1/2 ≤ s ≤ 1/2

= (1/3)
(
e−i2πs(−1) + e−i2πs(0) + e−i2πs(+1)

)
= (1/3)

(
1 + ei2πs + e−i2πs

)
= (1/3) + (2/3) cos(2πs) (6.124)

is calculated as required in (6.49) to arrive at the frequency response function
of the three-point moving average in (6.124). In (6.124), F (s) is real-valued in
accordance with (6.37), since (ft) is even (6.32,1). P (s) as defined in (6.121)
becomes identically zero, as concluded from (6.2,5), on condition that F (s)
is real-valued. F (s) and P (s) are plotted in Fig. 6.31 (b) and (c) against
0 ≤ s ≤ 1/2.

(6.121,3) implies that the three-point moving average, with frequency
response function F (s) as in (6.124) and plotted in Fig. 6.31 (b), does not
change the absolute values of low-frequency trigonometric oscillations in its
input, since |G(s)| = |F (s)| ≈ 1.0 for s ≤ 0.1. Oscillations with frequencies
s ≥ 0.1, however, are markedly damped, and oscillations with frequency
s = 1/3 are annihilated because |G(s)| = |F (s)| = 0 for s = 1/3. Oscillations
with frequencies s > 1/3 in the input of the three-point moving average
are damped and change their sign. These properties are demonstrated in
Problem 6.31 where moving averages are applied to smooth trigonometric
oscillations with a variety of frequencies.

Due to the properties of a moving average, a trend hidden in a time
series by oscillations with high frequencies can become more clearly visible
subsequent to smoothing. A smoothing favours guessing appropriate linear
candidate models for the trend which, thereafter, are estimated applying
theory and methods as introduced in Chap. 3.

In Fig. 3.3, for example, linear models are fitted to the yearly values
in the Basel temperature series. In this case, a global model (as defined in
(2.55,1), i.e., a model representative for the full time series) captures secular
trends solely. Consequently, decadal fluctuations remain in the residuals of
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Fig. 6.32. Yearly values in the Basel temperature series (• with broken line) and

nine-point moving average of this time series obtained by filtering with (1/9)Π
(e)
9 (t)

(solid line), together with local linear models calculated from the monthly values
in the time slices (end points with solid vertical lines) seen in the moving average.

this model, as is obvious when Figs. 5.7 and 5.8 are compared. Decadal fluc-
tuations in a secular time series can be captured using local (2.55,2) linear
models, as demonstrated in Fig. 6.32. In Fig. 6.32, local linear models are fit-
ted to the Basel temperature series subsequent to filtering the yearly values in
this series with (1/9)Π(e)

9 (t). This moving average damps high-frequency os-
cillations, and in its output, therefore, time slices become visible allowing for
local first order linear models to be fitted. These local models are then fitted
to the monthly values in the Basel temperature series thereby increasing the
number of values used for the estimation. In the end points of the intervals
found by smoothing with (1/9)Π(e)

9 (t), the local linear models jump: obvi-
ously due to being estimated from the monthly values in the preceding and
subsequent intervals. Please estimate, in Problem 6.33, these local models
such that they do not jump in the endpoints of the intervals.

The representation of the trend in the yearly values in the Basel tempera-
ture series as in Fig. 6.32 is not unique, because another filter, i.e., a 15-point
moving average, generates another output and thus, other time slices.

Statistical inference of local properties in a time series is subject to restric-
tions, as demonstrated in Sect. 2.5.2. There it is shown that (i) the outcome of
stastical tests is influenced by the selection of the time slices from whence the
statistics are calculated and (ii) simulation experiments can be performed,
under favourable circumstances, to obtain more realistic results not depen-
dent on the time slices used. The conclusions obtained in Sect. 2.5.2 not only
apply to estimates of local means but also to estimates of local linear models
for the trend.



416 6 Fourier Transforms of Deterministic Functions

6.8.3 Low-pass, High-pass and Band-pass Filters

Both, the moving average and the first order differences, are defined in (2.39)
by specifying their weights. These weights become, in (6.120) and (6.121), the
impulse response sequence in an LTI filter, implying that an impulse response
sequence and frequency response function constitute a Fourier transform pair
as defined in (6.49) and (6.50).

Alternatively, such a system is defined by specifying its frequency re-
sponse function in (6.125). The impulse response sequences (ft) pertaining
to the frequency response functions F (s) as in (6.125) are band-limited; how-
ever, they are not time-limited, as is concluded from (6.109). Time-limited
and band-limited sequences are defined in (6.108). Since impulse response se-
quences are band-limited, the filters in (6.125) cannot be implemented using
time-limited sequences, therefore, they are said to be ideal.

Let (ft) and F (s) be a Fourier transform pair (impulse
response sequence, frequency response function) as in (6.121).
Then the LTI filter is called:

1. low-pass if F (s) =
{

1, for |s| ≤ s0
0, for s0 < |s| ≤ 0.5

2. high-pass if F (s) =
{

1, for s0 ≤ |s| ≤ 0.5
0, for |s| < s0

3. band-pass if F (s) =
{

1, for 0 < s1 ≤ |s| ≤ s2 < 0.5
0, for |s| < s1 and s2 < |s| ≤ 0.5

(6.125)

Do approximate implementations of an ideal filter exist? The frequency
response function F (s), of e.g., the low-pass filter, is a rectangle function
defined in −1/2 ≤ s ≤ 1/2 and periodic with period 1. For example, G(s)/10,
G(s) as in Fig. 6.23 (b), acts as frequency response function in a low-pass filter
with s0 = 0.05. The impulse response function (ft) is the Fourier transform
of F (s) as defined by the integral in (6.50). Since F (s) is even (6.32), (ft) is
calculated as a Fourier cosine transform (6.37).

(ft) =
∫ 1/2

−1/2

F (s)ei2πstds =
∫ s0

−s0

ei2πstds t = . . . ,−1, 0, 1, . . .

=

{
1 × 2s0 for t = 0
2
∫ s0

0
cos(2πst)ds = 2

[
1

2πt sin(2πst)
]s=s0

s=0
for t �= 0

=
{

2s0 for t = 0(
sin(2πs0t)

)
/(πt) for t �= 0 t = . . . ,−1, 0, 1, . . . (6.126)

The impulse response function (ft) of the low-pass filter thus obtained in
(6.126) is not time-limited. However, it damps out with 1/t for −∞ ← t and
t→ ∞ and is thus in L2(−∞,∞), as concluded from (6.49) and (6.50).

Can the impulse response sequence (6.126) of the ideal low-pass filter be
approximated using a time-limited sequence, i.e., a sequence being identically
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zero outside a finite interval? An approximation is derived in (6.127) by
assuming that g
t�

t �= 0 (with a few exceptions) for −N ≤ t ≤ N , and g
t�
t =

0 for |t| > N , i.e., that (g
t�
t ) is a time-limited sequence in L2(−∞,∞). Using

(g
t�
t ), a second sequence h2N+1(t) is constructed: h2N+1(t) = g
t�

t − ft for
−N ≤ t ≤ N , and h2N+1(t) = ft for |t| > N . Further assuming that the
three pairs (ft) and F (s), h2N+1(t) and H2N+1(s), as well as (g
t�

t ) and
G
t�(s), are Fourier transform pairs as required in (6.49) and (6.50), then
H2N+1(s) = G
t�(s) − F (s) is obtained, applying (6.48,5).

When approximating in the sense that the norm of differences becomes
minimal as required in (6.5), Parseval’s identity is applied. Parseval’s identity
is defined in (6.75) for Fourier transform pairs as in (6.29) and (6.30), and in
the remarks to (6.75) for pairs as in (6.35). For pairs (ft) = F−i

(
F (s)

)
as in

(6.49) and (6.50), Parseval’s identity becomes
∑∞

t=−∞ f
2
t =

∫ 1/2

−1/2
|F (s)|2ds.

When this version is applied,
∫ 1/2

−1/2
|H2N+1(s)|2ds =

∑∞
t=−∞ |h2N+1(t)|2 =∑N

t=−N |g
t�
t −ft|2+

∑
t<−N |ft|2+

∑
t>N |ft|2 is obtained. This result implies

that the integral in (6.127) becomes minimal provided that g
t�
t = ft for

|t| ≤ N .

Let F (s) and (ft) be, as required in (6.126), the frequency
and the impulse response function of an ideal low-pass filter.
Then, in the set of all sequences of length 2N + 1,

the sequence (f
t�
t ) =

{
(ft) for |t| ≤ N ,
0 for t < −N and N < t

minimises∫ 1/2

−1/2

∣∣F
t�(s) − F (s)
∣∣2ds, F
t�(s) =

N∑
t=−N

f
t�
t e−i2πst

(6.127)

(ft), |t| ≤ N , as in (6.127) is therefore the mean square approximation with
length 2N + 1 of (ft), t = . . . ,−1, 0, 1, . . ., (ft) and F (s) being the impulse
response sequence and frequency response function in a low-pass filter, as
proposed in (6.126) and defined in (6.125). Mean square approximations of a
variety of lengths of a low-pass filter are calculated in Problem 6.32.

A low-pass filter can alternatively be approximated using a time-limited
sequence with the property that its Fourier transform comes as close as possi-
ble to zero for frequencies |s| > s0, 0 < s0 < 1/2, as required in (6.125). This
problem is akin to building an even data taper h(e)

N (t) as defined in (6.110)
that minimises the leakage when a discrete Fourier transform is calculated,
because (6.109) implies that there is no even data taper h(e)

N (t) with pertain-
ing kernel H(e)

N (s) = 0 for |s| > s0, N a finite integer number, 0 < s0 < 1/2
and s0 as small as possible.

This problem is solved by generating a band-limited sequence which is
nearly time-limited: in the set of all sequences being limited to the band
−s0 ≤ s ≤ s0, s0 < 1/2 as required in (6.108,2), those with maximal
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λ =
∑(N−1)/2

t=−(N−1)/2 h
2
t/
∑∞

t=−∞ h
2
t are sought for a given odd N , i.e., those

sequences attaining their highest concentration in a time interval of length
N . Band-limited sequences with maximal concentration are comprehensively
dealt with in [125]. There, they are called discrete prolate spheroidal sequences
(DPSSs). DPSSs are used as data tapers in multi-taper spectral estimation
[108]. Multi-taper spectral estimation is a relatively new procedure ([134] and
[135]). It is, however, not a topic in this book. Multi-taper spectral estimation
has some advantages (e.g., the one mentioned in the remarks to Fig. 10.14)
when compared with the classic spectral estimation introduced in Chaps. 8,
9 and 10.

6.9 Supplements

Some properties of orthogonal trigonometric functions, of the discrete Fourier
transform, of sums of trigonometric functions and of Fourier transform pairs
are derived in Sects. 6.9.1, 6.9.2, 6.9.3 and 6.9.4. Thereafter, proofs of Bessel’s
inequality and Parseval’s identity are given in Sect. 6.9.5. In Sects. 6.9.6
and 6.9.7, properties of the autocorrelation are derived and demonstrated. In
Sect. 6.9.8, discrete Fourier transforms are calculated using R function fft().

6.9.1 Orthogonal Trigonometric Functions

The properties of the trigonometric functions in the set (6.9) are summarised
in (6.10), (6.11), (6.12) and (6.13).

The identities in (6.10) can be derived, for k �= 0 and k �= N/2, when the
functions are written in exponential representation. Thereafter, the sums of
the finite geometric series are obtained using

∑N−1
k=0 (cw)k =

(
1−(cw)N

)
/
(
1−

cw
)
, w complex, c real. For example, the sum of the cosine functions is

obtained
N−1∑
t=0

cos
(
2π
k

N
t
)

=
1
2

N−1∑
t=0

(
ei2π(k/N)t + e−i2π(k/N)t

) k integer and
k �= 0, (N/2)

=
1
2

N−1∑
t=0

(
zt + z−t

)
, with z = ei2π(k/N)

=
1
2

(
1 − zN

1 − z +
1 − z−N

1 − z−1

)
=

1
2

(
1 − ei2πk

1 − z +
1 − e−i2πk

1 − z−1

)
=

1
2

(
1 − (

cos(2πk) + i × sin(2πk)
)

1 − z +
1 − (

cos(2πk) − i × sin(2πk)
)

1 − z−1

)
=

1
2

(
1 − (

1 + i0
)

1 − z +
1 − (

1 − i0
)

1 − z−1

)
=

1
2

(
0

1 − z +
0

1 − z−1

)
= 0 (6.128)
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on condition that k ∈ (. . . ,−1, 0, 1, . . .), k �= 0 and k �= (N/2).
For k = 0 or k = N/2, the sums of the cosine functions are straightfor-

wardly obtained in (6.129)
N−1∑
t=0

cos
(
2π
k

N
t
)

=
{

0 for k = N/2
N for k = 0

(6.129)

because k = N/2 implies an even N , and in
∑N−1

t=0 cos(πt) therefore, pairs of
subsequent terms add to zero. Herewith, the sum of the cosines in (6.10) has
been derived. With a similar derivation, the sum of the sines is obtained.

The orthogonality relations in (6.12) are derived by applying the trigono-
metric identities and then calculating the sums of the exponential representa-
tions as demonstrated in (6.128). For t = 0, 1, ..., N − 1 and k, l = 0, 1, ...,m,
with m being the largest integer number such that m ≤ N/2,

Sk,l =
N−1∑
t=0

cos
(
2π
k

N
t
)
cos

(
2π

l

N
t
)

=
1
2

N−1∑
t=0

(
cos

(2πt
N

(k + l)
)

+ cos
(2πt
N

(k − l)
))

=

⎧⎪⎨⎪⎩
(1/2)

(
N +N

)
= N for k = l = 0, N/2

(1/2)
∑N−1

t=0 cos
(
((2πt)/N)2k

)
+N/2 = N/2 for k = l

0 for k �= l

=

⎧⎨⎩N for k = l = 0, N/2
N/2 for k = l
0 for k �= l

(6.130)

is obtained because
∑N−1

t=0 cos
(
2π(k/N)t

)
= 0 for k �= 0, N/2, as shown above

in (6.128). The orthogonality relations as in (6.11) and (6.13) are arrived at
with similar derivations.

The infinite number of trigonometric functions in the set (6.14) have prop-
erties as summarised in (6.15), (6.16), (6.17), (6.18) and (6.19). The integrals
(6.15) and (6.16) are the counterparts to the sums in (6.10) in the case of the
number of functions being finite. These integrals are arrived at as shown in
(6.131) ∫ T/2

−T/2

cos
(
2π
k

T
t
)
dt =

T

2πk
sin
(
2π
k

T
t
)∣∣∣∣T/2

−T/2

=
T

2πk
sin(πk) − T

2πk
sin(−πk) = 0 (6.131)

for the cosine function and positive k, and, thereafter, lend themselves to
prove the orthogononality relations as in (6.17), (6.18) and (6.19), subse-
quent to applying the trigononometric identities as demonstrated above in
the derivation of (6.130).
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6.9.2 Discrete Fourier Transform

(6.22,3) is derived by substituting Fk in definition (6.22,2) (or in (6.132)) with
Fk as defined in (6.22,1) (or in (6.133)). Both Fourier transforms are peri-
odic with period N , as concluded from the remarks to (6.22), and therefore
applying (6.24), the sums are calculated for one period.

(fu) =
N−1∑
k=0

Fkei2π(u/N)k for u = . . . ,−1, 0, 1, . . . (6.132)

(Fk) =
1
N

N−1∑
t=0

fte−i2π(k/N)t for k = . . . ,−1, 0, 1, . . . (6.133)

fu =
N−1∑
k=0

(
1
N

N−1∑
t=0

fte−i2π(k/N)t

)
ei2π(u/N)k for k, u, t =

0, . . . , N−1 (6.134)

=
1
N

N−1∑
t=0

ft

N−1∑
k=0

ei2π(k/N)(u−t) (6.135)

The sum in (6.135) results from applying (6.10) as follows

N−1∑
k=0

ei2π(k/N)(u−t) =
N−1∑
k=0

cos(2π
u− t
N

k) + i
N−1∑
k=0

sin(2π
u− t
N

k)

=
{ 0 for u− t �= 0
N for u = t

and, using this result,

fu =
1
N

N−1∑
t=0

ft

{ 0 for u− t �= 0
N for u = t

}
with u, t = 0, . . . , N − 1

= ft for u = t (6.136)

is obtained. Consequently, (ft) and (Fk) in (6.22,1,2) (or alternatively in
(6.22,4)) are discrete Fourier transform pairs as required in (6.22,3).

6.9.3 Sums of Trigonometric Functions

Sums of trigonometric functions with frequencies s �= . . . ,−1, 0, 1, . . . are
arrived at in (6.137) and (6.138). The sums in (6.10) hold for the trigono-
metric functions as defined in (6.9) with frequencies sk = k/N , t, k =
. . . ,−1, 0, 1, . . ., 0 ≤ t ≤ N−1 and 0 ≤ k ≤ (N/2). Can sums of trigonometric
functions be obtained when their frequencies are not restricted to sk = k/N?
For example, the sum of the cosine functions

N−1∑
t=0

cos(2πst) = 1 + cos(2πs) + cos(4πs) + . . .+ cos(2π(N − 1)s)
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is multiplied on both sides with 2 sin(2π(1/2)s) and, thereafter, applying
identity 2 sinx cos y = sin(x− y) + sin(x+ y) = sin(x+ y) − sin(y − x)

2 sin(2π 1
2s)

N−1∑
t=0

cos(2πst) = 2 sin(2π 1
2s)+

sin(2π(1 + 1
2 )s) − sin(2π(1 − 1

2 )s) +
sin(2π(2 + 1

2 )s) − sin(2π(2 − 1
2 )s) +

...
sin(2π(N − 2 + 1

2 )s) − sin(2π(N − 2 − 1
2 )s) +

sin(2π(N − 1 + 1
2 )s) − sin(2π(N − 1 − 1

2 )s)
= sin

(
2π(N − 1 + 1

2 )s
)

+
2 sin(2π 1

2s) − sin(2π(1 − 1
2 )s)

= sin
(
2π(N − 1

2 )s
)

+ sin
(
2π 1

2s
)

is obtained. The sum of the sine functions is arrived at by applying the
identity 2 sinx sin y = cos(x− y) − cos(x+ y) = 2 sin y sinx.

Again applying the trigonometric identities, the sums obtained are written
as products to obtain the results as in (6.137) and (6.138).

N−1∑
t=0

cos(2πst) =
sin
(
2π(N − 1

2 )s
)

+ sin
(
2π 1

2s
)

2 sin
(
2π 1

2s
) s �= . . . ,−1, 0, 1, . . .

=
sin
(
2πN

2 s
)
cos

(
2πN−1

2 s
)

sin
(
2π 1

2s
) (6.137)

N−1∑
t=0

sin(2πst) =
cos

(
2π 1

2s
)− cos

(
2π(N − 1

2 )s
)

2 sin
(
2π 1

2s
) s �= . . . ,−1, 0, 1, . . .

=
sin
(
2πN

2 s
)
sin
(
2πN−1

2 s
)

sin
(
2π 1

2s
) (6.138)

Substituting s in (6.137) and (6.138) with k/N , the sums in (6.10)
and (6.11) are arrived at on condition that k �= 0, N/2. For even N ,
sin
(
2π(N/2)(k/N)

)
= sin(πk) = 0 with k = 1, 2, . . . ,m − 1. For odd N ,

sin
(
2π(N/2)(k/N)

)
= sin(πk) = 0 with k = 1, 2, . . . ,m, m as in the remarks

to (6.9) and (6.13).

6.9.4 Properties of Fourier Transform Pairs

Properties as proposed in (6.48) that apply to Fourier transform pairs as
defined in (6.35) are derived in (6.139), (6.140), (6.141), (6.142) and (6.143).
However, these properties are shared with Fourier transform pairs for cases
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(6.20,1,2,4). For example, convolution theorem (6.48,7) is derived in (6.145)
for Fourier transform pairs as in (6.49) and (6.50).

(6.48,1) directly follows from (6.35), and (6.48,2) directly from (6.37),
because cos(2πst) is even whereas sin(2πst) is odd.

(6.48,3) is shown, for a < 0, by substituting u = −at. This substitution
implies t = −u/a, du/dt = −a, dt = (1/ − a)du and integrating from ∞ to
−∞.

F−i

(
f(−at)) =

∫ ∞

−∞
f(−at)e−i2πstdt =

∫ −∞

∞
f(u)e−i2πs−u

a
1
−a du

=
−1
−a

∫ ∞

−∞
f(u)e−i2π s

−a udu =
1

| − a|
∫ ∞

−∞
f(u)e−i2π s

−a udu

=
1

| − a|F
( s

−a
)

(6.139)

For a > 0, F−i

(
f(at)

)
= (1/a)F (s/a) is obtained. Thus, F−i

(
f(at)

)
=

(1/|a|)F (s/a), for a �= 0. When both sides are multiplied with |a|1/2,
F−i

(|a|1/2f(at)
)

= (1/|a|1/2)F (s/a) is arrived at, being a more symmetric
form of (6.48,3).

(6.48,4) follows by substituting u = t−b, du/dt = 1, du = dt, d(t−b) = dt.

F−i

(
f(t− b)) =

∫ ∞

−∞
f(t− b)e−i2πstdt

=
∫ ∞

−∞
f(t− b)e−i2πs(t−b+b)d(t− b)

=
∫ ∞

−∞
f(t− b)e−i2πs(t−b)e−i2πbsd(t− b)

= F (s)e−i2πbs (6.140)

(6.48,5) holds because integration is linear:

H(s) =
∫ ∞

−∞
h(t)e−i2πstdt =

∫ ∞

−∞

(
af(t) + bg(t)

)
e−i2πstdt

=
∫ ∞

−∞
af(t)e−i2πstdt+

∫ ∞

−∞
bg(t)e−i2πstdt

= aF (s) + bG(s) (6.141)

(6.48,6) holds because the functions in a Fourier transform pair as de-
fined in (6.35) are in L2(−∞,∞). Applying definition (2.28,1), and because∫∞
−∞ f(t− u)ei2πs(t−u)dt =

∫∞
−∞ f(r)e

i2πsrdr holds for all u, convolution the-
orem (6.48,6) is obtained.

H(s) =
∫ ∞

−∞
h(t)e−i2πstdt =

∫ ∞

−∞

(∫ ∞

−∞
g(u)f(t− u)du

)
e−i2πstdt
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=
∫ ∞

−∞

∫ ∞

−∞
g(u)f(t− u)e−i2πs(u+t−u)du dt

=
∫ ∞

−∞

∫ ∞

−∞
g(u)e−i2πsuf(t− u)e−i2πs(t−u)du dt

=
∫ ∞

−∞

(∫ ∞

−∞
f(t− u)e−i2πs(t−u)dt

)
g(u)e−i2πsudu

=
∫ ∞

−∞

(∫ ∞

−∞
f(t)e−i2πstdt

)
g(u)e−i2πsudu

=
∫ ∞

−∞
F (s)g(u)e−i2πsudu = F (s)G(s) (6.142)

(6.48,7) also holds because the functions are in L2(−∞,∞). Substituting
f(t) with the +i-transform of F (s), this convolution theorem is obtained as
follows:

H(s) =
∫ ∞

−∞
h(t)e−i2πstdt =

∫ ∞

−∞
f(t)g(t)e−i2πstdt

=
∫ ∞

t=−∞

(∫ ∞

−∞
F (r)e+i2πrtdr

)
g(t)e−i2πstdt

=
∫ ∞

−∞
F (r)

(∫ ∞

−∞
g(t)e−i2πstei2πrtdt

)
dr

=
∫ ∞

−∞
F (r)

(∫ ∞

−∞
g(t)e−i2π(s−r)tdt

)
dr

=
∫ ∞

−∞
F (r)G(s− r)dr = F (s) ∗G(s) (6.143)

Convolution theorem (6.48,7) is obtained in (6.145) for Fourier transform
pairs as defined in (6.49) and (6.50), i.e., for case (6.20,4). Assume that (ft),
(gt) and (ht), t = . . . ,−1, 0, 1 . . ., are sequences in L2(−∞,∞), and that
F (s), G(s) and H(s), s real, are functions in L2(−1/2, 1/2), and periodic
with period 1. Further assume that (ft) and F (s), (gt) and G(s) as well as
(ht) and H(s) are Fourier transform pairs as defined in (6.49) and (6.50).
Then, in contrast to derivation (6.143) for case (6.20,3), start in (6.144) with
the convolution in the frequency domain.

In (6.144), convolution is defined differently than in (2.28,1) where it is
defined for the case of non-periodic functions. Since F (s), G(s) and H(s) are
functions defined in −1/2 ≤ s ≤ 1/2 and periodic with period 1, the limits in
the convolution integral become −1/2 and 1/2, i.e., one integrates over one
complete period.

H(s) = F (s) ∗G(s) =
∫ 1/2

−1/2

F (s− r)G(r)dr (6.144)
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=
∫ 1/2

−1/2

F (s− r)
( ∞∑

t=−∞
g(t)e−i2πrt

)
dr

=
∞∑

t=−∞

(∫ 1/2

−1/2

F (s− r)ei2π(s−r)tdr

)
g(t)e−i2πst

=
∞∑

t=−∞

(∫ 1/2

−1/2

F (r)ei2πrtdr

)
g(t)e−i2πst

=
∞∑

t=−∞
(ft)(gt)e−i2πst (6.145)

In the second line, G(s) is written as the Fourier transform of (gt). Since F (s)
is in L2(−1/2, 1/2), integration and summation are interchanged and the
third line results. The fourth line is obtained since F (s), being periodic with
period 1, can be integrated in an arbitrary interval of length 1, as concluded
from the remarks to (6.24). Consequently, (ht) = (gt)(ft) because H(s) =
F−i(ht) as assumed above.

6.9.5 Bessel’s Inequality and Parseval’s Identity

In (6.74) and in (6.36) it is assumed that f(t) is in L2(−T/2, T/2), implying
that its norm ‖f(t)‖, and therefore (2/T )

∫ T/2

−T/2

(
f(t)

)2dt, exist. Since a square
is positive,

0 ≤
∫ T/2

−T/2

(
f(t) − fM (t)

)2dt ≤ ∫ T/2

−T/2

(
f(t)

)2 − 2f(t)fM (t) +
(
fM (t)

)2dt
≤
∫ T/2

−T/2

(
f(t)

)2dt− 2
∫ T/2

−T/2

(
f(t)fM (t)

)
dt+

∫ T/2

−T/2

(
fM (t)

)2dt
≤ S1 − S2 + S3 (6.146)

is obtained. The second term is integrated using the Fourier coefficients Ak

and Bk and the Fourier partial sum fM (t) as in (6.28,2,3).

S2 = 2
∫ T/2

−T/2

f(t)

(
A0

2
+

M∑
k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

))
dt

= 2
A0

2

∫ T/2

−T/2

f(t)dt+

2
M∑

k=1

(
Ak

∫ T/2

−T/2

f(t) cos(2πskt)dt+Bk

∫ T/2

−T/2

f(t) sin(2πskt)dt

)

= 2
A0

2
TA0

2
+ 2

M∑
k=1

(
T

2
A2

k+
T

2
B2

k

)
= 2

T

4
A2

0 + 2
T

2

M∑
k=1

(
A2

k+B2
k

)
(6.147)
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In the third term, the mixed products become identically zero since the
trigonometric functions (6.14) are orthogonal:

S3 =
∫ T/2

−T/2

(
A0

2
+

M∑
k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

))2

dt

=
T

4
A2

0 +
M∑

k=1

(
A2

k

∫ T/2

−T/2

cos(2πskt) cos(2πskt)dt+

B2
k

∫ T/2

−T/2

sin(2πskt) sin(2πskt)dt

)

=
T

4
A2

0 +
M∑

k=1

(
A2

k

T

2
+B2

k

T

2

)
=
T

4
A2

0 +
T

2

M∑
k=1

(
A2

k +B2
k

)
. (6.148)

Substituting, (6.74,2) is obtained in (6.149).

0 ≤
∫ T/2

−T/2

(
f(t)

)2dt − T

4
A2

0 −
T

2

M∑
k=1

(
A2

k +B2
k

)
A2

0

2
+

M∑
k=1

(
A2

k +B2
k

) ≤ 2
T

∫ T/2

−T/2

(
f(t)

)2dt (6.149)

In (6.149), the sequence of the partial sums in the series of the squared Fourier
coefficients Ak and Bk does not decrease forM = 1, 2, ... and is bounded since
the integral exists, as assumed above. As a consequence, (6.74,3) holds.

6.9.6 Properties of the Autocorrelation

The �-transformation as defined in (6.102) has properties similar to those of
the convolution (i.e., the ∗-transformation) which is defined in (2.28).

Similar to the derivation (6.145), it is assumed that (ft) and F (s), (gt) and
G(s) as well as (ht) and H(s) are Fourier transform pairs as defined in (6.49)
and (6.50). In the first line of the following derivation, (ht) is assumed to result
from (ft) and (gt) by applying the �-operator as defined in (6.102). The sixth
line is arrived at because

∑∞
t=−∞ f(t + u)e−i2πs(t+u) =

∑∞
v=−∞ f(v)e−i2πsv

for every u, t, u, v = . . . ,−1, 0, 1, . . ..

H(s) =
∞∑

t=−∞
hte−i2πst with (ht) = (ft) � (gt)

=
∞∑

t=−∞

( ∞∑
u=−∞

guft+u

)
e−i2πst

=
∞∑

t=−∞

∞∑
u=−∞

guft+ue−i2πs(u+t−u)
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=
∞∑

t=−∞

∞∑
u=−∞

gue+i2πsuft+ue−i2πs(t+u)

=
∞∑

u=−∞

( ∞∑
t=−∞

ft+ue−i2πs(t+u)

)
gue+i2πsu

=
∞∑

u=−∞

( ∞∑
t=−∞

fte−i2πst

)
gue+i2πsu

=
∞∑

u=−∞
F (s)gue+i2πsu = F (s)G(s) (6.150)

In (6.150), F (s)G(s) in the frequency domain corresponds to (ft) � (gt) in
the time domain, whereas, in (6.145), F (s)G(s) corresponds to (ft) ∗ (gt) in
the time domain. Please note that G(s) is the Fourier +i-transform of (gt)
provided that G(s) is the Fourier −i-transform of (gt).

In the time domain, ∗- and �-transformations can be distinguished clearly
when they are performed using the paper strip device as demonstrated in
(2.38). When calculating a convolution sum as required in (2.38), (ft) is
written on a sheet of paper and a copy (gt−u) with the values in (gt) in
reversed order is written on a paper strip which is then displaced relatively
to the sheet: the result is obtained by summing the products of pairs of values
(ft, gt−u) appearing on the same line. An autocorrelation sum is calculated
using the same procedure, but without reversing the order of the values in
(gt).

Using (6.150), the autocorrelation theorem is easily obtained. Let (ft)
be a real-valued sequence in L2(−∞,∞) with Fourier transform F (s) as
in (6.49) and (6.50). Then definition (6.103) implies f � f(t) = f � f(−t),
comparable to (2.4,3) implying (2.7,1) and (2.9,4). Thus being even as defined
in (6.32), the autocorrelation has a real-valued Fourier transform F−i

(
f �

f(t)
)

= F (s)F (s) = |F (s)|2, as obtained when, in (6.150), (gt) is substituted
with (ft).

Further, f �f(t) is maximal in t = 0. This property is, in the case of
time-limited sequences, easily derived, since the Cauchy-Schwarz inequality
as defined in (6.4) also applies to sums. Let (ft) be a time-limited sequence
as in (6.108,1) with ft = 0 for t < t2 and ft = 0 for t > t3, t2 < t3. The auto-
correlation of (ft) becomes identically zero, i.e., f�f(t) =

∑∞
t=−∞ ftft+u = 0,

on condition that all products in the autocorrelation sum become identically
zero, i.e., for displacements |u| > t3 − t2. This becomes obvious when f�f(t)
is calculated using the paperstrip device (2.38), however modified as required
above.

With t1 < t2 − (t3 − t2) and t4 > t3 + (t3 − t2),
∑t4

t=t1
(ft) =

∑t3
t=t2

(ft) =∑t4
t=t1

(ft+u) and
∑t4

t=t1
(ft)2 =

∑t3
t=t2

(ft)2 =
∑t4

t=t1
(ft+u)2 are obtained

for displacements |u| > t3 − t2, since both sums contain identical terms.
Consequently, both sequences, (ft) and its displaced duplicate (ft+u), |u| >
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Fig. 6.33. Sequence (ht) (a) together with its Fourier transform H(s) as defined
in (6.49) and (6.50) (b). The real and imaginary parts re(H(s)) and im(H(s)) are
plotted with broken lines, |H(s)| with a solid line. Plot (d) contains H(s)H(s) with
spectrum |H(s)|2 (solid line).

t3 − t2, are in L2(t1, t4). Substituting, in a version of the Cauchy-Schwarz
inequality for sequences, φ(u) with (ft) and ψ(u) with (ft+u):(

t4∑
t=t1

ftft+u

)2

≤
t4∑

t=t1

(ft)2
t4∑

t=t1

(ft+u)2 ≤
(

t4∑
t=t1

(ft)2
)2

(6.151)

∑t4
t=t1

ftft+u ≤∑t4
t=t1

(ft)2 is obtained.
For example, sequence (ht) as plotted in Fig. 6.33 (a) is time-limited with

t2 = 0 and t3 = 10. Its autocorrelation h�h(t) becomes identically zero for
displacements |u| > 10 − 0 = 10 as shown in Fig. 6.34 (c). Consequently,
t1 < −10 and t4 > 20.

(6.151) also applies to a time series (xt), t = 1, 2, . . . , N , since its empirical
covariance function ĉX(τ ) is its autocorrelation normalised with (1/N), as
concluded from a comparison of definitions (2.1) and (6.103). Consequently,
ĉX(τ ) is maximal for lag τ = 0. ĉX(τ ) shares this property with the covariance
function cX(τ ) of a stationary stochastic process (Xt), shown to be maximal
for τ = 0 in the remarks to (2.9).
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Fig. 6.34. Convolution of h ∗ h(t) (a) and autocorrelation h 
 h(t) (c), (ht) as in
Fig. 6.33 (a), together with their Fourier transforms as defined in (6.49) and (6.50),
(b) and (d).

6.9.7 Demonstration of the Convolution Theorem

Convolution theorem (6.48,6) for Fourier transform pairs as defined in (6.49)
and (6.50) is demonstrated in Figs. 6.33 and 6.34. In these figures, the se-
quences in the time domain are plotted on the left side (at the exterior of the
intervals shown, the sequences are identically zero), and the functions in the
frequency domain are plotted on the right side for interval −1/2 ≤ s ≤ 1/2,
being periodic with period 1. Sequence (ht) in Fig. 6.33 (a) is mixed, as
required in (6.32), and therefore has, as concluded from (6.37), a complex-
valued Fourier transform H(s) as plotted in Fig. 6.33 (b). Using complex
multiplication,H(s)H(s) as plotted in Fig. 6.33 (d) is arrived at, with |H(s)|2
being the spectrum of (ht) as defined in (6.76).

h∗h(t), the self-convolution of (ht), is mixed and thus has a complex-
valued Fourier transform F−i

(
h∗h(t)). h∗h(t) and F−i

(
h∗h(t)) can be seen

above in Fig. 6.34, plots (a) and (b). Compare Fig. 6.34 (b) with Fig. 6.33
(d) to obtain a demonstration of F−i

(
h∗h(t)) = H(s)H(s) as required in

(6.48,6).
h�h(t), the autocorrelation of (ht) as defined in (6.103), has the Fourier

transform F−i

(
h�h(t)

)
= H(s)H(s) = |H(s)|2, as derived in (6.150). h�h(t)

and |H(s)|2 are shown below in Fig. 6.34, plots (c) and (d). h�h(t) is even,
and thus |H(s)|2 is real-valued. Since (6.150) implies F−i

(
f�f(t)

)
= |F (s)|2,
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and since the spectrum of a function is the squared absolute value of its
Fourier transform as defined in (6.76), it is obvious that the spectrum can
be obtained by calculating the Fourier transform of the autocorrelation of
a function. Usually, however, a spectrum is calculated as the square of the
absolute value of its Fourier transform.

6.9.8 Autocorrelation and Discrete Fourier Transform in R

h∗h(t) and h�h(t) as in Fig. 6.34 (a) and (c) are easily calculated from
(ht) = (1/2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) for t = 0, 1, 2, . . . , 10 and ht = 0, for t
at the exterior of this interval, as in Fig. 6.33 (a). (ht) is convolved with
itself using the paper strip device (2.38) to obtain h∗h(t), and, when the
values in (ht) are written on the paper strip without reversing their order,
the autocorrelation h�h(t) is obtained. In R, a convolution is calculated with
filter(), introduced in the remarks to Fig. 2.16, whereas an autocorrelation
as defined in (6.103) can be calculated using acf() on condition that the
result is re-scaled to account for factor (1/N) in (2.1,3) which is lacking in
(6.103), as is demonstrated in Problem 9.5. Without using these R functions,
h∗h(t) and h�h(t) are obtained with the following R expressions:

N0 <- 5 #11 values not being identically zero

N1 <- 2*N0+1 #as in Fig. 6.33 (a)

h1 <- (rep(1,N1)) #in R vector h1, first non-zero value

h1[1] <- 1/2 #at first place

#convolve h1 with itself

h3 <- c(rep(0,N1),h1) #h3 for convolution (h1)*(h1)

h3 <- c(h3,rep(0,N1))

h3 <- as.vector(filter(h3,h1,sides=1))

#first non-zero value at first place

h3 <- h3[(N1+1):(3*N1-1)]

#autocorrelation of h1

N2 <- 4*N0+1 #number of non-zero elements

h2 <- rep(0,N2) #in the autocorrelation of h1

h2[N1] <- sum(h1*h1) #displacement 0

for(i in 1:(N1-1) ) { #---> to slow for large N <---

h2[N1+i] <- sum( (h1[1:(N1-i)])*(h1[(1+i):N1]) )

h2[N1-i] <- h2[N1+i] #h2 is even

}

Fourier transforms H(s), F−i

(
h∗h(t)) and F−i

(
h�h(t)

)
, as plotted on the

right in Figs. 6.33 and 6.34, are calculated applying (6.49) for real −1/2 ≤
s ≤ 1/2 from sequences (ht), h∗h(t) and h�h(t) as plotted on the left in
Figs. 6.33 and 6.34, the sequences being in L2(−∞,∞), t = . . . ,−1, 0, 1, . . ..
These sums are not as easily obtained as in (6.122) and (6.124), because these
sequences have more than only two or three non-zero values. A well-known
example for evaluating a Fourier sum as required in (6.49) is the derivation of
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the Dirichlet kernel DN (s) in (6.55) from (6.54). (6.54), in turn, is calculated
using (6.137) and (6.138). Can a Fourier sum as required in (6.49) be replaced,
for practical purposes such as plotting, etc., by a discrete Fourier transform
using (6.22) or (6.26)?

Discrete Fourier transforms, when computed using (6.26) from fairly long
time slices including the parts with the non-zero values in (ht), h∗h(t) and
h�h(t) as plotted on the left in Figs. 6.33 and 6.34, are available at discrete
frequencies s′k. These frequencies and their intermediate distance ∆s′k are
defined in the remarks to (6.27). In a plot, these discrete Fourier transforms
cannot be distinguished from H(s), F−i

(
h∗h(t)) or F−i

(
h�h(t)

)
provided

that ∆s′k is sufficiently small.
∆s′k = 1/N ′ = 1/(2p) becomes sufficiently small on condition that R

vectors h1, h2 and h3, with the non-zero values of these sequences as obtained
above, are padded with 0 until a finite number of values N ′ = 2p is arrived
at, p = 1, 2, 3, . . .. The zero-padded sequences are then discretely Fourier
transformed, with the results plotted on the right in Figs. 6.33 and 6.34.

In R, a discrete Fourier transform is computed using expression Fvec <-

fft(fvec,inverse=...). fft(...,inverse=T) calculates a −i-transform and
fft(...,inverse=F) a +i-transform, as required in (6.22,4). fvec, the first
argument in function fft(), is a real- or complex-valued vector with the se-
quence (ft) to be transformed. fft() returns the discrete Fourier transform
(Fk) of (ft) in vector Fvec. Fvec is complex-valued. (Fk) is periodic with pe-
riod N as shown in the remarks to (6.22), and (Fk′) is periodic with period
N ′, when (ft) is zero-padded as in (6.26). Consequently, F (sk) and F (s′k)
are periodic with period 1 and are generally plotted in −1/2 ≤ s ≤ 1/2,
as argued in the remarks to (6.24). As a further consequence, F+i(Fk) or
F+i(Fk′) are periodic with period N or N ′. This symmetry is exploited by
fft(), assuming that:

1. pairs
(
(ft), (Fk)

)
or, subsequent to zero-padding (ft),

(
(ft′), (Fk′)

)
are

periodic with periods N or N ′, N or N ′ the number of values in argument
vector fvec

2. fvec[1] = f0 and Fvec[1] = F0, i.e., the first value in both, argument
and result vector, is the value of the sequences for t = 0 and k = 0, and

3. fvec[1] or Fvec[1] are followed by the values for t > 0 or k > 0, and
thereafter by the values for t < 0 or k < 0, i.e., both half-periods of the
sequences.

In this order, a discrete Fourier transform is obtained in Fvec, as demon-
strated in the remarks to (6.26) and (6.27), provided that this order is adhered
to in argument vector fvec, as demonstrated in the following examples.

As a first example, the discrete Fourier transform of (ht), as in Fig. 6.33
(a) and as obtained above in R vector h1, is calculated by zero-padding h1

on its right side; thus, fft() associates all non-zero values with non-negative
t = 0, 1, 2, . . ., since only zero-values are in the second half-period subsequent
to zero-padding and therefore are associated with t = . . . ,−2,−1.
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p <- 11 #h1, N1, N0 as above

N1V <- 2**p #Delta sk becomes 1/(2**p)

H1V <- N1V - N1 #number of zeros for padding

h1v <- c(h1,rep(0,H1V)) #argument vector for fft()

t1v <- 0:(N1V - 1) #for plotting h1v

H <- fft(h1v, inverse=T) #-i-transformation

The zeros in the second half of h1v are then handled by fft() as if being the
second-half period of the sequence to be transformed, i.e., pertaining to time
points t < 0 as required in the definition of (ht).

As a second example, vector h3 containing h∗h(t) is also zero-padded
on its right side prior to being transformed. One-sided padding is possible
because the first non-zero value in vector h3, as constructed using the above
R expressions from h1, is associated with time t = 0, as plotted in Fig. 6.34
(a). The values in the second half of h3 after zero-padding, being associated
with time points t < 0 by fft(), are then all identically zero, as required in
the definition of h∗h(t) for t < 0.

In the third example, autocorrelations h�h(t) of (ht) are not identically
zero for negative lags. For this reason, vector h3 as obtained above and plot-
ted in Fig. 6.34 (c), is zero-padded on both sides to obtain N ′ = 2p in a first
step. The zero-padded vector contains in its first half the 2(p−1) − 1 autocor-
relations associated with time points t < 0, thereafter, at place 2(p−1), the
autocorrelation for t = 0, followed by the 2(p−1) autocorrelations associated
with time points t > 0. In the second step, the order is changed as required
by fft():

N2V <- 2**p #h2, N1, N2, p as above

H2Vright <- 2**(p-1) - (N1-1) #one zero more on the right side

H2Vleft <- 2**(p-1) - N1 #than on the left one, N2 being odd

h2v <- c(rep(0,H2Vleft),h2) #(as the sum for

h2v <- c(h2v,rep(0,H2Vright)) #even N in (6.24))

t2v <- -(2**(p-1)-1):(2**(p-1)) #for plotting

#h2v has now length N2V = 2**p, re-order for fft()

h2v <- c(h2v[(2**(p-1)):N2V], h2v[1:(2**(p-1)-1)])

HAH <- fft(h2v, inverse=T) #-i-transformation

The discrete Fourier transform of h�h(t) is obtained in vector HAH with values
ordered as in argument vector h2v: HAH[1] is the result for s′k = 0, followed
by the values for the positive and, thereafter, the negative frequencies. HAH is
plotted by means of generating a vector with discrete frequencies s′k obeying
the order in HAH, or by rearranging HAH such that it can be plotted against the
s′k in normal order. The first possibility is chosen in the examples following
(6.26) and (6.27).

More Fourier transform pairs as defined in (6.49) and (6.50) are plotted as
examples in Fig. 6.35. Fig. 6.35 (a) shows sequence (gt) = (ht)/

(∑∞
t=−∞ ht

)
,

(ht) as in Fig. 6.33 (a). Dividing by
∑∞

t=−∞ ht implies
∑∞

t=−∞ gt = 1 and,
as a further consequence, G(s) = 1 for s = 0, G(s) = F−i

(
(gt)

)
, is obtained
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Fig. 6.35. Sequences (ht)/
(∑10

t=0
ht

)
(a) and h 
 h(t)/

(∑10

t=0
h2

t

)
(c), (ht) as in

Fig. 6.33 (a), together with their Fourier transforms as defined in (6.49) and (6.50),
(b) and (d).

applying (6.48,1). A normalisation with the sum of the sequence is usually
performed to obtain the impulse response function of a moving average as
defined in (2.39) and discussed in (6.124).

Fig. 6.35 (c) shows (ft) =
(
h�h(t)

)
/Σ(h2), Σ(h2) =

∑∞
t=−∞ h

2
t , (ht)

as plotted in Fig. 6.33 (a). Its Fourier transform
(
1/Σ(h2)

)F−i

(
h � h(t)

)
=(

1/Σ(h2)
)|H(s)|2 is obtained with (6.48,5) and the remarks to (6.48). Ap-

plying Parseval’s identity, in its version as introduced in the remarks to
(6.127) for Fourier transform pairs (6.49) and (6.50), Σ(h2) =

∑∞
t=−∞ h

2
t =∫ 1/2

−1/2
|H(s)|2ds is arrived at, implying

(
1/Σ(h2)

) ∫ 1/2

−1/2
|H(s)|2ds = 1. This

result is also arrived at applying (6.48,1), because definition (6.103) implies
that h�h(t)/Σ(h2) = 1 for t = 0.
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6.10 Problems

6.1. Using R expressions as in the remarks to Fig. 6.1, the sawtooth-shaped
sequence above in Fig. 6.1 is generated and the pertaining Fourier coefficients
are calculated. Trigonometric oscillations with these Fourier coefficients are
then added to the reconstruction of the sequence as plotted below in Fig. 6.1.
Please reconstruct the sawtooth-shaped sequence using

1. the oscillations marked ◦ in Table 6.1 solely
2. the oscillations marked ∗ in Table 6.1 solely
3. all harmonics pertaining to the fundamental oscillation with frequency

5/140
4. all harmonics pertaining to the fundamental oscillation with frequency

28/140,

by replacing the R expressions for adding the oscillations with
#fundamental oscillation and harmonics for frequency 5/140

skk <- c(1*5+1,2*5+1,3*5+1,4*5+1,5*5+1,8*5+1)

#fundamental oscillation and harmonics for frequency 5/140 28/140

#skk <- c(1*28+1,2*28+1)

modsqsum <- 0.0 #sum of squared moduli of coefficients

for(i in 1:length(skk)) {

modsqsum <- modsqsum + (mod[skk[i]])*(mod[skk[i]])

}

xhracc <- rep(A[1], hrlen) #accumulator

for(i in 1:length(skk)) { #reconstruction

xhr <- (rep(A[skk[i]],hrlen))*cos(2*pi*sk[skk[i]]*timehr) +

(rep(B[skk[i]],hrlen))*sin(2*pi*sk[skk[i]]*timehr)

xhracc <- xhracc + xhr

}

Compare the sums of the squared moduli of the coefficients pertaining to the
oscillations used for the above reconstructions with the sum of the squared
moduli of the coefficients pertaining to all oscillations used for the recon-
struction below in Fig. 6.1.

6.2. Use (6.4) to show that the triangle inequality ‖φ(t) + ψ(t)‖ ≤ ‖φ(t)‖ +
‖ψ(t)‖ holds in L2(a, b).

6.3. R expressions in file /path/fig66.R generate functions in the sequences
yk(x) = e−(1/10)kx2

, k = 0, 1, 2, . . . and zk(x) = e−10kx2
, k = 1, 2, 3 . . .,

some of which are plotted in Fig. 6.6. Please calculate z(2)k (x) = e−2kx2

for x = −1.00,−9.99, . . . ,−0.01, 0.00, 0.01, . . . , 9.99, 1.00 and sum
(
z
(2)
k+1(x)−

z
(2)
k (x)

)2 over all x for k = 1, 2, . . . , 20. The results suggest that z(2)k (x) is a
Cauchy sequence in L2(−1.0, 1.0). For which k do the sums become less than
ε = 10−12?
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Is yk(x) a Cauchy sequence in L2(−∞,∞)? Integrate the first line in the
following derivation using the result of Problem 1.12∫

=
∫ ∞

−∞

(
e−(1/10n)x2 − e−(1/10m)x2

)2

dx

=
∫ ∞

−∞
e−(2/10n)x2

dx− 2
∫ ∞

−∞
e−(1/10n+(1/10m)x2

dx+
∫ ∞

−∞
e−(2/10m)x2

dx

=
√
π
(√

10n/
√

2 − 2
√

10n × 10m/
√

10n + 10m +
√

10m/
√

2
)

for n = 6 and m = 4, n = 8 and m = 6, n = 10 and m = 8, . . . and show
that this integral does not decrease with increasing n and m. Thus yk(x) is
not a Cauchy sequence in L2(−∞,∞).

Then integrate
∫∞
−∞

(
zn(x)− zm(x)

)2dx for m = 1, . . . , 15 and n = m+2,
and show that this integral does not increase with increasing n and m. Thus
zk(x) is a Cauchy sequence in L2(−∞,∞).

6.4. Please show that the sequence (Fk) (6.22) is periodic with period N :
(Fk) = (Fk+pN ), for integer k, p,N . Hint: Fk is the linear combination of ft

with the orthogonal trigonometric functions (6.9). Trigonometric functions
are periodic with the periods in the remarks to (6.1).

6.5. Please zero-pad the sequences plotted above in Figs. 6.1 and 6.4 using
the following R expressions, and then calculate the Fourier transforms.

#x is the sequence above in Fig. 6.1 being constructed using

#the R expressions in the remarks to this figure

N <- length(x) #N’ = 2N, N’ and N as in the remarks to (6.27)

x0 <- c(x,rep(0,N)) #zero padded, x0 now has length 2N

x0t <- fft(x0, inverse=T)

s0k <- c( (0:N)/(2*N), -((N-1):1)/(2*N) ) #frequencies sk’

#now the sequence above in Fig. 6.4

x <- scan("/path/fig64.dat")

N <- length(x)

x0 <- c(x,rep(0,N)) #zero padded

x0t <- fft(x0, inverse=T)

s0k <- c( (0:N)/(2*N), -(N:1)/(2*N) )

Compare plots of the transforms and spectra with the plots in Figs. 6.2 and
6.4.

6.6. Generate sequences of lengths l1 = 215 = 32768, l2 = 32769, l3 = 32001
and calculate Fourier transforms using fft(). Compare the durations of the
calculations.

6.7. f(x) = |x|, −2 ≤ x ≤ 2, is an even (6.32) function in −2 ≤ x ≤ 2.
A periodic version of f(x) has period 4. Calculate the Fourier coefficients
pertaining to f(x) and approximate using (6.28,3) with M = 3. Plot the
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function together with its approximation by inserting the Fourier terms in
the following for()-loop:

i <- 1

t1 <- -200:200

t2 <- t1/100

f1 <- <- abs(t2)

f3 <- -200:200

plot(t2,f1,type="n",xlab=" ",ylab=" ")

lines(t2[1:401],f1[1:401])

for(i in 1:401) {f3[i] <- ... + ... + ... } #Fourier series

lines(t2,f3)

As an alternative, a Fourier series can be calculated using appropriate R
vectors as arguments in the cosine functions, as demonstrated by the R ex-
pressions for the calculation of the Fourier representation of the saw-tooth
shaped sequence in Fig. 6.1 (c).

6.8. Please find the defining equations of the periodic functions plotted in
Fig. 6.7. Hint: the function in plot (c) is quadratic. Calculate the pertaining
Fourier coefficients, and thereafter approximate the functions using (6.28,3)
with M = 3.

6.9. Derive (6.37,4) for the case (6.20,3), i.e., for f(t) and F (s) being a Fourier
transform pair (6.35). f(t) = even(f(t))+odd(f(t)) is obtained using (6.32,6)
and e−i2πst = cos(2πst) − i × sin(2πst) using (6.2,6). Substituting in (6.35)

F (s) =
∫ ∞

t=−∞

(
even

(
f(t)

)
+ odd

(
f(t)

))(
cos(2πst) + i × sin(2πst)

)
dt

. . .

= 2
∫ ∞

t=0

even
(
f(t)

)
cos(2πst)dt+ i × 2

∫ ∞

t=0

odd
(
f(t)

)
sin(2πst)dt

= re
(
F (s)

)
+ i × im

(
F (s)

)
where F (s) = F−i

(
f(t)

)
is obtained, the last line using (6.2,1,2).

6.10. (6.40,2) holds since sin(x) < x < tan(x), x being the arc in the unit
circle. (6.40,4) is obtained by showing that

∫∞
−∞

(
1/(bs)

)
(sin(bs)ds = π/|2b|,

since a product of two odd functions is even (6.32,4): with b = 2πc, the
integral evaluates to 2π/|2 × 2πc| = 1/|2c|.

Hint: Show that g′(u) = epu sin(qu), on condition that g(u) =
(
1/(p2 +

q2)
)
epu

(
p sin(qu) − q cos(qu)

)
, g′(u) being the derivative of g(u). Using this

result, the two-fold integral
∫∞
−∞

∫∞
−∞ e−xby sin(by)dxdy can be evaluated in

two ways. Thereafter,
∫∞
−∞

(
1/(bs)

)
(sin(bs)ds is easily calculated.

6.11. Calculate the Fourier transform of the shifted rectangle function f(t) =
a, for c− b ≤ t ≤ c+ b, f(t) = 0, for t at the exterior of this interval.
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6.12. Calculate the Fourier transform F (s) = F−i

(
f(t)

)
of the triangle func-

tion f(t),

f(t) =
{
a− (1/b)|t| for −b ≤ t ≤ b
0 for |t| > b

F (s) =

{
2 sin(2πbs)

2πs (a− 1) + 1
b

(
sin(πbs)

πs

)2

for s �= 0
ab for s = 0

and plot this Fourier transform pair for a = 1 and b = 1. Compare the Fourier
transform of the triangle function with the Fourier transform of the rectangle
function (6.38) using (6.48,6). Hint:

F (s) =
∫ b

−b

(
a− (1/b)|t|)e−i2πstdt = 2

∫ b

0

(
a− (1/b)t

)
cos(2πst)dt

= 2a
∫ b

0

cos(2πst)dt− 2
1
b

∫ b

0

t cos(2πst)dt = G(s) −H(s)

G(s) is the Fourier transform of the even rectangle function g(t) with height
a and width 2b, and H(s) is obtained when integrating by parts. For a = 1
and b > 0, the Fourier transform pair

f(t) =
{

1 − (1/b)|t| for −b ≤ t ≤ b
0 for |t| > b F (s) =

{
1
b

(
sin(πbs)

πs

)2

for s �= 0
b for s = 0

is obtained.

6.13. Show that

F+i

(
G(s) = e−|s|) =

2
1 + (2πt)2

= g(t)

F+i

(
F (s) =

{
e−s for s ≥ 0
0 for s < 0

)
=

1 − i2πt
1 + (2πt)2

= f(t)

and compare with the Fourier transform pairs (6.44) and (6.46).

6.14. Is the following proposition correct? The Fourier transform pair as
defined in (6.49) and (6.50) is a special case of the Fourier transform pair as
defined in (6.29) and (6.30) on condition that T = 1 and the roles of time
and frequency are reversed.

6.15. Evaluate the first sum in (6.53)

F−i

(
ΠN (t)

)
=

N−1∑
t=0

1 × e−i2πst =
N−1∑
t=0

cos(2πst) − i
N−1∑
t=0

sin(2πst)

using (6.137) and (6.138).
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6.16. FN (s) = F−i

(
Λ

(e)
2N+1(t)

)
= F+i

(
Λ

(e)
2N+1(t)

)
, since the Fourier transform

of the even triangle sequence (6.56) is the Fejer kernel (6.57). The Fourier
transform of the even triangle sequence can also be calculated using direct
summation, however, these calculations are more intricate than the argu-
ments in the lines preceding (6.57):

FN (s) =
N∑

t=−N

(
1 − |t|

N

)
ei2πst

=
1
N

N∑
t=−N

(N − |t|)zt =
1
m

m−1∑
t=−(m−1)

(m− |t|)zt

with m = N , since m − |t| = 0 for |t| = m. This sum is obtained when
the sums over the diagonals of the following matrix are calculated: the main
diagonal sums to mz0, the first subdiagonal above to (m − 1)z−1, below to
(m− 1)z1, etc.

⎛⎜⎜⎜⎜⎜⎜⎝

0 −1 . . . −v . . . −(m− 1)
0 z0z0 z0z−1 z0z−v z0z−(m−1)

1 z1z0 z1z−1 z1z−v z1z−(m−1)

. . .
u zuz0 zuz−1 zuz−v zuz−(m−1)

. . .
m− 1 zm−1z0 zm−1z−1 zm−1z−v zm−1z−(m−1)

⎞⎟⎟⎟⎟⎟⎟⎠
Sum this matrix over the rows and the columns

FN (s) =
1
m

m−1∑
u=0

m−1∑
v=0

zuz−v =
1
m

m−1∑
u=0

zu
m−1∑
v=0

z−v =
1
m

m−1∑
u=0

zu 1 − z−m

1 − z−1

. . .

=
1
N

(
sin(πNs)
sin(πs)

)2

s �= . . . ,−1, 0, 1, . . .

to obtain the Fejer kernel.

6.17. For s = . . . ,−1, 0, 1, . . . the sum

FN (s) =
1
m

m−1∑
t=−(m−1)

(m− |t|)(cos(2πst) + i × sin(2πst)
)

s = . . . ,−1, 0, 1, . . .

. . .

= 2m− 1 − (m− 1) = m

is arrived at.

6.18. Show that fq(t) = q/
(
π(t2+q2)

)
is a defining sequence for δ(t) provided

that q = 1, 1/2, 1/3, . . .. Plot the functions for some q.
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6.19. Given are the sine and cosine functions

f(t) = a cos(2πs1t) and g(t) = b sin(2πs2t)

a, b, s1, s2 real constants. Please calculate their Fourier transforms,

F (s) = F−i

(
f(t)

)
= (a/2)δ(s− s1) + (a/2)δ(s+ s1)

G(s) = F−i

(
g(t)

)
= (b/2)δ(s− s2) − (b/2)δ(s+ s2)

δ(s) being the delta function as defined in (6.60). Hint: Derive the Fourier
transforms as the limiting case of two (sinx)/x functions as defined in (6.39).
Then use (6.40,4) to obtain

∫∞
−∞ Fb(s)ds = 1 on condition that Fb(s) =

(2b sin(2πbs))/(2πbs) for s �= 0 and Fb(s) = 2b for s = 0. If b increases, then
(i) Fb(s) increases in the absolute values of the minima and maxima and (ii)
increases its frequency. In the limit for b → ∞, Fb(s) → ∞ for s = 0 is
obtained, however, Fb(s) is not identically zero for s �= 0, and, consequently,
Fb(s) is not reconcilable with (6.60,1). Ignoring this deficiency, assume that
Fb(s) is a defining sequence for δ(s) [32].

6.20. Define δ(s) using sequence fq(t), q = 1, 2, . . .,

fq(t) =
q

π(t2 + q2)
dfq(t)

dt
=

−2tq
π(t2 + q2)2

with first derivatives dfq(t)/dt. Plot fq(t) and dfq(t)/dt for some q. Show
that

∫∞
−∞ t(dfq(t)/dt)dt = −1.

6.21. The first order linear differential equation x(t)+ax′(t) = w(t) is solved
in Problem 2.11. The stationary solution x(t) =

∫ t

−∞ g(t − u)w(u)du, with
g(t) = 0, for t < 0, and g(t) = (1/a) e−(1/a)t, for t ≥ 0, is obtained. Evaluate
the convolution integral for some w(t): rectangle and triangle functions, sine
and cosine functions, the unit step function, i.e., w(t) = 0 for t < 0 and
w(t) = 1 for t ≥ 0, and the delta function, using integration and (6.48,6).

6.22. Use the Fourier series obtained in Problem 6.7 together with Parseval’s
identity (6.74) to sum 1/(14) + 1/(24) + . . .+ 1/(n4) + . . ..

6.23. Show by direct integration that

F−i

(
2e−|at| cos(2πrt)

)
=

2a
a2 +

(
2π(s− r)) +

2a
a2 +

(
2π(s+ r)

)
6.24. In Figs. 6.17, 6.19, 6.20 and 6.21, G(s′k) is calculated for frequencies
with spaces∆s′k = 1/N ′.∆s′k ≈ (1/2)∆sk = 1/N becauseN = 201, 301, 2401
and N ′ = 401, 601, 2801. Draw ∆sk = 1/301 and ∆s′k = 1/601 in the plot in
Fig. 6.21.
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6.25. File /path/problem625.R contains R expressions which are used to cal-
culate f(t) and F (s) as well as (gt) and G(sk) as required in (6.77), (6.78),
(6.79) and (6.80).

a) Fig. 6.15 contains plots of f(t), F (s), (gt) and G(sk) for s1 = 0.1,
s2 = 0.7, a1 = 0.5, a2 = 0.15 as well as N = 41. Use other values for s1 and
s2. For which s1 and s2 does aliasing occur?

b) Fig. 6.17 contains plots of f(t), F (s), (gt) and G(s′k) for s1 = 0.01,
s2 = 0.02, a1 = 0.002, a2 = 0.0001 as well as N = 201 and N ′ = 401;
Figs. 6.19 and 6.20 plots F (s) and G(s′k) for N = 301 and N ′ = 601, for
N = 2401 and N ′ = 4801 as well as for N = 65535 and N ′ = 65536.
Reconstruct these plots using larger and smaller a1 and a2.

6.26. Sequence gN (t) = 1/(2N) for −N < t < N , gN (t) = 1/(4N) for t = N
or t = −N , and gN (t) = 0 for |t| > N is plotted for N = 5 in Fig. 6.36 (e).
Compute the equivalent, σ-, and autocorrelation widths pertaining to this
sequence for N = 5. Thereafter compute these widths for the even rectangle
and triangle sequences in Fig. 6.36, plots (c) and (a).

6.27. Draw the widths at half height (6.97) in the plots (b), (d) and (f)
in Fig. 6.36. Which function has the smallest width at half height? Which
the largest? Which of the sequences Π(e)

N (t) and 2N
(
gN (t)

)
, gN (t) in Prob-

lem 6.26, do you prefer as an even data taper (6.110)?

6.28. Use the R expressions in file /path/problem628.R to generate sequence
(gt) of the damped trigonometric oscillations plotted in Fig. 6.27 with a
broken line. Then compute even cosine tapers h(e)�

N (t) (6.111,2) for N = 65535
and p1 = 0.001, p2 = 0.01, p3 = 0.05, p4 = 0.10, p5 = 0.15, etc. Thereafter,
multiply (gt) with h(e)�

N (t) and add zeros to obtain zero-padded sequences with
length N ′ = 65536 prior to arriving at G(pi)(s′k), i = 1, 2, . . . by applying a
discrete Fourier transform as defined in (6.26) and (6.27).

6.29. Show that a band-limited sequence (6.109) is not time-limited.

6.30. Generate sequences of trigonometric oscillations with a variety of fre-
quencies other than those of the sequences plotted in Fig. 6.29. Thereafter
calculate the differences of the sequences generated and plot input and out-
put of the difference filter. Hint: the sequences plotted in Fig. 6.29 can be
generated using R expressions as in /path/diff.R. In these R expressions, you
can substitute filter() for diff(), if you prefer filter().

6.31. Apply R expressions as in /path/diff.R to generate discrete-time
trigonometric oscillations having a variety of frequencies. Thereafter smooth
the oscillations thus obtained with (1/3)Π(e)

3 (u), i.e., the impulse response
function in (6.124). Repeat the smoothing operation using (1/5)Π(e)

5 (u).
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Fig. 6.36. Fourier transform pairs as defined in (6.49) and (6.50). Even triangle

sequence Λ
(e)
2N+1(t) (6.56) for N = 5 (a), even rectangle sequence Π

(e)
N (t) (6.52) for

N = 11 (b), gN (t) (Problem 6.26) for N = 5 (c).

6.32. Approximate a low pass filter as defined in (6.125) with s0 = 0.05 and
s0 = 0.2 using time-limited impulse response functions as obtained in (6.127).
A solution is easily obtained by slightly modifying the R expressions used for
the generation of the plots in Fig. 6.23. These R expressions are available in
/path/fig623.R.

6.33. The local linear models for the yearly values in the Basel temperature
series as plotted in Fig. 6.32 jump at the limits of the time slices. Smaller
jumps are obtained by displacing the limits slightly. Can local models with no
jumps be estimated? Hint: Linear models as formulated in R are introduced
in Sect. 3.2.1 and the constant term in a linear model can be excluded (i.e.,
the model is forced through origin) with -1.



7 Fourier Representation of a Stationary
Stochastic Process

In Chap. 6, a deterministic function f(t) with integer or real argument t
is shown to have a Fourier representation F (sk) or F (s) on condition that
f(t) is in L2(0, N − 1) or L2(∞,∞) (for integer t) or in L2(−T/2, T/2) or
L2(−∞,∞) (for real t). If f(t) has an F (sk) or F (s) it is then possible to
distribute its power on the frequencies of the trigonometric oscillations in
F (sk) or F (s) by calculating the spectrum of f(t) as defined in (6.76).

Now let x(t), −∞ < t <∞, be a realisation of a discrete- or continuous-
time stationary random function X(t). Can then x(t) be represented as a
Fourier series or Fourier integral? Obviously, this is not possible because, in
general, x(t) is neither periodic (therefore, Fourier representations cannot be
obtained for intervals T/2 ≤ x ≤ T/2 (or 0 ≤ x ≤ N − 1 for integer t))
nor in L2(−∞,∞). x(t) is not in L2(−∞,∞) since its norm is not finite in
−∞ < t < ∞, on condition that X(t) is a stationary and ergodic random
function:

∫ T/2

−T/2

(
x(t)

)2dt T→∞−→ +∞. Consequently, Fourier representations of
realisations x(t) do not exist and thus, it is not possible to obtain a Fourier
representation of X(t) by way of calculating the mean of the Fourier repre-
sentations of x(t). Despite this rationale, a stationary stochastic process does
have a Fourier representation, as summarized in the Fourier representation
theorem (7.51) and comprehensively dealt with in [113].

The Fourier representation of a stationary stochastic process is, in prin-
ciple, a Fourier-Stieltjes integral of a complex-valued random function with
real parameter. For this reason, an introduction to stochastic calculus and
some examples of stochastic processes having a real parameter are given in
Sects. 7.2 and 7.1. These include the Poisson process which is often used to
model exponential inter-arrival (waiting) times and also the orthogonal in-
crement process whose stationary derivative is used in a stochastic model for
Brownian motion.

In Sect. 7.3.2, the claim that a stationary random function has a Fourier
representation is formulated as an existence theorem, a proof, however, is
given only for a special case, namely the harmonic process, in Sect. 7.3.1.
In Sect. 7.4, spectra of linear processes are obtained from the coefficients in
AR[p]-, MA[q]- or ARMA[p, q] models.

Sect. 7.5 contains the supplements and Sect. 7.6 the problems.
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7.1 Independent and Poisson-distributed Events

A Poisson process, as introduced in Sect. 7.1.1, is a suitable model for the
number of (i) alpha particles emitted by a radio-active substance, (ii) cars
arriving at a toll station, (iii) incoming calls at a telephone call centre, (iv)
spots on a sheet of paper produced by a paper mill, (v) crystal impurities
in a semiconductor, (vi) failures of a data aquisition system, etc. A deeper
insight into these processes is given in Sect. 7.1.2, and a further example in
Sect. 7.1.3.

7.1.1 Poisson Process

Independent random events occurring with probability λ per time unit gen-
erate k points in the half-open (half-closed) interval 0 < u ≤ t, t, u real. For
this interval, (0, t] is written in this chapter. What then is the probability of
obtaining k points in (0, t], k = 1, 2, 3, . . .? The answer follows.

Preparing for a heuristic derivation of the above probability, (0, t] is di-
vided into n subintervals of length ∆t = t/n. Since every subinterval has the
same probability of receiving one point, the probability of an event occurring
in a subinterval is λ∆t. The probability that two events will occur within
the same subinterval is (λ∆t)2, since the events are independent, and the
probability of three events occurring is (λ∆t)3. If the product λ∆t is small,
then the probabilities of two or more events occurring are small enough to
be neglected. Thus, the experiment results in k points in n subintervals with
every subinterval having the same probability to hold a point. This corre-
sponds to a sequence of n independent Bernoulli trials, and the probability
to find k points in n subintervals is given by the binomial distribution (7.1).

Pr(k, n, p) =
(n
k

)
pk(1 − p)n−k, p = λ∆t, n∆t = t (7.1)

Pr
(
N(t) = k

)
= e−λt (λt)

k

k!
,

where N(t) is the number
of events in interval (0, t] (7.2)

Letting ∆t → 0, the discretisation inherent in this experiment is undone:
p → 0 such that p/∆t = λ remains constant and n → ∞ such that n∆t = t
remains constant as well. The result is the Poisson approximation (7.2) of
the binomial distribution (7.1), as shown in an introduction to Statistics.

The above experiment generates a pattern of points in (0, t] that could
be described by the random function Y (u) = 1 for 0 < u ≤ t with a point,
and Y (u) = 0 for those 0 < u ≤ t without a point. Y (u) would be equal
to 1 for a few time points in (0, t] and equal to 0 for the majority of time
points in (0, t], in which case the essential features of the experiment, i.e.,
that the points are generated by random and independent events, would not
be captured by Y (u). Hence, the parameter of the random function is chosen
to be the interval (0, t] and the Poisson process defined in (7.3,2,3) becomes
a special case of the count process defined in (7.3,1).



7.1 Independent and Poisson-distributed Events 443

t

-300 -200 -100 0 100 200 300

• • • • •• • •• • •• •• • • •• • •

t

N
(t

)

-300 -200 -100 0 100 200 300

0
5

10
15

20

Fig. 7.1. A realisation of a general count process N(t) defined in (7.3,1). Above,
the events are plotted as points on the time axis; below, the step function N(t).

N(t) is a (stochastic) count process on condition that
1. N(0) = 0 and N(t) is the number of events (points) in (0, t],

(0, t] being an interval closed on its right side.
N(t) is a Poisson process provided that:

2. Pr
(
N(t) = k

)
=
(
e−λt(λt)k

)
/(k!) and

3. increments N(t1) −N(0) = N(t1), N(t2) −N(t1) = N(t2), . . . ,
N(tn) −N(tn−1) = N(tn) are independent from each other.

(7.3)

Increment N(tn) − N(tn−1) of a count process is the number of events
(points) within interval (tn, tn−1], 0 < tn < tn−1 < t. Every realisation of a
count process is a step function on the real numbers with jumps of height
1, an example being given in Fig. 7.1. A count process similar to the one in
(7.3,1) can be defined for a two-dimensional parameter:N(x, y) is the number
of events in (0, 0, x, y], N(0, 0) = 0, and N(x2, y2) −N(x1, y2) −N(x2, y1) +
N(x1, y1) is the number of events in (x1, y1, x2, y2]. A Poisson process N(t)
is a count process with increments ∆N(t) = N(t+∆t) −N(t). ∆t can then
be chosen such that ∆N(t) = 0 or ∆N(t) = 1, provided that the ∆N(t) are
independent from each other as required in (7.3,3).

If, in an application, it is supposed that the observed events are governed
by a Poisson process, then an estimated Poisson distribution is compared
with the empirical distribution of the events. Let k1, k2, . . . km be observed
events in m intervals of duration T (when the parameter is one-dimensional)
or in m plots with area F (when the parameter is two-dimensional). Then∑m

i=1 ki = K is the total number of events and mT the total duration of
the experiment or mF the total area under observation. λ̂ = K/(mT ) or
λ̂ = K/(mF ) is an estimator for λ since, in (7.2), λ is the number of events
per time unit or area unit. A Poisson distribution with λ̂ is then compared
with the empirical distribution using a probability plot, i.e., the quantiles of
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the observed events are plotted versus the quantiles of a Poisson distribution
with λ̂. In Problem 7.3, for example, the locations with observations of the
tree-line in the Valais alps, as in Fig. 3.10, are shown to be a realisation of a
Poisson process.

7.1.2 Exponential Waiting Times

The number of alpha-particles, cars, telephone calls, etc. given as examples
in the introduction to Sect. 7.1 do, obviously, not result from a sequence
of independent Bernoulli trials, as has been assumed above in the heuristic
derivation of (7.2). Rather, it is more realistic to assume that phenomena in
nature and activities in society do exist which generate Poisson distributed
events. A deeper insight into these phenomena and activities is gained from
a derivation of the Poisson process based on the assumption that an event
does not continue to have an effect on the next event.

This property is illustrated using a well-known Poisson process: the age,
i.e., the lifetime X. Then (X > u) is the event that a person lives longer
than u from the time of his or her birth, and

(
X > (t + u)

)
is the event

that the remaining lifetime is larger than u on condition that a person is
of age t. The conditional probability of living longer than t + u when age t
has been reached, is Pr

(
X > (t+ u)

)
/Pr(X > t). This is the probability for

the remaining lifetime. It is equal to the probability for the total lifetime,
Pr
(
X > (t + u)

)
/Pr(X > t) = Pr(X > u), on condition that there are

no aftermaths: the past has no influence on the future, i.e., no conclusions
regarding the future can be drawn from experiences made in the past. It is
said that lifetime is memoryless.

The above result regarding the lifetime holds, in general, for memoryless
random variables X which are usually inter-arrival times of random events.
If the above probabilities are written using distribution functions then F (t+
u) = F (t)F (u) is obtained, an equation which is satisfied by exponential
functions e−λt. Consequently, a random variable is memoryless on condition
that its distribution is exponential, as defined in (7.4).

F (t) = Pr(X ≤ t) =
{

1 − e−λt for t ≥ 0
0 for t < 0

(7.4)

f(t) =
{
λe−λt for t ≥ 0
0 for t < 0

(7.5)

EX =
∫ ∞

0

tλe−λtdt =
1
λ

(7.6)

VarX =
∫ ∞

0

t2λe−λtdt− (EX)2 =
1
λ2

(7.7)

For example, 240 independent events are simulated in (0, 300] such that
their inter-arrival times are identically and exponentially distributed, as de-
fined in (7.4), with λ = 0.8. These simulated events are indicated with
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Fig. 7.2. Derivation of the Poisson distribution without discretising the time. Ran-
dom points with exponential (as defined in (7.4), λ = 0.8) waiting times in (0, 30],
(symbol • in plot (a) together with their indices), observational time begins at point
with index k = 0 (in plot (b)), gamma distributions Fk(t) as in (7.8) and (7.9) (in
plot (c)), and histogram of the waiting times Xk for 240 points in interval (0, 300]
(in plot (d)).

0, 1, . . . , k − 1, k, k + 1 . . . , 239, and plotted for subinterval (0, 30] in Fig. 7.2
(a) with •. The axis, below in Fig. 7.2 (b), constructed such that its origin
coincides with event 0, is used to measure the arrival times, e.g., the event
with index 9 arrives at t ≈ 10. The inter-arrival times Xk are the times
elapsed between the events as measured on this axis. Consequently, X0 = 0
is the waiting time for event 0, and Xk, i.e., the time elapsed between the
events with indices k − 1 and k, is the inter-arrival time for event k. Under
the above assumptions, the Xk are (exponentially) iid. The histogram of the
realised inter-arrival times is plotted in Fig. 7.2 (d).

Are events Poisson distributed on condition that their inter-arrival times
are exponentially distributed as defined in (7.4)? Let Y1, Y2, Y3, . . . , Yk be
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the times elapsed (beginning with the occurrence of event 0) until events
0, 1, . . . , k occur. Then Y0 = X0 = 0, Y1 = X1, Y2 = X1+X2, Y3 = X1+X2+
X3, . . ., Yk =

∑k
i=1Xi are obtained, whereXi is the inter-arrival time of event

i. Consequently, one waits no longer than t until event k occurs, (Yk ≤ t),
on condition that

(
(X1 + . . . Xk) ≤ t

)
or

(
(X1 + . . . + Xk + Xk+1) ≤ t

)
or

(
(X1 + . . . + Xk + Xk+1 + . . .) ≤ t

)
occur. In a first step, probability

Fk = Pr(Yk ≤ t) is determined. This probability is given by the gamma
distribution in (7.8). The gamma distributions (7.8) and (7.9) are derived
from the properties of the Xk in the remarks to (7.98) and (7.99).

Pr(Yk ≤ t) = Fk(t) = 1 − e−λt

(
1+

λt

1!
+. . .+

(λt)k−1

(k−1)!

)
(7.8)

Pr(Yk+1 ≤ t) = Fk+1(t) = 1 − e−λt

(
1+

λt

1!
+. . .+

(λt)k−1

(k−1)!
+

(λt)k

k!

)
(7.9)

As an example, gamma distributions Fk(t) as in (7.8) and (7.9), for λ =
0.8 and k = 2, 3, 4, 5, 6, 7, are plotted in Fig. 7.2 (c). From plots (a) and (b) in
this figure it is obvious that events k with inter-arrival times Xk, k = 1, 2, 3, 4
are realised in 0 < t ≤ 5. The probability of this event is approximately 0.55,
as shown in Fig. 7.2 (c).

In the second step, the Poisson distribution (as required in (7.3,2,3)) of
the events is derived from the gamma distributions obtained in (7.8) and
(7.9). (7.3,3) holds since the events are assumed to be independent, which
implies that also their increments are independent on condition that ∆t is
chosen as required in the remarks to (7.3). It remains to show that Pr

(
N(t) =

k
)

=
(
e−λt(λt)k

)
/(k!).

A derivation using the following elementary results of probability theory
is straightforward. Let A and B be events reconcilable with the probability
axioms. Then A ⊂ B means that every realisation of A induces a realisation
of B and, consequently, Pr(A) ≤ Pr(B) holds for the probabilities of these
events. Moreover, A∪B means that either A or B occur apart or, as the third
possibility, A and B occur jointly, A ∩B means that A and B occur jointly,
and B \A means that B occurs excluding an occurrence of A. For arbitrary
A and B, Pr(A∪B) = Pr(A) + Pr(B)−Pr(A∩B) is obtained directly from
the addition axiom, and further, Pr(B \A) = Pr(B) − Pr(A) for A ⊂ B.

Using the above results, Pr
(
N(t) = k

)
can be derived from the gamma

distributions of the random variables Yk in (7.8) and (7.9) on condition that
N(t) = k in (7.3,2) can be formulated using Yk. The definition of Yk implies
that (Yk ≤ t) occurs on condition that (Yk+1 ≤ t), k = 1, 2, . . ., occurs:
(Yk+1 ≤ t) ⊂ (Yk ≤ t) and from Fig. 7.2 (c) it is obvious that Fk+1(t) ≤
Fk(t), Fk(t) and Fk+1(t) as required in (7.8) and (7.9). Consequently, (Yk ≤
t)\ (Yk+1 ≤ t) occurs on condition that k (but not a larger number of) events
are in interval (0, t], i.e., k (but not a larger number of) inter-arrival times
are realised in (0, t]. This, thus, is the event N(t) = k in (7.3,2), because t
in (7.8) and (7.9) is measured starting with the occurrence of event 0, i.e.,
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owing to the origin of the time axis being chosen such that it is reconcilable
with t in (7.3), as demonstrated in Fig. 7.2.

Pr
(
N(t) = k

)
can be calculated from the probabilities of (Yk ≤ t) and

(Yk+1 ≤ t) in (7.8) and (7.9): subtracting Fk+1(y) from Fk(y), the Poisson
density in (7.3,2) is arrived at. Thus, the Poisson process is derived in a
continuous-time model from independent and exponentially distributed inter-
arrival times of random events. In contrast, time is discretised in the heuristic
derivation of Poisson approximation of the binomial distribution in (7.2).

Exponential inter-arrival times are often assumed in queuing theory (e.g.,
[15] or [4]). Are exponential inter-arrival times a suitable model for the in-
tervals between the peaks of aerosol concentrations measured on-road with
instruments mounted on a mobile measurement platform?

7.1.3 On-road Measurements of Aerosols

Road traffic pollutes the air by, amongst other things, emitting aerosol par-
ticles into the ambient air and lower troposphere. Aerosols are solid or liq-
uid particles with aerodynamic diameter (a unifying variable for the size
of particles having different shapes and densities) in the range from 1 νm
(1 νm = 10−9 m, one nanometer) to 100 µm (1 µm = 10−6 m, one microm-
eter or micron), which are suspended in a gas (here the air). Aerosols in
the ambient air are inhaled by humans and animals and are likely to cause
adverse health effects, especially those ultrafine particles (with aerodynamic
diameter less than 50 νm) are suspected of having a much higher impact
(relative to their mass) than larger particles. Hence, in order to describe
the quality of the air with respect to adverse health effects, the surface of
the aerosols in a unit volume of air should be measured together with their
mass concentration. The “active surface” of the aerosols is measured with a
diffusion charging (DC) sensor in the unit (µm)2/cm3.

For example, air quality variables were measured on November 21, 2001,
starting at 11:29:01, with a mobile laboratory [25]. The DC measurements
obtained on that day are plotted in Fig. 7.3.

The DC time series shows peaks of large values superimposed on the
background load of aerosols. The background load is low when the mean
distance of the DC sensor from the sources of pollutants is large, for instance
when the mobile laboratory is on a car park which is not much frequented
(in the time slice from 4300 through to 5300 seconds (s) from the start of the
measurements) or when it is on roads with little traffic (from 11000 through
to 13000 s). When the background load is low, a peak is recorded once the
mobile laboratory encounters a source of pollutants (usually also mobile).
A high background load is measured when the mean distance of the DC
sensor from the sources of pollutants is small, for instance when the mobile
laboratory drives (or crawls along, or stands still) in heavy traffic. When the
background load is high, a peak is measured when the plume of pollutants
emitted by a single powerful source (or the plumes emitted by two or more
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Fig. 7.3. “Active surface” of aerosols (in (µm)2/cm3) measured with a diffusion
charging sensor (DC values) mounted on a mobile laboratory on November 21,
2001, starting at 11:29:01. Time in seconds (s)

sources simultaneously) reach(es) the mobile laboratory. This is the most
straightforward model which “explains” the peaks in the DC measurements.

The background load is obtained by computing the 0.05 quantiles of the
DC measurements with a moving interval of 61 s duration. These quantiles
are plotted in Fig. 7.3 for two time slices of 250 s duration each. A too large
result (and thus less plausible) is obtained by computing moving averages.

The times when peaks occur are obtained in two steps. In the first step,
.90 quantiles of the DC measurements are computed in a moving interval of
31 s duration. These quantiles are plotted in Fig. 7.4 for two time slices of
250 s duration each. A peak occurs whenever the DC measurements exceed
their moving .90 quantiles. The duration of the moving interval and the per-
centage of the quantiles were arrived at subsequent to a few experiments.
When using a moving interval of a longer duration, the .90 quantiles become
too smooth and many peaks clearly discernible in the DC measurements are
not captured, whereas, when using an interval of shorter duration than 31 s,
the .90 quantiles are not smooth enough and many small fluctuations are
wrongly identified as peaks. Using a moving interval of 31 s duration and .85
quantiles, the peaks are not confined sharply enough, whereas some peaks
are lost when .95 quantiles are calculated in this moving interval.

In the second step, the times when the peaks occur are calculated by
comparing, for one time point after the other, the DC measurements with
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Fig. 7.4. DC values as in Fig. 7.3 (solid line) together with their 0.05 and 0.90
quantiles calculated in moving intervals of 61 and 31 s duration (broken lines) in
higher resolution for two time slices.

their moving .90 quantiles. The first comparison is performed for a time point
t with the DC-measurement below the moving .90 quantile. The comparisons
are repeated for t+1, t+2, t+. . ., until a DC measurement above the quantiles
is found for time ta. Thereafter, the comparisons are repeated until a DC
measurement below the quantiles is found for tb and the initial condition
(requiring that the DC-measurement be below the moving .90 quantile) is
restored. ta and tb thus found confine a peak. This procedure is repeated until
all peaks are found. From a pair (ta, tb), the time tp = ta + (tb − 1 − ta)/2
when the peak occurs is obtained, assuming that a peak is symmetric in
interval ta ≤ t ≤ tb to a vertical line in tp. For example, the peak occurring
at approximately 100 s in Fig. 7.4 (a) is confined by ta = 97 and tb = 100, and
thus tp = 98 s. Using this procedure, peaks are obtained at integer seconds
and, in-between, at half seconds; with the minimal inter-arrival time being
2 s, as shown in Problem 7.2.

Calculate the .90 quantiles of the DC measurements and thereafter ap-
ply the above procedure to obtain the time points when peaks occur, using
R expressions in /path/aerosol.R: 1037 peaks are found with the times of
their occurrence in R vector peak times. These peaks are due to the events
described previously, in the remarks to Fig. 7.3, and are assumed to be gov-
erned by a Poisson process. As shown in Sect. 7.1.2, events stem from a Pois-
son process on condition that their inter-arrival times are independent and
exponentially distributed. Under this assumption, 1036 inter-arrival times of
the peaks (inter-peak times) are obtained with

inter peak times <- diff(peak times) #as in Problem 7.1

which thereafter are assumed to be a realisation of a stationary stochastic
process. From their empirical correlation function, as plotted in Fig. 7.5 (c),
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Fig. 7.5. Inter-arrival times of the peaks (inter-peak times) in the DC values
as plotted in Fig. 7.3. (a): normalised histogram with fitted exponential density
(λ̂ = 0.0515 s−1, the inverse of the mean inter-peak time), (b): probability plot,
and (c): empirical correlation function.

it is concluded that the inter-peak times are weakly correlated for small lags,
and therefore are not independent. Thus, the inter-peak times are only ap-
proximately reconcilable with (7.3,3).

Do they stem from an exponential distribution? The mean of the inter-
peak times is 19.41 s. Hence, λ̂ = 1/19.41 = 0.0515 s−1 is an estimator for λ
in (7.4), on condition that the parameter of the distribution is estimated by
the inverse of the mean inter-arrival time (1/λ in (7.6) is the expectation of an
exponentially distributed random variable). The normalised histogram and
the probability plot of the inter-peak times are also shown in Fig. 7.5, plots
(a) and (b). The exponentially distributed inter-arrival times Xk used in the
derivation of the Poisson distribution in the continuous-time model shown in
Fig. 7.2 are real and positive. The sampling interval for the measurement of
the DC values as in Fig. 7.3, however, is 1 s and the time points when the
peaks occur are calculated such that all inter-peak times are either greater
than or equal to 2 s. Consequently, it is assumed that those inter-peak times
lasting less than 2 s appear, in Fig. 7.5 (a), as if they had a 2 s duration and
thus inflate the first class of the histogram. The histogram and the probability
plot in Fig. 7.5, used as diagnostics, indicate that the inter-peak times stem
from two exponential distributions and therefore suggest that the mean inter-
peak time is larger when the background load is low rather than when it is
high (Problem 7.2).

Since the inter-peak times in the DC-measurements are only approxi-
mately reconcilable with (7.3,2,3), it is assumed that an event which pro-
duces a peak in the DC measurements has only a small influence on the
event producing the next peak or any of the peaks occurring further on: traf-
fic jams and other situations which generate large aerosol loads, as described
in the remarks to Fig. 7.3, are only approximately memoryless (examples for
memoryless random variables are given in the remarks to (7.4)).
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7.2 Continuous-time Stochastic Processes

The Poisson process introduced in Sect. 7.1 is a continuous-time stochastic
process, i.e., it has a real parameter. Its definition is relatively straightfor-
ward since neither derivatives nor integrals of a stochastic process, i.e., no
random variables in the limit, are involved. There are, however, continuous-
time stochastic processes that are defined using random variables obtained
as limiting cases of appropriate defining sequences.

For example, Langevin’s equationm(dv(t)/dt)+βv(t) = F (t) (introduced
in the remarks concluding Sect. 7.5.2) is a continuous-time AR[1] process
(7.104) describing the random motion of a small particle (with diameter ≈
1 µm) in a fluid known as Brownian motion. The velocity of the particle v(t),
its derivative and a randomly fluctuating force F (t) are three-dimensional
random functions with real parameter t. Once this differential equation is
solved, integrals of random functions are obtained. An integral of a random
function is also part of the Fourier representation of a stationary stochastic
process.

Derivatives and integrals of random functions are defined as limiting cases
of sequences of random variables. Hence, the convergence of a sequence of ran-
dom variables in vector space L2(Ω,F ) is introduced in Sect. 7.2.1. Using this
convergence, the derivative and the integral of a continuous-time stochastic
process are defined in Sect. 7.2.2. Thereafter, these definitions are illustrated
with two examples in Sect. 7.2.3: a continuous-time stochastic process is con-
structed using the discrete-time white noise process as a template, and the
orthogonal increment process is introduced. Sect. 7.2.3 also contains the def-
inition of the complex-valued random function.

7.2.1 Random Variables in L2(Ω, F )

A sequence of random variables is shown to converge in mean square to a
limiting random variable by constructing an appropriate Cauchy sequence,
on condition that the set of all random variables (together with a scalar
product and further restrictions) is a complete linear vector space. Examples
of complete vector spaces and Cauchy sequences are given in the remarks to
definitions (6.6).

The set of random variables X (or Y ) with scalar product
E(XY ) and finite norm E(X2) <∞ is called L2(Ω,F ).
L2(Ω,F ) is a linear vector space and L2(Ω,F ) is complete.

