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Preface

Time series analysis took off with a burst of activity in the 1970s due to a number of
publications employing time domain techniques. No doubt, the pivotal event in this
advance can be ascribed to the book by Box and Jenkins which appeared in 1970.
The so-called Box and Jenkins’s approach for autoregressive integrated
moving-average (ARIMA) models was made popular by many researchers who
refined and expanded its initial framework.

Among these researchers, A. Ian McLeod stands out as one who has contributed
to almost every aspect of the Box–Jenkins framework both in theory and in prac-
tice. His method in deriving diagnostic statistics via the asymptotic distribution of
ARMA model residuals is versatile and applicable to nearly all kinds of new time
series models. His work in long memory time series with Keith Hipel was truly
ahead of time. Professor McLeod was one of the early advocates of the uses of
inverse and inverse partial autocorrelations. The McLeod–Hipel time series package
was one of the few available comprehensive computer softwares for time series
analysis in the 1970s and 1980s.

Ian McLeod’s research interests cover also random number generation and
environmental statistics, especially on water resources issues. His many influential
contributions are summarized by a review article in this monograph.

Since the 1980s time series analysis has grown in many different directions. The
new areas that have appeared include, among other topics, nonstationary time
series, nonlinear models and conditional heteroscedasticity models. Despite the
range of these new developments, the papers in this volume testify to the impact
that Ian McLeod’s influence is still being felt widely.

This volume arises as a consequence of a Festschrift in Ian McLeod’s honour
held at the University of Western Ontario June 2–3, 2014 that was partially sup-
ported by the Fields Institute. Participants of the Festschrift were invited to submit
works to form this volume. The resulting peer-reviewed monograph consists of
13 technical papers and one review on Ian McLeod’s work. The papers reflect the
diversity of time domain time series analysis since its infancy in the 1970s. The
topics covered include diagnostic checks for duration time series models, partially
nonstationary vector time series, methodology for ordered categorical data, a new
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C(α) test for estimating equations, model testing using wavelets, an adaptive Lasso
approach to vector autoregressions, identification of threshold nonlinear models,
graphical methods, as well as business and environmental applications. We believe
that the papers in this volume shed light on a variety of areas in time series analysis,
and are hopeful that it will be useful to both theorists and practitioners.

The editors would like to take this opportunity to thank the Fields Institute, the
University of Western Ontario and the University of Hong Kong, and the partici-
pants of the Festschrift in 2014 for their support. Thanks are also due to the authors
and referees for papers of this volume for their effort and hard work.

Hong Kong Wai Keung Li
London, ON, Canada David A. Stanford
London, ON, Canada Hao Yu
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Ian McLeod’s Contribution to Time Series
Analysis—A Tribute

W.K. Li

Abstract Ian McLeod’s contributions to time series are both broad and influential.
His work has put Canada and the University of Western Ontario on the map in the
time series community. This article strives to give a partial picture of McLeod’s
diverse contributions and their impact by reviewing the development of portmanteau
statistics, long memory (persistence) models, the concept of duality in McLeod’s
work, and his contributions to intervention analysis.

Keywords Asymptotic distributions · Box–Jenkins approach · Duality ·
Intervention analysis · Long memory models · Residual autocorrelations

1 Introduction

The “Big Bang” in time domain time series was triggered by the monograph, “Time
Series Analysis: forecasting and control” by George Box and Gwilym Jenkins in
1970. With the advance of computer technology came the dawn of time domain time
series. Soon thereafter a series of papers by Ian and several co-authors appeared on
expanding, developing and explaining the methodology. Four papers by Ian stand
out in expounding the Box–Jenkins approach. These include the “Derivation of the
theoretical autocovariance function of ARMA time series” (Applied Statistics [50]);
“Intervention Analysis in Water Resources” (Hipel et al.,Water Resources Research
[21]); “Advances in Box–JenkinsModelling (I): Model Construction” (Hipel et al.—
Water Resources Research [24]) and “Advances in Box–Jenkins Modelling (II):
Applications” (McLeod et al.—Water Resources Research [59]).

The first of these papers is important as it gives an algorithm to calculate the
theoretical autocovariance of the autoregressive moving average (ARMA) model in
terms of the model parameters. This result is needed if one wants to calculate the
exact likelihood of an ARMA model. Back in the Seventies, evaluation of the exact

W.K. Li (B)
Department of Statistics and Actuarial Science,
University of Hong Kong, Pokfulam Road, Hong Kong
e-mail: hrntlwk@hku.hk

© Springer Science+Business Media New York 2016
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2 W.K. Li

likelihood was a major research activity in time series analysis. I will comment upon
the second paper later. The third and the fourth papers give a detailed exposition of the
Box–Jenkins methodology. In addition to the skeleton of the original Box–Jenkins
proposal, these papers present more discussion of a variety of practical issues that
are useful to a practitioner. These include choice of the Box–Cox transformation,
testing for skewness and kurtosis for time series, and the exploitation of the duality
property of ARMA models in model identification, by introducing the inverse auto-
correlation functions and the inverse partial autocorrelation function. All these and
some later developments were powerfully implemented in the McLeod–Hipel time
series package, which in those days was the most comprehensive Box–Jenkins time
series package. It was also one of the earliest. It appeared around 1977, well before
the official date mentioned on Ian’s website. The package was followed by an all
encompassing treatise: Time Series Modelling ofWater Resources and Environmen-
tal systems by Hipel and McLeod [23] which ably summarized the progress by 1994
of the Box–Jenkins approach to time series analysis.

Needless to say, Ian’s contributions are much broader and deeper than the papers
mentioned above. In the following I would try to give a snapshot on Ian McLeod’s
contribution to time series analysis in the following four areas: (1) the portmanteau
test; (2) the persistence (long memory) phenomenon; (3) the role of duality and (4)
the intervention analysis.

2 The Asymptotic Distribution of Residual Autocorrelation
of the ARMAModels and the Portmanteau Test

An important stage in the Box–Jenkins approach to time series modelling is model
diagnostic checking. The residuals of a good time series fit should appear approxi-
mately as if they were white noise. The joint distribution of residual autocorrelation
from a fitted autoregressive moving average model [4] is therefore important. This
leads to the portmanteau goodness of fit test.

In 1978 Ian published the paper “On the distribution of residual autocorrelations
in Box–Jenkins Models” in Journal of the Royal Statistical Society, Series B. It gives
a somewhat different derivation in the ARMA case based on martingale differences.
This approach avoids the least squares properties used in Box–Pierce [4], and can be
applied to other situations such as the multiplicative Seasonal ARMAmodels. As we
shall see, in fact, its impact goes far beyond the domain of ARMA models. Because
of its importance I present its ideas according to the following development.
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Suppose that the time series zt , t = 1, . . . , n, is generated by the ARMA time
series model

φ(B)zt = θ(B)at , (1)

where

φ(B) = 1 − φ1B − · · · − φp B
p, θ(B) = 1 − θ1B − · · · − θq B

q ,

and B is the backshift operator on t . The white noise series, at , is assumed
to be independent and identically distributed with mean 0 and variance σ 2, and
the ARMA model is assumed to be stationary, invertible and not redundant. Let
β = (φ1, . . . , φp, θ1, . . . , θq) be the p + q dimensional vector of the true model
parameters.

Let ât be the residuals from the fitted autoregressive moving average model. Let
the lag l residual autocorrelations be

r̂(l) =

n∑

t=l+1
ât ât−l

n∑

t=1
â2t

l = 1, 2, . . .

and let r̂ = (
r̂(1), . . . , r̂(m)

)
. Define r(l) as the white noise counterpart of r̂(l) with

at , the white noise process driving the ARMA model, replacing ât . Let β be the
vector of ARMA parameters and β̂ an estimator of β based on minimizing say, the
sum of squares

S =
n∑

t=p+q+1

a2t ,

where p, q are the AR and MA orders respectively.
There are three steps in McLeod’s approach:

Step 1 : Show (β̂ − β) ∼= I−1 ∂I

∂β
, (2)

Step 2 : Show
√
n(β̂ − β, r)

asym∼ MV N (0,V), (3)

where

V =
(

I−1

−XI−1

∣
∣
∣
∣

− I−1XT

1m×m

)

,

I ∼= 1

2n
E

(
∂2S

∂β∂βT

)

,

1m×m = m × m identity matrix,
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n E
[
(β̂ − β)rT

]
= −I−1XT.

Step 3 : Show r̂ ∼= r + X(β̂ − β) .

Combining the above gives

n var(r̂) = (1m×m − XI−1XT). (4)

For ARMA models when n � m � 0,

XTX ∼= I.

Therefore the right hand side of (4) is idempotent. This leads to the portmanteau test

Qm = n
m∑

l=1

r̂2(l)

and the modification [45]

Q∗
m = n(n + 2)

m∑

l=1

r̂2(l)
/
(n − l),

is known as the Ljung–Box–Pierce portmanteau test.
If the ARMA model is adequate in describing the data, then both statistics will

be asymptomatically χ2 with m − p − q degrees of freedom if n � m � 0. The
result also implies that var(r̂(l)) � 1

n for l small (see [12] for a review). There
are many extensions of the above approach. A similar approach has been used in
[53] on the distribution of residual cross correlations in univariate ARMA models.
This leads to tests of the so-called Granger causality between two time series under
contemporaneous correlation, extending Haugh [20]. A robust versions were derived
by Li and Hui [37] and Duchesne and Roy [10]. The approach is very general and can
be applied tomany other situations (models). Extension to k dimensionalmultivariate
ARMA models was done in [39]. The modified portmanteau statistic by Li and
McLeod takes the form

Q∗(m) = n
m∑

l=1

tr
(
ĈT
l Ĉ

−1
0 Ĉl Ĉ

−1
0

)
+ k2m(m + 1)

2n
, (5)

where Ĉl is the lag l residual autocovariance matrix. Hosking [25] independently
obtained the portmanteau statistic
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Q̃(m) = n2
m∑

k=1

1

n − l
tr

(
ĈT
l Ĉ

−1
0 Ĉl Ĉ

−1
0

)
.

Kheoh andMcLeod [30] showed that the Li–McLeod test (5) is closer to the nominal
significance level in moderate to large samples.

Periodic time series analysis is another area to which Ian (and Keith Hipel) have
made important theoretical and applied contributions. A univariate approach to peri-
odic ARMA models where model parameters are seasonally dependent (i.e., peri-
odic) is difficult. However, it can be tackled in an easier way by interpreting periodic
ARMA models as special multivariate ARMA models. McLeod [55] showed that
for periodic autoregressions, a proper portmanteau test can be defined in terms of
the autocorrelations of the residuals ât (r,m) where m is the period, m = 1, . . . , s, so
that t (r,m) = (r − 1)s + m.

Denote by r̂l,m the residual autocorrelation for lag l and period m. Let r̂m =
(r̂1,m, . . . , r̂L ,m). A suitable portmanteau test is then

Q̃L ,m =
L∑

l=1

r̂2l,m
var(rl,m)

,

where

var(rl,m) = n − l/s

n(n + 2)
.

Towards the end of the Seventies, interest in nonlinear time series models began
to emerge. Among these are bilinear models [17] and threshold models [69]. It was
suggested that nonlinearity could be revealed by higher order moments. McLeod
pioneered the use of the autocorrelations of squared residuals from univariate ARMA
models (See theMcLeod–Hipel Time Series Package). This resulted in theMcLeod–
Li [60] paper and the portmanteau test

Qm = n(n + 2)
m∑

k=1

r̂2aa(k)
/
(n − k),

where

r̂aa(k) =

n∑

t=k+1

(
â2t − σ̂ 2

) (
â2t−k − σ̂ 2

)

n∑

t=1

(
â2t − σ̂ 2

)2
,

where σ̂ 2 =
n∑

t=p+q+1
â2t

/
n.
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As far as I know, this test has been included in the computer packages SAS; ITSM
[5] and Cryer and Chan [7]. A distinct feature is that

Qm
asym∼ χ2

m .

That is, it is not necessary to subtract p and q from the degrees of freedom m. This
is so because

∂raa(l)

∂β
= Op

(
1√
n

)

and hence

r̂aa(l) = raa(l) + Op

(
1

n

)

.

Unfortunately, this has been overlooked by many! The test is also wrongly ascribed
as the Ljung–Box test despite the fact that they have never shown any results for the
distribution of r̂aa(k).

Engle [13, 14] proposed the so-called autoregressive conditional heteroscedastic
(ARCH) model to model changing conditional variance in economic/financial time
series. Luukkonen et al. [46] pointed out that the McLeod–Li test is asymptotically
equivalent to the Lagrange-multiplier test for ARCH effect proposed by Engle. How-
ever, the test has been wrongly applied by many without pre-whitening by first fitting
a univariate ARMA model (private communication, Mike McAleer). Hence, Qm is
significant because of the underlying ARMA structure, and not due to the presence of
ARCH effect or other types of deviations from linearity. A ranked (robust) version of
McLeod–Li was proposed in [70]. The result was motivated by Dufour and Roy [11].

Since Engle [13, 14] ARCH or GARCH [3] type models have been very popular
in financial econometrics. A natural question is “What sort of diagnostics can be done
on such models?”. A natural response is “What about using standardized squared
residuals from aGARCHmodel?”. For εt satisfying a pureGARCHmodel, the r̂aa(l)
in McLeod–Li test is modified as

r̂l =

n∑

l+1

(
ε̂2t

ĥt
− ε

) (
ε̂2t−l

ĥt
− ε

)

∑(
ε̂2t

ĥt
− ε

)2 , l = 1, . . . ,m,

where ĥt is the conditional variance estimated by a GARCH model and ε =
n−1 ∑

ε̂2t
/
ĥt . Define r̂T = (r̂1, r̂2, . . . , r̂m) then under Gaussianity and other reg-

ular conditions it can be shown [38] that (using the same idea of McLeod [52])

√
n · r̂ asym∼ MV N (0,V),
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if the GARCH model is adequate and

V = 1m×m − 1

4
XI−1XT,

for certain matrices X and I the Fisher information matrix. Note that we can estimate
quantities in V by the corresponding sample values, and that V is not idempotent.
We can nevertheless define the test statistic

Q(m) = nr̂TV̂−1r̂

which is asymptotically χ2
m distributed.

Nearly all previous results are based on existence of moments up to certain order.
There are situations, e.g. in finance, where moments may not exist. Lin and McLeod
[42] considered portmanteau tests for ARMA models with infinite variance. Here
the ARMA processes are driven by innovations with a stable Paretian distribution.
See further works by Lin and McLeod [41] and Mahdi and McLeod [47]. Wong and
Li [71] also extend McLeod [51] to the ARCH case.

3 Persistence—Long Memory Time Series Models

McLeod and Hipel are among the first handful of authors to pay attention to the
presence of the long memory feature in hydrological time series. McLeod and Hipel
[57] and Hipel andMcLeod [57] are two of the earliest papers that give a comprehen-
sive coverage of long memory time series models during their early days. Note that
these Water Resources Research papers have the title “Preservation of the Rescaled
Adjusted Range I, II and III”, respectively. Motivation is based on the so-called Hurst
phenomenon in hydrologic time series. Let z1, . . . , zN be a time series. Define the
partial sum

S∗
k = S∗

k−1 + (zk − z̄N ),

S0 = 0, S∗
N = 0, z̄N the sample mean of {zi }. The adjusted range

R∗
N = M∗

N − m∗
N ,

where
M∗

N = max(0, S∗
1 , . . . , S

∗
N ), m∗

N = min(0, S∗
1 , . . . , S

∗
N ).

The rescaled adjusted range is

R̄∗
N = R∗

N

D∗
N

,
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where D∗
N = sample standard deviated of {zi }. Hurst [27, 28] studied long-range stor-

age requirements of the Nile River based on 690 annual time series. Hurst observed

R̄∗
N ∝ NH ,

where H is the Hurst coefficient.
He showed by means of a coin-tossing experiment that

E(R̄∗
N ) = 1.2533N 1/2,

i.e. H = 0.5. The same result can be obtained using probability theory [15].However,
Hurst observed the average value of H = 0.73 instead of 0.5. There have been debates
on the possible causes of such deviation. A possible explanation is the Fractional
Gaussian Noise (FGN), BH (t), proposed by Mandelbrot [48] and Mandelbrot and
Wallis [49]. BH (t) is required to satisfy the self-similarity property

BH (t + τ) − BH (t) ∼ BH (t + τε) − BH (t)

εH
,

and this implies
E(R̄∗

N ) = a N H , 0 < H < 1.

The theoretical autocovariance of FGN is not summable if

1

2
< H < 1.

In contrast the autocovariances of the usual ARMA model are summable. The non-
summabilty of the autocovariance suggests a long-memory process. A detailed dis-
cussion of statistical inference for FGNwas provided in [57]. Hipel andMcLeod [22]
went on to provide evidence that ARMA models fitted to 23 geophysical datasets
do have a Hurst coefficient greater that 0.5. Fractionally differenced time series, the
discrete time analog of FGNwas advocated byGranger and Joyeux [18] andHosking
[26]. In the simplest case, the pure fractionally differenced time series Xt is defined
by

(1 − B)d Xt = at ,

where− 1
2 < d < 1

2 , B is the backshift operator, and at iswhite noise. TheHurst coef-
ficient H = d + 1

2 and Xt is persistent if d > 0. Clearly this can be easily extended
to incorporate AR and MA components resulting in the so-called Fractional ARMA
or Fractionally Integrated ARMA models (FARMA or FARIMA resp.). Exact and
approximate MLE for FARMA models were considered in the 1981 UWO Ph.D.
Thesis by W.K. Li [36] and the asymptotic distribution of the residual autocorrela-
tions was also obtained. See also [40, 64]. The portmanteau statistic
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Qm
asym∼ χ2

m−p−q−1

as one more parameter, d, has to be estimated. Long memory models have found
applications to financial time series. Ding et al. [9] and Granger et al. [19] suggested
that absolute returns of daily financial series exhibit long memory behavior. Long
memory in the conditional variance of returns financial assets has been observed. The
so-called Fractionally Integrated GARCHmodels have been proposed by borrowing
the idea from FARMAmodels. Baillie et al. [1]. It is also natural to combine FARMA
with GARCH. In other words long memory in the conditional mean and conditional
heteroscedasticity in the variance. See [43, 44]. See also [2]. Two portmanteau tests
can be derived: one test for the mean (FARMA) component, and the other for the
GARCHcomponent. Portmanteau tests for least absolute deviation (LAD) estimation
of FARMA-GARCH have been obtained in [32, 33]. More recently, more general
longmemoryGARCHmodels havebeenproposed; for example, [16, 67],Hyperbolic
GARCH(HYGARCH) in [8, 31].MixtureMemoryGARCH in [34] and theRescaled
GARCH in [35].

4 The Role of Duality in McLeod’s Work

The duality property of ARMA models has been cleverly exploited in some of
McLeod’s work. If the time series zt satisfies the multiplicative seasonal-moving
average model

Φ(Bs)φ(B)zt = Θ(Bs)θ(B)at ,

φ(B) = 1 − φ1B − · · · − φp B
p, θ(B) = 1 − θ1B − · · · − θq B

q ,

Φ(Bs) = 1 − Φ1B
s − · · · − Φ ps B

sps , Θ(Bs) = 1 − Θ1B
s − · · · − Θqs B

sqs ,

where B is the backshift operator, s the seasonal period and at a sequence of inde-
pendent normal variables with mean zero and variance σ 2. Consider the models

Φ(Bs)φ(B)zt = Θ(Bs)θ(B)at , Θ(Bs)θ(B)yt = Φ(Bs)φ(B)at ,

Ξ(Bs)ξ(B)xt = at , wt = Ξ(Bs)ξ(B)at ,

where

ξ(B) = 1 − Σξi B
i = φ(B)θ(B), Ξ(Bs) = 1 − ΣΞ i B

si = Φ(Bs)Θ(Bs).

These four models may be referred to as the primal, the dual, the autoregressive
adjoint and the moving average adjoint respectively. Duality for pure AR and pure
MA models was first noticed by Pierce [66], where it was shown that the nonlinear
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least squares estimator θ̂ of the moving average parameter θ of an MA model and
the least squares estimator θ̃ of its AR dual each satisfy the relation

θ − θ̂ = −(θ − θ̃ ).

One implication of this result is that the asymptotic covariance matrix of θ̂ is just
that of θ̃ . This insight allows us to obtain the asymptotic variance of estimators of
more complicated ARMA models from that of the AR model. McLeod [54] extends
Pierce’s result to the case of multiplicative models. Let

β = (φ1, . . . , φp, θ1, . . . , θq ,Φ1, . . . ,Φ ps ,Θ1, . . . ,Θqs ),

α = (ξ1, . . . , ξp+q ,Ξ 1, . . . ,Ξ ps+qs ).

Given a series of n observations from each model, let β̂ z , β̂ y , α̂x and α̂w denote the
corresponding efficient approximate maximum likelihood estimates and denote the
corresponding residuals by âz,t , ây,t , âx,t and âw,t .

Theorem 1 [54] Apart from a quantity which is Op(1/n),

âz,t = ây,t = âx,t = âw,t , (6)

α̂w − α = −(α̂x − α) = −J ′(β̂ y − β) = J ′(β̂ z − β), (7)

where

J =
(

θi− j
... − φi− j

... − Θ i− j
... − Φ i− j

)

(8)

and the (i, j)th entry in each partitioned matrix is indicated, and φi , θi , Φ i and Θ i

are defined more generally for any integer i as the negative of the coefficient of Bi

in their respective polynomials φ(B), θ(B), Φ(B) and Θ(B).

McLeod’s result has the following implications :

(1) In diagnostic checks:

(a) n var{r̂(1)} ∼= φ2
pθ

2
q and n var{r̂(s)} ∼= Φ2

ps · Θ2
qs , where r̂(i) is the residual

ACF at lag (i).
(b) The following was shown in Chap.4 of McLeod’s 1977 Ph.D. thesis.

Theorem 2 The asymptotic distribution of
√
n · r̂ in the ARMA (p, q) model with

coefficients φ1, . . . , φp, θ1, . . . , θq is exactly the same as in the ARMA (p + q, 0)
model with coefficients φ∗

1 , . . . , φ
∗
p+q defined by φ∗(B) = φ(B)θ(B).

The result facilitates the calculation of asymptotic standard errors of r̂ .
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(2) In Model Identification:
Hipel et al. [24] was one of the earliest papers in advocating the use of inverse
autocorrelations and inverse partial autocorrelations for time series model iden-
tification after Cleveland [6]. The inverse autocorrelations (IACF) are just the
autocorrelations of the dual process, and they behave like partial autocorrelations
of the primal. If a high order AR(q) is used to approximate the multiplicative
seasonal ARMAmodel, then the IACF can be estimated using the usual expres-
sion for the ACF of the dual MA(q). The AR estimates are treated as if they are
the MA estimates of the dual.

(3) Improved Box–Jenkins estimators:
Calculation of the likelihood function of ARMA models was a challenge in the
70s. For ARMA (p, q) models with n observations the likelihood function can
be written

L(φ, θ, σ 2) ∝ σ−n
∣
∣M (p,q)

n (φ, θ)
∣
∣1/2 exp

{

− S(φ, θ)

2σ 2

}

,

where Mp,q
n (φ, θ) is the determinant function of σ 2V , where V is the n × n

covariance matrix of the series. Let

mp,0(Φ) = |M (p,0)
n (Φ)|.

McLeod [51] showed that if

φ∗(B) = φ(B)θ(B),

then as n → ∞, the limit of Mp,q
n (φ, θ),

mp,q(φ, θ) = m2
p,0(φ)m2

p,0(θ)

mp+q,0(φ∗)
. (9)

In other words, the calculation now reduces to that of AR models. Hence, the MLE
can be computedmuch faster. McLeod [54] showed further that for the multiplicative
seasonal ARMA model, using notations therein,

m(p, q, ps, qs) ∼= m(p, q) · {m(ps, qs)}s .

The duality idea has been further exploited in later works: See [63]. Duality for
hyperbolic decay time series was studied in [56].

5 Water Resources and Intervention Analysis

Since the Seventies, both Ian McLeod and Keith Hipel have contributed enormously
to the time series modelling of water resources data. Naturally, many of the results
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obtained were based on the McLeod–Hipel time series package; furthermore, many
of the papers are also closely related to the application of intervention analysis. The
1983 paper by McLeod, Hipel and Camacho suggested a range of statistical tools for
explanatory and confirmatory data analysis of water quality time series. This paper
won the 1984 American Water Resources Association (AWRA) award for the best
paper of 1983 that appeared in theWater Resources Bulletin. Transfer function noise
models and periodic autoregressive models were introduced to the water resources
literature in some of these papers. See for example [65, 68]. The 1988 paper with
Noakes, Hipel Jimenez and Yakowitz ably introduced the idea of fractional Gaussian
noise and fractional ARMA models using various geophysical time series including
annual river flows.

Intervention Analysis amounts to the dummy variable technique applied to time
series analysis. Ian’s work on this dated back to the early Seventies. A lot of empirical
studies have been made using Canadian river flow data by Ian together with Keith
Hipel. An interesting finding obtained by using intervention analysis is that there
was a significant drop in flow since 1903 when the Aswan Dam was brought into
operation [21]. Apart frommany papers on environmental impacts using intervention
analysis, power computation for intervention analysis had been long overdue prior to
McLeod and Vingilis [61]. The result enables the sample size computation required
for detecting an intervention with a prescribed power and level. See also [62].

A recent contribution by Ian is to road safety in Ontario. This appears in the
paper, “Road safety impact of Ontario street racing and stunt driving law”, by Aizhan
Meirambayeva, Evelyn Vingilis, A. IanMcLeod et al., 2014. In this work, the impact
ofOntario’s street racing and stunt driving legislationwas assessed using intervention
analysis. Speeding-related collision casualties were examined separately in age and
gender groups, and a covariate adjustment using non-speeding casualtieswas utilized.
Some interesting findings include (1) The legal intervention was associated with
significantly reduced casualties in young male drivers; (2) No significant change was
observed in either young or mature female driver groups; and (3) Results suggest the
presence of the deterrent effect of the new street racing law.

Another interesting recent application of intervention analysis is to the increased
number of nephrology consults when estimated glomerular filtration rates were
reported in addition to serums creatinine [29]. The intervention analysis was done
for the whole Ontario population aged 25 or above. It was found that there is an
increase of about 23 consults per nephrologist per year. The result would have poten-
tial impact in resources allocation and might lead to improved treatment for those
with chronic kidney diseases.

There is no one in time series that I know of who has done so much with inter-
vention analysis as Ian.
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6 Epilogue

Ian’s contribution to time series and other areas in statistics are clearly broad and of
fundamental importance. Areas not covered in this article include

1. Simulation procedures for ARMA models
2. Trend assessment of water quality time series arising from the 1993 (Water

Resources Bulletin paper with Hipel and Camacho)
3. Drawing simple random sample (Applied Statistics, 1983 with D. Bellhouse)
4. Multivariate contemporaneous ARMA (Works with Hipel and Camacho [58])
5. Kendall’s Tau (Annals of Statistics, 1995 with Thompson and Valz; American

Statistician, 1990 with Valz)
6. Subset autoregression (Journal of Statistical Software with Y. Zhang)
7. Algorithms in R (with Hao and Krougly)
8. e-publications

My apology to Ian and his many co-authors if I have not listed some of their works
above.

Finally, I would like to express my personal indebtedness to Ian for his guidance,
mentorship, patience and generosity while I was a Ph.D. student at UWO in the
late 70s. I have learnt and received so much from Ian. Without Ian as my Ph.D.
supervisor, I would not have prospered today. I hope this article will be a small token
of my appreciation for what Ian has done for me.
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1 Introduction

Consider the linear regression model y = Xβ + ε, where X is the design matrix,
β = (β1, . . . , βp)

T the coefficient vector, and ε the random error vector with zero

mean vector and identity covariance matrix. The estimator for β, β̂
L
, defined by

β̂
L = arg min

β

⎧
⎨

⎩
( y − Xβ)T ( y − Xβ) + λ

p∑

j=1

|β j |
⎫
⎬

⎭
,

where λ is some positive tuning parameter, is called the LASSO estimator, which
was proposed by Tibshirani [30]. Knight and Fu [19] investigated the asymptotic
behaviour of the LASSO in linear regression models. They established asymptotic
normality of the estimators for the non-zero components of the parameter vector and
showed that the LASSO estimator sets some parameters exactly to 0 with a positive
probability, which means that the estimators perform model selection and parameter
estimation simultaneously. Zhao and Yu [36] and Zou [37] showed that the LASSO
would correctly identify the active set only if the irrelevant covariates are roughly
orthogonal to the relevant ones, as quantified through the so called irrepresentable
condition. If the irrepresentable condition are not satisfied the LASSO fails to achieve
variable selection consistency. As a remedy, Zou [37] proposed the adaptive LASSO
(aLASSO), which is defined as

β̂
aL = arg min

β

⎧
⎨

⎩
( y − Xβ)T ( y − Xβ) + λ

p∑

j=1

wj |β j |
⎫
⎬

⎭
,

where λ is a positive tuning parameter, and wj = 1/|β̃ j |γ for j = 1, . . . , p are adap-
tive weights with β̃ j being a

√
n-consistent estimate for β j and γ > 0 a fixed constant.

The idea underlying the adaptive LASSO is that smaller penalties are put on important
covariates and larger penalties on less important ones. The advantage of the adap-
tive LASSO over the LASSO is that when the irrepresentable condition fails the
adaptive LASSO can still do proper variable selection asymptotically whereas the
LASSO cannot [6]. Zou [37] showed that if λ and γ are properly chosen, the adaptive
LASSO enjoys the oracle properties [11], namely, the variable selection consistency
and estimation normality.

The (adaptive) LASSO methodology has been widely applied in the statistical
literature including time series analysis. Lots of application cases exist for univariate
autoregressive (AR) models (For example, [5–7, 20, 22, 24–26, 32, 35]). A bunch
of application cases also exist for vector autoregressive (VAR) models. Valdés-Sosa
et al. [31] used sparse VAR(1) models to estimate brain functional connectivity
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where the LASSO is applied to achieve sparsity of VAR(1) models. Fujita et al.
[12] applied sparse VAR model to estimate gene regulatory networks based on gene
expression profiles obtained from time-series microarray experiments where sparsity
was reported to have been achieved by LASSO. Hsu et al. [18] applied the LASSO
to achieve subset selection for VAR models of high order. In their methodology,
the first step is the determination of the optimal lag order paic or pbic via Akaike
information criterion (AIC) or the Bayesian information criterion (BIC) criterion,
respectively. Then they proposed the top-down, bottom-up and hybrid strategies to
reduce the full VAR(paic) or VAR(paic) models to sparse models. Haufe et al. [16]
applied the grouped LASSO to VAR models. Ren and Zhang [27] applied the adaptive
LASSO to achieve subset selection for VAR models with higher lag order. Similar to
Hsu et al. [18], the first step is to use AIC or Hannan and Quinn (HQ) criterion to
determine the optimal lag order and then the adaptive LASSO was applied to reduce
the full VAR models to sparse ones. Song and Bickel [29] proposed an integrated
approach for large VAR processes that yields three types of estimators: the adaptive
LASSO with (i) universal grouping, (ii) no grouping, and (iii) segmented grouping.
Kock and Callot [21] investigated oracle efficient estimation and forecasting of the
adaptive LASSO and the adaptive group LASSO for VAR models.

We proposed a systematic approach called the doubly adaptive LASSO
(daLASSO) tailored to several time series models, which incorporates the infor-
mation of partial autocorrelation embedded in time series data into adaptive LASSO
weights [22]. Liu [22] discusses construction of these weights for AR processes and
this will also appear in a companion paper. In this paper we focus on issues related
to VAR models. In particular, for VAR models, we formulate adaptive weights as
functions of the norms of the sample partial lag autocorrelation (PLAC) matrix
function [17] and ordinary least squares (OLS) or Yule–Walker estimates of a VAR
model. The method may also be called the PLAC-weighted adaptive LASSO, which
achieves identification, selection and estimation all in one go. We prove that the
PLAC-weighted adaptive LASSO possesses oracle properties. Simulation experi-
ments suggest that our approach shows promising results for VAR models, especially
in the identification of VAR lag order.

Section 2 gives a brief review of some basic concepts including the notion of par-
tial lag autocorrelation (PLAC) matrix function [17] and classic methods for building
VAR(p) models. Section 3 proposes the doubly adaptive LASSO for VAR models
with the lag order unknown a priori, as is the usual case. Section 4 presents the asymp-
totic properties of the doubly adaptive LASSO estimators. Section 5 implements the
algorithm. Section 6 summarizes results from numerical experiments. Section 7 offers
a real data analysis example. Section 8 gives some concluding remarks. Proofs are
put in Appendix.
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2 The VAR(p) Process and Standard Modelling Procedure

Definition 1 (The VAR(p) process) The K -variate time series { yt }, t ∈ Z =
{0,±1,±2, . . .} is said to be a VAR(p) process if it is stationary, and it is the solution
of the specification

yt = Φ1 yt−1 + · · · + Φ p yt−p + εt , t ∈ Z,

where Φ i ’s are fixed K × K coefficient matrices, and the innovation process εt ∼
WNK (0, Σε). We say that { yt } is an VAR(p) process with mean μ if { yt − μ} is a
VAR(p) process.

For convenience and without loss of generality, we deal with only the demeaned
VAR(p) process in this paper.

Proposition 1 (The condition for the ergodic stationarity) The VAR(p) process spec-
ified by (1) is ergodic stationary if and only if the corresponding characteristic equa-
tion satisfies the stability condition, namely,

det(I − Φ1z − · · · − Φ pz
p) �= 0

for |z| ≤ 1.

See Lütkepohl [23, pp. 14–16] for proof.

Estimation of the VAR(p) Model

Given the VAR order p there are a variety of approaches to estimating the parameters
(see, for example, Lütkepohl [23, pp. 69–102]). If the distribution of the innova-
tion process is known, we can get MLE by maximizing the log-likelihood function.
Through the Yule–Walker equations we can obtain the method-of-moments estima-
tor. Maximizing the Gaussian quasi-likelihood yields QMLE if the normal distribu-
tion is used as a proxy for the unknown innovation distribution. A further possibility
is to treat yt = Φ1 yt−1 + · · · + Φ p yt−p + εt , t = 1, . . . , T as multivariate regres-
sion equation and employ the ordinary least squares (OLS) method for estimation.
Hannan [14] shows that the OLS estimator has nice asymptotic properties such as
consistency and asymptotic normality under some regularity conditions.

Identification Via Information Criteria

A sequence of VAR models are estimated with successively increasing orders
1, 2, ..., h with h sufficiently large. Then the model that minimizes some criterion
is chosen. Some frequently used criteria include the final prediction error (FPE) [1],
the AIC [2, 3], the BIC [28], and the HQ [15].



The Doubly Adaptive LASSO for Vector Autoregressive Models 21

The Partial Lag Autocorrelation Matrix

We may employ the Box–Jenkins methodology, starting with identification of the lag
order. Then parameter estimation follows after the lag order identification. In extend-
ing the partial autocorrelation concept to vector time series, Heyse [17] introduced
the notion of the partial lag autocorrelation (PLAC) matrix function. The PLAC is the
autocorrelation matrix between the elements of yt and yt+s , after removing the linear
dependence of each on the intervening vectors yt+1, . . . , yt+s−1, which is defined as
the ordinary correlation between the elements of residuals,

us−1,t+s = yt+s − (
Ψs−1,1 yt+s−1 + · · · + Ψs−1,s−1 yt+1

)
,

and

vs−1,t = yt − (
Θs−1,1 yt+1 + · · · + Θs−1,s−1 yt+s−1

)

where Ψs−1, j and Θs−1, j , j = 1, . . . , s − 1 are multivariate linear regression coeffi-
cients that minimizes E[|us−1,t+s |2] and E[|vs−1,t |2], respectively.

Definition 2 (Partial lagautocorrelationmatrix [17]) The partial lag autocorrelation
matrix function of lag s is defined as

P(s) = Dv(s)
−1/2Vvu(s)Du(s)

−1/2,

where

Vu(s) = Var[us−1,t+s],
Vv(s) = Var[vs−1,t ],
Vvu(s) = Cov(vs−1,t , us−1,t+s),

and Dv(s) and Du(s) are the diagonal matrices of Vv(s) and Vu(s), respectively.

The K × K matrix function of the lag s, P(s), is a vector extension of the partial
autocorrelation function in the same manner as the autocorrelation matrix function
is a vector extension of the autocorrelation function. It can be shown that for s ≥ 2,
we have

Vu(s) = Γ (0) −
∑s−1

k=1
Ψs−1,kΓ (k),

Vv(s) = Γ (0) −
∑s−1

k=1
Θs−1,kΓ

′(k),

Vvu(s) = Γ (s) −
∑s−1

k=1
Γ (s − k)Ψ ′

s−1,k,

where Γ (s) is the K × K lag-s autocovariance matrix, that is, Γ (s) = Cov( yt , yt+s).
Note that Γ (s) is not symmetric; instead, Γ (s)′ = Γ (−s).
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For the case s = 1 since there are no intervening vectors between yt and yt+s we
have

Vu(1) = VAR( yt+1) = Γ (0),

Vv(1) = VAR( yt ) = Γ (0),

Vvu(1) = Cov( yt , yt+1) = Γ (1),

and
P(1) = D−1/2Γ (1)D−1/2 = ρ(1),

where D is the diagonal matrix of Γ (0), and ρ(1) the regular autocorrelation matrix
at lag 1.

It can be shown that for K = 1 the partial lag autocorrelation matrix function
P(s) reduces to the partial autocorrelation function of a univariate autoregressive
process.

Analogous to the partial autocorrelation function for the univariate case the partial
lag autocorrelation matrix, P(s) has the cut-off property for vector autoregressive
processes. So if { yt } is a VAR(p) then P(s) will be nonzero for s = p and will equal
0 for s > p. This property makes P(s) a useful tool for identifying VAR processes.

Heyse [17] also proposed a recursive procedure for computing P(s), which is a
vector generalization of Durbin’s [9] recursive computational procedure for univari-
ate partial autocorrelations. The algorithm requires that we first estimate the sample
cross-covariance matrices. Given a realization an K-dimensional vector time serie
y1, y2, . . . , yT , the sample autocovariance matrix at lag s is computed by

Γ̂ (s) = 1

T

T−s∑

t=1

( yt − ȳ)( yt+s − ȳ)′,

where ȳ is the vector of sample mean. The sample partial lag autocorrelation matrix,
P̂(s), can be obtained by using Γ̂ (r) of Γ (r) for r = 0, . . . , s − 1 in the recur-
sive algorithm. For computation details, see Heyse [17], Wei [33, pp. 408–412], or
Liu [22].

VAR Order Identification Via Sample PLAC Matrix

Under the null hypothesis that { yt } is a VAR(s-1) process, the two series of residuals
{us−1,t+s} and {vs−1,t } are uncorrelated, and each consists of K independent white
noise series. Heyes [17] showed that the elements of P̂(s), denoted by P̂i j (s), are

asymptotically N (0, 1/T ) distributed. In addition, T
(
P̂i j (s)

)2 ∼ χ2(1) asymptoti-

cally, which implies that asymptotically X (s) = T
∑K

i=1

∑K
i=1

(
P̂i j (s)

)2 ∼ χ2(K 2).
X (s) provides a diagnostic aid for determining the order of a vector autoregressive
model.
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3 The PLAC-Weighted Adaptive LASSO

In this section, we use the LASSO methodology to model the VAR(p) process. There
are two situations: VAR order is known in advance versus VAR order is unknown in
advance.

3.1 The Adaptive LASSO

If the VAR order is known in advance, the adaptive LASSO of Zou [37] can be used
to build a sparse VAR model. However, when the order is unknown in advance, the
adaptive LASSO fails to identify the order properly. For illustration, we generate
1000 data sets of sample size T = 500 using R function of mAr.sim (R package
mAR, Barbosa, 2009) from a bivariate VAR(5) process defined by (18) and (19) in
Sect. 6.1. The aLASSO was applied to fit 1000 bivariate VAR models, one fit for each
replicate. Pretending that we do not know the true lag order (p = 5) of the underlying
bivariate VAR process, we set the maximum order h to be 10 for each replicate. We
use grid-search method and the BIC criteria to find an approximately optimal value
of γ for each replicates. Specifically, let γ = [2.0, 4.0]Δ=0.25, where the subscript Δ
specifies the increment of the sequence. Table 1 shows some empirical statistics such
as Bias, MSE, and MAD (See Sect. 6 for definitions of these statistics) of the aLASSO
estimates for the VAR order. Table 2 shows the distribution of the aLASSO estimates
for the VAR order. From the tables we see clearly that the aLASSO identifies the
VAR order as 10 (i.e. VAR(10) models) most frequently and most of time (83 %).

To overcome the issue, we may employ a two-step procedure: First, use the OLS
procedure plus the BIC criteria or the PLAC to identify the VAR order; second, apply
the aLASSO to get a sparse model. This two-step procedure would work very well.
Alternatively, we propose the doubly adaptive LASSO (daLASSO), or partial lag
autocorrelation or PLAC-weighted adaptive LASSO. By employing the daLASSO
we want to get order identification, subset selection and parameter estimation prop-

Table 1 Empirical statistics of the aLASSO estimates for the bivariate AR order based on 1000
replicates, each of size T = 500, of the bivariate AR(5) model (18) with coefficients (19)

True Min Max Mean Median Mode SE Bias MSE MAD

5 7 10 9.794 10 10 0.488 4.794 23.22 4.794

For each replicate, set h = 10 and use the BIC to choose λT and γ

Table 2 Empirical distribution of the aLASSO estimates for the bivariate AR order based on 1000
replicates, each of size T = 500, of the bivariate AR(5) model (18) with coefficients (19)

Lag order 5 6 7 8 9 10

Percentage 0 0 0.3 2.8 14.5 82.8

For each replicate, set h = 10 and use the BIC to choose λT and γ
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erly done in one go. Simulation results as shown in Tables 3 and 4 in Sect. 6.1 suggest
that the daLASSO performs much better than the aLASSO in terms of VAR order
identification.

3.2 The Doubly Adaptive LASSO

Suppose that we observe a time series y1, y2, . . . , yT , which is a realization of a
stationary K -variate VAR(p) process with the true order p and true parameter matrix
Φo = (Φo

1, . . . ,Φ
o
p) unknown. Because the true lag order p is not known a priori,

we set the order to be h, which is sufficiently large such that h > p. Since the initial
values y0, . . . , y−h+1 are not available, we may use y1, . . . , yh as a presample. This
will reduce the effective sample size from T to T − h. Now, having the data, we
formulate the following VAR(h) model

yt = Φ1 yt−1 + · · · + Φh yt−h + εt , t = h + 1, . . . T . (1)

Let

Φ = (Φ1,Φ2, . . . ,Φh)K×(hK ) , (2)

xt = (
y′
t , y

′
t−1, . . . , y

′
t−h+1

)′
(hK )×1 . (3)

Then the model (1) can be written as

yt = Φxt−1, t = h + 1, . . . T .

To estimate the model via the OLS method, we define

Y = (
yh+1, yh+2, . . . , yT

)
K×(T−h)

, (4)

X = (xh, xh+1, . . . , xT−1)(hK )×(T−h) , (5)

=

⎛

⎜
⎜
⎜
⎝

yh yh+1 · · · yT−1
yh−1 yh · · · yT−2

...
...

...
...

y1 y2 · · · yT−h)

⎞

⎟
⎟
⎟
⎠

(hK )×(T−h)

,

E = (εh+1, εh+2, . . . , εT )K×(T−h) ,

and formulate compactly the multivariate-regression-type equations as

Y = ΦX + E.
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Equivalently, using vec operator, which transforms an m × n matrix into an mn × 1
vector by stacking the columns, and Kronecker product operator ⊗, which for m × n
matrix A = (ai j ) and p × q matrix B = (bi j ) generates an mp × nq matrix defined
by

A ⊗ B =
⎛

⎜
⎝

a11B · · · a1n B
...

...
am1B · · · amn B

⎞

⎟
⎠ ,

we may formulate the univariate-regression-type equations as

y = (
X ′ ⊗ IK

)
φ + ε, (6)

where y and ε are K (T − h) × 1 vectors defined as

y = vec(Y) = (
y′
h+1, y′

h+2, . . . , y′
T

)′
, (7)

e = vec(E) = (
ε′
h+1, ε′

h+2, . . . , ε′
T

)′
, (8)

and φ is a (hK 2) × 1 vector defined as

φ = (
φ1, . . . , φl , . . . , φhK 2

)′ (9)

= vec(Φ) = (
vec(Φ1)′, vec(Φ2)′, . . . , vec(Φh)′

)′

= (
φ11,1, . . . , φKK ,1, φ11,2, . . . , φKK ,2, . . . , phii j,k , . . . , φ11,h , . . . , φKK ,h

)′
. (10)

Note that the index l in (9) corresponds to the l-th element of the vector φ, and
the index (i j, k) in (10) corresponds to the (i, j)-th element of the matrix Φk . The
relation between (i, j, k) and l is bijective and defined by

l = f (i, j, k) = (k − 1)K 2 + ( j − 1)K + i (11)

where l = 1, 2, . . . , (hK 2), i, j = 1, 2, . . . , K , and k = 1, 2, . . . , h.

The true parameter matrix is Φo = (Φo
1, . . . ,Φ

o
p), and the parameters vector is

φo ≡
(
φo

1 , φo
2 , . . . , φ

o
pK 2

)
= vec(Φo) (12)

= (
φo

11,1, . . . , φ
o
K K ,1, . . . , φ

o
11,p, . . . , φ

o
K K ,p

)′
.

In the context of the doubly adaptive LASSO procedure, we actually estimate the
extended true parameter matrix Φ∗ or the extended true parameter vector φ∗ defined
by

Φ∗ = (
Φ∗

1, . . . ,Φ
∗
p,Φ

∗
p+1, . . . ,Φ

∗
h

)′
,
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where

Φ∗
j =

{
Φo

j if j ≤ p

0 if p < j ≤ h
,

or

φ∗ ≡ (
φ∗

1 , φ∗
2 , . . . , φ∗

hK 2

)
(13)

= vec(Φ∗) = (
vec(Φ∗

1)
′, vec(Φ∗

2)
′, . . . , vec(Φ∗

h)
′)′

= (
φ∗

11,1, . . . , φ
∗
KK ,1, . . . , φ

∗
11,p, . . . , φ

∗
KK ,p, . . . , φ

∗
11,h, . . . , φ

∗
KK ,h

)′

= (
φo

11,1, . . . , φ
o
K K ,1, . . . , φ

o
11,p, . . . , φ

o
K K ,p, 0, . . . , 0

)′
.

It is clear that under appropriate assumptions on the initial values for the VAR(p)
and VAR(h) processes, the VAR(p) with the fixed true parameters Φo,

yt =
p∑

j=1

Φo
j yt− j + at , t = 1, . . . , T,

and the AR(h) with the fixed extended true parameters Φ∗,

yt =
h∑

j=1

Φ∗
j yt− j + at , t = 1, . . . , T

are equivalent.

For an m × n matrix A, its entrywise p-norm, denoted as ‖A‖p, is defined as

‖A‖p = ‖vec(A)‖p =
(∑m

i=1

∑n

j=1
|ai j |p

)1/p
.

The Frobenius norm, which is the special case p = 2, is defined as

‖A‖F =
√∑m

i=1

∑n

j=1
|ai j |2

Definition 3 (The PLAC-weighted adaptive LASSO) The PLAC-weighted adaptive

LASSO or doubly adaptive LASSO (daLASSO) estimator φ̂
daL

T for φ∗ is defined as

φ̂
daL = arg min

φ

⎧
⎨

⎩

∣
∣
∣
∣ y − (

X ′ ⊗ IK
)
φ
∣
∣
∣
∣2 + λT

h∑

k=1

K∑

i=1

K∑

j=1

ŵi j,k

∣
∣φi j,k

∣
∣

⎫
⎬

⎭
, (14)
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where

ŵi j,k = 1
∣
∣
∣φ̃i j,k

∣
∣
∣
γ1

(
h∑

s=k

∥
∥ P̂(s)

∥
∥γ0

γ0

)γ2
= 1

∣
∣
∣φ̃i j,k

∣
∣
∣
γ1

Aγ2
k

, (15)

Ak =
h∑

s=k

∥
∥ P̂(s)

∥
∥γ0

γ0
, (16)

φ̃i j,k is the ordinary least squares estimate or any other consistent estimate for φi j,k ,
∥
∥ P̂(s)

∥
∥

γ0
=

(∑K
i=1

∑K
j=1 |P̂i j (s)|γ0

)1/γ0

is the entrywise γ0-norm of the sample par-

tial lag autocorrelation matrix P̂(s) at lag s, and γ0 > 0, γ1 ≥ 0, and γ2 ≥ 0 are some
fixed constants, and h is the fixed maximum lag set initially.

Remarks:

1. Both the LASSO [30] and the adaptive LASSO [37] are special cases of the
doubly adaptive LASSO. In former case, γ1 = γ2 = 0, and in latter case, γ2 = 0.

2. In the daLASSO procedure the PLAC information and the Y-W or OLS estimates
of the VAR(h) model work in tandem to perform subset selection and parameter
estimation simultaneously. The basic idea can be elucidated from the following
points:

a. Firstly, note that A1 ≥ · · · ≥ Ap ≥ · · · ≥ Ah . So monotonically increasing
penalties are imposed on Φk as k increases from 1 to h. Consequently, a VAR
term with smaller lag is more likely to be included in the model compared to
one with larger lag.

b. Secondly, due to the cutoff property of the PLAC, namely, the values of
‖ P̂(s)‖ for s = p + 1, p + 2 . . . , h being relatively very small, if k goes
from h backwards to p, Ak will exhibit a sharp jump at k = p. Consequently,
VAR terms with lags greater than p get much more penalties than those with
k ≤ p, and therefore are more likely to be excluded from the model. The true
VAR order is thus automatically identified.

c. Finally, |φ̃i j,k |γ1 imposes larger penalty on φi j,k if the corresponding VAR
term is not significant. If a VAR term is not significant, a consistent estimate
for the corresponding coefficient is close to zero, and the penalty is therefore
close to ∞. Consequently, an insignificant VAR term gets more penalty and
is more likely to be excluded from the model compared to a significant term.

3. To see the mathematical reason why the daLASSO is superior to aLASSO in iden-
tifying the VAR order, observe that φ̃i j,k>p = Op(T−1/2) and Ak>p = Op(T−γ0/2)

so that the aLASSO weights ŵaL
i j,k>p = Op(T γ1/2) and the daLASSO weights

ŵdaL
i j,k>p = Op(T (γ1+γ0γ2)/2). Therefore, the daLASSO put more penalties on those

parameters with lags that go beyond the true order p compared to the aLASSO.
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4 The Asymptotic Properties of the PLAC-Weighted
Adaptive LASSO

The adaptive LASSO and the doubly adaptive LASSO methods yield biased esti-
mators. In this section, however, we show that with properly chosen values for γ0,
γ1, and γ2 in (15), together with a proper choice of λT , the doubly adaptive LASSO
enjoys desirable asymptotic properties. We actually study the asymptotic properties
of the doubly adaptive LASSO estimator for the extended true parameter vector φ∗
in (13) instead of φo in (12).

First, we clarify notations. Let φ̃l be any consistent estimate for the true φ∗
l , say,

the OLS or Yule–Walker estimate. Let φ̂daL
T,l be the doubly adaptive LASSO esti-

mate for φ∗
l . Let S be the set of the true nonzero coefficient, i.e. S = {l : φ∗

l �= 0} =
supp(φ∗) ⊂ {1, 2, . . . , hK 2} with h being set large enough such that h > p. Let
S
c = {1, 2, . . . , hK 2} \ S. Let s = |S| be the cardinality of the set S. The assump-

tion of the model sparsity implies that s < pK 2. Let ŜT = {l : φ̂daL
T,l �= 0} and

Ŝ
c
T = {1, 2, . . . , hK 2} \ ŜT . Let φ∗

S
be the s-dimensional vector for true underlying

nonzero parameters, and φ∗
Sc be the vector for true underlying null parameters, i.e.

φ∗
S

= {φ∗
l : l ∈ S} and φ∗

Sc = {φ∗
l : l ∈ S

c}. Let φ̂
daL

T,S be the vector for the daLASSO

estimate for φ∗
S

and φ̂
daL

T,Sc the vector for the daLASSO estimate for the zero vector

φ∗
Sc , i.e. φ̂

daL

T,S = {φ̂daL
T,l : l ∈ S} and φ̂

daL

T,Sc = {φ̂daL
T,l : l ∈ S

c}. Let φ̂
daL

ŜT
be the vector

for nonzero daLASSO estimates and φ̂
daL

Ŝ
c
T

the vector for zero daLASSO estimates, i.e.

φ̂
daL

ŜT
= {φ̂daL

T,l : l ∈ ŜT } and φ̂
daL

Ŝ
c
T

= {φ̂daL
T,l : l ∈ Ŝ

c
T }. Note that φ̂

daL

T = φ̂
daL

ŜT
∪ φ̂

daL

Ŝ
c
T

with the subscript indices being in the same order as those of φ∗.

Let Γ be the covariance matrix of xt in (3), namely,

Γ = E[xt x′
t ] =

⎛

⎜
⎜
⎜
⎝

Γ (0) Γ (−1) · · · Γ (−h + 1)
Γ (1) Γ (0) · · · Γ (−h + 2)

...
...

...
Γ (h − 1) Γ (h − 2) · · · Γ (0)

⎞

⎟
⎟
⎟
⎠

(hK )×(hK )

,

where Γ (s) is the lag-s autocovariance matrix of yt . Note that Γ is symmetric
although Γ (s) is not symmetric. We can partition Γ as follows

Γ =
(

Γ SS Γ SS
c

Γ ScS Γ ScSc

)

,

where we retain the ordering according to the lag index of xt within each partition.
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Assumptions:
A0: The coefficients matrix Φ defined in (2) belongs to a compact set.
A1: For all Φ, det(I − Φ1z − · · · − Φhzh) �= 0 for |z| ≤ 1.
A2: εt = (ε1, . . . , εK )′ is a strong white noise process, i.e. E[εt ] = 0, E

[
εtε

′
t

] =
Σε is positive definite, εt and εs are independent for s �= t , and E |εi tε j tεktεlt | < M <
∞ for i, j, k, l = 1, . . . , K .

A3: The submatrix Γ SS is not singular and therefore invertible.

Remarks on assumptions:

(1) A0 is always assumed.
(2) A1 ensures that { yt } is ergodic stationary
(3) A2 requires the existence of finite fourth moments of { yt }.
(4) A2 guarantees the existence of the covariance matrix Γ .

The doubly adaptive LASSO estimator φ̂
daL

T is said to be consistent for φ∗ if

‖ φ̂
daL

T − φ∗ ‖ P−→ 0 as T → ∞.

Theorem 1 (Estimation Consistency of φ̂
daL

T ).Let aT = √
T min

l∈S

(
|φ̃l |γ1 Aγ2

l

)
, where

(
|φ̃l |γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|γ1 Aγ2

k

)
by the bijective function (11). If λT =

op(aT ), then under A0–A2 we have:

∥
∥
∥φ̂

daL

T − φ∗
∥
∥
∥

P−→ 0 as T → ∞,

as T → ∞.

Proposition 2 Let aT = √
T min

l∈S

(
|φ̃l |γ1 Aγ2

l

)
, and bT = √

T max
l∈Sc

(
|φ̃l |γ1 Aγ2

l

)
,

where
(
|φ̃l |γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|γ1 Aγ2

k

)
by the bijective function (11). If

λT = op(aT ) and λT /bT
P−→ ∞, then under A0–A3, we have

⎧
⎨

⎩

√
T

(
φ̂
daL

T,S − φ∗
S

)
D−→ N

(
0, (Γ SS)

−1 ⊗ Σε

)
,

√
T

(
φ̂
daL

T,Sc − φ∗
Sc

)
P−→ 0.

Proposition 2 regards the asymptotic property of φ̂
daL

T,S , not φ̂
daL

ŜT
. To understand

the difference between φ̂
daL

T,S and φ̂
daL

ŜT
, imagine a Teacher–Student dual in which

Teacher is the data generator and Student is the data analyst. Teacher generates, say,
1000 data sets from a sparse VAR(p) model he knows apriori, and Student fits sparse
VAR(p) models for Teacher. Teacher will give Student a good mark if Student could
statistically identify the sparsity structure and estimate the coefficients with

√
T -

consistency. Student does not know φ̂
daL

T,S since he does not know the set S. What
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Student knows is φ̂
daL

ŜT
only. Teacher knows everything including S, φ̂

daL

T,S , and φ̂
daL

ŜT
.

Proposition 2 is therefore useful for Teacher to assess analysis results from Student,
but of little use for Student.

Corollary 1 Let aT = √
T min

l∈S

(
|φ̃l |γ1 Aγ2

l

)
, and bT = √

T max
l∈Sc

(
|φ̃l |γ1 Aγ2

l

)
, where

(
|φ̃l |γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|γ1 Aγ2

k

)
by the bijective function (11). If λT =

op(aT ) and λT /bT
P−→ ∞, then under A0–A3, we have

P

(
l ∈ ŜT

)
→ 1 if l ∈ S,

as T → ∞.

This is clear because the
√
T -normality of φ̂

daL

T,S in Proposition 2 implies that

‖φ̂daL

T,S − φ∗
S
‖ = Op

(
1/

√
T

)
. Thus, φ̂

daL

T,S

P−→ φ∗
S
, which implies that ∀l ∈ S, we have

P

(
l ∈ ŜT

)
→ 1, as T → ∞.

Fan and Li [11] specified the oracle properties of a sparse estimator in the lan-
guage of Donoho et al. [8]. Heuristically, an oracle procedure can perform as well
asymptotically as if the true submodel were known in advance. We extend the notion
of the oracle properties of an estimator to the context of VAR times series models.

The doubly adaptive positive LASSO estimator φ̂
daL

T for φ∗ is said to have the oracle
properties if, with probability tending to 1, it could (i) identify the true sparsity pat-
tern, i.e. lim P(ŜT = S) = 1, (ii) identify the true lag order of the VAR process, i,e,
lim P( p̂daLT = p) = 1, and (iii) have an optimal estimation rate of the coefficients
as T → ∞.

The following theorem says that the doubly adaptive LASSO procedure is an
oracle procedure.

Theorem 2 (Oracle properties of φ̂
daL

T ) Let aT = √
T min

l∈S

(
|φ̃l |γ1 Aγ2

l

)
and bT =

√
T max

l∈Sc
(
|φ̃l |γ1 Aγ2

l

)
, where

(
|φ̃l |γ1 Aγ2

l

)
corresponds to

(
|φ̃(i j,k)|γ1 Aγ2

k

)
by the bijec-

tive function (11). If λT = op(aT ) and λT /bT
P−→ ∞, then under A0–A3, φ̂

daL

T must
satisfy:

(i) Selection Consistency: P

(
ŜT = S

)
−→ 1,

(ii) Identification consistency: P
(
p̂daLT = p

) −→ 1, and

(iii) Asymptotic Normality:
√
T

(
φ̂
daL

ŜT
− φ∗

S

)
D−→ N

(
0, (Γ SS)

−1 ⊗ Σε

)
,

as T → ∞.
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Theorem 2 regards the asymptotic properties of φ̂
daL

ŜT
, the nonzero subvector of

φ̂
daL

T . In the Teacher–Student dual, Student knows ŜT and φ̂
daL

ŜT
as well. Theorem 2

assures that using the daLASSO Student is able to statistically identify the sparsity
structure as if he knew S and estimate the coefficients with

√
T -consistency. Theorem

2 is therefore useful for Student, the data analyst, to assess the VAR models fitted
via the daLASSO.

Remarks:

1. Although the asymptotic distributions of φ̂
daL

T,S and φ̂
daL

ŜT
are identical, φ̂

daL

T,S and

φ̂
daL

ŜT
represent different identities; φ̂

daL

T,S is the daLASSO estimator for the true

non-zero parameter vector unknown in advance whereas φ̂
daL

ŜT
is the vector for

non-zeros estimated by the daLASSO.

2. The oracle properties we discuss here concern φ̂
daL

ŜT
rather than φ̂

daL

T,S .

3. Proposition 2 concerns φ̂
daL

T,S , the daLASSO estimators for the true non-zero para-

meters, which are unknown in advance whereas Theorem 2 concerns φ̂
daL

ŜT
, the

non-zeros estimated by the daLASSO.
4. Estimation consistency is necessary for oracle properties whereas oracle proper-

ties are sufficient for the former.
5. The LASSO, the aLASSO and the daLASSO all have estimation consistency

property under the same asymptotic condition for tuning parameter λT (and other
regularity conditions).

6. The LASSO, the aLASSO and the daLASSO estimators might behaviour quite
differently when finite samples are used. We need to investigate and compare
their finite sample properties.

5 Computation Algorithm for the Doubly Adaptive LASSO

Given values of γ0, γ1, and γ2, the daLASSO procedure is implemented via the lars
developed by Efron et al. [10]. The lars algorithm is very efficient, requiring the
same order of computational cost as that of a single least squares fit. The LASSO
methodology yields a path of possible solutions defined by the continuum over tuning
and weighting parameters. The choice of these parameters determines the tradeoff
between model fit and model sparsity. We use the BIC criteria to select the optimal
value for ΛT = (λT , γ0, γ1, γ2). The BIC is defined as

BIC = log(det Σ̂ε) + |ŜT | log(T − h), (17)

where

Σ̂ε = 1

T − h
(Y − Φ̂

daL
X)(Y − Φ̂

daL
X)′,
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|ŜT | is the cardinality of the set ŜT , Φ̂ being the estimates for (2), Y is (4), and X
is (5). Algorithm 1 is the detailed computational procedure for the doubly adaptive
LASSO given the value of the triple (γ0, γ1, γ2). Algorithm 5 shows the complete
computation steps.

Algorithm 1: The lars algorithm for the daLASSO given (γ0, γ1, γ2)

Input: Data yt , t = 1, . . . , T , and a specific value for (γ0, γ1, γ2) and fixed h.

Output: Φ̂
daL
T for the specific (γ0, γ1, γ2).

START1

Compute ŵi j,k defined by (15) and transform to ŵT,l according to (11).2

Compute X∗ = XŴ
−1

, where Ŵ = diag[ŵ1, . . . , ŵhK 2 ], i.e.3

x∗
l = xl/ŵl , l = 1, . . . , hK 2.

Apply lars to obtain the path solution4

φ̂(λT |(γ0, γ1, γ2)) = argminφ

{
( y − X∗φ)T ( y − X∗φ) + λT

∑hK 2

j=1 |φ j |
}

.

Compute φ̂
daL

T (λT |(γ0, γ1, γ2)) = Ŵ
−1

φ̂.5

Compute BIC(λT |(γ0, γ1, γ2)) according to (17) for the whole path.6

Select λ∗
T such that BIC(λ∗

T |(γ0, γ1, γ2)) ≤ BIC(λT |(γ0, γ1, γ2)).7

Output Φ̂
daL
T (λ∗

T |(γ0, γ1, γ2)).8

END9

Algorithm 2: Complete algorithm for the daLASSO
Input: Data: yt , t = 1, . . . , T and fixed h

Output: The daLASSO estimator Φ̂
daL
T

Start: Set up a grid G = γ0 × γ1 × γ2 with G = |G |.1

for g ← 1 to G do2

Apply Algorithm 1 to get Φ̂T

(
λ

∗(g)
T

∣
∣
∣
(
γ

(g)
0 , γ

(g)
1 , γ

(g)
2

))
.3

Calculate BIC
(
λ

∗(g)
T , γ

(g)
0 , γ

(g)
1 , γ

(g)
2

)
.4

Choose Λ∗
T such that5

BIC(Λ∗
T ) = min

{
BIC

(
λ

∗(g)
T , γ

(g)
0 , γ

(g)
1 , γ

(g)
2

)
: ∀g = 1, . . . ,G

}
.

Output Φ̂
daL
T ← Φ̂T (Λ∗

T ).6

End7

6 Monte Carlo Study

We use Monte Carlo to investigate the sampling properties of the PLAC-weighted
adaptive LASSO estimator for VAR models. Specifically, we would like to assess its
performance in terms of order identification, the parameter estimation, and subset
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selection. The empirical statistics such as minimum, maximum, mean, medium, mode
(for VAR lag order only), standard error, bias, MSE, MAD, and selection proportion
were summarized based on 1000 replications. The definitions of empirical bias, MSE,
and MAD are listed below for reference (and the rest omitted):

B̂ias( p̂daL) = Ê[ p̂daL ] − p = 1

M

M∑

m=1

( p̂daL)(m) − p

M̂SE( p̂daL) = Ê[ p̂daL − p]2 = 1

M

M∑

m=1

(( p̂daL)(m) − p)2

M̂ AD( p̂daL) = Ê | p̂daL − p| = 1

M

M∑

m=1

|( p̂daL)(m) − p|

B̂ias(φ̂daL
j ) = Ê[φ̂daL

j ] − φ∗
j = 1

M

M∑

m=1

(
φ̂daL
j

)(m) − φ∗
j

M̂ SE(φ̂daL
j ) = Ê[φ̂daL

j − φ∗
j ]2 = 1

M

M∑

m=1

((
φ̂daL
j

)(m) − φ∗
j

)2

M̂ AD(φ̂daL
j ) = Ê |φ̂daL

j − φ∗
j | = 1

M

M∑

m=1

∣
∣
∣
∣

(
φ̂daL
j

)(m) − φ∗
j

∣
∣
∣
∣

where M denotes the total number of MC runs.

6.1 A Bivariate VAR(5) Process

We use R function of mAr.sim (R package mAR, Barbosa, 2009) to replicate 1000
data sets, denoted as D (m),m = 1, . . . , 1000, of sample size T = 500 from the sta-
tionary and stable bivariate VAR(5) process defined by (18) and (19).

yt = Φ1 yt−1 + Φ2 yt−2 + Φ4 yt−4 + Φ5 yt−5 + et , (18)

where

Φ1 =
(

0.4 1.2
0.3 0.0

)

, Φ2 =
(

0.35 −0.3
0.0 −0.5

)

, Φ4 =
(

0.0 −0.5
0.4 0.0

)

, Φ5 =
(

0.0 0.0
0.4 −0.3

)

, (19)
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and et is a Gaussian white noise with

Σ = Cov(et ) =
(

1.0 −0.6
0.0 2.5

)

.

The daLASSO was applied to fit 1000 bivariate VAR models to D (m),m =
1, . . . , 1000. Pretending that the true lag order (p = 5) of the underlying bivari-
ate VAR process is unknown, we set the maximum order h to be 10 for each data.
To find an approximately optimal combination of γ0, γ1, and γ2, we use grid-search
method and the BIC criteria. Specifically, letG = γ0 × γ1 × γ2 = [2.0, 4.0]Δ=0.25 ×
[1.5, 8.0]Δ=0.25 × [1.5, 8.0]Δ=0.25, where the subscript Δ specifies the increment of
the sequence. The same 3-dimensional grid G is used for all 1000 replicates. Algo-
rithm 3 describes the computational procedure for simulation study.

Algorithm 3: Algorithm for Monte Carlo

Input: Data D (m),m = 1, . . . , 1000 = M and Grid G .
Output: The LASSO estimate Φ̂

daL(m)
,m = 1, . . . , M .

Start1

for m ← 1 to M do2

Apply Algorithm 5 to get Φ̂
daL(m)

.3

Compute empirical statistics.4

End5

Table 3 shows some empirical statistics such as Bias, MSE, and MAD of the VAR
order estimates. Table 4 shows the distribution of the VAR order estimates. Table 5
shows empirical statistics for VAR coefficients. We summarize a few observations
as follows:

1. VAR lag order identification. Table 3 shows that the mode of 1000 bivariate VAR
order estimates is 5, the true lag order. Table 4 shows that almost 72 % the fitted
models have the order 5. The last column in Table 5 shows that autoregressors
yt−k for k > 5 have very slight chance to be included in models. Table 3 shows the
mean and median of VAR order estimates are 5.55 and 5, respectively, indicating
that the distribution of VAR order estimates is slightly skewed to the right with
a right tail in distribution as evident in Table 4. This example confirms that the
daLASSO procedure is very excellent in identifying the order of a VAR process.

2. VAR subset selection. The last column in Table 5 shows that the non-zero coef-
ficients were selected into the model almost 100 % of time. On the other hand,
some variables that are not included in the true bivariate VAR(5) process are
also selected with quite high false inclusion rate. For example, Φ∗

3 = 0, but 25–
54 % of time it was falsely estimated as non-zero. The variables corresponding
to the coefficients φ22,1, φ21,2, and φ22,4 are falsely included in the models 39, 44,
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Table 3 Empirical statistics of the daLASSO estimates for the bivariate AR order based on 1000
replicates, each of size T = 500, of the bivariate AR(5) model (18) with coefficients (19)

True Min Max Mean Median Mode SE Bias MSE MAD

5 5 10 5.546 5 5 1.015 0.546 1.328 0.546

For each replicate, set h = 10 and use the BIC to choose λT , γ0, γ1, and γ2

Table 4 Empirical distribution of the daLASSO estimates for the bivariate AR order based on 1000
replicates, each of size T = 500, of the bivariate AR(5) model (18) with coefficients (19)

Lag order 5 6 7 8 9 10

Percentage 71.6 11.4 10.8 3.9 1.6 0.7

For each replicate, set h = 10 and use the BIC to choose λT , γ0, γ1, and γ2

and 45 % of time, respectively. This confirms the suggestion that the daLASSO
procedure have strong power and be conservative in terms of subset selection.

3. VAR coefficients estimation. The Mean, Median, SE, BIAS, and MSE columns
in Table 5 suggest that the parameters are consistently estimated. In addition, the
minimum and maximum columns in Table 5 shows that the signs of parameters
are identified correctly almost 100 % of times: if the true value of a parameter is
positive, the minimum of estimates never falls below 0; if the true value of a para-
meter is negative, the maximum of estimates never goes beyond 0. This example
confirms the suggestion that the daLASSO procedure estimate the parameters
consistently.

6.2 A Trivariate VAR(5) Process

We also conduct simulation study on a sparse trivariate VAR(5) process. We use R
function of mAr.sim (R package mAR, Barbosa, 2009) to generate 1000 data sets
of sample size T = 500 from the stationary process defined by (20) and (21). The
daLASSO was applied to fit 1000 models. For each data set, we use grid-search
method and the BIC criteria to find an approximately optimal combination of γ0, γ1,
and γ2. Specifically, let G = γ0 × γ1 × γ2 = [2.0, 4.0]Δ=0.25 × [1.5, 8.0]Δ=0.25 ×
[1.5, 8.0]Δ=0.25. The same 3-dimensional grid G is used for all 1000 replicates.

yt = �1yt−1 + �2yt−2 + �4yt−4 + �5yt−5 + et , (20)

where
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Φ1 =
⎛

⎝
0.3 0.2 0.3
0.5 0.0 0.0
0.0 0.1 −0.5

⎞

⎠ , Φ2 =
⎛

⎝
−0.3 0.0 0.0
0.0 0.1, −0.5
0.7 0.2 0.0

⎞

⎠ ,

Φ4 =
⎛

⎝
0.0 0.4 −0.2
0.6 0.0 0.0
0.0 −0.4, 0.0

⎞

⎠ , Φ5 =
⎛

⎝
0.2 0.0 0.0
0.0 0.0 0.4
0.0 0.3 0.3

⎞

⎠ , (21)

and et is a Gaussian white noise with

Σ = Cov(et ) =
⎛

⎝
1.0 −0.6 0.4
0.2 1.2 0.3

−0.5 0.1 1.1

⎞

⎠ .

The results are consistent with what we got from the bivariate case. Interested
readers may obtain the results from authors through emails.

7 Real Data Analysis

We use the data of quarterly West German investment, income, and consumption data
(1960–1982) from Lütkepohl [23, pp. 77–79]. Using the software Stata function var
we fit a VAR(2) model on the first differences of logarithms of the data. The estimated
coefficients follow with the significant ones being bold-faced:

Φ̂1 =
⎛

⎝
−0.273 0.337 0.652
0.043 −0.123 0.305
0.003 0.289 −0.285

⎞

⎠ , Φ̂2 =
⎛

⎝
−0.134 0.183 0.598
0.062 0.021 0.049
0.050 0.366 −0.116

⎞

⎠ .

We use the daLASSO to fit a sparse VAR model. We set h = 4 and the grid G =
γ0 × γ1 × γ2 = [1.0, 4.0]Δ=0.5 × [1.0, 4.0]Δ=0.25 × [1.0, 5.0]Δ=0.25. We use the BIC
to select the optimal value for tuning and weighting parameters. A VAR(4) sparse
model was fitted with estimated coefficients as follows.

Φ̂daL
1 =

⎛

⎝
−0.261 0.381 0.399
0.018 0 0.534

0 0.456 −0.139

⎞

⎠ , Φ̂daL
2 =

⎛

⎝
0.399 0.030 0.426
0.534 0 0.378

−0.139 0.536 0

⎞

⎠ ,

Φ̂daL
3 = Φ̂daL

4 = 0.

