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Preface

Everything humans venture to do has some degree of risk involved in it. Since the
degree of risk they face is random, it is only natural that we statisticians feel the
need to jump in and try to analyze it. The plethora of papers in this field being
published in the field of risk analysis eventually led to the launching of a conference
series where statisticians could present their findings.

The International Committee on Risk Analysis initially launched the series as a
conference on cancer risk assessment in Athens, Greece on August 22, 2003. The
second and the third conferences held in 2007 and 2009, respectively, still retained
cancer risk assessment as the main focus; however, after the third conference it was
decided to broaden the theme of the conference. This led to the new acronym of the
ICRA (International Conference on Risk Analysis) series, so the 4th meeting took
place in 2011 at Limassol, Cyprus. Proceedings of these meetings are available.

The fifth conference on risk analysis, ICRA5 was held at Tomar, Portugal, from
May 30 to June 1, 2013. The papers presented at this conference covered a number
of topics on risk analysis with applications in both biological and industrial fields.
This book forms a proceedings volume and includes most of the papers presented at
the conference. The book itself is divided into two main parts based on the subject
matter covered:

Part I is devoted to Risk Methods for Bioinformatics while
Part II focuses on Risk Methods for Management and Industry.

The papers in Part I mainly cover topics from Life Sciences and Environmetrics
and are divided into subsections based on the primary focus of the papers included.
The first subsection in The Bioinformatics section deals with the original theme
of the conference: “cancer research” and consists of three chapters covering various
aspects of cancer risk analysis. The second subsection consists of two chapters
which consider the applications of first time hitting models while the third sub-
section considers papers on general quantification of risk for diseases. Finally, the
last subsection in this first part considers risk analysis as it pertains to the
environment.
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The second part of the book, “Risk Analysis in Management and Industry,” is
also divided into four subsections on the basis of the subject matter covered. The
first chapter in this part though deals with sampling strategies and stands on its own.
Section 2 considers papers on Industrial Quality Control and consists of two
chapters. Next in Section 3, the focus is on Extreme Value Theory with the papers
looking at various ways of quantifying extreme quantiles in natural catastrophic
events. The last subsection in this part is devoted to general papers in reliability and
survival analysis and consists of six chapters.

The total of 30 papers presented in this volume cover a diverse range of topics
on risk analysis and we hope our readers find it useful for their research.
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Introduction

“Nothing Ventured, Nothing Gained,” a well-known proverb implying that to attain
something, one has to be willing to take risks. Thus, it is only natural that no
professional venture or field can be devoid of risk. As an example, in medical
studies, one is concerned with the risk of patient death, the risk of a lack of a cure,
the risk of side effects from medications, etc. Engineers are concerned with the risk
of structural and mechanical failures; manufacturers are concerned with the risk of
producing defective products and so on. Mitigating risk and analyzing it then are
integral components of any area, however, risk analysis per se, is a field specific to
applied statistics. In an attempt to recognize the role that statistics plays in risk
analysis, the International Committee on Risk Analysis decided to launch a con-
ference series to serve as a forum for researchers in this area to get together and
discuss their methodologies.

The main focus of the first conference was cancer research, and so the series was
actually launched as the International Conference on Cancer Risk Assessment
(ICCRA) in Athens, Greece on August 22, 2003. The second conference was held
on the island of Santorini, Greece during May 25–27, 2007 (still as ICCRA) while
the third and final ICCRA was held at Porto Heli, Greece during July 16–18, 2009.
Thereafter it was decided to broaden the theme of the conference and the first ICRA
(International Conference on Risk Analysis) labeled ICRA4 took place at Limassol,
Cyprus, during May 26–29, 2011. From its inception, support for the series was
provided by its main sponsor, the ISI Committee on Risk Analysis. One of the main
aims of the committee was to improve and expand the role of statistics in risk
analysis. While the committee retained human health, welfare, and survival as its
main focus, it decided to more actively pursue risk analysis in other fields such as
the environment, ecology, engineering, etc. Toward that end it was formally
decided that the committee would engage more actively in conferences with a
broader coverage of risk analysis, including identification and quantification of risk
(http://www.isi-web.org/sections/44-com/com/126-ra).

The first realization of this goal was manifested in ICRA5 held at Tomar,
Portugal, from May 30 to June 1, 2013. The conference drew together a number of
scientists working on various aspects of risk analysis with applications in both
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biological and industrial fields. This book forms a proceedings volume and includes
most of the papers presented at the conference.

While the past ICRA conferences have led to a number of publications, none
have been as broad in subject coverage as this book. Examples of statistical analysis
using real data are found throughout this book, which we hope will spark interest in
the related theoretical results. Despite the fact that research in risk analysis has been
burgeoning, the new methodologies have not had the deepest possible penetration
among the practitioners of the field. We believe that this is because the relevant
articles and papers are scattered in too many journals with different foci. We hope to
remedy the situation with the publication of this volume, totally devoted to methods
on Risk Analysis.

The book itself is divided into two main parts based on the subject matter
covered:

Part I is devoted to Risk Methods for Bioinformatics while
Part II focuses on Risk Methods for Management and Industry.

The papers in Part I mainly cover topics from Life Sciences and Environmetrics
and are divided into subsections based on the primary focus of the papers included.
We now briefly describe some of the topics covered in this section:

The first subsection in The Bioinformatics section deals with the original theme
of the conference: “cancer research.” “Generalized Information Criteria for the Best
Logit Model” considers the use of Entropy measures to quantify relative risk and
applies it to compute the relative risk of breast cancer for women based on their risk
factors which include (but are not limited to): age, use of oral contraceptives,
hormone replacement therapy. “Fractal Case Study for Mammary Cancer: Analysis
of Interobserver Variability” uses a Fractal Case Study to classify different types of
malignancies in cancer tissues. “On Analytical Methods for Cancer Research” uses
Statistical Dynamic Shape Analysis to quantify cancer risk. The authors argue that
temporal shaping in medicine has to consider the medical relevance for certain time
points in the measurement and landmarks to describe the object at these time points.
Their analysis is shown to have a distinct advantage in oncology compared to
traditional approaches.

The second subsection on Bioinformatics looks at the applications of First Time
Hitting Models. In remission studies, one often encounters long-term survivors, or a
“cured fraction” of units, which will never experience the event of interest. As a
result, the empirical survival function for such studies never tends to zero. First
hitting time (FHT) models can be used to account for such phenomena in lifetime
models, and an example relevant to treatment of drug users is presented in
“Modelling Times Between Events with a Cured Fraction Using a First Hitting
Time Regression Model with Individual Random Effects”. First time hitting models
can also be used to estimate the number of disease-free years lost to occupational
exposure and “Acceleration, Due to Occupational Exposure, of Time to Onset of a
Disease” uses such a model to estimate the “expected number of disease free years
lost due to exposure to asbestos.”
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The next subsection focuses on general risk quantification for diseases.
Relationships between relative risk, odds ratios, and their respective confidence
intervals are discussed in “Transformations of Confidence Intervals for Risk
Measures?”. “Discrete Compound Tests and Dorfman’s Methodology in the
Presence of Misclassification” presents an overview of the application of compound
tests to classify individuals into two groups based on the presence or absence of a
disease. In the same spirit, “A Maximum Likelihood Estimator for the Prevalence
Rate Using Pooled Sample Tests” presents maximum likelihood methods to
determine the prevalence rate of a disease. “On Intra-Individual Variations in Hair
Minerals in relation to Epidemiological Risk Assessment of Atopic Dermatitis”
discusses risk analysis in a Cohort Study of 842 mother-infant pairs for Atopic
Dermatitis in Japan. The chapter looks at the association between hair minerals at
one month and the onset of atopic dermatitis (AD) at ten months after birth with the
aim of identifying infants with a high risk of getting the disease. “Assessing Risk
Factors for Periodontitis Using Multivariable Regression Analysis” presents a
deterministic mathematical model to evaluate risk factors for periodontitis (using
data from Portugal) and the authors conclude that periodontitis is significantly
associated with High Density Lipoproteins (HDL). “COPD: on Evaluating the Risk
for Functional Decline” considers patients with Chronic Obstructive Pulmonary
Disease (COPD) and uses a longitudinal study to measure their risk of becoming
dependent on others for day-to-day activities. The goal is early intervention and
assistance in order to reduce their dependence on others. “Microarray Experiments
on Risk Analysis Using R” presents several designs to conduct microarray analysis
using R, a technique that is being increasingly used to identify individuals at risk of
getting a certain disease as well to identify the relevant risk factors. Finally, the last
chapter in this subsection, “Risk Assessment of Complex Evolving Systems
Involving Multiple Inputs” looks at complex nuerophysical systems with multiple
inputs to evaluate whether some of the inputs inhibit the occurrence of new events.

The final subsection in this section deals with risk analysis for environmental
sciences. While most of us want to live in a world completely free of pollution,
realistically speaking that is an impossible dream. Hence, environmental policies
focus on achieving “optimal pollution levels” where the marginal damage cost is
equal to the marginal abetment cost. The authors “Monitoring Environmental Risk
by a Methodology Based on Control Charts” argue that it is more efficient to focus
instead on maximizing the net benefit (difference between abatement costs and
damage costs.) They present different methods to evaluate the benefit area, which
allows the comparison of different environmental policies. In the last chapter of this
section, “Risk Problems Identifying Optimal Pollution Level”, the authors propose
a method for monitoring environmental risk through the use of control charts when
the contaminant concentration follows a Birnbaum-Saunders distribution.

Next we turn to Part II: Risk Analysis in Management and Industry. The success
of any industry is heavily dependent on its ability to deliver a product that is
consistent and of high quality. Thus risk of failures, breakdowns, losses, inferior
quality, etc., must all be identified and mitigated. Some methodologies to do just
that are presented in this next section. As in the previous part, this section is also
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divided into subsections, although the first chapter in this section is in its own
subsection since it deals with sampling strategies.

“Finite Populations Sampling Strategies and Costs Control” presents a brief and
compact review of Sampling Techniques. As pointed out by the authors, sophis-
ticated statistical techniques are useless when they use bad data. Thus the authors
present a quick overview of sampling strategies to show how to deal with cost
control in nonideal circumstances (where the practitioner is unable to sample ran-
domly without replacement).

Thereafter, the section moves on to papers with applications to real-life prob-
lems. The first subsection is on Quality Control. Process Control Charts have
revolutionized the concept of monitoring quality. However, standard quality control
charts are predicated on the assumption of normality, which is often not the case
with real data. “Industrial Production of Gypsum: Quality Control Charts” deals
with the use of Box-Cox transformations to normalize data in order to construct
appropriate control charts. An application to the production of gypsum (marketed
only if it meets required specifications) is presented. The benefit of a tolerance
region, rather than a confidence region for problems in Industry and Management,
is explained and discussed in “Risk Analysis with Reference Class Forecasting
Adopting Tolerance Regions”.

The previous subsection provides a natural bridge to the next subsection on
“Extreme Value Theory.” In order to estimate guarantee values and tolerance limits,
most manufacturers are concerned with the estimation of extreme quantiles, espe-
cially in the context of heavy-tailed distributions. Heavy-tailed distributions are a
norm in financial and insurance data. Extreme quantiles in these settings are often
called Value at Risk at level q (Varq) or Probable Maximum Loss (PML). No risk
analysis strategy in the business world is complete without an evaluation of Varq
and a number of papers in this section deal with the estimation of the same.
Research methodologies presented deal with the enumeration of stable extreme
value laws along with a characterization of their domains in “Randomly Stopped
kth Order Statistics”, the use of a new class of skew-normal distributions to model
heavy-tailed distributions in “The Role of Asymmetric Families of Distributions in
Eliminating Risk”, estimation of extreme rainfall levels using parametric and semi-
parametric methods in “Parametric and Semi-Parametric Approaches to Extreme
Rainfall Modelling”, the use of Pareto Probability Weighted Moments (PPWM) and
semi-parametric methods to estimate extreme quantiles in “A Log Probability
Weighted Moment Estimator of Extreme Quantiles” and “A Mean-of-order-p Class
of Value-at-Risk Estimators” respectively. The last chapter in this subsection,
“Adaptive Choice and Resampling Techniques in Extremal Index Estimation”
presents the use of resampling techniques to estimate the extreme value index, an
important parameter in the estimation of PML.

The remaining papers fall under the general heading of “Applications in
Reliability and Survival Analysis” and are summarized below:

In a number of experiments in industrial quality control and reliability, observed
data often consist of record-breaking values where only successive maxima or
minima are recorded. Such data also routinely arise in fields like Climatology,
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Geosciences, and athletics. The authors in “Some Estimation Techniques in
Reliability and Survival Analysis Based on Record-Breaking Data”, present a
review of the results on statistical inference from records that can be used in
Reliability and Survival Analysis, including inferential results for heavy-tailed
distributions. Commercial credit management is a matter of great importance for
most small and medium enterprises (SMEs), since it represents a significant portion
of their assets. Commercial lending involves assuming some credit risk due to
exposure to default. Thus, the Management of Trade Credit and payment delays are
strongly related to the liquidation and bankruptcy of these enterprises. The rela-
tionship between Trade Credit Management and the level of risk in SMEs is
extensively discussed in “Risk Scoring Models for Trade Credit in Small and
Medium Enterprises”. The concept of signature is a powerful tool in the analysis of
reliability systems and networks. However, most papers on this topic have dealt
with a system of i.i.d components. “Signatures of Systems with Non-exchangeable
Lifetimes: Some Implications in the Analysis of Financial Risk” considers the
expansion of this concept to the non-exchangeable case, which allows applications
to systems in different fields, such as Economics, Financial Risk, Environmental
Sciences, etc. One of the key factors in quality control and risk quantification is the
identification of outliers. In autoregressive time series one encounters two basic
types of outliers: additive outliers (AO), affecting only a particular observation, and
innovative outliers (IO), which act as an addition to the noise at a point in the entire
series. Tests to detect the two types of outliers are presented in “Detecting an IO/
AO Outlier in a Set of Time Series”. Response Surface Methodology (RSM) is
becoming more and more important as a risk assessment tool in this ever-changing
world where big data and several dependent variables are the norm. Thus in
“Response Surface Methodology: A Review of Applications to Risk Assessment”
presents a review of the various aspects on the use of RSM as a risk assessment tool
in the environmental, financial and public health fields. The final chapter in our
book, “FF-type Multivariate Models in an Enforced Regression Paradigm” con-
siders the use of “Enforced Regression Theory” to describe the relationship
between a dependent variable and several independent variables.

In conclusion, the 30 papers included in this volume are diverse in nature, some
applied, some theoretical, with a number of them providing the essential bridge
between the two. In addition, several review papers included here fulfill the mission
of the committee to put forth publications with papers that review various meth-
odologies in risk assessment.

Given its scope and the straightforward nature of the presentation, we believe
that this book will help a new generation of statisticians and practitioners to solve
complex problems in risk analysis. Therefore, this book can easily serve as a
textbook for a special topics course in risk analysis.

All of the papers collected here were reviewed by two referees and by the
editors. We would like to extend our heartfelt thanks to all the reviewers who
devoted their time to allow us to improve the quality of the submitted papers, and in
turn the quality of the volume. At the same time, we express our sincere thanks to
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Generalized Information Criteria
for the Best Logit Model

Christos P. Kitsos and Thomas L. Toulias

Abstract In this paper the γ –order Generalized Fisher’s entropy type Information
measure (γ –GFI) is adopted as a criterion for the selection of the best Logit model.
Thus the appropriate Relative Risk model can be evaluated through an algorithm.
The case of the entropy power is also discussed as such a criterion. Analysis of a
real breast cancer data set is conducted to demonstrate the proposed algorithm, while
algorithm’s realizations, through MATLAB scripts, are cited in Appendix.

Keywords Fisher’s entropy measure · Logit model · Relative Risk · Breast Cancer

1 Introduction

The two main lines of thought are adopted as far as the Fisher’s information measure
is concerned: The parametric approach and the entropy power [2]. In this paper we
shall use the generalized form of the Fisher’s entropy type information measure, as
developed in Sect. 2, as well as a generalized form of the usual normal distribution.
In Sect. 3 the binary response model is related to the developed theory of Sect. 2. An
algorithm is proposed to choose the best binary response model for evaluating the
Relative Risk. As a binary response case that demonstrates the algorithm the breast
cancer problem is studied, see [16] among others.

The pioneering work of Jaynes [10] on the maximum entropy principle in Statisti-
cal Thermodynamics led to the adoption of this principle to other fields of interest. In
the following, a compact form of various parametric and non–parametric information
measures is discussed.
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Let X be a random variable with probability density f (x; θ), with θ ∈ Θ being
the parameter vector from the parameter space Θ ⊆ Rp. Let

U (θ) := ∂
∂θ

log f (x; θ), θ ∈ Θ ⊆ Rp,

be the parametric score function. Then, the parametric information measure I(θ) can
be defined as

I(θ) := g (E[h(U (θ))]) , θ ∈ Θ ⊆ Rp,

where g and h being defined as real–valued functions, and E[·] denoting the expected
value operator with respect to the parameter θ . For the univariate case, if g := id. the
Fisher’s information measure IF (θ) is defined when h(U ) := U 2, and the Vajda’s
information measure IV (θ) when h(U ) := |U |λ, λ ≥ 1. When g(A) =: Ak , the
Mathai’s information measure IM (θ) is obtained when h(U ) := |U |λ and k = 1/λ,
λ ≥ 1, while the Boeke’s information measure IB(θ) is defined with h(U ) :=
|U |λ/(λ−1) and k = λ − 1, 1 �= λ > 0. That is,

I(θ) =

⎧
⎪⎪⎨

⎪⎪⎩

IF (θ), g := id., h(U ) := U 2,

IV (θ), g := id., h(U ) := U |λ, λ ≥ 1,
IM (θ), g(A) := Ak, h(U ) := |U |λ, k = 1/λ, λ ≥ 1,

IB(θ), g(A) := Ak, h(U ) := |U | λ
λ−1 , k = λ − 1, λ ∈ R+ \ 1.

(1)

Some of the merits of Fisher’s information measure, IF (θ), it remains invariant
under orthogonal transformation, provides thewell knownCramer–Rao lower bound,
and plays an important role in optimal experimental design theory, see [8, 12, 23].
Therefore, I(θ) as in (1), defines the F1 family of information measures.

There are two main problems in applications concerning Fisher’s IF (θ) measure:
is the measure singular or ill-conditioned? (see also [23]).

The elements of the non–parametric family F2 of information measures are
defined, through two given distributions fi = d Pi

dμ
, Pi � μ, i = 1, 2 with μ a

σ–finite measure, that is

F2 :=
{

I( f1, f2) : I( f1, f2) := g

(∫

h( f1, f2)dμ

)}

. (2)

Some known information measures (i.m.), or divergences, such as the Kullback–
Leibler i.m. IK L( f1, f2), the Vajda’s i.m. IV ( f1, f2), the Kagan i.m. IK ( f1, f2),
the Csiszar i.m. IC ( f1, f2), the Matusita i.m. IM ( f1, f2), as well as the Rényi’s
divergence IR( f1, f2), are defined as follows
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I( f1, f2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IK L( f1, f2), g(A) := A, h( f1, f2) := f1 log( f1/ f2),

IV ( f1, f2), g(A) := A, h( f1, f2) := f1 |1 − ( f2/ f1)|λ , λ ≥ 1,

IK ( f1, f2), g(A) := A, h( f1, f2) := f1 |1 − ( f2/ f1)|2 ,

IC ( f1, f2), g(A) := A, h( f1, f2) := f2φ( f1/ f2), φ convex,

IM ( f1, f2), g(A) := √
A, h( f1, f2) := (

√
f1 − √

f2)2,

IR( f1, f2), g(A) := log A
1−λ

, h( f1, f2) := f λ
1 f 1−λ

2 , 1 �= λ > 0.
(3)

We can obtain the corresponding parametric information measures from the non-
parametric ones, through the following general scheme, [6, 22]:

I(θ) = lim
Δθ→0

inf
Δθ

{
1

Δθ2
I ( f (x; θ), f (x; θ + Δθ))

}
. (4)

Then, for the univariate case and under certain regularity conditions [2], it can be
proved that the parametric K–L informationmeasure IK L(θ), i.e. (4) with I(·, ·) being
the K–L measure IK L(·, ·) as in (3), is the half of the Fisher’s IF (θ) as in in (1), and
2/λ of Reyni’s IR(θ), or

IK L(θ) = 1
2 IF (θ) = 2

λ
IR(θ).

The two afore mentioned families of information measures, F1 and F2 are con-
sidered for the parametric case. Some of these measures attract special interest in
ecological studies, see [1]. In the next Section we present the entropy type informa-
tion measures.

2 Entropy Type Information Measures

Now as far as the entropy type information measures are concerned, notice that the
well known Fisher’s entropy type information measure J(X) of a p–variate random
variable is given by

J(X) =
∫

Rp

[∇ f (x)][∇ log f (x)]dx =
∫

Rp

f (x)‖∇ log f (x)‖2dx . (5)

Recall that the Shannon entropy H of a r.v. X is defined as, [2],

H(X) := −
∫

Rp

f (x) log f (x)dx, (6)
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while the corresponding entropy power is given by

N(X) = νe
2
p H(X)

, (7)

with ν = (2πe)−1, see [2] for details.
Introducing an extra parameter, say δ, Kitsos and Tavoularis in [15] defined the

Generalized (entropy type) Fisher’s Information measure (δ–GFI), Jδ as follows:

Jδ(X) :=
∫

Rp

f (x)‖∇ log f (x)‖δdx . (8)

For parameter value δ = 2we get the known Fisher’s information, i.e. J2(X) = J(X).
The extension of the entropy power, the Generalized Entropy Power (δ–GEP) is
defined for δ ∈ R \ [0, 1], as

Nδ(X) := νδe
δ
p H(X)

, (9)

where

νδ := (
δ−1
δe

)δ−1
π−δ/2

[
(

p
2 + 1)

(p δ−1
δ

+ 1)

]δ/p

, δ ∈ R \ [0, 1], (10)

see [15]. Trivially, when δ = 2, (9) is reduced to the known entropy power N(X),
i.e. N2(X) = N(X) as ν2 = ν. Moreover, it can be shown [15] that

Jδ(X)Nδ(X) ≥ p, (11)

with p being the number of the involved parameters, i.e.Θ ⊆ Rp. Therefore, Jδ(X) ≈
p/Nδ(X).

The above extensions give rise to a generalization of the multivariate normal
distribution. This new distribution plays the same role as the classical normal dis-
tribution for the Fisher’s entropy type information, and we shall call it the γ –order
Generalized Normal Distribution (γ –GND).

Recall the p-dimensional random variable Xγ is said to follow the γ –GND,
denoted by Xγ ∼ N

p
γ (μ,Σ), with mean vector μ ∈ Rp×1 and positive definite

scale matrixΣ ∈ Rp×p, when the density function, fXγ , is of the form, see [15, 17],

fXγ (x; μ,Σ) := C p
γ (�) exp

{
− γ−1

γ
Q(x)

γ
2(γ−1)

}
, x ∈ Rp×1, (12)

with quadratic form Q(x) := (x − μ)T�−1(x − μ) and the normality factor C p
γ (�)

defined as

C p
γ (�) := π−p/2 (

p
2 + 1)


(

p γ−1
γ

+ 1
) (

γ−1
γ

)
p γ−1

γ |detΣ |−1/2 . (13)
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Notice that the 2–GND coincides with the usual multivariate (elliptically con-
toured) Normal distribution, i.e. N p

2 (μ,�) = N p(μ,�), while the 1–GND
and the (±∞)–GND reduced in limit to the multivariate (elliptically contoured)
Laplace and Uniform distributions respectively, i.e. N1(μ,�) = U p(μ,�) and
N

p
±∞(μ,�) = L p(μ,�). Moreover, for dimensions p = 1, 2 the 0–GND is

reduced to the degenerate Dirac distribution, i.e.N p
0 (μ,�) = D p(μ). See [21] for

details.

Proposition 1 The Shannon entropy of a random variable Xγ ∼ N
p

γ (μ,Σ), is of
the form

H(Xγ ) = p γ−1
γ

− logC p
γ (�). (14)

Proof Consider the p.d.f. fXγ as in (12). From the definition (6) we have that the
Shannon entropy of X is

H(Xγ ) = − logC p
γ (�) + C p

γ (�)
γ−1
γ

∫

Rp

Q(x)
γ

2(γ−1) exp
{
− γ−1

γ
Q(x)

γ
2(γ−1)

}
dx .

Applying the linear transformation z = (x − μ)T�−1/2 with dx = d(x − μ) =√|det�|dz, the H(Xγ ) above is reduced to

H(Xγ ) = − logC p
γ (�) + C p

γ (Ip)
γ−1
γ

∫

Rp

‖z‖ γ
γ−1 exp

{
− γ−1

γ
‖z‖ γ

γ−1

}
dz,

where Ip denotes the p× p identity matrix. Switching to hyperspherical coordinates,
we get

H(Xγ ) = − logC p
γ (�) + C p

γ (Ip)
γ−1
γ

ωp−1

∫

R+

ρ
γ

γ−1 exp
{
− γ−1

γ
ρ

γ
γ−1

}
ρ p−1dρ,

where ωp−1 := 2π p/2/
( p
2

)
is the volume of the (p − 1)–sphere. Applying the

variable change du := d(
γ−1
γ

ργ/(γ−1)) = ρ1/(γ−1)dρ we obtain successively

H(Xγ ) = − logC p
γ (�) + C p

γ (Ip)ωp−1

∫

R+

ue−uρ
(p−1)(γ−1)−1

γ−1 du

= − logC p
γ (�) + p γ−1

γ
(p γ−1

γ
)C p

γ (Ip)ωp−1.

Finally, by substitution of the volume ωp−1 and the normalizing factors C p
γ (�) and

C p
γ (Ip) and as in (13), relation (14) is obtained.
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Example 1 Substituting (14) into (9), the δ–GEP is then

Nδ(Xγ ) =
(

δ−1
eδ

)δ−1( eγ
γ−1

)δ
γ−1
γ

⎡

⎢
⎢
⎣



(

p
γ − 1

γ
+ 1

)



(

p
δ − 1

δ
+ 1

)

⎤

⎥
⎥
⎦

δ/p

| det�| δ
2p . (15)

Moreover, the generalized Fisher’s entropy type information measure Jδ(Xγ ) with
Xγ spherically contoured, i.e. Xγ ∼ Nγ (μ, σ 2Ip), is given by the formula, [20],

Jδ(Xγ ) = (
γ

γ−1 )
δ
γ


(

δ+p(γ−1)
γ

)

σ δ
(

p γ−1
γ

) . (16)

Example 2 For the usual entropy power of the γ –GND, i.e. for the second–GEP of
the r.v. Xγ ∼ Nγ (μ,�), we have that

N(Xγ ) = 1
2e (

eγ
γ−1 )

2 γ−1
γ

⎡

⎣


(
p γ−1

γ
+ 1

)


( p
2 + 1

)

⎤

⎦

2/p

| det�|1/p.

Note that for the limiting cases of X1 (1–GND) and X±∞ (±∞–GND) we obtain the
usual entropy power for the multivariate (and elliptically contoured) Uniform and
Laplace distributions respectively, i.e.

N(X1) = lim
γ→1+N(Xγ ) = | det�|1/p

2e2/p
( p
2 + 1

) ,

N(X±∞) = lim
γ−1
γ

→1+
N(Xγ ) = 2

2−p
p e

[
(p − 1)!√| det�|


( p
2

)

]2/p

.

Finally, for the r.v. X2 we obtain the usual entropy power for themultivariate Normal,
i.e. N(X2) = p

√| det�| (Fig. 1).
Table1 provides an evaluation of Nδ(Xγ ) with Xγ ∼ N 1

γ (0, 1) for certain γ and
δ ≥ 1 values.

Example 3 We make the following observations here. When δ = γ , from (15), we
have that

Nγ (Xγ ) = | det�| γ
2p . (17)

Thus, N0(X0) = 1, i.e. the 0–GEP of the Dirac distributed, X0 ∼ D(0) is 1 while
Nδ(X0) = +∞ for every defined δ ∈ R \ [0, 1] as it is derived through (15).
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Fig. 1 Graphs ofNδ(Xγ ) along δ for various γ values,where Xγ ∼ Nγ (0, σ 2)withσ = 0.8, 1, 1.5

Table 1 Evaluation of Nδ(Xγ ) with Xγ ∼ N 1
γ (0, 1) for various γ and δ ≥ 1 parameters

γ /δ 1 3/2 2 3 5 10 50 +∞
−50 2.7412 1.8834 1.7598 1.684 1.6566 1.6912 2.3295 +∞
−10 2.8309 1.9766 1.8769 1.8549 1.9461 2.3340 11.660 +∞
−5 2.9393 2.0912 2.0233 2.0761 2.3482 3.3981 76.283 +∞
−2 3.2430 2.4235 2.463 2.7884 3.8392 9.0834 10411. +∞
−1 3.6945 2.9469 3.1967 4.1230 7.3677 33.452 7.05e+6 +∞
−1/10 8.3767 10.0610 16.434 48.057 441.49 1.2e+5 ≈ +∞ +∞
1 1.0 0.4150 0.2342 0.0818 0.0107 7.06e−5 2.95e−22 0.0

3/2 1.7974 1.0 0.7566 0.4748 0.2008 0.0248 1.59e−9 0.0

2 2.0664 1.2327 1.0 0.7214 0.4032 0.1002 1.74e−6 0.0

3 2.3040 1.4513 1.2433 1.0 0.6950 0.2977 0.0004 0.0

5 2.4779 1.6187 1.438 1.2440 1.0 0.6163 0.0149 0.0

10 2.6009 1.7406 1.5842 1.4384 1.2739 1.0 0.1684 0.0

50 2.6952 1.8362 1.7012 1.6007 1.5223 1.4281 1.0 0.0

±∞ 2.7183 1.8598 1.7305 1.6422 1.5886 1.5552 1.5317 1.0

Moreover, N1(X1) = | det�|1/(2p) while N1(X±∞) = e| det�|1/(2p). For the
Laplace distributed X±∞, (17) implies

N±∞(X±∞) =
⎧
⎨

⎩

0, | det�| < 1,
1, | det�| = 1,
+∞, | det�| > 1.
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See Appendix 1 for the minimum/maximum analysis of the generalized entropy
power Nδ of a γ –GND random variable.

3 Generalized Fisher’s Information and Relative Risk

Consider a subject with attributes given by the input vector X = (X1, X2, . . . , X p)
T.

In risk analysis, the focus is on the parameter p(x), i.e. the probability that this subject
has a certain characteristicC , given that the input vector takes on the real vector value
x , i.e. X = x , and measures the odds ratio or the Relative Risk (RR):

RR = p(x)

1 − p(x)
with log

p(x)

1 − p(x)
= xTβ, (18)

where β being an appropriate vector of regression parameters, see also [11, 13].
Due to the Central Limit Theorem, the involved Binomial distribution B(n, P),

P = p(x), corresponding to the binary response model under investigation, approx-
imated by the Normal distribution, i.e.

B(n, P) ≈ N (n P, n P(1 − P)) = N 1
2 (n P, n P(1 − P)) .

For the normally distributed X ∼ N
(
μ, σ 2

) := N (n P, n P(1 − P)), the Shan-
non entropy is

H(X) = 1
2 + log

√
2πn P(1 − P),

while the entropy power is

N(X) = 1
2πe e2H(X) = 1

2πe e1+log{2πn P(1−P)} = n P(1 − P):=σ 2.

The generalized entropy power Nδ(X) introduced in (9), for this case is

Nδ(X) = (π
2 )

δ
2 e1−

δ
2 ( δ−1

δ
)δ−1−δ( δ−1

δ
+ 1)[n P(1 − P)]δ. (19)

Given the above discussion we propose the following algorithm for the examina-
tion of the optimum variable entering the logit model, based on the methodology of
[11, 18], while for the maximum entropy see [22]. That is, for each k–risk variable
model the maximum δ-GFI models (with respect to the parameter δ) is chosen, and
among them, we obtain the one with the minimum γ -GFI value. The steps of the
proposed algorithm for a bioassay, [7] are presented as follows:
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3.1 Algorithm

Step 1. For the k risk variables X j , j = 1, 2, . . . , k involved to the bioassay, the
average value P̄j is given by

P̄j = 1
n

n∑

i=1

Pji ,

where Pji = pi (x ji ) = Logit−1(xTj β), i = 1, 2, . . . , n. Following the

Central Limit Theorem, we have X j ∼ N (μ j , σ
2
j ), μ j = n P̄j and σ 2

j =
n P̄j (1 − P̄j ), j = 1, 2, . . . , k.

Step 2. Choose the parameter γ , say γ0, which provides the minimum σ 2
j;γ value

i.e.
min

γ
{σ 2

j;γ } = σ 2
j;γ0 , (20)

where σ 2
j;γ is the scale parameter of the extended γ –GND risk variables

X j;γ ∼ Nγ (μ j , σ
2
j ) whose variance is σ 2

j from Step 1.
Step 3. For all the X j;γ models calculate the δ–GFI Jδ(X j;γ0) values and choose

the parameter δ, say δ0, which maximizes the above i.e.

max
δ

{Jδ(X j;γ0)} = Jδ0(X j;γ0). (21)

Step 4. Finally, we choose the model obtained from the optimum input variable
Xopt as

Jδ0(Xopt ) = min
j

{Jδ0(X j;γ0)} = min
j

max
δ

{Jδ(X j;γ0)}. (22)

We apply the above algorithm to the example discussed below.

3.2 Application

A number of breast cancer risk factors have been established in research studies [3,
4, 14], such as the late age at first childbirth, early age of menarche, use of oral
contraceptives or hormone replacement therapy, etc. In his section, we extensively
discuss the results in [11] following the breast cancer analysis in [16] where the
collected data for 98 breast cancer patients and 125 healthy controls through the
logit model are considered. As input variables were considered: the Age of the
woman, the years of Menarche and Menopause, as well as the frequencies of
estrogen biosynthesis CYP17, and the inactivation COMT, see [9]. Variable CYP17
attracts particular interest in bibliography, see [5] and for applications see [16, 19].
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Table 2 Coefficients of
the logit model for the one
input variable model

Variables β0 β1

Age −3.45 0.55

COMT −0.195 −0.03

CYP17 −0.419 0.095

Menarche 0.08902 −0.026

Menopause −3.55 0.067

Table2 provides the coefficients β0 and β1 of the one variable logit model for the
denoted input variables, see also [11] for details.

Step 1. Let X j ∼ N
(
P̄j , pP̄j (1 − P̄j )

)
, j = 1, 2, . . . , 5 correspond to the

variables Age, COMT, CYP17, Menarche and Menopause respectively. Also let
m j be the minimum (δ > 1)–GEP value for every X j , i.e. m j := minδ>1{Nδ(X j )}
obtained for parameter δ = δmin

j , i.e. Nδmin
j

(X j ) = m j . Also let M j be the maxi-

mum (δ < 0)–GEP value for every X j , i.e. M j := maxδ<0{Nδ(X j )} obtained for
parameter δ = δmax

j , i.e. Nδmax
j

(X j ) = M j , j = 1, 2, . . . , 6. Table3 provides the
corresponding numerical evaluations, extending results in [11], see Appendix 3.