(7.10)

Ω in L2(Ω,F ) is the symbol for the set of elementary events from which
events are constructed such that their probabilities are in agreement with
the axioms, and F is the symbol for the distribution functions pertaining to
random variables used for describing events together with their probabilities.
It is easy to prove that L2(Ω,F ) is a linear vector space because linear com-
binations and expectations of random variables are often used. In contrast,



452 7 Fourier Representation of a Stationary Stochastic Process

it is difficult to derive that L2(Ω,F ) is complete: every Cauchy sequence
(defined in (6.6,1) for functions in linear vector space L2(−∞,∞)) that can
be constructed from random variables being in L2(Ω,F ) has to be shown to
converge to a limiting random variable also being in L2(Ω,F ) [21].

Exploiting the favourable properties of L2(Ω,F ), defined in (7.10), the
mean square convergence (i.e., a convergence in the norm as introduced in
(6.5) for functions in linear vector space L2(−∞,∞)) of a sequence of random
variables is defined in (7.11):

A sequence of random variables Xn ∈ L2(Ω,F ) converges in
mean square on condition that there is a random variable
X ∈ L2(Ω,F ) such that limn→∞ E

(
(Xn −X)2

)
= 0.

(7.11)

For example, mean square convergence is required in (2.19), and therefore
(2.19) is proved, on condition that a Cauchy sequence can be constructed
from the linear combination of the white noise variables in (2.18) and (2.19),
since L2(Ω,F ) is complete.

Let sequence Zn(t) be the n-th partial sum in the infinite linear combi-
nation (2.19): Zn(t) =

∑n
u=0 auWt−u with au = au and |a| < 1. Is Zn(t)

a Cauchy sequence? An ε arbitrarily small is assumed and N such that
σ2

W

∑∞
u=N a

2
u = σ2

W

∑∞
u=N a

2u = σ2
W

(
(a2N )/(1 − a2)

)
< ε is obtained, with

σ2
W the variance of the Wt. Thereafter, for q > p > N , the expectation of the

squared difference of Zp(t) and Zq(t) in (7.12) is calculated.

E
(|Zp(t) − Zq(t)|2

)
= E

(∣∣∣∣ q∑
u=0

auWt−u −
p∑

u=0

auWt−u

∣∣∣∣2
)

(7.12)

= E

(∣∣∣∣ q∑
u=p+1

auWt−u

∣∣∣∣2
)

= Var

(∣∣∣∣ q∑
u=p+1

auWt−u

∣∣∣∣
)

(7.13)

=
q∑

u=p+1

q∑
v=p+1

auavCov
(
Wt−u,Wt−v

)
= σ2

W

(
q∑

u=p+1

a2
u

)
(7.14)

= σ2
W

q∑
u=p+1

a2u ≤ σ2
W

∞∑
u=N

a2u = σ2
W

a2N

1 − a2
< ε (7.15)

The second = in (7.13) is obtained applying (1.15,4), since EWt = 0 (as
required in (2.13)) implies E|∑q

u=p+1 auWt−u| = 0. (7.14) is arrived at using
(1.15,10) since the random variables in a white noise process as defined in
(2.10) or (2.11) are not correlated. Consequently, Zn(t) is a Cauchy sequence
and (2.19) holds.

7.2.2 Derivatives and Integrals of Random Functions

The derivative of a continuous-time stochastic process, i.e., a random function
with real parameter as introduced in the remarks to definition (2.2), is a
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random variable. Hence, it is not yet defined, since derivatives of deterministic
functions (solely) are defined in an introduction to Calculus. Integrals of
continuous-time random functions are not yet defined for the same reason.
Such an integral, for example, is obtained when x(t) and y(t) in LTI filter
(6.120), both being deterministic functions, are substituted with stochastic
processes having a real parameter.

In (7.16) and (7.17), continuous random functions X(t) with real param-
eter t and their derivatives are defined using the mean square convergence
(7.11), i.e., it is assumed that X(t) and possible limiting random variables
are in L2(Ω,F ), as defined in (7.10).

In (7.16,1), a random function (Xt) with real parameter t has a jump
discontinuity in t0, which is approached from both its right and left sides. If
the expectations in the limit as defined in (7.16,1) exist then (i) X(t) is said
to be mean-square continuous from the right provided that t is on the right
side of t0, and (ii) mean-square continuous from the left provided that t is on
the left side of t0.

Let X(t) be a stochastic process with real parameter t ∈ T
and t0 be an arbitrary time point in T . Then:

1. X(t) is mean-square continuous from the right (from the left)
in t0 where it has a jump discontinuity on condition that
limt→t+0

(limt→t−0
) E

((
X(t) −X(t0)

)2) = 0.
2. A random function X(t) is mean-square continuous in t0,

on condition that it is mean-square continuous both from the
right and from the left: limt→t0 E

((
X(t) −X(t0)

)2) = 0.

(7.16)

If a random function X(t) is mean-square continuous as required in (7.16,2)
then, in the mean of all its realisations x(t), the square of the differences(
x(t)−x(t0)

)2 is identically zero for t→ t0; however, realisations (xt) having a
jump discontinuity in t0 are not excluded. Most continuous-time random func-
tions are mean-square continuous. A counter-example is easily constructed:
random function V (t) with second moment as in (7.22) is not mean-square
continuous.

Assuming, as in (7.16), that t0 is an arbitrary time point in the parameter
domain T , and also taking advantage of the favourable properties of L2(Ω,F ),
mean-square differentiable random functions X(t) are defined in (7.17) by
means of a Cauchy sequence.

X(t) is mean-square differentiable in t0 on condition that
X(t0 + τn) −X(t0)

τn
, with τn → 0 for n = 1, 2, . . ., is

a Cauchy sequence in L2(Ω,F ). Ẋt0 is the random variable

in the limit: lim
τ→0

X(t0 + τ ) −X(t0)
τ

ms→ Ẋt0 .

(7.17)
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Ẋ(t) with Ẋ(t = t0) = Ẋt0 is a random function, i.e., the derivative of X(t),
since t0 is in the parameter domain, i.e., t0 ∈ T ; and, because Ẋt0 is in
L2(Ω,F ), (7.18) is arrived at.

lim
τ→0

E

((
X(t0 + τ ) −X(t0)

)2
τ2

)
= E

((
Ẋt0

)2) (7.18)

Proposition (7.18) and definition (7.16) contain expectations of quadratic
functions of the continuous-time random function X(t). Expectations of a
quadratic function of X(t) are also used to define, in (2.4), the second mo-
ment functions of an X(t) assumed to be stationary. Are the second moment
functions of a stationary random function related with its mean-square con-
tinuity and differentiability?

If a random function X(t) is stationary and mean-square continuous in
t0, then its correlation function rX(τ ) is continuous (in the sense of the usual
definition) for all τ . This result is arrived at in two steps. In a first step,
substituting τ = t− t0, limτ→0 rX(τ ) = 1 is obtained, because 0 = E

(
(X(t)−

X(t0))2
)

= σ2
X(t)+σ2

X(t0)−2cX(t, t0) = 2σ2
X(1−rX(t0+τ, t0). Consequently,

rX(τ ) is continuous (in the usual sense) in τ0 = 0. This result is used to derive,
in a second step, that rX(τ ) is continuous for all τ [113].

If a random function X(t) is stationary and mean-square differentiable
in t0, then (i) the derivative of its correlation function is identically zero for
lag τ = 0, ṙX(0) = 0, and (ii) its second derivative r̈X(0) exists for τ = 0.
If X(t) is differentiable in t0, then limτ→0(1/τ2)E(X(t0 + τ ) − X(t0))2 =
limτ→0(1/τ2)

(
σ2

X(t0+τ )+σ2
X(t0)−2cX(τ )

)
= limτ→0(2σ2

X/τ
2)(1−rX(τ )) =

2σ2
X limτ→0(1/τ2)(1−rX(τ )) converges. Since σ2

X <∞, also limτ→0 (1/τ2)(1−
rX(τ )) converges. limτ→0(1/τ2)(1 − rX(τ )) diverges, except for ṙX(0) = 0,
because ṙX(0) = limτ→0(1/τ )(1 − rX(τ )), and the first result is arrived at.
From this result, the second one is derived using a Taylor series rX(τ ) =
rX(0)+τ ṙX(0)+(τ2/2)r̈X(0)+... for rX(τ ): the first term becomes rX(0) = 1,
the second one ṙX(0) = 0, the third one contains the second derivative
(τ2/2)r̈X(0) of the correlation function and, neglecting the further terms,
rX(τ ) → 1 + (τ2/2)r̈X(0) and (rX(τ ) − 1)/τ2 → r̈X(0)/2 are arrived at.
These results and the convergence of limτ→0 (1/τ2)(1 − rX(τ )) obtained
above imply the convergence of r̈X(0), i.e., that the second derivative of the
correlation function exists for lag τ = 0. Further, if r̈X(0) exists, then r̈X(τ )
exists for all τ [113].

For example, the correlation function of the stationary AR[1] process with
real parameter as obtained in (7.114) is continuous (in the usual sense) in τ =
0; for this lag, however, its derivative from the left is not equal to the one from
the right. Consequently, the AR[1] process with real parameter as defined in
(7.104) is mean-square continuous but not mean-square differentiable.

Using mean square convergence, as above in the definitions of continuous
and differentiable random functions, the stochastic Riemann and Stieltjes
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integrals are defined in (7.20) and (7.21) subsequent to a refresher course on
the Riemann and Stieltjes integrals for deterministic functions.

The Riemann integral
∫ b

a
f(x)dx, f(x) being a real-valued deterministic

function with real argument x, is the integral usually encountered in Physics
and Engineering and is defined, in an introduction to Calculus, by taking
the limit of a Riemann sum. A Riemann sum of a function f(x) in interval
a ≤ x ≤ b is a sum of the areas of rectangles of widths xi−xi−1 with xi−1 ≤ xi

and heights f(x∗i ) with xi ≤ x∗i ≤ xi−1, where the xi are arbitrary points
partitioning an interval a ≤ x ≤ b into subintervals. If the Riemann sum has
a finite limit for arbitrarily fine partitions of a ≤ x ≤ b, i.e., for the maximal
xi − xi−1 becoming arbitrarily small, then f(x) is said to be integrable in
a ≤ x ≤ b and the limit is called the Riemann integral of f(x) in a ≤ x ≤ b.

The Riemann-Stieltjes integral is defined in (7.19) and its properties are
given in, e.g., [126]. Let g(t) and F (t) be real-valued deterministic functions
defined in interval a ≤ t ≤ b, and let g(t) be continuous in a ≤ t ≤ b whereas
F (t) may have jump discontinuities in a ≤ t ≤ b. The end points of the
interval become t0 = a and tn = b, and points t1, . . . , tn−1 with ti−1 ≤ ti
are assumed to be in a ≤ t ≤ b such that the interval is partitioned into
n subintervals. Thereafter, the Riemann-Stieltjes sum in (7.19) is built. If
the Riemann-Stieltjes sum converges on condition that n increases such that
maximal width of the subinterval decreases, then the limit is called Riemann-
Stieltjes integral or Stieltjes integral of g(t) with respect to F (t). g(t) is called
the integrand and F (t) the integrator.

lim
max(ti−ti−1)→0

n→∞

n∑
i=1

g(ti)
(
F (ti) − F (ti−1)

)
=
∫ b

a

g(t)dF (t) (7.19)

A Stieltjes integral is often used to define the expectation EX of a ran-
dom variable X having probability distribution F (x). EX is defined by sub-
stituting, in (7.19), x for t, F (x) for the integrator F (t) and x for g(t) and
thereafter integrating in interval −∞ ≤ x ≤ ∞. Thus, the Stieltjes inte-
gral EX =

∫∞
−∞ xdF (x) converges. A proof exploits the properties of F (x)

(bounded, monotonically non-decreasing, from the right continuous in possi-
ble jump discontinuities) and g(x) = x (continuous).

If a random variable Y has a continuous probability distribution F (y),
then EY =

∫∞
−∞ ydF (y) =

∫∞
−∞ y(dF (y)/dy)dy =

∫∞
−∞ yf(y)dy and the

Stieltjes integral becomes the usual Riemann integral. For example, the ex-
pectation of a normally-distributed Y , EY =

∫∞
−∞ y(2π)−(1/2)e−(y2/2)dy = 0,

becomes identically zero since the normal density is an even function as de-
fined in (6.32,1).

If a random variable X has a discrete distribution F (x) =
∑

xi≤x f(xi),
then EX =

∫∞
−∞ xdF (x) =

∑
i xf(xi) and the Stieltjes integral becomes a

sum. For example, a Bernoulli distributed random variableX has distribution
Pr(X ≤ x) = F (x), where F (x) = 0 for x < 0, F (x) = q for 0 ≤ x < 1 and
F (x) = q + p = 1 for 1 ≤ x, i.e., F (s) has jump discontinuities in x = 0
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and in x = 1 with heights q and p. F (x) is therefore a non-decreasing step
function (a step function h(x) with real argument x is a linear combination
h(x) =

∑n
i=1 cihi(x) with hi(x) = 1 for ai ≤ x < bi and hi(x) = 0 at

the exterior of this interval, where ai, bi and ci are real constants for i =
1, 2, . . . , n). The density f(x) is drawn as spikes of heights q and p in the
jump discontinuities. The Stieltjes integral for the expectation of X therefore
becomes EX =

∫∞
−∞ xdF (x) = 0 × q + 1 × p = p.

The Stieltjes integral allows for defining the expectation of random vari-
ables with continuous, discrete or mixed (a mixed probability distribution is
not constant in the intervals confined by its jump discontinuities, i.e., it is
not a step function) probability distributions without discriminating between
the cases.

Riemann and Stieltjes integrals for deterministic functions are defined
above; for random functions, these integrals are defined in (7.20) and (7.21).
Let, within interval a ≤ t ≤ b, a deterministic function g(t) be continuous
and a random function X(t) be mean-square continuous (7.16). Partition
a ≤ t ≤ b into n subintervals by points t1, . . . , tn−1, ti−1 ≤ ti, with t0 = a
and tn = b, thereafter build the sum in (7.20) and let n increase such that
the maximal width of the subintervals decreases. If, under these assumptions,
a random variable G ∈ L2(Ω,F ) exists in the limit such that (7.20) holds,
then G is called the Riemann integral of random function X(t). For this
convergence, usually

∫ b

a
g(t)X(t)dt ms→ G or G =

∫ b

a
g(t)X(t)dt is written.

lim
max(ti−ti−1)→0

n→∞
E

(
n∑

i=1

g(ti)X(ti)(ti − ti−1) −G
)2

= 0 (7.20)

If a random function X(t) is mean-square continuous from the right in
jump discontinuities found in interval a ≤ t ≤ b then the question is whether
a random variable G ∈ L2(Ω,F ) exists such that (7.21) holds. If this random
variable exists in the limiting case then it is called Stieltjes integral of g(t)
with respect to X(t):

∫ b

a
g(t)dX(t) ms→ G or G =

∫ b

a
g(t)dX(t).

lim
max(ti−ti−1)→0

n→∞
E

(
n∑

i=1

g(ti)
(
X(ti) −X(ti−1)

)−G)2

= 0 (7.21)

Using a Stieltjes integral (7.21), the orthogonal increment process is de-
fined in (7.102) and the Fourier representation of a stationary stochastic
process is defined in (7.51).

7.2.3 Examples

Does a white noise process with real parameter exist? The discrete-time white
noise process (Wt) with integer parameter t is defined in (2.10) or (2.11).
The properties of (Wt) are transferred, in the following experiment, to a
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continuous-time stochastic process V (t) with real parameter t, provided that
its first moment function is required to be constant, and its second moment
function is required to be identically zero for non-zero lags: EV (t) = µV and
Cov

(
V (t), V (u)

)
= σ2

V for t = u and Cov
(
V (t), V (u)

)
= 0, for t �= u, t

and u being time points in the parameter domain of V (t). If this condition is
written applying the Kronecker δ, as defined in the remarks to (6.7), together
with the constant variance function σ2

V (t) = σ2
V of V (t), then the covariance

function in (7.22) is obtained:

Cov
(
V (t), V (u)

)
= σ2

V δtu or cV (τ ) =
{
σ2

V for τ = 0
0 for τ �= 0

(7.22)

V (t) is required above to be stationary: its expectation function EV (t) = µV

is constant and its covariance function cV (τ ) as defined in (7.22) depends only
on the lag. The jump discontinuity in cV (τ ) implies that V (t) is not mean-
square continuous (7.16) since a mean-square continuous stochastic process
has a covariance function which is continuous for τ = 0, as derived in the re-
marks to (7.16) and (7.18). A realisation v(t) of V (t) fluctuates with extreme
amplitudes because neighbour variables pertaining to V (t), i.e., random vari-
ables associated with real time points being close neighbours on the time
axis, are required to be non-correlated in (7.22).

In contrast to V (t) with covariance function as in (7.22), the orthogonal
increment process is defined in (7.23): now, the increments of the stochastic
process are required to be non-correlated.

A(t) is called a random function with orthogonal increments
(orthogonal increment process) on condition that the first and
second moments of differences of A(t) have the properties:

1. E
(
A(t) −A(s)

)
= µdA(t− s), with s < t,

2. Cov
(
A(t) −A(s), A(v)−A(u)

)
= σ2

dA

∣∣(s, t] ∩ (u, v]
∣∣, with s < t,

u < v and
∣∣(s, t] ∩ (u, v]

∣∣ the distance between the endpoints
of the intersection of the half-open intervals (s, t] and (u, v].

(7.23)

Examples of intervals (s, t] and (u, v], for which the differences of A(t)
are built in (7.23), are shown in Fig. 7.6: the first interval (s, t] is plotted
on the horizontal axis and the second (u, v] on the vertical one. In Fig. 7.6
(b), the intersection of both intervals is empty and, therefore, the distance
between the endpoints of the intersection becomes identically zero, whereas,
in Fig. 7.6 (c), this distance is t−u. In Fig. 7.6 (a), s = 0 and u = 0 implying
that min(t, v) is the distance between the endpoints of the intersection

For example, the Poisson process (7.3) is a monotonically non-decreasing
orthogonal increment process as defined in (7.23) because its increments are
independent and positive. In general, however, an orthogonal increment pro-
cess does not monotonically increase or decrease. An orthogonal increment
process A(t) with A(t) being normally distributed for all t is called a Wiener
process.
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Fig. 7.6. Orthogonal increment process. Three cases of semi-open intervals (s, t]
and (u, v] in definition (7.23). The projection of the emphasized distance on one of
the axes is the intersection of the intervals. In plot (a), s = 0 and u = 0.

The moment functions of the orthogonal increment process are easily
obtained with s = 0 and v = 0 in definition (7.23):

E
(
A(t)

)
= µdA × t,

Var
(
A(t)

)
= σ2

dA × t and (7.24)

Cov
(
A(t), A(v)

)
= σ2

dA × (
min(t, v)

)
.

The moment functions in (7.24) are compared with those in (2.67) and (2.69).
From this comparison it becomes obvious that the moment functions of the
continuous-time orthogonal increment process A(t) are identical with those
of the discrete-time random walk process (Xt): µdA and σ2

dA in (7.24) play
the roles of µW and σ2

W in (2.67) and (2.69). As a first consequence, both
expectation functions EA(t) = µdA×t and EXt = µW ×t increase or decrease
linearly with time t: both processes are not stationary in the first moment
function, except for µdA = 0 and µW = 0. As a second consequence, both
variance functions VarA(t) = σ2

dA × t and VarXt = σ2
W × t increase linearly

with increasing t, and both covariance functions are proportional, with fac-
tors σ2

dA and σ2
W , to the distance of the intersection of (0, t] and (0, v] in

Fig. 7.6 (a). This behaviour of the second moment functions implies that
both processes are not stationary.

Difference quotients Y (t) of the orthogonal increment process are defined
in (7.25), and their covariance function cY (τ ) = Cov(Y (t), Y (t + τ )) is ob-
tained in (7.26) directly from definition (7.23).

Y (t) = (1/∆t)
(
A(t+∆t) −A(t)

)
(7.25)

Cov
(
Y (t), Y (t+ τ )

)
=
{

(σdA/∆t)2(∆t− τ ) for |τ | ≤ ∆t
0 for |τ | > ∆t (7.26)

Cov
(
Y (t), Y (t+ τ )

)
in (7.26) becomes a sequence of triangle functions, as in

(6.63), with decreasing widths on condition that ∆t decreases stepwise. Since
a sequence of triangle functions is a defining sequence for the delta function
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(6.60), Cov
(
Y (t), Y (t + τ )

)
= σ2

dAδ(τ ) is arrived at in the limiting case for
∆t→ 0 and, consequently, Var

(
Y (t)

) → ∞ for ∆t → 0. In the limiting case
for ∆t → 0 therefore, the difference quotients Y (t) as defined in (7.25) have
an infinite variance and thus are not in L2(Ω,F ). In contrast, the covariance
Cov

(
V (t), V (u)

)
= σ2

V δtu in (7.22), with δtu being the Kronecker delta (to
be clearly distinguished from the Dirac delta in (6.60)), becomes the finite
variance σ2

V of the process V (t) for t = u.
As a third example, the complex-valued random function is defined in

(7.27).

Z(t) = U(t) + iV (t) is called a complex-valued random function.
EZ(t) = EU(t) + i × EV (t) = µZ(t) is its expectation function,
VarZ(t) = (|Z(t) − EµZ |2) = σ2

Z(t) > 0 its variance function, and

Cov
(
Z(t), Z(u)

)
= E

(
(Z(t) − µZ(t))(Z(u) − µZ(u))

)
= cZ(t, u)

its covariance function.

(7.27)

In this chapter, Z(t) denotes, as is usual in time series literature, a complex-
valued random function. In Chap. 4 and in definition (4.6), however, Z(x)
denotes a spatial random function, as is usual in geostatistical literature. As
a consequence, the meaning of Z(t) or Z(x) depends on the context.

A real-valued random function is stationary on condition that it has the
properties required in (2.8), whereas a complex-valued one is stationary on
condition that it satisfies (7.28).

Let Z(t) = U(t) + iV (t) be a complex-valued random function.
Then Z(t) is stationary on condition that:

1. U(t) and V (t) are stationary, (consequently EZ(t) = µZ ,
a complex constant), and

2. Cov
(
Z(t), Z(t+ τ )

)
= cZ(τ ) and cZ(−τ ) = cZ(τ ).

(7.28)

Consequently, the covariance matrix CZ of a complex-valued random func-
tion is a complex-valued Toeplitz matrix (in the remarks to (5.15) it is men-
tioned that the Levinson-Durbin recursion (5.14) is a procedure to solve an
equation system with a Toeplitz matrix); CZ is, however, not symmetric
since cZ(−τ ) = cZ(τ ).

The covariance matrix of a real-valued stochastic process X(t) is posi-
tive semidefinite (2.7). This property (i) implies that the variance of linear
predictions as defined in Chaps. 4 and 5 is non-negative and (ii) is also a
precondition for the spectral representation of a stationary stochastic pro-
cess introduced in Sect. 7.3. As in the real-valued case, the covariance matrix
CZ of a complex-valued stochastic process Z(t) is also positive semidefinite
because, in (7.29), linear combinations are not negative for arbitrary complex
coefficients dj :

Var

⎛⎝ n∑
j=1

djZ(tj)

⎞⎠ =
n∑

j=1

n∑
k=1

djdkCZ(tj , tk) ≥ 0. (7.29)
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Applying the definitions introduced in Sects. 7.2.1 and 7.2.2, you are now
in a position to (i) solve Langevin’s equation m(dv(t)/dt) + βv(t) = F (t)
introduced in the remarks concluding Sect. 7.5.2 and (ii) formulate theorem
(7.51) which asserts that almost all stationary stochastic processes have a
Fourier representation.

7.3 Fourier Representation of a Stationary Stochastic
Process

Let x(t), −∞ < t < ∞, be a realisation of a discrete- or continuous-time
stationary random function X(t). Can then x(t) be represented as a Fourier
series or Fourier integral? Obviously, this is not possible for the reason that,
in general, x(t) is neither periodic (therefore, Fourier representations cannot
be obtained in intervals L2(−T/2, T/2) (or in L2(0, N−1) for integer t)), nor
in L2(−∞,∞). x(t) is not in L2(−∞,∞) because

∫ T/2

−T/2

(
x(t)

)2dt T→∞−→ +∞,
i.e., because its norm is not finite in −∞ < t < ∞, since X(t) is a station-
ary and ergodic random function. Consequently, Fourier representations of
realisations x(t) do not exist and thus it is not possible to obtain a Fourier
representation of X(t) by way of calculating the mean of the Fourier repre-
sentations of x(t).

Above,
∫ T/2

−T/2

(
x(t)

)2dt T→∞−→ +∞ is implied by (1/T )
∫ T/2

−T/2

(
X(t)

)2dt T→∞−→
E
(
(X(t))2

)
with probability one, on condition that X(t) is stationary and

ergodic. A sequence of random variables Xn converges with probability one
to a random variable G, on condition that Pr(Xn converges to G) = 1. The
assertion that an event has probability one is the strongest statement that can
be made in probability theory and, therefore, convergence with probability
one implies mean-square convergence.

Despite the above rationale, a stationary stochastic process does have a
Fourier representation. The Fourier representation of a stationary stochastic
process is comprehensively (including a variety of proofs) dealt with in [113].
In this section, a Fourier representation is shown to exist for the special case
of the harmonic process, and, thereafter, it is formulated in (7.51) as an
existence theorem in the general case.

7.3.1 The Harmonic Process and its Fourier Representation

The finite Fourier series fm(t) as defined in (6.21,3) converges in L2(0, N−1)
to the deterministic function f(t), i.e., fm(t) = (ft) =

∑m
k=0

(
Ak cos(2πskt)+

Bk sin(2πskt)
)
. As a consequence, (ft) can be represented as a linear combi-

nation of the trigonometric functions (6.9) with Fourier coefficients Ak and
Bk (6.21,2). These trigonometric functions are orthogonal in L2(0, N − 1) as
proposed in (6.11), (6.12) and (6.13). This linear combination is written using
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complex notation in (6.22): (ft) =
∑N−1

k=0 Fkei2π(t/N)k and, since it is periodic,∑(N−1)/2
k=−(N−1)/2 Fkei2π(t/N)k for odd N or

∑N/2
k=−(N/2−1) Fkei2π(t/N)k for even N

in (6.24), with complex-valued Fk, is obtained from the real-valued Ak and
Bk by applying (6.25). Such a linear combination is also easily defined for real
t, where f(t) =

∑m
k=0

(
Ak cos(2πskt)+Bk sin(2πskt)

)
is obtained. For exam-

ple, the Fourier representation in Fig. 6.1 converges to the saw-tooth shaped
sequence for t = 0, 1, . . . , 140, whereas, for real 0 ≤ t ≤ 139, it interpolates
the sequence.

Do linear combinations of trigonometric functions with random coeffi-
cients exist? If so, then what properties do they have?

Let 0 < sj < 1/2 be ordered (sj < sj+1) frequencies of trigono-
metric oscillations with absolute values Rj and phases Pj.
Further, let Rj be real constants and Pj independent random
variables having a uniform (or rectangular) distribution
in [−π, π], and n be a finite integer number. Then

Xt =
n∑

j=1

(
Rj cos(2πsjt+ Pj)

)
=

n∑
j=−n

Djei2πsjt,

with t = . . . ,−1, 0, 1, . . ., is called a harmonic process.
Assuming s0 = 0, s−j = −sj, R0 = 0, and R−j = Rj

and using the identities in the remarks to (6.29),

Dj =

⎧⎨⎩ (Rj/2)eiPj for j = 1, . . . , n,
0 for j = 0,
(Rj/2)e−iPj for j = −n, . . . ,−1

is obtained.

(7.30)

A random variable has a continuous uniform (or rectangular) distribution in
a ≤ y ≤ b on condition that its density f(y) = 1/(b − a) for a ≤ y ≤ b
and f(y) = 0 at the exterior of this interval. Since sj < 1/2 is required and
∆t = 1, no aliasing occurs, as is concluded from (6.92). A realisation of a
harmonic process is plotted, for example, in Fig. 7.7.

In its complex version, the harmonic process (7.30) is similar to the dis-
crete Fourier transform (6.22); a closer look, however, allows for drawing the
following distinctions:

1. The trigonometric functions in (7.30) are not orthogonal and thus do not
have the properties proposed in (6.11), (6.12) and (6.13), because the
frequencies sj in (7.30) are not the Fourier frequencies sk as defined in
(6.21,1). However, the sj are ordered.

2. The coefficients in (7.30), i.e.,Dj = (Rj/2)eiPj andD−j = (Rj/2)e−iPj =
Dj for j = 1, . . . , n, as well as D0 = 0, are a complex-valued random
function as defined in (7.27) having parameter j = −n, . . . ,−1, 0, 1, . . . , n.

The moment functions of the harmonic process as proposed in (7.31) are
derived in (7.116) and (7.119).
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Fig. 7.7. Above (a), a realisation of a harmonic process (7.30) with n = 9, below,
(b) and (c), the real re(dj) and imaginary parts im(dj) of the realised dj .

EXt = 0 cX(t, u) = cX(τ ) =
n∑

j=1

(
R2

j/2
)
cos(2πsjτ ) (7.31)

The harmonic process is stationary because its expectation function is con-
stant and its covariance function depends solely on the lag τ = t− u. Under-
standably, this result is obtained because each of the oscillations in (7.30) is
stationary.

The complex-valued Dj in (7.30) are random variables for j �= 0. Their
expectations and variances are derived in (7.120) and (7.121) with the results
in (7.32). Furthermore, pairs Dj and Dk, j, k = −n, . . . ,−1, 1, . . . , n and
j �= |k| are independent, as concluded directly from definition (7.30), implying
that the covariances in (7.33) are identically zero.

EDj = 0 and VarDj =
R2

j

4
, j = −n, . . . ,−1, 1, . . . , n (7.32)

Cov
(
Dj , Dk

)
= 0, j, k = −n, . . . ,−1, 1, . . . , n, j �= |k| (7.33)

Cov
(
Dj , D−j

)
= 0, j = −n, . . . ,−1, 1, . . . , n (7.34)

Although Dj and D−j are not independent, their covariance is identically
zero as derived in (7.125) and summarized in (7.34).

Using the expectations of Dj being identically zero and the covariances
of pairs (Dj , Dk) being identically zero as well, (1.15,10) is applied to obtain
(easily) the variance of the harmonic process, because only the terms for
j = k remain in (7.35), all other terms becoming identically zero.
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VarXt = Var

⎛⎝ n∑
j=−n

Djei2πsjt

⎞⎠
=

n∑
j=−n

n∑
k=−n

ei2πsjte−i2πsktCov
(
Dj , Dk

)
(7.35)

=
n∑

j=−n

E
(|Dj |2

)
=

n∑
j=−n

R2
j

4
, R−j = Rj and R0 = 0 (7.36)

In (7.36), the variance of the harmonic process is the sum of the variance of
the Dj since VarDj = E(|Dj |2) = R2

j/4. The R2
−n/4, . . ., R2

−1/4, R2
1/4, . . .,

R2
n/4, R−j = Rj , are associated with frequencies −sn, . . ., −s1, s1, . . ., sn

in definition (7.30). Consequently, definition (7.37) distributes the variance
of the harmonic processes over the frequencies −1/2 ≤ s ≤ 1/2, and the
spectrum CX(s) of the harmonic process X(t) is arrived at.

Let (Xt) be a harmonic process as defined in (7.30)
and −1/2 ≤ s ≤ 1/2 be real frequencies. Then:

1. CX(s) =
∑n

j=−n(R2
j/4)δ(s− sj) is called the spectrum of (Xt), and

2. C(I)
X (s) =

∑
j,sj≤s(R

2
j/4) is called the integrated spectrum of (Xt).

(7.37)
Since CX(s) in (7.37) is even (6.32,1), (6.37) and (6.66) are applied to ob-

tain its Fourier cosine transform: F+i

(
CX(s)

)
= 2

∫ 1/2

0

∑n
j=1(R

2
j/4)δ(s−sj)×

cos(2πst)ds = 2
∑n

j=1(R
2
j/4) cos(2πsjt). Substituting t with τ , F+i

(
CX(s)

)
=∑n

j=1(R
2
j/2) cos(2πsjτ ) = cX(τ ), i.e., the covariance function (7.31) of the

harmonic process is arrived at. cX(τ ) is, however, not in L2(−∞,∞), and
therefore, both functions cX(τ ), τ integer, as well as CX(s), s real, are not a
Fourier transform pair as proposed in (6.49) and (6.50). Consequently, cX(τ )
and CX(s) are neither reconcilable with (6.20,4) (although t is discrete and
s continuous) nor with any of the other cases in (6.20). Some properties of
this Fourier transform pair will be given in the remarks to (7.70).

Prior to continuing the analysis of the harmonic process, an alternative
form is proposed in (7.38), which is a stochastic version of the finite Fourier
series (6.21,3). A harmonic process (Xt) is a linear combination of the trigono-
metric functions in (7.38)

Xt =
n∑

j=1

(
Aj cos(2πsjt) +Bj sin(2πsjt)

)
, t = . . . ,−1, 0, 1, . . . (7.38)

VarAj = VarBj = R2
j/2, j = 1, . . . , n (7.39)

0 = EAj = EBj = Cov(Aj , Bj), j = 1, . . . , n (7.40)

0 = Cov(Aj , Bk) = Cov(Bj , Bk) = Cov(Aj , Ak), j, k = 1, . . . , n
j �= k

(7.41)
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where the coefficients Aj and Bj are random variables. On the one hand,
definition (7.30) implies (7.38) since Aj = Rj cos(Pj) and Bj = −Rj sin(Pj)
are obtained, Rj and Dj as in (7.30), by applying identity cos(x + y) =
cos(x) cos(y) − sin(x) sin(y). If the harmonic process is defined as in (7.30)
then, because the Dj are independent, the moments of the Aj and Bj as
proposed in (7.39), (7.40) and (7.41) are derived in Problem 7.5. Using these
results, the moment functions of (Xt) in (7.38) are arrived at in Problem 7.6,
where (Xt) is shown to be stationary. On the other hand, additional assump-
tions are necessary to derive (7.30) from (7.38).

If definitions (6.76) and (7.37) are compared then it becomes obvious
that the power of a deterministic function is distributed over the frequen-
cies in (6.76), whereas, in (7.37), the variance of the harmonic process is
distributed over the frequencies. In (6.76), the deterministic function is re-
quired to have a Fourier representation, i.e., a Fourier transform as defined
in (6.22,1,4), (6.30), (6.35) or (6.49) with the spectrum being the squared
absolute value of the Fourier transform. Does the harmonic process also have
a Fourier representation? Is its spectrum the squared absolute value of its
Fourier representation?

These questions are answered by constructing a complex-valued random
function Z(s) from the complex-valued (Dj), j = −n, . . . ,−1, 0, 1, . . . , n in
(7.30). Their properties in (7.32), (7.33) and (7.34) imply that (i) pairs
(Dj , Dk) are not correlated and (ii) sequence (Dj) is stationary in the first
moment function and non-stationary in the second. Moreover, the complex-
valued random coefficients (Dj) are associated with frequencies (sj), being
in interval 0 < sj < 1/2 and ordered, because sj < sj+1 is required in (7.30).
Exploiting these properties, a complex-valued stochastic process Z(s) with
real parameter s is built from the (Dj) in (7.42) and (7.43) such that its in-
crements dZ(s) are orthogonal and stationary in their first moment function:

Z(s) =

⎧⎪⎪⎨⎪⎪⎩
0 for 0 ≤ s < s1
D1 for s1 ≤ s < s2∑k

j=1Dj for sk ≤ s < sk+1∑n
j=1Dj for sn ≤ s < 1/2

(7.42)

dZ(s) =

⎧⎨⎩Z(s) − Z(s− ds) for 0 ≤ s < 1/2
0 for s = 1/2
dZ(−s) for −1/2 ≤ s ≤ 0

(7.43)

Z(s) is complex-valued with complex-valued increments dZ(s), with −ds be-
ing a decrement and ds an increment in frequency s and |ds| being small. In
frequencies s = sj , j = −n, . . . ,−1, 1, . . . , n, as defined in (7.30), Z(s) has
jump discontinuities dZ(sj) = Dj such that Z(s) is mean-square continuous
from the right as defined in (7.16,1). Furthermore, dZ(s) = 0 for s = 1/2
is required in (7.43), asserting that Z(s) is continuous in s = 1/2. The con-
struction of Z(s) is commented on in the remarks to (7.70) and a realisation
is plotted in Fig. 7.8.
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Fig. 7.8. A realisation of Z(s) as defined in (7.42) constructed using the realisaton
of the Dj in (7.7): in frequencies sj , Z(s) has jump discontinuities with steps re(dj)
and im(dj). The real and imaginary parts of Z(s) are shown in plots (a) and (b).

If |ds| is chosen small enough then an interval [s, s + ds] or [s − ds, s]
contains at most one frequency sj ; however, most intervals are empty, i.e.,
they do not contain an sj . Such an interval is associated with increment dZ(s)
and, therefore, dZ(s) = Dj for non-empty and dZ(s) = 0 for empty intervals.
Using this result and (7.32), the expectation function of the increments dZ(s)
for −1/2 ≤ s ≤ 1/2 is obtained in (7.44).

E
(
dZ(s)

)
= 0 (7.44)

Cov
(
dZ(s), dZ(r)

)
= E

(
dZ(s), dZ(r)

)
=

n∑
j=1

E
(|Dj |2

)
δ(s− sj)δ(s− r)dsdr

=
n∑

j=1

(R2
j/4)δ(s− sj)δ(s− r)dsdr (7.45)

If the intersection of two intervals [s, s + ds] and [r, r + dr], having incre-
ments dZ(s) and dZ(r), does not contain an sj , i.e., if it is empty, the
covariance of the increments becomes identically zero. If, in contrast, the
intersection is not empty, it contains an sj , and the covariance function in
(7.45) is obtained. When the result in (7.45) is compared with covariance
function Cov

(
dA(t), dA(u)

)
= σ2

dAδ(t − u)dtdu used in (7.102) to define the
orthogonal increment process, it becomes obvious that E

(|Dj |2
)
δ(s − sj) =

(R2
j/4)δ(s − sj) plays the role of σ2

dA. Consequently, increments dZ(s) in
(7.43) are not stationary in the second moment function whereas increments
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dA(t) in (7.102) are stationary since their covariance function depends solely
on the displacement t− u.

Not all properties of the orthogonal increment process A(t) as defined
in (7.102) or (7.23) are inherent in Z(s) as defined in (7.42); however, Z(s)
is (like A(t)) continuous from the right side in its jump discontinuities as
required in (7.16). For this reason and also for the reason that Z(s) is constant
between its jump discontinuities, the sum in (7.30) can be written using
the stochastic Stieltjes integral as defined in (7.21): the integrand ei2πst is
integrated with respect to the complex-valued integrator Z(s). Since 0 <
sj < 1/2 is required in (7.30), all jump discontinuities of Z(s) are in −1/2 <
s < 1/2 and the Stieltjes integral is evaluated in −1/2 ≤ s ≤ 1/2 to obtain
the Fourier representation of the harmonic process:

Xt =
∫ 1/2

−1/2

ei2πstdZ(s) t = . . . ,−1, 0, 1, . . . (7.46)

The Fourier representation in (7.46) is a Fourier-Stieltjes integral with respect
to a complex-valued random function with orthogonal increments and an
expectation function being identically zero, properties enabling a (at least
formally) straightforward calculation of the variance of the harmonic process
using its Fourier representation.

Using (7.46), the variance in (7.47) is obtained by applying definitions
(7.27) and proposition (1.15,10), since E

(
dZ(s)

)
= 0. Substituting the co-

variance function obtained in (7.45) for E
(
dZ(r), dZ(s)

)
, the integral with

the delta functions as in (7.49) is arrived at. Due to δ(s − r), the integrand
becomes identically zero for s �= r and thus the integral is evaluated for the
case s = r, and using (6.67), the integral in (7.50) is arrived at.

VarXt = E
(
XtXt

)
= E

(∫ 1/2

−1/2

e−i2πrtdZ(r)
∫ 1/2

−1/2

ei2πstdZ(s)

)
(7.47)

=
∫ 1/2

−1/2

∫ 1/2

−1/2

ei2π(s−r)tE
(
dZ(r), dZ(s)

)
(7.48)

=
n∑

j=1

(∫ 1/2

−1/2

∫ 1/2

−1/2

ei2π(s−r)t
R2

j

4
δ(s− sj)δ(s− r)dsdr

)
(7.49)

=
n∑

j=1

(∫ 1/2

−1/2

R2
j

4
δ(s− sj)ds

)
=

n∑
j=−n

R2
j

4
(7.50)

Evaluating the integral in (7.50), a variance is obtained which is identical to
the one in (7.35) and also to the one obtained when integrating the spectrum
CX(s) in (7.37).
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7.3.2 Fourier Representation of a Stationary Stochastic Process

Every stationary random function has a Fourier representation. Besides being
stationary, a random function with real parameter is required to be mean-
square continuous as defined in (7.16): this excludes cases like V (t) with
covariance function cV (τ ) as proposed in (7.22). Existence theorem (7.51)
can be found, together with a variety of proofs, in [113].

LetX(t) or (Xt) be a stationary stochastic process with real (in this case,
X(t) is required to be mean-square continuous (7.16)) or integer para-
meter t, and with an expectation function being identically zero. Then a
complex-valued random function ZX(s) exists such that the following
Fourier-Stieltjes integrals converge in L2(Ω,F ) (defined in (7.10)):

X(t) =
∫ ∞

−∞
ei2πstdZX(s) t real

(Xt) =
∫ 1/2

−1/2

ei2πstdZX(s) t integer

The increments dZX(s) of ZX(s) have the following properties:
1.E

(
dZX(s)

)
= 0 for all s s, i.e., their mean is identically zero,

2.Cov
(
dZX(s), dZX(r)

)
= 0 for s �= r, i.e., they are orthogonal, and

3.E
(|dZX(s)|2)def=dC(I)

X (s) for all s. C(I)
X (s) is bounded, non-decreasing

and continuous from the right in possible jump discontinuities.
C

(I)
X (s) is called the integrated spectrum of X(t) or (Xt).

(7.51)
Priestley in [113] also makes the Fourier representation theorem plausible in
the case of a continuous-time stationary process X(t). Borrowing from [113],
it becomes plausible that the power (in the physical sense as in the remarks
to (6.76)) of the process pertaining to frequencies between s and s+ds is the
expectation of the squared increments E

(|dZX(s)|2) in (7.51,3). The rationale
starts with a realisation of X(t) in (7.52) and arrives at the expectation in
(7.60) from which the result then follows in the limiting case.

Let x(t) be a realisation of the stationary random functionX(t) in interval
−T/2 ≤ t ≤ T/2, and let xT (t) be a periodic function with period T such that
xT (t) = x(t) in −T/2 ≤ t ≤ T/2 and xT (t+nT ) = xT (t) at the exterior of this
interval, n = . . . ,−1, 0, 1, . . .. The Fourier series of xT (t) is written complex∑∞

k=−∞ Fkei2πskt as in (6.29) with Fk = (1/T )
∫ T/2

−T/2
xT (t)e−i2πsktdt, k =

. . . ,−1, 0, 1, . . ., and (7.52) is obtained since ∆sk = 1/T , as argued in the
remarks to (6.35).

xT (t) =
∞∑

k=−∞

(∫ T/2

−T/2

xT (t)e−i2πsktdt

)
ei2πskt∆sk (7.52)

gT (sk) =
∫ T/2

−T/2

xT (t)e−i2πsktdt (7.53)
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xT (t) =
∞∑

k=−∞
gT (sk)ei2πskt∆sk =

∞∑
k=−∞

gT (sk)
T

ei2πskt (7.54)

For the integral in (7.52), gT (sk) as defined in (7.53) is written in (7.54) where
1/T is substituted with ∆sk = sk+1−sk to arrive at a Fourier representation
of xT (t), i.e., a realisaton (xt) confined in the interval −T/2 ≤ t ≤ T/2. Does
a Fourier representation of (xt) exist, t = . . . ,−1, 0, 1, . . .?

If, as in the remarks to (6.35), the interval −T/2 ≤ t ≤ T/2 becomes wider
with increasing T , then x(t) is required to be in L2(−∞,∞) in the limiting
case for T → ∞ thus asserting the existence of the integral in (7.53). x(t) how-
ever, being a realisation of a stationary process X(t), is not in L2(−∞,∞)
because it does not decay and thus does not become identically zero for
−∞ ← t and t→ ∞. In a physical rationale similar to those in the remarks
to (6.76), the energy pertaining to trigonometric oscillations with frequencies
in an interval being ∆sk wide, i.e., |gT (sk)|2∆sk as obtained by substituting
∆sk = 1/T in (7.54), increases with increasing T , as is concluded from Par-
seval’s identity in (6.74,2). In the limiting case for T → ∞, the dissipated
energy becomes infinite and ∆sk becomes arbitrarily small. Consequently,
infinite energy is dissipated to generate non-damped sinusoidal oscillations
with frequencies between s and s + ds, i.e., in an arbitrarily small interval,
this conclusion being reconcilable with the Fourier transform pairs obtained
in Problem 6.19. Consequently, such oscillations do not exist.

Do oscillations with frequencies between s and s+ ds and having a finite
power

(|gT (s)|2/T )ds exist in the limiting case for T → ∞? If such oscil-
lations exist then a power spectrum, i.e., the power of the realisation as a
function of the frequencies, is obtained in the limiting case. For all realisations
x(t) of the random function X(t), the mean of

(|gT (s)|2/T ) is calculated and
the limit in (7.55) is arrived at:

lim
T→∞

E
( |GT (s)|2

T

)
. (7.55)

This limit is, on condition that it exists, the mean power of X(t) pertaining
to trigonometric oscillations with frequencies between s and s+ ds.

Now,
(|GT (s)|2)/T is redefined by substituting, in (7.52) and (7.53), real-

isation xT (t) with random function XT (t) and by assuming that the Fourier-
Stieltjes-Integral GT (sk) =

∫ T/2

−T/2
e−i2πsktdXT (t) thus obtained does exist.

Hence, (7.56) is arrived at, being a stochastic version of (7.54):

XT (t) =
∞∑

k=−∞
GT (sk)ei2πskt∆sk =

∞∑
k=−∞

GT (sk)
T

ei2πskt. (7.56)

If
(
GT (sk)

)
/T = GT (sk)∆sk is such that GT (s) is integrable in the limiting

case for T → ∞ and ∆sk → 0, then
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∆ZT (sk) =
∫ sk

−∞
GT (s)ds−

∫ sk−1

−∞
GT (s)ds (7.57)

≈ GT (sk)∆sk = GT (sk)/T (7.58)

XT (t) =
∞∑

k=−∞
∆ZT (sk)ei2πskt∆sk (7.59)

is obtained and, taking the expectations,

E
(|∆ZT (sk)|2) ≈ E

(|GT (sk)|2(∆sk ×∆sk)
)

= E
( |GT (sk)|2

T

)
∆sk (7.60)

is finally arrived at. Assuming that these expectations exist in the limiting
case for T → ∞ and ∆sk → 0, (7.60) is compared with (7.51): it now becomes
plausible that, in the limiting case, the expectation of the squared increments
E(|dZX(s)|2) in (7.51,3) is the power of the stationary processX(t) pertaining
to those trigonometric oscillations in its Fourier representation which have
frequencies between s and s+ ds.

7.3.3 Covariance Function and Spectrum

If a continuous-time stochastic process X(t) is stationary, mean-square con-
tinuous from the right in possible jump discontinuities and has an identically
zero expectation function, as required in (7.51), then its covariance func-
tion cX(τ ) can be obtained as a Fourier-Stieltjes integral from its integrated
spectrum C

(I)
X (s):

cX(τ ) =
∫ ∞

−∞
ei2πτsdC(I)

X (s), τ real. (7.61)

The Fourier-Stieltjes integral (7.61) is defined for all integrated spectra having
properties (7.51,3), i.e., also for integrated spectra with jump discontinuities.
If, in contrast, an integrated spectrum is differentiable for all s, CX(s) =
d
(
C

(I)
X (s)

)
/ds, then the usual Fourier integral (7.62)

cX(τ ) =
∫ ∞

−∞
CX(s)ei2πτsds, τ real (7.62)

CX(s) =
∫ ∞

−∞
cX(τ )e−i2πsτdτ = 2

∫ ∞

0

cX(τ ) cos(2πsτ)dτ (7.63)

is obtained. To this Fourier transform pertains the inverse transform (7.63).
Hence, cX(τ ) and CX(s) are a Fourier transform pair as defined in (6.35).
The second = in (7.63) applies on condition thatX(t) is a real-valued random
function with an even covariance function since (2.7,1) implies (6.32). If X(t)
is complex-valued then its complex-valued covariance function is not even, as
concluded from the remarks to (7.28).
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A discrete-time stochastic process (Xt) with integer parameter t as re-
quired in (7.51) has a covariance function cX(τ ) defined for integer lags τ
and an integrated spectrum C

(I)
X (s) defined in interval −1/2 ≤ s ≤ 1/2 (and

being periodic with period 1). Since C(I)
X (s) is confined to −1/2 ≤ s ≤ 1/2,

i.e., the period pertaining to the sampling interval ∆t = 1, there is no alias-
ing, as argued in the remarks to (7.30). Hence, the Fourier-Stieltjes integral in
(7.64) and, provided that C(I)

X (s) is differentiable, the usual Fourier integral
in (7.65), are evaluated from −1/2 until 1/2.

cX(τ ) =
∫ 1/2

−1/2

ei2πτsdC(I)
X (s) τ = . . . ,−1, 0, 1, . . . (7.64)

cX(τ ) =
∫ 1/2

−1/2

ei2πτsCX(s)ds τ = . . . ,−1, 0, 1, . . . (7.65)

CX(s) =
∞∑

τ=−∞
cX(τ )e−i2πsτ = 2

∞∑
τ=0

cX(τ ) cos(2πsτ) (7.66)

cX(τ ) and CX(s) in (7.65) and (7.66) are a Fourier transform pair as defined
in (6.49) and (6.50). This Fourier transform pair is discussed in Sect. 7.5.4.

(7.61) through to (7.66) are derived from the spectral representation the-
orem (7.51). For example, the Fourier-Stieltjes integral (7.61) is obtained as
follows:

cX(τ ) = Cov
(
X(t), X(u)

)
= E

(
X(t)X(u)

)
τ = t− u (7.67)

= E
(∫ ∞

−∞
e−i2πstdZX(s)

∫ ∞

−∞
ei2πrudZX(r)

)
=
∫ ∞

−∞

∫ ∞

−∞
e−i2πstei2πruE

(
dZX(s)dZX(r)

)
=
∫ ∞

−∞

∫ ∞

−∞
e−i2πstei2πru

(
dC(I)

X (s)δ(s− r)
)
dr (7.68)

=
∫ ∞

−∞
e−i2π(t−u)s

(
dC(I)

X (s)
)

=
∫ ∞

−∞
e−i2πτsdC(I)

X (s) (7.69)

(7.68) directly follows from (7.51) since the variance and covariance functions
of increments dZX(s) as stipulated in (7.51,2) and (7.51,3) can be summarised
writing E

(
dZX(s)dZX(r)

)
= δ(s−r)dC(I)

X (s)dr due to the following reasons.
Firstly, for r �= s, Cov

(
dZX(r), dZX(s)

)
= E

(
dZX(s)dZX(r)

)
= 0, since the

increments are orthogonal, and secondly, for r = s, i.e., for lags becoming
identically zero, Cov

(
dZX(r), dZX(s)

)
= dC(I)

X (s)δ(s − r)dr, as concluded
from the remarks to (7.26) and (7.102).
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The above derivation of (7.69), despite being concise and smart, does
only to some extent illustrate the properties of both the covariance function
and the integrated spectrum. Since these properties are in close relationship
to each other, they are enumerated in (7.70). Functions ϕ(t) and F (s) as
in (7.70,2) are a Fourier-Stieltjes transform pair. ϕ(t) in (7.70,3) shares its
properties with the covariance function cX(τ ) of a stationary random func-
tion X(t), as is concluded from (2.7) and (2.8), and F (s) in (7.70,1) shares
its properties with the integrated spectrum C

(I)
X (s) of X(t) as required in

(7.51,3). The properties of ϕ(t) imply those of F (s), and vice-versa, as pro-
posed in (7.70,4) and (7.70,2).

1.Let F (s) be a real-valued and non-decreasing function, being
continuous from the right in possible jump discontinuities and
having a lower bound F (−∞) = lim−∞←s F (s) and an upper
bound F (∞) = lims→∞ F (s). Then the

2.Fourier-Stieltjes integral ϕ(t) =
∫ ∞

−∞
ei2πtsdF (s) exists.

3.Let ϕ(t) be bounded( |ϕ(t)| ≤ ∫∞
−∞ dF (s)=F (∞)−F (−∞)),

positive semi-definite(
∑n

j=1

∑n
k=1 djdkϕ(tj − tk) ≥ 0), and

let ϕ(−t) = ϕ(t) (or ϕ(−t) = ϕ(t), for real-valued ϕ(t)).
4.For each ϕ(t) with properties (7.70,3) there exists an F (s)

with properties (7.70,1) such that (7.70,2) is satisfied.

(7.70)

The properties of F (s) as required in (7.70,1) assert the existence of the
Fourier-Stieltjes integral

∫∞
−∞ ei2πtsdF (s). Properties (7.70,3) of ϕ(t) are a

consequence of integral (7.70,2) and easily obtained. In contrast, it is diffi-
cult to prove (7.70,4), i.e., that, given a function ϕ(t) having the properties
(7.70,3), there is a function F (s) such that ϕ(t) =

∫∞
−∞ ei2πtsdF (s) [126].

If t = . . . ,−1, 0, 1, . . . in (7.70), then F (s) has properties (7.70,1) duly
modified to accommodate the integer argument of ϕ(t): the Fourier-Stieltjes
integral is evaluated in the interval −1/2 ≤ s ≤ 1/2 and it is required
that F (s) be bounded in −1/2 ≤ s ≤ 1/2 and continuous from the left
in 1/2 with limit F (1/2) = lims→1/2 F (s). The properties of ϕ(t) in (7.70,3)
do not undergo changes in this case. For example, bearing in mind that
E
(|dZX(s)|2) = dC(I)

X (s) as defined in (7.51), a complex-valued random
function Z(s) is constructed in (7.42) using the harmonic process (Xt)
in (7.30) such that its integrated spectrum C

(I)
X (s) possesses the proper-

ties required above: dZ(1/2) = 0 is required in (7.42) in order to obtain
E
(|dZ(1/2)|2) = 0 = dC(I)

X (1/2) and therefore the desired integrated spec-
trum which is continuous in 1/2.

Properties (7.70) of pairs of Fourier-Stieltjes transforms are known as
Herglotz’s theorem (for integer t) or Bochner’s theorem (for real t): Given a
positive semi-definite function ϕ(t), a bounded and non-decreasing function
F (s) exists such that ϕ(t) is the Fourier-Stieltjes integral of F (s).
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7.3.4 Types of Spectra

An integrated spectrum is a real-valued function that is bounded, does not
decrease, and is continuous from the right in possible jump discontinuities.
Functions having these properties can be classified as in (7.71).

Let C(I)
X (s) be the integrated spectrum (7.51,3) pertaining

to a stationary stochastic process X(t). C(I)
X (s) is called:

1. differentiable on condition that CX(s) = d
(
C

(I)
X (s)

)
/ds

for all s (in this case CX(s) is called a continuous spectrum
or a spectral density)

2. a discrete spectrum or a line spectrum on condition that
C

(I)
X (s) has jump discontinuities

3. a mixed spectrum on condition that C(I)
X (s) is differentiable

except for frequencies si, i = 1, . . . , n, n a small number
of jump discontinuities.

(7.71)

In contrast to definitions (7.71), only two types of spectra either discrete or
mixed, or continuous are discerned in (7.61) and (7.62) as well as in (7.64)
and (7.65).

To give a first example, the line spectrum of the harmonic process X(t)
(7.30) is derived from the covariance function cX(τ ) (7.31) pertaining toX(t).
cX(τ ) is not in L2(−∞,∞) because |cX(τ )| does not damp out for −∞ ← τ
and τ → ∞. Hence, the Fourier transform CX(s) = F−i

(
cX(τ )

)
in (7.72)

CX(s) =
∞∑

τ=−∞

⎛⎝2
n∑

j=1

((
R2

j/4
))

cos(2πsjτ )

⎞⎠ cos(2πsτ) (7.72)

= 2
n∑

j=1

((
R2

j/4
)(
δ(s− sj) + δ(s+ sj)

))
(7.73)

=
{
R2

j/4 for s = s−n, . . . ,−1, 1, . . . , sn
0 for all other s

− 1/2 ≤ s ≤ 1/2 (7.74)

is calculated using the result of Problem 6.19 to obtain (7.73). Thereafter,
by applying the rules pertaining to the evaluation of integrals with delta
functions as derived from (6.64), the spectrum of the harmonic process is
arrived at in (7.74). Please compare this result with the definition given in
(7.37). Also using the rules derived from (6.64), the covariance function of
the harmonic process is obtained from its spectrum in the remarks to (7.37).

The second and third example stochastic processes are stationary with
integer parameter t = . . . ,−1, 0, 1, . . ., and both processes have covariance
functions that converge absolutely, as defined in (2.24), for increasing lags
and thus are in L2(−∞,∞). From the covariance functions of these processes,
their continuous spectra are obtained by calculating the Fourier transforms
as required in (7.63) or (7.66).
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Example process no. 2 is the white noise process (Wt) as defined in
(2.10) or (2.11) having expectation function µW (t) = µW , variance function
σ2

W (t) = σ2
W and covariance function cW (τ ) = σ2

W for τ = 0, and cW (τ ) = 0
for τ �= 0. τ = . . . ,−1, 0, 1, . . . implies that cW (τ ) and CW (s) are a Fourier
transform pair as defined in (6.49).

CW (s) =
+∞∑

τ=−∞
cW (τ )e−i2πsτ τ = . . . ,−1, 0, 1, . . . (7.75)

=
−1∑

τ=−∞
0 × e−i2πsτ + σ2

W × e−i2πs0 +
+∞∑
τ=1

0 × e−i2πsτ

= σ2
W − 1/2 ≤ s ≤ 1/2 (7.76)

The spectrum of the white noise process is constant for −1/2 ≤ s ≤ 1/2.
Consequently, all frequencies contribute identically to the variance of the
process, or, using the terminology introduced in Sect. 6.4, the total energy
of the process is uniformly distributed over all frequencies (the continuous
uniform probability distribution is defined in the remarks to (7.30)).

The spectrum of the electromagnetic radiation emitted by the sun is ap-
proximately constant in the visible range (wave-lengths between approxi-
mately 400 and 700 νm). In the visible range therefore, the sun radiates with
approximately identical intensity for each colour band (e.g., yellow light has
wave-lengths between 575 and 585 νm) and thus sunlight appears to be white
to the human eye. Consequently, the stochastic process (Wt) defined in (2.10)
or (2.11) is called a white noise process, since its spectrum CW (s) = σ2

W is
constant as shown in (7.76).

Example process no. 3 is the AR[1] process (Xt), t = . . . ,−1, 0, 1, . . .,
as constructed in (2.13) from a white noise process (Wt) and thus having
covariance function cX(τ ) in (2.16) on condition that µW = 0. If |a| < 1 and
N → ∞ then (Xt) becomes stationary with cX(τ ) = σ2

W

(
1/(1− a2)

)
a|τ |. By

Fourier transforming cX(τ )

CX(s) = σ2
W

1
1 − a2

(
+∞∑

τ=−∞
a|τ |e−i2πsτ

)
(7.77)

= σ2
W

1
1 − a2

( −1∑
τ=−∞

a|τ |e−i2πsτ + 1 +
∞∑

τ=1

a|τ |e−i2πsτ

)

= σ2
W

1
1 − a2

(
1 +

∞∑
τ=1

aτei2πsτ +
∞∑

τ=1

aτe−i2πsτ

)

= σ2
W

1
1 − a2

(
1 +

∞∑
τ=1

(
aei2πs

)τ

+
∞∑

τ=1

(
ae−i2πs

)τ
)
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= σ2
W

1
1 − a2

(
1 + aei2πs

∞∑
τ=0

(
aei2πs

)τ

+

ae−i2πs
∞∑

τ=0

(
ae−i2πs

)τ
)

(7.78)

= σ2
W

1
1 − a2

(
1 +

aei2πs

1 − aei2πs
+

ae−i2πs

1 − ae−i2πs

)
= σ2

W

1
1 + a2 − 2a cos(2πs)

− 1/2 ≤ s ≤ 1/2 (7.79)

the sums in (7.78) are arrived at which thereafter can be easily evaluated since
a geometric series 1+z+z2+z3+. . . = 1/(1−z) converges for |z| < 1. The final
result in (7.79) follows because 1−ae−iθ−aeiθ +ae−iθaeiθ = 1−2a cos θ+a2.

The spectrum of the AR[1] model as arrived at in (7.79) is not constant
even though this model is constructed from a white noise process having
a constant spectrum as derived in (7.76). Spectra of linear processes (and
therefore also the spectrum of the AR[1] model) are dealt with to a certain
extent in Sect. 7.4.

Example process no. 4, X(t) = U(t) + V (t), has a mixed spectrum as
defined in (7.71,3) on condition that U(t) and V (t) are stochastic processes
with the following properties: (i) the expectation function of both processes
is identically zero, i.e., EU(t) = EV (t) = 0, (ii) they are not correlated, i.e.,
Cov

(
U(t), V (u)

)
= 0 for t �= u and for t = u, and (iii), they are stationary

and thus have a spectrum, U(t) a continuous one and V (t) a discrete one.
Taking advantage of these properties, the covariance function cX(τ ) of X(t)
is obtained in (7.80)

cX(τ ) = Cov
(
U(t) + V (t), U(t+ τ ) + V (t+ τ )

)
= E

((
U(t) + V (t)

)(
U(t+ τ ) + V (t+ τ )

))
= E

(
U(t)U(t+ τ ) + U(t)V (t+ τ )

+V (t)(U(t+ τ ) + V (t)V (t+ τ )
)

= Cov
(
U(t), U(t+ τ )

)
+ 0 + 0 + Cov

(
V (t), V (t+ τ )

)
= cU (τ ) + cV (τ ) (7.80)

and thereafter the spectrum of X(t) in (7.81), by applying (6.48,5).

CX(s) =
∫ ∞

−∞

(
cU (τ ) + cV (τ )

)
e−i2πsτdτ

=
∫ ∞

−∞
cU (τ )e−i2πsτdτ +

∫ ∞

−∞
cV (τ )e−i2πsτdτ

= CU (s) + CV (s) (7.81)
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Fig. 7.9. On the left, a realisation (xt) = (ut) + (vt) (•) with vt = 5 cos(0.2πt)
(broken line) in the interval −25, . . . ,−1, 0, 1, . . . , 25, i.e., a realisation of the process
having a mixed spectrum as in (7.82) with σ2

U = 3, Rl = 5, sl = 0.1, (plotted on
the right).

Since V (t) has a discrete spectrum CV (s) and thus cV (τ ) is not in L2(−∞,∞),
the Fourier transform

∫∞
−∞ cV (τ )e−i2πsτdτ is calculated using the delta func-

tion, as demonstrated above in (7.72) in the case of the harmonic process.
For example, let (Ut) be a white noise process as defined in (2.10) or

(2.11) having a spectrum CU (s) = σ2
U (7.76), and let (Vt) be a harmonic

process as defined in (7.30) having only one trigonometric oscillation, i.e.,
Vt = Rl cos(2πslt + Pl), 0 < sl < 1/2, with spectrum CV (s) = R2

l /4, for
s = −sl, sl and CV (s) = 0, for s �= −sl or s �= sl, as obtained in (7.74). Then,
using (7.81) derived above, the spectrum of (Xt) = (Ut) + (Vt)

CX(s) =
{
σ2

U +R2
l /4 for s = −sl, sl

σ2
U for s �= −sl or s �= sl

− 1/2 ≤ s ≤ 1/2 (7.82)

is arrived at in (7.82). CX(s) is a constant σ2
U with added spikes of height R2

l /4
at frequencies s = −sl and s = sl, as plotted in Fig. 7.9 (b). A realisation of
(Xt) = (Ut) + (Vt) is plotted in Fig. 7.9 (a).

7.3.5 Bandwidth of a Spectrum

The bandwidth of a spectrum as defined in (7.83) is the width of its narrowest
peak or valley or the smallest distance between the spectral lines.

1.The bandwidth B�
(
CX(s)

)
of a continuous spectrum CX(s)

(a spectral density as defined in (7.71,1)) is the width at
half height (6.97) of CX(s).

2.The bandwidth B�
(
C

(I)
X (s)

)
of a discrete (or line) spectrum

is the smallest distance between the jump discontinuities
of the pertaining integrated spectrum C

(I)
X (s).

(7.83)

Consequently, the bandwidth of a continuous spectrum is determined by
means of a non-logarithmic plot, as demonstrated in the remarks to (6.97).
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Fig. 7.10. Examples of continuous spectra with their bandwidths as defined in
(7.83).

Plots (a) and (b) above in Fig. 7.10, for example, show two continuous
spectra of linear processes in non-logarithmic scale: the one of an MA[1]
model with b = 0.9 and σ2

W = 1 and the one of an MA[2] model with b1 = 0.9,
b2 = −2.0 and σ2

W = 1. Below in Fig. 7.10, the spectrum of an AR[4] model
as defined in Fig. 7.14 is plotted in logarithmic (c) and non-logarithmic scale
(d). These spectra are derived in Sect. 7.4.

In the non-logarithmic spectral densities, the widths at half height of
the peaks and valleys are drawn. Often, the width at half height can only be
determined in adequate plots, as demonstrated by the following examples: (i)
in Fig. 7.10 (a) and (b), the spectra are plotted for intervals −1/2 ≤ t ≤ 1/2
and −1 ≤ t ≤ 1 in order to capture their forms, seeing that the spectra
of discrete-time stochastic processes are even functions and periodic with
period 1, and (ii) in Fig. 7.10 (d), the spectrum under analysis is plotted for
the frequency band containing its peaks. The widths at half height of the
peaks in Fig. 7.10 (d) are obtained using the valley between the peaks as
base height: 0.00506 is the width at half height of the left peak and 0.00474
the one of the right peak, whereas the width at half height of the valley is
0.01364. Consequently, the bandwidth of the spectrum of the AR[4] process
in Fig. 7.10 is 0.00474, applying the remark to (6.97).
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7.4 Spectra of Linear Processes

A linear process (2.25) is the output of a stochastic version of the LTI filter
(6.120) on condition that a white noise process is the input. Consequently,
the linear process inherits the continuous spectrum of the white noise process,
as shown in Sect. 7.4.1. In Sect. 7.4.2, examples of spectra of linear processes
are given.

7.4.1 Stochastic Filters

A stochastic version of the linear and time-invariant (LTI) filter, introduced
in Sect. 6.8.1, is defined in (7.84). If the input in the stochastic LTI filter
as defined in (7.84) is a discrete-time stochastic process then the parameter
of both, input and output, are assumed to be integer, and the convolution
integral is substituted with a convolution sum. Both a convolution sum or
a convolution integral are, as proposed in the remarks closing Sect. 2.4.1,
linear, time-invariant and commutative, albeit on condition that input and
output are stochastic processes, since (2.28), (2.29), (2.33) and (2.35) are
not restricted to deterministic functions. If the expectation function of the
stationary input is not identically zero then the de-meaned process X(t)−µX

is convolved. Under the conditions required in (7.84) the convolution integral
or sum converge in mean square, as defined in (7.11).

Y (t) =
∫ ∞

−∞
f(t−u)X(u)du =

∫ ∞

−∞
f(u)X(t−u)du t, u real

is called a stochastic LTI filter on condition that:
1. the real-valued input X(t) is a stationary random function

with moment functions µX(t) = µX = 0 and cX(τ )
2. the impulse response function f(t) is in L2(−∞,∞), and

consequently, the frequency response or transfer function
F (s) =

∫∞
−∞ f(t)e

−i2πstdt is obtained using (6.35), and

3.
∫∞
−∞ |F (s)|2dC(I)

X (s) <∞.

(7.84)

If, for example, an ARMA[p, q] model (5.36) is constructed using (5.38)
as the output of a stochastic filter, then the convolution sum converges since
(i) the input is a white noise process as defined in (2.11) with moment func-
tions as required in (7.84,1), (ii) the impulse response function (5.38) is in
L2(−∞,∞) as required in (7.84,2), and (iii) the Stieltjes integral in (7.84,3)
(integrated in the interval −1/2 ≤ s ≤ 1/2, because t = . . . ,−1, 0, 1, . . .)
converges as is concluded from (6.49) and (7.76).

The input (7.84,1) in a stochastic LTI filter has a Fourier representation
X(t) =

∫∞
−∞ ei2πstdZX(s) as required in (7.51), and also the output has a

Fourier representation Y (t) =
∫∞
−∞ ei2πstdZY (s) on condition that Y (t) is

stationary. If it is further assumed that convolution theorem (6.48,6) also
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applies to a filter with random functions as input and output then dZY (s) =
F (s)dZX(s) is obtained, with F (s) = F−i

(
f(t)

)
. This result is the stochastic

version of (6.121,2) and is arrived at in (7.87).
A derivation of (7.87) begins by substituting the Fourier representation of

X(t) as input in the stochastic filter (7.84) to obtain the convolution integral
(7.85). For all t, in (7.85), the Fourier-Stieltjes integral is multiplied with
f(t − u) and the convolution integral is evaluated. Since a Riemann or a
Stieltjes integral as required in (7.20) and (7.21) is linear, the derivation is
continued by using (6.142) as a template and (7.86) is arrived at, provided
that the integrals exist.

Y (t) =
∫ ∞

−∞
f(t− u)

(∫ ∞

−∞
ei2πsudZX(s)

)
du (7.85)

=
∫ ∞

−∞

∫ ∞

−∞
f(t− u)ei2πs(u−t+t)dZX(s)du

=
∫ ∞

−∞

(∫ ∞

−∞
f(t− u)e−i2πs(t−u)du

)
ei2πstdZX(s)

=
∫ ∞

−∞

(∫ ∞

−∞
f(v)e−i2πsvdv

)
ei2πstdZX(s) v = t− u

=
∫ ∞

−∞
ei2πstF (s)dZX(s) (7.86)

dZY (s) = F (s)dZX(s) (7.87)

The Fourier representation (7.86) of the output process (on condition that it
converges as is shown below) implies (7.87), i.e., the orthogonal increments
dZY (s) pertaining to the output process are proportional to those pertaining
to the input process. Hence, the first moment function of dZY (s) obtained in
(7.88) is identically zero.

E
(
dZY (s)

)
= E

(
F (s)dZX(s)

)
= F (s)E

(
dZX(s)

)
= 0 (7.88)

From definitions (7.27) and (7.51,3), the second moment function of dZY (s)
is arrived at in (7.89),

Cov
(
dZY (r), dZY (s)

)
= Cov

(
F (r)dZX(r), F (s)dZX(s)

)
= F (r)F (s)E

(
dZX(r), dZX(s)

)
=

{(|F (s)|2)E(|dZX |2)=(|F (s)|2)dC(I)
X (s)=dC(I)

Y (s) for r=s
F (r)F (s) × 0 = 0 for r �=s. (7.89)

a result which implies that (i) ZY (s) has orthogonal increments dZY (s), and
(ii) C(I)

Y (s) is non-decreasing and mean-square continuous from the right
because dC(I)

Y (s) = |F (s)|2dC(I)
X (s) and |F (s)|2 ≥ 0 for all s.

Hence, ZY (s) inherits the properties required in (7.51) from ZX(s), the
orthogonal increment process pertaining to the input X(t) in the stochastic
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filter, on condition that the Fourier-Stieltjes integral (7.86) exists for all s.
This integral is shown to converge in the following paragraph.

From the property of the stochastic filter required in (7.84,3), it is con-
cluded by applying (7.70,2) that the following integrals

cY (0) =
∫ ∞

−∞
ei2π0sdC(I)

Y (s) =
∫ ∞

−∞
ei2π0s|F (s)|2dC(I)

X (s) <∞

cY (τ ) =
∫ ∞

−∞
ei2πτsdC(I)

Y (s) =
∫ ∞

−∞
ei2πτs|F (s)|2dC(I)

X (s) ≤ cY (0)

exist, and consequently, cY (τ ) and C(I)
Y (s) are a Fourier-Stieltjes transform

pair as required in (7.61). To this pair belongs, as is deduced from (7.51),
a stationary stochastic process Y (t) such that cY (τ ) is the covariance func-
tion of Y (t) and C(I)

Y (s) is the spectrum of Y (t). Thus, the Fourier-Stieltjes
integral (7.86) converges for all s.

The results derived above are summarized in (7.90).

Let random functions X(t) and Y (t) be the input and
output of a stochastic filter as defined in (7.84) having fre-
quency response function f(t). Then:

1. dZY (s) = F (s)dZX(s)
2. Y (t) =

∫∞
−∞ ei2πstF (s)dZX(s)

3. dC(I)
Y (s) = |F (s)|2dC(I)

X (s) and
4. CY (s) = |F (s)|2CX(s), on condition that CX(s) is continuous.

(7.90)

If the input process X(t) has an integer parameter t (the example in the
remarks to (7.84) is a process with integer parameter) then the argument of
the impulse response function is integer and the integral in (7.90,2) becomes∫ 1/2

−1/2
ei2πstF (s)dZX(s).

dC(I)
Y (s)(s) = |F (s)|2dC(I)

X (s) in (7.90,3) implies that the spectrum of
the output process for frequency s depends only on the spectrum of the
input process and the squared absolute value of the transfer function for this
frequency (and not on any other frequencies). Thus, the effects of the filter
on an oscillation of a given frequency s depend on s solely and, therefore, the
frequency domain is often preferred when a stochastic LTI filter is described.

This is also true in the case of a deterministic LTI filter as defined in
(6.120) and (6.121,1), because (6.121,2) is the deterministic version of propo-
sition (7.90,1), i.e., that a convolution of two functions in the time domain
corresponds to a multiplication of their Fourier transform in the frequency
domain. Hence, the results obtained in Sect. 6.8.2, where the moving average
and differences are analysed, also hold in the case of stochastic processes with
integer parameter.
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7.4.2 Examples

The stationary and invertible ARMA[p, q] model (5.36) is, due to its MA[∞]
representation (5.38), a weighted sum of a white noise process with the se-
quence of weights being in L2(−∞,∞). Hence, it is a linear process as defined
in (2.25). From a comparison of (2.25) and (7.84) it is concluded that a linear
process is a discrete-time stochastic filter: input and output processes have
parameter t = . . . ,−1, 0, 1, . . . which implies that the definitions and propo-
sitions undergo minor re-adjustments, as mentioned in the remarks to (7.84)
and (7.90).

The input in a linear process (shown above to be a stochastic filter) is a
white noise process (Wt) in (2.10) or (2.11) with covariance function cW (τ ) =
σ2

W for τ = 0, and cW (τ ) = 0 for τ �= 0, implying spectrum CW (s) = σ2
W ,

−1/2 ≤ s ≤ 1/2, as obtained in (7.76). Hence, (Wt) has the properties
required in (7.84,1). The weights of the white noise variables are required to
be absolutely convergent in (2.25) and (5.38) and, for this reason, the impulse
response sequence (ft) of the linear process is in L2(−∞,∞), as specified
in (7.84,2). Consequently, its frequency response function F (s) as required
in (6.49) is in L2(−1/2, 1/2) and is periodic with period 1 at the exterior
of −1/2 ≤ s ≤ 1/2. Moreover, the Stieltjes integral in (7.84,3) becomes∫ 1/2

−1/2
|F (s)|2σ2

W ds <∞ and thus, a linear process has the desirable property
(7.84,3).

Since a linear process is shown above to be a stochastic filter having all
properties required in (7.84), its spectrum is obtained, using (7.90,4), from
its weights and the variance of the input white noise process. This method
is usually more straightforward than calculating the spectrum as the Fourier
transform of the covariance function applying (7.66), as demonstrated by the
following examples.

An MA[1] process (Xt), with Xt = Wt−bWt−1 as defined in (2.21), is the
convolution of impulse response sequence (bt) = (1,−b) for t = 0, 1 and bt = 0
for t = . . . ,−2,−1 as well as t = 2, 3, . . . with a white noise process (Wt) as
defined in (2.10) or (2.11). (Xt) has covariance function cX(−1) = −bσ2

W ,
cX(0) = (1 + b2)σ2

W , cX(1) = −bσ2
W and cX(τ ) = 0, for |τ | > 1, from which

its spectrum is obtained in (7.91)

CX(s) = σ2
W (1 + b2) + σ2

W (−2b cos(2πs)
= σ2

W

(
1 + b2 − 2b cos(2πs)

)
(7.91)

using (7.66). For example, a time slice from a realisation of the MA[1] pro-
cess (Xt) with b = 0.9 and σ2

W = 1 is plotted in Fig. 7.11 (a) together
with its spectrum CX(s) (plots (b) and (c)). This spectrum has bandwidth
B�
(
CX(s)

)
= 0.5, calculated as required in (7.83). Its minimum is approxi-

mately 0.01, its maximum approximately 3.6, and therefore its dynamic range
(6.96) is approximately 25 dB. Or, easier, its dynamic range is read from the
plot (c) in Fig. 7.11.
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Fig. 7.11. MA[1] process with b = 0.9 and σ2
W = 1. Time slice of a realisation

(above, (a)) and spectrum as obtained in (7.91) or (7.93) together with its band-
width (below, (b)), and in logarithmic scale (below, (c)).

Alternatively, the spectrum of the above example MA[1] process is cal-
culated using (7.90,4): the frequency response function is the Fourier −i-
transform of the impulse response function, F−i(bt) = 1e−i2πs0+(−b)e−i2πs1 =
1 − be−i2πs = 1 − b(cos(2πs)− bi sin(2πs)

)
, and thereafter, its squared abso-

lute value |F−i(bt)|2 = F+i(bt)F−i(bt) is multiplied with the spectrum of the
white noise process to obtain, in (7.93),

CX(s) = F+i(bt)F−i(bt)CW (s) (7.92)
=
(
1−b cos(2πs)−bi sin(2πs)

)(
1−b cos(2πs)+bi sin(2πs)

)
σ2

W

=
(

1 − 2b cos(2πs) + b2
((

cos(2πs)
)2 +

(
sin(2πs)

)2))
σ2

W

=
(
1 + b2 − 2b cos(2πs)

)
σ2

W − 1/2 ≤ s ≤ 1/2 (7.93)

a result being identical to the one achieved in (7.91).
An MA[q] process (Xt) is obtained in (5.28) by convolving a white noise

process with frequency response function (bt) = (1,−b1, . . . ,−bq) for t =
0, 1, 2, . . . , q, and bt = 0 for t = . . . ,−2,−1 as well as t = q + 1, q + 2, . . .:
Xt =

∑q
u=0 buWt−u = (bt) ∗ (Wt). Applying (7.90,4) or else (6.48,6), CX(s)

is then obtained as the product of CW (s) = σ2
W , −1/2 ≤ s ≤ 1/2, and the

squared absolute value of the transfer function:

F−i(bt) = 1e−i2πs0 + (−b1)e−i2πs1 + (−b2)e−i2πs2 +
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. . .+ (−bq)e−i2πsq (7.94)
CX(s) = F+i(bt)F−i(bt)CW (s) − 1/2 ≤ s ≤ 1/2 (7.95)

For example, the spectrum of the MA[2] process with b1 = 0.9 and b2 = −2.0
is plotted in Fig. 7.10 (a).

An AR[p] process Xt = a1Xt−1 + . . .+ apXt−p +Wt, t = . . . ,−1, 0, 1, . . .
and (Wt) a white noise process, is stationary as required in (5.2) on condition
that its coefficients (at) = (1,−a1, . . . ,−ap) for t = 0, 1, . . . , p and at = 0 for
t = . . . ,−2,−1 as well as t = p+1, p+2, . . ., are invertible. Using convolution
sums, a stationary AR[p] process becomes (Wt) = (at)∗(Xt) or, in its MA[∞]
representation, (Xt) = (at)−1 ∗ (Wt). Since (at)−1 ∗ (at) = (et), the identity
sequence as defined in (2.41) and applying (6.48,6), F−i

(
(at)−1

)F+i(at) =
1 = F−i(et) is obtained. Hence, F−i

(
(at)−1

)
= 1/F+i(at) is the frequency

response function pertaining to the impulse response sequence (at)−1.
An AR[1] process has coefficients (at) = (1,−a) for t = 0, 1 and

(at) = 0 for t = . . . ,−2,−1 as well as t = 2, 3, . . ., with Fourier transform
F−i(at) = 1 − ae−i2πs and, therefore, the Fourier transform of the inverse is
F−i

(
(at)−1

)
= 1/(1 − aei2πs). Applying (7.90,4), the spectrum of the AR[1]

process is arrived at in (7.96).

CX(s) =
1

(1 − aei2πs)(1 − ae−i2πs)
CW (s) − 1/2 ≤ s ≤ 1/2

=
1

1 + a2 − 2a cos(2πs)
σ2

W (7.96)

This spectrum in (7.96) is identical to the one obtained in (7.79) as Fourier
transform of the covariance function pertaining to the AR[1] model. From
(7.96) it is obvious that the power of the process is associated predominantly
with low frequency oscillations for 0 < a < 1, whereas, for −1 < a < 0, the
higher frequencies dominate in the spectrum. Thus the spectrum of an AR[1]
process is very easily obtained applying (7.90,4). In the same straightforward
way, the spectrum of an AR[2] process is obtained in (7.97), bearing in mind
that −1/2 ≤ s ≤ 1/2:

CX(s) =
1

(1−a1ei2πs−a2ei4πs)(1−a1e−i2πs−a2e−i4πs)
CW (s)

=
1

1+a1
2+a2

2+2(a1a2−a1) cos(2πs)−2a2 cos(4πs)
σ2

W . (7.97)

For example, time slices from realisations of AR[2] processes (Y (1)
t ) and

(Y (2)
t ) are plotted above in Figs. 7.12 and 7.13. In both example processes, the

innovations are a white noise process (Wt) with µX = 0 and σ2
W = 1. From

the realisations, as plotted, it becomes obvious that (Y (1)
t ) with a1 = 0.3

and a2 = −0.7 has oscillations with lower frequencies and smaller amplitudes
than process (Y (2)

t ) with a1 = −1.6 and a2 = −0.9. Quantitatively, this
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Fig. 7.12. AR[2] model Y
(1)

t = 0.3Y
(1)
t−1 − 0.7Y

(1)
t−2 + Wt. Time slice of a realisation

(above) and spectrum as obtained in (7.97) together with its bandwidth (below,
(b)) and in logarithmic scale (below, (c)).

discrepancy is seen in plots (b) and (c), in both Figs. 7.12 and 7.13: CY (1)(s)
has a peak approximately 11.5 high located in frequency 0.2, whereas the
peak in CY (2)(s) attains an approximative height 350 for frequency 0.4, the
two frequencies also being approximations. Both spectra are also distinct in
their dynamic ranges (6.96) being read directly in the logarithmic plots as
well in their bandwidths (7.83) drawn in the non-logarithmic plots.

Example process no. 3 is the AR[4] model (Xt), with Xt = 2.7607Xt−1 −
3.8106Xt−2 + 2.6535Xt−3 − 0.9838Xt−4 +Wt and (Wt) being a white noise
process having expectation µW = 0 and variance σ2

W = 1, as introduced
in [108]. A realisation of this process is plotted above in Fig. 7.14, with its
spectrum as plotted in Figs. 7.10 (c) and 7.14 (b), obtained by applying
(7.90,4) in the same way as the spectra of the AR[1] and AR[2] models are
obtained above in (7.96) and (7.97). This procedure is implemented in R with
the following expressions:

a <- c(2.7607, -3.8200, 2.6535, -0.9238) #coefficients

s1 <- (0:4000)/8000 #4001 frequencies between 0 and 0.5

# -1i*2*pi*s1 is a complex vector having the same length as s1

sw2 <- rep(1,4001) #4001 variances of the white noise process

spec <- sw2/( (1 - a[1]*exp(-1i*2*pi*s1) - a[2]*exp(-1i*4*pi*s1)

- a[3]*exp(-1i*6*pi*s1) - a[4]*exp(-1i*8*pi*s1) ) *

(1 - a[1]*exp( 1i*2*pi*s1) - a[2]*exp( 1i*4*pi*s1)

- a[3]*exp( 1i*6*pi*s1) - a[4]*exp( 1i*8*pi*s1) ) )
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Fig. 7.13. AR[2] model Y
(2)

t = −1.6Y
(2)

t−1−0.9Y
(2)

t−2+Wt. Time slice of a realisation
(above) and spectrum as obtained in (7.97) together with its bandwidth (below,
(b)) and in logarithmic scale (below, (c)).

#alternative: if the order of the process is larger and

#if the coefficients are in vector a, then:

#i <- 1

#q <- as.complex(rep(1+0i,4001)) #accumulator

#for(i in 1:length(a)) { #adding

# q <- q -(a[i]*exp(-1i*(2*i)*pi*s1))

#}

#spec <- sw2/ ((Mod(q))*(Mod(q))) #spectrum

#alternative end here

#in vector spec is now the spectrum non-logarithmic

specdb <- 10*log10(spec) #in dB

With minor changes in R vectors s1 and sw2 this spectrum is obtained for
5001 frequencies in the interval 0.10 ≤ s ≤ 0.15 in Figs. 7.10 (d) and 7.14 (c).
These plots show that the spectrum is continuous, as required in (7.90,4).
The widths at half height of its peaks and valleys are obtained in Fig. 7.10
(d) as required in (6.97); from these, its bandwidth B�

(
CX(s)

)
= 0.00474 is

obtained applying (7.83) and (6.97) as width at half height of its right peak.
Its dynamic range is approximately 65 dB, as read in Fig. 7.14 (b).

Having a small bandwidth and a large dynamic range, this AR[4] model
is able to generate instructive example realisations when the bias of the peri-
odogram is discussed in Sect. 8.3 and also when estimators for a continuous
spectrum are introduced in Chap. 9.
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Fig. 7.14. AR[4] model Xt = 2.7607Xt−1−3.8106Xt−2+2.6535Xt−3−0.9838Xt−4+Wt,
with µW = 0 and σ2

W = 1. A realisation in the interval 0 ≤ 6 ≤ 511 (above) and
spectrum of the process in logarithmic (b) and non-logarithmic scale together with
its bandwidth (c).

7.5 Supplements

The gamma distribution is introduced by evaluating two-fold integrals of
the exponential density in Sect. 7.5.1, and in Sect. 7.5.2, stochastic Stieltjes
integrals are evaluated with respect to an orthogonal increment process. In
Sect. 7.5.3, the harmonic process is shown to be stationary by deriving its
moment functions. In Sect. 7.5.4, it is shown that the spectrum of a discrete-
time stochastic process is the expectation in the limit for N → ∞ of the
empirical covariance function obtained from an observed realisation. Finally,
in Sect. 7.5.5, an answer is given to the question: which of the two functions,
the covariance function or the spectrum, is preferably used to describe the
second moment function of a stochastic process?

7.5.1 Gamma Distribution

Yk in Pr(Yk ≤ t) and Pr(Yk+1 ≤ t) are obtained in (7.8) and (7.9) as the
sum of mutually independent random variables X1, X2, . . . , Xi having an
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identical exponential distribution (7.4). The probability distributions F2(y)
pertaining to Y2 = X1 +X2, F3(y) pertaining to Y3 = X1 +X2 +X3, . . ., and
Fk(y) pertaining to Yk = X1 + . . .+Xk, are arrived at, as required in (1.5),
by evaluating a two-fold, three-fold, . . ., k-fold integral of the exponential
density. Such a two-fold integral, however only in the case of two independent
and normally distributed random variables, is given in (1.18) with the region
of integration to be sketched in Problem 1.8. This integral becomes in (1.20)
a convolution integral as defined in (2.28,1). A two-fold integral similar to
the one in (1.18) is also obtained in the first line of the following derivation
(the densities are now exponential and x1, x2 are substituted with t, u).

F2(y) =

∫ ∫
t+u≤y

λe−λtλe−λudtdu =
∫ y

0

∫ y−t

0

λe−λtλe−λudtdu

=
∫ y

0

λe−λt
(
1 − e−λ(y−t)

)
dt = . . .

= 1 − e−λy(1 + λy) implying f2(y) = λ2e−λyy (7.98)

F3(y) =

∫ ∫
t+u≤y

λe−λtλ2λe−λuudtdu =
∫ y

0

∫ y−t

0

λe−λtλ2λe−λuudtdu

=
∫ y

0

λe−λt
(
1 − e−λ(y−t)

(
1 + λ(y − t))) dt = . . .

= 1 − e−λy

(
1 + λy +

1
2
(λy)2

)
implying f3(y) = λ3e−λy 1

2
y2 (7.99)

Continuing the above derivations, the gamma distributions in (7.100) and
(7.101) are arrived at, the name originating from the gamma function Γn(x) =∫∞
0
xn−1e−xdx.

Fk(y) = 1 − e−λy

(
1 +

λy

1!
+ . . .+

(λy)k−1

(k − 1)!

)
(7.100)

Fk+1(y) = 1 − e−λy

(
1 +

λy

1!
+ . . .+

(λy)k−1

(k − 1)!
+

(λy)k

k!

)
(7.101)

7.5.2 Integrating with Respect to an Orthogonal Increment
Process

As a supplement to definition (7.23) of the orthogonal increment process A(t),
a formalism is introduced which allows for obtaining the covariance function
of A(t) (which is, in (7.23), part of the definition) by formal integration.

In the first step, A(t) is alternatively defined in (7.102) by means of a
Stieltjes-integral where the infinitesimal increments dA(t) of the integrator
A(t) are required to be orthogonal (as are the differences in (7.23)) and,
additionally, stationary (“homogeneous”). The covariance of the increments
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dA(t) in (7.102), i.e., Cov
(
dA(t), dA(u)

)
, is arrived at in the limiting case for

∆t → 0 in (7.26) on condition that the infinitesimal increments dA(t) and
dA(u), multiplied with dt and du, are substituted for Y (t) and Y (u), i.e., the
difference quotients of the orthogonal increment process A(t) as defined in
(7.23).