We observe that (i) all coefficient matrices beyond the lag 2 were shrank to zero,
(ii) all significant coefficients were included in the model, (iii) all coefficients that
were set to 0 are insignificant, and (iv) some insignificant coefficients were included
in the model by the doubly adaptive LASSO procedure.
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8 Conclusion

In this paper, we propose the doubly adaptive LASSO or PLAC-weighted adaptive
LASSO for VAR models. The adaptive LASSO alone fails to identify the VAR
order. So one has to identify the lag order of a VAR process before applying the
aLASSO. The daLASSO incorporates the partial lag autocorrelation into adaptive
LASSO weights, thereby getting order identification, subset selection and parameter
estimation done in one go, as shown in Monte Carlo examples and real data analysis
example. In the future research, we will develop methods for estimating standard
errors of daLASSO estimators and constructing forecasting intervals. We will also
conduct comparison studies on forecast performance and goodness-of-fit of classic,
aLASSO and daLASSO approaches.

Acknowledgements We sincerely thank two anonymous referees for their valuable comments and
suggestions that we have adopted to improve this manuscript greatly.

Appendix

These proofs use three basic results on ergodicity, which are stated here for
completeness.

Theorem 3 (Ergodic theorem. See White [34, pp. 39–46]) Let the K-variate vector
process { yt } be ergodic stationary with E[ yt ] = μ where E[yi,t ] = μi is finite for
all i = 1, . . . , K. Then

ȳ
T

= 1

T

T∑

t=1

yt −→ μ a.s.

Theorem 4 (Ergodic theorem of functions. See White [34, pp. 39–46]) Let f be
a F -measurable function into R

k and define zt = f (. . . , yt , yt−1, . . .), where yt
is q × 1 vector. (i) If { yt } is stationary, then {zt } is stationary. (ii) If { yt } is ergodic
stationary and E[zt ] is well-defined then {zt } is ergodic stationary.
Theorem 5 (Central Limit Theorem for Martingale Differences. Billingsley [4]) Let
{ν t } be an ergodic stationary sequence of square integrable martingale difference
vectors such that Var [ν t ] ≡ Σν whose all entries exist and finite, Then

1√
T

T∑

t=1

ν t
D−→ N (0, Σν).

Lemma 1 (Lütkepohl [23, p. 73] states this lemma without proof) Under A1–A2,
we have
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1. 1
T XX ′ a.s.−→ Γ ,

2. 1
T (X ⊗ IK )e

a.s.−→ 0, and

3. 1√
T
(X ⊗ IK )e

D−→ w ∼ N (0, Γ ⊗ Σε),
where ⊗ denotes the Kronecker product.

Proof (i) It is easy to check that XX ′ = ∑T−1
t=h xt x′

t . By A1, xt is ergodic stationary.
By Theorem 4, xt x′

t is also ergodic stationary. By Theorem 3 we have

1

T
XX ′ a.s.−→ E[xt x′

t ] = Γ .

(ii) It is not very hard to check that (X ⊗ IK )e = ∑T
t=h+1(xt−1 ⊗ IK )εt . Since

xt is ergodic stationary by A1, so is (xt−1 ⊗ IK )εt by Theorem 4. Also by Theorem
3, we have

1

T
(X ⊗ IK )e

a.s.−→ E[(xt−1 ⊗ IK )εt ],

where E[(xt−1 ⊗ IK )εt ] = E
[[(xt−1 ⊗ IK )εt |Ft−1]

] = (xt−1 ⊗ IK )E[εt |Ft−1] =
0.

(iii) Let ν t = (xt−1 ⊗ IK )εt . Then {ν t } is a vector martingale difference because
E[ν t |Ft−1] = 0. By A1, A2, and Theorem 5 we have

1√
T

T∑

t=h+1

ν t
D−→ N (0, Σν),

where Σν = Var[ν t ] = Var[(xt−1 ⊗ IK )εt ] = E[(xt−1 ⊗ IK )εtε
′
t (x

′
t−1 ⊗ IK )] =

Γ ⊗ Σε. �

Proof of Theorem 1

Let ΨT (φ) be defined as

ΨT (φ) =‖ y − (X ′ ⊗ IK )φ) ‖2 +λT

hK 2
∑

l=1

ŵT,l |φl |,

where X is defined in (5) and y in (7). Following Fan and Li [11], we show that for
every ε > 0 there exists a sufficiently large C such that

P

(

inf‖u‖≥C
ΨT

(
φ∗ + u/

√
T

)
> ΨT (φ∗)

)

≥ 1 − ε,

which implies that with probability at least 1 − ε that there exists a minimum in
the ball {φ∗ + u/

√
T : ‖u‖ ≤ C}. Hence there exists a local minimizer such that

‖ φ̂
daL

T − φ∗ ‖= Op(T−1/2). Observe that
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ΨT

(
φ∗ + u/

√
T

)
− ΨT

(
φ∗)

=
∥
∥
∥y − (X ′ ⊗ IK )

(
φ∗ + u/

√
T

)∥
∥
∥

2 − ∥
∥y − (X ′ ⊗ IK )φ∗∥∥2 + λT

hK 2
∑

l=1

ŵT,l

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

= u′
(

1

T
(XX ′ ⊗ IK )

)

u − 2u′
(

1√
T

(X ⊗ IK )e
)

+ λT

hK 2
∑

l=1

ŵT,l

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

= u′
(

1

T
(XX ′ ⊗ IK )

)

u − 2u′
(

1√
T

(X ⊗ IK )e
)

+ λT

∑

l∈S
ŵT,l

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

+ λT

∑

l /∈S
ŵT,l

|ul |√
T

≥ u′
(

1

T
(XX ′ ⊗ IK )

)

u − 2u′
(

1√
T

(X ⊗ IK )e
)

+ λT

∑

l∈S
ŵT,l

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

≥ u′
(

1

T
(XX ′ ⊗ IK )

)

u − 2u′
(

1√
T

(X ⊗ IK )e
)

− λT

∑

l∈S
ŵT,l

|ul |√
T

.

First, consider the third term, which can be expressed as

λT

hK 2
∑

l=1

ŵT,l
|ul |√
T

= λT√
T

∑

l∈S

∣
∣
∣φ̃l

∣
∣
∣
−γ1

A−γ2
l |ul |

≤ λT√
T

(

min
l∈S

(
|φ̃l |γ1 Aγ2

l

))−1

‖ u ‖

= λT

aT
‖ u ‖= op(1) ‖ u ‖ .

For the second term, by Lemma 1(iii), we have

u′
(

1√
T

)

(X ′ ⊗ IK )′e = u′oP(1) ≤ op(1) ‖ u ‖ .

For the first term, by Lemma 1(i), we have

(
1

T
(XX ′ ⊗ IK )

)

→ (Γ ⊗ IK ) a.s..

So the first term is a quadratic form in u.
Then it follows that in probability

ΨT

(
φ∗ + u/

√
T

)
− ΨT

(
φ∗) ≥ uT (Γ ⊗ IK )u − 2op(1) ‖ u ‖,

as T → ∞. Therefore, for any ε > 0, there exists a sufficiently large C such that the
term of quadratic term dominates the other terms with probability ≥ 1 − ε. �

Proof of Proposition 2

We follow the methodology of Knight and Fu [19] and Zou [37].
Let φ = φ∗ + u/

√
T and define
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ΨT (u) =
∥
∥
∥
∥ y − (X ′ ⊗ IK )

(

φ∗ + u√
T

)∥
∥
∥
∥

2

+ λT

h∑

j=1

ŵT, j

∣
∣
∣
∣φ

∗
j + u j√

T

∣
∣
∣
∣ ,

where X is defined by (5) and y by (7). Define the reparameterized objective function
as

VT (u) = ΨT (u) − ΨT (0).

Then the minimizing objective is equivalent to minimizing VT (u) with respect to u.
Let ûT = arg minVT (u), then

φ̂
daL

T = φ∗ + ûT /
√
T ,

or
ûT = √

T
(
φ̂
daL

T − φ∗
)

.

Observe that

VT (u) = u′
(

1

T
(XX ′ ⊗ IK )

)

u − 2u′
(

1√
T

(X ⊗ IK )e
)

+ λT√
T

hK 2
∑

l=1

ŵT,l
√
T

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

.

By Lemma 1 we have
(

1
T (XX ′ ⊗ IK )

) a.s.−→ (Γ ⊗ IK ), and 1√
T
(X ⊗ IK )e

D−→
w ∼ N (0, Γ ⊗ Σε). Consider the limiting behaviour of the third term. First, by

the conditions required in the theorem, we have λT ŵT,l/
√
T ≤ λT /

(√
T minl∈S

(∣
∣
∣φ̃l

∣
∣
∣
γ1

Aγ2
l

))
= λT /aT

P−→ 0 for l ∈ S and λT√
T
wT,l = λT√

T
|φ̃l |−γ1 A−γ2

l ≥ λT /
(√

T maxl /∈S
(∣
∣
∣φ̃l

∣
∣
∣
γ1

Aγ2
l

))
= λT /bT

P−→ ∞ for l /∈ S. In summary, we have

λT√
T
ŵT,l = λT√

T
∣
∣
∣φ̃l

∣
∣
∣
γ1

Aγ2
l

P−→
{

0 if l ∈ S

∞ if l /∈ S
.

Secondly, we have

√
T

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − φ∗

l

)

→
{
ulsgn(φ∗

l ) if l ∈ S (φ∗
l = 0)

|ul | if l /∈ S (φ∗
l �= 0)

.

By Slutsky’s theorem, we have the following limiting behaviour of the third term

λT√
T
ŵT,l

√
T

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

P−→

⎧
⎪⎨

⎪⎩

0 if ∀l ∈ S

0 if ul = 0, ∀l /∈ S

∞ otherwise

.
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Thus, we have VT (u) → V (u) for every u, where

V (u) = (
u′
S
u′
Sc

)
(

(Γ ⊗ IK )SS (Γ ⊗ IK )SSc

(Γ ⊗ IK )ScS (Γ ⊗ IK )ScSc

) (
uS

uSc

)

− 2
(
u′
S
u′
Sc

)
(
wS

wSc

)

+
∑

l∈Sc

λT√
T
ŵT,l

√
T

(∣
∣
∣
∣φ

∗
l + ul√

T

∣
∣
∣
∣ − ∣

∣φ∗
l

∣
∣
)

=
{
u′
S
(Γ SS ⊗ IK )uS − 2u′

S
wS if uSc = 0

∞ otherwise
.

VT (u) is convex with the unique minimum
(
((Γ SS)

−1 ⊗ IK )wS, 0
)′

. Following the

epi-convergence results of Geyer [13] and Knight and Fu [19], argminu VT (u)
D−→

argminu V (u), we have

{
ûS

D−→ (
(Γ SS)

−1 ⊗ IK
)
wS

ûSC
P−→ 0

,

or ⎧
⎨

⎩

√
T

(
φ̂
daL

T,S − φ∗
S

)
D−→ N

(
0, (Γ SS)

−1 ⊗ Σε

)

√
T

(
φ̂
daL

T,Sc − φ∗
Sc

)
P−→ 0

.

�
Proof of Theorem 2

(i) In view of Corollary 1, we know that ∀ j ∈ S, P( j ∈ ŜT ) → 1. So it suffices to
show that ∀m /∈ S, P(m ∈ ŜT ) → 0. Now, we follow the methodology of Zou [37].

Consider the event {m ∈ ŜT }. The KKT conditions entail that

2(X ⊗ IK )(m,·)
(
y − (X ′ ⊗ IK )φ̂

daL

T

)
= λT ŵT,msgn

(
φ̂daL
T,m

)
,

where the subscript (m, ·) denotes the m-th row of a matrix, so (X ⊗ IK )(m,·) is the

m-th row of (T − h)K × hK 2 matrix (X ⊗ IK ). If λT /bT
P−→ ∞, we have

λT√
T
ŵT,m = λT√

T

1

|φ̃m |γ1 Aγ2
m

≥ λT

bT

P−→ ∞,

whereas

(X ⊗ IK )(m,·)
(
y − (X ′ ⊗ IK )φ̂

daL
T

)

√
T

=
(

(X ⊗ IK )(m,·)(X ′ ⊗ IK )

T

) √
T

(
φ∗ − φ̂

daL
T

)
+ (X ⊗ IK )(m,·)e√

T
.
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Note that (X ⊗ IK )(m,·)e is the m-th element of the vector (X ⊗ IK )e, denoted by
((X ⊗ IK )e)m . By Lemma 1, we have

1√
T

((X ⊗ IK )e)m
D−→ N

(
0, (Γ ⊗ Σε)(m,m)

)
,

where (Γ ⊗ Σε)(m,m) is the m-th diagonal element of (Γ ⊗ Σε). Note also that (X ⊗
IK )(m,·)(X ′ ⊗ IK ) is the m-th row of the matrix (XX ′ ⊗ IK ), denoted by (XX ′ ⊗
IK )(m,·). By Lemma 1, we have

1

T
(XX ′ ⊗ IK )(m,·)

a.s.−→ (Γ ⊗ IK )(m,·) .

By Slutsky’s theorem and the results of (i), we see that

1

T
(X ⊗ IK )(m,·)(X ′ ⊗ IK )

√
T

(
φ∗ − φ̂

daL

T

)
D−→ (Γ ⊗ IK )(m,·)z ,

where z is a normally-distributed vector, and thus (Γ ⊗ IK )(m,·)z a normally-
distributed scalar variable. Therefore,

P(m ∈ ŜT ) ≤ P
(

2(X ⊗ IK )(m,·)
(
y − (X ′ ⊗ IK )φ̂

daL
T

)
= λT ŵmsgn

(
φ̂daL
T,m

))
→ 0.

(ii) The VAR order estimated by the doubly adaptive LASSO is

p̂daLT = min
{
s : φ̂daL

i j,k = 0,∀k = s + 1, s + 2, . . . , h, and i, j = 1, . . . , K
}

,

or equivalently, in light of the bijective function (11),

p̂daLT = min
{
s : (k − 1)K 2 + (i − 1)K + j ∈ Ŝ

c
T ,∀k = s + 1, s + 2, . . . , h, and i, j = 1, . . . , K

}
. (22)

The true order p of the VAR model is

p = min
{
s : (k − 1)K 2 + (i − 1)K + j ∈ S

c,∀k = s + 1, s + 2, . . . , h, and i, j = 1, . . . , K
}

.

(23)

We have from (i) that Ŝ
c
T → S

c in probability, so the RHS of (22) and (23) are equal
in probability. Therefore, lim P( p̂daLT = p) = 1.

(iii) From (i), we have that lim P

(
φ̂
daL

ŜT
= φ̂

daL

T,S

)
→ 1. Then, from Proposition

2, the asymptotic normality of φ̂
daL

ŜT
follows. �



The Doubly Adaptive LASSO for Vector Autoregressive Models 45

References

1. Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the Institute of
Statistical Mathematics, 21, 243–247.

2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on
Automatic Control, AC–19, 716–723.

3. Akaike, H. (1978). A Bayesian analysis of the minimum AIC procedure. Annals of the Institute
of Statistical Mathematics, 30(Part A), 9–14.

4. Billingsley, P. (1961). The Lindeberg-Levy theorem for martingales. Proceedings of the Amer-
ican Mathematical Society, 12, 788–792.

5. Caner, M., & Knight, K. (2013). An alternative to unit root tests: bridge estimators differentiate
between nonstationary versus stationary models and select optimal lag. Journal of Statistical
Planning and Inference, 143, 691–715.

6. Chand, S. (2011). Goodness of fit and lasso variable selection in time series analysis. Ph.D.
thesis, University of Nottingham.

7. Chen, K., & Chan, K. (2011). Subset ARMA selection via the adaptive Lasso. Statistics and
Its Interface, 4, 197–205.

8. Donoho, D. L., Michael Elad, M., & Temlyakov, V. N. (2006). Stable recovery of sparse
overcomplete representations in the presence of noise. IEEE Transactions on Iinformation
Theory, 52(1), 6–18.

9. Durbin, J. (1960). The fitting of time series models. Review of the Institute of International
Statistics, 28, 233–244.

10. Efron, B., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. Annals of Statistics,
32(2), 407–499.

11. Fan, J., & Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96, 1348–1360.

12. Fujita, A., Sato, J. R., Garay-Malpartida, H. M., Yamaguchi, R., Miyano, S., Sogayar, M. C.,
et al. (2007). Modeling gene expression regulatory networks with the sparse vector autoregres-
sive model. BMC Systems Biology, 1, 39.

13. Geyer, C. (1994). On the asymptotics of constrained M-estimation. The Annals of Statistics,
22, 1993–2010.

14. Hannan, E. J. (1970). Multiple time series. New York: Wiley.
15. Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression.

Journal of the Royal Statistical Society, B41, 190–195.
16. Haufem, N. K. S., Muller, S. K, Nolte, G., & Kramer. (2008). Sparse causal discovery in

multivatiate time series. In JMLR: Workshop and conference proceedings (Vol. 1, pp. 1–16).
17. Heyse, J. F.(1985). Partial lag autocorrelation and partial process autocorrelation for vector

time series, with applications. Ph.D. dissertation, Temple University.
18. Hsu, N., Hung, H., & Chang, Y. (2008). Subset selection for vector autoregressive processes

using LASSO. Computational Statistics and Data Analysis, 52, 3645–3657.
19. Knight, K., & Fu, W. (2000). Asymptotics for LASSO-type estimators. The Annals of Statistics,

28, 1356–1378.
20. Kock, A. B. (2012).On the oracle property of the adaptive lasso in stationary and nonstationary

autoregressions. CREATES research papers 2012-05, Aarhus University.
21. Kock, A. B., & Callot, L. A. F. (2012). Oracle inequalities for high dimensional vector autore-

gressions. CREATES research paper 2012-12, Aarhus University.
22. Liu, Z. Z. (2014). The doubly adaptive LASSO methods for time series analysis. University of

Western Ontario - Electronic Thesis and Dissertation Repository. Paper 2321.
23. Lütkepohl, H. (2006). New introduction to multiple time series analysis. Berlin: Springer.
24. Medeiros, M. C, & Mendes, E. F. (2012). Estimating high-dimensional time series models.

CREATES research paper 2012-37.
25. Nardi, Y., & Rinaldo, A. (2011). Autoregressive process modeling via the LASSO procedure.

Journal of Multivariate Analysis, 102(3), 528–549.



46 Z.Z. Liu et al.

26. Park, H., & Sakaori, F. (2013). Lag weighted lasso for time series model. Computational
Statistics, 28, 493–504.

27. Ren, Y., & Zhang, X. (2010). Subset selection for vector autoregressive processes via the
adaptive LASSO. Statistics and Probability Letters, 80, 1705–1712.

28. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.
29. Song, S., & Bickel, P. J. (2011). Large vector auto regressions. arXiv:1106.3915v1 [stat.ML].
30. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society, Series B, 58(1), 267–288.
31. Valdés-Sosa, P. A., Sánchez-Bornot, J. M., Lage-Castellanos, A., Vega-Hernández, M., Bosch-

Bayard, J., Melie-Garía, L., et al. (2005). Estimating brain functional connectivity with sparse
multivariate autoregression. Philosophical Transactions Royal Society B, 360(1457), 969–981.

32. Wang, H., Li, G., & Tsai, C. (2007). Regression coefficients and autoregressive order shrinkage
and selection via the lasso. Journal of the Royal Statistical Society, Series B, 69(1), 63–78.

33. Wei, W. S. (2005). Time series analysis: Univariate and multivariate methods (2nd ed.). Read-
ing, MA: Addison-Wesley.

34. White, H. (2001). Asymptotic theory for econometricians (Revised ed.). New York: Academic
Press.

35. Yoon, Y., Park, C., & Lee, T. (2013). Penalized regression models with autoregressive error
terms. Journal of Statistical Computation and Simulation, 83(9), 1756–1772.

36. Zhao, P., & Yu, B. (2006). On model selection consistency of Lasso. Journal of Machine
Learning Research, 7, 2541–2563.

37. Zou, H. (2006). The adaptive LASSO and its oracle properties. Journal of the American Sta-
tistical Association, 101, 1418–1429.

http://arxiv.org/abs/1106.3915v1


On Diagnostic Checking Autoregressive
Conditional Duration Models
with Wavelet-Based Spectral
Density Estimators

Pierre Duchesne and Yongmiao Hong

Abstract There has been an increasing interest recently in the analysis of finan-
cial data that arrives at irregular intervals. An important class of models is the
autoregressive Conditional Duration (ACD) model introduced by Engle and Rus-
sell (Econometrica 66:1127–1162, 1998, [22]) and its various generalizations. These
models have been used to describe duration clustering for financial data such as the
arrival times of trades and price changes. However, relatively few evaluation proce-
dures for the adequacy of ACDmodels are currently available in the literature. Given
its simplicity, a commonly used diagnostic test is the Box-Pierce/Ljung-Box statistic
adapted to the estimated standardized residuals of ACD models, but its asymptotic
distribution is not the standard one due to parameter estimation uncertainty. In this
paper we propose a test for duration clustering and a test for the adequacy of ACD
models using wavelet methods. The first test exploits the one-sided nature of dura-
tion clustering. An ACD process is positively autocorrelated at all lags, resulting in
a spectral mode at frequency zero. In particular, it has a spectral peak at zero when
duration clustering is persistent orwhen duration clustering is small at each individual
lag but carries over a long distributional lag. As a joint time-frequency decomposi-
tion method, wavelets can effectively capture spectral peaks and thus are expected
to be powerful. Our second test checks the adequacy of an ACD model by using a
wavelet-based spectral density of the estimated standardized residuals over thewhole
frequency. Unlike the Box-Pierce/Ljung-Box tests, the proposed diagnostic test has
a convenient asymptotic “nuisance parameter-free” property—parameter estimation
uncertainty has no impact on the asymptotic distribution of the test statistic. More-
over, it can check a wide range of alternatives and is powerful when the spectrum
of the standardized duration residuals is nonsmooth, as can arise from neglected
persistent duration clustering, seasonality, calender effects and business cycles. For
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each of the two new tests, we propose and justify a suitable data-driven method to
choose the finest scale—the smoothing parameter in wavelet estimation. This makes
the methods fully operational in practice. We present a simulation study, illustrating
the merits of the wavelet-based procedures. An application with tick-by-tick trading
data of Alcoa stock is presented.

Keywords Autoregressive conditional duration · Duration clustering · High
frequency financial time series · Model adequacy · Parameter estimation
uncertainty · Spectral density · Standardized duration residual · Wavelet

AMS Mathematics Subject Classifications (2010) 62M10 · 62M15 · 62E20

1 Introduction

There has been an increasing interest recently in modeling high frequency financial
data that arrive at irregular time intervals. Conventional time series analysis assumes
that the data are collected at a fixed time interval. When this is not the case, it is
standard practice to aggregate the data and to analyze them as if they were gen-
erated by a fixed time stochastic process (e.g., [36]). This will unavoidably hide
useful information when the time interval chosen is too large, or exhibit excessive
heteroskedasticity when the time interval chosen is too small. Nowadays, the power
and storage capacity of modern computers allow us to have access to virtually every
transaction data available on financial markets. Such financial data usually arrive
and are recorded at irregular time intervals. This is a situation where we have to our
disposal the so-called ultra-high frequency data (cf. [20]). Other examples of irregu-
larly spaced data are credit card purchases or sales of any commodity using scanning
devices. Such financial data contain rich information about market microstructure
and economic agents’ behaviors.

It seems natural to formulate models for irregularly spaced financial data to study
duration clustering. The Autoregressive Conditional Duration (ACD) model pro-
posed by [22] is an important contribution toward this direction, since it proposes
an alternative methodology to fixed time interval analysis of time series data. The
model treats the arrival time intervals between events of interest (e.g., trades, price
changes) as a nonnegative stochastic process, and studies the time series properties
of the expected duration between events. It assumes that the expectation of duration,
conditional on the past information, may be expressed as a function of past durations.
It can be used to infer the pattern of duration clustering, to forecast the intensity of
arrival times that is closely linked to (e.g.) transaction volume or price volatility,
and to test market microstructure theories. The ACD model has an interesting inter-
pretation in the context of time deformation modeling because it is formulated in
transaction time and models the frequency and distribution of arrival times between
events of interest (e.g., [31, 65, 66]).
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There has been a variety of important extensions and applications of ACDmodel-
ing. In [22], the author suggests the possibility of nonlinear ACD models analogous
to the NGARCH model of [8]. In [4], they propose the logarithmic ACD (log-ACD)
model, which allows to introduce additional variables without sign restrictions on the
coefficients. In [6] they also propose an asymmetric ACDmodel, where the duration
depends on the state of the price process. The asymmetric ACD model becomes
a log-ACD model under certain parameter restrictions. In [73], they introduce the
threshold autoregressive conditional duration model, which allows the conditional
duration to depend nonlinearly on the past information set. Applications of threshold
duration models are considered in [67], who also introduces a bivariate model for the
process of price change and the associated duration. Another member in the class
of ACD models is the Burr-ACD model of [34]. The model is based on the Burr
distribution. It includes the exponential ACD (EACD) and Weibull ACD (WACD)
models as special cases. The works [32] and [46] consider a fractionally integrated
ACD model to capture persistent duration clustering. In [33], they combine ACD
models and GARCH-type effects and propose an ACD-GARCH model. The papers
[67, 68] present the basic characteristics of ACDmodels and a comprehensive survey
is given in [59].

Wavelets have been documented to be capable of capturing nonsmooth or singular
features such as spectralmodes/peaks (e.g., [28, 47, 57, 60, 63, 69, 70]).Applications
of wavelets in various time series contexts include [24, 29, 30, 72]. In time series,
testing for serial correlation and ARCH effects generated many wavelet-based test
statistics (e.g., [15–17, 43, 44, 50, 51]). Spectral peaks often occur in economic and
financial time series, due to strong serial dependence, seasonality, business cycles,
calendar effects and other forms of periodicities (e.g., [9, 35, 71]). In this paper, new
wavelet-based tests for duration clustering and for diagnostic checking ACDmodels
are developed.

Before modeling an ACD process for the arrival time intervals between events of
interest, one may like to appreciate whether there exists duration clustering in the
arrival times and its nature; that is, whether there do exist ACD effects and which
lags seem significant. Market microstructure theories (e.g., [1, 19, 48]) suggest that
the frequency of transactions should carry information about the state of the mar-
ket. They predict the existence of transaction clustering. In the literature, commonly
used tests for ACD effects are Box-Pierce/Ljung-Box (BP/LB) tests (e.g., [21, 22]).
Like an ARCH process, an ACD process always has nonnegative autocorrelation
at any lag, resulting in a spectral mode at frequency zero under (and only under)
the alternative hypothesis. BP/LB tests do not exploit such a one-sided nature. We
first propose a one-sided consistent test for ACD effects, which exploits the one-
sided nature of the alternative. We use a wavelet-based spectral density estimator at
frequency zero. In the present context, spectral peaks can arise when ACD effects
are strong or persistent or when ACD effects are weak at each individual lag but
carry over a very long distributional lag. We thus expect that our one-sided test
for ACD effects will be powerful for such alternatives in small and finite samples.
We note that [41] proposed a one-sided test for ACD effects using an alternative
approach. Our second objective is to propose a wavelet-based diagnostic test for
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ACD models. Although various ACD models are available in the literature (e.g., [4,
6, 22, 32–34, 46]), there have been relatively few diagnostic tests for the adequacy
of ACD models. A possible diagnostic test, suggested in [21, 22], is the BP/LB
tests adapted to the estimated standardized residuals of an ACD model. In the same
spirit, the authors in [5, pp. 83–84] consider as a diagnostic statistic the LB test
based on the residuals or the squared residuals. The BP/LB tests are conjectured
to follow an asymptotic χ2 distribution with the degrees of freedom equal to the
number of lags used in the test. Nevertheless, there is no formal analysis of the
statistical properties (e.g., asymptotic distribution) for these tests. Following the rea-
soning analogous to [53], it could be shown that the asymptotic critical values used
in practice are incorrect, because they do not take into account parameter estima-
tion uncertainty. A valid method is given in [54], who derived an asymptotically
valid portmanteau test for checking ACD models based on the estimated standard-
ized duration autocorrelations. Lagrange multipliers tests are also investigated in
[39, 56]. In [18], spectral tests are constructed for the adequacy ofACDmodels, based
on kernel-based spectral density estimators of the standardized innovation process.
Using the truncated uniform kernel, this gives a generalized BP/LB portmanteau test.
Generalized spectral derivative tests are derived in [45], which are motivated by the
so-called generalized spectral density. As discussed in Sect. 2.1, ACD models admit
weak Autoregressive Moving Average (ARMA) representations. See [25]. Thus an
ACD model can be written as an ARMA model where the error term is a martingale
difference sequence (MDS). To test the adequacy reduces to check if the noise is
MDS. A possible method is described in [23], which do not depend on a kernel or a
bandwidth. However, the asymptotic null distribution depends on the choice of the
data generating process (DGP) and it is no longer standard. Resampling methods as
the bootstrap can be used to approximate the asymptotic critical values of the tests.
For the weak ARMA model, the spectral test in [74] represents also an alternative
approach to test the adequacy of ACD models written as weak ARMA models.

In this paper, we contribute to the literature of diagnostic checking ACD mod-
els by proposing an asymptotically valid test for the adequacy of ACD models by
examining if there is remaining structure in the standardized residuals of ACD mod-
els, using wavelet methods. More precisely, we compare a wavelet-based spectral
density estimator with a flat spectrum; the later is implied by the adequacy of an
ACD model. Unlike the BP/LB tests, our test has a convenient asymptotic “nui-
sance parameter free” property—parameter estimation uncertainty has no impact on
the limit distribution of the test statistic. Moreover, it can detect a wide range of
model inadequacy. In particular it is powerful against misspecifications that result
in nonsmooth spectrum for the standardized residuals. Such alternatives may arise
from neglected strong dependence, seasonality, calender effects and business cycles.
Unlike one-sided testing for ACD effects, a misspecified ACDmodel generally does
not produce a one-sided alternative. Negative autocorrelations in the standardized
duration residuals may occur. As a consequence, we have to check the wavelet-
based spectral density estimator over all frequencies rather than at frequency zero
only.
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For each of the two new tests, we propose and justify a suitable data-drivenmethod
to select the finest scale—the smoothing parameter inwavelet estimation. Thismakes
the wavelet-based tests entirely operational.

Wedescribe hypotheses of interest in Sect. 2. Section3 introduceswavelet analysis
and proposes a consistent one-sided test for ACD effects. In Sect. 4, we develop a
diagnostic test for the adequacy of ACDmodels. Section5 presents two sets ofMonte
Carlo study, examining the finite sample performance of the proposed tests. The
wavelet-based tests are compared to the most popular methods currently used in the
literature. In Sect. 6, an application with tick-by-tick trading data of Alcoa stock on
June 7, 2010 is presented. Section7 concludes. All proofs are given in the appendix.
Unless indicated, all limits are taken as the sample size n → ∞; A∗ denotes the
complex conjugate of A; A� is the transpose of the matrix A; C a bounded constant
that may differ from place to place; and Z = {0,±1, . . .} the set of integers. An R
code to implement the new methodology is available upon request from the authors.

2 Framework and Hypotheses

2.1 ACD Processes

Let Xt be the interval between two arrival times of a random event (e.g., trades, price
changes), which is called a duration. Throughout, we consider the following DGP:

Assumption 1 The strictly stationary nonnegative duration process Xt = D0
t εt ,

where {εt } is a nonnegative iid sequence with probability density p(·), mean
E(εt ) = 1, and finite fourth moment, and D0

t ≡ D0(It−1) is a measurable non-
negative function of It−1, the information set available at time t − 1.

We make no distributional assumption on the innovations {εt }. Examples include
the exponential, Weibull, generalized gamma, log logistic and lognormal distribu-
tions, as often considered in the literature. An ACD model with exponential inno-
vations is called an EACD, while the case with Weibull innovations is denoted a
WACD (see [22]). The textbook [68, pp. 303–304] writes explicitly the conditional
log-likelihood functions of EACD and WACD models (note that the Weibull condi-
tional log-likelihood reduces to the conditional exponential log-likelihood when the
shape parameter of the Weibull distribution is equal to one). In [34], they consider
the case with the Burr distribution for the innovations, called a Burr-ACD model,
which includes as special cases the EACD andWACDmodels. The existing literature
apparently focuses on various specifications of the innovation distribution and pays
relatively little attention to the specification for the key ingredient D0

t = E(Xt |It−1),
the conditional duration. Our main interest here is the important issue of model spec-
ification for D0

t . Specifically, we first check whether there exists duration clustering
in {Xt }, and if so, whether a parametric ACD model fitted to the data is adequate.
We use a frequency domain approach in combination of wavelet analysis, a powerful
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mathematical tool (cf. [12]). Our methodology does not assume and so is robust to
any distribution misspecification for the innovations.

Suppose Dt follows a general linear process

Dt = β0 +
∞∑

h=1

βh Xt−h, (1)

where β0 > 0,
∑∞

h=1 βh < 1, and βh ≥ 0 for all h ≥ 1, which ensures strict posi-
tiveness of the conditional duration. The class (1) contains an m-memory conditional
duration process

Dt = β0 +
m∑

h=1

βh Xt−h,

which only depends on the most recent m durations. It also includes the more general
Autoregressive Conditional Duration process

Dt = β0 +
m∑

h=1

αh Xt−h +
l∑

h=1

γh Dt−h, (2)

whose coefficients βh’s, which are a function of {αh, γh}, decay to zero exponen-
tially as h → ∞. The process (2) is called an ACD(m,l). The ACD(m,l) has an
ARMA[max(m, l), m] representation. The class (1) also contains a fractionally inte-
grated ACD process proposed in [32, 46], where the coefficients βh → 0 as h → ∞
at a slow hyperbolic rate.

2.2 Hypothesis of ACD Effects

Our first objective is to develop a consistent one-sided test for the existence of ACD
effects. Under class (1), the null hypothesis of interest of no ACD effects is

H
E
0 : βh = 0 for all h > 0.

The alternative hypothesis that ACD effects exist is

H
E
1 : βh ≥ 0 for all h > 0, . . .with at least one strict inequality.

Under HE
0 , the true theoretical parameters of model (1) are on the boundary of

the parameter space. In [3, 26], they consider inference problems in that context.
Note that HE

1 is a one-sided alternative. A conventional approach to testing ACD
effects is the LM test or BP/LB tests. The latter are commonly used in the literature
(cf. [21, 22]). However, both the LM test and BP/LB tests fail to account for the
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one-sided nature of the alternative hypothesis HE
1 . Exploration of such a one-sided

nature is expected to yield better power in finite samples. Large samples are usually
available for financial data, but in the present context the events of interest may
be defined with specific characteristics. This may lead to a relatively small sample
size. In [22], for example, they examine the price changes of IBM transaction data
where the data of interest consists of only those with a price change. This leads
to a new sample that is only 3% of the original IBM transaction data. Furthermore,
market participantsmay be interested by volume durations, which represent the times
between trades (defined either on the quote or trade process) such that a volume of
c shares, say, is traded. For example, [5] applies ACD models for various stocks,
including AWK, Disney, IBM and SKS stocks. In some occasions, the sample sizes
for the volume durations were less than n = 300. To exploit the one-sided nature of
the alternative hypothesis may be highly desirable in such cases.

It seems that [41] is apparently the first to propose a one-sided test for no ACD
effects against an ACD(m) alternative with a pre-specified fixed order m > 0. This
test is analogous to the locally most mean powerful unbiased based score test of
[49] for ARCH effects. The test statistic for an ACD(m, l) alternative is numerically
identical to that for anACD(m) alternative. In the neighborhood of the null hypothesis
of no ACD effects, the test maximizes the mean curvature of the power function.
In his Monte Carlo experiments, [41] shows that in finite sample his test has a
reasonable level and is more powerful than the two-sided LM test, suggesting the
gain of exploiting the one-sided alternative. Like the LM test or BP/LB tests, the lag
order m has to be prespecified in Higgins’test described in [41] and the choice of it
may affect power considerably. Obviously, the optimal choice of m should depend
on the alternative, which is usually unknown in practice. For a given m, Higgins’
test in [41] has no power against the alternatives for which ACD effects exist only
at higher order lags. In some cases, even if the alternative were known, it may still
be difficult to determine an optimal lag to maximize the power. An example is the
fractionally integrated ACD process (cf. [32, 46]).

As the first objective of this paper, we propose a consistent one-sided test for ACD
effects that complements the test of [41]. We use a frequency domain approach. Let
fX (ω) be the standardized spectral density of {Xt }; that is,

fX (ω) = (2π)−1
∞∑

h=−∞
ρX (h)e−ihω, ω ∈ [−π, π ], i = √−1,

where ρX (h) is the autocorrelation function of {Xt }. Note that (1) implies

Xt = β0 +
∞∑

h=1

βh Xt−h + vt ,

where vt = Xt − Dt is a martingale difference sequence with respect to It−1; that
is, E(vt |It−1) = 0 almost surely (a.s.), where It−1 is as in Assumption 1. Under
H

E
0 , Xt = β0 + vt is a white noise process, so we have fX (0) = (2π)−1. Under
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H
E
1 , we have ρX (h) ≥ 0 for all h 
= 0 and there exists at least one h 
= 0 such that

ρX (h) > 0. Thus, fX (0) > (2π)−1 under HE
1 . This forms a basis for constructing a

consistent one-sided test for HE
0 versus HE

1 . We can use a consistent wavelet-based
estimator f̂ X (0) for fX (0) and check if f̂ X (0) > (2π)−1 significantly. Such a test
is expected to be powerful in the present context because under the alternative HE

1
there is always a spectral mode at frequency zero due to positive autocorrelations in
{Xt }. In particular, a spectral peak at frequency zero arises when there exist persistent
ACD effects. Wavelets are effective in capturing spectral peaks/modes. Of course,
conventional methods such as the kernel method could be used as well. However,
this may not deliver an equally powerful procedure, because the kernel method often
tends to underestimate spectral mode/peaks (cf. [61, pp. 547–556]).

2.3 Adequacy of ACD Models

Suppose we have evidence of duration clustering and have decided to use an ACD
model, say D(It−1, θ), to fit the data, where θ is an unknown finite dimensional
parameter. We may like to test if the model fits the data adequately. One approach is
to examine whether the standardized duration residual,

et = Xt/D(It−1, θ0),

contains any remaining duration structure, where θ 0 = plim θ̂ and θ̂ is an estimator of
θ . Suppose D(It−1, θ0) = D0(It−1) almost surely. Then the model D(It−1, θ0) is
adequate for modelling the conditional duration D0

t . In this case we have et = εt , an
iid white noise process with a flat spectrum. Alternatively, suppose that D(It−1, θ)

is inadequate in modeling Xt in the sense that P[D(It−1, θ) = D0(It−1)] < 1 for
all θ , then et 
= εt . In this case we will generally have a non-flat spectrum for et

because et contains some remaining dependent structure for the conditional duration.
Therefore, one can check the adequacy of an ACD model D(It−1, θ) by examining
whether the spectrum of {et } is flat.

Let fe(ω) be the standardized spectral density of {et }. Then under the null hypoth-
esis of adequacy of an ACD model, we have

H
A
0 : fe(ω) = (2π)−1, ω ∈ [−π, π ].

When the model is misspecified, we generally have

H
A
1 : fe(ω) 
= (2π)−1.

UnderHA
1 , the standardized duration residual et could exhibit negative and/or posi-

tive autocorrelations, and any departure of (2π)−1 can be anticipated for fe(ω). Thus
the alternative hypothesis HA

1 is not one-sided and we cannot proceed as in testing
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for an ACD effect. Instead, we have to compare a spectral density estimator of {et }
with a flat spectrum over all frequencies. We note that our second test here comple-
ments the methods in [27]. In that work, the authors consider testing the distribution
specification for {εt }, given correct specification of Dt (It−1, θ).

In [21, 22], they consider the BP/LB tests as diagnostic tests for ACDmodels. See
also [34] in the modelling of a Burr-ACD model. The BP/LB tests are assumed to
have an asymptotic χ2

m , wherem is the number of lags used in the test. However, even
in the simpler case of ARMAmodeling, it is well-known that the degrees of freedom
of the χ2 asymptotic distribution of the BP/LB statistics need an adjustment due to
parameter estimation uncertainty, which depends on the autoregressive and moving-
average orders (cf. [10]). In the present context, we expect that a modification for
the asymptotic distribution of the test statistics or the test statistics themselves is
also needed, because D(It−1, θ) is a conditional mean model similar to an ARMA
model. Moreover, the adjustment does not seem so simple as in the ARMA case,
since an ACD model is highly nonlinear. This may be rather complicated in view of
the results of [53] for diagnostic testing for ARCHmodels. Finally, the choice ofm in
BP/LB statistics is somewhat arbitrary and there has been no theoretic guidance for
the choice of m. In practice the user may prefer an automatic method with reasonable
power toward many directions. Our tests have such an appealing feature and they
should prove useful to complement other methods, such as the methods in [54], the
kernel-based methods in [18], or the generalized spectral derivative tests in [45].

3 Testing for ACD Effects

3.1 Wavelet Analysis

Throughout, we use multiresolution analysis (cf. [55]). This is an analytic method to
decompose a square-integrable function at different scales. The key is a real-valued
function called mother wavelet ψ(·). An example is the Haar wavelet:

ψ(x) =
⎧
⎨

⎩

1 if 0 ≤ x < 1
2 ,−1 if 1

2 ≤ x ≤ 1,
0 otherwise.

This wavelet has bounded support, which ensures that ψ(·) is well localized in time
(or space) domain. In [12], it is shown that for any nonnegative integer d, there exists
an orthonormal compact supported mother wavelet whose first d moments vanish.
The mother wavelet ψ(·) can also have infinite support, but it must decay to zero
sufficiently fast at ∞. An example is the Franklin wavelet ψ(·), which is defined via
its Fourier transform
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ψ̂(z) = (2π)−1/2eiz/2 sin
4(z/4)

(z/4)2

{
1 − (2/3) cos2(z/4)

[1 − (2/3) sin2(z/2)][1 − (2/3) sin2(z/4)]
}1/2

.

(3)
See (e.g.) [40] for more examples.

To represent a standardized spectral density f (·), which is 2π -periodic and
thus is not square-integrable on the real line R ≡ (−∞,∞), we must construct
a 2π -periodic basis, where

Ψ jk(ω) = (2π)−1/2
∞∑

m=−∞
ψ jk

( ω

2π
+ m

)
, ω ∈ R,

with
ψ jk(x) = 2 j/2ψ(2 j x − k). (4)

The integers j and k in (4) are called the dilation and translation parameters. Intu-
itively, j localizes analysis in frequency and k localizes analysis in time (or space).
This joint time-frequency decomposition of information is the key feature of wavelet
analysis. With these 2π -periodic orthonormal bases, we can represent the spectral
density

f (ω) = (2π)−1 +
∞∑

j=0

2 j
∑

k=1

α jkΨ jk(ω), ω ∈ [−π, π ],

where the wavelet coefficient satisfies

α jk =
∫ π

−π

f (ω)Ψ jk(ω)dω = (2π)−1/2
∞∑

h=−∞
ρ(h)Ψ̂ ∗

jk(h), (5)

and {ρ(h), h ∈ Z} is the autocorrelation function of the time series and Ψ̂ jk(·) denotes
the Fourier transform of Ψ jk(·); that is,

Ψ̂ jk(h) = (2π)−1/2
∫ π

−π

Ψ jk(ω)e−ihωdω, h = 0,±1, . . .

The second equality in (5) is obtained using Parseval’s identity. See [44] and [50] for
more discussions.

The wavelet coefficient α jk only depends on the local property of f (ω), because
Ψ jk(ω) is essentially nonzero only in an interval of size 2π/2 j centered at k/2 j .
This is fundamentally different from the Fourier representation of f (ω), where the
Fourier coefficient is the autocorrelation, ρ(h), which depends on the global property
of f (ω). This is why wavelets are particularly capable of capturing spectral peaks
or nonsmooth features.

Our test statistic for ACD effects is based on a wavelet spectral density estimator
at frequency zero of the duration process {Xt }. When testing for the adequacy of
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an ACD model, we need to evaluate a wavelet spectral density estimator for the
estimated standardized duration residuals over the entire frequency domain [−π, π ].
In an unified manner, we consider wavelet spectral density estimators in these two
situations.

3.2 Test Statistics

We first describe wavelet-based spectral density estimation for the duration process
{Xt }. Suppose we have a sample {Xt }n

t=1 of size n. Define the sample autocorrelation
function of {Xt }n

t=1 as

ρ̂X (h) = R̂X (h)/R̂X (0), h = 0,±1, . . . ,±(n − 1),

where the sample autocovariance of {Xt } is given by

R̂X (h) = n−1
n∑

t=|h|+1

(Xt − X̄)(Xt−|h| − X̄), (6)

with X̄ = n−1 ∑n
t=1 Xt . A wavelet spectral estimator for fX (ω) can be given as

f̂ X (ω) = (2π)−1 +
J∑

j=0

2 j
∑

k=1

α̂ jkΨ jk(ω),

where the empirical wavelet coefficient is

α̂ jk = (2π)−1/2
n−1∑

h=1−n

ρ̂X (h)Ψ̂ ∗
jk(h),

and the truncation parameter J ≡ J (n) is called the finest scale parameter, a smooth-
ing parameter. In this sense it is similar to the bandwidth in kernel-based spectral
density estimation. However, a fundamental difference is that J is not a lag trunca-
tion parameter, since even when J = 0 the empirical wavelet coefficient α̂ jk is still
a weighted sum of all n − 1 sample autocorrelations {ρ̂X (h)}n−1

h=1 provided ψ̂(·) has
unbounded support. In contrast, J corresponds to the highest resolution level used
in the wavelet approximation. Given each J , there are totally 2J+1 − 1 empirical
wavelet coefficients in f̂ X (ω). To reduce the bias of f̂ X (ω), we must let J → ∞ as
n → ∞. On the other hand, to ensure that the variance of f̂ X (ω) vanishes, 2J+1 − 1
must grow slower than n. Thus, we need to choose J properly to balance the bias
and variance of f̂ X (ω). We note that we use linear rather than nonlinear wavelet
estimators here, because our test statistics are based on quadratic forms. In the space
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of square-integrable functions, linear and nonlinear wavelet estimators achieve the
same convergence rate (cf. [57]). Among other advantages, the use of linear wavelet
estimators allow us to obtain the asymptotic distribution theory relatively easily. In
testing for serial correlation, simulation results of [17] and [51] demonstrate that for
certain fixed alternatives, linearwavelet estimatorsmay performbetter than nonlinear
ones. Other simulation studies (e.g., [50]) show that linear wavelet estimators out-
perform kernel estimators in finite samples when the spectral density is not smooth.

Our test for ACD effects is based on the spectral density estimator f̂ X (·) at the
zero frequency. It is defined as

E (J ) = [Vn(J )]−1/2n1/2π
[

f̂ X (0) − (2π)−1
]
, (7)

where the asymptotic variance estimator

Vn(J ) =
n−1∑

h=1

(1 − h/n)

⎡

⎣
J∑

j=0

λ(2πh/2 j )

⎤

⎦

2

and

λ(z) = 2πψ̂∗(z)
∞∑

m=−∞
ψ̂(z + 2πm), z ∈ R. (8)

From [50], 2−J Vn(J ) → V0 as J → ∞, 2J /n → 0, where

V0 =
∫ 2π

0
|Γ (z)|2dz, (9)

withΓ (z) = ∑
m ψ̂(z + 2πm). The result is also stated in theAppendix as Lemma2.

Note that Vn(J ) is nonstochastic and is readily computable given ψ̂(·) and J . Because
f̂ X (0) is close to (2π)−1 underHE

0 and is significantly larger that (2π)−1 underHE
1 ,

the test statistic delivers a one-sided consistent testing procedure forHE
1 . How large

E (J ) must be in order to be considered as significantly larger than zero is described
by the sampling distribution of E (J ).

3.3 Asymptotic Distribution

To derive the asymptotic distribution of E (J ), we impose the following regularity
conditions.

Assumption 2 The functionψ : R → R is an orthonormalmotherwavelet such that∫ ∞
−∞ ψ(x)dx = 0,

∫ ∞
−∞ |ψ(x)|dx < ∞,

∫ ∞
−∞ ψ2(x)dx = 1 and

∫
ψ(x)ψ

(x − k)dx = 0 for all integers k, k 
= 0.
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Assumption 3 The Fourier transform of ψ(·) satisfies |ψ̂(z)| ≤ C min{|z|q , (1 +
|z|)−τ } for some q > 0 and τ > 1.

Assumption 4 The function λ : R → R is square-integrable, where λ(·) is defined
in (8).

Assumption 2 is a standard condition for an orthonormal mother wavelet ψ(·).
Assumption 3 requires that ψ̂(·) have some regularity (i.e., smoothness) at zero
and sufficiently fast decay at ∞. The condition |ψ̂(z)| ≤ C |z|q is effective as
z → 0, where q governs the degree of smoothness of ψ̂(·) at zero. If

∫ ∞
−∞(1 +

|x |ν)|ψ(x)|dx < ∞ for some ν > 0, then |ψ̂(z)| ≤ C |z|q for q = min(ν, 1); see
(e.g.) [62]. When ψ(·) has first d vanishing moments (i.e.,

∫ ∞
−∞ xrψ(x)dx = 0 for

r = 0, . . . , d − 1), we have |ψ̂(z)| ≤ C |z|d as z → 0. On the other hand, the condi-
tion |ψ̂(z)| ≤ C(1 + |z|)−τ is effective as z → ∞. This holds with τ = ∞ for the so-
called band-limited wavelets, whose ψ̂(·)’s have compact supports. In Assumption 4,
the condition that λ(·) is real-valued implies λ(−z) = λ(z) because ψ̂∗(z) = ψ̂(−z).
In addition, Assumptions 2 and 3 ensure that λ(·) is continuous almost everywhere
in R, λ(0) = 0 and |λ(z)| ≤ C . Most commonly used wavelets satisfy Assumptions
2–4. Examples are the compactly supported wavelets of a positive order in [12],
the Franklin wavelet, the Lemarie-Meyer wavelets, the Littlewood-Paley wavelets,
and spline wavelets. Assumption 3 rules out the Haar wavelet, however, because its
Fourier transform, ψ̂(z) = −ieiz/2 sin2(z/4)/(z/4), goes to zero at a rate of |z|−1

only.
The asymptotic normality of E (J ) is stated below.

Theorem 1 Suppose Assumptions 1–4 hold, and 2J /n → 0. Then E (J ) →d

N (0, 1) under HE
0 .

Both small and large (i.e., fixed and increasing as n → ∞) finest scales J are
allowed here. Thus, the choice of J has no impact on the null limit distribution of
E (J ), as long as 2J grows slower than the sample size n. Of course, it may have
impact on the finite sample distribution of E (J ). Note that because E (J ) is a one-
sided test, it is appropriate to use upper-tailed N (0, 1) critical values. The critical
value at the 5% level, for example, is 1.645.

Consider the class of local alternatives:

H
E
1n(an) : Dt = D0

⎡

⎣1 + an

∞∑

j=1

β j (εt− j − 1)

⎤

⎦ ,

where β j ≥ 0 with at least one strict inequality and
∑∞

j=1 β j < ∞. Following a
reasoning similar to [44, Theorem 2], if J is fixed, then underHE

1n(n
−1/2), it is possi-

ble to show that E (J ) →d N (μ(J ), 1), where μ(J ) = [V0(J )]−1/2 ∑∞
h=1 dJ (h)βh ,

V0(J ) = ∑∞
h=1 d2

J (h) and dJ (h) = ∑J
j=0 λ(2πh/2 j ). When J → ∞, with the more
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restrictive rate 22J /n → ∞, we can obtain the asymptotic distribution of E (J ) under
H

E
1n(2

J/2/n1/2), which is now E (J ) →d N (μ, 1), where μ = V −1/2
0

∑∞
j=1 β j , with

V0 defined as (9). Thus, under a fixed finest scale J , E (J ) has nontrivial power
against alternatives in HE

1n(n
−1/2). However, if J → ∞ such that 22J/n → 0, E (J )

offers nontrivial power against alternatives only in H
E
1n(2

J/2/n1/2). The discussion
in [44, pp. 1060–1061] also applies.

3.4 Adaptive Choice of the Finest Scale

Although the choice of J has no impact on the null limit distribution of E (J ), it
may significantly affect the power of E (J ) in finite samples. It is not easy to choose
an optimal J to maximize power, especially in light of the facts that J is not a lag
order and that usually no prior information on the alternative is available. Therefore,
it is desirable to choose J via suitable data-driven methods, which adapt to unknown
alternatives and are more objective than any arbitrary choice of J or any simple
“rule-of-thumb”. To allow for this possibility, we consider using a data-dependent
finest scale Ĵ . We simply plug Ĵ in E (·), and then obtain the statistic E ( Ĵ ). Such a
test has the appealing advantage of being totally operational in practice. Before we
discuss specific methods to choose Ĵ , we first justify the use of Ĵ in our test E ( Ĵ ).

Theorem 2 Suppose Assumptions 1–4 hold, and Ĵ is a data-dependent finest scale
such that 2 Ĵ /2J = 1 + oP(2−J/2) for some nonstochastic J satisfying 22J /n → 0.
Then E ( Ĵ ) − E (J ) →p 0 and E ( Ĵ ) →d N (0, 1) under HE

0 .

Theorem 2 implies that the effect of sampling randomness in Ĵ has negligible
impact on the limit distribution of E ( Ĵ ) as long as Ĵ converges to J sufficiently fast.
The conditions on Ĵ are weak. When J is fixed (J = 0 say), as may occur under
H

E
0 for sensible data-driven methods, 2 Ĵ /2J = 1 + oP(2−J/2) becomes 2 Ĵ /2J →p

1; no rate condition on Ĵ is required. Often, Ĵ and J have the forms of 2 Ĵ+1 =
ĉnν and 2J+1 = cnν, where c ∈ (0,∞) is a tuning constant and ĉ is its estimator.
For the parametric plug-in method considered below, we generally have ĉ/c = 1 +
OP(n−1/2), thus satisfying the condition on Ĵ for wavelets with q > 1

2 .

We now consider a specific data-driven method to select J for E (J ). We impose
the following additional conditions:

Assumption 5 For ψ(·), there exists a largest number q ∈ [1,∞) such that 0 <

λq < ∞, where λq ≡ (2π)q

1−2−q limz→0
λ(z)
|z|q .

Assumption 6 The duration process {Xt } is fourth order stationary with the condi-
tions (i)

∑∞
h=−∞ R2

X (h) ≤ C ; (ii)
∑∞

j=−∞
∑∞

k=−∞
∑∞

l=−∞ |κX ( j, k, l)| ≤ C , where
the quantity κX ( j, k, l) denotes the fourth order cumulant of the joint distribution of
the random variables {Xt − μX , Xt+ j − μX , Xt+k − μX , Xt+l − μX }, and E(Xt ) =
μX ; and (iii)

∑∞
h=−∞ |h|q |RX (h)| < ∞, where q ∈ [1,∞) is as in Assumption 5.
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Obviously, the smoother is λ(·) at 0, the larger is the value of q for which λq is
nonzero and finite. If q is an even positive integer, then λq = (2π)q

1−2−q
1
q!d

qλ(0)/dzq ,
and λq < ∞ if and only if λ(·) is q-time differentiable at zero. For the Franklin
wavelet (3), q = 2. In this case λq = 0 for q < 2, λ2 = (8/3)

∑∞
l=0(2l + 1)−2 and

λq = ∞ for q > 2. In general, if the mother wavelet ψ(·) has and only has first υ

vanishing moments, then λq = 0 for q < υ, λq = ∞ for q > υ, and λυ 
= 0.
Because E (J ) is based on f̂ X (0), it is appropriate to adapt Ĵ to the unknown fX (·)

at zero rather than over the entire frequency domain [−π, π ]. Thus, we consider a
choice of Ĵ minimizing the asymptotic mean squared error (MSE) of f̂ X (0). From
a theoretical point of view, the choice of Ĵ based on the MSE criterion may not
maximize the power of the test. A more sensible alternative is to develop a data-
driven Ĵ using a suitable power criterion, or a criterion that trades off level distortion
and power loss. This, however, would necessitate higher order asymptotic analysis
and is far beyond the scope of this paper. Here, we are content with theMSE criterion,
which delivers reasonable power (see the simulation below).

To derive the MSE, we need to obtain the bias and the variance of f̂ X (0). To
characterize the bias of f̂ X (0), we define the generalized derivative of fX (·) at 0:

f (q)

X (0) = 1

2π

∞∑

h=−∞
|h|q RX (h).

If q is an even integer and f (·) is q-time differentiable at 0, then f (q)(0) =
(−1)

q
2 dq f (0)/dqω. However, there is no simple relationship between the two for a

general q.
To characterize the variance of f̂ X (0), we define the integral

Dψ =
∫ 2π

0

∣
∣
∣
∣
∣

∞∑

m=−∞
ψ̂(z + 2mπ)

∣
∣
∣
∣
∣

2

dz,

which exists and is finite given Assumptions 2 and 3.
We now state the MSE for f̂ X (0). For simplicity we assume here that the spectral

density for establishing the MSE is unnormalized.

Theorem 3 Suppose Assumptions 2–6 hold, and 2J+1/n1/(2q+1) → c ∈ (0,∞).
Then

lim
n→∞ n

2q
2q+1 M SE

{
f̂ X (0, J ), fX (0)

}
= 2cDψ f 2X (0) + λ2

qc−2q
[

f (q)

X (0)
]2

.

The MSE criterion provides a basis to choose an optimal J . The optimal conver-
gence rate for the MSE can be attained by setting the derivative of the MSE with
respect to the tuning constant c to zero. This yields the optimal finest scale J 0:

2J 0+1 = [
qλ2

qα(q)n/Dψ

] 1
2q+1 ,



62 P. Duchesne and Y. Hong

where α(q) =
[

f (q)

X (0)/ fX (0)
]2
. This optimal J 0 is infeasible because α(q) is

unknown. Nevertheless, we can plug-in an estimator α̂(q) for α(q). This gives a
“plug-in” data-driven Ĵ :

2 Ĵ+1 = [
qλ2

q α̂(q)n/Dψ

] 1
2q+1 . (10)

Because Ĵ must be a nonnegative integer for each n ≥ 1, we use

Ĵ = max{�(2q + 1)−1 log2
(
qλ2

q α̂(q)n/Dψ

) − 1, 0},

where �· denotes the integer part.
Corollary 1 Suppose Assumptions 2–6 hold, Ĵ is given as in (10), and α̂(q) =
αξ + oP(n−δ), where δ = 1/(2(2q + 1)) if αξ ∈ (0,∞) and δ = 1/(2q + 1) if αξ =
0. Then E ( Ĵ ) − E (J ) →p 0 and E ( Ĵ ) →d N (0, 1) under HE

0 .

In Corollary 1, we require α̂(q) →p αξ at a rate faster than n− 1
2(2q+1) when αξ > 0

and the more stringent rate n− 1
2q+1 when αξ = 0. This ensures that the use of α̂(q)

rather than αξ has no impact on E (J ) asymptotically.
Plug-in methods can be parametric or nonparametric (see, e.g., [2], [11], and

[58], for kernel-based spectral density estimation). Parametric plug-in methods use
a parsimonious approximating model for α̂(q). It yields a less variable smooth-
ing parameter, but when the approximating model is misspecified, it will not attain
the minimum asymptotic MSE, although this has no impact on the consistency of
E ( Ĵ ) against HE

1 . On the other hand, nonparametric plug-in methods estimate α̂(q)

nonparametrically. It attains the minimumMSE asymptotically but still involves the
choice of a preliminary smoothing parameter.

Both parametric and nonparametric plug-in methods can be used here. Below, we
consider a parametric “plug-in” method in spirit similar to [2], who considers data-
driven methods to choose a bandwidth in kernel-based spectral density estimation at
frequency zero. As an approximate parametric model for the duration process {Xt },
we consider an AR(p) model

Xt = β0 +
p∑

h=1

βh Xt−h + vt . (11)

The spectral density under the model (11) is given by

g(ω;β) = 1

2π

∣
∣
∣
∣
∣
1 −

p∑

h=1

βh exp(−ihω)

∣
∣
∣
∣
∣

−2

,
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where β = (β0, β1, . . . , βp)
�. Here we have normalized the variance σ 2

v = 1. This
has no impact on α̂(q) because the variance σ 2

v cancel in the numerator and denomi-
nator of α̂(q). We can estimate β with the ordinary least-squares method. In practice,
the autoregressive order p can be chosen by theAkaike’s InformationCriterion (AIC)
or Bayesian Information Criterion (BIC). We then obtain, for q = 2,

α̂(2) =
[

g′′(0; β̂)

g(0; β̂)

]2

.

Although OLSmay deliver negative parameter estimate β̂ for the non-negative dura-
tion process {Xt }, this causes no problem here because α̂(2) ≥ 0. It could be shown
that under proper conditions, α̂(2) = αξ + OP(n−1/2) where αξ = p limn→∞ α̂(2),
thus satisfying the conditions in Corollary 1.We note that the method developed here
can be adapted to the ARCH test in [44].

To summarize, our test procedure for ACD effects can be described as follows: (i)
Find Ĵ by the autoregression model (11); (ii) compute the test statistic E ( Ĵ ) in (7);
(iii) reject the null hypothesis of no ACD effects if E ( Ĵ ) > z1−α , where z1−α is the
1 − α quantile of the standard normal distribution N (0, 1).

4 Diagnostic Testing for ACD Models

4.1 Test Statistic

We now turn to test the adequacy of an ACD model D(It−1, θ). Suppose θ̂ is a
parameter estimator. Then the standardized duration residual is given by

êt = Xt/D̂t = Xt/D(It−1, θ̂).

Let R̂e(h) be the sample autocovariance function of {êt } defined in the same way
as R̂X (h) in (6). Throughout, we impose the following regularity conditions on the
model D(It−1, θ) and the estimator θ̂ , and an additional condition on the mother
wavelet ψ(·).
Assumption 7 (i) For each θ ∈ Θ , D(·, θ) is a measurable nonnegative function of
It−1; (ii) with probability one, D(It−1, ·) is twice continuously differentiable with
respect to θ in a neighborhood of Θ0 of θ0 = plim θ̂ , with

lim
n→∞ n−1

n∑

t=1

E sup
θ∈Θ0

∣
∣
∣
∣

∣
∣
∣
∣

∂

∂θ
D(It−1, θ)

∣
∣
∣
∣

∣
∣
∣
∣

2

< ∞

and limn→∞ n−1 ∑n
t=1 E supθ∈Θ0

∣
∣
∣
∣
∣
∣ ∂2

∂θ∂θ� D(It−1, θ)

∣
∣
∣
∣
∣
∣ < ∞.
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Assumption 8 θ̂ − θ0 = OP(n−1/2).

Assumption 9 ψ̂(z) = eiz/2b(z) or ψ̂(z) = −ieiz/2b(z), where b(·) is a real-valued
function.

In Assumption 8, we allow any n1/2-consistent estimator θ̂ , such as the QMLE
considered in [22]. We also allow the semi-parametric estimators considered in [13,
14], which attain an efficiency bound.

The Franklin wavelet (3) satisfies Assumption 9. In fact, most commonly used
wavelets satisfy this assumption. For example, the Lemarie-Meyer family is of the
form ψ̂(z) = eiz/2b(z), where b(·) is a real-valued and symmetric. Another family
is the spline wavelets of order m > 0. For odd m, this family is of the form ψ̂(z) =
eiz/2b(z), where b(·) is real-valued and symmetric; for even m, it is of the form
ψ̂(z) = −ieiz/2b(z), where b(·) is real-valued and odd function. See [40] for more
discussion.

To test the adequacy of an ACD model, we need a spectral density estimator of
{êt } over all frequencies ω ∈ [−π, π ]. A feasible wavelet estimator of fe(ω) can be
given as

f̂e(ω) = (2π)−1 +
J∑

j=0

2 j
∑

k=1

α̂ejkΨ jk(ω),

where the empirical wavelet coefficient is

α̂ejk = (2π)−1/2
n−1∑

h=1−n

ρ̂e(h)Ψ̂ ∗
jk(h),

and ρ̂e(h) is the sample autocorrelation function of {êt }.
We consider a test by comparing f̂e(·) and the flat spectrum. We use the quadratic

form,

Q( f̂e, f 0e ) =
∫ π

−π

[ f̂e(ω) − (2π)−1]2dω =
J∑

j=0

2 j
∑

k=1

α̂2
ejk,

where the second equality follows by Parseval’s identity and the orthonormality of
wavelet bases {Ψ jk(·)}. Because {êt } could exhibit positive and/or negative autocor-
relation, the quadratic metric is appropriate. Other divergence measures such as the
Hellinger metric or the Kullback-Leibler Information Criteria could be used. How-
ever, Q( f̂e, f 0e ) is convenient to compute, since there is no need to calculate the
numerical integration over ω ∈ [−π, π ].

Our diagnostic test statistic for ACDmodels is a normalized version of Q( f̂e, f 0e ):

A (J ) =
⎡

⎣2πn
J∑

j=0

2 j
∑

k=1

α̂2
ejk − (2J+1 − 1)

⎤

⎦ /[4(2J+1 − 1)]1/2. (12)
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When the ACD model is adequate, f̂e(ω) is close to a flat spectrum and so
Q( f̂e, f 0e ) is close to zero. Suppose the ACD model is inappropriate such that f̂e(ω)

is not flat, A ( Ĵ ) will diverge to +∞ as n → ∞ because Q( f̂e, f 0e ) ≥ C > 0 as
n → ∞. How large A (J ) must be in order to be viewed as significantly larger that
zero is determined by the sampling distribution of A (J ).

4.2 Asymptotic Distribution

We now state the asymptotic normality of A (J ).

Theorem 4 Suppose Assumptions 1–3 and 7–9 hold, 22J /n → 0 such that J → ∞.

If D(It−1; θ0) = D0
t a.s., then A (J )

d→ N (0, 1).

Although the alternativeHA
1 is not a one-sided alternative, it is appropriate to use

one-sided critical values for A (J ), since A (J ) is positive for n sufficiently large
under HA

1 . Unlike the test E (J ) for ACD effects in Sect. 3, we require here that the
finest scale J → ∞ as n → ∞ in order to obtain asymptotic normality for A (J ).
An interesting feature of the testA (J ) is that parameter estimation uncertainty in θ̂

has no impact on the limit distribution ofA (J ). This delivers a convenient procedure
in practice and is in sharp contrast to the BP/LB statistics as considered in [21, 22].
These statistics, adapted to the estimated standardized residuals {êt }, are assumed
to follow an asymptotic χ2

m distribution, where m is the number of lags used in the
tests. However, the validity of such asymptotic distribution is not established in the
literature. In the case of goodness-of-fit tests for ARMA models, it is well-known
that the degrees of freedom need to be adjusted (cf. [10]). The correct adjustment is
not known for BP/LB goodness-of-fit tests for ACD models and this seems rather
complicated in light of the results of [53] for testing ARCH models.

4.3 Adaptive Choice of Finest Scale

Like the test E (J ) for ACD effects, the choice of J may have significant impact
on the power of A (J ). It will be highly desirable to choose J via suitable data-
drivenmethods, which let data speak for proper finest scales. The data-drivenmethod
developed for the test E (J ) of ACD effects could be used for A (J ), but it may not
deliver good power because it exploits the information of f (·) at frequency zero only.
Amore suitable data-driven method for theA (J ) test should exploit the information
of f (·) for all frequencies ω ∈ [−π, π ].

Before discussing a specific method, we first justify the use of a data-driven finest
scale, noted also Ĵ .
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Theorem 5 Suppose Assumptions 1–3 and 7–9 hold, and Ĵ is a data-driven finest
scale with 2 Ĵ /2J = 1 + oP(2−J/2), where J is a nonstochastic finest scale such
that J → ∞ and 2J /n → 0 as n → ∞. If D(It−1, θ0) = D0

t a.s., then A ( Ĵ ) −
A (J ) →p 0 and A ( Ĵ ) →d N (0, 1).

Thus, the useof Ĵ rather than J has no impact on the limit distributionofA ( Ĵ )pro-
vided that Ĵ converges to J sufficiently fast. The condition 2 Ĵ /2J − 1 = oP(2−J/2)

is mild. If 2J ∝ n1/5, for example, we require 2 Ĵ /2J = 1 + oP(n−1/10).
We now develop a data-driven method to choose Ĵ that will satisfy the conditions

of Theorem 5. For this purpose, we first derive the formula for the asymptotic inte-
grated MSE (IMSE) of f̂e(·) over the entire frequency domain [−π, π ]. This differs
from the MSE of f̂ X (0). We impose the following additional conditions on {et }.
Assumption 10 The stochastic process {et } is a fourth order stationary process with

(i)
∞∑

h=−∞
R2

e (h) ≤ C;

(i i)
∞∑

j=−∞

∞∑

k=−∞

∞∑

l=−∞
|κe( j, k, l)| ≤ C,

where κe( j, k, l) denotes the fourth order cumulant of the joint distribution of {et −
μe, et+ j − μe, et+k − μe, et+l − μe}, where E(et ) = μe.

Assumption 11
∑∞

h=−∞ |h|q |Re(h)| ≤ C , where q ∈ [1,∞) is as in Assumption
5.

We can study, in passing, the consistency of the test statisticA (J ) under the two
previous assumptions. Consider a fixed alternative satisfyingAssumptions 10 and 11.
Note that under the alternative hypothesis, et 
= εt , and D(It−1, θ0) is not equal
almost surely to D0(It−1). Define the spectral density fe(·) using the unobservable
error. Following reasoning analogous to (but also more tedious than) that of [50,
Theorem 2] or [16, Theorem 2], it can be shown that if 22J /n → 0, J → ∞ and
Q( fe, (2π)−1) > 0, thenA (J ) = OP(n/2J/2), and thus the test is consistent. More
details can be obtained by communicating with the authors.

To state the next result, we define a pseudo spectral density estimator f̃e(·) for
fe(·), using the error series {et }n

t=1; namely,

f̃e(ω) ≡ (2π)−1 R̃e(0) +
J∑

j=0

2 j
∑

k=1

α̃ejkΨ jk(ω), ω ∈ [−π, π ],

where R̃e(h) ≡ n−1 ∑n
t=|h|+1(et − μe)(et−|h| − μe) and

α̃ejk ≡ (2π)1/2
n−1∑

h=1−n

R̃e(h)Ψ̂ ∗
jk(h).
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Also define the generalized derivative of fe(ω),

f (q)
e (ω) = 1

2π

∞∑

h=−∞
|h|q Re(h)e−ihω,

and put ϑq = (2π)2q+1

1−2−2q limz→0
|ψ̂(z)|2
|z|2q . The constant ϑq can be interpreted similarly to

λ2
q . For the Franklin’s wavelet, we have ϑ2 = π4/45.

Theorem 6 Suppose Assumptions 2–3, 5 and 7–11 hold, J → ∞ and 2J /n → 0
as n → ∞. Then Q( f̂e, fe) = Q( f̃e, fe) + oP(2J /n + 2−2q J ), and

E[Q( f̃e, fe)] = 2J+1

n

∫ π

−π

f 2e (ω)dω + 2−2q(J+1)ϑq

∫ π

−π

[ f (q)
e (ω)]2dω + o(2J /n + 2−2q J ).

Theorem 6 shows that the parameter estimation uncertainty in θ̂ has no impact on
the optimal convergence rate of Q( f̂e, fe), which is the same as those of Q( f̃e, fe).
Note that E[Q( f̃e, fe)] is the IMSE of f̃e(·).

To obtain the optimal finest scale that minimizes the asymptotic IMSE of f̃e(·),
we differentiate the asymptotic IMSE of f̃e(·)with respect to J and set the derivative
equal to zero. This yields

2J0+1 = [
2qϑqξ0(q)n

]1/(2q+1)
, (13)

where

ξ0(q) ≡
∫ π

−π

[ f (q)
e (ω)]2dω/

∫ π

−π

f 2e (ω)dω. (14)

This optimal J0 is infeasible because ξ0(q) is unknown underHA
1 . However, we can

use some estimator ξ̂0(q) for ξ0(q). This gives a data-driven finest scale Ĵ0 :

2 Ĵ0+1 ≡
[
2qϑq ξ̂0(q)n

]1/(2q+1)
.