Step 2. We consider the extended γ –GND r.v. X j;γ ∼ Nγ (n P̄j , σ
2
j;γ ), j =

1, 2, . . . , 5, such that Var(X j;γ ) = σ 2
j = n P̄j (1 − P̄j ) for all j = 1, 2, . . . , 5.

For γ = 2 the classic Normal distribution is obtained, and hence X j;2 = X j and
σ j;2 = σ j , j = 1, 2, . . . , 5. Recall the variance of the γ –GND X j;γ after [21],

σ 2
j = Var(X j;γ ) = (

γ
γ−1 )

2 γ−1
γ

(3 γ−1
γ

)

(
γ−1
γ

)
σ 2

j;γ , j = 1, 2, . . . , 5. (23)

Thus, (15) can be written, with δ = 2, as

N(X j;γ ) = N2(X j,γ ) = 2
π

e2
γ−1
γ

−1
(
γ−1
γ

)2
3(

γ−1
γ

)

(3 γ−1
γ

)
n P̄j (1−P̄j ), j = 1, 2, . . . , 5.

Table 3 Evaluation of μ j , σ 2
j as well as m j , δmin

j and M j , δmax
j for the j th input variable (Normal

approximation)

j X j μ j σ 2
j m j δmin

j M j δmax
j

1. Age 222.999 0.0006 0. +∞ +∞ −∞
2. COMT 98.0708 54.9413 14.725 1.0425 1.005 −0.0101
3. CYP17 97.9825 54.9306 14.723 1.0424 1.005 −0.0101
4. Menarche 97.9969 54.9324 14.724 1.0424 1.005 −0.0101
5. Menopause 96.2594 54.7084 14.692 1.0425 1.005 −0.0101
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Table 4 Evaluation of the parameter σ 2
j,γ of X j;γ ∼ Nγ (μ j , σ

2
j;γ ) such that Var(X j;γ ) = σ 2

j =
n P̄j (1 − P̄j )

γ COMT CYP17 Menarche Menopause

X2;γ X3;γ X4;γ X5;γ
1 164.82 167.792 164.79 164.12

1.5 70.759 70.7451 70.747 70.459

2 54.941 54.9506 54.932 54.708

5 36.033 36.0260 36.027 35.880

50 28.220 28.2150 28.216 28.100

+∞ 27.471 25.558 27.466 27.354

Table4 presents the σ 2
j;γ parameter values obtained from (23), for various γ ≥ 1

values and j = 2, 3, 4, 5, see Appendix 3. The variable X1 corresponding to the risk
factor Age is omitted as the σ 2

1 values of the input variable X1 (Age) are too small.
From Table4 it is clear that the shape parameter’s limiting value γ0 = 50 (“close”
to infinity), is the one which provides minimum σ 2

j;γ values for γ > 1, i.e.

min
γ>1

{σ 2
j;γ } = σ 2

j;+∞ ≈ σ 2
j;50, j = 2, . . . , 5.

Notice that when γ < 0 we derive γ0 = 0, which is beyond this study.
Therefore, the minimum σ 2

j;γ>1, j = 2, 3, . . . , 5, values (bold values in Table4)
correspond to the Laplace distribution. For the form of the risk variable COMT = X2,
see Fig. 2, where X2;Laplace := X2;+∞.

Step 3. In order to choose the parameter δ which provides maximum values for
Jδ(X j;+∞), we refer to Table5 for the appropriate evaluations of Jδ(X j;γ0), where
γ0 = 50 ≈ +∞ due to Step 3, see Appendix 3. Thus,

Fig. 2 Graphs of the p.d.f. of COMT = X2 ∼ N (μ2, σ
2
2 ) and X2;Laplace ∼ L (μ2, σ2;Laplace)
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Table 5 Evaluation of Jδ(X j;γ0 ) where γ0 provides the minimum σ 2
j,γ value

γ COMT CYP17 Menarche Menopause

X2;γ X3;γ X4;γ X5;γ
1 0.19079 0.19081 0.19081 0.19120

1.5 0.08333 0.08335 0.08335 0.08360

2 0.03640 0.03641 0.03640 0.03656

5 0.00025 0.00025 0.00025 0.00025∗

10 6.39e−8 9.17e−8 6.4e−8 6.53e−8∗
∗For γ ≥ 5 the values of Jδ(X j;γ ) are close to zero

max
δ≥1

{Jδ(X j;+∞)} = max
δ≥1

{σ−δ
j;+∞} = max

δ≥1
{2δ/2σ−δ

j } = √
2/σ j = J1(X j;+∞),

(24)

because of (16) and (23) with γ → +∞. It is clear from (24) that, for all j =
2, 3, 4, 5, the parameter value δ0 = 1 (which is a limiting value of Jδ>1) provides
maximum for Jδ(X j;+∞).

Step 4. We choose the logit model which provides the optimum input variable
Xopt as

J1(Xopt ) = min
j=2,3,4,5

{J1(X j;Laplace)}.

Hence, from Table5, we choose as Xopt = X2;Laplace, i.e. Xopt = X2;+∞, and
therefore the optimum variable to participate to the model is the risk variable COMT
corresponding to the minimum value

J1(COMT) = 0.19079.

Thus COMT appears to be the appropriate selected risk variable according to the
above min–max δ–GFI criteria. Moreover, this is done through the Laplace distrib-
ution and not through the Normal.

As far as the general minimum/maximum behaviour of Nδ(X j;γ ) see Appendix 2.

4 Discussion

The method we proposed appears to provide, as appropriate, a set of variables which
differ from the classical one. This is due to the different criteria we apply. We believe
that the γ –GFI as a criterion offers a “safe” alternative for the researcher to choose
the appropriate Logit model.

The logit model with all the variables is presented in Table4 [16], while the final
model is in Table5. The specific model provided by our method is chosen through
the min-max entropy (amongst the worst we choose the best). Although it seems
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computationally tedious, it can be handled using packages such as MATLAB, see
Appendix 3 for example.

In this paper we worked with the generalized Fisher’s entropy type information
measure Jδ . Similar algorithms can be adopted utilizing the generalized entropy
power Nδ instead of GFI.

In the following Appendices 1 and 2 we provide the appropriate theoretical back-
ground concerning the min–max behavior of the generalized entropy power as an
alternative criterion to the generalized Fisher’s information measure.

Acknowledgments The authors would like to thank the referees who improved the language as
well as the content of this paper, with their valuable comments.

Appendix 1

A study on the min–max behavior of the generalized entropy power Nδ(Xγ ) applied
on a γ -order normally distributed random variable is given below.

Let Xγ ∈ N
p

γ (μ,�). For δ > 1, numerically can be verified (see Fig. 1) that,

max
γ>1

Nδ(Xγ ) = min
γ<0

Nδ(Xγ ) = Nδ(X+∞),

min
δ≥1

max
γ>1

Nδ(Xγ ) = N+∞(X+∞) = 1, when | det�| = 1,

max
δ≥1

min
γ<0

Nδ(Xγ ) = N1(X+∞) = e| det�| 1
2p .

The dual case hold for δ < 0 (max /min reversion). Moreover, for | det�| ≤ 1, see
also Fig. 3, the following holds:

max
δ≥1

Nδ(Xγ ) = N1(Xγ ), γ > 1,

min
γ≥1

max
δ≥1

Nδ(Xγ ) = N1(X1) = | det�| 1
2p ,

Fig. 3 Graphs ofNδ(Xγ ) along δ for various γ values,where Xγ ∼ Nγ (0, σ 2)withσ = 0.8, 1, 1.5
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For | det�| ≥ 1, Fig. 3, we have

max
γ>1

{

min
δ≥0

Nδ(Xγ ) �= 0

}

= min
δ>1

Nδ(X+∞).

Appendix 2

A study on the min–max behavior of Nδ(X j;γ ) and Jδ(X j;γ ) applied on the γ -order
normally distributed risk variables X j,γ , j = 1, 2, . . . , 5 is given below.

Figure4, verifies that

max
γ>1

{
Nδ(X j;γ )

} = Nδ(X j;2) = Nδ(X j ), δ > 1,

i.e. the maxγ>1 Nδ(X j;γ ) corresponds, for δ > 1, to the usual Normal distribution,
and therefore,

min
δ>1

max
γ>0

{
Nδ(X j;γ )

} = m j ,

with m j as in Table3. Moreover, the maxγ>1 Nδ(X j;γ ) for δ < 0 corresponds to the
usual Laplace distribution, i.e.

max
γ>1

{
Nδ(X j;γ )

} = Nδ(X j;−∞), δ < 0.

Fig. 4 Graphs of Nδ(X2;γ ) along γ for various δ values, where X2;γ ∼ Nγ (μ2, σ
2
2;γ )
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Table 6 Evaluations of m∗
j

and m∗∗
j , j = 2, 3, 4, 5

j X j m∗
j m∗∗

j

2. COMT 14.247 0.072732

3. CYP17 14.247 0.072746

4. Menarche 14.246 0.073042

5. Menopause 14.217 0.071991

while for δ > 1, through (23) with γ−1
γ

→ 1, is given by

max
γ<0

{
Nδ(X j;γ )

} = Nδ(X j;−∞) = e( δ−1
δ

)δ−1−δ
(

δ−1
δ

+ 1
)
σ j/

√
2, δ > 1, i.e.

m∗
j := min

δ>1
max
γ<0

{
Nδ(X j;γ )

} = N1(X j;−∞) = 1
2e

√
2σ j ,

with m∗
j as in Table6 (compared with Table3).

For the δ–GFI, we have that Jδ(Xγ ) is a monotone function of δ ≥ γ (1.4628 −
1) + 1 for all Xγ ∼ Nγ≥1(μ, 1), see proof of Proposition 3.1 in [20]. Thus Jδ(Xγ )

is an increasing function of δ ≥ 2. Therefore,

min
δ≥2

Jδ(Xγ ) = J2(Xγ ) = J(Xγ ), γ ≥ 1.

The above relation holds for Xγ ∼ Nγ≥1(μ, σ 2), due to (16), assuming σ ≥ 1, and
hence

min
δ≥2

Jδ(X j;γ ) = (
γ−1
γ

)2/γ
(

3γ−1
γ

)

(
γ−1
γ

)
σ−2

j;γ , γ ≥ 1.

Through (23) we have

min
δ≥2

Jδ(X j;γ ) = (
γ−1
γ

)
2 2−γ

γ

(3 γ−1
γ

)(
3γ−1

γ
)

2(
γ−1
γ

)
σ−2

j , γ ≥ 1.

Numerically we can derive that (see Table6)

m∗∗
j := max

γ≥1
min
δ≥2

J(X j;γ ) = Jδ(X j;+∞).

Appendix 3

Appendix 3.1. MATLAB script for the evaluations of Table 3. The 5th column of
the Data matrix correspond to the data for Age, COMT, CYP17, Menarche and
Menopause risk variables, while theb0 andb1 arrays contain the coefficients from
Table2.
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Data = [Age COMT CYP17 Menarche Menopause]; [n,k] = size(Data);
b0 = [-3.45 -0.195 -0.419 0.08902 -3.55];
b1 = [ 0.55 -0.03 -0.095 -0.026 0.067];
Variable = {’Age’,’COMT’,’CYP17’,’Menarche’,’Menopause’};
Title = @(i,m,v) ...

[Variable{i} ’:’ char(’ ’*ones(1,15-length(Variable{i}))) ...
num2str(m) ’ ’ num2str(v)];

disp(’ ’), disp(’ mu_j Var_j’)

Mu = zeros(1,k); Var = Mu;
for i = 1:k

e = exp(b0(i)+b1(i)*Data(:,i)); p = e./(1+e);
mp = mean(p); m = n*mp; v = m*(1-mp);
disp(Title(i,m,v)); Mu(i) = m; Var(i) = v;

end

N = @(a,d,p,s,e) ( ((d-1)./(d*e)).ˆ(d-1) ).*...
( (e./a).ˆ(d.*a) ).*( s.ˆ(d/(2*p)) ).*
(( gamma(1+p*a)./gamma(1+p*((d-1)./d)) ).ˆ(d/p));

A = @(g) (10ˆ-8)*(g == 1)+((g-1)./g).*(g > 1 | g < 0)+isinf(g);
aU = A(1); aN = A(2); aL = 1;

D = -5:0.0001:-0.0001; s2 = Var;
disp(’=== M_j =========================’);
for k = 1:length(s2); Y = N(aN,D,1,s2(k),exp(1)); Y(isinf(Y)) = 0;

[maxN i] = max(Y); disp([maxN D(i)])
end;

D = 1.0001:0.0001:5;
disp(’=== m_j =========================’);
for k = 1:length(s2)

[minN i] = min(N(aN,D,1,s2(k),exp(1))); disp([minN D(i)])
end;

Appendix 3.2. MATLAB script for the evaluations of Table 4. Array s2 and variable
k are defined in the previous script.

Var = @(a,p,s2) (a.ˆ(-2*a) ).*( gamma((p+2)*a)./gamma(p*a) )*s2;

A = @(g) (10ˆ-12)*(g == 1)+((g-1)./g).*(g > 1 | g < 0)+isinf(g);
G = union([-50 -10 -5 -2 -1 -0.1],[1 3/2 2 3 5 10 50 inf]);
ng = length(G); AG = A(G); AG(isnan(AG)) = 1;

Lsep = 72; sepTitle = @(m,Title,sepstr,n)...
disp([char(sepstr*ones(1,m)) ’ ’ Title ’ ’ ...
char(sepstr*ones(1,n-m-length(Title)-2))]);

sep = @(sepstr,n) disp(char(sepstr*ones(1,n)));

format compact; format short; M = zeros(ng,k);
sep(’ ’,Lsep); sepTitle(3,’s2_j;gamma’,’=’,Lsep);
disp([NaN V]); sep(’-’,Lsep);
i = 1; for v = V; M(:,i) = v./Var(AG,1,1)’; i = i+1; end;
disp([G’ M]); sep(’=’,Lsep); format loose;
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Appendix 3.3. MATLAB script for the evaluations of Table 5. Array V andMATLAB
function Var are defined in the previous script.

J = @(a,d,p,s2) a.ˆ(d*(1-a)).*...
(gamma(p*a+d*(1-a))./gamma(p*a))./(s2.ˆ(d/(2*p)));

D = union([-inf -10 -5 -2 -1 -0.1 -0.01],[1 3/2 2 3 5 10 inf]);
nd = length(D); aL = 1;

format compact; format short g; M = zeros(nd,k); Lsep = 92;
sep(’ ’,Lsep); sepTitle(3,’Jd(X_j;gamma0=Inf)’,’=’,Lsep);
disp([NaN V]); sep(’-’,Lsep); i = 2;
for v = V(2:k); M(:,i) = J(aL,D,1,v./Var(aL,1,1))’; i = i+1; end;
M(:,1) = J(A(-0.01),D,1,v./Var(aL,1,1))’; %%% Jd(X_j;gamma0=Inf)
disp([D’ M]); sep(’=’,Lsep); format loose;
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Fractal Case Study for Mammary Cancer:
Analysis of Interobserver Variability
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Abstract This paper discusses some features of the distribution of box-counting
fractal dimension measured on a real data set from mammary cancer and masthopa-
thy patients. During the study we found several reasons whymammary cancer and its
following distribution cannot be easily represented by single box-counting dimen-
sion. The main problem is that without a histopathological examination of the tumor
a simple algorithm based only on single box-counting dimension is difficult to be
constructed. We have tried to understand the distribution underlying the real data,
especially its departures from normality. Both normal and gamma distributions are
related to the Tweedy distributions, which are given bymulti-fractal dimension spec-
tra present in histopathological images. Without having a histological examination
of the data multifractality is unavoidable as can be seen from several analysis in this
paper. We have seen a fair differentiation between cancer and masthopathy. Finally
we studied the depths of the data based on the information divergence. Some practical
conclusions are also given.
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1 Introduction

Breast cancer is one of the most common cancers. The chance of curing cancer
primarily relies on its early diagnosis and the selection of the treatment depends on
its malignancy kind. Therefore it is critical to distinguish cancerous tissues from
healthy ones and identify its malignancy kind. There is a common understanding
in the cancer research, that many of the typical cancer tissues have some fractal
geometry features (see [1, 6, 9, 16]). It is clear that not all of cancer tissueswill follow
rigid fractal geometry (e.g. Wilms tumors, see [12]). However, mammary cancer is
understood to have some fractal background. There is a hope that stochastic and
deterministic models of cancer growth can help to better differentiate between cancer
and various forms of masthopathy. Several procedures have been developed to make
this discrimination only based on fractal dimension. However, this is oversimplifying
the real situation. In this paper we show some complexities of dependencies within a
dataset containing both mammary cancer and masthopathy histological images. For
the other approaches to estimate the relative risk for breast cancer and related issues
see [2, 7, 8].

The paper is organized as follows. In the next section we introduce the data.
In Sect. 2.1 we study the deviations of the subsamples from the normality. In the
Sect. 2.2 we study the skewness and kurtosis individually, together with heterogene-
ity of the data. Afterwards in Sect. 2.3 we introduce the depth based on both the
heuristic algorithms and parametric assumption of the underlying gamma distrib-
ution. Section 3 contains a deeper analysis of the variance. Within this section in
Sect. 3.1 a simple discrimination between masthopathy and mammary cancer, based
on the box-counting dimension is done and in Sect. 3.2 the different groups are tested
for normality.

2 Case Study

The cancer data contains the observation-number, the box-counting dimensionsmea-
sured on the data (see [16]), the characteristics (mamca or masto) and the percent-
ages. In total there are 391 observations. The data has been taken from [10] and are
collected from histological examination, with 512 × 512 pixel image resolutions.
Histologic exams usually look at physical examples under a miroscope and assign
a tumor grade. Fractal analysis looks at images of breast tissue specimens and pro-
vides a numeric description of tumor growth patterns as a number between 1 and 2.
This number, the fractal dimension, is an objective and reproducible measure of the
complexity of the tissue architecture of the biopsy specimen.

The minimum of the sample dimensions is 1.1039 and the maximum is 1.8715.
The value of the range is therefore 0.7676. Moreover the comparison of the mean
(1.587391) and the median (1.5972) shows that the data is not strongly biased due to
outliers. Firstly, the analysis of data was conducted and a graphical representation of
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Fig. 1 Scatterplot of data
with fitted
regression-line

the ordered dimensions follows in Fig. 1. The skewness has a value of −0.47. This
figure indicates that the data is left-skewed. The kurtosis of 3.01 means that the data
is peaked.

Obviously it is noticeable that the data points are placed closely at the regression
line. Especially at the lower quantile of the data,manypoints differ strongly compared
to the regression line of the dimensions. For this reason the datawas analyzed to detect
if there are possible candidates for outliers by comparing the values with upper (bu)
and lower (bl ) borders. Those were calculated with the following formulas, where
IQR is the interquantile range.

bl = q0.25 − (1.5 · IQR(dimensions)) (1)

bu = q0.75 + (1.5 · IQR(dimensions)) (2)

The calculations with the Eqs. (1) and (2) result in four detected outliers, which
were deleted from the dataset. The next step was to investigate if the data can be
considered as normally distributed. By creating a histogram in the program EViews,
a test for normality is calculated additionally. In this case a p-value of 0.000729 and a
Jarque-Bera-value of 14.44795 were computed. For this reason it cannot be assumed
that the data is normally distributed.

A Shapiro-Wilk-Test for normality was approached in the statistical program
R [12]. The Shapiro-Wilk-Test has a good property in context of robust testing
for normality [15]. This p-Value of 0.0001104 is approximately in the range of the
test-statistic of the Jarque-Bera-Test. These two tests allow rejecting the null
hypothesis, hence the data is not normally distributed. The p-value improves with
the modified data to 0.001153, but normality can still not be assumed.
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It needs to be investigated which distribution fits to the data, because it can-
not be assumed that the data is normally distributed. For this reason a two-sided
Kolmogorov-Smirnov-Test for a gamma distribution with a shape of 125.379 and
a scale parameter of 78.98 was computed (see [16]). For an alternative statistical
approach see [17]. The p-value of this calculation (0.2161) allows to assume that the
data is gamma distributed. The same test was done with the modified data and still
yields a p-value (p = 0.142), which also allows to maintain the null hypothesis of a
gamma distribution.

Moreover we decided to test whether the mean of the data fits to the expected
mean with given shape and scale parameters of the gamma distribution. In this case
the expected value is E(X) = λ

β
, where λ is the shape and β the scale parameter.

This calculation yields 1.587477, which is almost equal to the mean of the data
(1.587391). This naive check is another indication that the gamma distribution fits
to the dimensions of the slices.

As previously given in [16], the data can be assumed gamma distributed.
Nevertheless the data is investigated also forWeibull distribution. In order to test this,
the Kolmogorov-Smirnov-Test for aWeibull distribution was used. Stehlík et al. [16]
suggests using the values 13.68 and 1.648 for the shape and the scale parameters.
Analogously to the test for gamma distribution, the original and the modified data
were tested for Weibull distribution.Thereby a p-value of 0.3568 for the complete
data was calculated and the test for the modified data delivered an even better p-value
of 0.9576, which says that the data can be assumed as Weibull distributed. These
two significantly different p-values are another hint, that the four neglected values
are outliers.

2.1 Jarque-Bera-Statistic

The following formula was used to implement an exact Jarque-Bera-Test for nor-
mality in R [12]. The calculation with the following formula (3) results in a value of
14.44795.

jb = n

6
∗

(
μ̂3

μ̂2
3
2

)2

+ n

24
∗

(
μ̂4

μ̂2
2 − 3

)2

, (3)

where μ̂i stands for the central moments of the data. The second central moment
(μ̂2) is the same as the variance. The third moment equals to the skewness (μ̂3) and
the fourth moment (μ̂4) describes the kurtosis. By inserting the moments of the data
into the formula the same figure as in EViews is received.

2.1.1 Algorithm of the Simulation

1. Step: Simulate 391 random variables ∼N(0,1)
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2. Step: Calculate a Jarque-Bera Statistic with formula (3) and compare with the
“true value” 14.44795. Add to a temporary variable 1, if the new value is bigger
than the old one.

3. Step: Repeat steps 1. and 2., 10,000 times and divide counter by 10,000.

The result of this algorithm was a p-value of 0.0053. Analogously to the previous
procedure the implemented test was now approached with the data without outliers.
This test delivered a new p-value 0.0216. Compared to the previous one, it has
significantly improved, but normality still needs to be rejected.

2.1.2 Epsilon-Belt

The aim of the simulation is to transform to a normal distribution by truncating the
data at a special ε-point (this is a specific form of deleting outliers), which is pre-
specified by a pathologic expert. To test the normality, simulations were conducted.
First the data was cut on both sides with the same ε-value. Afterwards the data was
cut just on one side, because of the left-skewed distribution of the data. To show the
effect of the ε-belts, the values of ε were plotted against the corresponding p-values.
In this case the value of ε is equal to the upper or lower quantile. Precisely if p = 0.1,
this means, that the upper and lower 10% of the data were cut. Figure2 shows these
calculated p-values. It needs to be mentioned, that e.g. ZV = 2000 means that 2000
random variables were calculated and IL = 0.0025 says that the differences between
the epsilon values are 0.0025.

Fig. 2 JB-Test with data cut
on both sides
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2.1.3 Heterogeneity Between the Different Groups

Another very interesting aspect concerning tests for normality is the difference
between the two groups. The p-values computed by the Shapiro-Wilk-Test differ
between these ones significantly. First this test was done with the observations where
masthopathy was detected. The calculated p-value smaller than 0.0001 shows that
the data cannot be assumed as normal distributed. Following to that the same test
was approached with those observations where cancer was observed. The p-value
with this set of data is 0.04519. Although the null hypothesis cannot be rejected,
the significantly improved p-value shows that there is a difference in the distribution
between these two groups. Due to the knowledge described above, the previously
named Jarque-Bera-Test was accomplished with these two groups. These outputs are
compared to each other on Fig. 3.

Figure3 demonstrates the significant difference between the p-values concerning
masthopathy and cancer. Thereby the data was cut only on the left side. Another
difference to the previous simulations is that in this case the epsilon stands for the
minimum dimension of the data for which the p-values were calculated. This test was
only computed for observation which have higher dimension than given ε. In average
the p-values for cancer are 10 times higher compared to the ones for the masthopathy
group. We constructed this by visual discrimination and further research should be
conducted to get the levels of significance for the difference.

2.2 Skewness and Kurtosis

In this section we investigate skewness and kurtosis of the empirical distribution
of estimated box-counting dimensions. The aim is to modify the data to improve
the values of skewness and kurtosis to be more adequate for normality. Without the

Fig. 3 Difference between masthopathy and cancer
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modification of the data skewness andkurtosis have the followingvalues:−0.001336;
0.001211. The value of the skewness is approximately zero and concerning only this
value, the data could be assumed to be normally distributed. Nevertheless the value
for kurtosis is also around zero and definitely too small for normality. The following
modification of the data is done similarly to the previous approach. For this reason
data outside of the fixed quantile is cut and only the remained data is investigated.
Figure4 shows the calculated values for skewness on the left and for kurtosis on the
right side.

The next step is to cut off the data which is bigger than a fixed value of ε. These
limits can be read on the ordinate of the plot. The split of the output is similar to the
previous figure.

As visible on Fig. 5 the data still cannot be assumed to be normally distributed.
Although the value of skewness converges roughly to zero, kurtosis is still too low.
The desired value of 3 is still unreachable. We can conclude that there is more
structural departure from normality than the one studied here given by outliers.

2.3 Depth-Plot

With the following two depth functions (see [18]) it is possible to visualize the
3-dimensional median. The x-coordinate represents the data (dimensions) and the
y-coordinate the characteristic feature of cancer. On the left side the depth plot was
accomplished with the method of Tukey and the plot of the right side shows Liu’s
version.

For the plot on the right side it seems that the mean is nearer to the healthy tissue
(0), than to the others. This can be seen, because the peak at the x-value of 0 is higher
compared to the depth of the data at a x-value of 1 (Fig. 6).

Fig. 4 Changes in skewness and kurtosis by modifying the data
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Fig. 5 Changes in skewness and kurtosis by modifying the data

Fig. 6 Depth plot of Tukey (left) and Liu (right)

The left hand side of Fig. 7 shows a depth contour plot. Here it is nicely visible
where themean of the data is placed. Unfortunately it is not possible to plot the whole
data, so we took 200 points from the middle of the data. At the x-coordinate the value
is climbing up to 1.58 and at the y-coordinate to 0.55. So here with the reduced data
no difference between the characteristic features of cancer and masthopathy is visi-
ble. The right plot of Fig. 7 shows the confidence intervals for the parameters of β,
which are used for the gamma distribution. The calculation has been accomplished
by the divergence from data vector to canonical parameter according to Pázman (see
[11, 14]):

IN (y, γ ) = I (γy, γ ) = −
N∑

i=1

(vi − vi · ln(vi )) +
N∑

i=1

(yiγi − vi · ln(yiγi )) (4)
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Fig. 7 Contour Plot (left) and Confidence Intervals for the parameter β (right)

In this case the parameters have been chosen as follows: β = γ = 70. β is the
scale parameter and ν is the shape parameter of the gamma distribution, which has
previously been fixed with approximately 125.

3 Graphical Analysis for Variance

Our next step will be to investigate the variances of the groups masthopathy and
mammary cancer. By using the Eqs. (1) and (2) outliers for both of the groups at the
lower end can be detected. The dimensions of the group masthopathy are on average
higher compared to the dimensions of mammary cancer tissue. This can be easily
proven by comparing the minimum (1.24; 1.10) and the maximum (1.87; 1.82) of
the groups masthopathy (first) and mammary cancer (second).

3.1 Simple Discrimination Between Masthopathy
and Mammary Cancer Based on the Box-Counting
Dimension

If we will follow the simple concept that higher dimension is more risky, the issue
is that we will arrive with this dataset to some sort of contradiction. The problem is
that the median of the box-counting dimension is 1.5972. When we make a simple
clustering based on ordering the box-counting dimension and decide to tell that more
risky tissue have a box-counting dimension bigger than the median and non-risky
tissue is below, then we only classified 135 of mamca and 60 of mastho below.
Therefore it needs to be mentioned that 199 observations contain the characteristic
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masthopathy and 192 observationsmammary cancer. Even using the arithmeticmean
of 1.587391 decreases the number of classified cancer tissues to 128 for mamca
and 56 for masto. Based on this simple example we can conclude that we need a
more sophisticated procedure based on the box-counting dimension to discriminate
between the two groups andwe should takemore detailed characteristics of the tissue
into account. In extremal case there is no possibility to develop automatic clustering
based on box-counting dimension, which can avoid histological expert examination.

If we take a look on the left plot of Fig. 8we see that to force usage only of one box-
counting dimension establishes inverse problems,which are ill posed. Loosely saying
we need a continuous dimension spectrum, e.g. multi-fractal dimension spectra. It
has already been used in breast cancer discrimination by George and Kamal (see
[5]). A multifractal system is a generalization of a fractal system in which a single
exponent (the fractal dimension) is not enough to describe its dynamics; instead,
a continuous spectrum of exponents (the so-called singularity spectrum) is needed.
Several fractal objects have been recognized (see [3, 4]). This relates also to Tweedie
exponential dispersion models, which as a special case contains both normal and
gamma distributions. This is further justification for these two simple distributional
families: in the case of our empirical data we have found a strong deviation from
normality and therefore we used gamma distribution.

The right plot of Fig. 8 gives a good overviewof the distribution of the observations
of the different groups. It is visible that mammary cancer tissue has on average higher
dimensions (red) compared to masthopathological tissue. These conclusions were
already recognizable due to the comparison of the mean.

We can observe that the difference between the green and red curve is well visible
and differentiates the two groups. To use the fact, that the sum of the squares of
standard normal distributed and independent random variables are Chi-Square dis-
tributed, it is essential to prove first this conditions. For this reason it is necessary
to show that the differences between the curves are standard normal distributed.
Therefore the Shapiro-Wilk-test was used. Because of the small p-value it cannot
be assumed that the differences are standard normal distributed. We have to show,
that the squared differences are Chi-Square distributed with one degree of freedom.
In case that this occurs we are allowed to use the Chi-Square-test, which is realized
below.

Fig. 8 Plot of the dimensions discriminated between masthopathy and mammary cancer



Fractal Case Study for Mammary Cancer: Analysis of Interobserver Variability 31

Table 1 Simulation of p-values with given shape and scale parameter

Shape Scale p-value

0.45491680 1
0.45729929 8.354e-05

0.48 1
0.4573 3.7e-12

0.44 1
0.4673 1.65e-11

0.44 1
0.4673 5.55e-10

0.42 1
0.48 2.22e-16

0.43 1
0.47 1.403e-10

0.425 1
0.48 1e-9

0.42 1
0.48 0.004855

0.425 1
0.48 0.04488

0.43 1
0.48 0.009656

0.42 1
0.485 0.1272

0.415 1
0.485 0.0996

Computing the sum of the squared differences delivers a value of 5.38. A Chi-
Square-test was accomplished to test whether the two groups are equal or different.
The p-value of the distribution function of the Chi-Squared distribution with 199
degrees of freedom is approximately one. This value is another proof that the two
groups are different. Furthermore we made a standardization of the previously cal-
culated differences. Therefore we reduced the differences with its mean and divided
those values by the standard deviation. With these values the null hypothesis “The
two groups are different” is tested. The sum of the standardized squared differences
is 198. The distribution function at this value and 199 degrees of freedom is 0.49331.
Due to this p-value it can be once more recognized that the two groups are different.

χ2
1 is not fitting completely well, because the p-value is very small. However,

we believe that the distribution can be gamma with the real valued shape parameter.
We have produced the plots and also checked the p-values with different shape and
scale parameters of the Gamma distribution. By reducing the shape parameter and in
contrast to that increasing the rate, which reduces the shape parameter, a convergence
to higher p-values is obviously (Table1).

We can see that we will find a rather good fit for specific values of the parameters.
These values were tested by the version of Kolmogorov-Smirnov in R (See [12]).
Thereby the shape parameter of 0.415 and a scale parameter of 1/0.485 delivered
an accurate p-value of 0.09956. The test with a shape parameter of 0.42 delivered
an even better p-value of 0.1272. Therefore it can be assumed that the standardized
difference is Gamma distributed with a shape parameter which lies in between the
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Fig. 9 Comparison of standardized differences with random variables of a gamma distribution

range [0.415, 0.42] and the scale parameter is about 2.06 ( 1
0.485 ). However it can be

caused by random generators implemented in R-Software (see [12]), thus producing
more entropy in the samples. Moreover it is quite useful to compare the standardized
differences with generated random variables of a gamma distribution, with a shape
parameter of 0.415 and a scale parameter of 2.062. This comparison can be seen in
the Fig. 9.

3.2 Testing for Normality of the Groups

Due to the fact that within this paper normality plays an important role it needs to be
investigated, whether one of these groups is normally distributed or not. Therefore
two Shapiro-Wilk-Tests were computed to see if the groups can be assumed to be
normal distributed. The p-value of masthopathy was smaller than 0.0001 and signal-
ized, that the data can not be seen as normal distributed. In contrast to that the p-value
of mammary cancer tissue (0.04519) was ten times higher. However this value is still
too small (for a significance level of 95%) to state that the box-counting dimension
of mammary cancer tissue is normal distributed.

The QQ-Plots in Fig. 10 are another indication that masthopathy is not normal
distributed, but normal distribution of the dimensions of mammary cancer cannot be
rejected. Indeed the lower quantile differs significantly from the comparative line.

As previously seen it cannot be safely rejected, that the box-counting dimension
of mammary cancer tissue is normally distributed. The p-value is very close to the
rejecting area, so that we still can assume that this data is normal distributed. It
would be useful to calculate the possible candidates for outliers (with formulas (1)
and (2)), cut them off the data and compute another p-value. The same formula
as on page 4 was used to compute the values of these outliers. This p-value has
improved significantly up to 0.5716 and therefore it can be assumed that the data is
normally distributed. Another manifestation for the normality of this group are the
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Fig. 10 QQ-Plot of the groups masthopathy (left) and mammary cancer (right)

Fig. 11 Histogram and QQ-Plot of the data without outliers (n = 188)

histogram and QQ-Plot of the modified data in Fig. 11. Both of the plots suggest that
the modified box counting dimension is normal distributed.