Let A(t) be a right-continuous random function with increments
dA(t) = A(t) −A(t− dt) and dA(u) = A(u) −A(u− du) such
that Cov

(
dA(t), dA(u)

)
= σ2

dAδ(t− u)dtdu, and E
(
dA(t)

)
= µdA.

Then A(t) =
∫ t

0
dA(u) or A(t2) −A(t1) =

∫ t2
t1

dA(u)
is called a process with orthogonal and stationary increments.

(7.102)

In the second step, applying (1.15), (1.16) and (6.67) as well as the region of
integration on the left in Fig. 7.6,

Cov
(
A(t), A(u)

)
= Cov

(∫ t

0

dA(x),
∫ u

0

dA(y)
)

=
∫ t

0

∫ u

0

Cov
(
dA(x), dA(y)

)
= σ2

dA

∫ t

0

∫ u

0

δ(x− y)dxdy

= σ2
dA

∫ min(t,u)

0

dx = σ2
dAmin(t, u) (7.103)

the result in (7.103) (being identical to the covariance in (7.24)) is arrived at.
This is the first example for the evaluation of a stochastic Stieltjes integral
as defined in (7.21) with respect to an orthogonal increment process.

As a second example, the covariance function of the continuous-time AR[1]
process is calculated from its definition in (7.104) which is obtained by substi-
tuting a stochastic differential equation for the difference equation in (2.13):
X(t) and Ẋ(t) for Xt and Xt−1, as well as dA(t) (as defined in (7.102)) for
the innovations Wt.

Let dA(t) be orthogonal and stationary increments (7.102). Then
X(t), with X(t) being the stationary solution of the differential
equation X(t) − aẊ(t) = dA(t), is called a continuous-time AR[1]
process (or AR[1] process with real parameter).

(7.104)
For the first order linear differential equation x(t) + aẋ(t) = w(t), with

x(t) and w(t) being deterministic functions, the stationary solution in (6.119)
is obtained in Problem 2.11: the convolution integral in (6.119) is a LTI filter
as defined in (6.120). As in the deterministic case, the solution in (7.105) is
the sum of (i) the general solution of X(t) − aẊ(t) = 0 and (ii) a particular
solution of X(t) − aẊ(t) = dA(t), i.e., the stochastic differential equation
defining the continuous-time AR[1] process.
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X(t) = Be−(1/a)t +
∫ t

−∞
g(t− u)dA(u) with (7.105)

g(t) =
{

0 for t < 0
(1/a)e−(1/a)t for t ≥ 0

X(t) =
∫ t

0

(1/a)e−(1/a)(t−u)dA(u), for t→ ∞ and a > 0 (7.106)

For a > 0, the general solution becomes identically zero on condition that
t → ∞ and thus X(t) becomes stationary, since in the Stieltjes (convolu-
tion) integral (7.106), the increments (1/a)e−(1/a)(t−u)dA(u) are weighted
stationary dA(u) and the weight function decays exponentially. In practical
applications therefore, the increments going far back can be neglected on con-
dition that a long time has elapsed since the initialisation of the process. The
very same rationale is used in the remarks to (2.16) and (2.17) to derive the
moment functions of the discrete-time AR[1] model, and also in the remarks
to (2.27).

The covariance function in (7.107) of the stationary continuous-time
AR[1] process is evaluated as follows. (7.108) is obtained applying (1.15,10),
(7.109) follows since Cov

(
dA(x), dA(y)

)
= σ2

dAδ(x − y)dxdy by definition,
and, integrating as above in the derivation of (7.103), (7.110) is arrived at
provided that τ > 0.

cX(τ ) = Cov
(∫ t

0

1
a
e−(1/a)(t−x)dA(x),

∫ t

0

1
a
e−(1/a)(t+τ−y)dA(y)

)
(7.107)

=
1
a2

∫ t

0

∫ t+τ

0

e−(1/a)(t−x)e−(1/a)(t−y)Cov
(
dA(x), dA(y)

)
(7.108)

= σ2
dA

1
a2

e−(1/a)τ

∫ t

0

∫ t+τ

0

e−(1/a)(t−x)e−(1/a)(t−y)δ(x−y)dxdy (7.109)

= σ2
dA

1
a2

e−(1/a)τ

∫ t

0

e−(1/a)(t−x)e−(1/a)(t−x)dx τ > 0 (7.110)

= σ2
dA

1
a2

e−(1/a)τ

∫ t

0

e−(2/a)(t−x)dx (7.111)

= σ2
dA

1
a2

e−(1/a)τ a

2

(
1 − e−(2/a)t

)
(7.112)

= σ2
dA

1
2a

e−(1/a)|τ | = Cov
(
X(t), X(t+ τ )

)
t→ ∞ (7.113)

σ2
X = cX(0) =

1
2a
σ2

dA rX(τ ) = e−(1/a)|τ | (7.114)

(7.112) follows, using the substitution t− x = u, and the covariance function
cX(τ ) in (7.113) is arrived at since (i) the continuous-time AR[1] process is
stationary for t→ ∞, and (ii) the covariance function of a stationary process
is an even function as defined in (6.32,1) due to its properties (2.7).
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The covariance together with the correlation functions cX(τ ) and rX(τ ),
τ real, of the continuous-time AR[1] X(t) process are continuous in τ = 0 and
for all τ . This is in line with the remarks to (7.18) where it is required that the
second moment functions of a mean-square continuous random function be
continuous in the usual sense. In τ = 0, however, the derivative from the left
of the covariance function is not identical with the derivative from the right
and, consequently, ċX(0) and ṙX(0) do not exist. From this result and the
remarks to (7.18) it is concluded that X(t) is not mean-square differentiable.

For example, Langevin’s equation m(dv(t)/dt) + βv(t) = F (t) is a
continuous-time AR[1] process (7.104) describing the random motion of a
small particle (with diameter ≈ 1 µm) in a fluid (Brownian motion), cf. [104]
or [81]). In Langevin’s equation, m is the mass of a particle, v(t) its velocity,
i.e., the derivative (dx/dt) of its position x(t) in a rectangular coordinate
system, and F (t) a randomly fluctuating collision force due to the bombard-
ment of the particle by molecules. On the molecular scale, F (t) is a very
complicated term, on the scale of the particle size however, F (t) is assumed
to be the stationary derivative of an orthogonal increment process A(t), i.e.,
the difference quotients of A(t) as obtained in (7.25) in the limiting case for
τ = 0.

7.5.3 Moments of the Harmonic Process

The moment functions of the harmonic process (7.30) are obtained by direct
integration since EV =

∫∞
−∞ g(u)dF (u) on condition that V = g(U) and

EU =
∫∞
−∞ udF (u), with U and V being random variables and F (u) the

probability distribution of U . In (7.30), random variables Pj have a uniform
distribution f(pj) = 1/(2π) for −π ≤ pj ≤ π and f(pj) = 0 at the exterior
of this interval. f(pj) is continuous and thus, by evaluating the Riemann
integral in (7.115), the first moment of a random variable Xt in the harmonic
process is obtained.

EXt =
n∑

j=1

Rj

∫ π

−π

cos(2πsjt+ pj)
1
2π

dpj (7.115)

=
n∑

j=1

1
2π
Rj

[
sin(2πsjt+ pj)

]pj=π

pj=−π
=

n∑
j=1

1
2π
Rj × 0 = 0 (7.116)

This result holds for all t, and thus it is concluded from (7.116) that the
expectation function of the harmonic process as defined in (7.30) is identically
zero.

Applying (1.15,10), the second moment function of the harmonic process
in (7.117) becomes the two-fold sum in (7.118).

cX(t, u) = Cov
(
Xt, Xt+τ

)
(7.117)
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=
n∑

j=1

n∑
k=1

RjRkE
(
cos(2πsjt+ Pj) cos

(
2πsk(t+ τ ) + Pk

))
(7.118)

When the terms in this sum are arranged in a matrix, then, obviously, the
expectations in the subdiagonals become identically zero because the random
phases Pj in (7.30) are independent, i.e., for j �= k, and

E
(
cos(2πsjt+ Pj) cos

(
2πsk(t+ τ ) + Pk

))
= E

(
cos(2πsjt+ Pj)

)
E
(
cos

(
2πsk(t+ τ ) + Pk

))
= 0

is obtained. The expectations in the main diagonal are calculated using a
Riemann integral, i.e., for j = k, and

E
(
cos(2πsjt+ Pj) cos

(
2πsj(t+ τ ) + Pj

))
= E

(
1
2

(
cos

(
2πsjt+ Pj + 2πsj(t+ τ ) + Pj

)
+ cos(2πsjτ )

))
=

1
4π

∫ π

−π

(
cos(4πsjt+ 2πsjτ + 2pj) + cos(2πsjτ )

)
dpj

= 0 +
1
4π

cos(2πsjτ )
∫ π

−π

dpj = (1/2) cos(2πsjτ )

is arrived at. From these results, the covariance function of the harmonic
process follows in (7.119):

cX(t, u) = cX(τ ) =
n∑

j=1

(
R2

j/2
)
cos(2πsjτ ). (7.119)

Consequently, the harmonic process (7.30) is stationary, since its expectation
function (7.116) is constant and its covariance function (7.119) depends solely
on the lag.

The expectations of the complex-valued random variables Dj in (7.30) are
calculated using Riemann integrals (as already demonstrated in the deriva-
tions of (7.116) and (7.119)). Since eipj = cos(pj) + i sin(pj) as in (6.2,6),

EDj = E
(
(Rj/2)eiPj

)
, j = 1, . . . , n

=
Rj

2

∫ π

−π

eipj
1
2π

dpj =
Rj

4iπ

[
eipj

]π

−π

=
Rj

4iπ
[−1 − (−1)] = 0 (7.120)

ED−j = 0, j = 1, . . . , n

the expectations of the Dj are identically zero.
The variances of the Dj are obtained using (1.15,1), (7.27) as well as

|eiPj |2 =
(
cos(Pj)

)2 +
(
sin(Pj)

)2 = 1:
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VarDj = Var
(
(Rj/2)eiPj

)
j = 1, . . . , n

=
R2

j

4
Var

(
eiPj

)
=
R2

j

4
E
(|eiPj |2) =

R2
j

4
(7.121)

VarD−j = Var
(
(Rj/2)e−iPj

)
=
R2

j

4
, j = 1, . . . , n

The covariances Cov
(
Dj , Dk

)
of the Dj in (7.30) are also obtained by

taking advantage of the favourable properties of the Pj . Since Pj and Pk are
independent for j �= k, (7.122) and (7.123) are obtained. Since, however, Dj

and D−j are not independent, Cov(Dj , D−j) = 0 in (7.124) is a result of the
covariances as defined in (7.27), subsequent to substituting EDj = ED−j = 0.

Cov
(
Dj , Dk

)
= 0, j, k = 1, . . . , n, j �= k, (7.122)

Cov
(
Dj , Dk

)
= 0, j, k = −n, . . . ,−1, j �= k, (7.123)

Cov
(
Dj , D−j

)
= E

(
DjD−j

)
= E

(
(Rj/2)eiPj (Rj/2)e−iPj

)
(7.124)

=
R2

j

4
E
(
e−iPje−iPj

)
=
R2

j

4

∫ π

−π

e−i2pj
1
2π

dpj

=
R2

j

4
×
(−1

4iπ

)[
e−2ipj

]π

−π

=
R2

j

4
×
(−1

4iπ

)(
e−2iπ − e+2iπ

)
=
R2

j

4
×
(

1
2π

)
sin(2π) = 0 (7.125)

7.5.4 Spectrum of a Discrete-time Stochastic Process

If the covariance function cX(τ ) of a stationary stochastic process (Xt), with
t = . . . ,−1, 0, 1, . . . and µX = 0, converges absolutely as required in (2.24),
then (i) the empirical covariance function ĉX(τ ), computed applying (2.1)
from a realisation (xt) = (x0, x1, . . . , xN−1) of (Xt), has properties (2.58)
and (ii) cX(τ ) is in L2(−∞,∞). Thus, cX(τ ) and CX(s) in (7.65) and (7.66)
are a Fourier transform pair as defined in (6.49) and (6.50). In contrast to
realisation xT (t) in (7.53), (i) the time is discrete, i.e., t = . . . ,−1, 0, 1, . . .,
and (ii) the observations are confined to the interval 0 ≤ t ≤ N−1. Assuming
that (xt) becomes identically zero at the exterior of the observational interval,
the Fourier transform gN (s) of (xt) is obtained as in (7.126):

gN (s) =
∞∑

t=−∞
xte−i2πst =

N−1∑
t=0

xte−i2πst (7.126)

(xt) and gN (s) are a pair of Fourier transforms as defined in (6.49) and (6.50),
implying that gN (s) is in L2(−1/2, 1/2) and periodic with period 1.
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The spectrum of (xt) is calculated as required in (6.76) and demonstrated
in Sect. 6.1, i.e., |gN (s)|2 = gN (s)gN (s) in the case above, or alternatively, as
mentioned in the remarks to (6.103) and demonstrated in Fig. 6.34, by Fourier
transforming the autocorrelation of a time series as stipulated in (7.127).

|gN (s)|2 =
N−1∑
t=0

(
(xt) � (xt)

)
e−i2πst (7.127)

=
N−1∑

τ=−(N−1)

⎛⎝N−1−|τ |∑
t=0

(
(xt)(xt+|τ |)

)⎞⎠ e−i2πsτ (7.128)

= N
N−1∑

τ=−(N−1)

ĉX(τ )e−i2πsτ (7.129)

|gN (s)|2
N

=
N−1∑

τ=−(N−1)

ĉX(τ )e−i2πsτ (7.130)

(7.128) results by applying definition (6.103), and (7.129) is obtained by
comparing definitions (6.103) and (2.1,3) under the assumption µX = 0. In
(7.129), the spectrum |gN (s)|2 of the time series (xt) is N times the Fourier
transform (6.49) of the empirical covariance function ĉX(τ ) on condition that
ĉX(τ ) = 0 for |τ | ≥ N .

In (7.130), under the above assumptions, ĉX(τ ) estimates the covariance
function cX(τ ) of the stationary discrete-time stochastic process (Xt) without
bias, on condition that N → ∞, and thereby the right side in (7.131) is
obtained. On the left side in (7.131) is the expectation of the power of the
time series in the limiting case for N → ∞.

lim
N→∞

E
( |gN (s)|2

N

)
= lim

N→∞
E

(
N∑

τ=−N

ĉX(τ )e−i2πsτ

)
(7.131)

= lim
N→∞

⎛⎝ N−1∑
τ=−(N−1

(1 − τ/N)cX(τ )e−i2πsτ

⎞⎠
=

∞∑
τ=−∞

cX(τ )e−i2πsτ (7.132)

Applying (2.58), (7.132) is obtained, and, when this result is compared with
(7.66), it is concluded that

(|gN (s)|2)/N = CX(s) for N → ∞.
(7.132) suggests that the spectrum of a stationary stochastic process,

on condition that it has an integer parameter and a covariance function
that converges absolutely, can be estimated by calculating the Fourier trans-
form of its empirical covariance function which is computed as required in
(2.1,3) from an observed time series. Such an estimate, however, inherits the
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unfavourable properties of the empirical covariance function enumerated in
(2.58). In Chaps. 8 and 9, therefore, alternative estimators for the spectrum
are introduced.

7.5.5 Spectrum and/or Covariance Function?

Which of the two, the continuous spectrum CX(s) or the covariance function
cX(τ ), is more adequate for describing the second moment function of a sta-
tionary stochastic process X(t) having spectrum CX(s)? It does not matter,
because both functions, cX(τ ) and CX(s), are a Fourier transform pair as
defined in (7.65) and (7.66), and thus, ultimately, contain the same infor-
mation. This answer, however, applies only in cases where the process under
analysis has a simple spectrum, for example in the case of a white noise pro-
cess (Wt), t = . . . ,−1, 0, 1, . . ., with covariance function cW (τ ) = σ2

W , τ = 0,
and cW (τ ) = 0 for τ �= 0, and spectrum CW (s) = σ2

W in (7.76), both being
simple functions.

If the process X(t) under analysis has a less simple spectrum CX(s), then
a plot of CX(s) will give a more detailed picture of its second moment function
than will a plot of cX(τ ) for the following reason. If cX(τ ) is known then it is
difficult to obtain diagnostics for the shape of CX(s), i.e., the number of its
peaks together with their frequencies, its dynamic range and its bandwidth,
directly from cX(τ ), i.e., without Fourier transforming cX(τ ).

The number and the frequencies of possible peaks in CX(s) remain difficult
to obtain from periodic or quasi-periodic fluctuations in cX(τ ). The difficult
tracking of footprints generated by periodic fluctuations in observations, in-
deed, gives reason to calculate the Fourier transform of the observations and
thereafter their spectrum, as is demonstrated as a first example using the
sawtooth-shaped sequence in Fig. 6.1 and its spectrum in Fig. 6.2. Three
more examples are given in Fig. 7.15. There, plots of the covariance func-
tions and the spectra are shown which pertain to the AR[2] models (Y (1)

t )
and (Y (2)

t ) (with realisations plotted above in Figs. 7.12 and 7.13) and to the
AR[4] model (Xt) (with a realisation plotted above in Fig. 7.14).

(Y (1)
t ) is dominated by oscillations with frequencies s ≈ 0.2, and (Y (2)

t ) by
oscillations with frequencies s ≈ 0.4, as is obvious from the spectra of these
processes as plotted in Fig. 7.15 (b) and (d). In the pertaining covariance
functions shown in plots (a) and (b), it is, however, difficult to identify the
the frequencies of the dominating oscillations.

A diagnostic for the bandwidth (7.83) of CX(s) can in principle be ob-
tained from the width at half height (6.97) of cX(τ ), because CX(s) is narrow
on condition that cX(τ ) is wide, as implied by the similarity theorem (6.98) or
the fundamental uncertainty relationship (6.107). If, in addition, cX(τ ) > 0,
a diagnostic for the bandwidth of CX(s) can be obtained from the equiva-
lent width (6.99) or σ-width (6.101) of cX(τ ), since cX(τ ) ≤ cX(0) in the
remarks to (6.151). To obtain such a diagnostic, however, it is assumed that
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Fig. 7.15. Covariance functions (on the left) and spectra in dB (on the right) of

the AR[2] models (Y
(1)

t ) and (Y
(2)

t ) in Figs. 7.12 and 7.13 and of the AR[4] model
in Fig. 7.14, from top to down.

CX(s) has only one peak. Under the further assumption that a narrow func-
tion has a large dynamic range and that, in contrast, a wide function has
a small dynamic range, the dynamic range of CX(s) can be approximated
from the dynamic range of cX(τ ). In practical applications, nevertheless, it
is difficult and often impossible to obtain diagnostics for the bandwidth and
the dynamic range of CX(s) even when both bandwidth and dynamic range
of cX(τ ) are known.

For example, from the variance cX(0) and the covariance function cX(τ )
of the AR[4] model (Xt) as plotted in Fig. 7.15 (e), it is not possible to foresee
whether the spectrum CX(s) of this process will have the narrow and high
twin peaks as shown in Fig. 7.15 (f). And it is also impossible to guess the
bandwidth or the dynamic range of the spectra in Fig. 7.15 (b) and (d) from
the covariance functions in Fig. 7.15 (a) and (c).
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These examples demonstrate that it often pays when a known covariance
function of a linear process is transformed using (7.66) in the continuous
spectrum of the process: the remuneration is that a deeper insight into the
process can be attained in the frequency domain. This Fourier transform
is not a technical trick but makes good mathematical sense owing to the
existence theorem (7.51). When calculating this Fourier transform, however,
precautions have to be taken against a possible aliasing, and, if the covariance
function is not known for τ = . . . ,−1, 0, 1, . . ., against a possible leakage, as
demonstrated in Sects. 6.5 and 6.7.

Further pitfalls have to be circumvented when an empirical covariance
function ĉX(τ ), calculated from a realisation (xt) observed in time slice t =
0, 1, . . . , N − 1 of a linear process (Xt), is Fourier transformed in order to
arrive at an estimator for CX(s), i.e., the spectrum of (Xt). These difficulties
are enumerated in the remarks to (7.132) and comprehensively dealt with in
Chaps. 8 and 9.

7.6 Problems

7.1. Simulate N points having a uniform (rectangular) distribution (defined
in the remarks to (7.30)) in interval x1 ≤ x ≤ x2. Sort the points, calculate
the inter-point distances, and thereafter estimate their distribution.

x <- runif(240,0,300) #240 points in interval [0,300]

plot(x,x*0) #--> lambda = 0.8

difx <- diff(sort(x)) #inter-point distances

par(mfrow=c(1,3))

hist(difx,nclass=40,xlab=" ",probability=T)

lambda <- 1/mean(difx)

lines(sort(difx),dexp(sort(difx),rate=lambda))

#x <- (0:(max(difx)*10))/10 #for higher resolution plot,

#fx <- lambda*exp(-lambda*x) #use (7.5)

#lines(x,fx) #

plot(qexp(ppoints(difx),rate=lambda), #probability plot

sort(difx),xlab="theoretical",ylab="simulated")

difxts <- ts(difx,start=1,frequency=1,)

acf(difxts,lag.max=100,type="correlation",plot=T)

Are the inter-point distances independent? exponentially distributed?

7.2. The time points when peaks occur in the DC measurements plotted
in Fig. 7.3, as well as their inter-peak times, are obtained by applying R
expressions in /path/aerosol.R. The shortest inter-peak time is 2 s. Why?

For Splus-users only: obtain the time points when peaks occur using
peaks().

Identify periods with low and high background aerosol loads in the DC
measurements. Thereafter calculate the inter-peak times for both types of
periods. Are the inter-peak times exponentially distributed in both cases?
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7.3. Tree-line observations in the Valais alps are plotted in Fig. 3.10. Are
the locations of these observations random, i.e., do they have a uniform dis-
tribution? If so, the number of observations in non-overlapping subregions
is Poisson distributed as required in (7.2) and (7.3,2,3). Partition the map
in Fig. 3.10 into 32 subregions by drawing equi-spaced straight lines, 7 in
vertical and 3 in horizontal direction. Then count the number of observations
in those subregions that intersect the observational area as defined by the
polygon. Assume, for simplicity, that the subregions have unit area. Hint:
histograms and probability plots as shown, for example, in Fig. 7.5, are ob-
tained in Problem 7.1.

7.4. Integrate cV (τ ) = σ2
V , for τ = 0 and cV (τ ) = 0, for τ �= 0, τ real, in the

interval −1 ≤ τ ≤ 1. Sketch the Riemann sum pertaining to this integral.
Thereafter integrate cU (τ ) = σ2

Uδ(τ ) in the interval −1 ≤ τ ≤ 1, δ(τ ) being
the delta function as defined in (6.60).

7.5. Exploit the properties of the Pj in (7.30) to obtain the moments of
the Aj and Bj in (7.39), (7.40) and (7.41). Calculate the expectations as
demonstrated in (7.120).

7.6. Show that the random function defined in (7.38) is stationary. First,
derive the moment functions of a random trigonometric oscillation, i.e., the
expectation and the covariance functions of the stochastic process X(t) =
A cos(2πst)+B sin(2πst), s being constant and real, A and B being random
variables having a normal distribution with expectation µ = 0 and variance
σ2. Under these assumptions, (7.40) implies that A and B are independent.
These calculations result in

EX(t) = 0 cX(t, u) = σ2 cos
(
2πs(t− u))

cX(τ ) = σ2 cos (2πsτ) cX(0) = VarX(t) = σ2

and, therefore, X(t) is stationary. Further on, the random function in (7.38)
is stationary because all its oscillations are stationary.

The X(t), being a linear combination of the normally distributed random
variables A and B, are normally distributed with µX = 0 and σ2

X = σ2.
Calculate their density for time point t and, applying (1.12), the joint density
for two time points t1 and t2 having lag h.

7.7. Apply R expressions as in /path/harmproc.R to generate simulations of
harmonic processes.

7.8. The linear process (2.25) is a stochastic LTI filter as defined in (7.84)
having a one-sided sequence of weights, i.e., an impulse response function
that is not even. One-sided weight sequences are preferred when constructing
linear processes. Plausible reasons are given in the remarks to (2.26) and,
using one-sided sequences, the output process becomes causal as required
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Fig. 7.16. An LTI filter as defined in (7.84) with a two-sided frequency response
function. A realisation of a white noise process in the time slice 1 ≤ t ≤ 500 as
shown in plot (a) is smoothed with the frequency response function (1/5)Π

(e)
5 as

defined in (6.52) to obtain an output as shown in plot (b). On the right side, in plots
(b) and (d), the empirical covariance functions of the input and output process are
shown.

in (5.3). Linear processes having a one-sided impulse response function are
estimated in Chap. 5, and predictions are calculated from the estimates.
Example spectra of such processes are given in Sect. 7.4.2.

In (7.84), however, the impulse response function is not restricted to being
one-sided. For example, let wts be the time slice from the realisation of a white
noise process as plotted in Fig. 7.16 (a). Then, using R expression

xts <- filter(wts,c(1/5,1/5,1/5,1/5,1/5),

method="convolution",sides=2)

the output in Fig. 7.16 (c) is obtained. Simulate more examples of LTI filters
with two-sided impulse response functions having a realisation of a white
noise process as input. Then calculate the empirical covariance functions of
the outputs.

7.9. The continuous spectrum shown in Fig. 7.17 (b) is made available with
a717spec <- scan("/path/fig717.dat")

s1 <- -4096:4096

s1 <- s1/8192

N1 <- 4097

N2 <- 8193

plot(s1[N1:N2],10*log10(a717spec[N1:N2]),

type="n",xlab="frequency",ylab="spectrum in dB")
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Fig. 7.17. Covariance function cX(τ) and spectrum CX(s) as in (7.65) of a linear
process (Xt) having a continuous spectrum with three peaks.

lines(s1[N1:N2],10*log10(a717spec[N1:N2]))

in R vector a717spec. Calculate the covariance function pertaining to this
spectrum using a discrete Fourier transform (6.22,4). Hint: Apply the R ex-
pressions in the remarks to Fig. 6.35. Thereafter, plot the covariance function
for lags larger than τ = 200, and compare with the covariance function and
the spectrum in Fig. 7.15 (e) and (f).

7.10. Let X(t) be a real-valued and stationary random function X(t) having
covariance function cX(τ ) and spectrum CX(s) such that cX(τ ) and CX(s) are
a Fourier transform pair as required in (7.63): CX(s) =

∫∞
−∞ cX(τ )e−i2πsτdτ .

Then construct Z(t) = e−i2πs0tX(t). Z(t) is a complex-valued random func-
tion. Please obtain its covariance function cZ(τ ) = e+i2πs0τ cX(τ ) as well as
its spectrum CZ(s) = CX(s+ s0).

7.11. Let the set of all real-valued random functions be a subset of the
complex-valued random functions. Then the complex-valued process Z(t) =
e−i2πs0tX(t) = L(X(t)

)
constructed in Problem 7.10 is a linear transforma-

tion as defined in (2.30). Is L not only linear but also time-invariant?

7.12. Let X(t) be a real-valued random function and a �= 0 as well as b �= 0
be real-valued constants. Then: is L(X(t)

)
= Y (t) = a + bX(t) linear and

time-invariant?
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The spectrum of a deterministic function f(t) in L2(−∞,∞) is obtained by
computing its Fourier transform F (s) and thereafter |F (s)|2, i.e., the squared
absolute value of F (s). F (s) is arrived at using definition (6.35) and is in
L2(−∞,∞), on condition that t is real. If f(t) is observed at discrete time
points in a finite interval then a sequence of observations is obtained which
are thereafter Fourier transformed, etc., to arrive at the spectrum of f(t).
In this second case, the results are subject to aliasing and leakage, due to
the discretisation and the finite observational period imposed. These pitfalls
exposed in Sect. 6.5 can be circumvented using the diagnostics introduced in
Sect. 6.7.2. Aliasing and leakage are also encountered when the spectrum of a
stationary discrete-time stochastic process is estimated using the estimators
introduced in this chapter (the periodogram), in Chap. 9 (estimators for a
continuous spectrum) and in Chap. 10 (estimators for a discrete spectrum).

In Sect. 8.1, the periodogram is defined, an example is given, and it be-
comes obvious that the empirical spectra calculated in Sect. 6.1.3 from four
example time series are identical with the periodograms of these time series.
In Sect. 8.2, the properties of a periodogram calculated from observations of
a white noise process are derived and tests for white noise are constructed.
The statistics derived allow for testing the null hypothesis that the observa-
tions stem either from a white noise process (the null hypothesis) or from
two alternatives: (i) a process with a non-flat continuous spectrum or (ii) a
process having a mixed spectrum similar to the one in (7.82).

In Sect. 8.3, the expectation function of the periodogram is obtained un-
der the assumption that it is calculated from observations of a discrete-time
stationary stochastic process. The derived expectation function implies that,
in general, the periodogram does not estimate the spectrum without bias. In
Sect. 8.4, the second moment functions and the probability distribution of the
periodogram are calculated assuming that the observations stem from a pro-
cess having a continuous spectrum [21]. The properties derived for this case
are, however, shared by periodograms calculated from observations stemming
from most stationary and ergodic stochastic processes.

The supplements and the problems follow in Sects. 8.5 and 8.6.
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8.1 The Periodogram

Borrowing from the definitions of the Fourier coefficients in (6.21), estima-
tors ÂX(sk) and B̂X(sk) are defined in (8.1,1). Using these estimators, the
periodogram IX(sk) is defined for the Fourier frequencies in (8.1,2,3).

Let (xt), t = 0, . . . , N − 1, be a time-slice in a realisation
of a stationary discrete-time stochastic process (Xt) and
sk, k and m as defined in (6.21). Then, using the estimators

1. in case of N being even:

ÂX(sk) =
{

(2/N)
∑N−1

t=0 Xt cos(2πskt) k=1, . . . ,m−1
(1/N)

∑N−1
t=0 Xt cos(2πskt) k=0,m

B̂X(sk) =
{

(2/N)
∑N−1

t=0 Xt sin(2πskt) k=1, . . . ,m−1
0 k=0,m

,

in case of N being odd:

ÂX(sk) =
{

(2/N)
∑N−1

t=0 Xt cos(2πskt) k=1, . . . ,m
(1/N)

∑N−1
t=0 Xt cos(2πskt) k=0

B̂X(sk) =
{

(2/N)
∑N−1

t=0 Xt sin(2πskt) k=1, . . . ,m
0 k=0

,

the periodogram IX(sk) of (xt) is defined for the sk,
i.e., the Fourier frequencies:

2. IX(sk) =

{
(N/4)

(
(ÂX(sk))2 + (B̂X(sk))2

)
sk �= −1/2, 0, 1/2

N
(
(ÂX(sk))2

)
sk = −1/2, 0, 1/2

.

Substituting the above expressions for ÂX(sk) and B̂X(sk),
the distinction of cases is no longer required:

3. IX(sk) =
1
N

(
N−1∑
t=0

Xt cos(2πskt)

)2

+
1
N

(
N−1∑
t=0

Xt sin(2πskt)

)2

Finally, the periodogram is defined for −1/2 ≤ s ≤ 1/2:

4. IX(s) =
1
N

(
N−1∑
t=0

Xt cos(2πst)

)2

+
1
N

(
N−1∑
t=0

Xt sin(2πst)

)2

(8.1)

In (8.1,4), the periodogram IX(s) is defined for all real frequencies −1/2 ≤
s ≤ 1/2 and is assumed to be periodic with period 1. These are the proper-
ties of spectrum CX(s) in (7.65) and also of the integrated spectrum C

(I)
X (s)

in (7.64), both pertaining to a stationary stochastic process (Xt) with inte-
ger parameter t. Consequently, IX(s) is a candidate estimator for the spec-
trum (and, subsequent to being integrated, for the integrated spectrum) of a
discrete-time stochastic process having the properties required in (7.51).

IX(sk) and IX(s) estimate a function, and not a parameter. This prop-
erty is shared, for example, by the empirical covariance function ĉX(τ ) which
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estimates the covariance function cX(τ ), τ = . . . ,−1, 0, 1, . . ., of a station-
ary stochastic process (Xt) with µX = 0 and absolutely convergent cX(τ )
as summarised in (2.58). The unfavourable properties of ĉX(τ ) enumerated
in (2.58) are inherited by its Fourier transform F−i

(
ĉX(τ )

)
which renders

it inappropriate for estimating the spectrum of (Xt), as concluded from the
results obtained in Sect. 7.5.4. Is the periodogram a more adequate estimator
for the spectrum? An answer is given in Sects. 8.3 and 8.4, subsequent to cal-
culating an example periodogram in the following paragraphs and to deriving
the properties of a periodogram calculated from observations stemming from
a white noise process in Sect. 8.2.

In R, a periodogram as defined in (8.1,3) is calculated using spec.pgram(),
spec.univariate() or fft(). For example, assuming that the NAO index
(Jones), in the period from 1824 through to 2000 as plotted in Fig. 2.10,
has been made available as R time series naojonests in Problem 2.2, the
following R expressions

x <- as.vector(naojonests) - mean(as.vector(naojonests))

N <- length(x)

m <- floor(N/2) #m <- (N/2) for even N, m <- (N-1)/2 for odd N

sk <- (0:m)/N #Fourier frequencies

xt <- fft(x,inverse=T) #-i-Transformation

spec <- (1/N)*( (Re(xt))*(Re(xt)) + (Im(xt))*(Im(xt)) )

plot(c(0,0.5), c(-30.0,10.0), type="n",xlab="frequency",ylab="dB")

for(k in 1:m) {

lines( c(sk[k+1],sk[k+1]), c(-30.0,10*log10((spec)[k+1])) ) }

(i) calculate the periodogram of the NAO index (Jones) applying definitions
(8.1,3) and (6.22) and (ii) plot the values thus obtained using the vertical
solid lines in Fig. 8.1. Thereafter, using

spec.nao <- spec.pgram(naojonests,pad=0,taper=0,

fast=F,demean=T,detrend=F,plot=F)

points(spec.nao$freq,10*log10(spec.nao$spec))

the periodogram values plotted with ◦ in Fig. 8.1 are obtained. Unsurpris-
ingly, both results are identical. Details on R functions spec.pgram() and
spec.univariate() are given in Sect. 9.5.6. The above example demonstrates
that a periodogram is easily calculated for the Fourier frequencies using fft()

and definition (8.1), given an observed time series. Calculations using fft()

are demonstrated in Sects. 6.1.1, 6.3.1 and 6.9.8.
Usually, a time series is de-meaned prior to calculating the periodogram,

as demonstrated above. As a consequence, IX(0) ≈ 0 (substituting sk = 0
in (8.1,1,2), IX(0) = Nµ̂2

X is arrived at, with µ̂X as defined in (2.1,1)), and,
taking the logarithm, a small negative number is obtained, since −∞ ←
log10

(
IX(0)

)
for IX(0) → 0. Consequently, IX(sk = 0) is usually omitted

when the periodogram is plotted.
The periodogram of the NAO index (Jones) in Fig. 8.1 is identical with

the empirical spectrum calculated from this time series as plotted in Fig. 6.5
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Fig. 8.1. Periodogram of the NAO index (Jones) calculated from the time series
plotted in Fig. 2.10 using fft() (vertical solid lines) and spec.pgram() (symbol ◦).

(a), both showing large fluctuations even in values being close neighbours, a
property shared by all empirical spectra calculated in Sect. 6.1.3 and plotted
in Fig. 6.5. In Sect. 6.1.3, it is assumed that the wild fluctuations in the exam-
ple empirical spectra are due to the observations stemming from stochastic
processes (and not from deterministic variables) and therefore that the prob-
abilistic properties of the variables observed have to be accounted for when
the spectrum of the process is estimated from a realisation.

More specifically, since the observations of the NAO index (Jones) are
shown to be a realisation of a normal white noise process in Sects. 2.3.1
and 2.5.1, the problem arises as to whether and how an estimator for the
continuous and flat spectrum of the NAO index (Jones) can be constructed
from the wildly fluctuating periodogram shown in Fig. 8.1. This problem
can be solved using the answers to the following questions: Can the moment
functions of ÂX(sk) and B̂X(sk) be computed exploiting the properties of the
orthogonal trigonometric functions in (6.9), on condition that (Xt) is assumed
to be a white noise process as defined in (2.10) and (2.11)? Using these results,
can the moment functions EIX(sk), VarIX(sk) and Cov

(
IX(sk), IX(sl)

)
, sk �=

sl, now be obtained?
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8.2 Calculated from a Realisation of a White Noise
Process

It is assumed that the process under analysis is (Wt), i.e., a white noise
process as defined in (2.10) and (2.11) having expectation function EWt = 0
and covariance function Cov(Wt,Wu) = σ2

W for t = u and Cov(Wt,Wu) = 0
for t �= u. From this covariance function, the constant spectrum CW (s) = σ2

W

of the white noise process is derived in (7.76).

8.2.1 Its Properties

From a time slice in a realisation of this model, i.e., (wt), t = 0, . . . , N − 1,
estimators ÂW (sk) and B̂W (sk), sk being the Fourier frequencies as defined
in (6.21,1), are calculated as required in (8.1,1). Assuming sk �= 1/2, 0, 1/2,
the expectations of these estimators are obtained in (8.2) and (8.3)

EÂW (sk) = E

(
2
N

N−1∑
t=0

Wt cos(2πskt)

)
=

2
N

N−1∑
t=0

cos(2πskt)EWt = 0 (8.2)

EB̂W (sk) = 0 (8.3)

and their variances in (8.4),

VarÂW (sk) = Var

(
2
N

N−1∑
t=0

Wt cos(2πskt)

)

=
4
N2

N−1∑
t=0

N−1∑
t=0

cos(2πskt) cos(2πsku)Cov
(
Wt,Wu

)
=

4
N2
σ2

W

N−1∑
t=0

(
cos(2πskt)

)2 =
2
N
σ2

W = VarB̂W (sk) (8.4)

using the rules in (1.15,10), the properties of the trigonometric functions in
(6.9), the covariance function of the white noise process, and the elementary
trigonometric identity cos(x) cos(y) = (1/2)

(
cos(x+ y) + cos(x− y)).

A similar derivation results in the covariances of these estimators for iden-
tical and distinct Fourier frequencies in (8.5) and (8.6). Consequently, (i) es-
timators ÂW (sk) and B̂W (sk) are non-correlated for all sk and (ii) sequences
ÂW (sk) and B̂W (sk) are, individually, white noise processes as defined in
(2.10).

Cov
(
ÂW (sk), B̂W (sk)

)
= Cov

(
2
N

N−1∑
t=0

cos(2πskt)Wt,
2
N

N−1∑
t=0

sin(2πskt)Wt

)
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=
N−1∑
t=0

N−1∑
u=0

2
N

cos(2πskt)
2
N

sin(2πsku)Cov
(
Wt,Wu

)
=

4
N2

N−1∑
t=0

cos(2πskt) sin(2πskt)Cov
(
Wt,Wt

)
=

4
N2

0σ2
W = 0 (8.5)

Cov
(
ÂW (sk), ÂW (sl)

)
= Cov

(
B̂W (sk), B̂W (sl)

)
= 0 for k �= l (8.6)

Using the moments of ÂW (sk) and B̂W (sk) obtained above, further prop-
erties of IW (sk), i.e., the periodogram calculated from a realisation of a white
noise process (Wt), are derived under the additional assumption that (Wt)
is a normal process as defined in (2.3). Under this additional assumption,
ÂW (sk) and B̂W (sk) are linear combinations of normally distributed random
variables and thus are also normally distributed, as concluded from the re-
mark to (1.34). Consequently, pairs

(
ÂW (sk), B̂W (sl)

)
,
(
ÂW (sk), ÂW (sl)

)
,(

B̂W (sk), B̂W (sl)
)
, k �= l, as well as

(
ÂW (sk), B̂W (sk)

)
, are pairs of stochas-

tically independent random variables. This result implies that a periodogram,
being constructed from the above estimators, is independent for distinct
Fourier frequencies, as summarised in (8.7,1,2).

Let IW (sk) be the periodogram calculated using (8.1,1,2,3)
from (wt), t = 0, . . . , N − 1, with (wt) being a realisation of a
(0, σ2

W ) normally distributed white noise process (Wt) and
sk the Fourier frequencies in (6.21,1). Then:

1. IW (sk) and IW (sl) are independent for k �= l

2. ÂW (sk) is independent from B̂W (sk)
3. the normalised periodogram

(2/σ2
W )IW (sk) is χ2

(2) distributed for sk �= 1/2, 0, 1/2
(1/σ2

W )IW (sk) is χ2
(1) distributed for sk = −1/2, 0, 1/2

4. EIW (sk) = σ2
W for all sk

5. VarIW (sk) =
{
σ4

W for sk �= 1/2, 0, 1/2
2σ4

W for sk = −1/2, 0, 1/2
.

(8.7)

Using the moments of ÂW (sk) and B̂W (sk) obtained above in (8.2), (8.3),
(8.4), (8.5) and (8.6), the distribution of IX(sk), sk being the Fourier fre-
quencies, is derived as follows. In the periodogram written as in (8.8),

IW (sk) = (N/4)
((
ÂW (sk)

)2 +
(
B̂W (sk)

)2)
sk �= −1/2, 0, 1/2

=
(
(N/4)1/2ÂW (sk)

)2 +
(
(N/4)1/2B̂W (sk)

)2 (8.8)

random variables (N/4)1/2ÂW (sk) and (N/4)1/2B̂W (sk) are obtained by
multiplying ÂW (sk) and B̂W (sk) with (N/4)1/2. They thus have variances
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(N/4)2/2(2/N)σ2
W = (1/2)σ2

W , as obtained using (1.15,6) for sk �= 1/2, 0, 1/2.
Hence, subsequent to normalising both estimators ÂW (sk) and B̂W (sk) with
(2/σ2

W )1/2, (0, 1)-normally distributed random variables are obtained which
are independent. Consequently, (2/σ2

W )IW (sk) is χ2
(2) distributed, i.e., the

normalised periodogram of a normal white noise process has a chi-square dis-
tribution with 2 degrees of freedom, in agreement with the first stipulation in
(8.7,3). The expectation of a random variable having a χ2

(n) distribution is n,
i.e., the number of degrees of freedom, its variance twice this number. Conse-
quently, E

(
(2/σ2

W )IW (sk)
)

= 2 and Var
(
(2/σ2

W )IW (sk)
)

= 4 are arrived at,
as required in (8.7,4) and by the first stipulation in (8.7,5).

For frequencies sk = −1/2, 0, 1/2, however, IW (sk) =
(
N1/2ÂW (sk)

)2
with variance N(1/N)σ2

W = σ2
W ; and, consequently, (1/σ2

W )1/2ÂW (sk) is
normally distributed with zero expectation and unit variance. This implies
that (1/σ2

W )IW (sk) has a χ2
(1) distribution and thus has expectation 1 and

variance 2, reconcilable with the second stipulations in (8.7,3,5).
(8.7,3) also applies to a periodogram calculated from a non-normal white

noise process on condition that N → ∞ [21].
The χ2

(n) distribution is a gamma distribution having order n/2 and pa-
rameter λ = 1/2. Gamma distributions are generated from exponential dis-
tributions in (7.98), (7.99), (7.100) and (7.101). For example, fkλ(x) = 0 for
x < 0 and fkλ(x) =

(
λk/Γ (k)

)
xk−1e−λx for x ≥ 0 is the gamma density

having order k and parameter λ. Using this result, it is shown in Problem 8.1
that a χ2

(n) distribution is an exponential distribution as defined in (7.4).
It is right-skewed and therefore a few extremely large values are likely to
occur in a periodogram. In a logarithmic plot of a periodogram, however,
some extremely small values are usually seen, because a random variable
J = 10log10(I) has a left-skewed distribution on condition that I has a right-
skewed distribution (Problem 8.2).

8.2.2 Tests

The null hypothesis of the tests introduced in this section is that the obser-
vations stem from a white noise process as defined in (2.10) and (2.11). The
alternative is that the observations do not stem from a white noise process.
Tests for two alternatives are derived: (i) where the observations stem from a
process with a non-constant continuous spectrum (examples in Sect. 7.4.2),
or (ii) where the observations stem from a process having a mixed spectrum
being constant with superimposed spikes (an example is given in (7.82)).

In the first case, it is assumed that the observations stem from a station-
ary process (Xt) having a continuous spectrum CX(s) with a small dynamic
range. CX(s) is either constant (the null hypothesis) or non-constant (the
alternative). Such a test can be obtained from the cumulated periodogram
I
(Σ)
X (sk) subsequent to a normalisation: in (8.9), I(Σ)

X (sk) is the sum of IX(sk)
as defined in (8.1,3) for Fourier frequencies being less than or equal to sk, and
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Fig. 8.2. Normalised cumulated periodograms (broken lines) and normalised in-
tegrated spectra (solid lines) as defined in (8.9) and (8.10) for a (0,1)-normally

distributed white noise process (on the left) and for Y
(1)

t = 0.3Y
(1)
t−1 − 0.7Y

(1)
t−2 + Wt

with µW = 0 and σ2
W = 1, i.e., the AR[2] model in Fig. 7.12.

I
(Σ/σ)
X (sk) is obtained as quotient of I(Σ)

X (sk) and NĉX(0) (the empirical vari-
ance ĉX(0) = σ̂2

X of the observations as defined in (2.1,2) multiplied with N ,
i.e., the number of observations). The equation in Problem 8.3 implies that
I
(Σ/σ)
X (sk) is the quotient of (i) the sum of IX(sk) for Fourier frequencies

being less than or equal to sk and (ii) the sum of all IX(sk).

I
(Σ/σ)
X (sk) =

I
(Σ)
X (sk)
Nσ̂2

X

=

∑
−1/2<rl≤sk

IX(rl)∑m
j=−(m−1) IX(sj)

(8.9)

C
(I)
X (s)
σ2

X

=

∫ s

−1/2
CX(r)dr∫ 1/2

−1/2
CX(s)ds

(8.10)

In (8.10), the integrated spectrum C
(I)
X (s) of (Xt) is normalised with the vari-

ance cX(0) = σ2
X of (Xt), and the normalised integrated spectrum C

(I)
X (s)/σ2

X

is obtained using (7.64) and (7.65) as well as (6.48,1). C(I)
X (s)/σ2

X has the
properties of a probability distribution seeing that CX(s)/σ2

X has the prop-
erties of a probability density.

Two examples of normalised integrated spectra are plotted with solid lines
in Fig. 8.2, i.e., those of a white noise process with µW = 0 and σ2

W = 1 (on
the left) and of (Y (1)

t ), the AR[2] model in Fig. 7.12 (on the right). A time
slice in a realisation of (Y (1)

t ) and its spectrum CY (1)(s) as obtained in (7.97)
are plotted in Fig. 7.12. The integrated spectrum of a white noise process
(Wt), C

(I)
W (s) =

∫
σ2

W ds = σ2
W s + a, −1/2 ≤ s ≤ 1/2 and a the constant of

integration, is obtained by integrating the constant spectrum CX(s) = σ2
W

of (Wt) obtained in (7.76). C(I)
W (s) is normalised with the variance σ2

W as
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required in (8.10) and, assuming a = 1/2, (1/σ2
W )C(I)

W (s) = s+ 1/2, −1/2 ≤
s ≤ 1/2, is obtained, as plotted in Fig. 8.2 (a). (1/σ2

W )C(I)
W (s) resembles a

rectangular (in the remarks to (7.30)) probability distribution. The integrated
spectrum of (Y (1)

t ) in Fig. 8.2 (b) results from a less easy integration.
From time slices of length N = 256 in realisations of both models, nor-

malised cumulated periodograms are calculated as required in (8.9) and are
plotted with broken lines in Fig. 8.2. Both step functions thus obtained
are close to the integrated spectra. When the normalised cumulated peri-
odograms are calculated from more than N = 256 simulated values in Prob-
lem 8.4, the absolute values of the maximal differences (normalised cumulated
periodograms − normalised integrated spectra) decrease with increasing N .
This result is to be expected, since the bias of a periodogram IX(sk) reduces
with increasing N as is concluded from the remarks to (8.21): the cumulated
periodogram is an estimator for the integrated spectrum having a decreas-
ing bias on condition that (i) N increases and (ii) the dynamic range of the
spectrum is small (dyn

(
CY (1)(s)

) ≈ 15 dB in Fig. 7.12), as is concluded from
the remarks to Figs. 8.4, 8.5, 8.6 and 8.7.

The maximal absolute value z of differences I(Σ/σ)
X (sk) − C

(I)
X (sk)/σ2

X ,
as defined in (8.11), therefore lends itself as a candidate for a test statistic.
In (8.11), (i) I(Σ/σ)

X (sk) is the normalised cumulated periodogram calculated
from a time slice in a realisation (xt) stemming from a stationary stochastic
process (Xt) with µX = 0 and σ2

X and having a continuous spectrum CX(s)
with a small dynamic range, and (ii) C(I)

X (sk)/σ2
X is the normalised integrated

spectrum of (Xt). Since IX(0) ≈ 0.0 and IX(sk) is even (6.32,1), the test
statistic z is that of the m differences for 0 < sk ≤ 1/2 which has the largest
absolute value, with m and sk as defined in (6.21).

z = max
0<k≤m

∣∣∣I(Σ/σ)
X (sk) − C(I)

X (sk)/σ2
X

∣∣∣ (8.11)

In definition (8.11), C(I)
X (s)/σ2

X has the properties of a continuous distri-
bution function F (y) of random variable Y , and I(Σ/σ)

X (sk) has the properties
of a cumulated histogram, i.e., an empirical distribution Fn(y) obtained from
n observations of Y under the iid. assumptions (1.2), as is concluded from
(8.7) on condition that (Xt) is a normal white noise process. Under this as-
sumption (the null hypothesis) therefore, in the usual z = sup |Fn(y) − F (y)|
(the Kolmogorov-Smirnov statistic as found in an introductory textbook),
Fn(y) can be substituted with I

(Σ/σ)
X (sk), F (y) with C

(I)
X (sk)/σ2

X , and n
with m. z in z = sup |Fn(y) − F (y)| and also in (8.11) is a realisation of
random variable Z, which has a distribution K(z) that does not depend on
F (y), as was shown by Kolmogorov and Smirnov, provided that F (y) is a
continuous probability distribution. The supremum sup is used when it is
not clear whether a maximum exists. In the Kolmogorov-Smirnov statistic,
sup is the upper bound of the set |Fn(y) − F (y)|.
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Fig. 8.3. The normalised cumulated periodogram of the NAO index is calculated
from the periodogram in Fig. 8.1 (without the periodogram values for sk = 0 and
sk = 1/2) and thereafter plotted against 2 × sk, 0 < sk ≤ 1/2 (solid line). The
normalised integrated spectrum under the null hypothesis (the NAO index stems
from a white noise process) is plotted as diagonal, together with the subdiagonals
defining a .95 confidence interval of z (the Kolmogorov-Smirnov statistic) in (8.11).

Hence, assuming that the process under analysis (Xt) has a continuous
spectrum CX(s), a Kolmogorov-Smirnov test for white noise can be performed
when a time slice (xt), t = 0, 1, . . . , N−1, in a realisation of (Xt) is available.
The null hypothesis is that CX(s) is constant, the alternative that it is not
constant. This test is performed by calculating the periodogram IX(sk), and
then plotting the normalised cumulated periodogram I

(Σ/σ)
X (sk) as defined

in (8.9) against 2 × sk, i.e., twice the Fourier frequencies. Thereafter, the
normalised integrated spectrum under the null hypothesis is drawn as the
diagonal, as demonstrated in Fig. 8.2 (a), and, in vertical distance |z| from
the integrated spectrum, two parallel lines are drawn. z is obtained from the
Kolmogorov-Smirnov statistic K(z), given an appropriate significance level.

For example, does the NAO index (Jones) plotted in Fig. 2.10 stem from
a white noise process? Using its periodogram obtained in Fig. 8.1, a test as
described above is performed in Fig. 8.3. The normalised cumulated peri-
odogram of the NAO index (Jones) fluctuates about the diagonal (the nor-
malised integrated spectrum of a white noise process) safely within the .95
confidence interval obtained from K(z = 0.188) = .95, the distribution of
the test statistic. Consequently, the null hypothesis is assumed, i.e., that the
observations of the NAO index (Jones) are a time slice from a realisation of
a white noise process. The outcome of this test is in line with the properties
of the NAO index (Jones) time series obtained in Sects. 2.3.1, 2.5.1, 2.5.2,
and Problem 2.33.
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When (8.11) is applied to identify a white noise process the alternative
is that the observations stem from a process with a non-constant continuous
spectrum. There are, however, processes with a non-constant spectrum that
is mixed. If the spectrum of the process under analysis is either constant (the
null hypothesis) or constant with superimposed spikes as demonstrated in
(7.82) (the alternative), then a test can be performed using the statistics in
(8.13) and (8.15).

In this second case, it is assumed that the observations (xt), t = 0, . . . , N−
1, stem from a stationary process (Xt) having a mixed spectrum: CX(s) =
CU (s) + CV (s), with CU (s) being the flat spectrum of a white noise process
(Ut) and CV (s) the spectrum (7.74) of a harmonic process (Vt), as defined
in (7.30). An example of such a spectrum is given in (7.82) and Fig. 7.9. It
is further assumed that (i) both (Ut) and (Vt) have the properties required
for the derivation of (7.80) and (7.81), and (ii) sj = sk for frequencies sj ,
j = 1, . . . , n, in (7.30) and Fourier frequencies sk in (6.21,1). If N increases
then ∆sk decreases, and thus assumption (ii) becomes more likely.

Under the null hypothesis, this model degenerates to a white noise process
(Xt) = (Ut) = (Wt) having a constant spectrum and, consequently, the null
hypothesis is rejected on condition that the periodogram contains a value
that is significantly larger than the average value. A test performing this
comparison can be constructed using the properties of the normalised peri-
odogram calculated from a realisation of a white noise process, as obtained
in (8.7). From χ2

(n), n = 1, 2, in (8.7,3), the probability distribution in (8.12)
is arrived at on condition that the observations (xt), t = 0, . . . , N − 1, stem
from a white noise process.

Pr
(

2IW (sk)
σ2

W

≤ y

)
=
∫ y

0

fχ2
(2)

(z)dz =
∫ y

0

1
2
e−z/2dz = 1 − e−y/2 (8.12)

IW (sk), σ2
W , sk,m as in (8.7), sk �= 0, 1/2

Using (8.12), the probability of I(max)
W being larger than y, Pr(I(max)

W > y)
is obtained in (8.14), I(max)

W being the maximal value in the periodogram as
defined in (8.13). This is the probability that all periodogram values are less
than or equal to y which is obtained by calculating the probability of the
complementary event, using (8.7,1).

I
(max)
W =

(
max

1≤k≤m
2IW (sk)

)/
σ2

W (8.13)

Pr(I(max)
W > y) = 1 − Pr

((
IW (s1)/σ2

W ≤ y
) ∩ (IW (s2)/σ2

W ≤ y
) ∩ . . .

= . . . ∩ (IW (sm)/σ2
W ≤ y

))
= 1 − (

1 − e−y/2
)m (8.14)

The statistic I(max)
W in (8.13) was introduced in 1898 by Schuster, the above

introduction is borrowed from [113].
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I
(max)
W can be calculated on (the additional) condition that the variance

σ2
W of the white noise process is known. Often, however, σ2

W is not known
and has to be estimated by calculating the empirical variance using either the
result obtained in Problem 8.3 or directly (2.1,2). Consequently, Schuster’s
statistic I(max)

W in (8.13) can be applied provided that N is large and it is
accounted for that the empirical variance is not a robust estimate.

The estimation of σ2
W can be circumvented when the g statistic in (8.15) is

calculated from the periodogram. This statistic is the quotient of the maximal
periodogram value and the sum of all periodogram values.

g =

(
max

1≤k≤m
2IW (sk)

)/
σ2

W

m∑
k=1

(
2IW (sk)/σ2

W

) =
max

1≤k≤m
IW (sk)

m∑
k=1

IW (sk)

(8.15)

Pr(g > z) =
q∑

l=1

(−1)l−1

(
m

l

)
(1 − lz)m−1 (8.16)

≈ 1 − (α/m)(1/(m−1)) (8.17)

The probability of the g statistic as given in (8.16) was derived in 1929 by
Fisher, the approximation in (8.17) is used in [101], and the above introduc-
tion is borrowed from [113] (as those of Schuster’s test). Above in (8.15),
(8.16) and (8.17), IW (sk), sk, m, N and k are as required in (8.7), and q is
the largest integer number being less than 1/z.

Fisher’s g statistic in (8.15) is applied as follows. A significance level
α is chosen such that Pr(g > z) = α under the null hypothesis. The null
hypothesis is discarded (i.e., the observations are assumed to stem from a
process (Xt) having a mixed spectrum CX(s) = CU (s)+CV (s) as introduced
above) on condition that g is larger than the critical value z.

For example, the NAO index (Jones) time series as plotted in Fig. 2.10 is
found to stem from a white noise process in Fig. 8.3, where it is tested against
the alternative that it stems from a process having a continuous and non-
constant spectrum. Is this result confirmed when the alternative is that this
time series stems from a process with a mixed spectrum? Fisher’s statistic
g = 0.079 for the NAO index (Jones) is obtained using (8.15) as the quotient
of (i) the maximum 8.00 (attained at frequency sk = 0.1299 = 23/177) of the
periodogram in Fig. 8.1 and (ii) the sum 100.95 of all periodogram values. For
m = 87 and significance levels 0.05 and 0.01, critical values 0.083 and 0.100
are obtained and therefore the alternative is discarded. This result confirms
that the NAO index (Jones) stems from a white noise process, in agreement
with the results obtained in Sects. 2.3.1, 2.5.1 and 2.5.2, Problem 2.33 and
Fig. 8.3.

Fisher’s g statistic provides for the most powerful test against the alter-
native that the observations stem from model (Xt) having a mixed spectrum
CX(s) = CU (s)+CV (s) as defined above, where CV (s) is the spectrum (7.74)
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of a harmonic process (Vt) as defined in (7.30) with n = 1, i.e., having only
one oscillation with frequency sl = sk, k = 1, . . . ,m, coincident with one of
the Fourier frequencies sk.

If n > 1 oscillations with unknown frequencies are assumed to be hid-
den in the observed time series, then a multiple test procedure can be con-
structed from Fisher’s statistic. For example, the g statistic and the corre-
sponding p value can be calculated for each of the n′ large values found in
the periodogram. Thereafter, the p values are ordered to obtain a sequence(
p(1), p(2), . . . , p(n

′)
)
. The null hypothesis is rejected for all oscillations with

statistics
(
g(1), g(2), . . . , g(iq)

)
and p values

(
p(1), p(2), . . . , p(iq)

)
where iq is

the largest i for which p(i) ≤ (i/n′)q. This procedure controls the false dis-
covery rate at level q [12]. It is implemented in GeneTS [147], an R package
available from the Comprehensive R Archive Network [114].

Alternatives to this multiple test procedure can be found in [108]. For
example, Siegel proposed in [124] a correction of Fisher’s statistic to account
for multiple oscillations.

Above in this section, two periodogram tests for white noise are intro-
duced: (i) the test against the alternative that the spectrum of the process
under analysis is continuous and non-constant using statistic (8.11), and (ii)
the test against the alternative that the spectrum of the process is constant
with superimposed spikes generated by the oscillations in a harmonic process
using statistic (8.15). In both cases, the probability distributions of the test
statistics are derived from properties (8.7) of the periodogram under the null
hypothesis that the observed time series stems from a normal white noise
process. If, however, the null hypothesis is discarded, then the underlying
process is assumed not to be a white noise process, i.e., a stochastic process
having either a non-constant continuous (examples are given in Sect. 7.4.2)
or a mixed spectrum (as shown for the simplest case with only one oscillation
in Fig. 7.9). Assume that a periodogram is calculated from an observed time
series stemming from such a process. Does this periodogram then have all
properties (8.7)? Or only certain ones? Answers to these questions are given
in Sects. 8.3 and 8.4.

8.3 Its Expectation Function

From (8.29) it is concluded that a periodogram as defined in (8.1,4) is the
Fourier transform of the empirical covariance function as defined in (2.1,3),
each calculated from a time slice (xt), t = 0, 1, . . . , N − 1, in a realisation of
a discrete-time stationary stochastic process (Xt) with µX = 0, on condition
that ĉX(τ ) = 0 for |τ | ≥ N is assumed. Taking the expectations, (8.18) readily
follows, and using E

(
ĉX(τ )

)
, i.e., the expectation function of the empirical

covariance function as obtained in (2.57), the expectation function of the
periodogram is arrived at in (8.19). This result holds for all discrete-time
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stationary stochastic processes (Xt) seeing that only stationarity as defined
in (2.8) is required to obtain E

(
ĉX(τ )

)
in (2.57).

EIX(s) = E

⎛⎝ N−1∑
τ=−(N−1)

ĉX(τ ) cos(2πsτ)

⎞⎠ (8.18)

=
N−1∑

τ=−(N−1)

(
EĉX(τ )

)
cos(2πsτ)

=
N−1∑

τ=−(N−1)

(
(1 − |τ |/N)

)(
cX(τ )

)
cos(2πsτ) (8.19)

EIX(s), IX(s) being the periodogram as defined in (8.1,4), is the Fourier
transform of the covariance function cX(τ ), which is weighted using the even
triangle sequence Λ(e)

2N+1(t) as defined in (6.56). In (8.19), (1 − |τ |/N)cX(τ )
converges to cX(τ ) for N → ∞, and thus ĉX(τ ) is an asymptotically unbiased
estimator of cX(τ ).

If (Xt) has a continuous spectrum CX(s), then CX(s) and cX(τ ) are a
Fourier transform pair as defined in (7.65) and (7.66) as well as in (6.49)
and (6.50). This Fourier transform pair is discussed in Sect. 7.5.4. In this
case therefore, E

(
IX(s)

)
converges to CX(s) for N → ∞. Consequently, the

periodogram is an unbiased estimator for a continuous spectrum CX(s) on
condition that N → ∞.

If (Xt) has a non-continuous spectrum, i.e., a line or a mixed spectrum as
defined in (7.71,2,3), then cX(τ ) is calculated in (7.61) as a Fourier-Stieltjes
integral from the integrated spectrum C

(I)
X (s) of (Xt) and, vice-versa, CX(s)

can be obtained from a Fourier transform of cX(τ ), as demonstrated for the
case of the harmonic process in (7.72). Thereafter, CX(s) can be integrated
to arrive at C(I)

X (s). Since ĉX(τ ) is an asymptotically unbiased estimator
of cX(τ ), even though (Xt) has a non-continuous spectrum, the cumulated
periodogram is an unbiased estimator for C(I)

X (s) on condition that N → ∞.
The results inferred above can also be derived from (8.35) (repeated in

(8.20)) using definition (7.51,3) to arrive at (8.21), since FN (s) is a defining
sequence for δ(s + n), n = . . . ,−1, 0, 1, . . ., i.e., a delta function being pe-
riodic with period 1 as introduced in the remarks to (6.63), and δ(s) is the
identity element under convolution (as argued in the remarks to (6.68)). Ob-
viously, (8.19) and (8.21) are equivalent, as implied by convolution theorems
(6.48,6,7), because (1 − |τ |/N) = Λ

(e)
2N+1 and FN (s) are a Fourier transform

pair as derived in (6.57), and cX(τ ) and dC(I)
X (s) are also a Fourier transform

pair as concluded from the cases given in Sect. 7.3.3.

EIX(s) =
∫ 1/2

−1/2

FN (s− s′)E(|dZX(s′)|2) convolution
as in (6.144) (8.20)
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=
∫ 1/2

−1/2

FN (s− s′)dC(I)
X (s) = FN (s) ∗ dC(I)

X (s) (8.21)

bias
(
IX(s)

)
= −EIX(s) + dC(I)

X (s)

= dC(I)
X (s) − FN (s) ∗ dC(I)

X (s) (8.22)

For finiteN , however, convolution integral (8.21) implies E
(
IX(s)

) �=dC(I)
X (s).

Consequently, a bias has to be taken into account when the spectrum of a
stationary stochastic process is estimated using the periodogram: the spec-
trum is over- or underestimated in the mean when many estimations are
performed. The bias of the periodogram as obtained in (8.22) clearly de-
pends on dC(I)

X (s) and FN (s), the kernel used to convolve dC(I)
X (s) in (8.21).

The Fejer kernel FN (s) is defined in (6.57) with its properties enumerated in
(6.58) and (6.59). Since FN (s) depends on N , the length of the observed time
series, the bias also depends on N . Subsequent to taking the logarithms,

log
(
dC(I)

X (s)
)− log

(
EIX(s)

)
= log

(
dC(I)

X (s)
EIX(s)

)
= −log

(
EIX(s)

dC(I)
X (s)

)

= −log

(
1 +

EIX(s) − dC(I)
X (s)

dC(I)
X (s)

)

≈ −EIX(s) − dC(I)
X (s)

dC(I)
X (s)

(8.23)

(8.23) becomes large on condition that dC(I)
X (s) is small. This result is obvious

because log
(
EIX(s)

) �= E
(
logIX(s)

)
as is concluded from Problem 8.2.

For example, a realisation of
(
Y

(2)
t

)
, the AR[2] model introduced in

Fig. 7.13, is plotted in Fig. 8.4 (a). Time slices from this simulation are used to
calculate periodograms from values realised in the intervals t = 101, . . . , 164
and t = 101, . . . , 356 as required in (8.1,3). These periodograms are shown
below in Fig. 8.4, plots (b) and (c), together with the model spectrum hav-
ing bandwidth 0.02 and dynamic range 35 dB, both approximated from
Fig. 7.13 (b) and (c) by applying definitions (7.83) and (6.96). This peri-
odogram demonstrates (despite its large fluctuations, a property shared with
the periodogram of the NAO index (Jones) estimated in Sects. 8.1 and 6.1.3)
that (i) both periodograms are larger than the spectrum at low frequencies,
and (ii) the periodogram for N = 256 is closer to the peak of the spectrum
than the one for N = 64.

The simulation experiment in Fig. 8.4 and the similar ones performed in
Problem 8.6 demonstrate that the bias of the periodogram (i) depends on
N , i.e., the length of the simulated time series, (ii) becomes negligible with
increasing N at the peak of the spectrum, and (iii) persists at frequencies
a larger distance away from a peak where the spectrum is small. These are
properties similar to those of the distortions due to leakage demonstrated in
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Fig. 8.4. Above, a realisation (y
(2)
t ) of AR[2] model Y

(2)
t = −1.6Y

(2)
t−1 − 0.9Y

(2)
t−2 +

Wt with µW = 0 and σ2
W = 1, as introduced in Fig. 7.13; below periodograms

calculated from values realised in the intervals t = 101, . . . , 164 (on the left) and
t = 101, . . . , 356 (on the right), together with the model spectrum CY (2)(s) .

Sect. 6.5.3. The similarity becomes obvious when convolutions DN (s) ∗G(s)
in (6.95) and FN (s) ∗ dC(I)

X (s) in (8.21) are compared: the differences in the
distortions are due to the different kernels. Thus, the bias in the periodogram
is said to be due to leakage. When FN (s) and DN (s) are compared, the
following differences are found:

1. FN (s) ≥ 0 for all s, and therefore FN (s) ∗dC(I)
X (s) ≥ 0 (since dC(I)

X (s) ≥
0), whereas DN (s) has negative side lobes.

2. FN (s) has a slightly wider main lobe than DN (s): B∩
�
(
DN (s)

) ≈ 6/(5N)
and B∩

�
(
FN (s)

)≈ 7/(8N), as obtained in the remarks 6.97. Above in
Fig. 8.5, for example, B∩

�
(
F64(s)

)≈ 0.015 and B∩
�
(
F256(s)

)≈ 0.0034,
whereas B∩

�
(
D301(s)

)≈ 0.004 in Fig. 6.24. Since the difference in the
widths of DN (s) and FN (s) is small, diagnostics (6.115) and (6.116) to
detect the leakage due to the convolution with the Dirichlet kernel in
(6.95) also allow for approximating the length of the observational period
such that the resolution in the frequency domain remains high enough
when the spectrum is convolved with the Fejer kernel in (8.21). This
approximation is however restricted to spectra with known bandwidths
(7.83). If the bandwidth of the spectrum to be estimated is not known,
then the procedures introduced in Sect. 9.3.5 can be applied (despite the
estimator being the periodogram, and not a direct spectral estimator).
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Fig. 8.5. Fejer kernels FN (s) for N = 64 (on the left) and N = 256 (on the right):
plots showing main lobes and widths at half height (above) and plots in dB (below).

3. FN (s) has smaller side lobes than DN (s). For example, Fejer kernels for
N = 64 and N = 246 as plotted below in Fig. 8.5 have side lobes smaller
than −15 dB for large frequencies, whereas the side lobes of Dirichlet ker-
nels are approximately 0 dB even for large N as can be seen in Fig. 6.22.
Consequently, (i) the leakage due to the side lobes of the kernel is smaller
in (8.21) than in (6.95) and (ii) when applying diagnostic (6.117) to con-
volutions (8.21) too pessimistic conclusions are drawn.

4. FN (s), N=1, 2, . . ., is a defining sequence for δ(s+n), n= . . . ,−1, 0, 1, . . .,
i.e., a delta function being periodic with period 1 as introduced in the
remarks to (6.63), having the implications in the remarks to (8.21).

When performing simulation experiments such as those in Fig. 8.4, the
bias of the periodogram due to leakage generated by convolution (8.21) be-
comes apparent when the known spectrum of the process is plotted together
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Fig. 8.6. Spectrum CY (2)(s) of AR[2] model in Fig. 8.4 (solid line) together with
EIY (2)(s) resulting from the convolution of CY (2)(s) with Fejer kernels F64(s) and
F256(s) as required in (8.21) (broken lines).

with periodograms calculated from time slices of simulated realisations, as
demonstrated in Fig. 8.4. In addition to simulation experiments, (8.21) lends
itself to demonstrating the bias due to leakage given dC(I)

X (s) and N , i.e.,
the spectrum of the process and the number of simulated values used for
the calculation of the periodogram: because both functions on the left side
in (8.21) are known, E

(
IX(s)

)
is easily obtained, and, when plotted together

with dC(I)
X (s), a possible bias will become visible, as demonstrated in Figs. 8.6

and 8.7 for the case of continuous spectra.
In Fig. 8.6 for example, F64(s) ∗ CY (2)(s) and F254(s) ∗ CY (2)(s) as re-

quired in (8.21), CY (2)(s) being the spectrum of the AR[2] model introduced
in Fig. 7.13, are plotted together with CY (2)(s). From these plots it becomes
obvious that (in the mean when many simulations are performed) a peri-
odogram obtained from N = 256 values is an estimator having a bias that (i)
is negligible at the peak of the spectrum and (ii) amounts to approximately
2 dB at the low frequencies. These results are in line with those obtained
from diagnostics (6.115), (6.116) and (6.117) (modified for the Fejer kernel
in the remarks to Fig. 8.4): (i) B∩

�
(
F256(s)

)≈ 0.0034, the width at half height
of the Fejer kernel for N = 256 is much smaller than B�

(
CY (2)(s)

)
= 0.02,

the bandwidth (7.83) of the spectrum as plotted in Fig. 7.13 (b), and (ii)
dyn

(
CY (2)(s)

)
= 35 dB, the dynamic range of the spectrum as defined in

(6.96) is larger than the threshold in (6.117), indicating that leakage due to
the side lobes of the Fejer kernel is likely to bias the result.

With increasing dynamic range and decreasing bandwidth of the spectrum
under analysis the bias in the periodogram becomes more severe. Expanding
the observational period (when possible), a number of sufficiently large N
observations can be obtained such that the bias due to the main lobe of
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Fig. 8.7. Spectrum CX(s) of AR[4] model (Xt) in Fig. 7.14 (solid line) together
with EIX(s) for N = 64, N = 256 and N = 1024 (broken lines), i.e., the expectation
functions of periodograms obtained from 64, 256 and 1024 observations, resulting
from convolutions of the CX(s) with F64(s), F256(s) and F1024(s) as required in
(8.21).

the Fejer kernel becomes negligible. The bias due to its side lobes, however,
persists, since these, although being lower than those of the Dirichlet kernel,
do not decay rapidly with increasing distance from the main lobe, and thus
do not become small enough (< 10−4) to reduce the leakage effectively, as
can be seen in Fig. 6.11.

For example, the AR[4] model (Xt) introduced in Fig. 7.14 has a spec-
trum with bandwidth B�

(
CX(s)

)
= 0.00474 obtained in Fig. 7.10 (d) and a

dynamic range dyn
(
CX(s)

)
= 65 dB in 0 ≤ s ≤ 0.5 as can be seen in Fig. 7.14

(b). If realisations of (Xt) having N = 64, N = 256 and N = 1024 values
are simulated and used to calculate periodograms then, in the mean over
many realisations, these periodograms will be afflicted with the bias shown
in Fig. 8.7. From simulation experiments performed in Problem 8.7 using this
AR[4] model, it is concluded that the bias due to the side lobes of the Fe-
jer kernel in (8.21) persists with increasing N and increases with decreasing
CX(s), in accordance with (8.23).

Fig. 8.7 demonstrates that, when trying to estimate a spectrum by cal-
culating a periodogram from an observed time series of length N stemming
from a stationary stochastic process and thereafter taking the logarithm, a
bias in the order of magnitudes is possibly obtained even whenN is very large
(examples with N > 106 are given in [134]). Such a large bias is clearly a risk
that a gambler can take, not a data analyst! Hence, the periodogram is not
a recommended estimator for the spectrum. An exception is the estimation
of a spectrum having a small dynamic range on condition that the number
of observations is large enough.

Estimators for the spectrum are introduced in Chaps. 9 and 10.
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8.4 Its Covariance Function and its Distribution

A linear process (Xt) (2.25) is the output of a stochastic LTI filter (7.84)
with (Wt), i.e., a white noise process, being its input and (bt) its impulse
response function. The output spectrum CX(s) is obtained by multiplying
the squared absolute value of the frequency response function B(s) with
CW (s), the spectrum of the input: CX(s) = B(s)B(s)CW (s) = |B(s)|2σ2

W , as
required in (7.90). This equation becomes an approximation when CX(s) and
CW (s) are substituted with periodograms IX(s) and IW (s), both calculated
as required in (8.1,4) from (xt) and (wt), t = 0, 1, . . . , N − 1, on condition
that (i) (xt) is the output generated by the input (wt) and (ii) N → ∞. This
result is derived in Sect. 8.5.2 and summarised in (8.48).

Using (8.48) as well as (1.15) and (1.16), approximations (8.24) for the
variance and covariance functions as well as the probability distribution of
IX(s) can be derived from the properties of IW (s) summarised in (8.7).

Let IX(sk) and IX(s) be the periodogram calculated as required
in (8.1,3,4) from a time slice (xt), t = 0, . . . , N − 1, in a reali-
sation of a linear process (Xt) as defined in (2.25) having a
continuous spectrum CX(s). Then, for N → ∞:

1. IX(sk) and IX(sl) are approximately independent for k �= l
2. the normalised periodogram(

2/CX(sk)
)
IX(sk) is approximately χ2

(2) distributed
for −1/2 < sk < 0 < sk < 1/2, and(

1/CX(sk)
)
IX(sk) is approximately χ2

(1) distributed
for sk = −1/2, 0, 1/2

3. EIX(sk) =
∫ 1/2

−1/2
FN (sk − r)CX(s)dr → CX(s)

4. Cov
(
IX(sk), IX(sl)

) ≈ 0 for k �= l

5. VarIX(sk) ≈
{
C2

X(sk) for −1/2 < sk < 0 < sk < 1/2
2C2

X(sk) for sk = −1/2, 0, 1/2

6. Cov
(
IX(s), IX(s+ r)

) ≈ 0, r being small

7. VarIX(s) ≈
{
C2

X(s) for −1/2 < s < 0 < s < 1/2
2C2

X(s) for s = −1/2, 0, 1/2

(8.24)

Properties (8.24) also apply (duly modified for a spectrum being possibly
non-continuous) to periodograms calculated from realisations of almost all
discrete-time stochastic processes which are stationary and ergodic. Example
stochastic processes having periodograms with properties (8.24) despite their
integrated spectra are not differentiable for all −1/2 ≤ s ≤ 1/2 are given in
[117] or [153].

(8.24,1) implies that random variables IX(sk) and IX(sl) have negligi-
ble correlations for Fourier frequencies sk �= sl. A realisation of a random
function having this property fluctuates wildly as demonstrated by (i) the
periodograms calculated from a simulation of an AR[2] process in Fig. 8.4
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and (ii) the empirical spectra in Fig. 6.5 (which are identical with the peri-
odograms as shown in the remarks to Fig. 8.1). Despite ∆sk = 1/N → 0 for
N → ∞, IX(sk) and IX(sl) remain approximately independent for k �= l.

Approximations (8.24,2) can be derived for finite N on condition that
(Xt) is a normal process as defined in (2.3), a property induced by a normal
input process (Wt), as proposed in (5.56). If (Xt) is normally distributed then
ÂX(sk) and B̂X(sk), both being linear combinations of the (Xt) as defined
in (8.1,1), are normally distributed as well. Furthermore, because ÂX(sk)
and B̂X(sk) are normally distributed, it is concluded (as in the case of a
periodogram stemming from a white noise process in the remarks to (8.8))
that a periodogram stemming from the realisation of a normal linear process
is χ2

(n)-distributed, n = 1, 2, on condition that it is normalised as proposed in
(8.24,2). This normalisation is arrived at using (8.48). These approximations
also apply to a periodogram calculated from a non-normal linear process on
condition that N → ∞, as shown, e.g., in [21]. Instructive examples can be
obtained when the simulations in Problem 8.8 are performed.

The first moment function in (8.24,3) is a special case of (8.21). The sec-
ond moment functions in (8.24,4,5) imply that a periodogram, calculated
for Fourier frequencies sk, fluctuates wildly (neighbour values are either not
correlated or have only very small correlations) about the spectrum with a
variance that is proportional to the square of the spectrum. These proper-
ties are shared with a periodogram that is calculated for all real frequencies
−1/2 ≤ s, s + r ≤ 1/2: although the variances Var

(
IX(s)

)
and covariances

Cov
(
IX(s), IX(s+r)

)
are (among others) a function of N , (8.24,6,7) hold for

N → ∞. A more accurate version of (8.24,6) can be obtained from the solid
curve in Fig. 9.6, which is arrived at in (9.14) on condition that the process
under analysis has the properties enumerated in (9.13).

(8.24,6,7) imply that the variance of a periodogram does not decrease with
increasing N : it merely comes closer to the square of the spectrum. Conse-
quently, the variance of the periodogram is not reduced when the number of
observations is increased and, therefore, the periodogram is not a consistent
estimator as defined in (1.4). Non-consistent estimators are unusual, because
the variance of all estimators introduced so far decreases when the number
of observations increases. For example, consistent estimators are the sample
mean (in the remarks to (1.4)), the mean of an ergodic time series (as is con-
cluded from (2.56)) and also the estimators for the parameters of an AR[p]
model (as is demonstrated in Sect. 5.2.4).

(8.24,6,7) are not only unusual but also inconvenient for three reasons:
(i) an estimator having a smaller variance than the squared spectrum is
required, (ii) the periodogram is not smooth whereas the spectrum is often
smooth or contains smooth segments (confined by the frequencies with jump
discontinuities in the integrated spectrum), and (iii), a wildly fluctuating
periodogram can suggest that the spectrum of the process under analysis
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is discrete or mixed, even though it is continuous (7.71). Spectral estimators
that have a smaller variance than the periodogram are introduced in Sect. 9.3.

8.5 Supplements

Two derivations of the expectation function of a periodogram are given in
Sect. 8.5.1. In Sect. 8.5.2, an approximation relating a periodogram calculated
from a linear process with a periodogram calculated from its innovations is
arrived at.

8.5.1 Expectation Function of the Periodogram

For the following derivations, it is assumed that (xt), t = 0, . . . , N − 1, is
a time-slice in a realisation of a stationary discrete-time stochastic process
(Xt) with expectation function µX = 0 and Fourier representation Xt =∫ 1/2

−1/2
ei2πsdZX(s) as required in (7.51).

IX(s) in (8.25) is the periodogram as defined in (8.1,4). The sums in (8.25)
can be interpreted as polynomials. In their squares, therefore, the terms can
be arranged in rows and columns using two indices and thus the double-
indexed sums in the following two lines are arrived at. In each term in these
sums, the product of two trigonometric functions is substituted using the
elementary trigonometric identities, and the sum (8.26) readily follows.

NIX(s) =

(
N−1∑
t=0

Xt cos(2πst)

)2

+

(
N−1∑
t=0

Xt sin(2πst)

)2

(8.25)

=
N−1∑
t=0

N−1∑
u=0

Xt cos(2πst)Xu cos(2πsu) +
N−1∑
t=0

N−1∑
u=0

Xt sin(2πst)Xu sin(2πsu)

=
N−1∑
t=0

N−1∑
u=0

XtXu
1
2
(
cos(2πs(t− u)) + cos(2πs(t+ u))

)
+

N−1∑
t=0

N−1∑
u=0

XtXu
1
2
(
cos(2πs(t− u)) − cos(2πs(t+ u))

)
=

N−1∑
t=0

N−1∑
u=0

XtXu cos
(
2πs(t− u)) (8.26)

=
N−1∑

τ=−(N−1)

(
N−1−|τ |∑

t=0

XtXt+|τ |

)
cos(2πsτ) (8.27)

The argument 2πs(t−u) of the cosine functions in (8.26) is substituted with
2πsτ and thereafter the diagonals in the matrix of the terms are summed, as
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demonstrated when deriving (2.73) or in Problem 6.16. The main diagonal
contains N terms X2

t , the first sub-diagonals N − 1 terms XtXt−1 as well
as XtXt+1, etc., and (8.27) is arrived at. The sum in parenthesis in (8.27) is
the autocorrelation (6.103) of the Xt, t = 0, 1, . . . , N − 1 (and thus an even
function). If XtXt+τ = 0 for |τ | ≥ N is assumed, then this sum and NIX(s)
become a Fourier transform pair as proposed in (6.49) and (6.50).

(8.27) is written as in (8.28) and, thereafter, the right side is compared
with the empirical covariance function as defined in (2.1,3) and written as
estimator, i.e., in (2.1,3), the observations (xt), t = 0, . . . , N−1 (the origin in
the time domain is arbitrary), are substituted with the random variables in
this segment of the discrete-time stationary process (Xt). From this compar-
ison it becomes obvious that the periodogram and the empirical covariance
function, each calculated from the very same time slice in a realisation of a
stationary process (Xt) with µX = 0, are a Fourier transform pair as pro-
posed in (6.49) and (6.50), on condition that ĉX(τ ) for |τ | ≥ N . This result
is given in (8.29).

IX(s) =
N−1∑

τ=−(N−1)

⎛⎝ 1
N

N−1−|τ |∑
t=0

XtXt+|τ |

⎞⎠ cos(2πsτ) (8.28)

=
N−1∑

τ=−(N−1)

ĉX(τ ) cos(2πsτ) (8.29)

From (8.29), the expectation function of the periodogram is easily arrived at
in (8.19), using the expectation function of the empirical covariance function
as obtained in (2.57).

The expectation function of the periodogram can also be derived by apply-
ing the Fourier representation of a discrete-time stationary stochastic process
(Xt). The estimator J(s) as defined in (8.30) is obtained by assuming that
the observations at the exterior of the observational period (and thus also
the variables in the corresponding segments of (Xt)) are identically zero, as
shown by the multiplication with the rectangle sequence ΠN (t) which is de-
fined in (6.52). This is a prerequisite for substituting Xt with its Fourier
representation

∫ 1/2

−1/2
ei2πs′

dZX(s′), as defined in (7.51), to obtain (8.31). The
order of summation and integration can be reversed and the Fourier trans-
form of the rectangle sequence as obtained in (6.54) and (6.55) is substituted
in order to arrive at (8.32).

J(s) =
1√
N

N−1∑
t=0

Xte−i2πst =
1√
N

∞∑
t=∞

ΠN (t)Xte−i2πst (8.30)

=
1√
N

∞∑
t=∞

ΠN (t)

(∫ 1/2

−1/2

ei2πs′
dZX(s′)

)
e−i2πst (8.31)
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=
1√
N

∫ 1/2

−1/2

∞∑
t=∞

ΠN (t)e−i2π(s−s′)tdZX(s′)

=
1√
N

∫ 1/2

−1/2

e−iπ(N−1)(s−s′)DN (s− s′)dZX(s′) (8.32)

The integral transform (8.32) (Riemann integral transforms of deterministic
functions are defined in (2.33)) is a stochastic Stieltjes integral (7.21) of, in
essence, the Dirichlet kernel with respect to the orthogonal increment pro-
cess ZX(s). This integral equation relates the Fourier transform J(s) of the
random variables (X0, X1, . . . , XN−1) in (Xt) with the orthogonal increment
process ZX(s) pertaining to (Xt) as required in (7.51). If this integral equa-
tion could be solved given a realisation of J(s) (i.e., the Fourier transform of
the observations) then a realisation of ZX(s) could be obtained, whereafter
the spectrum or integrated spectrum of (Xt) could be inferred using (7.51,3)
and the stationarity of (Xt). It is, however, rather difficult to solve (8.32) for
Z(s), given J(s) [134].

To circumvent these difficulties, J(s) is multiplied with its complex-
conjugate J(s) as in (8.33), and the periodogram IX(s) = J(s)J(s) = |J(s)|2
as defined in (8.1,4) is obtained in (8.34).

J(s) =
1√
N

∫ 1/2

−1/2

e−iπ(N−1)(s−s′)DN (s− s′)dZX(s′) (8.33)

IX(s) = J(s)J(s) = |J(s)|2

=
1
N

∫ 1/2

−1/2

e−iπ(N−1)(s−s′)DN (s− s′)dZX(s′) ×∫ 1/2

−1/2

e−iπ(N−1)(s−s′′)DN (s− s′′)dZX(s′′) (8.34)

EIX(s) =
1
N

∫ 1/2

−1/2

∫ 1/2

−1/2

e−iπ(N−1)(s−s′)e−iπ(N−1)(s−s′′) ×

DN (s− s′)DN (s− s′′)
(
δ(s′ − s′′)E(dZX(s′)dZX(s′′)

))
=
∫ 1/2

−1/2

FN (s− s′)E(|dZX(s′)|2) (8.35)

Taking the expectations, (8.35) is arrived at by means of integrating with
respect to an orthogonal increment process as demonstrated in Sect. 7.5.2,
and thereafter using the relationship between FN (s) and DN (s) as derived
in (6.57).
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8.5.2 The Periodogram of a Linear Process

A white noise process (Wt) as defined in (2.10) or (2.11) is the Fourier-
Stieltjes transform of an orthogonal increment process ZW (s). Hence, a re-
alisation (wt) of (Wt) is associated with a realisation zW (s) of ZW (s) and,
vice-versa, a realisation zW (s) of ZW (s) is associated with a realisation (wt)
of (Wt) as required in (7.51): wt =

∫ 1/2

−1/2
ei2πstdzW (s) for t = . . . ,−1, 0, 1, . . ..

A realisation of (Wt) generates in (2.25) a realisation of the linear process
(Xt) on condition that the weights (bt) converge absolutely. For weights
(bt) = (. . . , 0, b0, b1, . . .), being a sequence that converges absolutely, and
(Wt), a white noise process with µW (t) = 0 and σ2

W (t) = σ2
W , a realisation of

a linear process becomes, in (8.36), the output of a stochastic LTI filter as de-
fined in (7.84). The Fourier representation of (wt) is substituted and, because
the weights converge absolutely, the order of summation and integration is
interchanged to arrive at (8.37).

xt =
∞∑

u=−∞
buwt−u, t = . . . ,−1, 0, 1, . . . (8.36)

=
∞∑

u=−∞
bu

(∫ 1/2

−1/2

ei2πs(t−u)dzW (s)

)

=
∫ 1/2

−1/2

ei2πst
∞∑

u=−∞
bue−i2πsudzW (s) (8.37)

∫ 1/2

−1/2

ei2πstdzX(s) =
∫ 1/2

−1/2

ei2πstB(s)dzW (s) (8.38)

dzX(s) = B(s)dzW (s) (8.39)

xt =
∫ 1/2

−1/2

ei2πstB(s)dzW (s), t = . . . ,−1, 0, 1, . . . (8.40)

Substituting Fourier representation xt =
∫ 1/2

−1/2
ei2πstdzX(s) on the left side

and Fourier transform B(s) =
∑∞

u=−∞ bue−i2πsu on the right side, (8.38) is
obtained and (8.39) immediately follows. From (8.39) it is concluded that (i)
orthogonal increments dzW (s) imply orthogonal increments dzX(s) and vice-
versa, since B(s) is a complex number given a frequency s, and (ii) (xt) and
B(s)dzW (s) are a Fourier-Stieltjes transform pair, as stipulated in (8.40).

In applications, observations (xt) of (Xt) are available for t = 0, 1, . . . , N−
1, and are assumed to be identically zero at the exterior of this interval. Us-
ing this interval, these assumptions can be written (xt)

(
ΠN (t)

)
, with ΠN (t)

being the rectangle sequence as defined in (6.52,1). Consequently, the Fourier
transform of the observations can be written as in (8.41).

N−1∑
t=0

xte−i2πst =
∞∑

t=−∞

(
(xt)ΠN (t)

)
e−i2πst (8.41)
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=
∫ 1/2

−1/2

(
DN (s− r)e−iπ(N−1)(s−r)

)
B(r)dzW (r) (8.42)

(8.42) results from (8.41) when convolution theorem (6.48,7) is applied, since
(i) B(s)dzW (s) is the Fourier representation of (xt) obtained in (8.39) and (ii)
DN (s)e−iπ(N−1)(s) is the Fourier transform of the rectangle sequence obtained
in (6.54) and (6.55).

Borrowing from the derivation of (8.34), the periodogram calculated as
required in (8.1) from a realisation of a linear process is written in (8.43)
by multiplying the Fourier transform in (8.41) with its complex-conjugate.
Thereafter (8.42) is substituted and (8.44) arrived at.