Because Ĵ0 is a nonnegative integer for each n ≥ 1, we should use

Ĵ0 ≡ max

{⌊
1

2q + 1
log2

(
2qϑq ξ̂0(q)n

)
− 1

⌋

, 0

}

, (15)

where �· denotes the integer part.
Corollary 2 Suppose that Assumptions 2–3, 5 and 7–11 hold, and Ĵ0 is given as
in (15), where ξ̂0(q) − ζ0(q) = oP(n−1/(2q+1)), and ζ0(q) ∈ (0,∞). If D(It−1, θ0)

= D0
t a.s., then A ( Ĵ0)

d→ N (0, 1).
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The condition on ξ̂0(q) is mild. We do not require the probability limit p lim ξ̂0(2)
≡ ζ0(q) = ξ0(q), where ξ0(q) is as in (14). When (and only when) ζ0(q) = ξ0(q),

Ĵ0 in (15) will converge to the optimal J0 in (13).
For the estimator ξ̂0(q), we use a parametric AR(p) model for {êt }:

êt = γ0 +
p∑

h=1

γhêt−h + vt , t = 1, . . . , n, (16)

where we set the initial values êt ≡ 0 if t ≤ 0. In practice, we can use the AIC/BIC
methods to determine p. Suppose γ̂ ≡ (γ̂0, γ̂1, . . . , γ̂p)

� is theOLSestimator in (16).
For concreteness, we consider q = 2 here. We have

ξ̂0(2) ≡
∫ π

−π

[
d2

dω2
f̂e(ω)

]2

dω/

∫ π

−π

f̂ 2e (ω)dω, (17)

where f̂e(ω) ≡ (2π)−1|1 − ∑p
h=1 γ̂he−ihω|−2. We have set σ 2

v = 1 but this has no
impact on ξ̂0(q). We also have used the fact that the generalized spectral derivative
f̂ (2)
e (ω) = − d2

dω2 f̂e(ω) for q = 2. The estimator ξ̂0(2) incorporates the information
of fe(·) over [−π, π ] rather than at zero only. This is analogous to [7] and [64],
who consider data-driven choices of bandwidths in kernel-based spectral density
estimation over the entire frequency domain [−π, π ]. We can use one-dimensional
numerical integrations to compute ξ̂0(2). Note that ξ̂0(2) satisfies the conditions
of Corollary 2 with q = 2 because for parametric AR(p) approximations, ξ̂0(2) −
ζ0(2) = OP(n−1/2).

To summarize, our diagnostic procedure for the adequacy of ACD models can be
described as follows: (i) Find Ĵ by the autoregression in (16); (ii) compute the test
statisticA ( Ĵ ) in (12). (iii) reject the null hypothesis of adequacy of the ACD model
if the test statistic A ( Ĵ ) > z1−α , where z1−α is the 1 − α quantile of the standard
normal distribution N (0, 1).

5 Finite Sample Performance

We now study the finite sample performance of tests E (·) and A (·). We use the
Franklin wavelet in (3). To examine the impact of the choice of finest scale J ,
we consider J = 0, 1, 2, 3, 4 for each sample size n, which correspond to using
2J+1 − 1 = 1, 3, 7, 15, 31 empirical wavelet coefficients. We also consider the data-
driven methods proposed for E (·) and A (·) respectively.

The simulation experiments for testing ACD effects and for testing the adequacy
of ACD models are described in the next two sections.
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5.1 Testing for ACD Effects

We first consider E (J ) for J from 0 to 4 and the data-dependent Ĵ described in
Sect. 3.4.We consider the parametric plug-in autoregressive method, where the order
of the autoregression is chosen by the AIC and BIC methods.

We compare E (J ) with two test statistics: one-sided locally most mean powerful
test in [41] and the BP/LB two-sided tests. The Higgins’ (2000) test statistic in [41]
is given by

H(m) = V̂ −1/2
n

n∑

t=m+1

(
Xt/μ̂ − 1

) m∑

h=1

Xt−h,

where μ̂ = n−1 ∑n
t=1 Xt and

V̂n = {(n − m)−1
n∑

t=m+1

(Xt/μ̂ − 1)2}{
n∑

t=m+1

(

m∑

h=1

Xt−h)2 − (

n∑

t=m+1

m∑

h=1

Xt−h)2/(n − m)}.

The test statistic H(m) is analogous to the test in [49] for ARCH(m). It has an one-
sided asymptotic N (0, 1) distribution under HE

0 . The BP/LB test statistics are given
as

B P(m) = n
m∑

h=1

ρ̂2
X (h),

L B(m) = n2
m∑

h=1

(n − h)−1ρ̂2
X (h).

Both of them have a valid asymptotic χ2
m distribution under HE

0 , because they are
based on the observed raw data {Xt }n

t=1, rather than the estimated standardized dura-
tion residuals. For H(m), B P(m) and L B(m), the lag order m has to be chosen at
priori. These tests will attain their maximal powers when using the optimal lag order,
which depends on the true alternative. If the alternative is unknown, as often occurs
in practice, these tests may suffer from power losses when a suboptimal lag order is
used. There has been no theoretical guidance on the choice of m for these tests. To
examine the effect of the choice of m, we use m = 1, 4, 12.

We consider the following DGP: Xt = Dtεt , t = 1, . . . , n, where {εt } ∼ iid
EXP(1). We consider n = 128, 256. The initial values for Dt , t ≤ 0 are set equal
to the unconditional mean of Xt . To reduce the effect of the initial values, we gener-
ate 2n + 1 observations and then discard the first n + 1 ones. For each experiment,
we generate 1000 iterations using the R software on a personal computer.

We study the level of the tests by setting Dt ≡ 1. Table1 reports the empirical
level at the 10 and 5% nominal levels using asymptotic critical values. Based on
1000 iterations, acceptable values at the 5% level are (3.6%, 6.4%) and at the 10%
level are (8.1%, 11.9%). We first look at the wavelet test E (J ). For J = 0, 1, E (J )

performs reasonably well for both n = 128, 256, particularly for n = 256 at the 5%
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Table 1 Size at the 10 and 5% levels for tests for an ACD effect

n = 128 n = 256

10% 5% 10% 5%

E ( Ĵ ), AIC 8.2 4.4 10.4 5.2

E ( Ĵ ), BIC 8.1 4.1 8.7 5.0

E (0) 8.0 4.2 8.9 5.6

E (1) 7.5 4.0 9.7 4.8

E (2) 5.9 3.4 9.0 5.3

E (3) 5.1 2.6 7.8 4.2

E (4) 3.6 1.7 6.5 3.9

H(1) 8.8 4.3 9.1 5.4

B P(1) 8.6 3.6 11.0 6.0

L B(1) 8.6 3.8 11.1 6.0

H(4) 7.1 3.5 8.2 4.5

B P(4) 7.3 3.6 8.1 4.1

L B(4) 7.7 3.7 8.4 4.3

H(12) 12.0 6.7 11.0 5.5

B P(12) 7.3 4.5 7.5 4.8

L B(12) 9.4 5.7 8.3 5.2

(1) DGP: Xt = εt , εt ∼ E X P(1). (2) 1000 iterations. (3) The mean and standard deviation (inside
the parentheses) of Ĵ according to AIC method: 0.31 (0.73), 0.30 (0.71) for n = 128, 256 respec-
tively; BIC method: 0.02 (0.17), 0.01 (0.14) for n = 128, 256 respectively

level. The 5% level is in general well controlled for n = 256 and J ∈ {0, 1, 2, 3}.
When J > 1, E (J ) shows some underrejections, specially for n = 128. It seems that
given each n the level deteriorates when J becomes larger. For the data-dependent
Ĵ , both AIC and BIC give reasonable levels. The AIC method seems to perform
very well for n = 256 at both the 10 and 5% levels. We report, in the notes to each
table, the mean and standard deviation of the data-dependent Ĵ . The BIC method
has a tendency to choose a more parsimonious model than the AIC method, and the
resulting ĴBIC is smaller and less variable on the average. On the other hand, the
levels of the tests H(m), BP(m) and LB(m) are reasonable. The last H(12) shows
some overrejection, specially for n = 128.

Next, we investigate the power under the following ACD alternatives:

ACD(1): Dt = β0 + αXt−1,

ACD(4)a : Dt = β0 + α
∑4

j=1 Xt− j ,

ACD(4)b: Dt = β0 + α
∑4

j=1(1 − j/5)Xt−1,

ACD(12)a : Dt = β0 + α
∑12

j=1 Xt− j ,

ACD(12)b: Dt = β0 + α
∑12

j=1(1 − j/13)Xt− j ,

ACD(1,1)a : Dt = β0 + αXt−1 + βDt−1,

ACD(1,1)b: Dt = β0 + αXt−2 + βDt−2,
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where β0 is chosen such that E(Xt ) = 1. For ACD(1), we set α = 0.09, 0.36 respec-
tively. The ACD(1) process has no sharp spectral peak at any frequency. In contrast,
ACD(4)a , ACD(4)b, and particularly ACD(12)a and ACD(12)b have a relatively long
distributional lag, which generates a spectral peak at zero. We set α = 0.36/4 for
ACD(4)a and α = 0.36/

∑4
j=1(1 − j/5) for ACD(12)b. We set α = 0.90/12 for

ACD(12)a and α = 0.90/
∑12

j=1(1 − j/13) for ACD(12)b. The ACD(1,1) model is
expected to be a workhorse in modelling duration clustering, as is GARCH(1,1)
in modelling financial volatility. When α + β < 1, ACD(1,1) can be expressed as
an ACD(∞) with exponentially decaying coefficients. We set (α, β) = (0.2, 0.7),
which displays relatively persistent ACD effects, yielding a spectral peak at zero.
We consider the level-corrected power under these alternatives, using the empirical
critical values obtained from 1000 replications underHE

0 . This provides comparison
among the tests on a fair ground.

Table2 reports the power against ACD(1). We first consider the wavelet test
E (J ). The power of E (J ) is the highest at J = 0 and decreases as J increases.
The test E (0) has power similar to H(1), which is optimal for ACD(1). In contrast,
BP(1)/LB(1) have slightly smaller power, apparently due to their two-sided nature.

Table 2 Size-adjusted power against ACD(1) at 10 and 5% levels for tests of an ACD effect

a) α = 0.09 b) α = 0.36

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

E ( Ĵ ), AIC 30.6 18.5 40.7 29.1 88.6 80.6 96.1 94.2

E ( Ĵ ), BIC 36.2 22.0 49.3 34.7 94.0 86.7 98.7 97.1

E (0) 37.7 23.6 50.2 36.1 95.6 91.3 99.6 98.9

E (1) 28.0 17.9 40.9 31.9 90.5 82.7 97.8 96.4

E (2) 20.1 12.1 28.4 16.8 67.5 56.4 84.4 76.3

E (3) 18.1 8.1 21.0 14.4 50.0 35.7 63.2 54.0

E (4) 14.3 8.6 17.2 9.8 31.0 22.7 46.1 35.6

H(1) 35.6 24.0 51.3 34.0 95.3 92.0 99.6 99.0

B P(1) 23.7 17.4 37.8 26.7 91.8 87.4 99.0 98.3

L B(1) 23.7 17.4 37.8 26.7 91.8 87.4 99.0 98.3

H(4) 20.2 14.0 29.9 18.4 67.4 57.6 87.3 80.7

B P(4) 19.0 11.6 30.0 21.7 82.6 75.7 97.0 95.3

L B(4) 18.9 11.7 29.9 21.5 82.4 75.4 96.9 95.1

H(12) 14.8 7.1 18.5 12.0 31.3 21.8 50.7 39.9

B P(12) 14.6 8.1 22.8 12.3 68.5 57.8 92.5 87.6

L B(12) 14.7 8.1 22.4 12.1 67.0 56.4 92.5 87.3

(1) DGP: Xt = Dtεt , Dt = β0 + αXt−1, β0 = 1 − α, where εt follows an EXP(1) distribution. (2)
1000 iterations. (3) The mean and standard deviation (inside the parentheses) of Ĵ according to AIC
method: a) 0.50 (0.79), 0.61 (0.81) for n = 128, 256 respectively; b) 1.16 (0.69), 1.33 (0.72) for
n = 128, 256 respectively; BIC method: a) 0.12 (0.35), 0.21 (0.42) for n = 128, 256 respectively.
b) 0.92 (0.58), 1.19 (0.52) for n = 128, 256 respectively
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Appealingly, the wavelet test E ( Ĵ ) with the BIC method has power very similar to
that of H(1) and E (0), suggesting the merit of using the BIC method. The tests H(m)
and BP(m)/LB(m) have decreasing power as m increases, as is expected. There is no
data-driven method to select m for H(m) and BP(m)/LB(m).

Table3 reports the power under ACD(4). In contrast to ACD(1), the wavelet test
E ( Ĵ ) now has a ∩-shape power as J increases from 0 to 4, with J = 2 giving
the maximum power for both n = 128 and 256. The power of E (2) is similar to
that of H(4). The BP(4)/LB(4) tests have substantially smaller power, indicating the
loss of not exploiting the one-sided nature of the alternative. When m 
= 4, H(m)
and BP(m)/LB(m) have substantially smaller power than H(4) and BP(4)/LB(4)
respectively. Again, there is no rule to select a data-driven m. In contrast, the wavelet
test E ( Ĵ ) with the AIC method has a better power than suboptimal J ’s. It is less
powerful that E (2), but the difference becomes smaller as n increases.

Table4 reports the power under ACD(12). Like ACD(4), the wavelet test E (J )

still has a∩-shape power as J increases, with J = 3 having themaximumpower. The
H(m) test has an increasing power as m increases under ACD(12)a , but a ∩-shape

Table 3 Size-adjusted power against ACD(4) at 10 and 5% levels for tests of an ACD effect

ACD(4), case a) ACD(4), case b)

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

E ( Ĵ ), AIC 60.1 49.2 81.6 77.1 69.8 60.5 88.6 84.7

E ( Ĵ ), BIC 50.4 36.7 68.3 59.2 65.8 54.3 83.9 75.6

E (0) 48.6 34.6 65.5 53.2 65.0 52.7 82.2 72.2

E (1) 60.6 47.3 79.5 72.8 75.6 63.9 91.7 86.0

E (2) 74.6 60.3 90.9 83.5 75.6 63.0 91.7 84.0

E (3) 59.8 46.9 75.2 68.4 58.4 45.9 73.6 66.3

E (4) 37.3 27.5 54.1 44.7 36.2 27.0 53.3 43.5

H(1) 42.0 31.3 61.2 46.3 60.2 49.4 80.7 66.8

B P(1) 30.0 23.8 48.2 39.3 48.7 39.0 68.8 61.1

L B(1) 30.0 23.8 48.2 39.3 48.7 39.0 68.8 61.1

H(4) 70.1 61.9 90.8 83.9 71.7 62.8 91.7 85.0

B P(4) 49.8 40.0 77.9 72.7 56.2 46.6 83.0 78.1

L B(4) 49.5 40.0 77.9 72.8 55.5 46.6 82.8 77.9

H(12) 37.6 26.5 60.5 49.3 36.9 26.4 58.4 48.6

B P(12) 37.9 27.2 67.1 57.5 43.9 32.7 73.3 63.3

L B(12) 37.0 26.9 66.4 57.0 43.2 32.2 73.2 63.0

(1) DGP: Xt = Dtεt , Dt = β0 + ∑4
i=1 αi Xt−i , β0 = 1 − ∑4

i=1 αi , where εt follows an EXP(1)
distribution. Case a): αi = 0.09, i = 1, . . . , 4. Case b): αi = α(1 − i/5), α = .36/

∑4
i=1(1 − i/5).

(2) 1000 iterations. (3) The mean and standard deviation (inside the parentheses) of Ĵ according to
AICmethod: a) 1.10 (1.16), 1.73 (1.13) for n = 128, 256 respectively; b) 1.13 (1.02), 1.67 (0.96) for
n = 128, 256 respectively; BIC method: a) 0.39 (0.79), 0.74 (1.02) for n = 128, 256 respectively.
b) 0.52 (0.81), 0.94 (0.93) for n = 128, 256 respectively



On Diagnostic Checking Autoregressive Conditional Duration … 73

Table 4 Size-adjusted power against ACD(12) at 10 and 5% levels for tests of an ACD effect

ACD(12), case a) ACD(12), case b)

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

E ( Ĵ ), AIC 68.0 63.4 94.3 93.4 87.1 83.7 98.5 98.2

E ( Ĵ ), BIC 61.9 54.0 88.1 84.5 82.2 76.1 97.2 96.0

E (0) 60.4 51.4 86.6 81.4 81.3 73.8 97.2 94.6

E (1) 71.0 62.3 94.1 92.1 90.3 84.1 99.3 99.0

E (2) 81.1 74.1 97.4 95.8 95.0 91.3 99.7 99.4

E (3) 87.9 83.1 99.2 98.5 96.1 92.4 99.9 99.9

E (4) 85.2 81.2 98.9 98.6 90.4 86.4 99.4 99.1

H(1) 53.4 45.6 83.1 73.5 74.7 66.0 95.1 89.6

B P(1) 45.3 37.0 75.7 68.8 65.4 58.6 91.0 87.5

L B(1) 45.3 37.0 75.7 68.8 65.4 58.6 91.0 87.5

H(4) 74.3 67.0 95.0 93.1 90.4 87.3 99.3 98.8

B P(4) 61.3 54.9 90.9 88.6 82.8 78.9 98.5 98.1

L B(4) 61.3 55.0 90.9 88.6 82.9 78.9 98.5 98.1

H(12) 75.9 69.4 96.9 95.8 81.1 77.2 98.0 97.6

B P(12) 70.2 64.2 97.3 95.9 83.2 78.4 99.2 98.6

L B(12) 70.5 64.2 97.3 95.9 83.1 78.2 99.1 98.5

(1) DGP: Xt = Dtεt , Dt = β0 + ∑12
i=1 αi Xt−i , β0 = 1 − ∑12

i=1 αi , where εt follows an EXP(1)
distribution.Case a):αi = 0.90/12, i = 1, . . . , 12.Case b):αi = α(1 − i/13),α = .90/

∑12
i=1(1 −

i/13). (2) 1000 iterations. (3) The mean and standard deviation (inside the parentheses) of Ĵ
according to AIC method: a) 2.39 (2.07), 4.24 (1.50) for n = 128, 256 respectively; b) 2.84 (1.67),
4.11 (1.14) for n = 128, 256 respectively; BICmethod: a) 0.86 (1.44), 2.43 (1.93) for n = 128, 256
respectively. b) 1.54 (1.61), 3.08 (1.55) for n = 128, 256 respectively

power under ACD(12)b. Interestingly, H(12) is less powerful than H(4), although
m = 12 is the optimal lag order. The BP(m)/LB(m) tests have an increasing power
as m increases under both ACD(12)a and ACD(12)b. Note that the best wavelet test
E (3) is more powerful that H(12) under ACD(12)a and H(4) under ACD(12)b. For
data-driven Ĵ , the test E ( Ĵ ) with the AIC method has better power than E ( Ĵ ) with
the BIC method, and has better power than E (J ) for J = 0, 1, but not for J ≥ 2.

Table5 reports the power against theACD(1,1) alternatives. Thewavelet testE (J )

has a ∩-shape power as J increases with J = 1 having the maximum power under
ACD(1,1)a and J = 2 having the maximum power under ACD(1,1)b. The H(m)
and BP(m)/LB(m) tests have declining power as m increases under ACD(1,1)a but
have a∩ -shape power under ACD(1,1)b. Interestingly, although H(1) is theoretically
optimal for ACD(1,1), H(4) has better power than H(1) under ACD(1,1)b. Note that
under ACD(1,1)a , the best wavelet test E (1) has better power than H(1), and under
ACD(1,1)b, the best wavelet test E (2) has slightly better power than H(4).
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Table 5 Size-adjusted power against ACD(1,1) at 10 and 5% levels for tests of an ACD effect

ACD(1, 1), case a) ACD(1, 1), case b)

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

E ( Ĵ ), AIC 77.4 67.1 92.6 89.2 91.0 88.1 99.4 99.2

E ( Ĵ ), BIC 77.2 65.8 93.2 87.8 87.9 81.4 98.7 97.9

E (0) 77.2 65.9 93.1 86.5 87.1 79.3 98.1 96.3

E (1) 82.1 71.1 94.3 91.7 94.0 89.5 99.5 99.0

E (2) 71.9 61.3 89.4 82.5 95.0 93.0 99.7 99.6

E (3) 56.4 45.2 72.6 65.2 94.0 89.9 99.6 99.5

E (4) 35.2 28.1 53.9 44.6 84.1 78.5 97.6 96.3

H(1) 75.2 65.0 91.6 84.9 83.0 74.9 96.7 94.4

B P(1) 63.6 54.9 85.0 79.8 75.0 67.8 94.4 91.0

L B(1) 63.6 54.9 85.0 79.8 75.0 67.8 94.4 91.0

H(4) 69.4 60.1 90.7 83.4 92.6 89.2 99.6 99.1

B P(4) 60.6 51.6 85.8 82.1 86.2 80.7 99.0 98.7

L B(4) 60.2 51.5 85.6 82.0 86.3 80.6 99.0 98.7

H(12) 37.4 27.6 58.0 48.5 77.1 71.6 96.7 95.0

B P(12) 49.5 38.6 77.1 69.0 82.8 76.6 99.0 98.1

L B(12) 48.5 38.3 76.8 68.9 82.5 76.1 98.9 97.9

(1) DGP: Xt = Dtεt , ACD(1, 1): Dt = β0 + αXt−1 + β Dt−1, a) α = 0.2, β = 0.45, β0 = 1 −
α − β, where εt follows an EXP(1) distribution. b) α = 0.2, β = 0.75, β0 = 1 − α − β, where εt
follows an EXP(1) distribution. (2) 1000 iterations. (3) The mean and standard deviation (inside the
parentheses) of Ĵ according toAICmethod: a) 1.13 (0.93), 1.55 (0.88) forn = 128, 256 respectively;
b) 2.36 (1.38), 3.39 (1.10) for n = 128, 256 respectively; BIC method: a) 0.60 (0.74), 1.01 (0.77)
for n = 128, 256 respectively. b) 1.35 (1.30), 2.49 (1.26) for n = 128, 256 respectively

The wavelet tests E ( Ĵ )with AIC/BIC perform reasonably well. They have power
only marginally smaller than the best wavelet tests with the finite sample optimal J .

In summary, we observe: (1) the wavelet test with the finite sample optimal J
generally performs better that H(m) test with the optimal lag. This shows the use-
fulness and potential of the wavelet method for testing for duration effects; (2) the
choice of the finest scale J seems not important for the level (unless J is large and
n is small) but affects the power significantly. The data-driven method yields an
objective finest scale Ĵ which delivers reasonable levels for the test; (3) the power of
the wavelet test using data-driven Ĵ was reasonable under all the alternatives consid-
ered. It seems that the AIC method performs better for relatively persistent duration
processes, while the BIC method performs better for short durations; (4) the tests
H(m) and BP(m)/LB(m) generally attain their own maximal powers when using the
optimal lag order (except for ACD(12)b), but may suffer from severe power loss
using a suboptimal lag.
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5.2 Testing for the Adequacy of an ACD Model

We now consider A (J ) for J = 0, 1, 2, 3, 4 and the data-dependent Ĵ described in
Sect. 4.2. We use the parametric plug-in autoregressive method. The autoregression
order is chosen by AIC and a modified AIC method. We modify the AIC method
since we need a data-dependent Ĵ such that Ĵ → ∞ as n → ∞. This differs from
testing for ACD effects where J can be fixed. We take

ĴmodAIC = max
{

ĴAIC, �0.2 log2(32n) − 1
}

,

where �· stands for the integer part. The formula 0.2 log2(32n) gives a slow conver-
gence to ∞ which corresponds to 2J = n0.2. This ensures ĴmodAIC → ∞ as n → ∞.

We compare A (J ) with the BP/LB test statistics, which remain very popular
procedures. The statisticA (J ) is asymptotically one-sided N (0, 1) under HA

0 . The
BP(m)/LB(m) statistics were often used in the empirical literature (e.g., [21, 22, 34,
67, 68]). They are assumed to have an asymptotic χ2

m distribution under HA
0 . How-

ever, our analysis suggests that the test statistics or their limiting distributions need
an adjustment, and such an adjustment seems not simple in lights of the results by
[53] in diagnostic testing for ARCH models. Therefore, the level of BP(m)/LB(m)
is troublesome. Nevertheless, we still include BP(m)/LB(m) in our simulation com-
parison. We compare the power of the tests using their empirical critical values, so
the power comparison is valid. As was the case for testing for ACD effects, the lag
order m has to be chosen at priori. These tests will attain their maximal powers when
using the optimal lag order, which depends on the true alternative. If the alternative
is unknown, as often occurs in practice, these tests may suffer from power loss when
using a suboptimal lag order. To examine the effect of the choice of m for these tests,
we use m = 1, 4, 12.

We first study the level by fitting an ACD(1,1) model to the following DGP: Xt =
Dtεt , t = 1, . . . , n, where εt are iid EXP(1) and Dt is an ACD(1,1) with (α, β) =
(0.3, 0.65). We consider n = 128, 256. Estimation is performed by taking the square
root of the duration process and setting the mean equal to zero (cf. [22]). Once the
ACD(1,1) model is estimated, we can compute the estimated standardized duration
residuals êt = Xt/D̂t and all the relevant test statistics.

Table6 reports the empirical level at the 10 and 5% nominal levels using asymp-
totic critical values. We first look at the wavelet testA (J ). At the 10% level, the best
levels are obtained with J = 2, 3. For J ∈ {1, 2, 3, 4}, the levels are well controlled
at the 5% level. When J is small, that is, J = 0, 1, or when J is too large, say J = 4,
the wavelet test A (J ) seem to exhibit underrejection. Both AIC and the modified
AIC methods give good levels at the 10% level, but seem to overreject at the 5%
level. The BP/LB tests severally underreject, possibly due to the use of incorrect
asymptotic critical values. They seem to have their better level for larger lag orders.
It appears that the χ2

m distribution is not appropriate, as is expected.
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Table 6 Size at the 10 and 5% levels for tests for goodness-of-fit of ACD models when the model
is ACD(1,1)

n = 128 n = 256

10% 5% 10% 5%

A ( Ĵ ), AIC 10.5 7.7 10.3 7.4

A ( Ĵ ), modified AIC 10.7 7.7 9.9 7.4

A (0) 4.1 2.6 4.5 2.6

A (1) 6.6 4.5 6.2 4.2

A (2) 8.1 5.2 7.0 4.4

A (3) 7.4 4.7 7.1 4.2

A (4) 6.3 3.8 6.5 3.6

B P(1) 1.5 0.5 1.7 0.4

L B(1) 1.5 0.5 1.7 0.5

B P(4) 5.4 2.9 5.0 1.9

L B(4) 6.1 3.2 5.2 2.1

B P(12) 5.6 3.0 5.7 2.6

L B(12) 7.3 3.9 6.4 3.2

(1) DGP: Xt = Dtεt , Dt = β0 + αXt−1 + β Dt−1, β0 = 1 − α − β, α = 0.3, β = 0.65, where εt
is EXP(1). (2) 1000 iterations. (3) The mean and standard deviation (inside the parentheses) of Ĵ
according to AIC method: 0.31 (0.80), 0.24 (0.69) for n = 128, 256 respectively; modified AIC
method: 1.15 (0.50), 1.11 (0.40) for n = 128, 256 respectively

Next, we investigate the power under the following ACD alternatives:

ACD(2,2): Dt = β0 + 0.3Xt−2 + 0.6Dt−2,

ACD(4): Dt = β0 + 0.9Xt−4,

ACD(4,4): Dt = β0 + 0.1Xt−2 + 0.3Xt−4 + 0.1Dt−2 + 0.3Dt−4,

ACD(12): Dt = β0 + 0.9Xt−12,

where β0 is chosen such that the unconditional mean of the duration process is 1. We
estimate all these DGPs by an ACD(1,1) model.We then consider the level-corrected
power under these alternatives, using the empirical critical values from the 1000
replications underHA

0 . The spectral density of theACD(2,2) process exhibits a single
peak at frequency zero. For the ACD(4) alternative, the spectral density has a peak at
frequency zero and another peak at a non-zero frequency. The ACD(4,4) alternative
has a spectral peak at zero and an other smaller peak at a non-zero frequency. Finally,
theACD(12) process hasmany spectral peaks at non-zero frequencies.Whenwefit an
ACD(1,1) model to the data, the estimated standardized residuals show remaining
dependence in the residuals. Often, if the spectral density of a duration process
exhibits a large peak and if we estimate incorrectly an ACD(1,1) model, then f̂e(·)
may still exhibit some peaks (typically of less magnitude, however).

Table7 reports the power against ACD(2,2) and ACD(4,4). Under ACD(2,2), the
choices of J = 1 and J = 2 give the highest power for the wavelet test for n = 128
and n = 256, respectively. The best power among the BP(m)/LB(m) tests is obtained
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Table 7 Size-adjusted power against ACD(q, q), q = 2, 4 at 10 and 5% Levels for tests of
goodness-of-fit when the model is ACD(1,1)

ACD(2,2) ACD(4,4)

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

A ( Ĵ ), AIC 85.4 80.8 97.9 96.7 73.4 68.2 94.9 93.1

A ( Ĵ ), modified AIC 86.5 81.5 98.0 96.5 72.5 67.8 94.2 92.8

A (0) 79.9 73.9 96.4 95.0 58.9 51.4 85.3 80.0

A (1) 86.4 81.3 97.2 96.0 54.0 44.0 79.4 69.6

A (2) 85.9 80.9 97.9 97.0 79.1 73.8 96.2 95.1

A (3) 83.0 78.4 97.2 96.1 77.2 70.3 95.8 94.0

A (4) 79.1 72.2 96.4 94.1 70.1 63.3 93.9 91.2

B P(1) 74.0 67.9 94.6 93.1 52.0 44.1 79.6 72.8

L B(1) 74.0 67.9 94.6 93.1 52.0 44.1 79.6 72.8

B P(4) 82.9 78.0 97.0 95.4 76.7 70.4 95.8 93.1

L B(4) 82.7 78.0 97.0 95.4 76.7 70.5 95.8 93.1

B P(12) 80.6 75.7 96.9 94.7 73.1 65.1 94.5 92.2

L B(12) 80.3 75.4 96.9 94.7 72.4 64.8 94.5 92.1

(1) DGP: Xt = Dtεt , a) Dt = β0 + αXt−2 + β Dt−2, β0 = 1 − α − β, α = 0.3, β = 0.6, where εt
is EXP(1). b) Dt = β0 + α1Xt−2 + α2Xt−4 + β1Dt−2 + β1Dt−4, β0 = 1 − α1 − α2 − β1 − β2,
α1 = 0.1, α2 = 0.3, β1 = 0.1,β2 = 0.3, where εt is EXP(1). (2) 1000 iterations. (3) The mean and
standard deviation (inside the parentheses) of Ĵ according toAICmethod: a) 2.22 (1.37), 2.83 (1.09)
for n = 128, 256 respectively; b) 2.11 (1.48), 2.74 (1.07) for n = 128, 256 respectively. Modified
AIC method: a) 2.37 (1.16), 2.85 (1.03) for n = 128, 256 respectively; b) 2.37 (1.14), 2.81 (0.93)
for n = 128, 256 respectively

with m = 4, but this choice of m is difficult to justify. Under ACD(4,4), the choice
J = 2 gives the highest power for the wavelet testA (J ), and m = 4 gives the higher
power for BP(m)/LB(m). For both ACD(2,2) and ACD(4,4) the AIC and modified
AIC method give a power similar to the optimal J , with the advantage that J was
data-driven. The testA ( Ĵ ) dominates under the ACD(2,2) alternative, and the power
of A ( Ĵ ) is close to BP(4)/LB(4) under ACD(4,4).

Table8 reports the power against ACD(4) and ACD(12). Under ACD(4), the
choice J = 2 gives the highest power for the wavelet test A (J ). The choice m = 4
gives the higher power for BP(m)/LB(m). Under ACD(12), the choice J = 4 gives
the highest power for the wavelet test. The best power for BP(m)/LB(m) is obtained
at m = 12. Their power can be very low if m is misspecified: the tests based on
m = 1, 4 have almost no power. This illustrates the importance of a data-dependent
method. On the other hand, the wavelet test based on AIC or modified AIC have a
power very similar to the wavelet test A (J ) based on the finite sample optimal J ,
and the power is similar to BP(m)/LB(m) with the optimal m .

In summary, (1) when J is fixed, the wavelet test with the finite sample optimal
J performs well in power compared to that BP(m)/LB(m) tests with the optimal lag.
This shows the usefulness of the wavelet method for testing for goodness-of-fit of
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Table 8 Size-adjusted power against ACD(q), q = 4, 12 at 10 and 5%Levels for tests of goodness-
of-fit when the model is ACD(1,1)

ACD(4) ACD(12)

n = 128 n = 256 n = 128 n = 256

10% 5% 10% 5% 10% 5% 10% 5%

A ( Ĵ ), AIC 96.9 95.6 99.2 99.1 83.4 78.2 98.3 97.8

A ( Ĵ ), modified AIC 96.9 95.9 99.2 99.1 83.2 78.2 98.3 97.8

A (0) 64.4 53.0 90.9 86.0 24.5 15.1 32.0 21.6

A (1) 71.7 52.7 96.4 93.1 19.8 9.3 27.6 16.7

A (2) 98.6 98.1 99.7 99.6 15.5 10.2 24.3 16.8

A (3) 97.9 97.1 99.3 99.2 20.4 14.3 26.7 20.1

A (4) 95.5 93.7 99.0 98.9 89.1 84.6 98.7 98.2

B P(1) 52.9 39.1 85.3 77.1 20.2 12.6 25.3 18.0

L B(1) 52.9 39.1 85.3 77.1 20.2 12.6 25.3 18.0

B P(4) 98.6 97.8 99.6 99.4 14.3 9.0 19.3 12.3

L B(4) 98.6 97.8 99.6 99.4 14.3 9.1 19.3 12.3

B P(12) 96.7 94.9 99.1 99.0 93.4 91.8 99.7 99.3

L B(12) 96.4 94.7 99.1 99.0 93.8 92.4 99.7 99.3

(1) DGP: Xt = Dtεt , a) Dt = β0 + αXt−4, α = 0.9, where εt is EXP(1). b) Dt = β0 + αXt−12,
β0 = 1 − α, α = 0.9, where εt is EXP(1). (2) 1000 iterations. (3) The mean and standard deviation
(inside the parentheses) of Ĵ according to AIC method: a) 3.32 (0.81), 3.49 (0.62) for n = 128, 256
respectively; b) 4.37 (1.21), 4.75 (0.51) for n = 128, 256 respectively; modified AIC method: a)
3.33 (0.77), 3.49 (0.62) for n = 128, 256 respectively. b) 4.43 (1.00), 4.75 (0.48) for n = 128, 256
respectively

ACDmodels. (2) The levels of BP/LB tests do not seem to be those of a χ2
m under the

null hypothesis, as is expected. In contrast, since we prove rigorously the asymptotic
normality ofA (J ) andA ( Ĵ ), they should be preferred in practice. (2) The choice of
the finest scale J seems not important for the level (unless J is large and n is small)
but affects the power significantly. The data-driven method yields an objective finest
scale Ĵ that delivers reasonable power against various model misspecifications.

6 Application with Tick-by-Tick Trading Data

To assess empirically the ability of the wavelet-based tests E (J ) andA (J ) to detect
ACD effects and to check ACD models, we utilize real time series data. The sample
consists of the tick-by-tick trading data of Alcoa stock on June 7, 2010. These data
are used in [68, p. 324]. The original file includes 78,602 trades. Focusing on the
normal trading hours (that is 19h30 to 16h00), we notice 78,413 transactions during
that particular day, giving 78,412 time durations between trades. We ignored the
zero durations, giving n = 9,596 nonzero intraday durations. The sample mean and
sample variance of these nonzero durations were 2.44 and 6.23, respectively. We
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focused on the adjusted time duration:

Xt = ΔTt/ f (Tt ),

where ΔTt = Tt − Tt−1 denotes the t th duration and f (·) represents a deterministic
function consisting of the cyclical component in the durations ΔTt . We postulated
the following model to explain the cyclical component:

log [ f (Tt )] = c0 + c1 f1(Tt ) + c2 f2(Tt ) + c3 f3(Tt ) + at , (18)

where

f1(Tt ) = (Tt − 43,200)/23,400,

f2(Tt ) = f 21 (Tt ),

f3(Tt ) = log(Tt ).

Here the random variable at plays the role of the error term in the linear regression
model (18). In f1(·), 43,200 denotes the 12h00 noon and 23,400 corresponds to the
number of trading hours measured in seconds. An ordinary least-squares fit gave:

f̃ (Tt ) = exp[1154.5 + 60.0 f1(Tt ) − 17.2 f2(Tt ) − 108.1 f3(Tt )].

The time series to analyze is thus:

X̃t = ΔTt/ f̃ (Tt ). (19)

See [68, pp. 298–300 and p. 324] for explanations and more details on the cleaning
data procedure and the treatment of the diurnal pattern.

We can now apply the test procedures for ACD effects E (J ) defined by (7). We
used the Franklin wavelet (3) and computed the test statistic for J = 0, 1, . . . , 6.
We also considered Ĵ using the AIC and BIC methods. We found ĴAIC = 4 and
ĴBIC = 3. The values of the test statistics with their associated P values are given
in Table9. All the results are highly significant, strongly suggesting ACD effects.
Having found ACD effects we considered adjusting ACD(m,l) models. In ARMA
modelling, the ARMA(1,1) represents the workhorse. Similarly, the ACD(1,1) is a
good starting model. In addition, the sample autocorrelation function and sample
partial autocorrelation function both suggested m and l being strictly positive. We
adjusted EACD(1,1) and WACD(1,1) models. The models were:

EACD(1, 1) : X̃t = Dtε; Dt = 0.09 + 0.06X̃t−1 + 0.87Dt−1,

WACD(1, 1) : X̃t = Dtε; Dt = 0.06 + 0.05X̃t−1 + 0.90Dt−1,

and the estimated shape parameter of the Weibull distribution has been found equal
to 1.367 (the standard error was 0.098). All the coefficients were found significant.



80 P. Duchesne and Y. Hong

Table 9 Test statistics E (J ), J = 0, 1, . . . , 6 for ACD effects defined by (7), applied on the Alcoa
stock on June 7, 2010, seasonally adjusted, defined by (19)

J E (J ) P value

0 10.57 0+

1 12.24 0+

2 15.44 0+

3 16.61 0+

4 17.31 0+

5 18.06 0+

6 19.14 0+

(1) The notation 0+ denotes a number smaller than 10−4. (2) The data-driven J using the AIC and
BIC methods were ĴAIC = 4 and ĴBIC = 3

To check these models, we applied the test procedures A (J ) on the residuals of the
adjustment, using again the Franklin wavelet. We also included the popular LB(q)
test procedures. Recall that the critical values are not strictly valid, but we follow
the literature by examining the values of these test statistics as approximate rules.
For example, the Ljung-Box test statistic is advocated in [68], with q = 10, 20.
These choices of q are somewhat arbitrary, and it may be preferable to include also
smaller values of q to appreciate the residual dependence in lower-order lags. For
the new wavelet-based test statistic, we include A ( ĴAIC) and A ( ĴmodAIC). Using
the residuals of the EACD(1,1) and WACD(1,1), we found ĴAIC = 0. The modified
rule yielded ĴmodAIC = 4. Since no automatic choice of q is available for L B(q),
we considered q = 1, 2, 3, 10, 20. The results for the adjustment of EACD(1,1) and
WACD(1,1) are given in Table10. Based on the values of q recommended in Tsay
(2013), one may be tempted to recommend the EACD(1,1) fit. However, the data-
driven J based on the AICmethod was ĴAIC = 0. A low resolution seemed necessary
to explain the remaining dependence in the residuals, which is not really surprising:
the EACD(1,1)/WACD(1,1) explained a large part of the dependence between the
durations. However, these models can be improved, and the null hypothesis of ade-
quacy is strongly rejected using A ( ĴAIC). Incidently, the order of magnitude of the
test statistic L B(1) = 4.24 (L B(1) = 6.71) for the EACD(1,1) model (WACD(1,1)
model) suggested that the lag-1 residual dependence was still significant, which
was hidden by considering larger values of q. The test statistics suggested that the
EACD(1,1)/WACD(1,1) were not appropriate to explain duration persistence. Thus,
we considered EACD(1,2) and WACD(1,2) models. The results were:

EACD(1, 2) : X̃t = Dtε; Dt = 0.11 + 0.07X̃t−1 + 0.49Dt−1 + 0.35Dt−2,

WACD(1, 2) : X̃t = Dtε; Dt = 0.07 + 0.07X̃t−1 + 0.47Dt−1 + 0.41Dt−2,

with an estimated shape parameter given by 1.368 (with a standard error of 0.098).
All the coefficients in these models were significant. We applied the test procedures
on the residuals of these models. The data-driven J using the AIC and modified
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Table 10 Test statisticsA ( ĴAIC),A ( ĴmodAIC), L B(q), q = 1, 2, 3, 10, 20, applied on the residuals
of the EACD(1,1) and WACD(1,1) models, for the Alcoa stock on June 7, 2010

Test Statistic P value

EACD(1,1) A (0) 3.53 2 × 10−4

A (4) −0.13 0.55

L B(1) 4.24 0.04

L B(2) 4.44 0.11

L B(3) 4.44 0.22

L B(10) 11.89 0.29

L B(20) 20.86 0.41

WACD(1,1) A (0) 5.86 0+

A (4) 2.00 0.02

L B(1) 6.71 0.01

L B(2) 6.72 0.03

L B(3) 6.75 0.08

L B(10) 18.72 0.04

L B(20) 30.26 0.07

(1) The notation 0+ denotes a number smaller than 10−4. (2) The data-driven J using the AIC and
modified AIC methods were ĴAIC = 0 and ĴmodAIC = 4

Table 11 Test statisticsA ( ĴAIC),A ( ĴmodAIC), L B(q), q = 1, 2, 3, 10, 20, applied on the residuals
of the EACD(1,2) and WACD(1,2) models, for the Alcoa stock on June 7, 2010

Test Statistic P value

EACD(1,2) A (0) 0.08 0.47

A (4) −0.47 0.68

L B(1) 0.62 0.43

L B(2) 1.30 0.52

L B(3) 1.30 0.73

L B(10) 9.17 0.52

L B(20) 18.03 0.59

WACD(1,2) A (0) 0.72 0.24

A (4) 1.57 0.06

L B(1) 1.34 0.25

L B(2) 2.91 0.23

L B(3) 2.92 0.40

L B(10) 14.40 0.16

L B(20) 26.79 0.14

(1) The data-driven J using the AIC and modified AIC methods were ĴAIC = 0 and ĴmodAIC = 4

AIC methods were again ĴAIC = 0 and ĴmodAIC = 4 for both models. The results are
presented in Table11. They suggest that both models are adequate to describe these
data. In applications, the hazard function of WACD models appears more flexible
than the one of an EACD model. Furthermore, recall that the shape parameter of
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the WACD(1,2) based on the Weibull distribution was significantly different from
one. Given the large sample size, it may be preferable to include the additional shape
parameter in the model and to retain the WACD(1,2) model. See also the discussion
in [68, Section6.5.2].

7 Conclusion

We have proposed a consistent one-sided test for duration clustering and a new
diagnostic test for ACD models using a wavelet spectral density estimator. The first
test exploits the one-sided nature of duration clustering.AnACDprocess is positively
autocorrelated at all lags, resulting in a spectral mode or peak at frequency zero.
As a joint time-frequency decomposition method, wavelets can effectively capture
spectral peaks. To compare the wavelet-spectral density estimator with the spectral
density under the null hypothesis, alternative approaches include using a quadratic
norm or a supremum-norm measure. See [44] when testing for serial correlation
using wavelets, and also [52, p. 104] when testing for conditional heteroscedasticity
using supremum-norm measures. More work is needed to study theoretically these
approaches properly adapted to the problem of testing for ACD effects, which should
be compared empirically with the methods presented in this paper.

The second test checks the adequacy of an ACD model using a wavelet spec-
tral density of the estimated standardized duration residuals. Unlike the popular
BP/LB tests in the ACD literature, our diagnostic test has an asymptotic nuisance
free parameter property; that is, parameter estimation uncertainty has no impact on
the asymptotic distribution of the test statistic. Moreover, it can check a wide range
of alternatives and is powerful when the spectrum of the estimated standardized
duration residuals is nonsmooth, which can arise from neglected persistent dura-
tion clustering, seasonalities, calendar effect and business cycles. For each of the
proposed methods, we developed a suitable data-driven method to choose the finest
scale J . This makes the proposed methods fully operational.

When testing for duration clustering, the wavelet-based test with the optimal J
performed similarly or even better than the existing tests with the optimal lag, sug-
gesting the merits of using wavelets. The data-driven method yielded an objective
finest scale Ĵ which delivers reasonable levels and powers against various alterna-
tives. Similarly, when testing for the adequacy of an ACD model, the wavelet test
with the optimal J generally performs better than BP/LB tests with the optimal lag.
The BP/LB tests with lag m do not seem to follow a χ2

m distribution, since the lev-
els were severally underestimated. In contrast, A (J ) and A ( Ĵ ) have a convenient
asymptotically valid normal distribution, and the data-drivenmethod yields an objec-
tive finest scale Ĵ which delivers reasonable levels and power against various model
misspecifications. The real data analysis suggested the merits of our wavelet-based
test statistics. It is hoped that the results presented in this paper will be useful for
the practitioner, improving the toolbox of techniques for diagnostic checking ACD
models.
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Appendix

To prove Theorems 1–3, we first state some useful lemmas.

Lemma 1 Define dJ (h) ≡ ∑J
j=0 λ(2πh/2 j ), h, J ∈ Z, where λ(z) is as in (8). Then

(i) dJ (0) = 0 and dJ (−h) = dJ (h) for all h, J ∈ Z, J > 0;
(ii) |dJ (h)| ≤ C < ∞ uniformly in h, J ∈ Z, J > 0;

(iii) For any given h ∈ Z, h 
= 0, dJ (h) → 1 as J → ∞;
(iv) For any given r ≥ 1,

∑n−1
h=1 |dJ (h)|r = O(2J ) as J, n → ∞.

Lemma 2 Let Vn(J ) and V0 be defined as in Theorem 1. Suppose J → ∞, 2J /n →
0. Then 2−J Vn(J ) → V0, where V0 = ∫ 2π

0 |Γ (z)|2dz, with Γ (z) = ∑∞
−∞ ψ̂(z +

2πm).

Proof For the proofs of Lemmas 1 and 2, see [42, Proof of Lemma A.1] and [44,
Proof of Lemma A.2]. �
Proof (Theorem 1) The model under the null hypothesis is Dt ≡ β0, Xt = β0εt ,
E(εt ) = 1, {εt } an iid process. We write R̄X (h) = n−1 ∑n

t=|h|+1(Xt/X̄ − 1)(Xt−|h|/
X̄ − 1). Alternatively, ρ̂X (h) = R̄X (h)/R̄X (0). Under the null hypothesis, R̄X (h) =
R̄ε(h) where R̄ε(h) is defined similarly as R̄X (h). We define Rε(h) = cov(εt , εt−h).
Let ut = εt − 1.We define R̃ε(h) = n−1 ∑n

t=|h|+1 ut ut−h and ρ̃ε(h) = R̃ε(h)/Rε(0).
Define

f̃ε(0) ≡ (2π)−1 +
J∑

j=0

2 j
∑

k=1

α̃ jkΨ jk(0),

where α̃ jk ≡ (2π)−1/2 ∑n−1
h=1−n ρ̃ε(h)Ψ̂ ∗

jk(h), Ψ̂ jk(h) ≡ (2π)−1/2
∫ π

−π
Ψ jk(ω)

e−ihωdω.
Writing f̂ X (0) − (2π)−1 = [ f̂ X (0) − f̃ε(0)] + [ f̃ε(0) − (2π)−1], we shall prove

Theorem 1 by showing Theorems 7–8 below.

Theorem 7 [Vn(J )]−1/2n1/2[ f̂ X (0) − f̃ε(0)] →p 0.

Theorem 8 [Vn(J )]−1/2n1/2π [ f̃ε(0) − (2π)−1] →d N (0, 1).

Proof (Theorem 7) We use the following representations (see [44]):

f̂ X (0) = (2π)−1 + π−1
n−1∑

h=1

dJ (h)ρ̂X (h), (20)

f̃ε(0) = (2π)−1 + π−1
n−1∑

h=1

dJ (h)ρ̃ε(h).
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We obtain π [ f̂ X (0) − f̃ε(0)] = ∑n−1
h=1 dJ (h)[ρ̂X (h) − ρ̃ε(h)]. Because R̄X (0) −

Rε(0) = OP(n−1/2) given Assumption 1, it suffices to show

[Vn(J )]−1/2n1/2
n−1∑

h=1

dJ (h)[R̄X (h) − R̃ε(h)] →p 0. (21)

We shall show (21) for the case J → ∞, where 2−J Vn(J ) → V0 by Lemma 2.
The proof for fixed J is similar, with Vn(J ) → V0(J ), where V0(J ) is defined in
Lemma 2.

Straightforward algebra yields R̂X (h) − R̃ε(h) = (ε̄−1 − 1) Â1(h) + (ε̄−1 − 1)
Â2(h) + (ε̄−1 − 1)2 Â3(h), where

Â1(h) = n−1
n∑

t=|h|+1

utεt−h , Â2(h) = n−1
n∑

t=|h|+1

ut−hεt , Â3(h) = n−1
n∑

t=|h|+1

εtεt−h .

We first consider Â1(h). Note that E[ Â1(h) Â1(m)] = O(n−1), ∀h, m. Then expend-
ing the square, we show that E[∑n−1

h=1 dJ (h) Â1(h)]2 = O(2J /n + 22J /n). This
shows that

∑n−1
h=1 dJ (h) Â1(h) = OP(2J /n1/2). Proceeding similarly we show that

∑n−1
h=1 dJ (h) Â2(h) = OP(2J /n1/2). We show also easily that

n−1∑

h=1

dJ (h) Â3(h) = OP(2J ).

This completes the proof for Theorem 7. �

Proof (Theorem 8) Put Ŵ ≡ ∑n−1
h=1 dJ (h)R̃ε(h)/Rε(0). Write Ŵ = n−1 ∑n

t=2 Wt ,
where

Wt ≡ R−1
ε (0)ut

t−1∑

h=1

dJ (h)ut−h .

Observe that {Wt ,Ft−1} is an adapted martingale difference sequence, whereFt is
the sigma field consisting of all us, s ≤ t. Thus, we obtain

var(n1/2Ŵ ) = n−1
n∑

t=2

E[W 2
t ] = n−1

n∑

t=2

t−1∑

h=1

d2J (h) =
n∑

h=1

(1 − h/n)d2J (h) = Vn(J ).

By the martingale central limit theorem in [37, pp.10–11], [Vn(J )]−1/2n1/2Ŵ →d

N (0, 1) if we can show
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[Vn(J )]−1n−1
n∑

t=2

E
{
W 2

t 1[|Wt | > ηn1/2{Vn(J )}1/2]} → 0 for any η > 0, (22)

[Vn(J )]−1n−1
n∑

t=2

E(W 2
t |Ft−1) →p 1. (23)

For space, we shall show the central limit theorem for Ŵ for large J (i.e., J → ∞).

The proof for fixed J is similar and simpler because dJ (h) is finite and summable.
We shall verify the first condition by showing 2−2J n−2 ∑n

t=2 E(W 4
t ) → 0. Put

μ4 ≡ E(u4
t ). By Assumption 1, we have

E(W 4
t ) = μ4R−4

ε (0)E

[
t−1∑

h=1

dJ (h)ut−h

]4

,

= μ2
4R−4

ε (0)
t−1∑

h=1

d4
J (h) + 6μ4R−2

ε (0)
t−1∑

h1=2

h1−1∑

h2=1

d2
J (h1)d

2
J (h2) ≤ 3μ2

4R−4
ε (0)

[
n−1∑

h=1

d2
J (h)

]2

.

It follows from Lemma 2 that 2−2J n−2 ∑n
t=1 E(W 4

t ) = O(n−1). This show (22).
Next, given Lemma 2, it suffices for expression (23) to establish the sufficient

condition

2−2Jvar[n−1
n∑

t=2

E(W 2
t |Ft−1)] → 0.

By the definition of Wt , we have

E(W 2
t |Ft−1) = R−1

ε (0)

[
t−1∑

h=1

dJ (h)ut−h

]2

,

= E(W 2
t ) + R−1

ε (0)
t−1∑

h=1

dJ (h)[u2
t−h − Rε(0)]

+2R−1
ε (0)

t−1∑

h1=2

h1−1∑

h2=1

dJ (h1)dJ (h2)ut−h1ut−h2 ,

= E(W 2
t ) + R−1

ε (0)At + 2R−1
ε (0)Bt .

It follows that

n−1
n∑

t=2

[E(W 2
t |Ft−1) − E(W 2

t )] = R−1
ε (0)n−1

n∑

t=2

At + 2R−1
ε (0)n−1

n∑

t=2

Bt

= R−1
ε (0) Â + 2R−1

ε (0)B̂. (24)
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Whence, it suffices to show 2−2J [var( Â) + var(B̂)] → 0. First, noting that At is a
weighted sumof independent zero-meanvariables {u2

t−h − Rε(0)},wehave E(A2
t ) =

[μ4 − R2
ε (0)]

∑t−1
h=1 d4

J (h). It follows by Minkowski’s inequality and Lemma 1(iv)
that

E( Â2) ≤
{

n−1
n∑

t=2

[E(A2
t )]1/2

}2

≤ [
μ4 − R2

ε (0)
]
[

n−1∑

h=1

d4
J (h)

]

= O(2J ). (25)

Next, we consider var(B̂). For all t ≥ s, we have

E(Bt Bs) = R2
ε (0)

t−1∑

m2=2

m2−1∑

h2=1

s−1∑

m1=2

m1−1∑

h1=1

dJ (m1)d2(h1)dJ (m2)dJ (h2)δt−h1,s−h2δt−m1,s−m2 ,

= R2
ε (0)

t−1∑

m=2

l−1∑

h=1

dJ (t − s + m)dJ (t − s + h)dJ (m)dJ (h),

where δ j,h = 1 if h = j and δ j,h = 0 otherwise. It follows that

E(B̂2) ≤ 2n−2
n∑

t=3

t∑

s=2

E(Bt Bs) ≤ 2R2
ε (0)n−1

n−1∑

τ=0

n−1∑

m=2

m−1∑

h=1

|dJ (τ + m)dJ (τ + h)dJ (m)dJ (h)|,

≤ 2R2
ε (0)n−1

[
n−1∑

τ=0

d2
J (τ )

][
n−1∑

h=1

|dJ (h)|
]2

= O(23J /n), (26)

by Lemma 1(iv). Combining (24)–(26) yields 2−2J [var( Â) + var(B̂)] = O(2−J +
2J /n) → 0 given J → ∞, 2J /n → 0. Thus, condition (23) holds. By [37, pp.10–
11], [Vn(J )]−1/2n1/2Ŵ →d N (0, 1). This completes the proof of Theorem 8. �

Proof (Theorem 2) We shall show for large J only; the proof for fixed J is similar.
Here we explicitly denote f̂ X (0; J ) as the spectral estimator (20) with the finest scale
J . Recalling the definition of E (J ), we have

E ( Ĵ ) − E (J ) = [Vn( Ĵ )]−1/2n1/2π{ f̂ X (0; Ĵ ) − (2π)−1} − [Vn(J )]−1/2n1/2π{ f̂ X (0; J ) − (2π)−1},
= [Vn( Ĵ )/Vn(J )]1/2[Vn(J )]−1/2n1/2π{ f̂ X (0; Ĵ ) − f̂ X (0; J )} + {[Vn(J )/Vn( Ĵ )]−1/2 − 1}E (J ).

Note that we have for any given constants C0 > 0 and ε > 0,

P
(
|Vn(J )/Vn( Ĵ ) − 1| > ε

)
≤ P

(
|Vn(J )/Vn( Ĵ ) − 1| > ε, C02

J/2|2 Ĵ /2J − 1| ≤ ε
)

+ P
(

C02
J/2|2 Ĵ /2J − 1| > ε

)
. (27)
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We now study |dĴ (h) − dJ (h)|. We show that

|dĴ (h) − dJ (h)| ≤
max(J, Ĵ )∑

j=min(J, Ĵ )+1

|λ(2πh/2 j )|.

Note that given C02J/2|2 Ĵ /2J − 1| ≤ ε, we have that

|dĴ (h) − dJ (h)| ≤
log2[2J (1+ε/(C02J/2))]∑

j=log2[2J (1−ε/(C02J/2))]+1

|λ(2πh/2 j )|,

and the lower and upper bounds in the summation are now non stochastic. Since
|∑∞

m=−∞ ψ(2πh/2 j + 2πm)| ≤ C , we have that

|dĴ (h) − dJ (h)| ≤ C
log2[2J (1+ε/(C02J/2))]∑

j=log2[2J (1−ε/(C02J/2))]+1

|ψ̂(2πh/2 j )|.

Since
∑∞

h=−∞ |ψ̂(2πh/2 j )| ≤ C2 j , then

n−1∑

h=1

|dĴ (h) − dJ (h)| ≤ C
log2[2J (1+ε/(C02J/2))]∑

j=log2[2J (1−ε/(C02J/2))]+1

2 j ≤ C2J/2ε/C0.

A similar argument allows us to show that

n−1∑

h=1

|dĴ (h) − dJ (h)|2 ≤ C2J/2ε/C0. (28)

We show that Vn( Ĵ )/Vn(J ) →p 1. Note that

|Vn( Ĵ ) − Vn(J )| ≤
n−1∑

h=1

|dĴ (h) − dJ (h)|2 + 2

(
n−1∑

h=1

d2
J (h)

)1/2 (n−1∑

h=1

[
dĴ (h) − dJ (h)

]2
)1/2

.

Since
∑n−1

h=1 d2
J (h) = O(2J ), by (27) and (28), we have the announced result that

Vn( Ĵ )/Vn(J ) →p 1.
Because E (J ) = OP(1) by Theorem 1 and since Vn( Ĵ )/Vn(J ) →p 1, we have

E ( Ĵ ) − E (J ) →p 0 provided [Vn(J )]−1/2n1/2π{ f̂ Ĵ (0) − f̂ J (0)} →p 0, which we
shall show below. The asymptotic normality of E ( Ĵ ) follows from a standard appli-
cation of Slutsky’s theorem and Theorem 1.
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Because Vn(J ) = O(2J ), it suffices to show f̂ X (0; Ĵ ) − f̂ X (0; J ) =
oP(2J/2/n1/2). Write

π{ f̂ X (0; Ĵ ) − f̂ X (0; J )} = R̂−1
X (0)

n−1∑

h=1

[dĴ (h) − dJ (h)]RX (h).

Given |dĴ (h) − dJ (h)| ≤ ∑max( Ĵ ,J )

j=min( Ĵ ,J )
|λ(2πh/2 j )|, we have, under the null hypoth-

esis, the following inequality

E
n−1∑

h=1

∣
∣
∣dĴ (h) − dJ (h)

∣
∣
∣ |RX (h)| ≤ sup

h
E(R2

X (h))1/2
n−1∑

h=1

(
E |dĴ (h) − dJ (h)

∣
∣
∣
2
)1/2 = o(2J/2/n1/2).

We obtain f̂ X (0; Ĵ ) − f̂ X (0; J ) = oP(2J/2/n1/2). This completes the proof of The-
orem 2. �

Proof (Theorem 3) Recall R̂X (h) = n−1 ∑n
t=|h|+1(Xt − X̄)(Xt−|h| − X̄) and R̃X (h)

= n−1 ∑n
t=|h|+1(Xt − μ)(Xt−|h| − μ). We study f̂ X (0; J ) − fX (0). Write

f̂ X (0; J ) − fX (0) = { f̂ X (0; J ) − f̃ X (0; J )} + { f̃ X (0; J ) − E[ f̃ X (0; J )]} + {E[ f̃ X (0; J )] − fX (0)},
(29)

where

f̃ X (0; J ) = R̃X (0)

2π
+ 1

π

n−1∑

h=1

dJ (h)R̃X (h). (30)

We can show that E[ f̂ X (0; J ) − f̃ X (0; J )]2 = O(n−2 + 22J /n2), meaning that
replacing X̄ byμ has to impact asymptotically. For the second term in (29), we show
that

E[ f̃ X (0; J ) − E f̃X (0; J )]2 = var[R̃X (0)]
4π2 + π−2

n−1∑

h=1

n−1∑

m=1

dJ (h)dJ (m)cov(R̃X (h), R̃X (m))

+π−2
n−1∑

h=1

dJ (h)cov(R̃X (0), R̃X (h)). (31)

From [38, p. 313], we have

(n − l)(n − m)

n2
cov

[
R̃X (h), R̃X (m)

]
= n−1

∞∑

u=−∞
wn(u, h, m)[RX (u)RX (u + m − h)

+RX (u + m)RX (u − h) + κ(0, h, u, u + m)],
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where the function wn(u, h, m) is defined in [38]. We write

E
{

f̃ X (0; J ) − E[ f̃ X (0; J )]
}2 = var(R̃X (0))

4π2
+ An

π2
+ Bn

π2
, (32)

where

An = E

{

[R̃X (0) − E(R̃X (0))]
n−1∑

h=1

dJ (h)[R̃X (h) − E(R̃X (h))]
}

,

Bn =
n−1∑

h=1

n−1∑

m=1

dJ (h)dJ (m)cov[R̃X (h), R̃X (m)].

It follows that

(n/2J+1)Bn = 2−(J+1)
n−1∑

h=1

n−1∑

m=1

dJ (h)dJ (m)

∞∑

u=−∞
wn(u, h, m)RX (u)RX (u + m − h)

+2−(J+1)
n−1∑

h=1

n−1∑

m=1

dJ (h)dJ (m)

∞∑

u=−∞
wn(u, h, m)RX (u + m)RX (u − h)

+2−(J+1)
n−1∑

h=1

n−1∑

m=1

dJ (h)dJ (m)

∞∑

u=−∞
wn(u, h, m)κ(0, h, u, u + m),

= B1n + B2n + B3n . (33)

Following a reasoning similar to [42, proof of Theorem 4.2], we can show that

B1n = 2−1Dψ(2π)2 f 2X (0)[1 + o(1)], B2n → 0, B3n → 0,

and |An| = O(2J/2/n) = o(2J /n). It follows that

n/2J+1Bn → 2π2Dψ f 2X (0), (34)

and
(n/2J+1)E[ f̃ X (0; J ) − E f̃X (0; J )]2 → 2Dψ f 2X (0). (35)

We consider the bias term E[ f̃ X (J )] − fX (0) in (29). Using the definition of
f̃ X (0; J ) in (30), we can decompose
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E[ f̃ X (J )] − fX (0) = π−1
n−1∑

h=1

dJ (h)(1 − h/n)RX (h) − π−1
∞∑

h=1

RX (h),

= π−1
n−1∑

h=1

(1 − h/n) [dJ (h) − 1] RX (h) − π−1
n−1∑

h=1

(h/n)RX (h) − π−1
∞∑

h=n

RX (h),

= B4n − B5n − B6n, say. (36)

Following a reasoning similar to [42, proof of Theorem 4.2], we can show that

B4n = −2−q(J+1)λq f (q)

X (0)[1 + o(1)],

|B5n| ≤ n−min(1,q)
∑n−1

h=1 lq |RX (h)| = O(n−min(1,q)) and also that |B6n| ≤ 2n−q
∑∞

h=n hq |RX (h)| = o(n−q). The bias term is then

E f̃X (0; J ) − fX (0) = −2−q(J+1)λq f (q)

X (0) + o(2−q J ) + O(n−min(1,q)). (37)

Now, combining (29), (35), (37) we obtain

E{[ f̂ X (0; J ) − fX (0)]2} = 2J+1

n
2Dψ f 2X (0) + 2−2q(J+1)λ2q [ f (q)

X (0)]2 + o(2J /n + 2−2q J ).

The desired result follows by using 2J+1/n
1

2q+1 → c. This completes the proof of
Theorem 3. �

Proof (Corollary 1) The result follows immediately from Theorem 2 because the
conditions of Corollary 1 imply 2 Ĵ /2J − 1 = oP(n−1/2(2q+1)) = oP(2−J/2), where
the nonstochastic finest scale J is given by 2J+1 ≡ max{[qλ2

qα(q)n/Dψ ]1/(2q+1), 0}.
The latter satisfies the conditions of Theorem 2. �

To prove Theorems 4–6, we first state a useful lemma.

Lemma 3 Suppose Assumptions 1 and 2 hold, J → ∞, and 2J /n → 0. Define

bJ (h, m) = aJ (h, m) + aJ (−h,−m) + aJ (h,−m) + aJ (−h, m),

where aJ (h, m) = 2π
∑J

j=0

∑2 j

k=1 ψ̂ jk(2πh)ψ̂∗
jk(2πm). Then

(i) bJ (h, m) is real-valued, bJ (0, m) = bJ (h, 0) = 0 and bJ (h, m) = bJ (m, h);
(ii)

∑n−1
h=1

∑n−1
m=1 hν |bJ (h, m)| = O(2(1+ν)J ) for 0 ≤ ν ≤ 1

2 ;

(iii)
∑n−1

h=1{
∑n−1

m=1 |bJ (h, m)|}2 = O(2J );
(iv)

∑n−1
h1=1

∑n−1
h2=1{

∑n−1
m=1 |bJ (h1, m)bJ (h2, m)|}2 = O{(J + 1)2J );

(v)
∑n−1

h=1 bJ (h, h) = (2J+1 − 1){1+O((J + 1)/2J +2J (2τ−1)/n2τ−1)}, where τ is
in Assumption 3;

(vi)
∑n−1

h=1

∑n−1
m=1 b2

J (h, m) = 2(2J+1 − 1){1 + o(1)};
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(vii) sup1≤h,m≤n−1 |bJ (h, m)| ≤ C(J + 1);
(viii) sup1≤h≤n−1

∑n−1
m=1 |bJ (h, m)| ≤ C(J + 1).

Proof (Lemma 3) See [50, Appendix B] for (i)–(vi) and [43, Lemma A.1] for (vii)
and (viii). �

Proof (Theorem 4) Let Zt = εt − 1 be such that E(Zt ) = 0. Under HA
0 , εt = et .

We consider R̄Z (h) = n−1 ∑n
t=|h|+1 Zt Zt−|h| and ᾱejk = ∑n−1

h=1−n R̄Z (h)ψ̂∗
jk(2πh).

Let ¯A (J ) defined as A (J ) but using ᾱejk . Let ρ̄Z (h) = R̄Z (h)/R̄Z (0). Because
ρ̄Z (−h) = ρ̄Z (h) and ᾱejk is real-valued, we have

2πn
J∑

j=0

2 j
∑

k=1

ᾱ2
ejk = n

n−1∑

h=1

n−1∑

m=1

bJ (h, m)ρ̄Z (h)ρ̄Z (m),

where the equality follows from re-indexing and the definition of bJ (h, m). We have
R̄Z (0) − σ 2

Z = OP(n−1/2), since under HA
0 we have that {et } is iid. Also, we have

n
n−1∑

h=1

n−1∑

m=1

bJ (h, m)ρ̄Z (h)ρ̄Z (m) = σ−4
Z n

n−1∑

h=1

n−1∑

m=1

bJ (h, m)R̄Z (h)R̄Z (m)

+[R̄−2
Z (0) − σ−4

Z ]n
n−1∑

h=1

n−1∑

m=1

bJ (h, m)R̄Z (h)R̄Z (m), (38)

= σ−4
Z n

n−1∑

h=1

n−1∑

m=1

bJ (h, m)R̄Z (h)R̄Z (m) + OP (2J /n1/2),

where the second term is of the indicated order of magnitude because

E

[
n−1∑

h=1

n−1∑

m=1

|bJ (h, m)R̄Z (h)R̄Z (m)|
]

≤ Cn−1
n−1∑

h=1

n−1∑

m=1

|bJ (h, m)| = O(2J /n).

given E[R̄2
Z (h)] ≤ Cn−1 and Lemma 3(ii). We now focus on the first term in (38).

We have,

n
n−1∑

h=1

n−1∑

m=1

bJ (h, m)R̄Z (h)R̄Z (m) = n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

n∑

t=h+1

n∑

s=m+1

Zt Zt−h Zs Zs−m ,

= n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

(
n∑

t=1

n∑

s=1

−
h∑

t=1

n∑

s=m+1

−
n∑

t=1

m∑

s=1

)

Zt Zt−h Zs Zs−m ,

= Ĉn + D̂1n − D̂2n − D̂3n , (39)
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where

Ĉn = n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

(
n∑

t=2

t−1∑

s=1

+
n∑

s=2

s−1∑

t=1

)

Zt Zt−h Zs Zs−m,

= 2n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

n∑

t=2

t−1∑

s=1

Zt Zt−h Zs Zs−m, given bJ (h, m) = bJ (m, h),

D̂1n = n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

n∑

t=1

Z2
t Zt−h Zt−m,

D̂2n = n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

h∑

t=1

n∑

s=m+1

Zt Zt−h Zs Zs−m,

D̂3n = n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

n∑

t=1

m∑

s=1

Zt Zt−h Zs Zs−m .

In order to prove Theorem 4, we first state Proposition 1 that shows that Ĉn

represents the dominant term.

Proposition 1 Suppose Assumptions 1–3 hold, J → ∞, and 22J /n → 0. Then

2−J/2

⎧
⎨

⎩
2πn

J∑

j=0

2 j
∑

k=1

ᾱ2
jk − (2J+1 − 1)

⎫
⎬

⎭
= 2−J/2σ−4Ĉn + oP(1).

We now decompose Ĉn into the terms with t − s > q and t − s ≤ q, for some
q ∈ Z

+:

Ĉn = 2n−1
n−1∑

h=1

n−1∑

m=1

bJ (h, m)

⎛

⎝
n∑

t=q+2

t−q−1∑

s=1

+
n∑

t=2

t−1∑

s=max(t−q,1)

⎞

⎠ Zt Zt−h Zs Zs−m,

= D̂n + D̂4n. (40)

Furthermore, we decompose

D̂n = 2n−1

⎛

⎝
q∑

h=1

q∑

m=1

+
q∑

h=1

n−1∑

m=q+1

+
n−1∑

h=q+1

n−1∑

m=1

⎞

⎠ bJ (h, m)

n∑

t=q+2

t−q−1∑

s=1

Zt Zt−h Zs Zs−m ,

= Ûn + D̂5n + D̂6n, say, (41)

where D̂5n and D̂6n are the contributions from m > q and h > q, respectively.
Proposition 2 shows that Ĉn can be approximated arbitrarily well by Ûn under a

proper condition on q.
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Proposition 2 Suppose Assumptions 1–3 hold, J → ∞, 22J /n → 0, and q ≡ qn →
∞, q/2J → ∞, q2/n → 0. Then 2−J/2Ĉn = 2−J/2Ûn + oP(1).

It is much easier to show the asymptotic normality of Ûn than of Ĉn, because for
Ûn, {Zt Zt−h} and {Zs Zs−m} are independent given t − s > q and 0 < h, m ≤ q.

Proposition 3 Suppose Assumptions 1–3 hold, and J → ∞, 22J /n → 0, q/2J →
∞, q2/n → 0. Let λ2

n = E(Û 2
n ). Then 4(2J+1 − 1)σ 8/λ2

n → 1, and λ−1
n Ûn →d

N (0, 1).

Propositions 1–3 and Slutsky’s Theorem imply ¯A (J ) →d N (0, 1). Propositions
4 and 5 show that parameter estimation does not have impact on the asymptotic
distribution of the test statistic.

Proposition 4 n
∑J

j=0

∑2 j

k=1(α̂ jk − ᾱ jk)
2 = OP(2J /n) + OP(1).

Proposition 5 n
∑J

j=0

∑2 j

k=1(α̂ jk − ᾱ jk)ᾱ jk = oP(2J/2).

The proof of Theorem 4 will be completed provided Propositions 1–5 are shown.
The proofs of Propositions 1–3 are very similar to the proofs of Propositions 1–3
in [50], for proving the asymptotic normality of a wavelet-based test statistic for
serial correlation. These proofs are then omitted (but for the interested reader all the
detailed proofs are available from the authors).

Proof (Proposition 4) A standard Taylor’s expansion gives

D−1
t (θ̂) = D−1

t (θ0) +
{

∂

∂θ
D−1

t (θ0)

}�
(θ̂ − θ0) + 1

2
(θ̂ − θ0)

� ∂2

∂θ∂θ� D−1
t (θ̄)(θ̂ − θ0),

where θ̄ lies between θ̂ and θ0. We have

R̂Z (h) − R̃Z (h) = n−1
n∑

t=|h|+1

(Ẑt − Zt )(Ẑt−|h| − Zt−|h|) + n−1
n∑

t=|h|+1

Zt (Ẑt−|h| − Zt−|h|)

+n−1
n∑

t=|h|+1

(Ẑt − Zt )Zt−|h|,

= Â1(h) + Â2(h) + Â3(h).

We write α̂ jk − α̃ jk = B̂1 jk + B̂2 jk + B̂3 jk where

B̂1 jk =
n−1∑

h=1−n

Â1(h)ψ̂ jk(2πh), B̂2 jk =
n−1∑

h=1−n

Â2(h)ψ̂ jk(2πh), B̂3 jk =
n−1∑

h=1−n

Â3(h)ψ̂ jk(2πh).
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Then (α̂ jk − α̃ jk)
2 ≤ 4(B̂2

1 jk + B̂2
2 jk + B̂3

3 jk) We first study the term involving B̂1 jk .
We write

2π
J∑

j=0

2 j
∑

k=1

B̂2
1 jk =

n−1∑

h=1−n

n−1∑

m=1−n

aJ (h, m) Â1(h) Â1(m) =
n−1∑

h=1

n−1∑

m=1

bJ (h, m) Â1(h) Â1(m).