For this reason the next step will be to create a linear regression model. Owing
to the fact that only the box-counting dimensions of mammary cancer tissue can be
seen as normal distributed, a regression model was calculated just for this group.
Thereby a significant intercept term and moreover a significant explanatory vari-
able were computed. The p-value for both of the parameters are smaller than 2e-16
and the values are 1.34 (intercept) and 1.276e-03 (variable X, which contains the
characteristicsmasthopathy ormammary cancer). The very high value of R2 (0.9116)
is another indication that this model fits well to the data. The following Fig. 12 shows
the plot of the regression model.
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Fig. 12 Plot of the regression model

4 Discussion

In this paper we empirically model the distribution of the box-counting dimension
from histological images of mammary tissues. We have discussed departures from
normality, depth, heterogeneity and some complexities of distributions modeling
entirely the fractal dimension. Our suggestion can be made to the practitioners to
study suchdatasets in a deeperway tounderstand the depths anddistributiondeviation
from normal or gamma samples. Several open problems remain e.g. relation between
mathematical model of fractal dimension and tissue growth, parametric distribution
of the box-counting dimension in mammary cancer. Such problems will be the valu-
able directions for future research.
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10. Mrkvička, T., Mattfeldt, T.: Testing histological images of mammary tissues on compatibility

with the Boolean model of random sets. Image Anal. Stereol. 30, 11–18 (2011)
11. Pázman, A.: Nonlinear statisticalModels (chapters 9.1 and 9.2). KluwerAcademic Publication,

Dordrecht (1993)
12. R Development Core Team. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing: Vienna, 2010. http://www.R-project.org [12 June 2013]
13. Stehlík, M., Giebel, S.M., Prostakova, J., Schenk, J.P.: Statistical inference on fractals for

cancer risk assessment. Pakistan J. Statist. 30(4), 439–454 (2014)
14. Stehlík, M.: Distributions of exact tests in the exponential family. Metrika 57(2), 145–164

(2003)
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On Analytical Methods
for Cancer Research

Stefan Giebel, Philipp Hermann, Jens-Peter Schenk
and Milan Stehlík

Abstract The use of image recognition and classification of objects according to
images is becoming extremely popular, especially in the field of medicine. A mathe-
matical procedure allows us, not only to evaluate the amount of data per se, but also
ensures that each image is processed similarly. Our study has two focal points: The
first one is the automated data entry and the second one is the evaluation in a manage-
able way. We propose the use of mathematical procedures to support the applicants
in their evaluation of magnetic resonance images (MRI) of renal tumours. Therapy of
renal tumours in childhood based on therapy optimizing SIOP (Society of Pediatric
Oncology and Hematology)-study protocols in Europe. The most frequent tumour
is the nephroblastoma (over 80%). Other tumour entities in the retroperitoneum are
clear cell sarcoma, renal cell carcinoma and extrarenal tumours, especially neurob-
lastoma. Radiological diagnosis is produced with the help of cross sectional imag-
ing methods (computer tomography CT or Magnetic Resonance Images MRI). Our
research is the first mathematical approach on MRI of retroperitoneal tumours for
transversal images (of 40 patients). We useMRI in 3 planes and evaluate their poten-
tial to differentiate other types of tumours. We determine the key points or three
dimensional landmarks of retroperitoneal tumours in childhood by using the edges
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of the platonic body (C60) and test the difference between the groups (nephroblas-
toma versus non-nephroblastoma). The size is not eliminated like in former studies.
All objects are comparable. For other important references see [1, 4, 9].

Keywords Diagnostics · Discrimination · Landmarks · Renal tumours · Wilms
tumours

1 Introduction

The aim in our study is to differentiate tumours, not to detect them like in [6].
There are different kinds of renal tumours: Nephroblastoma (Wilms’ tumour) [10]
is the typical tumour of the kidneys appearing in childhood, as it is shown in Fig. 1.
Therapy is organised in therapy-optimizing studies of the Society of Pediatric Oncol-
ogy and Hematology (SIOP). Indication of preoperative chemotherapy is based on
radiological findings. The preferred radiological methods are sonography and MRI.
Both methods avoid radiation exposure, which is of great importance in childhood.
Preoperative chemotherapy is performed without prior biopsy [8].

Information of the images ofmagnetic resonance tomography, especially the renal
origin of a tumour and the mass effect with displacement of other organs, is needed
for diagnosis. Besides nephroblastomas other tumours of the retroperitoneum exist,
which are difficult to differentiate [7]. Renal tumours in childhood are classified into
three groups of malignancy (I, II, III). Typical Wilms tumours mostly belong to stage
II. In group II different subtypes of nephroblastoma tissue exist [3].

In our sample of tumours, four different types of retroperitoneal tumours are
represented: nephroblastoma, neuroblastoma, clear cell carcinoma, and renal cell

Fig. 1 Transversal image of
a renal tumour
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Fig. 2 3D Image of a renal
tumour

carcinoma. Renal cell carcinomas are very rare in childhood. They represent the typ-
ical tumours of adult patients. They do not have high sensitivity for chemotherapy.
Clear cell sarcomas are very rare in childhood and are characterised by high malig-
nancy. Neuroblastomas are the typical tumours of the sympathetic nervous system
and suprarenal glands. Infiltration of the kidney is possible.

The tumour grows with encasement of vessels. Because of the high importance
of radiological diagnosis for therapy, it is of great interest to find markers for a good
differentiation of tumours. MRI produces 2D-images. From the two dimensional
data a three dimensional object has to be computed as it is shown in Fig. 2. Our aim
is to find and to develop mathematical methods to support diagnosis.

2 Data Analysis

Landmarks are points to describe the object. If there are theoretical concepts of a
groupof objects like in anatomy, landmarks canbe selected easily.Without theoretical
concepts we need a procedure for finding landmarks. In the following study we get
3D landmarks by constructing a three dimensional object of the tumor. Then we take
as landmarks the cut-points between the surface of the tumor and the vector of the
edge of the platonic body C60.

Within the following analysis the data was investigated for normal-distribution as
well as for differences between the group means of the x-, y- and z-coordinates of
the Landmarks. Before starting to compare these values it is necessary to give a short
descriptive overview of the three variables. The first necessary step was to separate
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Table 1 Descriptive overview of the x-, y- and z-coordinate

Coordinate Wilms Minimum Median Mean Maximum

x No −44.23 4.51 10.66 89.28

x Yes −90.47 −11.56 −8.18 103.22

y No −469.98 0.86 −1.15 49.09

y Yes −51.11 0.54 0.81 55.46

z No −102.04 −10.20 −14.82 49.14

z Yes −97.06 0.74 −1.33 85.05

the data according to whether Wilms tumour was diagnosed or not. The sample size
consists of 40 patients, whereby 30 patients were diagnosed withWilms, 7 with Non-
Wilms and the cancer characteristic of the rest (3 patients) is not known at themoment
of observation.Wewant to emphasize that the patients differ in their malignancy kind
of cancer and for the sake of simplification we name patients diagnosed with other
malignancy kind as “Non-Wilms group” hereafter. Moreover for every observation
60 landmarks were measured. A count of these points shows that between 186 and
6638 points were measured to get the exact location of the 60 necessary landmarks.
This exact location was calculated by geometric methods. On an average 1666 mea-
surements were needed for the desired result. It has to be mentioned that every one of
these landmarks consists of a x-, y- and a z-coordinate. The data was differentiated
on the basis of these three coordinates. This enables to compare the values of each of
the coordinates between the two groups Wilms and Non-Wilms. Table1 shows the
minimum, maximum, median and mean of the three coordinates.

The first two columns of Table1 show the coordinate and whether Wilms or
Non-Wilms group was investigated. The next four columns present the values of the
minimum, median, mean and the maximum. It is obvious, that the differences within
the groups of the x- and z-coordinates are higher than at the y-coordinate. So the
differences between the mean or the median are bigger than approximately 10 but are
not exceeding around19 (see mean of the x-coordinates). Another outstanding aspect
is that the the distance between the minima of the x-coordinates for the two groups
is quite big, as is the case for the maxima of the z-coordinates. The distance between
the minima is about 45 and the range between the maxima is approximately 36. The
differences in the minimum and maximum of the y-coordinate are approximately 18
and 6. However computing differences of the median and the mean of this coordinate
do not deliver values, such that a significant difference between the groups could be
assumed (0.34 and 1.96).

Differences in the Group Means
The following histograms and QQ-Plots compare the x-, y- and z-coordinates of the
landmarks for the two groups. The histograms are on the left side of the plot, whereby
the histogram of the group without Wilms tumour is the left one, while that for the
group with cancer is the right one. Figure3 shows the comparison between the two
groups for the x-coordinate. The differences can already be seen, especially in the
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Fig. 3 Histogram and Quantile-Quantile-plot of the x-coordinates

negative region of the x-coordinate of the histogram on the left side. None of the
landmarks where Wilms tumour was not diagnosed has a x-value which is smaller
than−50. Therefore aWilcoxon-Test was conducted to see whether this difference is
random or statistically significant. In this case the calculated p-value is smaller than
0.0001, which means that the difference between these two groups is statistically
significant. It needs to be mentioned that all the Wilcoxon-tests of this paper are
based on a 95% level of significance. This evidence supports the earlier assumptions
regarding the differences, which can be seen in Table1.

The same procedurewas conducted for the y-(Fig. 4) and the z-(Fig. 5) coordinates
and their outputs are shown in the following figures. The computed p-value of the
Wilcoxon-Test was for the second coordinate approximately 0.2493 and for the last
one again smaller than 0.0001. This means that the differences between the means of
the y-coordinate are not statistically significant. Indeed, by having a closer look at the
histograms of Fig. 4, no big differences between these two groups can be detected.
For this reason it can be said that the means of the two groups of the y-coordinate
are approximately equal.

In contrast to the last comparison the differences concerning the z-coordinate
between the two observed groups are statistically significant at a confidence level of
95%. This can be seen quite easily in the histogram of Fig. 5, since the z-coordinates
of all of the all the observations from the “Non-Wilms group” were less than 50.
Certainly some of the x-coordinates of the Wilms-tumour group are higher than 50
and the frequency in the range between −100 and−50 is lower in the cancer group.
Generally it can be said, that the z-coordinates of the patients, who are not affected
with cancer are on an average smaller. This assumption can be made, because it
is obvious that a higher part of the density of the z-coordinate of the “Non-Wilms
group” is on the left side compared to the cancer group. The calculated values for
skewness of the cancer and “Non-Wilms group” are 0.19 and −0.80. Hence the
values of kurtosis (3.86 and 4.16) are another hint for the different distribution of the
groups.
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Fig. 4 Histogram and Quantile-Quantile-plot of the y-coordinates

Fig. 5 Histogram and Quantile-Quantile-plot of the z-coordinates

Testing for Normal-Distribution
The next part is to test the data concerning normality. For further tests and investi-
gations a normal distribution of the data is, as known, desirable. In this case study
QQ-Plots and Shapiro-Wilk-Tests were accomplished to have amathematical as well
as a visual check. The plots on the right side of the previous Figs. 3, 4 and 5 show
the QQ-Plots, where on the right side of the QQ-Plots the observations with Wilms
tumour are placed. At first view in Fig. 3 the visual test for normality seems to be
quite useful, nevertheless the upper and lower end of the plot shows that it cannot be
said that the x-coordinates of both groups are normally distributed. The p-values of
the Shapiro-Wilk-Tests are smaller than 0.0001 for both of the groups, which confirm
the assumption that none of the groups is normally distributed.

The two graphics on the right side of Fig. 4 show the Quantile-Quantile plots for
the y-coordinates. Due to greater deviations in the lower quantiles and additionally



On Analytical Methods for Cancer Research 43

a p-value smaller than 0.0001 display that the values of the second coordinate are
also not normally distributed. Although the QQ-Plot for the group where cancer was
diagnosed does not look that bad, the p-value smaller than 0.0001 clearly shows that
this group is not normally distributed neither, because of the greater deviations at the
upper and lower quantiles.

Even prior to calculating the p-values for the z-coordinates it can be seen from
the QQ-Plots of Fig. 5 that none of the groups will be normally distributed, because
the deviations between the empirical and the theoretical quantiles are too big. The
very small p-values (both smaller than 0.0001) show that our first impression was
correct.

3 Conclusions

Even in the case of transversal images Wilms- and Non-Wilms tumours can be
differentiated. In contrast to the approach of Giebel [2] three dimensional landmarks
were used. The sample of 37 cancer patients equates to a third of the total population
with renal tumours per year. Hence our results give a new approach for a support in
diagnosis. The validity in oncology is questionable like for prostata [5]. Even if the
sample is bigger, the question of validity has to be solved by a bootstrap procedure.
The crucial points are all unknown patients in the future.

Furthermorewe are using our data analysis procedure in a field inmedicine, where
decisions according to images are necessary to get a suitable therapy. Our procedure
could be a first step in the development of a tool to help the diagnostics of images
for all patients. Especially, in the light of the sample with renal tumours, our results
give a new approach for a support in diagnosis.

Further studies with an extension on 4D are a future option, especially to study
changes in the shape of the tumor during chemotherapy. Another important study
object should be the shape analysis in organs with fast movements, e.g. shape of
heart ventricles or aorta during cardiac cycle.
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Modelling Times Between Events
with a Cured Fraction Using a First
Hitting Time Regression Model
with Individual Random Effects

S. Malefaki, P. Economou and C. Caroni

Abstract The empirical survival function of time-to-event data very often appears
not to tend to zero. Thus there are long-term survivors, or a “cured fraction” of
units which will apparently never experience the event of interest. This feature of
the data can be incorporated into lifetime models in various ways, for example,
by using mixture distributions to construct a more complex model. Alternatively,
first hitting time (FHT) models can be used. One of the most attractive properties
of a FHT model for lifetimes based on a latent Wiener process is that long-term
survivors appear naturally—corresponding to failure of the process to reach the
absorbing boundary—without the need to introduce special components to describe
the phenomenon. FHT models have been extended recently in order to incorporate
individual random effects into their drift and starting level parameters and also to be
applicable in situations with recurrent events on the same unit with possible right
censoring of the last stage. These models are extended here to allow censoring to
occur at every intermediate stage. Issues of model selection are also considered.
Finally, the proposed FHT regression model is fitted to a dataset consisting of the
times of repeated applications for treatment made by drug users.
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1 Introduction

In survival and reliability studies it is commonly observed that some experimental
units in the sample have not undergone the event of interest by the time that data
collection ceases. These data are recorded as right-censored observations. Although
the usual interpretation is that the time until the event for these units is larger than the
time available for the study, an alternative is that some or all of them are long-term
survivors, or a “cured fraction” of units which will never experience the event of
interest no matter for how long the study continues.

Many different approaches to modelling a cured fraction can be found in the
literature. One is a mixture model in which it is assumed that a proportion of units
will never experience the event of interest (failure, death etc.) because they were
never actually at risk. This idea seems to go back to [6, 7]; also see, for example,
[18]. Other approaches include Yakovlev et al.’s model [24] and more recently a
model that proposes a different underlying mechanism as the source of the long-term
survivors [8]. Another alternative interpretation of the nature of the cured fraction
can be obtained through a first hitting time (FHT) or threshold regression model. It
is among the most attractive properties of the FHT model for lifetimes based on a
latent Wiener process that long-term survivors appear naturally—corresponding to
failure of the process to reach the absorbing boundary—without the need to introduce
special components into the model in order to describe the phenomenon. Reviews of
FHT models and some of their applications can be found in [1, 13, 15], for example;
see also [14, 16, 23] and references therein. A brief discussion of the potential use
of the FHTmodels as cured fraction models can be found in [16]. Several extensions
and modifications of the FHT model were suggested by [4] in order to improve the
fit of the adopted model.

One emphasis of this paper is consequently on howdifferent cured fractionmodels
represent the nature of the long-term survivors and how these arise in the context of
FHT models, which is an area still under development. Our modelling is carried out
within the framework of a recent extension of FHT regression models to recurrent
events [10]. Our other emphasis is on the further extension of this model here in
Sect. 2 in order to allow censoring to occur in every intermediate stage and not only
at the last stage. In the same section anMCMC algorithm for simulating observations
from the posterior distribution is presented briefly. Model selection criteria are also
discussed. In Sect. 3 the nature of the long-term survivors under this FHT regression
model is discussed in detail. A case study, in the form of the application of the model
to recurrent events data on drug users, is presented in Sect. 4. The paper concludes
with a short discussion.
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2 Model Definition and Estimation

2.1 The Model

Time-to-event data take the simple form of the time (on an appropriate scale—real
time or operating time) from an origin (a machine commences operation, a patient
undergoes surgery) until a well-defined event occurs (such as the breakdown of the
machine or the death of the patient). These simple data may, however, arise from
a complex underlying process. The breakdown of the machine is a result of the
increasing wear and tear on its components; the death of the patient follows from
the deterioration of his or her state of health. The chief characteristic of FHT models
for the time until an event occurs is that it recognizes this structure, by postulating
that the observable event occurs when an underlying stochastic process reaches a
certain boundary or threshold for the first time. This stochastic process could itself
be observable—for example, the size of a crack in amachine component.More often,
however, it will be regarded as a latent process. For example, the patient’s condition
might be measured by many indicators, but in the FHT context will just be thought
of as an unobservable “state of health” whose value changes stochastically in time.
If this latent construct is presumed to take non-negative values, then the death of the
patient is supposed to happen when the state of health falls to zero.

In this context, the underlying continuous time stochastic process is denoted by
{X (t), t ∈ T , X (t) ∈ X }, whereX is its continuous state space. The distribution
of lifetimes is given by the first passage time from the initial state at time zero,
X (0) = x0, to the boundary or threshold, B ⊂ X . A useful and common choice
for the parent stochastic process is a Wiener process (e.g. [14]). In this case, the
observed lifetimes follow an inverse Gaussian distribution with parameter values that
are functions of the initial state x0, variance σ 2 and driftμ of theWiener process [16].

This model can easily be extended to a sequence of latent processes in order to
describe recurrent events in independent individuals. For individual i (1 ≤ i ≤ n;
the sample size), ni stages are observed, demarcated by the time points: 0 = t0i <

t1i < t2i < · · · < tni i . These are realizations of first passage times in the sequence
of processes

{Xm(t), t ∈ [Tm−1,+∞), x ∈ X }, m = 1, 2, . . . ,

(suppressing the index i for brevity) where X is the common state space of the
processes, 0 = T0 < T1 < T2 < · · · , and Xm(Tm−1) = xm is the initial value of the
mth stage of the process. Stage m ends at time Tm , with duration Sm = Tm − Tm−1
since the previous event, whereupon the process restarts (a machine is repaired, a
chronically ill patient receives treatment). The starting value and the parameters of
the underlyingWiener process will be allowed to vary between stages. The threshold
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could also be allowed to vary, but in our models it will always be assumed to be
zero. In many applications, only the last stage can be censored but this is not an
essential restriction. In the proposed model, we shall allow censoring to occur in
every intermediate stage.

Heterogeneity among individuals in an FHT regression model is usually intro-
duced by allowing the initial state xm and the drift μm to depend on the values of the
available individual-level covariates. In addition, in the context of recurrent events,
we will also introduce dependence on two process-related covariates: the number
of stages m − 1 previously completed by the individual and the total time elapsed
tm−1 until the beginning of the current stage. However, the implication that two dif-
ferent individuals with the same covariates will have the same initial state and drift,
although possibly realistic in some reliability studies, is not reasonable in human
studies. The extra heterogeneity that is usually observed between individuals and
cannot be explained by the available covariates can be introduced into the model
through individual random effects. These random effects are expressed at each stage
for the drift as normal random variables with an additive effect on this characteristic
of the process. For the initial states of the processes, we assume that they are gener-
ated by a normal distribution truncated to the left at zero (the threshold value) with
variance τ−1 and a location parameter that depends on the extended vector of the
covariates (the initial covariates, the number of previous stages and the total time so
far tm−1).

More specifically, for the initial state xmi and drift μmi of the i th individual’s mth
stage, the following regression structures are assumed:

xmi ∼ N+
(

ũ′
miα

∗, τ−1
)

(1)

μmi =
∑m

k=1
bki + ṽ′

miβ
∗ (2)

where

ũ′
miα

∗ = u′
iα + αns(m − 1) + αs t(m−1)i

ṽ′
miβ

∗ = v′
iβ + βns(m − 1) + βs t(m−1)i .

The vectors ũmi and ṽmi denote the covariates associated with the starting level
and drift, respectively, of this stage of that individual, including the covariates ui

and vi (not necessarily disjoint) of individual characteristics that remain unchanged
through the stages. More generally, their values could change between stages, so that
ui would become umi, with a similar change in vi . The vectors α∗′ = (α′, αns, αs)

and β∗′ = (β ′, βns, βs) are the regression coefficients associated with the starting
level and drift, respectively. Finally, the bki ∼ N

(
0, λ−1

)
, k = 1, . . . , ni , are the

individual’s random effects.
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2.2 The Likelihood

When the parent stochastic process is aWiener process, it is absorbed at the boundary
with probability one if the drift parameter μmi ≤ 0. In this case, the random variable
Smi = Tmi−Tm−1,i which expresses the time elapsed between two successive events,
i.e. the time required for the mth stage of the process in the i th individual to reach the
threshold level for the first time, follows an inverse Gaussian distribution with mean
− xmi

μmi
and scale parameter

( xmi
σ

)2 [9]. The scale of the unobserved underlying process
is arbitrary, hence the model is over-parameterized and therefore one parameter must
be fixed. Because we are modelling the dependence of the drift on the available
covariates, the parameter that can be fixed is the variance of the Wiener process,
which is set equal to one: σ 2 = 1. With this modification the pdf is

f (smi|xmi, μmi) = xmi
√

2πs3mi

exp

(

− (μmismi + xmi)
2

2smi

)

, smi > 0 (3)

and the survival function is

F̄(smi|xmi, μmi) = Φ

[
μmismi + xmi√

smi

]

− exp (−2xmiμmi)Φ

[
μmismi − xmi√

smi

]

, (4)

where Φ(·) is the cdf of the standard normal distribution. If the drift parameter
μmi > 0, then absorption is not certain; the probability of reaching the boundary
is exp(−2xmiμmi). The inverse Gaussian distribution with this property has been
characterized as a “defective” inverse Gaussian distribution [25]. The distribution
given by (3) and (4) continues to apply, however, conditionally on reaching the
boundary.

Under the assumed regression model every stage is described by aWiener process
which given its starting point and drift is independent of other stages. The event time
for any uncensored stage follows an inverse Gaussian distribution and therefore its
contribution to the likelihood function is

xmi
√

2πs3mi

exp

(

− (μmismi + xmi)
2

2smi

)

(5)

where smi denotes the inter–event time of the mth stage of the i th individual, given
by smi = tmi − tm−1, i with t0i = 0. The event time for a censored stage is not
observed and therefore its contribution to the likelihood is the survival function (4),
assuming uninformative censoring as usual. Alternatively, if we could observe for
the censored mth stage of the i th individual the level 	mi of the stochastic process
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{Xmi(t), t ∈ [Tm−1, i ,+∞)}, or equivalently of the {Xmi(s), s ∈ [0,+∞)} at time
smi, then the contribution to the likelihood would be given by the pdf of the stochastic
process [9]:

p(	mi, smi|xmi;μmi) = 1√
2πsmi

exp

(

− (	mi − xmi − μmismi)
2

2smi

)

×
[

1 − exp

(

−2	mixni i

sni i

)]

. (6)

It is feasible to use this function in the likelihood if we treat the unobserved level
	mi for a censored stage as an unknown parameter and then sample it from its full
conditional posterior distribution in the MCMC algorithm that will be described
below.

To sum up, the likelihood for the regression model is given by

n∏

i=1

ni∏

m=1

⎛

⎝
xmi

√

2πs3mi

exp

(

− (μmismi + xmi)
2

2smi

)
⎞

⎠

dmi

×

(
1√

2πsmi
exp

(

− (	mi − xmi − μmismi)
2

2smi

)[

1 − exp

(

−2	mixmi

smi

)])1−dmi

where dmi is the usual censoring indicator with dmi = 1 for an uncensored stage and
dmi = 0 for a censored one.

Before we present theMCMC algorithm, it is also necessary to assign priors to the
parameters of the model. Conjugate priors are assigned to the regression parameters
β∗′ = (β ′, βns, βs) and to λ, the inverse of the variance of bmi:

β∗ ∼ Nq(β∗
prior,Σβ∗)

λ ∼ Gamma(γ1, γ2)

where q is the dimension of β∗ (including the constant term). The choice of Σβ∗
reflects the degree of confidence in the point estimate β∗

prior, which has possibly been
obtained from previous analyses. If it is not considered to be a good estimate, then
a reasonable choice under the assumption of no multicollinearity could be Σβ∗ =
104 Iq , where Iq is the identity matrix of size q.

A suitable prior for λ is the Gamma distribution with mean γ1/γ2 and variance
γ1/γ

2
2 . The choices for the hyperparameters γ1 and γ2 could reflect information from

previous studies. Otherwise, a diffuse prior such as Gamma(2, 1/2) can be used.
The prior distribution assigned for the regression parametersα∗ of the initial states

xmi is a p dimensional normal distribution:

α∗ ∼ Np(α
∗
prior,Σα∗)
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where p is the dimension of α∗, and α∗
prior and Σα∗ are chosen in a similar way to

β∗
prior and Σβ∗ , respectively.
It is unlikely that informationwould be available concerning the unobserved levels

	mi of the latent stochastic process of a censored stage, so we assign an improper,
non-informative flat prior to 	mi, given di = 0:

π(	mi|dmi = 0, ·) ∝ 1(	mi > 0) (7)

where 1(·) stands for the indicator function.
A gamma prior could be assigned to the parameter τ . However, we follow the

recommendation of Pennell et al. [19] to take a fixed moderately small value in
order to avoid identifiability problems. Their investigation found that results were
not sensitive to the choice of τ . Our own findings from a sensitivity analysis reached
the same conclusion and thus are omitted.

Combining all the above, the posterior distribution for the regressionmodel allow-
ing right censoring of any stage is given by

L ∝
n∏

i=1

{ ni∏

m=1

⎛

⎝
xmi

√

2πs3mi

exp

(

− (μmismi + xmi)
2

2smi

)
⎞

⎠

dmi

×

(
1√

2πsmi
exp

(

− (	mi − xmi − μmismi)
2

2smi

)[

1 − exp

(

−2	mixmi

smi

)])1−dmi

×

√
λ exp

(

−1

2
λb2mi

)

·
exp

(
− τ(xmi−ũ′

miα
∗)2

2

)

(
1 − Φ

(
−τ

1
2 ũ′

miα
∗
))

}

×

λγ1−1 exp (−γ2λ) · exp
(

−1

2
(α∗ − α∗

prior)
′Σ−1

α∗ (α∗ − α∗
prior)

)

×

exp

(

−1

2
(β∗ − β∗

prior)
′Σ−1

β∗ (β∗ − β∗
prior)

)

·
n∏

i=1

ni∏

m=1
dmi =0

1(xi > 0)

where

ũ′
miα

∗ = u′
1iα + αns(m − 1) + αs t(m−1)i

and

μmi =
m∑

k=1

bki + v′
1iβ + βns(m − 1) + βs t(m−1)i .

In the following subsection we describe briefly an MCMC algorithm for sampling
from the posterior distribution (see also [10, 19]).
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2.3 The MCMC

A hybrid Gibbs Sampler is proposed for simulation from the posterior distribution.
More specifically, an accept–reject algorithm is used in order to simulate the unob-
served level 	mi when the stage m is censored. The shape of the target distribution,
which is the full conditional distribution of 	mi given the remaining parameters of the
model, depends on the value of the quantity μmismi + xmi, thus two different propos-
als are used. A similar approach is used for the starting level xmi when the stage m
is censored, because its full conditional distribution has the same form as that of the
unobserved level 	mi.When the stagem is not censored, an accept–reject algorithm is
also used but with proposal distribution the truncated normal distribution with mean
equal to the mode of its full conditional distribution. The regression coefficients
of the starting levels are simulated using Griffiths’ method [11] for sampling from
truncated multivariate normal distributions. The remaining model parameters are
simulated using a regular Gibbs step, using their full conditional distributions since
they have a known form. For more details of the algorithm see [10] and also [19].

2.4 Model Selection Criteria

Model selection is a key issue in data analysis and there is an extensive literature
on this topic: see, for example, [17, 20] for reviews. We suggest that two criteria,
namely the Deviance Information Criterion (DIC) [21] and the Information Criterion
(IC) [3], are suitable measures for selecting from among a set of candidate models
in the case of FHT models.

The DIC is defined as

DIC = −2Eθ |y(log f (y|θ)) + PD,

where
PD = 2 log f (y|θ̂ ) − 2Eθ |y(log f (y|θ))

and θ̂ is the posterior mean of the model parameters. Although this criterion is easy
to compute, it suffers from the disadvantage that it tends to select overfitted mod-
els. In order to overcome this problem, Ando [2] proposed the Bayesian Predictive
Information Criterion (BPIC). Its form does not allow easy calculations and thus it is
not readily applicable, especially in models as complex as the ones proposed in this
paper. Subsequently, Ando [3] proposed the IC which is claimed to incorporate the
advantages of both the DIC and BPIC. It is easy to compute in any model without
overfitting. The IC is a modification of the DIC, given by

IC = −2Eθ |y(log f (y|θ)) + 2PD .
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The IC usually prefers a simpler model than the one selected by DIC since its penalty
term is twice that of the DIC. For both DIC and IC, a model with a smaller value of
the criterion is preferred over models with larger values.

3 The Nature of the Cured Fraction

Before moving on to an illustrative application of the proposed model, it is worth
comparing and contrasting the way in which the cured fraction appears in different
models. As already mentioned, an FHT model for lifetimes based on a latent Wiener
process incorporates the presence of long-term survivors in a natural way, without the
need to introduce any special component into the model. We discuss here this feature
in more detail in order to understand the nature of the cured fraction in this approach
in comparison to the classical cured fraction mixture model and the model proposed
recently by [8]. In the cured fraction mixture model [7] the survival function is given
by

Sc(t) = πc + (1 − πc)STc (t) ,

where πc is the proportion of units that are never at risk of the event and STc (t)
is the survival function of the random variable Tc which represents the time to the
event of interest in the population of units that are susceptible to the event. Under
this approach it is assumed firstly that the proportion πc is constant over time and
secondly that these cured units were actually “cured” from the beginning and remain
so throughout the study.

Under an alternative hidden competing risk model for censored observations pro-
posed in [8], all the units start out as susceptible to the event of interest but may
move into a non-susceptible group if another event intervenes. This results in a con-
tinuously increasing proportion of “cured” units. Both these models divide, at any
given time, the population into two clearly defined groups, one that is susceptible to
the event of interest and one that is not. This assumption may not always be realistic
and in some cases the following situation may seem more reasonable. We assume
that some members of the population will eventually experience the event of interest
with probability one (these members belong to the susceptible group) but for the rest
of the population, this probability is less than one but not zero. This means that the
population is not separated into susceptible and non-susceptible groups, but rather
into a susceptible group and a potentially susceptible group.

A characteristic example, which is actually the application of the current work,
is the time that passes until a drug user applies for treatment. It could be supposed
that the decision to approach a treatment service depends on the user’s mental and
physical state. This unobservable state is not fixed but varies over time and the random
walk of the Wiener process may be a reasonable representation of it. The particular
individual characteristics of the drug user may indicate that he or she has a value of
the drift parameter that will eventually lead to an application for treatment. On the
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other hand, for the majority of the drug users this is not the case and it is not certain
that the drug user will ever seek treatment again.

This situation arises naturally in theWiener-based FHTmodel because of the non-
zero probability exp(−2xmμm) that the mth stage of the process fails to reach the
threshold whenμm > 0, which means that long-term survivors appear automatically
without the need to introduce special components into the model in order to describe
the phenomenon. This was an important feature of the application in [25]; it is
considered in detail, along with various extensions, by [4].

This property provides an alternative to the usual explanation for the long-term
survivors that appear in the sample as right-censored observations. A right-censored
observation in this FHT model does not necessarily correspond to an individual who
has not yet experienced the event of interest, nor to an individual who will never
experience the event of interest because he or she was never actually at risk, as in
a mixture model. Instead, it may arise from an individual for whom failure was a
possibility, but not an ultimate certainty. The interpretation in the case of drug users’
applications for treatment is that, if the parameter μ > 0 then depending on the
course of the underlying stochastic process that describes his or her psychological
and physical state, the user might reach the point of requesting treatment but possibly
will never do so. This is more realistic than supposing that the drug user started this
stage in such a state that guaranteed that he or she would never seek treatment.

Under the proposed model, both of the parameters xmi and μmi depend on the
values of the covariates, the number of previous stages and the total time t under
observation until the beginning of the current stage, through the relationships (1) and
(2). The expected value of the drift is

E(μmi) = v′
iβ + βns(m − 1) + βs t(m−1)i .

The expected value of the starting level is given by the mean of the corresponding
truncated normal distribution which can be expressed as

E(xmi) = u′
iα + αns(m − 1) + αs t(m−1)i + h(ζmi)√

τ

where
ζmi = −τ

1
2
(
u′

iα + αns(m − 1) + αs t(m−1)i
)

and h(·) is the hazard function of the standard normal distribution [5]. The expected
time to absorption at the threshold (hence, the expected duration of this stage) is

E(Smi) = xmi/|μmi|

where Smi = Tmi − Tm−1, i . If μmi > 0 this expectation still holds conditioning
on the event’s occurrence but, as stated earlier, in this case there is a probability
1 − exp(−2xmiμmi) that the Wiener process will never reach the threshold on this
stage. It is apparent that larger values of xmi make it less likely that this mth stage
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will end in an event, and increase the expected time to event conditioning on its
occurrence. Larger values of μmi > 0 also make it less likely that an event will
occur, but decrease the expected time to its occurrence when it does occur.

Further properties of the FHT regression model based on an underlying Wiener
process, focusing on comparison with the widely used semi-parametric Cox regres-
sion model, are given in [23].

4 Case Study

4.1 The Data

Health care services generally have to deal with the same client repeatedly. The times
of the client’s successive contacts with the service form a sequence of recurrent
events. In the illustrative example that we will be analyzing here, the clients are
approaching services in order to seek treatment for their drug use problems. Each
approach is added to a central database. The time origin t0 = 0 for the i th individual is
the time of his or her first approach and entry into the database. The recurrent events
are further approaches, if any. The purpose of the present analysis is to identify
which, if any, individual characteristics affect the time until recontacting services. It
is restricted to 1553 individuals who reported that they were primarily using some
substance other than heroin. Only 188 of them (12.1%) made a further contact with
services (and therefore experienced an “event”) and 36 of these (19.2%) reappeared
again. Altogether, 1791 stages were recorded, of which 238 ended in an event. Only
final stages were censored. As the duration of the study was 10years, this small
number of events may indicate the presence of a “cured fraction” in the population.
The Kaplan-Meier estimates [12] of the survival function separately for data from
the first and the second stages are presented in Fig. 1. From these plots it is clear
that the survival functions do not tend to zero, which indicates the presence of a
proportion of drug users who will never apply again for treatment (“cured fraction”).
This proportion seems to be smaller among those who have already been recorded
in the database, who apparently tend to reapply earlier (more rapidly decreasing
survival function).