IX(s) =
1
N

(
N−1∑
t=0

Xt cos(2πst)

)2

+
1
N

(
N−1∑
t=0

Xt sin(2πst)

)2

=
1
N

(
N−1∑
t=0

xte−i2πst ×
N−1∑
t=0

xte−i2πst

)
(8.43)

=
1
N

∫ 1/2

−1/2

DN (s− r)e−iπ(N−1)(s−r)B(r)dzW (r) ×∫ 1/2

−1/2

DN (s− r′)e−iπ(N−1)(s−r′)B(r′)dzW (r′) (8.44)

EIX(s) =
1
N

∫ 1/2

−1/2

∫ 1/2

−1/2

e−iπ(N−1)(s−r)e−iπ(N−1)(s−r′) ×

DN (s−r)DN (s−r′)B(r)B(r′)
(
δ(r − r′)E(dZW (r)dZW (r′)

))
=

1
N

∫ 1/2

−1/2

DN (s− r)DN (s− r)B(r)B(r)E
(|dZW (r)|2)

=
∫ 1/2

−1/2

FN (s− r)|B(r)|2E(|dZW (r)|2) (8.45)

Since zW (s) stems from the complex-valued random function ZW (s) having
orthogonal increments as required in (7.51), (8.45) follows by taking the ex-
pectations and thereafter integrating with respect to an orthogonal increment
process as demonstrated (i) in Sect. 7.5.2 and (ii) when deriving (8.35), with
the Fejer kernel FN (s) as in (6.57).

If the identity sequence (et) = (. . . , 0, e0 = 1, 0, . . .) as defined in (2.41) is
substituted for (bt) in (8.36), then (i) input and output of the filter become
identical, i.e., a white noise process, and (ii), since F−i(et) = 1, IW (s), the
periodogram calculated from a realisation of a white noise process, and its
expectation are arrived at in (8.46) and (8.47).

xt =
∞∑

u=−∞
euwt−u = w(t) t = . . . ,−1, 0, 1, . . .
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IW (s) =
1
N

∫ 1/2

−1/2

DN (s− r)e−iπ(N−1)(s−r)dzW (r) ×∫ 1/2

−1/2

DN (s− r′)e−iπ(N−1)(s−r′)dzW (r′) (8.46)

EIW (s) =
∫ 1/2

−1/2

FN (s− r)E(|dZW (r)|2) (8.47)

The Fejer kernel in (8.45) and (8.47) is shown to be a defining sequence for
δ(s−n), n = . . . ,−1, 0, 1, . . ., in the remarks to (6.62), and, further, δ(s−n)
is the identity function under convolution as defined in (6.144), as concluded
from propositions (6.67) and (6.68). For large N , consequently, (8.45) and
(8.47) become EIX(s) ≈ |B(r)|2E(|dZW (r)|2) and EIW (s) ≈ E

(|dZW (r)|2).
By comparing (8.44) with (8.46) as well as (8.45) with (8.47), the ap-

proximation in (8.48) is arrived at. The equation in (8.48) is obtained from
(7.90,4) since B(s) is the frequency response function pertaining to (bt), i.e.,
the impulse response function in filter (8.36).

IX(s) ≈ |B(r)|2IW (s) =
CX(s)
σ2

W

IW (s) for N → ∞ (8.48)

In (8.48), the periodogram IX(s) is approximated using the product of (i)
IW (s) and (ii) the squared absolute value of the frequency response function
in the linear process

(
CX(s) = B(s)B(s)CW (s) = B(s)B(s)σ2

W is obtained
from (7.90,4)

)
, on condition that N becomes very large. The results obtained

above are summarized in the introduction to Sect. 8.4.

8.6 Problems

8.1. Let IX(sk) be a periodogram calculated from a realisation stemming
from a normal white noise process (Wt), sk being the Fourier frequencies.
Show that IX(sk) is exponentially distributed as defined in (7.4). A hint is
found in the remarks to (8.8).

8.2. Simulate a realisation of a white noise process with N = 4096 and there-
after calculate the periodogram from the simulated values. Plot the peri-
odogram (i) as obtained and (ii), subsequent to taking the logarithms, in
dB scale. Then plot the histograms of both periodograms, prior and sub-
sequent to the logarithmic transformation. Derive the probability density
of JW (s) = 10log10(IW (s)), on condition that IW (s) is exponentially dis-
tributed as defined in (7.4). Hint: Let X be an exponentially distributed
random variable and let Y = 10log10(X). Then the Stieltjes integral F (y) =∫
10log10(x)≤y

dF (x) will result from (1.5) and, when evaluating this integral,

1 − e−λ10x/10
, i.e., the distribution of Y , will be arrived at.
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8.3. Nσ̂2
X =

∑m
k=−(m−1) IX(sk), i.e., the sum of all values in a periodogram is

equal to the product ofN (the number of observations) and σ̂2
X (the empirical

variance of the observations) subject to certain conditions.

8.4. Apply R expressions as given in file /path/problem84.R to simulate real-
isations of the AR[2] process having the spectrum as plotted in Fig. 8.2 (b).
Select time slices of lengths N = 512, N = 1028 and N = 2046 from the
simulations, calculate the periodograms and thereafter the normalised cumu-
lated periodograms using (8.9). Then plot the normalised integrated spectra
of the model together with the normalised cumulated periodograms.

8.5. Calculate the differences of the global average temperatures plotted in
Fig. 2.23. Thereafter, plot the correlation function of the differences. Do these
differences stem from a white noise process? Answers can be obtained (i) by
applying (2.59), i.e., comparing the empirical correlation function with the
templates in Fig. 2.22, (ii) from the Ljung-Box statistic in (2.60), and (iii)
from the periodogram tests introduced in Sect. 8.2.2. Do these answers agree
with each other?

8.6. Calculate periodograms from time slices of length N = 64, N = 256
and N = 1024 of realisations of the AR[2] model introduced in Fig. 7.13,
then plot these periodograms together with the spectrum of the process, as
demonstrated in Fig. 8.4. Does the bias of all periodograms depend on N?

8.7. As in Problem 8.6, but using the AR[4] model in Fig. 7.14 and larger N .

8.8. Simulate realisations wts with N = 4096 of a normal white noise
process (Wt) with µW = 0 and σ2

W = 1 and thereafter, using xts <-

arima.sim(...,innov=wts,...), generate realisations of linear processes. Cal-
culate

– the spectra of the linear processes, borrowing from the R expressions in
the remarks to Fig. 7.14, and

– periodograms from their realisations using the R expressions in the re-
marks to Fig. 8.1.

Normalise each periodogram with the pertaining spectrum and plot a his-
togram of the normalised periodogram values. Are the histograms obtained
in agreement with the properties stipulated in (8.24,2)? Thereafter repeat
the experiments using non-normal white noise processes.
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Let X(t) be a discrete-time stationary stochastic process having a continuous
spectrum CX(s) and a covariance function cX(τ ), such that cX(τ ) and CX(s)
are a Fourier transform pair as required in (7.65) and (7.66). Then a plot
of CX(s) gives, except for processes (Xt) having very simple spectra, a more
detailed picture of the second moment function of (Xt) than does the plot of
cX(τ ), as is demonstrated in Sect. 7.5.5. In this chapter therefore, estimators
for CX(s) are introduced which (i) have a negligible bias and (ii) are consis-
tent. These estimators are, in general, preferred to the periodogram having
the disadvantages discussed in Sect. 8.3 and the remarks to (8.24,7).

The model for (Xt) with a continuous CX(s) is defined in Sect. 9.1 and it is
assumed, in the following sections, that a time slice (xt), t = 0, 1, . . . , N − 1,
in a realisation of (Xt) has been observed. Can then CX(s) be estimated
without bias (1.3) and consistently (1.4) from (xt)?

In Sect. 9.2, the observations are tapered (a data taper can reduce the
leakage as shown in Sect. 6.7) to obtain an estimator (called direct spectral
estimator) which is bias-free and, in Sect. 9.3, a direct spectral estimator
is smoothed to arrive at an estimator whose variance decreases when N in-
creases, N being the length of the observational period. The length of the
observational period has to be chosen according to the dynamic range and
bandwidth of the spectrum to be estimated. If (i) approximations for both are
available and (ii) N can be chosen accordingly then the estimation is straight-
forward and the bias and the variance of the estimator can be controlled; if
not, the estimation becomes difficult. These difficulties can be overcome when
the procedures introduced in the remarks to Figs. 9.3 and 9.4 as well as in
Sect. 9.3.5 are applied. Alternatives to tapering are the parametric spectral
estimation and the pre-whitening introduced in Sect. 9.2.5.

In Sect. 9.4, (i) a seismogram (a record of fine oscillations in the solid
earth generated by, e.g., a possibly distant earthquake) and (ii) wind speed
measurements in a turbulent atmospheric flow are assumed to stem from
stationary stochastic processes, both having a continuous spectrum. Under
this assumption, methods as introduced in Sects. 9.2 and 9.3 are applied
to estimate the spectra of these processes. The last two sections contain, as
usual, the supplements and the problems.

The estimation of a continuous spectrum is dealt with in [108].
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9.1 The Model

Let L be a stochastic LTI filter (7.84), having an impulse response sequence
that converges absolutely (2.24). Then the output of L is a stationary linear
process with a continuous spectrum provided that its input is a white noise
process, as is concluded from (7.90). Obviously, definitions (2.25) (linear pro-
cess) and (5.38) (MA[∞] representation of the ARMA[p, q] model as defined
in (5.36)) are stochastic LTI filters having one-sided impulse response func-
tions. These definitions are slightly modified to capture a two-sided sum in
(9.1,1), and, obviously, CX(s) in (9.1,2) is continuous in −1/2 ≤ s ≤ 1/2, due
to B(s) and CW (s) being continuous in this interval.

Let (Wt) be a white noise process with µW = 0, σ2
W and thus

spectrum CW (s) = σ2
W , −1/2 ≤ s ≤ 1/2, and sequence

(bt) = (. . . ,−b−1, b0, b1, . . .) be absolutely convergent (2.24) with
Fourier transform B(s) = F−i(bt) as defined in (6.49). Then:

1. Xt =
∑∞

u=−∞ buWt−u, t = . . . ,−1, 0, 1, . . ., is a
stochastic LTI filter as defined in (7.84), and

2. CX(s) = B(s)B(s)CW (s) = |B(s)|2σ2
W , −1/2 ≤ s ≤ 1/2, is

the continuous spectrum of (Xt) as derived from (7.90).

(9.1)

An example of an LTI filter with a two-sided impulse response sequence is
given in Problem 7.8, where a realisation of a white noise process is smoothed
using a two-sided moving average. If, however, bt = 0 for t < 0 is assumed in
(9.1,1) then this model becomes a linear process as defined in (2.25).

In Sects. 9.2 and 9.3, (i) the stochastic LTI filter as defined in (9.1,1) is
used as a model for discrete-time stationary processes (Xt) having a contin-
uous spectrum CX(s) and (ii) a variety of estimators for CX(s) are computed
using a time slice (xt), t = 0, 1, . . . , N − 1, in a realisation of (Xt). These es-
timators are demonstrated using realisations simulated from AR[p] models.
Very useful is the AR[4] modelXt = 2.7607Xt−1−3.8106Xt−2+2.6535Xt−3−
0.9838Xt−4 +Wt, where (Wt) is a white noise process with µW = 0 and vari-
ance σ2

W = 1, on account of its large dynamic range (65 dB in Fig.7.14 (b))
and small bandwidth (0.00474 in Fig. 7.10 (d)). A realisation of this model
is plotted above in Fig. 7.14.

In this chapter, simulation experiments are didactic tools promoting the
teaching of spectral estimators because a first estimate as required in (9.3)
using a cosine taper with, e.g., p = 0.05, can not only be compared with a sec-
ond estimate obtained using a cosine taper with, e.g., p = 0.10, but also with
the model spectrum. Thus, the performance of spectral estimators becomes
readily visible. Real data (a seismogram and wind speed measurements) are
analysed in Sect. 9.4, both stemming from stationary stochastic processes
whose spectra are not completely unknown. This analysis demonstrates how
two entities collaborate in spectral estimation, these being (i) preliminary
knowledge of the process under analysis available from theory and/or prior
experiments and (ii) methods as introduced in Sects. 9.2 and 9.3.
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9.2 Direct Spectral Estimator

Sect. 8.3 discusses the bias obtained in (8.19) that has to be taken into account
when a spectrum CX(s)

(
or an integrated spectrum C

(I)
X (s)

)
is estimated us-

ing a periodogram IX(s)
(
or a cumulated periodogram

∑
−1/2<rl≤sk

IX(rl)
)

calculated from a time slice (xt), t = 0, . . . , N − 1, in a realisation of a
discrete-time stationary process (Xt) under investigation. This bias is shown
to be due to convolving with the Fejer kernel FN (s) in (8.21), a situation
similar to the one encountered in Sect. 6.5.3. There, it is demonstrated that
convolving with the Dirichlet kernel DN (s) in (6.95) generates distortions
when a Fourier transform F (s) = F−i

(
f(t)

)
pertaining to a function f(t) in

L2(−∞,∞) is calculated from a finite interval in the time domain. From the
similarity of these convolution integrals, it is concluded in Sect. 8.3 that the
bias of IX(s),

1. due to the main lobe of the Fejer kernel, becomes negligible within
small neighbourhoods of peaks in CX(s) on condition that the num-
ber of observations N is as large as that recommendend by diagnostic
(6.116), i.e., large enough to assert that B∩

�
(
FN (s)

) ≤ B�
(
CX(s)

)
/2,

where B∩
�
(
FN (s) ≈ (7/8N) is the width at half height of the main lobe

of the Fejer kernel as obtained in the remarks to (6.97) and B�
(
CX(s)

)
is the bandwidth of the continuous spectrum as defined in (7.83), and

2. due to the side lobes of the Fejer kernel, remains substantially large in
greater distances from the peaks of CX(s) even when N is large enough to
trace the narrowest peak, on condition that CX(s) has a dynamic range
which is greater than the threshold proposed in (6.117).

Consequently, a periodogram is subject to a bias due to the convolution
integral in (8.21), as demonstrated in Figs. 8.6 and 8.7.

Assuming that the number of observations available is as large as or even
larger than recommended in (6.116), an answer to the following question is
given in this section: does a data taper as defined in (6.110,2) exist such
that the Fejer kernel in (8.21) can be substituted with a function that has
smaller side lobes? The probability that such a data taper exists is quite large
because a cosine taper h(e)�

N (t) as defined in (6.111,2), for example, strikingly
suppresses the distortions generated by the side lobes of its kernel H(e)�

N (s) in
(6.114), as is demonstrated in Fig. 6.28.

In Sect. 9.2.1, the direct spectral estimator is defined using a suitable
data taper, and the bias of the estimator thus obtained is shown to be con-
siderably smaller than the bias of the periodogram. The variance and co-
variance functions of the direct spectral estimator are derived in Sect. 9.2.2,
and its probability distribution is given in Sect. 9.2.3. In Sect. 9.2.4, the
direct spectral estimator is calculated for frequencies s′k with ∆s′k < ∆sk,
∆sk = sk+1 − sk = (k + 1)/N − k/N = 1/N the Fourier frequencies as
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defined in (6.21), and in Sect. 9.2.5, alternatives to using a data taper are
introduced.

9.2.1 Definition and Expectation

In Sect. 6.7, leakage due to convolution (6.94) is reduced by tapering in
(6.114). This motivates to define a data taper in (9.2,1) which is shown to
be suitable for spectral estimation in the remarks to (9.8). Using this data
taper, an estimator for the continuous spectrum CX(s) of model (Xt) (9.1)
is defined in (9.3) and (9.4).

Let hN (t) be a data taper as defined in (6.110) such that
hN (t) and its kernel HN (s) = F−i

(
hN (t)

)
are a Fourier

transform pair as defined in (6.49) and (6.50), and let N be
a positive integer number. Then:

1. h(d)
N (t) = hN (t)

/√
Σ(h2), with Σ(h2) =

∑N−1
t=0

(
hN (t)

)2,
is called a variance-normalised data taper or a data taper
normalised for spectral estimation (cf. the remarks to (9.8)).

2. H(d)
N (s) =

(
HN (s)HN (s)

)/
Σ(h2) = F−i

(
h

(d)
N �h

(d)
N (t)

)
,

−1/2 ≤ s ≤ 1/2, and being periodic with period 1,
is called the spectral window pertaining to h(d)

N (t).

(9.2)

h
(d)
N (t) as defined in (9.2,1) is “smooth” because, in (6.110), w is re-

quired to be a smooth function. This implies, for the reasons given in the
remarks to (6.110), that the side lobes of HN (s) and H(d)

N (s) are smaller
than those of DN (s) and FN (s). FN (s) in (6.57) is the Fourier transform of
Λ

(e)
2N+1(t) = (1/N)

(
ΠN�ΠN (t)

)
, i.e., the autocorrelation ofΠN (t) as required

in (6.103). Consequently, ΠN (t) as in (6.52,1) acts as “data taper” when a
periodogram is calculated and FN (s) is the pertaining spectral window. In
convolution (8.21) therefore, the leakage due to the side lobes of FN (s) is
reduced when ΠN (t) is substituted with h(d)

N (t), acting as data taper when
the direct spectral estimator Ĉ(d)

X (s) is calculated using definition (9.3).
In (9.3), a time slice t = 0, . . . , N − 1 in a realisation (xt), t =

. . . ,−1, 0, 1, . . ., stemming from a stationary discrete-time stochastic process
(Xt) with µX = 0, is tapered using a variance-normalised data taper h(d)

N (t) as
defined in (9.2,1). Thus, h(d)

N (t)xt, t = . . . ,−1, 0, 1, . . . is arrived at: a sequence
that is in L2(−∞,∞), because

∑∞
t=−∞

(
h

(d)
N xt

)2 =
∑N−1

t=0

(
h

(d)
N xt

)2
<∞, i.e.,

it has a finite norm on t = . . . ,−1, 0, 1, . . ., as required in (6.3). In product
h

(d)
N (t)xt, observations xt are as usual substituted with random variables Xt

to obtain an estimator, and thus Ĉ(d)
X (s) becomes the squared absolute value

of F−i

(
h

(d)
N (t)Xt

)
, i.e., the Fourier transform of h(d)

N (t)Xt as defined in (6.49)
and (6.50). Hence, the direct spectral estimator Ĉ(d)

X (s) is defined for all real
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−1/2 ≤ s ≤ 1/2 and is periodic with period 1, properties shared by the
spectrum of a discrete-time stochastic process, as is concluded from (7.51),
(7.64), (7.65) and (7.66). In (9.4), the direct spectral estimator is written as
squares of the real and imaginary part of h(d)

N (t)Xte−i2πst in (9.3), as a direct
consequence of (6.2,4) and (9.2,1).

Ĉ
(d)
X (s) =

∣∣∣∣∣
N−1∑
t=0

h
(d)
N (t)Xte−i2πst

∣∣∣∣∣
2

=

∣∣∣∣∣
N−1∑
t=0

hN (t)Xt√
Σ(h2)

e−i2πst

∣∣∣∣∣
2

(9.3)

=

(
N−1∑
t=0

hN (t)Xt√
Σ(h2)

cos(2πst)

)2

+

(
N−1∑
t=0

hN (t)Xt√
Σ(h2)

sin(2πst)

)2

(9.4)

=
N−1∑

τ=−(N−1)

(
1

Σ(h2)

N−1−|τ |∑
t=0

hN (t)XthN (t+ |τ |)Xt+|τ |

)
cos(2πsτ) (9.5)

=
∞∑

τ=−∞
ĉ
(d)
X (τ )e−i2πsτ where (9.6)

ĉ
(d)
X (τ ) =

{
1

Σ(h2)

∑N−1−|τ |
t=0 hN (t)XthN (t+ |τ |)Xt+|τ | for |τ | < N

0 for |τ | ≥ N
(9.7)

(9.5), (9.6) and (9.7) summarise the results derived in Sect. 9.5.1: Ĉ(d)
X (s) =

F−i

(
ĉ
(d)
X (τ )

)
, i.e., Ĉ(d)

X (s) and ĉ(d)
X (τ ) are a Fourier transform pair as defined in

(6.49) and (6.50), where both, Ĉ(d)
X (s) and ĉ(d)

X (τ ), are calculated from tapered
(using a variance-normalised data taper as defined in (9.2,1)) observations of
a stationary stochastic process.

The expectation of the empirical covariance function calculated from ta-
pered observations is arrived at in (9.8), using (i) formula (1.15,4) and (ii)
the expectation of the empirical covariance function as derived in (2.57):

E
(
ĉ
(d)
X (τ )

)
=

1
Σ(h2)

N−1−|τ |∑
t=0

hN (t)hN (t+ |τ |)E(XtXt+|τ |
)

=
∑N−1−|τ |

t=0 hN (t)hN(t+ |τ |)∑N−1
t=0

(
hN (t)

)2 cX(τ ). (9.8)

In (9.8), E
(
ĉ
(d)
X (τ )

)
= cX(τ ) for τ = 0, and, consequently, the empirical co-

variance function calculated from tapered observations estimates the covari-
ance function without bias at least for lag τ = 0, i.e., ĉ(d)

X (0) is an unbiased
estimator for the variance σ2

X of the stationary process (Xt). This desired
property is due to the normalisation of hN (t) with Σ(h2) in definition (9.2,1),
where h(d)

N (t) is called variance-normalised data taper.
When (9.8) is substituted in (9.6), the expectation of the direct spectral

estimator is arrived at in (9.9). (9.10) is obtained by applying convolution
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theorem (6.48,7). Thereafter, (9.11) and (9.12) follow using definition (9.2,2).
Alternatively, the expectation of a direct spectral estimator is derived in
Sect. 9.5.2 from the Fourier representation of the process under analysis.

E
(
Ĉ

(d)
X (s)

)
=

∞∑
τ=−∞

(∑N−1−|τ |
t=0 hN (t)hN(t+ |τ |)

Σ(h2)
cX(τ )

)
e−i2πsτ (9.9)

=

( ∞∑
τ=−∞

∑N−1−|τ |
t=0 hN (t)hN (t+ |τ |)

Σ(h2)
e−i2πsτ

)
∗ dC(I)

X (s) (9.10)

=
(H(d)

N (s)
) ∗ dC(I)

X (s) =
∫ 1/2

−1/2

H(d)
N (s−r)dC(I)

X (s)
convolution
as in (6.144) (9.11)

=
(H(d)

N (s)
) ∗ CX(s) =

∫ 1/2

−1/2

H(d)
N (s−r)CX(s)ds

when the
spectrum is
continuous

(9.12)

When the expectation of the periodogram obtained in (8.21) is compared
with the one of the direct spectral estimator arrived at in (9.11), it is con-
cluded that both, the periodogram and the direct spectral estimator, are
biased for finite N . In both cases, the bias is due to the convolution of the
spectrum to be estimated with the spectral window (FN (s) is the spectral
window of the periodogram as obtained in the remarks to (9.3)). Since FN (s)
is a defining sequence for the periodic delta function with period 1, δ(s+n),
n = . . . ,−1, 0, 1, . . ., as defined in the remarks to (6.62), IX(s) is unbiased
for N → ∞ as argued in the remarks to (8.19) and (8.21). Is the spectral
window H(d)

N (s) in (9.2,2) a defining sequence for δ(s+ n) as well?
h

(d)
N � h

(d)
N (0) =

(
1/Σ(h2)

)(
hN � hN (0)

)
= 1, due to the normalisation

of the data taper hN (t) required in (9.2,1), implies
∫ 1/2

−1/2
H(d)

N (s) = 1, as is
concluded from definitions (9.2,2) and (6.103), the properties of the auto-
correlation derived in Sect. 6.9.6 and proposition (6.48,1). Alternatively, this
desired property is obtained in Problem 9.2 by applying Parseval’s identity.
A spectral window H(d)

N (s), N = 1, 2, 3, . . ., is therefore reconcilable with
(6.60,2). If it is in agreement with (6.60,1) as well, then it is a defining se-
quence for δ(s) in its definition interval −1/2 ≤ s ≤ 1/2, and the direct
spectral estimators in (9.11) and (9.12) become unbiased for N → ∞.

If N is finite, then the direct spectral estimators in both (9.11) and (9.12)
are biased due to the convolution of the spectrum with the spectral window;
however, the bias is reduced substantially as compared with the periodogram.
This is demonstrated in Fig. 9.1. There, the expectations of the direct spectral
estimators are calculated, using (9.12), by convolving the spectrum of the
AR[4] model in Fig. 7.14 with the spectral windows H(d)�

N (s) pertaining to
cosine tapers h

�
N (t), as defined in (6.111,1) and plotted for p = 0, p = 0.05

and p = 0.1 in Fig. 9.2. Cosine taper h
�

N (t) for p = 0 is identical withΠN (t) in
(6.52,1) and, therefore, the expectation function of the periodogram in (8.21)
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Fig. 9.1. Spectrum (solid line) pertaining to the AR[4] model in Fig. 7.14 together
with expectations (9.12) of direct spectral estimators (broken lines) calculated from
N = 64 observations stemming from a realisation of this model, subsequent to
tapering with cosine tapers for p = 0.0 (the periodogram), p = 0.05 and p = 0.10.

is obtained, i.e., H(d)
N (s) in (9.12) is substituted with FN (s), the Fejer kernel

being the spectral window of the periodogram. This expectation is identical
with the one plotted in Fig. 8.7 (b) for this AR[4] model, and N = 64. In
Fig. 9.1 (b), for higher frequencies at larger distances from the peaks, the
bias of the periodogram is reduced when the spectrum is convolved with the
spectral windows H(d)�

N (s) pertaining to cosine tapers h
�

N (t) for p = 0.05 and
p = 0.10. The bias is reduced substantially, i.e., by orders of magnitudes.

To the example cosine tapers h
�

N (t) (6.111,1) for N = 64 and p = 0.0,
p = 0.05 as well as p = 0.10 as plotted on the left in Fig. 9.2, pertain
the spectral windows H(d)�

N (s) as plotted on the right in this figure. H(d)�
N (s) =

F−i

(
h(d)�

N �h(d)�
N (t)

)
is calculated by Fourier transforming the autocorrelation of

the cosine taper, subsequent to normalising with
∑N−1

t=0

(
h
�

N (t)
)2 as required

in (9.2,1). H(d)�
N (s), N = 1, 2, 3, . . ., is a defining sequence for δ(s + n), n =

. . . ,−1, 0, 1, . . ., as is derived in Problem 9.3. A direct spectral estimator
calculated from cosine tapered observations is therefore unbiased for N → ∞,
a desired property as is concluded from the remarks to (9.12). Cosine data
tapers are quite frequently used in spectral estimation. However, alternative
tapers are available. For example, DPSSs as introduced in the remarks to
(6.127) are used as data tapers in multi-taper spectral estimation [108].

For the case of spectral windows H(d)�
N (s) pertaining to variance-normalised

cosine tapers h
�

N (t), Fig. 9.2 demonstrates that H(d)�
N (s) has

– large side lobes on condition that h
�

N (t) increases and decreases towards
both of its ends with slopes having large absolute values, i.e., when p is
small (in this case, the tails of h

�
N (t) are short), and
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Fig. 9.2. Cosine tapers h
	

N (t) as defined in (6.111,1) (on the left), their autocorre-

lations normalised with
∑N−1

t=0

(
h
	

N (t)
)2

(in the centre) and their spectral windows

H(d)	
N (s) as defined in (9.2,2) in dB (on the right, when negative with broken lines)

for N = 64 as well as p = 0, p = 0.05 and p = 0.10.

– small side lobes on condition that h
�

N (t) increases and decreases with
slopes having small absolute values, i.e., when p is large (in this case, the
tails of h

�
N (t) are long).

This behaviour is shared by all spectral windows H(d)
N (s) = F−i

(
h

(d)
N �h

(d)
N (t)

)
as defined in (9.2,2), a conclusion drawn from the discussion in Sect. 6.7.1, be-
cause the autocorrelation of h(d)

N (t) is a time-limited sequence, as introduced
in (6.108).

The example cosine tapers h
�

N (t) and spectral windows H(d)�
N (s) in Fig. 9.2

(together with the widths at half height of their main lobes in Table 9.1) also
show that the main lobe of H(d)�

N (s) increases in width when the side lobes
decrease in height, i.e., when p increases, a behaviour shared by spectral
window (9.2,2) as is concluded from (6.48). A spectral window with a wider
main lobe will blur a peak in the spectrum to be estimated more than one
with a narrower main lobe, i.e., the loss of resolution in the frequency domain
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Table 9.1. Height and width at half height B∩
�
(
H(d)	

N (s)
)

of the main lobes of

spectral windows H(d)	
N (s) (9.2,1) pertaining to cosine tapers h

	
N (t) (6.111) for

N = 64. B∩
�
(
H(d)	

N (s)
)

results in Problem 9.3 when definition (6.97) is applied.

B∩
�
(
FN (s)

)
≈ 7/(8N), i.e., B∩

�
(
H(d)	

N (s)
)

for p = 0.0, is obtained in plots of Fe-

jer kernels for a varietey of N , as is demonstrated when B∩
�
(
DN (s)

)
≈ 6/(5N) is

approximated in the remarks to (6.97).

p 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.40 0.50
height ≈ 64.00 62.01 59.54 57.35 54.47 52.36 50.31 46.44 42.64

B∩
�
(
H(d)	

N (s)
)
≈ .0137 .0146 .0152 .0160 .0172 .0180 .0190 .0208 .0225

increases, as is demonstrated in Sect. 6.5.3. Consequently, an increased bias
of a direct spectral estimator in the bands with a peak is the penalty paid for
reducing the bias a larger distance away from a peak by tapering. In Fig. 9.1
(a) for example, the bias of the direct spectral estimator increases slightly
with increasing p in the peak region of the spectrum; the increase in bias is
however small compared to the bias generated by the too small number of
observations used for the estimation (i.e., N = 64, whereas diagnostic (6.116)
recommends 1/N = ∆sk < 0.00474/2, 0.00474 being the bandwidth of the
spectrum to be estimated drawn in Fig. 7.10 (d)).

From Figs. 9.1 and 9.2 it becomes evident that a bias in a direct spec-
tral estimator is more efficiently reduced when the side lobes of the spectral
window decrease. This result is not surprising for two reasons:

1. the bias in the direct spectral estimator due to the convolution in (9.11)
and (9.12) is comparable to the leakage generated in (6.113) and (6.114)
by convolution G(s)∗H(e)

N (s) when the tapered observations (gt)
(
h

(e)
N (t)

)
are Fourier transformed, and

2. the leakage in (6.113) and (6.114) reduces when the side lobes in H(e)
N (s)

become smaller, H(e)
N (s) being the kernel pertaining to h

(e)
N (t), as is

demonstrated in Problem 6.28.

To what extent is tapering required in order to reduce the bias due to the side
lobes of the spectral window when a spectrum of a discrete-time stationary
stochastic process is estimated? An answer to this question can be obtained
from diagnostics as introduced in Sect. 6.7.2, modified as recommended in
the remarks to Figs. 8.4 and 8.5, provided that approximations for the dy-
namic range (6.96) and the bandwidth (7.83) of the spectrum under analysis
are available. If these parameters of the spectrum to be estimated are not
available, then a diagnostic for the leakage due to the side lobes of the spec-
tral window can be obtained when the procedure introduced in the remarks
to (6.117) is applied: the observations are tapered with a sequence of data
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Fig. 9.3. Spectrum CX(s) of the AR[4] process (Xt) as in Fig. 7.14 (solid lines)

together with direct spectral estimators Ĉ
(d)
X (s) calculated as required in (9.3) from

N = 64 observations in a realisation of (Xt), which are multiplied with cosine tapers

h
	

N (t) as defined in (6.111,1) for p = 0.00, 0.05, 0.10, 0.15, 0.20, 0.25 and subject to
a normalisation as required in (9.2), from left to right and top to bottom.

tapers having tails of increasing lengths and, subsequent to tapering, direct
spectral estimators are calculated.

In Figs. 9.3 and 9.4, for example, direct spectral estimators are plotted
which are calculated from two time slices of lengths N = 64 and N = 256
from a realisation of the AR[4] model (Xt) with spectrum CX(s) as plotted in
Fig. 7.14, subsequent to multiplying the observations with sequences of cosine
tapers. From these figures it becomes obvious that, in order to suppress the
bias for frequencies s ≥ 0.20, a cosine taper with p ≥ 0.15 is required when
the direct spectral estimator is calculated from N = 64 observations, whereas
this goal can be achieved using a cosine taper with p ≥ 0.05 when N = 256
observations are available.
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Fig. 9.4. As Fig. 9.3, but here N = 256 observations are multiplied with cosine
tapers for p = 0.000, 0.010, 0.025, 0.050, 0.075, 0.100.

Could these results be obtained if the spectrum of the AR[4] model were
not plotted with solid lines in Figs. 9.3 and 9.4? A bias becoming reduced by
tapering leaves two kinds of “footprints” in the plots of a sequence of spectral
estimators calculated using data tapers with tails increasing in length:

1. At the exterior of the bands with peaks, the periodogram is substantially
larger than the spectral estimators because the side lobes of the Fejer
kernel (the spectral window of the periodogram) are larger than the side
lobes of the spectral windows pertaining to data tapers as defined in (9.2).
With increasing length of the tails in the data tapers, i.e., with increasing
p when cosine tapers are applied, the spectral estimators become stable,
i.e., pairs in the sequence of estimators become approximately identical,
as demonstrated by the estimators for p = 0.20, 0.25 in Fig. 9.3 and
for p = 0.050, 0.075, 0.100 in Fig. 9.4. The estimators in the first pair
having this property are then selected as estimators for the spectrum, as
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argued in the remarks to (6.117). There, a sequence of cosine tapers with
increasing p is applied to reduce the leakage due to the side lobes of the
kernel in (6.114).

2. In a logarithmic plot, a direct spectral estimator fluctuates within a con-
fidence interval of constant height. This consequence of (9.19) is demon-
strated in Figs. 9.7, 9.8 and 9.9. It implies that a direct spectral estimator
locally (2.55,2) fluctuates with constant amplitudes provided that it is
unbiased, a property possessed by those direct spectral estimators with
cosine tapers for p = 0.20, 0.25 in Fig. 9.3 and for p = 0.050, 0.075, 0.100
in Fig. 9.4, reconcilable with the result obtained above. The other esti-
mators in these figures, in contrast, fluctuate with locally non-constant
amplitudes, a behaviour pointing to a biased estimator. For example, the
direct spectral estimator obtained using a cosine taper for p = 0.025 in
Fig. 9.4 (c) is, within the bands plotted with solid vertical lines, subject
to changes in the amplitudes of its fluctuations.

Cosine tapers h
�

N (t) as defined in (6.111) and plotted in Figs. 6.26 and
9.2 are obtained in R using spec.taper(), as demonstrated in the remarks to
(6.111). The pertaining normalised autocorrelations

(
1/Σ(h2)

� )(
h
�

N � h
�

N (t)
)

with Σ(h2)
�

=
∑N−1

t=0

(
h
�

N (t)
)2, and spectral windows H(d)�

N (s), as plotted in
Fig. 9.2, can be calculated using the R expressions in Sect. 6.9.8 as tem-
plates and/or the hint given in Problem 9.3. Despite the plots of the spectral
windows being obtained using fft() from the normalised autocorrelations,
H(d)�

N (s) and
(
1/Σ(h2)

� )(
h
�

N � h
�

N (t)
)

as well as H
�

N (s) and h
�

N (t) are Fourier
transform pairs as proposed in (6.49) and (6.50). This is implied by definitions
(9.2,2) and (6.110,2).

Using a cosine taper and applying definitions (9.2) and (9.3), a direct
spectral estimator can be calculated using spec.univariate() introduced in
Sect. 9.5.6. As an alternative to the normalisation of the data taper in
spec.univariate(), the squared absolute value of the Fourier transform is
normalised with Σ(h2)

�
=
∑N−1

t=0

(
h
�

N (t)
)2 in spec.pgram(), the usual R func-

tion for computing a direct spectral estimator. In this form, Σ(h2)
�

plays the
role of N =

∑N−1
t=0

(
ΠN (t)

)2 used for the normalisation of a periodogram as
required in (8.1,3), because ΠN (t) (6.52,1) is the “data taper” of the peri-
odogram.

If a direct spectral estimator is calculated by applying a data taper hN (t)
to a time slice (xt), t = 0, 1, . . . , N−1, in a realisation of a stationary stochas-
tic process (Xt), then the observations multiplied with the weights in the tails
of hN (t) are downweighted as compared with the observations multiplied
with the centre segment of hN (t). Consequently, oscillations in the product
hN (t)(xt) are damped near the end points of the observational period, as is
demonstrated in Fig. 9.5.

In statistics, different weights are applied to observations xi in order to
compensate for different variances of the observed random variables Xi. For
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Fig. 9.5. Time slices of lengths N = 64 (above) and N = 256 (below) in a real-
isation of the AR[4] process (Xt) as in Fig. 7.14 (solid line), both multiplied with
cosine tapers for p = 0.1 (• on solid lines).

example, a weighted least square regression is calculated when the variances
in the diagonal of the residual covariance matrix (3.16) are not constant.
A non-constant variance of the observations is compensated for, in order to
obtain estimates with a minimal variance. If, however, observations (xt), t =
0, 1 . . . , N − 1, stemming from a discrete-time stationary stochastic process
(Xt) and thus having identical variance as implied by (2.8,2), are multiplied
with a data taper hN (t), t = 0, 1 . . . , N − 1, then estimates calculated from
the weighted observations do not have minimal variance. Hence, a direct
spectral estimator Ĉ(d)

X (s) is supposed to have a variance that is larger than
that of a periodogram IX(s), even though both are calculated from identical
observations (xt), t = 0, 1 . . . , N − 1, in a realisation (xt) of a stationary
stochastic process (Xt).

9.2.2 Variance and Covariance Functions

The periodogram IX(s) and the direct spectral estimator Ĉ(d)
X (s) are both

calculated from a time slice (xt), t = 1, 2, . . . , N − 1, in a realisation (xt)
of a discrete-time stochastic process (Xt) having a continuous, discrete or
mixed spectrum, on condition that (Xt) is stationary. The expectation of the
periodogram as derived in (8.21) is the convolution of the spectrum to be
estimated with the Fejer kernel FN (s). (8.21) becomes a special case of the
expectation of the direct spectral estimator as obtained in (9.11), when ΠN (t)
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is substituted for h(d)
N (t) in (9.3) and, correspondingly, FN (s) for H(d)

N (s) in
(9.11).

Are the variance and covariance functions of the periodogram as proposed
in (8.24) a special case of the variance and covariance functions of the direct
spectral estimator? An answer to this question can be obtained from approxi-
mation (9.14) which applies when conditions (9.13) are satisfied [108]. (9.13,1)
requires that the process under analysis has a continuous spectrum (9.1,2);
and (9.13,4) implies that the continuous spectrum to be estimated is locally
constant in a frequency band 2B∩

�
(
HN (s)

)
wide. B∩

�
(
HN (s)

)
is the width at

half height calculated for the main lobe of the kernel HN (s) = F−i

(
hN (t)

)
,

i.e., the taper applied, and thus (6.98) requires that B∩
�
(
HN (s)

)
becomes

smaller with increasing N . Consequently, (9.13,4) is satisfied on condition
that N is sufficiently large. Approximations for the threshold N can be in-
ferred from the dynamic range and bandwidth of the spectrum to be esti-
mated, provided that these parameters are known.

1. Let (xt), t = 0, 1 . . . , N − 1, be an observed time slice in
a realisation (xt) of model (Xt) as defined in (9.1,1).

2. Let Ĉ(d)
X (s) be a direct spectral estimator calculated as

required in (9.3) from (xt), t = 0, 1 . . . , N − 1, using
a variance-normalised data taper as defined in (9.2):
h

(d)
N (t) = hN (t)

/√
Σ(h2), with Σ(h2) =

∑N−1
t=0

(
hN (t)

)2.
3. Let (Xt) be normal as defined in (2.3).
4. Let CX(s) be locally constant in a frequency band

[s− ς, s+ ς] of width 2ς = 2B∩
�
(
HN (s)

)
about s.

(9.13)

From assumptions (9.13) the covariance function of the direct spectral esti-
mator is derived in Sect. 9.5.3 with the results in (9.14), (9.15), (9.16) and
(9.17), which hold for s �= −1/2, 0, 1/2 and s+ r �= −1/2, 0, 1/2.

Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
) ≈ (

C2
X(s)

)(
H⊕H(r)

)
with (9.14)

H⊕H(r) =
1(∑N−1

t=0

(
hN (t)

)2)2

∣∣∣∣ ∫ 1/2

−1/2

HN (r′)HN (r − r′)dr′
∣∣∣∣2 (9.15)

Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s)
)

= Var
(
Ĉ

(d)
X (s)

) ≈ C2
X(s) (9.16)

Cor
(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
)

= Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
)
/Var

(
Ĉ

(d)
X (s)

)
≈ (

C2
X(s)

)(
H⊕H(r)

)
/C2

X(s) = H⊕H(r) (9.17)

The covariance function of the direct spectral estimator in (9.14) for lag
r, r being a displacement in the frequency domain, is approximated by the
product of C2

X(s) andH⊕H(r), i.e., the square of the spectrum to be estimated
and the squared absolute value of convolution

∫ 1/2

−1/2
HN (r′)HN (r − r′)dr′,

subsequent to a normalisation. This normalisation causes H⊕H(0) = 1 for r =
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0, as obtained in (9.124), which implies approximation (9.16) for the variance
of the direct spectral estimator. Approximation (9.17) for its correlation is a
direct consequence of (9.14) and (9.16).

H⊕H(r) results from a self-convolution (introduced in the remarks to
(6.103)) of kernel HN (s) pertaining to data taper hN (t). HN (s), being the
Fourier transform of a time-limited sequence as required in (6.110), has main
and side lobes in its real and imaginary parts, similar to those of the ex-
amples given in Sect. 6.6.4. H⊕H(0) = 1 for r = 0 is obtained in (9.124),
i.e., the maximal value of H⊕H(r) is arrived at when both, HN (r′) and its
displaced duplicate HN (r − r′), become identical. For increasing r, H⊕H(r)
decreases and becomes small for r ≥ B∩

�
(|HN (s)|), B∩

�
(|HN (s)|) the width

at half height of the main lobe of |HN (s)| as defined in the remarks to (6.97),
because, for displacements r ≥ B∩

�
(|HN (s)|), the main lobes of |HN (r′)| and

|HN (r − r′)| only overlap in a small interval. This is the reason why, un-
der assumption (9.13,4), the approximation in (9.14) can be derived from
(9.114), as commented on in the remarks to (9.117) and (9.118), and that
consequently approximation (9.18) is arrived at.

Let Ĉ(d)
X (s) be a direct spectral estimator being calculated

under the preconditions stipulated in (9.13). Then
Cov

(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
) ≈ 0 for r ≥ 2B∩

�
(|HN (s)|). (9.18)

For example, H⊕H(r) pertaining to cosine tapers h
�

N (t) (6.111) for p = 0.0,
p = 0.05, p = 0.1, p = 0.3 and p = 0.5 as well asN = 64 are plotted in Fig. 9.6.
H⊕H(r) as plotted in Fig. 9.6 holds for arbitrary N on condition that lag r
is measured in units of ∆sk = 1/N as defined in (6.21) (Problem 9.6). If N
is an even number (as in the example given in Fig. 9.6) then B∩

�
(|H�N (s)|) ≈

B∩
�
(
H(e)�

N+1(s)
)
, with H(e)�

N+1(s) being the kernel pertaining to the even cosine

taper h(e)�
N+1(t) (6.111,2). Some B∩

�
(
H(e)�

N (s)
)

for N = 65, i.e., some widths at
half height of main lobes in even cosine tapers with N = 65, are given in
Table 6.2, those for p = 0.0, p = 0.05, p = 0.1, p = 0.3 and p = 0.5 are
plotted in Fig. 9.6 using vertical lines.

A cosine taper h
�

N (t) (6.111) with p = 0.0 is identical with ΠN (t)
(6.52,1), with DN (s)e−iπ(N−1)s = F−i

(
ΠN (t)

)
(6.54) being its kernel and

FN (s) (6.57) is spectral window. The properties of DN (s) and FN (s) are
enumerated in (6.58) and (6.59), from which it is concluded that FN (s) is
a defining sequence for δ(s) (6.62). In addition, B∩

�
(|DN (s)e−iπ(N−1)s|) ≈

B∩
�
(
DN+1(s)

) ≈ 5/(6N) is arrived at in the remarks to Fig. 6.24. For N = 65,
B∩
�
(|DN (s)e−iπ(N−1)s|) ≈ 0.01188 is drawn as a vertical solid line in Fig. 9.6.
The correlation of the periodogram (solid line in Fig. 9.6) rapidly de-

creases with increasing lag r: H⊕H(r) < 0.05 for r > B∩
�
(|DN (s)e−iπ(N−1)s|)

and H⊕H(r) ≈ 0.0 for r > 2B∩
�
(|DN (s)e−iπ(N−1)s|) ≈ 12/(5N) as approxi-

mated in the remarks to Fig. 6.24. Consequently, also the covariance of the
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Fig. 9.6. Correlation of direct spectral estimators calculated using cosine tapers

h
	

N (t) as defined in (6.111,1) with parameters N = 64 and p = 0.0, 0.05, 0.1, 0.3, 0.5:
H⊕H(r) as defined in (9.15) as well as (vertical lines) approximations for

B∩
�
(
|H	N (s)|

)
and 2B∩

�
(
|H	N (s)|

)
as in Table 6.2. r is the lag or displacement in

the frequency domain and can be read in units of ∆sk = 1/N as well.

periodogram becomes negligible for r > 2B∩
�
(|DN (s)e−iπ(N−1)s|). This spec-

ifies (8.24,6) more precisely: (i) Cov
(
IX(s), IX(s+ r)

) ≈ 0, for r > 12/(5N)
and s and s + r not being identical with Fourier frequencies sk, and (ii)
Cov

(
IX(s), IX(s+ r)

)
= 0 for s and s+ r being identical with sk.

The correlations of spectral estimators calculated subsequent to multiply-
ing the observations with cosine tapers h

�
N (t) for p = 0.05, p = 0.1, p = 0.3

and p = 0.5 are drawn using broken lines in Fig. 9.6, together with the
pertaining B∩

�
(|H�N (s)|). For moderate (p ≤ 0.1) cosine tapers, the correla-

tions are not far from the correlation of the periodogram (solid line), i.e.,
H⊕H(r) ≤ 0.05 for r > B∩

�
(|H�N (s)|) and H⊕H(r) ≈ 0 for r > 2B∩

�
(|H�N (s)|),
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since the main lobes of |H�N (s)| are not much wider than the main lobe of
|DN (s)e−iπ(N−1)s| obtained in (6.54) as the kernel pertaining to ΠN (t) in
(6.52,1), with DN (s) being the Dirichlet kernel in (6.55).

Fig. 9.6 allows for determining r0 such that Cor
(
Ĉ

(d)
X (s), Ĉ(d)

X (s + r)
)

=
H⊕H(r) ≈ 0 for r ≥ r0 = n∆sk, with Cor

(
Ĉ

(d)
X (s), Ĉ(d)

X (s + r)
)

as approxi-
mated in (9.17) and n an integer number as small as possible. For all examples
in Fig. 9.6, n = 2 is arrived at, because H⊕H(r) < 0.05 for r ≥ 2∆sk. n is the
minimal lag (in units of ∆sk) for which the correlations in a direct spectral
estimator become negligible.

In Fig. 9.6 it is evident that correlations H⊕H(r) of a direct spectral esti-
mator calculated from observations “tapered” with a rectangle sequence (the
periodogram) differ only slightly from those correlations of a direct spec-
tral estimator calculated using a moderate (p ≤ 0.1) cosine taper. However,
(8.24,4) implies that the covariances of the periodogram become approxi-
mately zero for Fourier frequencies sk, whereas the covariances of a direct
spectral estimator are, with H⊕H(r), proportional to the square of the spec-
trum to be estimated, as is concluded from (9.14). In applications therefore,
periodogram values IX(sk) and IX(sk−1), in lag ∆sk = sk −sk−1 = 1/N , are
approximately non-correlated; in contrast, values Ĉ(d)

X (sk) in a direct spectral
estimator are approximately uncorrelated for lags r ≥ 2∆sk.

The correlations in a direct spectral estimator can be demonstrated using
simulated realisations obtained from a first process having a spectrum with
a small dynamic range (15 dB, AR[2] model in Fig. 7.12) and a second pro-
cess having a spectrum with a large dynamic range (65 dB, AR[4] model in
Fig. 7.14). These spectra are plotted with solid lines on the left in Figs. 9.7
and 9.8, together with periodograms and direct spectral estimators (using
cosine tapers) obtained from time slices of length N = 512 in simulated re-
alisations of these models. From, for example, 1000 simulated realisations of
these models, 1000 periodograms and 1000 direct spectral estimators could,
in fact, be calculated using both cosine tapers and, thereafter, histograms and
scatterplots of the spectral estimators could be obtained as demonstrated in
Figs. 2.5 and 2.6, and empirical correlations calculated. It is, however, more
expedient to calculate the empirical correlations of the estimators from only
one realisation, provided that the spectral estimator is not biased.

The estimators plotted in Figs. 9.7 and 9.8 (except for the periodogram
shown in plot (a) in Fig. 9.8) are not biased, i.e., E

(
Ĉ

(d)
X (s)

) ≈ CX(s), as is
(i) obvious from the plots and (ii) in line with the remarks to Figs. 8.6 and
8.7 as well as Figs. 9.3 and 9.4. Further, Var

(
Ĉ

(d)
X (s)

) ≈ C2
X(s) in (8.3.8),

because both models are reconcilable with assumptions (9.13). Under these
preconditions and because the spectra of the simulated processes are known,
estimators Ĉ(ds)

X (sk) =
(
Ĉ

(d)
X (sk)−CX(sk)

)
/CX(sk) are arrived at. These es-

timators are approximately stationary . Thereafter, the empirical correlation
functions Cor

(
Ĉ

(ds)
X (sk), Ĉ(ds)

X (sk+l)
)

are calculated by applying definition
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Fig. 9.7. On the left, periodogram and direct spectral estimators calculated using
cosine tapers with p = 0.05 and p = 0.3 (from top to bottom) from a time slice
of length N = 512 in a realisation of the AR[2] model in Fig. 7.12; on the right,
the empirical correlation functions of the estimators, calculated subsequent to a
normalisation with the model spectrum (solid line).

(2.1,4) for lags l∆sk, l = 1, 2, . . ., and plotted on the right in Figs. 9.7 and
9.8. The bias of the periodogram in Fig. 9.8 (a) is large, and thus it is not
possible to construct a stationary estimator from this periodogram, which
further implies that no empirical correlations are available.

Do the empirical correlation functions plotted on the right in Figs. 9.7
and 9.8 stem from realisations of white noise processes? When these plots
are compared with those on the right in Fig. 2.22, it is then concluded from
(2.59) that

1. the direct spectral estimators calculated using cosine tapers with p = 0.05
and p = 0.30 in plot (c) and (e) in Fig. 9.7 have correlations for lag
1∆sk = 1/N = 1/512 that are small but not negligible, at least in the
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Fig. 9.8. As Fig. 9.8, with the difference that the estimators are calculated from
a realisation of the AR[4] model in Fig. 7.14 using cosine tapers with p = 0.05 and
p = 0.1

case of the estimator obtained using a cosine taper with p = 0.30, as is
seen in plot (f)

2. the direct spectral estimators calculated using cosine tapers with p = 0.05
and p = 0.10 in plot (c) and (e) in Fig. 9.8 have correlation functions that
remain safely in the interior of their .95 confidence intervals and thus are
non-correlated, and

3. the periodogram in plot (a) in Fig. 9.7 is non-correlated for lags 1∆sk,
2∆sk, 3∆sk, . . ., in agreement with (8.24,4).

Consequently, when the spectrum with a small dynamic range of approx-
imately 15 dB pertaining to the AR[2] model in Fig. 7.12 is estimated in
Fig. 9.7, then a cosine taper does not reduce the bias of the periodogram
(the periodogram in plot (a) is approximately unbiased) but merely gener-
ates, in the estimator, correlations that are not wanted. In Fig. 9.8 however,
a cosine taper does reduce the bias in the estimators for a spectrum with a
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large dynamic range of approximately 45 dB pertaining to the AR[4] model
in Fig. 7.14, and the correlations in the estimator for lags ∆sk, 2∆sk, . . .
remain safely in the interior of their .95 interval. These results are in line
with the correlations of a direct spectral estimator calculated using cosine
tapers that can be inferred from Fig. 9.6.

As a general conclusion drawn from the simulation experiments performed
in Figs. 9.7 and 9.8, it is recommended to use moderate data tapers (e.g.,
cosine tapers with p ≤ .10) for spectral estimation (on condition that a
sufficient reduction of the bias will be arrived at using such a taper).

9.2.3 Probability Distribution

The asymptotic distribution for N → ∞ is derived, e.g., in [20], with the
result in (9.19).

Let Ĉ(d)
X (s) be a direct spectral estimator (9.3) for the conti-

nuous spectrum CX(s) of model (Xt) (9.1). Then, for N → ∞:

1.
(
2/CX(s)

)
Ĉ

(d)
X (s) is χ2

(2) distributed for −1/2 < s < 0
and 0 < s < 1/2, and

2.
(
1/CX(s)

)
Ĉ

(d)
X (s) is χ2

(1) distributed for s = −1/2, 0, 1/2.

(9.19,1,2) become approximations for large finite N .

(9.19)

Using the properties of the χ2
(n) distribution as enumerated in the remarks to

(8.8), it can be inferred from (9.19,1,2) that, in the limiting case for N → ∞,
the variance of the direct spectral estimator is proportional to the square of
the spectrum to be estimated. This result is in line with the one proposed for
finite N in (9.16) under the assumptions in (9.13). (9.16) and (9.19) imply
that the variance of the direct spectral estimator does not decrease with with
increasing N : Ĉ(d)

X (s) is not a consistent estimator for CX(s), a property
shared by the periodogram, as is concluded from (8.24,6,7).

Consequently, a direct spectral estimator Ĉ(d)
X (s) and a periodogram

IX(s), both calculated from identical observations (xt), t = 0, 1 . . . , N − 1,
in a realisation (xt) of model (Xt) as defined in (9.1), do have identical
variance, a result in contradiction to the one supposed in the remarks con-
cluding Sect. 9.2.1. However, these estimators are distinct in their covari-
ance functions: Cov

(
IX(sk), IX(sl)

) ≈ 0 for k �= l, sk and sl Fourier fre-
quencies as defined in (6.21,1), whereas Cov

(
Ĉ

(d)
X (sk), Ĉ(d)

X (sl)
) ≈ 0 for

(l − k)∆sk ≥ 2B∩
�
(|HN (s)|) as required in (9.18). Thus, the reduction of

the bias arrived at by tapering is compensated by covariances in the direct
spectral estimator thus obtained that are not negligible for lag ∆sk (and
possibly neither for 2∆sk when the data taper is not moderate).

The probability distribution of the direct spectral estimator as proposed in
(9.19) is demonstrated in Fig. 9.9 using direct spectral estimators calculated
from time slices of lengths N = 256,N = 512 andN = 1024 in a realisation of
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the AR[4] model in Fig. 7.14. These time slices are multiplied with a cosine
taper p = 0.075, chosen such that estimators are obtained which are not
biased. What can be seen in Fig. 9.9?

Firstly, Ĉ(d)
X (sk), i.e., the direct spectral estimators calculated for Fourier

frequencies sk, fluctuate in the logarithmic plots on the left in Fig. 9.9 within
a confidence interval of constant height, reconcilable with the χ2

(2) approx-

imated distribution of
(
2/CX(sk)

)
Ĉ

(d)
X (sk) for −1/2 < s < 0 < s < 1/2

in (9.19,1,2). This approximation implies Pr
(
Q2(p) ≤

(
2Ĉ(d)

X (sk)
)
/CX(sk) ≤

Q2(1− p) ≈ 1 − 2p, with Q2(p) being the p quantile of the χ2
(2) distribution,

and, consequently,
(
2Ĉ(d)

X (sk)
)
/Q2(1 − p) ≤ C2

X(sk) ≤ (
2Ĉ(d)

X (sk)
)
/Q2(p)

is the approximate 2p confidence interval for Ĉ(d)
X (sk). Both bounds of this

confidence interval are proportional to Ĉ(d)
X (sk), implying a constant ratio

bound/estimator which becomes, subsequent to a logarithmic transform, the
constant difference between bound and estimator. More on confidence inter-
vals of direct spectral estimators can be read in Sect. 9.3.4, which introduces
confidence intervals for smoothed direct spectral estimators.

Secondly, all three direct spectral estimators fluctuate with approximately
identical amplitudes, irrespective of N . This result is in line with the his-
tograms of Ĉ(d)

X (sk)/CX(sk), i.e., the direct spectral estimators normalised
with the spectrum (feasible in simulation experiments), as plotted on the
right in Fig. 9.9. These histograms do not change when N changes, and, con-
sequently, the distribution of a direct spectral estimator does not depend on
N , as required in (9.19).

The same two results also apply to the periodogram (Problem 8.8). As
a third result, applying both to the periodogram and the direct spectral
estimator, use the hints given in Problem 8.2 to show that a direct spectral
estimator is no longer exponentially distributed subsequent to taking the
logarithms, as is obvious from the plots on the left in Fig. 9.9.

It is demonstrated in Fig. 9.9 that the variance of a direct spectral es-
timator does not depend on the length of the observational period N and
thus does not decrease when N increases, reconcilable with the approxima-
tions obtained in (9.19) and (9.16). Consequently, a direct spectral estimator
is not a consistent estimator as defined in (1.4). This property is shared by
the periodogram as implied by (8.24,5,7) and is inconvenient for the reasons
already mentioned in the remarks to (8.24):

1. an estimator having a smaller variance than Var
(
IX(s)

) ≈ C2
X(s) or

Var
(
Ĉ

(d)
X (s)

) ≈ C2
X(s), both for −1/2 < sk < 0 < sk < 1/2, as obtained

in (8.24,7) and (9.16), is required
2. both estimators are not smooth whereas the spectrum is often smooth or

contains smooth segments (confined by frequencies with jump disconti-
nuities in the integrated spectrum), and
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Fig. 9.9. On the left, direct spectral estimators Ĉ
(d)
X (s) calculated as required in

(9.3) using cosine tapers with p = 0.075 from time slices of lengths N = 256 (a),
N = 512 (c) and N = 1024 (e) in a realisation of the AR[4] model in Fig. 7.14,

together with, on the right, histograms of Ĉ
(d)
X (s)(sk)/CX(sk).

3. a wildly fluctuating estimator can suggest that the spectrum of the pro-
cess under analysis is discrete or mixed, even though it is continuous as
defined in (7.71,1).

For example, when the spectrum of the AR[4] model in Fig. 7.14 is estimated,
the variance of a direct spectral estimator is approximately 400002 for the
peak frequencies, and (10−2)2 for the high frequencies, i.e., intolerably large.

An increase in the length of the observational period does not reduce
the variance of either the periodogram or of the direct spectral estimator.
However, the estimators are calculated on a finer grid of frequencies as implied
by (6.21,1). For example, the direct spectral estimators plotted on the left
in Fig. 9.9 have been calculated for 2, 5 and 10 Fourier frequencies in band
0.11 ≤ s ≤ 0.12, corresponding to N = 256, N = 512 and N = 1024
observations, as shown in Table 9.2.

In Sect. 9.3, a direct spectral estimator is smoothed to reduce its variance.
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Table 9.2. Direct spectral estimators Ĉ
(d)
X (sk) in Fig. 9.9 in band 0.11 ≤ s ≤ 0.12.

N \ sk .1103 .1113 .1123 .1133 .1142 .1152 .1162 .1172 .1182 .1191

256 19474 11877
512 19699 7819 7042 19031 28491
1024 7882 20611 20606 27109 25716 13248 5604 50106 9713 31727

9.2.4 Calculated for Non-Fourier Frequencies

A direct spectral estimator as defined in (9.3) can be calculated for discrete
frequencies s′k which are not required to be the Fourier frequencies pertaining
to N as defined in (6.21,1): Frequencies s′k resulting in (9.20,2) from zero-
padding the tapered observations are on a finer grid than the Fourier frequen-
cies sk, since ∆s′k = s′k − s′k−1 = k/N ′ − (k − 1)/N ′ = 1/N ′ < ∆sk = 1/N .

Let
(
h

(d)
N (t)(xt)

)
, t = 0, 1, . . . , N − 1, be observations stemming

from a stationary stochastic process, multiplied with a variance-
normalised data taper as defined in (9.2). This sequence is
zero-padded as defined in the remarks to (6.26) to arrive
at N ′ > N values:

1.
(
h

(d)
N (t)(xt)

)′= (
h

(d)
N (0)×x0, h

(d)
N (1)×x1, . . . , h

(d)
N (N−2)×xN−2,

h
(d)
N (N−1)×xN−1, 0N , . . . , 0N ′−1

)
.

Then F−i

(
h

(d)
N (t)(xt)

)′, the discrete Fourier transform of the
tapered and zero-padded observations, is calculated as required
in (6.26) for a finer grid of

2. frequencies s′k = k/N ′, k = 0, 1, . . . ,m′, with m′ being the
largest integer number ≤ N ′/2, and,

3.
(F−i

(
h

(d)
N (t)(xt)

)′)(s′k) =
(F−i

(
h

(d)
N (t)(xt)

))
(sk), for s′k = sk,

is obtained using the rationale in the remarks to (6.26).

(9.20)

For example, direct spectral estimators Ĉ(d)
X (s′k) are calculated from a

time slice of length N = 64 in a realisation of the AR[4] model in Fig. 7.14 for
frequencies s′k as defined in (9.20,2), by zero-padding the tapered observations
as required in (9.20,1). Thereafter, their empirical correlation functions are
calculated in the same manner as those in Figs. 9.7 and 9.8. The estimators
for N ′ = 96 and N ′ = 128 are shown in plots (c) and (e) in Fig. 9.10,
their correlation functions in plots (d) and (f). These show correlations at
the exterior of the .95 confidence intervals (2.59) for lag 1∆s′k, ∆s′k = 1/96,
in plot (d), and lags ≤ 5∆s′k, ∆s′k = 1/128, in plot (f). These correlation
plots also demonstrate that the confidence intervals become narrower with
increasing m′ (and not m), with m′ being the number of values Ĉ(d)

X (s′k) as
required in (9.20,2).
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Fig. 9.10. On the left, spectrum of the AR[4] model in Fig. 7.14 together with
direct spectral estimators (vertical lines) calculated using a cosine taper for N = 64
and p = 0.3 for frequencies s′k as defined in (9.20) (N ′ = 64, 96, 128, from top
to bottom). On the right, the empirical correlation functions of the estimators,
calculated as in Fig. 9.7.

In the empirical correlation functions plotted on the right in Fig. 9.10,
the maximal lag n∆s′k with a non-zero correlation increases with decreasing
∆s′k, i.e., increasing N ′. This behaviour is induced by H⊕H(r) as defined in
(9.15) (examples are given in Fig. 9.6) which does not depend on N ′. H⊕H(r)
is not dependent on N ′ because h(d)

N (t) does not depend on N ′ in (9.20),
which implies that hN (t) does not depend on N ′ either.

Ĉ
(d)
X (s′k), with ∆s′k = 1/N ′ = 1/(2N), N ′ = 2N , and ĉ(d)

X (τ ) defined in
(9.7) are a discrete Fourier transform pair as defined in (6.22,4) and (6.26), a
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result obtained in (9.23) and (9.24). There, Ĉ(d)
X (s′k) is the direct spectral esti-

mator calculated as required in (9.3) for frequencies s′k with ∆s′k = (1/2)∆sk
as defined in (6.21); and ĉ(d)

X (τ ) is the empirical covariance function calculated
from tapered (using a variance-normalised data taper as defined in (9.2,1))
observations of a stationary stochastic process.

Frequencies s′k with ∆s′k = 1/(2N) are defined in (9.21). In (9.22), the
discrete Fourier transform G2N (s′k) of ĉ(d)

X (τ ), s′k frequencies as in (9.21),
is calculated as required in (6.22,4) and (6.26). From this transform, (9.23)
results because ĉ(d)

X (τ ) = 0, for |τ | ≥ N , as defined in (9.7). This Fourier sum
contains (N − 1) + 1 + N = 2N terms and the s′k defined in (9.21) are its
frequencies. The inverse transform is arrived at in (9.24) by applying (6.22,4)
and (6.27).

s′k = k/N ′ = k/(2N) with
k = −(N − 1), . . . ,−1, 0, 1, . . . , N
and therefore −1/2 ≤ s′k ≤ 1/2 (9.21)

G2N (s′k) =
N−1∑

τ=−(N−1)

ĉ
(d)
X (τ )e−i2πs′

kτ (9.22)

=
N∑

τ=−(N−1)

ĉ
(d)
X (τ )e−i2πs′

kτ = Ĉ
(d)
X (s′k) (9.23)

ĉ
(d)
X (τ ) =

1
2N

N∑
k=−(N−1)

G2N (k/(2N))e+i2π(τ/(2N))k with (9.24)

τ = −(N − 1), . . . ,−1, 0, 1, . . . , N (9.25)

Using (9.23), a direct spectral estimator Ĉ(d)
X (s′k), s′k frequencies with ∆s′k =

1/(2N), is calculated as the discrete Fourier −i-transform of ĉ(d)
X (τ ) defined in

(9.7), and, vice-versa, ĉ(d)
X (τ ) is obtained as the discrete Fourier +i-transform

of Ĉ(d)
X (s′k) using (9.24). This discrete Fourier transform pair favours the

derivations in Sect. 9.3.2.
When (9.23) is applied, one arrives at a direct spectral estimator Ĉ(d)

X (s′k),
s′k frequencies with ∆s′k = 1/(2N), on the second path, as demonstrated in
Problem 9.5. On the first path, however, Ĉ(d)

X (s′k) is obtained more readily:
the observations are tapered, the sequence thus obtained is zero-padded and
then (9.3) is applied. For example, the direct spectral estimator as plotted in
Fig. 9.10 (e) is calculated from a time slice of length N = 64 in a realisation
of the model in Fig. 7.14 using spec.univariate(...,taper=0.30,pad=1,...)

introduced in Sect. 9.5.6.
Alternatively, a direct spectral estimator that (i) applies a cosine taper as

defined in (6.111,1) and (ii) pads as required in (9.20,1) withN zeros to arrive
at N ′ = 2N , is calculated using spec.pgram(...,taper=0.30,pad=1,...).



552 9 Estimators for a Continuous Spectrum

9.2.5 Alternatives: Parametric Estimation, Pre-Whitening

The bias that has to be taken into account when a spectrum with a large dy-
namic range is estimated using the periodogram can be reduced on condition
that the observations are tapered. The bias of the direct spectral estima-
tor thus obtained in Sect. 9.2.1 is considerably smaller than the one of the
periodogram. The favourable reduction of the bias is compensated by corre-
lations in the direct spectral estimators which are brought about by the data
taper and therefore are not present in the periodogram, as can be seen in
Sect. 9.2.2. The unfavourable properties (biased and/or correlated) of both,
the periodogram and direct spectral estimator, motivate the introduction of
two alternatives to using a data taper in this section: (i) parametric spectral
estimation and (ii) pre-whitening.

A parametric estimation for the spectrum of the model in (9.1,1) is ar-
rived at by fitting a linear process to the observations using the procedures
introduced in Sect. 5.4 ([83], [89]). Often, autoregressive models are estimated
([26], [60], [10]). Thereafter, estimates for the model spectrum are calculated
as demonstrated in Sect. 7.4.2, with estimates substituted for model param-
eters.

For example, the AR[4] model Xt = 2.7607Xt−1−3.8106Xt−2+2.6535Xt−3−
0.9838Xt−4 +Wt, with µW = 0 and σ2

W = 1, is estimated using N = 512
simulated values as plotted above in Fig. 7.14. From this simulated time se-
ries, Burg’s algorithm (5.21) produces ã1 = 2.7483216, ã2 = −3.7817308,
ã3 = 2.6122472, ã4 = −0.9038562 and σ̃2

W = 0.949931, having only
small deviations from the maximum likelihood estimates ă1 = 2.7504098,
ă2 = −3.7834073, ă3 = 2.6127735, ă4 = −0.9027626 and σ̆2

W = 0.9474084.
With these values acting as substitutes for the model parameters in the R
expressions given in the remarks to Fig. 7.14, those empirical spectra are
obtained which are plotted with broken lines in Fig. 9.11 (a) in the band
0.1 ≤ s ≤ 0.15. From this plot, it becomes evident that (i) the maximum
likelihood estimate, despite being too low, estimates the frequencies of the
peaks satisfactorily and (ii) Burg’s estimate underestimates both the height
and frequencies of the peaks. At the exterior of 0.1 ≤ s ≤ 0.15, the differences
between the estimates and the spectrum are small.

The approximations (5.26) imply that both estimates, the maximum like-
lihood and Burg’s, become more accurate on condition that the number of
observations increases. This property is inherited by the empirical spectra
computed from the parameter estimates, and therefore the empirical spectra
come closer to the spectrum of the model when the length N of the simu-
lated time series increases, as demonstrated in Problem 9.7. For very large N ,
however, Burg’s estimate is preferred to the maximum likelihood one, since
the time needed for the computation of the maximum likelihood estimates
can be considerable.

As demonstrated in Fig. 9.11 (a), parametric spectral estimates can be
biased owing to errors in the empirical parameters; these errors, however,



9.2 Direct Spectral Estimator 553

0.10 0.11 0.12 0.13 0.14 0.15

(a)

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

frequency

Burg

ML

0.0 0.1 0.2 0.3 0.4 0.5

(a)

−
5

0
5

10
15

frequency
dB

AR[4]
Burg and MLE

ARMA[1,1], ARMA[2,1]

Fig. 9.11. On the left, spectrum of the AR[4] model in Fig. 7.14 in the interval
with the peaks (solid line) together with two parametric estimates; on the right,
empirical spectra of the SO index obtained from the estimates in Table 5.3.

decrease with increasing number of observations available. In addition, para-
metric spectral estimates can be biased due to uncertainties in the empirical
parameters stemming from models ambiguously identified since contradic-
tory results can be obtained from the procedures introduced in Sects. 5.4.1
and 5.4.2. In Table 5.3, for example, estimates for AR[4], ARMA[1, 1] and
ARMA[2, 1] models for the SO index are given, all of which are considered to
fit the data when the procedures introduced in Sect. 5.4.2 are applied. The
empirical spectra of the SO index obtained from these estimates are plotted
in Fig. 9.11 (b). The empirical AR[4] spectra (Burg’s and maximum likeli-
hood estimates) are practically identical, i.e., they cannot be distinguished
when plotted. Slightly larger are the differences between the maximum like-
lihood estimates of the ARMA[1, 1] and ARMA[1, 2] spectra. However, both
ARMA spectra are approximately 2 dB larger than their AR[4] counterpart.
The empirical spectra of the SO index obtained from the estimates of the
AR[4], ARMA[1, 1] and ARMA[1, 2] models in Table 5.3 demonstrate that
the uncertainties due to a difficult model identification are inherited by the
empirical spectra.

Pre-whitening is the second alternative to tapering an observed time series
(xt), t = 0, 1, . . . , N − 1. As a prerequisite for pre-whitening, it is assumed
that the continuous spectrum CX(s) of the process under analysis (Xt) has a
large dynamic range and is roughly known, with details to be estimated. This
knowledge stems from previous experiments and/or is derived from theory.
Then the observations (xt), t = 0, 1, . . . , N − 1, are modified by applying
a stochastic filter as defined in (7.84) such that they appear, subsequent to
filtering, as a realisation of a process having a spectrum with a very small
dynamic range, i.e., a spectrum that is approximately flat: (yt) = (gt) ∗ (xt),
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Fig. 9.12. Output (yt) of a pre-whitening filter as defined in (8.3.13) having the
realisation (xt) of the AR[4] model in Fig. 7.14 (a) as its input, together with its
empirical correlation function ĉY (τ).

with (gt) being the impulse response sequence and (yt) a realisation of the
output process (Yt) whose spectrum CY (s) has a small dynamic range.

If (Yt) is the convolution of (gt) and (Xt) then CY (s) = |G(s)|2CX(s) is
obtained from (7.90,4), with G(s) the frequency response function as defined
in (7.84). The output spectrum CY (s) has a small dynamic range on condi-
tion that (9.27) holds, and, under this condition, can be readily estimated
by calculating the output periodogram IY (s) from (yt), as demonstrated in
Fig. 8.4. Subsequent to estimating CY (s), CX(s) is arrived at using (9.26),
and the favourable properties of IY (s) as proposed in (8.7) are inherited by
the pre-whitened estimator Ĉ(pw)

X (s) for CX(s), on condition that CY (s) is
approximately flat.

(yt) = (gt) ∗ (xt) CY (s) = |G(s)|2CX(s) (9.26)(
|G(s)|2

) 1
CX(s)

≈ constant (9.27)

In order to arrive at a pre-whitening estimate therefore, a filter (gt) in (9.26)
is required such that (9.27) holds. Very often, (gt) is obtained from an AR[p]
model fitted to (xt) using the procedures introduced in Sect. 5.4. Assuming
µX = 0 and using only one index in (5.2), where the AR[p] model is de-
fined, (wt) = (1,−a1, . . . ,−ap) ∗ (xt) is obtained, with (wt) stemming from
a white noise process and (a1, . . . , ap) being the model coefficients. Then an
MA[∞] representation (xt) = (1,−a1, . . . ,−ap)−1 ∗ (wt) of this realisation
will exist. If both sides in this MA[∞] representation are convolved with
(1,−a1, . . . ,−ap) then (wt) is regained. Since (wt) has a flat spectrum, a
pre-whitening filter as required in (9.26) and (9.27) has been found: (xt) is
the input, (1,−a1, . . . ,−ap) the impulse response sequence, (wt) the out-
put, and G(s) = F−i(1,−a1, . . . ,−ap) the frequency response function. G(s)
and |G(s)|2 can be calculated using the R expressions in the remarks to
Fig. 7.14, once estimates (Burg’s or ML, as introduced in Sect. 5.2) and for
(1,−a1, . . . ,−ap) have been obtained.
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Fig. 9.13. Periodogram IY (sk) in dB obtained from y(t) as plotted in Fig. 9.12

(on the left) and Ĉ
(pw)
X (sk) (on the right), both plotted with small dots. On the

right, in addition, the spectrum of the AR[4] model (solid line) together with its
parametric estimation obtained using Burg’s algorithm (broken line), details of
Burg’s estimation in Fig. 9.11.

For example, the spectrum of the AR[4] model in Fig. 7.14 is estimated
in the following paragraphs. From the time slice in a simulated realisation
in Fig. 7.14 (a), Burg’s estimates ã1 = 2.7678735, ã2 = −3.8178623, ã3 =
2.6453416, ã4 = −0.9142806 as well as σ̃2

W = 1.098001 are calculated in the
remarks to Fig. 9.11 (a). From these estimates, the impulse response function
(gt) in a pre-whitening filter as derived above readily follows, and

#R time series object x: simulation in Fig. 7.14 (a)

#R vector ar: Burg’s estimates obtained from x

ar <- c(2.7678735, -3.8178623, 2.6453416, -0.9142806)

g <- concat(1, -ar)

y <- filter(x,g,method="convolution",sides=1)

#R time series object y: output of the pre-whitening filter

(yt) = (1,−ã1,−ã2,−ã3,−ã4) ∗ (xt) is obtained as output. (yt) is plotted in
Fig. 9.12 together with its empirical correlation function ĉY (τ ). When the
plots in Fig. 9.12 are compared with those in Fig. 2.22 it then becomes clear
that (yt) is approximately a realisation of a white noise process. Consequently,
IY (sk), i.e., the periodogram of (yt), as plotted in Fig. 9.13 (a), possesses the
properties summarised in (8.7). Using

specy <- spec.pgram(y,taper=0.0,pad=0,...)

specydb <- 10*log10(specy$spec)

this periodogram is calculated as demonstrated in Sect. 8.1.
It remains to calculate the frequency response function G(sk) of the pre-

whitening filter, with sk being the Fourier frequencies for N = 512, i.e.,
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those of IY (sk) obtained above. G(sk) is computed borrowing from the R
expressions in the remarks to Fig. 7.14

s1 <- (0:256)/512 #257 frequencies with delta sk = 1/512

sw <- 1.098001 #variance of innovations (Burg’s estimate)

sw2 <- rep(sw,257)

q <- as.complex(rep(1+0i,257))

for(i in 1:4) {q <- q - (ar[i]*exp(-1i*(2*i)*pi*s1)) }

#squared absolute value of frequency response function

Gsq <- sw2/((Mod(q))*(Mod(q)))

Gsqdb <- 10*log10(Gsq) #in decibel

and its squared absolute value |G(sk)|2 easily follows.
CY (s) = |G(s)|2CX(s) in (9.26) implies Ĉ(pw)

X (sk) = IY (sk)/|G(sk)|2 and,
since both IY (sk) and |G(sk)|2 have been made available above in dB,

specxpwdb <- specydb - Gsqdb

computes the pre-whitened estimator Ĉ(pw)
X (sk) for the spectrum of the AR[4]

model as plotted in Fig. 9.13 (b). Ĉ(pw)
X (sk) is an unbiased estimator for the

spectrum of the AR[4] model, comparable to the direct spectral estimator
Ĉ

(d)
X (s) in Fig. 9.9 (c), except for band 0.10 ≤ sk ≤ 0.15 with its peaks.

There, Ĉ(pw)
X (sk) inherits the bias of Burg’s estimate in Fig. 9.11 (a).

9.2.6 Summary

A direct spectral estimator is calculated as defined in (9.3) by means of
Fourier transforming the observations subsequent to a multiplication with a
variance-normalised data taper as defined in (9.2,1). Tapering plays a key
role in spectrum estimation [19]. When the observations are tapered, the ex-
pectation of the periodogram in (8.21) becomes the expectation of the direct
spectral estimator in (9.11), with the spectral window H(d)

N (s) substituted
for the Fejer kernel FN (s). H(d)

N (s) has smaller side lobes than does FN (s)
and, consequently, the bias due to leakage is reduced when a spectrum with
a large dynamic range is estimated.

However, when a spectrum with a small dynamic range (in the extreme
case, the constant spectrum of a white noise process) is estimated, the bias
of the periodogram is negligible in (8.21). Since the bias cannot be reduced
in this case, the non-negligible covariances of a direct spectral estimator for
small lags (9.14) induced by the data taper are not compensated for. Conse-
quently, the periodogram is the preferred estimator for (almost) flat spectra.

A sequence of data tapers with progressively increasing tail lengths is ap-
plied to arrive at the diagnostics in the remarks to Figs. 9.7 and 9.8. These
diagnostics allow for deciding whether, and to what extent, tapering is re-
quired.

Alternative to tapering, a spectrum having a large dynamic range can
be estimated by (i) fitting a linear process to the observations, using the
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techniques in Sect. 5.4 and thereafter calculating an empirical spectrum as
demonstrated in Sect. 7.4.2 (parametric spectral estimation), and (ii) by pre-
whitening, i.e., estimating a stochastic LTI filter (7.84) such that the spec-
trum of the output process has a small dynamic range.

Tapering efficiently reduces the bias in a direct spectral estimator; its vari-
ance as approximated in (9.16), however, remains proportional to the square
of the spectrum to be estimated, a property shared by the periodogram, as
implied by (8.24,7). This variance can be reduced by smoothing, as will be
shown in Sect. 9.3.

9.3 Smoothed Direct Spectral Estimator

The variance of a direct spectral estimator for the continuous spectrum CX(s)
in (9.1) is approximately the square of the spectrum to be estimated, i.e.,
Var

(
Ĉ

(d)
X (s)

) ≈ C2
X(s) as proposed in (9.16). Consequently, the variance of a

direct spectral estimator does not depend on the length of the observational
period N and thus does not decrease when N increases, as is demonstrated in
Fig. 9.9. Obviously, the variance of a direct spectral estimator can be reduced
by applying a moving average to a direct spectral estimator calculated for
discrete frequencies, as is concluded from the discussion in the remarks to
Fig. 9.9 and Table 9.2.

Let Ĉ(d)
X (s′k) be a direct spectral estimator calculated for discrete frequen-

cies s′k as defined in (9.20,2), with ∆s′k = s′k−s′k−1 = 1/N ′. Then the number
of s′k in an arbitrary band having a constant width will increase on condition
that∆s′k decreases, and, consequently, the variance of a mean calculated from
those Ĉ(d)

X (s′k) contained in the band decreases for increasing N ′, i.e., an in-
creasing N when N ′/N is kept constant. Thus an estimator for the spectrum
is obtained which has a variance depending on the number of observations.
Such an estimator can be defined and discussed in both domains:

1. in the frequency domain, local means of a direct spectral estimator cal-
culated for discrete frequencies are obtained in Sect. 9.3.1 by smoothing
with a moving average (2.39,1), a convolution corresponding,

2. in the time domain, to a multiplication of the empirical covariance func-
tion calculated from tapered observations (9.7) with the Fourier trans-
form of the moving average, as is discussed in Sect. 9.3.2,

and therefore advantage can be taken of both forms, once the moment func-
tions and the distribution of the smoothed direct spectral estimator have
been derived in Sects. 9.3.3 and 9.3.4.

Obviously, the moving average applied for smoothing in the frequency
domain depends on the bandwidth of the spectrum to be estimated: narrow
and sharp forms (peaks and/or valleys) are not captured when local means of
a direct spectral estimator are calculated over frequency bands being wider
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than the forms of the spectrum. Decisions regarding the width of the band
for smoothing become difficult when the bandwidth of the spectrum to be
estimated is not known, as is discussed in Sect. 9.3.5.

9.3.1 Discretely Smoothed Direct Spectral Estimator

Discretely smoothed direct spectral estimators are defined in (9.28) using a
moving average, with the properties discussed in the remarks to Fig. 6.31 and
also in Problem 7.8. Unlike the example in Fig. 6.31, no values are missing at
the start of the smoothed sequence or at its end, because the direct spectral
estimator is periodic with period 1 and thus is available at the exterior of
its definition interval −1/2 ≤ s ≤ 1/2, when the convolution sum for its
endpoints is computed by this so-called circular convolution, with circular
borrowed from filter(..., sides=2, circular=T, ...) as introduced below
in the remarks to (9.29).

Let Ĉ(d)
X (s) be a direct spectral estimator (9.3) calculated for

discrete frequencies −1/2 ≤ sk ≤ 1/2 in (6.21) (the Fourier
frequencies) or for −1/2 ≤ s′k ≤ 1/2 in (9.20,2), and being
periodic with period 1; and let Vm(sk) and Vm(s′k) be
even (6.32,1) sequences defined on frequencies sk or s′k with∑M

j=−M Vm(sj) = 1 and
∑M

j=−M Vm(s′j) = 1. Then:

1. Vm(sk) and Vm(s′k) are called smoothing kernels, and

2. Ĉ(m)
X (sk) =

M∑
j=−M

Vm(sj)Ĉ
(d)
X (sk−j)

for −1/2 ≤ sk ≤ 1/2
by circular convolution

3. Ĉ(m)
X (s′k) =

M∑
j=−M

Vm(s′j)Ĉ
(d)
X (s′k−j)

for −1/2 ≤ s′k ≤ 1/2
by circular convolution

are called discretely smoothed direct spectral estimators, with
M and/or m being their parameters.

(9.28)

The convolutions in (9.28) are linear and time-invariant transformations as
defined in (2.30) and (2.32); however, they are not stochastic filters (7.84) for
the reason to be given in Problem 9.9.

Both, Ĉ(m)
X (sk) and Ĉ(m)

X (s′k), are obtained as moving averages of direct
spectral estimators calculated for discrete frequencies, and thus are calculated
for discrete frequencies solely. The spectrum to be estimated, however, is
continuous. Consequently, it could be more advantageous to smooth a direct
spectral estimator Ĉ(d)

X (s) as defined in (9.5) for real s by making use of a
smoothing kernel defined for real s in a convolution integral. This alternative
is discussed in Sect. 9.3.2.

Often, a direct spectral estimator calculated for discrete frequencies is
smoothed using the modified discrete Daniell kernel as defined in (9.29). If
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Vm(sj) or Vm(s′j) in (9.28) are substituted with modified discrete Daniell

kernels VdD,M (sk) or VdD,M (s′k) then (i) Ĉ(d)
X (sk) is averaged in (9.28,2) over

frequencies sk−M , . . . , sk, . . . , sk+M or (ii) Ĉ(d)
X (s′k) is averaged in (9.28,3)

over frequencies s′k−M , . . . , s
′
k, . . . , s

′
k+M ; i.e., within bands of widths 2M∆sk

or 2M∆s′k. These are the widths of a modified discrete Daniell kernel as
obtained by applying definition (9.125).

Let −1/2 ≤ sk ≤ 1/2 and −1/2 ≤ s′k ≤ 1/2 be frequencies as
used in (9.28) and let M � N and M � N ′, with � smaller
by orders of magnitude. Then

VdD,M (sk)
VdD,M (s′k)

}
=

⎧⎨⎩ 1/(4M) for k = −M,M
1/(2M) for −M < k < M
0 for |k| > M

is called a modified discrete Daniell kernel.

(9.29)

In R, a direct spectral estimator is discretely smoothed using R func-
tion filter(..., sides=2, circular=T, ...) as introduced in the remarks
to Fig. 2.16, where a moving average and differences as defined in (2.39) are
calculated. When used with these arguments, filter() computes a convolu-
tion assuming that the direct spectral estimator is periodic and, therefore,
at the start of the smoothed sequence, and again at its end, no values are
missing. In R function spec.univariate() as introduced in Sect. 9.5.6, a di-
rect spectral estimator in R vector spec is smoothed with a modified discrete
Daniell kernel using filter().

For example, the direct spectral estimators in Fig. 9.10 calculated using
a cosine taper with p = 0.3 from N = 64 observations in a realisation of the
AR[4] model in Fig. 7.14 for (i) frequencies sk with ∆sk = 1/64 (above, plot
a) and (ii) s′k with ∆s′k = 1/128 = 1/N ′, i.e., subsequent to zero-padding
as required in (9.20) (below, plot e), are plotted once more in Fig. 9.14,
plots (a) and (c). These direct spectral estimators are smoothed as required
in (9.28,2,3) using VdD,M (sk) with M = 1 and VdD,M (s′k) with M = 3,
VdD,M (sk) and VdD,M (s′k) being modified discrete Daniell kernels as defined
in (9.29). This convolution corresponds to computing local weighted means of
the direct spectral estimators in moving frequency bands of widths 2M∆sk =
2∆sk and 2M∆s′k = 6∆s′k. The smoothed direct spectral estimators are
plotted with • in Fig. 9.14, plots (a) and (c).

Both estimators are smoothed in bands which are too wide, i.e., 2∆sk =
2 × (1/64) ≈ 0.031 and 6∆s′k = 6 × (1/128) ≈ 0.047, as compared to the
bandwidth of the spectrum of the AR[4] model in Fig. 7.14, having a band-
width B�

(
CX(s)

)
= 0.00474 and dynamic ranges of approximately 20 dB in

0.10 ≤ s ≤ 0.15 as well as 65 dB in 0.0 ≤ s ≤ 0.5. Consequently, the smoothed
direct spectral estimators in Fig. 9.14 have a bias which is quite large in the
band with the peaks, and which decreases with increasing distance from the
peaks.
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Fig. 9.14. On the left, direct spectral estimators in Fig. 9.10 (a) and (e) smoothed
with modified discrete Daniell kernels with M = 1 and M = 3 (plotted with •). On
the right, empirical correlation functions of the smoothed direct spectral estimators.

Both smoothed direct spectral estimators in Fig. 9.14, Ĉ(m)
X (sk) and

Ĉ
(m)
X (s′k), become approximately stationary when

(
Ĉ

(m)
X (sk)−CX(sk)

)
/CX(sk)

and
(
Ĉ

(m)
X (s′k) − CX(s′k)

)
/CX(s′k) are computed as demonstrated in the re-

marks to Figs. 9.7 and 9.8. Thereafter, the empirical correlation functions of
the transformed estimators are plotted on the right in Fig. 9.14. The empirical
correlations thus obtained are larger that those of the direct spectral estima-
tors, as becomes obvious when plots (b) and (d) in Fig. 9.14 are compared
with plots (b) and (f) in Fig. 9.10, because the correlations in a smoothed
direct spectral estimator are generated by two sources, i.e., tapering and
smoothing. The correlation function of a discretely smoothed direct spectral
estimator depends on the weight function, i.e., the discrete kernel applied
when smoothing; the maximal lag with non-zero correlations, however, de-
pends on the width of the moving frequency band over which a weighted mean
of the direct spectral estimator is computed; both of these approximations
result from the examples in Problem 7.8.

The moving average (1/4)Ĉ(d)
Y (sk−1) + (1/2)Ĉ(d)

X (sk) + (1/4)Ĉ(d)
X (sk+1),

as computed for Ĉ(m)
X (sk) in Fig. 9.14 (a), therefore contains at least two ap-

proximately non-correlated terms and thus Var
(
Ĉ

(m)
X (sk)

)
< Var

(
Ĉ

(d)
X (sk)

)
.

From the same argument follows that Var
(
Ĉ

(m)
X (s′k)

)
< Var

(
Ĉ

(d)
X (s′k)

)
.
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Fig. 9.15. On the left, spectrum (solid line) of the AR[4] model in Fig. 7.14 and
smoothed direct spectral estimator (broken line) calculated from N = 4096 obser-
vations in a realisation of this model. The observations are multiplied with a cosine
taper for p = 0.05 and then zero-padded as required in (9.20) and thus a direct
spectral estimator for N ′ = 8192 and ∆s′k = 1/8192 is arrived at. Thereafter, the
direct spectral estimator is smoothed with a modified discrete Daniell kernel having
parameter M = 10.

The estimators in Fig. 9.14 are thus biased and their variances still too
large. As a second example therefore, the spectrum of the AR[4] model in
Fig. 7.14 is estimated using a time slice of length N = 4096 in a realisation
of this model. Using N = 4096 observations, can an estimator be calculated
that is not biased for all frequencies and which has a variance much smaller
than the squared spectrum, i.e., the variance of the direct spectral estimator
approximated in (9.16)?