We have

2π
J∑

j=0

2 j
∑

k=1

B̂2
1 jk ≤

(
sup Â1(h)

)2 |
n−1∑

h=1

n−1∑

m=1

bJ (h, m)| = OP(2J /n).

We now study the term involving B̂2 jk . Let

â21(h) = n−1
n∑

t=|h|+1

Zt Xt−|h|
{

∂

∂θ
D−1

t−|h|(θ0)

}�
,

â22(h) = n−1
n∑

t=|h|+1

Zt Xt−|h|
∂2

∂θ∂θ� D−1
t−|h|(θ̄0).

We write Â2(h) = Â21(h) + Â22(h), where

Â21(h) = â21(h)(θ̂ − θ0),

Â22(h) = 1

2
(θ̂ − θ0)

�â22(h)(θ̂ − θ0).

Then

B̂2 jk =
n−1∑

h=1−n

Â2(h)ψ̂ jk(2πh),

=
[

n−1∑

h=1−n

â21(h)ψ̂ jk(2πh)

]

(θ̂ − θ0) + 1

2
(θ̂ − θ0)

�
[

n−1∑

h=1−n

â22(h)ψ̂ jk(2πh)

]

(θ̂ − θ0).

We obtain

2πn
J∑

j=0

2 j
∑

k=1

B2
2 jk ≤ 4n||θ̂ − θ0||2

J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

n−1∑

h=1−n

â21(h)ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

+2n||θ̂ − θ0||4
J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

n−1∑

h=1−n

â22(h)ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

= OP(2J /n),
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since

2π
J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

n−1∑

h=1−n

â21(h)ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

=
∣
∣
∣
∣
∣

n−1∑

h=1

n−1∑

m=1

bJ (h, m)â21(h)â�
21(m)

∣
∣
∣
∣
∣
,

≤ (
sup ||â21(h)||)2

(
n−1∑

h=1

n−1∑

m=1

|bJ (h, m)|
)

= OP (2J /n).

We now study the term involving B̂3 jk .

â31(h) = n−1
n∑

t=|h|+1

Zt−|h| Xt

(
∂

∂θ
D−1

t (θ0)

)�
,

â32(h) = n−1
n∑

t=|h|+1

Zt−|h| Xt
∂2

∂θ∂θ� D−1
t (θ̄0).

We write Â3(h) = Â31(h) + Â32(h), where

Â31(h) = â31(h)(θ̂ − θ0),

Â32(h) = 1

2
(θ̂ − θ0)

�â32(h)(θ̂ − θ0).

We obtain

2πn
J∑

j=0

2 j
∑

k=1

B2
3 jk ≤ 4n

J∑

j=0

2 j
∑

k=1

[
n−1∑

h=1−n

Â31(h)ψ̂ jk (2πh)

]2

+ 4n
J∑

j=0

2 j
∑

k=1

[
n−1∑

h=1−n

Â32(h)ψ̂ jk (2πh)

]2

.

We write â31(h) = E[â31(h)] + {
â31(h) − E[â31(h)]}. We have

n
J∑

j=0

2 j
∑

k=1

[
n−1∑

h=1−n

Â31(h)ψ̂ jk(2πh)

]2

≤ 2n||θ̂ − θ0||2
⎧
⎨

⎩

J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

∑

h

E[â31(h)]ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

+
J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

∑

h

[â31(h) − Eâ31(h)]ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2
⎫
⎬

⎭
.

Since we can interpret Eâ31(h) = cov(Zt−|h|, Xt
∂
∂θ

D−1
t (θ0)) as a cross-correlation

function, we have that

J∑

j=0

2 j
∑

k=1

∥
∥
∥
∥
∥

∑

h

E[â31(h)]ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

= O(1).
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Also,

J∑

j=0

2 j
∑

k=1

E

∥
∥
∥
∥
∥

∑

h

[â31(h) − Eâ31(h)]ψ̂ jk(2πh)

∥
∥
∥
∥
∥

2

= |
n−1∑

h=1

n−1∑

m=1

bJ (h, m)E[(â31(h) − Eâ31(h))(â31(m) − Eâ31(m))�]|,

≤
n−1∑

h=1

n−1∑

m=1

|bJ (h, m)| {E‖â31(h) − Eâ31(h)‖2}1/2 {E‖â31(m) − Eâ31(m)‖2}1/2 ,

≤ sup
h

E‖â31(h) − Eâ31(h)‖2
∑

h

∑

m

|bJ (h, m)| = O(2J /n).

This shows Proposition 4. �

Remark 1 Proposition 4 is established under a general stationary process for {Zt },
that is, the result is established without assuming the null hypothesis.

Proof (Proposition 5) We write (α̂ jk − α̃ jk)α̃ jk = Ĉ1 jk + Ĉ2 jk + Ĉ3 jk , where

Ĉ1 jk =
n−1∑

h=1−n

Â1(h)ψ̂ jk(2πh)α̃ jk, (42)

Ĉ2 jk =
n−1∑

h=1−n

Â2(h)ψ̂ jk(2πh)α̃ jk, (43)

Ĉ3 jk =
n−1∑

h=1−n

Â3(h)ψ̂ jk(2πh)α̃ jk . (44)

By the Cauchy–Schwarz inequality and the fact that n
∑J

j=0

∑2 j

k=1 α̃2
jk = OP(2J )

under the null hypothesis, we have that

n
J∑

j=0

2 j
∑

k=1

n−1∑

h=1−n

Â1(h)ψ̂ jk(2πh)α̃ jk = OP(2J /n1/2).

Since n
∑J

j=0

∑2 j

k=1 B2
2 jk = OP(2J /n), we have that

n
J∑

j=0

2 j
∑

k=1

Ĉ2 jk = OP(2J /n1/2).
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We write

Ĉ3 jk =
[

n−1∑

h=1−n

â31(h)ψ̂ jk(2πh)α̃ jk

]

(θ̂ − θ0)

+ 1

2
(θ̂ − θ0)

�
{

n−1∑

h=1−n

â32(h)ψ̂ jk(2πh)α̃ jk

}

(θ̂ − θ0).

We have

2πn
J∑

j=0

2 j
∑

k=1

n−1∑

h=1−n

E[â31(h)]ψ̂ jk(2πh)α̃ jk = n
n−1∑

h=1

n−1∑

m=1

E[â31(h)]R̃(m)bJ (h, m).

Since

n2E

∥
∥
∥
∥
∥

n−1∑

h=1

n−1∑

m=1

E[â31(h)]R̃(m)bJ (h, m)

∥
∥
∥
∥
∥

2

≤ Cn
n−1∑

h1=1

n−1∑

h2=1

n−1∑

m=1

E[â31(h1)]E[â31(h2)]�|bJ (h1, m)bJ (h2, m)|,

≤ Cn

(
n−1∑

h1=1

n−1∑

h2=1

[
n−1∑

m=1

|bJ (h1, m)bJ (h2, m)|]2
)1/2

= O(n(J + 1)1/22(J+1)/2).

Then

n
n−1∑

h=1

n−1∑

m=1

E[â31(h)]R̃(m)bJ (h, m) = OP(n1/2 J 1/42J/4).

We have

E‖n
J∑

j=0

2 j
∑

k=1

∑

h

[â31(h) − Eâ31(h)]ψ̂ jk(h)α̃ jk‖

≤ n

2π

n−1∑

h=1

n−1∑

m=1

E
[
‖â31(h) − Eâ31(h)‖|R̃(m)|

]
|bJ (h, m)|,

≤ n

2π

n−1∑

h=1

n−1∑

m=1

[
E‖â31(h) − Eâ31(h)‖2]1/2 [E R̃2(m)]1/2|bJ (h, m)|,

= O(n n−1/2 n−1/2 2J+1) = O(2J+1).

This completes the proof of Proposition 5 and so Theorem 4. �
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Proof (Theorem 5) We write

A ( Ĵ ) − A (J ) = [Dn( Ĵ )]−1/2

⎧
⎨

⎩
2πn

Ĵ∑

j=J

2 j
∑

k=1

α̂2
jk − [Cn( Ĵ ) − Cn(J )]

⎫
⎬

⎭
−

{
1 − [Dn(J )]1/2/[Dn( Ĵ )]1/2

}
A (J ),

where Cn(J ) = 2J+1 − 1, Dn(J ) = 4(2J+1 − 1). Given A (J ) = OP(1) by Theo-
rem 4, it suffices for A ( Ĵ ) − A (J ) →p 0 and A ( Ĵ ) →d N (0, 1) to establish

(i) [Dn(J )]−1/2

⎧
⎨

⎩
2πn

Ĵ∑

j=J

2 j
∑

k=1

α̂2
jk − [Cn( Ĵ ) − Cn(J )]

⎫
⎬

⎭
→p 0,

(i i) Dn( Ĵ )/Dn(J ) →p 1.

We first show (i). Decompose

2πn
Ĵ∑

j=J

2 j
∑

k=1

α̂2
jk = 2πn

Ĵ∑

j=J

2 j
∑

k=1

(α̂ jk − α̃ jk)
2 + 2πn

Ĵ∑

j=J

2 j
∑

k=1

α̃2
jk + 4πn

Ĵ∑

j=J

2 j
∑

k=1

(α̂ jk − α̃ jk)α̃ jk ,

= Ĝ1 + Ĝ2 + 2Ĝ3. (45)

For the first term in (45), we write

Ĝ1 = 2πn
Ĵ∑

j=0

2 j
∑

k=1

(α̂ jk − α̃ jk)
2 − 2πn

J∑

j=0

2 j
∑

k=1

(α̂i jk − α̃ jk)
2 = Ĝ11 − Ĝ12. (46)

By Proposition 4, we have [Dn(J )]−1/2Ĝ12 →p 0. For the first term in (46), we have
for any given constants M > 0 and ε > 0,

P
(

Ĝ11 > ε
)

≤ P
(

Ĝ11 > ε, C02
J/2|2 Ĵ /2J − 1| ≤ ε

)
+ P

(
C02

J/2|2 Ĵ /2J − 1| > ε
)

. (47)

For any given constants C0, ε > 0, the second term in (47) vanishes to 0 as n → ∞
given 2J/2|2 Ĵ /2J − 1| →p 0. For the first term, given C02J/2|2 Ĵ /2J − 1| ≤ ε, we
have for n sufficiently large,

[Dn(J )]−1/2Ĝ11 ≤ [Dn(J )]−1/22πn
[log2 2J (1+ε/(C02J/2))]∑

j=0

2 j
∑

k=1

(α̂ jk − α̃ jk)
2,

≤ [Dn(J )]−1/22πn
J+1∑

j=0

2 j
∑

k=1

(α̂ jk − α̃ jk)
2 = oP(1).
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by Proposition 4. Therefore, we have

[Dn(J )]−1/2Ĝ1 = oP(1). (48)

Next, we consider Ĝ2 in (45). We write

Ĝ2 = n
n−1∑

h=1

n−1∑

m=1

R̃e(h)R̃e(m)
[
bĴ (h, m) − bJ (h, m)

]
.

Since for n sufficiently large,

n−1∑

h=1−n

n−1∑

m=1−n

∣
∣aJ (h, m) − aĴ (h, m)

∣
∣

≤ C
n−1∑

h=1−n

n−1∑

m=1−n

[log2 2J (1+ε/(C02J/2))]∑

j=[log2 2J (1−ε/(C02J/2))]

∣
∣
∣c j (h, m)ψ̂(2πh/2 j )ψ̂∗(2πm/2 j )

∣
∣
∣ ,

≤ C
[log2 2J (1+ε/(C02J/2))]∑

j=[log2 2J (1−ε/(C02J/2))]
2 j

⎡

⎣2− j
T̄ −1∑

h=1−T̄

|ψ̂(2πh/2 j )|
⎤

⎦ ,

×
[ ∞∑

r=−∞
|ψ̂(2πh/2 j + 2πr)|

]

,

≤ C2J ε/(C02
J/2),

given Assumption 3 and

c j (h, m) =
{
1 if m − h = 2 j r for some r ∈ Z,

0 otherwise.
(49)

Cf. [61, (6.19), p.392]. Therefore

E |Ĝ2| ≤ n
n−1∑

h=1−n

n−1∑

m=1−n

E |R̃e(h)R̃e(m)||aĴ (h, m) − aJ (h, m)|,

≤ n sup
h

varR̃e(h)

n−1∑

h=1−n

n−1∑

m=1−n

|aĴ (h, m) − aJ (h, m)|,

≤ C2J/2ε/C0.

Then [Dn(J )]−1/2
{

Ĝ2 − [C( Ĵ ) − C(J )]
}

→p 0. Note that [Dn(J )]−1/2[Cn( Ĵ ) −
Cn(J )] = oP(1). Next, by the Cauchy-Schwarz inequality and (48), we have
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[Dn(J )]−1/2|Ĝ3| ≤
(
[Dn(J )]−1/2Ĝ1

)1/2 ([Dn(J )]−1/2|Ĝ2|
)1/2 = oP(1).

Summarizing, we obtain result (i), that is

[Dn(J )]−1/2

⎧
⎨

⎩
2πn

Ĵ∑

j=J

2 j
∑

k=1

α̂2
jk − [Cn( Ĵ ) − Cn(J )]

⎫
⎬

⎭
= oP(1).

We now show (ii), that is Dn( Ĵ )/Dn(J ) = 1 + oP(1). Using the fact that 2 Ĵ /2J =
1 + oP(2−J/2) and J → ∞ such that 2J /n → 0, one shows easily that

Dn( Ĵ )

Dn(J )
= 2 Ĵ+1 − 1

2J+1 − 1
→p 1.

This shows (ii). This completes the proof of Theorem 5. �

Proof (Theorem6)Wefirst show Q( f̂ , f ) = Q( f̃ , f ) + oP(2J /T + 2−2q J ).Write

Q( f̂ , f ) − Q( f̃ , f ) = Q( f̂ , f̃ ) + 2
∫ π

−π

[ f̂ (ω) − f̃ (ω)][ f̃ (ω) − f (ω)]dω,

= Q̂1 + 2Q̂2. (50)

For the first term in (50), by Parseval’s identity, Proposition 4 (which can be shown
to continues to hold given Assumptions 2–3 and 7–10; See Remark 1), and Dn(J ) ∝
O(2J+1), we have

Q̂1 =
J∑

j=0

2 j
∑

k=1

(α̂ jk − α̃ jk)
2 = OP [n−1 + 2J n−2] = oP(2J /n), (51)

as n → ∞. For the second term, we have Q̂2 = oP(2J /n + 2−2q J ) by the Cauchy-
Schwarz inequality, (51) and the fact that Q( f̃ , f ) = OP(2J /n + 2−2q J ), which
follows by Markov’s inequality and E Q( f̃ , f ) = O(2J /n + 2−2q J ). The latter is to
be shown below.

To compute E[Q( f̃ , f )], we write

E[Q( f̃ , f )] = E[Q( f̃ , E f̃ )] + Q[E( f̃ ), f ]. (52)

We first consider the second term in (52). Put B(ω) ≡ ∑∞
j=J+1

∑2 j

k=1 α jkΨ jk(ω).
Then

Q[E( f̃ ), f ] =
∫ π

−π

B2(ω)dω +
J∑

j=0

2 j
∑

k=1

(E α̃ jk − α jk)
2. (53)
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We evaluate directly
∫ π

−π
B2(ω)dω. Using the orthonormality of thewavelet basis,

we have that
∫ π

−π

B2(ω)dω =
∞∑

j=J+1

2 j
∑

k=1

α2
jk .

Replacing α jk = ∑∞
h=−∞ Re(h)ψ̂ jk(2πh) and since ψ̂ jk(2πh) = e−i2πhk/2 j

2− j/2ψ̂(2πh/2 j ),

∞∑

j=J+1

2 j
∑

k=1

α2
jk =

∞∑

j=J+1

∞∑

h=−∞

∞∑

m=−∞
Re(h)Re(m){2− j

2 j
∑

k=1

ei2π(m−h)k/2 j }ψ̂(2πh/2 j )ψ̂∗(2πm/2 j ),

=
∞∑

j=J+1

∞∑

h=−∞

∞∑

m=−∞
c j (h, m)Re(h)Re(m)ψ̂(2πh/2 j )ψ̂∗(2πm/2 j ),

where c j (h, m) = 2− j
∑2 j

k=1 ei2π(m−h)k/2 j
is as in (49). By a change of variables,

∞∑

j=J+1

2 j
∑

k=1

α2
jk =

∞∑

j=J+1

∞∑

h=−∞

∞∑

r=−∞
Re(h)Re(h + 2 j r)ψ̂(2πh/2 j )ψ̂∗(2πh/2 j + 2πr). (54)

We evaluate separately the case corresponding to r = 0 and r 
= 0 in (54).

∞∑

j=J+1

∞∑

h=−∞
R2

e (h)ψ̂(2πh/2 j )ψ̂∗(2πh/2 j )

=
∞∑

j=J+1

∞∑

h=−∞
R2

e (h)|ψ̂(2πh/2 j )|2,

=
∞∑

j=J+1

∞∑

h=−∞
R2

e (h)|2πh/2 j |2q |ψ̂(2πh/2 j )|2
|2πh/2 j |2q

,

= lim
z→0

|ψ̂(z)|2
|z|2q

[1 + o(1)](2π)2q
∞∑

j=J+1

∞∑

h=−∞
|h|2q R2

e (h)(2−2q) j ,

= lim
z→0

|ψ̂(z)|2
|z|2q

[1 + o(1)](2π)2q
∞∑

j=J+1

(2−2q) j
∞∑

h=−∞
|h|2q R2

e (h),

= (2π)2q+1 lim
z→0

|ψ̂(z)|2
|z|2q

[1 + o(1)]2
−2q(J+1)

1 − 2−2q

∫ π

−π

[ f (q)
e (ω)]2dω,

where f (q)
e (·) is defined in Sect. 4.3 and o(1) is uniform in ω ∈ [−π, π ]. It follows

that ∫ π

−π

B2(ω)dω = 2−2q(J+1)ϑq

∫ π

−π

[
f (q)
e (ω)

]2
dω + o(2−2q J ). (55)
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It may be show that the term corresponding to r 
= 0 is o(2−2q J ).
For the second term in (53), we have

J∑

j=0

2 j
∑

k=1

(E α̃ jk − α jk)
2 =

J∑

j=0

2 j
∑

k=1

⎡

⎣n−1
n−1∑

h=1−n

|h|Re(h)ψ̂ jk(2πh) +
∑

|h|≥n

Re(h)ψ̂ jk(2πh)

⎤

⎦

2

,

≤ 4Cn−2
n−1∑

h=1

n−1∑

m=1

|hm Re(h)Re(m)bJ (h, m)|,

= O[(J + 1)/n2), (56)

given Lemma 3(vii) and
∑∞

h=−∞ |h Re(h)| ≤ C as implied by Assumption 10.
Finally, we consider the variance factor in (52). We write

E[Q( f̃ , E f̃ )] =
n−1∑

h=1−n

n−1∑

m=1−n

bJ (h, m)cov[R̃e(h), R̃e(m)],

=
n−1∑

h=1−n

n−1∑

m=1−n

bJ (h, m)n−1
∑

l

[

1 − η(l) + m

n

]

× [Re(l)Re(l + m − h) + Re(l + m)Re(l − h) + κ(l, h, m − h)] ,

≡ V1n + V2n + V3n, say,

where the function η(l) satisfies

η(l) ≡
⎧
⎨

⎩

l, if l > 0,
0, if h − m ≤ l ≤ 0,
−l + h − m, if − (n − h) + 1 ≤ l ≤ h − m.

For more details see [61, p. 326]. Given Assumption 9 and Lemma 3(vii), we have
|V2n| ≤ C(J + 1)n−1 and |V3n| ≤ C(J + 1)n−1. For the first term V1n , we can write

V1n =
n−1∑

h=1−n

bJ (h, h)n−1
∞∑

l=−∞
(1 − |l|/n)R2

e (l) +
∑

h

n−1∑

|r |=1

bJ (h, h + r)n−1
∞∑

l=−∞
Re(l)Re(l + r),

= n−1(2J+1 − 1)
∞∑

h=−∞
R2

e (h) + O[(J + 1)/n],

where we have used Lemma 3(v) for the first term, which corresponds to h = m; the
second termcorresponds toh 
= m and it is O[(J + 1)/T ]given∑∞

h=−∞ |R(h)| ≤ C
and Lemma 3(v). It follows that as J → ∞

E[Q( f̃ , E f̃ )] = 2J+1

n

∫ π

−π

f 2e (ω)dω + o(2J /n). (57)
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Collecting (55)–(57) and J → ∞, we obtain

E[Q( f̂ , f )] = 2J+1

n

∫ π

−π
f 2e (ω)dω + 2−2q J ϑq

∫ π

−π
[ f (q)

e (ω)]2dω + o(2J /n + 2−2q J ).

This shows the Theorem. �

Proof (Corollary 2) The result follows immediately from Theorem 6 because
Assumption 9 implies 2 Ĵ /2J − 1 = oP(T −1/2(2q+1)) = oP(2−J/2), where the non-
stochastic finest scale J is given by 2J+1 ≡ max{[2αϑqζ0(q)T ]1/(2q+1), 0}.The latter
satisfies the conditions of Theorem 6. �
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Diagnostic Checking for Weibull
Autoregressive Conditional Duration Models

Yao Zheng, Yang Li, Wai Keung Li and Guodong Li

Abstract We derive the asymptotic distribution of residual autocorrelations for the
Weibull autoregressive conditional duration (ACD) model, and this leads to a port-
manteau test for the adequacy of the fitted Weibull ACD model. The finite-sample
performance of this test is evaluated by simulation experiments and a real data exam-
ple is also reported.

Keywords Autoregressive conditional duration model · Weibull distribution ·
Model diagnostic checking · Residual autocorrelation
Mathematics Subject Classification (2010) Primary 62M10 · 91B84; Secondary
37M10

1 Introduction

First proposed by Engle and Russell [3], the autoregressive conditional duration
(ACD) model has become very popular in the modeling of high-frequency financial
data. ACDmodels are applied to describe the duration between trades for a frequently
traded stock such as IBM and it provides useful information on the intraday market
activity. Note that the ACD model for durations is analogous to the commonly used
generalized autoregressive conditional heteroscedastic (GARCH) model [1, 2] for
stock returns. Driven by the strong similarity between the ACD andGARCHmodels,
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various extensions to the original ACD model of Engle and Russell [3] have been
suggested. However, despite the great variety of ACD specifications, the question of
model diagnostic checking has received less attention.

The approach used by Engle and Russell [3] and widely adopted by subsequent
authors to assess the adequacy of the estimated ACD model consists of applying the
Ljung–Box Q-statistic [7] to the residuals from the fitted time series model and to its
squared sequence. The latter case is commonly known as the McLeod–Li test [8].
As pointed out by Li and Mak [5] in the context of GARCHmodels, this approach is
questionable, because this test statistic does not have the usual asymptotic chi-square
distribution under the null hypothesis when it is applied to residuals of an estimated
GARCHmodel. Following Li and Mak [5], Li and Yu [6] derived a portmanteau test
for the goodness-of-fit of the fittedACDmodelwhen the errors follow the exponential
distribution.

In this paper,we consider a portmanteau test for checking the adequacy of the fitted
ACD model when the errors have a Weibull distribution. This paper has similarities
to [6] since the two papers both follow the approach by Li and Mak [5] to construct
the portmanteau test statistic. Besides the difference in the distribution of the error
term, the functional form of the ACD model in the present paper is more general
than that of [6], because the latter only discusses the ACDmodel with an ARCH-like
form of the conditional mean duration.

The remainder of this paper is organized as follows. Section2 presents the port-
manteau test for the Weibull ACD model estimated by the maximum likelihood
method. In Sect. 3, two Monte Carlo simulations are performed to study the finite-
sample performance of the diagnostic tool and an illustrative example is reported to
demonstrate its usefulness.

2 A Portmanteau Test

2.1 Basic Definitions and the ML Estimation

Consider the autoregressive conditional duration (ACD) model,

xi = ψiεi , ψi = ω +
p∑

j=1

α j xi− j +
q∑

j=1

β jψi− j , (1)

where t0 < t1 < · · · < tn < · · · are arrival times, xi = ti − ti−1 is an interval,ω > 0,
α j ≥ 0,β j ≥ 0, and the innovations {εt } are identically and independently distributed
(i.i.d.) nonnegative random variables with mean one [3].

For ACD model at (1), we assume that the innovation εi has the density of a
standardized Weibull distribution,
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fγ (x) = γ cγ x
γ−1 exp{−cγ x

γ }, x ≥ 0,

where cγ = [Γ (1 + γ −1)]γ , Γ (·) is the Gamma function, and E(εi ) = 1. The
Weibull distribution has a decreasing (increasing) hazard function if γ < 1 (γ > 1)
and reduces to the standard exponential distribution if γ = 1. We denote this model
by WACD(p, q) in this paper.

Let α = (α1, . . . , αp)
′, β = (β1, . . . , βq)

′ and θ = (ω,α′,β ′)′. Denote by λ =
(γ, θ ′)′ the parameter vector of the Weibull ACD model, and its true value λ0 =
(γ0, θ

′
0)

′ is an interior point of a compact setΛ ⊂ R
p+q+2. The following assumption

gives some constraints on the parameter space Λ.

Assumption 1 ω > 0, α j > 0 for 1 ≤ j ≤ p, β j > 0 for 1 ≤ j ≤ q,
∑p

j=1 α j +
∑q

j=1 β j < 1, and Polynomials
∑p

j=1 α j x j and 1 − ∑q
j=1 β j x j have no common

root.

Given nonnegative observations x1, . . . , xn , the log-likelihood function of the
Weibull ACD model is

Ln(λ) =
n∑

i=1

{

log fγ

(
xi

ψi (θ)

)

− logψi (θ)

}

=
n∑

i=1

{

−γ log[ψi (θ)] − cγ

[
xi

ψi (θ)

]γ }

+ (γ − 1)
n∑

i=1

log(xi ) + n log(γ · cγ ).

Note that the above functions all depend on unobservable values of xi with i ≤ 0, and
some initial values are hence needed for x0, x−1, . . . , x1−p and ψ0(θ), ψ−1(θ), . . . ,

ψ1−q(θ). We simply set them to be x̄ = n−1 ∑n
i=1 xi , and denote the corresponding

functions respectively by ψ̃i (θ) and L̃n(λ). Thus, the MLE can be defined as

λ̃n = (γ̃n, θ̃
′
n)

′ = argmax
λ∈Λ

L̃n(λ).

Let

c1(x, γ ) = −∂ log fγ (x)

∂x
x − 1 = −γ (1 − cγ x

γ )

and

c2(x, γ ) = ∂ log fγ (x)

∂γ
= −cγ x

γ log(x) + log(x) − c′
γ x

γ + γ −1 + c′
γ /cγ ,

where c′
γ = ∂cγ /∂γ . It can be verified that E[c1(εi , γ0)] = 0 and E[c2(εi , γ0)] =

0. Denote κ1 = var[c1(εi , γ0)], κ2 = var[c2(εi , γ0)], κ3 = cov[c1(εi , γ0), c2(εi , γ0)]
and

Σ =
(

κ2 κ3E[ψ−1
i (θ0)∂ψi (θ0)/∂θ ′]

κ3E[ψ−1
i (θ0)∂ψi (θ0)/∂θ] κ1E{ψ−2

i (θ0)[∂ψi (θ0)/∂θ ][∂ψi (θ0)/∂θ ′]}
)

.
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If Assumption 1 holds, then λ̃n converges to λ0 in almost surely sense as n → ∞,
and

√
n(̃λn − λ0) →d N (0,Σ−1) as n → ∞; see Engle and Russell [3] and Francq

and Zakoian [4].
Denote by {̃εi } the residual sequence from the fitted Weibull ACD model,

where ε̃i = xi/ψ̃i (̃θn). For the quantities in the information matrix Σ , κ1, κ2, κ3,
E[ψ−1

i (θ0)∂ψi (θ0)/∂θ ], and E[ψ−2
i (θ0)(∂ψi (θ0)/∂θ)(∂ψi (θ0)/∂θ ′)], we can esti-

mate them respectively by

κ̃1 = 1

n

n∑

i=1

[c1(̃εi , γ̃n)]2, κ̃2 = 1

n

n∑

i=1

[c2 (̃εi , γ̃n)]2, κ̃3 = 1

n

n∑

i=1

c1(̃εi , γ̃n)c2 (̃εi , γ̃n),

1

n

n∑

i=1

1

ψ̃i (̃θn)

∂ψ̃i (̃θn)

∂θ
and

1

n

n∑

i=1

1

ψ̃2
i (̃θn)

∂ψ̃i (̃θn)

∂θ

∂ψ̃i (̃θn)

∂θ ′ .

The above estimators are all consistent, and hence a consistent estimator of the
information matrix Σ . Moreover,

√
n(̃θn − θ0) →d N (0,Σ−1

1 ) as n → ∞, (2)

where

Σ1 = κ1 · E
[

1

ψ2
i (θ0)

∂ψi (θ0)

∂θ

∂ψi (θ0)

∂θ ′

]

− κ2
3

κ2
· E

[
1

ψi (θ0)

∂ψi (θ0)

∂θ

]

E

[
1

ψi (θ0)

∂ψi (θ0)

∂θ ′
]

.

2.2 The Main Result

This subsection derives asymptotic distributions of the residual autocorrelations from
the estimated Weibull ACD model, and hence a portmanteau test for checking the
adequacy of this model. Note that the residuals are nonnegative, and the residual
autocorrelations here are also the absolute residual autocorrelations.

Without confusion, we denote ψ̃i (̃θn) and ψi (θ0) respectively by ψ̃i and ψi

for simplicity. Consider the residual sequence {̃εi } with ε̃i = xi/ψ̃i . Note that
n−1 ∑n

i=1 ε̃i = 1 + op(1) and then, for a positive integer k, the lag-k residual auto-
correlation can be defined as

r̃k =
∑n

i=k+1(̃εi − 1)(̃εi−k − 1)
∑n

i=1(̃εi − 1)2
.

Wenext consider the asymptotic distributions of the first K residual autocorrelations,
R̃ = (̃r1, . . . , r̃K )′, where K is a predetermined positive integer.

Denote ψ̃i (̃θn) and ψi (θ0) respectively by ψ̃i and ψi , and let ε̃i = xi/ψ̃i . Let
C̃ = (C̃1, . . . , C̃K )′ and C = (C1, . . . ,CK )′, where
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C̃k = 1

n

n∑

i=k+1

(̃εi − 1)(̃εi−k − 1) and Ck = 1

n

n∑

i=k+1

(εi − 1)(εi−k − 1).

By the
√
n-consistency of θ̃n at (2) and the ergodic theorem, it follows that

n−1 ∑n
i=1(̃εi − 1)2 = σ 2

γ0
+ op(1),where σ 2

γ0
= var(εi ), and thus it suffices to derive

the asymptotic distribution of C̃ .
By the Taylor expansion, it holds that

C̃ = C + H ′(̃θn − θ0) + op(n
−1/2), (3)

where H = (H1, . . . , HK ) with Hk = −E[ψ−1
i (εi−k − 1)∂ψi/∂θ ]. Moreover,

√
n(̃θn − θ0) = AΣ−1 · 1√

n

n∑

i=1

[

c2(εi , γ0),
c1(εi , γ0)

ψi

∂ψi

∂θ ′

]′
+ op(1), (4)

where the c j (εi , γ0) is as defined in Sect. 2.1, and the matrix A = (0, I) with I
being the (p + q + 1)-dimensional identity matrix. Note that E[εi c2(εi , γ0)] = 0
and E[εi c1(εi , γ0)] = 1. By (3), (4), the central limit theorem and the Cramér-Wold
device, it follows that

√
n R̃ →d N (0,Ω) as n → ∞,

where Ω = I − σ−4
γ0

H ′Σ−1
1 H , σ 2

γ0
= var(εi ), H = (H1, . . . , HK ) with Hk =

−E[ψ−1
i (εi−k − 1)∂ψi/∂θ ], and Σ1 is as defined in Sect. 2.1.

Let σ̃ 2
γ0

= n−1 ∑n
i=1(̃εi − 1)2, H̃k = −n−1 ∑n

i=1 ψ̃−1
i (̃εi−k − 1)∂ψ̃i/∂θ and H̃ =

(H̃1, . . . , H̃K ). Then we have H̃ = H + op(1) and hence a consistent estimator of
Ω can be constructed, denoted by Ω̃ . Let Ω̃kk be the diagonal elements of Ω̃ , for
1 ≤ k ≤ K . We therefore can check the significance of r̃k by comparing its absolute
value with 1.96

√
Ω̃kk/n, where the significance level is 5%.

To check the significance of R̃ = (̃r1, . . . , r̃K )′ jointly, we can construct a port-
manteau test statistic,

Q(K ) = n R̃′Ω̃−1 R̃,

and it will be asymptotically distributed as χ2
K , the chi-square distribution with K

degrees of freedom.

3 Numerical Studies

3.1 Simulation Experiments

This subsection conducts two Monte Carlo simulation experiments to check the
finite-sample performance of the proposed portmanteau test in the previous section.
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The first experiment evaluates the sample approximation for the asymptotic vari-
ance of residual autocorrelations Ω , and the data generating process is

xi = ψiεi , ψi = 0.1 + αxi−1 + βψi−1,

where εi follows the standardized Weibull distribution with the parameter of γ . We
consider γ = 0.8 and 1.2, corresponding to a heavy-tailed distribution and a light-
tailed one, and (α, β)′ = (0.2, 0.6)′ and (0.4, 0.5)′. The sample size is set to n = 200,
500or 1000, and there are 1000 replications for each sample size.As shown inTable1,
the asymptotic standard deviations (ASDs) of the residual autocorrelations at lags 2,
4 and 6 are close to their corresponding empirical standard deviations (ESDs) when
the sample size is as small as n = 500.

In the second experiment, we check the size and power of the proposed portman-
teau test Q(K ) using the data generating process,

xi = ψiεi , ψi = 0.1 + 0.3xi−1 + α2xi−2 + 0.3ψi−1,

where α2 = 0, 0.15 or 0.3, and εi follows the standardized Weibull distribution with
γ = 0.8 or 1.2. All the other settings are preserved from the previous experiment.
We fit the model of orders (1, 1) to the generated data; hence, the case with α2 = 0
corresponds to the size and those with α2 > 0 to the power. The rejection rates of test
statistic Q(K ) with K = 6 are given in Table2. For comparison, the corresponding
rejection rates of the Ljung–Box statistics for the residual series and its squared
process are also reported, denoted by Q∗

1(K ) and Q∗
2(K ). The critical value is the

upper 5th percentile of the χ2
6 distribution for all these tests. As shown in the table,

Table 1 Empirical standard deviations (ESD) and asymptotic standard deviations (ASD) of residual
autocorrelations at lags 2, 4 and 6

n θ = (0.1, 0.2, 0.6)′ θ = (0.1, 0.4, 0.5)′

2 4 6 2 4 6

γ = 0.8 200 ESD 0.1025 0.1061 0.1065 0.0610 0.0660 0.0635

ASD 0.0605 0.0655 0.0673 0.0625 0.0658 0.0675

500 ESD 0.0402 0.0415 0.0431 0.0389 0.0419 0.0416

ASD 0.0387 0.0411 0.0424 0.0402 0.0418 0.0427

1000 ESD 0.0284 0.0289 0.0301 0.0280 0.0297 0.0305

ASD 0.0277 0.0291 0.0298 0.0285 0.0297 0.0301

γ = 1.2 200 ESD 0.0847 0.0862 0.0889 0.0632 0.0656 0.0658

ASD 0.0604 0.0652 0.0673 0.0629 0.0659 0.0674

500 ESD 0.0386 0.0414 0.0421 0.0395 0.0433 0.0410

ASD 0.0387 0.0409 0.0422 0.0401 0.0418 0.0426

1000 ESD 0.0277 0.0290 0.0296 0.0276 0.0301 0.0292

ASD 0.0276 0.0289 0.0297 0.0284 0.0296 0.0301
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Table 2 Rejection rates of the test statistics Q(K ), Q∗
1(K ) and Q∗

2(K ) with K = 6 and γ = 0.8
or 1.2

n α2 = 0 α2 = 0.15 α2 = 0.3

0.8 1.2 0.8 1.2 0.8 1.2

Q(K ) 200 0.101 0.107 0.110 0.131 0.196 0.305

500 0.085 0.089 0.147 0.172 0.414 0.633

1000 0.080 0.092 0.205 0.314 0.709 0.934

Q∗
1(K ) 200 0.021 0.022 0.041 0.052 0.133 0.207

500 0.013 0.018 0.076 0.082 0.329 0.558

1000 0.016 0.008 0.115 0.203 0.639 0.899

Q∗
2(K ) 200 0.046 0.022 0.059 0.048 0.084 0.139

500 0.051 0.024 0.080 0.072 0.149 0.314

1000 0.052 0.022 0.088 0.135 0.209 0.617

the test Q(K ) is oversized when n = 1000, while the other two tests are largely
undersized for some γ . Furthermore, we found that increasing the sample size to
9000 could result in Q(K ) having sizes of 0.058 and 0.053 for γ = 0.8 and 1.2,
while the sizes of the other two tests do not become closer to the nominal value even
for very large n. For the power simulations, it can be seen clearly that Q(K ) is the
most powerful test among the three and Q∗

2(K ) is the least powerful one. Moreover,
the powers are interestingly observed to have smaller values when the generated data
are heavy-tailed (γ = 0.8).

3.2 An Empirical Example

As an illustrative example, this subsection considers the trade durations of the US
IBM stock on fifteen consecutive trading days starting from November 1, 1990. The
data are truncated from a larger data set which consists of the diurnally adjusted
IBM trade durations data from November 1, 1990, to January 31, 1991, adjusted

Table 3 Model diagnostic checking results for the adjusted durations for IBM stock traded in first
fifteen trading days of November 1990: p values for Q(K ), Q∗

1(K ) and Q∗
2(K ) with K = 6, 12

and 18, at the 5% significance level

K q = 1 q = 2 q = 3

Q(K ) Q∗
1(K ) Q∗

2(K ) Q(K ) Q∗
1(K ) Q∗

2(K ) Q(K ) Q∗
1(K ) Q∗

2(K )

6 0.0081 0.0123 0.4827 0.0560 0.0938 0.3778 0.3915 0.5010 0.5172

12 0.0225 0.0233 0.4313 0.1157 0.1372 0.3890 0.4933 0.5427 0.5315

18 0.0012 0.0022 0.0723 0.0116 0.0190 0.0727 0.0815 0.1200 0.1211
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and analyzed by Tsay [9, Chap. 5]. Focusing on positive durations, we have 12,532
diurnally adjusted observations.

We consider the WACD(p, q) models with p = 1 and q = 1, 2 or 3. The major
interest is on whether the models fit the data adequately. To this end, the p values for
Q(K ), Q∗

1(K ) and Q∗
2(K ) with K = 6, 12 and 18 at the 5% significance level are

reported in Table3. It can be seen that theWACD(1, 3) model fits the data adequately
according to all the test statistics. The fittedWACD(1, 1) model is clearly rejected by
both Q(K ) and Q∗

1(K )with K = 6, 12 and 18. For the fittedWACD(1, 2)model, both
Q(K ) and Q∗

1(K ) suggest an adequate fit of the data with K = 6 or 12, but not with
K = 18. While for the data, Q(K ) and Q∗

1(K ) always lead to the same conclusions,
the fact that the p value for Q(K ) is always smaller than that for Q∗

1(K ) confirms
that Q(K ) is more powerful than Q∗

1(K ). In contrast, Q∗
2(K ) fails to detect any

inadequacy of the fitted WACD models.

Acknowledgements Weare grateful to the co-editor and two anonymous referees for their valuable
comments and constructive suggestions that led to the substantial improvement of this paper.
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Abstract This paper studies the residual autocorrelation functions (ACFs) of par-
tially nonstationary multivariate autoregressive moving-average (ARMA) models.
The limiting distributions of the full rank estimators and the Gaussian reduced rank
estimators are derived. Using these results, we derive the limiting distributions of the
residual ACFs under full rank and reduce rank estimations. Based on these limiting
distributions, we construct the portmanteau statistics for model checking. It is shown
that these statistics asymptotically follow χ2-distributions. Simulations are carried
out to assess their performances in finite samples and two real examples are given.
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1 Introduction

It is well known that model diagnostic checking is an essential and important step in
time series modeling. Box and Pierce [2] used the asymptotic distribution of residual
autoregressive functions (ACFs) to devise a portmanteau statistic for model check-
ing. More general cases were studied by McLeod [8]. McLeod and Li [9] proposed a
new statistic based on the squared residual ACFs for model checking. Based on the
mth root of the determinant of the mth autocorrelation matrix, Peňa and Rodríguez
[10, 11] proposed a powerful portmanteau test for ARMA model. Gallagher and
Fisher [3] introduced a data-adaptive weighted portmanteau test for ARMA model.
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All these results are for the univariate time series models. Li and McLeod [6] stud-
ied the residual ACFs of the multivariate stationary ARMA model and proposed a
portmanteau test for model checking. A general diagnostic checking approach for
stationary multivariate time series models, including linear and nonlinear models,
was proposed by Li and Ling [5]. Mahdi and McLeod [7] studied an improved mul-
tivariate portmanteau test for stationary ARMA model. However, until now, there
has been little research on the diagnostic checking of nonstationary multivariate time
series models. The main difficulties are too many unknown parameters in the model
and its complicated structures. We refer to Li [4] for more references in this area.

This paper studies the residualACFsof partially nonstationarymultivariate autore-
gressive (AR) and autoregressivemoving-average (ARMA)models. Ahn andReinsel
[1] and Yap and Reinsel [13] derived the limiting distributions of the full rank esti-
mators and the Gaussian reduced rank estimators for the two models. Using these
results, we derive the limiting distributions of the residual ACFs under full rank and
reduce rank estimations. Based on these limiting distributions, we construct the port-
manteau statistics for model checking. It is shown that these statistics asymptotically
follow χ2-distributions. Simulations are carried out to assess their performances in
finite samples and two real examples are given.

The paper is organised as follows. Sections2 and 3 presents our models. Section4
states our main results. Simulation results are reported in Sect. 5. Section6 gives two
real examples. Throughout this paper, we use the following notations: Ik denotes the

identity matrix of order k; ‖ · ‖ denotes the Euclid norm;
D→ denotes convergence

in distribution; op(1) denotes a series of random numbers converging to zero in
probability and ⊗ denotes the Kronecker product.

2 Partially Nonstationary Multivariate AR Models

An m-dimensional AR process {Yt } with order p is defined as

Φ(B)Yt = εt , (1)

where Φ(B) = Im − ∑p
j=1 Φ j B j is a matrix polynomial in B of degree p, det

{Φ(B)} = 0 has d < m roots equal to unity, all the other roots lie outside the unit
circle and εt = (ε1t , . . . , εmt )

′ are independent and identically distributed (i.i.d.)
white noises with E(εt ) = 0, var(εi t ) = σ 2

i i for i = 1, . . . ,m, cov(εt ) = Ωε, and
E‖εt‖2+ι < ∞ for some ι > 0. Model (1) is called the partially nonstationary mul-
tivariate AR model.

Denote Φ(1) = Im − ∑p
j=1 Φ j , C = −Φ(1), Φ∗

j = −∑p
k= j+1 Φk and r = m −

d. We assume the rank of Φ(1) is r , so that each component of the first difference
Wt := Yt − Yt−1 is stationary. We can rewrite (1) as
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Wt = CYt−1 +
p−1∑

j=1

Φ∗
j Wt− j + εt . (2)

We call model (2) multivariate full rank AR model. Denote F = (C, Φ∗
1 , Φ

∗
2 , . . . ,

Φ∗
p−1) and Xt−1 = (Y ′

t−1,W
′
t−1, . . . ,W

′
t−p+1)

′. We can further write (2) as

Wt = FXt−1 + εt . (3)

Given {Y−p+1, . . . ,Yn}, the least square estimator (LSE) of F is

F̂ :=
(

n∑

t=1

Wt X
′
t−1

) (
n∑

t=1

Xt−1X
′
t−1

)−1

.

The residual of model (3) is defined as ε̂t = Wt − F̂ Xt−1.
To see the asymptotic properties of F̂ , we first introduce some notations. Note

that
∑p

i=1 Φi has Jordan canonical form J = diag(Id ,Λr ) due to the assumption
rank{Φ(1)} = r . Let P and Q = P−1 be m × m matrices Q such that Q(

∑p
j=1 Φ j )

P = J . Partition Q = [Q1, Q2]′ and P = [P1, P2]′ such that Q1 and P1 are m × d
matrices and Q2 and P2 are m × r matrices. We define X∗

t = Q∗Xt with Q∗ =
diag(Q, Im(p−1)), Zt = [Z1,t , Z2,t ] with Z1,t = Q′

1Yt and Z2,t = Q′
2Yt . We parti-

tion X∗
t into nonstationary and stationary part, i.e. X∗

t = [Z ′
1,t ,U

′
t ]′ such that Ut =

[Z ′
2,t ,W

′
t , . . . ,W

′
t−p+2]′ is [r + m(p − 1)] × 1 matrix. Denote D∗ = diag

(D,
√
nIm(p−1)) with D = diag(nId ,

√
nIr ), P∗ = diag(P, Im(p−1)) and at = Qεt .

Then
Q(F̂ − F)P∗D∗

=
(

n∑

t=1

at X
∗′
t−1

)

D∗−1

(

D∗−1
n∑

t=1

X∗
t−1X

∗′
t−1D

∗−1

)−1

=
⎡

⎣

(
1

n

n∑

t=1

at Z
′
1,t−1

)(
1

n2
Z1,t−1Z

′
1,t−1

)−1

,

(
1√
n

n∑

t=1

atU
′
t−1

)(
1

n

n∑

t=1

Ut−1U
′
t−1

)−1
⎤

⎦ + op(1).

Ahn and Reinsel [1] gave the following result:

(F̂ − F)P∗D∗ D→ P[M, N ],

as n → ∞, where

M = Ω1/2
a

(∫ 1

0
Bd(u)dBm(u)′

)′ (∫ 1

0
Bd(u)B ′

d(u)du

)−1

Ω−1/2
a1 Ψ −1

11

with Ωa = cov(at ) = QΩεQ′, Ωa1 = [Id , 0]Ωa[Id , 0]′, Bm(u) being an
m-dimensional standard Brownian motion, Bd(u) = Ω

−1/2
a1 [Id , 0]Ω1/2

a Bm(u) being
a d-dimensional standard Brownian motion and Ψ11 = [Id , 0](∑∞

k=0 Ψk)[Id , 0]′.
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The partially nonstationary multivariate AR model (2) has rank deficient coeffi-
cient matrix C , and it is more suitable to estimate C with the reduced rank structure.
Since the rank of C is r , it may be expressed as C = AB, where A and B are m × r
and r × m matrices, respectively. To obtain a unique parameterization, we normalise
B so that B = [Ir , B0], where B0 is an r × (m − r) unknown matrix. Hence,

C = AB = A[Ir , B0].

Model (2) can then be written as

Wt = A[Ir , B0]Yt−1 +
p−1∑

j=1

Φ∗
j Wt− j + εt . (4)

Model (4) is called multivariate reduced rank AR model. Let β = (β ′
0, α

′)′, where
β0 = vec(B ′

0) and α = vec[(A, Φ∗
1 , . . . , Φ

∗
p−1)

′]. Since model (4) is no longer linear
under reduced rank structure, we cannot use the samemethod as in the full rank case.
Define

εt (β) = Wt − A[Ir , B0]Yt−1 −
p−1∑

j=1

Φ∗
j Wt− j .

Given {Y−p+1, . . . ,Yn}, the Gaussian estimator of β, denoted by β̂, is the estimator
that maximize the log-likelihood function:

Ln(β,Ωε) = −n

2
log |Ωε| − 1

2

n∑

t=1

ε′
t (β)Ω−1

ε εt (β).

We denote the residual εt (β̂) by ε̂t for simplicity. Ahn and Reinsel [1] gave the
following results:

n(B̂0 − B0) =
(
A′Ω−1

ε A
)−1

A′Ω−1
ε

(
1

n

n∑

t=1

εt Z
′
1,t−1

)(
1

n2

n∑

t=1

Z1,t−1Z
′
1,t−1

)−1

P−1
21 + op(1)

D→
(
A′Ω−1

ε A
)−1

A′Ω−1
ε PMP−1

21 ,

√
n(α̂ − α) = 1√

n

n∑

t=1

⎡

⎣Im ⊗
(
1

n

n∑

t=1

Ũt−1Ũ
′
t−1

)−1

Ũt−1

⎤

⎦ εt + op(1)

D→ N
(
0,Ωε ⊗ Γ −1

Ũ

)
,

as n → ∞, where Γ −1
Ũ

= cov(Ũt ) and Ũt−1 = [(BY ′
t−1,W

′
t−1, . . . ,W

′
t−p+1)]′.



Diagnostic Checking for Partially Nonstationary Multivariate. . . 119

3 Partially Nonstationary Multivariate ARMAModels

An m-dimensional nonstationary multivariate ARMA process Yt is defined as

Φ(B)Yt = Θ(B)εt , (5)

where Φ(B) is defined in the same way as in (1), Θ(B) = Im − ∑q
i=1 Θi Bi is a

matrix polynomial in B of q and det{Θ(B)} = 0 has all its roots lying outside the
unit circle. The assumptions on the noises εt are the same as in (1). Model (5) is
called the partially nonstationary multivariate ARMA model.

Using a similar argument as in (2), we can rewrite (5) as

Wt = CYt−1 +
p−1∑

j=1

Φ∗
j Wt− j −

q∑

j=1

Θ jεt− j + εt . (6)

Let P = [P1, P2], Q = [Q1, Q2] and Zt = [Z1,t , Z2,t ] being defined as in Sect. 2.
Note that Zt = QYt−1. We rewrite CYt−1 as

CYt−1 = C{PZt−1} = C{[P1, P2][Z1,t−1, Z2,t−1]′} = CP1Z1,t−1 + CP2Z2,t−1.

Then model (6) has the following form:

Wt = CP1Z1,t−1 + CP2Z2,t−1 +
p−1∑

j=1

Φ∗
j Wt− j −

q∑

j=1

Θ jεt− j + εt . (7)

Let τ = (τ ′
0, τ

′
1), where τ0 = vec(CP1) and τ1 = vec(CP2, Φ∗

1 , . . . , Φ
∗
p−1,Θ1, . . . ,

Θq). Define

εt (τ ) = Wt − CP1Z1,t−1 − CP2Z2,t−1 −
p−1∑

j=1

Φ∗
j Wt− j +

q∑

j=1

Θ jεt− j (τ ).

Assume that {Y1, . . . ,Yn} is a sample from model (3.1) with sample size n. Given
the initial value {Y1−p, . . . ,Y0} and εt (τ ) ≡ 0 for t ≤ 0, the Gaussian estimator of τ ,
denoted by τ̂ = (τ̂ ′

0, τ̂
′
1), is the estimator that maximize the log-likelihood function:

Ln(τ,Ωε) = −n

2
log |Ωε| − 1

2

n∑

t=1

ε′
t (τ )Ω−1

ε εt (τ ).

Denote the residual εt (τ̂ ) by ε̂t . Let Ĉ be the estimator of C . Yap and Reinsel [13]
gave the following results:
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n(Ĉ − C)P1 = P

(
1

n

n∑

t=1

bt Z
′
1,t−1

) (
1

n2

n∑

t=1

Z1,t−1Z
′
1,t−1

)−1

+ op(1)

D→ PM0,

√
n

(
τ̂1 − τ1

) =
(
1

n

n∑

t=1

U ∗
t−1Ω

−1
ε U ∗′

t−1

)−1 (
1√
n

n∑

t=1

U ∗
t−1Ω

−1
ε εt

)

+ op(1)

D→ N (0, V−1),

as n → ∞, where bt = QΘ(1)εt ,

M0 = Ω
1/2
b

(∫ 1

0
Bd(u)dBm(u)′

)′ (∫ 1

0
Bd(u)B ′

d(u)du

)−1

Ω
−1/2
b1

Ψ −1
22

withΩb = cov(bt ),Ωb1 = [Id , 0]Ωb[Id , 0]′, Bm(u) denotes anm-dimensional stan-
dard Brownian motion, Bd(u) = Ω

−1/2
b1

[Id , 0]Ω1/2
b Bm(u) is a d-dimensional stan-

dard Brownian motion and Ψ22 = [Q′
tΦ

∗(1)P1]−1, V = E(U ∗
t−1Ω

−1
ε U ∗

t−1) and

U ∗
t−1 =

⎡

⎣
−

(
Q−1′

2 ⊗ Im
)

∂ε′
t

∂vecC

− ∂ε′
t

∂vec[Φ∗
1 ,...,Φ∗

p−1,Θ1,...,Θq ]

⎤

⎦ .

The partially nonstationarymultivariate ARMAmodel (6) has rank deficient coef-
ficient matrix C . Similar to the reduced rank model (4) of the partially nonstationary
multivariate AR model (2), the reduced rank model (6) can be written as

Wt = A[Ir , B0]Yt−1 +
p−1∑

j=1

Φ∗
j Wt− j −

q∑

j=1

Θ jεt− j + εt . (8)

Similar to the AR model case, model (6) and (8) are called multivariate full rank and
reduced rank ARMA model, respectively.

Let δ = (δ′
0, δ

′
1)

′, where δ0 = vec(B0) and δ1 = vec[A, Φ∗
1 , . . . , Φ

∗
p−1,Θ1, . . . ,

Θq ]. Define

εt (δ) = Wt − A[Ir , B0]Yt−1 −
p−1∑

j=1

Φ∗
j Wt− j +

q∑

j=1

Θ jεt− j (δ).

Given the observations {Y1, . . . ,Yn} and initial value {Y1−p, . . . ,Y0} and εt (δ) = 0
for t ≤ 0, the Gaussian estimator of δ, denoted by δ̂, is the estimator that maximize
the log-likelihood function:
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Ln(δ,Ωε) = −n

2
log |Ωε| − 1

2

n∑

t=1

ε′
t (δ)Ω

−1
ε εt (δ).

Yap and Reinsel [13] obtained the following results:

n(B̂0 − B0) = Σ

(
1

n

n∑

t=1

εt Z1,t−1

) (
1

n2

n∑

t=1

Z1,t−1Z
′
1,t−1

)−1

P−1
21 + op(1)

D→ ΣΘ−1(1)PM0P
−1
21 ,

√
n(δ̂1 − δ1) =

[
1

n

n∑

t=1

Ũ ∗
t−1Ω

−1
ε Ũ ∗′

t−1

]−1 [
1√
n

n∑

t=1

Ũ ∗
t−1Ω

−1
ε εt

]

+ op(1)

D→ N (0, V ∗−1),

as n → ∞, where Σ = (A′Θ−1(1)′Ω−1
ε Θ−1(1)A)−1A′Θ−1(1)′Ω−1

ε , Ũ ∗
t−1 =

−∂ε′
t/∂δ1 and V ∗ = E(Ũ ∗

t−1Ω
−1
ε Ũ ∗′

t−1).

4 Main Results

Let ε̂t be the residual inmodel (2). The corresponding residual autocovariancematrix
is defined by

R̂l = 1

n

n−l∑

t=1

ε̂t ε̂
′
t+l , (9)

where l is an integer. The residual autocorrelation matrix is then defined as

R̃l = V̂−1/2
0 R̂l V̂

−1/2
0 , (10)

where

V̂0 = diag

(
1

n

n∑

t=1

ε̂21,t , . . . ,
1

n

n∑

t=1

ε̂2m,t

)

.

Let r̂M = vec[R̃1, R̃2, . . . , R̃M ] with M being the number of lags. We are interested
in the asymptotic distribution of

√
nr̂M under full rank estimation and reduced rank

estimation.
The following result gives the limiting distribution of the residual ACF for model

(1) under full rank estimation.
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Theorem 4.1 Under Assumptions of model (1), it follows that

√
nr̂M

D→ N (0,Σ1),

where Σ1 = diag(Σ1,1, . . . , Σ1,M ) and Σ1,l = Δ−1ΩεΔ
−1 ⊗ Δ−1(Ωε − D1,l A

−1
1

D′
1,l)Δ

−1 for l = 1, . . . , M with Δ = diag(σ11, . . . , σmm), D1,l = E(εtU ′
t+l−1) and

A1 = E(Ut−1U ′
t−1).

The following results give the limiting distribution of the residual ACFs of model
(4) under reduced rank estimation.

Theorem 4.2 For model (4), under reduced rank estimation, we have

√
nr̂M

D→ N (0,Σ2),

whereΣ2 = diag(Σ2,1, . . . , Σ2,M) andΣ2,l = (Δ−1 ⊗ Δ−1)E[D2,lΩεD′
2,l ](Δ−1 ⊗

Δ−1) with D2,l = IM ⊗ εt − Sl K1A
−1
2 Ũ ′

t+l−1, A2 = E[Ũt−1Ũ ′
t−1], Sl = E[(Im ⊗

εt )(Ũ ′
t+l−1 ⊗ Im)] and K1 is the (rm + m2(p − 1)) × (rm + m2(p − 1)) commu-

tation matrix that converts vec[(A, Φ∗
1 , . . . , Φ

∗
p−1)

′] into vec[A, Φ∗
1 , . . . , Φ

∗
p−1].

The following result gives the limiting distribution of the residual ACF for model
(6) under full rank estimation.

Theorem 4.3 For model (6), under full rank estimation, we have

√
nr̂M

D→ N (0,Σ3),

where

Σ3 = diag(Σ1,1, . . . , Σ1,M )

Σ3,l = (Δ−1 ⊗ Δ−1)E[D3,lΩεD
′
3,l ](Δ−1 ⊗ Δ−1) for l = 1, . . . , M

D3,l = IM ⊗ εt + Fl A
−1
3 U ∗

t+l−1Ω
−1
ε ,

A3 = E[U ∗
t−1Ω

−1
ε U ∗′

t−1],
Fl = E[(Im ⊗ εt )Θ

−1(B)Mt+l−1],

Mt−1 =
⎡

⎣−
(
G̃ ′

t−1 ⊗ Im
)

,

q∑

j=1

(
ε′
t− j ⊗ Im

)
d j

⎤

⎦ ,

G̃t−1 = [
Z ′
2,t−1,W

′
t−1, . . . ,W

′
t−p+1

]′

and d j is a m2 × m2q matrix that can be blocked into q m2 × m2 matrices and the
j-th matrix is Im2 while other are zero matrices.
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By Theorem 4.3, we can construct the statistic

QM := nr̂ ′
MΣ̂−1

3 r̂M ,

where Σ̂3 is a consistent estimator of Σ3. By Theorem 4.3, we can show that QM

asymptotically follows the χ2-distribution with (M − p − q)m2 degree of freedom,
i.e. QM ∼ χ2

(
(M − p − q)m2

)
. Note that as l large enough, Fl ≈ 0. Thus,

Σ3,l ≈ Δ−1ΩεΔ
−1 ⊗ Δ−1ΩεΔ

−1 ≡ Σ∗.

Then the test statistic QM can be simple approximated by the test statistic

Q∗
M := n

M∑

i=1

(vecR̃i )
′Σ̂∗−1(vecR̃i ) ∼ χ2

(
(M − p − q)m2

)
,

where Σ̂∗ = Δ̂−1Ω̂εΔ̂
−1 ⊗ Δ̂−1Ω̂εΔ̂

−1 with

Δ̂2 = diag

(
1

n

n∑

t=1

ε̂21t , . . . ,
1

n

n∑

t=1

ε̂2mt

)

and Ω̂ε = 1

n

n∑

t=1

ε̂t ε̂
′
t

The QM and Q∗
M are called portmanteau test statistics. We compare them with the

upper-tailed critical value of χ2
(
(M − p − q)m2

)
at an appropriate level. If the

statistics are less than the critical value, then the fitted ARMA model is adequate.
Note that when q = 0, model (6) reduce to the partially nonstationary multivariate
AR model and in this case Q∗

M can be used for diagnostic checking for fitted AR
models.

Theorem 4.4 For model (8), under reduced rank estimation, we have

√
nr̂M

D→ N (0,Σ4),

where

Σ4 = diag(Σ2,1, . . . , Σ2,M),

Σ4,l = (Δ−1 ⊗ Δ−1)E[D4,lΩεD
′
4,l](Δ−1 ⊗ Δ−1),

D4,l = Im ⊗ εt + Υl A
−1
4 Ũ ∗

t+l−1Ω
−1
ε ,

A4 = E[Ũ ∗
t−1Ω

−1
ε Ũ ∗′

t−1],
Υl = E[(Im ⊗ εt )Θ

−1(B)Nt+l−1],
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Nt−1 =
⎡

⎣−
(
H̃ ′

t−1 ⊗ Im
)

,

q∑

j=1

(
ε′
t− j ⊗ Im

)
d j

⎤

⎦ ,

H̃ ′
t−1 = [

(BYt−1)
′,W ′

t−1, . . . ,W
′
t−p+1

]′
.

Since Υl ≈ 0 as l is large enough, we have Σ4,l ≈ Σ∗. Therefore, in this case we
can still use Q∗

M with ε̂ being the residual of model (8) to check whether the fitted
model is adequate or not.

The proofs of Theorems 4.1–4.4 were given in Tai [12] and the details are omitted.

5 Simulation Studies

To study the size and power of test statistics Q∗
M in Sect. 4, we use three models to

perform the simulation. The first model is the bivariate AR(1) model

Yt = Φ1Yt−1 + εt ,

where

Ωε =
(
1 α

α 1

)

with six different values of α, Φ1 = A1, B1,C1 and D1, where

A1 =
(
0.60 1.00
0.12 0.70

)

, B1 =
(

0.30 −0.20
−0.70 0.80

)

,

C1 =
(

0.50 −0.15
−1.00 0.70

)

and D1 =
(
0.37 0.63
0.17 0.83

)

.

All the matrices A1, B1,C1 and D1 have only one unit root. We choose M = 15 and
the significance level 0.05 are used. The corresponding critical value is χ2

22(15−1) =
χ2
56 ≈ 74.45. To study the empirical powers of Q∗

15, the following alternative model
is used:

Yt = Φ1Yt−1 + Φ2Yt−2 + εt ,

where

Φ2 =
(
0.5 0
0 −0.4

)

.
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Table 1 Sizes and powers of test statistics Q∗
15 for bivariate AR(1) model among 1000 simulations

α Size Powers

A1 B1 C1 D1 A1 B1 C1 D1

n = 200

0.05 66 52 73 53 610 710 829 892

−0.1 57 57 94 72 702 562 623 678

−0.25 44 63 69 42 797 633 808 698

0.4 48 71 45 59 748 657 723 702

−0.6 73 62 63 82 641 682 703 645

0.75 49 64 74 44 576 802 666 687

n = 400

0.05 62 55 68 57 792 842 893 963

−0.1 51 53 72 61 892 748 882 888

−0.25 48 61 64 45 821 729 852 877

0.4 48 67 46 55 856 819 821 881

−0.6 68 58 61 80 823 781 822 901

0.75 42 57 66 42 756 902 811 748

n = 500

0.05 53 49 50 48 867 921 951 956

−0.1 53 47 59 54 902 873 894 964

−0.25 50 54 54 55 934 899 970 905

0.4 52 56 58 44 945 822 934 953

−0.6 54 57 56 65 867 832 911 965

0.75 51 51 58 51 878 945 901 845

Table1 reports the sizes and powers of Q∗
15. From Table1, we can see that, even

when the sample size n is small, the empirical rejection probabilities of the test
statistic are close to 5%. There is little bit inflation or deflation. As the sample
size increases to 400 and 500, the performance of the test statistic is improved as
evidenced by nearly 5% of the empirical rejection probabilities for all cases. The
test statistic has higher power as the sample size increases, in particular, when the
sample size is 500. Furthermore, the nature of AR parameters and the correlation do
not have much difference on the sizes and powers of the test statistic. Overall, the
test statistic has good performance in all cases.

The second model we consider is the bivariate ARMA(1,1) model

Yt = Φ1Yt−1 − Θ1εt−1 + εt ,

where Φ1 = A1, B1,C1 and D1, Θ1 = A2, B2,C2 and D2 with
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A2 =
(−0.10 −0.40

−0.22 −0.70

)

, B2 =
(
0.60 0.30
0.12 0.70

)

,

C2 =
(−0.20 0.70

0.30 −0.30

)

and D2 =
(−0.40 −0.10

0.10 −0.90

)

.

All the eigenvalues of the matrices A2, B2,C2 and D2 lie inside the unit circle. We
choose M = 15 and the significance level 0.05. The corresponding critical value is
χ2
22(15−1−1) = χ2

52) ≈ 69.8. To study the empirical powers of Q∗
15, we use the alter-

native model
Yt = Φ1Yt−1 + Φ2Yt−2 − Θ1εt−1 + εt .

Table2 reports the sizes and powers of Q∗
15 under the null model. The test statistic

performs quite well in the empirical rejection probabilities even when the sample
size n is small. The performance of the test statistic improves as the sample size
increases from 400 to 500. The overspecified ARMA(2,1) model gives a deflation in

Table 2 Sizes and powers of test statistics Q∗
15 for bivariate ARMA(1,1) model among 1000

simulations

α Size Powers

A1, A2 B1, B2 C1,C2 D1, D2 A1, A2 B1, B2 C1,C2 D1, D2

n = 200

0.05 67 72 34 42 612 672 712 643

−0.1 92 53 68 50 778 743 783 781

−0.25 35 46 68 40 592 603 652 576

0.4 82 37 56 71 723 792 792 534

−0.6 73 84 87 92 678 782 667 680

0.75 57 56 51 79 630 514 588 583

n = 400

0.05 61 53 37 57 821 787 843 788

−0.1 82 43 62 52 866 834 856 851

−0.25 46 51 69 44 785 731 822 781

0.4 77 50 52 61 872 821 810 687

−0.6 62 65 68 87 852 840 712 744

0.75 47 54 59 77 785 702 687 674

n = 500

0.05 53 54 47 59 904 934 956 923

−0.1 67 56 53 63 963 904 965 902

−0.25 57 51 54 54 932 898 923 882

0.4 56 54 59 49 936 973 890 771

−0.6 53 54 62 60 943 887 887 952

0.75 47 52 58 61 909 798 792 890
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the empirical rejection probabilities. The test statistic has higher power as the sample
size increases. Based on the empirical simulation evidences, we find that the finite
sample performance of the test statistic seems not to be affected by the MA parts.

Besides from the bivariate cases, we also considered the trivariate AR(1) model

Yt = Φ1Yt−1 + εt ,

where

Ωε =
⎛

⎝
1 α1 α2

α1 1 α3

α2 α3 1

⎞

⎠ ,

with α1, α2 and α3 are chosen among the values ±0.25,±0.5,±0.75, and Φ1 =
A3, B3 and C3 with

A3 =
⎛

⎝
0.602 0.433 0.110
0.121 0.660 0.066
0.103 0.166 0.838

⎞

⎠ ,

B3 =
⎛

⎝
0.35 0.25 0
0 0.42 0.65

−0.71 0.96 0.23

⎞

⎠ and C3 =
⎛

⎝
1 0.48 0.55

0.33 0.57 0
0 −0.32 0.63

⎞

⎠ .

For thismodel,we chooseM = 10. There is only one unit root for A1 and B3 and there
are two unit roots for C3. The upper 5 percent point of χ2

32(10−1) = χ2
81 ≈ 101.88. To

consider the powers of the statistic, the following alternative model is used:

Yt = Φ1Yt−1 + Φ2Yt−1 + εt ,

where

Φ2 =
⎛

⎝
0.5 0 0
0 −0.4 0
0 0 0.1

⎞

⎠ .

The empirical sizes and powers of Q∗
10 are reported in Table3. From Table3, we

can see that the size gives an inflation in the empirical rejection probabilities when
there is only one unit root in the model, and gives a deflation when there are two
unit roots in the model. As sample size increases, the performance of the test statistic
improves. Moreover, the test statistic gives a deflation in the empirical rejection
probabilities. As we expected, the power of the test statistic increases when n grows
from 400 to 500. Again, the finite sample performance of the test statistic seems not
to be affected by the nature of AR parameters.
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Table 3 Sizes and powers of test statistics Q∗
10 for trivariate AR(1) model among 1000 simulations

α1 Size Powers

α2 α3 A3 B3 C3 A3 B3 C3

n = 200

0.25 0.5 0.75 62 83 39 623 725 733

−0.25 0.75 −0.5 64 43 36 572 596 722

0.5 −0.25 0.75 64 62 43 762 663 719

−0.5 −0.25 −0.75 57 52 82 802 725 554

−0.75 0.5 0.25 61 72 59 563 706 678

−0.75 −0.5 −0.25 78 92 48 643 834 726

n = 400

0.25 0.5 0.75 62 61 48 748 815 802

−0.25 0.75 −0.5 52 49 42 647 652 769

0.5 −0.25 0.75 49 51 50 824 821 803

−0.5 −0.25 −0.75 57 59 50 923 872 672

−0.75 0.5 0.25 64 62 50 712 911 823

−0.75 −0.5 −0.25 65 82 45 770 937 871

n = 500

0.25 0.5 0.75 57 54 55 892 910 872

−0.25 0.75 −0.5 51 52 56 824 848 899

0.5 −0.25 0.75 56 52 56 953 931 918

−0.5 −0.25 −0.75 57 59 48 972 901 924

−0.75 0.5 0.25 51 55 45 899 953 864

−0.75 −0.5 −0.25 53 54 43 942 940 918

6 Two Numerical Examples

In this section, we give two numerical examples to illustrate our methods. The first
example considers U.S. monthly data Yt (in thousands) consisting of housing-starts
(Y1t ) and housing-sold (Y2t ) from January period 1965 to December 1974. This data
set was investigated by Ahn and Reinsel [1] and they fitted the data by a partially
stationary bivariate AR(1) model with d = 1 unit root, i.e. Yt = Φ1Yt−1 + εt , which
can be further written as

Wt = Yt − Yt−1 = CYt−1 + εt .

The full rank least squares estimator of C is given by

Ĉ =
(−0.537 0.951

0.129 −0.289

)

.
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The eigenvalues of Ĉ are −0.785 and −0.041, and −0.041 may be considered to
be close to 0, which indicates one unit root in the AR operator. To use our test
Q∗

M , we set M = 15. The value of Q∗
15 is 63.4, which is smaller than the critical

value χ2
22(15−1) = χ2

56 ≈ 74.45 at significance level 0.05. Thus, the null hypothesis
is accepted and the fitted model is adequate. Based on the reduced rank approach,
the estimators of A and B0 are Ã = [−0.537, 0.129]′ and B̃0 = −1.752. The final
reduced rank Gaussian estimator of C is

C̃ =
(−0.523 0.979

0.141 −0.265

)

.

Using the reduced rank estimators, we calculate the residuals and the value of Q∗
15

is 62.3. Therefore fitted reduced rank model is adequate as well.
The second example considers U.S. monthly logarithms of interest rate series Yt

consisting of the Federal Fund rate (Y1t ), 90-day Treasury Bill rate (Y2t ) and 1-year
Treasury Bill rate (Y3t ) series from January 1960 to December 1979. Yap and Reinsel
[13] fitted this data by a trivariate ARMA(1,1) model, Yt = Φ1Yt−1 − Θ1εt−1 + εt ,
which can be written as

Wt = Yt − Yt−1 = CYt−1 − Θ1εt−1 + εt .

The full rank Gaussian estimators are given by

C̃ =
⎛

⎝
−0.203 0.243 −0.003
0.019 −0.090 0.068
0.036 0.019 −0.081

⎞

⎠ and Θ̃1 =
⎛

⎝
−0.143 0.237 −0.463
−0.224 0.118 −0.317
−0.125 0.037 −0.330

⎞

⎠ .

The eigenvalues of Ĉ are−0.008,−0.174 and−0.192. The first root−0.008 is close
to 0, which indicates that there is one unit root. The value of the test statistic Q∗

10
is 71.05, which is smaller than the critical value χ2

32(10−1−1) = χ2
72 ≈ 90.66. Hence

the null hypothesis is accepted at significance level 0.05. Based on the reduced rank
approach, the estimator of A, B0 and Θ1 are, respectively,

Ã =
⎡

⎣
−0.199 0.250
0.023 −0.082
0.041 0.027

⎤

⎦ , B̃0 =
[ −1.396

−1.147

]

and Θ̃1 =
⎛

⎝
−0.147 0.241 −0.468
−0.231 0.127 −0.334
−0.129 0.042 −0.339

⎞

⎠ .

Then the reduced rank Gaussian estimators of C is

C̃ =
⎛

⎝
−0.199 0.250 −0.009
0.023 −0.082 0.062
0.041 0.027 −0.088

⎞

⎠ .