Covariates recorded at the time of the initial entry into the database were: place of
residence, whether or not the client had received any treatment before the database
started operation in 2001 (reported by 89.6%), gender (81.9% male), age (mean
29.9years, SD 9.4) and the year of initial entry (coded as years after 2001). As
place of residence was recorded in three categories (Athens/Piraeus, Thessaloniki,
Other), it was entered into the analysis as two indicator variables, one denoting
Athens/Piraeus (73.7% of the sample) and the other denoting Thessaloniki (15.6%).
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Fig. 1 Kaplan-Meier
estimates of the survival
functions for the first (upper
plot) and the second stages
(lower plot)
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4.2 Results

Although in some applications it might be possible to say that a certain covariate
logically cannot affect one or the other of the drift and starting level parameters of the
process [22], that was not the case here. Consequently all six covariates listed above
(five variables but with place of residence represented by two dummy variables)
were associated with both the parameters. Thus the vectors u′

i and v′
i were identical.

We also included in both vectors the number of previous stages (applications for
treatment) and the total time tm−1 under observation until the beginning of the present
stage. Consequently, including the constant terms in the linear predictors, fitting the
model requires the estimation of 19 parameters (9 for the drift, 9 for the starting level
and λ, the inverse of the variance of bmi) The regression structures are as follows:

μmi =
m∑

k=1

bki + β0 + β1Athensi + β2 Thess.i + β3Previousi + β4 Malei

+ β5 Agei + β6Yeari + βns(m − 1) + βs t(m−1)i .
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and

xmi ∼ N+
(

ũ′
miα

∗, τ−1
)

where

ũ′
miα

∗ = α0 + α1 Athensi + α2 Thess.i + α3 Previousi + α4 Malei

+ α5 Agei + α6 Yeari + αns(m − 1) + αs t(m−1)i

We assigned flat priors to the regression parameters with

α∗
prior = (1, 0, 0, 0, 0, 0, 0, 0, 0), Σα∗ = 104 I9

β∗
prior = (1, 0, 0, 0, 0, 0, 0, 0, 0), Σβ∗ = 104 I9

λprior ∼ Gamma(2, 1/2)

where the elements of α and β correspond to the covariates in the order listed in
Tables1 and 2. These tables, and Table3 for the parameter λ, present descriptive
statistics for the posterior distribution of the parameters obtained from running the
MCMC algorithm for a total of 110,000 iterations with the first 30,000 iterations
discarded as burn-in. Figures2, 3 and 4 show the trace (with the ergodic mean super-
imposed) and a smooth kernel estimate of the density of the posterior distribution
for a representative selection of parameters, with the mean indicated.

TheMCMC estimates lead to some clear conclusions regarding the latent process
that describes the psychological and physical status of the drug users. From the
descriptive statistics for the posterior distributions of the parameters of the model
we can describe the behavior of the drug users regarding the starting point and the
drift of their latent psychological and physical status until their next application for
treatment.

The starting level of the latent processes does not appear to be affected by the
variables Stages (m − 1) and Time (tm−1) that describe the previous stages of the
process, because the posterior distributions of their coefficients are concentrated on
zero (Table1). Having had a treatment before 2001 also does not have a clear effect.
In other words, the drug user’s starting point in each stage seems to be independent of
his or her treatment history. The remaining covariates all appear to have effects, and
all with negative coefficients as shown by the high values of P(αi < 0|Data) for these
covariates (Table1). This means that a lower initial psychological and physical status
is expected among residents of the major cities (Athens/Piraeus and Thessaloniki),
males, older users and those who entered the database earlier. For example, it is clear
that the older the drug user’s age, the lower his or her starting point. All of these
attributes tend to lead to a shorter time before the next application for treatment.

Concerning the drift, the positive signs of the posterior means of nearly all the
coefficients (Table2) indicate that μm > 0 for the vast majority of the individuals, if
not all. This is consistent with the presence of a “cured fraction” in the population
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Table 3 Descriptive statistics for the posterior distributions of the λ of the model fitted to the data
on drug users

Mean Mode q0.025 Q1 Median Q3 q0.975

λ 62.273 60.600 35.769 56.781 61.840 67.589 100.133

Fig. 2 The trace (left plot) with the ergodic mean superimposed (heavy black line) and a smooth
kernel estimate of the density of the posterior distribution (right plot, withmean indicated by dashed
line) of α7 (coefficient of m − 1) in the model fitted to the data on drug users

Fig. 3 The trace (left plot) with the ergodic mean superimposed (heavy black line) and a smooth
kernel estimate of the density of the posterior distribution (right plot, withmean indicated by dashed
line) of β4 (coefficient of age) in the model fitted to the data on drug users

Fig. 4 The trace (left plot) with the ergodic mean superimposed (heavy black line) and a smooth
kernel estimate of the density of the posterior distribution (right plot, withmean indicated by dashed
line) of λ (inverse of variance of random effects bmi) in the model fitted to the data on drug users
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as observed in Fig. 1. As with the starting level, the variable tm−1 does not seem to
have a significant effect. The same holds for the variables Thessaloniki and Gender,
because the posterior distributions of the corresponding parameters are concentrated
on zero. In contrast to the starting level, the treatment history does play a role in the
drift, in the shape of both having been treated before 2001 and especially the variable
Stages (m − 1; this reflects the difference between stages seen in Fig. 1). Because
the posterior distributions of their coefficients are concentrated on the positive axis,
more previous involvement with treatment increases the probability of no event, that
is, of not returning to treatment. This is logical—otherwise, treatment would appear
to be ineffective. It is clear that the random effects bmi in the drift have little or no
impact because their variance is essentially zero (Table3). Their possible omission
from the model will be investigated in the following subsection.

4.3 Model Selection

The results in the previous subsection clearly indicate that the covariate Time (tm−1)
is not associatedwith either the starting level or the drift of the latent process. Further-
more, the random effects bmi seem to play no role in the drift. These findings suggest
that we should compare the following four models to find the best one among them:
the full model including all 19 parameters (Model 1, fitted in the previous Sect. 4.2),
the model without the individual random effects for the drift (Model 2), the model
without the covariate tm−1 (Model 3) and the model from which both tm−1 and the
individual random effects for the drift are omitted (Model 4).

The comparison between these models was based on the criteria presented in
Sect. 2.3. In order to specify the models without the individual random effects for
the drift, all bmi’s were set equal to zero and the prior distribution of λ was deleted
from the likelihood. Priors for the remaining parameters took the same form as
those in the full Model 1, but centred at the posterior means presented in Tables1
and 2. All models were fitted by running the MCMC algorithm taking initial values
at random from these priors. This procedure should provide good starting values.
Thus we ran the algorithm for each model for 11,000 iterations, discarding the first
1,000 iterations as burn-in.

Based on Table4, the preferredmodel is clearlyModel 4which omits the covariate
tm−1 and the individual random effects for the drift, because this is the one with
lowest values of the criteria. The omission of the random effects bmi means that the

Table 4 Model selection: values of the DIC and IC criteria for the four models under consideration

Model 1 Model 2 Model 3 Model 4

DIC 390131.26 310584.94 351011.34 276316.44

IC 388157.37 311379.61 352351.85 277156.06
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heterogeneity in drift between individuals is fully accounted for by the measured
covariates. Furthermore, the length of the previous stages does not affect the process
in any way.

Tables5 and 6 present descriptive statistics for the posterior distributions of the
regression parameters of the preferred Model 4. Compared with the results of the
full model in Tables1 and 2 the only significant changes to the posterior distributions
of the parameters concern the ranges of the distributions of the coefficients for the
covariates Previous (α3) and Year (α6) for the starting value and for the covariates
Thess. (β2) and Stages (β7) for the drift of the process. The posterior distributions of
the parameters α6 and β2 now seem to be concentrated on zero, indicating that these
covariates may not be really associated with both the starting level and the drift of
the latent process.

5 Conclusions

In this paper the extension of FHT regression model to recurrent events proposed
by Economou et al. [10] is further extended to allow censoring to occur at every
intermediate stage and is applied to the study of the psychological and physical
health of one category of drug users in Greece. This approach offers a flexible and
easy to interpret model describing the health status of these people. For instance,
a poorer initial health status is expected for males, residents of the large cities,
older users and those who entered the database earlier. The drift parameter of the
stochastic model of their psychological and physical health turns out to be positive
for the majority of the drug users. This implies that for the majority of them there is
a non-zero probability that they will never apply again for a new treatment (the event
of interest). This is an especially attractive property of models of this type because,
in this way, they incorporate naturally a cured fraction (long-term survivors). These
long-term survivors arise because the corresponding underlying stochastic process
failed to reach the boundary, which in the present application can be interpreted as
implying that the drug user’s state never deteriorated sufficiently to prompt a request
for treatment. To sumup, the proposedmodel offers an interesting interpretationof the
nature of the observed data that can be applied in many other reliability and survival
studies. Nonetheless, further work is needed on various aspects of these models,
including statistical inference, convergence diagnostics, and further evaluation of the
model selection procedures used in this work or alternatives to them. Furthermore,
introducing additional extensions, as we have done in allowing censoring to occur in
every intermediate stage, will allow even wider application of the model in statistical
data analysis.
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Acceleration, Due to Occupational
Exposure, of Time to Onset
of a Disease

A. Chambaz , D. Choudat and C. Huber-Carol

Abstract Occupational exposure to pollution may accelerate or even induce the
onset of diseases.Apecuniary compensation, to be paid by the state or the company, is
then due to the exposedworkers. The computation of the amount of this compensation
might be based on the so-called “expected number of years of disease-free life” lost
by the workers due to their occupational exposure. In order to estimate this number of
years, we propose a method based on the threshold regression model also known as
first hitting time (FHT) model. This model was initially developed for cohort studies.
As our motivating example is a case-control study conducted in France to evaluate
the link between lung cancer occurrence and occupational exposure to asbestos, we
define a FHT model, adapt it to case-control data, and finally derive, for each worker
in the study, the estimated expected number of years of disease-free life lost due to
their occupational exposure to asbestos.

Keywords Case-control data · Cross-validation · First-hitting time model ·
Occupational exposure

1 Introduction

Quality of life is a central concern in medicine. Thus, the challenge of defin-
ing and estimating the expected number of years of life free of some disease
lost due to an occupational exposure frequently arises for the sake of characterizing
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the amount of a pecuniary compensation due to a worker, on a case-by-case basis.
Our motivating example is a French case-control study on the occurrence of lung
cancer for workers exposed to asbestos [8]. As our objective is not to evaluate the risk
of developing the disease, the logistic model, which is typically used for case-control
studies, would not be the proper choice here. Several other models, though, can be
used in order to solve our problem. One of the simplest is the Cox model involving
the occupational exposure as a covariate together with other risk factors that could
also induce lung cancer, like family history of cancer and tobacco consumption.
But we chose to adapt the threshold regression model initially developed for cohort
studies [6] to the case control study. The FHT model was initially developed for
cohort studies [6], so this means that we have to adapt the standard FHT model to
case-control studies. This model allows us to deal with the occupational exposure as
an accelerator of the time leading possibly to a quicker onset of the disease, while the
other covariates are divided into two classes, depending on how they act on the time
to onset: the genetic ones and the ones pertaining to lifestyle like tobacco consump-
tion. The expected number of years lost due to professional exposure to asbestos is
then derived from the model by replacing for each exposed subject his time to onset
by the decelerated time they would have had when exposure is removed and all other
factors in the model remain the same [1].

2 Motivation of the Choice of FHT Model

2.1 Preliminary Studies

We start with a preliminary non parametric study of the data. The Kaplan-Meier
estimators of the survival functions of subsets of the data based on high or low
occupational exposures may show a possible influence of the amount of occupational
exposures and other factors.

Then, we could consider a Cox model that puts all covariates Z = (Z1, . . . , Zk)

including exposure covariates as well as personal biological and behavioral covari-
ates, on the same level. The model reads

λ(t |z) = λ0(t) × exp(<θ, z >), (1)

where λ(t |z) is the incidence rate at time t of a subject whose covariates Z is equal to
z,λ0(t) is a baseline incidence rate, and θ is a k-dimensional real parameter. Denoting
Λ0(t) = ∫ t

0 λ0(u)du, the resulting survival function for a subject with covariates Z
equal to z is then

S(t |Z = z) = exp(Λ0(t) × exp(<θ, z >).



Acceleration, Due to Occupational Exposure, of Time to Onset of a Disease 69

But, considering that, actually, the covariates are not all of the same kind, we
choose a FHT model that enables us to separate the covariates into three different
kinds based on their actions on the health status of the patient.

2.2 FHT Model

When estimating the influence of an occupational exposure on the onset of a disease,
three different types of covariates are distinguished by considering how they act on
(or account for), the decrease of the latent “amount of health”. Specifically, the three
types of covariates are as follows:

• the initial covariates which act on the initial amount of health of the patient,
including genetic factors, gender and past family disease history;

• the lifestyle and biological covariates which act on (or account for) the “decrease”
of the initial amount of health. They may include, for example, cholesterol level
and tobacco consumption;

• the occupational exposure under study which may accelerate the time to onset of
the considered disease.

The time T to occurrence of the disease is modeled by a stochastic process X (t)
which represents the amount of health of the subject at time t : the disease occurs
when this amount of health hits the boundary 0 for the first time (hence the expression
FHT). Let B be a Brownian motion. For any real numbers h > 0 and μ ≤ 0, the
process X(t) is defined as:

X (t) = h + μt + B(t), (2)

where h plays the role of an initial amount of health relative to the disease, and μ a
rate of decay of the amount of health. The value of h depends on the initial covariates
while the value of μ depends also on the personal lifestyle and biological covariates.
Then

T (h, μ) = inf{t ≥ 0 : X (t) ≤ 0}, (3)

the first time the drifted Brownian motion X (t) hits 0. The distribution of T (h, μ) is
known as the inverse Gaussian distribution with parameter (h, μ). It is characterized
by its cumulative distribution function (cdf)

F(t |h, μ) = 1 + e−2hμΦ
(
(μt − h)t−1/2

)
− Φ

(
(μt + h)t−1/2

)
, (4)

where Φ is the standard normal cdf.
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Asμ ≤ 0, the driftedBrownianmotion X (t)will almost surely reach the boundary
(i.e. T (h, μ) < ∞). Therefore T (h, μ) is also characterized by its density

f (t |h, μ) = h

(2π t3)1/2
exp

(

− (h − |μ|t)2
2t

)

. (5)

T (h, μ) has mean h/|μ| whenever μ < 0.
The effect of occupational exposure is taken into account through an acceleration

function R that is nondecreasing and continuous on IR+ such that R(t) ≥ t for all
t . The acceleration function R depends on the occupational exposure and, given R,
we define

T (h, μ, R) = inf{t ≥ 0 : h + μR(t) + B(R(t)) ≤ 0}, (6)

the first time the drifted Brownian motion (X (B(R(t))) hits 0 along the modified
time scale derived from R, so that the cdf of T (h, μ, R) at t is F(R(t)|h, μ), and its
density at t is R′(t) f (R(t)|h, μ) as long as R is differentiable.

Conditional on [T ≥ x − 1], the survival function and density of T at t ≥ x − 1
are respectively:

G(t |h, μ, R) = 1 − F(R(t)|h, μ)

1 − F(R(x − 1)|h, μ)
, (7)

g(t |h, μ, R) = R′(t) f (R(t)|h, μ)

1 − F(R(x − 1)|h, μ)
. (8)

3 The Data Set

3.1 Description of the Data Set

The matched case-control study took place between 1999 and 2002 at four Parisian
hospitals and consisted of n = 1761 patients, among which 860 were cases and 901
were controls. The non-occupational information on each patient comprised of six
covariates, the hospital, W0 ∈ {1, 2, 3, 4}, the gender W1 ∈ {0, 1} (0 for men, 1 for
women), the occurrence of lung cancer in close family, W2 ∈ {0, 1}, (1 for occurrence
and 0 for no occurrence), the tobacco consumption W3 ∈ {0, 1, 2, 3} respectively
for pack-year ∈ {0, [1 ; 25], [26 ; 45],> 45}, the age at interview X (τ ) where τ

is calendar time, the age at incidence of lung cancer T , with convention T = ∞ if
no lung cancer occurred yet. The indicator of a case, equal to 1 for cases and 0 for
controls, is thus

Y = 1{T ≤ X}.
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Matching was done based on hospital, gender and age at recruitment ±2.5 years. In
the sequel, we denote

V = (W0, W1, X)

the matching variable.
The other items observed on the patients deal with informations on occupational

exposure up to the time of interview. The occupational history up to age X is mea-
sured, for each patient, on each of their successive jobs they held, by its duration
together with three indicators of the exposure to asbestos: its probability, frequency
and intensity of exposure, each with 3 levels (1, 2, 3). A probability index equal to
1, 2 or 3 corresponds respectively to a passive exposure, a possible direct exposure
or a very likely or certain direct exposure. A frequency index equal to 1, 2 or 3 corre-
sponds respectively to exposures occurring less than once a month, more than once
a month and during less than half of the monthly working hours or during more than
half of the monthly working hours. An intensity index equal to 1, 2 or 3 corresponds
respectively to a concentration of asbestos fibers less than 0.1 f/mL, between 0.1 and
1 f/mL and more than 1 f/mL. Adding a category 0 = (0, 0, 0) for no exposure at
all, the set E of categories of exposure has 27 + 1 = 28 elements ε = (ε1, ε2, ε3).

Amongst the 8432 jobs held by the participants, 7009werewithout any significant
exposure. But although this leaves 1423 jobs featuring a significant exposure, it can be
seen inTable1,which containsmany0’s, that several profiles inE are not represented,
which gives evidence of an over-parametrization.

Let ai (t) be the exposure of subject i at time t , ãi (t) = ai |t0 be the exposure from
time 0 to time t of subject i and ã his history of exposure along his lifetime up to the
occurrence of cancer if he is a case or to the time of interview if he is a control. The
function ã is piecewise constant.

For example, let subject i be a patient who started their first job at the age of 20
and experienced an occupational exposure of ε = (2, 1, 3) for the next 15 years.
Then they started their second job at the age of 35 and for the next 10 years had an
occupational exposure of ε = (2, 2, 3). They are diagnosed with lung cancer at age

Table 1 Number of jobs for each possible “probability/frequency/intensity” description

Exposure Count Exposure Count Exposure Count

111 213 211 53 311 138

112 167 212 6 312 105

113 3 213 6 313 24

121 150 221 5 321 136

122 46 222 3 322 189

123 3 223 3 323 22

131 0 231 2 331 1

132 0 232 0 332 3

133 0 233 0 333 0
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Ti = 45 years, at which point they become a case. Then, for 0 < t < 20, ai (t) = 0,
for 20 ≤ t < 35, ai (t) = (2, 1, 3), and for t ≥ 35, ai (t) = (2, 2, 3); moreover
ãi (30) = ai |300 , and ãi = ai |450 .

3.2 Specific Problems Due to the Data Set

Several problems arise due to the way the data set was collected:
First of all, the data set contained information pertaining to occupational expo-

sures, like silica and aromatic hydrocarbons. However, the preliminary non paramet-
ric analysis using Kaplan-Meier estimates for sub-samples of the data set revealed
that these two factors did not have much influence on the age at onset. Moreover,
very few people were exposed to silica and/or aromatic hydrocarbons and in very
small quantities. Thus we decided to restrict attention to asbestos.

Second, the actual matching pattern is not available. What is known is only on
which covariates the pairing was done.instead of giving up on the matching, we
choose to artificially determine a randommatching pattern, based on the same covari-
ates, and also make sure that our results are preserved when using several different
valid patterns.

Third, the FHT model, initially developed for cohort data, has to be adapted to a
case-control survey via a weighing of the log-likelihood.

Fourth and finally, the way the exposure to asbestos is defined is complex and
leads to an over-parametrization of the current model. The exposure is defined, for
each job of each worker, by four quantities: its duration, the probability, frequency,
and intensity of exposure of the job and its duration. Each of the three first quantities
has three levels (1, 2, 3) so that, including 0 for no exposure at all, this leads to 28
exposure levels. This great number of parameters has to be reduced in a sensible way
that we explain in Sect. 4.2.

4 Data Analysis

4.1 Preliminary Studies

We first apply the non parametric Kaplan-Meier method to estimate the survival
of four sub-samples having low/high tobacco consumption and low/high asbestos
exposure. The cutting points are the respective medians. We obtain the correspond-
ing survival functions for the time to onset of the lung cancer (see Fig. 1). We see
from this figure that there is probably an impact on lung cancer occurrence of both
tobacco consumption and asbestos exposure. Applying the same process to the other
exposures present in the data set, like silica and aromatic hydrocarbons, gave no
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evidence. This may be due to the fact that there are very few jobs featuring a signif-
icant exposure to silica or aromatic hydrocarbons.

A naive application of an FHT model to those data would consist in defining
log(h) as a linear function of gender (W1) and past family history of lung cancer
(W3), μ as a linear function of W1, W3 and also tobacco consumption (W2) and the
acceleration R(t) as

∑J
j=1 m j ×a j (t) for a patient having experienced J jobs, where

m j is the acceleration parameter attached to the category ε j . The dimension of this
naive model equals 3 + 4 + 28 = 35, and the underlying assumption of linearity of
log(h) and μ seems quite restrictive. In contrast, taking into account the excessive
number of 0s in Table1, we reduce the number of parameters m j and let log(h) and
depend in amost flexible way than the linear one on the observations W1, W2 and W3.
We build a more general though slightly more economic FHT model of dimension
27, and consider it as a maximal model containing simpler models among which we
select, based on our data, a better model described in Sect. 4.4.

4.2 Acceleration Due to Occupational Exposure

Initially, for each job, the acceleration is a function of three variables, each of them
having three values. We replace it by the product of three functions of one variable,
M1(ε1), M2(ε2), M3(ε3). Each of these three functions, M1 for probability, M2 for
frequency and M3 for intensity is assumed to be non negative, non decreasing and
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having 1 as maximum value. In this view, define

M =
{
(M0, (Mk(l))k,l≤3 ∈ IR+ × (IR+)2×3 ,

0 ≤ Mk(1) ≤ Mk(2) ≤ Mk(3) = 1, k = 1, 2, 3
}
. (9)

Then the rate yielded by description ε = (ε1, ε2, ε3) ∈ E \ {0} is expressed as

M(ε) = 1 + M0 × M1(ε1) × M2(ε2) × M3(ε3)

with convention M(0) = 1. Note that M(0) = 1 ≤ M(ε) ≤ M(3, 3, 3) = 1 + M0.
Exposure ε = (ε1, ε2, ε3) can then be written as a fraction Mε of the maximal
acceleration, where

Mε = M(ε) − 1

M0
= M1(ε1) × M2(ε2) × M3(ε3).

This parametrization is identifiable and reduces the number of parameters needed
to associate every category of exposure with an acceleration rate, from 28 to 7.
Set M ∈ M and a generic longitudinal description ã be as presented in Sect. 3.
For convenience, we consider a continuous approximation to the piecewise constant
function t �→ M(ε(t)), which we denote as r(M, ã) (see [1] for details). Then
every pair (M, ã) thus gives rise to the nondecreasing and differentiable acceleration
function

R(M, ã)(t) =
∫ t

0
r(M, ã)(s)ds ≤ t. (10)

4.3 The Case-Control Weighed Log-likelihood

Let us recapitulate the parametrization of our FHT model:

log(h) = α(W1, W2) ∈ IR4,

log(−μ) = β(W1, W2, W3) ∈ IR16,

R = R(M, ã)(X) , M ∈ M ,

θ = (α, β, M) ∈ Θ.

Recall that V and Y are respectively the matching variable and the case indicator,
and define Z = min(T, X). We rely on weights whose characterization requires the
prior knowledge of the joint probability of (V, Y ) which implies the knowledge of
the conditional probabilities

q∗
v (y) := P(Y = y|V = v),

qy(v) := P(V = v|Y = y)).
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Recall the definitions of G and g from (7) and (8), and let case i be matched by
Ji controls. Then the weighed log-likelihood is

loglik(θ) = ∑n
i=1

{
q1(Vi ) log g(Zi |θ) + q0(Vi )

1
Ji

∑Ji
j=1 logG(Zi |θ)

}
.

Asymptotic properties of the resulting estimators are derived in [1].

4.4 Model Selection by Cross Validation

The maximal model Θ gives rise to a collection of sub-models Θk obtained by
adding constraints on the maximal parameter θ = (α, β, M) ∈ Θ . We define a large
collection {Θk : k ∈ K } of sub-models of interest. Then we let the data select a
better sub-model Θk̂ based on a multi-fold likelihood cross validation criterion. The
sample is divided into ten sub-samples of equal size. The initialization goes like this:
in turn, we exclude one of the ten sub-samples and use the nine others to estimate
the parameter of the maximal model, then we compute the likelihood of the tenth
sub-sample under the estimated value of the parameter. The average likelihood, L0,
is finally computed.We then consider all one-step sub-models obtained by excluding
W1 or W2 from the parametrization of h and μ, or by putting additional constraints
on M . We compute their cross-validated scores, say L1, in the same manner as L0
was computed. If one sub-model at least satisfies L1−L0 > g for some pre-specified
g > 0, then the model yielding the largest increase is selected. The above process
is repeated with the best sub-model in place of the maximal model, until no gain is
observed or if the gain is no larger than c × g for some pre-specified c (Tables 2, 3
and 4).

The final model features that there are no constraints either on “frequency” or on
“intensity”, but on “probability”, and the conclusion is that when ε1 = 1, there is no
effect of exposure and that there is no difference between ε1 = 2 and ε1 = 3.

4.5 Model Estimation

First, we fit the best model by maximum likelihood on the whole data set. Then, we
derive confidence intervals through percentile bootstrap [2] with Bonferroni correc-
tion [3–5, 9, 10]: B = 1000, on 95% of the sample repeatedly re-sampled from the
860 cases together with the corresponding controls.
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Table 2 Confidence intervals for the initial health h as a function of gender W1 (0 for men)

W1 h hmin hmax

0 23.82 23.42 24.13

1 25.09 24.86 25.40

Table 3 Confidence intervals for drift = −100µ as a function of gender, W1 and tobacco, W3

W3 W1 = 0 W1 = 1

0 0.69 0.08 1.46 0.02 0.01 0.03

1 7.70 6.91 8.28 6.63 5.73 7.68

2 13.89 13.25 14.46 10.55 9.63 11.80

3 17.67 17.11 18.38 14.79 13.65 17.77

Table 4 Confidence intervals
for acceleration parameters

M0 = 1.19 CI = [0.34 2.00]
M1(1) = 0

M1(2) = 0.97 CI = [0.96 0.99] M1(3) = 1

M2(1) = M2(2)

M2(2) = 0.93 CI = [0.90 0.98] M2(3) = 1

M3(1) = 0.02 CI = [0.00 0.09]
M3(2) = 0.09 CI = [0.00 0.27] M3(3) = 1

5 Conclusion

Thismethod allows us to derive, for each patient, the expected number of years free of
a disease due to occupational exposure in a simple way: once the model is estimated,
the expected number of life free of lung cancer lost due to asbestos exposure of any
patient i may be computed by decelerating his time Ti to onset of lung cancer by its
estimated acceleration. The difference between the decelerated time and the observed
time Ti is an estimation of the expected number of years free of lung cancer due to
asbestos exposure. Denoting R̂i (t) the estimated acceleration function for subject i ,
the estimated expected number of years free of disease lost by him, denoted Li , due
to his occupational exposure is

Li = R̂i
−1

(Ti ) − Ti .

Examples of such values are given in Table5.
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Table 5 Six examples of expected number of years free of lung cancer lost due to occupational
asbestos exposure

Sex Age Asbestos Family Tobacco Years lost

0 65 228 0 1 3.1

0 57 125 0 1 2.5

0 60 25 0 1 2.7

1 41 36.0 0 1 1.6

0 66 24.0 1 1 3.0

1 61 78.0 0 0 3.4

Although Fig. 1 supports our choice to neglect a possible interaction between
tobacco consumption and occupational exposure to asbestos, future research would
profitably consist in enriching the maximal model to account for this possible inter-
action and letting the data decide whether the added complexity is worth keeping or
not.
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Transformations of Confidence
Intervals for Risk Measures?

Karl-Ernst Biebler and Bernd Jäger

Abstract The relative risk and the odds ratio are discussed briefly in connection
with their point estimations and confidence estimations. At an example is proved
that the numeric conversion of the confidence limits of the odds ratio does not yield
a confidence interval for the relative risk necessarily.

Keywords Relative risk · Odds ratio · Confidence estimation · Transformation of
confidence bounds

1 Data Structures and Risk Measures

The simplest data structure at risk assessments is the 2 × 2 table resulting from two
independent samples of binomially distributed random variables X ∼ B(n1, p1) and
Y ∼ B(n2, p2), respectively. The sampling results are arranged as seen in Table1.

Usual risk measures are the risk difference RD = p1 − p2, the relative risk
R R = p1/p2, and the odds ratio O R = (p1/(1 − p1))/(p2/(1 − p2)). Their
domains are [−1, 1], [0,∞] and [0,∞], respectively. The given three risk measures
are non-linear functions of each other. The different interpretations of these risk
measures are not discussed here.One takes into account that at the comparison of
two 2× 2 tables with identical RD, the R R and O R as functions of p1 and p2 vary.
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Table 1 Arrangement of the
data of two independent
samples from binomially
distributed random variables
in a 2 × 2 table

Sample 1 2 Sum

Sample size a b m1

c d m2

n1 n2 N

2 Asymptotic Confidence Intervals for RR and OR

Different estimation methods were developed and investigated for the calculation of
confidence limits of R R and of O R. Expansions of the topic submitted to regard on
different studies designs, stratification and adjustment. There is an extensive literature
on this field. One may read more in monographs (e.g. [1, 6]) or in the help menus of
software packages (e.g. SAS®).

Background of the most applied confidence estimation methods for the here
observed sampling is the normal approximation of a binomial distribution. The con-
fidence level is named with ε as usual. An asymptotic (1 − ε)-confidence interval
for the parameter p of a binomially distributed random variable X from a sample of
size N with result X = k is then

( p̂�, p̂u) = p̂ ± z1−α/2

√
p̂(1 − p̂)

N
, (1)

p̂ = k/n the point estimate of the parameter and z1−α/2 the respective standard
normal quantile for α = ε.

So-called exact confidence limits ( p̂�,ex , p̂u,ex ) one obtains as follows: The lower
( p̂�,ex ) and the upper ( p̂u,ex )boundof the confidence region is calculated respectively
regarding ε/2 to given ε. p̂�,ex is the maximal p with ε/2 = ∑k

i=0 P(X = i) and
p̂u,ex is the minimal p with ε/2 = ∑N

i=k P(X = i), P(X = i) the respective
binomial probabilities. These tail probabilities are available via Beta functions also
for large N in several software packages, e.g. MATHEMATCA® and SAS®.

A third method uses the logit transformation θ = f (p) = log[p/(1 − p)] and
the asymptotic normality of the estimator θ̂ = f ( p̂) = log[ p̂/(1 − p̂)]. One yields
an asymptotic (1 − ε)-confidence interval for the parameter p as

( p̂�, p̂u) =
[

eθ̂�

1 + eθ̂�

,
eθ̂u

1 + eθ̂u

]

(2)

from (θ̂�, θ̂u) = θ̂ ± z1−α/2

√

θ̂ (1 − θ̂ )/N and using the logistic function

p = f −1(p) = e f (p)

1 + e f (p)
= eθ

1 + eθ
. (3)
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It is well-founded in the monotony of the logistic function that this way one gets a
(1 − ε)-confidence interval.

An asymptotic confidence estimation of R R due to the last mentioned method
reads as follows (see e.g. [6]). Let be ψ = log(R R) and R̂ R = an2/bn1 the point
estimate of R R. The variance of log(R R) can be consistently estimated for p1 �= p2
by σ̂ 2

1 = V̂ [log(R̂ R)] = (1/a − 1/n1 + 1/b − 1/n2).
Then (log(R̂ R) − log(R R))/σ̂1 is asymptotically standard normal distributed.

(ψ̂�, ψ̂u) = log(R̂ R) ± z1−α/2σ̂1 is an approximate (1 − ε)-confidence interval for
ψ which results in the desired asymptotic (1− ε)-confidence interval for the relative
risk R R,

(R̂ R�, R̂ Ru) = (exp(ψ̂�), exp(ψ̂u)). (4)

One uses σ̂ 2
0 = (N/m1 − 1)(N/n1n2) instead of σ̂ 2

1 in case p1 = p2.
An asymptotic (1 − ε)-confidence interval for the odds ratio O R one obtains

analogously as

(̂O R�,̂O Ru) = (exp(δ̂�), exp(δ̂u)) (5)

with δ = log(O R),̂O R = ad/bc the point estimate of O R, (δ̂�, δ̂u) = log(̂O R) ±
z1−α/2σ̂1 and the variance estimator σ̂ 2 = V̂ [log(̂O R)] = (1/a + 1/b + 1/c +
1/d). This method dates back to 1955 (see [9]) and is explained in detail in several
textbooks, e.g. [6].

3 Transformations of Confidence Intervals:
An Instructive Example

Odds ratio and relative risk are very often used in the research to characterize different
influence of an exposure or a treatment on the status of human beings. These risk
measures have different meanings and this is sometimes misunderstood. Therefore
one would like to express the more suitable relative risk as a function of̂O R. The
authors of [10] convert̂O R in R̂ R by the formula

R̂ R = T (̂O R) =̂O R /

[

1 − c

m2
+ c

m2
·̂O R

]

. (6)

They calculate a (1 − ε)-confidence interval for the relative risk by this way
converting the bounds of the (1 − ε)-confidence interval for the odds ratio. This
transformation was already proposed by Holland (see [5]). The bias of that method is
explained in [4]. McNutt et al. [7] stated again that the use of this formula will deliver
biased estimates. They report that the use of this transformation of̂O R into R̂ R and
also of the confidence bounds has gained increasing popularity in the field of medical
research. Nevertheless, it was again explained in detail and applied without any
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quantitative characterization of the bias to an example in a methodological overview
article of [8]. This is astonishing because the paper [7] is among the references in
the last mentioned article.

The coverage probability of the interval IR R = (T (̂O R�), T (̂O Ru)) for the rel-
ative risk, which is obtained from the transformed bounds of the (1− ε)-confidence
interval (̂O R�,̂O Ru) for the odds ratio, is investigated now. It will be charac-
terized by means of simulations of each 10,000 runs with regard to the parame-
ter O R. 10,000 tables each representing two independent binomial samples were
randomly generated. The interval (̂O R�,̂O Ru) and from that the interval IR R =
(T (̂O R�), T (̂O Ru)) were calculated for each of the tables. Predefined were n1 =
400, n2 = 500, p1 = 1/3 and O R = 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2, 3, 4, 5, 6, 7, 8.5,
10, 12.5, 15. The number K counts the cases R̂ R /∈ IR R in 10,000 runs. Provided
that K > 500 is valid, IR R is not a 0.95-confidence interval for the relative risk R R.