An answer to this question can be found in a second simulation exper-
iment. A direct spectral estimator Ĉ(d)

X (s′k) is calculated from N = 4096
observations in a realisation of the AR[4] model (Xt) in Fig. 7.14, subsequent
to tapering with a p = 0.05 cosine taper and zero-padding to arrive at an
estimator for frequencies ∆s′k = 1/N ′ = 1/8192 = 0.000122 as defined in
(9.20). Thereafter, Ĉ(d)

X (s′k) is smoothed using a modified discrete Daniell
kernel with M = 10, i.e., over a band having width 20 × ∆s′k = 0.002441,
to obtain Ĉ(m)

X (s′k) as defined in (9.28). Ĉ(m)
X (s′k) is plotted together with

CX(s′k) in Fig. 9.15 (a), and together with both, CX(s′k) as well as Ĉ(d)
X (s′k),

in Fig. 9.16 for 0.11 ≤ s′k ≤ 0.14 and 0.43 ≤ s′k ≤ 0.46.
Distinctly, the smoothed direct spectral estimator is approximately unbi-

ased for all frequencies, in the band with the peaks as well as for the higher
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Fig. 9.16. Details from Fig. 9.15 in bands 0.11 ≤ s′k ≤ 0.14 (on the left) and
0.43 ≤ s′k ≤ 0.46 (on the right): spectrum (solid line), direct spectral estimator
(vertical broken lines), smoothed direct spectral estimator (broken line fluctuating
about the solid line).

frequencies a larger distance away from the peaks. This property is due to
(i) the unbiased direct spectral estimator and (ii) 2M∆s′k = 0.002441 <
0.00474 = B�

(
CX(s)

)
, i.e., both bandwidths, the one of the smoothing ker-

nel and the one of the spectrum to be estimated (in the remarks to Fig. 7.14),
being approximately reconcilable with diagnostics (6.115) and (6.116).

Both spectral estimators, Ĉ(d)
X (s′k) and Ĉ(m)

X (s′k), are transformed to ob-
tain realisations of stationary random sequences

(
Ĉ

(d)
X (s′k)−CX(s′k)

)
/CX(s′k)

and
(
Ĉ

(m)
X (s′k) − CX(s′k)

)
/CX(s′k), whose empirical correlation functions are

plotted in Fig. 9.15 (b) and (c). This transformation is introduced in the
remarks to Figs. 9.7 and 9.8. In Fig. 9.15 (b), the empirical correlations are
small for lags ≥ 2∆s′k = 2(1/8192) = (1/4096) in accordance with the corre-
lation of a direct spectral estimator for a cosine taper with p = 0.05 as plotted
in Fig. 9.6. Consequently, 10 terms in (1/40)Ĉ(d)

X (s′k−10)+(1/20)Ĉ(d)
X (s′k−9)+

. . .+(1/20)Ĉ(d)
X (s′k)+ . . .+(1/20)Ĉ(d)

X (s′k+9)+(1/40)Ĉ(d)
X (s′k+10) are approxi-

mately non-correlated, and thus Ĉ(m)
X (s′k) is the mean of at least 10 indepen-

dent random variables, provided that the AR[4] model is normal. From this
rationale it is concluded that the variance of direct spectral estimator Ĉ(d)

X (s′k)
is reduced by at least one order of magnitude when it is smoothed using a
modified discrete Daniell kernel for M = 10. In Fig. 9.15 (c), the empirical
correlations decrease with constant slope and approximate zero-correlation
(2.59) is arrived at for lag 20∆s′k. For larger lags, the empirical correlation
function damps out, reconcilable with the examples given in Problem 7.8.
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It can be seen in Fig. 9.16 that Ĉ(m)
X (s′k) (i) fluctuates with relatively

large amplitudes about CX(s′k), i.e., the spectrum to be estimated, but (ii)
is not systematically larger or smaller than CX(s′k) — neither in the band
with the peaks nor for the higher frequencies — in accordance with the re-
sult obtained above, i.e., that Ĉ(m)

X (s′k) is unbiased. Thus, the fluctuations
in Ĉ(m)

X (s′k) are assumed to be due to its variance being still relatively large,
despite the reduction of variance attained when Ĉ(d)

X (s′k) is convolved as re-
quired in (9.28) to arrive at Ĉ(m)

X (s′k). Clearly, the variance of Ĉ(m)
X (s′k) is

further reduced when the number of Ĉ(d)
X (s′k) available in a frequency band

of width (1/2)B�
(
CX(s)

)
= 0.00474/2 increases, which is easily arrived at in

Problem 9.10 when N increases, on condition that N ′ = 2N .
The simulation experiments performed above, with the results plotted

in Figs. 9.14, 9.15 and 9.16, demonstrate that the moment functions of a
discretely smoothed direct spectral estimator calculated from N observations
depend on

1. a data taper being applied because a bias in a direct spectral estimator
is not reduced by smoothing, and

2. the bandwidth of the discrete smoothing kernel: with a kernel which is
wider than half the bandwidth of the spectrum to be estimated (the
maximal width recommended in (6.115) and (6.116)), one runs the risk
of obtaining a biased smoothed estimator, whereas with a kernel narrower
than recommended, the variance of the smoothed estimator is not as small
as would be desired.

These dependencies are further analysed in the following paragraphs where
the expectation and the variance functions of a smoothed direct spectral
estimator are derived.

The expectation function E
(
Ĉ

(m)
X (s′k)

)
of a discretely smoothed direct

spectral estimator as defined in (9.28) is approximated in (9.30)

E
(
Ĉ

(m)
X (s′k)

)
= E

⎛⎝ M∑
j=−M

Vm(s′j)Ĉ
(d)
X (s′k−j)

⎞⎠
=

M∑
j=−M

Vm(s′j)E
(
Ĉ

(d)
X (s′k−j)

) ≈ M∑
j=−M

Vm(s′j)CX(s′k−j) (9.30)

under the assumption that Ĉ(d)
X (s′k) is approximately unbiased, i.e., that

E
(
Ĉ

(d)
X (s′k)

) ≈ CX(s′k), which is arrived at on condition that the observa-
tions have been tapered as discussed in Sect. 9.2.1.

In the simulation experiment in Figs. 9.15 and 9.16, for example, Ĉ(d)
X (s′k)

is calculated subsequent to tapering a time slice of length N = 4096 in
a realisation of the AR[4] model in Fig. 7.14 and zero-padding such that
∆s′k = 1/(2N) = 1/8192. Due to the multiplication with a cosine taper for
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Fig. 9.17. Spectrum of the AR[4] model in Fig. 7.14 (solid line) and E
(
Ĉ

(m)
X (s′k)

)
of the smoothed direct spectral estimator in Figs. 9.15 and 9.16 (broken line) ap-
proximated using (9.30).

p = 0.05, the leakage can be neglected, and thus E
(
Ĉ

(d)
X (s′k)

) ≈ CX(s′k) as
is concluded from the examples in Figs. 9.3 and 9.4. Thereafter, Ĉ(d)

X (s′k) is
smoothed using a modified discrete Daniell kernel with M = 10 to obtain
Ĉ

(m)
X (s′k). Hence, E

(
Ĉ

(m)
X (s′k)

)
can be computed using (9.30) since CX(s′k)

is known in a simulation experiment, and the approximation plotted with a
broken line in Fig. 9.17 is obtained.

From the logarithmic plot (b) in Fig. 9.17, Ĉ(m)
X (s′k) is concluded to be

unbiased for 0 ≤ s′k ≤ 1/2; from plot (a) in this figure it becomes, how-
ever, obvious that Ĉ(m)

X (s′k) underestimates CX(s′k) at the peaks. For exam-
ple, CX(s′k) = 38971 for s′k = 0.1348877 whereas E

(
Ĉ

(m)
X (0.1348877)

)
is the

weighted mean of E
(
Ĉ

(d)
X (s′l)

) ≈ CX(s′l), with 0.1336670 ≤ s′l ≤ 0.1361084
and CX(s′l) ≤ CX(0.1348877) and thus E

(
Ĉ

(d)
X (0.1348877)

)
< CX(0.1348877).

The example in Fig. 9.17 and the results obtained in Problem 9.10 demon-
strate that a smoothed direct spectral estimator is approximately unbiased
provided that (i) the direct spectral estimator is also approximately unbiased
and (ii) the bandwidth of the spectrum to be estimated is considerably larger
(at least twice as large as recommended in (6.115)) than the bandwidth of
the smoothing kernel.

The variance function of a direct spectral estimator as defined in (9.3) is
approximated in (9.16) under assumptions (9.13): Var

(
Ĉ

(d)
X (s)

) ≈ C2
X(s) for

frequencies s �= −1/2, 0, 1/2, i.e., (i) the variance is approximately the square
of the spectrum to be estimated and (ii) does not decrease when the number
of observations increases. These properties, which are shared by the peri-
odogram, are inconvenient for the reasons discussed in the remarks to (8.24)
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and Fig. 9.9 and thus motivate to search for an estimator having a smaller
variance depending on the number of observations. Such an estimator is ar-
rived at when a direct spectral estimator, calculated for discrete frequencies
sk or s′k, is smoothed as required in (9.28). The variance function of the
estimator defined in (9.28) can be derived in three steps.

In a first step, the variance function of Ĉ(m)
X (s′k), i.e., a discretely smoothed

direct spectral estimator as defined in (9.28), is obtained using (1.15,10)

Var
(
Ĉ

(m)
X (s′k)

)
= Var

(
M∑

l=−M

Vm(s′l)Ĉ
(d)
X (s′k−l)

)

=
M∑

i=−M

M∑
j=−M

Vm(s′i)Vm(s′j)Cov
(
Ĉ

(d)
X (s′k−i), Ĉ

(d)
X (s′k−j)

)
(9.31)

without any approximation, i.e., (9.31) is exact. The terms with two indices
summed in (9.31) are arranged in a matrix with weighted variances of Ĉ(d)

X (s′k)
in the main and weighted covariances in the subdiagonals. Covariances of a
direct spectral estimator calculated for discrete frequencies sk and sk +n∆sk
or s′k and s′k + n∆s′k, n a small positive integer number, are not identi-
cally zero, as implied by (9.14). Under assumptions (9.13), however, these
covariances decrease rapidly for n = 1, 2, 3, ..., depending on the data taper
applied. For a variety of cosine tapers, the decay of the correlations in a direct
spectral estimator with increasing displacement in the frequency domain is
demonstrated in Fig. 9.6.

This property favours, in a second step, the approximation of the vari-
ance of a discretely smoothed direct spectral estimator on condition that the
assumptions stipulated in (9.32) are taken into account.

Let Ĉ(m)
X (s′k) be a discretely smoothed direct spectral estimator

as defined in (9.28). Then its variance can be approximated on
condition that:

1. (Xt) is normal
2. s′k is more than |M∆s′k| away from −1/2, 0, 1/2

3. Ĉ(d)
X (s′k) is approximatively unbiased

4. CX(s) is approximatively constant in a band 2M∆s′k wide.

(9.32)

(9.32,1) is inherited from (9.13,3) and (9.32,2) excludes neighbour frequencies
of −1/2, 0, and 1/2, thus asserting that Ĉ(d)

X (−1/2), Ĉ(d)
X (0) or Ĉ(d)

X (1/2) are
not included in the moving average, since approximations (9.14) and (9.15) do
not apply there. If E

(
Ĉ

(d)
X (s′k)

) ≈ CX(s′k) as required in (9.32,3), then (9.32,4)
also propagates to Ĉ(d)

X (s′k). This directly implies approximation (9.33) and,

E
(
Ĉ

(d)
X (s′|k−l|)

) ≈ CX(s′k) (9.33)
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Var
(
Ĉ

(d)
X (s′|k−l|)

) ≈ C2
X(s′k) (9.34)

Cov
(
Ĉ

(d)
X (s′k), Ĉ(d)

X (s′|k−l|)
)

Var
(
Ĉ

(d)
X (s′k)

) ≈ H⊕H(|k − l|∆s′k) (9.35)

further, approximations (9.34) and (9.35) can be derived from (9.14), (9.16)
and (9.17) for lags s′k − s′k−l = l∆s′k, with ∆s′k = 1/N ′ and l = −M, . . . ,−1,
0, 1, . . . ,M , on condition that a value for M can be found such that (9.32,4)
applies. An appropriate value for 2M , i.e., the width of the band used for
computing the moving average as required in (9.28), is readily obtained in
simulation experiments provided that the spectrum to be estimated is known.
If the spectrum is completely unknown, then it is difficult to arrive at a value
for 2M . Possible solutions to this problem are discussed in Sect. 9.3.5.

In the third step, approximations (9.34) and (9.35) are substituted in
(9.31), which is repeated in the first line of the following derivation, and thus
(9.36) is arrived at. The terms with indices i and j in the sum on the right side
in (9.36), i.e., the correlations of the direct spectral estimator as proposed in
(9.17), are arranged in a matrix. They depend, under assumptions (9.32), on
differences l = i− j solely, and are summed over the diagonals in (9.37).

Var
(
Ĉ

(m)
X (s′k)

)
=

M∑
i=−M

M∑
j=−M

Vm(s′i)Vm(s′j)Cov
(
Ĉ

(d)
X (s′k−i), Ĉ

(d)
X (s′k−j)

)
≈ C2

X(s′k)
M∑

i=−M

M∑
j=−M

(
H⊕H(|i− j|∆s′k)

)(
Vm(s′i)

)(
Vm(s′j)

)
(9.36)

≈ C2
X(s′k)

M∑
l=−M

(
H⊕H(|l|∆s′k)

) M−|l|∑
	=−M

(
Vm(s′	)

)(
Vm(s′	+|l|)

)
(9.37)

≈ C2
X(s′k)

M⊕∑
l=−M⊕

(
H⊕H(|l|∆s′k)

) M−|l|∑
	=−M

(
Vm(s′	)

)(
Vm(s′	+|l|)

)
(9.38)

The second sum in (9.37) is the autocorrelation (6.103) Vm �Vm(l∆s′k) of
the discrete smoothing kernel Vm(s′k) for lag l∆s′k, because Vm(s′k) becomes
identically zero for k > M as implied by definition (9.28,3). An approximation
having a sufficient accuracy is arrived at when the sums over the first M⊕,
M⊕ < M , diagonals are computed in (9.38) because H⊕H(|l|∆s′k) becomes
negligibly small for M⊕∆sk < |l|∆s′k < M∆sk. M⊕ can be inferred from
Fig. 9.6 provided that the direct spectral estimator is calculated using a cosine
taper. From (9.38), a further approximation will be derived in Problem 9.12.

For example, subsequent to multiplicating a cosine taper for p = 0.05
with N = 4096 observations in a realisation of the AR[4] model in Fig. 7.14
and zero-padding, direct spectral estimators are computed for frequencies s′k
with ∆s′k = 1/N ′, N ′ = 2N , and then smoothed with a modified discrete
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Daniell kernel VdD,M (s′k) for M = 10 to obtain the estimator as plotted in
Figs. 9.15 and 9.16. The variance function of this smoothed direct spectral
estimator can be approximated using (9.38) in a straightforward calculation.
Since ∆s′k = 1/(2N) = (1/2)∆sk in this case, the following correlations are
read in Fig. 9.6: H⊕H(0∆s′k) = 1.0, H⊕H(1∆s′k) ≈ 0.5, H⊕H(2∆s′k) ≈ 0.0,
H⊕H(3∆s′k) ≈ 0.05, H⊕H(4∆s′k) ≈ 0.0, and H⊕H(l∆s′k) ≈ 0.0, for l > 4, and
thus M⊕ = 3 in (9.38).

H⊕H(l∆s′k), l = 0, 1, 2, 3, thus approximated from Fig. 9.6 are used as
weights for the autocorrelations of VdD,M (s′k), which are readily computed
subsequent to a multiplication of VdD,M (s′k) with 2M = 20: (i) for lag l = 0,
the squared weights in VdD,M (s′k) sum to 19.5, (ii) for lag l = 1, (0.5×1.0+18×
(1.0×1.0)+0.5×1.0) = 19, (iii) for lag l = 2, (0.5×1.0+17×(1.0×1.0)+0.5×
1.0) = 18, and (iv) for lag l = 3, (0.5× 1.0+16× (1.0× 1.0)+0.5× 1.0) = 17
are obtained. Thereafter, the first sum in (9.38): 19.5 × 1.0 + 2 × 19.0 ×
0.5 + 2 × 18.0 × 0.0 + 2 × 17.0 × 0.05 = 40.2 is computed and compensated
for the above multiplication with 2M = 20: 40.2/400 = 0.1005 is arrived
at. Thus Var

(
Ĉ

(m)
X (s′k) ≈ 0.01005 × C2

X(s′k) ≈ 0.10 × C2
X(s′k) is obtained

for the variance of the smoothed direct spectral estimator in Figs. 9.15 and
9.16 under assumptions (9.32), a result in favourable agreement with the one
obtained in the remarks to Fig. 9.16. There it was found that the variance of
the direct spectral estimator is reduced by an order of magnitude subsequent
to smoothing with the modified discrete Daniell kernel to obtain the smoothed
estimator as plotted in Figs. 9.15 and 9.16.

The examples in Figs. 9.14, 9.15 and 9.16 demonstrate that the variance
of a direct spectral estimator Ĉ(d)

X (sk) or Ĉ(d)
X (s′k), calculated for discrete

frequencies sk with ∆sk = 1/N (or s′k with ∆s′k = 1/N ′), can be reduced by
smoothing using a moving average. Thus, an estimator is obtained that (i)
is unbiased, a property inherited from the direct spectral estimator, and (ii)
has a variance that depends on N and M , with N being the length of the
observational period and 2M∆sk (or 2M∆s′k) the width of the band in which
the direct spectral estimator is averaged in definition (9.28). Consequently,
the goals formulated in the remarks concluding Sects. 8.3 and 8.4 can be
arrived at on condition that, in a band being 2M∆sk or 2M∆s′k wide, (i)
the number of Ĉ(d)

X (sk) or Ĉ(d)
X (s′k) having approximately zero-correlations

is large enough to arrive at a substantial reduction of their variance and (ii)
the spectrum to be estimated is approximately constant. Both conditions are
easily met in simulation experiments where the spectrum is known. If the
spectrum to be estimated is not known, approximations for its bandwidth
can be obtained in Sect. 9.3.5 and N can be chosen accordingly.

A continuous direct spectral estimator Ĉ(d)
X (s), −1/2 ≤ s ≤ 1/2 , is ob-

tained in (9.6) as Fourier transform of ĉ(d)
X (τ ), i.e., the empirical correlation

function calculated from tapered observations as defined in (9.7). Ĉ(d)
X (s)

appears superior
(
compared with its discrete versions Ĉ(d)

X (sk) or Ĉ(d)
X (s′k)

)
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when a continuous spectrum CX(s) is to be estimated. Under which condi-
tions can the variance of Ĉ(d)

X (s) be reduced by means of smoothing with a
continuous kernel in a convolution integral?

9.3.2 Lag Window Spectral Estimator

Let (Xt) be a discrete-time stationary stochastic process having a continuous
spectrum CX(s) and a covariance function cX(τ ), and let (xt) be a realisation
of (Xt). Then a direct spectral estimator Ĉ(d)

X (s) and its corresponding empir-
ical covariance function ĉ(d)

X (τ ), both calculated as required in (9.6) and (9.7)
from tapered observations in (xt), are a Fourier transform pair as defined in
(6.49) and (6.50). This property is shared by CX(s) and cX(τ ), a result which
is obtained in (7.65) and (7.66). The first moment function of Ĉ(d)

X (s) is de-
rived in (9.12), and, under assumptions (9.13), the second moment functions
of Ĉ(d)

X (s) are obtained in (9.14), (9.15) and (9.16). An estimator having a
smaller variance than Var

(
Ĉ

(d)
X (s)

) ≈ C2
X(s) in (9.16) is hopefully arrived

at when Ĉ(d)
X (s) is smoothed, below in (9.39), by convolving with a function

Vm(s) having the properties required in (9.44).

Ĉ
τ�
X (s) =

∫ 1/2

−1/2

Vm(s− r)Ĉ(d)
X (r)dr

convolution
as in (6.144) (9.39)

=
∞∑

τ=−∞

(
vm(τ )ĉ(d)

X (τ )
)
e−i2πsτ

with vm(τ ) and Vm(s)
a Fourier transform pair
as in (6.49) and (6.50)

(9.40)

=
∞∑

τ=−∞

(
v
τ�

m (τ )ĉ(d)
X (τ )

)
e−i2πsτ with v
τ�

m (τ ) as
defined in (9.43)

(9.41)

=
∫ 1/2

−1/2

V 
τ�
m (s− r)Ĉ(d)

X (r)dr
v
τ�

m (τ ) and V 
τ�
m (s)

a Fourier transform pair
as in (6.49) and (6.50)

(9.42)

v
τ�
m (τ ) =

{
vm(τ ) for τ = −(N − 1), . . . ,−1, 0, 1, . . . , N − 1
0 for |τ | ≥ N

(9.43)

v
τ�
m (τ ), being a time-limited sequence (6.108), is a lag window

and Ĉ
τ�
X (s) is a lag window spectral estimator.

Vm(s) and V 
τ�
m (s) are (continuous) smoothing kernels provided

that they are defined in −1/2 ≤ s ≤ 1/2, periodic with period 1,
even (6.32), defining sequences for δ(s+ n), n = . . . ,−1, 0, 1, . . .,
i.e., the periodic delta function introduced in the remarks to
(6.62), and Vm(s) ≥ 0 for all m and s.

(9.44)

(9.39) implies (9.40) as is concluded from convolution theorem (6.48,7), which
is obtained in (6.145) for Fourier transform pairs as defined in (6.49) and
(6.50). The Fourier sums in (9.40) and (9.41) are equal, as is concluded from



9.3 Smoothed Direct Spectral Estimator 569

(9.7) where the empirical covariance function calculated from tapered ob-
servations is defined. Consequently, convolution integrals (9.39) and (9.42)
are equal despite Vm(s) �= V 
τ�

m (s). This implies that Ĉ
τ�
X (s) ≥ 0 since

both Vm(s) ≥ 0 and Ĉ(d)
X (r) ≥ 0 in (9.39). Further properties of the smooth-

ing kernels and their Fourier transforms are discussed in the following two
paragraphs.

Sequence vm(τ ) is possibly band-limited as defined in (6.108,2), whereas
v
τ�

m (τ ) in (9.43) is a time-limited sequence (6.108,1). Thus a lag window
v
τ�

m (τ ) depends on the parameter m in Vm(s) and on the number N of the
observed values. Both weight sequences vm(τ ) and v
τ�

m (τ ) modify ĉ(d)
X (τ ),

i.e., the empirical covariances calculated from tapered observations, in a man-
ner similar to a data taper or data window modifying the observations in e.g.,
(6.113), (9.3) or (9.7). v
τ�

m (τ ) is therefore called lag window.
The continuous smoothing kernels Vm(s) and V 
τ�

m (s) depend on parame-
term in the sense that both kernels become narrower in −1/2 ≤ s ≤ 1/2 with
increasing m, a property shared by the discrete kernels Vm(sk) and Vm(s′k)
used in (9.28) for smoothing Ĉ(d)

X (sk) or Ĉ(d)
X (s′k) calculated for discrete fre-

quencies. Distinct from the discrete case, however, a sequence of continuous
smoothing kernels Vm(s)

(
or V 
τ�

m (s)
)

is a defining sequence for δ(s + n),
n = . . . ,−1, 0, 1, . . ., as required in (9.44). This implies that (adapted from
(6.60) for interval −1/2 ≤ s ≤ 1/2): (i)

∫ 1/2

−1/2
Vm(s)ds =

∫ 1/2

−1/2
V 
τ�

m (s)ds = 1
for m = 1, 2, 3, . . ., with further implications to be derived in Problem 9.11,
and (ii), in the limiting case for m → ∞, Vm(s) → ∞ (

or V 
τ�
m (s) → ∞)

for s = 0 as well as Vm(s) = 0
(
or V 
τ�

m (s) = 0
)

for −1/2 ≤ s < 0 and
0 < s ≤ 1/2.

Using (9.41), a lag window spectral estimator Ĉ
τ�
X (s) for the continuous

spectrum CX(s) of model (Xt) in (9.1) is calculated in the following steps:

1. an observed time slice (xt), t = 0, 1, . . . , N − 1, in a realisation of (Xt)
is multiplied with a variance-normalised data taper h(d)

N (t) as defined in
(9.2), to reduce the leakage in a subsequent Fourier transform

2. from the tapered observations, ĉ(d)
X (τ ) is calculated using (9.7) as demon-

strated in Problem 9.5
3. ĉ(d)

X (τ ) is multiplied with the lag window as required in (9.41), and
4. Ĉ
τ�

X (s), i.e., the lag window spectral estimator, is obtained by means of
Fourier transforming the product v
τ�

m (τ ) × ĉ(d)
X (τ ) as required in (9.41)

on condition that a lag window is available which has (whose pertaining
smoothing kernel(s) have, resp.) the properties required in (9.44). Moreover,
the bandwidth of the smoothing kernel (e.g., the width at half height of its
main lobe as introduced in Sect. 9.5.4) and the bandwidth of the spectrum to
be estimated should be approximately reconcilable with diagnostics (6.115)
and (6.116), as is recommended in the case of a discrete smoothing kernel
in the remarks concluding the discussion of Figs. 9.14, 9.15 and 9.16. If the
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Fig. 9.18. The Bartlett lag window for m = 30 and the pertaining smoothing
kernel are identical with the even triangle sequence Λ

(e)
2N+1(t) in (6.56) and the

Fejer kernel FN (s) in (6.57) for N = 30.

bandwidth of the spectrum to be estimated is not known, the bandwidth
of the smoothing kernel can be assessed using the procedures introduced in
Sect. 9.3.5.

Despite the width of the smoothing kernel (and not its form) is the im-
portant question concerning spectral estimation as argued in the remarks to
(9.80): a variety of lag windows having distinct forms have been proposed (a
summary is given in [113]), those introduced by Daniell [42] and Bartlett [9]
are given here as examples.

A first example for a smoothing kernel Vm(s) is the periodic function
plotted in Fig. 6.23 (b): this function is defined in −1/2 ≤ s ≤ 1/2, periodic
with period 1 and, with parameters chosen accordingly, becomes a defining
sequence for δ(s + n), n = . . . ,−1, 0, 1, . . ., as is concluded from definition
(6.61) and Fig. 6.12 (a). Its Fourier transform vm(τ ), i.e., the sequence plot-
ted in Fig. 6.23 (a), is not time-limited as implied by (6.109). In contrast,
lag window v
τ�

m (τ ) obtained from vm(τ ) by applying definition (9.43) with
N = 64 as plotted in Fig. 6.23 (c), is a time-limited sequence and, there-
fore, its Fourier transform V 
τ�

m (s) in Fig. 6.23 (d) is not band-limited. A
rectangle function as plotted in Fig. 6.23 (b) can be defined using only one
parameter m in (9.45), whereafter, from the smoothing kernel thus defined,
the corresponding lag window for parameters m and N can be derived.

VDa,m(s+ n) = VDa,m(s) =
{
m for −1/(2m) ≤ s ≤ 1/(2m)
0 for |s| > 1/(2m)

with −1/2 ≤ s ≤ 1/2, 0 < 1/(2m) � 1/2 and n= . . . ,−1, 0, 1, . . .,
is called Daniell kernel. From its Fourier transform vDa,m(τ ),
the Daniell lag window v
τ�

Da,m(τ ) is obtained using (9.43).

(9.45)

As a second example, a Bartlett lag window for m = 30 is plotted in
Fig. 9.18 (a). A Bartlett lag window has only one parameter m and is iden-
tical, for m = N , with the even triangle sequence Λ(e)

2N+1(t) in (6.56). The
smoothing kernel pertaining to the Bartlett lag window is the Fejer kernel
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FN (s), with m = N , as obtained in (6.57). FN (s) has the properties of a con-
tinuous smoothing kernel as is concluded from (6.58), (6.59) and the remarks
to (6.62).

A lag window can also be obtained when a discrete smoothing kernel
is used in (9.28) to smooth a direct spectral estimator Ĉ(d)

X (s′k) calculated
for discrete frequencies s′k with ∆s′k = 1/N ′. In this case, the Fourier sum
in (9.6) becomes Ĉ(d)

X (s′k) =
∑N−1

τ=−(N−1) ĉ
(d)
X (τ )e−i2πs′

kτ , with ĉ(d)
X (τ ) as de-

fined in (9.7), and thus a discretely smoothed direct spectral estimator as
in (9.28,3) becomes — since s′k−j = s′k − s′j as implied by (6.26) and (6.27)
— the weighted Fourier sum in (9.46). Thereafter, (9.47) and (9.48) follow
immediately.

Ĉ
(m)
X (s′k) =

M∑
j=−M

Vm(s′j)

⎛⎝ N−1∑
τ=−(N−1)

ĉ
(d)
X (τ )e−i2π(s′

k−s′
j)τ

⎞⎠ (9.46)

=
(N−1)∑

τ=−(N−1)

⎛⎝ M∑
j=−M

Vm(s′j)e
i2πs′

jτ

⎞⎠ ĉ(d)
X (τ )e−i2πs′

kτ (9.47)

=
(N−1)∑

τ=−(N−1)

(
vm,M (τ )ĉ(d)

X (τ )
)
e−i2πs′

kτ
vm,M (τ ) and Vm(s′j)
a Fourier transform
pair as in (6.22,1,2)

(9.48)

= Ĉ
τ�
X (s) with s = s′k provided that (9.49)

Ĉ
τ�
X (s) =

∞∑
τ=−∞

(
v
τ�

m,M (τ )ĉ(d)
X (τ )

)
e−i2πsτ with v
τ�

m,M (τ ) as
defined in (9.52)

(9.50)

=
∫ 1/2

−1/2

V 
τ�
m,M (s− r)Ĉ(d)

X (r)dr
v
τ�

m,M (τ ) and V 
τ�
m,M (s)

a Fourier transform pair
as in (6.49) and (6.50)

(9.51)

v
τ�
m,M (τ ) =

{
vm,M (τ ) for τ = −(N − 1), . . . ,−1, 0, 1, . . . , N − 1
0 for |τ | ≥ N

(9.52)

From definition (9.7), it is concluded that the Fourier sum in (9.48) equals
the one in (9.50) provided that s′k is substituted for s and therefore (9.49) is
obtained.

This result implies that any discretely smoothed direct spectral estimator
Ĉ

(m)
X (s′k) can be written as a lag window estimator Ĉ
τ�

X (s) using (9.50),
(9.51) and (9.52), on condition that the lag window v
τ�

m,M (τ ) and its contin-
uous smoothing kernel V 
τ�

m,M (s) have the properties required in (9.44). Both,
v
τ�

m,M (τ ) and V 
τ�
m,M (s), depend on (i) m and M (in the subscripts) as in-

herited from the moving average in (9.46), and (ii) N as required in (9.52),
symbolised by the superscript.

For example, VdD,M (s′k), for M = 3 and ∆s′k = 1/N ′, N ′ = 2N and N =
64, as defined in (9.29), i.e., a modified discrete Daniell kernel with bandwidth
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Fig. 9.19. The sequence in plot (a) is the discrete Fourier transform of the modified
discrete Daniell kernel (9.29) for M = 3 and ∆s′k = 1/128 in plot (b). From the
sequence in (a), the lag window in plot (c) is obtained using definition (9.52). The
lag window and its continuous smoothing kernel in plot (d) are a Fourier transform
pair as defined in (6.49) and (6.50).

6∆s′k = 6/128 is plotted in Fig. 9.19 (b). Its discrete Fourier +i-transform
vdD,M (τ ) is calculated using (6.22,1) for lags τ = −63, . . . ,−1, 0, 1, . . . , 64
and thereafter plotted in Fig. 9.19 (a). Thus vdD,M (τ ) and VdD,M (s′k) are a
discrete Fourier transform pair with the normalisation in the −i-transform
as required in (6.22,1) and vdD,M (τ ) is periodic with period 2N = 128.

Thereafter, when definition (9.52) is applied to vdD,M (τ ), the lag window
v
τ�

dD,M (τ ) pertaining to the modified discrete Daniell kernel is arrived at.
v
τ�

dD,M (τ ) as plotted in Fig. 9.19 (c) and the pertaining continuous smoothing
kernel V 
τ�

dD,M (s) in Fig. 9.19 (d) are a Fourier transform pair as defined in
(6.49) and (6.50).

∑M
k=−M VdD,M (s′k) = 1 in (9.29) implies vdD,M (τ = 0) = 1

as is concluded from (6.48,1). This property is inherited by v
τ�
dD,M (τ ) and,

therefore,
∫ 1/2

−1/2
V 
τ�

dD,M (s)ds = 1. If N increases and M remains constant
then (i) vdD,M (τ ) becomes wider and (ii) VdD,M (s′k) becomes narrower since
s′k = 1/(2N) decreases, and further, (iii) v
τ�

dD,M (τ ) becomes wider and (iv)
V 
τ�

dD,M (s) decreases in its width. It thus becomes plausible that V 
τ�
dD,M (s)

for N = 1, 2, . . . is a defining sequence for δ(s + n), n = . . . ,−1, 0, 1, . . ., as
required in (9.44).
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Consequently, any direct spectral estimator smoothed discretely with a
modified Daniell kernel can be written as a lag window spectral estimator,
as proposed in (9.48), and therefore, properties of the lag window spectral
estimator that will be derived in Sects. 9.3.3 and 9.3.4 are shared by a direct
spectral estimator smoothed discretely with a modified Daniell kernel.

The above example demonstrates (i) the conclusion in the remarks to
(9.49), (9.50), (9.51) and (9.52), i.e., that any discretely smoothed direct
spectral estimator Ĉ(m)

X (s′k) can be written as a lag window estimator under
certain conditions (also being demonstrated) as well as (ii) its implication,
i.e., that the properties of the lag window spectral estimator, e.g., its moment
functions to be derived in Sects. 9.3.3, are shared by the direct spectral
estimator.

The inverse, however, is not true, i.e., (9.49) does not imply that any
lag window spectral estimator Ĉ
τ�

X (s), being defined in (9.41) for all real
frequencies s in −1/2 ≤ s ≤ 1/2, can be written as a discretely smoothed
direct spectral estimator Ĉ(m)

X (s′k) or Ĉ(m)
X (sk), being defined for discrete

frequencies −1/2 ≤ s′k ≤ 1/2 or −1/2 ≤ sk ≤ 1/2 in (9.28). For that set
of frequencies s′k with ∆s′k = 1/(2N) defined in (9.53), as an exception, any
lag window spectral estimator can be written as a discretely smoothed direct
spectral estimator.

A prerequisite, however, for the derivation of this exception are definitions
(9.53), (9.54) and (9.55) as well as the Fourier transforms in (9.56) and (9.57).
(9.56) is a repetition of (9.23) and (9.24), where ĉ(d)

X (τ ) and Ĉ
(d)
X (s′k) are

obtained as a discrete Fourier transform pair normalised in the +i-transform
as required in (6.22,4). In (9.57), a smoothing kernel as defined in (9.42) is
obtained as Fourier −i-transform of the lag window for discrete frequencies
as in (9.53), bearing in mind that a smoothing kernel and a lag window are
a Fourier transform pair as defined in (6.49) and (6.50).

s′k = k/N ′ = k/(2N), with k ∈ N1, N1 = (−N, . . . ,
−1, 0, 1, . . . , N) (9.53)

N2 = (−(N − 1), . . . ,−1, 0, 1, . . . , N) (9.54)
N3 = (−(N − 1), . . . ,−1, 0, 1, . . . , (N − 1)) (9.55)

ĉ
(d)
X (τ ) =

1
2N

N∑
j=−(N−1)

Ĉ
(d)
X (s′j)e

+i2πs′
jτ , with τ ∈ N2 (9.56)

V 
τ�
m (s′k) =

∞∑
τ=−∞

v
τ�
m (τ )e−i2πs′

kτ as required in (9.42),
i.e., using (6.49) and (6.50)

=
N−1∑

τ=−(N−1)

v
τ�
m (τ )e−i2πs′

kτ definition (9.43) (9.57)

For the frequencies defined in (9.53), a lag window spectral estimator is
written as in (9.58) by applying definitions (9.41) and (9.7). These definitions
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imply Ĉ
τ�
X (s) =

∑(N−1)
τ=−(N−1)

(
v
τ�

m (τ )ĉ(d)
X (τ )

)
e−i2πsτ , for −1/2 ≤ s ≤ 1/2,

i.e., that a lag window spectral estimator is completely determined when the
lag window and the empirical covariance function calculated from tapered
observations are known for lags τ = −(N − 1), . . . ,−1, 0, 1, . . . , (N − 1).

Ĉ
τ�
X (s′k) =

(N−1)∑
τ=−(N−1)

(
v
τ�

m (τ )ĉ(d)
X (τ )

)
e−i2πs′

kτ s′k in (9.53) (9.58)

=
(N−1)∑

τ=−(N−1)

v
τ�
m (τ )

⎛⎝ 1
2N

N∑
j=−(N−1)

Ĉ
(d)
X (s′j)e

+i2πs′
jτ

⎞⎠ e−i2πs′
kτ

=
(N−1)∑

τ=−(N−1)

v
τ�
m (τ )

⎛⎝ 1
2N

N∑
j=−(N−1)

Ĉ
(d)
X (s′k−j)e

+i2πs′
k−jτ

⎞⎠ e−i2πs′
kτ

=
N∑

j=−(N−1)

⎛⎝ 1
2N

(N−1)∑
τ=−(N−1)

v
τ�
m (τ )e−i2πs′

jτ

⎞⎠ Ĉ(d)
X (s′k−j)

=
1

2N

N∑
j=−(N−1)

V 
τ�
m (s′j)Ĉ

(d)
X (s′k−j) (9.59)

The above lines are obtained (i) by substituting from (9.56), (ii) because
Ĉ

(d)
X (s′j) is periodic with period 2N and thus can be summed within arbitrary

intervals of length 2N as demonstrated in (6.23), (iii) re-arranging the terms
in the two-fold sum, and finally, the moving average in (9.59), i.e., a discretely
smoothed direct spectral estimator as defined in (9.28,3), is arrived at by
substituting from (9.57). This derivation is borrowed from [108].

From (9.59) it is concluded that the approximations obtained in (9.30),
(9.34) and (9.35) for the moment functions of a discretely smoothed direct
spectral estimator also apply to a lag window estimator on condition that
both estimators are calculated for frequencies s′k as defined in (9.53). This
favours the derivation of the moment functions of the lag window spectral es-
timator in the following Sect. 9.3.3. Vice-versa, results obtained in Sect. 9.3.3
for a lag window estimator as defined in (9.41), (9.42), (9.43) and (9.44) also
apply to any discretely smoothed direct spectral estimator, as is concluded
from equation (9.49) and the example in Fig. 9.19.

9.3.3 Moment Functions of the Lag Window Estimator

Let a lag window estimator Ĉ
τ�
X (s) for a continuous spectrum CX(s) be cal-

culated from a finite number of observations. Then Ĉ
τ�
X (s) is biased because

(i) a bias is inherited from the direct spectral estimator and (ii) an additional
bias is generated when the direct spectral estimator is smoothed. Can the ef-
fects of both these bias-generating sources be separated in the expectation
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function of Ĉ
τ�
X (s)? An answer is given below in the first part of this sub-

section. In the second part, the variance and covariance functions of Ĉ
τ�
X (s)

are derived under assumptions which include those in (9.13) as a subset.
The expectation function of a lag window spectral estimator is readily

obtained because both, integrating and calculating an expectation, are linear
operators and therefore, their order can be reversed to obtain (9.61) from
(9.60). Thereafter, E

(
(Ĉ(d)

X (s)
)

=
(H(d)

N (s)
) ∗ CX(s) as obtained in (9.12) is

substituted, and (9.62) follows because both, the smoothing kernel V 
τ�
m (s)

and the spectral window H(d)
N (s) are defined in −1/2 ≤ s ≤ 1/2 and are

periodic with period 1, properties shared by CX(s), i.e., the spectrum to be
estimated.

E
(
Ĉ
τ�

X (s)
)

=

(
E
∫ 1/2

−1/2

V 
τ�
m (s− r)Ĉ(d)

X (r)dr

)
convolution
as in (6.144) (9.60)

=
∫ 1/2

−1/2

V 
τ�
m (s− r)E(Ĉ(d)

X (r)
)
dr (9.61)

=
∫ 1/2

−1/2

V 
τ�
m (s− r)

(∫ 1/2

−1/2

H(d)
N (r − r′)CX(r′)dr′

)
dr

=
∫ 1/2

−1/2

(∫ 1/2

−1/2

V 
τ�
m (s− r)H(d)

N (r − r′)dr
)
CX(r′)dr′ (9.62)

=
∫ 1/2

−1/2

Vm(s− r′)CX(r′)dr′, with (9.63)

Vm(s) =
∫ 1/2

−1/2

V 
τ�
m (s− r)H(d)

N (r)dr
being the spectral
window of the lag
window estimator

(9.64)

From (9.62), the expectation function of the lag window estimator is arrived
at in (9.63), with Vm(s) as defined in (9.64).

If H(d)
N (s) in (9.12) is the spectral window pertaining to the direct spectral

estimator Ĉ(d)
X (s) calculated using a data taper h(d)

N (t) as defined in (9.2,1),
then Vm(s) is the spectral window pertaining to Ĉ
τ�

X (s) calculated using
a lag window v
τ�

m (τ ) as defined in (9.42). Consequently, Vm(s) depends on
h

(d)
N (t) and v
τ�

m (τ ).
For N → ∞, H(d)

N (s) → δ(s − n), n = . . . ,−1, 0, 1, . . ., i.e., a delta func-
tion being periodic with period 1 as introduced in the remarks to (6.63),
due to the normalisation in (9.2,1) and under the additional condition in the
remarks to (9.12). For N → ∞ therefore, the expectation of the lag win-
dow estimator in (9.62) becomes

∫ 1/2

−1/2
V 
τ�

m (s − r)CX(r)dr as is concluded
from (6.67) and (6.68), δ(x) being the identity element under convolution
(2.28,1) for functions with a real argument. This convolution integral then
becomes, for N → ∞,

∫ 1/2

−1/2
V 
τ�

m (s− r)CX(r)dr = CX(s) for the reason that
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V 
τ�
m (s) → δ(s − n), n = . . . ,−1, 0, 1, . . ., as required in (9.44). Thus a lag

window spectral estimator is asymptotically unbiased for N → ∞, on con-
dition that the direct spectral estimator being smoothed is asymptotically
unbiased for N → ∞.

The convolution in (9.64) becomes the Fourier transform of the product
in (9.65), as is concluded from convolution theorem in (6.144) and (6.145)
and definition (9.2,2).

Vm(s) =
∫ 1/2

−1/2

V 
τ�
m ((s− s′)H(d)

N (s′)ds′

=
N−1∑

τ=−(N−1)

((
v
τ�

m (τ )
)(
h

(d)
N �h

(d)
N (τ )

)
e−i2πsτ (9.65)

(9.65) lends itself for the calculation of a spectral window pertaining to a lag
window spectral estimator on condition that both, the variance-normalised
data taper h(d)

N (t) pertaining to the direct spectral estimator and the lag
window v
τ�

m (τ ), are known.
For example, the spectral window Vm(s) of the discretely smoothed direct

spectral estimator Ĉ(m)
X (s′k) in Figs. 9.15 and 9.16 can be computed as re-

quired in (9.65), since Ĉ(m)
X (s′k) is a lag window estimator as is concluded from

(9.49). The result thus obtained is plotted in Fig. 9.21 (b), (c) and (d), with
the steps in this computation demonstrated in Fig. 9.20 (a) and (c), as well
as in Fig. 9.21 (a) and (b): (i) the autocorrelation of the variance-normalised
cosine taper in Fig. 9.20 (a) is computed as demonstrated in Fig. 9.2, (ii) the
lag window in Fig. 9.20 (c) is obtained as demonstrated in Fig. 9.19 and (iii),
the product of the autocorrelation and the lag window as plotted in Fig. 9.21
(a) is Fourier transformed.

B∩
�
(H(d)�

N (s)
)≈0.000214≈0.000244=2∆s′k =2/(2N), N ′ =2N , N = 4096,

i.e., the width at half height of the main lobe in the spectral window of
the direct spectral estimator Ĉ(d)

X (s′k) as plotted in Fig. 9.20 (b) is approxi-
mately twice the distance of the discrete frequencies s′k, for which Ĉ(d)

X (s′k) is
smoothed using the modified discrete Daniell kernel VdD,M (s′k) with M = 10
in a band of width 20∆s′k. Consequently, the main lobe in the continuous
smoothing kernel pertaining to VdD,M (s′k) in Fig. 9.20 (d) is approximately
one order of magnitude wider than the main lobe of the spectral window, i.e.,
B∩
�
(
V 
τ�

dD,M (s)
) ≈ 0.002440. These widths at half height are, however, assessed

in non-logarithmic plots which are not shown.
B∩
�
(
V 
τ�

dD,M (s)
) ≈ 10B∩

�
(H(d)�

N (s)
)

implies B∩
�
(
V 
τ�

dD,M (s)
) ≈ B∩

�
(Vm(s)

) ≈
0.00240, i.e., the width at half height of the main lobe in the spectral window
of the smoothed estimator as plotted in Fig. 9.21 (b). An identical value is
obtained when definition (6.97) is appplied in Fig. 9.21 (c).

The side lobes of H(d)�
N (s) in Fig. 9.20 (b) are, for |s| > 0.007, smaller by

two or three orders of magnitude than those of FN (s) for N = 4096, the
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Fig. 9.20. In plot (a), autocorrelation of the variance-normalised data taper h
(d)
N (t)

(a cosine taper for N = 4096 and p = 0.05) applied to compute the direct spectral

estimator Ĉ
(d)
X (s′k), ∆s′k = 1/(2N), which is discretely smoothed using a modified

discrete Daniell kernel VdD,M (s′k) with M = 10 to obtain the discretely smoothed
direct spectral estimator in Figs. 9.15 and 9.16. In plot (c), lag window v�τ�

dD,M (τ)
pertaining to VdD,M (s′k), for M = 10, N = 4096 and N ′ = 2N . On the right in plots

(b) and (d), Fourier transforms of h
(d)
N 
h

(d)
N (τ)

(
the spectral window of Ĉ

(d)
X (s′k)

)
and V �τ�

dD,M (τ): negative side lobes with broken lines, a long vertical line for assessing
the width at half height of main lobes in the spectral window and the smoothing
kernel. The Fejer kernel for N = 4096 is added in plot (b) using a broken line.

Fejer kernel being the spectral window of the periodogram in (8.21), which
is plotted in Fig. 9.20 (b) as well. Due to these small side lobes, the leakage
in (9.12) becomes negligible and the direct spectral estimator Ĉ(d)

X (s′k) is
approximately unbiased for frequencies a larger distance away from the peaks
in the spectrum to be estimated.

From plots (b) and (d) in Fig. 9.21, it becomes obvious that Vm(s) has
side lobes smaller by two or three orders of magnitude than those of FN (s) for
|s| > 0.008 (a behaviour similar to H(d)�

N (s) in Fig. 9.20 (b) for |s| > 0.007).
This spectral window, therefore, reduces the leakage in convolution (9.63)
to the extent that Ĉ
τ�

X (s) and thus Ĉ(m)
X (s′k) in Figs. 9.15 and 9.16 become

approximately unbiased for frequencies a larger distance away from the peaks
in the spectrum to be estimated. This conclusion is reconcilable with plot (b)
in Fig. 9.17, showing the expectation of Ĉ(m)

X (s′k) on the logarithmic scale as
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Fig. 9.21. In plot (a), the product of the autocorrelation of the variance-normalised
data taper and the lag window as plotted in Fig. 9.20 (a) and (c), together with its
Fourier transform in plot (b), i.e., the spectral window of the discretely smoothed
direct spectral estimator as plotted in Figs. 9.15 and 9.16. Details of the spectral
window in plots (c) and (d). In plots (b), (c) and (d), negative side lobes and
the Fejer kernel for N = 4096 are plotted with broken lines, together with a long
vertical line for assessing the width at half height of the spectral window.

approximated using (9.30) under the assumption that Ĉ(d)
X (s′k) is unbiased

due to tapering.
At the peaks of the spectrum to be estimated, however, Ĉ(m)

X (s′k) is biased
as is obvious in Fig. 9.17 (b). This bias originates from smoothing Ĉ(d)

X (s′k)
in a band of width 0.00244 = 20∆s′k, ∆s′k = 1/(2N), N ′ = 2N , N = 4096,
to obtain Ĉ(m)

X (s′k), on condition that Ĉ(d)
X (s′k) is unbiased. This bandwidth

is recommended by diagnostic (6.115) since B�
(
CX(s)

) ≈ 0.005, B�
(
CX(s)

)
being the bandwidth of the spectrum to be estimated obtained by applying
(7.83) (the widths at half height of both peaks being approximately 0.005)
in Fig. 7.10 (d) for the spectrum of the AR[4] model (Xt) in Fig. 7.14. Is
the bandwidth of the estimator too large as compared to the bandwidth
of the spectrum, despite diagnostic (6.115)? As a prerequisite for giving an
answer to this question in (9.72), a bias in a lag window spectral estimator is
assumed to be due to (i) leakage in (9.12) and (ii) smoothing in (9.42), with
the contribution of both sources added as in (9.67).
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If a biased direct spectral estimator Ĉ(d)
X (s)

(
e.g., the estimators in Fig. 9.4

(a), (b) and (c)
)

is smoothed to obtain a lag window estimator Ĉ
τ�
X (s), then

Ĉ
τ�
X (s) inherits the bias in Ĉ(d)

X (s) and is subject to an additional bias due
to smoothing as required in (9.42). Often a bias generated by smoothing will
afflict the estimator in the peak region of the spectrum to be estimated, as is
demonstrated in Fig. 9.17 (b). Consequently, the overall bias of Ĉ
τ�

X (s) as
defined in (9.66) is the sum of two distinct terms: biasH

(
Ĉ
τ�

X (s)
)

originates
from leakage due to the convolution with the spectral window H(d)

N (s) in
(9.12), and biasV

(
Ĉ
τ�

X (s)
)

is generated by smoothing the direct spectral
estimator with a smoothing kernel.

bias
(
Ĉ
τ�

X (s)
)

= −E
(
Ĉ
τ�

X (s)
)

+ CX(s) (9.66)

= biasH
(
Ĉ
τ�

X (s)
)

+ biasV
(
Ĉ
τ�

X (s)
)
, where (9.67)

biasH
(
Ĉ
τ�

X (s)
)

= −E
(
Ĉ

(d)
X (s)

)
+ CX(s), E

(
Ĉ

(d)
X (s)

)
as in (9.12)

(9.68)

From (9.67) it is concluded that Ĉ
τ�
X (s) is approximately unbiased for all

−1/2 ≤ s ≤ 1/2 on condition that (i) Ĉ(d)
X (s) is approximately unbiased,

i.e., −E
(
Ĉ

(d)
X (s)

)
+ CX(s) ≈ 0, and (ii) this property is preserved despite

smoothing, i.e., biasV
(
Ĉ
τ�

X (s)
) ≈ 0.

biasV
(
Ĉ
τ�

X (s)
)

is approximated in (9.72) under the assumption that
biasH

(
Ĉ
τ�

X (s)
) ≈ 0, and thus E

(
Ĉ

(d)
X (s)

) ≈ CX(s) in (9.12). Substituting
this approximation in (9.61), the expectation of the lag window estimator
is approximated in (9.69) under the assumption that the bias of the direct
spectral estimator is negligible. biasV

(
Ĉ
τ�

X (s)
)

follows in (9.70).

E
(
Ĉ
τ�

X (s)
) ≈ ∫ 1/2

−1/2

V 
τ�
m (s− r)CX(r)dr (9.69)

biasV
(
Ĉ
τ�

X (s)
) ≈ −

∫ 1/2

−1/2

V 
τ�
m (s− r)CX(r)dr + CX(s) (9.70)

≈ CX
′′(s)
2

∫ 1/2

−1/2

r2V 
τ�
m (r)dr (9.71)

≈ CX
′′(s)
24

(
Bσ

(
V 
τ�

m (s)
))2

(9.72)

(9.71) is derived in [113] using a Taylor series expansion of CX(s). From
this approximation, (9.72) readily follows by substituting the σ-width of the
smoothing kernel as defined in (9.128).

A bias due to smoothing as in (9.72) is proportional to CX
′′(s), i.e., the

second derivative of the spectrum to be estimated. |CX
′′(s)| is large in bands

where CX(s) has spiky peaks and narrow valleys, and small in bands where
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CX(s) is moderately curved. Consequently, the product of the second deriva-
tive and the squared σ-width of the smoothing kernel remains lower than a
pre-selected threshold for the bias due to smoothing, on condition that the
maximal |CX

′′(s)| is known and the direct spectral estimator is smoothed by
means of an adequate kernel.

In applications, a lag window is applied such that the pertaining smooth-
ing kernel V 
τ�

m (s) has a σ-width not larger than half the bandwidth of the
spectrum to be estimated, i.e., Bσ

(
V 
τ�

m (s)
) ≤ B∩

�
(
CX(s)

)
/2, as is recom-

mended in (6.115). If B∩
�
(
CX(s)

)
is not known then the procedures introduced

in Sect. 9.3.5 can be helpful to arrive at an adequate width of the smoothing
kernel.

In Figs. 9.15 and 9.16 for example, the discrete direct spectral estima-
tor Ĉ(d)

X (s′k), with ∆s′k = 1/N ′ = 1/8192 = 0.000122, is smoothed using a
modified discrete Daniell kernel VdD,M (s′k) with M = 10. The lag window
pertaining to VdD,M (s′k) is plotted, together with its continuous smoothing
kernel V 
τ�

dD,M (τ ), in Fig. 9.20 (c) and (d). In plot (d), B∩
�
(
VdD,M (s′k)

)≈ .0024,
i.e., the width at half height of the main lobe in the continuous smoothing
kernel, is approximated, as demonstrated in Fig. 6.24. Is this width in agree-
ment with diagnostic (6.115)? Using this diagnostic, Bσ

(
V 
τ�

m (s)
) ≤ 0.0047/2

is obtained, 0.0047 being the bandwidth of the spectrum to be estimated as
obtained in Figs. 7.10 and 7.14. Since Bσ

(
V 
τ�

m (s)
) ≈≈ 2M∆s′k in Table 9.4,

2M × 0.000122 ≤ 0.00234 and M ≤ 9.713 follow, ≈≈ a rough approxima-
tion. The smoothing kernel thus arrived at is narrow enough to estimate
CX(s) without bias for almost all frequencies, except those in the bands
with the peaks as is obvious in Fig. 9.17 (a). In these bands, |CX

′′(s)| be-
comes too large for the width of the smoothing kernel in (9.72), resulting in
biasV

(
Ĉ
τ�

X (s)
)
> 0. Above, Bσ

(
V 
τ�

m (s)
)

is substituted with 2M∆s′k, i.e.,
the bandwidth of the modified discrete Daniell kernel as defined in (9.125),
because

1. its equivalent width, as well as its σ-width as in Table 9.4, are calculated
despite the remarks to (9.126) and (9.128)

2. the bandwidth of a discrete smoothing kernel as defined in (9.125) is
intuitively appealing since it is the width of a moving average as defined
in the remarks to (2.39), and

3. parameter M readily follows when this bandwidth is used in diagnostic
(6.115).

This example demonstrates that (9.63), (9.64), (9.67) and (9.72) imply, in
condensed form, that a lag window spectral estimator is unbiased on condition
that (i) the observations are tapered adequately, i.e., taking into account the
dynamic range of the spectrum to be estimated as demonstrated in Figs. 9.3
and 9.4, and (ii) the direct spectral estimator calculated from the tapered
observations is smoothed taking into account the bandwith of the spectrum
as recommended in (6.115).
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(9.63), (9.64) and (9.65) suggest that a lag window spectral estimator
could be calculated in the following steps: (i) computing the empirical covari-
ance function from observations that have not been tapered, (ii) multiplying
this covariance function with a lag window whose smoothing kernel has, in
addition to properties (6.108), side lobes that are small enough to suppress
leakage even when a spectrum having a large dynamic range is estimated,
and (iii), calculating a Fourier transform of the product resulting from step
(ii). The smoothing kernel is required to have small side lobes because it is,
in this case, the spectral window: the lag window is applied to the empirical
covariance function in order to arrive at an estimator with both a negligible
bias and a small variance.

The construction of a lag window possessing all the above properties is dif-
ficult because an associated smoothing kernel, possibly having negative side
lobes with absolute values much larger than the examples given in Figs. 9.2
and 9.21, induces the risk of obtaining a negative expectation of the spectrum,
as is demonstrated in Fig. 6.22. There, the convolution becomes negative for
displacements such that the dominating peak becomes coincident with a neg-
ative side lobe in the Dirichlet kernel. In spectral estimation, it is much easier
(i) to keep the bias to the minimum by means of tapering the observations
and (ii) to reduce the variance by means of applying a lag window to the
empirical covariance function (calculated from tapered observations), an op-
eration which corresponds, in the frequency domain, to smoothing a direct
spectral estimator (calculated from tapered observations).

Above, in the first part of Sect. 9.3.3, the lag window spectral estimator
is analysed with respect to its expectation function. From this analysis it
follows that biasV

(
Ĉ
τ�

X (s)
)
, i.e., the bias due to smoothing as approximated

in (9.72), is the price to be paid for obtaining a lag window estimator that has
a smaller variance than that of the direct spectral estimator being smoothed.
Is the reduction in variance worth the cost? An answer to this question is
obtained when the variance function of the lag window spectral estimator is
derived in the second part of Sect. 9.3.3, which follows.

Any lag window spectral estimator Ĉ
τ�
X (s′k), s′k discrete frequencies with

∆s′k = 1/(2N) as defined in (9.53), can be written as a discretely smoothed
direct spectral estimator Ĉ(d)

X (s′k), as is concluded from (9.59). Consequently,
the variance of a lag window estimator Ĉ
τ�

X (s′k) can be approximated using
(9.38), i.e., the approximation for the variance of a discretely smoothed direct
spectral estimator. This approximation is obtained under assumptions (9.32).
Under these assumptions, for example, the variance function of the discretely
smoothed direct spectral estimator in Figs. 9.15 and 9.16 is approximated in
the remarks to (9.59).

Approximations for the variance function of a lag window spectral esti-
mator Ĉ
τ�

X (s) calculated for real frequencies −1/2 ≤ s ≤ 1/2 can be derived
under the assumptions stipulated in (9.73), a version of (9.32) adapted for
continuous frequencies. (9.73,1) requires that the direct spectral estimator be-
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ing smoothed has a negligible bias and a variance very close to the square of
the spectrum to be estimated. The first property is the result of tapering, and
the second can be attributed to a direct spectral estimator reconcilable with
assumptions (9.13), as is concluded from (9.16). (9.73,3) implies (9.13,3), and
(9.73,2), stipulating that the width of the band in which CX(s) is required to
be constant is larger than the autocorrelation width of the smoothing kernel,
implies (9.13,4) on condition that B�

(
V 
τ�

m (s)
) ≥ 2B∩

�
(
HN (s)

)
.

Let Ĉ
τ�
X (s) =

∫ 1/2

−1/2
V 
τ�

m (s−r)Ĉ(d)
X (r)dr be a lag window

estimator for a continuous spectrum CX(s)(s) as defined in
(9.41), (9.42), (9.43) and (9.44). Then Var

(
Ĉ
τ�

X (s)
)

can be
approximated under the following assumptions:

1. E
(
Ĉ

(d)
X (s)

) ≈ CX(s) and Var
(
Ĉ

(d)
X (s)

) ≈ C2
X(s)

2. CX(s) is approximately constant in band s− ζ ≤ s ≤ s+ ζ
having width 2ζ, 2ζ ≥ B�

(
V 
τ�

m (s)
)
, B�

(
V 
τ�

m (s)
)

the auto-
correlation width of the smoothing kernel as defined in (9.129)

3. (Xt) is normal as required in (9.13,3), and
4. the distance between s and −1/2, 0, or 1/2 is larger than |ζ|.

(9.73)

These assumptions imply those in (9.32) on condition that B�

(
V 
τ�

m (s)
) ≥

2M∆s′k, and therefore, approximation (9.38) for the variance of a discretely
smoothed direct spectral estimator (9.28,3) also applies to a lag window spec-
tral estimator calculated for frequencies s′k as defined in (9.53), since, for these
frequencies, Ĉ
τ�

X (s′k) = 1
2N

∑N
j=−(N−1) V


τ�
m (s′j)Ĉ

(d)
X (s′k−j) as obtained in

(9.59). When Var
(
Ĉ
τ�

X (s′k)
)

is approximated using (9.38), then the auto-
correlations of the smoothing kernel for discrete displacements l × ∆s′k are
computed, which are then weighted with the correlations of the direct spec-
tral estimator as obtained in (9.17) and added in order to arrive at the result.
These computations are feasible, as is demonstrated in the remarks to (9.38).

However, approximation (9.138) derived in Sect. 9.5.5 is (i) easier to com-
pute and (ii) related to simple properties (i.e., properties that can be de-
scribed using a few numbers) of the data taper and the smoothing kernel
applied for computing Ĉ
τ�

X (s′k). These are the reasons why (9.138) became
the usual approximation for the variance of a lag window spectral estimator
computed for discrete frequencies s′k with∆s′k = 1/(2N) as obtained in (9.59)
under the assumption that CX(s) is locally (2.55) constant in a band approx-
imately 2ζ wide. 2ζ is the width of band s− ζ ≤ s ≤ s+ ζ in (9.73,2). This
approximation is reformulated in (9.75) and (9.76), using Ξ(h) as defined in
(9.74) and ∆sk = 1/N as in (6.21).

Ξ(h) =
NΣ(h4)(
Σ(h2)

)2 =
N
∑N−1

t=0 (hN (t))4(∑N−1
t=0 (hN (t))2

)2 (9.74)

Var
(
Ĉ
τ�

X (s′k)
) ≈ (

C2
X(s′k)

) Ξ(h)
N

1
B�

(
V 
τ�

m (s)
) (9.75)
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Table 9.3. Ξ(h) for cosine tapers calculated in Problem 9.15 using definition (9.74).

p 0 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5
Ξ(h) 1.000 1.027 1.055 1.116 1.184 1.261 1.347 1.444 1.553 1.675 1.944

≈ (∆sk)
(
Ξ(h)

)
B�

(
V 
τ�

m (s)

(
C2

X(s′k)
)

with ∆sk = 1/N (9.76)

In (9.75) and (9.76), ∆sk = 1/N , Ξ(h) and B�

(
V 
τ�

m (s)
)

are determined
by the number of observations available, the data taper applied to the ob-
servations, and the kernel used for smoothing the direct spectral estimator.
Consequently, this approximation for Var

(
Ĉ
τ�

X (s′k)
)

does not depend on s′k
and thus applies for continuous frequencies −1/2 ≤ s ≤ 1/2, (except for those
excluded in (9.73,4)), as formulated in (9.77) and (9.78).

Var
(
Ĉ
τ�

X (s)
) ≈ Ξ(h)

1
N

1
B�

(
V 
τ�

m (s)
)(C2

X(s)
)

(9.77)

≈ (∆sk)
(
Ξ(h)

)
B�

(
V 
τ�

m (s)
) (C2

X(s)
)

with ∆sk = 1/N (9.78)

Clearly, these approximations apply under the assumptions in (9.73), which
are equivalent to those made in Sect. 9.5.5.

(9.77) (or (9.78)) is preferred to (9.38) for approximating the variance of
a smoothed direct spectral estimator because (i) it applies for continuous fre-
quencies −1/2 ≤ s ≤ 1/2, except for those excluded in (9.73,4), (ii) Ξ(h) and
B�

(
V 
τ�

m (s)
)

can be easily computed and are related to properties of the data
taper and the smoothing kernel that can be easily seen in a plot, e.g., Ξ(h)
increases when the tails of the data taper become longer as demonstrated in
Table 9.3 for the case of cosine tapers, and (iii) it allows for approximating
the variance of a lag window estimator for large N in the following paragraph.

If, in (9.77) (or (9.78)), Ξ(h) and B�

(
V 
τ�

m (s)
)

remain fixed (due to a
data taper and a smoothing kernel not being changed), then Var

(
Ĉ
τ�

X (s)
)

decreases with 1/N = ∆sk whenN increases. Consequently, Var
(
Ĉ
τ�

X (s)
)→

0 on condition that Ξ(h)/
(
NB�

(
V 
τ�

m (s)
)) → 0 for N → ∞. This is the

property required in definition (1.4), and thus a lag window spectral estimator
attains a second moment function as desired in the introduction to Sect. 9.3.

The variance function of a lag window spectral estimator as approxi-
mated in (9.77) (or (9.78)) is proportional to the squared spectrum to be
estimated, the factors being Ξ(h), 1/N and 1/B�

(
V 
τ�

m (s)
)
. Of these, N and

Ξ(h) are determined by the observations available and the data taper ap-
plied, and 1/B�

(
V 
τ�

m (s)
)

by the kernel used for smoothing the direct spec-
tral estimator having a variance as approximated in (9.16). Consequently,
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when (9.16) is compared with (9.77) and (9.78), it becomes evident that(
Ξ(h)

) × (1/N) × (
1/B�

(
V 
τ�

m (s)
))

is the variance reduction attained by
smoothing a direct spectral estimator. This variance reduction is discussed
in the following paragraphs for two cases: i.e., for smoothing a periodogram
and for smoothing a direct spectral estimator.

Assume that a spectrum with a small dynamic range is estimated using a
periodogram IX(sk) (8.1,3), a possibility conceded in the concluding remarks
of Sect. 8.3. Thereafter, IX(sk) can be smoothed to arrive at an estimator that
is not subject to the disadvantages enumerated in the concluding remarks
of Sect. 8.4. The estimator thus obtained, i.e., the smoothed periodogram
I
(m)
X (sk), will have a variance that can be approximated using (9.77) (or

(9.78)) under assumptions (9.73) because (i) ΠN (t) in (6.52,1) becomes the
“data taper” of the periodogram as argued in the remarks to definitions (9.2)
and (ii) any discretely smoothed direct spectral estimator is a lag window
estimator (as is concluded in the remarks to (9.52)). Ξ(h) = 1 then follows
from definition (9.74), and thus (9.78) becomes

Var
(
I
(m)
X (sk)

) ≈ ∆sk

B�

(
V 
τ�

m (s)
)(C2

X(s)
)

(9.79)

≈ (1/d)
(
C2

X(s)
)

with d×∆sk = B�

(
V 
τ�

m (s)
)
. (9.80)

When approximation (9.80) is compared with the one in (8.24,7), it becomes
obvious that the variance of I(m)

X (sk) is (1/d) ≈ (1/d1) times smaller than
the variance of IX(sk), d1 being the largest positive integer smaller than d.
This variance reduction is reconcilable with the one obtained when I(m)

X (sk)
is calculated as the mean of d1 random variables IX(sk) under iid. condi-
tions since the IX(sk) are (i) identically distributed as required by (9.73,1,2)
and (ii) independent as implied by (8.24,1). Consequently, the variance of
a periodogram IX(sk) (8.1,3) is reduced by approximately (1/d) when it is
discretely smoothed, with d being the autocorrelation width of the smooth-
ing kernel in units of ∆sk. For example, the spectrum of a turbulent flow in
the atmospheric boundary layer is estimated in Sect. 9.4.2 by smoothing a
periodogram calculated for the Fourier frequencies.

A spectrum with a large dynamic range is estimated using a direct spectral
estimator Ĉ(d)

X (s) (9.3) having a variance Var
(
Ĉ

(d)
X (s)

) ≈ C2
X(s) as obtained

in (9.16). Var
(
Ĉ

(d)
X (s)

)
is reduced when Ĉ(d)

X (s) is smoothed and the variance
of the smoothed direct spectral estimator is approximated in (9.77) and (9.78)
under assumptions (9.73). For example, the variance of the smoothed direct
spectral estimator in Figs. 9.15 and 9.16, which is a lag window estimator in
accordance with the remarks to (9.52), is approximated using the following
factors in (9.77) (or (9.78)): Ξ(h) = 1.055 for a cosine taper with p = 0.05
from Table 9.3, and B�

(
V 
τ�

dD,M (s)
)

= 0.0026 for a continuous smoothing ker-
nel associated with a modified discrete Daniell kernel for M = 10, N = 4096
and ∆s′k = 1/(2N) from Table 9.4. With these factors, Var

(
Ĉ
τ�

X (s)
) ≈
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(1/4096)×1.055×(1/0.0026)×(C2
X(s)

) ≈ 0.0991×(C2
X(s)

) ≈ 0.10×(C2
X(s)

)
is arrived at, reconcilable with the variance reduction obtained for this ex-
ample in the remarks to (9.38) under assumptions (9.32). Identical variance
reductions are obtained from both approximations, i.e., the one in (9.38) as
well as its counterpart in (9.77) and (9.78), because the assumptions in (9.32)
and (9.73) are equivalent.

(9.73,2) requires that a continuous (9.1,2) spectrum to be estimated be
constant in a band having a width equal to the autocorrelation width of
the smoothing kernel applied. This specification has to be adhered to in
applications since it is counterproductive to average realised values which
stem from random variables having large differences in their expectations.

The variance of a direct spectral estimator is reduced when it is smoothed
in accordance with (9.73), however, this reduction in variance is only attained
at the cost of an increase in bias, as is concluded from (9.71) and (9.72): in
(9.72) the bias due to smoothing is proportional to the squared σ-width of
the smoothing kernel and the second derivative of the spectrum, whereas,
in (9.77) and (9.78), the variance is proportional to the inverse of the au-
tocorrelation width and the square of the spectrum. For example, when the
direct spectral estimator in Fig. 9.16 is discretely smoothed, its variance is
reduced by a factor 10, as calculated above, however, the smoothed estima-
tor is slightly biased at the peaks of the spectrum, as is demonstrated in
Fig. 9.17 (a). An estimator having (i) a smaller variance than the one plot-
ted in Figs. 9.15 and 9.16 and (ii) a bias not larger than the one shown in
Fig. 9.17 (a) can be computed on condition that N increases, because, in
(9.77) and (9.78), the autocorrelation width of the smoothing kernel cannot
be increased without increasing its σ-width in (9.72). Thus (9.77) as well as
(9.78) and (9.72) imply a bias-variance tradeoff, on condition that N and
Ξ(h) remain constant.

Consequently, the statistical properties of a lag window spectral estima-
tor depend on the σ- and autocorrelation widths, and not on a particular
form, of the smoothing kernel applied [74]. This is in agreement with the
results obtained in Problems 6.31 and 7.8. There, an input sequence in fil-
ters (6.120) and (7.84) can be smoothed to approximately identical output
sequences when it is convolved with a variety of impulse response sequences
having different forms but identical width. In contrast, when the input se-
quence is convolved with impulse response sequences having identical forms
but different widths, the output sequences become distinct from each other.
From these experiments it is concluded that, when a direct spectral estima-
tor is computed, a smoothing kernel having form A performs as satisfactorily
as another one having form B, A and B arbitrary, on condition that the
smoothing kernels have (i) identical width [74] and (ii) properties as required
in (9.28) and/or (9.44).

In applications, either a lag window or a discrete smoothing kernel are
applied such that the pertaining smoothing kernel V 
τ�

m (s) has a σ-width
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not larger than half the bandwidth of the spectrum to be estimated, i.e.,
Bσ

(
V 
τ�

m (s)
) ≤ B∩

�
(
CX(s)

)
/2, as is recommended in (6.115). Obviously, the

estimator thus obtained (i) is biased at its peaks as is concluded from (9.72)
and, assuming B�

(
V 
τ�

m (s)
) ≈ Bσ

(
V 
τ�

m (s)
)
, (ii) does not satisfy (9.73,2) or

(9.32,4). This is a minor dilemma compared to the one you will find yourself
in if you do not know the bandwidth of the spectrum to be estimated. In this
difficult situation, the procedures introduced in Sect. 9.3.5 can be helpful to
arrive at an adequate width of the smoothing kernel. It is, however, clear that
both the variance and bias of the smoothed direct spectral estimator become
smaller when N increases and, simultaneously, the width of the smoothing
kernel increases with b×∆sk, where b < 1 and ∆sk = 1/N .

9.3.4 Distribution of the Lag Window Estimator

A periodogram IW (sk) calculated as required in (8.7) for the Fourier frequen-
cies sk using a time slice in a realisation of a normal (2.3) white noise process
is χ2

(n) distributed, n = 1 or n = 2, as proposed in (8.7,3) for the following
reasons: (i) the periodogram is, for each Fourier frequency sk, the sum of
the squares of Âk and B̂k, which are stochastically independent from each
other and normally distributed, and (ii) the sum of n independent random
variables having a standard normal distribution is χ2

(n) distributed. When

both Â2
k and B̂2

k are added to obtain the periodogram IW (sk) then n = 2,
and when IW (sk) = A2

k (for frequencies sk = 0 and possibly −1/2 and 1/2)
then n = 1, as distinguished in (8.7,3).

For large finite N , a periodogram IX(s), calculated from observations
xt, t = 0, 1, . . . , N − 1, in a realisation of model (9.1) and normalised as in
(8.24,2), i.e., with the continuous spectrum of the model, is approximately
χ2

(n) distributed, n = 1 or n = 2. This approximation also applies to a
normalised direct spectral estimator calculated using observations stemming
from model (9.1), as proposed in (9.19).

Under the same assumptions, i.e., for large finite N , a chi-square approx-
imation also applies to the distribution of the discretely smoothed direct
spectral estimators Ĉ(m)

X (sk) and Ĉ(m)
X (s′k) as defined in (9.28). A χ2

(n) distri-
bution, with n to be approximated, becomes perspicuous from the following
rationale: Ĉ(m)

X (sk) or Ĉ(m)
X (s′k) are the weighted sums of 2M + 1 random

variables in estimators Ĉ(d)
X (sk) or Ĉ(d)

X (s′k), which are normally distributed,
however not independent, on condition that the estimators being smoothed
have the properties required in (9.28) and (9.32).

From this plausible result, it is concluded that a chi-square approximation
also applies to the distribution of a lag window spectral estimator Ĉ
τ�

X (s′k),
s′k being discrete frequencies with ∆s′k = 1/(2N), as defined in (9.53), for
the reason that, for this set of discrete frequencies, any lag window spectral
estimator can be written as a discretely smoothed direct spectral estimator,
as derived in (9.59). For large finite N it is therefore reasonable to assume
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that a lag window spectral estimator Ĉ
τ�
X (s), as defined in (9.41), (9.42),

(9.43) as well as (9.44) and having properties as required in (9.73), is χ2
(n)

distributed, with n to be approximated.
Under this assumption, E

(
(1/a)Ĉ
τ�

X (s)
)

= (1/a)
(
EĈ
τ�

X (s)
)

= n imply-
ing (9.81) and Var

(
(1/a)Ĉ
τ�

X (s)
)

= (1/a2)Var
(
Ĉ
τ�

X (s)
)

= 2n are obtained,
due to the fact that the expectation of a random variable having a χ2

(n) dis-
tribution is n, i.e., the number of degrees of freedom, its variance twice this
number. Using these results,

a =
(
EĈ
τ�

X (s)
)/
n (9.81)

n = 2
((

EĈ
τ�
X (s)

)2)/(VarĈ
τ�
X (s)

)
(9.82)

the normalisation (1/a) and the number n of degrees of freedom in the χ2
(n)

approximation for the distribution of (1/a)Ĉ
τ�
X (s) are arrived at above, in

(9.81) and (9.82).
If EĈ
τ�

X (s) ≈ CX(s) due to an adequate tapering and a number of obser-
vations N being large (under these preconditions, a lag window spectral esti-
mator becomes approximately unbiased, as argued in the remarks to (9.64)),
then (i) (9.81) becomes approximation (9.83) and (ii) approximation (9.84)
is obtained by substituting approximation (9.77) for VarĈ
τ�

X (s) in (9.82).
Substituting for a and n, the distribution of the

(
(n/CX(s)

)
-normalised lag

window spectral estimator is approximated in (9.85). (9.86) follows because
the variance of a random variable having a χ2

(n) distribution is 2n.

a ≈ (
CX(s)

)/
n (9.83)

n ≈ 2
(
CX(s)

)2
NB�

(
V 
τ�

m (s)
)

Ξ(h)
(
CX(s)

)2 =
2NB�

(
V 
τ�

m (s)
)

Ξ(h)
(9.84)

1
a
Ĉ
τ�

X (s) =
n

CX(s)
Ĉ
τ�

X (s) is approximately χ2
(n) distributed (9.85)

VarĈ
τ�
X (s) ≈ 2n

n2
C2

X(s) =
2
n
C2

X(s) (9.86)

n is the number of degrees of freedom in the χ2
(n) approximation for the dis-

tribution of random function
(
(n/CX(s)

)
Ĉ
τ�

X (s), i.e., the number of degrees
of freedom associated with the

(
(n/CX(s)

)
-normalised lag window spectral

estimator.
When approximation (9.86) is compared with the one obtained in (9.16),

it is concluded that smoothing as applied in (9.28) or (9.42) reduces the
variance of the direct spectral estimator: the variance of the smoothed es-
timator is (2/n) times smaller than the variance of the estimator prior to
smoothing. Thus the variance of the lag window spectral estimator as ap-
proximated in (9.77) and (9.86) decreases when the autocorrelation width of
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Fig. 9.22. Smoothed direct spectral estimator as in Fig. 9.15: histograms obtained
subsequent to a normalisation (9.85), with CX(s) being the spectrum of the AR[4]
model in Fig. 7.14 and n = 1.0 (a), n = 19.0 (b) and n = 20.2 (c).

the smoothing kernel increases, on condition that N remains constant. How-
ever, a smoothing kernel which is too wide can generate (i) an undesired bias
as is concluded from approximation (9.72), and (ii) a poor approximation
of the variance when the width of kernel is not reconcilable with (9.73,2)
or (9.32,4). Thus approximation (9.72) as well as those in (9.77) and (9.86)
imply a bias-variance tradeoff, which is discussed in the remarks to (9.80).

Usually, (9.84) is applied to compute the degrees of freedom associated
with a lag window spectral estimator. When this approximation is applied to
the discretely smoothed direct spectral estimator in Fig. 9.15 (which is also
a lag window spectral estimator as concluded from the remarks to (9.52)),
the following results are obtained.

In order to arrive at the estimator in Fig. 9.15, N = 4096 observations of
the AR[4] model in Fig. 7.14 are multiplied with a cosine taper for p = 0.05
in a first step. In a second step, the tapered observations are zero-padded
such that a direct spectral estimator is calculated for discrete frequencies s′k
with ∆s′k = 1/8192. In a third and final step, the direct spectral estimator
is smoothed with a modified discrete Daniell kernel (9.29) having parameter
M = 10. To the cosine taper applied pertains a correction factorΞ(h) = 1.055
(in Table 9.3), and the variance reduction due to smoothing can be described
using either B||

(
VdD,M (s′k)

)
= 2M∆s′k = 0.0024 as defined in (9.125) or

B�

(
V 
τ�

m (s)
)

= 0.0026 in (9.84) and (9.129), both widths as in Table 9.4.
Using B�

(
V 
τ�

m (s)
)

= 0.0026, n ≈ 20.2 is obtained, whereas n ≈ 19.0 results
when 2M∆s′k = 0.0024 is used.

When these approximations and the spectrum of the AR[4] model (as
plotted in Fig. 7.14) are substituted in (9.85), two normalised estimators are
obtained whose histograms are plotted in Fig. 9.22 (b) and (c).

The histograms in Fig. 9.22 (b) and (c) are plotted together with the
χ2

(n) approximations (9.85), n = 19.0 and n = 20.2, for the densities of the
normalised estimators. The fit of both approximations is fairly satisfactory,
because, in this example, the width of the smoothing kernel is chosen such
that (i) the bias due to smoothing (9.72) does not become too large at the
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peaks of the spectrum and (ii) assumption (9.73) is still adequately satisfied.
It is, however, difficult to satisfy both assumptions and, at the same time, to
reduce the variance of the direct spectral estimator by an order of magnitude,
when only N = 4096 observations are available for the estimation of such
a narrow spectrum having bandwidth B�

(
CX(s)

)
= 0.00474 as shown in

Figs. 7.10 (c) and 7.14 (b).
The χ2

(n) approximation (9.85) for the distribution of
(
(n/CX(s)

)
Ĉ
τ�

X (s)
allows for approximating the probability in (9.87), with Qn(p) being the p
quantile of the χ2

(n) distribution. (9.87) implies the approximative 2p confi-
dence interval for the lag window spectral estimator in (9.88),

Pr

(
Qn(p) ≤ nĈ
τ�

X (s)
CX(s)

≤ Qn(1 − p)
)

≈ 1 − 2p (9.87)

Pr

(
nĈ
τ�

X (s)
Qn(1 − p) ≤ CX(s) ≤ nĈ
τ�

X (s)
Qn(p)

)
≈ 1 − 2p (9.88)

provided that assumptions (9.73) are satisfied. Under these assumptions, ap-
proximation (9.77) for the variance of the lag window spectral estimator is
obtained, which is thereafter substituted in (9.82) to obtain approximation
(9.84) for the degrees of freedom associated with the

(
(n/CX(s)

)
-normalised

lag window spectral estimator. The approximative 2p confidence interval in
(9.88) depends, on condition that n is computed as required in (9.84), on (i)
Ξ(h) which compensates for correletions (9.17) induced by the cosine taper
in the direct spectral estimator, (ii) B�

(
V 
τ�

m (s)
)
, i.e., the autocorrelation

width of the smoothing kernel, (iii) the length N of the time slice in the
realisation observed, and (iv) the spectrum CX(s) to be estimated.

In Fig. 9.23 for example, .95 confidence intervals (9.88) for the discretely
smoothed direct spectral estimator as in Fig. 9.15 are plotted in bands
0.110 ≤ s ≤ 0.140 and 0.430 ≤ s ≤ 0.460, together with both the model
spectrum to be estimated and the estimator. These confidence intervals are
computed using n = 19.0 in the χ2

(n) approximation (9.85). This approxi-
mation for the density of the normalised estimator (any discretely smoothed
direct spectral estimator is a lag window estimator as stipulated in the re-
marks to (9.52)) is plotted in Fig. 9.22 (b).

A confidence interval as obtained in (9.88) applies for each frequency
s individually, a property shared by the prediction intervals as defined in
(5.71). Hence, such a confidence interval contains the spectrum for 95 out
of 100 frequencies in the mean over many realisations. For the example in
Fig. 9.23, 4077 = 4096 − 2 × 10 + 1 confidence intervals are computed for
discrete frequencies 0+10∆s′k ≤ s′k ≤ 0.5− 10∆s′k, since the approximations
for the variance of the smoothed estimator, and consequently for n = 19.0 in
the χ2

(n) approximation, do not apply for frequencies close to 0 and 0.5, in
accordance with (9.32,2). Of these, 3869 (or 94.89 %) contain the spectrum
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Fig. 9.23. Smoothed direct spectral estimator as in Figs. 9.15 and 9.16 for the
spectrum of the AR[4] model in Fig. 7.14 (solid line), together with .95 confidence
intervals (9.88) with n = 19.0 in the χ2

(n) approximation (9.85).

of the AR[4] model. If n = 20.2 is used in the χ2
(n) approximation, 3845 out of

4077 confidence intervals (or 94.06 %) contain the spectrum. Consequently,
a χ2

(n) distribution with n ≈ 20.0 is a fairly good approximation (9.85) for
the distribution of the smoothed direct spectral estimator in Figs. 9.15, 9.16
and 9.23.

The approximative confidence interval obtained in (9.88) has a lower and
an upper bound which are both proportional to the estimator. Consequently,
the quotient of each bound and estimator is constant for all frequencies and
thus becomes, subsequent to a logarithmic transformation, the constant dif-
ference between each bound and estimator. In a logarithmic plot therefore,
the bounds of the confidence intervals are at a constant distance from the
estimator and the height of the intervals remains constant, as demonstrated
below in Fig. 9.23, plots (c) and (d). In a non-logarithmic plot, however, the
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height of the confidence interval is proportional to both the estimator and
spectrum, on condition that the estimator is approximatively unbiased, as
demonstrated above in Fig. 9.23, plots (a) and (b).

The above approximations were computed using spec.univariate() in-
troduced in Sect. 9.5.6. In spec.univariate(), (i) a direct spectral estima-
tor is computed using a cosine taper, (ii) the estimator thus obtained is
smoothed with a modified discrete Daniell kernel (9.29), and (iii) the degrees
of freedom in the χ2

(n) approximation for the distribution of the estimator
are computed as required in (9.84) and (9.129). For the approximations in
Fig. 9.22 (b) and in Fig. 9.23, B�

(
V 
τ�

m (s)
)

= 0.0026 was substituted with
B||
(
VdD,M (s′k)

)
= 2M∆s′k = 0.0024, B||

(
VdD,M (s′k)

)
as in (9.125).

9.3.5 Estimating a Spectrum with Unknown Bandwidth

The statistical properties of a lag window spectral estimator (and therefore
also of a discretely smoothed direct spectral estimator as is concluded from
(9.50), (9.51) and (9.52)) depend on Bσ

(
V 
τ�

m (s)
)

and B�

(
V 
τ�

m (s)
)
, i.e., the

σ- and autocorrelation widths of its smoothing kernel V 
τ�
m (s), as argued

in the remarks to (9.80). Subsequent to this discussion it is recommended,
in the last paragraph of Sect. 9.3.3, to obtain Bσ

(
V 
τ�

m (s)
)

using diagnostic
(6.115), on condition that the bandwidth of the spectrum to be estimated
is known, and then to assume B�

(
V 
τ�

m (s)
) ≈ Bσ

(
V 
τ�

m (s)
)
. Under this as-

sumption, both properties of the smoothed direct spectral estimator, i.e., the
bias due to smoothing as proposed in (9.72) and the variance as proposed
in (9.75) or (9.76), can be approximated. Both B�

(
V 
τ�

m (s)
)

or Bσ

(
V 
τ�

m (s)
)

can also be used to define the bandwidth of a lag window spectral estimator.
However, such a definition is controversial [108] since it ties the bandwidth
of the estimator to either B�

(
V 
τ�

m (s)
)

or Bσ

(
V 
τ�

m (s)
)
. Moreover, neither

a periodogram nor a direct spectral estimator have a smoothing kernel and
thus their bandwidths can not be defined using B�

(
V 
τ�

m (s)
)

or Bσ

(
V 
τ�

m (s)
)
.

An alternative definition can be justified using the following rationale
which reconsiders the bandwidths proposed in [112]. The expectation of an
estimator for a continuous spectrum CX(s) is the convolution of the spectrum
to be estimated with the spectral window of the estimator:

(
FN (s)

) ∗ CX(s)
in (8.21) is the expectation of a periodogram,

(H(d)
N (s)

) ∗ CX(s) in (9.12)
is the one of a direct spectral estimator, and

(Vm(s)
) ∗ CX(s) in (9.63) the

one of a lag window spectral estimator.
(Vm(s)

) ∗ CX(s) is also the expecta-
tion of a discretely smoothed direct spectral estimator as is concluded from
the remarks to (9.52). These spectral windows are required to be defining
sequences for δ(s + n), n = . . . ,−1, 0, 1, . . ., i.e., the periodic version of the
delta function as introduced in the remarks to (6.62), such that the estima-
tors become unbiased in the limiting case for N → ∞. For finite N , however,
these spectral windows have main and side lobes since they are the Fourier
transforms of the sequences in (8.19), (9.9) and (9.65), all of which are time-
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limited (6.108,1) and thus not band-limited as implied by (6.109). The side
lobes of the spectral window are neglected in the following definition.

B×B∩
�
()

is the bandwidth of a spectral estimator provided that:
1. B∩

�
()

is the width at half height (6.97) of the main lobe in the

associated spectral window, i.e., of FN (s) in (8.21), H(d)
N (s)

in (9.12) and Vm(s) in (9.63), and
2. B is constant.

(9.89)

Constant B in (9.89) accounts for choosing arbitrarily the half-power height
as defined in (6.97): when this height is substituted with another height
(the e-folding height for example, i.e., the height at which the power equals
1/e of the maximal height) another bandwidth is obtained. Clearly, identical
heights should be used in definitions (9.89) and (7.83,1) when diagnostic
(6.115) is used to assess the bandwidth of a spectral estimator provided that
the bandwidth of the spectrum to be estimated is known. Definition (9.89)
also applies to a periodogram or a direct spectral estimator calculated in
order to estimate a spectrum having a discrete part, as is concluded from the
remarks to (10.18).

Definition (9.89) can be applied to calculate the bandwidth of a spectral
estimator on condition that (i) a value for B is known, and (ii) the spectral
window has been computed as demonstrated in Figs. 9.20 and 9.21. In prac-
tical applications however, diagnostic (6.115) is often applied with any one of
the approximations (9.90), (9.91) or (9.92) substituted for B∩

�
()

in (9.89) and
assuming that B = 1. For example, approximation (9.90) is compared with
the bandwidth of the spectrum to be estimated in the remarks to Figs. 9.14,
9.15 and 9.16.

Approximation (9.90) is motivated by the width of a moving average as
proposed in the remarks to definition (2.39),

Let Ĉ(m)
X (sk) and Ĉ(m)

X (s′k) be discretely smoothed direct spectral
estimators, as defined in (9.28,2,3), whose discrete smoothing
kernels have approximately rectangular shape, i.e., small tails.
Then Ĉ(m)

X (sk) and Ĉ(m)
X (s′k) have approximative bandwidths

B||
(
Vm,M (sk)

) ≈ 2M∆sk and B||
(
Vm,M (s′k)

) ≈ 2M∆s′k.