The value of Q∗
10 is 68.2 and hence the fitted model is also adequate.
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The Portmanteau Tests and the LM Test
for ARMAModels with Uncorrelated Errors

Naoya Katayama

Abstract In this article, we investigate the portmanteau tests and the Lagrange
multiplier (LM) test for goodness of fit in autoregressive and moving average models
with uncorrelated errors. Under the assumption that the error is not independent, the
classical portmanteau tests and LM test are asymptotically distributed as a weighted
sumof chi-squared randomvariables that can be far from the chi-squared distribution.
To conduct the tests, we must estimate these weights using nonparametric methods.
Therefore, by employing the method of Kiefer et al. (Econometrica, 68:695–714,
2000, [11]), we propose new test statistics for the portmanteau tests and the LM
test. The asymptotic null distribution of these test statistics is not standard, but can
be tabulated by means of simulations. In finite-sample simulations, we demonstrate
that our proposed test has a good ability to control the type I error, and that the loss
of power is not substantial.

1 Introduction

We consider goodness-of-fit tests for univariate autoregressive moving average
(ARMA) models with uncorrelated errors. Portmanteau tests and the Lagrange mul-
tiplier (LM) test are popular tools in ARMA modeling. Portmanteau test statistics,
defined by the sum of squares of the first m residual autocorrelations, are com-
monly used in time series analysis to describe the goodness of fit. This approach
was first presented by Box and Pierce [1] and Ljung and Box [15] for univari-
ate autoregressive (AR) models. McLeod [18] derived the large sample distribution
of the residual autocorrelations and the portmanteau statistic for ARMA models.
LM tests for ARMA time series models have been investigated by many authors,
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e.g., Godfrey [6], Newbold [19], and Hosking [7]. The test statistics compare the null
hypothesis model ARMA(p, q) against either ARMA(p + m, q) or ARMA(p, q +
m). From the viewpoint of finite sample size and power, these two test statistics are
often used in combination. Li [14, Chap. 2] reviews several such tests. However,
most of these tests impose the restriction that the errors must be independent. This
precludes the application of a nonlinear model.

In recent years, the time series literature has been characterized by a grow-
ing interest in nonlinear models. Francq et al. [3] reported that many important
classes of nonlinear processes admit ARMAmodels with uncorrelated errors. Some
examples include bilinear processes, autoregressive-conditional duration processes,
the Markov-switching ARMA model, generalized autoregressive conditionally het-
eroscedastic (GARCH) model, and hidden Markov models. Francq et al. [3] also
reported that, under the Wold decomposition theorem, any purely nondeterministic
second-order stationary process admits an infinite-order moving average (MA) rep-
resentation, where the noise is considered to be white noise. The ARMAmodel with
uncorrelated errors also has this representation, and is regarded as an approximation
of theMAmodel. Therefore, this model covers a very wide class of second-order sta-
tionary processes. Fitting nonlinear models is often difficult, whereas fitting ARMA
models is easy and computable using statistical software (e.g., SAS, R, SPSS). Addi-
tionally, the estimators are easy to interpret. Therefore, ARMAmodels can be useful
tools, even if the true process appears to be nonlinear.

There are now three portmanteau tests forARMAmodelswith uncorrelated errors:
(i) Francq et al. [3] presented an asymptotic distribution of Ljung and Box’s [15]
portmanteau statistics under the condition of uncorrelated errors. The distribution
is given by the weighted sum of a chi-squared random variable that contains the
unknown ARMA parameters. Therefore, we have to compute the critical values in
each test. (ii) Katayama [9] modified the portmanteau statistic with a correction
term that is asymptotically chi-squared. However, these two test statistics require an
estimate of the covariance structure of a high-dimensional multivariate process and a
large sample size. (iii) Kuan and Lee’s [12] portmanteau test is based on the approach
developed by Kiefer, Vogelsang, and Bunzel [11] (referred to as KVB). Instead of
estimating the asymptotic covariance matrix, Kuan and Lee’s [12] portmanteau test
statistic employs a random normalizing matrix to eliminate the nuisance parameters
of the asymptotic covariance matrix. The asymptotic critical values are tabulated by
a series of simulations. We review these test statistics in Sect. 2.

To overcome these weaknesses, we propose a new portmanteau test and an LM
test in Sect. 3. Our proposed tests are based on the KVB approach. The test statistics
have no use for recursive estimators, and do not require an estimate of the covariance
structure of a high-dimensional multivariate process. Therefore, our test statistics
have a significantly lower computational cost. We compare the finite sample per-
formance of these test statistics via simulations in Sect. 4. We demonstrate that our
proposed test exhibits sufficiently efficient empirical size and power properties with
existing portmanteau tests.
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In the remainder of this paper, ⇒ denotes weak convergence (of associated

probability measures) and
d→ denotes the convergence in distribution. Throughout

the paper, convergence is described for a sample size n going to infinity. Therefore,
we omit the phrase “as n → ∞,” except in a few cases. Wm denotes a vector of
m independent standard Wiener processes, and Bm is the Brownian bridge with
Bm(τ ) = Wm(τ ) − τWm(1) for τ ∈ (0, 1]. A matrix A+ denotes the MP-inverse
of A. Let ∂ f (y)/∂x denote ∂ f (x)/∂x |x=y,∇x f (y) denote ∂ f (y)/∂x ′, and ∇′

x f (y)
denote ∂ f (y)/∂x . Additionally, [c] denotes the integer part of c.

Finally, this paper is based on Katayama [8], which extended new KVB-based
tests to the M test and considered not only portmanteau tests and LM tests, but also
GMM over-identification tests and the Hausman tests. This paper is available on
request.

2 Review of the Portmanteau Tests

Suppose that a univariate time series {Yt } is generated by an autoregressive-moving
average model ARMA(p, q):

Yt =
p∑

i=1

a0i Yt−i + εt +
q∑

j=1

b0jεt− j , t = 0,±1,±2, . . . , (1)

where {εt } provides white-noise sequences with variance σ 2
0 . It is assumed that the

above model is stationary, invertible, and not redundant, so that the polynomials
1 − a01 z − · · · − a0pz

p = 0 and 1 + b01z + · · · + b0q z
q = 0 have no common roots,

and that all roots are outside the unit circle. We denote the true parameter vector as
θ0 = (a01, . . . , a

0
p, b

0
1, . . . , b

0
q)

′; this belongs to the parameter space Θ ⊂ R
p+q . We

suppose that a0p 	= 0 or b0q 	= 0 and any θ ∈ Θ satisfies the conditions of the poly-
nomials. Given a process {Yt }nt=1, as defined in Eq. (1), the nonlinear least-squares
estimator of θ0, θ̂n = (̂a1, . . . , âp, b̂1, . . . , b̂q)′, is obtained byminimizing the sum of
the squared residuals. The residuals ε̂t = εt (θ̂n) (t = 1, . . . , n) from the fitted mod-
els are given by ε̂t = Yt − â1Yt−1 − · · · − âpYt−p − b̂1̂εt−1 − · · · − b̂q ε̂t−q , where
the unknown starting values are set to 0: ε̂0 = · · · = ε̂1−q = Y0 = · · · = Y1−p = 0.
Throughout this paper, we assume that:

Assumption 1 {Yt } is strictly stationary, satisfies the ARMA(p, q) model (1),
E |εt |4+2ν < ∞, and {εt } is an α-mixing of size −(2 + ν)/ν for some ν > 0.

This assumption is somewhat stronger thanAssumption1′ in Francq et al. [3], because
it implies the summability of α-mixing coefficients raised to the ν/(2 + ν)th power.
Francq and Zakoïan [4] showed that, under this assumption, θ̂n is

√
n-consistent and

asymptotically normal. Francq et al. [3] note that Assumption 1 does not require
the noise to be independent or a martingale difference sequence (MDS). In Sect. 3,
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we apply this assumption to establish a functional central limit theorem (FCLT) of
near-epoch dependence (NED) in the mixing process {εt }.

To check the adequacy of the model fit, we examine the residual autocorrelations
as follows:

r̂( j) = γ̂ ( j)

γ̂ (0)
, γ̂ ( j) = 1

n

n∑

i= j+1

ε̂i ε̂i− j , j = 0, 1, . . . , n − 1.

The vector of residual autocorrelations, r̂ = [̂r(1), . . . , r̂(q)]′, is used to test for H0 :
E[zt ] = 0 for any t , where zt = (εt−1, . . . , εt−m)′εt . The asymptotic joint distribution
of r̂ has been analyzed by Box and Pierce [1] and McLeod [18]. When {εt } is
independent and identically distributed (i.i.d.), the asymptotic distribution of

√
nr̂ is a

multivariate normal distributionwithmean zero and an asymptotic covariancematrix
that is approximately idempotent for large m. Therefore, both of the abobe papers
proposed a portmanteau statistic, Qm = n

∑m
i=1 r̂(i)

2 for p + q < m < n, which
is approximately distributed as χ2

m−p−q . Ljung and Box [15] showed that a better
approximation of Qm can be achieved using the following modified portmanteau
statistic:

Q∗
m = n(n + 2)

m∑

i=1

r̂(i)2

n − i
.

These statistics have been adopted by many practitioners, and have been modified
or extended in various ways (see Li [14] and references therein).

2.1 The Portmanteau Test of Francq et al. [3]

The portmanteau tests using Q∗
m are originally chi-squared tests, assuming the error

is i.i.d. Francq et al. [3] established the asymptotic distribution of Q∗
m under Assump-

tion 1. The statistic Q∗
m is no longer a chi-squared random variable, but is given by

the weighted sums of the chi-squared random variables. Therefore, the present port-
manteau test cannot control type I error. Francq et al. [3] established a portmanteau
test using the asymptotic distribution of Q∗

m . FromMcLeod [18] and Francq et al. [3],
we have:

r̂ = γ̂ /σ 2
0 + Op(1/n),

γ̂ = γ + σ 2
0 �′

0

(
θ̂n − θ0

) + Op(1/n), (2)

where γ̂ = [γ̂ (1), . . . , γ̂ (m)]′, γ = [γ (1), . . . , γ (m)]′,
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γ (i) = 1

n

n∑

j=i+1

εiε j−i , i = 0, 1, . . . , n − 1,

�0 = �(θ0) = (λ1, . . . , λm) is anm × (p + q) matrix, and {λ j } is a (p + q)-vector
of sequences defined by

∂εt (θ0)

∂θ
=

∞∑

j=1

λ jεt− j .

Note that rank{�(θ)} = p + q for any θ ∈ Θ . The distribution of
√
n{γ ′, (θ̂n −

θ0)
′}′ is asymptotically normal with mean zero and covariance matrixΣγ,θ . Estimat-

ing this covariance matrix is not easy, as it is the long-run variance of a stationary
process. For example, the asymptotic variance of

√
nγ is given by:

Γ =
∞∑

j=−∞
E

(
zt z

′
t− j

)
.

When {εt } is i.i.d., Γ = σ 4
0 Im . However, when {εt } is uncorrelated but non-

independent, Γ is not always simple.
Francq et al. [3] also showed that, when {εt } is uncorrelated but non-independent,

the asymptotic variance of
√
nr̂ is no longer idempotent and the asymptotic distri-

bution of Q∗
m is the weighted sum of the chi-squared random variables. Therefore,

their proposed portmanteau test with Q∗
m uses critical regions of the non-pivotal dis-

tribution with the nonparametric estimator of Σγ,θ . Francq et al. [3] referred to their
portmanteau test as a modified Ljung–Box (MLB) test. Therefore, we call this the
MLB test throughout this paper.

2.2 The Portmanteau Test of Katayama [9]

Francq et al. [3]’s MLB test must estimate critical values, because the asymptotic
distribution is non-pivotal. Recently, Katayama [9] proposed another approach that
provides a chi-squared distribution. First, let D = �′

0(�0Γ
−1�′

0)
−1�0Γ

−1 and S
be the square root of Γ . Katayama [9] assumed that:

Assumption 2 The matrix S is nonsingular.

This assumption is satisfied for stationary, ergodic, and square-integrableMDSs; see,
e.g., Francq and Zakoïan [5, Theorem 5.1]. From (2) and (Im − D)�′

0 = 0, we have:

(Im − D)γ̂ = (Im − D)γ + Op(1/n),

S−1(Im − D)
√
nγ̂

d→ N (0, Im − F(F ′F)−1F ′),
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where F = S−1�′
0. Therefore, Katayama [9] proposed that

QK
m = γ̂ ′Tn(Im − D̂′)Γ̂ −1(Im − D̂)Tn γ̂ ,

where D̂ is a
√
n-consistent estimator of D and Tn = {n(n + 2)}1/2 diag{(n −

1)−1/2, . . . , (n − m)−1/2}. ThematrixTn is the small-sample approximationof
√
nIm ,

similar to the weights of Q∗
m . The matrix Γ̂ is a consistent estimator of Γ com-

puted from nonparametric methods. Katayama [9] showed that QK
m is approximately

χ2
m−p−q . However, simulations indicated that, similarly to the MLB test, the finite-

sample properties of QK
m result in some size distortions as m increases [9]. This may

be due to the difficulty in establishing a non-parametric estimation of Γ .

2.3 The Portmanteau Test of Kuan and Lee [12] and Lee [13]

Themain difficulty of conducting the Francq et al. [3] andKatayama [9] portmanteau
tests is obtaining nonparametric estimates ofΣγ,θ and Γ . These estimates require an
approximation of the covariance matrix of a high-dimensional multivariate process
and a large sample size. FollowingKVB,Kuan andLee [12] andLee [13] proposed an
alternative approach. Their approach uses random normalized matrices to eliminate
the nuisance covariance matrix. Let θ̃t denote the nonlinear least-squares estimator
from subsample {yi }ti=1, and let {̃εi }ti=1 be the residual sequences given by θ̃t . Define
the matrices

Ĉn = 1

n

n−1∑

i, j=1

i∑

t=1

j∑

s=1

{
(κi j − κi, j+1) − (κi+1, j − κi+1, j+1)

}
(̂zt − γ̂ )(̂zs − γ̂ ) (3)

C̃n = 1

n

n−1∑

i, j=1

i∑

t=1

j∑

s=1

{
(κi j − κi, j+1) − (κi+1, j − κi+1, j+1)

}
(̃zt − γ̂ )(̃zs − γ̂ ),

with ẑt = ε̂t (̂εt−1, . . . , ε̂t−m)′ and z̃t = ε̃t (̃εt−1, . . . , ε̃t−m)′. Additionally, κi j =
κ(|i − j |/n), where κ denotes a kernel function. The main idea underlying the KVB
approach is to employ a normalizing randommatrix instead of estimating the asymp-
totic variance of Tn γ̂ . Kuan and Lee [12] and Lee [13] considered two generalized
test statistics. These are given by:

Q̂KL
m = γ̂ ′TnĈ−1

n Tn γ̂ ,

Q̃KL
m = γ̂ ′TnC̃−1

n Tn γ̂ .
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Under conditions of the FCLT, Kuan and Lee [12] and Lee [13] showed that

Tn γ̂
d→ VWm(1),

Ĉn ⇒ S′UmS,

C̃n ⇒ V ′UmV,

where V is the matrix square root of the asymptotic covariance matrix of
√
nγ̂ , and

Um = ∫ 1
0

∫ 1
0 κ(t − s)dBm(t)dBm(s)′. It follows that

Q̂KL
m

d→ Wm(1)′V ′(S′UmS)−1VWm(1),

Q̃KL
m

d→ Wm(1)′U−1
m Wm(1).

Therefore, Q̃KL
m is an asymptotically pivotal distribution, critical values for which can

be obtained via simulations. The critical values of Wm(1)′U−1
m Wm(1) are given by

KVB (Table II), Lobato [16, Table 1], Kiefer and Vogelsang [10, Tables I and II], and
Su [23, Table 1]. Note that Kuan and Lee [12] and Lee [13] assume V is nonsingular.
However, this assumption is restrictive, as Francq et al. [3] noted in their Remark 2
that V may be singular. Additionally, because elements of V are nonlinear functions
of θ0, it is difficult to confirm this assumption.

3 New Portmanteau Tests and LM Tests Using the KVB
Approach

The KVB-based portmanteau statistics proposed by Kuan and Lee [12] and Lee [13]
do not estimate asymptotic covariance matrices of

√
nγ̂ . However, these statistics

contain a recursive estimator, and the assumption on the covariance matrix is restric-
tive. To solve these problems, in this section, we propose new KVB-based test sta-
tistics.

3.1 New Portmanteau Tests Using the KVB Approach

We now re-examine (2). Kuan and Lee’s [12] approach was based on the asymptotic
joint distribution of

√
n(γ ′, (θ̂n − θ0)

′). However, the the asymptotic distribution
of

√
n(θ̂n − θ0) is cumbersome. Therefore, our approach eliminates this estimation

effect in a similar manner to Katayama [9].
LetP P

n = Im − �̂′(�̂�̂′)−1�̂, where �̂ = �(θ̂n) andP P
0 = Im − �′

0(�0�
′
0)

−1

�0. Then, P P
n

p→ P P
0 and P P

0 �′
0 = 0. It follows from (2) that:
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P P
n γ̂ = P P

0 γ + op
(
n−1/2

)
. (4)

We now construct a KVB-based portmanteau statistic based on this equation.
Under Assumption 1, the FCLT for NED functions of some mixing process {εt }
(Davidson [2], Corollary 29.19) gives:

1√
n

[nτ ]∑

t=1

zt ⇒ SWm(τ ) (5)

for any τ ∈ (0, 1]. It follows from (4), (5), and the continuous mapping theorem that:

TnP
P
n γ̂

d→ � P
0 Wm(1) (6)

and

P P
n ĈnP

P
n

′ ⇒ � P
0 Um� P

0
′
, (7)

where � P
0 = P P

0 S and Ĉn is given by (3). We define the following portmanteau test
statistic:

QNEW
m = γ̂ TnP

P
n

(
P P

n ĈnP
P
n

′)+
P P

n Tn γ̂ .

Since P P
n ĈnP P

n
′
is singular with rank m − p − q, we use the MP inverse as a

normalizing matrix. Thus, we obtain a new portmanteau test that extends those of
Lobato [16] and Su [23] to the estimated parameter case.

Theorem 1 Given Assumptions 1 and 2, QNEW
m

d→ Wm−p−q(1)′U−1
m−p−qWm−p−q(1).

Proof The necessary and sufficient condition for the continuity of the MP-inverse
matrix is that the rank of the matrices is constant: rank(P P

n ĈnP P
n

′
) = rank(� P

0 Um

� P
0

′
); see, e.g., Schott [22, Theorem 5.21]. Because rank�(θ) = p + q for any θ ∈

Θ , we have rank(P P
n ĈnP P

n
′
) = rank(P P

n ) = m − p − q and rank(� P
0 Um� P

0
′
) =

rank(� P
0 ) = rank(P P

0 ) = m − p − q. Therefore, thismatrix satisfies the continuity
condition of the MP-inverse. It follows from (6) and (7) that

QNEW
m ⇒ Wm(1)′� P

0
′ (

� P
0 Um� P

0
′)+

� P
0 Wm(1).

The rest of the proof is similar to that of Equation (9) in Kuan and Lee [12].

As noted by Kuan and Lee [12, Remark 2], we can modify Q̃KL
m using the MP-

inverse. However, it is difficult to estimate rank(V ), as V is generally a complicated
matrix. Our proposed portmanteau test overcomes this problem without using a
recursive estimator.
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3.2 New LM Test Using the KVB Approach

The LM test as a goodness-of-fit test of ARMAmodels is a special case of a test for a
parameter constraint of a nonlinear regression model. Therefore, we briefly discuss
LM tests for nonlinear regression models. Similar to our approach in the previous
subsection, the new KVB-based LM test statistic uses a projection matrix. We now
consider the following nonlinear regression model:

Yt = ft (Y
t−1;β) + εt , (8)

where Yt is the t th observation of a dependent variable, β is an r -dimensional vector
of parameters to be estimated, and ft is a function of Y t−1 = {Y j , j < t} and β

and third-order differentiable with respect to β. We consider the null hypothesis
β0 = c(δ0), where β0 is a true parameter of β, δ0 is an s-dimensional constrained
vector, and c is a differentiable function from R

s to Rr with values in Rr and r > s.
We set et (β) = Yt − ft (Y t−1;β), and define

Ln(β) = − 1

2n

n∑

t=1

et (β)2 (9)

as a quasi-maximum log-likelihood function. Let δ̂n be a root-n consistent estimator
of δ0 and β̂n = c(̂δn) so as to satisfy the first-order condition:

∂Ln(c(δ))

∂δ

∣
∣
∣
∣
δ=δ̂n

= ∂c(δ)′

∂δ

∂Ln(β)

∂β

∣
∣
∣
∣
δ=δ̂n , β=β̂n

= 0. (10)

The classical LM test is:

LM = n
∂Ln(β)

∂β ′ E

[
∂2Ln(β)

∂β∂β ′

]−1
∂Ln(β)

∂β

∣
∣
∣
∣
∣
β=β̂n

.

Under standard regularity conditions, and when {εt } is i.i.d., this test statistic is
asymptotically χ2

r−s when β0 = c(δ0) is true; see, e.g., White [24, Section 10.1].
However, when {εt } is not independent but uncorrelated, LM is not always approx-
imately chi-squared, because the asymptotic variance of

√
n times the score vector

does not always coincide with the Fisher information matrix. One modification is to
employ a nonparametric estimator of the asymptotic variance. Another is to use the
KVB-based LM test statistic given by Kuan and Lee [12] with a recursive estimator.

We nowpropose anotherKVB-basedLM test statisticwith a full sample estimator.
To proceed, we further suppose that

∣
∣−∇′

β∇βLn(β) − E
[∇′

βet (β)∇βet (β)
]∣
∣ p→ 0 (11)
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uniformly in β. From (11) and the first-order Taylor series approximation around
δ̂n = δ0, we have that:

∂Ln(β̂n)

∂β
= ∂Ln(β0)

∂β
+ J0C

′
0(̂δn − δ0) + op(n

−1/2), (12)

where J0 = −E[∇′
βet (β0)∇βet (β0)] and C0 = ∇δc(δ0)′. We define the matrices

P LM
0 = Ir − J0C

′
0(C0J0C

′
0)

−1C0 and P LM
n = Ir − JnC

′
n(CnJnC

′
n)

−1Cn , where
Cn = ∇′

δc(̂δn) andJn denotes a consistent estimator ofJ0. These projection matri-
ces are used in a similar way to QNEW

m . From (12), we have that:

∂Ln(β̂n)

∂β
= P LM

n

∂Ln(β̂n)

∂β
= P LM

0
∂Ln(β0)

∂β
+ op(n

−1/2). (13)

The first equality comes from (10), as Cn∇′
βLn(β̂n) = 0. The second equality fol-

lows from (12), as P LM
n is a consistent estimator of P LM

0 and P LM
0 J0C

′
0 = 0.

Therefore, if we suppose that n1/2∇′
βLn(β0)

d→ GWr (1), then (13) implies that

n1/2∇′
βLn(β̂n)

d→ P LM
0 GWr (1). We note that the asymptotic variance of n1/2∇′

βLn

(β̂n),I0 = GG ′, is not always equal toJ0.
We define the following new LM test statistic:

LMNEW = n
∂Ln(β̂n)

∂β ′

⎛

⎝
n−1∑

i=1

n−1∑

j=1

ki j ϕ̂i ϕ̂
′
j

⎞

⎠

+
∂Ln(β̂n)

∂β
,

ϕ̂ j = 1√
n
P LM

n

j∑

i=1

{

−∂ei (β̂n)

∂β
ei (β̂n) − ∂Ln(β̂n)

∂β

}

.

Theorem 2 gives the limiting distribution of the LM test statistic:

Theorem 2 Assume that

(i) Rank(CnJnC
′
n) = rank(C0J0C

′
0) = s.

(ii)
1√
n

[nτ ]∑

t=1

∂et (β0)

∂β
et (β0) ⇒ GWr (τ ) for any τ ∈ (0, 1] as n → ∞, where G is

a r × r positive definite matrix.
(iii) Equation (11) or (12) holds.

Then, LMNEW ⇒ Wr−s(1)′U−1
r−sWr−s(1) as n → ∞.

Proof The proof is similar to that for Theorem 1. Hence, it is omitted here.

This result can be applied to the goodness-of-fit test for ARMA models with
uncorrelated errors, e.g., H0 : ARMA(p, q) against H1 : ARMA(p + m, q) and
H0 : ARMA(p, q) against H1 : ARMA(p, q + m), where p + q = s and m =
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r − s. The constrained estimator θ̂n is a quasi-maximum-likelihood estimator of
ARMA(p, q) and β̂ ′

n = (θ̂ ′
n, 0

′). The residuals {et (β̂n)} are given by the residuals of
ARMA(p, q). The residuals {∇βet (β̂n)} are derived from the residuals of the alter-
native model. These statistics can be computed using standard statistical software,
such as R and SAS, as they are the same as for ARMAmodels with i.i.d. errors. The
first-order Taylor series approximatin of (12) is obtaiend from the proof of Lemma
5 and Theorem 2 in Francq and Zakoïan [4]. For example, when the null model is
AR(1) and the alternative model is AR(1 + m), θ0 = a01 and β0 = (1, 0, . . . , 0)′θ0.
ft (Y t−1;β0) = a01Yt−1 + a02Yt−2 + · · · + a0m+1Yt−m−1, et (β̂) = Yt − θ̂nYt−1,∇βet
(β̂n) = −(Yt−1, . . . ,Yt−m−1), and Jn are given by the sample mean of {∇′

βet (β̂n)

∇βet (β̂n)}.

4 Some Simulation Studies

In this section, we examine the empirical size and power of the various portmanteau
tests and the LM test to diagnose the goodness of fit of AR(1) models.

4.1 Empirical Significance Level

We first examine the empirical significance level of the following univariate AR(1)
models Yt = a01Yt−1 + εt , where {εt } is defined by:

DGP 1 (Gaussian GARCH(1, 1) model): εt = σt zt , σ 2
t = 10−6 + 0.1ε2t−1+ 0.8σ 2

t−1, where {zt } ∼ i.i.d.N (0, 1);
DGP 2 (Non-Gaussian ARCH(1) model): εt = σt vt , σ 2

t = 10−6 + 0.1ε2t−1, where{vt } ∼ i.i.d. Skew-Normal distribution with location, scale, and shape para-
meters (0.8, 1.0, 0);

DGP 3 (All-PassARMA(1, 1)model): εt = 0.8εt−1 + wt − 0.8−1wt−1, where {wt }
is i.i.d. Student’s t distribution with 10 degrees of freedom;

DGP 4 (Bilinear model): εt = zt−1 + 0.5zt−1εt−2.

Weselected these data generating processes (DGPs) fromFrancq et al. [3] andLobato
et al. [17]. DGPs 1 and 2 areMDS examples, and use the R function garchSim from
the fGarch R package with default parameter values. DGPs 3 and 4 are non-MDS
examples, where the parameters are given by Lobato et al. [17]. We set a01 = 0.9 and
considered sample sizes of n = 200, 400, and 3000 in each experiment.

Five different test statistics were examined. The first two have to estimate the
long-run variance matrices:

(i) QMLB
m : Francq et al. [3]’s MLB portmanteau test (discussed in Sect. 2.1), where

M = 30 in step 2 of Francq et al. [3].
(ii) QK

m : Katayama’s [9] modified portmanteau test statistic (discussed in Sect. 2.2).
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The remaining three test statistics are based on KVB, where we use sharp original
kernels with the ρ value proposed by Phillips et al. [20]:

(iii) Q̃KL
m,ρ : Kuan and Lee’s KVB-based portmanteau statistics with the AR(1) recur-

sive estimator (discussed in Sect. 2.3).
(iv) QNEW

m,ρ : Our proposed portmanteau test, described in Sect. 3.1.
(v) LMNEW

m,ρ : Our proposed LM test, discussed in Sect. 3.2, where the null model is
AR(1) and the alternative model is AR(1 + m).

The sharp original kernel κρ(x) is given by:

κρ(x) =
{

(1 − |x |)ρ |x | ≤ 1

0 otherwise,

where ρ is a positive integer. When ρ = 1, the sharp original kernel is the usual
Bartlett kernel. As ρ increases, κρ(x) becomes concentrated at the origin with a
sharper, more pronounced peak. We investigated the cases ρ = 1, 8, 16, 32, 48, 64;
for reasons of space, we present the cases ρ = 1, 16, 64 here.

The asymptotic distributions of (iii)–(v) areWτ (1)′U−1
τ Wτ (1), where κ = κρ and

τ = m or m − 1. The critical values of the distribution are obtained by simulations.
The Brownian motion and Brownian bridge process are approximated using the
normalized partial sum of n = 2000 i.i.d. N (0, 1) random variables, and the simula-
tion involves 30,000 replications. These critical values have also been computed by
Su [23].

Tables 1 and 2 present the relative rejection frequencies (in%) form = 2, 6, 10, 14
and n = 200, n = 400, respectively. The tests using QMLB

m , QK
m , and Q̃KL

m,ρ seem to
have noticeable under-rejection probabilities for larger m. Our proposed tests using
QNEW

m,ρ and LMNEW
m,ρ exhibit relatively stable sizes, which for a finite number of samples

is one of the superior features of our proposed tests. The tests using QNEW
m,ρ and LM

NEW
m,ρ

seem to have a slight under-rejection probability for DGP 1 asm increases. The tests
using LMNEW

m,ρ seem to have an over-rejection tendency for some cases when n = 200,
though this is not observed when n = 400.

4.2 Empirical Power

We next conducted 3000 replications with n = 200 for the univariate AR(2) models
defined by: Yt = a01Yt−1 + a02Yt−2 + εt , where a01 = 0.9, a02 = −0.15,−0.3 and {εt }
is defined by DGPs 1, 2, . . . , 4. We fitted an AR(1) model and conducted the tests to
a 5% significance level. Tables 3 and 4 present the empirical powers corresponding
to the empirical size in Table 1; Table 3 corresponds to a02 = −0.15 and Table 4 to
a02 = −0.30.

The tests using LMNEW
m,64 were confirmed to be the most powerful in almost all

cases. All three KVB-based tests produce an increase in power as ρ increases, which
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is consistent with the asymptotic power envelope under the local alternatives given
by Phillips et al. [20, 21]. Tests using QMLB

m and QNEW
m,64 were also powerful, although

the QMLB
m case showed a serious under-rejection frequency. It is interesting that our

proposed tests, QNEW
m,ρ and LMNEW

m,ρ , give similar powers for m = 6, 10, 14. This sim-
ilarity is explained by Hosking [7, Section 4]. The portmanteau tests examine the
goodness of fit without particular alternatives. However, Hosking [7, Section 4] noted
that portmanteau tests can be approximately interpreted as LM tests for a particular
form of ARMA models.

To compare the potential power properties, we also computed the size-adjusted
powers; the results are listed in Tables 5 and 6. The tests using QMLB

m aremost powerful
for m = 6, 10, 14. We confirmed that tests using LMNEW

2,64 are the most powerful, and
that QNEW

2,64 have a comparatively greater power than QMLB
2 . Our proposed portmanteau

test QNEW
m,ρ exhibited a superior power to Kuan and Lee’s Q̃KL

m,ρ .
From these simulations, we can state that our proposed tests are sufficiently effi-

cient in terms of their empirical size and power properties compared with existing
portmanteau tests. Besides their empirical size and power, our proposed tests are
also superior in terms of computational cost. Asm increases, QMLB

m , QK
m , and the LM

test need a large sample size n, because these statistics have to estimate long-run
variance matrices containing Γ . In summary, we recommend our proposed test for
determining the goodness of fit for the ARMA model.
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Abstract We propose generalized C(α) tests for testing linear and nonlinear
parameter restrictions in models specified by estimating functions. The proposed
procedures allow for general forms of serial dependence and heteroskedasticity, and
can be implemented using any root-n consistent restricted estimator. The asymptotic
distribution of the proposed statistic is established under weak regularity conditions.
We show that earlier C(α)-type statistics are included as special cases. The prob-
lem of testing hypotheses fixing a subvector of the complete parameter vector is
discussed in detail as another special case. We also show that such tests provide a
simple general solution to the problem of accounting for estimated parameters in the
context of two-step procedures where a subvector of model parameters is estimated
in a first step and then treated as fixed.
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1 Introduction

The C(α) statistic introduced by Neyman [52] embodies a general mechanism for
dealing with nuisance parameters in tests of composite hypotheses. The basic idea
of the method can be conveniently explained by using parameter subvector testing
as an example. One first considers a score-type function for the tested parameter.
The score function is then orthogonalized with respect to directions associated with
the nuisance parameters under the null hypothesis. This removes the impact of the
estimation error on the nuisance parameter: the residual vector from the projection—
the effective score function—evaluated at the auxiliary estimator of the nuisance
parameter is asymptotically equivalent to the effective score function evaluated at the
true parameter. It is easy to see that the latter is asymptotically normally distributed,
and consequently its normalized form—the C(α) statistic—has an asymptotic chi-
square distribution under the null hypothesis.

The C(α) test enjoys a local optimality property while being computationally
attractive (a few artificial regressions would be enough in many circumstances) and
uses only

√
n-consistent estimator for the nuisance parameters which may not be

asymptotically normal or even may not have an asymptotic distribution. When the
restricted maximum likelihood (ML) estimator is used, the statistic reduces to Rao’s
score statistic. It is also useful to stress that the objects projected on the space spanned
by the nuisance parameter scores can be more general functions (called Cramér
functions by Neyman [52]), not necessarily the score function associated with the
parameters of interest. For further discussions of C(α) tests and references, see Le
Cam [44], Bhat and Nagnur [14], Bühler and Puri [15], Bartoo and Puri [3], Moran
[46, 47], Chibisov [18], Chant [16], Ray [59], Singh and Zhurbenko [61], Foutz
[27], Vorob’ev and Zhurbenko [68], Bernshtein [9–13], Le Cam and Traxler [45],
Neyman [53], Tarone [65, 66], Tarone and Gart [67], Wang [69, 70], Basawa [4],
Ronchetti [60], Smith [63, 64], Berger andWallenstein [8], Hall andMathiason [34],
Paul and Barnwal [57], Wooldridge [71], Dagenais and Dufour [20], Davidson and
MacKinnon [21, 22], Kocherlakota and Kocherlakota [43], Dufour and Dagenais
[23], Bera and Yoon [7], Jaggia and Trivedi [39], Rao [58], Bera and Bilias [6], Pal
[56], Dufour and Valéry [24] and Chaudhuri and Zivot [17].

In spite of numerous generalizations and modifications in parametric models,
extensions of the C(α) test to other types of estimation criteria, e.g. estimating
equations [5, 25, 28, 29, 38, 62], minimum distance, or the generalized method of
moments (GMM [33, 36]), appear to be scarce. In particular, work on such tests has
focused on linear hypotheses (especially, hypothesis setting the value of a parameter
subvector) and/or independent observations; see Basawa [4].
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In this paper, we propose and study a general C(α)-type statistic in estimating-
function and GMM setups, with weakly specified temporal dependence and het-
eroskedasticity. The proposed generalized statistic is quite comprehensive and
includes earlier C(α)-type statistics as special cases, as well as a wide spectrum
of new ones. The null hypothesis takes the form of a general constraint (linear or
nonlinear) on model parameters. This extends the C(α) test proposed by Smith [63]
for nonlinear restrictions in parametric likelihood models. The asymptotic distribu-
tion of the test statistic is derived under a set of weak regularity conditions, allowing
for general forms of serial dependence and heteroskedasticity.

A number of important special cases of the extended test statistic are discussed in
detail. These include testing whether a parameter subvector has a given value—for
which we give a number of alternative forms and special cases—and accounting for
parameter uncertainty in two-stage procedures. The latter problem has considerable
practical importance. Due to the fact that nonlinear estimating functions are often
difficult to estimate, it is convenient to estimate some parameters by an alternative
simpler method, and then use these estimates as if they were known. Such procedures
can however modify the distributions of test statistics and induce distortions in test
levels; see Gong and Samaniego [30], Pagan [54, 55], Murphy and Topel [48] and
Newey and McFadden [49]. So it is important to make corrections for such effects.
We underscore that generalized C(α) tests can provide relatively simple solutions to
such difficulties in the context of estimating functions and GMM estimation, again
in presence of general forms of serial dependence and heteroskedasticity. We first
discuss tests based on a general first-stage estimator, as well as tests based on a
two-stage GMM estimation.

The paper is organized as follows. Section 2 lays out the general framework
considered in the paper and introduces the C(α) statistic. The regularity conditions
are stated and the asymptotic properties of the generalized C(α) statistic are studied
in Sect. 3. We discuss the forms that the C(α) statistic takes in some special cases in
Sect. 4. Section 5 considers the problem of testing the value of parameter subvector.
We formulate the C(α) statistic for models estimated by two-step procedures in
Sect. 6. We briefly conclude in Sect. 7.

2 Generalized C(α) Statistic

We consider an m × 1 vector estimating (or score-type) function Dn(θ; Zn) which
depends on an n × k data matrix Zn = [z1, z2, . . . , zn]′ and a parameter vector θ ∈
Θ ⊆ R

p such that
Dn(θ; Zn)

p−→
n→∞ D∞(θ; θ0) (1)

where Dn(θ; Zn) is typically the sample mean of an estimating function, such as
Dn(θ; Zn) = 1

n

∑n
t=1 h(θ; zt ), D∞(·; θ0) is a mapping fromΘ toRm , and θ0 denotes

the “true” parameter vector. The parameter θ is estimated by minimizing a criterion
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function of the form

Mn(θ,Wn) = Dn(θ; Zn)
′ Wn Dn(θ; Zn) (2)

where Wn is a symmetric positive definite matrix. This setup comprises as special
cases the method of estimating functions [5, 25, 28, 29, 38, 62], the generalized
method of moments [33, 36], maximum likelihood, pseudo-maximum likelihood,
M-estimation and instrumental-variable methods.

A common assumption in such contexts consists in assuming that

Eθ0 [Dn(θ0; Zn)] = 0 (3)

where Eθ [ · ] represents the expected value under any data distribution such that θ
can be interpreted as the true parameter vector, along with a number of additional
regularity assumptions which allow the application of central limit theorems and
laws of large numbers, such as:

√
n Dn(θ0; Zn)

L−→
n→∞ N[0, I (θ0)], (4)

Jn(θ0; Zn) = ∂Dn(θ0; Zn)

∂θ ′
p−→

n→∞ J (θ0), (5)

where I (θ0) and J (θ0) are m × m and m × p full-column rank matrices. In Sect. 3,
we relax the Assumptions (3) and (5).

The hypothesis we wish to test has the form

H0 : ψ(θ) = 0 (6)

where ψ(θ) is a p1 × 1 continuously differentiable function of θ with 1 ≤ p1 ≤ p,
and the p1 × p matrix

P(θ) = ∂ψ

∂θ ′ (7)

has full row-rank p1 (at least in an open neighborhood of θ0).
Let θ̂n be the unrestricted estimator of θ obtained byminimizingMn(θ,Wn), θ̂

0
n the

corresponding constrained estimator under H0, and θ̃0
n any other restricted estimator

of θ under H0. Let us also denote estimators of I (θ) and J (θ) by În(θ) and Ĵn(θ)
respectively, where θ may be replaced by unrestricted and restricted estimators of θ
to obtain estimators of I (θ0) and J (θ0). If

Dn(θ; Zn) = 1

n

n∑

t=1

h(θ; zt ), (8)

we may use the standard formula
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Ĵn(θ) = ∂Dn(θ; Zn)

∂θ ′ = Jn(θ; Zn). (9)

Depending on the problem at hand, different forms of În(θ) may be considered. The
standard estimator appropriate for random sampling models is

În(θ) = 1

n

n∑

t=1

h(θ; zt )h(θ; zt )′. (10)

Some authors also argue that the centered version of (10) given by

În(θ) = 1

n

n∑

t=1

[
h(θ; zt ) − h(θ)

][
h(θ; zt ) − h(θ)

]′
(11)

where h(θ) = 1
n

n∑
t=1h(θ; zt ), can yield power improvements; see Hall [32].

In this paper, we stress applications to time series data where serial dependence is
present. In view of this, we focus on “heteroskedasticity-autocorrelation consistent”
(HAC) covariancematrix estimatorswhich account for the potential serial correlation
and heteroskedasticity in the sequence {h(θ; zt )}∞t=1:

În(θ) =
n−1∑

j=−n+1

k̄( j/Bn) Γ̂n( j, θ) (12)

where k̄(·) is a kernel function, Bn is a bandwidth parameter (which depends on the
sample size and, possibly, on the data), and

Γ̂n( j, θ) =
{

1
n

∑n
t= j+1h(θ; zt )h

(
θ; zt− j

)′
, if j ≥ 0,

1
n

∑n
t=− j+1h

(
θ; zt+ j

)
h(θ; zt )′, if j < 0.

(13)

The reader is referred to Newey andWest [51], Andrews [1], Andrews and Monahan
[2], Hansen [35], Cushing and McGarvey [19], Kiefer et al. [40], and Kiefer and
Vogelsang [41, 42] for further properties of covariance estimators of the form (12).

We now consider the problem of formulating a test statistic for H0 using a gen-
eral restricted estimator of θ0. This means that we wish to use statistics based on
estimators which may not be obtained by minimizing the objective function Mn in
(2). This is motivated by the fact that minimizing Mn often constitutes a difficult
numerical problem plagued by instabilities. Similarly, while some local efficiency
arguments suggest taking Wn = Î−1

n (see Hansen [36, Theorem 3.2], Davidson and
MacKinnon [22, Section17.3], Gouriéroux and Monfort [31, Section9.5.2], Hall
[33, Section3.6]), ill-conditioning can make this choice infeasible or harmful. So we
allow here for a general weighting matrix Wn .
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In order to obtain a unified test criterion which includes several other score-type
statistics, we consider the following general “score-type” function:

s
(
θ̃0
n ;Wn

) = √
n Q̃

[
Wn

]
Dn

(
θ̃0
n ; Zn

)

where θ̃0
n is a consistent restricted estimate of θ0 such that ψ

(
θ̃0
n

) = 0 and
√
n(θ̃0

n −
θ0) is asymptotically bounded in probability,

Q̃[Wn] := P̃n
(
J̃ ′
n Wn J̃n

)−1
J̃ ′
n Wn,

P̃n = P
(
θ̃0
n

)
, J̃n = Ĵn

(
θ̃0
n

)
, andWn is a symmetric positive definite (possibly random)

m × m matrix such that

plim
n→∞

Wn = W0, det(W0) 
= 0.

Under general regularity conditions (see Sect. 3), the asymptotic distribution of the
score-type function is normal as described by (15) in Proposition 1, with

Q(θ0) = plim
n→∞

Q̃
[
Wn

] = P(θ0)
[
J (θ0)

′W0 J (θ0)
]−1

J (θ0)
′W0

and rank[Q(θ0)] = p1. This suggests the following generalized C(α) criterion:

PC
(
θ̃0
n ;ψ,Wn

) = n D̃′
n Q̃

[
Wn

]′ {
Q̃

[
Wn

]
Ĩn Q̃

[
Wn

]′}−1
Q̃

[
Wn

]
D̃n (14)

where D̃n = Dn
(
θ̃0
n ; Zn

)
and Ĩn = În

(
θ̃0
n

)
.Weshow in Sect. 3 that the asymptotic dis-

tribution of PC
(
θ̃0
n ;ψ,Wn

)
is χ2

(
p1

)
under H0. The proposed test statistic includes

as a special case several statistics proposed in the statistical and econometric litera-
tures. We discuss these as well as other special cases in Sects. 4, 5 and 6.

3 Distribution of the Generalized C(α) Statistic

In this section, we derive the asymptotic distribution of the generalizedC(α) statistic
defined in (14) under the following set of assumptions.

∥
∥ · ∥

∥ refers to the Euclidean
distance, applied to either vectors or matrices.

Assumption 1 (Existence of score-type functions)

Dn(θ, ω) = (
D1n(θ, ω), . . . , Dmn(θ, ω)

)′
, ω ∈ Z , n = 1, 2, . . .

is a sequence of m × 1 random vectors, defined on a common probability space
(Z ,AZ ,P),which are functions of a p × 1 parameter vector θ,where θ ∈ Θ ⊆ R

p
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and Θ is a non-empty open subset of Rp. All the random variables considered here
as well in the following assumptions are functions of ω, so the symbol ω may be
dropped to simplify notations (e.g., Dn(θ) := Dn(θ, ω)). There is a unique vector
θ0 ∈ Θ called the “true parameter value”.

Assumption 2 (Score asymptotic normality)

√
n Dn(θ0)

p−→
n→∞ D̄∞(θ0) where D̄∞(θ0) ∼ N

[
0, I (θ0)

]
.

Assumption 3 (Non-singularity of the score variance) I (θ) is nonsingular for any
θ ∈ Θ which satisfies the restriction ψ(θ) = 0.

Assumption 4 (Score expansion) For θ in a non-empty open neighborhood N0 of
θ0, Dn(θ) admits an expansion of the form

Dn(θ, ω) = Dn(θ0, ω) + J (θ0)(θ − θ0) + Rn(θ, θ0, ω)

for ω ∈ DJ , an event with probability one, where J (θ) is an m × p (nonrandom)
matrix function of θ and the remainder Rn(θ, θ0, ω) satisfies the following condition:
for any ε > 0 and δ > 0, we have

lim sup
n→∞

P
[{ω : rn(δ, θ0, ω) > ε}] ≤ UD(δ, ε, θ0)

rn(δ, θ0, ω) = sup

{∥
∥Rn(θ, θ0, ω)

∥
∥

∥
∥θ − θ0

∥
∥

: θ ∈ N0 and 0 <
∥
∥θ − θ0

∥
∥ ≤ δ

}

,

UD(δ, ε, θ0) ≥ 0 and lim
δ↓0 UD(δ, ε, θ0) = 0.

Assumption 5 (Consistent estimator of J (θ0)) There is a sequence ofm × p random
matrices Jn(θ, ω) and anon-empty openneighborhoodV0 of θ0 such that, for all ε > 0
and δ > 0,

lim sup
n→∞

P
[{ω : Δn(θ0, δ, ω) > ε}] ≤ UJ (δ, ε, θ0)

where

Δn(θ0, δ, ω) := sup
{‖Jn(θ, ω) − J (θ0)‖ : θ ∈ V0 and 0 ≤ ∥

∥θ − θ0
∥
∥ ≤ δ

}

and UJ (δ, ε, θ0) is a non-random function such that

UJ (δ, ε, θ0) ≥ 0 and lim
δ↓0 UJ (δ, ε, θ0) = 0.

Assumption 6 (Asymptotic score non-degeneracy) rank
[
J (θ)

] = p for any θ ∈ Θ
which satisfies the restriction ψ(θ) = 0.
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Assumption 7 (Restriction differentiability) ψ(θ) is a p1 × 1 continuously differ-

entiable vector function of θ with derivative P(θ) := ∂ψ

∂θ ′ .

Assumption 8 (Restriction rank) rank
[
P(θ)

] = p1 for any θ ∈ Θ which satisfies
the restriction ψ(θ) = 0.

Assumption 9 (Estimator
√
n convergence) θ̃0

n := θ̃0
n (ω) is a consistent estimator

of θ0, i.e.,
plim
n→∞

(
θ̃0
n − θ0

) = 0,

such that
√
n
(
θ̃0
n − θ0

)
is asymptotically bounded in probability, i.e.,

lim sup
n→∞

P
[{ω : √

n
∥
∥θ̃0

n − θ0
∥
∥ ≥ y}] ≤ U (y; θ0), ∀y > 0,

where U (y; θ0) is a function such that limy→∞ U (y; θ0) = 0.

The latter assumption requires that the auxiliary estimator θ̃0
n be

√
n-consistent

only under the null hypothesis H0, and corresponds to Neyman’s [52] local
√
n-

consistency assumption. It may also be written
√
n
(
θ̃0
n − θ0

) = Op(1) under H0.

Assumption 10 (Restricted estimator) ψ
(
θ̃0
n

) = ψ(θ0) = 0 with probability 1.

Assumption 11 (Consistent estimator of score covariance matrix) Ĩn, n ≥ 1, is a
sequence of m × m symmetric nonsingular (random) matrices such that plimn→∞
Ĩn = I (θ0) .

Assumption 12 (Weight matrix convergence) Wn, n ≥ 1, is a sequence of m × m
symmetric nonsingular (random) matrices such that plimn→∞ Wn = W0 where W0

is nonsingular.

The following proposition establishes the asymptotic distribution of the general-
ized C(α) statistic PC

(
θ̃0
n ;ψ,Wn

)
in (14).

Proposition 1 (Asymptotic distribution of generalized C(α) statistic) Let Q̃n :=
Q̃[Wn] = P̃n [ J̃ ′

nWn J̃n]−1 J̃ ′
nWn where J̃n = Jn(θ̃0

n ; Zn), P̃n = P
(
θ̃0
n

)
. If the Assump-

tions 1–12 are satisfied, then, under H0,

√
n Q̃n Dn

(
θ̃0
n ; Zn

) L−→
n→∞ N

[
0, Q(θ0)I (θ0)Q(θ0)

′] (15)

where Q(θ0) = P(θ0)
[
J (θ0)

′W0 J (θ0)
]−1

J (θ0)
′W0, and

PC
(
θ̃0
n ;ψ,Wn

) = n Dn
(
θ̃0
n ; Zn

)′
Q̃ ′

n

[
Q̃n Ĩn Q̃

′
n

]−1
Q̃n Dn

(
θ̃0
n ; Zn

) L−→
n→∞ χ2(p1).

(16)
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It is of interest to note here that the Assumptions 4 and 5 do not require that
Dn(θ, ω) be differentiable with respect to θ . This is allowed by making a direct
assumption on the existence of a linear expansion of Dn(θ, ω) around θ0 [Assumption
4]. For the same reason, Jn(θ, ω) does not have to be continuous with respect to θ .

Since the differentiability of Dn(θ, ω) with respect to θ is a common assumption,
we will now show that the high-level Assumptions 4 and 5 hold in the standard case
where Dn(θ, ω) is differentiable, with probability limit J (θ), and both Jn(θ, ω) and
J (θ) are continuous at least at every point in a neighborhood of θ0. More precisely,
consider the following assumptions.

Assumption 13 (Score differentiability) Dn(θ, ω) is almost surely (a.s.) differen-
tiable with respect to θ , for all n, in a non-empty open neighborhood N1 of θ0. The
derivative matrix of Dn(θ, ω) is denoted

Jn(θ, ω) = ∂Dn(θ, ω)

∂θ ′ (17)

where the sequence of matrices Jn(θ, ω), n ≥ 1, is well-defined for ω ∈ DJ andDJ

is an event with probability one (i.e., P[ω ∈ DJ ] = 1).

Assumption 14 (Score derivative uniform convergence) Dn(θ, ω) satisfies the fol-
lowing conditions:

(a) Jn(θ, ω) is continuous with respect to θ for all θ ∈ N2, ω ∈ DJ and n ≥ 1;
(b) sup

θ∈N2

‖Jn(θ, ω) − J (θ)‖ p−→
n→∞ 0.

We then have the following implication, which shows that Proposition 1 still holds
if the Assumptions 4 and 5 are replaced by the (stronger) Assumptions 13 and 14.
Another implication is that J (θ) is continuous at θ = θ0 in this special case.

Proposition 2 (Sufficiency of score Jacobian continuity and uniform convergence)
Suppose the Assumptions 1–3 hold. Then the Assumptions 13 and 14 entail that:

(a) J (θ) is continuous at θ = θ0;
(b) both the Assumptions 4 and 5 also hold.

4 Alternative C(α)-Type Statistics

It will be of interest to examine a number of special forms of the general statistic
proposed in Sect. 2. In particular, the statistic PC(θ̃0

n ;ψ,Wn) nests several C(α)-
type and score-based statistics proposed in the statistical and econometric literatures,
as well as new ones.1 It will be of interest to spell out some of these.

1 For further discussion of C(α) tests, the reader may consult Basawa [4], Ronchetti [60], Smith
[63], Berger and Wallenstein [8], Dagenais and Dufour [20], and Kocherlakota and Kocherlakota
[43].
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On taking Wn = Ĩ−1
n , as suggested by efficiency arguments, PC(θ̃0

n ;ψ, Wn)
reduces to

PC
(
θ̃0
n ;ψ

) = n Dn
(
θ̃0
n ; Zn

)′
W̃n Dn

(
θ̃0
n ; Zn

)
(18)

where θ̃0
n is any root-n consistent estimator of θ which satisfies ψ

(
θ̃0
n

) = 0, and

W̃n = Ĩ−1
n J̃ ′

n

(
J̃ ′
n Ĩ−1

n J̃n
)−1

P̃ ′
n

[
P̃n

(
J̃ ′
n Ĩ−1

n J̃n
)−1

P̃ ′
n

]−1
P̃n

(
J̃ ′
n Ĩ−1

n J̃n
)−1

J̃ ′
n Ĩ−1

n

with P̃n = P
(
θ̃0
n

)
, Ĩn = În(θ̃0

n ) and J̃n = Ĵn(θ̃0
n ).

When the number of equations equals the number of parameters
(
m = p

)
, we

have Q̃
[
Wn

] = P̃n J̃−1
n and PC(θ̃0

n ;ψ,Wn) does not depend on the choice of Wn:

PC(θ̃0n ; ψ, Wn) = PC
(
θ̃0n ; ψ

)

= n Dn
(
θ̃0n ; Zn

)′
( J̃−1

n )′ P̃ ′
n
[
P̃n

(
J̃ ′
n Ĩ−1

n J̃n
)−1 P̃ ′

n
]−1 P̃n J̃−1

n Dn
(
θ̃0n ; Zn

)
.

(19)

In particular, this will be the case if Dn(θ; Zn) is the derivative of a (pseudo)
log-likelihood function.

For m ≥ p, when θ̃0
n is obtained by minimizing Mn(θ) = Dn(θ; Zn)

′

Ĩ−1
n Dn(θ; Zn) subject to ψ(θ) = 0, where Ĩn is an estimator of I (θ0), we can write

θ̃0
n = θ̂0

n and PC
(
θ̃0
n ;ψ,Wn

)
is identical to the score-type statistic suggested by

Newey and West [50]:

S
(
ψ

) = n Dn
(
θ̂0
n ; Zn

)′
Î−1
n Ĵn

(
Ĵ ′
n Î−1

n Ĵn
)−1

Ĵ ′
n Î−1

n Dn
(
θ̂0
n ; Zn

)
(20)

where În = În(θ̂0
n ) and Ĵn = Ĵn(θ̂0

n ). This statistic is closely related with the
Lagrange-multiplier-type (LM-type) statistic

LM
(
ψ

) = n λ̂′
n P̂n

(
Ĵ ′
n Î−1

n Ĵn
)−1

P̂ ′
n λ̂n (21)

where P̂n = P(θ̂0
n ) and λ̂n is theLagrangemultiplier in the corresponding constrained

optimization problem. Indeed, upon using the first-order condition

Jn
(
θ̂0
n ; Zn

)′
Ĩ−1
n Dn

(
θ̂0
n ; Zn

) = P
(
θ̂0
n

)′
λ̂n, (22)

we see easily that
S
(
ψ

) = LM
(
ψ

)
. (23)

In (correctly specified) parametric models, we have I (θ) = −J (θ) and the C(α)
statistic in (19) reduces to
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PC
(
θ̃0
n ;ψ

) = n Dn
(
θ̃0
n ; Zn

)′
Ĩ−1
n P̃ ′

n

[
P̃n Ĩ

−1
n P̃ ′

n

]−1
P̃n Ĩ

−1
n Dn

(
θ̃0
n ; Zn

)
(24)

where Dn
(
θ̃0
n ; Zn

)
is the score of the log-likelihood function and Ĩn is the Fisher

information matrix or a consistent estimate, each evaluated at the auxiliary estimator
θ̃0
n . The extension of C(α) statistics to a general parameter constraint given in (24)
was first proposed by Smith [64] in a likelihood setting; seeDagenais andDufour [20]
for further discussion of this test statistic.

5 Testing a Subvector

A common problem in statistics consists in testing an hypothesis of the form

H0 : θ1 = θ̄10 (25)

where θ1 is a subvector of θ , and θ̄10 is a given possible value of θ1, i.e. we consider
ψ(θ) = θ1 − θ̄10. Without loss of generality, we can assume that θ = (θ ′

1, θ
′
2)

′ where
θ1 is a p1 × 1 vector and θ2 is a p2 × 1 vector, and denote θ0 = (θ ′

10, θ
′
20)

′ the “true
value” of θ . In this case,

P(θ) = [
Ip1 , 0p1×p2

]
(26)

where Ip1 is the identity matrix of order p1 and 0p1×p2 is the p1 × p2 zero matrix. Let
θ̃0
n be a restricted

√
n-consistent estimator of θ . We can then write θ̃0

n = (θ̄ ′
10, θ̃

0′
2n)

′

where θ̃0
2n is a

√
n-consistent estimator of θ2.

Let us partition J (θ) and J̃n = Jn(θ̃0
n ; Zn) conformably with θ = (θ ′

1, θ
′
2)

′:

J (θ) = [
J·1(θ), J·2(θ)

]
, J̃n = [

J̃n·1, J̃n·2
] = [

J̃n·1
(
θ̃0
n ; Zn

)
, J̃n·2

(
θ̃0
n ; Zn

)]
, (27)

where J·i (θ) and J̃n·i = J̃n·i (θ̃0
n ; Zn) are m × pi matrices, i = 1, 2. Let also

J̃ ∗
n = W 1/2

n J̃n = [
J̃ ∗
n·1, J̃

∗
n·2

]
, J̃ ∗

n·i = W 1/2
n J̃n·i i = 1, 2, (28)

and conformably partition the matrix J̃ ′
nWn J̃n and its inverse ( J̃ ′

nWn J̃n)−1:

J̃ ′
n Wn J̃n =

[ (
J̃ ′
n Wn J̃n

)
11

(
J̃ ′
n Wn J̃n

)
12(

J̃ ′
n Wn J̃n

)
21

(
J̃ ′
n Wn J̃n

)
22

]

=
[
J̃ ′
n·1Wn J̃n·1 J̃ ′

n·1 Wn J̃n·2
J̃ ′
n·2 Wn J̃n·1 J̃ ′

n·2 Wn J̃n·2

]

, (29)

(
J̃ ′
n Wn J̃n

)−1 =
[(

J̃ ′
n Wn J̃n

)11 (
J̃ ′
n Wn J̃n

)12
(
J̃ ′
n Wn J̃n

)21 (
J̃ ′
n Wn J̃n

)22

]

, (30)
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where ( J̃ ′
nWn J̃n)i j and ( J̃ ′

nWn J̃n)i j are pi × p j matrices, i, j = 1, 2. We denote
P[Z ] = Z(Z ′Z)−1Z ′ the projection matrix on the space spanned by the columns
of a full-column rank matrix Z , and M[Z ] = I − Z(Z ′Z)−1Z ′.

Let us now assume that the matrix ( J̃ ′
nWn J̃n)22 is invertible. This entails that

( J̃ ′
nWn J̃n)11 is invertible and, on using standard rules for multiplying partitioned

matrices,

[(
J̃ ′
n Wn J̃n

)11]−1(
J̃ ′
n Wn J̃n

)12 = −(
J̃ ′
n Wn J̃n

)
12

[(
J̃ ′
n Wn J̃n

)
22

]−1

= −(
J̃ ′
n·1 Wn J̃n·2

)(
J̃ ′
n·2 Wn J̃n·2

)−1
, (31)

(
J̃ ′
n Wn J̃n

)11 = [(
J̃ ′
n·1 Wn J̃n·1

) − J̃ ′
n·1 Wn J̃n·2

(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2 Wn J̃n·1

]−1;
(32)

see Harville [37, Theorem 8.5.11]. We can then rewrite Q̃
[
Wn

]
as

Q̃
[
Wn

] = P̃n
(
J̃ ′
n Wn J̃n

)−1
J̃ ′
n Wn

= [
Ip1 , 0p1×p2

]
[ (

J̃ ′
n Wn J̃n

)11 (
J̃ ′
n Wn J̃n

)12
(
J̃ ′
n Wn J̃n

)21 (
J̃ ′
n Wn J̃n

)22

] [
J̃ ′
n·1
J̃ ′
n·2

]

Wn

= [(
J̃ ′
n Wn J̃n

)11
J̃ ′
n·1 + (

J̃ ′
n Wn J̃n

)12
J̃ ′
n·2

]
Wn

= (
J̃ ′
n Wn J̃n

)11[
J̃ ′
n·1 + ((

J̃ ′
n Wn J̃n

)11)−1(
J̃ ′
n Wn J̃n

)12
J̃ ′
n·2

]
Wn

= (
J̃ ′
n Wn J̃n

)11[
J̃ ′
n·1 − (

J̃ ′
n·1 Wn J̃n·2

)(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2

]
Wn

= Ṽ−1
n·1|2 J̃

′
n·1|2 Wn (33)

where

J̃n·1|2 = J̃n·1 − J̃n·2
(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2 Wn J̃n·1 = W−1/2

n M
[
J̃ ∗
n·2

]
J̃ ∗
n·1, (34)

Ṽn·1|2 = (
J̃ ′
n·1 Wn J̃n·1

) − J̃ ′
n·1 Wn J̃n·2

(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2 Wn J̃n·1

= J̃ ∗′
n·1M

[
J̃ ∗
n·2

]
J̃ ∗
n·1. (35)

Using (33), we get:

Q̃
[
Wn

]
D̃n = Ṽ−1

n·1|2 J̃ ′
n·1|2 Wn D̃n

= Ṽ−1
n·1|2

[
J̃ ′
n·1 Wn D̃n − (

J̃ ′
n·1 Wn J̃n·2

)(
J̃ ′
n·2 Wn J̃n·2

)−1 J̃ ′
n·2 Wn D̃n

]
, (36)

J̃ ′
n·1|2 Wn D̃n = J̃ ′

n·1 Wn D̃n − (
J̃ ′
n·1 Wn J̃n·2

)(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2 Wn D̃n, (37)
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Q̃
[
Wn

]
Ĩn Q̃

[
Wn

]′ = Ṽ−1
n·1|2 J̃

′
n·1|2 Wn Ĩn Wn J̃n·1|2 Ṽ−1

n·1|2
= Ṽ−1

n·1|2 J̃
∗′
n·1M

[
J̃ ∗
n·2

]
W 1/2

n Ĩn W
1/2
n M

[
J̃ ∗
n·2

]
J̃ ∗
n·1 Ṽ

−1
n·1|2, (38)

where D̃n = Dn
(
θ̃0
n ; Zn

)
. The generalized C(α) statistic then takes the form:

PC1
(
θ̃0n ; θ̄10,Wn

) = PC
(
θ̃0n ; ψ,Wn

)

= n D̃ ′
n Wn J̃n·1|2

(
J̃ ′
n·1|2 Wn Ĩn Wn J̃n·1|2

)−1 J̃ ′
n·1|2 Wn D̃n

= n D̃ ′
n W

1/2
n M

[
J̃∗
n·2

]
J̃∗
n·1 Σ̃n(Wn)

−1 J̃∗′
n·1M

[
J̃∗
n·2

]
W 1/2
n D̃n (39)

where
Σ̃n(Wn) = J̃ ∗′

n·1M
[
J̃ ∗
n·2

](
W 1/2

n Ĩn W
1/2
n

)
M

[
J̃ ∗
n·2

]
J̃ ∗
n·1

and the matrix Ṽ−1
n·1|2 cancels out.

It is also of interest to note that the transformed score S̃n·1|2 = J̃ ′
n·1|2Wn D̃n in

PC1
(
θ̃0
n ; θ̄10,Wn

)
is by construction uncorrelated with S̃n·2 = J̃ ′

n·2 Ĩ−1
n D̃n asymptot-

ically. This follows on observing that:

√
n

[
S̃n·1|2
S̃n·2

]

= √
n R̃n D̃n

L−→
n→∞ N

[
0, R̄(θ0)I (θ0)R̄(θ0)

′] (40)

where

R̃n =
[
J̃ ′
n·1|2 Wn

J̃ ′
n·2 Ĩ−1

n

]
p−→

n→∞ R(θ0) =
[

J·1|2(θ0)′W0

J·2(θ0)′ I (θ0)−1

]

, (41)

J·1|2(θ0) = J·1(θ0) − J·2(θ0)
[
J·2(θ0)′W0 J·2(θ0)

]−1
J·2(θ0)′W0 J·1(θ0), (42)

and the asymptotic covariance matrix between
√
n S̃n·2 and

√
n S̃n·1|2 is

[
J·2(θ0)′ I (θ0)−1

]
I (θ0)

[
W0 J·1|2(θ0)

] = J·2(θ0)′
[
W0 J·1|2(θ0)

] = 0. (43)

Indeed, the above orthogonality can be viewed as the source of the evacuation of
the distribution of

√
n
(
θ̃0
n − θ0

)
from the asymptotic distribution of the generalized

C(α) statistic: using the Assumptions 4 and 9 [see (77)], we see easily that, under
H0,

J·1|2(θ0)′W0
√
n

[
Dn(θ̃

0
n ) − Dn(θ0)

] = J·1|2(θ0)′W0 J (θ0)
√
n
(
θ̃0n − θ0

) + op(1)

= J·1|2(θ0)′W0 J·2(θ0)
√
n
(
θ̃02n − θ20

) + op(1) = op(1) . (44)

Thus the asymptotic null distribution of the modified score used by the generalized
C(α) statistic does not depend on the limit distribution of the nuisance parameter
estimator θ̃0

n , and similarly for the generalized C(α) statistic.
When Wn = Ĩ−1

n , the formula in (39) simplifies to:
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PC1(θ̃
0
n ; θ̄10) = n D̃ ′

n Ĩ
−1
n J̃n·1|2

[
J̃ ′
n·1|2 Ĩ

−1
n J̃n·1|2

]−1
J̃ ′
n·1|2 Ĩ

−1
n D̃n

= n D̃′
n Ĩ

−1/2
n M

[
J̃ ∗
n·2

]
J̃ ∗
n·1

[
J̃ ∗′
n·1 M

[
J̃ ∗
n·2

]
J̃ ∗
n·1

]−1
J̃ ∗′
n·1 M

[
J̃ ∗
n·2

]
Ĩ−1/2
n D̃n

= n D̃′
n Ĩ

−1/2
n P

[
M

[
J̃ ∗
n·2

]
J̃ ∗
n·1

]
Ĩ−1/2
n D̃n (45)

where

J̃n·1|2 = [
Im − J̃n·2

(
J̃ ′
n·2 Ĩ−1

n J̃n·2
)−1

J̃ ′
n·2 Ĩ−1

n

]
J̃n·1 = Ĩ 1/2n M

[
Ĩ−1/2
n J̃n·2

]
Ĩ−1/2
n J̃n·1 , (46)

J̃ ∗
n·1 = Ĩ−1/2

n J̃n·1 , J̃ ∗
n·2 = Ĩ−1/2

n J̃n·2 . (47)

Upon using (40)–(43), we see that J̃ ′
n·1|2 Ĩ−1

n D̃n and J̃ ′
n·2 Ĩ−1

n D̃n are asymptotically
uncorrelated, and

J̃ ′
n·1|2 Ĩ

−1
n D̃n = J̃ ′

n·1 Ĩ
−1/2
n M

[
Ĩ−1/2
n J̃n·2

]
Ĩ−1/2
n D̃n

= J̃ ′
n·1 Ĩ

−1/2
n

{
Im − P

[
Ĩ−1/2
n J̃n·2

]}
Ĩ−1/2
n D̃n (48)

where M[ Ĩ−1/2
n J̃n·2 ] Ĩ−1/2

n D̃n is the residual from the projection of Ĩ−1/2
n D̃n on

Ĩ−1/2
n J̃n·2. Further, on applying the Frisch–Waugh–Lovell theorem, we see that

P
[
J̃ ∗
n

] = P
[
J̃ ∗
n·2

] + P
[
M

[
J̃ ∗
n·2

]
J̃ ∗
n·1

]
, (49)

hence

PC1(θ̃
0
n ; θ̄10) = n D̃ ′

n Ĩ
−1/2
n

{
P

[
J̃ ∗
n

] − P
[
J̃ ∗
n·2

]}
Ĩ−1/2
n D̃n

= n
[
D̃ ′
n Ĩ

−1
n J̃n

(
J̃ ′
n Ĩ−1

n J̃n
)−1

J̃ ′
n Ĩ−1

n D̃n − D̃ ′
n Ĩ

−1
n J̃n·2

(
J̃ ′
n·2 Ĩ−1

n J̃n·2
)−1

J̃ ′
n·2 Ĩ−1

n D̃n
]
. (50)

Finally, let us consider parametric models where m = p and Dni (θ; Zn) denotes
the pi × 1 score function (the derivative of the log-likelihood function) corresponding
to θi , i = 1, 2, along with the corresponding partition of D̃n and Ĩn :

D̃n =
[
D̃n1

D̃n2

]

=
[
Dn1(θ̃

0
n ; Zn)

Dn2(θ̃
0
n ; Zn)

]

, Ĩn =
[
Ĩn11 Ĩn12
Ĩn21 Ĩn22

]

, (51)

where D̃ni = Dni (θ̃
0
n ; Zn) is a pi × 1 vector and Ĩni j is pi × p j matrix, i, j = 1, 2.

In such cases, we have J (θ0) = −I (θ0), and upon setting J̃n = − Ĩn , the formulas in
(45) and (50) reduce to a simple difference between two statistics:

PC1(θ̃
0
n ; θ̄10) = n

(
D̃n1 − Ĩn12 Ĩ

−1
n22 D̃n2

)′(
Ĩn11 − Ĩn12 Ĩ

−1
n22 Ĩn21

)−1(
D̃n1 − Ĩn12 Ĩ

−1
n22 D̃n2

)

= n
[
D̃ ′
n Ĩ

−1
n D̃n − D̃ ′

n2 Ĩ
−1
n22 D̃n2

]
. (52)
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6 Two-Stage Procedures

In this section, we formulate the C(α) statistic for estimating functions (or GMM-
type) models estimated by two-step procedures. The C(α) test procedure applies
in a natural way to moment condition models estimated by a two-step procedure,
because a correction for thefirst-stage estimation error is readily built into the statistic.
Models of this kind typically involve a parameter vector θ = (θ ′

1, θ
′
2)

′ where θ1 is the
parameter vector of interest (on which inference focuses), and θ2 denotes a vector
of nuisance parameters which is consistently estimated by an auxiliary estimate θ̃0

2n
obtained from the first-stage estimation. Gong and Samaniego [30], Pagan [54, 55],
andMurphy and Topel [48] among others study the properties of two-step estimation
and testing procedures in a likelihood framework. Newey and McFadden [49] deal
with the problem in a GMM framework, but do not consider the C(α) statistic.

In this section, we describe how generalized C(α) tests can provide relatively
simple solutions to such problems in the context of estimating functions and GMM
estimation, with serial dependence. We first consider the generic case where the
nuisance vector θ2 is estimated in a first stage, and then treated as known for the
purpose of testing the value of another parameter vector θ1. Second, we examine the
special case of a two-step GMM estimation, where the estimation of the nuisance
parameter is based on a separate set of estimating functions (or moment conditions).

6.1 Tests Based on General Two-Step Estimation

Suppose we are interested in testing the restriction H0 : θ1 = θ̄10 based on data Xn =
[x1, . . . , xn] and an m1 × 1 vector of estimating functions

Dn1(θ; Xn) = Dn1(θ1, θ2; Xn). (53)

In particular, we may assume Dn1(θ; Xn) is a subvector of a larger vector

Dn(θ; Xn) = [Dn1(θ; Xn)
′, Dn2(θ; Xn)

′]′. (54)

A typical setup is the one where

Dn1(θ; Xn) = 1

n

n∑

t=1

h1(θ1, θ2; xt ), (55)

Eθ

[
h1(θ1, θ2; xt )

] = 0, t = 1, . . . , n, (56)

and h1(θ; xt ) = h1(θ1, θ2; xt ) is a subvector of a higher-dimensional vector h(θ; xt )
= [h1(θ; xt )′, h2(θ; xt )′]′ of estimating functions.
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If the dimension of Dn1(θ1, θ2; Xn) is large enough (m1 ≥ p) and the regularity
conditions of Proposition 1 are satisfied when Dn(θ; Xn) is replaced by Dn1(θ; Xn),
we can build general C(α)-type tests of H0 : θ1 = θ̄10 based on Dn1(θ1, θ2; Xn). No
information on the (eventual) left-out estimating functions Dn2(θ; Xn) is required.
These features underscore the remarkable versatility of estimating functions in con-
junction with the generalized C(α) procedure described in this paper.