Figure1 illustrates the estimated coverage probability of IR R depending on O R.
Obviously, IR R is far from being a 0.95-confidence interval for the relative risk R R
in general.

From the same tables, both the 0.95-confidence interval for the odds ratio accord-
ing to formula (5) and the 0.95-confidence interval for the relative risk according to
formula (4) were calculated. The numbers K of non-coverings sway around the level
of 500 (see Fig. 2).

Fig. 1 Numbers K of non-coverings of the approximate 0.95—confidence interval for the odds
ratio (black line) and of the interval IR R = (T (̂O R�), T (̂O Ru)) (dashed line) as functions of the
odds ratio in each 10,000 runs. For the simulation parameters see text
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Fig. 2 Numbers K of non-coverings of the approximate 0.95-confidence interval for the odds ratio
(black line) and of the approximate 0.95—confidence interval for the relative risk (dashed line) as
functions of the odds ratio in each 10,000 runs. For the simulation parameters see text

4 Conclusion

Obviously, the transformations T (̂O R�) and T (̂O Ru) of the bounds of the confi-
dence interval for the odds ratio O R does not yield any confidence interval for the
relative risk R R for O R different from 1. However, it is completely unproblematic to
calculate both an approximate confidence interval for the odds ratio and an approx-
imate confidence interval for the relative risk from the data of a cohort study.

There are also confidence estimation methods dealing with more complicated
study designs. A model-based confidence interval estimation method mainly basing
on variance estimations by means of resampling methods can be found in [3], for
example.
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Discrete Compound Tests and Dorfman’s
Methodology in the Presence
of Misclassification

Rui Santos, João Paulo Martins and Miguel Felgueiras

Abstract Compound tests can be used to save resources for classification or
estimation purposes in clinical trials and quality control. Nevertheless, the method-
ologies that are usually applied are restricted to qualitative group tests. Moreover,
when quantitative compound tests are applied the problem is to ascertain whether
the amount of some substance of any individual in the group is greater or lower than
a prefixed threshold. An overview of the applications of the discrete compound tests
highlights the advantages (to save resources) and disadvantages (higher probabil-
ity of misclassification), and suggests criteria to assess the suitability of applying
Dorfman’s methodology.

Keywords Compound tests · Misclassification · Simulation · Quality measure

1 Introduction

Let p be the prevalence rate of some infection in a population with N individuals
and the Bernoulli trials Xi , i = 1, . . . , N , denote the presence (Xi = 1) and absence
(Xi = 0) of the infection in the i th member of the population. Moreover, the random
variables (r.v.s) Xi ∼ Ber(p)will be consideredmutually independent due to random
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sampling. Thus, the number I[n] of infected members in a group of size n is a r.v.
with binomial distribution, i.e. I[n] ∼ Bin(n, p). In addition, suppose that the clinical
trial for identification of the infected is carried out by counting the number of a
certain type of bacteria in a milliliter of blood. If this number is greater than a
given threshold t the individual is classified as infected, otherwise it is classified
as not infected (the opposite inequalities could also be applied with the appropriate
adaptations). Furthermore, let the number of bacteria in one ml of blood be given
by the r.v. Yi . If Xi = 0 (uninfected individual), then Yi = Y −

i ∼ D0(θ0) where
D0 denotes some count distribution with support S0 ⊆ N0 and parameter vector
θ0. If Xi = 1 (infected individual), then Yi = Y +

i ∼ D1(θ1) where D1 is some
count distribution with support S1 ⊆ N0 and parameter vector θ1. In fact, the r.v.s
Y − and Y + can have the same support (at least partly, i.e. S0 ∩ S1 = S �= ∅).
Furthermore, any classification methodology has a nonzero probability to return an
erroneous classification for those individuals in S, thereby leading to the presence of
misclassification in the individual test (if S = ∅ then there would be no problem of
misclassification). Nevertheless, Y −

i and Y +
i must have some relationship to ensure

that the probability of misclassification is small, for instance Y +
i shall stochastically

dominate Y −
i (i.e. F

Y+ (x) ≤ F
Y− (x),∀x ∈ R), otherwise the test would not have

much information concerned with the infection. In some applications D0 and D1
denote the same distribution with a change of location and a possible alteration of
scale. The usual applied distributions are the Poisson, the negative binomial, and the
binomial distributions. The previously illustrated context will be used throughout this
work in the description of the proposed methodologies. However, the applicability of
these methods is not restricted to blood analysis, such as the screening of infectious
diseases like HIV (see [25, 26]), since it can easily be adjusted to be applied to any
fluid that can be mixed, e.g. in industrial quality control cf. [3, 9].

An overview of the applications of the discrete compound testswill be given in this
section.Wewill describe the goals (estimation and classification) and implementation
of the compound tests as well as the usual main measures applied to evaluate the
accuracy of the test results. Hereafter, a new evaluation measure of the application of
compound tests in the presence ofmisclassification is proposed in order to identify the
situations inwhich the compound test can be appliedwithout an excessive probability
ofmisclassification (Sect. 2). Section3provides a detailed descriptionof twodifferent
methodologies to perform the compound tests and, therefore, to set up its cut off
points. In Sect. 4 the performance of the two proposed methodologies is investigated
via simulation. Finally, the main conclusions are outlined in Sect. 5.

1.1 Group/Compound Tests

In an individual test we are performing the statistical hypothesis test formalized by
H0 : Xi = 0 versus H1 : Xi = 1. If the cut off point is the threshold t then the
significance level is α = P (Yi > t | Xi = 0) = P

(
Y −

i > t
)
and the power of the test
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1 − β = P (Yi > t | Xi = 1) = P
(
Y +

i > t
)
. To perform a compound test, one ml of

blood is taken from each of the n members of the group and then mixed. Thus, we
get n ml of pooled blood where the number of bacteria is given by Bn = ∑n

i=1 Yi .
After being turned into a totally homogeneous fluid, one ml of this fluid is with-
drawn for testing. The number B1 of bacteria in this ml of fluid can be computed
using hierarchical models, more precisely by the application of a binomial filter,
taking into account that each of the Bn bacteria in the n ml of blood has proba-

bility n−1 of being drawn to the chosen mixed ml. Therefore, B1 ∼ Bin
(
Bn,

1
n

)
,

cf. [21]. This ml of pooled blood will be used to perform the compound test. The

main idea of this test is to identify if there are any infected member in the group.
Thus, if the test results negative then all member in the group are uninfected. Oth-
erwise, at least one member of the group must be infected. Therefore, the statistical
hypothesis test to perform is H0 : ∑n

i=1 Xi = 0 versus H1 : ∑n
i=1 Xi ≥ 1. In

fact, it aims to identify if any of the individuals in the group (i = 1, . . . , n) can be
classified as infected, i.e. if max (Y1, . . . , Yn) > t , using the only available informa-
tion B1—the number of bacteria in the ml of pooled blood. The significance level
of the compound test is α = P

(
Bi > t∗| ∑n

i=1 Xi = 0
)
and the power of the test

1 − β = P
(
Bi > t∗| ∑n

i=1 Xi ≥ 1
)
, where t∗ denotes the applied cut off point of

the compound test.

1.2 Classification and Prevalence Rate Estimation

The use of compound test has two main goals: classification (categorization of each
individual as infected or not infected) and the estimation of the prevalence rate p.
Dorfman’smethodologywas first used in the secondWorldWar in order to identify all
American soldiers infected with syphilis, cf. [5]. In this classification methodology
the whole population is divided into groups with n individuals and a compound test
is performed within each group. As outlined in the previous subsection, if the result
is negative then all members are classified as not infected. Otherwise at least one
member should be classified as infected, and individual tests are performed in order to
identify which elements are indeed infected. Themain goal is to compute the optimal
dimension n (as a function of the prevalence rate p) in order tominimize the expected
number of tests required to identify all infected individuals. Whereas in individual
tests N tests are required to classify all N individuals in the population, in Dorfman’s

methodology the expected number of tests is E[Tn] = N
( 1

n + 1 − (1 − p)n
)
. Hence,

the relative cost (expected number of test for the classification of each individual)
is RC = n+1

n − (1 − p)n, n ≥ 2, which can be used to establish the optimal size
n for each prevalence rate p. If p ≤ 0.3 then RC ≤ 1 and, therefore, is better to
use the Dorfman’s methodology than individual tests. The optimal size n for some
prevalence rates p can be found in [5, 21]. For p ≤ 0.12 a linear approximation can
be used and the optimal group size is approximately n ≈ 1√

p +0.5 with good results,
cf. [6]. In what follows we assume that the cost of mixing samples is negligible [16]
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and therefore the number of required tests is the only relevant cost to be taken into
account in the classification procedure.

The first few classification methodologies considered the absence of
misclassification and were restricted to qualitative group tests (identification of the
presence or absence of some substance in the compound fluid). Subsequently, new
algorithms have been proposed in order to minimize the number of tests required
for the correct classification of all individuals in the population, mainly applying
halving nested procedures or hierarchical algorithms (generalizations of the Dorf-
man’s methodology in which positive groups are repeatedly divided into smaller
non-overlapping subgroups until all members have been individually tested, cf.
[6, 8, 12, 15, 23, 24]), square array testing (with the use of overlapping pools, cf.
[13, 19, 28]), and multidimensional array algorithms (for an extension to higher
dimensional arrays, cf. [1, 20]).

In addition, the use of compound tests can also be useful in the estimation of the
prevalence rate p, cf. [22]. Under certain conditions, these estimators have better
performance than the estimators based on individual tests, allowing the reduction of
the number of performed tests and simultaneously to achievemore accurate estimates
with respect to the bias, efficiency as well as robustness, cf. [4, 7, 10, 14, 17, 22]
among others. Some packages with applications of several compound testing esti-
mators, such as binGroup for the software [2], are available.

Nevertheless, in both cases (classification and estimation) the use of compound
tests should only be performed for low prevalence rates. In this work the compound
tests will be used for classification purposes applying the Dorfman’s methodology.

1.3 Misclassification Evaluation

The usual applied measure to evaluate the misclassification problem are the speci-
ficity, the sensitivity, the positive predictive value, and the negative predictive value.
These measures can be defined for the individual test, for the compound test, and for
the application of a specific classification methodology.

1.3.1 Misclassification in Individual Tests

Performing individual tests, the individual specificity is the probability of getting
a negative result (X−

i ) from a not infected individual, i.e. ϕ
e = P

(
X−

i | Xi = 0
)
,

and the individual sensitivity is the probability of getting a positive result (X+
i )

from an infected individual, i.e. ϕs = P
(
X+

i | Xi = 1
)
. The positive predictive value

is the probability of having an infected sample in a positive individual test, i.e.
PPV = P

(
Xi = 1| X+

i

)
, and the negative predictive value is the probability of having

an uninfected sample in a negative individual test, i.e. NPV = P
(
Xi = 0| X−

i

)
.
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1.3.2 Misclassification in Compound Tests

Let us now consider compound tests performed to groups of size n, and let
X [+,n] and X [−,n] denote respectively a positive and a negative compound result.
Hence, the compound specificity is given by ϕ[n]

e
= P(X [−,n]| I[n] = 0), and the

compound sensitivity by ϕ[n]
s

= P(X [+,n]| I[n] ≥ 1). Nevertheless, ϕ[n]
s

depends on

the number of infected members in the group due to the dilution and consequent rar-
efaction of the number of bacteria. Thus, settingϕ[ j,n]

s
= P(X [+,n]| I[n] = j), the rar-

efaction factor can be added in the ϕ[n]
s

computation, by doing ϕ[n]
s

= ∑n
j=1 ϕ[ j,n]

s
P(I[n] = j | I[n] ≥ 1), cf. [21]. Moreover, ϕ[n]

s
≈ ϕ[1,n]

s
for low

prevalence rates (see [21]). Similarly, the compound positive predictive value is
PPV[n] = P(

∑n
i=1 Xi ≥ 1| X [+,n]) and the compound negative predictive value

NPV[n] = P(
∑n

i=1 Xi = 0| X [−,n]). Generally, the compound sensitivity decreases
as the group size increases, due to dilution. In the literature there are different pro-
cedures to model the dilution factor, cf. [11, 21, 27, 29]. The selection of the most
suitable procedure for group testing depends on the sensitivity, on the specificity, and
on the cost involved [16].

1.3.3 Misclassification in Classification Methodologies

The misclassification measures previously defined can be generalized in order to
measure themisclassification in some classificationmethodologyM . Thus, the same
definitions are applied as in the individual tests, but the probabilities are computed
taking into consideration the application of the methodology under investigation.
Hence, theM methodology specificity is the probability of an uninfected individual
being classified as uninfected by the application of methodologyM . The Dorfman’s
methodology specificity is given by (cf. [21])

ϕ
en

= P
(
X−

i | Xi = 0
) =

∑n−1

i=0
P

(
X−
1 | X1 = 0, I[n−1] = i

)
P

(
I[n−1] = i

)
,

(1)

and, analogously, the Dorfman’s methodology sensitivity is given by

ϕ
sn

= P
(
X+
1 | X1 = 1

) =
n−1∑

i=0

P
(

X+
1 | X1 = 1, I[n−1] = i

)
P

(
I[n−1] = i

)

= ϕ
s

∑n−1

i=0
ϕ[i+1,n]

s
P

(
I[n−1] = i

)
. (2)

Dorfman’s positive predictive value PPVDn
and Dorfman’s negative predictive value

NPVDn
follow using Bayes’ inversion formula.
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2 A Proposal to Measure the Quality of the Individual Test

In carrying out individual tests, if the threshold t increases then the specificity
increases and the sensitivity decreases. Hence, if we improve the specificity (sensi-
tivity) then the sensitivity (specificity) gets worse, as it happens with the probabilities
of error type I and type II in a statistical hypothesis testing. Hence, appropriate tun-
ing of the threshold is the key to achieve balance of specificity and sensitivity. The
threshold t can be set to an equilibrium value te in order to equalize the sensitivity to
the specificity (or, if not possible, to minimize their difference). The value of these
probabilities (sensitivity and specificity), denoted by φ, defines a measure of the
quality of the individual test performance.

Definition 1 In the individual test, the probability φ which verifies ϕ
s = ϕ

e = φ

for some threshold te is the quality measure of the individual test performance. If
this value does not exist (e.g. in the use of count distributions), the distance between
ϕ

s and ϕ
e shall be minimized and φ = ϕs +ϕe

2 .

A high value of φ (in the neighborhood of the unit, φ ≈ 1) implies that the
hypothesis test has a low probability of misclassification. Otherwise, if φ is much
lower than 1, it implies a high probability of misclassification.

In fact, some information is lost when bloods are mixed. Hence, the compound
tests should not be applied in cases in which φ is quite low, because the mixture will
still further increase the probability of misclassification. In consequence, compound
tests should be applied only if the individual tests have a good performance. There-
fore, in Sect. 4 this quality measure of the individual test performance will be used
in simulations in order to assess if it can be also used to measure the adequacy of the
application of compound tests.

3 Methodologies for the Compound Tests

In this section two different methodologies to perform the compound tests are
described. As in statistical hypothesis tests, it is impossible to improve the two
probabilities of misclassification and therefore only one can actually be controlled.
Thus, the goal of each of the applied methodologies is to control either sensitivity or
specificity. The more usual first methodology M1 controls the compound specificity,
while the second methodology M2 fixes the compound sensitivity.
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3.1 The Usual Methodology—M1

The usually applied hypothesis test (using methodology M1) is, cf. [21],

H0 :
∑n

i=1
Xi = 0

(
I[n] = 0

)
versus H1 :

∑n

i=1
Xi ≥ 1

(
I[n] ≥ 1

)
.

Hence, the test size is given by α = P(X [+,n]| ∑n
i=1 Xi = 0) = 1 − ϕ[n]

e
and,

therefore, the compound specificity is fixed. Thus, the specificity is controlled by
setting the value of α, but it neglects the sensitivity, i.e. the occurrence of false
negatives. Moreover, by (1) ϕ

en
is equal to (see [21])

P
(
I[n−1] = 0

) [
ϕ[n]

e
+

(
1−ϕ[n]

e

)
ϕ

e

]
+

∑n−1

i=1
P

(
I[n−1] = i

) [
ϕ[i,n]

s
ϕ

e +
(
1 − ϕ[i,n]

s

)]

and, therefore, ϕen
≥ ϕ[n]

e
. Hence, the Dorfman’s methodology specificity verifies

ϕ
en

≥ 1 − α and the size of test sets a lower limit for ϕ
en
.

3.2 Alternative Methodologies—M2 and M�
2

In most applications, it is essential to control the occurrence of false negative results
(i.e. to set the sensitivity). With this goal we propose an alternative methodology M2,
implemented by an hypothesis test

H0 :
∑n

i=1
Xi ≥ 1

(
I[n] ≥ 1

)
versus H1 :

∑n

i=1
Xi = 0

(
I[n] = 0

)
.

The test size α is given by α = P(X [−,n]| ∑n
i=1 Xi ≥ 1) = 1 − ϕ[n]

s
. Hence, the

compound sensitivity is fixed and, therefore, the probability of false negative results
is controlled. An obvious drawback of M2 when compared to M1 is the complexity
of the cut off point computation due to the different scenarios in H0. In practice, a
simplified methodology M�

2 can be implemented in order to easily compute the cut
off point, performing the following hypothesis test:

H0 :
∑n

i=1
Xi = 1

(
I[n] = 1

)
versus H1 :

∑n

i=1
Xi = 0

(
I[n] = 0

)
.

The results of applying this simplified M�
2 are quite similar to M2 because the proba-

bility of gettingmore than one infected individual in the group is quite low (anobvious
requirement for the sensible use of compound tests). On the other hand, in this simpli-

fied M�
2 the significance level is given by α = P(X [−,n]| ∑n

i=1 Xi = 1) = 1−ϕ[1,n]
s

,
and therefore α will set ϕ[1,n]

s
. In addition, as having just one infected individual in

the group corresponds to the worst case scenario, then ϕ[1,n]
s

≤ ϕ[2,n]
s

≤ · · · ≤ ϕ[n,n]
s

,
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and consequently ϕ[1,n]
s

≤ ϕ[n]
s
. Thus, the α value will set up a lower limit for the

compound sensitivity ϕ[n]
s
. Nevertheless, by (2) the Dorfman’s sensitivity is lower

than the compound sensitivity ϕ
sn

≤ ϕ[n]
s
. Hence, the Dorfman’s sensitivity can be

lower or higher than 1 − α. M�
2 had already been proposed in [18] but without any

examination, which will be carried out in the simulations performed in Sect. 4.

4 Simulation

The main goal of these simulations is to investigate the use of M�
2, as well as the

ensuing quality measure of the individual test performance φ.

4.1 Simulation Settings

All simulations were performed in software using 106 groups in each simulation
and applying different prevalence rates p, significance levels α, group dimensions
n and the quality measure of the individual test performance φ. The case n = 1
corresponds to the restricted use of individual tests. For an infected individual the
distribution D1 of Y +

i was defined through a change of location Y +
i = μ′ + Y −

i
in which μ′ is computed in order to verify a specific value for φ. The investigated
measures were the Dorfman’s sensitivity ϕ

sn
, specificity ϕ

en
, positive PPVDn

and
negative NPVDn

predictive values, and the relative cost RC.

4.2 Results and Discussion

Table1 compares results when applying M1 and M�
2, using a significance level of

5%, a prevalence rate of 1% and Y −
i ∼ Poisson(100). In addition, several group

dimensions have been considered, although for p = 0.01 the more efficient size in
Dorfman’s methodology (without misclassification) is 11 individuals in each group
(n∗ = 11). Nevertheless, the efficient size can correspond to a case with high prob-
ability of misclassification, a possibility which should be avoided.

The simulation results clearly show that the two methodologies fulfill their goals:
whereas the significance level in M1 controls ϕ

en
, implying ϕ

en
≥ 1−α and in most

cases ϕ
en

≈ 0.99, in M�
2 it controls ϕ

sn
, despite of ϕ

sn
having a higher variability in

the case of φ = 0.95. Besides, the observed ϕ
sn
converges quickly to zero whenever

n increases in M1, but ϕ
en

still exhibits good results in M�
2 even when n increases.

The NPVDn
values are quite reasonable, but PPVDn

do not perform as well. These
results are a consequence of working with low prevalence rates, and as such, there
are many uninfected groups and few infected ones in the 106 simulated. In M1 a very
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Table 1 Simulations with α = 0.05, p = 0.01 (n∗ = 11), Y −
i ∼ Poisson(100), and 106 groups

Methodology M1 Methodology M�
2

ϕ
sn

ϕ
en

PPVDn
NPVDn

RC ϕ
sn

ϕ
en

PPVDn
NPVDn

RC

φ = 0.95

n = 1 94.11 95.71 18.02 99.94 100 94.11 95.71 18.02 99.94 100

n = 2 71.93 98.29 29.65 99.71 55.73 91.33 96.33 20.00 99.91 74.10

n = 3 57.65 98.66 30.25 99.57 39.57 91.29 96.19 19.51 99.91 74.42

n = 5 44.39 98.90 29.02 99.44 27.15 90.44 96.16 19.20 99.90 77.86

n = 7 35.05 99.10 28.36 99.34 21.05 90.12 96.13 19.07 99.90 80.20

n = 10 28.51 99.23 27.15 99.28 16.77 90.29 96.07 18.81 99.90 84.16

n = 20 22.44 99.30 24.58 99.22 12.99 90.37 96.01 18.63 99.90 88.66

n = 30 18.36 99.40 23.56 99.18 11.02 90.70 95.97 18.48 99.90 90.94

n = 50 17.89 99.37 22.22 99.17 11.31 91.16 95.91 18.36 99.91 93.40

n =
100

16.81 99.36 21.06 99.16 11.78 91.48 95.88 18.32 99.91 95.12

φ = 0.99

n = 1 99.88 95.71 19.26 100 100 94.26 99.88 88.99 99.94 100

n = 2 95.33 98.13 34.15 99.95 56.82 94.66 98.29 35.94 99.94 56.17

n = 3 84.78 98.67 39.22 99.84 40.30 94.89 97.58 28.45 99.95 48.79

n = 5 69.06 98.93 38.89 99.66 27.85 95.01 96.92 23.83 99.95 54.86

n = 7 56.15 99.06 37.67 99.55 22.45 95.65 96.61 22.20 99.95 63.57

n = 10 48.45 99.09 34.89 99.48 19.22 95.18 96.48 21.41 99.95 69.21

n = 20 34.16 99.23 31.01 99.33 14.55 95.96 96.19 20.27 99.96 82.07

n = 30 30.16 99.25 28.79 99.30 13.77 96.19 96.09 19.86 99.96 86.46

n = 50 26.65 99.26 26.69 99.26 13.53 96.44 96.01 19.63 99.96 90.23

n =
100

25.69 99.19 24.22 99.25 15.37 97.32 95.90 19.35 99.97 94.45

φ = 0.999

n = 1 100 95.70 19.37 100 100 94.00 100 99.83 99.94 100

n = 2 99.61 98.28 36.98 100 56.26 94.87 99.68 75.00 99.95 52.29

n = 3 97.17 98.57 40.71 99.97 41.21 94.48 99.02 49.35 99.94 38.88

n = 5 86.32 98.92 44.81 99.86 28.83 94.82 98.07 33.33 99.95 36.82

n = 7 75.01 99.03 43.98 99.75 23.75 95.00 97.53 28.00 99.95 43.23

n = 10 62.65 99.11 41.62 99.62 20.00 95.14 97.11 24.96 99.95 52.43

n = 20 46.52 99.14 35.56 99.46 16.69 95.94 96.50 21.75 99.96 72.12

n = 30 39.71 99.17 32.53 99.39 15.66 96.33 96.28 20.68 99.96 80.31

n = 50 36.82 99.09 29.06 99.36 17.02 96.57 96.12 20.09 99.96 86.68

n =
100

35.09 98.98 25.79 99.34 19.80 97.92 95.91 19.49 99.98 94.05
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Table 2 Simulations with φ = 0.99 and Y −
i ∼ Poisson(100)

Methodology M1 Methodology M�
2

ϕ
sn

ϕ
en

PPVDn
NPVDn

RC ϕ
sn

ϕ
en

PPVDn
NPVDn

RC

α = 0.10, and p = 0.01

n = 3 92.38 96.40 20.61 99.92 45.58 89.85 97.06 23.59 99.89 42.96

n = 5 79.19 97.10 21.69 99.78 32.93 89.68 95.50 16.82 99.89 42.61

n = 10 59.02 97.62 20.01 99.58 23.66 90.38 93.94 13.07 99.90 55.28

n = 20 46.83 97.72 17.17 99.45 20.76 91.07 93.04 11.66 99.90 68.31

α = 0.05, and p = 0.01

n = 3 84.78 98.67 39.22 99.84 40.30 94.89 97.58 28.45 99.95 48.79

n = 5 69.06 98.93 38.89 99.66 27.85 95.01 96.92 23.83 99.95 54.86

n = 10 48.45 99.09 34.89 99.48 19.22 95.18 96.48 21.41 99.95 69.21

n = 20 34.16 99.23 31.01 99.33 14.55 95.96 96.19 20.27 99.96 82.07

α = 0.01, and p = 0.01

n = 3 62.76 99.83 78.50 99.62 36.10 98.14 99.19 55.26 99.98 66.37

n = 5 40.97 99.88 77.23 99.41 22.82 98.05 99.17 54.38 99.98 76.30

n = 10 23.16 99.91 72.96 99.23 12.81 98.21 99.15 53.88 99.98 91.66

n = 20 16.84 99.92 68.24 99.17 08.48 98.28 99.14 53.57 99.98 96.78

p = 0.05 and α = 0.05

n = 3 85.83 98.44 74.45 99.25 49.44 95.06 97.44 66.22 99.73 58.08

n = 5 73.82 98.43 71.18 98.62 40.11 96.26 96.68 60.33 99.80 67.42

n = 10 60.22 98.42 66.60 97.92 33.71 96.48 96.28 57.60 99.81 80.82

n = 20 57.95 98.20 62.91 97.79 36.11 98.01 95.95 56.00 99.89 93.50

p = 0.01 and α = 0.05

n = 3 84.78 98.67 39.22 99.84 40.30 94.89 97.58 28.45 99.95 48.79

n = 5 69.06 98.93 38.89 99.66 27.85 95.01 96.92 23.83 99.95 54.86

n = 10 48.45 99.09 34.89 99.48 19.22 95.18 96.48 21.41 99.95 69.21

n = 20 34.16 99.23 31.01 99.33 14.55 95.96 96.19 20.27 99.96 82.07

p = 0.001, and α = 0.05

n = 3 83.49 98.72 6.19 99.98 38.16 94.28 97.60 3.82 99.99 46.63

n = 5 66.27 99.04 6.38 99.97 25.10 94.79 96.95 2.97 99.99 52.07

n = 10 44.04 99.31 6.02 99.94 15.30 94.59 96.54 2.67 99.99 65.76

n = 20 27.18 99.48 4.93 99.93 10.34 95.00 96.28 2.49 99.99 77.77
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Table 3 Simulations with p = 0.01, φ = 0.99, α = 0.05

Methodology M1 Methodology M�
2

ϕ
sn

ϕ
en

PPVDn
NPVDn

RC ϕ
sn

ϕ
en

PPVDn
NPVDn

RC

Y −
i ∼ Poisson(10)

n = 3 84.52 98.49 36.11 99.84 40.33 94.70 97.34 26.42 99.95 47.77

n = 5 64.21 98.87 36.42 99.64 27.17 93.80 96.77 22.67 99.94 49.12

n = 10 43.99 99.08 32.70 99.43 17.88 94.70 96.08 19.65 99.94 65.49

Y −
i ∼ Negative Binomial(1, 1

11 )

n = 3 75.90 98.19 29.84 99.75 40.45 94.48 97.25 25.88 99.94 45.11

n = 5 53.83 98.56 27.38 99.53 27.40 94.89 96.52 21.52 99.95 45.15

n = 10 37.03 98.90 25.36 99.36 17.74 95.34 96.00 19.41 99.95 59.94

Y −
i ∼ Binomial(20, 1

2 )

n = 3 82.34 99.23 51.83 99.82 40.27 92.44 98.73 42.33 99.92 47.95

n = 5 63.05 99.45 53.58 99.62 27.26 93.20 98.46 37.99 99.93 54.00

n = 10 40.25 99.60 50.55 99.40 17.14 94.79 98.21 34.83 99.95 71.92

Y −
i ∼ Poisson(100)

n = 3 84.78 98.67 39.22 99.84 40.30 94.89 97.58 28.45 99.95 48.79

n = 5 69.06 98.93 38.89 99.66 27.85 95.01 96.92 23.83 99.95 54.86

n = 10 48.45 99.09 34.89 99.48 19.22 95.18 96.48 21.41 99.95 69.21

Y −
i ∼ Negative Binomial(1, 1

101 )

n = 3 74.54 98.20 29.34 99.74 40.21 94.66 97.16 25.05 99.94 45.21

n = 5 53.63 98.54 27.15 99.53 27.37 94.96 96.43 21.23 99.95 44.99

n = 10 37.34 98.85 24.63 99.37 17.89 95.07 95.84 18.72 99.95 59.51

Y −
i ∼ Binomial(200, 1

2 )

n = 3 82.85 98.79 40.87 99.82 40.33 94.44 97.66 28.98 99.94 51.03

n = 5 64.83 99.05 40.85 99.64 27.61 94.68 97.15 25.12 99.94 57.03

n = 10 46.03 99.20 36.74 99.46 18.83 95.13 96.78 22.95 99.95 71.48

Y −
i ∼ Poisson(1000)

n = 3 84.84 98.51 36.65 99.84 40.48 94.93 97.15 25.27 99.95 50.40

n = 5 68.91 98.75 35.59 99.69 28.36 95.15 96.45 21.19 99.95 56.28

n = 10 46.51 99.04 32.92 99.46 18.61 95.01 95.97 19.26 99.95 69.48

Y −
i ∼ Negative Binomial(1, 1

1001 )

n = 3 77.40 98.12 29.58 99.77 40.54 95.03 97.14 25.26 99.95 45.23

n = 5 53.26 98.56 27.37 99.52 27.22 95.46 96.36 21.01 99.95 45.65

n = 10 37.13 98.85 24.61 99.36 17.79 95.68 95.78 18.61 99.95 60.45

Y −
i ∼ Binomial(2000, 1

2 )

n = 3 84.87 98.56 37.31 99.85 40.52 94.66 97.31 26.24 99.94 49.95

n = 5 68.09 98.85 37.50 99.67 28.04 94.53 96.71 22.56 99.94 54.33

n = 10 48.80 99.02 33.56 99.48 19.39 94.91 96.19 20.15 99.95 69.12
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low RC can be attained, but with high probability of misclassification, while in M�
2

the efficiency is not so good, but both ϕ
sn

and ϕ
sn

have good performance.
Table2 investigates different prevalence rates p ∈ {0.05, 0.01, 0.001} and mul-

tiple significance levels α ∈ {0.1, 0.05, 0.01} with φ = 0.99. The results are as
expected, i.e. the ϕ

en
(ϕsn

) decreases and the ϕ
sn
(ϕen

) increases in methodology M1
(M�

2) when the significance level increases. Moreover, the use of different prevalence
rates (all used rates are low, because compound test should not be used otherwise)
does not seem to have a major impact either on the sensitivity or in the specificity.

Different distributions (Poisson, negative binomial, and binomial) and different
parameters values (maintaining the same expected value in the distinct distributions)
were analyzed in Table3 in order to evaluate the impact in the misclassification.
Moreover, the same quality value for the individual test performance (φ = 0.99)
has been applied in all investigated cases. Hence, it seems that the shape of the
applied distribution is not important to assess the problem of misclassification, but
exclusively the value of φ.

5 Final Remarks

The usual M1 methodology can be applied to control the specificity and minimize
the cost, as for screening cases, while the methodology M�

2 can be applied in order
to control the sensitivity, namely in epidemic situations. The optimum group size n
depends on the purpose of the investigator, since it can be greater if the main goal is
to save resources (and accepting having a higher probability of misclassification) or
lower if the main goal is to control the problem of misclassification (cases in which
we should use a smaller dimension n to ensure a low probability ofmisclassification).
Furthermore, the compound tests should be applied only if the individual test has
good performance (low probability ofmisclassification). Hence, the proposed quality
measure of the individual test performance φ can be used to identify those situations.
Moreover, the distribution D0 and the prevalence rate p do not seem to have a major
impact on Dorfman’s methodology misclassification problem if the same φ value is
provided. A high φ value ensures a high ϕ

sn
and ϕ

en
in the new M�

2 methodology,
although the RC remains quite high. The same high φ value only guarantees a high
ϕ

en
in the usual M1 methodology and, therefore, it must be used with caution.

Nevertheless, in the M1 methodology, the RC rapidly decreases with n.
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A Maximum Likelihood Estimator
for the Prevalence Rate Using Pooled
Sample Tests

João Paulo Martins, Rui Santos and Miguel Felgueiras

Abstract Since Dorfman’s seminal work, research on methodologies involving
pooled sample tests has increased significantly. Moreover, the use of pooled samples
refers not only to the classification problem (identifying all the infected individ-
uals in a population), but also refers to the problem of estimating the prevalence
rate p, as Sobel and Elashoff stated. The use of compound tests is not restricted to
hierarchical algorithms where the most common example is Dorfman’s two-stage
procedure. Matrix schemes such as the square array algorithm or multidimensional
matrices schemes in certain cases outperform Dorfman’s procedure. Maximum like-
lihood estimates are quite difficult to compute when a procedure does not classify
all individuals. This paper presents two innovative methods to compute maximum
likelihood estimates in both type of procedures.

Keywords Compound tests · Maximum likelihood estimator · Prevalence rate

1 Introduction

The use of group testing procedures to screen for a binary characteristic is usually
said to have started from Dorfman’s (cf. [3]) seminal work. His purposed procedure
proved to be less expensive than applying only individual tests in the detection of the
World War II soldiers infected with syphilis. The new strategy was to gather groups

J.P. Martins (B) · R. Santos · M. Felgueiras
School of Technology and Management, Polytechnic Institute of Leiria,
Apartado 4163, 2411-901 Leiria, Portugal
e-mail: jpmartins@ipleiria.pt

J.P. Martins · R. Santos · M. Felgueiras
CEAUL – Center of Statistics and Applications of the University of Lisbon,
University of Lisbon, Lisbon, Portugal
R. Santos
e-mail: rui.santos@ipleiria.pt

M. Felgueiras
e-mail: mfelg@ipleiria.pt

© Springer International Publishing Switzerland 2015
C.P. Kitsos et al. (eds.), Theory and Practice of Risk Assessment,
Springer Proceedings in Mathematics & Statistics 136,
DOI 10.1007/978-3-319-18029-8_8

99



100 J.P. Martins et al.

of n individuals into pools and then perform a pooled sample test. A negative result of
the pooled mixture indicates that all of them are free of the disease. A positive result
indicates that at least one of the n individuals has the disease, but we do not know
who or how many. In this case, performing individual tests is advised to identify
the infected individuals in the sample. The main issue is to determine the optimal
batch size which minimizes the expected number of tests as it is a good measure of
monetary costs, since the cost of mixing samples is usually negligible (cf. [11]).