(9.90)

and is thus reconcilable with (9.125) where the width of a discrete smoothing
kernel is defined. The computational advantages of the autocorrelation width
(as compared to the σ- and equivalent widths in Sects. 6.6 and 9.5.4) favour
approximation (9.91):

Let Ĉ
τ�
X (s) =

∫ 1/2

−1/2
V 
τ�

m (s− r)Ĉ(d)
X (r)dr be a lag window esti-

mator as defined in (9.42), (9.43) and (9.44). Then Ĉ
τ�
X (s) has

approximate bandwidth B�

(
V 
τ�

m (s)
)
, B�

(
V 
τ�

m (s)
)

as in (9.129).
(9.91)

If this approximation is applied to calculate the bandwidth of a discretely
smoothed direct spectral estimator Ĉ(m)

X (s′k) as defined in (9.28,2,3) (any
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Ĉ
(m)
X (s′k) can be written as a lag window estimator Ĉ
τ�

X (s) using (9.50),
(9.51) and (9.52)), then B�

(
V 
τ�

m (s)
) ≈ 2M∆s′k = B||

(
Vm,M (s′k)

)
as dis-

cussed in Sect. 9.5.4 for discrete smoothing kernels having approximately
rectangular shape. Approximation (9.92) accounts for the differences in the
widths at half height of the main lobes in the spectral windows as given in
Table 9.1:

Let Ĉ(d)
X (s) a direct spectral estimator as defined in (9.4)

and IX(s) be a periodogram as defined in (8.1,4) and Then:
1. Ξ(h)/N = Ξ(h)∆sk is an approximation for the

bandwidth of Ĉ(d)
X (s), and

2. ∆sk = 1/N is an approximation for the bandwidth of IX(s).

(9.92)

If approximation (9.92) is substituted for bandwidth (9.89) in diagnostic
(6.115), then diagnostic (6.116) is obtained.

Caution is called for when diagnostic (6.115) is applied together with any
one of the approximations (9.90), (9.91) or (9.92) to determine the bandwidth
of a spectral estimator: this procedure does not guarantee that an estimator
has (i) a negligible bias for all frequencies and (ii) a variance as small as
desired. This restriction is imposed for the reason that (i) the bandwidth and
thus the statistical properties of a spectral estimator depend not only on the
bandwidth of the spectrum to be estimated but also on the length N of the
observational period, and (ii) a bias-variance tradeoff is implied by (9.77) as
well as (9.78) and (9.72), as is demonstrated in the remarks to (9.80).

However, diagnostics (6.115) or (6.116) can not be applied when the band-
width of the spectrum to be estimated is not known. Possible solutions to
this problem are proposed in (9.93) and the following remarks.

An unknown bandwidth B�
(
CX(s)

)
as defined in (7.83,1) of a

continuous spectrum to be estimated can be approximated by:
1. using geophysical knowledge of the observed phenomenon
2. window closing, i.e., smoothing a direct spectral estimator

using kernels with gradually decreasing widths
3. cutting off a lag window for lags where the empirical

covariance function becomes negligible
4. estimating the bandwidth from an empirical covariance

function as proposed in (9.95) on condition that the spectrum
to be estimated has only one peak

5. determining the width at half height of the narrowest form
found in a plot of an empirical spectrum obtained from
parametric spectral estimation as introduced in Sect. 9.2.5

6. approximating the bandwidth in a plot of a direct spectral
estimator.

(9.93)

In applications, procedures as proposed in (9.93) are used to obtain an ap-
proximation for the unknown bandwidth of the spectrum to be estimated,
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as demonstrated in Sect. 9.4.1, where the spectrum of microseisms is esti-
mated. However, simulation experiments using linear processes with known
spectra are better suited to demonstrate the performance of the procedures
as proposed in (9.93) in the following paragraphs.

As suggested in (9.93,1), the bandwidth of an unknown continuous spec-
trum can be obtained from geophysical knowledge on condition that (i) spec-
tra of similar stationary processes have already been estimated, and/or (ii)
the bandwidth of the unknown spectrum can be inferred from geophysical
theory. If neither empirical nor theoretical knowledge is available then spec-
tral estimation becomes an exploratory tool and, usually, a combination of
the other procedures enumerated in (9.93) is applied to obtain an approxi-
mation of the bandwidth of the spectrum to be estimated.

When the procedure called window closing (9.93,2) is applied, a direct
spectral estimator is smoothed using a variety of smoothing kernels which
have decreasing widths [74]. For example, a direct spectral estimator Ĉ(d)

X (s′k)
for the spectrum of the AR[4] model in Fig. 7.14 is calculated as required in
(9.3) for discrete frequencies s′k with ∆s′k = 1/(2N) = 0.000122, N = 4096,
using a cosine taper with p = 0.05, and thereafter plotted in Figs. 9.15 and
9.16 as well as, with vertical broken lines, in Fig. 9.24 for band 0.10 ≤ s′k ≤
0.15. Ĉ(d)

X (s′k) is smoothed using modified discrete Daniell kernels VdD,M (s′k)
as defined in (9.29) having parameters M = 80, M = 40, M = 20, and M =
10. Jenkins and Watts in [74] recommend to begin with a wide kernel and
thus to calculate an estimator which is too smooth and in which, presumably,
narrow forms of the spectrum are not resolved. The estimator for M = 80
in Fig. 9.24 for example, does not resolve the peaks in the spectrum to be
estimated, since its bandwidth 160∆s′k ≈ 0.01953 as approximated using
(9.90) is larger than 0.01364, i.e., the width at half height of the valley between
the peaks as obtained in Fig. 7.10 (d).

Subsequent to plotting the estimator having a bandwidth too large, the
smoothing is repeated using a sequence of kernels decreasing in width until,
in the smoothed estimators thus obtained, forms become visible that are con-
sidered to be too narrow, i.e., generated by the random fluctuations of the
direct spectral estimator having variance Var

(
Ĉ

(d)
X (s)

) ≈ C2
X(s) as obtained

in (9.16). When, for example, the direct spectral estimator in Fig. 9.24 is
smoothed using a modified discrete Daniell kernel with M = 5 then an esti-
mator with four peaks will result (not plotted) all of which seem too narrow.
Since the estimators for M = 40, M = 20 and M = 10 in Fig. 9.24 have
two peaks, the estimator for M = 20 is selected as estimator for the un-
known spectrum. This estimator has bandwidth 40∆s′k ≈ 0.0049 ≈ 0.00474 =
B�
(
CX(s)

)
, the bandwidth of the spectrum to be estimated as obtained in

Fig. 7.10 (d). Consequently, the bandwidth of the estimator thus obtained is
too large as compared to the bandwidth obtained when diagnostic (6.115) is
applied.
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Fig. 9.24. Window closing: the direct spectral estimator as in Figs. 9.15 and 9.16
(vertical broken lines) for the spectrum of the AR[4] model in Fig. 7.14 (not plotted)
is smoothed using modified discrete Daniell kernels as defined in (9.29) for M =
80, 40, 20, 10.

As demonstrated above, the analyst performing window closing has some
knowledge about the smoothness of the spectrum to be estimated, and will
select the smoothed estimator that comes closest to his idea of what the spec-
trum should look like. Consequently, window closing is a subjective method.

(9.93,3) recommends to use a lag window v
τ�
m (τ ) such that v
τ�

m (τ ) = 0
for lags τ > τ0, with τ0 being the lag for which |ĉX(τ )| comes close to zero,
i.e., |ĉX(τ )| > τ0) ≈ 0. ĉX(τ ) is the empirical covariance function as defined
in (2.1,3). When (9.93,3) is applied, a lag window v
τ�

m (τ ) is obtained that
allows for calculating the width of the pertaining smoothing kernel using
definitions (9.126), (9.128) or (9.129), since V 
τ�

m (s) is the Fourier transform
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of v
τ�
m (τ ) in (9.42). The width of the smoothing kernel thus obtained is then

considered to be an approximation for the bandwidth of the spectrum to be
estimated.

In Fig. 9.25 (b) for example, an empirical covariance function ĉX(τ ) calcu-
lated from N = 4096 observations stemming from a realisation of the AR[4]
model (Xt) in Fig. 7.14 becomes negligible for lags τ > τ0 = 3800. If a lag
window spectral estimator is calculated from ĉX(τ ) then, following (9.93,3),
τ0 = 3800 becomes the cut-off lag: a Bartlett lag window (as defined in
Fig. 9.18), for example, becomes the even triangle sequence Λ(e)

2m+1(τ ) with
parameterm = 3800. The Fourier transform of this Bartlett lag window is the
Fejer kernel F3800(s) having a main lobe being 0.000301 wide as approximated
using B∩

�
(
FN (s)

) ≈ 7/(8N) given in Table 9.1. Obviously, the approximation
thus obtained, i.e., B∩

�
(
F3800(s)

) ≈ 0.000301, is an order of magnitude smaller
than the bandwidth 0.00474 of the spectrum to be estimated as obtained in
Fig. 7.10 (d). What generates this too large difference?

(9.93,3) assumes that (i) there is a general relationship between the band-
width of a continuous spectrum and the width of the covariance function, i.e.,
a relationship that also applies to spectra having more than one peak, and
(ii) the empirical covariance function is not biased for large lags.

Unfortunately, neither the first nor the second assumption applies, in gen-
eral, and therefore, procedure (9.93,3) is as subjective as the window closing
in (9.93,2). The first assumption is invalidated by the counter examples given
in Figs. 7.15 and 7.17. In these examples, it is not possible to see the prop-
erties of the spectrum (number and frequencies of its peaks, its bandwidth
or its dynamic range) in the plots of the covariance functions. The second
assumption is falsified by the remark to (2.58) pointing to the possibility that
an empirical covariance function often overestimates the theoretical covari-
ances for large lags. For example, the oscillations in the covariance function
of the AR[4] model in Fig. 7.14 damp out very rapidly with absolute values
becoming small for lags τ > 150, as can be seen in Fig. 9.25 (a). In con-
trast, an empirical covariance function calculated from a time slice of length
N = 4096 of this model shows quite large covariances for lags 400 ≤ τ ≤ 3800,
as demonstrated in Fig. 9.25 (a) and (b).

(9.93,4) proposes approximation (9.95) which is derived in [139] for the
bandwidth B�

(
CX(s)

)
of an unknown continuous spectrum CX(s). Approxi-

mation (9.95) is easily computed from an empirical covariance function ĉX(τ )
obtained from a time slice (xt), t = 0, 1, . . . , N , in a realisation of the sta-
tionary process (Xt) under analysis, on condition that CX(s) has only one
peak.

B�
(
CX(s)

) ≈ Bτ

(
CX(s)

)
=

(
cX(0)

)2
2
∑N−1

τ=−(N−1)(1 − τ/N)
(
cX(τ )

)2 (9.94)
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Fig. 9.25. Above in plot (a), the covariance function cX(τ) of the AR[4] model
(Xt) in Fig. 7.14 is plotted (solid line) for lags τ = 1, . . . , 400, together with an
empirical covariance function ĉX(τ) (broken line). ĉX(τ) is also plotted below in
(b) for lags τ = 1, . . . , 4095. cX(τ) is estimated from those N = 4096 observations
used to calculate the spectral estimators as plotted in Figs. 9.15, 9.16 and 9.24.

≈ B̂τ

(
CX(s)

)
=

5
(
ĉX(0)

)2
6
∑N−1

τ=−(N−1)(1 − τ/N)
(
ĉX(τ )

)2 − 1
N

(9.95)

This restriction is the price paid for a procedure using only explicitly formu-
lated assumptions and estimators. Thus, approximation (9.95) is considered
to be objective, in contrast to approximations obtained using the subjective
methods (9.93,2,3) discussed above. If, however, the number of peaks in the
spectrum to be estimated is unknown, then an estimate (9.95) has to be
compared with results obtained from other methods in (9.93). For example,
bandwidth B�

(
CX(s)

)
= 0.00474 obtained in Fig. 7.10 (d) for the spectrum

of the AR[4] model (Xt) defined in Fig. 7.14 is approximated as follows: (i)
Bτ

(
CX(s)

)
= 0.015 is computed using (9.94) from the theoretical covariance

function in Fig. 9.25 (a), and (ii) B̂τ

(
CX(s)

)
= 0.018 is computed using (9.95)

from the empirical covariance function in Fig. 9.25 (b). Both results clearly



598 9 Estimators for a Continuous Spectrum

overestimate the bandwidth of this spectrum, however, both are not far from
0.01364, i.e., the width at half height of the valley between the peaks in this
spectrum as obtained in Fig. 7.10 (d). This overestimation results because
approximations (9.94) and (9.95) only apply when the unknown spectrum
has only one peak.

(9.93,5) recommends to (i) perform a parametric spectral estimation as
introduced in Sect. 9.2.5, (ii) plot the empirical spectrum thus obtained, and
(iii) apply definition (7.83,1) to arrive at the bandwidth of the parametric es-
timate which then (iv) is assumed to be an approximation for the bandwidth
of the theoretical spectrum. In Fig. 9.11 (a), for example, the left peak of
both estimates is narrower than the right one and, consequently, the widths
at half height of the left peaks become the bandwidths of these empirical
spectra: 0.005 is obtained for the Burg estimate and 0.007 for the maximum
likelihood estimate. Both estimates are obtained from a time slice of length
N = 512 in a realisation of the AR[4] model defined in Fig. 7.14, and both
are, despite the relatively small N , useful approximations for the bandwidth
of this model spectrum which is arrived at, in Fig. 7.10 (d), as width at half
height of its right peak.

The procedure proposed in (9.93,6) can be applied when peaks and valleys
can be clearly distinguished in a direct spectral estimator calculated from a
time slice in a realisation of the process under analysis. In Fig. 9.31 (b) for
example, 0.08 s−1 is obtained as approximation for the width at half height
of the dominating (and narrowest) peak in the spectrum of the microseisms.

9.3.6 Summary and Alternatives

An approximately unbiased direct spectral estimator can be obtained subse-
quent to adequately tapering the observations, as summarised in Sect. 9.2.6.
The variance of an estimator thus obtained is thereafter reduced by convolv-
ing with a smoothing kernel as proposed in Sects. 9.3.1 and 9.3.2.

The smoothing reduces the variance of the direct spectral estimator but
can induce an additional bias in the smoothed direct spectral estimator, as
is concluded from approximations (9.77) and (9.72), since both, bias and
variance of the smoothed estimator, depend on the width of the smoothing
kernel used. It is therefore important to apply diagnostic (6.115) in order
to obtain a smoothing kernel whose width is reconcilable with the known
bandwidth of the spectrum to be estimated, as proposed in the remarks to
(9.92). If, however, the bandwidth of the spectrum to be estimated is not
known, an approximation is substituted in (6.115) which can be obtained
from a combination of the procedures proposed in (9.93).

In R, a discretely smoothed direct spectral estimator as defined in (9.28)
is computed using spec.univariate() or spec.pgram(), both functions being
discussed in Sect. 9.5.6. It is, however, also possible to compute a lag window
estimator as proposed in the remarks to (9.44) by: (i) calculating an empir-
ical covariance function from tapered observations using R expressions as in
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Problem 9.5, (ii) multiplying the estimator thus obtained with a lag window
having properties (9.44) (this is simply a multiplication of two R vectors),
and (iii) using fft() in order to Fourier transform the product thus obtained:
the result is the lag window spectral estimator as defined in (9.41).

As an alternative to smoothing a direct spectral estimator, a spectrum
can be estimated by averaging direct spectral estimators calculated from seg-
ments in a time series, an idea first proposed by Bartlett in [9]. Bartlett
splits the time series observed into N/NS contiguous segments such that NS

observations are in each segment, and then computes the periodogram from
each segment. He assumes that the N/NS periodograms thus obtained are
independent of each other despite the correlations in the stationary time se-
ries observed and, under this assumption, arrives at a mean periodogram.
The mean periodogram thus computed has a variance that is approximately
N/NS smaller than the variances of the periodograms calculated from the
segments. The estimator thus obtained is approximately a Bartlett lag win-
dow estimator (Fig. 9.18 shows the Bartlett lag window for m = 30).

Clearly, it is also possible to multiply the observations in each segment
with a data taper and to average the direct spectral estimators computed
from the tapered segments. In addition, the segments can be chosen to over-
lap thus producing an overall estimator having better properties of the second
moment function than the one obtained from non-overlapped segments [144].
Weighted overlapped-segments spectral estimators can be very efficiently im-
plemented and thus can be computed for extremely long time series ([29],
[102]) and can also be used to compute robust spectral estimates [34].

9.4 Examples

In this section, the spectra of (i) the background noise in a seismogram (“mi-
croseisms”) and (ii) a turbulent atmospheric flow are estimated. These spec-
tra are known to be continuous, and further knowledge stemming from ear-
lier observations and/or theory is available. The spectra to be estimated are,
however, not completely known prior to the estimation and, therefore, the
situation is more realistic than the one encountered in simulation experiments
as performed in Sects. 9.2 and 9.3 for didactical reasons.

9.4.1 Microseisms

Microseisms are fine vibrations of the earth (i.e., the background noise) seen
in seismograms, which have not been dominated by the much larger vibra-
tions generated by a substantial earthquake having occurred possibly a large
distance away from the recording station, e.g., on another continent. Earth-
quakes are not evenly distributed around the globe. They predominantly
occur at the plate boundaries where oceanic and continental plates grind
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against each other, triggered by their relative motions. Oceanic and conti-
nental plates are sections of the earth’s crust which are transported at a
speed of a few centimeters per year by convection in the mantle of the earth
(the layer below its crust). The convection in the mantle is maintained by
heat which is generated mainly from radioactive decay in the interior of the
earth, as discussed in Sect. 1.1.

This process is called plate-tectonics. Plate-tectonics shapes the earth: (i)
spreading of the crust generates oceanic ridges, (ii) island arcs associated with
volcanism and deep trenches appear in the oceans when one oceanic plate
moves beneath another one in the subduction zones, (iii) such island arcs
can later become part of a continental margin (with an oceanic plate being
subduced beneath a continental one), and (iv) mountain belts are created by
the compression of two continental plates.

In regions with plate boundaries, faults appear. A fault is a fracture (or
a variety of related fractures) in the rock, which allows for relative displace-
ments of the adjacent sides. Small faults can be a few millimeters in length,
large faults possibly reaching a length of thousands of kilometers. Often,
faults are active over long (geologic) periods, involving repeated displace-
ments. In a fault, shear stress is generated by plate-tectonic motions due to
friction between both sides of the rock. If the shear stress becomes larger
than the frictional forces, the rock on one side of the fault will then suddenly
slip with respect to the other and thus release the stored stress energy. The
segment of the fault where this abrupt movement occurs is known as the
focus, the point on the surface above the focus is called the epicentre of the
earthquake.

Most of the energy released in the focus dissipates in the form of heat, a
small fraction, however, is emitted in the form of elastic waves in the rock
which disperse in all directions (seismic waves). The rock normally damps all
elastic waves, however, the lower frequency waves (< 10 s−1 = 10 seconds−1)
are less damped than those having higher frequencies. Consequently, low-
frequency seismic waves generated by a substantial earthquake propagate
over large distances around the earth, and, since they disperse in all direc-
tions, may deeply penetrate the earth on their journey towards, e.g., another
continent.

The seismic waves emitted by a substantial earthquake will cause the
ground to tremble so violently that, at small distances from the epicentre,
buildings, bridges, dams, etc. can be damaged. At large and very large dis-
tances from the epicentre, e.g., on another continent, the seismic waves will
cause fine vibrations of the ground which, although not being discernible
to the human senses, can be measured using an appropriate device: a heavy
weight is suspended such that it remains immobile due to its large mass when
the ground vibrates. In this manner, the movements of the ground relative
to the immobile weight are recorded. A record thus obtained is called a seis-
mogram, and the device, a seismograph. A substantial earthquake generates
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a seismogram that shows “footprints” of (i) the focal point, (ii) the structure
of the rock in which the seismic waves have travelled from the focal point
to the seismograph, (iii) the ground beneath the seismograph, and (iv) the
seismograph itself.

The solid surface of the earth never stands completely still. Fine vibratory
disturbances recorded by a seismograph can be due to either natural phenom-
ena or to human activity. Ground vibrations stemming from human activities
(e.g., traffic, construction works) are undesirable in a seismogram and, there-
fore, seismographs are mounted in remote areas, wherever practicable deep
inside a natural cave or an abandoned mine.

If a seismograph is installed as required above, it then will record fine
vibrations with periods between 4 s and 12 s, i.e., with frequencies between
0.08 s−1 and 0.25 s−1. These fine vibrations are the dominant natural noise in
seismograms. They are aroused by ocean waves breaking along the coastline
of a continent, thus generating elastic waves in the rock which propagate into
the interior of the continent. These tiny vibrations are therefore called marine
or sea microseisms. The amplitudes of marine microseisms depend strongly
on the weather conditions prevailing at the coast and near ocean regions. For
lower and higher frequencies than those pertaining to the marine microseisms,
the natural noise in a seismogram is much smaller and often vanishes in
relation to the noise stemming from human activities.

In Fig. 9.26, for example, a seismogram is plotted that was recorded
in Nilore, Pakistan, (33.65 N, 73.26 E) on September 7, 1997, 10:15:45.0
(hours:minutes:seconds in UTC). This seismogram was generated by an
earthquake having magnitude 5.6 that occurred at a remote place in Pak-
istan (300 N, 67.82 E), its focal point being at a depth of 33 km. The distance
between the earthquake and the seismometer is approximately 650 km. A de-
scription of the Nilore seismometer is available from [49]. This seismogram is a
plot of the speed of the earth in vertical direction (in ms−1 (meters/second))
against time (in s (seconds)), the sampling interval is ∆t = 0.025 s. This
seismogram is made available to the public by the IRIS data centre [72].

An earthquake generates both compression waves and shear waves when
a large amount of energy stored in the rock under stress is abruptly released.
In a compression wave (or P-wave), the particles in the rock vibrate forward
and backward in the same direction the wave travels, in a shear wave (or S-
wave), the particles vibrate perpendicularly or transversely to the direction
of propagation. Compression waves travel swiftly through the rock at speeds
of between 2 and 8 kms−1, whereas shear waves are slower, attaining speeds
ranging between 60% and 70% of the compression waves. Although speeds
of seismic waves undergo substantial changes on their passage through the
earth, the ratio between the average speeds of compression waves and shear
waves remains approximately constant. Consequently, there is a time delay
(the S−P time) between the arrival of the compression waves and the arrival
of the shear waves generated by a distant (thousands of km, often on another
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Fig. 9.26. Earthquake on September 7, 1997 in Pakistan, seismogram recorded
at Nilore, Pakistan (3365 N, 73.26 E). The record begins 65 s before the waves
generated by the earthquake arrive at the seismograph (point P in plot a).

continent) earthquake. From those S−P times of an earthquake observed in
seismograms recorded at a number of stations, the coordinates of its epicentre
and the depth of its focal point can be calculated. This is the principal purpose
of seismograph networks such as those reporting to the IRIS data centre.

With an additional delay (i.e., later than the arrival of the S-waves), those
seismic waves that propagate in the earth’s crust (called surface waves) are
recorded in a seismogram, their route to the seismograph being longer than
the one of waves travelling through the earth’s interior.

In Fig. 9.26 (a) for example, the compression waves arrive at time point P
at the Nilore seismograph, the S-waves at a later but unknown time point (in a
seismogram, it is difficult to read the arrival of the S-waves stemming from an
earthquake occurring a small distance away). The time slice from 0 through to
65 s in the seismogram shown in Fig. 9.26 is plotted in Fig. 9.27. Immediately
following this period, the compression waves of the earthquake arrive at the
seismograph inducing the vibrations of the ground to increase by an order
of magnitude, as is obvious from a comparison with plot (b) in Fig. 9.26.
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Fig. 9.27. Microseisms: time slice from 0 through to 65 seconds in the seismogram
plotted in Fig. 9.26.

In Fig. 9.27, the recorded natural seismic noise becomes clearly visible: the
ground vibrates with approximately 12 or 13 oscillations per minute which
corresponds to a period smaller than but very close to 5 s, yet falling well
within the range of the periods of marine microseisms as introduced above.
Is it possible to calculate a better estimate for the period of these marine
miscroseisms?

It is assumed that the microseisms in Fig. 9.27 are a time slice from a
realisation of a discrete-time stationary stochastic process having a spectrum
as asserted by the spectral representation theorem (7.51). Further, it is as-
sumed that the microseisms are reconcilable with model (9.1,2), i.e., have a
continuous spectrum due to the mechanical properties of the rocks through
which the seismic waves have travelled.

Following the recommendations in the remarks to Figs. 9.3 and 9.4, pe-
riodograms and direct spectral estimators of the microseisms are calculated
using R function spec.univariate() introduced in Sect. 9.5.6

earthquake <- ts(scan("/path/earthquake.dat"),

start=0,frequency=40,)

microseisms <- window(earthquake,0,65)

microseismsdem <- microseisms - mean(microseisms)

ms.spec <- spec.univariate(microseismsdem,taper=0, #periodogram in

spans=1,pad=1,confint=0.95,fast=F) #Fig. 9.28 (a)

plot(ms.spec$freq,10*log10(ms.spec$spec),type="n",

xlab="frequency [1/s]",ylab="dB")

points(ms.spec$freq,10*log10(ms.spec$spec),pch=".")

and thereafter plotted in Figs. 9.28 and 9.29. For frequencies higher than
17.5 s−1, both periodograms in Fig. 9.28 obviously no longer fluctuate locally
within a confidence interval of constant height, as required (in a logarithmic
plot) by (9.19). This points to a possible bias due to the side lobes of the
Fejer kernel in convolution (8.21). This bias is reduced such that it becomes
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Fig. 9.28. Periodograms of the microseisms as plotted in Fig. 9.27. The N = 2601
observations are zero-padded to arrive at N ′ = 5202 values (above, plot a) and
N ′ = 5400 values (below, plot b).

negligible once a spectral window having smaller side lobes than those of a
Fejer kernel is convolved with the spectrum in (9.12), as is demonstrated in
Fig. 9.29. There, direct spectral estimators calculated using cosine tapers for
p = 0.05 and p = 0.10 become stable at approximately −20 dB for the high
frequencies. It is therefore assumed, in agreement with the recommendations
in the remarks to Figs. 9.3 and 9.4 in Sect. 9.2.1 as well as to (6.117) in
Sect. 6.7.2, that the bias due to the side lobes of the spectral window becomes
negligible when a cosine taper for p = 0.05 is applied.

The direct spectral estimators in Fig. 9.29 decrease from approximately
20 dB for frequency 10 s−1 to approximately −20 dB for frequencies higher
than 17.5 s−1. This large decrease (approximately four orders of magnitude)
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Fig. 9.29. Direct spectral estimators of the microseisms as plotted in Fig. 9.27.
The N = 2601 observations are multiplied with variance-normalised cosine tapers
for p = 0.05 (above, plot a) and p = 0.10 (below, plot b) and thereafter zero-padded
to arrive at N ′ = 5202 values in both cases.

is due to the absorption of vibrations in the rock which increases substantially
for those having frequencies higher than 10 s−1. Thus the Fourier transform of
a seismogram becomes small for frequencies higher than 17.5 s−1 < 20 s−1,
and an aliasing can be neglected. Obviously, the sampling interval ∆t =
0.025 s with 1/(2∆t) = 20 s−1, used for recording the seismogram in Fig. 9.26
at Nilore station, was chosen in agreement with the recommendations in the
remarks to the definition of the Nyquist frequency in (6.92).

Since the rock absorbs seismic waves with increasing degree for frequencies
higher than 10 s−1, seismograms are usually analysed for frequencies lower
than 10 s−1. For this band, the direct spectral estimator as in Fig. 9.29 (a)
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Fig. 9.30. Spectrum of microseisms: direct spectral estimator as in Fig. 9.29 (a)
for band 0 ≤ s ≤ 10 s−1.

is plotted in Fig. 9.30. In this plot, a narrow peak approximately 50 dB high
for frequencies between 0.2 and 0.25 s−1, and also a broad peak attaining
30 dB for 3.0 s−1 and then slowly decreasing to 20 dB for 6.0 s−1, become
clearly visible. Less clearly visible is a third, relatively flat peak for frequencies
between 1.0 and 2.0 s−1.

The dominant oscillations visible in the microseisms as in Fig. 9.26
have periods between 4 and 5 s, i.e., frequencies between 0.2 and 0.25 s−1,
and therefore are likely to produce the narrow peak which is prominent in
Figs. 9.29 and 9.30. This motivates to take a closer look at the direct estima-
tor for the spectrum of the microseism in the band with the peak. Hence, this
estimator is re-plotted with higher resolution for frequencies between 0 and
1.5 s−1 in Fig. 9.31, subsequent to taking its logarithms and also prior to the
logarithmic transformation. In the non-logarithmic plot (b), all details of the
estimator are hidden, except the dominating peak between frequencies 0.0
and 0.5 s−1 which remains visible. This peak is approximately 50000 (m/s)2

high, an approximation arrived at by accounting for the extreme values due to
the long-tailed chi-square distribution (9.19) of the direct-spectral estimator.
Further, it is assumed that this peak arises from a base height of 0 (m/s)2, and
consequently, at half of its height, it is 10∆s′k(1/∆t) = 0.0768935 ≈ 0.08 s−1

wide, calculated using ∆s′k = 1/N ′ = 0.0001922 withN ′ = 2N and N = 2601
as well as ∆t = 0.025. This is an approximation in agreement with (9.93,6)
for the bandwidth (7.83,1) of the spectrum pertaining to the microseisms in
Fig. 9.27, which is assumed to be continuous above, in the remarks to this
figure.

Given this approximation for the bandwidth of the spectrum to be esti-
mated, the remark in the last paragraph of Sect. 9.3.3 recommends to smooth
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Fig. 9.31. Spectrum of microseisms: direct spectral estimator as in Fig. 9.29 (a)
for band 0 ≤ s ≤ 1.5 s−1 on logarithmic (a) and non-logarithmic (b) scales.

the direct spectral estimator with a kernel having a σ-width Bσ

(
V 
τ�

m (s)
)

and also an autocorrelation width B�

(
V 
τ�

m (s)
)

not larger than 0.04 s−1.
These widths are defined in (9.128) and in (9.129) and, in case of smooth-
ing with a modified discrete Daniell kernel, B�

(
V 
τ�

m (s)
) ≈ B�

(
V 
τ�

m (s)
) ≈

B||
(
Vm,M (sk)

)
= 2M∆s′k as is concluded from the results obtained in

Sect. 9.5.4, with B||
(
Vm(sk)

)
as defined in (9.125). Thus, when smoothing

with a modified discrete Daniell kernel as defined in (9.29), it is recommended
to select M = 2 or M = 3, resulting in bandwidths (9.90) of 0.031 s−1 or
0.046 s−1, bearing in mind that B||

(
Vm,M (sk)

)
in (9.90) and (9.125) is mul-

tiplied with (1/∆t) in case of ∆t �= 1. These are the bandwidths pertaining
to the smoothed direct spectral estimators plotted in Fig. 9.32.
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Fig. 9.32. Spectrum of microseisms: a direct spectral estimator as in Fig. 9.31
(a) (here plotted using symbol ◦), calculated for discrete frequencies in distance
∆s′k(1/∆t) = 0.00768935s−1 wide, ∆s′k = 1/N ′ with N ′ = 2N and N = 2601 as
well as ∆t = 0.025, is smoothed over five (above, a) and seven discrete frequen-
cies (below, b), in both cases using a modified discrete Daniell kernel (9.29) with
parameter M = 2, M = 3 resp.

The smoothed estimators in Fig. 9.32 (a) and (b) remain safely in the
region described by the scattering points of the direct spectral estimator.
This behaviour suggests that the bias of both estimators is not large, even
in the peak region where |CX

′′(s)| attains its maximum, as implied by (9.72)
(CX

′′(s) is the second derivative of the spectrum to be estimated). Hence,
both smoothing kernels applied to arrive at the estimators in Fig. 9.32 are
not too wide. The bandwidths of the estimators as required in (9.90) are
represented by the horizontal bar in the cross plotted underneath the peak



9.4 Examples 609

0 2 4 6 8 10

10
20

30
40

50

frequency [1/s]

dB

bandwidth: 0.0461361

Fig. 9.33. Smoothed direct spectral estimator as in Fig. 9.32 (b) for frequencies
between 0.0 and 10s−1.

in each estimator. The vertical bar in each cross is plotted for the frequency
where the smoothed estimators attain their maxima. This frequency is iden-
tical in both plots, namely 0.22299116 s−1.

The same peak frequency is obtained when the direct spectral estimator
is smoothed using a modified discrete Daniell kernel for M = 4 (not shown in
Fig. 9.32). With increasing bandwidth, however, the estimates for the peaks
decrease in their heights, as demonstrated in Fig. 9.32 for kernels withM = 2
and M = 3, in agreement with the smoothing properties of a moving average
as demonstrated in Figs. 2.16 and 7.8. Consequently, the oscillations in the
microseisms in Fig. 9.27 increase in their amplitudes for frequencies between
0.20 and 0.25 s−1 where they attain their maximal power for approximately
frequency 0.22299116 s−1. To these frequencies correspond periods between 4
and 5 s, obviously the periods of the oscillations dominating the microseisms.

Confidence intervals at the 0.95 level are plotted 4.32 dB (3.76 dB, resp.)
below and 8.64 dB (6.70 dB, resp.) above the smoothed direct spectral estima-
tors in Fig. 9.32 (a) and (b). The constant (in a logarithmic plot, reconcilable
with (9.88)) heights of these confidence intervals is given by the vertical bar
in the cross plotted beneath the peak in each estimator.

The estimator obtained using a modified discrete Daniell kernel for M =
3, as shown in Fig. 9.32 (b), is also plotted for frequencies between 0.0 and
10.0 s−1 in Fig. 9.33, together with the cross, yet without confidence intervals.
When this cross is plotted, using a ruler and pencil, both in the primary
peak and the highest secondary peak (approximately frequency 3.0 s−1), it
becomes obvious that, in a small band about the frequency of the main peak,
the spectrum of the microseisms is approximately 20 dB larger than for the
other frequencies. From this difference of about two orders of magnitude, it
is concluded that the seismic noise in Fig. 9.27 is dominated by oscillations
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with frequencies between 0.2 and 0.25 s−1, i.e., by frequencies which are
reconcilable with those of marine microseisms introduced in the remarks to
Figs. 9.26 and 9.27.

Marine microseisms having frequencies between 0.1 and 1.0 s−1 can be
seen in every seismogram, on condition that no seismic waves generated from
an earthquake are recorded by the seismograph. The amplitudes of marine
microseisms increase with increasing height of the ocean waves and decrease
as the waves become weaker [23]. Marine microseisms observed in northern
and central Europe often have periods of approximately 7 s. Their amplitudes
are related to the weather conditions in the North Atlantic via the following
(simplified) mechanism: (i) high wind speeds associated with a storm system
generate ocean waves with large heights, (ii) when these waves arrive at the
coast of Norway, the large-scale pressure variations in the ocean increase in
their amplitudes and thus (iii) generate microseisms with larger amplitudes
([47], [48]).

9.4.2 Turbulent Atmospheric Flow

A turbulent flow in a liquid or gas has the following properties:

1. A particle moves irregularly in three dimensions on eddy-like trajectories
which are changing constantly.

2. Mass, momentum and heat are mixed very efficiently by the eddies emerg-
ing and vanishing. For example, the smoke blown out of a chimney is
mixed with the ambient air and thus is no longer visible once it has been
transported over a short distance.

3. The kinetic energy of the flow is constantly changed into internal energy
or heat due to the viscosity (the internal friction) of the liquid or gas,
which requires that energy be permanently fed into the flow. If the energy
input stops then the turbulent motion in the flow vanishes after a delay
corresponding to the mean lifetime of the eddies.

4. The energy is transferred from the larger to the smaller eddies. The largest
ones are loaded with energy from the mean kinetic energy of the flow,
in the smallest, energy is dissipated into heat or internal energy. The
smallest eddies are far smaller (by many orders of magnitude) than the
largest and, between these extremes, there are eddies of any size: a cascade
of eddies can be observed in a turbulent flow.

5. Simple examples of turbulent flows can be simulated using a super com-
puter [96].

6. Turbulent flows in the atmospheric boundary layers are described statis-
tically in most cases.

A turbulent flow is often described using random functions having a four-
dimensional parameter (e.g., [51], [93]). When, for example, a turbulent flow
in the atmospheric boundary layer is analysed, a coordinate system is chosen
such that (i) the positive direction of the first coordinate x1 is identical with



9.4 Examples 611

the direction of the mean velocity of the flow, i.e., the wind direction, (ii)
the positive direction of x3 is the positive vertical direction, and (iii) x2 is
perpendicular to x1 and x3. For example, U(x, t) is written for the velocity
of the turbulent flow in these three directions in a given region and period,
slightly different from the symbols used for a multivariate stochastic process
with a multi-dimensional parameter in the remarks to definition (2.2). Using
this definition, U1(x1, t) becomes the velocity in wind direction as function
of x1 and t, U3(x1, t) the velocity in vertical direction as function of x1 and
t, U3(x3, t) the velocity in vertical direction as function of x3 and t, etc.

If time is kept constant, then three spatial coordinates remain: this is the
system used to formulate hypotheses on a turbulent flow in the atmospheric
boundary layer, and, in this system, the velocity U(x, t) becomes U(x),
Often, a turbulent flow is in agreement with the assumption that U(x) is
stationary. Under this assumption, the covariance function cU (h) is a function
of the three-dimensional displacement h = x − y solely. For example, the
covariance of the vertical velocity at two points having coordinates x1 and y1
for the first dimension (i.e., in the direction of the wind) depends exclusively
on displacement h1 = x1 − y1 on condition that the flow is stationary, as
formulated in (9.96).

cU3(x1, y1) = cU3(x1 − y1, 0) = cU3(h1) (9.96)

cU3(h1) =
∫ ∞

−∞
CU3(k1)e

ih1k1dk1 (9.97)

CU3(k1) =
1
2π

∫ ∞

−∞
cU3(h1)e−ik1h1dh1 (9.98)

A three-dimensional velocity U(x) has a three-dimensional spectrum CU (k),
k being the three-dimensional wave number corresponding to x, on condition
that U(x) has the properties required in (7.51). In (9.97) for example, covari-
ance function cU3(h1) as in (9.96) and CU3(k1), i.e., the spectrum of the ver-
tical velocity in the turbulent flow, are a Fourier transform pair, on condition
that CU3(k1) is continuous. k1 is the wave number associated with coordinate
x1. Distinct from the Fourier transforms in (7.62) and (7.63) (there, the co-
variance function and the continuous spectrum are a Fourier transform pair
as defined in (6.35)), the Fourier transforms in (9.97) and (9.98) do not have
the factor 2π in their exponential functions and, therefore, a normalisation
with this factor is required in one of the transforms [18]. In the case of the
stationary turbulent flow, the −i-transform in (9.98) is usually normalised.

The properties of a stationary turbulent flow are often described using co-
ordinate system (k1, k2, k3), i.e., the coordinate system of the wave numbers.
Numerous experiments have shown that three intervals can be distinguished
in plots of velocity spectra obtained from stationary turbulent atmospheric
flows. In the first interval, k1 ≤ p1 (written for the first dimension) are the
wave numbers of the large eddies, which are fed with turbulent kinetic energy
stemming from the kinetic energy of the mean air flow. In the second interval
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having wave numbers p1 ≤ k1 ≤ q1, the turbulent energy remains constant
but is shed from larger to smaller eddies thus producing an energy cascade.
In the third interval with k1 ≥ q1, the eddies become small enough such that
viscous forces are no more negligible: turbulent kinetic energy is dissipated
and becomes heat. In the second interval p1 ≤ k1 ≤ q1, other forces than
inertial ones are negligibly small, and therefore, this interval is called iner-
tial subrange. For example, lower bound p1 confining the inertial subrange is
plotted in Fig. 9.36. In this example, p1 ≈ 4.5 m−1, and the inertial subrange
stretches as far as approximately q1 ≈ 20.0 m−1 (not plotted).

This partition of the turbulent velocity spectrum is due to Kolmogorov
who in 1941 proposed two hypotheses for locally isotropic turbulent flows
having large Reynolds numbers [97]. A turbulent flow is locally isotropic on
condition that U(x) remains invariant for small h under certain (rotational
and axial) symmetry conditions. Reynolds number is the ratio of the inertial
forces and the viscosity in a flow and thus is proportional to the typical
geometry of a flow (diameter of a tube, length of an aerofoil, i.e., wing of a
bird or aeroplane, distance in direction of the mean flow between two obstacles
in a plane, etc.) but inversely proportional to the inner frictional forces of
the liquid or the gas.

Kolmogorov’s hypotheses imply that, in the inertial subrange, the spec-
trum CU (k) is proportional to ε2/3k−5/3, ε being the rate of dissipation of
the turbulent kinetic energy, i.e., the energy transported from large to small
eddies. Consequently, if a turbulent flow is locally isotropic and has a large
Reynolds number, then

CU1(k1) = α1ε
2/3k1

−5/3 for p1 ≤ k1 ≤ q1 (9.99)

is obtained for its velocity spectrum in direction of the mean flow, with p1 ≤
k1 ≤ q1 being its inertial subrange and 0.5 ≤ α1 ≤ 0.6 Kolmogorov’s constant
(α has no dimension). If a spectrum similar to the one in (9.99) is obtained
from wind speed measurements in a turbulent atmospheric flow then this
similarity is a point in favour of a flow obeying Kolmogorov’s hypotheses,
i.e., a flow having locally isotropic eddies with wave numbers p1 ≤ k1 ≤ q1
such that the energy remains constant in this cascade of eddies. A second
point is a spectrum with CU3(k1) = CU2(k1) = (4/3)CU1(k1) in the inertial
subrange [97].

Estimators for the covariance function cU (h) and the spectrum CU (k)
can be obtained from measurements of U(x, t). The following (and similar
experiments [67]) can only be perfomed under favourable circumstances; these
experiments have, however, implications concerning the usual practical wind
speed measurements. In this experimental design, N instruments measuring
the wind speed in three dimensions, e.g., sonic anemometers, are mounted on
axis x1 in the range a1 ≤ x1 ≤ b1 with identical distances ∆x1. Then, for each
time point t, realisations ud(x1, t) of random variables Ud(x1, t), d = 1, 2, 3,
are obtained for N locations between a1 and b1. If all exterior conditions
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determining the turbulent flow (mean advection of energy which depends
on, e.g., the mean wind speed as well as mean temperature and humidity,
the geometry and the roughness of the land surface, etc.) remain constant
in time, then the flow is assumed to be stationary in time and its moment
functions EUd(x1, t), VarUd(x1, t) and Cov

(
Ud(x1, t), Ud(y1, t)

)
, d = 1, 2, 3,

can be estimated by averaging the measurements over all time points t in the
observational period. Using the empirical moment functions thus computed,
an answer to the question can be obtained, whether the random functions
Ud(x1, t), d = 1, 2, 3, are also stationary along axis x1. If the flow is thus
found to be stationary in time and in direction of x1, then

1. the covariance function and spectrum as in (9.96), (9.97) and (9.98) do
exist and

2. ĉUd
(x1, y1) = cUd

(h1), d = 1, 2, 3, i.e., the empirical covariances calculated
as time averages, are an estimate for cUd

(h1), which
3. allows for calculating lag window spectral estimators (9.41) for CUd

(k1),
d = 1, 2, 3.

This experimental design remains hypothetical for most practical applica-
tions, since (i) it is too expensive to implement and (ii) the anemometers
mounted on their supporting structures increase the roughness of the sur-
face, and thus can generate non-negligible additional turbulence.

However, the velocities of a turbulent flow in the atmospheric boundary
layer can be measured without disturbing the flow noticeably on condition
that only one instrument is mounted to perform measurements for only one
location: a three-dimensional time series u(t) is obtained with u1(t) being
the velocity in direction of the mean flow, u3(t) the one in vertical direction
and u2(t) the one in a direction perpendicular to the directions of u1(t) and
u2(t). From u(t), u(x, t) can be obtained on condition that the observed flow
satisfies Taylor’s hypothesis [111], which is defined in the following paragraph.

Assume a coordinate system that travels in the mean direction of the
turbulent flow with a speed that is identical with the mean velocity of the
flow in this direction, i.e., those of axis x1. Then, for exactly one time point
the origin of this moving coordinate system is identical with the location of
the instrument that measures u(t) for one location on x1. Taylor’s hypothesis
then assumes that, in this moving coordinate system, the three-dimensional
velocities of the turbulent flow remain constant during a period being identi-
cal with the mean lifetime of the largest eddies. Thus, Taylor’s hypothesis is
sometimes called hypothesis of “frozen turbulence”. Under Taylor’s hypoth-
esis,

x1 = µU1t k1 = (2πs)/µU1 k1CU1(k1) = sCU1(s) (9.100)

is arrived at, with µU1 being the mean wind speed of the flow, assumed
to be constant during the mean life time of the largest eddies. Clearly, a
turbulent flow is never “frozen” because it is subject to permanent change: in
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the restless flow, new eddies are generated and existing ones disappear. Often
however, turbulence develops slowly and its velocities undergo only minor
changes during the lifetime of the largest eddies and thus, under Taylors’s
hypothesis, u(t) is an approximation for u(x, t).

Assuming stationarity of the turbulent flow in time, an estimate for µU1(t)
can be calculated as time average of observations u1(t): in (9.101), u1(t) is
convolved with the weights g(t). µ̂U1(t) thus obtained is an estimator for µU1

having properties as required in (2.56). Using this estimate, the observations
u1(t) are written in (9.102) as sum of their mean µ̂U1(t) and the deviations
from the mean u′1(t). u′1(t) are called turbulent fluctuations and the sum in
(9.102) is called Reynold’s decomposition.

µ̂U1(t) =
∫ ∞

−∞
u1(t− τ )g(τ )dτ (9.101)

u1(t) = µ̂U1(t) + u′1(t) or u1(t) = ū1(t) + u′1(t) (9.102)

The width of the moving time slice over which u1(t) is averaged in (9.101), is
chosen (i) large enough to include the average lifetime of the largest eddies
in the turbulent flow, and (ii) also small enough such that µU1(t) remains
constant in this period, as required in (2.8,1). In the period thus obtained,
random function U1(t) is stationary in its first moment function, and, if U1(t)
is also stationary in its second moment function, then (i) its variance func-
tion Var

(
U1(t)

)
is constant and (ii) the empirical variance of the turbulent

fluctuations is an estimate for the variance of both U ′
1(t) and U1(t).

In addition, it is assumed that U ′
1(t) is stationary with an expectation

function being identically zero in the interval confined by time points t1 and
t2, with t2 − t1 being much larger than the width of the moving average in
(9.101). Under this assumption, σ̂2

U ′
1

= (1/(t2 − t1))
∫ t2
t1

(u′1(t))
2dt becomes

an estimate for the variance σ2
U ′

1
of U ′

1(t) in interval t1 ≤ t ≤ t2. In this
interval, u′1(t) is a realisation of U ′

1(t) which fluctuates about the constant or
only slowly changing (i.e., being constant in the period used for averaging in
(9.101)) expectation function µU1(t) of U1(t).

When a turbulent flow in the atmospheric boundary layer is measured
and, thereafter, a Reynold’s decomposition is performed, then U(t) is as-
sumed to be stationary in periods of a few minutes’ duration, because a
few minutes is the average lifetime of eddies in atmospheric turbulent flows.
Consequently, the moving average in (9.101) is a few minutes wide, whereas
the turbulent fluctuations U ′(t) are assumed to be stationary over much
longer periods, usually 30 or 60 minutes. Using the realisation u′(t) of U ′(t)
obtained under these assumptions, both covariance function c′U (t) and spec-
trum C′

U (s) can be estimated.
In Fig. 9.34 for example, a time series u3(t) of vertical velocities in a

turbulent atmospheric flow is decomposed as required in (9.101) and (9.102)
into (i) its moving average ū3(t) having width 5 minutes and (ii) its fluctua-
tions u′3(t) about ū3(t). u3(t) was measured using a sonic anemometer near
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Fig. 9.34. Reynold’s decomposition (9.102) of anemometer measurements in a tur-
bulent atmospheric flow: vertical velocity u3(t) (ms−1) and its 5 minutes’ averages
for periods having durations of 30 minutes (a), 5 minutes (b) and 20 seconds (c).

San Vittore (Tessin, Switzerland, 46014′24.6′′ N, 9006′0.6′′ E) on September
13, 1999 from 12:00:00 through to 14:00:00 UTC (hours:minutes:seconds).
The sampling interval was ∆t = 48 × 10−3 s. The wind speed measurements
in San Vittore were performed in order to study the turbulence structure
in an Alpine valley ([37], [120]). The results of the Reynold’s decomposition
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of the San Vittore three-dimensional velocities are made available as files
/path/turwind2.dat and /path/turwind3.dat.

The three-dimensional spatial velocity U(x) of a turbulent flow as intro-
duced in the remarks to (9.96) has a continuous three-dimensional spatial
spectrum CU (k) as defined in the remarks to (9.98). If the spatial spec-
trum CU (k) is continuous then a temporal spectrum CU (s) is also contin-
uous. This is an implication of Taylor’s hypothesis (9.100). Consequently, a
three-dimensional spectrum CU (s) pertaining to a three-dimensional veloc-
ity U(t) measured for one location on x1 in a turbulent flow is reconcilable
with model (9.1,1). In the atmospheric boundary layer, a locally isotropic
turbulent flow has a velocity spectrum (9.99) in direction of the mean flow
with inertial subrange p1 ≤ k1 ≤ q1, where q1 ≈ 36 m−1. Under Taylor’s
hypothesis, this upper bound is in agreement with the Nyquist frequency
(6.92) s(Ny)

1 ≈ 10 s−1 of the San Vittore measurements as plotted in (9.34),
since 2π/1.7654 [s−1/(ms−1)] = 35.59 m−1 = k

(Ny)
1 , with 10 s−1 ≈ 1/(2∆t),

∆t = 48/1000 s, and µ̂U1 = 1.7654 ms−1. For k1 > q1, the velocity spectrum
decreases at a higher rate than it does in the inertial subrange due to the
dissipation of turbulent kinetic energy. Consequently, aliasing is negligible in
the San Vittore measurements.

Under these assumptions, i.e., (i) that the N = 37501 vertical velocities
plotted in Fig. 9.34 (a) are reconcilable with model (9.1) and thus have a
continuous temporal spectrum and (ii) that aliasing is negligible, the peri-
odogram and direct spectral estimators using cosine tapers with p = 0.05
and p = 0.10 are calculated, plotted and compared with each other, as rec-
ommended in the remarks to Figs. 9.3 and 9.4. Since the periodogram and the
direct spectral estimators cannot be distinguished from each other, this peri-
odogram is not subject to leakage, despite the dynamic range of the spectrum
(approximately 25 dB) being larger than the threshold in diagnostic (6.117).
Consequently, this spectrum can be estimated by smoothing, in Fig. 9.35,
the periodogram calculated from the turbulent fluctuations resulting from
the Reynold’s decomposition in Fig. 9.34 in the following R expressions:

#velocity: u: in direction of flow, v: perpendicular, w: vertical

#temp: temperature

tur <- scan("/path/turwind3.dat",list(u=0,v=0,w=0,temp=0))

#sampling interval: Delta t = 48/1000 seconds

turts <- ts(tur$w,start=0,frequency=1000/48,)

x <- window(turts,1800.0,3600.0) #between 12:30 and 13:00

#spec.univariate() is introduced in Sect. 9.5.6

turper <- spec.univariate(x,taper=0,spans=1,pad=0,

confint=0.95,fast=F)

plot(c(0,10.5),c(-60,0),type="n",xlab="frequency [1/s]",

ylab="periodogram, M=400, 10*log10[ (m/s)^2 ]")

points(turper$freq,10*log10(turper$spec),pch=".")

turpersm <- spec.univariate(x,taper=0,spans=801,pad=0,
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Fig. 9.35. Turbulent fluctuations as plotted in Fig. 9.34 (a): temporal periodogram
of the vertical velocity (fine points) discretely smoothed using a modified discrete
Daniell kernel having parameter M = 400 (solid line). The width of the smoothing
kernel is plotted with ten horizontal bars, the height of a .95 confidence interval
using a vertical bar (in the upper right corner).

confint=0.95,fast=F)

lines(turpersm$freq,10*log10(turpersm$spec),lty=1)

#bars for bandwidth and height of confidence interval:

low <- turpersm$confintdblow

upp <- turpersm$confintdbupp

lines(c(10.2,10.2),c(0+low,0+upp))

lines(c(10.18,10.22),c(0+low,0+low))

lines(c(10.18,10.22),c(0+upp,0+upp))

freqpos <- c(0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,10.0)

smwwh <- turpersm$bandwidth/2

for(i in 2:11) {

lines(c(freqpos[i]-smwwh, freqpos[i]+smwwh),c(-59,-59))
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lines(c(freqpos[i]-smwwh, freqpos[i]-smwwh),c(-59.2,-58.8))

lines(c(freqpos[i]+smwwh, freqpos[i]+smwwh),c(-59.2,-58.8))

}

The smoothed periodogram has bandwidth 0.44 = 800 × (1/N)(1/∆t) s−1,
computed as required in (9.90) using ∆t = 48/1000 s and N = 37501, as well
as .95 confidence intervals with height 0.60 dB. Smoothing the periodogram
over the band being 0.44 s−1 wide produces an estimator which is quite
smooth. This is an asset when analysing the spectrum of the vertical velocities
in the turbulent flow for frequencies in the inertial subrange (9.99).

Under Taylors’s hypothesis (9.100), the approximative .95 confidence in-
tervals of the smoothed periodogram are transformed using the following R
expressions

#mean velocity of flow in direction x1, calculated as mean of

#the u-values in file /path/turwind2.dat introduced in the

#remarks to Fig. 9.34

umu = 1.7654

clow <- (umu/(2*pi))*turpersm$confintvectorlow

cupp <- (umu/(2*pi))*turpersm$confintvectorupp

k1 <- (2*pi/umu)*turpersm$freq #wave number

in approximations for the .95 confidence intervals of estimator ĈU3(k1) for
CU3(k1). CU3(k1) is the vertical component (9.98) in the spatial velocity spec-
trum of the turbulent flow in direction x1, i.e., in direction of the mean flow.
The logarithms of these approximations for the .95 intervals of ĈU3(k1) are
then plotted versus the logarithms of the wave numbers in Fig. 9.36. This
plot is generated by the following R expressions

plot(c(-1,4),c(-10,-4),type="n",

ylab="spatial periodogramm, M=400, log[ m*(m/s)^2 ]",

xlab="wave number k1, log[ 1/m ]")

points(log(k1),log(clow),pch=".")

points(log(k1),log(cupp),pch=".")

lines(c(0.73,3.73),c(-5.1,-10.1))

points(c(0.73,3.73),c(-5.1,-10.1),pch="0")

text(-0.2,-5.1,"(0.73,-5.1)")

text(2.5,-10.0,"(3.73,-10.1)")

lines(c(1.5,1.5),c(-9.0,-6.0))

text(1.5,-9.5, "p1")

#transform symbols for bandwidth

fpwz<- (2*pi/umu)*freqpos

smwwhwz <- (2*pi/umu)*smwwh

for(i in 2:11) {

lines(c(log(fpwz[i]-smwwh), log(fpwz[i]+smwwh)),c(-4.0,-4.0))

lines(c(log(fpwz[i]-smwwh), log(fpwz[i]-smwwh)),c(-4.1,-3.9))

lines(c(log(fpwz[i]+smwwh), log(fpwz[i]+smwwh)),c(-4.1,-3.9)) }
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Fig. 9.36. Log-log plot of the .95 confidence intervals pertaining to ĈU3(k1), i.e.
the estimator for the vertical component (9.98) in the spatial velocity spectrum
of the turbulent flow in Fig. 9.34 (a). The height of the confidence interval is con-
stant whereas the bandwidth of the estimator decreases subsequent to a logarithmic
transformation of the wave number. The straight line has slope −5/3.

and allows for testing the hypothesis that the turbulent flow in Fig. 9.34
is locally isotropic, i.e., has a spectrum (9.99) being reconcilable with Kol-
mogorov’s hypotheses.

A Kolmogorov spectrum (9.99) decreases in a log-log representation with
slope −5/3: a straight line having this slope is drawn in Fig. 9.36. This line
remains approximately within the .95 confidence intervals for wave numbers
1.5 ≤ log(k1) ≤ 3.0 log(m−1), i.e., 4.5 ≤ k1 ≤ 20.0 m−1. Consequently, (i) the
inertial subrange stretches from approximately 4.5 m−1 up to approximately
20 m−1, and (ii) it is not excluded that the turbulent flow is locally isotropic
(cf. the remark to (9.99)). The analysis of this turbulent flow is continued in
Problem 9.19.
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9.5 Supplements

In Sect. 9.5.1, (9.6) is proved, i.e., it is shown that a direct spectral estimator
is the Fourier transform of the autocorrelation of the tapered observations,
provided that a variance-normalised data taper (9.2,1) is applied. Using this
result, the moment functions of a direct spectral estimator are derived in
Sects. 9.5.2 and 9.5.3. In Sect. 9.5.4, some definitions introduced in Sect. 6.6
are applied to discuss the width of a smoothing kernel and examples are
given in Table 9.4. The usual approximation for the variance of a smoothed
direct spectral estimator is derived in Sect. 9.5.5. In Sect. 9.5.6, R function
spec.pgram() is discussed, and, as an alternative, spec.univariate() is pro-
posed.

9.5.1 Direct Spectral Estimator and Autocorrelation of Tapered
Observations

A direct spectral estimator Ĉ(d)
X (s) as defined in (9.3) and (9.4) can be written

as in (9.103). The sums in (9.103) can be interpreted as polynomials. In their
squares, therefore, the terms can be arranged in rows and columns using
two indices and thus the double-indexed sums in the following two lines are
arrived at. In each term in these sums, the product of two trigonometric
functions is substituted using the elementary trigonometric identities and
the sum (9.104) readily follows.

Ĉ
(d)
X (s) =

(
N−1∑
t=0

h
(d)
N (t)Xt cos(2πst)

)2

+

(
N−1∑
t=0

h
(d)
N (t)Xt sin(2πst)

)2

(9.103)

=
1
N

N−1∑
t=0

N−1∑
u=0

h
(d)
N (t)Xt cos(2πst)h(d)

N (u)Xu cos(2πsu) +

N−1∑
t=0

N−1∑
u=0

h
(d)
N (t)Xt sin(2πst)h(d)

N (u)Xu sin(2πsu)

=
N−1∑
t=0

N−1∑
u=0

h
(d)
N (t)Xth

(d)
N (u)Xu

1
2
(
cos(2πs(t− u)) + cos(2πs(t+ u))

)
+

N−1∑
t=0

N−1∑
u=0

h
(d)
N (t)Xth

(d)
N (u)Xu

1
2
(
cos(2πs(t− u)) − cos(2πs(t+ u))

)
=

N−1∑
t=0

N−1∑
u=0

h
(d)
N (t)Xth

(d)
N (u)Xu cos

(
2πs(t− u)) (9.104)

=
N−1∑

τ=−(N−1)

(
1

Σ(h2)

N−1−|τ |∑
t=0

hN (t)XthN (t+ |τ |)Xt+|τ |

)
cos(2πsτ) (9.105)
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=
∞∑

τ=∞
ĉ
(d)
X (τ ) cos(2πsτ) where (9.106)

ĉ
(d)
X (τ ) =

{
1

Σ(h2)

∑N−1−|τ |
t=0 hN (t)XthN (t+ |τ |)Xt+|τ | for |τ | < N

0 for |τ | ≥ N
(9.107)

The argument 2πs(t − u) of the cosine functions in (9.104) is substituted
with 2πsτ and thereafter the diagonals in the matrix of the terms are
summed, as demonstrated when deriving (2.73) or in Problem 6.16. The
main diagonal contains N terms

(
hN (t)/

√
Σ(h2)

)2(Xt)2, the first sub-
diagonalsN−1 terms

(
hN (t)/

√
Σ(h2)

)(
hN (t−1)/

√
Σ(h2)

)
XtXt−1 as well as(

hN (t)/
√
Σ(h2)

)(
hN (t+1)/

√
Σ(h2)

)
XtXt+1, etc., and (9.105) is arrived at.

The sum in parenthesis in (9.105) is the autocorrelation (6.103) of the tapered
observations hN (t)Xt (and thus an even function), normalised with Σ(h2).
It is identically zero for τ ≤ −N and τ ≥ N because hN (t)hN (t+ |τ |) = 0 for
|τ | ≥ N , as is concluded from definition (6.103), which implies that ĉ(d)

X (τ )
in (9.107) is identically zero for |τ | ≥ N .

9.5.2 Expectation Function of a Direct Spectral Estimator

Assumptions such as those required for the definition of the direct spectral
estimator in (9.3) are made: J(s) in (9.108) is the estimator resulting from
a Fourier transform of the observations (xt), t = 0, 1, . . . , N , stemming from
a stationary stochastic process (Xt), calculated subsequent to tapering using
a variance-normed data taper as defined in (9.2). The Fourier representation
(7.51) of Xt is substituted and thus (9.109) is arrived at, using (i) dZ(s) =
dZ(−s) (as implied by (7.70,3,4), reconcilable with C(I)

X (s) being an even
(6.32,1) function, an example is given in (7.43)

)
, (ii) the integration rules,

and (iii) HN (s), i.e., the kernel pertaining to hN (t) as defined in (6.110).

J(s) =
N−1∑
t=0

h
(d)
N (t)Xte−i2πst, Xt =

∫ 1/2

−1/2

ei2πs′
dZX(s′) (9.108)

=
N−1∑
t=0

h
(d)
N (t)

(∫ 1/2

−1/2

ei2πs′
dZX(s′)

)
e−i2πst

=
∫ 1/2

−1/2

N−1∑
t=0

h
(d)
N (t)e−i2π(s−s′)tdZX(s′)

=
∫ 1/2

−1/2

HN (s− s′)√
Σ(h2)

dZX(s′) = −
∫ 1/2

−1/2

HN (s+ s′)√
Σ(h2)

dZX(s′) (9.109)

Since the complex-valued random function ZX(s) is required to have orthogo-
nal increments in (7.51), the expectation of the squared absolute value of J(s)
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is obtained in (9.110) by integrating with respect to an orthogonal increment
process as demonstrated in Sect. 7.5.2.

J(s) =
∫ 1/2

−1/2

HN (s− s′)√
Σ(h2)

dZX(s′)

E
(
J(s)J(s)

)
= E

(∫ 1/2

−1/2

HN (s−s′)√
Σ(h2)

dZX(s′)
∫ 1/2

−1/2

HN (s−s′′)√
Σ(h2)

dZX(s′′)

)

=
∫ 1/2

−1/2

∫ 1/2

−1/2

HN (s− s′)√
Σ(h2)

HN (s− s′′)√
Σ(h2)

(
δ(s′ − s′′)E(dZX(s′)dZX(s′′)

))
=
∫ 1/2

−1/2

H(d)
N (s− s′)E|dZX(s′)|2 (9.110)

In (9.110), H(d)
N (s) =

(
HN (s)HN (s)

)
/Σ(h2) = F−i

(
h

(d)
N (t)

) ∗ h(d)
N (t)

)
is ob-

tained from the autocorrelation theorem in Sect. 6.9.6, i.e., H(d)
N (s) is the

Fourier transform of the normalised autocorrelation of the data taper ap-
plied to the observations. Normalising the autocorrelation of the data taper
with Σ(h2)

(
or the data taper with

√
Σ(h2)

)
asserts that an empirical co-

variance function calculated from the tapered observations using (2.1,3) is
not biased (at least for lag τ = 0, the estimate for the variance) by the data
taper, as argued in the remarks to (9.8).

9.5.3 Covariance Function of a Direct Spectral Estimator

Covariance Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s + r)
)

for lag r (a displacement in the fre-
quency domain) of a direct spectral estimator is approximated in (9.14).
This approximation is derived in [108] under the assumptions stipulated in
(9.13). An abbreviated version of this derivation is given in this section.

It is assumed that a direct spectral estimator Ĉ(d)
X (s) is calculated using

(9.3) by multiplying a variance-normalised data taper h(d)
N (t) (9.2,1) with a

segment in a realisation of the discrete-time stationary model (Xt) in (9.1,1)
having a continuous spectrum CX(s) and an expectation µX = 0 being iden-
tically zero. Then the product h(d)

N (t)(Xt) has the Fourier representation ob-
tained in (9.109) which is used to derive the covariance of the direct spectral
estimator in (9.111).

J(s) in (9.111) is the Fourier representation of segment t = 0, 1, 2, . . . , N−
1 in a normal process (Xt) as required in (9.13,3) and therefore, being a
linear combination of multivariate normally distributed (Xt), is complex-
valued and normal, as is concluded from the remarks to (1.34). Complex-
valued stochastic processes and their moment functions are defined in (7.27).
Using these definitions and Isserlis’ theorem (which proposes that moments
of random variables Yi, i = 1, 2, . . . , n, with higher order than 2 can all be
expressed in terms of the second order moments, on condition that the Yi are
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multivariate normally distributed as required in (2.3) [73]), the covariance
of |J(s)|2 for frequencies s and s′ is derived borrowing from [108] with the
result in (9.111): it is the sum of two squared absolute values of two complex
valued expectation functions as defined in (7.27).

The expectation in the first term in (9.111) is evaluated by substituting
from (9.109). Thereafter, the expectation of the twofold integral is arrived
at in (9.112) by integrating with respect to an orthogonal increment process
exploiting the properties of the Fourier representation (7.51) of (Xt) arrived
at in (9.109), as demonstrated in Sect. 7.5.2 and also above, in Sect. 9.5.2.
From a similar derivation, the expectation in the second term results in 9.113.
Substituting s′ with s+r and s′′ with r′ in these expectations, the covariance
of the direct spectral estimator in (9.114) is arrived at.

Cov
(|J(s)|2, |J(s′)|2) =

∣∣E(J(s)J(s′)
)∣∣2 +

∣∣E(J(s)J(s′)
)∣∣2 (9.111)

E
(
J(s)J(s′)

)
= E

(∫ 1/2

−1/2

HN (s−s′′)√
Σ(h2)

dZX(s′′)
∫ 1/2

−1/2

HN (s′−s′′′)√
Σ(h2)

dZX(s′′′)

)

=
∫ 1/2

−1/2

∫ 1/2

−1/2

HN (s− s′′)√
Σ(h2)

HN (s′ − s′′′)√
Σ(h2)

(
δ(s′′−s′′′)E(dZX(s′′)dZX(s′′′)

))
=

1
Σ(h2)

∫ 1/2

−1/2

HN (s− s′′)HN (s′ − s′′)CX(s′′)ds′′ (9.112)

E
(
J(s)J(s′)

)
= − 1

Σ(h2)

∫ 1/2

−1/2

HN (s+ s′′)HN (s′ − s′′)CX(s′′)ds′′ (9.113)

Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
)

= Cov
(|J(s)|2, |J(s+ r)|2) (9.114)

=
1

(Σ(h2))2

( ∣∣∣∣ ∫ 1/2

−1/2

HN (s− r′)HN (s+ r − r′)CX(r′)dr′
∣∣∣∣2 (9.115)

−
∣∣∣∣ ∫ 1/2

−1/2

HN (s+ r′)HN (s+ r − r′)CX(r′)dr′
∣∣∣∣2
)

(9.116)

≈ 1
(Σ(h2))2

∣∣∣∣∣
∫ 1/2

−1/2

HN (s− r′)HN (s+ r − r′)CX(r′)dr′
∣∣∣∣∣
2

(9.117)

for s �= −1/2, 0, 1/2 and s+ r �= −1/2, 0, 1/2

The covariance in (9.114) is the difference of the squared absolute values of
the integrals in (9.115) and (9.116). The integral in (9.116) becomes negligible
as compared to the first one in (9.115) on condition that frequencies s and
s+ r are not identical with −1/2, 0 or 1/2, as argued in [108]: approximation
(9.117) is arrived at.

In approximation (9.117), HN (s− r′)HN (s + r − r′) is the product of
the kernel of the data taper with its duplicate shifted by displacement r.
The main lobe of a kernel HN (s) is often inside the band s0 − ς, s0 + ς, ], s0
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being the frequency where HN (s) attains its maximum and ς = B∩
�
(
HN (s),

calculated as demonstrated in Fig. 6.24. For |r| > 2ς = 2B∩
�
(
HN (s)

)
, the

main lobes of the kernel and its duplicate being displaced by r no longer
overlap and their product, as required in (9.117), becomes small which implies
that the integral is dominated by CX(s) (the spectrum to be estimated) in
frequency bands [s − ς, s + r + ς, ], for r > 0, and [s + r − ς, s + ς, ], for
r < 0. Consequently, assuming in (9.13,4) that CX(s) is locally constant in
a frequency band [s − ς, s + ς] of width 2ς = 2B∩

�
(
HN (s)

)
about s, CX(s)

needs no longer to be included in the integral and (9.118) is arrived at, the
approximation proposed in (9.14).

H⊕H(r) in (9.119) is defined in −1/2 ≤ s ≤ −1/2 and periodic with
period 1, properties inherited from HN (s). HN (s) = F−i

(
hN (t)

)
as required

in (6.110,2) implies that convolution theorem (6.48) can be applied to obtain
(9.120). (9.121) then follows from definition (9.2,1).

Cov
(
Ĉ

(d)
X (s), Ĉ(d)

X (s+ r)
) ≈ (

C2
X(s)

)(
H⊕H(r)

)
with (9.118)

H⊕H(r) =
1

(Σ(h2))2

∣∣∣∣ ∫ 1/2

−1/2

HN (r′)HN (r − r′)dr′
∣∣∣∣2 (9.119)

=
1

(Σ(h2))2

∣∣∣∣N−1∑
υ=0

((
hN (υ)

)(
hN (υ)

))
e−i2πrυ

∣∣∣∣2 (9.120)

=
∣∣∣∣N−1∑

υ=0

((
h

(d)
N (υ)

)(
h

(d)
N (υ)

))
e−i2πrυ

∣∣∣∣2 (9.121)

=
N−1∑

u=−(N−1)

h⊕h(u)e−i2πru =
∞∑

u=−∞
h⊕h(u)e−i2πru (9.122)

h⊕h(u) =
{

1/(Σ(h2))2
∑N−1−|u|

υ=0 h2
N (υ)h2

N (υ + |u|) for |u| < N
0 for |u| ≥ N

(9.123)

The sum in (9.121) becomes the first Fourier sum in (9.3) on condition that,
in (9.3), t is substituted with υ and X with h(d)

N . When these substitutions
are applied to (9.6) and (9.7), (9.122) and (9.123) are arrived at, which imply
that h⊕h(u) and H⊕H(r) are a Fourier transform pair as defined in (6.49) and
(6.50). When the kernel and its shifted duplicate become identical in (9.119),
i.e., for r = 0,

H⊕H(0) =
1

(Σ(h2))2

∣∣∣∣ ∫ 1/2

−1/2

HN (r′)HN (−r′)dr′
∣∣∣∣2

=
1

(Σ(h2))2

∣∣∣∣N−1∑
υ=0

((
hN (υ)

)(
hN (υ)

))∣∣∣∣2 = 1 =
∞∑

u=−∞
h⊕h(u) (9.124)

is obtained from (9.120), owing to the normalisation in (9.2,1).
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9.5.4 Widths of Smoothing Kernels

In (7.83), the bandwidth B�
(
CX(s)

)
of a continuous spectrum CX(s) is de-

fined as the width at half height of CX(s), because a spectrum does not gen-
erally have the properties required to calculate an equivalent width (6.99,1)
or a σ-width (6.101) which are geometrically meaningful. For example, the
spectrum of the AR[4] model Xt = 2.7607Xt−1 − 3.8106Xt−2 + 2.6535Xt−3 −
0.9838Xt−4 +Wt, with µW = 0 and σ2

W = 1, is plotted in Fig. 7.14 (b) and
(c) together with its bandwidth B�

(
CX(s)

)
= 0.00474 obtained in Fig. 7.10

(d). B�
(
CX(s)

)
is compared, in the remarks to Figs. 9.14, 9.16 and 9.16, with

B||
(
VdD,M (s′k)

)
= 2M∆s′k, i.e., the widths as defined (9.125) of the modified

discrete Daniell kernels applied to calculate the discretely smoothed direct
estimators for CX(s) plotted there.

Let Vm(sk) and Vm(s′k) be discrete smoothing kernels as
required in (9.28) and having approximately rectangular
shape, i.e., small tails. Then Vm(sk) and Vm(s′k) have widths
B||
(
Vm(sk)

)
= 2M∆sk and B||

(
Vm(s′k)

)
= 2M∆s′k.

(9.125)

Definition (9.125) is motivated by the width of a moving average as proposed
in the remarks to definition (2.39).

In the case of a lag window spectral estimator as defined in (9.41), (9.42),
(9.43), and (9.44), some of the widths introduced in Sect. 6.6 can be applied
to obtain the following definitions for the width of a continuous smoothing
kernel.

The equivalent width of a smoothing kernel V 
τ�
m (s) in (9.42) is geo-

metrically meaningful on condition that V 
τ�
m (s) ≥ 0 for −1/2 ≤ s ≤ 1/2,

because a continuous smoothing kernel has its maximum usually in s = 0.
In addition, if the associated lag window v
τ�

m (τ ) ≥ 0 for τ = −(N −
1), . . . ,−1, 0, 1, . . . , N − 1, then it is concluded from (9.42) and (6.99,2) that
the equivalent width of V 
τ�

m (s) is the inverse of the equivalent width of
v
τ�

m (τ ). Using v
τ�
m (0) =

∫ 1/2

−1/2
V 
τ�

m (s)ds = 1 as obtained in the remarks to
(9.44), the equivalent width of the smoothing kernel is obtained in (9.126).

B�
(
V 
τ�

m (s)
)

=
1

B�
(
v
τ�

m (τ )
) =

1∑N−1
τ=−(N−1) v


τ�
m (τ )

(9.126)

If V 
τ�
m (s) ≥ 0 as required above for definition (9.126), then V 
τ�

m (s)
does have the properties of a probability density function, for the reason that
v
τ�

m (0) =
∫ 1/2

−1/2
V 
τ�

m (s)ds = 1 as concluded in the remarks to (9.44), and
thus the calculation (in Problem 9.14) of the σ-width of the smoothing kernel
(9.128) by applying definition (6.101) becomes geometrically meaningful.(

Bσ

(
V 
τ�

m (s)
))2

= 12
∫ 1/2

−1/2

s2V 
τ�
m (s)ds (9.127)
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= 1 +
12
π2

N−1∑
τ=1

(−1)τ

τ2
v
τ�

m (τ ) (9.128)

In the case of a Daniell lag window (9.45), the integral in (9.127) (and thus
the sum in (9.128)), which is identical with the second moment as defined
in (6.100), becomes the square of the width of the rectangle function when
multiplied by 12.

Definitions (9.126 and (9.128) are geometrically meaningful provided that
v
τ�

m (τ ) ≥ 0 for τ = −(N − 1), . . . ,−1, 0, 1, . . . , N − 1 and V 
τ�
m (s) ≥ 0 for

−1/2 ≤ s ≤ 1/2. However, there are lag windows with negative weights
(e.g., the lag window pertaining to the modified discrete Daniell kernel as
plotted for M = 3 in Fig. 9.19 (c)) and smoothing kernels with negative
side lobes (e.g., the continuous smoothing kernel pertaining to the modified
discrete Daniell kernel as plotted for M = 3 in Fig. 9.19 (d)). If a lag window
has negative weights then an equivalent width can become negative. If a
smoothing kernel has negative side lobes then the integral in (9.128) can
become negative and therefore a σ-width can become imaginary.

These shortcomings are, however, not shared by the autocorrelation
width of the smoothing kernel. Using definitions (6.102), (6.103) and (6.104),∫ 1/2

−1/2

(
V 
τ�

m (s)
)
�
(
V 
τ�

m (s)
)

ds =
(
v
τ�

m (0)
)(
v
τ�

m (0)
)
= 1× 1 = 1 is obtained

from assumptions (9.42), (9.43) and (9.44), and therefore,

B�

(
V 
τ�

m (s)
)

=
1∫ 1/2

−1/2

(
V 
τ�

m (s)
)2ds =

1∑N
τ=−(N−1)

(
v
τ�

m (τ )
)2 (9.129)

is the autocorrelation width of the smoothing kernel. The denominators in
(9.129) are equal as is concluded from (6.74,2, Parseval’s identity).

For example, some widths of the continuous smoothing kernels plotted
in Fig. 6.23 (Daniell), Fig. 9.18 (Bartlett) and Fig. 9.19 (modified discrete
Daniell) are given in Table 9.4.

B∩
�
(
V 
τ�

m (s)
)
, i.e., the widths at half height of the main lobes in the

smoothing kernels, are determined in plots with a high resolution of the
frequency domain, except for B∩

�
(
FN (s)

)
which is calculated using the ap-

proximation proposed in Table 9.1. The equivalent, σ- and autocorrelation
widths of the Daniell kernel (9.45) are calculated as required in (6.99), (6.101)
and (6.104); these computations are favoured by the properties of the rect-
angle function and its Fourier transform in (6.38), (6.39) and (6.40). In con-
trast, definitions (9.126), (9.128) and (9.129) are used to compute the widths
of smoothing kernels pertaining to Λ(e)

2m+1 (the Bartlett lag window) and
V 
τ�

dD,M (τ ) (obtained as discrete Fourier transform of the modified discrete
Daniell kernel VdD,M (s′j) (9.29), N ′ = 2N and ∆s′k = 1/(2N)). The widths
B||
(
VdD,M (s′k)

)
of the modified discrete Daniell kernels are obtained by ap-

plying definition (9.125).
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Table 9.4. Widths B||
(
VdD,M (s′k)

)
= 2M∆s′k, ∆s′k = 1/(2N) as defined in (9.125)

of modified discrete Daniell kernels (9.29), equivalent widths B�(·), σ-widths Bσ(·),
autocorrelation widths B�(·) of smoothing kernels V �τ�

m (s) as plotted in Figs. 6.23
(d), 9.18 (b) and 9.19 (d), as well as width at half height B∩

�(·) of the main lobe of

V �τ�
m (s) (marked ∗ when calculated despite the remarks to (9.126) and (9.128)).

lag window N m M 2M∆s′k B�(·) Bσ(·) B�(·) B∩
�(·)

Daniell v�τ�
Da,m(τ) 64 10 0.1 0.1 0.1

(9.45) Fig. 6.23

Bartlett Λ
(g)
2m+1(τ) 64 30 .0333 .0281 .0499 .0300

(6.56) Fig. 9.18

m. Daniell v�τ�
dD,M (τ) 64 3 .0470 .0535 .0500

(9.29) Fig. 9.19
256 4 .0156 .0156∗ .0226∗ .0167 .0156

Fig. 9.20 4096 10 .0024 .0024∗ .0035∗ .0026 .0024

As an aside: computing the σ-width by applying (9.128) is delicate: the
results in Table 9.4 were computed using a 64-bit processor and cannot be
reproduced using a 32-bit processor and single-precision variables.

From Table 9.4 it is concluded that B�

(
V 
τ�

dD,M (s)
) ≈ B∩

�
(
V 
τ�

dD,M (s)
) ≈

B||
(
VdD,M (s′k)

)
= 2M∆s′k, as is obvious for N = 64 in Fig. 9.19.

9.5.5 Variance Function of a Lag Window Estimator

Let Ĉ
τ�
X (s′k) = (1/(2N))

∑N
j=−(N−1) V


τ�
m (s′j)Ĉ

(d)
X (s′k−j) be a lag window

estimator computed for discrete frequencies s′k with ∆s′k = 1/(2N) as ob-
tained in (9.59). For large N — and thus small ∆s′k — it is likely that (i)
V 
τ�

m (s′k) ≈ 0 at the exterior of band [s′k − J∆s′k, s′k + J∆s′k] = [s′k−J , s
′
k+J ],

J being a small integer number, and (ii) CX(s) is locally (2.55) constant in
[s′k−J , s

′
k+J ]. Band [s′k−J , s

′
k+J ] is assumed to have approximately the same

width as s − ζ ≤ s ≤ s + ζ having width 2ζ as defined in (9.73), i.e.,
2J∆s′k ≈ 2ζ, and thus is, in most cases, wider than [s − ς, s + ς] having
width 2ς = 2B∩

�
(|HN (s)|) as required in (9.13,4) for approximating the sec-

ond moment function of a direct spectral estimator in (9.14), (9.15), (9.16)
and (9.17).

For example, the direct spectral estimator discretely smoothed in Figs. 9.15
and 9.16, is the result of tapering the observations with a cosine taper
for p = 0.05 such that 2B∩

�
(|H�N (s)|) ≈ 4∆s′k, as is obvious in Fig. 9.6,

is narrower than band [s′k−J , s
′
k+J ] having width 20∆s′k for J = 10, with

∆s′k = 0.000122 = 1/(2N), N = 4096. In this example, moreover, 20∆s′k ≈
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0.0024 < 0.0026 ≈ B�

(
V 
τ�

m (s)
)
, as is concluded from Table 9.4, and

V 
τ�
m (s′k) ≈ 0 for |sk| > J = 10, as can be seen in Fig. 9.21.

The above assumptions imply that Ĉ(d)
X (s′k), being discretely smoothed,

is locally stationary with approximative moment functions E
(
Ĉ

(d)
X (s′k)

) ≈
CX(s′k) and Cov

(
Ĉ

(d)
X (s′k), Ĉ(d)

X (s′k+l)
) ≈ (

C2
X(s′k)

)(
H⊕H(l∆sk)

)
, as approxi-

mated in (9.12), (9.14) and (9.15).
In a first step, Ĉ(d)

X (s′k) = Ĉ
(d)
X (k/(2N)) is substituted with Y (l/(2N)),

k, l = −(N − 1), . . . ,−1, 0, 1, . . . , N , and it is assumed that Y (l/(2N)) is
a locally stationary stochastic process having µY (l/(2N)) ≈ CX(l/(2N))
and cY (�/(2N)) ≈ (

C2
X(�/(2N))

)(
H⊕H(�/(2N))

)
as its moment functions.

The parameter of this process (and thus also the argument of its moment
functions) is l/(2N), i.e., the discrete frequencies. The spectrum CY (u) of
Y (l/(2N)) is obtained as the Fourier +i-transform of cY (�/(2N)) in (9.131).
A +i-transform is reconcilable with the conventions in Sect. 6.3, because
cY (�/(2N)) is a function in the frequency domain.

� = −(N − 1), . . . ,−1, 0, 1, . . . , N
u = −(N − 1), . . . ,−1, 0, 1, . . . , N (9.130)

CY (u) ≈ 1
2N

N∑
	=−(N−1)

ĉY (�/(2N))ei2π(	/(2N))u (9.131)

≈ 1
2N

N∑
	=−(N−1)

(
C2

X(�/(2N))
)(
H⊕H(�/(2N)

)
ei2π(	/(2N))u

≈ (
C2

X(�/(2N))
)(
h⊕h(u)

)
(9.132)

(9.132) is obtained since H⊕H(�/(2N)) and h⊕h(u), � and u as in (9.130),
are a discrete Fourier transform pair, as is concluded from H⊕H(r) =∑N−1

u=−(N−1) h⊕h(u)e−i2πru as derived in (9.122). This property is shared with

ĉ
(d)
X (τ ) and Ĉ(d)

X (s) as derived in (9.6). As an aside, both pairs, h⊕h(u) and
H⊕H(�/(2N)) as well as ĉ(d)

X (τ ) and Ĉ(d)
X (s), are Fourier transform pairs as

defined in (6.49) and (6.50), on condition that h⊕h(u) and ĉ
(d)
X (τ ) are as

required in (9.123) and (9.7).
In a second step, Ĉ(d)

X (s′k) = Ĉ
(d)
X

(
k/(2N)

)
in (9.59) is substituted with

Y
(
l/(2N)

)
, k, l = −(N −1), . . . ,−1, 0, 1, . . . , N , i.e., with the locally station-

ary discrete-frequency stochastic process with spectrum CY (u) as approxi-
mated in (9.132). This substitution results in the stochastic filter (9.133),
Y
(
l/(2N)

)
being its input, V 
τ�

m

(
�/(2N)

)
its impulse response function and

Ĉ
τ�
X

(
l/(2N)

)
its output.

Ĉ
τ�
X

(
l/(2N)

)
=

1
2N

N∑
	=−(N−1)

(
V 
τ�

m

(
�/(2N)

))(
Y
(
(l − �)/(2N)

))
(9.133)
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spectrum of
Ĉ
τ�

X

(
l/(2N)

) ≈ (
v
τ�

m (u)
)2(
C2

X(�/(2N))
)(
h⊕h(u)

)
(9.134)

v
τ�
m (u) =

1
2N

N∑
	=−(N−1)

V 
τ�
m

(
�/(2N)

)
ei2π(	/(2N))u (9.135)

A stochastic LTI filter as defined in (7.84) for stationary continuous-time
random functions X(t) has properties (7.90), these properties, however,
are shared by the filter in (9.133). Hence, the spectrum of the output
Ĉ
τ�

X

(
l/(2N)

)
in (9.134) is the product of the input spectrum CY (u) de-

rived above in (9.132) and the squared absolute value of the transfer function
v
τ�

m (u), i.e., the discrete Fourier transform of V 
τ�
m

(
�/(2N)

)
as obtained in

(9.135). From a comparison of (9.135) with (9.57) it is concluded that v
τ�
m (u)

is identical with v
τ�
m (τ ) and thus is a real-valued even function as required

in (9.44).
In a third and final step, the variance of the lag window spectral estimator

in (9.59) and (9.133), Ĉ(d)
X (s′k) = Ĉ

(d)
X

(
k/(2N)

)
= Y

(
l/(2N)

)
, k, l = −(N −

1), . . . ,−1, 0, 1, . . . , N , is obtained in (9.136) as the sum of the spectrum in
(9.134). (9.137) follows from (9.123) when h⊕h(u) = h⊕h(0) for u = −(N −
1), . . . ,−1, 0, 1, . . . , N is assumed.

Var
(
Ĉ
τ�

X (s′k)
) ≈ (

C2
X(s′k)

) N∑
u=−(N−1)

(
v
τ�

m (u)
)2(
h⊕h(u)

)
(9.136)

≈ (
C2

X(s′k)
) ∑N

t=0

(
hN (t)

)4(∑N
t=0

(
hN (t)

)2)2

N∑
u=−(N−1)

(
v
τ�

m (u)
)2 (9.137)

≈ (
C2

X(s′k)
) ∑N

t=0

(
hN (t)

)4(∑N
t=0

(
hN (t)

)2)2

1
B�

(
V 
τ�

m (s)
) (9.138)

The final approximation in (9.138) is arrived at by substituting the auto-
correlation width of the smoothing kernel as defined in (9.129). The above
derivation is borrowed from [108].

9.5.6 Spectral Estimation in R

When a continuous spectrum is estimated, tapering and the width of the
smoothing kernel are the important issues. Tapering reduces the leakage due
to the side lobes of the spectral window and thus allows for computing a
direct spectral estimator that has a negligible bias for frequencies a larger
distance away from the peaks in a spectrum having a large dynamic range,
as is concluded from (9.12). The width of a smoothing kernel applied to a
direct spectral estimator controls both (i) a possible bias due to smoothing as
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implied by (9.72) and (ii) the variance of the estimator as implied by (9.77)
and (9.78). The width of the smoothing kernel is obtained from diagnostics
(6.115) and (6.116) on condition that the bandwidth of the spectrum to be
estimated is known. If, however, the bandwidth is not known, then the width
of the smoothing kernel can be assessed using the procedures introduced in
Sect. 9.3.5.

Consequently, any spectral estimation method should allow for tapering
and choosing the width of either the smoothing kernel or a corresponding lag
window. The width of the smoothing kernel has to be chosen when a direct
spectral estimator is discretely smoothed using definition (9.28). Alterna-
tively, the width of the lag window is required for computing an estimator as
proposed in the remarks to (9.44), i.e., by Fourier transforming the product
of (i) the empirical covariance function calculated from tapered observations
and (ii) the lag window.

In R, a continuous spectrum can readily be estimated using any of the
following methods:

1. applying the techniques introduced in Sect. 5.4 to fit a linear process and
thereafter substituting the empirical coefficients obtained for the theo-
retical ones in the spectra derived in Sect. 7.4.2 (parametric estimation,
an example is given in Sect. 9.2.5)

2. pre-whitening as introduced in Sect. 9.2.5
3. computing the empirical correlation function ĉ(d)

X (τ ) (9.7) from tapered
observations using acf() (Problem 9.5), multiplying ĉ(d)

X (τ ) with a lag
window as required in (9.44), and finally applying fft() to Fourier trans-
form the product thus obtained (as proposed in the remarks to (9.41),
(9.42), (9.43), and (9.44))

4. applying spec.pgram() to compute a discretely smoothed direct spectral
estimator.

spec.pgram() computes a direct spectral estimator (or a periodogram when
no data taper is applied) and then smoothes the estimator thus obtained
using either a modified discrete Daniell kernel (this is the default) or another
kernel. spec.pgram() allows for computing spectral estimates for multivariate
time series and also for plotting the estimates. Its code is available from
the internet address given in [114]. However, spec.pgram() has the following
disadvantages:

1. it computes the variance of a discretely smoothed direct spectral estima-
tor without taking into account the inflation due to the data taper (i.e.,
assuming Ξ(h) = 1 in (9.77) and (9.78)): the degrees of freedom for the
chi-square approximation are not reconcilable with (9.83) and (9.84)

2. the bandwidth as computed by spec.pgram() seems to be too small when
compared with the forms of a discretely smoothed spectral estimate.