Let θ̃0
2n be an estimator of the nuisance parameter vector θ2 obtained from

the data Yn = [y1, . . . , yn] which may be different from Xn .2 For example, θ̃0
2n

may be based on an “auxiliary” estimating function Dn2(θ; Xn), but this is not
required. Consider now the restricted estimator θ̃0

n = (
θ̄ ′
10, θ̃

0′
2n

)′
, and denote D̃n1 =

Dn1
(
θ̃0
n ; Xn

)
, Ĩn11, J̃n1i := Ĵn1i

(
θ̃0
n

)
and Wn11, the matrices corresponding to D̃n =

Dn(θ̃
0
n ; Zn), Ĩn, J̃n·i andWn respectively for the system based on the estimating func-

tion Dn1(θ; Xn); D̃n1 has dimension m1 × 1, J̃n1i is m1 × pi , and Wn11 is m1 × m1.
In the case where Dn1(θ; Xn) is a subvector of Dn(θ; Xn) as in (54), Ĩn11, J̃n1i and
Wn11 are the corresponding submatrices of Ĩn, J̃n·i and Wn respectively, where

Wn =
[
Wn11 Wn12

Wn21 Wn22

]

(57)

and Wni j is a pi × p j matrix, i, j = 1, 2.
Making the appropriate substitutions in (39), we then get the followingC(α)-type

statistic for H0 : θ1 = θ̄10:

PC1
(
θ̃0
n ; θ̄10,Wn11

) = n D̃ ′
n1 Wn11 J̃n11|2 Σ̃−1

n11|2 J̃
′
n11|2 Wn11 D̃n1 (58)

where Σ̃n11|2 = J̃ ′
n11|2 Wn11 Ĩn11 Wn11 J̃n11|2, and

J̃n11|2 = J̃n11 − J̃n12( J̃
′
n12 Wn11 J̃n12)

−1 J̃ ′
n12 Wn11 J̃n11

= W−1/2
n11 M[W 1/2

n11 J̃n12]W 1/2
n11 J̃n11, (59)

Σ̃n11|2 = J̃ ′
n11|2 Wn11 Ĩn11 Wn11 J̃n11|2

= J̃ ′
n11 W

1/2
n11M[W 1/2

n11 J̃n12]W 1/2
n11 Ĩn11W

1/2
n11M[W 1/2

n11 J̃n12]W 1/2
n11 J̃n11. (60)

By Proposition 1, PC1
(
θ̃0
n ; θ̄10,Wn11

)
has a χ2(p1) asymptotic distribution under

H0. On taking Wn11 = Ĩ−1
n11, PC1 takes the following simplified form:

2The number of observations in the dataset Y could be different from n, say is equal to n2, n2 
=
n. If the auxiliary estimate θ̃02n2 obtained from the second dataset satisfies

√
n2(θ̃02n2 − θ20) =

Op(1), then
√
n(θ̃02n2 − θ20) = √

n/n2
√
n2(θ̃02n2 − θ20) = Op(1) provided n/n2 = O(1), and the

arguments that follow remain valid. When a set of estimating functions Dn22(θ2) for the second
dataset is considered, the argument presented here remains valid provided

√
n2Dn22(θ20) obeys a

central limit theorem in addition to the previous conditions on the auxiliary estimate and the sample
sizes.
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PC1
(
θ̃0
n ; θ̄10, Ĩ

−1
n11

) = n D̃ ′
n1 Ĩ

−1/2
n11 M̃12 Ĩ

−1/2
n11 J̃n11 Σ̃−1

n11|2 J̃
′
n11 Ĩ

−1/2
n11 M̃12 Ĩ

−1/2
n11 D̃n1

(61)

where M̃12 = M[ Ĩ−1/2
n11 J̃n12] and Σ̃n11|2 = J̃ ′

n11|2 Ĩ
−1
n11 J̃n11|2 = J̃ ′

n11 Ĩ
−1/2
n11 M̃12 Ĩ

−1/2
n11

J̃n11.
When calculating the standard error of the estimator of θ1, one needs to take into

account the sampling error associated with the first-stage estimator of the parameter
θ2; see Newey andMcFadden [49]. This is achieved transparently by theC(α) statis-
tic, because its asymptotic distribution does not depend on the asymptotic distribution
of the first-stage estimator. Here, the invariance of the the asymptotic distribution of
PC1

(
θ̃0
n ; θ̄10,Wn11

)
with respect to the distribution of θ̃0

n is entailed by the orthogo-
nality relation

J12(θ0)
′[W011 J11|2(θ0)] = J12(θ0)

′W011 W
−1/2
011 M

[
W 1/2

011 J12(θ0)
]
W 1/2

011 J11(θ0)

= [
W 1/2

011 J12(θ0)
]′
M

[
W 1/2

011 J12(θ0)
]
W 1/2

011 J11(θ0) = 0, (62)

where plimn→∞ Wn11 = W011. This in turn implies that
√
n J̃ ′

n11|2 Wn11 D̃n1 is asymp-

totically uncorrelated with
√
n J̃ ′

n12 Ĩ
−1
n11 D̃n1; see (40)–(44) for a similar argument.

6.2 Tests Based on a Two-Step GMM Estimation

We now consider the case where the condition m1 ≥ p may not hold—so rank con-
ditions for applying a C(α)-type test only based on h1 cannot hold (without other
restrictions)—but we have m2 estimating functions Dn2(θ; Xn) as in (54) which
be used to draw inference on θ2 and account for the uncertainty of θ2 estimates,
where m2 ≥ p2. Further, we suppose here that Dn2(θ; Xn) only depends on θ2, i.e.
Dn2(θ; Xn) = Dn2(θ2; Xn), with m1 ≥ p1 and m2 ≥ p2.

In particular, these assumptions may be based on a system of moment equations

Eθ

[
h1(θ1, θ2; xt )
h2(θ2; yt )

]

= 0, t = 1, . . . , n, (63)

where h2(θ2; yt ) is typically used to estimate the nuisance parameter θ2 and

Dn2(θ2; Yn) = 1

n

n∑

t=1

h2(θ2; yt ). (64)



168 J.-M. Dufour et al.

In this context, the sample estimating function is

D̃n =
[
D̃n1

D̃n2

]

=
[
Dn1(θ̃

0
n ; Xn)

Dn2(θ̃
0
2n; Yn)

]

(65)

where

J (θ) = [J·1(θ), J·2(θ)] =
[
J11(θ) J12(θ)
0m2×p1 J22(θ)

]

. (66)

The partitioned Jacobian estimator is then given by

J̃n = [ J̃n·1, J̃n·2] =
[

J̃n11 J̃n12
0m2×p1 J̃n22

]

. (67)

On assuming that the regularity conditions of Proposition 1 are satisfied, we can
use here the statistic PC1

(
θ̃0
n ; θ̄10,Wn

)
defined in (39). Further, the form (67) yields

useful restrictions on the test statistic. We then have

PC1
(
θ̃0
n ; θ̄10,Wn

) = n D̃ ′
n Wn J̃n·1|2

(
J̃ ′
n·1|2 Wn Ĩn Wn J̃n·1|2

)−1
J̃ ′
n·1|2 Wn D̃n (68)

with

J̃ ′
n·1|2 Wn D̃n = J̃ ′

n11 Wn11 D̃n1

+[
J̃ ′
n11 Wn12 D̃n2 − J̃ ′

n·1 Wn J̃n·2
(
J̃ ′
n·2 Wn J̃n·2

)−1
J̃ ′
n·2 Wn D̃n

]
.

(69)

In this case, the correction for the estimation of θ2 is accounted by the two last terms
in the above expression for J̃ ′

n·1|2Wn D̃n .
Formoment equations of the form (63), it is natural to consider separateweightings

for D̃n1 and D̃n2, i.e.
Wn12 = W ′

n21 = 0. (70)

On using both conditions (67) and (70), we see that

J̃ ′
n·1|2 Wn D̃n = J̃ ′

n11 Wn11 D̃n1

− J̃ ′
n11Wn11 J̃n12

(
J̃ ′
n·2 Wn J̃n·2

)−1[ J̃ ′
n12 Wn11 D̃n1 + J̃ ′

n22 Wn22 D̃n2
]
, (71)

J̃ ′
n·2 Wn J̃n·2 = J̃ ′

n12 Wn11 J̃n12 + J̃ ′
n22 Wn22 J̃n22. (72)

Again the asymptotic distribution of the test statistic PC1
(
θ̃0
n ; θ̄10,Wn

)
is χ2(p1)

under the null hypothesis H0 : θ1 = θ̄10, irrespective of the asymptotic distribution
of θ̃0

2n .



Generalized C(α) Tests for Estimating Functions . . . 169

7 Conclusion

In this paper, we have introduced a comprehensiveC(α) statistic based on estimating
functions (or GMMsetups). As in Smith [63], the null hypothesis is specified in terms
of a general possibly nonlinear constraint, rather than a restriction fixing a parameter
subvector. The proposed procedure allows for general forms of serial dependence
and heteroskedasticity, and can be implemented using any root-n consistent restricted
estimator. A detailed derivation of the asymptotic null distribution of the statistic was
provided under weak regularity conditions.

The proposed generalized C(α)-type statistic includes earlier ones as special
cases, as well as a wide spectrum of new ones. A number of important special
cases of the extended test statistic were discussed in detail. These include testing
whether a parameter subvector has a given value—for which we give a number of
alternative forms and special cases—and the important problem of accounting for
parameter uncertainty in two-stage procedures.
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Appendix

Proof of Proposition 1 To simplify notation, we shall assume throughout that ω ∈
DJ (an event with probability 1) and drop the symbol ω from the random variables
considered. In order to obtain the asymptotic null distribution of the generalized
C(α) statistic defined in (14), we first need to show that P(θ̃0

n ) and Jn(θ̃0
n ) converge

in probability to P(θ0) and J (θ0) respectively. The consistency of P(θ̃0
n ), i.e.

plim
n→∞

[
P

(
θ̃0
n

) − P(θ0)
] = 0, (73)

follows simply from the consistency of θ̃0
n [Assumption 9] and the continuity of P(θ)

at θ0 [Assumption 7]. Further, by Assumption 8, since P(θ) is continuous in open
neighborhood of θ0, we also have
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rank [P̃n] = rank [P(θ0)] = p1. (74)

Consider now Jn(θ̃0
n ). By Assumption 5, for any ε > 0 and ε1 > 0, we can choose

δ1 := δ(ε1, ε) > 0 and a positive integer n1(ε, δ1) such that: (i)UJ (δ1, ε, θ0) ≤ ε1/2,
and (ii) n > n1(ε, δ1) entails

P
[
Δn(θ0, δ) > ε

] = P
[{ω : Δn(θ0, δ, ω) > ε}] ≤ UJ (δ1, ε, θ0) ≤ ε1/2.

Further, by the consistency of θ̃0
n [Assumption 9], we can choose n2(ε1, δ1) such

that n > n2(ε1, δ1) entails P[‖θ̃0
n − θ0‖ ≤ δ1] ≥ 1 − (ε1/2). Then, using the Boole-

Bonferroni inequality, we have for n > max{n1(ε, δ1), n2(ε1, δ1)}:

P
[∥
∥Jn

(
θ̃0
n

) − J (θ0)
∥
∥ ≤ ε

] ≥ P
[∥
∥θ̃0

n − θ0
∥
∥ ≤ δ1 and

∥
∥Jn

(
θ̃0
n

) − J (θ0)
∥
∥ ≤ ε

]

≥ P
[∥
∥θ̃0

n − θ0
∥
∥ ≤ δ1 and Δn

(
θ0, δ1

) ≤ ε
]

≥ 1 − P
[∥
∥θ̃0

n − θ0
∥
∥ > δ1

] − P
[
Δn

(
θ0, δ1

)
> ε

]

≥ 1 − (ε1/2) − (ε1/2) = 1 − ε1.

Thus,

lim inf
n→∞ P

[∥
∥Jn

(
θ̃0
n

) − J (θ0)
∥
∥ ≤ ε

] ≥ 1 − ε1, for all ε > 0, ε1 > 0,

hence
lim
n→∞P

[∥
∥Jn

(
θ̃0
n

) − J (θ0)
∥
∥ ≤ ε

] = 1, for all ε > 0, (75)

or, equivalently,
plim
n→∞

[
Jn

(
θ̃0
n

) − J (θ0)
] = 0. (76)

By Assumption 4, we can write [setting 0/0 = 0] :
∥
∥
√
n

[
Dn

(
θ̃0
n

) − Dn(θ0)
] − J (θ0)

√
n

(
θ̃0
n − θ0

)∥
∥ = √

n
∥
∥Rn

(
θ̃0
n , θ0

)∥
∥

=
∥
∥Rn

(
θ̃0
n , θ0

)∥
∥

∥
∥θ̃0

n − θ0
∥
∥

√
n

∥
∥θ̃0

n − θ0
∥
∥

where ∥
∥Rn

(
θ̃0
n , θ0

)∥
∥

∥
∥θ̃0

n − θ0
∥
∥

≤ rn(δ, θ0) when θ̃0
n ∈ N0 and

∥
∥θ̃0

n − θ0
∥
∥ ≤ δ

and lim supn→∞ P
[
rn(δ, θ0) > ε

]
< UD(δ, ε, θ0). Thus, for any ε > 0 and δ > 0,

we have:
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P
[
∥
∥Rn(θ̃

0
n , θ0)

∥
∥

∥
∥θ̃0

n − θ0
∥
∥

≤ ε
] ≥ P

[
rn(δ, θ0) ≤ ε, θ̃0

n ∈ N0 and
∥
∥θ̃0

n − θ0
∥
∥ ≤ δ

]

≥ 1 − P
[
rn(δ, θ0) > ε

] − P
[
θ̃0
n /∈ N0 or

∥
∥θ̃0

n − θ0
∥
∥ > δ

]

hence, using the consistency of θ̃0
n ,

lim inf
n→∞ P

[∥
∥Rn

(
θ̃0n , θ0

)∥
∥/

∥
∥θ̃0n − θ0

∥
∥ ≤ ε

] ≥ 1 − lim sup
n→∞

P
[
rn(δ, θ0) > ε

]

− lim sup
n→∞

P
[
θ̃0n /∈ N0 or

∥
∥θ̃0n − θ0

∥
∥ > δ

]

≥ 1 −UD(δ, ε, θ0).

Since limδ↓0 UD(δ, ε, θ0) = 0, it follows that limn→∞ P[‖Rn(θ̃
0
n , θ0)‖/‖θ̃0

n − θ0‖ ≤
ε] = 1 for any ε > 0, or equivalently,

∥
∥Rn

(
θ̃0
n , θ0

)∥
∥/

∥
∥θ̃0

n − θ0
∥
∥ p−→

n→∞ 0.

Since
√
n (θ̃0

n − θ0) is asymptotically bounded in probability (by Assumption 9), this
entails:

√
n

∥
∥Rn

(
θ̃0
n , θ0

)∥
∥ =

∥
∥Rn(θ̃

0
n , θ0)

∥
∥

∥
∥θ̃0

n − θ0
∥
∥

√
n

∥
∥θ̃0

n − θ0
∥
∥ p−→

n→∞ 0 (77)

and ∥
∥
√
n

[
Dn

(
θ̃0
n

) − Dn(θ0)
] − J (θ0)

√
n

(
θ̃0
n − θ0

)∥
∥ p−→

n→∞ 0. (78)

By Taylor’s theorem and Assumptions 7 and 8, we also have the expansion:

ψ(θ) = ψ(θ0) + P(θ0)(θ − θ0) + R2(θ, θ0), (79)

for θ ∈ N ⊆ N0 ∩ V0, where N is a non-empty open neighborhood of θ0 and

lim
θ→θ0

∥
∥R2(θ, θ0)

∥
∥/

∥
∥θ − θ0

∥
∥ = 0,

i.e., R2(θ, θ0) = o(
∥
∥θ − θ0

∥
∥), so that, using Assumption 10,

√
n P(θ0)

(
θ̃0
n − θ0

) = √
n

[
ψ

(
θ̃0
n

) − ψ(θ0)
] − √

n R2
(
θ̃0
n , θ0

)

= −√
n R2

(
θ̃0
n , θ0

)
(80)

for θ̃0
n ∈ N , and

∥
∥
√
n P(θ0)

(
θ̃0
n − θ0

)∥
∥ =

∥
∥R2

(
θ̃0
n , θ0

)∥
∥

∥
∥θ̃0

n − θ0
∥
∥

√
n
∥
∥θ̃0

n − θ0
∥
∥ p−→

n→∞ 0. (81)
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By (74) and (76) jointly with the Assumptions 3, 6, 7, 8, 11 and 12, we have:

rank [P̃n] = p1, rank [ J̃n] = p, rank [ Ĩn] = m, rank [Wn] = m, (82)

so the matrices J̃n, Ĩn, and Wn all have full column rank. Since plim
n→∞

P̃n = P(θ0)

and plim
n→∞

J̃n = J (θ0), we can then write:

plim
n→∞

[
J̃ ′
n Wn J̃n

]−1 = [
J (θ0)

′W0 J (θ0)
]−1

, plim
n→∞

Q̃n = Q(θ0),

plim
n→∞

Q̃n J̃n = plim
n→∞

Q̃n J (θ0) = Q(θ0) J (θ0) = P(θ0),

where Q̃n := Q̃[Wn] = P̃n[ J̃ ′
nWn J̃n]−1 J̃ ′

nWn. Then, using (78) and (81), it follows
that:

plim
n→∞

{√
n Q̃n Dn

(
θ̃0n

) − √
nQ(θ0) Dn(θ0)

}

= plim
n→∞

{√
n Q̃n Dn

(
θ̃0n

) − Q(θ0)
√
n Dn(θ0)

}
− plim

n→∞
{
P(θ0)

√
n (θ̃0n − θ0)

}

= plim
n→∞

{
Q̃n

[√
n [Dn

(
θ̃0n

) − Dn(θ0)] − J (θ0)
√
n (θ̃0n − θ0)

]}

+ plim
n→∞

{[
Q̃n − Q(θ0)

]√
n Dn(θ0) + [

Q̃n J (θ0) − P(θ0)
]√

n (θ̃0n − θ0)
}

= plim
n→∞

{
Q̃n

[√
n [Dn

(
θ̃0n

) − Dn(θ0)] − J (θ0)
√
n (θ̃0n − θ0)

]} = 0.

We conclude that the asymptotic distribution of
√
n Q̃nDn(θ̃

0
n ) is the same as the one

of Q(θ0)
√
n Dn(θ0), namely (by Assumption 2) a N[0, Vψ(θ0)] distribution where

Vψ(θ) = Q(θ) I (θ) Q(θ)′

and Vψ(θ0) has rank p1 = rank
[
Q(θ0)

] = rank[P(θ0)].Consequently, the estimator

Ṽψ

(
θ̃0
n

) = Q̃n Ĩn Q̃
′
n (83)

converges to Vψ(θ0) in probability and, by (82),

rank
[
Ṽψ

(
θ̃0
n

)] = p1. (84)

Thus the test criterion

PC
(
θ̃0
n ;ψ,Wn

) = nDn
(
θ̃0
n ; Zn

)′
Q̃

[
Wn

]′ {
Q̃

[
Wn

]
Ĩn Q̃

[
Wn

]′}−1
Q̃[Wn]Dn

(
θ̃0
n ; Zn

)

has an asymptotic χ2(p1) distribution. �
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Proof of Proposition 2 Consider the (non-empty) open neighborhood N = N1 ∩ N2

of θ0. For any θ ∈ N and ω ∈ Z , we can write

∥
∥J (θ) − J (θ0)

∥
∥ ≤ ∥

∥Jn(θ, ω) − J (θ)
∥
∥ + ∥

∥Jn(θ0, ω) − J (θ0)
∥
∥

+ ∥
∥Jn(θ, ω) − Jn(θ0, ω)

∥
∥

≤ 2 sup
θ∈N

∥
∥Jn(θ, ω) − J (θ)

∥
∥ + ∥

∥Jn(θ, ω) − Jn(θ0, ω)
∥
∥

By Assumption 14b, we have

plim
n→∞

(
sup
θ∈N

∥
∥Jn(θ, ω) − J (θ)

∥
∥
)

≤ plim
n→∞

(
sup
θ∈N2

∥
∥Jn(θ, ω) − J (θ)

∥
∥
)

= 0

andwe can find a subsequence
{
Jnt (θ, ω) : t=1, 2, . . .

}
of {Jn(θ, ω) : n = 1, 2, . . . }

such that
sup
θ∈N

{∥
∥Jnt (θ, ω) − J (θ)

∥
∥
} −→

t→∞ 0 a.s.

Let

CS =
{

ω ∈ Z : lim
t→∞

(
sup
θ∈N

∥
∥Jnt (θ, ω) − J (θ)

∥
∥
)

= 0

}

and ε > 0.By definition,P
[
ω ∈ CS

] = 1. For ω ∈ CS,we can choose t0(ε, ω) such
that

t ≥ t0(ε, ω) ⇒ 2 sup
θ∈N

{∥
∥Jnt (θ, ω) − J (θ)

∥
∥
}

< ε/2.

Further, since Jn(θ, ω) is continuous in θ at θ0, we can find δ(n, ω) > 0 such that

∥
∥θ − θ0

∥
∥ < δ(n, ω) ⇒ ∥

∥Jn(θ, ω) − Jn(θ0, ω)
∥
∥ < ε/2.

Thus, taking t0 = t0(ε, ω) and n = nt0 , we find that
∥
∥θ − θ0

∥
∥ < δ(nt0 , ω) implies

∥
∥J (θ) − J (θ0)

∥
∥ <

ε

2
+ ε

2
= ε.

In other words, for any ε > 0, we can choose δ = δ(nt0 , ε) > 0 such that

∥
∥θ − θ0

∥
∥ < δ ⇒ ∥

∥J (θ) − J (θ0)
∥
∥ < ε,

and the function J (θ) must be continuous at θ0. Part (a) of the Proposition is estab-
lished.

Set Δn(N2, ω) := sup {‖Jn(θ, ω) − J (θ)‖ : θ ∈ N2} . To get Assumption 5, we
note that
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Δn(θ0, δ, ω) := sup
{‖Jn(θ, ω) − J (θ0)‖ : θ ∈ N2 and 0 ≤ ∥

∥θ − θ0
∥
∥ ≤ δ

}

≤ Δn(N2, ω)

for any δ > 0, hence, by Assumption 14b,

lim sup
n→∞

P
[{ω : Δn(θ0, δ, ω) > ε}] ≤ lim sup

n→∞
P

[ {
ω : Δn(N2, ω) > ε

} ]

≤ UJ (δ, ε, θ0)

for any functionUJ (δ, ε, θ0) that satisfies the conditions of Assumption 5. The latter
thus holds with V0 any non-empty open neighborhood of θ0 such that V0 ⊆ N2.

To obtain Assumption 4, we note that Assumption 14 entails Dn(θ, ω) is con-
tinuously differentiable in an open neighborhood of θ0 for all ω ∈ DJ , so that we
can apply Taylor’s formula for a function of several variables (see Edwards [26,
Section II.7]) to each component of Dn(θ, ω) : for all θ in an open neighborhood U
of θ0 (with U ⊆ N2), we can write

Din(θ, ω) = Din(θ0, ω) + Jn
(
θ̄ i
n (ω), ω

)
i ·(θ − θ0)

= Din(θ0, ω) + J (θ0)i ·(θ − θ0) + Rin
(
θ̄ i
n (ω), θ0, ω

)
, i = 1, . . . ,m,

where Jn(θ, ω)i · and J (θ)i · are the i-th rows of Jn(θ, ω) and J (θ) respectively,

Rin
(
θ̄ i
n (ω), θ0, ω

) = [
Jn

(
θ̄ i
n (ω), ω

)
i · − J (θ0)i ·

]
(θ − θ0)

and θ̄ i
n (ω) belongs to the line joining θ and θ0. Further, for θ ∈ U,

∣
∣Rin

(
θ̄ i
n (ω), θ0, ω

)∣
∣ ≤ ∥

∥Jn
(
θ̄ i
n (ω), ω

)
i · − J (θ0)i ·

∥
∥

∥
∥θ − θ0

∥
∥

≤ ∥
∥Jn

(
θ̄ i
n (ω), ω

) − J (θ0)
∥
∥

∥
∥θ − θ0

∥
∥

≤ ∥
∥θ − θ0

∥
∥ sup {‖Jn(θ, ω) − J (θ)‖ : θ ∈ N2} , i = 1, . . . ,m,

hence, on defining N0 = U,

Rn(θ, θ0, ω) = [
R1n

(
θ̄ 1
n (ω), θ0, ω

)
, . . . , Rmn

(
θ̄ m
n (ω), θ0, ω

)]′
,

we see that

∥
∥Rn(θ, θ0, ω)

∥
∥ ≤

m∑

1=1

∣
∣Rin

(
θ̄ i
n (ω), θ0, ω

)∣
∣

≤ m
∥
∥θ − θ0

∥
∥ sup

θ∈N2

{‖Jn(θ, ω) − J (θ)‖}

and
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rn(δ, θ0, ω) : = sup

{∥
∥Rn(θ, θ0, ω)

∥
∥

∥
∥θ − θ0

∥
∥

: θ ∈ N0 and 0 <
∥
∥θ − θ0

∥
∥ ≤ δ

}

≤ m sup {‖Jn(θ, ω) − J (θ)‖ : θ ∈ N2}

Thus rn(δ, θ0, ω)
p−→

n→∞ 0 and

lim sup
n→∞

P
[{ω : rn(δ, θ0, ω) > ε}] ≤ UD(δ, ε, θ0) (85)

must hold for any function that satisfies the conditions of Assumption 4. This com-
pletes the proof. �
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Regression Models for Ordinal Categorical
Time Series Data

Brajendra C. Sutradhar and R. Prabhakar Rao

Abstract Regression analysis for multinomial/categorical time series is not ade-
quately discussed in the literature. Furthermore, when categories of a multinomial
response at a given time are ordinal, the regression analysis for such ordinal cate-
gorical time series becomes more complex. In this paper, we first develop a lag 1
transitional logit probabilities based correlation model for the multinomial responses
recorded over time. This model is referred to as a multinomial dynamic logits (MDL)
model. To accommodate the ordinal nature of the responses we then compute the
binary distributions for the cumulative transitional responses with cumulative logits
as the binary probabilities. These binary distributions are next used to construct a
pseudo likelihood function for inferences for the repeated ordinal multinomial data.
More specifically, for the purpose of model fitting, the likelihood estimation is devel-
oped for the regression and dynamic dependence parameters involved in the MDL
model.

Keywords Category transition over time · Cumulative logits · Marginal
multinomial logits · Multinomial dynamic logits · Pseudo binary likelihood

1 Introduction

There are situations in practicewhere a univariatemultinomial response, for example,
the economic profit status of a pharmaceutical industry such as poor,medium, or high,
may be recorded over the years along with known covariates such as type of industry,
yearly advertising cost, and other research and development expenditures. It is likely
that the profit status of an industry in a given year is correlated with status of profits
from the past years. It is of interest to know both (i) the effects of the time dependent
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covariates, and (ii) the dynamic relationship among the responses over the years.
This type of multinomial time series data has been analyzed by some authors such as
Fahrmeir andKaufmann [4], Kaufmann [8], Fokianos andKedem [5–7], and Loredo-
Osti and Sutradhar [10]. As far as the dynamic relationship is concerned, Loredo-Osti
and Sutradhar [10] have considered a multinomial dynamic logit (MDL) model as
a generalization of the binary time series model used in Tagore and Sutradhar [16]
(see also Tong [17]).

Suppose that yt = (yt1, . . . , yt j , . . . , yt,J−1)
′ denotes the (J − 1)-dimensional

multinomial response variable and for j = 1, . . . , J − 1,

y( j)
t = (y( j)

t1 , . . . , y( j)
t j , . . . , y( j)

t,J−1

)′ = (01′
j−1, 1, 01

′
J−1− j

)′ ≡ δt j (1)

indicates that themultinomial response recorded at time t belongs to the j th category.
For j = J, one writes y(J )

t = δt J = 01J−1.Here and also in (1), for a scalar constant
c, we have used c1 j for simplicity, to represent c ⊗ 1 j ,⊗ being the well known
Kronecker or direct product. This notation will also be used through out the rest of
the paper when needed. Note that in the non-stationary case, that is, when covariates
are time dependent, one uses the time dependent marginal probabilities. Specifically,
suppose that at time point t (t = 1, . . . , T ), xt = (xt1, . . . , xt�, . . . , xt,p+1)

′ denotes
the (p + 1)-dimensional covariate vector and β j = (β j0, β j1, . . . , β j p)

′ denotes the
effect of xt on y( j)

t for j = 1, . . . , J − 1, and all t = 1, . . . , T, T being the length
of the time series. In such cases, the multinomial probability at time t, has the form

P
[
yt = y( j)

t
] = π(t) j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

exp
(
x ′
tβ j
)

1 +∑J−1
g=1 exp

(
x ′
tβg
) for j = 1, . . . , J − 1; t = 1, . . . , T

1

1 +∑J−1
g=1 exp

(
x ′
tβg
) for j = J ; t = 1, . . . , T,

(2)

and the elements of yt = (yt1, . . . , yt j , . . . , yt,J−1)
′ at time t follow the multinomial

probability distribution given by

P[yt1, . . . , yt j , . . . , yt,J−1] = Π J
j=1π

yt j
(t) j , (3)

for all t = 1, . . . , T . In (3), yt J = 1 −∑J−1
j=1 yt j , and πt J = 1 −∑J−1

j=1 πt j .

Next we define the transitional probability from the gth (g = 1, . . . , J ) category
at time t − 1 to the j th category at time t, given by

η
( j)
t |t−1(g) = P

(
Yt = y( j)

t

∣
∣
∣ Yt−1 = y(g)

t−1

)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

exp
[
x

′
tβ j + γ ′

j y
(g)
t−1

]

1 + ∑J−1
v=1 exp

[
x

′
tβv + γ ′

v y
(g)
t−1

] , for j = 1, . . . , J − 1

1

1 + ∑J−1
v=1 exp

[
x

′
tβv + γ ′

v y
(g)
t−1

] , for j = J,

(4)
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whereγ j = (γ j1, . . . , γ jv, . . . , γ j,J−1)
′ denotes the dynamic dependence parameters.

Note that this model in (4) is referred to as the multinomial dynamic logits (MDL)
model. For the binary case (J = 2), this type of non-linear dynamic logit model has
been studied by some econometricians. See, for example,Amemiya [3, p. 422] in time
series setup, and the recent book by Sutradhar [13, Sect. 7.7] in the longitudinal setup.
Now for further notational convenience, we re-express the conditional probabilities
in (4) as

η
( j)
t |t−1(g) =

⎧
⎪⎨

⎪⎩

exp
[
x

′
t β j+γ ′

j δ(t−1)g

]

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)g

] , for j = 1, . . . , J − 1

1

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)g

] , for j = J,
(5)

where for t = 2, . . . , T, δ(t−1)g, by (1), has the formula

δ(t−1)g =
{ [01′

g−1, 1, 01
′
J−1−g]′ for g = 1, . . . , J − 1

01J−1 for g = J.

Remark that in (5), the category g occurred at time t − 1.Thus the category g depends
on time t − 1, and δ(t−1)g ≡ δgt−1 . However for simplicity we have used g for gt−1.

Letβ = (β ′
1, . . . , β

′
j , . . . , β

′
J−1)

′ : (p + 1)(J − 1) × 1, andγ = (γ ′
1, . . . , γ

′
j , . . . ,

γ ′
J−1)

′ : (J − 1)2 × 1. These parameters are involved in the unconditional mean,
variance and covariances of the responses. More specifically one may show [10] that

E[Yt ] = π̃(t)(β, γ ) = (π̃(t)1, . . . , π̃(t) j , . . . , π̃(t)(J−1))
′ : (J − 1) × 1

=
{ [π(1)1, . . . , π(1) j , . . . , π(1)(J−1)]′ for t = 1

η(t |t−1)(J ) +
[
η(t |t−1),M − η(t |t−1)(J )1′

J−1

]
π̃(t−1) for t = 2, . . . , T − 1

(6)

var[Yt ] = diag[π̃(t)1, . . . , π̃(t) j , . . . , π̃(t)(J−1)] − π̃(t)π̃
′
(t)

= (cov(Yt j , Ytk )) = (σ̃(t t) jk ), j, k = 1, . . . , J − 1

= Σ̃(t t)(β, γ ), for t = 1, . . . , T (7)
cov[Yu , Yt ] = Π t

s=u+1
[
η(s|s−1),M − η(s|s−1)(J )1′

J−1
]
var[Yu ], for u < t, t = 2, . . . , T

= (cov(Yu j , Ytk )) = (σ̃(ut) jk ), j, k = 1, . . . , J − 1

= Σ̃(ut)(β, γ ), (8)

where

η(s|s−1)(J ) = [η(1)
s|s−1(J ), . . . , η

( j)
s|s−1(J ) . . . , η

(J−1)
s|s−1 (J )]′ = π(s) : (J − 1) × 1

η(s|s−1),M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

η
(1)
s|s−1(1) · · · η

(1)
s|s−1(g) · · · η

(1)
s|s−1(J − 1)

...
...

...
...

...

η
( j)
s|s−1(1) · · · η

( j)
s|s−1(g) · · · η

( j)
s|s−1(J − 1)

...
...

...
...

...

η
(J−1)
s|s−1 (1) · · · η

(J−1)
s|s−1 (g) · · · η

(J−1)
s|s−1 (J − 1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

: (J − 1) × (J − 1).
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Notice that there is a relation between the vector η(s|s−1)(J ) and the matrix η(s|s−1),M .

This is because the transition matrix η(s|s−1),M contains the transitional probabilities
from any of the first J − 1 states at time s − 1 to any of the J − 1 states at time s,
whereas the transition vector η(s|s−1)(J ) contains transitional probabilities from the
J th state at time s − 1 to any of the first J − 1 states at time s − 1. Consequently,
once the transition matrix η(s|s−1),M is computed, the transition vector η(s|s−1)(J )

becomes known.
It is of importance to estimate β and γ parameters mainly to understand the

aforementioned basic properties including the pair-wise correlations of the responses.
Note however that themultinomial time seriesmodel (2)–(5) and its basicmoment

properties shown in (6)–(8) are derivedwithout any order restrictions of the categories
of the responses. The purpose of this paper is to estimate the parameters β and γ

under an ordinal categorical response model which we describe in Sect. 2. In Sect. 3,
we demonstrate the application of a pseudo likelihood approach for the estimation
for these parameters. Some concluding remarks are made in Sect. 4.

2 Cumulative MDL Model for Ordinal Categorical Data

When categories for a response at a given time t are ordinal, onemay then collapse the
J > 2 categories in a cumulative fashion into two (J ′ = 2) categories and use simpler
binarymodel to fit such collapsed data. Note however that therewill be various binary
groups depending on which category in the middle is used as a cut point. For the
transitional categorical response from time t − 1 (say) to time t, cumulation of the
categories at time t has to be computed conditional on the cumulative categories
at time t − 1. This will also generate a binary model for cumulative transitional
responses. These concepts of cumulative probabilities for a cumulative response are
used in the next section to construct the desired cumulative MDL model.

2.1 Marginal Cumulative Model at Time t = 1

Suppose that for a selected cut point j ( j = 1, . . . , J − 1), F(1) j =∑ j
c=1 π(1)c rep-

resents the probability for a multinomial response to be in category c between 1 and
j, where π(1)c by (2) defines the probability for the response to be in category c
(c = 1, . . . , J ) at time t = 1. Thus, 1 − F(1) j =∑J

c= j+1 π(1)c would represent the
probability for the multinomial response to be in category c beyond j. To reflect this
binary nature of the observed response in category c with regard to cut point j, we
define a binary variable b( j)

c (1) such that

P
[
b( j)
c (1) = 1

] = 1 − F(1) j =
J∑

c= j+1

π(1)c. (9)
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Notice that because there are J − 1 possible cut points, if the categories are ordered
and the response falls in cth category, by (11) below, we then obtain the cut points
based observed vector at time t = 1 as

[
b(1)
c (1) = 1, . . . , b(c−1)

c (1) = 1, b(c)
c (1) = 0, . . . , b(J−1)

c (1) = 0
]
.

For other values of t, the observed responses are constructed similarly depending on
the response category.

2.2 Lag 1 Transitional Cumulative Model at Time
t = 2, . . . , T

In order to develop a transitional model, suppose we observe that the multinomial
response at time t − 1(t = 2, . . . , T )was in c1th category (c1 = 1, . . . , J ),whereas
at time t it is observed in c2(c2 = 1, . . . , J ) category. Let (g, j) denote a bivariate
cut point which facilitates the binary variables [similar to (9)] given by

b(g)
c1 (t − 1) =

{
1 for the response in category c1 > g at time t − 1
0 for the response in category c1 ≤ g at time t − 1,

(10)

and

b( j)
c2 (t) =

{
1 for the response in category c2 > j at time t
0 for the response in category c2 ≤ j at time t.

(11)

Consequently, a transitional probability model based on conditional probabilities (5)
may be written as

P
[
b( j)
c2 (t) = 1|b(g)

c1 (t − 1)
] = λ̃

(2)
g j

(
b(g)
c1 (t − 1)

)

=
{

λ̃
(2)
g j (1) for b

(g)
c1 (t − 1) = 0

λ̃
(2)
g j (2) for b

(g)
c1 (t − 1) = 1,

(12)

=
{

1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1)

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1),

(13)

where the conditional probability λ
(c2)
t |t−1(c1), has the known multinomial dynamic

logit (MDL) form given by (5). For convenience, following (12)–(13), we also write

P[b( j)
c2 (t) = 0|b(g)

c1 (t − 1)] = 1 − λ̃
(2)
g j (b

(g)
c1 (t − 1))

=
{

λ̃
(1)
g j (1) = 1 − λ̃

(2)
g j (1) for b

(g)
c1 (t − 1) = 0

λ̃
(1)
g j (2) = 1 − λ̃

(2)
g j (2) for b

(g)
c1 (t − 1) = 1,

(14)
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=
⎧
⎨

⎩

1
g

∑g
c1=1

[
1 −∑J

c2= j+1 λ
(c2)
t |t−1(c1)

]

1
J−g

∑J
c1=g+1

[
1 −∑J

c2= j+1 λ
(c2)
t |t−1(c1)

] (15)

=
{

1
g

∑g
c1=1

∑ j
c2=1 λ

(c2)
t |t−1(c1)

1
J−g

∑J
c1=g+1

∑ j
c2=1 λ

(c2)
t |t−1(c1).

(16)

3 Pseudo Binary Likelihood Estimation
for the Ordinal Model

In this section, we construct a binary data based likelihood function, where the
binary data are obtained by collapsing the available ordinalmultinomial observations.
Consequently, we refer to this likelihood approach as the so-called pseudo likelihood
approach. However, for convenience, we use the terminology ‘likelihood’ for the
‘pseudo likelihood’, through out the section.

At t = 1, the marginal likelihood for β by (9) has the form

L1(β) = Π J−1
j=1

[
{F(1) j }1−b( j)

c (1)
] [

{1 − F(1) j }b( j)
c (1)

]

= Π J−1
j=1

⎡

⎢
⎣

{
j∑

c=1

π(1)c

}1−b( j)
c (1)

⎤

⎥
⎦

⎡

⎢
⎣

⎧
⎨

⎩

J∑

c= j+1

π(1)c

⎫
⎬

⎭

b( j)
c (1)

⎤

⎥
⎦ , (17)

where

b( j)
c (1) =

{
1 for c > j
0 for c ≤ j.

(18)

Next for the construction of the conditional likelihood at t given the information
fromprevious timepoint t − 1,wefirst re-express the binary conditional probabilities
in (12) and (14), as

λ̃
(2)
g j (g

∗) =
{

λ̃
(2)
g j (1) for b(g)

c1 (t − 1) = 0

λ̃
(2)
g j (2) for b(g)

c1 (t − 1) = 1,
(19)

λ̃
(1)
g j (g

∗) =
{

λ̃
(1)
g j (1) for b(g)

c1 (t − 1) = 0

λ̃
(1)
g j (2) for b(g)

c1 (t − 1) = 1.
(20)

One may then write the conditional likelihood for β and γ, as

Lt |t−1(β, γ ) = Π J−1
g=1 Π J−1

j=1 Π2
g∗=1

[{
λ̃

(2)
g j (g

∗)
}b( j)

c2 (t) {
λ̃

(1)
g j (g

∗)
}1−b( j)

c2 (t)
]

, (21)
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where the binary data b( j)
c2 (t) for observed c2 are obtained by (11), and similarly

b(g)
c1 (t − 1) to define g∗ for given c1 are obtained from (10).
Next by combining (17) and (21), one obtains the likelihood function for β

and γ as

L(β, γ ) = L1(β)Π T
t=2Lt |t−1(β, γ )

= Π J−1
j=1

[
{F(1) j }1−b( j)

c (1)
] [

{1 − F(1) j }b( j)
c (1)

]

×ΠT
t=2Π

J−1
g=1 Π J−1

j=1 Π2
g∗=1

[{
λ̃

(2)
g j (g

∗)
}b( j)

c2 (t) {
λ̃

(1)
g j (g

∗)
}1−b( j)

c2 (t)
]

. (22)

For the benefit of the practitioners,we nowdevelop the likelihood estimating equa-
tions for these parameters β and γ, as in the following sections. Remark that for the
construction of similar likelihood estimating equations in the stationary longitudinal
setup, one may be referred to Sutradhar [14, Sect. 3.6.2.2].

Note that the likelihood function in (22) is constructed by collapsing the ordinal
multinomial responses to the binary responses at all suitable cut points. This likeli-
hood function, therefore, can not be used for nominal multinomial time series data.
When the categories are nominal, it is appropriate to construct the likelihood function
by exploiting the marginal probability function π(t) j from (2) for t = 1, and the con-
ditional multinomial logit probability function η

( j)
t |t−1(g) from (4) for t = 2, . . . , T

(see Loredo-Osti and Sutradhar [10]). Notice that in practice the time dependent
covariates xt in (2) and (4) are fixed in general. However, by treating xt as a random
covariate vector, Fokianos and Kedem [6] obtained parameter estimates by maxi-
mizing a partial likelihood function without requiring any extra characterization of
the joint process {yt , xt }. Loredo-Osti and Sutradhar [10] have, however, argued that
in Fokianos and Kedem’s [6] approach, the conditional Fisher information matrix is
not the same as the one obtained by conditioning on {xt }, the observed covariates.
In fact, when the estimation is carried out in a general linear models framework that
uses the canonical link function, this conditional information matrix obtained by
Fokianos and Kedem, is just the Hessian matrix multiplied by −1, i.e., the observed
information matrix.

As far as the ordinal multinomial time series data are concerned, the construction
of binary mapping based likelihood function in (22) is a new concept. The core idea
comes from the cumulative binary property for theMDL (multinomial dynamic logit)
model (4) because of the present ordinal nature of the data. In the cross sectional setup,
that is, for the case with t = 1 only, the likelihood function for ordinal multinomial
data has been used by many authors such as Agresti [1]. Note that the marginal
multinomial probability in (2) has themultinomial logit form. In the cluster data setup,
many existing studies use this multinomial logit model (2) as the marginal model at
a given time t. As far as the correlations between repeated responses are concerned,
some authors such as Agresti [1], Lipsitz et al. [9], Agresti and Natarajan [2] do
not model them, rather they use ‘working’ correlations to construct the so-called
generalized estimating equations and solve them to obtain the estimates for regression
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parameters involved in the marginal multinomial logits model (2). These estimates
however may not be reliable as they can be inefficient as compared to the ‘working’
independence assumption based estimates (see Sutradhar and Das [15], Sutradhar
[13, Chap.7] in the context of binary longitudinal data analysis). Thus, their extension
to the time series setup may be useless. Moreover, it is not clear how to model the
ordinal data using this type of ‘working’ correlations approach.

3.1 Likelihood Estimating Equations for the Regression
Effects β

Recall that β = (β ′
1, . . . , β

′
j , . . . , β

′
J−1)

′ : (J − 1)(p + 1) × 1, with β j = (β j0,

β j1, . . . , β j p)
′. For known γ, in this section, we exploit the likelihood function (22)

and develop the likelihood estimating equation for β. For convenience, we use log
likelihood function, which, following the likelihood function in (22), is written as

Log L(β, γ ) =
J−1∑

j=1

[{1 − b( j)
c (1)}logF(1) j + {b( j)

c (1)}log{1 − F(1) j }
]

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

[
b( j)
c2 (t)log

{
λ̃

(2)
g j (g

∗)
}

+ {1 − b( j)
c2 (t)}log

{
λ̃

(1)
g j (g

∗)
}]

, (23)

yielding the likelihood estimating equation for β as

∂Log L(β, γ )

∂β
=

J−1∑

j=1

[
{1 − b( j)

c (1)}
F(1) j

− {b( j)
c (1)}

{1 − F(1) j }

]
∂F(1) j

∂β

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

[
b( j)
c2 (t)

λ̃
(2)
g j (g

∗)
− {1 − b( j)

c2 (t)}
{1 − λ̃

(2)
g j (g

∗)}

]
∂λ̃

(2)
g j (g

∗)
∂β

= 0, (24)

where
∂F(1) j

∂β
=

j∑

c=1

[
π(1)c(δ(1)c − π(1))

]⊗ x1; (25)

and

∂λ̃
(2)
g j (g∗)

∂β
=
⎧
⎨

⎩

1
g
∑g

c1=1
∑J

c2= j+1

[
η
(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1

[
η
(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt for g∗ = 2,

(26)
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with

π(1) = [
π(1)1, . . . , π(1)c, . . . , π(1)(J−1)

]′

δ(t−1)c =
{ [01′

c−1, 1, 01
′
J−1−c]′ for c = 1, . . . , J − 1

01J−1 for c = J,

ηt |t−1(c1) =
[
η

(1)
t |t−1(c1), . . . , η

(c2)
t |t−1(c1), . . . , η

(J−1)
t |t−1 (c1)

]′
. (27)

The details for the derivatives in (25) and (26) are given in “Appendix”.
For given γ , the likelihood equations in (24) may be solved iteratively by using

the iterative equation for β given by

β̂(r + 1) = β̂(r) −
⎡

⎣

{
∂2Log L(β, γ )

∂β ′∂β

}−1
∂Log L(β, γ )

∂β

⎤

⎦

|β=β̂(r)

; (J − 1)(p + 1) × 1, (28)

where the formula for the second order derivative matrix ∂2Log L(β,γM )

∂β ′∂β may be derived
by taking the derivative of the (J − 1)(p + 1) × 1 vector with respect to β ′. The
exact second order derivative matrix has a complicated formula. We provide an
approximation as follows.
An approximation to ∂2Log L(β,γM )

∂β ′∂β :
Re-express the likelihood estimating equation from (24) as

∂Log L(β, γ )

∂β
=

J−1∑

j=1

∂F(1) j

∂β
{(1 − F(1) j )F(1) j }−1

[{1 − b( j)
c (1)} − F(1) j

]

+
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g

∗)
∂β

{
λ̃

(2)
g j (g

∗)
(
1 − λ̃

(2)
g j (g

∗)
)}−1 [

b( j)
c2 (t) − λ̃

(2)
g j (g

∗)
]

= 0. (29)

Notice that in the first term in the left hand side of (29), {1 − b( j)
c (1)} is, by (9), a

binary variable with

E
{
1 − b( j)

c (1)
} = F(1) j

var{1 − b( j)
c (1)} = F(1) j {1 − F(1) j }, (30)

and similarly in the second term, by (12), b( j)
c2 (t) conditional on b(g)

c1 (t − 1) is a binary
variable with

E
[
b( j)
c2 (t)|b(g)

c1 (t − 1)
] = λ̃

(2)
g j (g

∗)

var
[
b( j)
c2 (t)|b(g)

c1 (t − 1)
] = λ̃

(2)
g j (g

∗)
[
1 − λ̃

(2)
g j (g

∗)
]
, (31)
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for g∗ ≡ b(g)
c1 (t − 1).Thus, the likelihood estimating function in (29) is equivalent to a

conditional quasi-likelihood (CQL) function in β for the cut points based binary data
[e.g. see Tagore and Sutradhar [16, Eq. (27), p. 888]. Now because the variance of the
binary data is a function of the mean, the variance and gradient functions in (29) may
be treated to be knownwhenmean is known. Thus, when a QL estimating equation is
solved iteratively, the gradient and variance functions use β from a previous iteration
[11, 18]. Consequently, by (29), the second derivative matrix required to compute
(28) has a simpler approximate formula

∂2Log L(β, γ )

∂β∂β ′ = −
J−1∑

j=1

∂F(1) j

∂β
{(1 − F(1) j )F(1) j }−1 ∂F(1) j

∂β ′

−
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g

∗)
∂β

{
λ̃

(2)
g j (g

∗)
(
1 − λ̃

(2)
g j (g

∗)
)}−1 ∂λ̃

(2)
g j (g

∗)
∂β ′ . (32)

Furthermore for known γ , by (28) and (29), under somemild conditions it follows
that the solution of (29), say β̂, satisfies

β̂ ∼ N (β, V (β, γ )), (33)

(see Kaufmann [8, Sect. 5]) where the covariance matrix is estimated by

V̂ (·) =
[

−∂2Log L(β, γ )

∂β∂β ′

]−1

β=β̂

. (34)

3.2 Likelihood Estimating Equations for the Dynamic
Dependence Parameters γ

In Sect. 3.1, we have estimated β for known γ, for example, initially by using γ = 0,
where by (4)–(5),

γ = (γ ′
1, . . . , γ

′
j , . . . , γ

′
J−1

)′
, with γ j = (γ j1, . . . , γ jv, . . . , γ j,J−1

)′
.

Note that F(1) j for all j = 1, . . . , J − 1, are free from γ. Hence, by exploiting the
log likelihood function (23), similar to (24), we write the likelihood equation for γ as

∂Log L(β, γ )

∂γ
=

T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

⎡

⎣ b( j)
c2 (t)

λ̃
(2)
g j (g

∗)
−
{
1 − b( j)

c2 (t)
}

{
1 − λ̃

(2)
g j (g

∗)
}

⎤

⎦
∂λ̃

(2)
g j (g

∗)
∂γ

= 0,

(35)
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where

∂λ̃
(2)
g j (g∗)
∂γ

=
⎧
⎨

⎩

1
g

∑g
c1=1

∑J
c2= j+1

[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1

[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 for g∗ = 2.

(36)
An outline for this derivative is given in the “Appendix”.

By similar calculations as in (28), onemay solve the likelihood estimating equation
in (35) for γ using the iterative equation

γ̂ (r + 1) = γ̂ (r) −
[{

∂2Log L(β, γ )

∂γ ∂γ ′

}−1
∂Log L(β, γ )

∂γ

]

|γ=γ̂ (r)

; (J − 1)2 × 1,

(37)
where the second order derivative matrix, following (32), may be computed as

∂2Log L(β, γ )

∂γ ∂γ ′ = −
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g∗)

∂γ

{
λ̃
(2)
g j (g∗)

(
1 − λ̃

(2)
g j (g∗)

)}−1 ∂λ̃
(2)
g j (g∗)

∂γ ′ . (38)

Furthermore for known β, by (37) and (38), it follows under somemild conditions
that the solution of (35), say γ̂ , satisfies

γ̂ ∼ N (γ, V ∗(β, γ )), (39)

(see Kaufmann [8, Sect. 5]) where the covariance matrix is estimated by

V̂ ∗(·) =
[

−∂2Log L(β, γ )

∂γ ∂γ ′

]−1

γ=γ̂

. (40)

3.3 Joint Likelihood Estimating Equations for β and γ

Let θ = (β ′, γ ′)′. One may then combine (28) and (37) and solve the iterative
equation

θ̂ (r + 1) = θ̂ (r) −
⎡

⎣

⎛

⎝
∂2Log L(β,γ )

∂β∂β ′
∂2Log L(β,γ )

∂β∂γ ′
∂2Log L(β,γ )

∂γ ∂β ′
∂2Log L(β,γ )

∂γ ∂γ ′

⎞

⎠

−1⎛

⎝
∂Log L(β,γ )

∂β

∂Log L(β,γ )

∂γ

⎞

⎠

⎤

⎦

|θ=θ̂ (r)

(41)

to obtain the joint likelihood estimates for β and γ. In order to construct the iter-
ative equation (41), we require the formula for the second order derivative matrix
∂2Log L(β,γ )

∂β∂γ ′ which, using (29), may be approximately computed as
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∂2Log L(β, γ )

∂β∂γ ′ = −
T∑

t=2

J−1∑

g=1

J−1∑

j=1

2∑

g∗=1

∂λ̃
(2)
g j (g∗)

∂β

{
λ̃
(2)
g j (g∗)

(
1 − λ̃

(2)
g j (g∗)

)}−1 ∂λ̃
(2)
g j (g∗)

∂γ ′ , (42)

where the formulas for
∂λ̃

(2)
g j (g

∗)
∂β

and
∂λ̃

(2)
g j (g

∗)
∂γ

are given by (26) and (36), respectively.
Furthermore, by similar arguments to (33) and (39), under somemild conditions it

follows that the solution of (41), say

(
β̃

γ̃

)

has the multivariate Gaussian distribution

(
β̃

γ̃

)

∼ N

[(
β

γ

)

,

(
Ṽ11(β, γ ) Ṽ12(β, γ )

Ṽ ′
12(β, γ ) Ṽ22(β, γ )

)]

, (43)

where cov(β̃) = Ṽ11(β, γ ) and cov(γ̃ ) = Ṽ22(β, γ ) are estimated as

ˆcov(β̃) = A−1 + FE−1F ′

ˆcov(γ̃ ) = E−1, (44)

Rao [12, p. 33] with E = D − B ′A−1B, and F = A−1B, where by (41)

A = ∂2Log L(β, γ )

∂β∂β ′ ; B = ∂2Log L(β, γ )

∂β∂γ ′ ; and D = ∂2Log L(β, γ )

∂γ ∂γ ′ .

4 Concluding Remarks

Recently some authors such as Loredo-Osti and Sutradhar [10] (see also Fokianos
andKedem [6]) have developed a likelihood approach for the estimation of regression
and dynamic dependence parameters involved in amultinomial dynamic logit (MDL)
model used for categorical time series data. This inference issue becomes more
complex when the categorical response collected at a given time point also exhibit
an order. In this paper we have demonstrated that this type of ordinal categorical
responses collected over time may be analyzed by collapsing a multinomial response
to a binary response at a given possible cut point and fitting binary dynamic model
to all such binary responses collected based on all possible cut points over all times.
For simplicity, we have fitted a low order, namely lag 1 dynamic model among
all possible cut points based binary responses. A pseudo likelihood method using
binary responses (in stead of the multinomial observations) is then constructed for
the estimation of the regression and dynamic dependence parameters. The authors
plan to undertake an empirical study involving simulations and real life data analysis
in order to investigate the performance of the proposed estimation approach both
for moderate and large size time series. The empirical results will be published
elsewhere.
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Appendix

Derivation for ∂F(1) j

∂β
:

Recall from Sect. 2.1 that F(1) j =∑ j
c=1 π(1)c, where π(1)c is given by (2). It then

follows that

∂F(1) j

∂β
= ∂

∂β

j∑

c=1

π(1)c = ∂

∂β

j∑

c=1

exp
(
x ′
1βc
)

1 +∑J−1
g=1 exp

(
x ′
1βg
) . (45)

Now because

∂π(1)c

∂βc
= π(1)c[1 − π(1)c]x1, and

∂π(1)c

∂βk
= −[π(1)cπ(1)k]x1, (46)

it follows that

∂π(1)c

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−π(1)1π(1)c
...

π(1)c[1 − π(1)c]
...

−π(1)(J−1)π(1)c

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ x1 : (J − 1)(p + 1) × 1

= [
π(1)c(δ(1)c − π(1))

]⊗ x1. (47)

The formula for ∂F(1) j

∂β
in (25) follows by using (47) and (45).

Derivation for
∂λ̃

(2)
g j (g

∗)
∂β

:
By using the formula for λ̃

(2)
g j (g

∗) from (13) we write

∂λ̃
(2)
g j (g

∗)
∂β

= ∂

∂β

{
1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 2,

(48)
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where λ
(c2)
t |t−1(c1) is given in (5), that is,

η
(c2)
t |t−1(c1) =

⎧
⎪⎨

⎪⎩

exp
[
x

′
t βc2+γ ′

c2
δ(t−1)c1

]

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)c1

] , for c2 = 1, . . . , J − 1

1

1+∑J−1
v=1 exp

[
x

′
t βv+γ ′

vδ(t−1)c1

] , for c2 = J.
(49)

Now, for t = 2, . . . , T, it follows from (49) that

∂η
(c2)
t |t−1(c1)

∂βc2

= η
(c2)
t |t−1(c1)

[
1 − η

(c2)
t |t−1(c1)

]
xt

∂η
(c2)
t |t−1(c1)

∂βk
= −

[
η

(c2)
t |t−1(c1)η

(k)
t |t−1(c1)

]
xt , (50)

yielding

∂η
(c2)
t |t−1(c1)

∂β
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η
(1)
t |t−1(c1)η

(c2)
t |t−1(c1)

...

η
(c2)
t |t−1(c1)[1 − η

(c2)
t |t−1(c1)]

...

−η
(J−1)
t |t−1 (c1)η

(c2)
t |t−1(c1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ xt : (J − 1)(p + 1) × 1

=
[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ xt . (51)

The formula for the derivative in (26) follows now by applying (50) into (48).

Derivation for
∂λ̃

(2)
g j (g

∗)
∂γ

:
By using the formula for λ̃

(2)
g j (g

∗) from (13) we write

∂λ̃
(2)
g j (g

∗)
∂γ

= ∂

∂γ

{
1
g

∑g
c1=1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 1

1
J−g

∑J
c1=g+1

∑J
c2= j+1 λ

(c2)
t |t−1(c1) for g∗ = 2,

(52)

where λ
(c2)
t |t−1(c1) is given in (5) [see also (49)].

Next, for t = 2, . . . , T, it follows from (49) that

∂η
(c2)
t |t−1(c1)

∂γc2
= η

(c2)
t |t−1(c1)

[
1 − η

(c2)
t |t−1(c1)

]
δ(t−1)c1

∂η
(c2)
t |t−1(c1)

∂γk
= −

[
η

(c2)
t |t−1(c1)η

(k)
t |t−1(c1)

]
δ(t−1)c1 , (53)
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where

δ(t−1)c1 =
{ [01′

c1−1, 1, 01
′
J−1−c1

]′ for c1 = 1, . . . , J − 1
01J−1 for c1 = J.

These derivatives in (53) may further be re-expressed as

∂η
(c2)
t |t−1(c1)

∂γ
=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−η
(1)
t |t−1(c1)η

(c2)
t |t−1(c1)

...

η
(c2)
t |t−1(c1)[1 − η

(c2)
t |t−1(c1)]

...

−η
(J−1)
t |t−1 (c1)η

(c2)
t |t−1(c1)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⊗ δ(t−1)c1 : (J − 1)2 × 1

=
[
η

(c2)
t |t−1(c1)(δ(t−1)c2 − ηt |t−1(c1))

]
⊗ δ(t−1)c1 . (54)

The formula for the derivative in (36) now follows by applying (53) into (52).
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Identification of Threshold Autoregressive
Moving Average Models

Qiang Xia and Heung Wong

Abstract Due to the lack of a suitable modeling procedure and the difficulty to iden-
tify the threshold variable and estimate the threshold values, the threshold autore-
gressive moving average (TARMA) model with multi-regime has not attracted much
attention in application. Therefore, the chief goal of our paper is to propose a simple
and yet widely applicable modeling procedure for multi-regime TARMA models.
Under no threshold case, we utilize extended least squares estimate (ELSE) and
linear arranged regression to obtain a test statistic F̂ , which is proved to follow an
approximate F distribution. And then, based on the statistic F̂ , we employ some
scatter plots to identify the number and locations of the potential thresholds. Finally,
the procedures are considered to build a TARMA model by these statistics and the
Akaike information criterion (AIC). Simulation experiments and the application to
a real data example demonstrate that both the power of the test statistic and the
model-building can work very well in the case of TARMA models.

Keywords Arranged regression · Nonlinearity test · TMA Model

1 Introduction

Since Tong [29], the threshold autoregressive (TAR) model has provided a much
wider spectrum of possible dynamics for the economic and financial time series
data. A time series yt is said to follow a self-excited TAR model, if it satisfies

yt =
k∑

j=1

[

φ
( j)
0 +

p∑

i=1

φ
( j)
i yt−i + ε

( j)
t

]

I (r j−1 ≤ yt−d < r j ).
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In principle, it can be easily extended to a threshold autoregressive moving average
model (SETARMA) model, if it satisfies

yt =
k∑

j=1

[

φ
( j)
0 +

p∑

i=1

φ
( j)
i yt−i +

q∑

i=1

θ
( j)
i ε

( j)
t−i + ε

( j)
t

]

I (r j−1 ≤ yt−d < r j ) (1)

where k is number of regimes and d is a positive integer commonly referred to
as the threshold delay. The thresholds are −∞ = r0 < r1 < · · · < rk = ∞; {ε( j)

t }
is a sequence of independent and identically distributed (i.i.d.) random variables
with mean zero and variance σ 2

j , 0 < σ 2
j < ∞ in each j . Then the one-dimensional

Euclidean space is partitioned into k regimes by such a process and each regime
follows a linear ARMA model. When there are at least two regimes with different
ARMAmodels, the overall process yt is a nonlinear TARMAmodel. For TAR mod-
els, which have been widely used in applications, some fundamental results on the
probabilistic structure of TAR models were given by Tong and Lim [30], Chan et al.
[6], Chan and Tong [7], Chan [5], Tong [31], Tsay [32–35],Wong and Li [36, 37] and
Hansen [15]. For TARMA models, not many theoretical results have been reported
for a long while.

In recent years, people realized that TMA and TARMA models are as important
as TAR models in practice, and more attention has been paid to TMA and TARMA
models in the literature. For instance, Brockwell et al. [3], Liu and Susko [25], de
Gooijer [10] and Ling [22, 24]. For testing problems of TMAmodels, Ling and Tong
[23] proposed a likelihood ratio test for linear MA model against TMA models. For
testing problems of TARMA models, Li and Li [18] developed likelihood ratio test
for ARMA model against its extension with two regimes. For estimation problems
of TARMAmodels, Li et al. [19] proposed least squares estimate (LSE) for TARMA
models with two regimes. However, modelling multi-regime TARMA models has
not attracted much attention in the literature. The structure of yt depends on the
thresholdparameter r and thedelayparameterd.Due to the difficulty to estimate these
parameters and the related computational problems, there is no simple procedure to
identify the threshold. Consequently, TARMA models have not been widely used
in applications. From a practical point of view, TARMA models should have more
advantages over pure TAR or TMAmodels because they can provide a parsimonious
form just like linear ARMA models. Therefore, the main objective of this paper is
to propose a simple procedure for testing and modeling the threshold nonlinearity of
TARMA models with multi-regime.

In this paper, on one hand, to test for threshold nonlinearity for TARMA models,
we combine the extended least-squares (ELS; [26]) with arranged regression method
[34] to construct a test statistics F̂ , which follows F distribution and is suitable for
TARMA model identification. On the other hand, with the statistics F̂ and AIC, we
propose a simple procedure for modelling TARMA models. Simulation studies are
carried out to assess the performance of the statistics F̂ and modelling procedure in
finite samples.
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The paper is organized as follows. We give the testing statistics and its null
asymptotic distribution using arranged regression in Sect. 2. Section 3 introduces
the modeling procedure in detail. In Sect. 4, we evaluate finite-sample performance
and efficiency of the procedure by simulation and a real data set. Section 5 is our
conclusion.

Throughout the paper, A′ denotes the transpose of a vector or a matrix A,→P

and→a.s. denote the convergence in probability and almost sure convergence respec-
tively.

2 Test Statistic and Its Asymptotic Distribution

2.1 Consistency of Least Squares Estimates

Conveniently, the model (1) is referred to as a TARMA(k, p, q, d), where k is the
number regimes, p the AR order, q the MA order and d is called the threshold lag.
The interval r j−1 ≤ yt−d < r j is the j th regime of yt , which has n j observations of yt .
From model (1), we can see that each regime follows an ARMAmodel. Hannan and
Rissanen [14] suggested a regression approach to estimate ARMA models. It is nat-
ural to utilize the ELS or Hannan–Rissanen algorithm in studying model (1). For the
j th regime, we first compute the estimated residuals {ε̂( j)

t } by the ELS or theHannan–
Rissanen procedure, and then we obtain εt

( j)(Θ) = yt − [φ( j)
0 + ∑p

i=1 φ
( j)
i yt−i +

∑q
i=1 θ

( j)
i ε̂

( j)
t−i (Θ)]. Also, we denote Φ( j) = (φ

( j)
0 , φ

( j)
1 , . . . , φ

( j)
p , θ

( j)
1 , . . . , θ

( j)
q )′,

and the least squares estimates Φ̂( j) = (φ̂
( j)
0 , φ̂

( j)
1 , . . . , φ̂

( j)
p , θ̂

( j)
1 , . . . , θ̂

( j)
q )′ respec-

tively. Let Θ = (Φ ′(1), . . . , Φ ′(k))′, and Θ̂ = (Φ̂ ′(1), . . . , Φ̂ ′(k))′. Then, the sum of
square errors function Ln(Θ) is defined as

Ln(Θ) =
n∑

t=1

k∑

j=1

[
εt

( j)(Θ)
]2

,

the minimizer Θ̂ of Ln(Θ) is called the least squares estimate, that is,

Θ̂ = argmin
Θ

Ln(Θ),

where Φ̂( j) = (X ′ X ( j))
−1

(X ′Y ( j)), X ′ X ( j) is the associate X ′ X matrix.
Our basic assumptions are as follows.

Assumption 1 All {ε( j)
t } are i.i.d. and E(ε

( j)
t )4 < ∞, j = 1, . . . , k.
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Assumption 2 n j

n →P c j for all j = 1, . . . , k, where n is the total sample size and
c j is a positive fraction satisfying

∑n
j=1 c j = 1.

Assumption 3 λ j,min →a.s. ∞, ln(λ j,max) = o(λ j,min) a.s., as n → ∞ for j
regime, where λ j,min and λ j,max denotes the minimum and maximum eigenvalues
of X ′ X ( j), respectively.

Assumption 4 Φ( j) �= Φ(i) for j �= i , and
∑q

i=1 θ
( j)
i < 1, where θ

( j)
i = 0 for i >

q, j = 1, . . . , k.

Remark 1 As Chen et al. [8] noted that it remains difficult to find necessary and
sufficient conditions for stationarity and invertibility of TARMA models. In this
study, hence, our focus is on the modelling procedure.

Theorem 1 Suppose Assumptions 1, 2, 3 and 4 hold, then, for given k, d and the
threshold values r j , the least squares estimates Φ̂( j) converge to Φ( j) almost surely.

Corollary 1 If Φ(1) = · · · = Φ(k) = Φ, then model (1) is the ARMA model. Under
Assumptions 1 and 3,

Φ̂ →a.s. Φ.

2.2 A Test Statistics for Threshold Nonlinearity

To separate the regimes effectively, a rearranged TARMA(k, p, q, d) model is use-
ful. The separation can assemble the observation in groups and does not require
knowing the precise value of the thresholds r j . In order to see this easily, we con-
sider k = 2. For a given TARMA(2, p, q, d) model with a sample {y1, y2, . . . , yn}.
The values of the threshold variable yt−d are assumed {yh−d , yh+1−d , . . . , yn−d},
where h = max{1, p + 1 − d, q + 1 − d}. Let πi denote the i th smallest obser-
vation of {yh−d , yh+1−d , . . . , yn−d}. If the first regime has s observations, i.e.,
yπi +d , i = 1, . . . , s, then for i > s the observations belong to the second regime.
Therefore, the model can be written as a rearranged TARMA model, i.e.,

yπi +d =
{

φ
(1)
0 + ∑p

j=1 φ
(1)
j yπi +d− j + ∑q

u=1 θ(1)
u ε

(1)
πi +d−k + ε

(1)
πi +d , i > s

φ
(2)
0 + ∑p

j=1 φ
(2)
j yπi +d− j + ∑q

u=1 θ(2)
u ε

(2)
πi +d−k + ε

(2)
πi +d , i ≤ s

(2)

where s satisfies yπs ≤ r < yπs+1. More specifically, the arranged TARMA model
provides a way, which can group the data points, and makes all of the observations
in a group follow the same ‘regression’ model.

The motivation of the proposed test is to illustrate the potential use of arranged
regression in studying TARMA models by considering model (2). If the thresh-
old value r were known, then we could easily obtain consistent estimates of the
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parameters. We in general do not know the threshold value, hence, we must pro-
ceed sequentially starting from the linear ARMA model. If the first regime has
sufficiently large numbers of observations, i.e., many i ≤ s, the least squares esti-
mates Φ̂

(1)
i are consistent for Φ

(1)
i . In this case, the predictive residuals επi +d are

assumed white noise, which are asymptotically and orthogonal to the regressors
{yπi +d− j , επi +d−u, j = 1, . . . , p, u = 1, . . . , q}. When i arrives at or exceeds s, the
model will have a change at time πs+1 + d. It will destroy the orthogonality between
the predictive residuals (επi +d ) and the regressors, which brings bias to the predic-
tive residual for the observation with time index πs+1 + d. Thus, the consistency
of Φ̂

(1)
i is also destroyed. In this process, we need not know the actual value of r

here, all that is needed is the existence of a nontrivial threshold. According to the
aforementioned consideration, one method to test for threshold nonlinearity is to
regress the predictive residuals from the arranged ARMA regression on the regres-
sors {yπi +d− j , επi +d−u, j = 1, . . . , p, u = 1, . . . , q}. Based on the residuals of the
relevant regression, we can construct an F statistic.

For the arranged regression (2), based on the first m cases, let Φ̂m denote the
vector of least squares estimates, Pm be the associated X ′ X inverse matrix, and
xm+1 is the vector of regressors of the next observations yπm+1+d and επm+1+d to
enter the regression. Note that the variables επm+1+d entering the vector xm+1 are not
observable, and the recursive LSE [11, 12, 34] cannot be implemented as it stands.
We have to substitute some estimate ε̂t for the components εt , computed according
to ε̂t = yt − x ′

tΦ̂t , where xt = (yt−1, . . . , yt−p, . . . , ε̂t−1, . . . , ε̂t−q)
′. The estimates

of ε̂t can be obtained by extended least squares estimate (ElSE), see Ljung and
Soderstrom [26]. Then, we can compute ELSE efficiently by

Φ̂m+1 = Φ̂m + Km+1

[
yπm+1+d − x ′

m+1Φ̂m

]

where Dm+1 = 1 + x ′
m+1Pm xm+1, Pm+1 = (I − Pm

xm+1x ′
m+1

Dm+1
)Pm , and Km+1 =

Pm+1xm+1

Dm+1
.

Moreover, we can obtain the following predictive and standardized predictive
residuals

ε̃πm+1+d = yπm+1+d − x ′
m+1Φ̂m

and

êπm+1+d = ε̃πm+1+d√
Dm+1

.

Next, the predictive residuals are used to locate the threshold. Here, they can be
used to construct the F statistics for testing nonlinearity. We will give the details of
the proposed nonlinearity test now. For fixed p, q and d, there are n − d − h + 1
effective observations in the arranged regressions, with h defined just before. Assume
that the recursive regressions begin with b observations, hence, the available number
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of predictive residuals is n − d − b − h + 1. Then, the least squares regression is
done as follows.

êπi +d = β0 +
p∑

k=1

β1k yπi +d−k +
q∑

l=1

β2l ε̂πi +d−l + aπi +d (3)

for i = b + 1, . . . , n − d − h + 1, and the associated F statistic can be computed as

F̂(p, q, d) =
(∑

ê2t − ∑
â2

t

)
/(p + q + 1)

∑
â2

t /(n − d − b − h − p − q)
, (4)

where the summations are all from b + 1 to n − d − h + 1, and ât is the least squares
residual of (3). We use the argument (p, q, d) of F̂ to signify the dependence of the
F ratio on p, q and d.

Theorem 2 Suppose that yt is a linear invertible ARMA process of order p and q,
that is to say, yt follows model (1) with k = 1. Using the Hannan–Rissanen algo-
rithm or ELSE, then, the statistic F̂(p, q, d) defined in (4) follows approximately an
F distribution with degrees of freedom p + q + 1 and n − d − b − p − q − h for
large n. Furthermore, (p + q + 1)F̂(p, q, d) follows asymptotically a chi-squared
random variable with degrees of freedom p + q + 1.

In practice that we do not know the number and locations of the thresholds, and as
we know there is no simple method for testing threshold nonlinearity. The major
considerations for proposing the F̂(p, q, d) statistic are relative power, feasibility
and simplicity of implementation. As it requires only a sorting routine and the linear
regression method, it is extremely simple.

3 Building TARMA Models

3.1 Selecting the Delay Parameter d

For building TARMA models, a major difficulty is selection of the delay parameter
d as well as the specification of the threshold variable. Similar to Tsay [34], which
proposed usingmagnitude of the test statistics to select d before locating the threshold
values for modeling TAR models. It is assumed that the AR order p and MA order
q are given, we can select an estimate of the delay parameter, say dp,q , such that

F̂(p, q, dp,q) = max{v∈S}{F̂(p, q, v)}, (5)

where F̂(p, q, v) is value of the F statistic of (4), the subscript (p, q) signifies that
the estimate of d may depend on p and q, and S is a set of possible positive integers,
i.e., S = {1, 2, . . . , max{p, q}}.
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Notice that it is somewhat heuristic for the choice of dp,q in (5), which is based on
the idea that if TARMAmodels are needed, then we might choose a delay parameter
that gives the most significant result in testing for threshold nonlinearity. Several
values of d may be tried by a cautious data analyst, especially including themaximum
and the secondmaximum of F̂(p, q, d) in (5). Generally speaking, dp,q depend upon
p and q, which is usually unknown. In this case, a reasonable AR order p and MA
order q should be started with, such as suggested by AIC.