Pooled samples may be used in two types of problems: a classification problem
or an estimation problem. Identifying all the subjects that are infected or have a high
level of blood sugar are examples of classification problems. In both examples, we
determine, for each individual, if fall in the class of interest. Estimating the prevalence
rate of a disease or of a gene in some population are examples of estimation problems.
In this case, the performance of individual tests is only optional, since the goal is no
longer to identify the infected individuals (cf. [2]). The use of only pooled samples
has also the advantage of anonymity of the infected members, given that they are not
identified. Furthermore, the estimators obtained by applying compound tests have,
under certain conditions, better performance than the traditional estimators based
on individual tests, cf. [5, 12, 15]. The bias, the efficiency and the robustness of
these estimators has been reviewed in several works, such as those from [2, 6, 10].
Bilder et al. [1] proposes the use of the package binGroup for the R software, which
includes applications of several compound testing estimators. Thus, the estimators
based on group testing not only allow one to obtain monetary gains (by decreasing
the number of performed tests), but also allow us to achieve more accurate estimates,
compared to those obtained on the basis of individual tests.

Group testing application can be done in several ways (cf. [8]). The main reason
for having different procedures is related to the misclassification problem, as an
individual can bewrongly classified. The sensitivity and the specificity of the test (see
Definition 1) may be used for measuring the accuracy of the test results. In particular,
the sensitivity of a test generally decreases as the pooled sample size increases. The
choice for a particular group testing procedure depends on the number of samples
available and the sensitivity, the specificity and the monetary costs of the process
(cf. [11]). For an overview for this problem, known as the dilution problem, see [7,
14, 17, 18].

The outline of this work is as follows. Section2 introduces the binomial model
assumption and discusses some considerations about the prevalence rate maximum
likelihood (ML) estimator when pooled samples are used. Section3 describes the
two main types of group testing procedures and is the core of this work as new ways
of computing ML estimates are provided. For the hierarchical algorithms dealt in
Sect. 3.1, we propose a method for the classification of an individual for estimation
purposes that does not need any individual tests. This allows the application of the tra-
ditionalML estimators evenwhen in the last stage of the algorithm no individual tests
are performed. The array-based group testing procedures are presented in Sect. 3.2.
In these kind of procedures, the computation of the ML estimates is very difficult to
perform. Hence, in order to easily compute reasonable estimates an iterative method
is proposed. In Sect. 4 some final remarks are discussed.



A Maximum Likelihood Estimator for the Prevalence Rate … 101

2 The Binomial Model

Let p denote the probability that an individual is infected, n be the pool sample size
and t the number of performed tests. The total number of individuals is N = n × t .
Let us also assume that the individuals status (infected/not infected) within a pooled
sample are independent. The probability of having an infected pooled sample is
πn = 1 − (1 − p)n . Hence the total number of infected samples is described by a
binomial random variable I � Bin (t, πn). The ML estimator of πn is

π̂n = I

t
. (1)

As p is given by a simple transformation of πn , it is straightforward to prove,
applying the proprieties of the ML estimators, that the ML estimator of p is

p̂ = 1 −
(

1 − I

t

)1/n

. (2)

For n = 1, p̂ = 1 − (
1 − I

t

) = I
t is an unbiased estimator of p. For n > 1, the

estimator is positively biased. Expressions for the expected value and variance of the
estimator may be found in [6].

As screening errorsmayoccur, the above is, in practice, unrealistic. Let us consider
the problem of estimating the prevalence rate of some disease and let Xi = 1 denote
an infected individual and Xi = 0 denote a non-infected individual. In addition, X+

i
will stand for a positive test result and X−

i stand for a negative test result. In order
to assess the sources of error two measures will be considered.

Definition 1 Consider an individual Xi who is tested individually. The probability
ϕs = P

(
X+

i |Xi = 1
)
is called the test sensitivity and ϕe = P

(
X−

i |Xi = 0
)
is called

the test specificity.

When a pooled sample test is performed the probability of having a positive
result from an infected sample may decrease. As the amount of substance per unit
of volume is less or equal to the amount of substance found in a unit of volume
collected from an infected individual, it may be difficult to screen the infected pool
sample as positive. However, the probability of getting a negative outcome on a
non-infected sample is equal to ϕe as there are no dilution problems. Thus, [14]
defines the concepts of specificity and sensitivity of some specific methodology of
classification or estimation M (these concepts are closely related to the pooling
sensitivity and pooling specificity concepts defined in [8]). These measures assess
the quality of an outcome provided by some methodology M .

Definition 2 The methodology sensitivity or the procedure sensitivity is the prob-
ability of an infected individual being correctly identified by the methodology M ,
that is, ϕM

s = PM
(
X+

i |Xi = 1
)
. The methodology specificity or the procedure
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specificity stands for the probability of a non-infected individual being correctly
classified by the methodology M , that is, ϕM

e = PM
(
X−

i |Xi = 0
)
.

For an individual testing procedure the sensitivity (specificity) methodology is
equal to the test sensitivity (specificity). For instance, inDorfman’s procedure, assum-
ing there is no dilution effect, the probability of an infected individual being screened
as positive is

ϕM
s = ϕ2

s , (3)

as it is required that both pooled and subsequent individual test outcomes to be
positive. Note that the methodology sensitivity is less than the test sensitivity, i.e.,

ϕM
s ≤ ϕs, (4)

for n > 1.
For computing the probability of a non-infected individual being correctly clas-

sified it is necessary to account for three possible situations:

• the pooled sample is not infected and the pooled test outcome is negative;
• the pooled sample is not infected but the pooled test outcome is positive and the
subsequent individual test outcome is negative;

• the pooled sample is infected and the pooled test outcome is positive but in the
subsequent individual test the subject is correctly classified as non-infected.

Hence,

ϕM
e = ϕe (1 − p)(n−1) + (1−ϕe)ϕe (1 − p)(n−1) +ϕsϕe

(
1 − (1 − p)(n−1)

)
. (5)

The exponent n−1 in Eq. (5) is due to the fact that we are computing a conditional
probability. These probabilities allows us to compute the real bias of

p̂ = T

N
(6)

where T stands for the number of specimens classified as positive when Dorfman’s
procedure is applied. T is a binomial randomvariable described by T � Bin (N , p∗).
It depends on the methodology specificity ϕM

e and on the methodology sensitivity
ϕM

s , therefore, p∗ = ψ (ϕs, ϕe, p). Santos et al. [14] computed the value of p∗ by

p∗ = P
(
X+

i |D)
P (D) + P

(
X+

i |D)
P

(
D

)

= ϕM
s p +

(
1 − ϕM

e

)
(1 − p) (7)

= 1 − ϕM
e +

(
ϕM

s + ϕM
e − 1

)
p.

where D stands for an infected individual and D stands for a non-infected individual.
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Hence, the estimator is, in general, biased. The bias is equal to

Bias ( p̂) = p∗ − p (8)

and the estimator variance is

Var ( p̂) = p∗ (1 − p∗)
N

. (9)

The mean square error (MSE) of the estimator is, by definition,

MSE ( p̂) = [Bias ( p̂)]2 + Var ( p̂). (10)

Note that, for instance, if ϕM
e = ϕM

s = p = 0.5 the estimator is actually unbi-
ased. The mean square error is a possible measure for assessing the quality of the
estimates in each procedure. This measure may be used to combine different preva-
lence rate estimates. Chen et al. [2] uses a logistic regression where the parameters
are computed iteratively but the quality of each estimate is measured by just using
the pooled sample size. Martins et al. [13] provides an iterative meta-analysis-based
procedure that uses the mean square error as weights for achieving a single estimate.
The content in Sect. 3.2 enhances the work of [13] as it provides a computational
method for estimating the prevalence rate from an array-based group testing algo-
rithm and, even more important for the meta-analysis technique, it provides a way
to estimate the MSE of the estimator.

3 ML Estimators in Several Group Testing Procedures

On a pooled sample-based procedure there are two goals: minimizing the sources
of error and providing a less expensive method than individual testing for achieving
the investigation goal. To assess the savings of some procedure M , the relative
cost will be used as a measure of the methodology efficiency, RC (M ), that is, the
expected number of tests per specimen since the cost of mixing samples is usually
negligible. When only individual tests are performed the methodology efficiency is
equal to one. In general, the methodology efficiency is high for low prevalence rates
as the pooled samples sizes tend to increase when p decreases. For instance, in the
traditional Dorfman procedure the maximum efficiency for a prevalence rate equal
to 0.1, 0.01 and to 0.001 is obtained by using a pooled sample size equal to 4, 11 and
32, respectively (cf. [3]).

The most commonly used pooled sample procedures can be binned in the follow-
ing two groups:

• Hierarchical algorithms—a pooled sample is tested and if the test outcome is
positive it is divided into smaller nonoverlapping groups until eventually all indi-
viduals have been tested;
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Table 1 Correct and wrong decisions at the sth stage

Pooled sample at the sth stage

Infected Not infected

Xi = 0 Test result+ � ×
Test result− � �

Xi = 1 Test result+ � Not possible

Test result− × Not possible

• Array-based group testing algorithms—in its simplest two-stage version (square
array), a sample of size n2 is placed in a n × n matrix and then all the individuals
within the same row and the same column are gathered for batched testing.

3.1 Hierarchical Algorithms

Dorfman’s procedure is just one example of a wider family of pooled testing pro-
cedures called hierarchical algorithms. Some improvements to his work have been
proposed (cf. [4, 16, 17]) by dividing positive pools into smaller subpools until
eventually all positive specimens are individually tested.

A multistage hierarchical algorithm is an algorithm that generalizes Dorfman’s
procedure to more than two stages, that is, a sample is divided at each stage into
smaller nonoverlapping groups until eventually all positive specimens are individu-
ally tested. At each stage, subsamples from the samples tested positively are retested.
For practical reasons, only two or three stages are usually performed. Let us consider
a hierarchical algorithm with s stages and let ni denote the number of individuals
at the i th stage. At the last stage, when the classification problem is considered, we
have ns = 1. However, this condition might not be fulfilled, when we just want to
estimate the prevalence rate, and the condition verified is just n1 > · · · > ns ≥ 1
(cf. [2, 6, 10]). For low prevalence rates, the use of ns > 1 for achieving a greater
efficiency may be justified if a positive outcome when testing a pooled sample of
size ns at the last stage means (almost surely) that only one of the individuals is
infected (cf. [14]). Under this assumption, it is now easy to compute the proportion
of infected individuals.

Table1 shows all possible scenarios at the last stage of a hierarchical algorithm
indicating what scenarios correspond, for estimation purposes, to a correct/wrong
classification (�/×) of an individualXi .

One of the less intuitive classifications shown in Table1 is to have a correct
decision when the sample at the sth stage is infected and the test outcome is positive.
This is almost 100% true as it means (almost surely) that only one individual is
infected and that the other individuals are not. Therefore, concerning the estimation
problem, all the individuals are (almost surely) well classified as one infected and
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Table 2 Comparing the efficiency of the different methodologies

Methodology RC(M ) ϕM
e ϕM

s

Individual test 1 0.9900 0.9000

MA2(49 : 7 : 1) 0.34 0.9995 0.6810

MA2(100 : 10 : 1) 0.31 0.9991 0.6596

MA2(100 : 10) 0.22 0.9990 0.7290

ns − 1 non-infected. Hence, although we may not be able to identify who is infected
it is now straightforward to compute the ML estimator presented in (6). However,
the given estimate may not be a ML estimate since, although unlikely, it is possible
to have two infected individuals at the sth stage.

3.2 Array-Based Group Testing Algorithms

Array-based group testing is an alternative to hierarchical group testing that uses over-
lapping pools. In its simplest two-stage version (square array), denoted by A2 (n : 1),
a sample of size n2 is placed in a n × n matrix in the following way. Each individual
is allocated to one and only one matrix position. Then, all the individuals within
the same row and the same column are gathered for batched testing. This process
involves at least 2n tests as subsequent individual tests are performed to the samples
lying in a row and/or column that tested positively. A variant of this methodology
consists in performing a priori pooled sample test on all the n2 individuals (master
pool). If the master pool test result is negative no further testing is needed as the
individuals are all classified as negative. This methodology with a master pool will
be represented by M A2

(
n2 : n : 1). The performance of subsequent individual tests

is required to avoid ambiguities. For instance, it is possible to have a row tested
positive but all columns tested negative (the number of infected individuals can be
any integer from zero to n) or to have two positive rows and columns (the number of
infected individuals may be 2, 3 or 4). To obtain a greater efficiency we suggest the
dropping of the subsequent individual testing because it is not necessary to determine
who exactly the infected individuals are when dealing with an estimation problem.
A square array-based group testing with no individual tests will be represented by
M A2

(
n2 : n

)
or A2

(
n2 : n

)
depending on the performance or not of a master pool

test. Let us look for a simple example of a square array procedure with two lines
(with or without) a master pool (Table2).

Example 1 ([9]) compares the operating characteristics of two square array proce-
dures with a master pool: MA2 (49 : 7 : 1) and MA2(100 : 10; 1)when screening for
a disease in Malawi with prevalence rate 0.045. We computed the operating charac-
teristics of the last procedure without any individual tests: MA2(100 : 10). In this
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case, an individual is classified as positive if and only if both “row” and “column”
tested positive.

Dropping the performance of individual tests (MA2(100 : 10)) results on a great
reduction of the relative cost from more than 0.3 to 0.22. Moreover, concerning
the methodology specificity, MA2(100 : 10) methodology performs as well as the
others and it also has a greater sensitivity than the other array based group testing
methodologies.

Hence, if all the columns (rows) tested negative and a row (column) tested positive,
all the individuals are classified as negative. This approach although much more
efficient than the others has a great drawback. It almost surely underestimates the
prevalence rate!

As it is not possible to use the proportion of defective individuals without avoid-
ing an underestimation of the prevalence rate, we propose the computation of a
ML estimate, using a proper script. This will combine a greater efficiency with the
computation of an accurate estimate.

When the number of rows and columns of the two-dimensional array is low it is
possible to compute the exact value of the likelihood function for a given prevalence
rate p0. For an array with two rows and two columns it is easy although tedious to
write a script to compute the ML function for any value. Hence, a proper iterative
process gives the ML estimate.

The inputs of the script must be the test sensitivity ϕs , the test specificity ϕe and
the number of arrays that have i − 1 positive rows and j − 1 positive columns for
i = 1, 2, 3 and j = 1, 2, 3. These values may be inserted in a 3 × 3 matrix O . The
matrix O resumes the experimental results.

To compute the ML function at p0 one is also required to compute the probability
of observing i − 1 positive rows and j − 1 positive columns, where i = 1, 2, 3
and j = 1, 2, 3, given p0 and taking into account the test sensitivity ϕs and the
test specificity ϕe. Suppose these values are recorded in a matrix P . For instance, if
ϕs = ϕe = 0.95 (consider that the individual test sensitivity is equal to the pooled
sample sensitivity) and pk = 0.1. The matrix P0 is

P0 =
⎛

⎝
0.5351 0.0689 0.0029
0.0689 0.2477 0.0277
0.0029 0.0277 0.0183

⎞

⎠

As the matrix of a square array is always symmetric it can be written as an upper
triangular matrix

P =
⎛

⎝
0.5351 0.1378 0.0058

0 0.2477 0.0554
0 0 0.0183

⎞

⎠

In this case, the matrix of the frequencies of the number of positive lines and
positive columns O must be also rewritten as O(i, j) = O(i, j) + O( j, i) for
j > i . Approximately 14% of arrays are expected to have only one positive row
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(column) and no positive columns (rows). In the traditional application of a square
array methodology, this would require the performance of individual tests. The ML
function for p0 is given by

M L(p0) =
3∏

i=1

3∏

j=i

P(i, j)O(i, j). (11)

Example 2 To assess the MSE of the estimator, for a prevalence rate p = 0.1, 100
replicates of a 2×2 array (A2(2 : 1)) were simulated in softwareMatLab R2011 and
the ML estimate was computed. This procedure was repeated 1000 times to produce
1000 prevalence rate estimates. The matrix O was set to be equal to the matrix P .
Although, in practice, the matrix O only admits integer values, it also works for any
non-negative numbers.

The mean value of the estimates was 0.1189 with standard error 0.0120. The 5
and 95% percentiles are, respectively, 0.1029 and 0.1408. Thus, by (10), an estimate
for the mean square error of the estimator is

MSE (ML) = 5.01 × 10−4. (12)

To evaluate the MSE of the estimator, we will compare these results with the ones
obtained using Dorfman’s procedure. The optimal batch size for p = 0.1 is n = 4.
By (8)–(10), the mean square error is given by

MSE ( p̂) = 0.0156712 + 0.102291

400
= 5.01 × 10−4. (13)

The MSE is the same for both methods. Moreover both present a problem of
overestimation due to the test sensitivity and specificity.

However, when the number of rows and columns is just 3 or more it is not easy
to use the previous method to compute a value of the ML function. In this case,
we suggest the computation of an estimate for the ML function value for a given
prevalence rate in the following way.

1. Record in amatrix O of size r ×c the number of two-dimensional arrayswith i −1
positive rows and j − 1 positive columns where i = 1, . . . , r and j = 1, . . . , c.

2. For some possible prevalence rate values p, chosen in some logical sequence (for
instance, 0, 0.1, 0.2, . . . , 1) simulate a reasonable number of replicates rep of the
possible matrices.

3. Compute the probability of observing i − 1 positive rows and j − 1 positive
columns for each replicate (taking into account the test sensitivity ϕs and the test
specificity ϕe, and store that value in the position (i − 1, j − 1) of the matrix P).
Add the probabilities computed for all the replicates and multiply P by 1/rep.

4. Compute the ML function for the matrix O using the values of P .
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ML(p0) =
r∏

i=1

c∏

j=1

P(i, j)O(i, j).

5. Compare the ML function for each prevalence rate estimate and chose the two
estimates with the highest value of the ML function.

6. Repeat the process from step two until the difference between the ML function
at the two points chosen in step five be lower than some prefixed tolerance.

7. The estimate is the weighted mean value between those two points, say p1 and
p2, using as weights ML (p1) and ML (p2), i.e.,

p̂ = M L (p1) × p1 + ML (p2) × p2
ML (p1) + ML (p2)

.

P(i, j) is an estimate of the probability of having i − 1 positive rows and j − 1
positive columns in an array. In practice, the values for p in step two don’t have
to span the entire interval [0, 1] as the use of pooled samples is advised only for
prevalence rates lower than about 1/3.

Let us look at the following example.

Example 3 Consider a matrix O generated by simulating 1000 replicates of a square
array A2(4 : 1) for a prevalence rate p = 0.01 and ϕs = ϕe = 0.99 using software
MatLab R2011.

O =

⎛

⎜
⎜
⎜
⎜
⎝

76 4 0 0 0
4 14 0 0 0
0 1 1 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟
⎟
⎟
⎟
⎠

The total proportion of infected individuals of this simulation was, by chance,
equal to the prevalence rate p = 0.01.

For computing a ML estimate for the prevalence rate given this matrix O, 100
square arrays were simulated to compute each matrix P . Hence, the sample size
is 42 × 100 = 1600. Then, 100 estimates were, independently, computed. The
mean value of the estimates was 0.0148 with standard error 0.0027. The 5 and 95%
percentiles are, respectively, 0.0113 and 0.0183. Thus, an estimate for the MSE of
the estimator is

MSE (ML) = 3.02 × 10−5. (14)

Once again, in order to evaluate the MSE of the estimator we will compare these
results with the ones obtained using Dorfman’s procedure. The optimal batch size
for p = 0.01 is n = 11. The MSE is given by

MSE ( p̂) = 0.001772 + 0.011636

1600
= 1.04 × 10−5. (15)
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TheMSEof both estimators are similar. Thus, the estimates givenby this algorithm
seem to be reliable. However, we are not performing a formal comparison between
the two methods as there is no way, at least to our knowledge, to find the optimal
array-based group testing design for a given estimation problem (unless one supposes
there are no test errors, cf. [9]).

4 Final Remarks

The main achievement of this work is the dropping of the individual tests when we
just want to determine a prevalence rate estimate.

When one is dealing with a hierarchical method, an estimate very close to the
real proportion of infected elements can be achieved even without performing any
individual tests.

The use of a square array methodology is only possible with the advent of robotic
pooling. These methods can be very efficient if no individual tests, are performed.
Furthermore, the iterative method for computing a ML estimate allows the use of
these kinds of strategies and the computational cost does not have to be very high in
order to obtain accurate estimates (comparing toDorfman’s procedure). One problem
that still is unsolved is to find a method to easily identify the best array to use in a
given situation. This issue will be dealt in a future work. A generalization of this
iterative method to higher dimensional arrays is straightforward. More details on the
use of arrays with dimensions higher than two is discussed by [9].
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On Intra-individual Variations in Hair
Minerals in Relation to Epidemiological
Risk Assessment of Atopic Dermatitis

Tomomi Yamada, Todd Saunders, Tsuyoshi Nakamura, Koichiro Sera
and Yoshiaki Nose

Abstract Wehave conducted a cohort study of 834-mother-infant pairs to determine
the association between hair minerals at one month and the onset of atopic dermatitis
(AD) at ten months after birth. Thirty-two minerals were measured by PIXE (parti-
cle induced X-ray emission) method. (Yamada et al., J. Trace Elem. Med. Bio. 27,
126-131, 2013, [11]) described a logistic model with explanatory variables Selenium
(Se), Strontium (Sr) and a family history of AD whose performance in predicting
the risk of AD was far better than that of any similar study. However, as discussed
in (Saunders et al., Biometrie und Medizinische Informatik Greifswalder Seminar-
berichte, 18, 127-139, 2011, [9]), intra-individual variations in those minerals were
large and could have degraded the regression coefficients of Sr and Se in the logistic
model. Therefore, (Yamada et al., Biometrie und Medizinische Informatik Greif-
swalder Seminarberichte, 2013, [12]) examined the intra-individual variations of Sr
levels in the mothers (Mother-Sr) assuming log-normality and obtained a regression
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coefficient of Mother-Sr corrected for the variations. This paper addresses Sr levels
in the babies (Baby-Sr) which are not distributed as log-normal and require more
sophisticated modeling of the variations. Here we elaborate on the “true-equivalent
sample” (TES) method, developed in (Yamada et al., Biometrie und Medizinische
Informatik Greifswalder Seminarberichte, 2013, [12]) and determine the distribution
ofBaby-Sr. The revisedTESmethod presented herewill be useful for determining the
distribution type for minerals whose distributions are zero-inflated, thereby obtain-
ing a risk estimate corrected for the intra-individual variations. This will allow hair
mineral data to play a more important role in medical and epidemiological research.

Keywords Atopic dermatitis · Risk assessment · Epidemiology · Hair minerals ·
Intra-individual variation

1 Introduction

In 2005 part one of amulti-stage cohort studywas started to determinewhatminerals,
and in what amounts, could be measured in human hair, and the relationship of these
mineral varieties and volumes to the risk of atopic dermatitis (AD).

Hairmineral concentrations have been used as biomarkers tomeasure such diverse
substances as tobacco [1], mercury [8] and cortisol [7]. Mineral concentrations in
hair are regarded as ideal biomarkers to measure individual exposure to elements
and the Environmental Protection Agency (US EPA) considers scalp hair a suitable
biological sample for estimating the body burden of trace elements [6], because hair
incorporates elements from the blood at a relatively constant rate and its composition
reflects the concentration of elements in blood at the time of formation [2, 5].

We took hair samples from842 infants and theirmothers in Fukuoka at the national
one-month health checkup to measure hair minerals using proton induced X-ray
emission (PIXE) method. Association between the hair mineral measurements at
the one-month checkup and the onset of AD diagnosed by pediatricians at the ten-
month checkup was assessed to obtain a model for detecting infants at high risk of
developing AD with the goal of primary prevention of the disease.

Of the 32 minerals measured only Selenium (Se) and Strontium (Sr) showed
statistically significant associations with the onset of AD. These mineral amounts
together with individual AD family history were incorporated into a logistic model
to predict the risk of AD development, which provided far better performance than
any models presented in the literature to date [11]. However, large intra-individual
variations among individual strands and measurement location along the strand can
degrade the association to the null [9]. Currently no correction method has been
developed for logistic models with covariates subject to continuous measurement
errors [3] making clinical use of hair minerals problematic.

Yamada et al. [12] randomly sampled 86 mothers’ hair strands from the original
cohort sample (n = 834) and Sr was measured at two points by PIXE for each sub-
ject. They found that the distribution of Mother-Sr was approximately log-normal,
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and the reliability index was approximately equal to 0.6. They also estimated a true
distribution of Mother-Sr after removing the intra-individual variations. To obtain
these results, they developed a method termed “true-equivalent sample (TES)
method”. In 2012, to perform a similar study on Baby-Sr, we resampled 208 then
6-year-old children from our original cohort sample. The objective of this report is
to describe the methods and results of the study, which, we believe, will allow hair
mineral data to be more effectively used in medical and epidemiological research.

2 Methods

2.1 Intra-individual Variance

In October 2012, we sent the results of part one of the cohort study to the 834mothers
with a letter requesting hair samples from their then six-year olds. We received hair
strand samples from 208 children. We call this sample “the validation sample” to
distinguish it from the original cohort sample. Each child’s hair strands were divided
into two specimens for PIXE analysis to obtain two independent measurements, X1i

and X2i , from i th child. Since X1’s and X2’s were measured at virtually the same
periods, we consider a simple random effects model:

X1i = Zi + ε1i and X2i = Zi + ε2i with ε1i , ε2i ∼ N (0, σ 2
e ) (1)

where Zi , termed true or exact value, denotes the mineral amount averages from all
locations among the hair strands of i th subject and σ 2

e the intra-individual variance,
or the measurement error variance. MLE obtained from applying the logistic model
logit(X) = α + β X to X will be denoted by βX and that from logit(Z) = α + βZ
to Z by βZ . βX and βZ are usually referred to as the naive and corrected regression
coefficients, respectively [3].

The proportion of the variance of the true value to that of the observed value

λ = V (Z)/V (X) = V (Z)/{V (Z) + σ 2
e },

is usually termed as “the reliability index” [3, 10].An estimate for the intra-individual
variance and the reliability index are calculated from the validation sample as

σ 2
e =

m∑

i=1

(X1i − X2i )
2/2m and λ = {V (X) − σ 2

e }/V (X),

respectively. V (X) is estimated as a pooled variance from the two samples X1 and
X2. The value of λ of a random sample from a population is the same for that of
the population (Appendix). This property is used to transport the estimate for the
measurement error variance σ 2

e to that of the cohort sample, say σ 2
E .
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Let V and σ 2
E denote the variance and the intra-individual variance of the mea-

surements of the 834 infants at one month, respectively. As previously mentioned,
it is expected that the reliability index λ obtained from the validation sample is
approximately equal to that from the cohort sample. This consideration leads to the
equation

σ 2
e : V (X) = σ 2

E : V (2)

Assigning the estimates of V (X), V and σ 2
e , we obtain an estimate of σ 2

E .

2.2 Simulation

2.2.1 True-Equivalent Sample and Observed-Equivalent Sample

Sr was larger than 1 for almost all mothers and distributed as approximately log-
normal for the cohort sample (n = 834). This does not hold, however, for the sample
from the children. In fact, about 21.5% of them had less than 1 ppm. Since 0.1 ∼ 1
is regarded as the detection limit of PIXE method, we replaced Sr-levels less than
0.1 with 0.1 and then applied the square root transformation. The resulting figures
are used as X ’s in (1). Then, as performed for mothers’ Sr [12], a true-equivalent
sample was obtained as follows.

Hereafter, for the sake of brevity, Sr-level will be omitted when considered under-
standable. We denote the variance of a sample by var and that of a population by
V . Let Z A and Z N denote the unobserved true values and X A and X N the observed
error-prone values for AD and non-AD respectively. Since var(X A) = var(X N )

approximately holds, we assume

V (Z A) = V (Z N ) = V and X = Z + σEε

for AD and non-AD, that is “non-differential” error assumption usually employed in
cohort data analysis [3]. It follows that

E(Z A) = E(X A), E(Z N ) = E(X N ), and V (X) = V (Z) + σ 2
E

for both AD and non-AD. Assigning observed values of E(X A), E(X N ), V (X)

and σ 2
E to the equations will result in estimates for E(Z A), E(Z N ) and V (Z) =

V (X) − σ 2
E for both AD and non-AD samples.

Since X appears to follow approximately the Weibull distribution with two para-
meters α, scale, and β, shape, we obtain the parameter values of the best fit Weibull
model for each sample. It is a practical advantage in the following analysis that the
Weibull model is determined by the mean E and variance V as well as the values of
α and β.
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Weibull random numbers with E(Z A) and V (Z) and also those with E(Z N )

and V (Z) are generated for AD and non-AD samples respectively. Each sample
will be referred to as a “true-equivalent” sample (TES) and denoted by Z∗. Then,
X∗ = Z∗ + σEε, termed an “observed-equivalent” sample, was generated for both
AD and non-AD samples. The distribution of X should be approximately equal to
that of X∗ if the TES method is valid.

Let βZ∗ denote the MLE obtained from applying the logistic model

logit(Z∗) = α + βZ∗

and
logit(X∗) = α + β X∗

to a true-equivalent sample Z∗ and an observed-equivalent sample X∗, respectively.
If an observed equivalent sample X∗ is in fact approximately equal to X , it is regarded
as evidence that the distribution of Z is approximately equal to that of Z∗. In that case,
βX∗ and βZ∗ should be approximately equal to βX and βZ , respectively. Hereafter,
βZ∗ is termed as a TES estimate for βZ .

2.2.2 SIMEX

We also obtained the SIMEX estimate for βZ [4, 12] to compare as follows. First,
we generate further contaminated surrogates X (θ):

X (θ) = X + θσEε, ε ∼ N (0, 1) (3)

where θ > 0 is a pre-assigned constant. The values of θ are usually 0.5, 1, 1.5 and
2, but may depend on the case. Applying the logistic model

logit(X (θ)) = α + β X (θ),

we obtain the MLE for β. This step is iterated 400 times so that we obtain 400
MLE’s for β for each θ . The average of them will be denoted by βθ . Then the so-
called “Extrapolation step” makes a scatter plot for βθ versus θ to determine the
functional relationship between them and extrapolates it to θ = −1. The value of β

corresponding to θ = −1, denoted by β−1, is a SIMEX estimate for βZ .

3 Results and Discussion

Figure1a presents a scatter plot for the 1st versus 2nd Sr measurements of the val-
idation sample (n = 208). This shows a tendency for differences between the two
measurements to be greater for larger measurements, When this phenomenon is
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Fig. 1 Scatter plot for two
independent measurements
of Sr from 208 children. The
X-axis and Y-axis represent
1st and 2nd measurements of
Sr, respectively (a), that of
log(Sr) (b) and that of

√
Sr

with histogram (c)
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observed, it is customary to use log-transformed values, which indeed work fine
with mothers’ Sr [11]. However, Fig. 1b reveals that log(Sr) is not appropriate for
the current data since small differences in Sr < 1 are exaggerated when compared to
those for Sr > 1 and a large number of measurements are less than 1.

On the other hand, the square-root transformation
√
Sr substantially corrects the

defects of log(Sr) (Fig. 1c). Hereafter, X denotes
√
Sr for each subject, while Z will

denote the average of X over all hair strands of each subject. Z is considered as the
true or exact value, as mentioned in Methods.

We discovered that a normal distribution did not fit well to
√
Sr. Instead, the

two-parameter Weibull model appears to fit reasonably well. Figure2 shows the
histograms with a fitted Weibull density function with estimated parameter values
and sample means and variances for each X1 and X2. The population mean and
variance of the Weibull model determined by the estimated parameter values α and

Fig. 2 Results of fitting
Weibull model to the 1st (a)
and 2nd (b) validation
samples, and the cohort
samples AD (c) and non-AD
(d)
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β agree well with the samples’ means and variances calculated directly from the
observed values for the samples of Fig. 2. It is thus concluded that those four samples
are approximately distributed as Weibull.

The intra-individual variance σ 2
e was estimated to be 0.191. As described in Fig. 2,

var(X1) = 0.724, var(X2) = 0.751, the pooled variance of X1 and X2 is 0.746 and
therefore, the reliability index λ = (0.746 − 0.191)/0.746 = 0.744. On the other
hand, the pooled variance of AD (n = 41) and non-AD (n = 793) is 0.466 and thus
it follows from (2) that

σ 2
E : 0.466 = 0.191 : 0.744.

Solving the equation yields σ 2
E = 0.120.

Summarizing the results, the mean of the AD and non-AD samples are 1.734 and
1.497 respectively, and their common variance is estimated as 0.466−0.12 = 0.346.
Then, we generated a true-equivalent sample for AD ( n = 41) and for non-AD
(n = 793) following the Weibull distribution determined from the means 1.734 and
1.497, respectively, with the same variance 0.346.

To confirm the validity of the true-equivalent sample, we generated an observed-
equivalent sample by adding σeε, where ε ∼ N (0, 1), to each subject of the true-
equivalent AD and non-AD samples. The chosen sample size is large (n = 2000)
since the sample distribution should be close to the population distribution. Figure3
presents a best fit Weibull model for each sample. The estimated parameter values
of the observed-equivalent sample for AD and non-AD in Fig. 3 are approximately
equal to those of the observed samples in Fig. 2, respectively. The results support the
validity of the TES method for the applications.