Hence, the author prefers spec.univariate() (its code is given below) to
spec.pgram() provided that the time series under analysis is univariate. In
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spec.univariate(), the variance (and thereafter the degrees of freedom in
the chi-square approximation) of the smoothed estimator is computed using
(9.77). There, the autocorrelation width of the discrete smoothing kernel is
required, which can be computed using (9.129) as implemented in R function
awidthdsk().

awidthdsk <- function(k, N)

{

## H. Gilgen, Institute for Atmosphere and Climate Science ETH

## Version 1.0, May 2005

## computes the autocorrelation width of a discrete smoothing

## kernel assuming a unit sampling interval for approximating

## the variance of a lag window spectral estimator using (9.77)

## k: vector with an odd number of weights in the kernel

## N: number of observations

M <- (length(k)-1)/2 #prepare for computing

rpad <- N - (M+1) #the lag window per-

lpad <- N - M #taining to this kernel

NN <- 2*N

v <- k

vpad <- c(rep(0,lpad),v)

vpad <- c(vpad,rep(0,rpad))

vpad <- c(vpad[(N+1):NN], vpad[1:N]) #re-order for fft()

m <- floor(NN/2)

vlagw <- fft(vpad, inverse=T) #lag window

vlagw <- c(vlagw[(m+1):NN],vlagw[1:m]) #re-order

#lags <- -m:(m-1) #for plotting

#autocorrelation width of lag window (9.129)

aw <- 1/sum( Re(vlagw[2:NN])*Re(vlagw[2:NN]) )

#this is the lag window of a discretely smoothed direct spectral

#estimator for frequencies with distance 1/(2*N) as in (9.59)

aw <- 2*aw

#return results

awdsk.out <- list(kernel = k, N = N, aw = aw)

class(awdsk.out) <- "awidthdsk"

return(awdsk.out)

}

R function awidthdsk() as above is used in spec.univariate() for computing
the variance of the smoothed estimator. Further, spec.univariate() applies
spec.taper() (so does spec.pgram()) to compute a cosine taper (6.111,1).
spec.univariate() provides for only one smoothing kernel (the modified dis-
crete Daniell kernel (9.29)) because the width of the kernel is important, not
its form, as argued in the remark to (9.44) and in the second last paragraph
in Sect. 9.3.3.

spec.univariate <- function(x,taper=0.05,spans=1,pad=0,
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confint=0.95,fast=FALSE)

{

## H. Gilgen, Institute for Atmospheric and Climate Science ETH

## Version 1.0, March 2003

## Version 1.1, May 2005

## discretely smoothed direct spectral estimator

## x: a time series in R, demeaned and detrended

## taper: p-value of cosine taper

## spans: number of discrete frequencies in moving average

## applied for smoothing the direct spectral estimator

## pad: factor for zero-padding, i.e., 0 for no padding,

## 1 for padding with N zeros, N the length of x, etc.

## fast: FALSE: calculate spectrum for N or N obtained

## subsequent to padding

## TRUE: zero-pad to favour factorising for fft()

xfreq <- frequency(x)

x <- as.vector(x)

N <- length(x)

Nprime <- N #no zero-padding yet

## construct variance normalised cosine taper (9.2,1)

## as discussed in the remarks to Fig. 9.4

h <- rep(1,N)

h <- as.vector(spec.taper(h, taper)) #taper = 0: periodogram

sh2 <- sum(h*h) #for normalising

sh4 <- sum(h**4) #for computing (9.74)

h <- h/sqrt(sh2) #variance normalised taper

x <- x*h #now tapered

## zero-padding using definition (9.20) as discussed

## in the remarks to Fig. 9.25

if (pad > 0) {

N0pad <- N*pad

Nprime <- N + N0pad

x <- c(x,rep(0,N0pad)) #now zero-padded

}

## additional zero-padding to favour factorising in fft()

NN <- if(fast) nextn(Nprime) else Nprime

x <- c(x,rep(0,(NN-Nprime)))

## frequencies, Fourier transform and direct spectral estimator

## interpolate estimator at frequency 0 because very small

## due to demeaning or detrending

m <- floor(NN/2)

sk <- seq(from=0, by=xfreq/NN,length = (m+1)) #for non-unit

xt <- fft(x,inverse=T) #sampling

spec <- (1/xfreq)*(Mod(xt))*(Mod(xt)) #interval
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spec[1] <- 0.5*(spec[2] + spec[NN])

## smooth direct spectral estimator over spans frequencies

## using a modified discrete Daniell kernel having width 2*M

## in units of 1/NN, see the remarks to (9.29).

## variance reduction due to smoothing, calculated using

## autocorrelation width of kernel in units of (1/NN)

## chisqdf: degrees of freedom for chi-square approximation

## as required in (9.77), (9.78) and (9.84)

if (spans > 1) {

M <- floor(spans/2)

v <- rep( (1/(2*M)), 2*M+1)

v[1] <- v[1]/2

v[2*M+1] <- v[2*M+1]/2

spec <- as.vector(filter(spec,v,method="convolution",

circular=T,sides=2))

autocorrwidth <- awidthdsk(v,NN)

awidth <- autocorrwidth$aw #autocorrelation width (9.129)

bwidth <- (2*M)*(1/NN) #bandwidth (9.90)

varred <- (1/N)*((N*sh4)/(sh2*sh2))*(1/awidth)

chisqdf <- 2/varred

} else {

bwidth <- (1/N)*((N*sh4)/(sh2*sh2)) #bandwidth (9.92)

varred <- NA #no smoothing: no reduction of variance

chisqdf <- 2 #(8.24) and (9.19): not for first

M <- 1 #and possibly last frequency in sk

v <- NA

awidth <- NA

}

awidth <- awidth*xfreq

bandwidth <- bwidth*xfreq

spec <- spec[1:(m+1)] #for positive frequencies only

## confidence intervals (9.87) and (9.88)

pconf <- (1-confint)/2.0

plow <- rep((1-pconf),(m+1))

pupp <- rep(pconf,(m+1))

cilow <- (chisqdf/qchisq(plow,chisqdf))*spec

ciupp <- (chisqdf/qchisq(pupp,chisqdf))*spec

cidblow <- 10*log10(cilow[M+1]) - 10*log10(spec[M+1])

cidbupp <- 10*log10(ciupp[M+1]) - 10*log10(spec[M+1])

## above approximations apply for frequencies not close to

## first and (possibly) last frequency in sk, as required in

## (9.73,4) and (9.32,2)

for (i in 1:M) {

cilow[i] <- NA
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cilow[(m+1)-i+1] <- NA

ciupp[i] <- NA

ciupp[(m+1)-i+1] <- NA

}

## return results

spg.uni.out <- list(freq = sk, spec = spec,

confintvectorlow = cilow, confintvectorupp = ciupp,

confintdblow = cidblow, confintdbupp = cidbupp,

df = chisqdf, acwidth.df = awidth, bandwidth = bandwidth,

kernel = v, N.timeseries = N, N.used = NN,

numb.freq = m, p.costaper = taper, zeropad.factor= pad,

numb.freq.smoothed = spans)

class(spg.uni.out) <- "specuni"

return(spg.uni.out)

}

Spectral estimates obtained from spec.univariate() and spec.pgram() are
identical for the frequencies not excluded in (9.73,4) and (9.32,2), because
identical tapers and smoothing kernels are applied; small differences are,
however, found in the approximations of the degrees of freedom for the chi-
square approximation and the bandwidth (subsequent to a multiplication of
the bandwidth as obtained from spec.pgram() with

√
12).

spec.univariate() and spec.pgram() are distinct in their arguments and
their results. Consequently, plot.spec() cannot be applied for plotting the es-
timates obtained from spec.univariate(). With a few modifications in its last
lines however, spec.univariate() can be made reconcilable with plot.spec().

9.6 Problems

9.1. Let IX(s) be a periodogram as defined in (8.1,4) using a segment in
a discrete-time stationary stochastic process (Xt). Then (8.19) allows for
calculating its expectation function EIX(s) on condition that its covariance
function cX(τ ) is known. Assume, additionally, that the (Xt) is reconcilable
with model (9.1), having covariance function cX(τ ) = σ2

W

∑∞
u=−∞ bubu+τ .

cX(τ ) can be derived as in (2.26) even though the impulse response sequence
(bt) is two-sided in (9.1), since the sums do exist for all −(N − 1) ≤ h ≤
(N − 1). Alternatively, by applying (7.90,4) and (6.48,6), cX(τ ) can also be
calculated from spectrum (9.1,2).

Substituting cX(τ ) = σ2
W

∑∞
u=−∞ bubu+τ in (8.19),

E
(
IX(s)

)
=

N−1∑
τ=−(N−1)

(
1 − |τ |

N

)(
σ2

W

∞∑
u=−∞

bubu+τ

)
cos(2πsτ) (9.139)

is arrived at as the Fourier transform of the product of f(τ ) = (1 − |τ |/N)
and g(τ ) = σ2

W

∑∞
u=−∞ bubu+τ . Both functions are even (6.32): (i) f(τ ) is the
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even triangle sequence (6.56) and (ii) g(τ ), being the autocorrelation of (bt)
in (9.1), is even as is concluded from the remarks to (6.103). Please derive,
from (9.139), E

(
IX(s)

)
= FN (s) ∗ CX(s), for −1/2 ≤ s ≤ 1/2, CX(s) the

spectrum of model (9.1).

9.2. Parseval’s identity for Fourier transform pairs (ft) = F−i

(
F (s)

)
as in

(6.49) and (6.50) is used to derive the mean square approximation (6.127)
of the low-pass filter. This version of Parseval’s identity can also be used to
derive

∫ 1/2

−1/2
H(d)

N (s)ds = 1, H(d)
N (s) the spectral window as defined in (9.2,2).

9.3. Please find in file /path/problem93.R R expressions which can be used to
generate cosine tapers, their normalised autocorrelations and their spectral
windows as plotted in Fig. 9.2. Apply these R expressions to calculate the
widths at half height of the main lobes of spectral windows for N = 64 and
p = 0.15, 0.20, 0.25, 0.30 and 0.50. Then calculate and plot cosine tapers,
their normalised autocorrelations and spectral windows for p = 0.05 and
N = 1024, 8196, 65536.

9.4. Let h
�

N (t) be a cosine taper as defined in (6.111,1). To h
�

N (t) pertain its
kernel H

�
N (s) = F−i

(
hN (t)

)
calculated using definition (6.110) and its spec-

tral window H(d)�
N (s) =

(
1/Σ(h2)

� )
H
�

N (s)H
�

N (s) =
(
1/Σ(h2)

� )F−i

(
h
�

N � h
�

N (t)
)
,

with Σ(h2)
�

=
∑N−1

t=0

(
h
�

N (t)
)2, as defined in (9.2,2). Show that H(d)�

N (s),
N = 1, 2, 3, . . . is a defining sequence for δ(s + n), n = . . . ,−1, 0, 1, . . ., i.e.,
the periodic version of the delta function in the remarks to (6.62). Hints:

– H
�

N (0) =
∑N−1

t=0 h
�

N (t) is implied by (6.48,1). Using cos(x) = − cos(π−x),
you will obtain

∑q−1
t=0 cos((π/(2q))(2t + 1)) = 0, q as defined in (6.111).

Thus
∑N−1

t=0 h
�

N (t) = N − q is arrived at.
–

∑q−1
t=0

(
cos((π/(2q))(2t + 1))

)2 = q/2 can be obtained by applying the

trigonometric identities and the sums in (6.10). You will arrive at Σ(h2)
�

=∑N−1
t=0

(
h
�

N (t)
)2) = N − (5/4)q.

9.5. Generate in R vector x a time slice of length N = 4096 in a simulated
realisation of the AR[4] process (Xt) defined in Fig. 7.14. From x, calculate
the empirical covariance function ĉ(d)

X (τ ) as defined in (9.7) by applying the
following R expressions:

h <- rep(1, N)

h <- spec.taper(h, 0.10) #cosine taper (6.111,1)

h <- h/sqrt(sum(h*h)) #normalised (9.2,1)

#autocorrelation (6.103) of x*h computed using acf(),

#albeit acf() normalises with (1/N) as required in (2.1,3),

#this is compensated below

ac <- acf(x*h, lag.max=N, plot=F, type="covariance")
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lags <- -(N-1):N #(9.25)

tmcov <- rev(ac$acf[2:N]) #revert order

tmcov <- c(tmcov, ac$acf) #all lags

tmcov <- tmcov*N #undo normalisation.

From ĉ
(d)
X (τ ) thus obtained in tmcov, a direct spectral estimator Ĉ(d)

X (s′k)
can be obtained using (9.23), which is identical to Ĉ(d)

X (s′k), with ∆s′k =
1/N ′ = 1/(2N), N ′ = 2N , calculated by multiplying x with a cosine taper
and thereafter zero-padding as required in (9.20,1). Hint: R expressions for
discrete Fourier transforms are given in Sect. 6.9.8.

9.6. R expressions that can be used to generate the plots ofH⊕H(r) in Fig. 9.6
are available in /path/problem96.R. Use these expressions to generate plots
of H⊕H(r) for cosine tapers having parameters N = 128, 512, 2048 and p =
0.0, 0.05, 0.1, 0.3, 0.5. Draw the frequencies n∆sk, n = 1/2, 1, 3/2, 2, 5/2, . . .,
in your plots.

9.7. Simulate realisations of the AR[4] model in Fig. 7.14 with increasing
lengths N = 512, N = 1024, N = 2048, etc. Using these realisations, ob-
tain Burg’s and ML estimates for the model parameters as demonstrated in
Sects. 5.2.1 and 5.2.3. Substitute your estimates for the model parameters in
the R expressions in the remarks to Fig. 7.14 and plot the empirical spectra
thus obtained.

9.8. In Table 5.1, AR[2] model estimates are given for the de-meaned time
series of the wind speeds in a turbulent atmospheric flow and of the amounts
of the product of a chemical reaction. Substitute these estimates in (7.97)
and plot the empirical spectra thus obtained.

9.9. Why are the convolutions in (9.28) not stochastic filters as defined in
(7.84)?

9.10. Calculate a direct spectral estimator from a time slice of length N =
16384 in a realisation of the AR[4] model in Fig. 7.14. Apply a cosine taper
with p = 0.05 and therafter zero-pad such that the estimator is obtained for
frequencies s′k with ∆s′k = 1/N ′, N ′ = 2N . Thereafter smooth discretely over
a band being approximately (1/2)B�

(
CX(s)

)
= 0.00474/2 wide, i.e., half of

the bandwidth of the spectrum to be estimated.

9.11. Show that
∑∞

−∞ vm(τ ) =
∑∞

−∞ v

τ�
m (τ ) = 1 with vm(τ ) and v
τ�

m (τ )
as defined in (9.40), (9.41) and (9.44).

9.12. Approximation (9.38) for the variance of a discretely smoothed direct
spectral estimator (repeated below) can be further reduced (second line be-
low)
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Var
(
Ĉ

(m)
X (s′k)

) ≈ C2
X(s′k)

M⊕∑
l=−M⊕

(
H⊕H(|l|∆s′k)

) M−|l|∑
	=−M

(
Vm(s′	)

)(
Vm(s′	+|l|)

)
≈ C2

X(s′k)
M∑

l=−M⊕

(
H⊕H(|l|∆s′k)

)× M∑
j=−M⊕

Vm(s′j) (9.140)

under suitable assumptions. Apply (9.140) to approximate the variance func-
tion of the smoothed direct spectral estimator as plotted in Figs. 9.15 and
9.16 and compare your result with the one obtained in the remarks to (9.38).
Having calculated both approximations for this example, the assumptions
under which (9.140) follows from (9.38) can be easily formulated.

9.13. Let VdD,M (s′k) be the modified discrete Daniell kernel as plotted in
Fig. 9.19 (b). Calculate a discrete Fourier transform of VdD,M (s′k) using def-
inition (6.22,4). Compare the resulting sequence with the one in Fig. 9.19
(a).

9.14. Show (9.128) using definition (6.101).

9.15. Calculate Ξ(h) as in Table 9.3 for cosine tapers (6.111,1) implementing
definition (9.74) in a few R expressions. Perform the calculations for N = 64,
N = 512 and N = 4096. However, these Ξ(h) could be readily calculated
on condition that, in addition to Σ(h2)

�
=
∑N−1

t=0

(
h
�

N (t)
)2) = N − (5/4)q as

obtained in Problem 9.3, the sum Σ(h4)
�

=
∑N−1

t=0

(
h
�

N (t)
)4 could be expressed

using the parameters of the cosine taper.

9.16. The seismogram of the earthquake as plotted above in Fig. 9.26 and
available in file /path/earthquake.dat is not stationary. Assume that this
seismogram is a deterministic function and calculate its spectrum.

9.17. On May 11, 1998, at 10:13:41.7 (hours:minutes:seconds UTC), India
performed a nuclear test that produced an earthquake (27.110 N, 71.80 E
and depth 0 km) having magnitude 5.1. The seismogram of this earthquake
recorded at Nilore station is plotted in Fig. 9.37. This seismogram is, similar
to the one in Fig. 9.26 recorded using the same seismograph at Nilore station,
a plot of the speed of the earth in vertical direction (in ms−1 (meters/second))
against time (in s (seconds)). Its sampling interval is ∆t = 0.025 s and it
is available in file /path/nucleartest.dat downloaded from the IRIS data
centre [72]. The distance between the nuclear explosion and the recording
seismograph in Nilore is approximately 720 km.

In the seismogram of this nuclear test, no shear waves can be seen: the
amplitudes of the shear waves are negligibly small when compared with the
amplitudes of the compression waves. A seismogram with shear waves having
small amplitudes is reconcilable with the simplest model of an explosion. In
this model, a blasting composition mounted in a cavern is ignited. Subsequent
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Fig. 9.37. Seismogram of a nuclear test performed May 11, 1998 in India
(27.110 N, 71.80 E) recorded at Nilore, Pakistan (33.650 N, 73.260 E). The record
starts 80 s before the compression waves emanated by the explosion arrive at the
Nilore seismograph.

to the explosion, hot gases expand with high speed in the cavern and induce
compression waves, but not shear waves, in the rock containing the cavern.
There is a second difference between the seismograms in Fig. 9.26 and 9.37: in
the seismogram of the nuclear explosion, the amplitude of the surface waves
are much smaller than the amplitudes of the compression waves.

Assume that the seismogram in Fig. 9.37 is a deterministic function and
calculate the spectrum of this function. Compare the spectrum obtained with
the one calculated in Problem 9.16.

Seismograms of the Indian nuclear test performed on May 11, 1998, can
be easily distinguished from a seismogram of an earthquake. Not all nuclear
tests, however, leave “fingerprints” as clear as those of the Indian one in a
seismogram [133].

9.18. Estimate the spectrum of marine microseisms using a time slice from
the seismogram plotted in Fig. 9.37. Select a time slice which is longer that
65 s, i.e., the length of the time slice as plotted in Fig. 9.27 used to calculate
the direct spectral estimators in Fig. 9.29.

If the mean of the seismogram is not constant in the time slice selected,
then a spectrum can be estimated using the residuals of a linear model fitted
as demonstrated in Chap. 3. It is also possible to detrend a time series by
fitting local linear models as demonstrated in Fig. 6.32; differencing, however,
changes the spectral properties of a time series, as is concluded from (6.122),
(6.123) and Fig. 6.30 as well as the results obtained in Problem 9.24 and
Sect. 10.3.2

9.19. Please fit an ARMA[p, q] model to the vertical velocities in the turbu-
lent atmospheric flow as plotted in Fig. 9.34 and then calculate the empirical
spectrum of the estimate as proposed in Sect. 9.2.5. Thereafter compare the
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Fig. 9.38. Number of lynxes trapped in the Mackenzie River District in North
West Canada in the years 1821 - 1934.

parametric estimate thus obtained with the smoothed temporal periodogram
in Fig. 9.35.

9.20. The number of lynxes caught in the period from 1821 through to 1934
in the Mackenzie River District in North West Canada as plotted in Fig. 9.38
is obtained using R expressions

plot(lynx,type="n",xlab="year",ylab="lynx trapped")

lines(lynx,lty=1)

points(lynx)

since this time series is available in R. Time series lynx is comprehensively
described in [28], and in [129] it is shown that the cyclic abundance of lynxes
in Canada, which is the result of a predator-prey relationship, depends on
the climatic region. Does this time series stem from a process reconcilable
with model (9.1)? Please obtain an answer to this question by (i) fitting
an ARMA[p, q] model to the lynx time series and calculating a parametric
estimate for the spectrum of this process and (ii) calculating a discretely
smoothed direct spectral estimator.

9.21. Assume that the sun spot numbers as obtained in Problem 2.31 stem
from a realisation of a stationary stochastic process. Estimate the spectrum
of this process.

9.22. Parametric estimates for the spectrum of the SO index are plotted in
Fig. 9.11 (b). These spectral estimates are calculated using the estimates in
Table 5.3. Calculate a smoothed direct spectral estimator for this spectrum
using the time series that is made available in R in the remarks to Fig. 5.14.

9.23. Estimate the spectrum of the amount of a product formed during a
chemical reaction occurring in a batch reactor using the demeaned time series
plotted in Fig. 5.3.
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9.24. When a stochastic process is not stationary in its expectation func-
tion then it does not have a spectrum as defined in (7.51). Consequently, a
smoothed direct spectral estimator calculated from observations stemming
from a stochastic process having a trend and/or other systematic fluctua-
tions is meaningless: it is simply not clear what it estimates. Nevertheless,
non-stationarities can be removed from such observations using the proce-
dures (5.58), i.e., detrending by calculating (usually the first) differences of
the observations or fitting a linear model and then using its residuals for the
further analysis.

If a time series (xt), t = 0, 1, . . . , N −1, becomes stationary in µ̂X(t) sub-
sequent to detrending then it is assumed that also (Xt) becomes stationary
in µX(t) subsequent to applying the operations successfully used to detrend
(xt). However, time series detrended using different methods are often not
identical, as is obvious from Figs. 5.10 and 5.11 where the logarithm of the
atmospheric CO2 is detrended. These differences are inherited by empirical
moment functions and also spectral estimators calculated from the detrended
time series. For a demonstration, calculate smoothed direct spectral estima-
tors using the detrended time series in Figs. 5.10 and 5.11. Compare your
results with those obtained in Sect. 10.3.2 for estimators of a spectrum hav-
ing a discrete part.



10 Estimators for a Spectrum Having a
Discrete Part

This chapter introduces the reader to the estimation of mixed spectra as
defined in (7.71,3). The models proposed in this chapter are the sum of (i) a
harmonic process as defined in (7.30) (or alternatively in (7.38), (7.39) and
(7.40)) and (ii) a process having a continuous spectrum. These models have
a mixed spectrum. For example, the realisation in Fig. 7.9 stems from the
most straightforward process having a mixed spectrum: it is the sum of a
harmonic process with only one oscillation and a white noise process.

The discrete part of a mixed spectrum is readily estimated on condition
that the frequencies of the harmonic oscillations are known to be identical
with the Fourier frequencies as defined in (6.21,1). This property favouring
an estimation is shared by processes having fluctuations with a known and
constant period p: the fluctuations are approximated by a trigometric oscil-
lation having frequency 1/p and the pertaining harmonics. These oscillations
have frequencies which are in the set of the Fourier frequencies, on condition
that N = l×p, where l, p are integer numbers and N is the length of the time
series observed. A model having oscillations with Fourier frequencies and a
spectrum with a constant continuous part is introduced in Sect. 10.1. The
estimation of such a model is an alternative to the estimation of a seasonal
model as introduced in Sect. 3.4.1.

In the majority of cases however, the model to be estimated contains a
harmonic process with trigonometric oscillations whose frequencies are not
known. Such models are introduced in Sect. 10.2. The unknown frequencies of
the oscillations in these models are approximated by trial and error: a direct
spectral estimator is calculated, subsequent to tapering and zero-padding the
observations, for frequencies s′k having a small ∆s′k as defined in (9.20), and
in the estimator thus obtained, pilot frequencies for the unknown model fre-
quencies are found by applying the diagnostics introduced in the remarks to
(10.18). After substituting the pilot frequencies for the model frequencies,
the trigonometric oscillations are estimated using linear least squares. Alter-
natively, a non-linear least squares estimation can help to find the unknown
frequencies.

Sect. 10.3 contains the supplements and Sect. 10.4 the problems.
The estimation of a discrete or mixed spectrum is comprehensively dealt

with in [108].
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10.1 Estimating Oscillations with Fourier Frequencies

This section introduces a model having a mixed spectrum with a discrete
part that can readily be estimated. This model is thereafter applied to the
detrended Basel temperature series. Continuous, discrete and mixed spectra
are defined in (7.71).

10.1.1 The Model

The harmonic process (Xt) is defined in (7.30), (Xt) being a finite sum of ran-
dom trigonometric oscillations. If (Xt) is written as in (7.38) then coefficients
Aj and Bj are random variables whereas frequencies sj are not random. Since
(Xt) is a discrete-time process, the frequencies sj of its oscillations are all in
interval −1/2 ≤ sp ≤ 1/2 as required in (7.64). If Aj and Bj are normally
distributed, then they are also mutually independent for all pairs (Aj , Ak)
and (Bj , Bk), j �= k, as well as (Aj , Bk), j �= k or j = k, as is concluded from
(7.39), (7.40) and (7.41). (Xt) is stationary since each of its oscillations is sta-
tionary, a result obtained in Problem 7.6. The covariance function of the har-
monic process, cX(τ ) =

∑n
j=1 σ

2
j cos(2πsjτ ), is obtained from (7.31), using

the result of Problem 7.6 and the moments of the Aj and Bj in (7.39), (7.40)
and (7.41). Thereafter, CX(s) =

∑n
j=1

(
(σ2

j /2)δ(s − sj) + (σ2
j /2)δ(s + sj)

)
follows, using the result of Problem 6.19 as demonstrated in (7.73).

A harmonic process is often not in agreement with observations made in
Geosciences. Hence, the sum of a harmonic process (7.38) and a white noise
process (2.10) is defined in (10.1,1).

1. Let Xt =
∑n

p=1

(
Ap cos(2πspt) +Bp sin(2πspt)

)
+Wt be

a discrete-time stationary stochastic process with
EAp = EBp = 0, VarAp = VarBp = σ2

p, Cov(Ap, Bp) = 0,
Cov(Ap, Bq) = Cov(Bp, Bq) = Cov(Ap, Aq) = 0, for p �= q,
(Wt) being a white noise process with EWt = 0, VarWt = σ2

W ,
cW (τ ) = σ2

W for τ = 0 and cW (τ ) = 0 for τ �= 0, and
Cov(Wt, Ap) = Cov(Wt, Bp) = 0. Then

2. cX(τ ) =
∑n

p=1 σ
2
p cos(2πspτ ) + cW (τ ) and

3. CX(s) =
∑n

p=1

(
σ2

p

2 δ(s− sp) + σ2
p

2 δ(s+ sp)
)

+ σ2
W

are the covariance function and the spectrum of (Xt).
4. It is assumed that frequencies sp ∈ {sk} as in (6.21,1), i.e.,

are in the set of the Fourier frequencies pertaining to a time
slice (xt), t = 0, 1, . . . , N − 1, in a realisation of (Xt).

5. A process (Yt) having a non-zero expectation function is recon-
cilable with model (Xt) provided that (Xt) = (Yt) − µY (t).

(10.1)

The reason for defining model (10.1,1) is that a harmonic process does not
provide for a measurement error and/or random fluctuations from one time
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point to another, i.e., with period ∆t, in the process under analysis. For
example, the residuals of the component model fitted in Sect. 3.4.2 to the
monthly values in the Basel temperature series are assumed to stem from a
white noise process.

Since Cov(Wt, Ap) = Cov(Wt, Bp) = 0 is stipulated in (10.1,1), the Ap

and Bp in the harmonic process, as well as the Wt in the white noise process,
are required to be uncorrelated, borrowing from the definition of example pro-
cess no. 4 in Sect. 7.3.4. Consequently, the covariance function and spectrum
of the model can be derived as demonstrated in (7.80) and (7.81). The band-
width B�

(
CX(s)

)
of this mixed spectrum is the smallest distance between

the frequencies sp, as required in (7.83,2).
Assuming that observations (xt), t = 0, 1, . . . , N − 1, stem from a realisa-

tion of model (10.1,1), can estimates for

1. the number n of oscillations in the model
2. their frequencies sp and their power (the variance of their coefficients) σ2

p

for p = 1, . . . , n, and also
3. the variance of the white noise process σ2

W

be calculated? An estimation is straightforward on condition that the sp are
in the set of the sk, as required in (10.1,4). In this case, n = m is arrived at,m
as defined in (6.21,1), and all σ2

k as well as σ2
W are estimated, σ2

k pertaining
to oscillations with Fourier frequencies sk. Under this assumption, model
(10.1,1) becomes, with sk substituted for sp and m for n, a linear model
whose coefficients are estimated by minimising

Σ
(
r̂2t
)

=
N−1∑
t=0

(
xt −

m∑
k=1

(
Ak cos(2πskt) +Bk cos(2πskt)

))2

(10.2)

to arrive at the least squares estimates in (10.3) and (10.4):

ÂX(sk) =
{

(2/N)
∑N−1

t=0 Xt cos(2πskt) k=1, . . . ,m−1 (m, N odd)
(1/N)

∑N−1
t=0 Xt cos(2πskt) k=0 (m, N even)

(10.3)

B̂X(sk) =
{

(2/N)
∑N−1

t=0 Xt sin(2πskt) k=1, . . . ,m−1 (m, N odd)
0 k=0 (m, N even).

(10.4)

(10.3) and (10.4) are easily derived since, under assumption (10.1,4), the
trigonometric functions in (10.1,1) become those in (6.9) and thus the or-
thogonality relations can be applied to the equations obtained from min-
imising (10.2). In practical applications, estimators ÂX(sk) and B̂X(sk) are
computed using a discrete Fourier transform, as is concluded from (6.22) and
(6.21).

The moments of estimators ÂX(sk) and B̂X(sk) in (10.3) and (10.4) are
derived in (10.21) and (10.22) with the following results:
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EÂX(sk) = Ak and EB̂X(sk) = Bk (10.5)

VarÂX(sk) =
{

(2/N)σ2
W for −1/2 < sk < 0 < sk < 1/2

(1/N)σ2
W for sk = −1/2, 0, 1/2

(10.6)

VarB̂X(sk) =
{

(2/N)σ2
W for −1/2 < sk < 0 < sk < 1/2

0 for sk = −1/2, 0, 1/2.
(10.7)

From (10.5), (10.6) and (10.7) it is concluded that ÂX(sk) and B̂X(sk) are
unbiased estimators for Ak and Bk and have variances that decrease with
1/N when N increases. In addition, the orthogonality relations can be used
to show that ÂX(sk) and B̂X(sk) are not correlated, a desired property seeing
that Ak and Bk are required to be non-correlated in (10.1,1).

The moments of ÂX(sk) and B̂X(sk) obtained above can be used to derive
estimators σ̂2

k for the variances σ2
k in model (10.1,1) under the above assump-

tions, i.e., with sk substituted for sp and m for n. Under these assumptions,
σ2

k/2 are the heights of the jump discontinuities located in frequencies ±sk
in the integrated spectrum C

(I)
X (s) pertaining to model (Xt). Since model

(10.1,1) requires that VarAk = VarBk = σ2
k and EAk = EBk = 0, and since

exactly one value is obtained for Ak and Bk in each realisation, (10.8) is
arrived at.

σ̂2
k =

1
2
(
ÂX(sk)

)2 +
1
2
(
B̂X(sk)

)2
sk �= −1/2, 0, 1/2 (10.8)

Eσ̂2
k =

1
2

(
VarÂX(sk) +

(
EÂX(sk)

)2 + VarB̂X(sk) +
(
EB̂X(sk)

)2) (10.9)

=
1
2

(
2
N
σ2

W +A2
k +

2
N
σ2

W +B2
k

)
=

1
2
(
A2

k +B2
k

)
+

2
N
σ2

W (10.10)

The expectation in (10.9) holds since EX2 = VarX + (EX)2 and (10.10)
results when the moments obtained in (10.6) and (10.7) are substituted in
(10.9).

The variance σ2
W of the white noise process in model (10.1,1) is the height

of the continuous part in spectrum CX(s) and also the height of the integrated
spectrum C

(I)
X (s) for frequency s = −1/2. Under the above assumptions

made to arrive at the estimators ÂX(sk) in (10.3) and B̂X(sk) in (10.4), the
empirical variance σ̂2

W of the residuals r̂t in (10.2) becomes an estimator for
σ2

W . σ̂2
W is calculated as required in (10.11).

σ̂2
W =

1
N − 2n

Σ
(
r̂2t
)
, Σ

(
r̂2t
)

as in 10.2 (10.11)

Model (10.1,1) contains 2n coefficients (except from σ2
W ). Hence, (10.11)

accounts for the degrees of freedom associated with the empirical residuals r̂t
of this model, since the model coefficients are estimated using least squares.
The degrees of freedom pertaining to the empirical residuals of a linear model
are discussed in Sect. 3.3.1.
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10.1.2 Diagnostics

Model (Xt) as defined in (10.1,1) contains, under assumption (10.1,4),
n ≤ m trigonometric oscillations having frequencies sp ∈ {sk}, sk being
the Fourier frequencies as defined in (6.21) for an observed time slice (xt),
t = 0, 1, . . . , N−1, in a realisation of (Xt). Often most oscillations are found to
be negligibly small in their absolute values and thus n� m (� much smaller)
is obtained. The absolute value of an oscillation with sp is not negligibly small
on condition that the periodogram as defined in (8.1,3) is much larger for
frequency sp than for the other frequencies: IX(sp) � IX(sl) ≈ IX(s	) with
sp, sl, s	 ∈ {sk}. This diagnostic is demonstrated for a deterministic example
in Table 6.1 and Fig. 6.2.

In the case of model (Xt) as defined in (10.1,1), the application of this
diagnostic becomes plausible when the expectation function EIX(s) of a peri-
odogram IX(s) is derived, IX(s) being a periodogram calculated as required
in (8.1,4) using an observed time slice (xt), t = 0, 1, . . . , N−1, in a realisation
of (Xt). Under general conditions, i.e., that (Xt) is a discrete-time stationary
stochastic process, the expectation function IX(s) is derived in Sect. 8.5.1.
Since model (10.1,1) is clearly reconcilable with these conditions, the results
obtained in (8.35) and (8.21) also apply to a periodogram IX(s) calculated
from a realisation of this model and thus (10.12) is arrived at by substituting
the model spectrum (10.1,3) for dC(I)

X (s) in (8.21). (10.13) follows because
δ(x) is the identity element under convolution (2.28,1) for functions with a
real argument as is concluded from (6.67) and (6.68).

EIX(s) = FN (s) ∗
(

n∑
p=1

(
σ2

p

2
δ(s− sp) +

σ2
p

2
δ(s+ sp)

)
+ σ2

W

)
(10.12)

=
n∑

p=1

σ2
p

2
(
FN (s+ sp) + FN (s− sp)

)
+ σ2

W (10.13)

EIX(sk) =
n∑

p=1

σ2
p

2

(
FN (sk + sp) + FN (sk − sp)

)
+ σ2

W (10.14)

EIX(s) in (10.13) is the sum of (i) the constant variance σ2
W of the white

noise process and (ii) n pairs of Fejer kernels FN (s), which are displaced by sp
(−sp, resp.) and multiplied with σ2

p/2. σ2
W , sp and σ2

p/2 are defined in (10.1,1),
and FN (s) is defined in (6.57) with the properties enumerated in (6.58) and
(6.59). Under assumption (10.1,4), the frequencies sp of the trigonometric
oscillations are in the set of the Fourier frequencies sk. Consequently, a sum
of Fejer kernels as in (10.14) becomes identically zero for sk �= sp, since FN (s)
is required to be identically zero for s = ±1/N,±2/N,±3/N, . . . in (6.58,4).

Using these results and (6.58,5), EIX(sk) = (σ2
p/2)N +σ2

W for sp = sk as
well as EIX(sk) = σ2

W for all other sk is arrived at in (10.14). Using (10.14),
EIX(sk) can be plotted on condition that the spectrum (10.1,3) of the model
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to be estimated is known. In such a plot, EIX(sk) is visibly larger than σ2
W

for frequencies sk = sp, i.e., for Fourier frequencies which are identical with
the frequencies of the oscillations in the model.

In applications, however, the spectrum of the model is not known and the
frequencies of the oscillations in model (10.1,1) are thus identified in a plot
of IX(sk). IX(sk) slightly deviates from EIX(sk), with deviations depending
on the realisation observed. For example, the white noise process (Wt) which
is part of model (Xt) in (10.1,1) can induce, in IX(sk), values which are large
enough to be erroneously attributed to a trigonometric oscillation in (Xt).
This false identification is favoured by the distribution of the periodogram as
proposed in (8.24,2), since model (10.1,1) with n = 0 and the Wt normally
distributed is reconcilable with the assumptions made in (8.24) as well as in
(8.8) and (8.7). Consequently, IX(sk) can have large values for frequencies not
being those of the oscillations in model (10.1,1), a possible pitfall when IX(sk)
is applied as diagnostic to identify trigonometric oscillations in (10.1,1). More
reliable than this diagnostic is a test with Fisher’s g statistic introduced
in (8.15). Both Fisher’s test as well as Schuster’s test introduced in (8.14)
assume the null hypothesis, that there are no trigonometric oscillations in
model (10.1,1).

10.1.3 Example and Summary

It is assumed that the residuals of a first order linear model fitted to the
monthly means in the Basel temperature series are a realisation of model
(10.1,1). The monthly means in the Basel series are made available in the
remarks to (3.19) in R vector temp, a time slice is plotted in Fig. 3.6 (time in
years with origin in 1755), time series of the January, April and July values
in Fig. 3.7 (time in months with origin in June, 1856). This time series is not
stationary in the first moment function since temperatures measured in Basel
have increased since 1755, as is seen in Fig. 3.3. The Basel temperature series
is therefore detrended by means of computing the residuals of a first order
linear model for the secular trend, as proposed in (5.58,2). These residuals
are plotted above in Fig. 10.1. Thereafter, the periodogram of the residuals
is computed as demonstrated in the remarks to Fig. 8.1 and plotted below in
Fig. 10.1.

In the periodogram plotted in Fig. 10.1 (b), two values being much larger
than the others can be seen for frequencies sk = 0.0833 = 203/2436 =
1/12 month−1 and sk = 0.1667 = 406/2436 = 1/6 month−1. If this pe-
riodogram is calculated using the R expressions in the remarks to (8.1),
then IX(sk = 1/12) = 47.28 dB and IX(sk = 1/6) = 20.63 dB as well as
ÂX(sk = 1/12) = −9.3008, B̂X(sk = 1/12) = −0.1054, ÂX(sk = 1/6) =
0.0584 and B̂X(sk = 1/6) = 0.4317 are obtained as estimators (10.3) and
(10.4) for the coefficients of these oscillations. Except for IX(sk), sk = 1/12
and sk = 1/6 month−1, no other large values are visible in Fig. 10.1 (b),
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Fig. 10.1. Above (a) residuals of a first order linear model for the secular trend in
the monthly means in the Basel temperature series, below (b) periodogram calcu-
lated from the residuals in plot (a).

and thus the model contains only n = 2 oscillations, as is concluded from
the remarks to (10.14). Summarising, in a model (10.1,1) for the Basel tem-
perature series, there are n = 2 trigonometric oscillations with frequencies
ŝ1 = 1/12 month−1, ŝ2 = 1/6 month−1 and coefficients Â1, B̂1, Â2 and B̂2

as obtained above.
1/12 month−1 is the known frequency of the annual cycle in the Basel

temperature series for which the seasonal model in Table 3.3 is estimated,
and sk = 1/6 is the first harmonic to sk = 1/12. Hence, it is concluded from
the remarks to Table 6.1 as well as to Figs. 6.2 and 6.3 that the annual cycle in
the Basel series can be represented by the sum of the oscillations estimated
above. This sum is an estimate for the harmonic process in (10.1,1), and
therefore, the white noise process in this model remains to be estimated.

An estimate for s2W in (10.1,1) is the variance of the empirical residuals
r̂t in (10.2), which is readily obtained as the variance of the residuals in a
linear model. The following R expressions estimate the coefficients of the
trigonometric oscillations with frequencies ŝ1 = 1/12 month−1 and ŝ2 =
1/6 month−1.

#R vector baselmon1: months 0,1, ..., 2435

#R vector baseltempres: residuals as plotted in Fig. 10.1 (a) of a
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#first order linear model for the trend in the Basel series

s1 <- 0.08333333 #frequency of first oscillation

s2 <- 0.16666667 #frequency of second oscillation

#R vectors for predictor variables

A1 <- cos(2*pi*s1*baselmon1)

B1 <- sin(2*pi*s1*baselmon1)

A2 <- cos(2*pi*s2*baselmon1)

B2 <- sin(2*pi*s2*baselmon1)

#-1 requires a linear model with zero intercept, as introduced in

#the comments on the formulation of linear models in Sect. 3.2.1

baselfitharmproc <- lm(baseltempres ~ A1 + B1 + A2 + B2 -1)

The estimates for the coefficients computed using R expressions as above
Value Std.-Error t-value Pr(>|t|)

A1 -9.3008 0.0550 -169.0752 0.0000

B1 -0.1052 0.0550 -1.9119 0.0560

A2 0.0584 0.0550 1.0611 0.2887

B2 0.4317 0.0550 7.8885 0.0000

have only small differences when compared with those obtained in the re-
marks to Fig. 10.1 (b). There, these coefficients result as a by-product when
the periodogram is computed using the R expressions in the remarks to (8.1).
The variance s2W of the white noise process in model (10.1,1) is estimated
from the residuals, i.e., for sW

Residual standard error: 1.92 on 2432 degrees of freedom

is obtained, accounting for N−2n̂ = 2436−2×2 degrees of freedom. Further
results are an R2 statistic 0.9218 and correlations between the estimated
coefficients which are identically zero, since the predictor variables are or-
thogonal.

The harmonic model fitted above to the residuals of a first order linear
model for the trend in the Basel temperature series (plotted for the period
January 1851 through to December 1890 in Fig. 10.2) has a standard error of
the residuals σ̂r = 1.920 Celsius on 2432 degrees of freedom. A similar residual
error, i.e., σ̃r = 1.9210 Celsius on 2423 degrees of freedom, is arrived at when
an additive component model for the trend and annual cycle in the Basel
temperature series is fitted in Sect. 3.4.2. The first estimate, however, has
a smaller number of coefficients: two in the model for the secular trend and
four in (10.1,1), since the annual cycle is captured with an oscillation having
frequency 1/12 month−1 together with its first harmonic. The component
model, in contrast, requires 13 coefficients: the regression coefficient for the
trend, and 12 for the intercepts, one for each month.

Model (10.1,1) is stationary. Consequently, the Basel temperature series
is detrended by estimating a first order linear model for the trend and there-
after model (10.1,1) is fitted to the residuals, as demonstrated above and as
recommended in (5.58,2). The alternative detrending method, i.e., computing
differences of the time series as proposed in (5.58,1), changes the spectrum
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Fig. 10.2. Residuals (•) of a first order linear model for the secular trend in the
monthly means in the Basel temperature series, together with a fitted model (10.1,1)
having two oscillations (solid line) in the time slice from 1851 through to 1891.

of the original series, as is concluded from the gain and phase shift functions
in Fig. 6.30, and therefore it is not recommended to compute a spectral esti-
mator subsequent to differencing a time series. This applies when estimating
a continuous spectrum assuming model (9.1) as well as a spectrum having a
discrete part assuming model (10.1,1). Examples are given in Problem 9.24
and in Sect. 10.3.2.

In Fig. 10.1 (b), two periodogram values being larger than the others
are clearly visible and thus the number as well as the frequencies of the
trigonometric oscillations in model (10.1,1) are readily obtained using the
diagnostics in the remarks to (10.14). If it is doubtful whether a periodogram
value is larger than the remaining ones, then Fisher’s g test as proposed in
(8.17) — or one of the tests in the remarks to (8.17) — can be performed.

This section is summarised as follows. The observations are assumed to
be a time slice in a realisation of a discrete-time stochastic process being
reconcilable with model (10.1). A stochastic process for example, which has
seasonal fluctuations with a constant and known period p that can be cap-
tured using a seasonal model (3.18), is reconcilable with model (10.1) on
condition that the number of observations N is a multiple of p.

Assuming model (10.1), Â(sk = sp) and B̂(sk = sp) as proposed in (10.3)
and (10.4), sk being the Fourier frequencies in (6.21,1), are least squares
estimators for the coefficients Ap and Bp of the trigonometric oscillations in
model (10.1). These estimators are unbiased on condition that the realised
values of Ap and Bp depend only on the realisation and not on the time,
i.e., remain constant for all time points in a realisation. Â(sk = sp) and
B̂(sk = sp) are computed using a discrete Fourier transform, as is concluded
from (6.21) and (6.22). From a plot of a periodogram calculated as required
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in (8.1,3), diagnostics for the oscillations in model (10.1) can be obtained,
and periodogram tests as introduced in Sect. 8.2.2 can be applied to clarify
any remaining uncertainties.

10.2 Estimating Oscillations with Unknown Frequencies

Often, a stochastic process (Xt) is assumed to be the sum of (X(h)
t ) and

(X(r)
t ), where (X(h)

t ) is a harmonic process as defined in (7.38) contributing
to the discrete part of the spectrum of (Xt), and (X(r)

t ) a stationary process
contributing to the continuous part of the spectrum of (Xt). If the frequencies
of the oscillations in (X(h)

t ) are in the set of Fourier frequencies (6.21,2) and
(X(r)

t ) is a white noise process (2.10) then (Xt) is reconcilable with model
(10.1). Two less restrictive models are introduced in Sects. 10.2.1 and 10.2.2.
In both cases, the diagnostics introduced in the remarks to (10.18) are applied
to an illustrative example.

10.2.1 Sum of a Harmonic Process and White Noise

In this section, it is assumed that the stochastic process (Xt) under analysis
has a mixed spectrum with (i) a continuous part that is constant and (ii) a
discrete part that shows spikes due to trigonometric oscillations which have
frequencies −1/2 ≤ sp ≤ 1/2. Such a process is reconcilable with the model
defined in (10.15).

Let (Xt) be a model as defined in (10.1) but with
−1/2 ≤ sp ≤ 1/2 substituted for (10.1,4). (10.15)

(Xt) as defined in (10.15) is not a linear model since frequencies sp in (10.1,1)
are not coefficients in a linear combination of predictor variables. To circum-
vent this difficulty, it is assumed that a procedure exists which allows for
estimating the sp and therefore also n. Substituting the ŝp thus obtained for
sp, (10.15) becomes a linear model and least-squares estimates ÂX(ŝp) and
B̂X(ŝp) for AX(sp) and BX(sp) can be computed using the techniques intro-
duced in Chap. 3, as is demonstrated in Sect. 10.1.3. Thereafter, the residual
variance of the fitted model becomes an estimate for the variance σ2

W of the
white noise process in (10.15).

Consequently, the problem of estimating model (10.15) becomes the prob-
lem of estimating (i) the frequencies sp of the oscillations and (ii) the number
n of oscillations in the model. A possible solution to this problem is to es-
timate a non-linear regression model using R function nls(). nls() requires
initial values s∗p for the unknown sp. With s∗p being close to sp, p = 1, 2, . . . , n,
the number of iterations required to arrive at non-linear least squares esti-
mates is small and an estimation becomes feasible [31]. Can initial values s∗p
be obtained from a diagnostic for the unknown frequencies sp?
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If a direct spectral estimator Ĉ(d)
X (s′k), s′k as defined in (9.20), is computed

from a time slice (xt), t = 0, 1, . . . , N − 1, in a realisation of model (10.15),
then frequencies s′k are assumed to be pilot frequencies for the unknown model
frequencies, for the reason that Ĉ(d)

X (s′k) is proportional to the squared abso-
lute values of the trigonometric oscillations in the Fourier representation of
the tapered observations (xt)×

(
h

(d)
N (t)

)
. h(d)

N (t) is a variance-normalised data
taper as defined in (9.2,1). If a pilot frequency s′k is close to a model frequency
sp then the direct spectral estimator Ĉ(d)

X (s′k) is large, whereas Ĉ(d)
X (s′k) is

small for s′k a larger distance away from any of the model frequencies, as is
demonstrated in Sect. 6.1.1.

When is a direct spectral estimator large and when is it small? When is
a pilot frequency close to and when is it a larger distance away from a model
frequency? An answer to these questions can be obtained from an analysis of
EĈ(d)

X (s′k), i.e., the expectation of a direct spectral estimator calculated from
observations in a realisation of model (10.15). This expectation is derived
below from EĈ(d)

X (s) in (9.11). A derivation using EĈ(d)
X (s) in (9.11) is feasible

since this expectaton is obtained in Sect. 9.5.2 under the assumptions that the
process under analysis (i) is stationary and (ii) has an expectation function
being identically zero, both reconcilable with model (10.15). Consequently,
the spectrum of model (10.15), which is to be found in (10.1,3), is substituted
in (9.11) and (10.16) is arrived at.

E
(
Ĉ

(d)
X (s)

)
= H(d)

N (s) ∗
(

n∑
p=1

(
σ2

p

2
δ(s− sp) +

σ2
p

2
δ(s+ sp)

)
+ σ2

W

)
(10.16)

=
n∑

p=1

σ2
p

2

(
H(d)

N (s+ sp) + H(d)
N (s− sp)

)
+ σ2

W (10.17)

E
(
Ĉ

(d)
X (s′k)

)
=

n∑
p=1

σ2
p

2

(
H(d)

N (s′k + sp) + H(d)
N (s′k − sp)

)
+ σ2

W (10.18)

(10.17) follows since δ(x) is the identity element under convolution as is
concluded from (6.67) and (6.68) and, by substituting s′k for s, the expectation
of a direct spectral estimator computed from observations in a realisation of
model (10.15) is arrived at in (10.18).

E
(
Ĉ

(d)
X (s)

)
in (10.17) is the sum of σ2

W and of n spectral windows H(d)
N (s)

which are displaced by sp (−sp resp.) and multiplied with σ2
p/2. Even in the

case of estimating model (10.15) without tapering the observations, i.e., when
H(d)

N (s) in (10.17) becomes FN (s), the Fejer kernels have main lobes which
are not centred in frequencies sk and thus do not become identically zero
for the sk �= sp, and therefore the sum of the displaced and scaled spectral
windows in (10.17) is a function whose intricacy increases with n.
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The most straightforward model has n = 1, i.e., only one oscillation with
frequency s1 and a squared absolute value σ2

1 . A direct spectral estimator
calculated from observations in a realisation of this model has expectation

1. E
(
Ĉ

(d)
X (s)

)
(s′k ≈ s1) ≈ (σ2

1/2)H(d)
N (0) + σ2

W for s′k ≈ s1, i.e., pilot fre-
quencies s′k being close to model frequency s1, or

2. E
(
Ĉ

(d)
X (s)

)
(s′k "# s1) ≈ σ2

W for s′k "# s1, i.e., pilot frequencies s′k a larger
distance away from s1,

on condition that σ2
1/2 � σ2

W , i.e., that the oscillation has a squared absolute
value which is much larger than the variance of the white noise in the model.
σ2

1/2 � σ2
W is required since an oscillation with σ2

1/2 ≈ σ2
W remains hidden

in the model noise as is demonstrated in Problem 10.1.
If the model contains a variety of trigonometric oscillations with unknown

frequencies sp then E
(
Ĉ

(d)
X (s)

)
in (10.17) becomes an intricate function. The

unknown frequencies sp can be traced in a plot of E
(
Ĉ

(d)
X (s)

)
provided that

1. locally in the neighbourhoods of the sp, the main lobe of the spectral
window H(d)

N (s) dominates E
(
Ĉ

(d)
X (s)

)
(this condition is fulfilled when

superimposed side lobes of the spectral window displaced by sp or −sp,
p = 1, . . . , n, do not take the form of the main lobe), and

2. B∩
�
(H(d)

N (s)
)
< (1/2)B�

(
C

(I)
X (s)

)
adopted from diagnostic (6.115), with

B∩
�
(H(d)

N (s)
)

being the bandwidth of a direct spectral estimator as defined

in (9.89) under the assumption that B = 1 and that B�
(
C

(I)
X (s)

)
is the

bandwidth (7.83,2) of the spectrum to be estimated.

The widths which are compared in the second item above depend onN since a
data taper and therefore also the pertaining spectral window, both as defined
in (9.2,1), depend on N , and not on N ′, as required in (9.20). Consequently,
the probability of resolving two model frequencies within a short distance of
each other increases with increasing N and decreasing B∩

�
(H(d)

N (s)
)
.

However, E
(
Ĉ

(d)
X (s)

)
is not available when model (10.15) is estimated

and thus the unknown model frequencies have to be detected in a plot of
a direct spectral estimator Ĉ(d)

X (s′k). Ĉ(d)
X (s′k) computed from observed time

slices in realisations of model (10.15) fluctuates about E
(
Ĉ

(d)
X (s)

)
and the

white noise process in this model can induce values in Ĉ(d)
X (s′k) which are

large enough to be identified erroneously as being due to the oscillations in
the model. This false identification is favoured by the χ2

(n) distributions (9.19)
and the rapidly decaying correlation (9.17). Similar properties are shared by
a periodogram computed from observations in a realisation model (10.1).
Hence, the comment on pseudo peaks in a periodogram as in the remarks to
(10.14) also applies to a direct spectral estimator.

In the remarks to Figs. 9.3 and 9.4, it is recommended to multiply the
observations with a variance-normalised data taper (9.2) prior to estimating
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Fig. 10.3. A time slice in a realisation of model (10.15) (subsequent to adding a
mean) or observations of the magnitude (apparent brightness) of a variable star (?)

a continuous spectrum (9.1,2) since a data taper efficiently reduces a pos-
sible bias due to leakage. Tapering is also compulsory when estimating the
spectrum of model (10.15). In the case of estimating a spectrum having a
discrete part, trying a sequence of variance-normalised data tapers not only
reduces a possible leakage but also often promotes the detection of the model
oscillations for the following reason: there are models with oscillations that
can be successfully traced using a first data taper but not using a second
one, depending on the distances between the unknown frequencies sp and the
width of the spectral windows pertaining to the tapers applied.

Tapering and also zero-padding, i.e., computing a direct spectral estimator
for frequencies s′k as defined in (9.20), are often beneficial when a continuous
spectrum is estimated. Both methods can also help to estimate model (10.15)
having a spectrum with a discrete part, as demonstrated by the following
example.

Whittaker and Robinson in [146] give the magnitudes of a variable star
for 600 consecutive days, as plotted in Fig. 10.3. The magnitude of an ob-
ject in the sky (star, planet, etc.) is a logarithmic measure of the amount
of light received from that object, i.e., its apparent brightness. Thus the
magnitude depends on the object observed, the atmospheric opacity and the
observational methods. The author believes that the Whittaker and Robinson
magnitudes are not actual observations for the following reasons:

1. it is difficult to observe a circumpolar star for 600 consecutive days (no
values are missing in this series) with a constant sampling interval (one
day) even when many observers in various locations around the world
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Fig. 10.4. Periodogram (a) and direct spectral estimators computed for Fourier
frequencies sk subsequent to applying cosine tapers for p = 0.1, p = 0.2 and p = 0.3
to the demeaned simulation in Fig. 10.3.

are involved in the experiment, since the probability of having good sky
transparency for 600 consecutive days is small [138], and

2. a time slice in a realisation of model (10.15) is readily simulated even
when no computer is available.

Nevertheless, this (with a high probability simulated) time series appears as
observations in the time series literature (e.g., [14]) and can be downloaded
from several websites (e.g., [91]). Here it is assumed that the “data” as plotted
in Fig. 10.3 and as available in file /path/allegedstar.dat do not contain any
information about a variable star but are, subsequent to de-meaning, merely a
time slice in a simulated realisation of model (10.15). Under this assumption,
the parameters in this model are estimated in the following paragraphs.

In Fig. 10.3, there are more than three and less than five oscillations within
a period of 100 u (u is used here for the time unit) and consequently, the
underlying model has trigonometric oscillations with periods between 20 and
33 u or frequencies between 0.033 and 0.05 u−1. A peak in this band clearly
dominates the periodogram in Fig. 10.4 (a) calculated from the demeaned
simulation. This periodogram has a dynamic range of more than 40 dB and
thus is presumably biased due to leakage.

This suspicion induces an investigation to be made following the rec-
ommendations in the remarks to Figs. 9.3 and 9.4 which also apply when
estimating a spectrum having a discrete part: the simulation as plotted in
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Fig. 10.5. Direct spectral estimator calculated from the demeaned simulation in
Fig. 10.3 for frequencies s′k with N ′ = 6000 as defined in (9.20) subsequent to
multiplying the observations using a cosine taper with p = 0.3.

Fig. 10.3 is multiplied with cosine tapers for p = 0.1, p = 0.2 and p = 0.3,
and the direct spectral estimators computed from the tapered observations
are plotted in Fig. 10.4 (b), (c) and (d). Obviously, the periodogram and
the direct spectral estimators obtained using cosine tapers with p = 0.1 and
p = 0.2 are biased due to leakage, whereas the direct spectral estimator as
plotted in Fig. 10.4 (d) is considered to be unbiased, in accordance with the
remarks to diagnostic (6.117). This estimator is constant for approximately
−25 dB and has a primary twin peaks in band 0.033 ≤ s ≤ 0.05 and, al-
beit smaller by orders of magnitude, also many secondary peaks for higher
frequencies.

This direct spectral estimator is reconcilable with model (10.15) on con-
dition that (i) it is constant in segments between the peaks due to a constant
(approximately −25 dB) continuous white noise spectrum and (ii) its pri-
mary twin peaks as well as its secondary peaks are due to the discrete part
of the model spectrum. Under these and the additional condition that the
main lobe of the spectral window is not too wide (relative to the bandwidth
(7.83,2) of the model spectrum), the peaks in the direct spectral estimators
become, in the mean over a large number of realisations, identical with the
main lobe of the spectral window pertaining to the cosine taper applied. This
conclusion drawn from (10.17) implies that the peaks in a direct spectral es-
timator resemble the main lobe of the spectral window. If such a similarity
has been found in a diagnostic plot then the pilot frequencies guessed are
assumed to be an estimate for the unknown frequencies of the trigonometric
oscillations in the model. Such diagnostic plots are obtained in Figs. 10.6 and
10.7 subsequent to the preparations made in Fig. 10.5 and Table 10.1.

Hence, the direct spectral estimator as plotted in Fig. 10.4 (d) is recom-
puted: (i) the N = 600 simulated values are multiplied with a variance-
normalised cosine taper h(d)�

N (t) for p = 0.3 with pertaining spectral window
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Table 10.1. Frequencies of the primary twin peaks (left ŝ1 = .0345 and right

ŝ2 = .041666 u−1) and the secondary peaks in the direct spectral estimator Ĉ
(d)
X (s′k)

as plotted in Fig. 10.5.

primary peak u−1 .03400 .03416 .03433 .03450 .03466 .03483 .0350
left dB 40.05 40.43 40.65 40.72 40.65 40.43 40.05

primary peak u−1 .0410 .04116 .04133 .0415 .04167 .04183 .0420
right dB 36.67 37.15 37.48 37.66 37.71 37.36 36.96

primary secondary peaks
peaks

l 1 2 3 4 5 6 7 8
l × ŝ1 u−1 .034500 .069 .1035 .138 ≈ .1725 .207 .2415 .276

Ĉ
(d)
X (s′k) dB 40.72 3.61 0.51 3.62 −1.12 −10.41 −1.25 −4.84

l × ŝ2 u−1 .041667 .08333 .12500 .16666 ≈ .2085 .25000 .29166 .33333

Ĉ
(d)
X (s′k) dB 37.71 −0.40 −25.57 −1.20 −1.36 4.89 −5.05 −1.38

H(d)�
N (s), (ii) the values thus obtained are zero-padded as defined in (9.20) to

arrive at N ′ = 6000, and (iii) the direct spectral estimator Ĉ(d)
X (s′k) is ar-

rived at. Ĉ(d)
X (s′k) is plotted using fine dots in Fig. 10.5. This plot confirms

that Ĉ(d)
X (s′k) amounts to approximately −25 dB for frequencies at a larger

distance from its peaks, a property being in agreement with the continuous
part of the model spectrum as defined in (10.15).

Are also the peaks in Ĉ(d)
X (s′k) as plotted in Fig. 10.5 reconcilable with

model (10.15)? The unknown frequencies sp of the oscillations in this model
are approximated using the frequencies of the peaks in the direct spectral
estimator given in Table 10.1. This table is to be completed for frequencies
larger that 0.3 u−1 in Problem 10.2. From Fig. 10.5, Table 10.1 and the results
of Problem 10.2, it is concluded that

1. in the primary twin peaks, the left peak is symmetric with respect to
frequency 0.0345 u−1 whereas the right one is not symmetric to frequency
0.0416667 u−1

2. the primary twin peaks are by order of magnitudes larger than the sec-
ondary peaks, and

3. the frequencies associated with the maxima of the secondary peaks are
multiples of the frequencies associated with both maxima in the primary
twin peaks.

These conclusions suggest that the model used to simulate the time slice
in Fig. 10.3 is a sum of (i) a white noise process, (ii) two trigonometric
oscillations having frequencies 0.0345 as well as 0.0416667 u−1, and (iii) an
unknown number of harmonics pertaining to these frequencies.
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Fig. 10.6. Direct spectral estimator as in Fig. 10.5 together with the spectral
window pertaining to the cosine taper having parameters p = 0.3 and N = 600
plotted beneath the left peak.

These suggestions can be corroborated using diagnostic plots as demon-
strated in Figs. 10.6 and 10.7. In Fig. 10.6, H(d)�

N (s − ŝ1) is plotted using a
solid line below the maximum of Ĉ(d)

X (s′k), with displacement ŝ1 = 0.0345 u−1

being the frequency for which Ĉ(d)
X (s′k) attains is maximum as can be seen in

Table 10.1. In the neighbourhood of this frequency, Ĉ(d)
X (s′k) and H(d)�

N (s− ŝ1)
are very close to each other (except for a small vertical displacement). This
perfect match is sufficient reason for assuming that there is a trigonometric
oscillation with frequency ŝ1 = 0.0345 u−1 in the model. A less perfect but
still close match is obtained in the case of the trigonometric oscillation with
frequency ŝ2 = 0.0416667 u−1 (not shown). For these frequencies, the direct
spectral estimator and the spectral windows match for the following reasons:
(i) approximations ŝ1 and ŝ2 are close to model frequencies s1 and s2 and (ii)
the continuous constant part of the model spectrum σ2

W ≈ −25 dB is small
as compared with the squared absolute values σ2

1 and σ2
1 of the oscillations in

model (10.15). Clearly, the identification of the unknown frequencies in such
a model becomes much more difficult when the variance of the white noise
process increases and the absolute values of the oscillations decrease.

The heights of the jump discontinuities σ2
1/2 and σ2

2/2 in the integrated
model spectrum are approximated using the expectation derived in (10.18):
σ̂2

p/2 = E
(
Ĉ

(d)
X (s′k ≈ sp)

)
/H(d)�

N (s = 0) is arrived at on condition that (i) σ̂2
W

is neglected and (ii) E
(
Ĉ

(d)
X (s′k ≈ sp)

)
is substituted with Ĉ(d)

X (s′k ≈ sp).
Clearly, the second condition requires that ŝp be close to sp and that the
bias of the direct spectral estimator is small. In the case of the simulation
example in Fig. 10.3, σ̂2

1/2 = 11824.01/470.40 = 25.13609 for frequency ŝ1 =
0.0345 u−1 as well as σ̂2

2/2 = 5896.365/470.40 = 12.53478 for frequency
ŝ2 = 0.041667 u−1 are arrived at. 470.40 is the height of the main lobe in the
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Fig. 10.7. Direct spectral estimator as in Fig. 10.5 together with a linear combi-
nation of two spectral windows.

spectral window pertaining to a cosine taper for N = 600 and p = 0.3, which
can be obtained using the hints in Problem 9.3.

Using these values in linear combination (σ̂2
1/2)H(d)�

N (s−ŝ1)+(σ̂2
2/2)H(d)�

N (s−
ŝ2)+ σ̂2

W , the solid line plotted in Fig. 10.7 is arrived at. Obviously, the linear
combination and the direct spectral estimator match perfectly in the neigh-
bourhood of ŝ1 = 0.0345 u−1, whereas the functions show a slight deviation
in the neighbourhood of ŝ2 = 0.041667 u−1. This slight deviation is in ac-
cordance with the values given in Table 10.1, where the spectral estimator is
not symmetric on both sides of ŝ2 = 0.041667 u−1.

From (i) the direct spectral estimator as plotted in Fig. 10.5, (ii) its peak
frequencies in Table 10.1 and Problem 10.2, as well as (iii) the diagnostic
plots in Figs. 10.6 and 10.7, it is concluded that the simulation in Fig. 10.3
is in agreement with model (10.15). This model contains (i) two dominat-
ing trigonometric oscillations having frequencies s1 ≈ ŝ1 = 0.0345 u−1 and
s2 ≈ ŝ2 = 0.0416667 u−1, (ii) an unknown number of minor oscillations with
frequencies being multiples of s1 and s2 (the harmonics to the dominating
frequencies as introduced in the remarks to Tab. 6.1), and (iii) a white noise
process having a variance of approximately −25 dB. How many harmonics
pertain to each dominating oscillation?

The most straightforward model has no harmonics, i.e., it is the sum of
two trigonometric oscillations with frequencies s1 and s2 as approximated
above and a white noise process: n = 2, s1 = ŝ1 = 0.0345 u−1 and s2 =
ŝ2 = 0.041666 u−1 are assumed in model (10.15). The following least squares
estimates for the coefficients of the oscillations in this model

Value Std.Error t value Pr(>|t|)

(Intercept) 17.0864 0.0135 1261.7300 0.0000

A1 7.4262 0.0192 387.7588 0.0000

B1 6.7376 0.0192 350.5824 0.0000

A2 -0.0019 0.0192 -0.0998 0.9206
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Fig. 10.8. Linear model with a mean and two trigonometric oscillations having
frequencies ŝ1 = 0.0345 u−1 and ŝ2 = 0.0416667 u−1 fitted to the simulation in
Fig. 10.8 (above), together with its empirical residuals and their correlations (be-
low).

B2 7.0987 0.0192 369.9303 0.0000

and for the standard error of the white noise process
Residual standard error: 0.3317 on 595 degrees of freedom

are obtained by applying a linear model as demonstrated in Sect. 10.1.3. The
simulated values and the linear model thus obtained are plotted in Fig. 10.8
(a), the empirical residuals and their correlations in Fig. 10.8 (b) and (c).

Using these estimates σ̃2
1/2 + σ̃2

W = (1/4)(7.42622 + 6.73762) = 25.13593,
σ̃2

2/2 + σ̃2
W = (1/4)(−0.00192 + 7.09872) = 12.59789 and σ̃2

W = 0.33172 =
0.11 = −9.59 dB are obtained as estimates for the model spectrum. σ̃2

1/2 and
σ̃2

2/2 are close to the estimates σ̂2
1/2 and σ̂2

2/2, established in the remarks
to Fig. 10.6, whereas σ̃2

W = −9.59 dB is much too large, since the direct
spectral estimator is constant at the level of approximately σ̃2

W = −25 dB in
Figs. 10.5, 10.6 and 10.7. This overestimation is due to the missing harmonics
in the model with n = 2: the variance due to the harmonics pertaining to
both dominant oscillations is attributed to the model noise. This finding is
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in line with the correlations of the empirical residuals as in Fig. 10.8 (c).
An estimate having a similar residual variance (−10.37 dB) is obtained in
Problem 10.5. There, n = 2 is assumed as above and the frequencies of the
two dominating oscillations are approximated using R function nls() (non-
linear least squares).

Estimates having a clearly smaller residual variance than σ̃2
W = −9.59 dB

can be obtained in Problem 10.3 using the techniques introduced in Sects. 3.2
and 3.3 together with R function lm(), on condition that the model is assumed
to have more than n = 2 trigonometric oscillations.

The frequencies estimated above in the remarks to Table 10.1 and
Figs. 10.6 and 10.7, as well as those estimated in Problem 10.5, are very
close to 1/29 = 0.03448276 u−1 and to 1/24 = 0.04166667 u−1. The author
therefore believes that the time series in Fig. 10.3 was simulated (without
using electronic equipment) as the sum of

1. a realisation of a white noise process with variance σ2
W ≈ −25 dB

2. two trigonometric oscillations having frequencies s1 = 1/29 u−1 and s2 =
1/24 u−1, with coefficients A1 = 7.65, B1 = 6.50, A2 = 0.00 and B2 =
7.10, and

3. an unknown (to be found in Problem 10.3) number of harmonics pertain-
ing to the above oscillations.

Another hypothesis is that the time series in Fig. 10.3 was obtained by
interpolating the gaps in actual observations, considering that astronomical
observations are often subject to uneven sampling. For unevenly sampled
time series, the usual methods (as introduced in this book, an exception are
the Geostatistical ones in Chap. 4) do not apply. Consequently, astronomers
have developed methods for the analysis of unevenly sampled time series.
Software based on such methods is available at no charge from the American
Association of Variable Star Observers (AAVSO) [138].

10.2.2 Sum of a Harmonic Process and Coloured Noise

In this section, it is assumed that the discrete-time stochastic process under
analysis has a mixed spectrum with a discrete part due to a harmonic process
and a non-constant continuous part due to a linear process. If both stationary
processes in this model, the harmonic and the linear one, are not correlated as
required in (10.19,1), then (10.19,2,3) are readily obtained in Problem 10.6.

Model (10.19) is not a linear model, a property shared with model (10.15).
In both models, frequencies sp are unknown and, unfortunately, are not co-
efficients of the predictor variables. Approximations ŝp for sp are obtained
using the diagnostics in the remarks to (10.18), as demonstrated in Table 10.1
as well as in Figs. 10.6 and 10.7. Substituting ŝp for sp, a linear model for the
coefficients of the trigonometric oscillations contributing to the discrete part
of the model is arrived at. This linear model is estimated as demonstrated
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in Sect. 10.1.3. Thereafter, the empirical residuals of the estimate thus ob-
tained are assumed to be a realisation of the linear process (Xt) in (10.19)
and CX(s) is estimated using the methods introduced in Chap. 9.

1. Let Yt =
∑n

p=1

(
Ap cos(2πspt) +Bp sin(2πspt)

)
+Xt, with

EAp = EBp = 0, VarAp = VarBp = σ2
p, Cov(Ap, Bp) = 0,

Cov(Ap, Bq) = Cov(Bp, Bq) = Cov(Ap, Aq) = 0, for p �= q,
and (Xt) being a model having a non-constant continuous
spectrum as defined in (9.1), such that Cov(Xt, Ap) =
Cov(Xt, Bp) = 0. Then model (Yt) will have

2. covariance function cY (τ ) =
∑n

p=1 σ
2
p cos(2πspτ ) + cX(τ ) and

3. spectrum CY (s) =
∑n

p=1

(
σ2

p

2 δ(s−sp) + σ2
p

2 δ(s+sp)
)

+ CX(s).

(10.19)

Usually, a direct spectral estimator for a mixed spectrum is calculated
subsequent to (i) tapering and (ii) zero-padding the observations, as demon-
strated in Sect. 10.2.1. In this section, it is demonstrated that a data taper
can also help to approximate the unknown frequencies sp in the discrete part
of the spectrum to be estimated. The process under analysis is the discharge
of an alpine river.

The water of River Inn at St. Moritz stems from a catchment area which
is not strongly glaciated and has a reservoir in the form of lakes in the upper
Engadine valley. Downriver of St. Moritz through to Cinous-chel where the
next gauge is located, the Inn receives water from tributaries which drain sub-
basins with large glaciers and there is no reservoir. The discharge of the Inn
catchment measured at Cinous-chel for the period 1974 through to 1990 (to
exclude the years with accelerated climate change following 1990) is plotted
in Figs. 10.9 and 10.10. The Inn discharge data are a courtesy of [132].

The discharge of River Inn is measured at five gauges located in the
Engadine (in the most south-easterly part of Switzerland (Südbünden), a map
is available from [132]). The hourly discharge averages for the period 1974
through to 1990 are made available in file /path/inn7490.dat. Columns nos. 1,
2, 3 and 4 in this file give the date (day, month, year, hour), and columns
nos. 5, 6, 7, 8 and 9 contain discharge values for River Inn measured at gauges
located in: (i) Martina (at the Austrian/Swiss border), (ii) St. Moritz, (iii)
the channel feeding the turbines of the small St. Moritz hydro-electrical power
station (only in summer), as well as both (iv) and (v) Cinous-chel. (iv) is the
amount of water not caught by the Engadine Power Company and (v) is the
amount of water feeding the turbines to generate hydro-electricity. Clearly,
the discharge of the Inn catchment at Cinous-chel is the sum of the water
caught and the water remaining in the river. These hourly values are plotted
in Fig. 10.9 for the year 1974.

From Fig. 10.9, it becomes obvious that the observations are missing for
day no. 213 in year 1974. The missing values are interpolated by calculating,
for each hour, the mean of the values measured on days no. 212 and 214. This
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Fig. 10.9. Discharge of the Inn catchment at Cinous-chel: hourly averages in m3s−1

for the year 1974.

is the only large gap in the time series, smaller ones (one to three consecutive
hourly values missing) occur at the turn of the year due to maintenance of the
gauges and the pertaining data acquisition systems. These gaps are filled by
substituting the mean of the two adjacent values. The result of these interpo-
lations is a complete discharge time series that is plotted on the logarithmic
scale in Fig. 10.10 and made available in file /path/inn7490nogaps.dat. This
discharge time series contains 17× 365× 24 + 4× 24 = 149016 hourly values,
since the observational period includes four leap years. It is called the Inn
discharge in the following paragraphs. The Inn discharge is assumed to stem
from a stationary stochastic process.

River Inn at Cinous-chel drains an alpine catchment area that has un-
dergone only minor changes due to the small St. Moritz power station.
This catchment area is therefore near-natural with respect to river discharge
(clearly not with respect to touristic use) and its discharge shows the typical
annual cycle of an alpine river, as is obvious from Figs. 10.9 and 10.10: in
midsummer, the discharge is between 40 and 100 m3s−1 (cubic meters per
second) whereas in winter, it is less than 5 m3s−1. The annual cycle in the Inn
discharge is induced by the annual cycle in temperature. The Engadine win-
ters are cold enough such that precipitation usually falls in the form of snow
and is stored in a growing seasonal snow cover (and in a growing perennial
snow cover in the high alpine areas), which then melts in the warm seasons:
the depletion of the snow cover results in a steep increase in the river’s dis-
charge in spring and early summer with a more exponential-like decrease in
late summer and autumn.

On midsummer days with fair weather, the discharge has a mininum in
the late morning and a maximum after midnight due to melting of (i) snow
and ice in the high alpine areas and (ii) the large glaciers in the catchment
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Fig. 10.10. Discharge of the Inn catchment at Cinous-chel: logarithms of the hourly
averages in m3s−1 in the period 1974 through to 1990 against time in hours since
1.1.1974 00.00 [day.month.year hours:minutes].

area. On days with fair weather in late spring and early summer, the ampli-
tude of the diurnal cycle is smaller, with extremes in the morning and late
evening. In winter, the diurnal cycle is due to the production of power to
supply peak demand at noon: the small St. Moritz power station uses up to
5 m3s−1 to drive its turbines, thus increasing the Cinous-chel discharge by
approximately 3 m3s−1 in the evening. The above lags in the peak discharge
are due to different flow times from the sources having a diurnal cycle (high
alpine areas with perennial snow cover and glaciers, areas at medium alti-
tudes with seasonal snow cover, the St. Moritz power station) to the gauges
at Cinous-chel.

These periodicities in the Inn discharge suggest that this time series stems
from a process having a spectrum with a discrete and a non-constant continu-
ous part, reconcilable with model (10.19). For approximate frequencies 1 y−1

(1/year) and 1 d−1 (1/day), as well as multiples thereof, the discrete part of
the spectrum is supposed to have jump discontinuities, and the continuous
part to have peaks. Can this spectrum be estimated using direct spectral
estimators calculated from this time series? The answer is given below.

The Inn discharge is multiplied with cosine tapers having parameters
p = 0.0 (the “default” taper used when a periodogram is calculated),
p = 0.05, p = 0.10, and p = 0.50. Thereafter, direct spectral estimators
are calculated for Fourier frequencies sk with ∆sk = 1/N = 1/149016 h−1.
Two of the estimators calculated are shown in Fig. 10.11. All estimators cal-
culated (including the periodogram) are not biased due to leakage generated
by the side lobes in the spectral windows, a result obtained when plots of the
estimators are compared. Estimators calculated for the Fourier frequencies
are assumed to be favourable for detecting the unknown frequencies sp in



664 10 Estimators for a Spectrum Having a Discrete Part

Table 10.2. Frequencies of the primary and secondary peaks in direct spectral
estimators calculated from the Inn discharge.

cosine primary peak secondary peaks
taper h−1 dB multiples of 1/24 = 0.041667 h−1

p = 0.00 1/8765.647 47.77 1.0000 1.9973 2.9784 3.9908 4.9665 5.9647 6.9957
p = 0.05 1/8765.647 47.66 1.0000 1.9973 2.9918 3.9908 4.9665 5.9647 6.9821
p = 0.10 1/8765.647 47.52 1.0000 1.9973 2.9918 3.9908 4.9665 5.9647 6.9821
p = 0.50 1/8765.647 46.19 1.0000 1.9973 2.9720 4.0000 4.9665 5.9647 6.9576

Fig. 10.11. Direct spectral estimators calculated subsequent to applying cosine
tapers with p = 0.0 (the periodogram, in plot (a)) and p = 0.5 (in plot (b)) to
logarithms of the hourly averages of the Inn discharge as plotted in Fig. 10.10. The
frequencies of the maxima for approximate multiples of 1/24 = 0.041667 h−1 as in
Table 10.2 are plotted using vertical broken lines.

model (10.19), i.e., it is assumed that the sp are in the set of Fourier fre-
quencies, seeing that the time units (year, day, hour) correspond to natural
periodicities. In the estimators thus obtained, the frequencies of the peaks as
given in Table 10.2 (and plotted in Fig. 10.11 with vertical broken lines) are
obtained using the methods introduced in Sect. 7.1.3 and Problem 7.2.

In all estimators calculated, the primary peak attains a height of approxi-
mately 47 dB for frequency 1/8765.647 h−1, as can be seen in Table 10.2. This
frequency is the inverse of the average duration of a year in the observational
period, since N/17 = 149016/17 = (17×(365×24)+4×24)/17 = 8765.647 h,
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Fig. 10.12. Periodogram as in Fig. 10.11 (a) for the lower frequencies. The fre-
quencies plotted with broken vertical lines can be approximated using multiples of
frequency 0.00551422 ≈ 1/168 = 1/(7 × 24) h−1.

as obtained in the remarks to Fig. 10.10. Consequently, the primary peak is
attributable to the annual cycle in the discharge. Although the heights of the
secondary peaks are not given in Table 10.2, it is obvious from Fig. 10.11 that
they are smaller than the primary peak. The secondary peaks attain heights
of approximately 30 dB and 10 dB for frequencies 1.0000 × (1/24) h−1 and
1.9973 × (1/24) h−1 (in all estimators calculated), and heights of less than
0 dB for higher frequencies, as can be seen in Fig. 10.11. Thus, the Inn dis-
charge has both, an annual and a diurnal cycle, a finding reconcilable with
the discussion in the remarks to Figs. 10.9 and 10.10.

Besides the peaks resulting from the annual and diurnal cycles, a variety
of sharp peaks for frequencies being approximate multiples of 0.005952 ≈
1/168 = 1/(7 × 24) h−1 can be seen in Fig. 10.11 and, more clearly, in
Fig. 10.12, owing to its higher resolution. From these peaks it is concluded
that the Inn discharge contains fluctuations which last approximately one
week, in addition to the fluctuations having periods of 1 y (year) and 1 d
(day) found above. This finding is reconcilable with the result obtained in
Problem 10.7 from logarithmic plots of the discharge time series in the winter
months. In the Inn’s catchment area upstream of Cinous-chel, however, no
natural phenomena exist (neither in the atmosphere, nor in the snow cover,
the glaciers, the soil, the lakes or rivers) which are subject to fluctuations
with a period of one week and which could thus induce a weekly cycle in the
discharge. Hence, the weekly fluctuations are assumed to originate from the
production of power to supply peak demand by the St. Moritz power station.

The weekly fluctuations in the discharge time series presumably do not
have the form of trigonometric functions, neither do the diurnal and annual
cycles, as shown in Figs. 10.9 and 10.10. However, these fluctuations can be
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Fig. 10.13. Above, direct spectral estimators as in Fig. 10.11 for p = 0.00 (plot
a) and p = 0.50 (plot b). Multiples of frequency 0.000114 = 1/8765.647 h−1 (the
frequency of the primary peak in Table 10.2) are given with broken vertical lines.
Below, Fejer kernel for N = 149016 (plot c) and spectral window of the cosine taper
having parameters N = 149016 and p = 0.50 (plot d).

represented using sums of trigonometric functions (having frequencies being
the inverses of their periods) and the pertaining harmonics, as demonstrated
in Sect. 6.1.1. The weekly and the diurnal fluctuations generate peaks in a di-
rect spectral estimator calculated from the river Inn discharge measurements,
reconcilable with those that can be seen in Figs. 10.11 and 10.12, whereas
the resolution in Fig. 10.12 is not high enough to show distinct peaks for
multiples of 1/8765.647 h−1, i.e., the frequency of the main peak.

From Figs. 10.11 and 10.12 it is obvious that the Inn discharge is not in
agreement with model (10.15), seeing that the continuous part of the spec-
trum is not constant. Is the Inn discharge reconcilable with (10.19), i.e., does
it have a discrete part in its spectrum? If the discharge spectrum is recon-
cilable with model (10.19) then it is very likely that the unknown sp in this
model are multiples of approximately 1/8765.647, 1/168 and 1/24 h−1, the
harmonics pertaining to the trigonometric oscillations with periods of (ap-
proximately) one year, one week and one day, since fluctuations with these
periods are found above, in Figs. 10.9, 10.10, 10.11 and 10.12.



10.2 Estimating Oscillations with Unknown Frequencies 667

frequency [1/h]

di
re

ct
 s

pe
ct

ra
l e

st
im

at
or

 a
nd

 s
pe

ct
ra

l w
in

do
w

s,
 d

B

0.0 0.0001 0.0002 0.0003 0.0004

-1
00

-5
0

0
50

• • •
•

•

• •
•

• • •

•

•

•
•

•
•

•

•

•

•

•

• •
•

• • •
• •

•
•

•
•

•

•
•

• •
• • •

• • • • • • • •

• •

•
•

•

•
•

• •

Fig. 10.14. Direct spectral estimator as in Fig. 10.13 (b) together with the spectral
window pertaining to a cosine taper with parameters N = 149016 and p = 0.5 (fine
points), displaced such that it attains its maximum for frequencies ŝ1 = 1/8765.647,
ŝ2 = 2/8765.647 and ŝ3 = 3/8765.647 h−1 (vertical broken lines).

Hence, oscillations in the discrete part of the discharge spectrum are
sought in the spectral estimators close to frequencies being multiples of
1/8765.647 h−1 (the frequency of the annual cycle). These frequencies are
highlighted with vertical broken lines in Fig. 10.13, plots (a) and (b), which
show the spectral estimators as in Fig. 10.11 for the very low frequencies,
together with the pertaining spectral windows in plots (c) and (d). The fre-
quencies pointed out in Fig. 10.13, plots (a) and (b), are assumed to be pilot
frequencies for the unknown frequencies sp in model (10.19). In Fig. 10.13
and also in Fig. 10.14, the “footprints” of the spectral windows can be seen
in the estimators for frequencies ŝ1 = 1×(1/8765.647), ŝ2 = 2×(1/8765.647)
and, albeit less clearly, ŝ3 = 3 × (1/8765.647) h−1, using the diagnostics in-
troduced in the remarks to (10.18). These “footprints” become, in the mean
over a large number of realisations, the spectral window of the estimator,
as is concluded from (10.18) (with CX(s) substituted for σ2

W in the case of
model (10.19)).

When the diagnostics in Figs. 10.13 and 10.14 are compared with those in
Figs. 10.6 and 10.7, it becomes obvious that tracing the unknown frequencies
sp in the discrete part of the spectrum under analysis is more difficult when
(σ2

p/2) is not manifestly larger than the continuous part of the spectrum.
In this situation, it is recommended to search for the unknown model fre-
quencies in at least two direct spectral estimators, calculated for data tapers
having distinct spectral windows which produce distinct “footprints” in the
estimators.

The periodogram and the direct spectral estimator in Fig. 10.13 (a) and
(b) attain almost 30 dB for frequency ŝ3 = 3 × (1/8765.647) h−1, distinctly
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(but not by orders of magnitudes) larger than the values of the estimators for
the neighbour frequencies. Does an oscillation with frequency sp = ŝ3 exist in
the discrete part of the discharge spectrum? Unfortunately, Fisher’s g statistic
in (8.15) cannot be applied in the case of model (10.19) to test whether the
periodogram value for this frequency is significantly larger than those values
for the other frequencies, since the continuous part of the spectrum is not
constant, i.e., the Inn discharge is not reconcilable with model (10.1). A test
for oscillations in the discrete part of the spectrum in (10.19) is introduced in
[108]. This test requires that the spectrum be estimated with the multi-taper
method, using the DPSSs in the remarks to (6.127) as data tapers.

However, DPSSs are not (yet) available in R. Hence, the results obtained
in the above case cannot be corroborated using a formal test. Nevertheless, it
is assumed that the annual cycle in the Inn discharge generates three oscilla-
tions in the discrete part of its spectrum. The frequencies of these oscillations
are ŝ1 = 1/8765.647 h−1, ŝ2 = 2/8765.647 h−1, and ŝ3 = 3/8765.647 h−1, as
found in Figs. 10.13 and 10.14. Summarising, it is assumed that (i) the dis-
charge time series is reconcilable with model (10.19) and (ii) the main peak
of the estimators in Fig. 10.11 and Table 10.2 is due to both, the discrete and
the continuous part, in model spectrum (10.19,3).

The further peaks in Fig. 10.11 are associated, in the remarks to Fig. 10.12,
with the weekly and diurnal cycles in the Inn discharge. Do both parts of the
model spectrum, discrete and continuous, contribute to these peaks? An-
swers to this question can be found when diagnostics as proposed in the
remarks to (10.18) and demonstrated above in Figs. 10.13 and 10.14 are ap-
plied when analysing these peaks. In the case of the peaks pertaining to the
weekly cycle, three spikes having estimated frequencies ŝ4 = 0.005838299 =
1/171.2828, ŝ5 = 0.005952381 = 1/168 = 1/(7× 24) and ŝ6 = 0.006066463 =
1/164.8407 h−1 can be seen in Fig. 10.15 (a). The distance between these
frequencies is ŝ5 − ŝ4 = ŝ6 − ŝ5 = 17/149016 = 17∆sk, ∆sk as defined
in (6.21,1). The periods of these oscillations are 149016/870 ≈ 171.2828,
149016/887 ≈ 168 and 149016/904 ≈ 164.8407 h.

Triads of spikes can also be seen in the discharge periodogram in bands
with centres in frequencies � × ŝ5 = � × (1/168) = � × 1/(7 × 24) h−1,
� = 2, . . . , 12, i.e., the harmonics to frequency 1/(7×24) h. In the band of the
first harmonic, for example, the spikes have frequencies ŝ7 = 2/168− 17∆sk,
ŝ8 = 2/168 and ŝ9 = 2/168 + 17∆sk h−1. In all these bands, the distance
between the spikes remains constant 17∆sk. Consequently, ŝ8 = 2/168, ŝ9 =
3/168, . . ., are the harmonics to ŝ5 = 1/(7 × 24) h, whereas frequencies
ŝ4 = 1/168 − 17∆sk and ŝ6 = 1/168 + 17∆sk have no harmonics.

For � = 7, the band of the diurnal cycle is arrived at. In this band, the
periodogram has four spikes, as can be seen in Fig. 10.15 (b). Of these, the
spikes with frequencies 7/168, 7/168 − 17∆sk and (7/168) + 17∆sk are as-
sumed to be owed to the weekly cycle. The fourth peak will be discussed in
the remarks to Fig. 10.19. Hence, from the discharge periodogram as plotted
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Fig. 10.15. Periodogram as in Fig. 10.11 (a) and Fig. 10.12 for bands with cen-
tres in 1/(7 × 24) = 1/168 = 0.005952381 h−1 (plot (a)) and 7/168 = 1/24 =
0.04166667 h−1 (plot (b)), i.e., in the bands associated with the weekly and the
daily cycles in the Inn discharge.

in Fig. 10.15 it becomes evident that (i) the weekly cycle in the river Inn dis-
charge time series contributes to the discrete part of the discharge spectrum
for frequencies smaller than 0.072 ≈ 12× (1/(7×24) h−1, and (ii) the diurnal
cycle in this time series is likely to contribute only to the continuous part of
the discharge spectrum.

The results obtained above using the diagnostics in Figs. 10.13, 10.14 and
10.15 are summarised as follows:

1. model (10.19) is reconcilable with the Inn discharge
2. the discrete part of the model spectrum contains n̂ = 39 trigonometric

oscillations having frequencies ŝp, p = 1, . . . , n̂
3. three oscillations, having estimated frequencies ŝ1 = 1/8765.647, ŝ2 =

2/8765.647 and ŝ3 = 3/8765.647 h−1, are due to the annual cycle
4. 36 oscillations, having estimated frequencies ŝ5, . . . , ŝ38 = � × (1/(7 ×

24)) h−1, ŝ4, . . . , ŝ37 = � × (1/(7 × 24)) − 17∆sk h−1 and ŝ6, . . . , ŝ39 =
� × (1/(7 × 24)) + 17∆sk h−1, with � = 1, . . . , 12, are due to the weekly
cycle and

5. it is very likely that the diurnal cycle does not contribute to the discrete
part of the model spectrum.

These results are used in the following paragraphs to fit model (10.19) to
the Inn discharge. In a first step, the coefficients of trigonometric oscillations
with frequencies ŝp, p = 1, 2, . . . , n̂ and n̂ = 39 as obtained above, are esti-
mated. The periodogram values for these frequencies, as plotted in Fig. 10.16,
are calculated in Problem 10.9 and estimates Â(sk = ŝp) and B̂(sk = ŝp) are
obtained in Problem 10.10. Hereby, the discrete part of this model spectrum
is estimated. In a second step, using the coefficients thus obtained in (10.20),

x̂t = yt−
n̂∑

p=1

((
Â(ŝp) cos(2πŝpt)+B̂(ŝp) sin(2πŝpt)

))
, ŝp and n̂

as above
(10.20)
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Fig. 10.16. Periodogram as in Fig. 10.11 (a) (together with its .95 confidence
interval) for three frequencies l × (1/8765.647) h−1, l = 1, 2, 3, and 36 frequencies
(� × (1/168)) − 17∆sk h−1, � × (1/168) h−1 and (� × (1/168)) + 17∆sk h−1, � =
1, . . . , 12. The oscillations with these frequencies are in the discrete part of (10.19,3),
i.e., the spectrum of the model found to be reconcilable with the Inn discharge as
plotted in Fig. 10.10.

empirical residuals (x̂t) will be computed in Problem 10.10. The x̂t, t =
0, 1, . . . , N − 1, N = 149016 thus obtained are a time slice in a realisation
of (Xt) in model (10.19,1), on condition that this model is reconcilable with
the discharge time series, as assumed above.