3.2 Locating the Values of Thresholds

For a TARMAmodel, it is very important to specify the threshold variable. Therefore,
estimating the threshold r j ’s needs special care. For TARmodels, Tong and Lim [30]
considered the empirical percentiles as candidates for the threshold values, with the
specification of a set of finite numbers of sample percentiles to work with. But
Tsay [34] searched through the percentiles to locate the threshold values. Therefore,
sample percentile point estimates or an interval estimate for each of the threshold
values may be provided for TARMAmodels. Based on the latter idea, we make a try
to locate the values of thresholds for TARMA models. This is illustrated by model
(4), that is, assume that k = 2 and the true value of r1 satisfies yπs < r1 < yπs+1 . Then,
any value in the interval [yπs , yπs+1 ] is as good as the other in providing an estimate
of r1, because all of them will give the same fitting results for a specified TARMA
model. The limitation of this method is only that a threshold is not too close to the
0th or 100th percentile, otherwise there are not enough observations to provide an
efficient estimate for these extreme points.

The tools proposed to locate the thresholds are scatter plots, which are plots of
the specified threshold variable versus various statistics. scatter plots method has
been applied extensively in the literature, such as Haggan et al. [13] which adopted
the scatter plots of recursive AR estimates in studying the state-dependent model of
Priestley [27]. Tsay [34] considered scatter plots of recursive AR estimates for TAR
model. They all obtained fine results. Although the graphics are not formal testing
statistics, useful information is provided by them in locating the thresholds. The plots
used are: the ordinary predictive residuals or the standardized predictive residuals
versus yt−d ; and t ratios of recursive estimates of an AR or MA coefficient versus
yt−d . We will discuss the rationale of each of the plots in the following, while some
illustrative examples are deferred to the simulation and the application section.

In the framework of arranged regression, the TARMA model consists of some
model changes, which occur at each threshold value r j . The predictive residuals will
be biased at the threshold values. Thus, a scatter plots of the threshold variable versus
the (standardized) predictive residualsmay reveal the locations of the threshold values
of a TARMA model. On the other hand, the plot is random for a linear time series,
excluding the beginning of the recursion. We use the scatter plots because it can tell
the locations of the threshold values directly.
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It is best to begin with a linear time series, which can motivate the use of a scatter
plot of the threshold variable versus recursive t ratios of an AR or MA coefficient.
In this case, the t ratios have two functions: they can show the particular AR or
MA coefficient to be significant or not; and when the significance of that coefficient
is remarkable, the t ratios converge to a fixed value gradually and smoothly as the
recursion continues. As an example, we consider the simple TARMA model

yt =
{

φ
(1)
1 yt−1 + θ

(1)
1 ε

(1)
t−1 + ε

(1)
t , yt−d ≤ r1

φ
(2)
1 yt−1 + θ

(2)
1 ε

(2)
t−1 + ε

(2)
t , yt−d > r1

(6)

where φ
(1)
1 and φ

(2)
1 are different as well as θ

(1)
1 and θ

(2)
1 . Then, using LSE method

and written as arranged regression (2), where we let φ1 or θ1 be the recursive estimate
of the lag-1 AR or MA coefficient. Before the recursion reaches the threshold value
r1, the t ratios of φ1 or θ1 behave exactly as those of a linear time series by Theorem
2.1. Once yt−d reaches r1, the estimate φ1 or θ1 begins to change and the t ratio starts
to deviate. Thus, it will destroy the pattern of gradual convergence of the t ratios. In
practice, the t ratio may begin to turn and change direction at the threshold value.
Therefore, for model (3.2), φ1 or θ1 starts to change when r1 is reached, and finally
it has a compromise between φ

(1)
1 and φ

(2)
1 or θ

(1)
1 and θ

(2)
1 . When this behavior also

appears in the associated t ratios, it shows information on the value of r1. Generally,
it is effortless to see the change in t ratio when the two AR or MA coefficients are
substantially different.

Using the t-ratio plot to locate the values of thresholds of TARMA models, we
should pay attention to the following points. First, the constant term φ0 is important,
because it signifies level changes. Second, if the variance of errors in each regime is
obviously distinct, the residual plot will change clearly in the vicinity of thresholds.
Third, as long as the sample size in every regime is reasonable, the usefulness of
the plot in the previous discussion can be employed to the case of multi-threshold
value actually. Finally, since the ordered yt−d are not equally spaced, when some
data points of yt−d have relatively large values, omitting them in a scatter plot is
often helpful. The last b = (n/5) + min{p, q} points in all of the scatter plots are
not shown in this article.

3.3 Modeling TARMA Models

The procedures for modeling TAR models were outlined by Tong and Lim [30], and
Tsay [34] respectively, but each step of Tsay [34] was relatively simple. Based on
Tsay’s ideas, we propose a procedure for building TARMA models, as long as the
delay parameter d is selected and the values of thresholds are also located. We hope
that the features of TARMAmodels can be exploited by this procedure in simulation
and application, which consists of several steps and is described as follows.

http://dx.doi.org/10.1007/978-1-4939-6568-7_2
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Step 1. Select the appropriate AR order p and MA order q of a single ARMA
model byAIC. The set of possible threshold lags is S, and S = {1, 2, . . . , max{p, q}}.

Step 2. For a given p and q, find the fitted residuals of the model in Step 1 by
ELSE or the Hannan–Rissanen algorithm.

Step 3. For a given p, q and every element d of S, we use b = (n/5) + min{p, q}
as data points to initiate a recursion by arranged regression method, and compute
the value of the test-statistic F̂(p, q, d). If the nonlinearity of the model is detected,
then employ the approach of Sect. 3.1 to select the delay parameter dp,q .

Step 4. For given p, q and dp,q , make use of the scatter plots of Sect. 3.2 to locate
the threshold values r ’s.

Step 5. For given dp,q and r ’s, utilize the ELSE or the Hannan–Rissanen algorithm
to estimate coefficients in each regime, and refine the AR order, MA order and
threshold values with AIC.

In Step 1, the ac f and pac f are often instinctive tools and may provide guidance
for reasonable starting values of p and q for AR and MA model respectively. But
for an ARMA model, its AR order p and MA order q may better be selected by
considering AIC. In addition, if desired, Step 5 can refine the AR order and MA
order. For a given p and q at Step 3, the set S of possible threshold lags may be
{1, 2, . . . , max{p, q}}. We provide a method of selection of the delay parameter dp,q

in Sect. 3.1. In Step 4, because scatter plots of insignificant AR orMAcoefficients are
usually not informative, t ratios of various AR or MA coefficients can be examined
as long as the AR or MA coefficients are significant. The model refinement at Step 5
may rely on AIC because of the linear nature of the TARMA model in each regime.
See Tong and Lim [30], who gave the details of using AIC in modeling TARmodels.

Remark 2 For each regime of specified TARMA model, AIC [30] is taken the form
AIC(k) = Nln(RSS/N ) + 2k, and RSS is the residual sum of squares of the fitted
model, based on ELSE of the defining parameters. N is the “effective number of
observations” and k is the number of independent parameters of the models.

4 Simulation Experiments and a Real Example

In this section, firstly, we present simulation results to examine the performance of
the statistic F̂(p, q, d) and build TARMA models in finite samples through Monte
Carlo (MC) experiments. Secondly, we apply the test statistic and the procedure to
a real data set of the exchange rate of Japanese Yen versus USA dollar.

4.1 Simulation Experiments

The power of the F̂(p, q, d) statistic in detecting the threshold nonlinearity will be
studied firstly. Sample sizes used are 200 and 400 in the experiments respectively, and
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the number of replications is 1000.To reduce the effect of the starting value in generat-
ing a TARMAmodel, we generate n + 200 observations and discard the first 200 val-
ues for each realization of sample size n. The null is theARMA(1, 1)modelwith con-
stant term φ0 = 0, φ1 = 0.5 and θ1 = 0.5, and the alternative is the TARMA(2, 1, 2)
model with constant terms φ

( j)
0 = 0, j = 1, 2, r1 = 0, φ(2)

1 = θ
(2)
1 = 0.5 and φ

(1)
1 =

θ
(1)
1 = 0, 0.2, 0.4, 0.5, 0.6, 0.8. We choose b = (n/5) + min{p, q}, with p the fit-
ted AR order and q the fitted MA order, and take significance levels α = 0.05 and
0.1. The corresponding critical value are 3.00 and 2.30, respectively. The results are
recorded in Table 1, which shows that the powers are very close to the nominal values
0.05 and 0.1 in the case of ARMA(1, 1) model. In particular, the power increases
when the alternative departs from the linear ARMA model or when the sample size
increases.

To study the power of our method further, we conduct another investigation
about TARMA models with nonzero constant terms. Based on 1000 realizations
and 10 and 5 % critical values, Table 2 gives the powers of rejecting a linear ARMA
process. In the simulation, the model used is a TARMA(2, 1, 1), with parameters
(φ

(1)
0 , θ

(2)
1 , φ

(2)
0 , r1, σ 2

1 , σ 2
2 ) = (0.5, 0.5, 0.5, 0.5, 4.0, 1.0) or (0.5, 0.5,−0.5, 0.5,

4.0, 1.0) and θ
(2)
1 given −1,−0.5, 0, 0.5 respectively. The sample sizes are also 200

and 400. In the test statistic, p = q = d = 1 were used, let b = (n/5) + q. From the
Table 2, when the constant term φ0 are identical and not equal to zero with different
variance of errors in every regime, the power of F statistic increases with larger
difference of θ

(1)
1 . But each regime has a distinct constant and a different variance of

errors, the power of F statistic becomes stronger. These results indicate that the test
can give good performance on the nonlinear case and should be useful in practice.

Secondly, the proposed procedure will be applied to some simulated examples in
the following. Consider the following four models with simulated data set of sample
size n = 400, where i.i.d. denotes independent and identically distributed.

Table 1 The power of rejecting a linear ARMAModel with φ
(1)
0 = φ

(2)
0 = 0 based on 1000 Repli-

cations

α n = 200 n = 400

5 % 10 % 5 % 10 %

θ
(1)
1 Powers with θ

(2)
1 = 0.5

0 0.998 0.999 1.000 1.000

0.2 0.851 0.918 0.996 1.000

0.4 0.163 0.260 0.279 0.410

0.5 0.042 0.086 0.048 0.092

0.6 0.139 0.214 0.285 0.387

0.8 0.627 0.746 0.923 0.960
a In fact, as φ

(1)
1 = θ

(1)
1 = 0.5, the power is the size. Meanwhile, the errors ε

(1)
t , ε

(2)
t ∼ N (0, 1)
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Table 2 The power of rejecting a linear ARMAModel with φ
(1)
0 = 0.5 based on 1000 replications

α n = 200 n = 400

5 % 10 % 5 % 10 %

φ
(2)
0 0.5 −0.5 0.5 −0.5 0.5 −0.5 0.5 −0.5

φ
(1)
1 = θ

(1)
1 Powers with φ

(2)
1 = θ

(2)
1 = 0.5

−1 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

−0.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

0 0.986 0.987 0.993 0.996 1.000 1.000 1.000 1.000

0.5 0.266 0.298 0.362 0.407 0.271 0.440 0.364 0.536
a The errors ε

(1)
t ∼ N (0, 1), ε(2)

t ∼ N (0, 4)

• Model 1: TARMA(2, 1, 1, 1)

yt =
⎧
⎨

⎩

−0.5yt−1 − 0.5ε(1)
t−1 + ε

(1)
t , yt−1 ≤ 1.0

0.5yt−1 + 0.5ε(2)
t−1 + ε

(2)
t , yt−1 > 1.0

ε
(1)
t i.i.d. ∼ N (0, 1), ε(2)

t i.i.d. ∼ N (0, 4)
(3.1)

• Model 2: TARMA(3, 1, 1, 1)

yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−0.5yt−1 − 0.5ε(1)
t−1 + ε

(1)
t , yt−1 ≤ 1

0.2yt−1 + 0.2ε(2)
t−1 + ε

(2)
t , 1 < yt−1 ≤ 4

0.8yt−1 + 0.8ε(3)
t−1 + ε

(3)
t , yt−1 > 4

ε
(1)
t i.i.d. ∼ N (0, 1), ε(2)

t i.i.d. ∼ N (0, 9), ε(3)
t i.i.d. ∼ N (0, 4)

(3.2)

• Model 3: TARMA(2, 2, 1, 2)

yt =
⎧
⎨

⎩

−0.5yt−1 + 0.5yt−2 − 0.5ε(1)
t−1 + ε

(1)
t , yt−2 ≤ 0.

0.5yt−1 − 0.5yt−2 + 0.5ε(2)
t−1 + ε

(2)
t , yt−2 > 0.

ε
(1)
t i.i.d. ∼ N (0, 1), ε(2)

t i.i.d. ∼ N (0, 4)
(3.3)

• Model 4: TARMA(3, 2, 1, 2)

yt =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−0.5yt−1 + 0.5yt−2 − 0.5ε(1)
t−1 + ε

(1)
t , yt−2 ≤ −3

0.2yt−1 − 0.2yt−2 + 0.2ε(2)
t−1 + ε

(2)
t , −3 < yt−2 ≤ 2

0.8yt−1 − 0.8yt−2 + 0.8ε(3)
t−1 + ε

(3)
t , yt−2 > 2

ε
(1)
t i.i.d. ∼ N (0, 1), ε(2)

t i.i.d. ∼ N (0, 9), ε(3)
t i.i.d. ∼ N (0, 4)

(3.4)

For the model (3.1)–(3.4) with one sample, the order p = q = 3, p = 1, q =
3, p = q = 3 and p = q = 3 are suggested by AIC, respectively. Then, we compute
the values of test-statistic F̂(p, q, d) as recorded in Table 4, which indicate dp,q = 1
for all models except for (3.3). By looking at scatter plots to locate the thresholds,
we choose the second maximum of F̂(p, q, d), i.e., dp,q is adjusted 2 to model (3.4).
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Figures 1, 2, 3 and 4 show t-ratio of the lag-1 AR coefficient φ
(1)
1 and residuals

versus ordered threshold respectively. From the t-ratio of Fig. 1, we can find the
obvious change in the vicinity of 1.0, which suggests a threshold around 1.0 clearly
and is exactly confirmed by the residuals of Fig. 1. The t-ratio of Fig. 2 changes its
direction twice: once near yt−1 = 1 and again near yt−1 = 4, suggesting that there
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Fig. 1 The t-ratio of φ
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1 and residuals versus threshold for model (3.1)
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Fig. 2 The t-ratio of φ
(1)
1 and residuals versus threshold for model (3.2)
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are two nontrivial thresholds, which are just ascertained by the residuals of Fig. 2.
Similarly, we can find that Fig. 3 indicates a threshold around 0.0, and Fig. 4 implies
two nontrivial thresholds, i.e., once near yt−1 = −3 and again near yt−1 = 2. Finally,
M.L.E method is used to estimate coefficients in each regime by the given dp,q and
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Fig. 3 The t-ratio of φ
(1)
1 and residuals versus threshold for model (3.3)

−6 −4 −2 0 2 4 6

−1
2

−1
0

−8
−6

−4
−2

0

φ1

threshold

ra
tio

−6 −4 −2 0 2 4 6

−1
0

−5
0

5

threshold

re
si

du
al

Fig. 4 The t-ratio of φ
(1)
1 and residuals versus threshold for model (3.4)
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Table 3 The estimate of d in model (3.1)–(3.4)

d 1 2 3

TARMA(2, 1, 1, 1) F̂ 52.3278 3.6512 3.7048

TARMA(3, 1, 1, 1) F̂ 43.8513 2.2266 2.0466

TARMA(2, 2, 1, 2) F̂ 59.2395 63.8743 13.2984

TARMA(3, 2, 1, 2) F̂ 52.1521 50.8229 6.1295

r ’s, and the AR and MA order and threshold values are refined with AIC. After
completing the five steps of the procedure, the details of estimates in model (3.1)–
(3.4) are found in Table 5. From it, we can see that the estimates of coefficients and
thresholds are all fine. Moreover, all AR and MA orders in each regime are almost
consistent with the true values by AIC. From the results of Tables 3 and 4, we believe
that our procedure can perform satisfactorily in general.

4.2 A Real Example

Now we analyze the exchange rate of Japanese Yen versus USA dollar. The monthly
data from Jan. 1971 to Dec. 2000 are used and there are 360 observations. This data
set was analyzed by Ling and Tong [23]. Pt denotes the exchange rate at t th month.
Let xt = 100[log(Pt ) − log(Pt−1)] and yt = xt − ∑360

i=2 xi/359 for t ≥ 2.
Firstly, the AR and MA order are chosen to be p = q = 5 by the AIC, and then

based on b = n/10 + min{p, q} = 41, the proposed F statistic are computed in
Table 5, which confirms that the process is nonlinear and selects yt−3 as the threshold
variable. Therefore, we go to Step 3. Figure 5 gives the scatter plots of the t ratios of
the lag-1 AR and MA coefficient and residuals versus ordered yt−3. From the plot, it
is clear that the t-ratio is significant and changes its direction twice, suggesting that
there are two nontrivial thresholds. After examining the scatter plots carefully, we
decide on the location of thresholds: one near yt−3 = 0 and again near yt−3 = 2. An
examination of the actual values suggests that the possible estimates of r ′

1s and r ′
2s, are

{0.17925, 0.1809, 0.1904, 0.2020, 0.2195, 0.2344, 0.2347, 0.2360, 0.2656},
{2.0095, 2.0523, 2.0863, 2.0909, 2.1144, 2.1656, 2.1934} respectively. This step
substantially simplifies the complexity in modeling the TARMA model because
it effectively identifies the number and locations of the thresholds. Finally, we use
AIC to refine the threshold values, AR and MA orders in Step 5. The final threshold
values are r1 = 0.2269 and r2 = 2.0886. The AR and MA orders are 1 in the first
and second regime, and the third regime has 2 AR orders as well as MA orders,
and the numbers of observations are 71, 114 and 171. The TMA model for this data
was given by Ling and Tong [23] that has AIC= 691.61, whereas the AIC of ours
is 678.74, which is substantially smaller. Details of the model are given in (5.1).
Figure 6 gives the ac f of the standardized residuals of the model, as well as the
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Table 5 The estimate of d in modeling a real example

d 1 2 3 4 5

F̂ 2.3916 1.9004 3.0732 1.2764 1.3921
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pac f of the standardized residuals. There is no rigorous diagnostic test for TARMA
models yet. The use of ac f and pac f are just crude methods. Both ac f and pac f
do not indicate any model inadequacy.

yt =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1.0587yt−1 + 0.0182yt−2 − 0.7018ε(1)
t−1 − 0.3695ε(2)

t−2 + ε
(1)
t , yt−3 ≤ 0.2269

−0.0668yt−1 + 0.6869ε(2)
t−1 + ε

(2)
t , 0.2269 < yt−3 ≤ 2.0886

0.3804yt−1 − 0.3319ε(3)
t−1 + ε

(3)
t , yt−3 > 2.0886

ε
(1)
t i.i.d. ∼ N (0, 5.86), ε(2)

t i.i.d. ∼ N (0, 6.25), ε(3)
t i.i.d. ∼ N (0, 8.44)

(3.5)

5 Conclusion

We propose a procedure for detection and modeling of TARMA models. The pro-
cedure is simple to implement and requires no pre-specification of the number of
regimes of a TARMAmodel and its delay parameter. Using the proposed procedure,
some simulation results and the application to a real example lend further support
to our method. Firstly, through the MC experiments, we see the proposed F test
statistic gives good performance on detecting threshold nonlinearity. Secondly, our
procedure obtain satisfactory results in the modeling of several simulated data sets.
Finally, the application to a real data example confirms the above two aspects.
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Appendix: Proofs of Theorems

Proof (Theorem 1) For each regime of model (1.1), under the Assumption 4.1, we
substitute the fitted residuals {ε̂( j)

t−i , i = 1, . . . , q j } for {ε( j)
t−i , i = 1, . . . , q j } using

ELSE. Then, in every regime, model (1.1) is the linear regression model, we can
obtain least squares estimate Φ̂( j) of j th regime. Under the condition of Assump-
tions 1–4, they are fulfilled to the condition of Theorem 1 of Lai and Wei [17] and
Theorem 2 of Liang et al. [21]. Therefore, for given k, d, and the threshold values r j ,
the least squares estimates {Φ̂( j), j = 1, 2, . . . , l} converge to {Φ( j), j = 1, 2, . . . , l}
almost surely. �
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Proof (Theorem 2) Consider the observation {yt , t = 1, 2, . . . , n} and define

Xt = (1, yt−1, . . . , yt−p, ε̂t−1, . . . , ε̂t−q),

with ε̂t−i ’s being the residuals for model (1.1) fitted by the Hannan–Rissanen algo-
rithm or ELSE.

Also define Φ, An, Vn by

Φ ′ = (φ0, φ1, . . . , φp, θ1, . . . , θq),

An = (n − p − q)−1
∑

X ′
t Xt , Vn = (n − p − q)−1

∑
X ′

t yt ,

Therefore, without loss of generality, the least squares estimate of Φ and the
residuals are

Φ̂ = A−1
n Vn,

êt = yt − ŷt = XtΦ + et − XtΦ̂ = Xt (Φ − Φ̂) + et .

Also define Ψn and ât by

Ψn = (n − p − q)−1
∑

X ′
t êt

= (n − p − q)−1
∑

X ′
t Xt (Φ − Φ̂) + (n − p − q)−1

∑
X ′

t et

= An(Φ − Φ̂) + (n − p − q)−1
∑

X ′
t et ,

ât = êt − Xt A−1
n Ψn.

Hence,

( ∑
ê2t − ∑

â2
t

)
/(n − p − q)

= [∑
ê2t − ∑

(êt − Xt A−1
n Ψn)2

]
/(n − p − q)

= [∑
ê′

t êt − ∑
(êt − Xt A−1

n Ψn)′(êt − Xt A−1
n Ψn)

]
/(n − p − q)

= [
2Ψ ′

n A−1
n

∑
X ′

t êt − (n − p − q)Ψ ′
n A−1

n Ψn
]
/(n − p − q)

= Ψ ′
n A−1

n Ψn

= [
An(Φ − Φ̂) + (n − p − q)−1 ∑

X ′
t et

]′
A−1

n

[
An(Φ − Φ̂) + (n − p − q)−1 ∑

X ′
t et

]

(3.6)

Because Xt depends on {yt−k; ε̂t−l , k = 1, . . . , p, l = 1, . . . , q}, which is inde-
pendent of et . (n − p − q)− 1

2
∑

X ′
t et forms a stationary and ergodic martingale dif-

ference process. Then (n − p − q)− 1
2
∑

X ′
t et follows asymptotic normality accord-

ing to a multivariate version of a martingale central limit theorem [2]. Theorem
2.1 shows Φ − Φ̂ →a.s. o(1). Xt is p + q + 1 dimensional, therefore, (4) fol-
lows approximately an F random variable with degrees of freedom p + q + 1 and

http://dx.doi.org/10.1007/978-1-4939-6568-7_2
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n − d − b − p − q − h. As another point of view, it is obvious that

∑
â2

t

(n − p − q)σ 2

is a chi-square random variable with degrees of freedom n − d − b − h − p − q.
Also, the numerator and denominator of (4) have the same asymptotic variance σ 2.
Then (p + q + 1)F̂(p, q, d) is asymptotically a chi-square random variable with
degrees of freedom p + q + 1, which is a straightforward generalization of Corol-
lary 3.1 of Keenan [16] or Tsay [32]. Theorem 2.2 is proved. �
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Abstract Nonparametric statistical procedures are commonly used in analyzing for
trend in water resources time series (Chapter23, Hipel and McLeod in Time series
modelling of water resources and environmental systems. Elsevier, New York, 2005
[10]). One popular procedure is the seasonal Mann–Kendall tau test for detecting
monotonic trend in seasonal time series data with serial dependence (Hirsch and
Slack in Water Resour Res 20(6):727–732, 1984 [12]). However there is little rig-
orous discussion in the literature about its validity and alternatives. In this paper,
the asymptotic normality of a seasonal Mann–Kendall test is determined for a large
family of absolutely regular processes, a bootstrap sampling version of this test is pro-
posed and its performance is studied through simulation. These simulations compare
the performance of the traditional test, the bootstrapped version referred to above, as
well as a bootstrapped version of Spearman’s rho partial correlation. The simulation
results indicate that both bootstrap tests perform comparably to the traditional test
when the seasonal effect is deterministic, but the traditional test can fail to converge
to the nominal levels when the seasonal effect is stochastic. Both bootstrapped tests
perform similarly to each other in terms of accuracy and power.
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1 Introduction

Trend analysis is important in studying environmental time series data. Of these
analyses, testing for the presence of amonotonic trend is of much interest in the study
of water quality. “As a matter of fact, when only a small amount of data are available,
the detection of the presence of trends is often all that one can realistically hope to
achieve” [10]. Some of the characteristics commonly found in water resources time
series data are non-normality, skewness, heavy tailed distributions, outliers, seasonal
effects,missing values, censored data and serial dependence. In spite of the increasing
computational power for some complexmodels, nonparametric statistical procedures
remain popular since they are efficient and robust against non-normal underlying
distributions. Chapter 23 ofHipel andMcLeod [10] provides a comprehensive review
of numerous publications concerned with testing for trend in hydrology time series
data using rank based methods. As listed in Table23.1.1 (p. 857, Chapter 23, Hipel
and McLeod [10]), the tests for monotonic trend include (nonseasonal or univariate)
Mann–Kendall tau, seasonal Mann–Kendall tau, Spearman’s rho, Spearman’s rho
partial correlation, and aligned rank tests.When data are iid under the null hypothesis
of no trend, the null distribution of such a statistic is usually free from the underlying
distribution of the data and only depends on the sample size, however that no longer
holds when the data are serially dependent. It has long been known that such rank
based procedures are either liberal or conservative according to whether the data
exhibit positive or negative autocorrelations. A number of remedial approaches exist
in the literature. For the Mann–Kendall test, El-Shaarawi and Niculescu [8] derive
expressions for the variance of the Mann–Kendall statistic in the case of MA (1)
and MA (2) , and then use the resulting exact variances to conduct the test using a
normal approximation to the null distribution of the Mann–Kendall statistic. Yue
et al. [27] consider various strategies for implementing the Mann–Kendall test for
trend in the case that the serial dependency is known, such as an AR (1) process.
Under the assumption of a weakly dependent series, Cabilio et al. [3] study the
asymptotic distribution properties of theMann–Kendall trend test and of its bootstrap
counterpart, and propose a bootstrap resampling test.

In this paper, we focus on seasonal trend tests. Assuming iid data, Hirsch et al. [11]
apply a Jonckheere type statistic and introduce a seasonal Mann–Kendall trend test
procedure for testing for a monotonic trend in monthly water quality data. Further-
more, Hirsch and Slack [12] improve on this seasonal Mann–Kendall tau trend test
based on results by Dietz and Killeen [7] that considers serial correlation among
different seasons (such as months) but assumes independence over longer time peri-
ods (such as years). We will explore the possibilities of further improvement of
the seasonal Mann–Kendall tau trend procedures so as to relax this independence
assumption. In Sect. 2, we will describe the models used for our seasonal trend tests,
and then discuss the limiting behaviour of the test statistic as well as approxima-
tions to its null distribution. Simulation comparisons of the finite sample distribution
behaviour and its bootstrap counterparts are detailed in Sect. 3. In Sect. 4 we illus-
trate the procedure for testing for trend in the average monthly water discharge at the
Athabasca River downstream of Fort McMurray, followed by a discussion Sect. 5.
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2 Null Distribution and Its Approximation

Consider the individual season as a block. The time series model may be written as

Xi, j = τ(i, j) + ei, j , i = 1, . . . , c; j = 1, . . . , n, (1)

where n is the number of time points repeatedly measured within the i th season
and c is the number of seasons. Here τ(i, j) represents the overall deterministic
trend that is due to seasonal or nonseasonal time effects, and {ei, j } are random
noises. We assume that the random noise {ei, j } results from a zero mean/median
weakly dependent stationary process. This is a realistic assumption in that the error
terms exhibit autocorrelation which is strongest for observations contiguous in time
and which weaken progressively with increasing lag times. The deterministic trend
component in (1) may be simplified as

τ(i, j) = si + f j (2)

where f j represents the time effect after controlling the periodically seasonal effects
si . We further assume that the remaining season effect is stochastically stationary as
a part of the random noise {ei, j }. Under model (1), the seasonal effect could be either
deterministic, stochastic, or both. For monthly data, si may represent the monthly
effect while f j would be the effect over years. To test for the presence of an increasing
trend over time, the null hypothesis is

H0 : f j = constant (3)

that is, without loss of generality, model (1) may be written as

Xi, j = si + ei, j (4)

and the alternative hypothesis is

H1 : f1 ≤ f2 ≤ · · · ≤ fn (5)

with at least one inequality in the alternative strict.
This model mirrors the test of Jonckheere [13] in a randomized design for testing

for an ordered alternative, so that Jonckheere’s statistic is a natural choice as the
test statistic. Denote the unstandardized Kendall’s tau correlation between a season
block’s repeated responses and the alternative ordering as

AK(i) =
n∑

l<k

sgn(Ri (k) − Ri (l)) (6)
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where data are ranked within the i th season block over time, Ri ( j) is the rank of
the j th time data value in the i th season, and sgn(Ri (k) − Ri (l)) is either 1 or −1,
depending on whether Ri (k) > Ri (l) or Ri (k) < Ri (l). The test statistic may be
written as

J =
c∑

i=1

AK(i). (7)

Under H0 and independent errors, for moderate sample sizes of n and c, the exact
distribution of J can be readily calculated, and its large sample approximation is a
normal distribution with zero mean and variance cn(n − 1)(2n + 5)/18. The stan-
dardized version of the Jonckheere statistic is used in this paper, that is,

J =
c∑

i=1

TK(i) (8)

where

TK(i) =
(
n

2

)−1

AK(i), (9)

is known as theMann–Kendall statistic for testing for trend in a series of observations.
Correspondingly the large sample approximation of the standardized version of Jon-
ckheerre is a normal distribution with zero mean and variance (4n + 10)c/(9(n2 −
n)) under H0 and independent errors. With dependent errors under H0, Lemma 1 in
Zhang and Cabilio [28] shows that J has asymptotically a normal distribution when
data in each season follow a stationary ARMA process and the season blocks are
mutually independent. A similar normality in the following more general Lemma 1
holds.

Lemma 1 Inmodel (4), under the null hypothesis H0, let {Xi, j } forma c-dimensional
strictly stationary sequences of stochastic vectors, {X j } ( j = 1, . . . , n), that is
absolutely regular with a common absolutely continuous distribution function F
satisfying condition i) of Theorem 1 in Yoshihara [26]. Then

Var (J ) = 4σ 2(n)−1 + O
(
n−2

)
(10)

where

σ 2 =
[

σ 2
1 + 2

∞∑

s=1

σ1,s

]

(11)

and σ 2
1 = Var(h1(X1)), σ1,s = Cov (h1(X1), h1(X1+s)) where

h1(x1) =
c∑

i=1

(1 − 2P(Xi,1 < xi,1))
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and if σ 2 > 0, then for n → ∞ and fixed c

√
n

2σ
J

D→ N (0, 1) . (12)

An introduction to the absolutely regular process and the conditions of Yoshihara
[26], together with a brief proof of Lemma 1 are provided in the “Appendix”.

The exact null distribution of J is unknownwithout knowledge of the explicit type
of process underlying the correlation structure of

{
ei, j

}
. Lemma 1 provides some jus-

tification for a possible approximation to the null distribution of the J statistic, with
one approach making use of the bootstrap sampling distribution. We consider two of
the better known bootstrap methods, block and sieve. Politis [20] and Bühlmann [2]
promote the block bootstrap for general stationary data generating processes includ-
ing nonlinear models, while in the case of the linear time seriesmodel the expectation
is that sieve bootstrap is superior (c.f. [2, 4].) As indicated by Kreiss et al. [14], valid-
ity of the different bootstrap procedures depends on the probabilistic structure of the
underlying stochastic process and particular statistic considered. Cabilio et al. [3]
discuss the validity of block and sieve bootstrap procedures to approximate the null
distribution of the Mann–Kendall tau statistic, following the results in Dehling and
Wendler [6] and Kreiss et al. [14]. Since J is a sum of Mann–Kendall statistics, sim-
ilar arguments may be applied to show the validity of these bootstrap procedures for
approximating the null distribution of the Jonckheere statistic. The implementation
would be equivalent to that of the bootstrapMann–Kendall tau by individual seasons.
Block or sieve bootstrap Jonckheere statistic samples are generated as follows.

Given time series samples, X1,1, . . . , X1,c;…; Xn,1, . . . , Xn,c, we first decompose
both the seasonal and time trends to obtain residuals,

êi, j = Xi, j − ŝi − f̂ j (13)

where ŝi and f̂ j are consistent estimators of si and f j . The residuals are then
ordered into a univariate time series sample by the natural time order denoted as
Y1,Y2, . . . ,YN where Yt = êi, j and t = c( j − 1) + i and N = nc. Moving block
bootstrap (MBB) resampling is conducted on this univariate sample to reflect the
dependence in both the short and/or the long term.

The MBB sample is generated as follows. For a given block size of length l, a
total of b = �N/ l� blocks are randomly sampled so that each block is formed by l
consecutive observations with blocks starting with Yt , t = 1, . . . , N − l + 1, where
Yt is selected at random from the sample Y1,Y2, . . . ,YN . The selected blocks are
then combined to give the bootstrap sample Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

bl , that is, {ê∗
i, j }.

To obtain the bootstrapped J ∗, the bootstrap sample will be broken by season
as ê∗

1,1, . . . , ê
∗
1,n; . . . ; ê∗

c,1, . . . ê
∗
c,n . The i th bootstrapped Mann–Kendall statistic is

calculated as

TK(i)∗ =
(
n

2

)−1 ∑

1≤l<k≤n

sgn
(
ê∗
i,k − ê∗

i,l

)
(14)
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A bootstrapped J ∗ may be written as

J ∗ =
c∑

i=1

TK(i)∗. (15)

The autoregressive sieve (AR-sieve) bootstrap approximates the data generat-
ing process by an autoregressive model with order p = p(N ), where p(N ) →
∞, p(N ) = o(N ) as sample size N → ∞. For given data, once the order is approx-
imated by p̂, the parameters of the AR( p̂) are estimated, and the estimated AR( p̂)
process is used to generate a bootstrap sample by resampling from the AR residual
process. The procedure may be detailed in terms of the steps in Kreiss et al. [14] as
follows:

Step 1: select an order p̂ by the Akaike Information Criterion (AIC) and fit a p̂th
order autoregressive model to Y1,Y2, . . . ,YN obtaining either the Yule-Walker or
Burg autoregressive parameter estimators, (φ̂1, φ̂2, . . . , φ̂p).

Lyubchich et al. [15] claim that there is no significant difference between the
Yule-Walker and Burg algorithms in their simulation results when they apply the
sieve bootstrap to a F-ratio type statistic on detecting non-monotonic trends in envi-
ronmental time series. However, based on superior finite sample properties of Burg
(c.f. [25, 29]), the Burg algorithm is the one recommended for this step [21].

Step 2: compute the residuals as ε̃0i = Yi − ∑ p̂
j=1 φ̂ j Yi− j where i = p̂ + 1, p̂ +

2, . . . , N , and center the residuals as ε̃i = ε̃0i − ε̄ where ε̄ = (N − p̂)−1 ∑N
i= p̂+1 ε̃0i .

Denote the empirical distribution function of the centered residuals by F̂N .
Step 3: let (Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

N ) be a set of observations from the time series gener-

ated from Y ∗
i = ∑ p̂

j=1 φ̂ j Y ∗
i− j + ε∗

i where ε∗
i ’s are iid variables having the identical

distribution F̂N .
Step 4: Compute J ∗ based on the sieve pseudo-time series Y ∗

1 ,Y ∗
2 , . . . ,Y ∗

N as
described above for the block bootstrap sample in Eqs. (14) and (15).

3 Simulation Results

In order to provide examples of the performance of the sampling distributionmethods
described in Sect. 2, this section details simulation results in the case of two seasonal
models with monthly data c = 12. Both models considered for the trend and error
processes were taken to be linear, so that the time trend decomposition is based on
median slope estimation [24] and the seasonal decomposition is based on the sample
median/mean across years in each season.

McLeod et al. [17] claim that the Spearman’s rho partial rank correlation test has
advantages over the original seasonal Mann–Kendall test [11] with the iid assump-
tion. The simulation results in Yue et al. [27] show that for univariate time series
the Mann–Kendall and Spearman’s rho tests perform similarly in detecting trend to
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the point of being indistinguishable in practice. We compare the performance of two
tests based on the sieve bootstrap sampling distribution, the sieve sampling Mann–
Kendall tau (SSMK) and the sieve sampling Spearman’s rho partial rank correlation
(SSP). In addition we include a comparison with the seasonal Mann–Kendall test
(SMK) [12] which is based on the asymptotic conditional covariance matrix [7]. The
calculation of Spearman’s rho partial rank correlation for the trend test is described
in [17].

We consider two types of seasonality: deterministic and stochastic. For determin-
istic seasonality, the data were generated by

Xi, j = sin
(π

3
+ π

6
i
)

+ β(12 ∗ ( j − 1) + i) + ei, j (16)

where i = 1, . . . , 12, j = 1, . . . , n, and ei, j were generated by a stationary autore-
gressive model AR(1)

μt = φμt−1 + εt (17)

where μ12∗( j−1)+i = ei, j , t ≥ 2, and the innovation term εt is iid Student-t (4). The
seasonal component in model (16) was selected from Hirsch, Slack and Smith [11].
For the stochastic seasonality, the data were generated by

Xi, j = β(12 ∗ ( j − 1) + i) + ei, j (18)

where ei, j were generated by a multiplicative seasonal ARMA model,

μt = �μt−12 + εt − θεt−1 (19)

or
μt = εt − θεt−1 − 
εt−12 + θ
εt−13 (20)

where μ12∗( j−1)+i = ei, j , t ≥ 14, and εt is iid N (0, 1). These seasonal component
models (19) and (20) seem to occur frequently in practice [5].

Using each of the three tests, Tables1 and 2 provide the empirical significance
levels for the deterministically seasonal model in (16) and for the stochastically sea-
sonal model in (18) respectively, corresponding to the nominal sizes 0.10, 0.05, 0.01
and n = 10, 20, 30. Specifically, Table1 is for the cases φ = −0.2,−0.5, 0, 0.2, 0.5
with t (4) innovation terms in (17), and Table2 is for � = 0.5 and θ = 0.4 in (19),
and 
 = −0.8 and θ = 0.5 in (20). In Table3 we explore the empirical power
(β = 0.01, 0.05) and again the empirical significance level (β = 0) of SSMK and
SSP for the deterministic seasonal model in (16) with t (4) distributed innovation
terms and n = 10, 15.

All empirical levels and power of the tests were obtained by 2000 realizations.
The simulation calculations were conducted using R [22]. The univariate Mann–
Kendall statistics were calculated with R library Kendall [18]. The tests of SMK
were conducted using R library rkt [16].
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Table 1 Empirical levels of 10, 5 and 1% tests for the deterministic seasonal model in (16) with
t (4) distributed innovation terms

φ Size n = 10 n = 20 n = 30

SSMK SSP SMK SSMK SSP SMK SSMK SSP SMK

−0.5 0.10 0.103 0.112 0.091 0.095 0.101 0.101 0.099 0.115 0.099

0.05 0.057 0.062 0.039 0.057 0.058 0.047 0.050 0.057 0.041

0.01 0.015 0.013 0.003 0.014 0.019 0.006 0.012 0.017 0.005

−0.2 0.10 0.099 0.094 0.095 0.100 0.096 0.092 0.096 0.097 0.092

0.05 0.056 0.052 0.036 0.047 0.051 0.037 0.049 0.054 0.043

0.01 0.013 0.015 0.003 0.013 0.013 0.006 0.009 0.014 0.008

0 0.10 0.116 0.114 0.109 0.093 0.097 0.100 0.097 0.098 0.101

0.05 0.062 0.058 0.043 0.061 0.057 0.049 0.043 0.043 0.043

0.01 0.015 0.020 0.001 0.017 0.017 0.007 0.012 0.010 0.007

0.2 0.10 0.114 0.118 0.099 0.104 0.102 0.097 0.099 0.098 0.102

0.05 0.061 0.061 0.040 0.053 0.056 0.049 0.054 0.054 0.049

0.01 0.022 0.025 0.003 0.015 0.014 0.006 0.016 0.016 0.007

0.5 0.10 0.122 0.126 0.118 0.120 0.112 0.119 0.124 0.121 0.136

0.05 0.069 0.066 0.055 0.063 0.060 0.062 0.061 0.064 0.071

0.01 0.018 0.021 0.002 0.019 0.018 0.010 0.013 0.015 0.014

Table 2 Empirical levels of 10, 5 and 1% tests for the stochastic seasonal model in (18). s1 is
� = 0.5 and θ = 0.4 in (19) and s2 is 
 = −0.8 and θ = 0.5 in (20)

φ Size n = 10 n = 20 n = 30

SSMK SSP SMK SSMK SSP SMK SSMK SSP SMK

s1 0.10 0.147 0.170 0.217 0.135 0.157 0.257 0.139 0.151 0.279

0.05 0.091 0.110 0.121 0.091 0.098 0.157 0.088 0.093 0.189

0.01 0.041 0.056 0.020 0.030 0.037 0.046 0.028 0.033 0.066

s2 0.10 0.113 0.124 0.167 0.089 0.094 0.174 0.098 0.093 0.188

0.05 0.071 0.076 0.088 0.057 0.052 0.114 0.048 0.052 0.105

0.01 0.024 0.034 0.009 0.012 0.016 0.028 0.014 0.014 0.031

It is seen from Table1 that SMK, SSMK and SSP achieve empirical significance
levels that, on the whole, are close to the nominal values, particularly for values of
φ = −0.5,−0.2, 0, 0.2. For negative correlations the empirical levels are generally
accurate for all sample sizes. Notably for φ = 0, 0.2, SMK is a little more accurate
at n = 10, but at n = 20, 30 there is little difference between the three methods. All
methods have less accurate empirical levels at φ = 0.5, but curiously for n = 30 the
empirical level of SMK decreases in accuracy. Turning to Table2 for the first model
it is seen that all three methods have inflated empirical levels and this is particularly
true for SMK, which is extremely liberal at the 0.10 level in particular, and at the
0.05 level for n = 20, 30. In fact SMK becomes less accurate as n increases at all
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Table 3 Empirical significance levels (β = 0) and powers (β = 0.01 or β = 0.05) of SSMK and
SSP for the deterministic seasonal model in (16) with t (4) distributed innovation terms

Size (%) SSMK SSP

β = 0 β = 0.01 β = 0.05 β = 0 β = 0.01 β = 0.05

n = 10

0 10 0.111 0.948 1 0.110 0.952 1

5 0.062 0.901 1 0.062 0.907 1

1 0.016 0.717 1 0.015 0.741 1

0.2 10 0.098 0.853 1 0.100 0.855 1

5 0.055 0.758 1 0.050 0.769 1

1 0.019 0.542 1 0.021 0.552 1

0.4 10 0.116 0.719 1 0.115 0.716 1

5 0.068 0.585 1 0.072 0.586 1

1 0.019 0.341 1 0.020 0.330 1

0.5 10 0.124 0.588 1 0.129 0.583 1

5 0.076 0.452 1 0.078 0.457 1

1 0.027 0.241 1 0.029 0.245 1

n = 15

0 10 0.112 1 1 0.111 1 1

5 0.056 1 1 0.058 1 1

1 0.012 0.998 1 0.013 0.998 1

0.2 10 0.110 0.998 1 0.109 0.999 1

5 0.060 0.995 1 0.057 0.994 1

1 0.018 0.975 1 0.014 0.969 1

0.4 10 0.106 0.972 1 0.106 0.970 1

5 0.056 0.932 1 0.062 0.928 1

1 0.018 0.823 1 0.018 0.817 1

0.5 10 0.109 0.911 1 0.107 0.908 1

5 0.068 0.837 1 0.065 0.832 1

1 0.020 0.641 1 0.023 0.636 1

levels. Overall, the empirical level of SSMK is most often the closest to the nominal
value. For the second model in Table2, SMK is again the least accurate, becoming
worse with increasing sample size. On the other hand, SSMK and SSP have similar
good performances, with accuracy increasing with sample size. Finally, the power
simulations in Table3 indicate that there is little difference between SSMK and SSP
for this model. Both achieve high values of power even for small values of β, even
for φ large, and these power values increase dramatically with a modest increase in
sample size.
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4 Application

To illustrate the procedures discussed above, we apply them for testing trend in
the average monthly water discharges (m3/sec) at the Athabasca River downstream
of Fort McMurray, Alberta from January, 1958 to December, 2008. The data were
downloaded from the Water Survey of Canada archived database [9]. Schindler and
Donahue [23] claim that climate warming and human modifications to catchments
have significantly reduced the flows of major rivers of the Canadian western prairie
provinces during the summer months (May–August). For the Athabasca River, using
descriptive statistics and simple regression tools, they analyzed the annual mean
records of average summer month water discharges during the similar time period at
the same station.We are interested in confirming/determining whether there has been
a significant downward trend using the all seasonsmonthlywater discharges. Figure1
plots the logarithm scaled data with a lowess smoothing line. The plot shows a weak
downward trend mixed with a strong seasonality. Figure2 is a plot of the sample
autocorrelation function (ACF) of first (lag-1) differences of the log-scaled data,
which indicates the presence of seasonality, thus providing a rationale for seasonal
adjustment when testing for the trend over time. Further, Fig. 3 plots the sample
ACF of first and seasonal (lag-12) differences of log-scaled water discharge levels.
This plot suggests that the differenced data are still serially dependent, indicating the
presence of stochastic seasonality.

We applied the original seasonal Mann–Kendall test (SMK) for testing for a
decreasing trend and obtained a p value of 0.006. The simulation results in the
previous section show that this test would be very liberal when stochastic seasonality
appears in the data. We further applied our seasonal Mann–Kendall as well as the
Spearman partial correlation tests (SSMK and SSP) and obtained p values 0.049 and
0.051 respectively, leading to a conclusion that there is still significant evidence for
the presence of declining trend, but at a more reliable level.

5 Discussion

The seasonal Mann–Kendall tau test by Hirsch and Slack [12] is commonly used
in detecting statistically significant trends in environmental time series analysis. Its
popularity is due to its high detection power and robustness in terms of the under-
lying distributions and serial autocorrelations, as shown in a number of studies.
Previous simulation studies that have been conducted to test its robustness against
serial autocorrelation have assumed simple linear time series models with determin-
istic seasonal component. There is little discussion in the literature on what its range
of validity is in terms of the data dependence structure. A different rank correlation
based test, Spearman’s rho partial correlation test, has not received the same attention
as SMK in spite of the results in [17]. In this paper, following the ideas in Cabilio et
al. [3], we focus on introducing a bootstrap sampling test, SSMK, and on comparing
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Fig. 1 Monthly mean water
discharges (logarithm),
Athabasca River, 1958–2008
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Fig. 2 Sample ACF of first
differences of log-scaled
water discharge levels
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its performance to both the SMK, and the bootstrap version of Spearman’s rho partial
correlation (SSP). Our simulation results show that both SSMK and SSP can improve
the accuracy of the test for trend when stochastic seasonality is present in the data. As
indicated by our simulations, the bootstrap sampling tests SSMK and SSP achieved
empirical significance levels comparable to those produced by SMK for data gen-
erated from a simple AR(1) model with deterministic seasonal component. With
regards to power of SMK, preliminary simulations that we have conducted for the
model and parameters in Table3, indicate that the tests SSMK and SSP appear to be
generally at least as powerful as SMK, and for certain significance levels and values of
φ, more powerful. Hirsch and Slack [12] show that SMK is valid with autocorrelation
less than 0.6 using an ARMA(1,1) simulation model, and claim that SMK could be
accurate for monthly data since the monthly serial autocorrelation had been shown
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Fig. 3 Sample ACF of first
and seasonal differences of
log-scaled water discharge
levels
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to be weak in many existing water resources time series data. However, this claim
will not hold when the serial autocorrelation is seasonal since their method assumes
independence within season. In fact, as noted in the previous section, the inaccuracy
of the empirical level for SMK does not improve as sample size is increased in the
presence of stochastic seasonality. Interestingly our simulation results indicate that
the two bootstrap sampling tests SSMK and SSP perform similarly in terms of their
accuracy and power. Our study is encouraging but not without limitations. In order
to implement our sieve bootstrap approach, in our simulation study we assumed
linear time trends and linearly serial autocorrelations. More extensive simulations
will be needed to give a more complete picture of the robustness of the bootstrap
approach in terms of trend forms and dependence structures. For this reason, a block
bootstrap implementation procedure is provided in Sect. 2. The evidence presented
here of the possibility of significant improvements, will hopefully encourage addi-
tional research aimed at providing further enhancement of nonparametric rank-based
correlation methods for testing for trend in seasonal time series data.
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Appendix

Weakly dependent stationary processes, loosely speaking, are characterized by the
fact that the dependence between observations which are very far apart becomes very
small, so that eventswhich are functions of such far-flung observations behave almost
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as if they were independent. Background material and more precise definitions may
be found in Bradley [1]. There aremanyways of defining suchweak dependence. For
our purposes we consider the following coefficient. Let {Ai } be a stationary vector
sequence defined on a probability space (�,F , P) , and for m < n, let Fn

m be the
σ−algebra generated by Am, . . . , An . For m ≥ 1, define

β (n) = E

{

sup
B∈F∞

n+m

∣
∣P

(
B|Fm

0

) − P (B)
∣
∣

}

. (21)

The process is said to be absolutely regular (or β mixing) if β (n) → 0. The rate
of convergence to 0 of such a coefficient will determine the limiting behaviour of
U-statistics based on such sequences. A CLT for U-statistics based on absolutely
regular vector processes, derived in Yoshihara [26]. A general U-statistic with a
degree k kernel h(Ai1, . . . , Aik ) may be defined as

Un =
(
n

k

)−1 ∑

(n,k)

h
(
Ai1 , . . . , Aik

)

where {Ail } is a sequence of n random vectors from a common distribution F and
the sum extends over all subsets 1 ≤ i1 < · · · < ik ≤ n of (1, . . . , n).

The results in Yoshihara [26] when specialized to aU-statistic with a degree k = 2
kernel based on a stationary absolutely regular sequence {Ai } with a common d.f.
F(Ai ) show that if the following conditions are satisfied for some δ > δ′ > 0, and
for some M > 0:

(i) β (n) = O
(
n−(2+δ′)/δ′

)

(ii) E
∣
∣h

(
Ai , A j

)∣
∣2+δ ≤ M

(iii)
∫ |h (a1, a2)|2+δ dF (a1) dF (a2) < M ,

then Var(Un) has the form given by the right side of Eq. (11) with the projection
function defined as

h1(a1) = E(h(a1, A2))

and Un has an asymptotic normal distribution similar to Eq. (12).
Mokkadem [19] establishes the form of weak dependence of stationary vector

ARMA processes as well as the rate of convergence to 0. His Theorem 1 on p.
310 states that if the sequence of independent identically distributed errors {εi } are
absolutely continuous, the stationary ARMA process is absolutely regular with

β (n) = O
(
rn

)
for some 0 < r < 1. (22)

so that condition (i) is satisfied in this case.
Outline of Proof for Lemma 1:
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Theproof ofLemma1 relies on showing that J is aU-statistic satisfying theYoshihara
conditions described above. In fact, J in Eq. (8) can be written as

J =
c∑

i=1

(
n

2

)−1 n∑

l<k

sgn(Xi,k − Xi,l)

=
(
n

2

)−1 n∑

l<k

c∑

i=1

sgn(Xi,k − Xi,l)

Thus J is a U-statistic with a kernel function,

h(xl , xk) =
c∑

i=1

sng(k − l)sgn(xi,k − xi,l).

and

E(J ) =
c∑

i=1

E(sgn(Xi,2 − Xi,1))

= 0.

Since |h| ≤ c, so that conditions (ii) and (iii) are immediately satisfied for all δ′ < δ.
When the condition (i) is satisfied, by Yoshihara [26], we obtain Eqs. (11) and (12).
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A Brief Derivation of the Asymptotic
Distribution of Pearson’s Statistic
and an Accurate Approximation
to Its Exact Distribution

Serge B. Provost

Abstract A brief and accessible derivation of the asymptotic distribution of Pear-
son’s goodness-of-fit statistic is proposed. Additionally, a shifted gamma distribu-
tion is introduced as an accurate approximation to be utilized when the chi-squared
distribution proves to be inadequate. It is also explained that the exact probabil-
ity mass function of this test statistic can be readily determined from its moment-
generating function via symbolic computations. Two illustrative numerical examples
are included.

Keywords Pearson’s statistic · Asymptotic distribution · Goodness-of-fit tests ·
Shifted gamma distribution

AMS Mathematics Subject Classification (2010) 62E20 · 60E10 · 62E15 ·
62E17

1 Introduction

The chi-squared goodness-of-fit statistic was initially proposed by [11]. Its main
applications consist in assessing the extent to which a categorical data set is dis-
tributed according to certain specified probabilities or a given distribution, see [9],
testing for the homogeneity of two multinomial populations, see [1, 3], and deter-
mining whether two attributes are independently distributed, see [10, 14].

Consider an experiment having r mutually exclusive and exhaustive outcomes
denoted by O1, . . . ,Or , whose respective probabilities of occurrence are hypothe-
sized to be p1, . . . , pr , so that

∑r
j=1 p j = 1. Assuming that the experiment is repli-

cated n independent times and letting Y j denote the number of times the experiment
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results in outcomeO j , j = 1, . . . , r , the random variables Y1, . . . , Yr−1 jointly have
the multinomial probability mass function

n!
r∏

j=1

p
yj
j

y j ! ,

with yr = n − ∑r−1
j=1 y j and pr = 1 − ∑r−1

j=1 p j . Pearson argued that, asymptotically,
the statistic

P =
r∑

j=1

(Y j − np j )
2

np j
(1)

has a chi-squared distribution on r − 1 degrees of freedom. Several derivations of this
result are available in the literature, including those provided by [4, 5, 8, 11]. How-
ever, these proofs can be somewhat lengthy and/or require certain specialized results
such as Slutsky’s theorem, some properties of projection or idempotent matrices,
the singular value decomposition theorem or series expansions for certain functions
of matrices. A short proof of the asymptotic distribution of P , which is essentially
based on the multivariate central limit theorem, is proposed in Sect. 2. When s para-
meters have to be estimated, Watson [15] showed that the asymptotic distribution of
P becomes chi-squared on r − s − 1 degrees of freedom.

The chi-squared approximationmay turn out to be unreliable if, for instance, some
of the expected values, n p j , are too small. Although there is no consensus on the
conditions that precludes its application, various criteria such as no cell count equal
to zero, expected values, n p j , greater than five for a certain proportion of the cells,
a minimum sample size, a minimum number of classes and a sample size at least
equal to a certain multiple of the number of classes, have been suggested, see for
instance [2, 7, 12, 13, 16]. When such conditions are not satisfied, the chi-squared
approximationmayprove inaccurate, inwhich case onewouldhave to foregoutilizing
Pearson’s test. As a viable alternative, another continuous approximation, namely,
the shifted gamma distribution is introduced in Sect. 3. Additionally, it is explained
that section that the exact distribution of Pearson’s statistic can be readily obtained
from its moment-generating function by means of symbolic computations and that
the parameters of the shifted gamma approximation can then easily be determined.
As well, two numerical examples are provided in Sect. 4.

2 A Short Proof of the Asymptotic Distribution
of Pearson’s χ2 statistic

Let the random vector Y = (Y1, . . . ,Yr )′ have a Multinomial (n; p1, . . . , pr ) distri-
bution with p j > 0, j = 1, . . . , r, and

∑r
j=1 p j = 1,
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Σ ≡ Cov(Y1, . . . ,Yr−1) = n

⎛

⎜
⎜
⎜
⎝

−p21 + p1 −p1 p2 . . . −p1 pr−1

−p2 p1 −p22 + p2 . . . −p2 pr−1
...

...
. . .

...

−pr−1 p1 −pr−1 p2 . . . −p2r−1 + pr−1

⎞

⎟
⎟
⎟
⎠

(2)

and U = (Y1 − np1, . . . ,Yr−1 − npr−1)
′. Letting Σ−1/2 denote the inverse of the

symmetric square root of Σ , it follows from the multivariate central limit theorem
thatZ ≡ Σ−1/2U → Nr−1(0, I ), a standard normal distribution, which implies that
U′ Σ−1U = Z′ Z → χ2

r−1 as n → +∞. On letting Yr = n − ∑r−1
j=1 Y j and pr = 1 −

∑r−1
j=1 p j , Pearson’s χ2 statistic denoted P can be expressed as follows:

P =
r∑

j=1

(Y j − np j )
2

np j
= 1

n

⎡

⎣
r−1∑

j=1

(Y j − np j )
2

p j
+

(n − ∑r−1
j=1 Y j − n(1 − ∑r−1

j=1 p j ))
2

pr

⎤

⎦

= 1

n

[ r−1∑

j=1

(Y j − np j )
2

p j
+

(∑r−1
j=1(Y j − np j )

)2

pr

]

. (3)

It can then be verified that the inverse of Σ = n (D iag (p) − pp′) where p =
(p1, . . . , pr−1), is

Σ−1 = 1

n
D iag

(
1

p1
, . . . ,

1

pr−1

)

+ 11′

n pr
(4)

where 1 = (1, . . . , 1)′, as Σ (D iag (1/p1, . . . , 1/pr−1)/n) = I − p1′ and Σ (11′/
(n pr )) = p1′/pr − p (

∑r−1
j=1 p j ) 1′)/pr = (1 − (1 − pr )) p 1′/pr = p1′ . Now, on

noting that 1′ U = ∑r−1
j=1(Y j − np j ), one has U′ Σ−1U = P as given in Eq. (3),

so that P → χ2
r−1 as n → +∞ . �

Remarks We observe that Y = (Y1, . . . ,Yr )′ can be expressed as the sum of n inde-
pendently distributed Multinomial(1; p1, . . . , pr ) random vectors X i where each
X i is a vector of zeros except for its kth component, which is equal to 1 when the
kth outcome occurs at the i th trial of the experiment and that, for instance, the last
component of Y is fixed given its first r − 1 components. As a result, the covari-
ance matrix of Y is singular whereas that associated with its first r − 1 components,
that is, Σ is invertible. Accordingly, it indeed follows from the multivariate central
limit theorem that Σ−1/2

( ∑n
i=1 X i

∗ − n p
) → Nr−1(0, I ), where X i

∗ denotes the
(r − 1)-dimensional subvector of X i consisting of its first r − 1 components and
p = (p1, . . . , pr−1)

′. Note that, in the above notation,
∑n

i=1 X i
∗ − n p = U. More-

over, that Σ−1 as specified by Eq. (4) is the inverse of Σ , can be deduced from
Theorem 8.3.3 [6], for which, however, no explicit proof was provided.
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3 An Accurate Approximation to the Exact
Distribution of P

The asymptotic distribution of Pearson’s statistic can prove quite accurate as an
approximation whenever certain conditions alluded to in the Introduction are satis-
fied. Otherwise, the chi-squared approximation may leave much to be desired and
lead to invalid conclusions. As it turns out, in such instances, a reliable approxima-
tion can be obtained by replacing the chi-squared distribution by a shifted gamma
distribution whose density and cumulative distribution functions are respectively
given by

g(x) = e− x−δ
θ (x − δ)α−1

Γ (α) θα
, x ∈ [δ,∞), (5)

where α > 0, θ > 0 and δ is a real number (positive in this case), and

G(y) = 1 −
Γ

(
α,

y−δ

θ

)

Γ (α)
, y ∈ [δ,∞), (6)

where Γ (α, z) = ∫ ∞
z xα−1e−x dx is the (upper) incomplete gamma function.

Consider the moment-generating function of P , that is,

MP(t) =
m∑

i=1

e t
∑r

j=1 (ci, j−n p j )
2/(n p j ) n!

r∏

j=1

p
ci, j
j

ci, j ! (7)

where n, r and p j are as previously defined and m = (n+r−1
r−1

)
is the number of

compositions of n into r ordered nonnegative integers (y1, . . . , yr ), which can be
obtained for example by utilizing the Mathematica command Compositions[n, k],
ci, j denoting the j th element of the i th composition.

Upon expanding the right-hand side of Eq. (7) and simplifying the resulting
expression by making use of a symbolic computation software package, MP(t)
can be represented as

∑m∗
i=1 β i e bi t where m∗ ≤ m, (b1, . . . , bm∗) is the support of

the distribution ofP , the bi ’s being listed in increasing order, and β i = Prob(P =
b i ), i = 1, . . . ,m∗. This follows from standard results in connection with the
moment-generating functions of discrete random variables. Accordingly, the exact

cumulative distribution function of P at the point b i is FP(b i ) = ∑i
	=1 β	.

The parameters of the shifted gamma approximation are then determined by min-
imizing

m∗
∑

i=1

(G(b i ) − FP(b i ))
2 (8)
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with respect to α, θ and δ, which can be achieved for instance with the Mathemat-
ica command NMinimize. Then, any required percentile of the distribution can be
evaluated from the shifted gamma cumulative distribution function.

4 Numerical Examples

Example 1 Letting n = 2, r = 3 and the null hypothesis be H0 : (p1, p2, p3) =
(0.142857, 0.285714, 0.571429), the distribution of P is as specified in Table1
(pmf and cdf respectively denoting the exact probability mass function and the
exact cumulative distribution function of P), which also includes the cumula-
tive distribution functions obtained by making use of the chi-squared distribution
on two degrees of freedom and the shifted gamma distribution with parameters
α = 0.912125, θ = 1.42627 and δ = 0.147528.

In this case, the compositions (that is, all the possible values of the observed
vectors (y1, y2, y3)) are {{0, 0, 2}, {0, 1, 1}, {0, 2, 0}, {1, 0, 1}, {1, 1, 0}, {2, 0,
0}}, and, under H0, the moment-generating function as determined from Eq. (7) is

16

49
e5 t/8 + 16

49
e3 t/2 + 8

49
e19 t/8 + 4

49
e13 t/4 + 4

49
e5 t + e12 t

49
.

Note that for an experimental value ofP equal to 5 and a significance level of 5%,
the null hypothesis would correctly be rejected when the shifted gamma distribution
is being utilized as an approximation, whereas it would mistakenly fail to be rejected
under the usual chi-squared approximation. It can also be observed that the shifted
gamma cumulative distribution function is in very close agreement with the exact
one.

Example 2 Letting n = 5, r = 2 and (p1, p2) = (1/19, 18/19), the exact distribu-
tion of P is as specified in Table2, which also includes the cumulative distribution
functions obtained by making use of the chi-squared distribution on one degree of
freedom and the shifted gamma distribution with parameters α = 0.177068, θ =
1.51936 and δ = 0.036122.

Table 1 Exact and approximate distributions of P as specified in Example 1

bi pmf cdf G(bi ) χ2
2 cdf

0.625 0.326531 0.326531 0.326788 0.268384

1.5 0.326531 0.653061 0.651651 0.527633

2.375 0.163265 0.816327 0.816604 0.695017

3.25 0.0816327 0.897959 0.90274 0.803088

5 0.0816327 0.979592 0.97234 0.917915

12 0.0204082 1. 0.999809 0.997521
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Table 2 Exact and approximate distributions of P as specified in Example 2

bi pmf cdf G(bi ) χ2
1 cdf

0.277778 0.763123 0.763123 0.763123 0.401839

2.17778 0.211979 0.975102 0.975099 0.859983

12.1 0.0235532 0.998655 0.999989 0.999496

30.0444 0.00130851 0.999963 1. 1.

56.0111 0.0000363475 1. 1. 1.

90 4.03861 × 10−7 1. 1. 1.

For n = 5 and r = 2, the compositions are {{0, 5}, {1, 4}, {2, 3}, {3, 2}, {4, 1},
{5, 0}}, and the moment-generating function is

1889568e5t/18

2476099
+ 524880e98t/45

2476099
+ 58320e121t/10

2476099

+ 3240e1352t/45

2476099
+ 90e5041t/90

2476099
+ e90t

2476099
.

5 Concluding Remarks

As the number of replications becomes large, it was observed that, as expected, the
parameters α, θ and δ of the shifted gamma approximation respectively converge
to r/2, 2 and 0. Moreover, as n increases, overall, this approximation remains more
accurate that the asymptotic chi-squared distribution. It should also be pointed out
that the proposed methodology could readily be applied to other goodness-of-fit
measures such as the Freeman-Tukey statistic or the sum of the squared deviations,
which are not as sensitive as P to possible small values of n pi , i = 1, . . . , r.

The chi-squared approximation being inaccurate when the sample sizes are small
or other conditions for its applicability are not satisfied, another continuous distrib-
ution, namely the shifted gamma distribution, is being proposed. Its parameters are
determined from the exact distribution of P , which is readily obtained by means
symbolic computations. It is admittedly more convenient to resort to the chi-squared
approximation; however, when it proves inadequate, the proposed methodology,
which turns out to be easily implementable, provides a viable alternative for accu-
rately determining specific critical values of Pearson’s goodness-of-fit test statistic.
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Business Resilience During Power Shortages:
A Power Saving Rate Measured by Power
Consumption Time Series in Industrial
Sector Before and After the Great
East Japan Earthquake in 2011

Yoshio Kajitani

Abstract Many power crises have occurred in developing and developed countries
such as through disruptions in transmission lines, excessive demand during heat
waves, and regulatory failures. The 2011 Great Japan Earthquake caused one of
most severe power crises ever recorded. This study measures the industry’s ability
to conserve power without critically reducing production (“power saving rate”) as
one of the indicator of resilience as a lesson of disaster. The quantification of the
power saving rate leads to grasping the potential power reduction of industrial sector
or production losses caused by the future incidents in many regions or countries.
Using time series data sets of monthly industrial production and power consumption,
this study investigates the power saving rate of Japanese industries during power
shortages after the great earthquake. The results demonstrates the size of power
saving rate right after the disaster, during the first severe peak demand season, as
well as long-term continuous efforts of power saving in different business.

Keywords Power shortage · Resilience · Great East Japan Earthquake · Industrial
sector

1 Introduction

Power shortages after the Great East Japan Earthquake on March 11, 2011 cre-
ated prolonged impact on Japan’s cities and businesses. Shortages during summer
2011 were serious in the Tohoku and Kanto regions, and power consumption by
large businesses (with a maximum demand exceeding 500KW) was restricted by the
Electricity Business Act (Article 27), which mandated each business to reduce peak
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power demand by 15 % from the previous year’s peak. To achieve that goal, Japanese
businesses undertook extensive efforts, such as shifting production before and after
the summer season and reassigning weekday activities to weekends. Some installed
power-saving machinery and equipment, such as LED (light-emitting diode). Their
adaptations attained the 15 % targeted reduction, avoiding blackouts and major upsets
in production.

The study defines their adaptive behavior as business resilience to power short-
ages. The key question is the degree to which business can reduce power consumption
without reducing output. Research establishing the resilience of business to shortages
is essential in preparing for future disasters. Previous research has provided extensive
information regarding attempted adaptations and how much power is conserved (e.g.,
IEA [11]). This research extends that literature, focusing on the relationship between
industrial production and power consumption. The quantification of resilience, in
terms of power saving ability during the disaster with the consideration of produc-
tion output, lead to grasping the potential power reduction of industrial sector or
production losses caused by the future incidents in many regions or countries.

Time series analysis is appropriate for understanding the impact by removing
the effects of seasonal trends and random errors observable even when disasters do
not occur. This study adopts monthly power consumption for large business and an
index of industrial production (IIP) as the most disaggregated datasets in Japan. The
study detects changes in relationships between power consumption and IIP as adap-
tive behavior during power shortages. The study conducts a relatively disaggregated
sector-by-sector analysis to identify the characteristics of each sector’s resilience.
Furthermore, it becomes milder, but the power shortage is an on-going issue in Japan
(as of August 2015), and the how the Japanese industries adjust to this situation in a
long-term basis is also an important issue for estimating not only short-term but also
long-term energy saving potentials all over Japan and the world.

The study proceeds as follows Sect. 2 summarizes power demand forecasting mod-
els and conditions of power shortages after the Great East Japan Earthquake. Section 3
describes statistical models and the study’s resilience index. Section 4 shows results
from applying the model to Japan’s Kanto (large power shortages) region. Section 5
summarizes.

2 Power Demand Forecasting and Industrial Adaptations
to Shortages

2.1 Power Demand Forecasting

Models forecasting power demand are essential statistical tools, and many models
have been developed in this area. In general, they estimate hypothetical demand if
sufficient power is supplied and compare it with the actual demand. Forecasting
approaches can be classified by their time scales and the statistical models adopted.
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Autoregressive Integrated Moving Average (ARIMA), Artificial Neural Network
(ANN), multiple regression, and combinations of all three are popular in statistical
models.

In short-term forecasts, power demand per hour or less is modeled for real-time
operations. Hilpert et al. [9] and An et al. [2] adopt ANN models; whereas, Tayler [20]
employs ARIMA. Similar approaches are employed for mid-term daily or monthly
forecasts, including Tayler and Buizza [21], Gonzalez-Romera [7], Pappas [19],
Hyodo [10], and Vu et al. [24]. Weather-related parameters are central to the accu-
racy of estimates by these models and most differentiate on the basis of weekdays
and weekends. Long-term forecasts, such as estimating annual power consumption,
required more socio-economic variables (Fatai, [5]; Azadeh et al., [3]; Zahedi, [25];
Nawas, [17]; Kaytez et al., [16]). Population and GDP are typical exogenous variables
because they correlate strongly with power consumption.

This study employs monthly power consumption time series data because a
monthly production index is available in Japan. The model for forecasting power
demand follows the general treatment of mid-term forecasts and partly that of long-
term forecasts. The study selects the appropriate statistical models using the Akaike
Information Criterion (AIC) and usual statistical tests on parameters.

2.2 Power Shortages During Japan’s 2011 Earthquake

2.2.1 Damaged Power Plants and Recovery Situation

Figure 1 illustrates the damage and recovery status of supply capacity in regions sup-
plied energy by Tokyo and Tohoku electric power companies. Operations of nuclear
power plants were halted, and approximately 90 % of supply capacity depended on
thermal power plants, which were massively damaged by earthquakes and tsunami.
Many thermal power plants recovered by peak demand season in July and August,
although risk of shortages remained high.

Figure 2 illustrates power supply and demand conditions on the peak demand
day in both regions during summer 2011. Note that peak demand day differs in
each region. During this period, Tokyo was expected to suffer the most severe
supply and demand imbalances. Therefore, the central government asked most of
industrial sectors to follow the 15 % mandatory reduction in power use. Consider-
able efforts by firms helped achieve the largest reduction of power consumption,
and peak demand was covered by supply with a safe margin. As the figure shows,
demand in Tohoku exceeded supply capacity; however, importing power from the
regions outside Tohoku region avoided shortages. More severe conditions are evident
in West Japan, where peak power consumption in most areas, excluding Chugoku,
approached or exceeded capacity.

The remainder of this study primarily employs monthly demand (KWH) in its
analysis because only monthly corresponding production index data are available.
Considering that mandatory restriction of power usage is related to a peak demand
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Fig. 1 Power supply capacities after the 2011 earthquake and tsunami (numbers in parenthesis
indicate the number of days after the previous event)
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Fig. 2 Power supply and demand after the 2011 earthquake and tsunami

(KW), it is necessary to clarify the relationship between peak demand (KW) and
daily consumption (KWH) in advance. Figure 3 demonstrates the actual relationship
between peak demand and daily consumption in the area served by Tohoku Electric
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Fig. 3 Time series plots of peak (KW) and daily (KWH) power demands after March 11

Power Co. [23]. This figure shows a linear relationship between these two measures.
In summer 2011, many businesses reduced daily power consumption, which in turn
reduced the peak power demand. For example, businesses took a day off or installed
machinery that consumed less power.

2.2.2 Time Series Data of Power Consumption and IIP

Figure 4 plots power consumption among large businesses and the IIP in Kanto
from March 2008 to December 2014 (METI-KANTO, [14]). Power consumption
data (METI-KANTO, [15]) include only large customers; however, the share of total
power supply is high. Consumption from generators owned by businesses is included.
There are inconsistencies in regional definitions between datasets. The IIP covers 11
prefectures (Ibaraki, Tochigi, Gunma, Saitama, Chiba, Tokyo, Kanagawa, Niigata,
Yamanashi, Nagano, Shizuoka); whereas, power consumption data target the area
served by TEPCO. Its data exclude Nagano, Niigata, and part of Shizuoka, which
are included in IIP.