As for the regression coefficients, the naive estimate βX is 0.465. We generated
500 independent true-equivalent samples Z∗ to obtain 500 independent βZ∗ . The

Fig. 3 Fitting the Weibull
model to the
observed-equivalent samples
(n = 2000) for AD (a) and
non-AD (b)



On Intra-individual Variations in Hair Minerals … 119

Fig. 4 Histogram of 500
βZ∗ whose average 0.66 is an
estimate for the corrected
estimate βZ (a), histogram of
500 βX∗ whose average
0.489 corresponds to the
naive estimate βX (b). Figure
(c) illustrates the SIMEX
estimate β−1 = 0.60

histogram is shown in Fig. 4a and the average 0.66 is the TES estimate for βZ .
Similarly, we obtained 500 independent βX∗ that result in Fig. 4b. The average 0.489
is close to βX = 0.465, supporting the validity of the TES method developed for this
study. Figure4c shows that the SIMEX estimate β−1 for βZ is 0.60, again slightly
conservative as discussed in Cook et al. [4, 12]. It is concluded that the TES method
developed for the study is useful in determining the distribution type of minerals
which is a crucial issue toward using hair minerals for medical and epidemiological
research.
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Appendix

Transportation of Measurement Error Variance of Sr

Let Xki denote an observed value of Sr of kth experiment for i th subject. We assume
the following random effect model:

Xki = τk + ρk(Zi + εki ) = τk + ρk Zi + ρkεki , k = 1, 2 ; i = 1, · · · , n

Zi is the true value of i th subject,
τk , ρk represent calibration effects for the kth experiment,
ε’s are independent random variables with E(εki ) = 0 and V (εki ) = σ 2

e ,
where ε’s represent intra-individual variations

The ratio of the variance of X explained by the variation of Z to the variance of X
is defined as a reliability index of X and usually denoted as λ [3, 10].

As for the kth experiment, since

Var(Xki | k) = ρ2
k Var(Z) + ρ2

k σ 2
e ,

the variance of X due to Z is ρ2
k V ar(Z) and that due to ε, or the measurement error

variance, ρ2
k σ 2

e . Therefore,

λ = ρ2
k Var(Z)/Var(Xk) = Var(Z)/{Var(Z) + σ 2

e }

Thus, λ is independent of the calibration effect τk and ρk . That is, λ is a parameter
intrinsic to the sample determined by the inter and intra individual variance Var(Z)

and σ 2
e , respectively. Hereafter, for the sake of notational simplicity, Var(Xki | k)

and E(Xki | k) will be simply denoted by Var(Xk) and E(Xk), respectively.
It is straightforward to show that

E(Xk) = τk + ρk Z ,

Xki − E(Xk) = ρk(Zi − Z + εki )

and
(ρ2/ρ1)

2 = Var(X2)/Var(X1).
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Define
Xα
1i = E(X2) + (ρ2/ρ1){X1i − E(X1)}.

Then,

Xα
1i − X2i = E(X2) + (ρ2/ρ1){X1i − E(X1)} − X2i

= (ρ2/ρ1)[ρ1{Zi − Z + ε1i } − ρ2(Zi − Z) − ε2i ]
= ρ(ε1i − ε2i ).

Let Dα = ∑
i (Xα

1i − X2i )
2/2m, then

E(Dα) = ρ2
2 E(

∑

i

(ε1i − ε2i )
2/2m) = ρ2

2σ
2
e

Thus, Dα is an unbiased estimate of the measurement error variance of Xk .
Therefore, let

X∗
1i = X2 + {Var(X2)/Var(X1)}1/2(X1i − X1)

then
D∗ =

∑

i

(X∗
1i − X2i )

2/2m

is an asymptotically unbiased estimate for ρ2
2σ

2
e .
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Assessing Risk Factors for Periodontitis
Using Multivariable Regression Analysis

J.A. Lobo Pereira, Maria Cristina Ferreira and Teresa A. Oliveira

Abstract Risk is associated with all areas of Life, and studies designed to decrease
it play a key role, particularly in what concerns Individual Health. Considering Epi-
demiological Research, the identification of Risk Factors is crucial to select preven-
tion actions in order to improve Public Health Systems. The aim of this work is
to identify the main Risk Factors for periodontal disease, using Multivariate Statis-
tical Methods, since according to the literature these are the most important tools
to assess associations and interactions between different putative risk factors and a
given health condition. An application of Generalized Linear Models (GLM) with
probit link function was performed to assess the impact of socio-demographic, bio-
chemical and behavioural factors on periodontal status. We analysed data collected
from a sample of 79 individuals with chronic periodontal disease, attending the clinic
of Porto Dentistry School.We found a significant association between extensive peri-
odontitis and decreased levels of high density lipoproteins (HDL). We believe public
health efforts on prevention, including education of the population at risk, are highly
recommended in order to decrease early causes of the illness.
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1 Introduction

In healthcare studies, harm is defined as a negative safety and health consequence and
hazard is an existing situation consisting of any source of harmor adverse effect on the
individual under certain conditions. Risk is a potential harm anticipated in the future,
a form of probability that an individual will experience an unwanted health effect
when exposed to a certain hazard. The important thing is that inmany situations it can
be reduced and even avoid, under some prevention actions, and for this it is crucial
to identify the main risk factors under de particular study circumstances. In Health
Sciences, a risk factor is usually a variable associated with increase likelihood of
developing a disease or another adverse health outcome. Some examples of important
risk factors in this area are poor hygiene, excess weight, unsafe sex, high blood
pressure, smoking and alcohol consumption.

In [13] the authors using regression, linear and logistic models, assessed the
relevance of potential risk factors for periodontal disease, such as: Age, Gender,
Diabetic Status, Education, Smoking Status and Plaque Index. The study was based
on a sample of real data, collected as part of an investigation carried out in the
area of Dental Medicine at the Faculty of Dental Medicine of University of Porto,
Portugal. In this work the authors performed an application of Generalized Linear
Models (GLM), with probit link function, in order to assess the impact of socio-
demographic, biochemical and behavioral factors on periodontal status.

Periodontitis is a multifactorial inflammatory disease that affects the supporting
tissues of the tooth and is characterized by destruction of alveolar bone and loss of
attachment, which is influenced by genetic and environmental risk factors [12, 15].

Periodontal condition results from interaction between host and microbiologic
factors that can be deleterious or protective. The factors generally accepted as influent
in periodontitis initiation, progression and severity, considering its nature, can be
classified in systemic, behavioral, socioeconomic, and microbiologic [6].

The clinical assessment of periodontal support level is usually made by estimating
the distance from cement enamel junction (CEJ) to the periodontal probe tip located
in the bottom of the sulcus/pocket near the adherence (A) (Fig. 1).

This estimate is the clinical adherence level (CAL) and it is one the most used
surrogate markers of periodontal disease to estimate bone loss, (alveolar bone level).
Under pristine periodontal conditions (side I of Fig. 1), the distance (CEJ-CAL)
comprises the connective tissue attachment and the totality or part of the epithelial
attachment, with a 2–3 mm width [18].

Periodontal disease can be characterized by extension, severity and progression
rate. Extension is defined by the number of teeth periodontally affected or by the
percentage of sites with bone destruction. Severity is related with the proportion of
vertical bone loss around a tooth (CAL over total root length). The progression rate is
the speed at which vertical bone loss occurs. However the presence of a CAL larger
than 4mm strongly suggests periodontitis (considering normal CEJ-CAL2-3 mm),
but does not necessarily correlated with periodontitis severity.
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Fig. 1 Tooth representation

Considering the etiology of periodontitis is a complex combination of several
conditions, multivariable statistical analysis is a useful tool to find out associations
and interactions between different potential risk/protective factors and periodontitis
[11, 20]. In this context the choice of multivariable analysis is properly grounded
in theoretical and epidemiologic knowledge, in order for the researcher to attain a
correct perception of the different factors considered.

Generalized linear models (GLMs) represent a class of multivariable regression
models which allows generalization of the linear regression approach to accommo-
date many types of response variables and distributions, see [9, 10, 14].

The three main principles of GLMs are the existence of a sample of independent
responses variables Y1, . . . Yn , from an exponential family; a linear predictor β0 +
β1x1 + · · · + βi xi of the response variable Y ; and the mean response which depends
on the linear predictor through a link function g. Considering the described principles
of GLMs three components are necessary: a random or stochastic, a systematic and a
link function. The random component is the response and the associated probability
distribution (g(μ) = μ). The systematic component, which includes explanatory
variables (xi ) combined linearly with the coefficients β to form the linear predictor
(η) and relationships among them the link function, specifies the relationship between
the systematic component or linear predictor and themean responseμ = β0+β1x1+
· · · + βi xi . It is the link function (g(μ)) that allows generalization of the linear
models for count, binomial and percent data thus ensuring linearity and constraining
the predictions to be within a range of possible values, see [8].

Logistic regression is a specific branch of GLM applicable in several fields such
as epidemiology, medical research, banking, market research and social research.
One of its advantages is that the interpretation of the measure is possible through the
Odds Ratios (OR), functions of the model parameters.

The aimof this study is to assess the association between some variables of interest
and the extension of periodontitis through GLM models.
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2 Methods

Participants
Seventy nine systemically healthy individuals (38 males and 41 females) with

chronic periodontal disease varying from localized to generalized forms, who
attended the clinic of Porto Dentistry School, participated in this study. All partici-
pants were Caucasian with mean age of 50.81 years and standard deviation 15.73.

Materials
A periodontal probe marked in millimeters was used to assess CAL (according

to Fig. 1) in 6 sites per tooth, excluding third molars. During this procedure the
hemorrhagic index was also estimates. The O’Leary Plaque index was calculated
using a plaque disclosure tablet.

Procedures
Informed consent was obtained from all participants. Data on Social Demogra-

phies factors and risk behaviours for periodontitis were collected through a ques-
tionnaire fill out by the patients. The evaluation of periodontal status was performed
by the same experienced periodontologist, under good clinical conditions and the
body mass index (BMI) was assessed at the same appointment. Biochemical data
was obtained from patients files.

The research protocol was approved by the ethical committee of Porto Dentistry
School.

Design and Analyses
This retrospective study was designed to model the effect of age (Age), high

density lipoproteins (HDL), tobacco smoking (Tob), and body mass index (BMI),
explanatory variables considered biologically significant and associated with peri-
odontitis by epidemiological studies [4, 7, 17, 19]. Once in Portugal research in
this area is very scarce, this work is therefore justified. The dependent variable
(Cond4_25) was defined as the percentage of sites equal or greater than 25% with
attachment loss (AL) equal or greater than 4mm. All variables, qualitative and quan-
titative, were dichotomized according to Table1.

The collinearity among pairs of independent variables was assessed through a
Chi-squared test with Yates’ continuity correction.

Logistic regression with a link function logit was chosen due to the binary type of
response and explanatory variables. Moreover we present the results as odds ratios

Table 1 Stratification of variables

Cond4_25 Age (years) HDL (mg/dl) Tob BMI (>25Kg/m2)

≥ 25% of sites
with AL ≥ 4mm

1 ≥ 50 1 ≥ 50 1 Smoker 1 Overweight 1

< 25% of sites
with AL ≥ 4mm

0 < 50 0 < 50 0 Non
smoker

0 Under or normal
weight

0
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(ORs) and respective confidence intervals. The OR were obtained by exponentiation
the logits estimates (exp(β)).

In order to find themodel whichwould best approximate reality given the data and
minimize the loss of information, our approach to model building followed the three
principles highlighted by [2]: several working hypotheses, simplicity and parsimony
and strength of evidence [2].

According to the principle of different working hypotheses, a series of GLMmod-
els were built based on current knowledge on periodontitis epidemiology. We started
to build the full model with interactions between independent variables. However
they were removed from the model due to their absence of significance and bad
quality of the models obtained.

A number of reduced models with different combinations of covariates were
obtained by deleting a term (Age, HDL, Tob and BMI), already in the model or
adding terms.

From the set of models obtained in this phase, we selected those which represent
the better compromise between model bias and variance, where bias corresponds
refers to the difference between the obtained MLEs estimate values of the parameter
(β̂i ) and the respective unknown true value (βi ), and variance reflects the precision
of these estimates. As pointed out by [3], a model with too many variables will have
low precision whereas a model with too few variables will be biased [3] highlighting
the importance of the parsimony in a balanced model building.

To measure of the strength of evidence for each model we used Akaike’s informa-
tion criterion (AIC) defined as−2(log − L +2k)where k is the number of estimated
parameters (including β0) and L themodel and likelihood [1], establish a relationship
between the maximum likelihood, which is the estimation method used in this sta-
tistical analysis, and the Kullback-Leibler divergence, information that represent the
loss of information when approximating reality. This information-theoretic approach
allow us to manage the three principles described in the model building phase. In
order to obtain a set of statistical parsimonious models the selection of terms for
inclusion or deletion was based on AIC . Furthermore the AIC approach yields con-
sistent results and is independent of the order in which the models are computed
[2, 3].

Each model was compared with the best model (minimum AIC) by the value
of delta AIC (Δi ), computed as follows: Δi = AICi − minAIC, where AICi is the
AIC value for model i . As suggested by [3], values of Δi < 2 indicate substantial
evidence for the model, values between 3 and 7 indicate the model is considerably
less likely, and Δi > 10 indicates the model is very unlikely.

Usually the model acceptance is based only on the raw AIC values, making it
difficult to unambiguously interpret the observed AIC differences in terms of a con-
tinuous measure such as probability.

To avoid this difficulty we used the Akaike weights (wi ) computed as: wi =
exp(

−Δi
2 )

∑R
r=1(− Δr

2 )
, where wi represents the ratio of delta AIC (Δi ) values for each model

relative to thewhole set of R candidatemodels.Withwi , we could directly the directly
conditional probabilities for each model.



128 J.A. Lobo Pereira et al.

We also compared the likelihoods of our reduced models:
(L1(β1; y), L2(β2; y), . . . , Lm(βm; y)) (m = 1, 2, . . . , m) with the fitted satu-
rated model (Ls(Ψ ; y)) or equivalently lS(Ψ ) ≡ logL S(; y) and Lm(βm) ≡
logLm(βm; y) to test of the link function fit and linear predictor (adequacy of the
model), L S(Ψ ; y) ≥ Lm(βm; y) because the model under study is a special case of
the saturated model.

For suitable models the condition lS(Ψ ) ≈ lm(β) would be expected. The
deviance or likelihood test ratio statistic D used in our work is defined as D =
2[lS(Ψ̂ ) − l(β̂m)] where Ψ̂ and β̂m are maximum likelihood estimates of the sat-
urated model and each m proposed model, respectively. After calculated, models’
deviances were compared by analysis of variance (ANOVA).

Residuals were also controlled for over or under dispersion. The residuals’
deviance index was obtained dividing the residual deviance by the model degrees of
freedom. For a binomial distribution of errors acceptable values of dispersion should
be close to 1.

The implementation and evaluation of models was made with the open-source
statistical package R, with ‘MASS’ and ‘car’ packages for GLM and diagnostics
[5, 16, 19].

3 Results

In this case-control study 19 (24.05%) patients were diagnosed positive for
Cond4_25.The number of negative andpositive cases for each covariate. The descrip-
tion of the data is presented in Table2.

No significant statistical collinearity among covariates was found by the Chi-
squared test with Yates’ continuity correction (p-value > 0.05) (Table3).

Table 2 Number of positive (1) and negative (0) cases per covariate

Cond4_25 Age (years) HDL (mg/dl) Tob BMI (>25Kg/m2)

0 60 33 40 61 40

1 19 18 39 18 39

Table 3 A Chi-squared test with Yates’ continuity correction and respective (p-value)

Covariables HDL (mg/dl) Tob (no/yes) BMI (>25Kg/m2)

Age (years) 0.0679 (0.7944) 0.2847 (0.5937) 2.9924 (0.08365)

HDL (mg/dl) – 0.362 (0.5474) 0.6534 (0.4189)

Tob (no/yes) – –
0

(1)
∗Pearson’s Chi-squared test with Yates’ continuity correction
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Table 4 Association between covariates and dependent variable

Age (years) HDL (mg/dl) Tob BMI (>25Kg/m2)

0 1 0 1 0 1 0 1

Cond4_25 0 27 33 14 46 46 14 34 26

Cond4_25 1 6 13 10 9 15 4 6 13
aChi-squared test 0.5881 4.5532 0 2.6992

p-value 0.4432 0.0329 1 0.1004
aPearson’s Chi-squared test with Yates’ continuity correction; p<0.05

Table 5 Summary of the logit models under analysis

Estimates for models intercepts and covariables and respective (p-values)

Models Intercept Age = 1 HDL = 1 Tob = 1 BMI = 1 Res. Disp.

Na4_25_1 −1.0442
(0.1284)

0.3697
(0.5365)

−1.2484
(0.0284)

−0.2305
(0.7343)

0.891
(0.127)

1.056

Na4_25_2 −1.1233
(0.0832)

0.3869
(0.5160)

−1.2286
(0.0297)

0.896
(0.1250)

1.044

Na4_25_3 −0.9177
(0.1008)

−1.2266
(0.0295)

0.9594
(0.0956)

1.036

Table 6 Akaike Criterion Information analysis

Models AIC Δi wi

Na4_25_1 88.167 3.454 0.109

Na4_25_2 86.284 1.571 0.279

Na4_25_3 84.713 0 0.612

The association between Cond4_25 and each covariate was assessed with the
Pearson’s Chi-squared test withYates’ continuity correction and showed a significant
relationship between low levels of HDL and Cond25 (Table4) (p-value = 0.0329).

Starting with a model (Na4_25_1) with the four selected covariates we get an AIC
and residual deviance dispersion of 1.056. In the second model (Na4_25_2) obtained
by dropping the variable Tob, an improvement of AIC and residual deviance disper-
sion values was observed (86.284 and 1.044 respectively). Further improvement in
AIC and residual deviance dispersion values was achieved with model Na4_25_3.
The results are shown in Table5.

The value of Δi = 1,571 for model Na4_25_2 indicates substantial evidence,
and Δi = 3,454 for Na4_25_1 indicates that the model is considerably less likely
(Table6).

The values of wi shows that Na4_25_3 yields a higher probability (0.612) to be
the best model (Table6).

The deviances ofmodelswere comparedwithANOVA.The comparison (Table7),
yields a progressive reductionof deviancevalues frommodelNa4_25_1 toNa4_25_3.
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Table 7 Models deviance comparison with ANOVA

Residual
degree of
freedom

Residual
deviance

Degree of
freedom

Deviance Pr (>Chi)

Na4_25_1 74 78.167

Na4_25_2 75 78.284 −1 −0.11753 0.7317

Na4_25_3 76 78.713 −1 −0.42877 0.5126

Table 8 Odds ratio for Cond25 with respective confidence intervals

OR 95% CI

(Intercept) 0.399 0.123–1.145

HDL ≥ 50mg/dl 0.293 0.095–0.883

BMI > 25Kg/m2 2.610 0.869–8.561

The growth of residual deviance is marginal and the simultaneous increment of resid-
ual degree of freedom leads to a reduction of residual dispersion (Table5).

Models Na4_25_3 and Na4_25_2 show no significant statistical difference.
By interpreting the model selection criteria we considered Na4_25_3 the best model.
The maximum likelihood estimates for the intercept and slopes (HDL and BMI) are
β̂0 = −0.9177, β̂1 = −1.2266 and β̂2 = 0.9594, which yields the following
estimated logistic regression model:
Na4_25_3 = −0.9177 − 1.2266 ∗ HDL + 0.9594 ∗ BMI.

The estimate of HDL is negative and significant at confidence level of 0.05 indi-
cating a protective role for Cond25. The BMI estimate is positive but only marginally
significant suggesting that excess weight is a potential risk factor for Cond25.

The odds ratios (ORs) obtained from estimates, β̂1 and β̂2 (Table6) show individ-
uals with HDL over 50mg/dl have approximately one third of chances to be positive
for Cond4_25 indicating HDL levels ≥ 50mg/dl can be a protective factor. The
OR for BMI suggests a marginal association with Cond25, meaning that overweigh
people are approximately 2.6 times more prone to develop Cond25 (Table8).

4 Conclusions

The selection of variables and statistical methods allied to a judicious and well-
grounded selection of models is of crucial importance to provide good quality scien-
tific knowledge.Theparameters included in themodelmust be of biological relevance
to the research and assessment of collinearity between them should be conducted
carefully.
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The process of scientific evidence production must result from teamwork in order
to identify quantitative and qualitative issues in research. Among the most important
issues, we highlight the identification of research questions and hypotheses, unit of
analysis, random variables (outcomes), proximity between the methodology and an
original research question.

From our analysis we conclude that the extension of periodontitis seems to be
related to HDL levels, higher levels of which being protective against extensive
periodontitis. The opposite effect is suggested to BMI for over weight people.

In future research we intend to explore comparisons of behaviour between the
Portuguese reality and other countries, in what concerns the disease main risk factors
and prevention.
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COPD: On Evaluating the Risk
for Functional Decline

F. Rodrigues, I. Matias, J. Oliveira, S. Vacas and A. Botelho

Abstract Chronic obstructive pulmonary disease (COPD) is an important cause of
chronic morbidity andmortality worldwide. It is characterized by chronic pulmonary
and extrapulmonary manifestations with great impact on patients’ health, functional
impairment, decrease in quality of life and need for prolonged assistance as well
as the risk of becoming dependent on others. The aim of this study is to identify
COPD patients with the risk of becoming dependent on others to perform activities
of daily living (ADL), in order to provide them early intervention and assistance.
The study is longitudinal, observational, quantitative and correlational.An intentional
sample was used, consisting of patients diagnosed with COPD, clinically stable for
at least 3weeks, who were or had been on a pulmonary rehabilitation program at
the Pulmonary Rehabilitation Unit of Hospital Pulido Valente. The IMPALA score
is obtained through a questionnaire of self-reported performance for 20 Activities of
Daily Living (ADL), assessing the dependent/independent status and four possible
early signs of risk of dependence: taking longer to do the activities, reporting difficulty
in doing them, having to take breaks while doing them or doing them less frequently.
This scorewas comparedwith sociodemographic factors, pulmonary function testing
(F EV1), the 6-min walking test (6MWT) and a disease health-related quality of
life score (CAT score). Statistical analysis was performed using exploratory data
analysis, visualization techniques and correlation analysis using R. With respect to
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disease characteristics and ADL performance (IMPALA score), COPD Grade D
patients showed the worst ADL performance at basal time and a substantial variation
at 6 months. Grades A, B and C had most ADL performances close to full capacity
and showed little variation after 6months. ADL performance after 6months was
worse in patients with frequent exacerbations and, although there was no significant
correlation to age, older patients tended to improveADL performance after 6months.
We found a weak correlation between the IMPALA score and exercise functional
capacity, but a good correlation with basal health-related quality of life (CAT score).
In conclusion, IMPALA score seems to be an additional disease marker evaluating
the impact on current functional capacity, well suited to show early risk of incapacity
in this group of COPD patients.

Keywords COPD · Health-status · Activities of daily living · Functional capacity

1 Introduction

Chronic obstructive pulmonary disease (COPD) is a preventable and treatable disease
that represents a major public health problem, for which prevalence tends to rise due
to increases in exposure to risk factors and longevity [2, 5, 9].

COPD is an important cause of chronic morbidity and mortality worldwide, caus-
ing patients to suffer for a long time and dying prematurely from it or its compli-
cations, and is currently the fourth leading cause of death in developed countries
[7, 15]. It is a complex disease characterized by chronic pulmonary and extrapul-
monary manifestations that impose a great impact on the patients’ health, leading
to progressive functional impairment, a decrease in quality of life and the need for
prolonged assistance.

The loss of capacity to perform activities of daily living (ADL) is aworrying factor
of this disease, since it causes a substantial burden on the patients’ independence, on
their caretakers and on health systems [3, 4].

It is now recognized that no single measure can adequately reflect the nature
or severity of COPD [10, 11]. Scientific search of a comprehensive knowledge of
COPD morbidity and prognosis led to combining variables such as airway obstruc-
tion (F EV1-forced expiratory volume in 1 s), number of exacerbations (<2 or ≥2
hospital visits for respiratory reasons, such as respiratory infections, with or with-
out the need of hospital admission), health status (CAT-COPD Assessment Test) and
symptoms (mMRC-modifiedMedical ResearchCouncil dyspnea) deriving the recent
multidimensional GOLD classification (categories A, B, C and D) [9] or combining
variables such as airway obstruction (F EV1), mMRC-dyspnea, bodymass index and
exercise (6min walking distance in meters) deriving the BODE prognosis index [6].

COPD burden on the patients’ ADL performance outlines the need for an early
identification of patients who are at risk of becoming dependent on others.
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2 Aim

The aim of this study is to identify COPD patients who are at risk of becoming
dependent to perform their Activities of Daily Living, using a score to evaluate the
patients’ current ADL performance.

3 Methods

3.1 Study Design

This is a preliminary study, which is still running, and it is longitudinal, observa-
tional and correlational. The study is being conducted at the Pulmonary Rehabilita-
tion Unit/Day-care Hospital for Respiratory Failure Patients’ of the Hospital Pulido
Valente—Lisbon. The evaluations were applied twice, basal and at 6months follow
up. Exacerbations during that period, requiring hospital assistance, were also tracked.
Data collectionwas undertaken by health care professionals—one pulmonologist and
one nurse—and two at the time medical students, who received previous training on
the application of the various questionnaires and measures.

3.2 The Sample

An intentional sample was used, consisting of patients diagnosed with COPD, clini-
cally stable for at least 3weeks, who were or had been on a pulmonary rehabilitation
program where the study took place and who consented to participate in the study.

3.3 The IMPALA Score and Questionnaire

The study questionnaire was based on self-reported performance for 20 Activities of
Daily Living, namelywalking, self-care activities [12, 14] and instrumental activities
of daily living [13]. The patients report being dependent or independent on others to
perform each ADL and 4 possible early signs of risk of dependence are assessed for
each ADL: (1) taking longer, (2) reporting difficulty, (3) having to take breaks, or (4)
doing it less frequently. The Impact on Life Activities (IMPALA) Score, is obtained
by giving the patients 0 points for each ADL they are dependent on others to perform
and 1 point for each ADL they report performing independently. For the patients who
are able to perform a task independently 0.2 points are subtracted for each of the
four signs of risk of dependence that they report in that ADL. By summing the points
for each ADL and multiplying the result by 5 we obtain a score that varies from a
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minimum of 0 to a maximum of 100. The difference of the 6month interval values
was called IMPALA Score 6-month variation, with a possible positive variation (a
raise ≥1 point), a negative variation (decrease ≥1 point) and a neutral variation (<1
point).

This ADL score, and its 6-month variation, were then compared with sociodemo-
graphic factors and measures obtained through standardized instruments, namely,
pulmonary function testing (FEV1), the 6-min walking test (6MWT) and a health-
related quality of life score (CAT Score).

Ethical procedures were followed, informed consent was obtained from all the
participants and the trial conduction was approved by the Ethics Committee of the
NOVA Medical School (01/2014/CEFCM) and by the Ethics Committee and the
administration board of the Centro Hospitalar Lisboa Norte (DIRCLIN-22/05/2014-
151).

Data analysis was performed using software R�, making use of descriptive sta-
tistics and visualization techniques, exploratory data analysis and non-parametric
tests.

4 Results

4.1 Sample Description

The sample’s size is 34 patients, all of them caucasian, approximately 15% female
and 85% male, distributed by age as represented in Table1.

The Age average was 68.4 ± 8.8 years old. Regarding Education level, 18% of
the sample reported they could neither read nor write and almost half of the sample
(44%) had a Basic Education level.

Table 1 Sample distribution by age and sex

Variables Age

[45–54] [55–64] [65–74] [75–84] [85–94] Total

Sex

Male 2 6 11 9 1 29

Female 0 2 1 2 0 5

Total 2 8 12 11 1 34
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Table 2 Common comorbidities in the sample

System % Endocrine and metabolic disorders
Respiratory system Type 2 Diabetes mellitus 15

Chronic Respiratory Failure 71 Dyslipidemia 9

Bronchiectasis 27 Prostatic disease 21

TB sequelae 18 Psychiatric disorders
Obstructive sleep apnea syndrome 15 Alchoolism 12

Pulmonary thromboembolism 6 Depression 9

Cardiovascular system Nutrition disorders
Hypertension 62 Excess weight 29

Chronic heart failure 21 Obesity 15

Chronic atrial fibrillation 12 Malnourishment 12

Chronic cor pulmonale 12 Low weight 9

Pulmonary hypertension 12 Ophtalmology disorders 12

Ischemic cardiopathy 9 Osteoarticular disorders 18

Gastrointestinal disorders 21

Concerning Family, 58.8% (n = 20) of the patients were married or in civil
union, 18% were divorced, 15% were widowed and 9% were single. About 21%
(n = 7) of the patients reported living alone, 71% (n = 5) of which were 65years
or above.

As far as SmokingHabits,we verified that almost all of patients—97%(n = 33)—
were current or former smokers, with an average smoking burden of 66.7 ± 38.9
pack-years and with 65% (n = 22) of them having smoked 50 pack-years or above.

In terms of Comorbidities, we found Chronic Respiratory Failure to be the most
common (71%, n = 24), closely followed bySystemicHypertension (62%, n = 21).
Most common comorbidities are shown in Table2.

Of the total sample, only 25 patients completed the 6-month re-evaluation, since
5 of them died in this period (4 of which directly related to respiratory disease), 3 of
them haven’t yet completed the 6-month period and one was lost to follow-up.

4.2 Combined COPD Assessment (GOLD)

When we applied the Combined COPD Assessment (GOLD) to our sample, we
verified that most patients—62% (n = 21)—were Grade D of the disease, as can be
seen in Fig. 1.
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Fig. 1 Sample distribution
by COPD grade, according
to the Combined COPD
Assessment (GOLD)

Fig. 2 IMPALA score
versus COPD grade

We compared theCOPDGrade according toGOLD to IMPALAScore and noticed
that Grade D patients had the worst performance, the other categories being near full
capacity (Fig. 2). We then compared COPD Grade with IMPALA Score 6month
variation and obtained a scarce variation distribution (Fig. 3).

Within themost severe COPDGrade (D) patients, therewas a substantial variation
of self-reported functional capacity, either at basal evaluation or after 6months.
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Fig. 3 IMPALA score
6-month variation versus
COPD grade

4.3 The IMPALA Score 6-Month Variation

After 6months, 33% of the patients improved their ADL performance (IMPALA
score), while 37% had a negative variation. Five (17%) patients died. 13% of them
had no variation comparing to the first evaluation (Fig. 4).

We tried to identify possible correlations between the IMPALA Score 6-month
variation with the variables age, sex, family status, smoking habits and COPDGrade,
but found no significant correlation.

Fig. 4 IMPALA score
6-month variation
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4.4 IMPALA Score 6-Month Variation Versus Exacerbations

55% of the patients with<2 exacerbations in the previous year showed either a posi-
tive or neutral variation of the ADL performance (IMPALA score) after 6months
(Fig. 5), 36% had a negative variation and 9% died. However, frequent exacerbators
(≥2 exacerbations in previous year) showed worse outcomes, with only 22% expe-
riencing positive or neutral 6-month variation, 33% having a negative variation and
45% (n = 4) resulting in death (Fig. 6).

Fig. 5 The IMPALA score
6-month variation in patients
with <2 exacerbations

Fig. 6 The IMPALA score
6-month variation in patients
with ≥2 exacerbations
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4.5 IMPALA Score Versus Age

There was a wide distribution of the IMPALA score at basal time, irrespective of
patients age, resulting in a correlation coefficient of −0.15 (Fig. 7). The IMPALA
Score 6-month variation according to age (Fig. 8) showed older patients had more
positive variations than younger patients, with a correlation coefficient of 0.40, as
shown at Fig. 8.

Fig. 7 The IMPALA score
according to age, at basal
time

Fig. 8 The IMPALA score
according to age, at 6 months
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4.6 IMPALA Score Versus 6 MWT

We found a weak correlation between ADL performance (IMPALA score) and exer-
cise functional capacity (6MWT)—correlation coefficient= 0.29 (Fig. 9). Likewise,
after 6months the variations of both parameters were not related (correlation coeffi-
cient = −0.25), see Fig. 10.

Fig. 9 The IMPALA score
according to 6MWT (m),
at basal time

Fig. 10 The IMPALA score
6-month variation according
to the 6MWT 6-month
variation
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4.7 IMPALA Score Versus CAT Score

We found a good correlation (−0.53) between basal ADL performance (IMPALA
score) and health-related quality of life (CAT score), as shown at Fig. 11. After
6months, variation of both parameters were not related (correlation coefficient =
0.05), see Fig. 12.

Fig. 11 The IMPALA score
according to the CAT score,
at basal time

Fig. 12 The IMPALA score
according to the CAT
score—6-month variation
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5 Discussion

The present study, in COPD stable patients engaged in a pulmonary rehabilitation
program, was able to identify those at risk of becoming dependent in current daily
activities.

With respect to COPD patient’s grade, most of them (62%) were GOLD COPD
category D, the most severe one, and showed a significant variation on impact of dis-
ease reported activities of daily living. Other authors also evidenced a substantial het-
erogeneity in COPDpatients. In ECLIPSE study [1], the severity of airflow limitation
in COPD patients was poorly related to the degree of breathlessness, health status,
presence of co-morbidity, exercise capacity and number of exacerbations reported
in the year before the study. The distribution of these variables within each GOLD
stage was wide. Even in subjects with severe airflow obstruction, a substantial pro-
portion did not report symptoms, exacerbations or exercise limitation. The clinical
manifestations of COPD are highly variable and the degree of airflow limitation does
not capture the heterogeneity of the disease [1].

From the COPD disease markers, exacerbations are important contributors to
accelerate health status decline and increase health related costs [16]. In line with
these data, in our study, frequent exacerbator patients (≥2 exacerbations in previous
year) showed a predominantly negative variation on the functional capacity after
6months, while more than half of infrequent exacerbators showed either a positive
or neutral variation.

There was a wide variation of ADL performance (IMPALA score) irrespective of
patient’s age, which reinforces the notion that age is no more than one of the fac-
tors contributing to the overall patient’s status. Nevertheless, older patients tended
to improve ADL performance after 6months, which is consistent with the recog-
nized benefits of physical activity that counteracts the aging progressive reduction
of maximum abilities [8]. As such, ageing COPD patients are suitable candidates
for pulmonary rehabilitation, with improvement of domestic function and physical
activity [17].

The correlation analysis between the IMPALA Score 6-month variation and other
variables like age, sex, family status, smoking habits and COPDGrade might be lim-
ited by the reduced number of observations. Additional studies with larger samples
could allow further investigation of these correlations.

In this preliminary study, ADL performance (IMPALA score) showed a stronger
association with health-related quality of life (CAT score) than with exercise func-
tional capacity (6MWT). All these variables translate COPD impact on patient’s
health and wellbeing. Probably they constitute different dimensions of this clinical
entity, ADL performance being related to current low demanding tasks, thus com-
plementing the holistic evaluation in each patient.
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6 Conclusion

Self-reported ADL performance (IMPALA score), based on 20 ADL tasks perfor-
mance limitations, seems to be an additional disease marker, eliciting the impact on
current functional capacity and having a good correlation with basal health-related
quality of life, as measured by CAT score.

In COPD patients, ADL performance (IMPALA score), as a marker of current
functional capacity showed: (1) heterogeneity among the most severe GOLD grade
D patients; (2) negative impact of frequent exacerbations; (3) age as not specifi-
cally related; (4) complementary information gathered by the 6MWT that evaluates
submaximal exercise capacity.