The continuous spectrum CX(s) of (Xt) is estimated using methods as
introduced in Chap. 9, subsequent to approximating B�

(
CX(s)

)
, i.e., the

bandwidth of the continuous part of the discharge spectrum as defined in
(7.83,1), using diagnostic (9.93,6) as follows. From Figs. 10.12, 10.13, 10.14,
and 10.15 it is concluded that the continuous part of the discharge spectrum
has its narrowest peak in the band of the daily cycle. Hence, the periodogram
and the direct spectral estimator shown in Fig. 10.11 are plotted on the non-
logarithmic scale for the band of the daily cycle (not shown). From these
plots it is concluded that the bandwidth of the continuous part is approxi-
mately the distance of the ŝp in the frequency triads in the discrete part of
the discharge spectrum, i.e., B�

(
CX(s)

) ≈ 17∆sk, ∆sk = 1/N . Hence, a pe-
riodogram IX(sk) is computed from the residual time series (xt) as defined in
(10.20) and thereafter smoothed using a modified Daniell kernel (9.29) with
parameter M = 5. The smoothed periodogram I

(m)
X (sk) thus arrived at is an

estimator for the continuous part of the discharge spectrum. Its bandwidth
is approximately 2M∆sk = 10∆sk, calculated as required in (9.90).

I
(m)
X (sk) for M = 5 is plotted in Figs. 10.17 and 10.18. Both figures

also show differences IY (sk) − I(m)
X (sk), IY (sk) as in Fig. 10.16, for n̂ = 39

frequencies sk = ŝp, p = 1, . . . , n̂, as estimates of the discrete part of the
discharge spectrum (triads of broken vertical lines). The bandwidth of the
estimator for the continuous part of the spectrum is plotted as the horizonal
bar in the solid cross (not resolved in Fig. 10.18), and .95 confidence intervals
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Fig. 10.17. Spectrum of the Inn discharge estimated using a periodogram cal-
culated for the Fourier frequencies in the bands of the annual (plot a) and the
diurnal (plot b) cycles. The periodogram as in Fig. 10.16 is the estimator for the
discrete part (triads of spikes plotted with broken lines). The periodogram calcu-
lated subsequent to subtracting the oscillations in the discrete part from the time
series (plotted with symbol ◦) becomes an estimator for the continuous part when
smoothed using a modified Daniell kernel with M = 5 (solid line).

are plotted using vertical bars: a solid one in the cross for I(m)
X (sk) and, above

the cross, a broken one for IY (sk). Consequently, Figs. 10.17 and 10.18 show
an estimate for the spectrum of model (10.19), which is assumed to be in
agreement with the Inn discharge as plotted in Fig. 10.10.

In Fig. 10.17 (a), the continuous discharge spectrum attains approxi-
mately 20 dB for the very low frequencies. There, the river Inn discharge
has also three trigonometric oscillations in its discrete spectrum: the one
having frequency ŝ1 = 1/8765.647 h−1 (the inverse of the average duration
of a year in the observational period, as in the remarks to Table 10.2 and
Fig. 10.11) as well as those for two harmonics of ŝ1, i.e., ŝ2 = 2/8765.647 and
ŝ3 = 3/8765.647 h−1. Hence, the annual cycle in the discharge contributes to
both parts in the model spectrum, the continuous and the discrete ones.

The weekly cycle in the river Inn discharge also contributes to both parts
of the discharge spectrum in the following manner:

1. the band with centre in frequency ŝ5 = 1/168 = 1/(7× 24) h−1 contains,
in addition, ŝ4 = 1/168 − 17∆sk and ŝ6 = 1/168 + 17∆sk, i.e., the
frequencies of three oscillations in the discrete spectrum, yet no peak can
be seen in the continuous spectrum in this band

2. bands with centres in frequencies �×ŝ5, � = 2, . . . , 12 contain triads of fre-
quencies in the discrete spectrum and peaks in the continuous spectrum,
and
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Fig. 10.18. Spectrum of the Inn discharge as in Fig. 10.17 (the values plotted with
◦ in Fig. 10.17 are not plotted here).

3. bands with centres in frequencies �× ŝ5, � = 13, . . . , 22 contain peaks in
the continuous spectrum

as can be seen in Figs. 10.18, 10.11, 10.12 and 10.15. From this estimate
for the spectrum of the weekly cycle it is concluded that St. Moritz power
station produces fluctuations in the Inn discharge which have a period of
approximately one week.

The discrete spectrum due to the weekly cycle contains, on both sides
of the multiples of ŝ5 = 1/168 = 1/(7 × 24) h−1, additional frequencies
in distances of 17∆sk, as plotted in Fig. 10.18 (b), and consequently, the
discrete spectrum due to the weekly cycle in the discharge of the Inn contains
triads of frequencies as traced in Figs. 10.12 and 10.15 and summarised in
the remarks to Fig. 10.15. These triads are presumably owed to changes
from normal to daylight saving time in spring and back to normal time in
autumn, since these changes displace the time of the daily and weekly cycles
in electricity consumption against the time of the discharge measurements
(always in normal time).

The estimated discharge spectrum of river Inn for the band pertaining to
the daily cycle is plotted in Fig. 10.17 (b). There, IX(sk) (plotted using ◦) con-
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Fig. 10.19. As Fig. 10.17, except for smoothing with a modified Daniell kernel
having parameter M = 15.

ceals a variety of relatively small peaks which become visible in I(m)
X (sk) (solid

line) obtained by smoothing IX(sk) using a modified Daniell kernel having
parameter M = 5. The distance between one peak and the other is approx-
imately 17∆sk, i.e., the bandwidth of the continuous part of the discharge
spectrum as approximated in the remarks to (10.20). Three of these peaks
are approximately centred in frequencies of oscillations in the discrete part
of the spectrum due to the weekly cycle, namely (7× (1/168))− 17∆sk h−1,
7× (1/168) h−1 and (7× (1/168))+17∆sk h−1. The other small peaks in the
continuous spectrum do not have oscillations with approximately identical
frequencies in the discrete spectrum. It is therefore assumed that the small
peaks in the continuous part of the spectrum as estimated in Fig. 10.17 (b)
are due to the changes from normal to daylight saving time in spring and back
to normal time in autumn for the reason given above in the discussion of the
triads in the discrete part of the discharge spectrum (Problem 10.12). These
peaks disappear when the bandwidth of I(m)

X (sk) increases, as is demon-
strated in Fig. 10.19 (b). There, IX(sk) is smoothed using a modified discrete
Daniell kernel having parameter M = 15.

The Inn discharge has a spectrum that is continuous in the band of
the daily cycle (except for the oscillations with frequencies (7 × (1/168)) −
17∆sk h−1, 7×(1/168) h−1 and (7×(1/168))+17∆sk h−1 due to the weekly
cycle) on condition that the catchment area upstream of Cinous-chel acts as
a stochastic LTI filter and the daily disturbances have a continuous spec-
trum. The first assumption is quite often reconcilable with catchment areas
in general and the second one is not unrealistic for the following reasons:

1. the melting of the snow cover and of glacier ice feeding the Inn depends
on temperature as well as on other variables (solar radiation, cloud cover,
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precipitation, wind speed, etc.) which all have interdependencies and thus
can have (more or less) pronounced diurnal cycles, and

2. the St. Moritz power station starts and stops its turbines producing power
to supply peak demand at not exactly identical time points each day.

Hence, the diurnal cycle in the Inn discharge is assumed to have a continuous
spectrum.

10.2.3 Summary

Models (10.15) and (10.19) for discrete-time stationary stochastic processes
having a mixed spectrum contain trigonometric oscillations with unknown
frequencies sp, p = 1, 2, . . . , n. Subsequent to calculating direct spectral es-
timators, approximations ŝp for sp can be obtained using the diagnostics
introduced in the remarks to (10.18), and thereafter, these models can be
estimated. The estimation of these models is summarised as follows:

1. direct spectral estimators Ĉ(d)
X (sk) or Ĉ(d)

X (s′k) (in the case of model
(10.15)) and Ĉ(d)

Y (sk) or Ĉ(d)
Y (s′k) (in the case of model (10.19)) are com-

puted using a variety of data tapers from time slices in realisations of the
process under analysis for Fourier frequencies sk, and/or subsequent to
zero-padding, for frequencies s′k with ∆s′k < ∆sk

2. the frequencies of the maxima in these estimators become pilot frequen-
cies ŝp, i.e., preliminary approximations for the model frequencies

3. displaced spectral windowsH(d)
N (s−ŝp) are plotted together with Ĉ(d)

X (s′k)
or Ĉ(d)

Y (s′k). If ŝp is close to sp, then the spectral estimator plotted is sim-
ilar to the spectral window, seeing that, in the mean over many realisa-
tions, the spectral estimators become identical with the spectral window

4. alternatively, the unknown sp can be approximated using non-linear least
squares

5. substituting the ŝp thus found for the sp in the models, the coefficients of
the trigonometric oscillations can be estimated using linear least squares

6. from the residuals of the sum of the trigonometric oscillations thus ob-
tained, the continuous part of the model spectrum can be estimated (us-
ing the methods introduced in Chap. 9 in the case of model (10.19)),

and is demonstrated by estimating two example spectra in Sects. 10.2.1 and
10.2.2.

Do trigonometric oscillations, found and estimated using the above proce-
dure, exist in the stochastic process under analysis? Does the process under
analysis have an integrated spectrum that jumps for frequencies ŝp obtained
using the above diagnostics? A test for oscillations in the discrete part of the
spectrum in (10.15) and (10.19) is introduced in [108]. This test requires that
the spectrum be estimated with the multi-taper method, using the DPSSs
in the remarks to (6.127) as data tapers. This is clearly an asset attached to
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the multi-taper method as compared with the classical methods introduced
in this chapter. DPSSs are however not (yet) available in R.

10.3 Supplements

The moments of coefficients in the trigonometric oscillations in model (10.1)
are derived in Sect. 10.3.1, and in Sect. 10.3.2 the effects of detrending on
spectral estimators is demonstrated for the case of model (10.1).

10.3.1 Estimating the Model defined in Sect. 10.1

The expectations of ÂX(sk) and B̂X(sk) in (10.3) and (10.4) are derived by
substituting model (10.1,1) for Xt in the right sides of (10.3) and (10.4).
Thereafter, orthogonality relations (6.11), (6.12) and (6.13) allow for reduc-
ing the intricacy of the expressions, as is demonstrated for the cases k �= 0
and k �= N/2 below. Thereafter, the rules for calculating expectations as
enumerated in (1.15) and (1.16) are applied to obtain the expectations in
(10.21) since, in the segment of the stochastic process observed, the Wt are
random variables depending on time and the Ak and Bk are constants for
each realisation.

EÂX(sk) = E

(
2
N

N−1∑
t=0

Xt cos(2πskt)

)
− 1/2 < sk < 0 < sk < 1/2

= E

(
2
N

N−1∑
t=0

(
m∑

k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

)
+Wt

)
cos(2πskt)

)

= E

(
2
N

N−1∑
t=0

(
m∑

k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

))
cos(2πskt)

)
+

E

(
2
N

N−1∑
t=0

Wt cos(2πskt)

)

= E
(

2
N

N

2
Ak

)
+

2
N

m∑
k=1

(
EWt cos(2πskt)

)
= Ak and similarly EB̂X(sk) = Bk (10.21)

For the very same reason, the variance of the Ak and Bk becomes identi-
cally zero for each realisation and therefore, subsequent to applying the or-
thogonality relations, the variances of the estimators are arrived at in (10.22).

VarÂX(sk) = Var

(
2
N

N−1∑
t=0

Xt cos(2πskt)

)
− 1/2 < sk < 0 < sk < 1/2
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= Var

(
2
N

N−1∑
t=0

(
m∑

k=1

(
Ak cos(2πskt) +Bk sin(2πskt)

))
cos(2πskt)

)
+

Var

(
2
N

N−1∑
t=0

Wt cos(2πskt)

)

= 0 +
(

2
N

)2

σ2
W

m∑
k=1

(
cos(2πskt)

)2
=

2
N
σ2

W and similarly VarB̂X(sk) =
2
N
σ2

W (10.22)

Clearly, expressions for EÂX(sk), EB̂X(sk), VarÂX(sk) and VarB̂X(sk)
become much more intricate when these estimators are calculated for fre-
quencies s �= sk, sk the Fourier frequencies as defined in (6.21,1). The reason
is that the orthogonality relations can only be applied as shown above on
condition that the estimators are calculated for the sk in (6.21,1).

10.3.2 Detrending and Spectral Estimation: an Example

Temperature measured in Basel increases since 1755 in the secular mean, as
can be seen in Fig. 3.3. Hence, the monthly means in the Basel tempera-
ture series are not in agreement with model (10.1,1), because this model is
stationary. Is this model reconcilable with the residuals of a first order lin-
ear model fitted to the monthly means in the Basel series, as assumed in
Sect. 10.1.3? In Fig. 5.7 it can be seen that decadal changes remain in the
residuals of a first order linear model for the secular trend fitted to the yearly
values in the Basel temperature series. Hence, the residuals of a first order
linear model fitted to the monthly values in the Basel series as in Fig. 10.1
(a) also have decadal changes in their mean, and thus are not in agreement
with model (10.1). This disagreement is supected of being the source of extra
low-frequency oscillations in the periodogram in Fig. 10.1 (b).

As an alternative to de-trending a time series by fitting a linear model
and thereafter calculating the residuals, (5.58,1) recommends to calculate
its differences. For example, first order differences of the yearly values in
the Basel temperature series are plotted in Fig. 5.8. In these differences, no
decadal fluctuations can be seen, unlike in the residuals of the linear model
in Fig. 5.7. Differencing is often superior in performance as compared to
calculating the residuals of a linear model, as demonstrated by the second
example given in Sect. 5.4.1: first order differences calculated with lag 12
(above) of the monthly values in the Hawaii atmospheric CO2 as plotted
in Fig. 5.11 are less subject to decadal fluctuations than the residuals of a
component model as defined in (3.19) for the decadal trend and annual cycle
as plotted in Fig. 5.10.

If a time series stems from a process with a constant and known periodM
then fluctuations having this period are removed together with possible trends
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Fig. 10.20. Monthly values in the Basel temperature series introduced in the
remarks to Fig. 2.13: differences in lag 12 (above, plot (a)) together with their
periodogram (below, plot (b)).

when differences in lag M are calculated. In the case of the monthly means
in the Basel temperature series, differences with lag 12 are calculated and
plotted in Fig. 10.20 (a). Thereafter, the periodogram of these differences is
calculated and plotted in Fig. 10.20 (b). When this periodogram is compared
with the one in Fig. 10.1, it becomes obvious that differencing

1. removes the annual cycle in the temperature time series since no large
periodogram values for sk = 1/12 and sk = 1/6 month−1 can be seen in
Fig. 10.20 (b), and

2. generates a periodic periodogram in accordance with the properties of
the difference filter as derived in (6.122) and (6.123) and demonstrated
in Fig. 6.30.

The properties of a periodogram calculated from a difference time series are
further demonstrated in Problem 10.13.

The undesired periodicity of the periodogram in Fig. 10.20 (b), owed
to differencing (with lag 12) the time series under analysis, can be avoided
on condition that the monthly values in the Basel temperature series are
detrended by means of an alternative method. For example, decadal fluctu-
ations in the Basel temperature series are captured using local (2.55) linear
models estimated in the time slices found in Fig. 6.32. The residuals of these
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Table 10.3. Periodograms in Figs. 10.1 (b) and 10.21 (b) for frequencies 0.0833
and 0.1666 month−1 (the frequency of the annual cycle and its first harmonic) and
for frequencies ≤ 0.0030 month−1.

sk .0833 .1666 .0005 .0008 .0012 .0016 .0020 .0026 .0029
Fig. 10.1 (b), dB 47.21 20.62 15.13 7.57 13.84 3.57 16.23 2.33 10.40
Fig. 10.21 (b), dB 47.25 20.64 −20.75 −5.54 5.25 0.94 4.71 1.21 2.00
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Fig. 10.21. Residuals of the local models for the decal trends as estimated in
Fig. 6.32 in the Basel temperature series (plotted for the time slice from 1800
through to 1860) together with the periodogram computed using all residuals avail-
able, i.e., those within the observational period from 1755 through to 1957.

local linear models fitted to the Basel temperature monthly means are plotted
in Fig. 10.21 (a). From these residuals, a periodogram is calculated for the
Fourier frequencies and plotted in Fig. 10.21 (b), and in Table 10.3 the values
in this periodogram are compared with those in the periodogram plotted in
Fig. 10.1 calculated from the residuals of a global first order linear model for
the secular trend in the Basel temperature series.

In Table 10.3 it can be seen that oscillations with frequencies between 0.0
and 0.003 month−1 (corresponding to periods of more than 30 years) have
larger absolute amplitudes in the residuals of the global first order linear
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model for the secular trend (in Fig. 10.1 (a)) than in the residuals of local
linear models (in Fig. 10.21 (a)). It thus becomes evident that fluctuations
having periods of more than 30 years in the Basel temperature series are
captured by the local linear models as plotted in Fig. 6.32 and, consequently,
are removed when the residuals of these local models are calculated.

If a periodogram of the monthly means in the Basel temperature series is
calculated as demonstrated in Fig. 10.1 then it is believed that the decadal
fluctuations in this series should be represented using the trigonometric oscil-
lations in model (10.1,1). If, in contrast, a periodogram of this time series is
calculated as shown in Fig. 10.21 then it is believed that the decadal fluctua-
tions in temperature are not a stationary phenomenon and therefore should
be removed prior to estimating (10.1,1). In both cases nevertheless, identi-
cal results are obtained, namely that there is an annual cycle in the Basel
temperature series, obviously a finding not new. New, however, is that the
annual cycle can be represented using two trigonometric oscillations once the
Basel temperature series is assumed to be in agreement with model (10.1,1).

10.4 Problems

10.1. Apply R expressions similar to those in /path/harmproc.R introduced
in Problem 7.7 to generate simulations of model (10.1,1). Try a sequence
of increasing values for the variance σ2

W of the white noise process together
with a sequence of decreasing squared absolute values σ2

p for the trigonometric
oscillations. For which ratio σ2

p/σ
2
W are the oscillations no longer visible in

the simulated realisations?

10.2. Estimate primary and secondary peaks in the direct spectral estimator
in Fig. 10.5 calculated by applying a cosine taper with p = 0.30 to the
simulation in Fig. 10.3. Compile a table showing the frequencies and the
heights of the peaks in this estimator for frequencies larger than 0.3 u−1.
Hint: the heights of the peaks for frequencies smaller than 0.3 u−1 are given
in Table 10.1.

10.3. It is assumed that the simulation in Fig. 10.3 is reconcilable with
model (10.15) having two dominant trigonometric oscillations as estimated in
Fig. 10.8 and harmonics pertaining to these oscillations. Under this assump-
tion, approximate the unknown frequencies using the results in Table 10.1 as
well as those obtained in Problem 10.2 and thereafter apply linear models as
demonstrated in Sect. 10.1.3 to obtain least squares estimates for the model
parameters. First try a model having n = 6 oscillations and thereafter repeat
the estimates for models having an increasing number of oscillations. Ap-
ply the diagnostics introduced in Sect. 3.3 to your estimates. Do you arrive
at empirical residuals reconcilable with both, non-correlation for lags τ �= 0
as required in (3.11) and a variance of −25 dB as required by the constant
continuous part of the direct spectral estimator in Figs. 10.5, 10.6 and 10.7?
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10.4. Estimate the jump discontinuities σ2
p/2, p = 1, . . . , n, in the integrated

spectra of the models you have estimated in Problem 10.3.

10.5. The following R expressions approximate, by applying non-linear least
squares, the unknown frequencies of two trigonometric oscillations in a model
(10.15) for the simulation in Fig. 10.3.

fs <- ts(scan("/path/allegedstar.dat"),start=0,frequency=1,)

y <- as.array(fs)

t <- as.array(time(fs))

#s1 <- 0.03450 as in Table 10.1: error in nls(s),

#s2 <- 0.04167 too close to frequencies of local maximum?

s1 <- 0.035 #0.034442 in [14]

s2 <- 0.041 #0.041724 in [14]

a <- 2*pi*s1*t

x <- cbind(cos(a),sin(a))

a <- 2*pi*s2*t

x <- cbind(x, cos(a), sin(a))

l <- lsfit(x, y)

n <- nls(y ~ mu + a1*cos(2*pi*s1*t) + b1*sin(2*pi*s1*t) +

a2*cos(2*pi*s2*t) + b2*sin(2*pi*s2*t),

data = data.frame(y,t),

start = list(mu = l$coef[1],

a1 = l$coef[2], b1 = l$coef[3],

a2 = l$coef[4], b2 = l$coef[5],

s1 = s1, s2 = s2))

These R expressions being identical with the Splus expressions given in [14],
with nls() being described in [31], produce the following results:

mu a1 b1 a2 b2

17.085781782 7.647775769 6.490568484 0.001119107 7.084562755

s1 s2

0.034482436 0.041666485

which are quite similar to those obtained using lm() in the remarks to
Fig. 10.7, and

residual sum-of-squares: 54.67214

from which the variance of the white noise process is obtained: σ̆2
W =

54.67214/595 = 0.09988595 and thus σ̆2
W = −10.36751 dB as well as

s̆W = 0.3031270, i.e., also not too far from σ̃W = 0.3317 obtained in the
remarks to Fig. 10.7.

Try other initial values for the frequencies of the trigonometric oscilla-
tions. Thereafter discuss the following statement: a non-linear least-squares
estimation of the unknown frequencies in model (10.15) is inferior in per-
formance when compared with the diagnostics introduced in the remarks to
(10.18) and demonstrated in Figs. 10.6 and 10.7.
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10.6. Example process no. 4 in Sect. 7.3.4 is the sum of two stationary pro-
cesses which are not correlated, a property that favours the derivation of its
correlation function and its spectrum in (7.80) and (7.81). Borrowing from
this derivation, obtain the covariance function and the spectrum of model
(10.19).

10.7. Hourly values of the Inn discharge as plotted in Fig. 10.10 are available
in file /path/inn7490nogaps.dat. This file is read with

engadin <- read.table("/path/inn7490nogaps.dat", header=T)

#logarithms of Inn discharge at Cinous-chel

inn <- log(engadin$cich + engadin$ewci)

Plot time slices from December through to April for a few winter seasons on
the logarithmic scale.

10.8. Compute the periodogram of the Inn discharge using
x <- inn - mean(inn)

innperio <- spec.univariate(x,taper=0.0,spans=1,

pad=0,confint=0.95,fast=F)

par(mfrow=c(1,2))

plot(innperio$freq,10*log10(innperio$spec),pch=".")

and, alternatively, using
N <- length(x)

m <- N/2

xt <- fft(x,inverse=T)

xtsc <- ((xt/N)*2)[1:(m+1)]

xtsc[1] <- xtsc[1]/2

xtsc[m+1] <- xtsc[m+1]/2

ampl2 <- (Mod(xtsc))*(Mod(xtsc))

sk <- (0:m)/N

pgr <- (N/4)*ampl2

pgr[1] <- N*ampl2[1]

pgr[m+1] <- N*ampl2[m+1]

pgrdb <- 10*log10(pgr)

pgrdb[1] <- NA

plot(sk,pgrdb,pch=".").

Are the plots thus obtained identical? Compare the above R expressions with
those in spec.univariate() as introduced in Sect. 9.5.6 and with definition
(8.1). Enhance the above R expressions with comments.

10.9. Use the scaled Fourier transform xtsc as calculated above in Prob-
lem 10.8 to estimate the discrete part in the discharge spectrum, i.e., the
oscillations having frequencies as approximated in the remarks to Figs. 10.13,
10.14 and 10.15. Hint: In R vector sk as calculated above in Problem 10.8,
the frequencies of the annual, the weekly and the diurnal cycles have indices
17 + 1, 887 + 1 and 6209 + 1. The following R expressions therefore,

skky <- c(1*17+1,2*17+1,3*17+1)
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skkw1 <- c(1*887+1,2*887+1,...,11*887+1,12*887+1)

skkw2 <- c(1*887+1-17,2*887+1-17,...,11*887+1-17,12*887+1-17)

skkw3 <- c(1*887+1+17,2*887+1+17,...,11*887+1+17,12*887+1+17)

skk <- concat(skky,skkw1)

skk <- concat(skk,skkw2)

skk <- concat(skk,skkw3)

make these indices available in R vector skk. By using skk in the following
loop,

i <- 1

for(i in 1:length(skk)) {

lines(c(sk[skk[i]],sk[skk[i]]),c(-50,10*log10(

(N/4)*(Re(xtsc[skk[i]])**2) +

(N/4)*(Im(xtsc[skk[i]])**2))),lty=2) }

the plots in Fig. 10.16 are readily obtained.

10.10. Compute all oscillations pertaining to the discrete part of the Inn
discharge spectrum for N = 149016 time points in the observational period.
Add these oscillations as demonstrated in Sect. 6.1.1. Thereafter compute
the difference of the sum thus obtained and the observations.

10.11. Estimate the spectrum of the differences obtained in Problem 10.10.

10.12. Changes from normal to daylight saving time in spring and back to
normal time in autumn displace the time of the daily and weekly cycles
in electricity consumption against the time of the discharge measurements
(always in normal time). These displacements are supposed, in the remarks
to Fig. 10.17 and 10.18, to generate the triads of frequencies in the discrete
part of the estimator for the discharge spectrum.

Construct two time series from the hourly means of the Inn discharge as
plotted in Fig. 10.10: the first one by appending time slices for the winter
months (November 1 through to March 20, in the following year) and the
summer months (April 1 through to September 20). Are the time series thus
obtained stationary? Calculate estimators for the discrete and also the con-
tinuous part of the discharge spectra in summer and winter. Compare these
estimators with those in Figs. 10.17, 10.18 and in Fig. 10.19. Which of the
estimators for the continuous spectrum of the discharge do you prefer: the
one in Fig. 10.17 (b) or the one Fig. 10.19 (b)?

10.13. Calculate first order differences as defined in (2.39,2) (i.e., in lag 1)
of the monthly values in the Basel temperature series, which are made avail-
able in the remarks to (3.19) in R vector temp. Thereafter, calculate the
periodogram and compare your result with the one in Fig. 10.20 (b).



A Answers to Problems

1.2 Constant a is taken as random variable X with X = a such that Pr(X =
a) = 1. Then

Ea = EX =
∫ ∞

x=−∞
xdF (x) = a× 1 = a

with
∫∞

x=−∞ xdF (x) being the Riemann-Stieltjes integral of x with respect to
F (x). The Riemann-Stieltjes integral (7.19) is often used in an introduction
to Statistics to define the expectation EX of a random variable X having
probability distribution F (x).

If Y is a random variable having EY , and both a as well as b are arbitrary
constants, then

E(aY + b) =
∫ ∞

y=−∞
(ay + b)dF (y) =

∫ ∞

y=−∞
aydF (y) +

∫ ∞

x=−∞
xdF (x)

= a

∫ ∞

y=−∞
ydF (y) + Eb = aEY + b

assuming that X = b such that Pr(X = b) = 1, as above.

1.3 (1.15,4) is obtained from (1.15,1,2,3) by way of induction, and (1.15,7)
follows from definition (1.11).

1.7 Let random variables X ′
1 and X ′

2, both with expectation 0 and vari-
ance 1, be independent. Then constructX1 = µ1+σ1X

′
1 andX2 = µ2+ρσ2X

′
1

+
√

1 − ρ2σ2X
′
2 using (1.13), and calculate variance and covariance ofX1 and

X2 as follows:

VarX1 = σ2
1VarX ′

1 = σ2
1

VarX2 = ρ2σ2
2VarX ′

1 + (1 − ρ2)σ2
2VarX ′

2

= ρ2σ2
2 + (1 − ρ2)σ2

2 = σ2
2

Cov(X1, X2) = E
(
(µ1 + σ1X

′
1 − µ1)(µ2 + ρσ2X

′
1 +

√
1 − ρ2σ2X

′
2 − µ2)

)
= E

(
σ1X

′
1(ρσ2X

′
1 +

√
1 − ρ2σ2X

′
2)
)

= σ1ρσ2E(X ′
1X

′
1) + σ1σ2

√
1 − ρ2E(X ′

1X
′
2)
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= σ1ρσ2VarX ′
1 + σ1σ2

√
1 − ρ2(EX ′

1)(EX
′
2) using (1.16,1)

= σ1ρσ2

(
EX ′2

1 − (EX ′
1)

2
)

+ (σ1σ2

√
1 − ρ2) × 0 × 0 (A.1)

= σ1σ2ρ× (1 − 0) using the assumptions
ρX1,X2 = (σ1σ2ρ)/(σ1σ2) = ρ

(A.1) follows using the assumptions since VarY = EY 2 − E2Y .

1.12 The error integral is obtained as follows:

I2 =
∫ ∞

−∞

∫ ∞

−∞
e−b(x2+y2)dydx

=
∫ R→∞

0

∫ 2π

0

e−bρ2
ρdρdφ =

∫ R→∞

0

e−bρ2
ρdρ

∫ 2π

0

dφ

= 2π
∫ R→∞

0

e−bρ2
ρdρ = 2π

[
− 1

2b
e−bρ2

]R→∞

0

= 2π lim
R→∞

[
1
2b

− 1
2b

e−bR2
]

=
π

b

=
∫ ∞

−∞
e−bx2

dx×
∫ ∞

−∞
e−by2

dy =
π

b
since e−b(x2+y2)

= e−bx2 × e−by2∫ ∞

−∞
e−bx2

dx =
√
π√
b

2.4 The sums in (2.18) are written for finite t = 1, 2, 3, . . . ,M and N ≤ t,
resulting in (i) Xt =

∑t
u=−N a

t−uWu and (ii) Xt =
∑t+N

v=0 a
vWt−v. The

terms in both sums are identical as can be shown by substituting arbitrary
t and N ≤ t. For example, substituting t = 5 and N = 2, sum (i) becomes
a7W−2 + . . .+ a0W5 and sum (ii) a0W5 + . . .+ a7W−2. When M increases,
and also in the limit for M → ∞, both sums still contain identical terms.

2.10 The moment functions of the MA[1] model Yt = Wt − bWt−1 =
b0Wt−b1Wt−1 are readily calculated since the model contains only two terms:

E(Yt) = µW (1 − b) = 0 forµW = 0
cY (0) = σ2

W (b0b0 + b1b1) = σ2
W (1 + b2)

cY (1) = σ2
W (−b1b0 + 0b1) = −σ2

W b

cY (−1) = −σ2
W b

cY (τ ) = 0 for |τ | > 1

(2.18) and (2.19) imply that an AR[1] model is stationary on condi-
tion that (i) |a| < 1 and (ii) an infinitely long time has elapsed since
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its initialisation. Therefore, its moment functions can be calculated using
Xt =

∑∞
u=0 a

uWt−u:

E(Xt) = µW

∞∑
u=0

au =
1

1 − aµW

cY (τ ) = σ2
W

∞∑
u=τ

auau−τ = σ2
W

(
aτa0 + aτ+1a1 + aτ+2a2 + . . .

)
= σ2

Wa
τ
(
1 + a2 + a4 + . . .

)
= σ2

Wa
τ 1
1 − a2

2.29 The moment functions of (Yt) are easily derived: EYt = EXt +EV =
µX + µV = 0 as well as cY (τ ) = cX(τ ) + σ2

V are arrived at. Hence, (Yt) is
stationary.

Let (x(1)
1 + v(1), x

(1)
2 + v(1), . . .) = (x(1)

t ) + v(1) = (y(1)
t ) with v(1) = 1.25

be a first realisation of (Yt) and (x(2)
t ) + v(2) = (y(2)

t ) with v(2) = 0.1
be a second one, and so on. Then, applying (2.1,1) and (2.56), EYt is es-
timated from the first realisation and (1/N)

∑N
t=1 y

(1)
t = µ̂X + v(1), with

µ̂X = (1/N)
∑N

t=1 x
(1)
t ≈ 0, and thus (1/N)

∑N
t=1 y

(1)
t ≈ 0 + v(1) ≈ 1.25 is

arrived at. From the second realisation, (1/N)
∑N

t=1 y
(2)
t ≈ 0.1 is obtained.

The variance of this estimator is obtained using (1.16,3) and the variance
of the empirical mean of a time series as proposed in (2.56): Varµ̂X +VarV ≈
(1/N)

∑N−1
τ=−(N−1)

(
(N − τ )/N

)|cX(τ )| + σ2
V . This sum comes closer to σ2

V

with increasing N and thus this estimator is not consistent as is required in
(1.4) and therefore Y (t) is not ergodic, as is concluded from Sect. 2.6.2.

3.1 The sum of the squared residuals (3.1,2) is differentiated with respect
to coefficients b0 and b1. Substituting b0 and b1 with b̂0 and b̂1, and equating
the partial derivatives thus obtained with zero, the normal equations

N∑
i=1

(
Yi − b̂0 − b̂1xi

)
= 0 and

N∑
i=1

xi

(
Yi − b̂0 − b̂1xi

)
= 0

are arrived at, which thereafter are solved in order to obtain the estimators
in (3.2).

3.2 (3.10) also applies in case of simple linear regression. An alternative
is to use (1.15), subsequent to writing b̂1 as a linear combination of Yi as
demonstrated in Problem 3.3, since EYi = µY (xi) = b0 + b1xi.

3.3 Write b̂1 in (3.2) as a linear combination of Yi
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b̂1 =
∑N

i=1(Yi − Y )(xi − x)∑N
i=1(xi − x)2

=
∑N

i=1 Yi(xi − x) −
∑N

i=1 Y (xi − x)∑N
i=1(xi − x)2

=
∑N

i=1 Yi(xi − x)∑N
i=1(xi − x)2

=
1∑N

i=1(xi − x)2
N∑

i=1

(xi − x)Yi

and thereafter calculate the variance of b̂1 as the variance of the linear com-
bination of random variables obtained above using (1.16,4), since (3.1,3)
requires that the observations be independent and have constant variance
VarYi = σ2

e .

Varb̂1 =

(
1∑N

i=1(xi − x)2
N∑

i=1

(xi − x)
)2

VarYi = . . . =
σ2

e∑N
i=1(xi − x)2

3.4 A linear combination of normally distributed random variables is al-
ways normally distributed as is concluded from the remarks to (1.34) and has
moments that can be calculated using (1.16) under the additional assump-
tion that the variables are independent. Yi is required to be independent and
normally distributed in (3.1,3,4) with EYi = b0+b1xi and VarYi = σ2

e . Hence,
Vi = aiYi with ai = (xi−x)/

∑N
i=1(xi−x)2 as obtained above in the solution

to Problem 3.3, is normally distributed with expectation ai(b0 + b1xi) and
variance a2

iσ
2
e . Consequently,

b̂1 is normally distributed

Eb̂1 =
N∑

i=1

ai(b0 + b1xi) = b1

N∑
i=1

aixi + b0
N∑

i=1

ai

Varb̂1 =
N∑

i=1

a2
iσ

2
e

are arrived at.

3.7 From (3.4) and (3.2) result:

SSY = SSM + SSE

N∑
i=1

e2i =
N∑

i=1

(
Yi − b̂0 − b̂1xi

)2 =
N∑

i=1

(
Yi − Y + b̂1x− b̂1xi

)2
=

N∑
i=1

(
Yi − Y − b̂1(xi − x)

)2
=

N∑
i=1

(
Yi − Y

)2 − 2b̂1
N∑

i=1

(
Yi − Y

)(
xi − x

)
+ b21

N∑
i=1

(
xi − x

)2
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=
N∑

i=1

(
Yi − Y

)2 − b̂21 N∑
i=1

(
xi − x

)2
SSE = SSY − SSM

6.7 Applying (6.28,2), the Fourier coefficients pertaining to f(x) = |x|,
−2 ≤ x ≤ 2, are computed as follows:

Ak =
2
T

∫ T/2

−T/2

f(x) cos(2πskx)dx = 2
2
4

∫ 2

0

x cos(2π
k

4
x)dx

=
[

2
πk
x sin

(
πk

2
x

)
− −4
π2k2

x cos
(
πk

2
x

)]2

0

=
4
πk

sin(πk) +
4

π2k2
cos(πk) + 0 − 4

π2k2

=
4

π2k2
(cos(πk) − 1) , k = 1, 2, . . .

A0 = 2
2
4

∫ 2

0

xdx = 2, since cos(2π
0
4
x) = 1

Bk = 0, since f(x) sin(2π
0
4
x) = 1

and, using these coefficients, the Fourier series

fM (x) = A0/2 +
M∑

k=1

(Ak cos(2πskx) +Bk sin(2πskx))

= 1 +
M∑

k=1

4
π2k2

(cos(πk) − 1) cos
(
πk

2
x

)
= 1 +

4
π2

(−1 − 1
12

cos(
π

2
x) +

1 − 1
22

cos(
2π
2
x) +

−1 − 1
32

cos(
3π
2
x) + . . .

)
= 1 +

4
π2

(−2
12

cos(
π

2
x) + 0 +

−2
32

cos(
3π
2
x) + . . .

)
= 1 − 8

π2

(
cos(

π

2
x) +

1
32

cos(
3π
2
x) +

1
52

cos(
5π
2
x) + . . .

)
is arrived at.

6.10 Differentiating,

g(u) =
1

p2 + q2
epu

(
p sin(qu) − q cos(qu)

)
g′(u) =

1
p2 + q2

epu
(
pq cos(qu) + q2 sin(qu)

)
+ pepu

(
p sin(qu) + q cos(qu)

)
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=
1

p2 + q2
epu sin(qu)

(
p2 + q2

)
= epu sin(qu)

is obtained. Thereafter, the following two-fold integral

I1 =
∫ ∞

y=0

(∫ ∞

x=0

e−xby sin(by)dx
)

dy

=
∫ ∞

x=0

(∫ ∞

y=0

e−xby sin(by)dy
)

dx = I2

I1 =
∫ ∞

y=0

[
− 1
by

e−xby sin(by)
]x→∞

x=0

dy =
∫ ∞

y=0

1
by

sin(by)dy

I2 =
∫ ∞

x=0

1
|b|
(∫ ∞

u=0

e−xu sin(u)du
)

dx with u = by,
du
dy

= b, dy =
1
b
du

=
∫ ∞

x=0

1
|b|
[

1
x2 + 1

e−xu
(−x sin(u) − cos(u)

)]∞
u=0

dx with p = −x
and q = 1

=
1
|b|
∫ ∞

x=0

[
0 − 1

x2 + 1
× (1) · (−x× 0 − 1)

]
dx

=
1
|b|
∫ ∞

x=0

1
x2 + 1

dx =
1
|b| lim

r→∞
[
arctan(x)

]r
0

=
π

|2b|
is evaluated in two ways.

6.12 The Fourier transform F (s) = F−i

(
f(t)

)
of the triangle function

f(t) is obtained as F (s) = G(s) − H(s). G(s) is the Fourier transform of a
rectangle function g(t) having height a and width 2b

g(t) =
{
a for −b ≤ t ≤ b
0 for |t| > b

F+i

(
g(t)

)
= G(s) = 2a

1
2πs

sin(2πst)
∣∣∣∣t=b

t=0

= 2ab
sin(2πbs)

2πbs

and H(s) is obtained using integration by parts

H(s) =
2
b

t

2πs
sin(2πst)

∣∣∣∣t=b

t=0

− 2
b

∫ b

0

1
2πs

sin(2πst)dt

=
2
b

t

2πs
sin(2πst)

∣∣∣∣t=b

t=0

+
2
b

1
(2πs)2

cos(2πst)
∣∣∣∣t=b

t=0

=
2
b

b

2πs
sin(2πbs) +

2
b

1
(2πs)2

(
cos(2πbs) − 1

)
=

2 sin(2πbs)
2πs

− 2
b

1
(2πs)2

(
1 − cos(2πbs)

)
Substituting,
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F (s) = 2ab
sin(2πbs)

2πbs
− 2

sin(2πbs)
2πs

+ 2
1
b

1
(2πs)2

(
1 − cos(2πsb)

)
= 2

sin(2πbs)
2πs

(a− 1) +
2
b

1
(2πs)2

2
(
sin(πbs)

)2
= 2

sin(2πbs)
2πs

(a− 1) +
1
b

(
sin(πbs)
πs

)2

is arrived at.

6.17 For s = . . . ,−1, 0, 1, . . .

FN (s) =
1
m

m−1∑
t=−(m−1)

(m− |t|)(cos(2πst) + i × sin(2πst)
)

=
m−1∑

t=−(m−1)

(
1 − |t|

m

)
=

m−1∑
t=−(m−1)

1 − 1
m

m−1∑
t=−(m−1)

|t|

= 2(m− 1) + 1 − 1
m

2
(1
2
(m− 1)m

)
= 2m− 1 − (m− 1) = m

6.19 The Fourier transform of f(t) = a cos(2πut)

F (s) = lim
r→∞

∫ r

−r

a cos(2πut)ei2πstdt

= lim
r→∞

∫ r

0

2a cos(2πst) cos(2πut)dt

= lim
r→∞

∫ r

0

2
a

2

(
cos

(
2π(s− u)t)+ cos

(
2π(s+ u)t

))
dt

= lim
r→∞ 2

a

2

(
sin
(
2π(s− u)t)

2π(s− u)
∣∣∣∣r
t=0

+
sin
(
2π(s+ u)t

)
2π(s+ u)

∣∣∣∣r
t=0

)

= lim
r→∞

a

2

(
2
sin
(
2π(s− u)r)

2π(s− u) + 2
sin
(
2π(s+ u)r

)
2π(s+ u)

)

= lim
r→∞

a

2

(
2r

sin
(
2π(s− u)r)

2π(s− u)r + 2r
sin
(
2π(s+ u)r

)
2π(s+ u)r

)
can be obtained as the limiting case of two (sin x)/x functions as defined in
(6.39).

6.21 The first order linear differential equation x(t) + ax′(t) = w(t) with
δ(t) substituted for w(t):
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y(t) =
∫ t

0

x(u)
1
τ
e−(t−u)/τdu =

∫ t

0

δ(u)
1
τ

e−(t−u)/τdu

=
∫ t

0

1
τ

e−t/τδ(u)eu/τdu =
1
τ

e−t/τ

∫ t

0

δ(u)eu/τdu

=
1
τ

e−t/τ1 =
1
τ

e−t/τ

6.23 Fourier transform of damped oscillation f(t) = 2e−|at| cos(2πrt):

F (s) = F−i

(
2e−|at| cos(2πrt)

)
=
∫ ∞

−∞
e−|at|2 cos(2πrt)e−i2πstdt

=
∫ ∞

−∞
e−|at|(ei2πrt + e−i2πrt

)
e−i2πstdt

=
∫ ∞

−∞
e−|at|ei2πrte−i2πstdt+

∫ ∞

−∞
e−|at|e−i2πrte−i2πstdt

= 2re
∫ ∞

0

e−t(a−i2πr+i2πs)dt+ 2re
∫ ∞

0

e−t(a+i2πr+i2πs)dt

= 2re
∫ ∞

0

e−t(a+i2π(s−r))dt+ 2re
∫ ∞

0

e−t(a+i2π(s+r))dt
. . .

=
2a

a2 +
(
2π(s− r)) +

2a
a2 +

(
2π(s+ r)

)

7.5 Aj = Rj cos(Pj) and Bj = Rj sin(Pj), with Rj being real constants
and Pj independent random variables having a uniform (or rectangular) dis-
tribution 1/(2π) in [−π, π]. The moments of the Aj and Bj are obtained by
integration:

EAj = RjE
(
cos(Pj)

)
= Rj

∫ π

−π

1
2π

cos(Pj)dPj =
Rj

2π
[
sin(Pj)

]π
−π

= 0

EBj = −Rj

2π
[
cos(Pj)

]π
−π

= −Rj

2π
[−1 − (−1)

]π
−π

= 0

VarAj = Var
(
Rj cos(Pj)

)
= R2

jE
(
cos(Pj)

)2 = R2
j

∫ π

−π

1
2π
(
cos(Pj)

)2dPj

=
R2

j

2π

∫ π

−π

1
2
(
1 + cos(2Pj)

)
dPj

=
R2

j

2π

(∫ π

0

dPj +
∫ π

0

cos(2Pj)dPj

)
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=
R2

j

2π

([
Pj

]π
0

+ (1/2)
[
sin(2Pj)

]π
0

)
=
R2

j

2π
(π − 0) = R2

j/2

VarBj = Var
(
Rj sin(Pj)

)
= R2

jE
(
sin(Pj)

)2 = R2
j

∫ π

−π

1
2π
(
sin(Pj)

)2dPj

=
R2

j

2π

∫ π

−π

1
2
(
1 − cos(2Pj)

)
dPj

=
R2

j

2π

(∫ π

0

dPj −
∫ π

0

cos(2Pj)dPj

)
=
R2

j

2π

([
Pj

]π
0
− (1/2)

[
sin(2Pj)

]π
0

)
=
R2

j

2π
(π − 0) = R2

j/2

Cov(Aj , Bj) = Cov
(
Rj cos(Pj), Rj sin(Pj)

)
= R2

j

∫ π

−π

cos(Pj) sin(Pj)dPj

=
R2

j

4π

∫ π

−π

sin(2Pj)dPj = 0 since odd

Cov(Aj , Bk) = Cov
(
Rj cos(Pj), Rk sin(Pk)

)
j �= k

= R2
j

∫ π

−π

cos(Pj) sin(Pj)dPj = 0 since Pj and
Pk independent

7.6 A random oscillation X(t) = A cos(2πst) + B sin(2πst), A and B
being random variables, has expectation function

EX(t) = E
(
A cos(2πst) +B sin(2πst)

)
= cos(2πst)EA+ sin(2πst)EB

which is constant on condition that EA = 0 and EB = 0.
The covariance function of X(t) = A cos(2πst) + B sin(2πst), A and B

being random variables with expectations EA = µA and EB = µB , is derived
as follows:

cX(t, u) = Cov
(
X(t), X(u)

)
= E

((
X(t) − µX(t)

)(
X(u) − µX(u)

))
= E

((
A cos(2πst) +B sin(2πst) − µA cos(2πst) − µB sin(2πst)

)
×(A cos(2πsu) +B sin(2πsu) − µB cos(2πsu) − µB sin(2πsu)

))
= E

(
A2 cos(2πst) cos(2πsu) +AB cos(2πst) sin(2πsu)

+B2 sin(2πst) cos(2πsu) +AB sin(2πst) cos(2πsu) (A.2)
−A cos(2πst)µA cos(2πsu) −A cos(2πst)µB sin(2πsu)
−A cos(2πst)µA cos(2πsu) −A sin(2πst)µB cos(2πsu) (A.3)
−B sin(2πst)µA cos(2πsu) −B sin(2πst)µB sin(2πsu)
−B cos(2πst)µA sin(2πsu) −B sin(2πst)µB sin(2πsu) (A.4)
+(µA)2 cos(2πst) cos(2πsu) + µAµB cos(2πst) sin(2πsu)
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+(µB)2 sin(2πst) sin(2πsu) + µAµB sin(2πst) cos(2πsu)
)

(A.5)

= cos(2πst) cos(2πsu)EA2 (A.6)
+
(
cos(2πst) sin(2πsu) + sin(2πst) cos(2πsu)

)
EAB (A.7)

+ sin(2πst) sin(2πsu)EB2 (A.8)
−2µA cos(2πst) cos(2πsu)EA (A.9)
−µB

(
cos(2πst) sin(2πsu) + sin(2πst) cos(2πsu)

)
EA (A.10)

−µA

(
sin(2πst) cos(2πsu) + cos(2πst) sin(2πsu)

)
EB (A.11)

−2µB sin(2πst) sin(2πsu)EB (A.12)
+(µA)2 cos(2πst) cos(2πsu) (A.13)
+µAµB

(
cos(2πst) sin(2πsu) + sin(2πst) cos(2πsu)

)
(A.14)

+(µB)2 sin(2πst) sin(2πsu) (A.15)

Since EA = µA and EB = µB, (i) the sum of (A.9) and (A.13) be-
comes −(µA)2 cos(2πst) cos(2πsu) and (ii) the sum of (A.10) and (A.14)
becomes identically zero. Further, the sum of (A.12) and (A.15) becomes
−(µB)2 sin(2πst) sin(2πsu) and (A.11) becomes µAµB

(
sin(2πst) cos(2πsu)+

cos(2πst) sin(2πsu)
)
:

cX(t, u) = cos(2πst) cos(2πsu)EA2 (A.16)
+
(
cos(2πst) sin(2πsu) + sin(2πst) cos(2πsu)

)
EAB (A.17)

+ sin(2πst) sin(2πsu)EB2 (A.18)
−(µA)2 cos(2πst) cos(2πsu) (A.19)
−µAµB

(
sin(2πst) cos(2πsu) + cos(2πst) sin(2πsu)

)
(A.20)

−(µB)2 sin(2πst) sin(2πsu) (A.21)

If Cov(A,B) = 0 then EAB = EA×EB = µAµB and the sum of (A.16) and
(A.17) becomes identically zero, implying

cX(t, u) = EA2 1
2

(
cos

(
2πs(t− u))+ cos

(
2πs(t+ u)

))
+EB2 1

2

(
cos

(
2πs(t− u))− cos

(
2πs(t+ u)

))
−(µA)2

1
2

(
cos

(
2πs(t− u))+ cos

(
2πs(t+ u)

))
−(µB)2

1
2

(
cos

(
2πs(t− u))− cos

(
2πs(t+ u)

))
If additionally EA2 = EB2 and (µA)2 = (µB)2, then

cX(t, u) = EA2 cos
(
2πs(t− u))− (µA)2 cos

(
2πs(t− u))

and the covariance of the random trigonometric oscillation with constant fre-
quency s becomes a function of t − u, and not of t and/or u. Consequently,
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under the above assumptions, random oscillation X(t) = A cos(2πst) +
B sin(2πst) is stationary in its second moment function.

8.2 Let X be an exponentially distributed random variable with F (x) =
1 − e−λx for x ≥ 0 and F (x) = 0 for x < 0 as defined in (7.4), and let Y =
loge(X) = ln(X). Then the distribution F (y) of Y is obtained by evaluating
the following Stieltjes integral:

F (y) =
∫

ln(x)≤y

dF (x) =
∫ ey

0

(
d(1 − e−λx)/dx

)
dx

=
[
1 − e−λx

]ey

0
= 1 − e−λey

If Y = 10log10(X) then

F (y) =
∫

10log10(x)≤y

dF (x) =
[
1 − e−λx

]10x/10

0
= 1 − e−λ10x/10

f(y) = −e−λ10x/10(−λ10x/10
)(

ln(10)
) 1
10

=
λln(10)

10
(
10x/10

)
e−λ(10x/10)

and, substituting λ = 1/2, the probability density pertaining to a peri-
odogram of a white noise process subsequent to a logarithmic transformation
is arrived at.

9.1 Using the convolution theorem derived in (6.144) and (6.145),

E
(
IX(s)

)
=

N−1∑
τ=−(N−1)

(
1 − |τ |

N

)(
σ2

W

∞∑
u=−∞

bubu+τ

)
cos(2πsτ)

=

⎛⎝ N−1∑
τ=−(N−1)

(
1 − |τ |

N

)
cos(2πsτ)

⎞⎠ ∗
⎛⎝σ2

W

N−1∑
τ=−(N−1)

( ∞∑
u=−∞

bubu+τ

)
cos(2πsτ)

⎞⎠
= FN (s) ∗

(
σ2

W

( ∞∑
u=−∞

bue
−i2πsu

)( ∞∑
u=−∞

bue−i2πsu

) )
= FN (s) ∗

(
B(s)B(s)σ2

W

)
= FN (s) ∗ CX(s)

is arrived at.

9.4 To a cosine taper hN (t) as defined in (6.111,1) pertains its spec-

tral window H(d)�
N (s) =

(
1/Σ(h2)

� )
H
�

N (s)H
�

N (s) =
(
1/Σ(h2)

� )F−i

(
h
�

N � h
�

N (t)
)
.
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H(d)�
N (s) → δ(s) for N → ∞ on condition that H(d)�

N (s) has the properties
required in (6.60).

∫∞
−∞ H(d)�

N (s)ds = 1 for N = 1, 2, 3, . . . follows directly

from definition (9.2). It remains to show that H(d)�
N (s) → 0, s �= 0, and that

H(d)�
N (s) → ∞, s = 0, for N → ∞.
In a first step, the sum of the weights in a cosine taper h

�
N (t), with N , p

and q as defined in (6.111,1), is calculated. For this calculation, q is substi-
tuted with p1.

N−1∑
t=0

h
�

N (t) =
p1−1∑
t=0

1
2

(
1 − cos

( π

2p1
(2t+ 1)

))
+

N−(p1+1)∑
t=p1

1

+
N−1∑

t=N−p1

1
2

(
1 − cos

( π

2p1

(
2(N − 1 − t) + 1

)))
= S

(1)
1 + S(1)

2 + S(1)
3 with S(1)

2 = N − 2p1 and S(1)
1 = S

(1)
3 (A.22)

S
(1)
1 is obtained by assuming that below, in (A.25), (i) p2 is the largest integer

number which is less than or equal to p1/2 and (ii) the last term cos
((
π(2p2+

1)
)
/(2p1)

)
is identically zero for even p1. (A.25) implies (A.26) seeing that

cos(x) = − cos(π − x).

S
(1)
1 =

p1−1∑
t=0

h
�

N (t) =
p1−1∑
t=0

1
2

(
1 − cos

( π

2p1
(2t+ 1)

))
(A.23)

=
1
2

p1−1∑
t=0

1 − 1
2

p1−1∑
t=0

cos
( π

2p1
(2t+ 1)

)
(A.24)

=
p1
2

− 1
2

p2−1∑
t=0

(
cos

(π(2t+1)
2p1

)
+

cos
(π(2p1−(2t+1))

2p1

))
+ cos

(π(2p2+1)
2p1

)
(A.25)

=
p1
2

− 1
2

p2−1∑
t=0

(
cos

(π(2t+1)
2p1

)
+

cos
(
π − π(2t+1)

2p1

))
+ cos

(πp1
2p1

)
(A.26)

=
p1
2

− 1
2

p2−1∑
t=0

(0) + 0 =
p1
2

(A.27)

This sum is substituted in (A.22) and thus

N−1∑
t=0

h
�

N (t) = p1/2 + (N − 2p1) + p1/2 = N − p1 (A.28)
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is obtained. From this result and (6.48,1), it is concluded that H
�

N (0) =∑N−1
t=0 h

�
N (t) = N − p1 since H

�
N (s) is the kernel pertaining to the cosine

taper as defined in (6.110,2): H
�

N (s) = F−i

(
h
�

N (t)
)
.

In a second step, the sum of the squared weights in a cosine taper h
�

N (t),
with N , p and q as defined in (6.111,1), is calculated. For this calculation, q
is substituted with p1.

N−1∑
t=0

(
h
�

N (t)
)2 =

p1−1∑
t=0

(
1
2

(
1 − cos

( π

2p1
(2t+ 1)

)))2

+
N−(p1+1)∑

t=p1

12

+
N−1∑

t=N−p1

(
1
2

(
1 − cos

( π

2p1

(
2(N − 1 − t) + 1

))))2

= S
(2)
1 + S(2)

2 + S(2)
3 with S(2)

2 = N − 2p1 and S(2)
1 = S

(2)
3 (A.29)

Below in (A.31), the second term becomes identically zero as is concluded
from (A.24) and (A.27) and thus (A.32) is arrived at.

S
(2)
1 =

1
4

p1−1∑
t=0

(
1 − cos

( π

2p1
(2t+ 1)

))2

(A.30)

=
1
4

p1−1∑
t=0

12 − 1
2

p1−1∑
t=0

cos
( π

2p1
(2t+1)

)
+

1
4

p1−1∑
t=0

(
cos

( π

2p1
(2t+1)

))2

(A.31)

=
p1
4

− 0 +
1
4
S

(2)
12 (A.32)

S
(2)
12 is derived below: (A.34) and (A.37) follow from trigonometric identities,

and (A.39) using the sums in (6.10).

S
(2)
12 =

p1−1∑
t=0

(
cos

( π

2p1
(2t+ 1)

))2

(A.33)

=
1
2

p1−1∑
t=0

(
cos

(( π
2p1

+
π

2p1

)
(2t+ 1)

)
+ cos

(( π
2p1

− π

2p1

)
(2t+ 1)

))
(A.34)

=
1
2

p1−1∑
t=0

cos
( π
p1

(2t+ 1)
)

+
1
2

p1−1∑
t=0

cos(0) (A.35)

=
p1
2

+
1
2

p1−1∑
t=0

cos
(
2π

1
p1
t+

π

p1

)
(A.36)

=
p1
2

+
1
4

p1−1∑
t=0

(
cos

(
2π

1
p1
t
)

cos
( π
p1

)
+ sin

(
2π

1
p1
t
)

sin
( π
p1

))
(A.37)

=
p1
2

+
1
4

cos
( π
p1

) p1−1∑
t=0

cos
(
2π

1
p1
t
)

+
1
4

sin
( π
p1

) p1−1∑
t=0

sin
(
2π

1
p1
t
)

(A.38)
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=
p1
2

+
1
4

cos
( π
p1

)
(0) +

1
4

sin
( π
p1

)
(0) =

p1
2

(A.39)

Subsequent to substituting (A.39) in (A.32),

Σ(h2)
�

=
N−1∑
t=0

(
h
�

N (t)
)2 = S

(2)
1 + S(2)

2 + S(2)
3

= (3/8)p1 + (N − 2p1) + (3/8)p1 = N − (5/4)p1 (A.40)

is arrived at.
Using (A.28) and (A.40), the following results for the spectral window

pertaining to the cosine taper for frequency s = 0 are obtained, since p1 ≤
N/2.

H(d)�
N (s) =

1

Σ(h2)
� H

�
N (s)H

�
N (s) =

(N − p1)(N − p1)
N − (5/4)p1

s = 0

lim
N→∞

(H(d)�
N (s)

)
= ∞ s = 0

It remains to show that H(d)�
N (s) → 0, s �= 0, for N → ∞. This result is

obtained provided that H
�

N (s)H
�

N(s), s �= 0, is bounded for N → ∞. Both
spectral windows FN (s) and H(d)�

N (s) are continuous in s = 0 and H(d)�
N (0) ≤

FN (0). This implies that H
�

N (s)H
�

N (s) =
(
N − (5/4)p1

)H(d)�
N (s) ≤ N ×FN (s)

within a small interval having its centre in s = 0. Within such an interval,N×
FN (s) =

(
sin(πNs)/ sin(πs)

)2 ≤ 1/
(
sin(πs)

)2 for s �= 0 and H
�

N (s)H
�

N (s) ≤
1/
(
sin(πs)

)2 is obtained. Consequently, H
�

N (s)H
�

N (s) is bounded in a small
interval having its centre in s = 0, except for s = 0.

In an interval as above, H
�

N (s)H
�

N (s) is larger than for any other s.

Hence, H
�

N (s)H
�

N (s) is bounded for s �= 0, which in turn implies that

limN→∞
(H(d)�

N (s)
)

= limN→∞
(
1/(N − (5/4)p1)

)
H
�

N (s)H
�

N (s) = 0, for s �= 0.
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92. G. Mathéron. The intrinsic random functions and their applications. Adv. in
Applied Probability, 5:439–468, 1973.

93. J. Mathieu and J. Scott. An Introduction to Turbulent Flow. Cambridge
University Press, Cambridge, 2000.

94. B. McArthur. Baseline Surface Radiation Network BSRN. Operations Man-
ual. WMO/TD-no. 879, WCRP/WMO, World Meteorological Organization,
Geneva, 1998.



702 References

95. A.I. McLeod and C. Jimenez. Nonnegative definiteness of the sample autoco-
variance function. The American Statistician, 39:237–238, 1984.

96. P. Moin and J. Kim. Tackling turbulence with supercomputers. Scientific
American, Jan. 1997. (http://www.sciam.com/0197issue/0197moin.html).

97. A.S. Monin and A.M. Yaglom. Statistical Fluid Mechanics, Vols. I and II,
3rd and 5th printing. The MIT Press, Cambridge, MA., 1987. Translation
of Statisticheskaya gidromekhanika - Mekhanika Turbulenosti, Nauka Press,
Moscow, 1965.

98. R.B. Montgomery. Report on the work of G.T. Walker. Monthly Weather
Review, supplement no. 39:1–22, 1940.

99. R.B. Montgomery. Verification of three of Walker’s seasonal forecasting for-
mulae for India rain. Monthly Weather Review, supplement no. 39:23–34,
1940.

100. National Geophysical Data Center. Sunspot numbers. The National Geo-
physical Data Center is run by the National Oceanic and Atmospheric Ad-
ministration of the US Department of Commerce and located in Boulder, CO.
(http://www.ngdc.noaa.gov/stp/SOLAR/SSN/ssn.html).

101. A.A. Nowroozi. Table for Fisher’s test of significance in harmonic analysis.
Geophysical Journal of the Royal Astronomical Society, 12:517–520, 1967.

102. A.H. Nutall and G.C. Carter. Spectral estimation using combined time and
lag weighting. Proc. IEEE, 70:1115–1125, 1982.

103. A. Ohmura et al. Baseline Surface Radiation Network (BSRN/WCRP), a new
precision radiometry for climate research. Bull. of the American Meteorological
Society, 79:2115–2136, 1998. Data are available from http://bsrn.ethz.ch.

104. A. Papoulis. Probability, Random Variables and Stochastic Processes.
McGraw-Hill, New York, 1981.

105. E.J. Pebesma. Gstat user’s manual. Available from http://www.gstat.org, a
domain hosted by the Department of Geography at Utrecht University, the
Netherlands.

106. E.J. Pebesma. Multivariable Geostatistics in S: the Gstat package. Computers
and Geosciences, 30:683–691, 2004.

107. E.J. Pebesma and C.G. Wesseling. Gstat, a program for geostatistical mod-
elling, prediction und simulation. Computers and Geosciences, 24:17–31, 1998.

108. D.B. Percival and A.T. Walden. Spectral Analysis of Time Series for Physical
Applications. Cambridge University Press, Cambridge, 1993.

109. T.C. Peterson et al. Homogeneity adjustments of in situ atmospheric climate
data: A review. Int. J. of Climatology, 18:1493–1517, 1998.

110. S.G.H. Philander. El Niño, La Niña, and the Southern Oscillation. Academic
Press, San Diego, 1990.

111. D.C. Powell and C.E. Elderkin. An investigation of the application of Taylor’s
hypothesis to atmospheric boundary layer turbulence. J. Atmos. Sci., 31:990–
1002, 1974.

112. M.B. Priestley. Basic considerations in the estimation of spectra. Technomet-
rics, 4:551–564, 1962.

113. M.B. Priestley. Spectral Analysis and Time Series, Vols. I and II. Academic
Press, London, 1981.

114. R Foundation for Statistical Computing. The R project for statistical com-
puting. The R Foundation, c/o Institut für Statistik und Wahrscheinlichkeit-
stheorie, Technische Universität Wien, Wiedner Hauptstrasse 8, 1040 Wien,
Austria (http://www.r-project.org).



References 703

115. C.F. Ropelewski. SO index. Climatic Research Unit, University of East Anglia,
Norwich NR4 7TJ, Uk (http://www.cru.uea.ac.uk/data/soi.htm).

116. C.F. Ropelewski and P.D. Jones. An extension of the Tahiti-Darwin Southern
Oscillation index. Monthly Weather Review, 115:2161–2165, 1987.

117. M. Rosenblatt. Stationary Sequences and Random Fields. Birkhäuser, Boston,
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Index

L2(Ω, F ) see vector space
L2(a, b) see vector space
σ-width see width

absolute value
of a complex number see complex

numbers
aerosols (in ambient air)

DC measurements 448
definiton 447
on road measurements see data sets

Akima’s algorithm 179
alias frequency see frequency

(domain)
aliasing 376, 381, 495
anisotropic

variogram see variogram
annual cycle 149
area under study 173
area with observations 173
areal

mean see kriging (block)
precipitation 242

ARIMA process 279
definition 279, 413
seasonal 291

ARMA process 275
AR representation 277
ARMA[11] model 278
causal 275
definition 275
estimate 280

residuals 300–304
evaluation of candidate models 299,

301
invertible 277
MA representation 275, 276
model identification 289

moment functions 276, 277
normal 280
prediction intervals 311
prediction using the AR representa-

tion 307
prediction using the difference

equation 309
properties 274
spectrum 480

atmospheric carbon dioxide see data
sets

autocorrelation
of a function 395
of cosine tapers 534
properties 395, 426
theorem 426
width see width

autocovariance function 51
autoregressive moving average process

see ARMA process
autoregressive process

AR[p] model 251, 482, 484
AR[1] model 62, 482
AR[2] model 84, 482
AR[4] model 485
causal 252
continuous-time AR[1] model 487
estimates

Burg 263
maximum likelihood 267
properties 269
regression 265
Yule-Walker 253

properties 274
Yule-Walker equations 253

autoregressive-integrated-moving-
average process see ARIMA
process
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backward prediction see prediction
band see frequency (domain)
band-limited 398
bandwidth

of a spectral estimator 592
of the spectrum of a stochastic

process
approximations for 593
definition 475

Bartlett
lag window see spectral estimation

(continuous spectrum, lag window
spectral estimator)

base
functions see kriging (universal)
height 391
maps 215

Basel temperature series see data sets
Bessel’s inequality 373
best linear prediction see prediction
bias 14
binomial distribution see distribution
block

average see kriging
kriging see kriging
variogram see variogram

Bochner’s theorem 471
Box-Jenkins airline model 292
Brownian motion 489
Burg’s estimator 263

carbon dioxide see data sets
categorical vector in R 149
Cauchy sequence 343
Cauchy-Schwarz inequality 20, 342
causal 252
central limit theorem 16
central tendency 32
change point problem 96
Chebyshev inequality 32
Cholesky decomposition 267
climate change 3, 5, 95, 96
climate model 174
climate records

adjustment for inhomogeneities 5
early instrumental 5, 66
homogeneous 5, 91
reconstruction 66

climatological norm 94

comparison experiment 6, 91

complete vector space see vector
space

complex numbers 331

absolute value 331

modulus 331

phase 331

component

long-term change 148

model 148

random 124, 148, 216

seasonal 148

systematic 124, 148, 216

concentration

of a distribution 13, 32, 394

of a sequence 418

conditionally negative definite 208

consistent 15

constrained optimisation 210, 215,
218, 245

continuous-time stochastic process
see stochastic (process)

contour plots 166

contrast 156

control

of a manufacturing process 91

convergence

in L2(Ω, F ) 452, 453

in L2(a, b) 342

in mean square 342, 347, 348, 354,
460

in the norm 342

with probability one 460

convergent

absolutely 72

convolution

circular 558

identity function under 371, 512,
532, 568, 575

identity sequence under 82

in −1/2 ≤ s ≤ 1/2 385, 423, 513,
532, 568, 575

integral 75, 409

of a function with itself 395

properties 77, 395

sum 75, 409

sums 78

theorem see Fourier transform
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correlation
empirical 19, 20
theoretical 20

correlation function
empirical 41, 44
of white noise 100
partial see partial correlation

function
properties 55
theoretical 50

cosine bell taper see data taper
cosine taper see data taper
count process 443
covariance

empirical 19
theoretical 20

covariance function
absolutely convergent 209
empirical 41, 44

and direct spectral estimator 551
calculated from tapered observa-

tions 531
empirical, properties of 98
properties 55
theoretical 50

covariance matrix
of a stochastic process 50

crosscovariance function 51
cutoff

of correlation function 272
of partial correlation function 257

Daniell
kernel

continuous see spectral estimation
(continuous spectrum, lag window
spectral estimator)

modified discrete see spectral
estimation (continuous spectrum,
discretely smoothed direct
spectral estimator)

lag window see spectral estimation
(continuous spectrum, lag window
spectral estimator)

data assimilation 172
data sets

aerosols (on road measurments) 448
atmospheric carbon dioxide 170,

286, 290

Basel temperature series 66, 271,
283, 647

chemical reaction 91, 260

discharge of river Inn 662, 663

global average temperatures 117,
526

hydraulic conductivity in a gravel
deposit 244

lynx in Canada 639

North Atlantic Oscillation 56–58,
89, 93–95, 113, 114, 119, 120, 502,
508, 510

power consumption 170

precipitation 175, 242, 248

Rhone glacier 113

seismogram

of a nuclear test 638

of an earthquake 602

shortwave incoming radiation

at Hamburg station 168

at Hohenpeissenberg station 122,
138

at London station 38

at Reckenholz station 7

at Toronto station 38

in a grid cell 153

in Germany 202, 223, 234, 236

Southern Oscillation index 294,
299, 310, 312, 553

Strassenacker

grain yield 197, 248

potassium 188, 213

sunspot numbers 118, 639

tree-line

alpine in the Valais alps 162, 179,
248, 444, 496

wind speed Anwandstrasse 39

wind speed San Vittore 615

data taper

and leakage reduction see leakage
(reduction)

and tracing unknown frequencies
653

cosine 401, 402, 534–537, 539, 542,
544, 545, 583, 627

DPSSs 418

even 400
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variance-normalised see spectral
estimation

data window see data taper

de-meaned

seasonally 169

de-trended 283

decadal

fluctuation 284, 415

trend 122, 154, 415

decibel (dB) 390, 480

decomposition of a random function
see component

delta function

and spectral window 532

defining sequences 368, 369, 438,
459

definition 367

periodic 369, 512, 532, 568, 575

propositions 371, 372, 438

Riemann integral 496

deterministic

function see function

interpolation 171

diagnostics

for linear models see linear model

difference equation

of order 1 74

differences

as convolution 81

as LTI filter 413

Dirac δ see delta function

Dirichlet kernel see kernel

discrete

power spectrum see spectrum

prolate spheroidal sequences (DPSSs)
418

discrete-time stochastic process see
stochastic (process)

distribution

binomial 442

exponential 444

gamma 446, 486

of a function of random variables
15

Poisson 442

uniform (or rectangular) 461, 507

drift 181

dynamic range 390, 480

early instrumental records see climate
records

earthquake 600
electromagnetic radiation emitted by

the sun see radiation (solar)
energy density spectrum see spectrum
equi-scaled plots 166
equivalent width see width
ergodic theorems 101
error

of measurements (gross) 141
of measurements (model) 30, 91
of measurements (random) 6, 229
of measurements (systematic) 6
of measurements and kriging 229
of measurements in shortwave

incoming radiation 124, 154, 232
of measurements in SO index 327

estimate
definition 13

estimator
consistent 15
definition 13
unbiased 14

even function see function
expectation function

theoretical 50
exponential distribution see distribu-

tion
extrapolation 171
extreme values 141

factor 149
fader see data taper
fast Fourier transform see Fourier

transform
Fejer kernel see kernel
filter

band-pass 416
characteristics 411
frequency response function 409
gain function 410
high-pass 416
ideal 416
impulse response function 409
input 409
linear 75, 409
low-pass 416
LTI 409
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mean-square approximation 417
output 409

phase shift function 410
shift 76

stochastic
and linear process 480

definition 477
properties 479, 528

time-invariant 76, 409
first order differences see differences

Fisher’s g test (for white noise) 510
fluctuations

seasonal 25
synoptic 25

forward prediction see prediction

Fourier
analysis 330

coefficients 330, 347, 354
cosine-transform 358

finite series 347
frequencies 347, 354

integral 358
partial sum 354

representation
of a deterministic function 330,

348, 354, 358, 363
of a stochastic process 467

series 354

sine-transform 358
synthesis 330

transform
discrete 348, 430

fast 351
of a function in L2(−∞,∞) 358

of a periodic function 354
of a sequence in L2(−∞,∞) 363

of a sequence in L2(0,N − 1) 348
pair 347

theorems 363, 422–424
frequencies (of a sample)

joint 18
marginal 18

univariate 11

frequency (domain)
alias 376, 381

band 398
Fourier 330

fundamental 335

harmonic 335, 353
Nyquist 381
resolution 405, 535, 563, 579
response function see filter

frequency-limited 398
function

deterministic 329
even 355
mixed 355
odd 355

functional 13, 171
linear 173

functionally overparametrised 156
fundamental

frequency see frequency (domain)
oscillation see oscillation
uncertainty relationship see

uncertainty relationship

gain function see filter
gamma distribution see distribution
Gaussian

function 362, 393
process 49

general circulation model 102, 151,
174

generalised
distance 183
least squares

see least squares estimation 205
geographical information system 215
geophysical data 1
geophysical variables 44
Geostatistics 172
Gibbs phenomenon 388
global

linear model see linear model
properties 40, 94

harmonic
frequency see frequency (domain)
oscillation see oscillation
process 462

definitions 461, 463
estimation see spectral estimation

(mixed spectrum)
Fourier representation 466
moment functions 462, 463, 496
simulation 496, 679
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spectrum 463
Heisenberg’s uncertainty relationship

see uncertainty relationship
Herglotz’s theorem 471
histogram

one-dimensional 11
two-dimensional 17

hole effect see variogram
homogeneous see climate records
Hurrell’s NAO index see data sets

(North Atlantic Oscillation)

impulse
function see delta function
response function see filter

independent identically distributed
(iid.) random variables 13

index-limited 398
innovations 252
input see filter
integral

Riemann 455
Stieltjes 32, 455
stochastic

Riemann 456
Stieltjes 456

transform 76, 400
inter-annual variability 124, 154
inter-arrival time see waiting time
internal heat

of the earth 3, 600
interpolation

deterministic 171, 173, 175
distance weighted 173
SYMAP 175
tessellation 179

neighbourhood
in Gstat 236, 240
of distance weighted procedures

174
of Gaussian variogram 194
of kriging 238
of SYMAP algorithm 176

objective 171
probabilistic 171
subjective 171

intrinsic hypothesis 182
inverse sequence

under convolution 82

invertibility condition
of a MA[q] model 272

isotropic
spatial random function see spatial

random function
variogram see variogram

Isserlis’ theorem 623

Jones’ NAO index see data sets
(North Atlantic Oscillation)

Kalman recursion
for computing ML estimates 267

kernel
Dirichlet 365, 366, 385, 386, 391,

397, 400, 522, 524
Fejer 365, 366, 393, 397, 400, 513,

515, 522, 524
for smoothing a spectral estimator

see spectral estimation (continu-
ous spectrum, lag window spectral
estimator)

in integral transform 76, 400
Kolmogorov’s hypotheses (on turbulent

flow) see turbulent flow (in the
atmospheric boundary layer)

Kolmogorov-Smirnov test (for white
noise) 507

kriging
and measurement errors 229, 231
block 239, 240
local 238
ordinary 215
simple 210, 211
universal 216, 217, 219
variance 210

Kronecker delta 344, 457, 459

lag 52
window see spectral estimation

(continuous spectrum, lag window
spectral estimator)

Lagrange multiplier 210, 215, 218, 245
Langevin’s equation 489
leakage

appearance 379, 384, 385, 388
definition 386
diagnostics 405, 406
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reduction 403, 495, 530, 535, 536,
605, 654

least squares estimation 109, 110, 126,
132, 134, 135

generalised 134, 205, 220, 221, 233

non-linear 650, 680

of a harmonic process 643, 648, 659

ordinary 205

weighted 135
level 149

Levinson-Durbin recursion 255, 256

lifetime 444

linear filter see filter

linear model 130
assumptions 125, 130, 132, 133, 136

diagnostic plots 123, 137

diagnostics 136

global 415

in R 122, 130, 132
influence diagnostics 141

local 144, 415

residuals see residuals

seasonal 147

selection 142
variance stabilising transformation

138

linear prediction see prediction

linear process

as stochastic filter 480
definition 72

estimation (overview) 249

examples 49

model identification 289

moments 72
one-sided 73

two-sided weights 73

linear vector space see vector space

Ljung-Box statistic 101, 526

lobe
main 386

side 386

local

fluctuations 538, 604

interpolation see kriging
linear model see linear model

mean 94, 95, 113, 162, 540, 557, 559,
583

properties 40, 94

long-term trend 149
LTI filter see filter
lynx 639

maps see base
masks (for maps) 215
maximum likelihood estimate

of an ARMA model 280
of an autogressive process 267

mean
empirical 12
of a time series 41
of a time series, properties of 97
variogram see variogram

mean square
continuous see stochastic process
convergence see convergence
differentiable see stochastic process

mean square error
of a prediction see prediction

measurement
climate data 3
of geophysical data 3

memoryless 444
microseisms see seismogram
mining 172
mixed function see function
mixed process see ARMA process
modulus

of a complex number see complex
numbers

moment
empirical 12

moment function
empirical 41
multivariate 51
theoretical 50
univariate 50

moments
empirical bivariate 19
formulas for calculating 31
of a deterministic function 394
theoretical 14

moving average
as convolution 81
as LTI filter 414

moving average process
invertible 272
MA[q] model 271, 482
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MA[1] model 69, 480, 481
properties 272, 274

multi-taper spectral estimation see
spectral estimation

multiple
comparison problem 96
R-squared see regression
regression see regression
test problem 96, 511

negative exponential function 361
non-linear least squares estimation

seeleast squares estimaton 680
non-negative definite 51, 459
non-stationarity

removal of 283
normal distribution

bivariate 20
multivariate 36
standard 16
two-dimensional 20

normal process 49
normalised

functions 344
North Atlantic Oscillation see data

sets
nuclear test 638
nugget effect see variogram
Nyquist frequency see frequency

(domain)

objective interpolation 171
odd function see function
operator 75
optimal linear prediction see

prediction
optimality conditions see prediction

(optimal linear)
ordinary

kriging see kriging
least squares see least squares

estimation
orthogonal

functions 344
increment process

definitions 457, 487
difference quotients 458
examples 458
integrating with respect to 487

moment functions 458
normal 457

trigonometric functions 345, 346,
419, 502, 643, 644

orthogonality conditions see predic-
tion (optimal linear)

orthogonality relations see orthogonal
(trigonometric functions)

orthonormal
basis 344
functions 344

oscillation
fundamental 335
harmonic 336, 353

output see filter

padding with zeros see zero-padded
parallel regression 150
parameter

of an AR[1] model 61
of an MA[1] model 70
of stochastic process 45

parametric spectral estimation see
spectral estimation (continuous
spectrum)

Parseval’s identity 373
parsimonious models 70
partial correlation function 256, 257
partial derivatives 109
peak

algorithm for finding a peak in a
function 449, 664

primary 383
secondary 383

periodic function 330
periodicities

hidden 336
periodogram see spectral estimation
phase

of a complex number see complex
numbers

shift function see filter
plant ecology 167
plate-tectonics 600
point

interpolation 173
observations 227
with measurements 173

Poisson distribution see distribution
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Poisson process 443, 450
polynom

characteristic 83
positive definite 51, 254
positive semidefinite 51, 459
power

consumption see data sets
of a function 373
of a sequence 374
of a stationary stochastic process

469
spectrum see spectrum

pre-whitening see spectral estimation
(continuous spectrum)

precipitation see data sets
predator-prey relationship 639
prediction

backward 263
error 102
forward 263
linear see optimal linear
mean square error 102, 103, 210

of an ARMA process 307, 309, 311
optimal 102
optimal linear 52, 103

and Yule-Walker equations 255
coefficients 103
of a spatial random function 206,

207, 210, 215, 219
optimality conditions 103, 109,

219, 254
orthogonality conditions 110
universality conditions 103, 210,

217, 219
weights 103

variance 102
probabilistic

interpolation 171
probability

density see distribution
distribution see distribution

projections (for maps) 215
pseudo-periodic 87
pyranometer 6
pyranometer daily values 23
pyranometer measurements 7

queuing theory 447

R
expressions 8

functions 8
acf() 43, 100, 119, 257, 290, 292,

430

aov() 128
ar.burg() 264, 296

ar.yw() 258

arima() 268, 290, 292, 296, 297
arima.sim() 116, 303, 325

as.array() 169
as.factor() 149

as.vector() 80

c() 80
cbind() 166

chull() 166
coef() 123

contour() 166

contrasts() 156
cor() 19

cov() 19

data.frame() 147, 149, 154, 163,
164, 212, 266

dev.off() 10
dev.xxx() 10

dexp() 495

diff() 82, 287, 495
eqscplot() 166

fft() 331, 349, 351, 430

filter() 26, 80, 82, 430
hist() 11, 187, 495

is.matrix() 146
is.na() 12

lag() 41

length() 146
library() 23, 166

lines() 17
lm() 122, 132, 150, 155, 157, 163

log() 188, 287

log10() 170
matplot() 154

matrix() 154, 165

mean() 12
mtext() 154

nextn() 351
nls() 650, 680

plot() 17, 24

polyroot() 84, 116, 266
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postscript() 10
ppoints() 495

predict() 123, 150, 155, 157, 164,
311

qexp() 495

qnorm() 43

read.table() 146, 147, 187

rep() 94

resid() 123
rmvnorm() 21

rnorm() 61, 94, 303

sapply() 154

scan() 39

sort() 495

spec.pgram() 501, 538, 551, 555,
630

spec.taper() 401, 538

spec.univariate() 538, 551, 559,
630, 634

summary() 127

t.test() 93, 94

time() 169

ts() 23, 24, 39

ts.intersect() 41
tsdiag() 292

var() 12, 19

window() 25, 93

write() 212

graphics 10

help system 8

libraries

MASS 166

spatial 189

ts 23
missing values 9

objects 8

reading text files 8, 9, 114, 117, 146,
152

time series 24

vectors 8

radiation
shortwave incoming (SWIR) 6, 7,

92, 123, 152, 153, 202, 223, 234

solar 4, 5

terrestrial 4

random

function see stochastic process

sample 13

variable
convergence in L2(Ω, F ) 452
in L2(Ω, F ) 451
with finite norm 451

walk 64
range see variogram
realisation

of a random function 45
of a stochastic process 45, 50
simulated 46, 53, 94

reciprocity
in a Fourier transform pair 392

rectangle
function 359, 397
sequence 364, 385, 386, 397

rectangular distribution 461
regionalised variable see spatial

random function
regression

multiple 130
simple 125
statistics 127
weighted 135

resampling 96
residuals

empirical of a linear model 124
of an ARMA[p, q] model see ARMA

process (estimate)
of linear regression 125
serial correlation of 140, 157
theoretical of a linear model 125,

133
variance of 133

resolution (in frequency domain) see
frequency (domain)

Reynold’s decomposition see tur-
bulent flow (in the atmospheric
boundary layer)

Reynolds number see turbulent flow
(in the atmospheric boundary
layer)

robust
spectral estimation see spectral

estimation (continuous spectrum)
running mean

example 26, 57

sample
random 13
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sampling interval 244, 375, 379, 381,
382

sawtooth-shaped sequence 332

scatterplot 17

Schuster’s test (for white noise) 509

seasonal

cycle 25

fluctuations 121

linear process 291
model see linear model

processes 145

seasonally de-meaned 169

secular trend 149, 284, 415

seismic

noise see seismogram (microseisms)

waves

compression 601

shear 601

seismogram
microseisms 603

spectrum 605–609

of a nuclear test 638

of an earthquake 602

seismograph 601

selection

of a linear model see linear model

self-convolution see convolution

semivariogram see variogram

sequence
inverse under convolution 82

serial correlation see residuals, 157

sill see variogram

similarity theorem 393

simulation

for statistical inference 94

of a stochastic process 46

of an AR[2] model 53, 116

of white noise 94

sin(x)/x function 359
smoothing

a direct spectral estimator see
spectral estimation (continuous
spectrum)

a sequence see moving average
kernel

continuous see spectral estima-
tion (continuous spectrum), lag
window spectral estimator)

discrete see spectral estimation
(continuous spectrum, dis-
cretely smoothed direct spectral
estimator)

snow cover 167, 663, 665, 674

solar radiation see radiation

Southern Oscillation index see data
sets

spatial

deterministic function 173, 175

mean see kriging (block)

random function 181

intrinsic 182, 207

isotropic 181

linear prediction 207

stationary 182, 207

sampling interval 244

spectral estimation

multi-taper 418

naive 493, 495

periodogram

bandwidth 592, 593

bias 513, 516, 517

covariance 518

definition 500

distribution 518

example 502

expectation 512, 513

of a white noise process 503, 504

spectral window 530

test for white noise 506, 507,
509–511

spectral estimation (continuous
spectrum)

approximations for unknown
bandwidth 593, 595, 597

direct spectral estimator

and empirical covariance function
551

bandwidth 592, 593

bias 535–537, 579

confidence intervals 547

correlation 540, 542, 544, 545

cosine taper 533–537, 539, 583,
627, 635

covariance 540, 541

definition 531

expectation 532
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for non-Fourier frequencies 549
in R 630

leakage 535–537, 579

non-consistent 546

probability distribution 546, 548

sequence of tapers 536, 537
simulation example 533

spectral window 530, 532, 575, 577

variance-normalised data taper
530

zero-padded 550

discretely smoothed direct spectral
estimator

and lag window estimator 571–574
bandwidth 563, 564, 592

bias 563

confidence interval 590

Daniell kernel 559, 577, 578

definition 558
examples 560–562, 588

expectation 563, 564

in R 630

leakage 563

spectral window 578
variance 565, 566

width of smoothing kernel 625

lag window spectral estimator

and discretely smoothed estimator
571–574

bandwidth 592

Bartlett 570

bias 579, 580, 586, 587

confidence interval 589

Daniell 570
definition 568

degrees of freedom 587, 589, 590

distribution 587, 588, 590

expectation 575

lag window 568, 575, 577
leakage 579, 580

spectral window 575, 578

variance 582, 583, 586, 587

width of smoothing kernel 625,
626

parametric 552, 553

periodogram

in R 630

smoothed 584

pre-whitening 554, 555

robust estimator 599

smoothed direct spectral estimator
557

weighted overlapped segments
estimator 599

spectral estimation (mixed spectrum)

known frequencies and constant
continuous part

diagnostics 646

estimators 643, 644

example 647, 649

expectation of periodogram 645

model 642

tests 646

unknown frequencies and constant
continuous part

diagnostics 652, 653

direct spectral estimator 651

example 653–655, 657–659

model 650

unknown frequencies and non-
constant continuous part

diagnostics 666, 667

example 662–664, 671, 672

model 661

tests 668

spectral representation theorem see
spectrum (of a stochastic process)

spectral window

of a direct spectral estimator 530,
532, 592

of a lag window estimator 575, 578,
592

of a periodogram 530, 532, 592

spectrum

definiton 374

discrete power 374

energy density 374

examples 335

informal definition 330

of a stochastic process

and covariance function 55,
469–471, 494, 498

bandwidth 475, 562–564, 592

continuous 472, 480, 482, 485

definition 467

discrete 472
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estimation see spectral estimation
examples 472–474
mixed 472
of a linear process 480
of an ARMA process 480
types 472

of sawtooth-shaped sequence 334
Splus 179
station effects 154
stationarity

diagnostic 90
of a stochastic process 52
of a time series 90
strong 55
weak 52

statitiscal inference
with simulation 96

stochastic
calculus 453
differential equation 488
process

complex-valued 459, 498
continuous-time 45, 443, 451
count process 443
definition 45
discrete-time 45, 56
mean-square continuous 453, 478
mean-square differentiable 453
multivariate 45
parameter of 45
stationary 52
univariate 45

stochastic filter see filter
subjective interpolation 171
sunlight see radiation (solar)
support 227
SYMAP 175
synoptic fluctuations see fluctuations

taper see data taper
tapering see leakage (reduction)
Taylor’s hypothesis see turbulent flow

(in the atmospheric boundary
layer)

tessellation see interpolation
(deterministic)

time invariant filter see filter
time series

definition 45

examples 23, 24, 39, 56, 66, 92, 113,
117, 118, 122, 162, 168, 170, 260,
294, 602, 638

in R 24
time-limited 398
toeplitz matrix 256, 267
transform 75
transformation 75
tree-line

alpine see data sets
trend 121

decadal 122, 154, 415
in shortwave incoming radiation

122
long-term 149
secular 149, 284, 415
surface 163, 204

triangle
function 369, 397
inequality 342, 433
sequence 365, 393, 397, 403

triangulation see interpolation
(deterministic)

turbulent flow (in the atmospheric
boundary layer)

coordinate systems 611
Kolmogorov’s hypotheses 612
properties 610
Reynold’s decomposition 614, 615
Reynolds number 612
spectrum 611

inertial subrange 612
stationary 611
Taylor’s hypothesis 613
wind speed Anwandstrasse 39
wind speed San Vittore 615, 617,

619

uncertainty relationship 396
uniform distribution see distribution
universal kriging see kriging
universality conditions see prediction

(optimal linear)

Valais alps 162
variance

empirical 12
variance function

empirical 41
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theoretical 50

variance stabilising transformation
138

variogram 181

analytical 194

anisotropic 183

block 240

empirical 185, 192, 225

anisotropic 199

in case of non-constant drift 203

isotropic 191

estimation 196, 200, 204

fitting a model 195

isotropic 183

mean 239

model 194

cubic 194

exponential 194

Gaussian 194

power 194

spherical 194

range 183, 194

sill 183, 194

with hole effect 183

with nugget effect 184

vector space

complete 343

linear 341

L2(Ω, F ) 451

L2(a, b) 341

vegetation period 167
Voronoi polygons 179

waiting time
exponential 444, 445, 450

weighted
least squares 135
regression 135

well-behaved functions 354
white noise process

definition 59
diagnostic plot 100
tests for 101, 506, 507, 509–511

width
σ 394
at half height 390, 403, 535, 627
autocorrelation 396
equivalent 393
of a moving average 81, 592

Wiener process see orthogonal
increment process (normal)

window closing see spectral esti-
mation (continuous spectrum,
approximations for unknown
bandwidth)

Yule-Walker equations 253
and optimal linear prediction 255
solution 254, 255, 263

zero-padded 78, 350, 549, 550, 656



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