Notwithstanding these slight regional inconsistencies, Fig. 4 shows that power
consumption and IIP have an obvious linear relationship. This is because the regional
overlap for these two indexes encompasses much of Japan’s economy. Furthermore,
it is likely that power consumption data capture a large share of total power con-
sumption and display a synthetic trend with the remaining data because production
trends are similar among small and large customers.
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Fig. 4 Relationships between power consumption by large businesses and index of industrial
production in the Kanto Region

It is a slightly difficult to claim that a difference appears in earlier trends (March
2008 to February 2011) and trends during a year after the earthquake (March 2011
to February 2012). In other words, the earthquake produced no evident impact on the
relationship between power consumption and production output. On the other hand,
during the last period (March 2011 to February 2012), it is visible that the production
is larger at the same level of electricity input, especially around 7100 million Kwh,
compared with the production before the disaster. Again, it is also difficult to observe
the difference between the two data sets at the larger input around 7500 million Kwh.

In fact, discussions of power consumption must consider temperature and sea-
sons. In general, the cooling and heating demands are changed if the temperatures
are changed. Whether the production is achieved with less electricity have to be
inspected after the temperature effect is removed. Similarly, seasonal effects, such
as changes in production items and systems, would affect the relationships between
power consumption and productions. The modelling of power demand in industrial
sector and deriving the indicator of quantifying the resilience is one of the main topics
in this research and is described in Sect. 3.

2.2.3 Adaptation Behaviors in Business Sector and Related Research
Questions

Nikkei [18] reports the elasticity of electricity input (production change under the
change of electricity input) on March 24, 2011, estimated from the strong correlation
between the IIP and power consumption for large businesses. Elasticity is 1.85 in
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Kanto (TEPCO service region), highest among the nine regions in Fig. 2, followed by
Chubu and Kansai, which are relatively industrialized. Average nationwide elasticity
is 1, indicating that a 1 % electricity reduction (increase) yields a 1 % production
increase (decrease). Based on elasticity in the Kanto region, the expected impact of
the power shortage was extremely large.

A post-summer business survey by the Agency for Natural Resources and Energy
[1] documents practical instances of countermeasures taken by businesses, their costs,
and their benefits. For example, one large business in commodity resins and synthetic
rubber shifted holidays to working days, day shifts to night shifts, and rescheduled
production from mid-summer to early summer to reduce peak demand during the
period of intensive power usage. As a result, 25 % of peak electricity demand was
reduced from the previous year. The countermeasures that cost �180 million (�80.75
= US$1 per Bank of Japan, 2011) help in avoiding losses worth �900 million, which
were assumed to be created under the condition of 25 % power demand reduction
without countermeasures. Other businesses adopted such countermeasures as moving
periodic inspection days to peak demand season and shifting production from Kanto
to other regions. Fujimi and Chang’s [6] summary of 14 business surveys after the
earthquake identify patterns of adaptation, revealing that manufacturers were more
likely to implement schedule changes.

IEA [11] surveyed past major incidents of power shortages and summarizes adap-
tations.1 The report notes three major strategies: raise electricity prices, encour-
age behavioral changes, and introduce energy-efficient technologies. Adaptations by
Japanese business can be classified in greater detail, as follows.

• Restrictions (e.g., change air conditioner settings)
• Time Shifts (e.g., change production timing)
• Substitutions (e.g., change fuel types, imports from other regions)
• Relocations (e.g., change production locales, relocate data servers)
• Renewals (e.g., install of new machinery).

Restrictions and time shift can be instituted with little preparation, but they are
grounded in human patience. Relocations and renewals require careful and lengthy
preparation; however, their effects last over an extended period. The success of sub-
stitutions depends on costs and quality of substituted goods and services and can
be temporary or semi-permanent. These countermeasures constitute the roots of
resilience, and its characteristics can be exposed by investigating instances of power
shortages that occasioned different durations of preparation. Detailed characteris-
tics of resilience can be itemized by surveying individual business; however, overall
resilience can be captured by monthly gross statistics in the following analysis. A
research question regarding the types of adaptation is how long the power saving
continues, which reflect the percentage of permanent adaptations undertaken by the
business such as relocations and renewals. In contrast, the other adaptations would be
revealed only temporarily during a severe condition. These question can be answered
by analyzing relatively long time series data after the disaster.

1The report is updated in 2011.



246 Y. Kajitani

3 Time Series Models and Index of Resilience

3.1 Time Series Model of Energy Demand

As noted, many statistical models forecast power demand. In these models, produc-
tion outputs, temperatures, and seasonal factors are essential to estimate demand.
Considering previous research, the following models are introduced as candidates
for estimating power demand in this research. First, the basic structure of power
demand function is represented as follows:

E(t) = a + bY (t) + Γ (t) + Ξ(t) + ε(t), (1)

where E(t) denotes power demand, Y (t) production output, Γ (t) temperature, Ξ(t)
remaining seasonal effects, and ε(t) random errors at time t . For Γ (t), either of two
functional types are selected:

(Polygonal line type function)

Γ (t) =
{

α − β1(γ − T (t)) (T (t) ≤ γ )

α + β2(T (t) − γ ) (T (t) > γ )

s.t. β1 ≥ 0, β2 ≥ 0
(2)

(Quadratic function)
Γ (t) = α + β1T (t) + β2T (t)2

s.t. β2 ≥ 0 , β1 ≤ 0
(3)

T (t) represents temperature at time t , and the other Greek letters indicate parameters.
The restriction of parameters is determined so that the function satisfies downward
convexity. This assumption comes from general observation of heating and cooling
demand (i.e., demand increases as the temperature becomes apart from the most
comfortable temperature to people). The model forms are selected to satisfy this
condition with small parameters, but other appropriate model may exist.

For the seasonality term Ξ(t), the dummy variables, Fourier series, or SARIMA
models are candidates.
(Dummy variable)

Ξ(t) =
11∑

s=0

ηs D(t) , where D(t) =
{

1 i f t (mod 12) = s
0 otherwise

, (4)

where t(mod 12) represents the remainder from dividing t by 12. s = 0 indicates
December, and other numbers (1 to 11) indicate corresponding months. ηs is a para-
meter capturing dummy variables for month (s).
(Fourier series)
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Ξ(t) =
k∑

i=1
ai sin

(
i 2π
K t

) +
k∑

i=1
bi sin

(
i 2π
K t

)

(K = 12)

(5)

(SARIMA)
φ(B)Φ(Bs)∇d∇D

s zt = θ(B)Θ(Bs)at , (6)

where zt is an original series, Φ(Bs) and θ(B) are seasonal autoregressive and
moving average operators, respectively. ∇D

s is seasonal differencing operator in D
times. ϕ(B) and θ(B) are non-seasonal autoregressive and moving average operators,
respectively. ∇d is a non-seasonal differencing operator in d times, and at is white
noise. More detailed explanations appear in Chap. 12 of Hipel and McLeod [8].

In total, six combinations (2 temperature effects × 3 remaining seasonal effects)
are investigated. The best model is chosen based on goodness-of-fit defined by AIC
and statistical tests on the significance of individual parameters.

3.2 Approaches to Quantify the Resilience of Industrial
Production During Power Shortages

One of the simplest measures is how much business saved the power consumption
which would have been used if the power crisis did not occur. In this study, the power
consumption after the disaster in the pre-disaster condition is estimated by the power
consumption time series model constructed by the pre-disaster data sets based on
Eq. (1) as follow:

Ê1(t2) = â1 + b̂1Ỹ (t2) + Γ̂1(t2) + Ξ̂1(t2), (7)

where the suffixes 1 and 2 indicate the parameters and variables before and after the
disaster respectively. Ê1(t2) is a hypothetical power consumption estimated from the
observed IIP and temperatures at time t2 based on the time series model of pre-disaster
structures. Furthermore, the power saving rate ES(t2) is defined by the hypothetical
and the observed power consumptions Ê1(t2) and Ẽ(t2) as:

S(t2) = 1 − Ẽ(t2)

Ê1(t2)
. (8)

Note that Eq. (8) is the power saving rate of remained production because the cases
of identical production outputs are compared before and after the disaster. In other
words, more power reductions certainly entail the production decrease. The sav-
ing rate is also defined as the power reduction rate for producing a single unit of
production.



248 Y. Kajitani

Similar to the case of power saving rate, the increase in productivity during power
shortages can be defined. In this case, production of time t2 at the pre-disaster demand
system is focused on and estimated as follows:

Ŷ1(t2) = 1

b̂1
(Ẽ(t2) − â1 − Γ̂1(t2) − Ξ̂1(t2)). (9)

Next, the productivity change rate R is defined by

R(t2) = Ỹ (t2)

Ŷ1(t2)
− 1. (10)

Evidently, indices S and R have a clear relationship which is explained by a following
formula based on the Eqs. (8)–(10).

S(t2)

R(t2)
= Ẽ(t2) − â1 − Γ̂1(t2) − Ξ̂1(t2)

â1 + b̂1Ỹ (t2) + Γ̂1(t2) + Ξ̂1(t2)
. (11)

4 Case Study of the 2011 Great East Japan Earthquake

4.1 Analysis of Severely Affected Region (Kanto)

First, total industrial sector in the Kanto area is analyzed. Each of industries were
required to reduce peak power by 15 %. Time series data for three years before the
earthquake (March 2008–February 2011) are used to select an appropriate statistical
model and to estimate parameters. Temperature data are obtained from an observatory
in center of Tokyo (JMA, [12]).2 The monthly average daily maximum temperature
is selected because the data fit better with the monthly average of daily average
temperatures.

Table 1 shows the result of AIC comparisons among combinations of temperature
and seasonality terms in Eqs. (1–6). The criterion supports a combination of Eq.
(3), which employs a quadratic form for the temperature term, and Eq. (4) which
employs a dummy variable. Parameter values appear in Table 2. This study imposes
5 % significance for selecting parameters. The dummy variables are significant in
the parts of summer season (July, August), winter season (February and March) and
autumn season (October). The signs of significant dummy variables in summer season
are all positive. This is because of the remaining residuals of modeling nonlinear
effects of temperatures on power demand by quadratic forms. The more cooling
demand may be necessary in high temperature seasons, resulting in underestimations

2It is, of course, ideal to use detailed regional temperatures, especially when more disaggregated
power consumption data are available.
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Table 1 AIC for different models

Seasonal Adj. AIC

No 487.5 
Fourier 481.4 

Dummy (5) 445.3 

SARIMA 461.9 

Constant Temperature AIC

No BiLinear 507.3 
Yes BiLinear 492.9 
No Polynomial 511.0 
Yes Polynomial 487.5 

Table 2 Estimated values of parameters (Kanto Area, March 2008–February 2011)

Parameter Estimates SD t P

Constant 3359.80 199.38 16.85 0

T −47.03 19.85 −2.37 0.03

T 2 1.68 0.63 2.69 0.01

IIP 51.04 1.72 29.66 0

Dummy (Feb) −221.11 73.84 −2.99 0

Dummy (Mar) −498.42 70.59 −7.06 0

Dummy (Jul) 372.95 95.77 3.89 0

Dummy (Aug) 528.94 105.29 5.02 0

Dummy (Oct) 238.65 66.76 3.58 0

Adjusted R2 0.976

of power demand. The power demand forecasts in the other dummy variables are
also possibly affected by the residuals of modeling temperature effects. The other
reason may be changes in monthly productivity. In general, scale effect should exist
for production. That is, productivity increases if the amount of production increases.
This is achieved by reducing idle time of production machinery and intensively
inputting labor forces. This productivity change contributes to the power saving. In
Japan, production increases in February and March mainly because these two months
are the end of fiscal year and production orders are concentrated.

Table 3 indicates the result of applying the same procedure to the post-disaster
data sets from March 2011 to December 2014. Basically, post-disaster time series is
instable especially right after the event occurs. Therefore, the table is given mainly for
reference purpose. Similar to Table 2, a quadratic form for the temperature term and
a dummy variable for seasonal trend term are selected as a result of AIC comparisons
and the criterial of 5 % significance level for choosing effective variables. Different
from Table 3, only the dummy variable in March is available. This can be because of
the effect of power saving efforts. The parameter value of IIP term is smaller than the
value of pre-disaster case, which indicate that the effective production is conducted in
average after the disaster. The parameters on quadratic term of temperature variable
are similar in both cases; however, the parameter of the first-order term is different.
There might be a possibility that patterns of cooling and heating demands changed
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Table 3 Estimated values of parameters (Kanto Area, March 2011–February 2014)

Parameter Estimates SD t P

Constant 3121.04 330.67 9.44 0

T −34.22 12.62 −2.71 0.01

T 2 1.69 0.37 4.56 0

IIP 47.06 3.94 11.93 0

Dummy (Mar) −416.80 74.28 −5.61 0

Adjusted R2 0.917

after the disaster, or larger errors from regressed model may dominate the seasonality
effects. A detailed analysis is required for understanding the change.

By eliminating temperature and seasonal effects from respective observed power
consumptions before and after the disaster, Fig. 5 is illustrates the relationship
between production and power consumption. Compared with Figs. 4 and 5 clearly
reveals the effects of the earthquake.

Figure 6 illustrates a direct relationship between the rate of reduction in elec-
tricity input and production output. The baseline months are set from March 2010
to February 2011 and the reduction rates are calculated between the same months
before and after the disaster (e.g., the reduction rate of productions outputs in March
2011 are estimated based on the change rate from the production output in March
2010.). The diagonal indicates the case in which the reduction rates of power and IIP
are identical, and plots beneath it indicate that production is reduced at less reduc-
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tion rate of power. Reducing electricity consumption by reducing production starts
at approximately 0.05. Incremental electricity reductions over 0.05 are achieved
through reductions in production. The first and second largest curtails of electricity
are seen in March and April 2011, where the production reduction rates are also
large. It looks that the reduction of electricity requires the same or even larger rate
of electricity input reduction right after the disaster.

Figure 7 plots the estimated electricity saving rates in Eq. (8) and productivity
increase rates in Eq. (10). Both saving rates and productivity increase rates after the
disaster are positive, which indicate that industries payed certain efforts to reduce



252 Y. Kajitani

energy without reducing outputs. Furthermore, both rates clearly have an almost
identical moving pattern. This is apparent from the definition and Eq. (11), which
determines the relationships between two rates. The following paragraph discusses
the saving rates as same discussion holds for the production increase rates.

Observing the first three months after the disaster, saving rate is high in March
(0.087); however, it becomes smaller in April (0.046) and May (0.030). It was difficult
to know the types of power saving efforts in Fig. 7, but we can understand that
the efforts were certainly taken by industries to save electricity, especially during
March. In March, the industries may have utilized the leftover inventories for effective
production with less electricity consumptions.

The largest efforts of power saving are required during the period of large power
consumptions, normally during summer period (from July to August). These efforts
are reflected in the estimated rates not only in 2011 but also during summer in other
years. The saving rate in September 2012, 18 months after the earthquake, is small
possibly because each business was released from the large restriction of power
usages.

It should be also noted that the power saving rates look monotony increasing after
the September 2012. This indicates that the electricity saving measures can be reg-
ularly practiced by employees and permanent countermeasures, such as renewals of
old machineries, can be undertaken and continuously upgraded by the businesses.The
other reason that may accelerate the power saving trend is increase in the price of
electricity. In fact, the price of electricity increased in April 2012 by 2.58 yen/Kwh
and 2.61 yen/Kwh for the customers with high and extra high voltage contracts,
respectively (decreased by 0.25 yen in September 2012). These price increases may
potentially affect the upward trend of saving rate after September 2012.

Overall, the saving rate without production decrease vary from 0.019 to 0.189.
The average saving rate in the first six months after the earthquake is 0.059 and that
in summer (July and August) increased to 0.068. The more reduction of electricity
entailed the reduction of production. Finally, from the minimum saving rate during
a first year after the disaster (appeared in May), at least 2–3 % of power saving in
the first six months stems from the countermeasures of which effects last for a long
period.

4.2 Analysis per Industrial Sector

Resilience to power shortages likely differs among industrial sectors. For example,
resilience could depend on the quantity of electricity consumed and the flexibility
of production scheduling. The previous analysis is now applied to specific industrial
sectors that exhibit clear relationships between production output and electricity
consumption before the earthquake.

Figure 8 presents the electricity saving rates for Kanto’s industrial sectors. The
plot of productivity increase rates is omitted here because the rate has the similar
movement with the electricity saving rate. Overall, the rate of each sector is similar
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Fig. 8 Monthly time series of estimated power saving rates for Kanto industrial sectors

to the case of aggregated industrial sector as shown in Fig. 7. That is, the saving
rates during a few months after the earthquakes vary at the mean of approximately
0.05, and there is upward saving trend after the September 12. The machinery sector
achieved the largest saving rate during the severest power shortage occurred in 2011
July and August.

In contrast, the resilience under power shortage and electricity saving capacity is
inadequate during this period in the steel sector. The steel sector requires intensive
electricity consumption and has difficulty in effectively adapting to shortages. In the
application to future power shortages in many areas, the saving rates demonstrated in
the sector can be adopted based on the structure of different economy. In each sector,
sources of the adaptation for electricity saving come from temporal countermeasures
similarly to the case of the overall sector.

Figure 9 illustrates the lifeline resilience factor, defined as production capacity
remaining under power outages. Values are normalized between 0 and 1 and obtained
from the past business survey in Aichi and Shizuoka prefectures, Japan (Kajitani
and Tatano, [13]). 0 indicates that production capacity is lost and 1 indicates that
production capacity remains at the same level when the outage does not occur. The
steel industry has small resilience during complete and partial shortages. Chemicals
display larger values, a finding consistent with instances of power shortages in 2011
March.

What would happen to total Japanese economy especially due to the small
resilience in steel sector? Different from the automobile industries, which were
required to recover for meeting the demands, the impacts of the steel sector on
the Japanese economy were inferred as inadequate. In Fig. 10, which indicates the
amount of steel imports from outside the country (The Japan Iron and Steel Federa-
tion, [22]), the imports increased in 2011 but decreased in 2012. The supply condition
of steel may have been temporally adverse and the imports may have covered the
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Fig. 9 Lifeline resilience factor for six industrial sectors
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Fig. 10 Amount of international imports of steel from 2000 to 2013

shortage; however, it is unlikely that the adverse conditions last for a long period
considering that the imports decreased in 2012. However, what could be a bottleneck
of the economy depends on the economic conditions. Significant impacts may have
been created by the reduction of steel production if its demand is adverse worldwide,
such as in the year of 2007. Furthermore, even if that demand is small, production
reduction is a large risk for the sector in the competing market.

5 Conclusion

This study has investigated the resilience of Japanese businesses to power shortages
by examining production output under differing degrees of shortages after the 2011
Great East Japan Earthquake. It has focused on the structural change in linear rela-
tionships between production output and electricity consumption using time series
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analysis to remove temperature and seasonal effects. Many studies quantitatively
analyze the business impact of power blackouts; however, few establish metrics for
resilience to shortages and power saving efforts following the shortages.

The following findings emerged from case study of Kanto region.
(a) Resilience characteristics during the first 6 months

The resilience of manufacturing in Kanto, which was represented by electricity
saving rate and productivity increase rate, was high immediately after the earthquake
(in March) even if a scheduled blackout was performed. The efforts such as utilizing
inventories may have been effective. The average saving rate in first 6 months after
the earthquake is 0.059 and that in summer (July and August) increased to 0.068.
The more reduction of electricity entailed the reduction of production.
(b) Resilience characteristics after six months

From the minimum saving rate of time series during a first year after the disaster,
at least 0.02–0.03 of power saving in the first six months stems from the counter-
measures of which effects last for a long period. The power saving rates monotony
increases after the September 2012. This indicates that the electricity saving mea-
sures can be regularly practiced by employees and permanent countermeasures, such
as renewals of old machineries, can be undertaken and continuously upgraded by the
businesses. Increases in electricity price in April 2012 may potentially accelerate
this trend.
(c) Resilience characteristics of individual sector

Analysis of industrial sectors revealed differing degrees of resilience to power
shortages. In the steel sector, production declined at rates greater than electricity
conservation. These results reinforce previous survey results of business resilience
during blackouts. Especially, it was shown that the resilience in steel sector is low
both in the case of power shortage and blackout. These sectoral analyses provides the
basic assumptions of production decrease caused by future power shortages occurred
in the different business proportion environment.
In sum, this study determined the resilience of Japanese business to power shortages
by documenting their responses to a real disaster. Resilience could differ whether
the businesses have enough time to prepare for anticipated power shortages or other
conditions such as accumulated inventories as well as the type of business. The long-
term trend of power saving in industrial sector is a favorable point revealed in this
study.

To apply our method of analysis to estimate risks of power shortages and enlarge
it to examine other daily necessities, such as water and food, data need to be accumu-
lated and the statistical model enhanced. Enhancements include comparing different
techniques such as ARIMA and ANN for modeling time series, combining datasets
with different spatial and temporal scales, and investigating other methods to detect
structural changes before and after crises. Comparative analysis between different
countries would help to extend the application to the shortages in the world.
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Atmospheric CO2 and Global
Temperatures: The Strength and Nature
of Their Dependence

Granville Tunnicliffe Wilson

Abstract There is now considerable scientific consensus that the acknowledged
increase in global temperatures is due to the increasing levels of atmospheric carbon
dioxide arising from the burning of fossil fuels. Large scale global circulation models
support this consensus and there have also been statistical studies which relate the
trend in temperatures to the carbon dioxide increase. However, causal dependence of
one trending series upon another cannot be readily proved using statistical means. In
this paper we model the trend corrected series by times series methods which provide
a plausible representation of their dependence. A consequence of trend correction
and our use of relatively short series is that our model is unable to give precise long-
term predictions, but it does illuminate the relationships and interaction between the
series.

Keywords Time series prediction ·Spectral coherency ·Structural VAR ·Graphical
modeling

1 The Series

In a previous unpublished conference paper we modeled three series: (i) the
atmospheric carbon dioxide (CO2) concentration in parts per million (ppm) observed
at Mauna Loa, (ii) the annual global mean temperature anomaly known as Had-
CRUT3 and (iii) the southern oscillation index (SOI). The HadCRUT3 series is a
combination of the sea surface temperature (SST) anomaly series known as HadSST-
gl and the land surface temperature (LST) anomaly series known as CRUTEM3. In
the present paper we use these two separate series (with CRUTEM3 updated to
CRUTEM4) in place of the combined series, which leads to simplification of the
model.
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The sources for the series are

(i) CO2: ftp://aftp.cmdl.noaa.gov/products/trends/co2/
(ii) HadSST-gl and CRUTEM4: http://www.cru.uea.ac.uk/cru/data/temperature/

(iii) SOI: http://www.cpc.ncep.noaa.gov/data/indices/

The SOI is the observed sea level pressure difference between Tahiti and Darwin,
Australia, and is strongly related to ocean temperatures across the Eastern Pacific
Ocean. In our models we should consider the SOI series to be a proxy variable for
these ocean temperatures, or possibly ocean temperature gradients across the region,
because, unlike the temperature series, it has no visually evident trend. It is formed
as the difference of the two standardized series, but to minimize preprocessing of the
data we omit the standardization and we will also reverse the sign of the difference
so our series is positively correlated with sea surface temperatures.
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Fig. 1 The four climate series analyzed and modeled in this paper

ftp://aftp.cmdl.noaa.gov/products/trends/co2/
http://www.cru.uea.ac.uk/cru/data/temperature/
http://www.cpc.ncep.noaa.gov/data/indices/
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The CO2 and SOI series are precisely defined and measured at respectively one and
two stations. In contrast, the land and sea surface temperature anomalies are compiled
from a large number of measurements around the globe. We use the global values
but they are also available separately for the northern and southern hemispheres.
However, we will be modeling annual mean values from 1959, the first full year
of Mauna Loa records, to 2014, giving series of length 56. With 6 series, saturated
forms of the vector autoregressive (VAR) models that we use would have an excessive
number of parameters for models of more than very low order. We shall show in the
next section that the spectral coherency between all the series is high, suggesting that
there is little need for more information.

We model the annual series shown in Fig. 1 because of the substantial within-year
variability of CO2 and temperatures due to the natural seasonal influences.

Within 1 year we expect each variable to influence others, for example CO2 levels
influence air temperature and uptake of CO2 in the oceans depends on sea surface
temperatures. We will therefore develop structural forms of vector autoregressions
with simultaneous equation relationships between the innovations in current annual
values, to represent the net effect of these mutual influences.

2 Spectral Coherency Between the Series

Trends are evident in the raw series apart from the SOI. A time series model for the
trending carbon dioxide and global temperature series over a longer time period is
given by Young [18]. However, our intention as expressed in the abstract is to correct
for these trends for which we use ordinary least squares (OLS) regression. The CO2

series is corrected for a quadratic trend and the temperature series for linear trends
which are visually evident. The SOI series is simply mean corrected; trend correction
makes very little difference. Figure 2 shows these trend corrected series. The land
and sea temperatures look very similar, but they have no obvious similarity with the
other series.

However, the spectral coherency between all the series, which takes into account
linear lagged dependence, is quite significant, as shown in the upper half of Fig. 3,
in a form introduced by Dahlhaus [2, p. 167]. The strong coherency between the
trend corrected monthly carbon dioxide and global temperature series was previously
demonstrated by Kuo et al. [7], for records over the shorter period from 1958 to 1988.

The lower half of Fig. 3 shows the partial coherencies which measure, for a pair of
series, the further dependence of the one upon the second, given its dependence upon
the other two. These are seen to be much weaker than the pairwise coherencies. In all
these plots the significance limits are those which are exceeded with 5 % probability
when there is no coherency at a particular frequency. The coherencies may appear
significant at no, some or all frequencies. The limits are higher at the end points of the
frequency range because the band of frequencies over which smoothing is applied
then includes sample spectral values outside the frequency range from 0 to 0.5 which
are correlated with those within this range. The shape of the smoothing window is
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Fig. 2 The four climate series after correction for mean and trend components

that of the sum of 4 uniform random variables. We summarize the partial coherencies
in Fig. 4 in which the links between the series reflect the significance observed in
the lower half of Fig. 3. A solid line corresponds to significant coherency over some
part of the frequency range and a broken line corresponds to marginal significance,
otherwise no link is shown.

This graph provides only a limited description of the dependence between the
series but it can be related to their causal dependence as described by Dahlhaus and
Eichler [3]. Subject, of course, to statistical uncertainty, the graph implies that in a
structural VAR model for the series there should be no explicit dependence of either
CO2 or LST on present or past values of the other. We will comment further on this
after we have built such a model.

Spectral analysis can also estimate the lagged response of one series to another, and
we show these for selected pairs of the climate series in Fig. 5. Thus the uppermost plot
of this figure shows the regression coefficients of SOI on SST at positive and negative
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CO2

LST

SST

SOI

Fig. 3 An array of plots showing the pairwise squared coherencies above the diagonal and partial
coherencies below the diagonal, between the four climate series indicated on the diagonal. In each
plot the horizontal axis is the frequency range from 0 to 0.5 cycles per annum and the vertical axis
is the squared correlation range from 0 to 1. The proportion of tapering applied to the series is 0.1,
the squared coherencies are smoothed using a bandwidth of 0.2 and the partial coherencies using
a bandwidth of 0.3. The coherencies are shown in the solid black line and their 5 % significance
limits by the solid gray line

CO2 LST SST SOI

Fig. 4 The partial coherency graph between the four climate series

lags. At positive lags the coefficients describe the effect of the current value of SST
on future values of SOI—the response of SOI to SST. The regressions are estimated,
however, in the presence of feedback between the series, so the coefficients do not
correctly estimate the causal response, and significant coefficients may be observed
at negative lags. For the correct causal response we will use a VAR model.

The response of SOI to SST shows the acknowledged strong positive relationship
(with our sign convention) in the same year, but this is followed by a strong negative
relationship in the subsequent year. This reflects the eponymous oscillatory nature
of the SOI, with a period of between 2 and 3 years. The response of CO2 to SST is
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Fig. 5 The lagged responses of selected pairs of climate series, with the estimated coefficients
shown by the points connected by solid black lines and the significance limits shown by gray lines.
The estimates lie outside these limits with 5 % probability if there is no lagged partial regression
relationship between the series

positive in the same and subsequent year, though only marginally significant when
estimated by spectral means. This reflects the fact that at higher temperatures the
sea cannot absorb so much CO2, so there is an apparent consequent net increase.
Of particular interest is the response of CO2 to SOI at a lag of 1 year. A low SOI
is associated with cooler sea temperatures in the Eastern Pacific with upwelling of
cold seawater close to the South American west coast. A high SOI (with our sign
convention) is associated with the El Niño effect in which this upwelling fails and
warmer water floods into that area. This warmer water can absorb much less CO2

than the cold upwelling. The response shown in Fig. 5 suggests that actually our
annual SOI series is predictive of this effect by 1 year.

Spectral estimation of these responses are of course limited in their causal inter-
pretation and as semi-parametric estimators they are not as statistically efficient as
the parametric models we consider next. They do, however, give useful predictive
information and insight into the relationships between the series.
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3 A Standard VAR Model for the Series

As a preliminary step in developing an empirically identified structural VAR model
we first identify a saturated VAR model of order p, in the standard form which may
be found, for example in Lütkepohl [11] or Reinsel [13]:

xt = Φ1xt−1 + Φ2xt−2 + · · · + Φpxt−p + et , (1)

where xt is the vector of series values at time t and Φ1, . . . , Φp are the matrix
coefficients of dependence upon lagged series values. The error or innovation vector
et has, in general, correlated elements with covariance matrixVe. It is also multivariate
white noise and uncorrelated with all past observations xt−k for k > 0.

The series are all zero mean as a consequence of mean and trend correction and
we assume they are second order stationary. The VAR model is therefore fitted for
increasing orders of p and the AIC, Akaike [1], plotted as in the left hand plot of Fig. 6.
The model is fitted by exact maximum likelihood under the normal assumption. This
gives very similar estimates to the use of lagged OLS regression but uses information
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Fig. 6 Plots of the AIC and modified AIC of a VAR model for the climate series
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in the full length of series, which is preferable for short series. Lagged regression
of order k necessarily uses the reduced series length of n − k. The plot on the right
of Fig. 6 shows the AIC as modified by Hurvich and Tsai [6] to improve the order
selection by this criterion in small samples. In fact both have their minimum for the
model of order 2, though the modified AIC is only marginally less than its value
at order 1. For univariate series the AIC is known not to be consistent for order
selection, with a small probability of selection of an order somewhat higher than the
true one. However, the situation is not so simple for our multivariate series because
16 new coefficients are introduced when the order is increased by 1. The probability
of overestimating the true order, p, is then quite low, and on the contrary, in small
samples the true order may be underestimated if only a small number of the 16
coefficients are non-zero at lag p. Other criteria such as that due to Schwarz [14]
may be asymptotically consistent in selecting the true order, but are even more prone
to underestimation of the order in this circumstance. In fact, for the model of order
2, as shown in Table 1, the dependence of LST on SOI at lag 2 has t-value 2.0 and
the dependence of SST on LST at lag 2 has t-value 2.3. This supports the selection
of the order p = 2 indicated by the modified AIC.

We now demonstrate the extent to which this VAR(2) model for the four climate
series captures their dependence by using it to estimate the whole record of the
SST series from just two observed series, the CO2 and SOI. We use what is known
as the Kalman smoother, applied to the VAR(2) model in state space form. To be
precise, the information used to estimate the SST series and the error limits of this
estimate, is just the pair of full CO2 and SOI series and the VAR(2) model (fitted to
the four full series). The only information otherwise used from observations of the
SST series is the linear trend by which it was corrected for VAR model estimation
and which was used to restore that linear component after estimation. Neither was
any information used from observations of the LST series. The upper plot in Fig. 7
shows the observed SST series, its estimate and two standard error limits. Note that
the estimates are not predictions from past values. Each value of the SST series is

Table 1 Estimated coefficients of a VAR(2) model fitted to the four series, with t-values in brackets

CO2 LST SST SOI

Lag 1 coefficients

CO2 1.0061 (6.8) 0.0402 (0.1) 0.9272 (0.8) −0.1249 (−1.8)

LST 0.0106 (0.2) −0.2262 (−1.1) 1.2352 (2.7) −0.0211 (−0.8)

SST −0.0377 (−1.1) −0.0937 (−0.8) 0.7718 (2.9) 0.0032 (0.2)

SOI 0.4336 (1.0) −0.0010 (−0.0) 3.6441 (1.1) 0.3945 (1.9)

Lag 2 coefficients

CO2 −0.1931 (−1.3) 0.1634 (0.3) −1.7341 (−1.4) 0.1265 (1.9)

LST −0.0105 (−0.2) 0.3229 (1.5) −0.2382 (−0.5) 0.0519 (2.0)

SST 0.0214 (0.6) 0.2859 (2.3) −0.4309 (−1.5) 0.0119 (0.8)

SOI −0.5969 (−1.4) −1.1557 (−0.7) 1.3989 (0.4) −0.0025 (−0.0)
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Fig. 7 The upper plot shows the observed SST series (black line) and its estimate and two standard
error limits (gray lines), derived from observations only of the CO2 and SOI series, using a VAR(2)
model fitted to the four climate series. The lower plot shows the difference between the observed
and estimated series with the error limits

estimated from the whole sequence of the CO2 and SOI series. The lower plot in
Fig. 7 shows the difference between the observed and estimated series with the error
limits.

We make the following remarks on these plots.

1. The estimated SST follows the pattern of the observed SST remarkably well, and
even over periods where it is generally lower or higher, it follows the year to year
movements well.

2. This similarity does not imply causality in either direction between the predicting
series of CO2 and SOI and the predicted series of SST, because they may be
related by mutual dependencies which we aim to model in later sections.

3. Though the observed SST varies by only a few tenths of a degree over the whole
record, it is compiled from a large number of temperature measurements which are
subject to much greater diurnal and annual variation. The precisely and objectively
defined nature of the predicting series gives strong support to the claim that the
well predicted observed temperature series is similarly well defined.

4. When the VAR model is fitted only to the observations of the four climate series
before the year 2000, there is no visual difference in the plots of Fig. 7 when
they are constructed using this restricted model. In particular there is no visual
difference in the SST estimated from the CO2 and SOI series over the years 2000–
2014. This suggests that there is no essential change in the times series nature of
the four climate series over this period.
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5. We note from the plots in Fig. 7 that the general level of the observed SST is
above that of the estimated level over the period from 1995 to 2005. The apparent
leveling off of the observed SST over the first decade of the new century is due
to this surge, and its conclusion around the middle of that decade.

6. The difference series in the lower plot of Fig. 7 has a typical red spectrum, rising
at lower frequencies, and has no significant cyclical, or other statistical, features
worthy of remark, though perhaps some climatic explanation may be found by
inspection of its variation.

4 A Structural VAR Model for the Climate Series

By a structural VAR (SVAR) model we mean one in which each current value of
the series may depend upon other current values besides a set of lagged values.
This dependence explains the correlation which would otherwise remain between
the innovation series if dependence was allowed only upon past values, as in the
standard VAR. The structural VAR model therefore results in structural innovations
which are uncorrelated. The model equation is now

Φ0xt = Φ1xt−1 + Φ2xt−2 + · · · + Φpxt−p + at , (2)

where Φ0 represents dependence between current values and the structural innova-
tions at have diagonal variance matrix. Our aim is to identify and estimate this model
with sparse forms of the coefficient matrices Φk which represent the structure of the
dependence within and between the series.

We have previously propounded methods of identifying SVAR models, for exam-
ple in Reale and Tunnicliffe Wilson [12] and Tunnicliffe Wilson et al. [16]. This
methodology is very much motivated by and based upon the graphical modeling pro-
cedures used to identify relationships between a general set of variables represented
by directed acyclic graphs (DAGs). This is clearly set out in the books Whittaker
[17], Lauritzen [8] and Edwards [4]. One of the main statistical tools used in this
identification is the conditional independence graph (CIG) between the variables.
A simple rule determines how the CIG for a set of variables may be derived from
the DAG representing their dependence. A given CIG does not, however, necessar-
ily determine uniquely the structure of this DAG. In many cases, however, a small
number of possible DAG representations can be determined, one of which may be
selected as the best, following their estimation by maximum likelihood.

The idea of acyclic dependence in a DAG, is that the variables may be ordered so
that each is dependent only on a subset of those which are previous in the ordering.
More traditionally, in econometrics, see Zellner and Theil [19], a set of simultaneous
equations, suggested by economic theory, may be used to represent the relationships
between variables. Each equation may only involve a small subset of all the variables,
upon which restrictions are imposed to ensure that the relationships may be uniquely
identified and estimated. However, there is no requirement that the dependence be
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acyclic. These methods have been extended to represent simultaneous equation rela-
tionships between current values of a structural VAR model, see for example the
much cited paper of Sims [15].

In our earlier exposition, Reale and Tunnicliffe Wilson [12], of graphical mod-
eling as applied to identifying SVAR models, we restricted ourselves to acyclic
relationships between current variables. However, in Tunnicliffe Wilson et al. [16]
we explored the possibility of using cyclic simultaneous equation representations,
which we believe may be appropriate for the climate series which are the subject
of this paper. Fortunately, the CIG between the variables, determined empirically
by statistical analysis, may still be used in the identification of their dependence,
whether or not this is acyclical.

Because our interest is restricted to linear relationships between variables
described by their second order statistical moments, we can construct their CIG
from their sample partial correlation graph (PCG). As described in Tunnicliffe Wil-
son et al. [16], the PCG is formed from the data matrix X whose columns are the four
mean and trend corrected climate series and their values to lag 2—the order of their
standard VAR representation. Their sample covariance matrix is then V̂ = 1

nX
′X and

their sample inverse covariance matrix is computed as Ŵ = V̂−1. From its entries,
Ŵi, j , the sample partial correlations can be calculated as

π̂(Xi , X j ) = −Ŵi, j
√
Ŵi,i Ŵ j, j

. (3)

A sample partial correlation between two variables is closely related to the t-value
of the coefficient of one of them, in the regression of the other upon the whole set of
variables. Under the hypothesis that π(Xi , X j ) = 0, the ratio

π̂(Xi , X j )
√
n − m + 1

√
1 − π̂(Xi , X j )2

(4)

is distributed as a tn−m+1 variable where n − m + 1 is the number of degrees of
freedom. We therefore reject the null hypothesis that π(Xi , X j ) = 0 at level α if

∣
∣π̂(Xi , X j )

∣
∣ >

tα/2,n−m+1
√
t2
α/2,n−m+1 + (n − m + 1)

. (5)

where tα/2,n−m+1 is the corresponding critical value of the tn−m+1 distribution.
Our interest is purely in the relationships between current variables and between

current and past variables, not between past variables. On applying this procedure
to our climate variables we show in Fig. 8 the CIG of their dependence. No link is
shown between two variables for which the associated t-value defined in (4) is less
than 1.645 in absolute value. The strength of a link is shown also by the style of line:
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Fig. 8 The sample CIG between the four climate series and their values to lag 2. Significant partial
correlation between two variables is shown by a link, against which is shown the value of the partial
correlation with its associated t-value in brackets

either broken, thin solid or thick solid, if the t-value is greater than 1.645, 1.96 and
2.575, corresponding to test levels of 10, 5 and 1 %.

Our next step is to postulate an SVAR for which the corresponding CIG (or
PCG) is given by that in Fig. 8. We will also present this SVAR graphically using a
similar diagram to that shown in the figure, but with directions attach to the links,
indicated by arrow heads, showing which variables are used to explain the current
variables at time t . All links from the past are naturally directed towards current
variables. A link from one current variable to another specifies them as respectively
explanatory and dependent variables. If the relationship so specified between the
current variables is acyclic, then the SVAR may be estimated by OLS linear regression
of each current variables on its specific set of explanatory variables. Otherwise, the
Gaussian likelihood of the model is evaluated, by transforming it to the standard
VAR form, and maximized numerically.

To illustrate the rule by which the CIG of an SVAR may be derived, we use that
represented by the diagram in Fig. 9.

The relationship between current variables in this figure is not acyclic. If it were
we would call it a directed acyclic graph (DAG). As it is we note the cycle of
links CO2t → SSTt → SOIt → CO2t , and we will call it a directed structural graph
(DSG). However, for both types of graph the implied CIG (or PCG) between the
variables can be derived using the moralization rules of Lauritzen and Spiegelhal-
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Fig. 9 A diagram representing an SVAR which might explain the CIG shown in Fig. 8

ter [9]. These are expressed in the language of graphical modeling in which each
of the 12 variables shown in Fig. 9 are referred to as nodes and for a given node its
parent nodes are those from which it receives a directed link—i.e. its explanatory
variables. The rule is then:

1. For each node of the DAG or DSG insert an undirected edge between all pairs of
its parent nodes, unless they are already linked by an edge. This is called marrying
the parents (to make them moral).

2. Replace each directed edge in the DAG or DSG by an undirected edge.

Doing this for the graph in Fig. 9 gives the graph in Fig. 8, but only on omitting
a few extra links for reasons on which we comment shortly. Note that moralization
in this case introduces the link between SOIt−1 and SSTt in Fig. 8 because in Fig. 9
these are both parents of SOIt . Also the choice of direction for the link SSTt → LSTt

avoids the introduction of a moralization link between SSTt−1 and LSTt . Reversing
the direction of the postulated link SSTt → LSTt would lead to the introduction of
this moralization link, in conflict with the graph in Fig. 8. Such considerations help
to specify the postulated model. There are some other moralization links such as
between SSTt−1 and LSTt that should be added because these are also both parents
of SOIt . However, moralization links generally have a lower associated partial cor-
relation and may not appear as significant in the PCG. In Tunnicliffe Wilson et al.
[16] we present some quantitative rules which can be applied in restricted contexts.
For example, if we were given just the three nodes LSTt , SOIt and SSTt−1 related as
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in Fig. 9, the moralization partial correlation between the parents LSTt and SSTt−1

would be minus the product of their partial correlations with their children, i.e.
−(−0.288 × −0.440) = −0.126, which is well below the threshold of significance.
Such simplified calculations are of initial value in assessing whether moralization
links might be seen as a consequence of a particular choice of the directed links. On
fitting the postulated SVAR its implied partial correlations can be more accurately
calculated and compared with the sample values used to form the PCG. We do this
as a form of model checking in the next section.

Of course, just because a given DAG or DSG (from here on we will just write
DSG for this pair) is consistent with a given CIG does not mean that it is the correct
model. For example a link in the CIG that might possibly be ascribed to moralization
is not necessarily so explained. However, the true DSG will not contain links that
are not present in the CIG, except by possible numerical coincidence, for example
when a true link and a moralization link contribute canceling effects to give a zero
partial correlation which would otherwise appear as a link in the CIG.

Identifying which of the links between current variables are not due to moraliza-
tion, and the directions of the remaining links, is the key to identifying the DSG.
All the links from past values that appear in the CIG can then be included in the
DSG. Any due solely to moralization should be found, on fitting the model, to have
coefficients that are not significant.

We have, in fact, for this example used a strategy which may be viewed as exploit-
ing this last point. It is certainly not universally applicable, because it relies on the
CIG having a high level of sparsity in its links. Even then it may not be successful
because it relies on the fitting of what may be an over-specified model, for which
there may be a range of likelihood equivalent parameter values, i.e. no unique set
of estimates. We have, however, used it before with success in modeling term rates
series in Tunnicliffe Wilson et al. [16].

The strategy is to fit a DSG which includes every link in the CIG, with the direc-
tions from past to current naturally given by the arrow of time, but with every link
between current variables being made bidirectional. On fitting this model by Gaussian
estimation the coefficients of low significance can be removed successively, with
the level of significance being confirmed by differences in the Gaussian likelihood.
This procedure was followed without difficulty, leading to the DSG identical to that
shown in Fig. 9 except for the bidirectional links LSTt ↔ SSTt . The link to the
right, LSTt → SSTt , has a low t-value of −1.43. However, this is based on a local
quadratic approximation of the likelihood and on removing this term the deviance
(minus twice the log likelihood) increases by 9.02. This suggests that both this term is
significant and that the t-value approximation is poor in this case. We have however,
on removing other terms in the model, found that their t-values were consistent with
differences in deviance, and all the remaining terms are significant.
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5 The Final Model, Its Interpretation and Properties

The model so far identified is now subject to diagnostic checking of the residual
series which in this case are the estimated structural model innovations. The largest
sample cross-correlation between these at lag zero is 0.104, much less than the nom-
inal two standard error limit of 0.267. However, there is a lagged cross-correlation
with the value of −0.370 between the residuals of CO2t and SSTt−2. We therefore
introduced a corresponding further term into the model to explain this dependence
and on estimation this term had a t value of −2.93. Although there remained several
lagged cross-correlations on or just below their two standard error limits, this is to
be expected among the 250 cross-correlations plotted up to lag 10 in Fig. 11. The
model with this extra term has a deviance in excess of that of the saturated standard
VAR model by only 26.20, with 22 fewer coefficients, suggesting that we have not
sacrificed any significant goodness of fit by using the sparsely parameterized struc-
tural model. The final model is displayed in Fig. 10 with the coefficients displayed
adjacent to the links and their t-values in brackets. The t-values are derived from
local approximations of the deviance, except for the link LSTt → SSTt for which it
is derived from the deviance difference.

Because of the cyclical nature of the relationship between current variables, we
have to be careful how we interpret this diagram. It appears to present, for each
current series value, its prediction given all the other current series values and the
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Fig. 10 The final DSG fitted to the four climate series
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past values to lag 2. This is not true. If it were, this prediction would be the same
as that of standard VAR model given the same series values. We will give further
consideration of the properties of this model, but first present evidence that the model
adequately represents the series.

The sample correlation matrix of the model residuals, or structural innovations,
is:

⎛

⎜
⎜
⎝

1.000
−0.089 1.000
0.044 0.009 1.000

−0.045 −0.005 0.081 1.000

⎞

⎟
⎟
⎠ . (6)

All these entries are small and give no reason to doubt the assumption that the
residuals are uncorrelated. The lagged cross-correlations of the residuals are shown
in Fig. 11.

Again, these generally lie within their bounds except that there appears to be some
significant negative autocorrelation in SST at lag 4, which might be removed by a
further term. The overall measure of the magnitude of the lagged cross-correlations,
the sum of squares of all 160 values scaled by the series length 56, is 130.52. This is
a form of the multivariate portmanteau statistic, Hosking [5], Li and McLeod [10]. It
does not even exceed the expected value of 145 = 160 − 15 (the number of estimated
coefficients) and again gives no evidence to doubt the model. The squared residuals
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Fig. 11 The cross-correlations up to lag 10 between the residual series of the DSG model. The
gray bands show their approximate 2 standard error limits
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Fig. 12 The model partial
correlations up to lag 2
plotted against the
corresponding sample partial
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were also checked with no evidence of significant autocorrelation that might have
indicated heteroscedasticity.

Finally, we compare the partial correlation properties of the fitted model with the
sample values used to identify the model. These are compared in the plot of Fig. 12.

There are 14 zero values implied by the model, as seen in the horizontal line of
points in the center. The lowest of these has a corresponding sample value of −0.23
and the largest a sample value of 0.15, so lie within their two standard error limits
of ±0.27. There are 23 non-zero model values arising from the 15 links in Fig. 10
and their moralization links. There is a good correspondence between the model and
sample values of these, subject to sampling fluctuation. Most of the sample partial
correlations corresponding to moralization links are small and do not appear in Fig. 8.
Again, this plot generally supports the model.

It is appropriate here to refer back to the partial coherency graph of Fig. 4. The
model in Fig. 10 implies that the partial coherency graph should be of the form shown
in Fig. 4, except for the addition of a link between LST and SOI. The main point is
the separation between CO2 and LST which have no connecting links in Fig. 10, or
consequent moralization links. And there is no link between these series in Fig. 4. The
comparison of these two graphs could highlight deficiencies in the SVAR, though
not in this case. The partial coherency graph also requires little effort to compute and
present.

We return to interpretation of the model. We have said that we cannot, for example,
take the predictor of SSTt in terms of all the other variables to be the linear com-
bination of CO2t , LSTt , CO2t−1 , SSTt−1 and LSTt−2 as indicated by its parents in
Fig. 10. However, we could do so if at any time the cyclical feedback links from SSTt

to LSTt and SOIt to CO2t were broken. As it is we have to solve the simultaneous
equations relating the contemporary variables to determine this predictor.
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Fig. 13 The impulse and step responses of SST to a unit shock in CO2, with one standard error
limits

A widely used property of an econometric time series model is its impulse response
function. This plots the future effect on the different series of a unit shock to the
innovation in one of the series—in our case a structural innovation. Figure 13 shows
the impulse response, and its cumulative value the step response, of the SST series,
given a shock in CO2.

One standard deviation error limits are shown, and even these are very wide for
high lead times, in consequence of the fact that long-term information about the
model has been removed by trend correction. Before commenting on these we show
also, in Fig. 14, the impulse and step responses of CO2 to a unit shock in CO2.

A unit innovation shock to CO2, even in the year zero at which it enters the
system, leads to a less than unit increase in CO2 in that year. This is because of the
negative feedback within that year from SOI to CO2, an effect which was previewed
in the lowest plot of Fig. 5. That plot shows the much larger positive response of
CO2 occurring in the following year, which is supported in the final model of Fig. 10
by the link SOIt−1 → CO2t . This positive feedback results in the step response to
a series of unit shocks in CO2 leading to a continuing build up of CO2, and at the
same time the greenhouse effect of the CO2 leads to a sea temperature increase. The
model represents the effect that warm seas can absorb less CO2, leading to further
net increase in the level of CO2.

Although the error limits on the responses are wide, the ratio of eventual level
of the step response in SST to that of CO2 is approximately 0.033. The ratio in the
trend slope of SST to that of CO2 seen over the period 1975–2005 where the slopes
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Fig. 14 The impulse and step responses of CO2 to a unit shock in CO2, with one standard error
limits

are steepest, in Fig. 1, is somewhat less at 0.012. However, given the uncertainty in
the model properties at higher lead times, these are not wildly inconsistent.

We also remark on the signs of some of the links between current variables. With
our definition of the sign of SOI the current value is strongly positively dependent
on the current value of SST, though the immediate past value of SST has a largely
compensating negative effect—again as previewed in the upper plot of Fig. 5. A
substantial decrease in SST would have a negative effect on SOI and after a delay of
1 year this will led to an increase in CO2 associated with an El-Niño event.

Finally, the reciprocal roots of the SVAR model operator have maximum modulus
0.9133. This corresponds to a real root, with the next largest in absolute value being a
pair of complex conjugate roots with modulus less than 0.5. This suggests that there
may be a unit root process underlying the series, most likely deriving from the trend
like behavior of CO2, with LST and SST being co-integrated with this.

6 Conclusion

Our analysis of these four climate series lead directly to a structural SVAR repre-
sentation of the trend corrected series. The model is consistent with the trending
appearance of the original carbon dioxide and sea surface temperature series and
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the terms in the model appear to have interpretation consistent with known climato-
logical relationships. In particular we find a significant causal effect on sea surface
temperatures of atmospheric carbon dioxide levels in the current and previous year,
and this effect impacts very significantly on land surface temperatures. There is also
a positive feedback from sea surface temperatures to the current level of atmospheric
carbon dioxide, through the intermediary of the previous year’s level of the southern
oscillation index.
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Abstract Although clean and sustainable wind energy has long been recognized as
one of the most attractive electric power sources, generation of wind power is still
much easier than its integration into liberalized electricity markets. One of the key
obstacles on theway ofwider implementation ofwind energy is its highly volatile and
intermittent nature. This has boosted an interest in developing a fully probabilistic
forecast of wind speed, aiming to assess a variety of related uncertainties. Nonethe-
less, most of the available methodology for constructing a future predictive density
for wind speed are based on parametric distributional assumptions on the observed
wind data, and such conditions are often too restrictive and infeasible in practice.
In this paper we propose a new nonparametric data-driven approach to probabilistic
wind speed forecasting, adaptively combining sieve bootstrap and regime switch-
ing models. Our new bootstrapped regime switching (BRS) model delivers highly
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1 Introduction

As impacts of global warming get increasingly alarming, renewable energy and
energy efficiency technologies are now fully recognized as the key components for
limiting environmental footprint and making our communities sustainable for future
generations. Many countries and regions are now accelerating their policies through
comprehensive climate and renewable energy packages, aiming to reduce greenhouse
gas emissions and pollution. For example, recently the European Union endorsed its
ambitious 20-20-20 strategic plan, with a target to unilaterally cut at least 20% in
greenhouse gas emissions by 2020 (relative to 1990 levels), to increase a proportion
of renewable energy to 20% of the overall energy supply, and to reduce primary
energy use by 20% by improving energy efficiency. The United States and Canada
are also in the process of developing a number of landmark policies that enhance
and stimulate renewable energy systems at both national and local levels, e.g., the
US Western Renewable Energy Zones Initiative and the Standard Offer Contract in
Canada.

In the midst of recent proliferation of alternative power sources, wind power
is one of the most attractive options. Indeed, in the past decade, wind power has
been the fastest growing renewable power source around the globe, with an average
annual growth rate more than 30% and an exponential increase in some countries,
e.g., Germany, Spain, Portugal, UK, and Italy [22, 28]. Nevertheless, as the New
York Times mentioned, “the dirty secret of clean energy is that while generating it
is getting easier, moving it to market is not” [37]. Efficient and reliable integration
of wind farms into the electric power system is considered to be one of the main
obstacles on the way of renewable wind power to an end user. In particular, power
markets need to deal with variability and uncertainty of wind energy resources that
are highly intermittent and volatile in nature. Hence, in the advent of renewable
energy sources, accurate, reliable and timely forecasting ofwind conditions is viewed
as a key tool for profitable and safe management of wind power and improving
its position in a liberalized electricity market. This in turn has boosted a major
interest in development of new methodology for wind speed forecasting. While a
substantial part of studies still focus on various point forecasting procedures (see
detailed overviews by [10, 28, 30–32, 36, 38, 39, and references therein], there is an
increasing demand in producing a probabilistic forecast of wind power, especially
providing a full predictive probability density for each horizon rather than only
predefined quantiles or intervals, which enables to enhance risk management and
facilitate decision-making. Among such statistical developments on probabilistic
wind power prediction are, for example, the regime-switching space-time diurnal
(RSTD) approach based on an autoregressive conditionally heteroscedastic (ARCH)
model with Gaussian innovations [17]; a nonparametric approach based on kernel
density estimation [21, 22]; a fuzzy inference model with adapted resampling [33]; a
family of autoregressivemethods [31, 34]; quantile regression [5] andhigh-frequency
methodology [2].
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In this paper we propose a new nonparametric data-driven approach to proba-
bilistic wind speed forecasting, adaptively combining sieve bootstrap and regime
switching models. Our new bootstrapped regime switching (BRS) model releases a
number of restrictive assumptions imposed by previous studies and, hence, general-
izes the methodology proposed by Gneiting et al. [17], Pinson and Madsen [34], and
Jeon and Taylor [21]. In particular, most of the earlier approaches tomodeling predic-
tive density of wind power are developed under the restrictive parametric conditions
on wind speed (usually, the normality assumption) that are typically unjustifiable
and unrealistic [21, 25, 31]. Hence, a nonparametric resampling can be viewed as
a preferred method for constructing an ensemble of future wind speed scenarios.
We propose to employ a flexible and parsimonious technique of sieve bootstrap [4,
7, 9] in an adaptive autoregressive setting with regime switches, which enables to
accurately and robustly assess a full probabilistic structure of wind speed, governed
by wind direction. In contrast to a regime-switching model proposed by Gneiting et
al. [17], the new BRS model constructs future states of wind directions using solely
on-site historical observations, rather than requiring recent off-site information from
other neighboring wind farms. This is especially important as the lack of expertise
and associated costs in wind farm site selection still remain among the key barri-
ers to untapping considerable wind resources in many regions. Particularly, in the
developing countries, wind farms, if any, are very sparse [1], therefore there exists
no off-site information from adjacent wind farms. Thus, our new nonparametric
and robust approach, with minimal model and data assumptions, provides an added
degree of flexibility and generality and is of a particular interest to various regions,
especially developing countries, where a new era of sustainable wind energy is yet
to see its dawn.

The paper is organized as follows. In Sect. 2, we provide a brief overview of wind
data. In Sect. 3, we present the new bootstrapped regime switching model. Section4
describes performance measures that are used for assessment of probabilistic and
point forecasts of wind speed. Predictive performance of the new BRS model vs. the
benchmarkmodelwith normal innovations is reported in Sect. 5. The paper concludes
by discussion in Sect. 6.

2 Data Description

In this paper we consider wind speed and wind direction data from the Kennewick
wind tower in the Pacific Northwest of the United States, collected by the Energy
Resources Research Laboratory (ERRL) at the Oregon State University. The ERRL
wind data archive represents the largest wind data base in the Pacific Northwest and
one of the oldest andmost comprehensivewind data archives in theUnited States. The
ERRL wind data are now widely used as benchmark for a variety of environmental
and statistical studies. The data are recorded from August 2002 till December 2008.
Wind speed is measured in meters per second (ms−1) and wind direction is recorded
in degrees. The data are available in two forms: observations taken every 10min,
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Fig. 1 Location of Kennewick in the US Pacific Northwest

and the 10-min data averaged to hourly data series. Since our purpose is to produce
1- and 2-h ahead forecasts, we employ only the aggregated version.

The map in Fig. 1 shows geographical location of Kennewick. A detailed discus-
sion of the wind data archive and properties of wind measurements at this location
can be found on http://mime.oregonstate.edu/ERRL/WRC/.

3 Bootstrapped Regime Switching Model

Let xt denote a wind speed measurement at a time point t . We assess dynamics of xt
using a two-state regime switching model

http://mime.oregonstate.edu/ERRL/WRC/
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xt =
{
c1 + ∑p1

i=1 φ1i x
(1)
t−i + ε1t if St = 1,

c2 + ∑p2
i=1 φ2i x

(2)
t−i + ε2t if St = 2,

(1)

where St represents the underlying state at a time point t (t = 1, . . . , T ) and is
defined by the corresponding wind direction of xt , i.e., St = 1 and St = 2 are easterly
and westerly regimes, respectively; c1 and c2 are constants corresponding to mean
levels for each regime; {ε1t } and {ε2t } are independent and identically distributed
(i.i.d.) random variables with Eε j t = 0 and Eε2j t = σ 2

j for j = 1, 2 and are also

independent of each other.Here x (1)
t , . . . , x (1)

t−n1 and x
(2)
t , . . . , x (2)

t−n2 are historicalwind
speed observations for easterly and westerly regimes, respectively, that are available
at a time point t , and n1 and n2 are respective sample sizes. Although x (1)

t , . . . , x (1)
t−n1

and x (2)
t , . . . , x (2)

t−n2 are generally irregularly sampled observations, we treat them, for
simplicity, as evenly observed data. One can overcome this limitation by employing,
for example, an irregularly-spaced autoregressive (IS-AR) model of Erdogan et al.
[13] or spectral estimation of autoregressive (AR) model for non-equidistant time
series, suggested by Bos et al. [6]. The orders p1 and p2 of AR models in (1) can be
estimatedwith one of the information criteria.We also assume that theARparameters
φ1,i and φ2,i satisfy the weak stationarity condition, i.e., roots of the corresponding
AR characteristic equations for φ1,i and φ2,i lie strictly outside of the unit circle.
Note that the model (1) is not identifiable for data modeling purposes since there is
no unique way to identify the states and the two sub-equations are interchangeable.
To avoid this problem, following McCulloch and Tsay [27], we assume without loss
of generality that c2 > c1; indeed, as shown in our case study, the average wind
speed in the westerly regime is higher than in the easterly regime. We assume that
no additional off-site information is available, and define the state at t + h as the
most recently observed state, i.e., St+h = St . Since we are focusing on short-term
forecasts (h = 1 or 2h), such naive selection of St+h is appropriate.

Now, we proceed to the sieve bootstrap procedure [4, 7, 8, 23] to develop a full
predictive distribution of wind speed. This resampling approach is robust, because
it allows us to generate a probabilistic forecast of wind speed without imposing any
parametric distributional assumptions on observed data.

The employed sieve bootstrap procedure is given by Algorithm 1. Given the
likeliest state of a future wind direction, we first decide which AR equation in (1) to
use (step 1). Then, we estimate the AR model parameters and obtain the residuals
(steps 2 and 3). At each bootstrap replication b, we sample with replacement T + h
values of the residuals and plug them back into the AR model to obtain bootstrap
values x∗

T (h) (steps 4–8). Note that if h ≤ 0, x∗
T (h) = xt+h , which corresponds to

the actual wind speed observations. Finally, the unknown distribution of future wind
speed is approximated by F∗(x) (step 9), which can be used to construct prediction
intervals and carry out further inference on the future wind speed dynamics.
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Algorithm 1: Sieve bootstrap for a regime switching model
Input : Observed time series xt , t = 1, . . . , T ; the most recent state ST = j , j = 1, 2.
Output: Bootstrap distribution of the future wind speed F∗(x).
ST+h = ST ;1

estimate parameters ĉ j and φ̂ j1, . . . , φ̂ j p j in (1);2

r ( j)
t = x ( j)

t − ĉ j − ∑p j
i=1 φ̂ j i x

( j)
t−i ;3

for b = 1, . . . , B do4

sample with replacement
{
r ( j)∗
1 , . . . , r ( j)∗

T+h

}
from

{
r ( j)
t

}T

p+1
;

5

x∗
T (h)[b] = ĉ j + φ̂ j1x∗

T (h − 1) + . . . + φ̂ j px∗
T (h − p) + r ( j)∗

T+h ,6

where x∗
T (h) = xt+h if h ≤ 0;7

end8

F∗(x) = ∑B
b=1 1{x∗

T (h)[b] < x}.9

4 Performance Measures for Probabilistic Forecasts

Let us briefly outline measures for assessment of forecast ensembles. To evaluate a
probabilistic forecast, we employ standard criteria and diagnostic tools, such as cov-
erage probability, length of developed prediction intervals (PI), verification rank his-
tograms, and continuous rank probability score (CRPS) [12, 16, 29]. Coverage prob-
ability for a 100(1 − α)%-prediction interval is defined by a relative proportion of
observations, falling within Qα/2 and Q1−α/2-quantiles, and measures calibration of
a probabilistic forecast. In turn, length of the developed prediction intervals provides
assessment of ensemble sharpness. A forecast ensemble is called calibrated if esti-
mated coverage is close (by absolute value) to a declared 100(1 − α)%-confidence
level, and a calibrated ensemble of forecasts with shorter lengths of prediction inter-
vals is preferred.

To assess how well ensemble spread represents true variability of wind speeds,
we utilize a Talagrand rank histogram [19]. A probabilistic forecast with appropriate
spread is characterized by a flat rank histogram; while

⋃
- or

⋂
-shapes indicate

underdispersed or overdispersed ensembles, respectively; a skewed ranked histogram
implies that ensemble contains bias.

The CRPS is defined as

CRPS(F, x) =
∫ ∞

−∞

(
F(y) − 1{y ≥ x})2dy, (2)

where 1{y ≥ x} is the indicator function that attains 1 if y ≥ x and 0 otherwise, and
F is the forecast distribution. The CRPS evaluates the predictive skill of a probabilis-
tic forecast in terms of the entire predictive distribution and simultaneous assesses
sharpness and calibration [12, 16, 29]. Let Fens be a discrete predictive distribution
from a forecast ensemble of size B. The predictive cumulative distribution func-
tion Fens has B jumps of size 1/B at the respective B ensemble member values
y1, . . . , yB . Then, the empirical CRPS score can be calculated as follows (see [15]
for more details):
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CRPS(Fens, x) = 1

B

B∑

i=1

|yi − x | − 1

2B2

B∑

i=1

B∑

j=1

|yi − y j |, (3)

where y1, . . . , yB are the ensemble members, i.e., independent random samples from
the predictive distribution Fens . Note that in the case of a bootstrap-based predictive
distribution, y1, . . . , yB are only conditionally independent.

5 Case Study

The main goal of our study is to produce 1- and 2-h ahead probabilistic forecasts of
wind speed and to evaluate performance of the new bootstrapped regime switching
(BRS) model that allows to utilize only on-site wind data. We use the 2008 data
set for Kennewick that consists of 8784 data points. Similarly to the approach by
Gneiting et al. [17], we adopt the sliding window method for parameter estimation.
Themethod by Gneiting et al. [17], however, requires the last 45days of observations
due to the complexity of the employed autoregressive conditionally heteroscedastic
(ARCH) model. In contrast, our sliding window is noticeably shorter and consists of
only 25days (600 h). Also, in view of a relatively short window, we find that seasonal
adjustments yield no gain in predictive performance.

Before actual implementation of BRS, we perform an exploratory analysis of
wind speed andwind direction.We definewindmeasurements corresponding towind
direction falling within the range of 90◦–270◦ as the westerly regime and the rest of
the wind data as corresponding to the easterly regime. Wind speeds in the westerly
regime are higher on average and more dispersed than their eastern counterpart (see
summary statistics in Table1, box plots in Fig. 2, and time series plot in Fig. 3). Thus,
we can conclude that the underlying dynamics in these two regimes is different, and
different models are to be employed to assess westerly and easterly wind speeds.

Remark We select states based on easterly and westerly regimes to obtain a homoge-
neous variance within each state. More generally, Pinson and Madsen [34] suggest
to select states based on homoscedasticity of data within each state.

Table 1 Summary statistics for the hourlywind speed (ms−1) atKennewick, observed in January 1–
December 31, 2008

Wind
direction

Number
of obser-
vations

Min. 1st
quartile

Median Mean 3rd
quartile

Max.

Westerly 5808 0.0 5.8 9.7 10.4 14.2 35.6

Easterly 2976 0.0 3.2 4.5 4.9 6.1 18.6

All 8784 0.0 4.2 7.0 8.5 11.8 35.6
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Fig. 2 Box plot for westerly and easterly wind speed observations at Kennewick, January 1–
December 31, 2008

Fig. 3 Dynamics of hourly wind speed at Kennewick, January 1–December 31, 2008. Blue circles
denote westerly wind, red diamonds stand for easterly wind

The initial model training set starts from the 24th hour of December 6, 2007 up to
the 23rd hour of December 31, 2007. Hence, the first 25days of data are used to
produce probabilistic BRS forecasts, which are then compared with observations
in the evaluation set, in terms of various performance measures. Then, data points
in the evaluation set are moved into the estimation set with the first value in the
estimation set discarded, keeping the size of the window constant at 600 data points.
This process is repeated until all data points in the evaluation set are exhausted.
To illustrate difference of wind dynamics among months in the evaluation set of
2008, all performance measures are calculated separately for each month. Since we
advocate a nonparametric and data-driven approach to developing probabilistic wind
forecasts, in contrast to Gneiting et al. [17], we employ only raw wind data and do
not pre-process wind measurements by discarding or trimming any stretches of the
data.

Remark Selection of a number of regimes and driving forces for regimes is an open
questionwhich is specific for a particular set of observations. For example,Gneiting et
al. [17] select regimes based onwinddirection,while Pinson andMadsen [34] suggest
to select regimes based on volatility of wind speed. In our study we investigated
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both approaches and found that both selection methods yield a similar predictive
performance, slightly better for regimes driven by the wind direction.

We now apply the new BRS model driven by the easterly and westerly regimes
to forecast wind speed at Kennewick. We choose the same benchmark model as
suggested by Gneiting et al. [17]. Namely, we consider an autoregressive model with
innovations following a truncated normal distribution (AR-TN) and select its optimal
order using Akaike information criterion (AIC), with a maximum order 4.

For both models, we construct 1000-member forecast ensembles, which are
bootstrap-generated for the BRSmodel and simulated from a truncated normal distri-
bution for the AR-TN model. Tables2 and 3 show monthly performance measures,
evaluated for Kennewick in the verification period January–December, 2008. The
model with the lowest value for each measure for every month is shown in bold. For
the coverage probability measure, the bold values are those values that are the closest
by absolute value to the target coverage of 90%.

Tables2 and 3 indicate that the new BRS model provides equally calibrated but
sharper probabilistic forecasts than the benchmark AR-TNmodel, with the improve-
ment up to 10% in the length of 90% prediction intervals (CL for January in Table2).
The BRS ensembles of forecasts also yield consistently lower CRPS than the AR-TN
forecasts (except of January and March where both methods provide equal CRPS
results). In general, the AR-TN model tends to generate overdispersed ensembles
with a higher coverage than expected and, hence, wider prediction intervals. The

⋂
-

shape of verification rank histogram confirms these findings (see the right panel of
Fig. 4). This is due to the fact that the AR-TNmodel based on a parametric truncated
normal distribution is more sensitive and less robust to winds that are higher than
usual. Remarkably, the new BRS model is capable to capture well a wide range of
possible wind events and its ensemble spread is close to the true variability of wind
speeds, as also suggested by a flat rank histogram (see the left panel of Fig. 4).

Overall, the new data-driven nonparametric bootstrap approach of the BMRS
model provides more robust and sharp probabilistic short-term forecasts of future
wind speeds, while requires only on-site wind observations. The proposed method-
ology can be readily extended to incorporate off-site observations (if available) in
a form of exogenous regressors. In addition, the proposed new full density predic-
tion based on a data-driven nonparametric sieve bootstrap can be extended to more
complicated ARCH structures using sieve linearization procedures [9].

6 Discussion

While demand for renewable and clean wind power is gaining an impressive momen-
tum across the world, still only a small fraction of available natural wind resources is
utilized. One of the key challenges on theway ofwind power to end-users is its thorny
integration into electricity markets, due to a highly volatile and intermittent nature of
winds. In addition, most of wind power production is limited only to developed parts
of the world (mainly Europe and North America), while being a completely new
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Fig. 4 Verification rank histograms for the BRS and AR-TN benchmark models, evaluated at
Kennewick, over 2008 for 2-h ahead forecast

and unexplored energy source in developing countries, where wind data archives are
very sparse or do not exist at all. This ignites an interest in developing new reliable
and robust statistical models for wind speed prediction, with minimal assumptions
on available wind data.

In this paper we propose a new bootstrapped regime switching (BRS) model, aim-
ing to produce fully probabilistic forecasts of wind speed. In particular, the dynamics
of wind speed is modeled by two autoregressive structures, switched in accordance to
a state of wind direction. Future states are determined by the most recently observed
wind direction at the site of interest. Ensembles of future wind speeds are then devel-
oped with a data-driven sieve bootstrap [4, 7, 8, 23] without imposing restrictive and
often infeasible parametric assumptions on wind speed data. The new BRS model
further extends some of the previously suggested approaches for wind speed predic-
tion in a number of ways. First, since the BRS ensembles of wind speed forecasts
are generated using a nonparametric bootstrap techniques and do no impose any
distributional assumptions on wind measurements, BRS is more robust in modeling
a wider range of winds, including extremes, which enables us to accurately cap-
ture the true wind uncertainty and produce substantially sharper and more calibrated
probabilistic wind forecasts. Note that in contrast, the RSTD approach of Gneiting
et al. [17] and the geostatistical output perturbation (GOP) method for probabilistic
surface temperature forecasts of [14] may be viewed as parametric bootstrap-based
counterpart procedures since they generate prediction ensemble from a hypothesized
normal distribution [11]. Another advantage of the BRS model is that it has mini-
mal demands on data availability. It allows developing reliable wind forecasts with
only on-site wind measurements, which is especially useful for regions with limited
wind data archives and no history of wind power generation. If off-site data become
available, the BRS methodology can be easily extended to a spatio-temporal setting.

The new model can be advanced in a number of ways. First, currently we dis-
regard for simplicity that observations in easterly and westerly wind regimes are
naturally unevenly spaced time series. Clearly, such a limitation leads to biases and
some informational losses. Instead, to release this assumption and generalize our
approach, we can employ, for example, an irregularly-spaced autoregressive (IS-
AR) model of Erdogan et al. [13] or spectral estimation of autoregressive model
for non-equidistant time series, suggested by Bos et al. [6]. Second, following the
ideas of Hering and Genton [20], in modeling wind direction we can recognize more



Catching Uncertainty of Wind: A Blend of Sieve Bootstrap … 291

regimes as well as consider Markov processes and relatedMarkovian local bootstrap
of higher orders. In addition, as a possible refinement, instead of the sieve bootstrap
for generating wind speed scenarios, we can utilize a more general technique of
overlapping block bootstrap of a moving length [35]. Another alternative to account
for local variations at a particular station is to employ a random effect model with
bootstrap of homoscedastic blocks followed by bootstrap within blocks [18, 26]. All
the new information, e.g., off-site wind data or other weather variables, if available,
can be readily incorporated into the model as exogenous variables, which will likely
further enhance accuracy of the resulting wind speed prediction, as mentioned by
Alexiadis et al. [3] and Larson and Westrick [24].

Given the competitive performance, flexibility and minimal data requirements of
the new BRS model, we anticipate it will find its place in a variety of wind farms
worldwide and will be widely used to deliver reliable and robust operational wind
power forecasts, especially in regions with limited wind data, which yet to see a
dawn of clean and sustainable wind energy.
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