In conclusion, we believe that a simple and easy to implement evaluation of ADL
performance (IMPALA score)—iswell suited for early detection of risk of incapacity
in this group of COPD patients.
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Microarray Experiments on Risk Analysis
Using R

Teresa A. Oliveira, Amílcar Oliveira and Andreia A. Monteiro

Abstract The microarray technique is a powerful biotechnological tool, expanding
in a interesting way the vision with which issues in medicine are studied. Microar-
ray technology, allows simultaneous evaluation of the expression of thousands of
genes in different tissues of a given organism, and in different stages of develop-
ment or environmental conditions. However, experiments with microarrays are still
substantially costly and laborious, and as a consequence, they are usually conducted
with relatively small sample sizes, thereby requiring a careful experimental design
and statistical analysis. This paper adopts some applications of microarrays in risk
analysis using R statistical software.

Keywords ANOVA ·Bioinformatics ·Design of experiments ·DNA ·Microarrays
technology · Software R

1 Introduction

Bioinformatics is a field of the biological sciences that is fast growing and is being
developed to address need to manipulate large amounts of genetic and biochemical
data. These data have originated from the individual effort of many researchers are
interrelated through a common origin: cells of living organisms. To understand the
relationship between these fragmented information coming from different areas of
biology (such as molecular biology, structural biochemistry, enzymology, molecu-
lar biology, physiology and pathology), Bioinformatics uses computational power,
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mathematics and statistics to catalog, organize and structure this information into a
comprehensive entity. Bioinformatics has as its main purpose to unravel the large
amount of data that are obtained from sequences of DNA and proteins.

Genomics and proteomics are two keywords fromBiology of the newmillennium.
The reductionist attitude to analyze genes onebyonedominant during the last decades
of the twentieth century gave way to a much more comprehensive approach. The
current objective is to determine the set of all genes of an organism (i.e., genome)
and understand the functional networks established between the proteins encoded by
them (i.e. the proteome).

A technological development that has revolutionized the ability to collect infor-
mation in the field of functional genomics is called DNA microarrays. Once the
genome of an organism has been sequenced, the DNAmicroarrays allow us to obtain
the complete profile of the genes that are expressed in any cell type of that body.
This technology arose in the mid-1990s.

The microarray technology, allows the simultaneous evaluation of the expression
of thousands of genes, in different tissues of a particular organism, at different devel-
opmental stages or environmental conditions. However, experiments with microar-
rays are still considerably expensive and cumbersome, consequently, they are usually
conducted with relatively small sample sizes. Such experiments involve a series of
laboratory procedures, which invariably introduce different levels of additional vari-
ation data so, to complete a successful microarray experiment, several factors must
be addressed. The driving test with microarrays requires then a very careful experi-
mental design and statistical analysis. The strong connections between this area and
risk analysis are evident in the application of microarray techniques on the classi-
fication and progression of a disease which plays a key role in the identification of
high risk groups and in response to the treatment of the disease. Microarray analysis
is important to study complex and multigenic diseases, as for example Alzheimer’s
or Parkinson’s diseases. The great challenge in understanding the genetics of such
disorders is to identify which are the responsible genes that increase the risk of an
individual to develop a particular disease. To better understand how huge is this
challenge, we refer to the paper by Mora et al. [12] where the authors refer to the
construction of 497 multigenic disease groups from the database OMIM (Online
Mendelian Inheritance In Man).

2 Introduction to Microarrays Technology

The prerequisite for any type of DNA array is the existence of an address for each
component of the collection, or an individual position for each component of the
arrangement. Each of these addresses in the arrangement is called a spot, and contains
a small quantity of DNA immobilized properly called probe. Each of these probes
tend to bind only to their complementary sequence of nucleotides by a process
called hybridization [8]. This complementary sequence, usually a complementary
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DNA (cDNA) produced from a messenger RNA (mRNA) represents a single gene
of the genome and is called the target.

Microarray technology is the use of a slide (slide or microarray) in which the
probes (DNA sample) were immobilized in accurately defined positions and quanti-
ties (spots) tomake the hybridizationwith a pool ofmRNAs extracted frombiological
samples (targets), that were previously labeled with fluorescent dyes.

So that the results obtained in different experiments could be compared and used
as a basis for further research on the same topic, organizations such as the Functional
Genomics Data Society—FGED and the European Bioinformatics Institute—EBI
have established guidance documents that assist researchers to plan and implement
their experiences with microarrays. One such guide is the Minimum Information
About aMicroarray Experiment (Miame), which contains a number of recommenda-
tions and standards for collection and analysis of data from microarray experiments.

Another interesting attempt is the sharing of raw data. For this, we point out two
main databases:

(i) NCBI GEO—http://www.ncbi.nlm.nih.gov/geo;
GEO—the Gene Expression Omnibus is an initiative of the National Center for

Biotechnology Information (NCBI) and ArrayExpress, maintained by the EBI. Note
that to analyse microarray data that have been published in GEO, it is also highly
recommended to visit GEO2R, http://www.ncbi.nlm.nih.gov/geo/geo2r, which is a
very interesting tool to compare two or more groups of samples, in order to identify
genes that are expressed differentially across experimental conditions.

(ii) ArrayExpress—http://www.ebi.ac.uk/microarray;
ArrayExpress—database of functional genomics experiments, maintained by the

EBI. It can be queried and the data downloaded and it includes gene expression data
from microarray and high throughput sequencing studies.

From the design of experiments point of view and the relative statistical analysis
of microarray experiments, the distinction between the different technologies refers
to the number of samples on each slide hybridized. Microarrays can be classified
as single channel (one colour) or multiple channel (two colour) microarrays. In a
single channel, a probe is hybridized with target DNA labelled with one colour
fluorochrome. In a multiple channel it is possible to analyse genes from different
samples in a single test. In this case, each target gene is labelled with fluorochrome
having different fluorescence emission and the sample is allowed to hybridize in
a single test with a single microarray probe. A two-color microarray experiment,
showing how gene expression can be altered by a disease such as cancer, is illustrated
in Fig. 1 and it was obtained from: http://www.people.vcu.edu/~mreimers/OGMDA/
image.html.

Hybridized arrays, like the one in Fig. 1, are scanned to produce high resolution
tiff files. The goal is to produce a large matrix or data frame of the expression data
where, in general, the genes are represented by the rows, while the conditions are
represented by the columns. It is important to notice that in the multiple channel
microarrays there is the disadvantage that different samples may interfere with each
other. Single channel microarrays need to conduct different test to quantify different
gene expression, however they seem to give more accurate results.

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo/geo2r
http://www.ebi.ac.uk/microarray
http://www.people.vcu.edu/~mreimers/OGMDA/image.html
http://www.people.vcu.edu/~mreimers/OGMDA/image.html
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Fig. 1 Illustration of a two
color microarray

3 Designs for Microarrays

Design of Experiments can be defined as a set of techniques which, when correctly
chosen and applied, can make an experience more efficient and achieve maximum
information with the minimum use of resources, effort and time. To get a successful
experience, the experimenter must be aware of the three basic principles: Blocking,
Replication and Randomization.

An appropriate experimental design is vital to the success of any experiment
with microarrays. In recent years statistical works presenting ideas on these topics
have arisen, such as Kerr and Churchill [9], and Yang and Speed [5]. After the
selection of individuals to be used in experiments with microarrays, the definition
of the experimental scheme that will be used is crucial. The experimental schemes
commonly used in microarray experiments are particular block designs, namely
reference sample designs and loop designs, which are illustrated in Figs. 2 and 3.

In the Reference Sample Design (RSD), as represented in Fig. 2, one sample
(termed reference sample, represented by Rsd) is hybridized to each sample of each
treatment, or experimental group (A, B and C).

Fig. 2 Reference sample
design
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Fig. 3 Loop design

The comparison between treatments occurs indirectly. For example, comparison
of treatments A and B is estimated using information relating to the difference of
the contrasts between the A treatment and the reference, and the B treatment and the
reference, that is, (A-Rsd)–(B-Rsd). The main advantage of designs with reference
sample is that they are simpler to conduct in the laboratory and other samples can be
added later to be compared with existing ones. The disadvantage relates to the fact
that half of observations refer to the reference sample, which is not of direct interest.

In Loop Designs (LD) instead of using the reference sample, each sample is
compared with the next so as to create a circular shape see Fig. 3. Thus, differ-
ences between treatments are estimated by combinations between direct and indirect
comparisons. The circular structures are generally more efficient than designs with
reference samples, see [5, 9, 19].

The use of different levels of biological replicates and of technical replicates, as
different ways to mark the samples in each blade, generates a large variety structures
within these two basic designs, RSD and LD. Rosa et al. [15] present three alternative
designs using reference sample and a two alternative loop design, which we repre-
sent respectively in Figs. 4 and 5. Each letter (A, B, C) represents an experimental

Fig. 4 Three alternative microarray experimental layouts for reference designs
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Fig. 5 Two alternative loop designs

group or a reference sample (R), and each arrow represents a slide, which connects
the two samples co-hybridized on it. Furthermore, the indexes represent biological
replications and the head and tail of each arrow indicate the samples labelled with
Cy5 and Cy3, which are the most popular cyanine dyes used, typically combined for
2 color detection. Cy3 dyes fluoresce yellow-green (∼550nm excitation, ∼570nm
emission), while Cy5 is fluorescent in the red region (∼650/670nm) but absorbs in
the orange region (∼649nm).

There are advantages and disadvantages to each of these designs, but from a
statistical perspective it is generally recommended to prioritize biological replicates.
For a more detailed comparison in terms of efficiency and statistical power of these
alternative designs as well as the resilience of these outlines on the loss of blades see
for example [14, 18, 19].

Optimal Experimental Designs aim to optimize the information content of the
experimental data to allow identification of the mathematical model which better fits
the process under study. The precision of the model parameters depends essentially
of the quality of experimental data that will be used in the identification algorithm,
see [11] among others.

Formicroarray experiments, there are a limited number of available arrays, as well
as certain amount of RNA. The challenge is to find what samples should be placed
and in which arrays, in order to maximize the accuracy of the estimated parameters,
which is related to the choice of the optimality criterion.There are several optimality
criteria, and the most used criterion are D, A and L. The D optimality criterion aims
at minimizing the determinant of the covariance matrix of the parameter estimates.
The A-optimal design is that design for which the average variance of the estimated
parameter isminimal. TheL criterion defines as optimal the design thatminimizes the
average variance of estimates of various parameters of linear functions. The choice
of an appropriate criteria depends on the purpose of the experiment, Sivey [17].

Clearly there are other possible structures of designs for experimentswithmicroar-
rays, including general structures of row-column designs. This type of design allows
control of two causes of variation which can lead to major reductions in experimental
error. The most familiar example of this type of design is the Latin Square. The row-
column designs apply naturally to systems of two colors: (two-color microarray) it
has two rows and the columns represent the blades. In extensive studies, this type of
design can be more efficient than the block designs, however it is also more complex.
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Due to constraints in terms of biological material and number of blades available,
search algorithms can be used to obtain optimal designs (or near optimal) for cer-
tain specific objectives of the experiments. Wit et al. [20] applied an optimization
strategy based on metaheuristic simulated annealing to search for optimal designs
for almost any number of treatments and any number of blades. Sacan et al. [16]
also applied a strategy based on metaheuristic “Hill Climbing” to seek nearly opti-
mal designs, additionally provided a tool available in http://www.db.cse.ohio-state.
edu/MicroarrayDesigner which allows users to consult different types of design and
different optimality criteria or perform the upload of new designs.

Thus, the design of microarray experiments can be treated as an optimization
problem and to find the best design meeting certain criteria, algorithms including
metaheuristics, can be explored.

4 Analysis of Microarray Data

After the exploratory analysis and preprocessing of the data the stage of data analysis
is crucial. In this step one can take different approaches depending on the mathemat-
ical and statistical purpose of the experiment.

For example, cluster analysis is widely used both to group together genes as
samples, in order to discover groups of genes or groups of samples with similar
expression patterns.

Discriminant analysis is also quite common in medical studies, using samples
of healthy and sick patients, to develop classification models for use in diagnostic
tests. Another very common procedure with microarray data refers to significance
tests for the detection of differentially expressed genes, in samples from different
experimental groups. In this context, methodologies relative to linear models, such
as ANOVA models and mixed models, are the most frequently used.

4.1 Analysis of Variance

The linear model with fixed effects allows us to compare more than two groups
or to control other fixed effects, as effects of groups (varieties), genes, dyes (Cy3
and Cy5 labeling) and arrays. When these additional terms are associated with the
response, the variance of the error (residual) can be substantially reduced. Inmicroar-
ray experiments, taking into account known causes of variation, increases the power
of the experiment to observe significant differences in expression levels for a given
gene, [2].

Depending on what are the most important causes of variation, different models
can be differently useful for a particular study.

http://www.db.cse.ohio-state.edu/MicroarrayDesigner
http://www.db.cse.ohio-state.edu/MicroarrayDesigner


154 T.A. Oliveira et al.

Let us consider the example where the choice of model includes parameters of the
main effects for four factors, A, D, V and G, and second order interactions with G
(effects of interest), variation spot to spot and interactions between dyes and genes:

yi jgk = μ + Ai + D j + Vk + Gg + (V G)kg + (AG)ig + (DG) jg + εi jkg (1)

yi jgk is the logarithm of the intensity value of expression observed in the array
i (Ai ) , in the dye j (D j ), in variety k (Vk), in gene g (Gg), μ is general average,
(AG)ig is the interaction (array × gene), is the interaction (dye × gene) and εi jkg

are the residuals which are assumed to be random variables, independent, identically
distributedwith zeromean andvarianceσ 2

g . Homogeneity of variances is assumed for
observations from the same gene, but heterogeneity is allowed in different expression
level of genes. For hypothesis testing it is necessary that the errors follow a normal
distribution.

For a similar problem, Kerr et al. [10] proposed a model that includes the inter-
action (array × dye), (AD)i j , given by:

yi jgk = μ + Ai + D j + (AD)i j + Gg + (V G)kg + (AG)ig + (DG) jg + εi jkg (2)

Wolfinger et al. [21] suggested separating the previous model in two, where the
first contains the “global” component and may be seen as a standardization model:

yi jgk = μ + Ai + D j + (AD)i j + ri jkg (3)

The residuals of the first model are used as input to the model gene:

ri jgk = Gg + (V G)kg + (AG)ig + (DG) jg + εi jkg (4)

i, j, g, k vary according to the experience.
A major advantage of the ANOVA model is that it can be extended to more

complex designs of microarrays. George [5] proposes an approach which considers
a microarray experiment as an experiment in split plot. RNA samples are considered
the treatments applied to plots and genes are the treatments applied to the subplots.
Assuming the arrays as blocks, the model is:

yi jg = μ + Ai + Tj + εi j + (Gg + (AG)ig + (T G) jg + δi jk (5)

yi jg is the response variable, μ is the effect of the overall mean, (A)i is the effect
of array i , (Tj ) is the effect of treatment j applied to the plot, εi j is the effect of the
error due to the plot, G j is the effect of the gene g, (AG)ig is the interaction (array
× gene), (T G) jg is the interaction between treatment and gene and δi jk is the effect
of the error due to the subplots.
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4.2 Fixed Effects Model

Fixed effects models include the effects of factors, but are based on assumptions
of independence between observations and homogeneous variation in the levels of
expression of the same gene. The presence of random effects in experiments on
microarrays allow the introduction of correlation between expression levels. The
mixed models include both fixed and random effects. In matrix notation the model
is defined as:

y = Xβ + Zu + ε (6)

where:
y is a vector of observed logarithm in base 2 of response variables;
X is a design matrix of known constants for the fixed effects;
β is a vector of parameters of unknown fixed effects;
Z is a design matrix of known constants for the random effects;
u is a vector of parameters of unknown random effects;
ε is a vector of random errors.

The assumptions on u and ε are:E[u] = 0, E[ε] = 0, var [u] = σ 2
u e var [ε] = σ 2

ε ,
where u and ε are uncorrelated. For a detailed discussion and application we refer
to Draghici [3].

5 The Software R: Useful Packages on Microarray Analysis

Microarrays produce enormous amounts of data, and the analysis of such data can
be quite complex. The huge volume of data usually requires special software besides
a database in which to store both the measurements and the results of the analyses.

R is a computational language adequate for mathematical and statistical research,
similar to the S language, but free. Due to its diversity and to the fact of being free,
R has become one of the most popular tools for analysis of microarrays.

Gentleman et al. [4] presented Bioconductor, a project to develop free software for
the analysis of genomic data including microarray data, which is available at http://
www.bioconductor.org. However, a disadvantage of this project is that most of the
packages were developed using specific data structures, thus making communication
between different procedures implemented in different packages difficult. A big
challenge is to keep these packages updated and to develop them extending the
possible choices of available structures. For a detailed look at the potential of this
project a visit to both sites is highly recommended

http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://www.bioconductor.org/help/workflows/oligo-arrays/

http://www.bioconductor.org
http://www.bioconductor.org
http://manuals.bioinformatics.ucr.edu/home/R_BioCondManual
http://www.bioconductor.org/help/workflows/oligo-arrays/
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Table 1 Packages from R/Bioconductor used in the analysis of genomic data

Package Description

Marray, limma Spotted cDNA array analysis

affy Affymetrix array analysis

vsn Variance stabilization

ctest Statistical tests

Genefilter, limma, multtest, siggenes Gene filtering

Mva, cluster, clust Clustering

Class, rpart, nnet Classification

OLIN Normalization

sigPathway Performs pathway analysis on microarray data

MAMA, metaMA Meta-analysis of microarray

IsoGene Analysis dose-response studies in microarray
experiments

maigesPack Analyze cDNA microarray data

SurvJamda Predict patients’ survival and risk assessment

BioNet Integrated analysis of protein-protein
interaction networks and the detection of
functional modules

Table1 presents some selected packages from R/Bioconductor currently used in
the analysis of genomic data.

Database GEO2R allows the possibility of producing an R script that can be
imported and executed in real time and allows one conduct a microarray analysis of
the groups of interest, of all the groups that you selected from the GSE. Furthermore,
if the produced R script is developed specifically for published GSE data in GEO, it
is possible to modify the R script so to adapt it to any data.

Applications of using R in problems involving microarrays and risk analysis are
currently an unexplored research area. Some interesting examples are shown in the
papers by Beisser et al. [1], Pramana et al. [13], Yasrebi [3].

• Pramana et al. [13] introduces the IsoGene package, R package for the analysis of
dose-response microarray experiments to identify gene or subsets of genes with
a monotone relationship between the gene expression and the doses. Illustrative
examples of analysis using this package are also provided in this paper;

• Yasrebi [3] present SurvJamda (Survival prediction by joint analysis of microarray
data) an R package that utilizes joint analysis of microarray gene expression data
to predict patients’ survival and risk assessment. Joint analysis can be performed
by merging datasets or meta-analysis to increase the sample size and to improve
survival prognosis;

• Beisser et al. [1] present the BioNet package for the analysis of biological net-
works. They apply this package to gene expression data from diffuse large B-cell
lymphomas (DLBCL) and survival data with a human protein-protein interaction
network based on human protein reference database.
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6 Considerations and Conclusion

Themicroarray technique is a current and powerful biotechnological tool, increasing
challenges inHealth Sciences andMedical research. The application of this technique
on the prognosis of disease is crucial to identify risk groups and to improve the
response to disease treatment. Looking for answers, scientists search in risk factors,
those characteristics or attributes that appear to be linked to the development of a
disease. In the presence of the risk factors, there is an increased chance that the
disease will develop, but not a certainty. Risk factors are characteristics like lifestyle,
environment, and genetic background which contribute to the likelihood of getting a
disease. It is very important to identify the risk factors so as to make better lifestyle
choices and to help in reducing the risk of developing diseases. Some risk factors
can be changed, like blood pressure or diabetes level; others cannot be changed, like
genetic makeup.

Microarray analysis is very important in multigenic diseases research, namely to
identify the responsible genes which increase the risk of an individual to develop
a particular disease. This is a challenging area with many open research questions,
given the large number of known multigenic disease groups.

Beyond the technology, planning, analysis and interpretation of data, microarray
experiments also have some obstacles and challenges. Such experiments generate an
enormous amount of data, with unprecedented dimensions and complexity. Thus, a
careful design of such experiences is crucial to the success of the research involv-
ing microarrays. Due to the great importance of this stage of the analysis, several
studies have been carried out comparing different design types. Once the microarray
experiment has been conducted, the next challenge relates to data analysis. Recently
various statistical methodologies have been developed, such as robust models or
designs with assumptions best suited for particular cases.
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Risk Assessment of Complex Evolving
Systems Involving Multiple Inputs

A.G. Rigas and V.G. Vassiliadis

Abstract When monitoring complex evolving systems a question that often arises
is to detect causal chains of events. Do particular inputs force the system to produce
new events or prohibits them? This can be also considered as a risk assessment for
the systems response. In this work we present two methods of estimating the effect
of multiple inputs on a complex neurophysiological system. Both the response and
the stimuli are very long binary time series. The first approach is a non-parametric
one and describes the linear and the non-linear association of the stationary point
processes by estimating the second- and third-order cumulant density functions. The
second approach is a parametric one and the association between the inputs and the
response of the system is described by a logistic regression model which takes into
account the system’s internal processes.

Keywords Cumulant densities · Muscle spindle · Penalized likelihood function ·
Periodogram · Randomized quantile residuals · Stationary point process
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1 Introduction

The ways of measuring the association of stochastic point processes (p.p.)1 through
linear or quadratic models by using second- and third-order cumulant densities are
presented in several papers [22, 24]. The cumulant densities come from the product
densities by subtracting the lower contributions of the involved p.p. In a recent work

1 The word ‘stochastic’ is implied.
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an approach of estimating the second- order cumulant density is presented and the
asymptotic distribution is developed [28]. Although the distribution of the estimate
is asymptotically normal, its variance does not allow the construction of confidence
intervals. In the first part of this work a direct and simple method of constructing
confidence intervals is described that generalizes the work of Brillinger [3] in the
case of estimates of higher-order cumulant densities for p.p. This method is based
on the estimation of the second-order modified periodogram of the increments of
the p.p.

In the second part of this work a logistic regression model is used in order to study
the behavior of a stochastic system with one output and two inputs. The problem of
the quasi-complete separation which appears during the estimation of the models
parameters is solved by using a penalized likelihood function.

Our motivating example deals with the identification of the neuromuscular system
called muscle spindle when it is affected by two stimuli simultaneously. The response
of the system is recorded from the Ia sensory axon. The stimuli are two motoneurones;
a gamma and an alpha. In this case the parent muscle that contains the muscle spindle
is held at a fixed length. The data sets are very long and consist of binary sequences
of zeroes and ones.

2 Cumulant Densities

The components of a vector-valued stochastic point process are random, non-
negative, integer-valued variables. In particular, let N (I, ω), I ∈ BR , ω ∈ Ω , be
a r vector-valued stochastic point process with BR the σ -algebra of Borel sets of the
real line and (Ω, BR, P) the basic probability space. If Na denotes the ath component
of N , then Na(I, ω) presents the number of points of type a that fall in the interval
I for the realization ω and a = 1, 2, . . . r . In the following the dependence of N on
ω is omitted and it will be referred as Na(I ), where I = (0, t] and −∞ < t < ∞.
The differential notation d N (t) = N (t, t + dt] will also be used for small dt [2, 7].
It will be assumed that the point process satisfies the following conditions:

1. It is stationary, that is the distribution of {N (I1), . . . , N (Ik)} is the same as the
distribution of {N (I1 + τ), . . . , N (Ik + τ)}, where Ii = (0, ti ] and Ii + τ =
(τ, ti + τ ], i = 1, 2, . . . , k.

2. It will be orderly, that is the probability of having more than one event in a small
interval will be negligible.

3. It is strong mixing, that is the increments of the point process become independent
as their distance becomes large.

These conditions are satisfied approximately in practice [2, 8]. We proceed now to
define certain parameters of the point process in the time domain. The mean intensity
of the component Na is defined by

pa = lim
h→0+ Prob{1 event of type a occurs in (t, t + h]}/h (1)
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The mean intensity does not depend on t because the p.p. is stationary. It also
follows from the condition of orderliness that

padt = E{d Na(t)}, (2)

for a = 1, . . . , r . In general, the product density of order k is defined by

pa1···ak (u1, . . . , uk−1) =
lim

h1,...,hk→0+ Prob{1 event of type a j occurs in(u j , u j + h j ], (3)

j = 1, . . . , k − 1, and 1 event of type ak occurs in (0, 0 + hk]}/(h1 · · · hk)

for u1, . . . , uk−1, 0 distinct, a1, . . . , ak = 1, . . . , r and k = 1, 2, . . ..
Since the point process is orderly it follows that

pa1···ak (u1, . . . , uk−1)dtdu1 · · · duk−1 =
= E{d Na1(t + u1) · · · d Nak−1(t + uk−1)d Nak (t)}. (4)

The product densities satisfy various limiting relationships such that

lim
u→∞ pab(u) = pa pb and lim

u→∞ pabc(u, v) = pa pbc(v) (5)

for a, b, c = 1, . . . , r . These results follow from the strong mixing condition. The
cumulant density of order k is defined by:

qa1···ak (u1, . . . , uk−1)dtdu1 · · · duk−1 =
= Cum[d Na1(t + u1), . . . , d Nak−1(t + uk−1), d Nak (t)] (6)

for u1, . . . , uk−1, 0 distinct. These are obtained from the product densities in the
following way

qa = pa (7)

qab(u) = pab(u) − pa pb (8)

qabc(u, v) = pabc(u, v)− pab(u − v)pc − pac(u)pb − pbc(v)pa + 2pa pb pc (9)

for u, v �= 0, u �= 0, v �= 0. The limiting relationships of (5) lead to

lim
u→∞ qab(u) = 0 and lim

u→∞ qabc(u, v) = 0. (10)

The cumulant densities have significant symmetries. Specifically, for the third-
order cumulant density the following equalities hold
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qaaa(u, v) = qaaa(v, u) = qaaa(−v, u − v) = qaaa(v − u,−u)

= qaaa(u − v,−v) = qaaa(−u, v − u) (11)

and
qaaa(−u,−v) = qaaa(u, v) (12)

It is clear from expressions (11) and (12) that there are six regions of symmetry for
the third-order cumulant density. However, the boundaries of the six regions create
problems. These follow from the definition of the cumulant density, since in (6) there
is a restriction, the quantities u1, . . . , uk−1, 0 must be distinct.

In the boundaries of the six regions of symmetry the cumulant densities are defined
as

Cum[d Na(t + u), d Nb(t)] = qab(u)dudt, a �= b (13)

Cum[d Na(t + u), d Na(t)] = qaa(u)dudt + qaδ(u)dudt (14)

Cum[d Na(t +u), d Nb(t +v), d Nc(t)] = qabc(u, v)dudvdt, a, b, c distinct (15)

Cum[d Na(t + u),d Na(t + v), d Nb(t)] =
= qaab(u, v)dudvdt + δ(u − v)qab(u)dudvdt, a �= b (16)

and

Cum[d Na(t + u), d Na(t + v), d Na(t)] = qaaa(u, v)dudvdt

+ (δ(u) + δ(v) + δ(u − v))qaa(u)dudvdt + δ(u)δ(v)qadudvdt (17)

where δ(a), −∞ < a < ∞ is the Dirac Delta function.
At this point it must be stressed that the point process {N (t)} is defined on a

continuous parametric space, since −∞ < t < ∞. These point processes are called
continuous with respect to t . In practice, however, the point processes will have to
become discrete for further analysis in the time or in the frequency domain. Thus,
if the sampling rate is 1/b points per unit time, then the discrete point process that
follows will be {N(t j ); t j = jb, j = 0,±1, . . .} = {N1(t j ), . . . , Nr (t j ); t j =
jb, j = 0,±1, . . .}. In this case the notation ΔN(t j ) = N(t j , t j+1] = N(bj, b( j +
1)] is used and the definition of the product and the cumulant densities are modified
accordingly.
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3 Estimation of the Cumulant Densities

In this section a way of estimating the cumulant densities of second- and third-order
is presented. Some of the asymptotic results that are discussed below require the
stationary point process (s.p.p.) to satisfy the following assumption.

Assumption 1 The s.p.p. {N(t)} is such that

∫

· · ·
∫

(1 + |u j |)|qa1···al (u1, . . . , ul−1)|du1 · · · dul−1 < ∞ (18)

for j = 1, 2, . . . , l − 1, a1, . . . , al = 1, . . . , r and l = 2, 3, . . .. This assumption
implies that well-separated (in time) values of the point process are weak dependent.

3.1 The Periodogram-Based Estimate

Let {N(t j ); t j = jb, j = 0,±1, . . .} be a discrete vector-valued s.p.p. obtained by
sampling a continuous s.p.p. with sampling rate 1/b points per unit time. Moreover, it
is assumed that the discrete s.p.p. consists of T/b points N(1/b), . . . , N(T/b) where
T is the observed time interval. The modified (corrected by subtracting the mean
intensity) finite Fourier–Stieltjes transform can be approximated by the sum

d̂(T/b)
a (λ) ≈

T/b−1∑

j=0

exp(−iλt j )[Na(t j + b) − Na(t j ) − p̂ab], (19)

where p̂a = Na(T )/T is the estimate of the mean intensity and Na(T ) is the number
of events of the component Na in the interval (0, T ] [27].

The modified periodogram of second-order is now defined by

Î (T )
ai a j

(λ) = 1

2πT
d̂(T )

ai
(λ)d̂(T )

a j
(−λ) (20)

for b = 1. Then the estimates of the cumulant densities of second-order are
obtained by

q̂ai a j (u) = 2π

T

T/b−1∑

k=0

WT (λk)
(
Î (T )
ai a j

(λk) − δi j
p̂ai

2π

)
eiλk u, (21)

where WT (λ) = W (bT λ) is a convergence factor, λk = 2πk/T and δi j is Kronecker
delta [2, 5]. The quantity bT is called the bandwidth of the convergence factor [26].
It can be shown that
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√
bT T

(
q̂ai a j (u) − qai a j (u)

) ∼ Normal

(

0,
pai a j (u)

∫
W 2(λ)dλ

2π

)

, (22)

for bT T → ∞ as T → ∞ and bT → 0 [28].
This result suggests that the variance of the estimate depends on the unknown

quantity pai a j (u) and therefore the construction of a confidence interval for the
cumulant density is problematic. Now, under the hypothesis that the components
Nai and Na j are independent it holds pai a j = pai pa j , but this is not always true in
practice. By extending the results presented above we can obtain estimates for the
cumulant densities of third-order as well.

3.2 The Direct Method of Estimating the Cumulant Densities

We can construct a new process as follows

Xk(tl) = [ΔNa1(tl + u1) − p̂a1b] · [ΔNa2(tl + u2) − p̂a2 b] · · · [ΔNak (tl) − p̂ak b]
bk

The mean value of the new process is given by

E[Xk(tl)] = qa1···ak (u1, u2, . . . , uk−1) = μ.

Now, the problem of constructing confidence intervals for the cumulant densities
of kth order is related to the problem of constructing confidence intervals for mean
values [3]. If

qT
a1···ak

(u1, u2, . . . , uk−1) = T −1
T −1∑

t=0

Xk(t) = μT (23)

is the estimate of the mean value of Xk(t), then

μT ∼ Normal
(
μ, T −12π fX X (0)

)
, (24)

where fXX(0) denotes the power spectrum of Xk(t) at zero frequency [5].
An estimate of fXX(0) can be obtained as follows

f (T )
XX (0) = L−1

L∑

s=1

I (T )
XX

(
2πs

T

)

, (25)

where L is the number of the components of the periodogram used in the estimation.
It can be shown [5] that the estimate of fXX(0) is asymptotically distributed as

f T
XX(0) ∼ fXX(0)

X2
2L

2L . Thus,
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μT − μ
√

T −12π f T
XX(0)

∼ t2L , (26)

and a 100β% confidence interval for μ can be constructed as follows

μT − t2L

(
1 + β

2

) √

T −12π f T
XX(0) < μ < μT + t2L

(
1 + β

2

)√

T −12π f T
XX(0)

(27)

4 Logistic Regression Model

In this section a parametric method is presented based on a logistic regression model.
Both the dependent and the explanatory variables are the stationary point processes
that can be considered as long binary time series consisting of zeroes and ones. A
zero means that there is no an event in a small time interval, whereas a one means
that there is an event. Before the formulation of a logistic regression model, we need
to define the likelihood function. Actually, the penalized likelihood function will be
used because the phenomenon of quasi-complete separation occurs.

4.1 Penalized Likelihood Function

Let yt , t = 1, . . . , n be the binary responses of n random variables Yt , where
Yt ∼ B(1, πt ) and xT

t a 1×k row-vector of measurements corresponding to covariates
and dummy variables corresponding to factor levels. Then the logistic regression
model is given by

πt = {1 + exp(−xT
t · β)}−1, (28)

where β is the parameter k × 1 column-vector and πt = Prob {yt = 1} [9, 14, 23].
Maximum likelihood estimates of the parameters β j , j = 1, . . . , k and consequently
of the probabilities πt , are obtained by maximizing the likelihood function

L(β|y) =
n∏

t=1

π
yt
t · (1 − πt )

1−yt , (yt = 0, 1),

or the log-likelihood function l(β|y) = log L(β|y),

l(β|y) =
n∑

t=1

[

yt · log

[
1

1 + exp (−xT
t · β)

]

+ (1 − yt ) · log

[

1 − 1

1 + exp(−xT
t · β)

]]

,

(29)
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using a Newton–Raphson algorithm or the method of scoring. When the method of
scoring is used, the estimates of the parameters β j are obtained as the solutions to
the score equations

∂l(β|y)

∂β j
≡ U (β j ) =

n∑

t=1

(yt − πt ) · xt j = 0, ( j = 1, . . . , k). (30)

In order to remove the small sample bias O(n−1) of the maximum likelihood esti-
mates, Firth suggested the use of modified score functions, given by

U (β j )
∗ ≡ U (β j ) + 1/2trace[I (β)−1 · {∂ I (β)/∂β j }] = 0, (31)

( j = 1, . . . , k), where I (β)−1 is the inverse of the information matrix evaluated at
β [11–13]. This modification suggests that a penalized likelihood function is used,
i.e. L(β)∗ = L(β) · |I (β)|1/2. The penalty function |I (β)|1/2 is known as Jeffreys
invariant prior for this problem [18]. When the logistic regression model of (28) is
assumed, then the modified score functions of (31) become

U (β j )
∗ =

n∑

t=1

(yt − πt + ht · (1/2 − πt )) · xt j = 0, (32)

( j = 1, . . . , k), where ht is the t th diagonal element of the ‘hat’ matrix

H = W 1/2 X (X T W X)−1 X T W 1/2,

and W = diag{πt · (1 −πt )}. Then, the maximum likelihood estimates can be found
using iterations until convergence is obtained. At the mth iteration, the vector of the
estimates will be given by

β(m) = β(m−1) + I (β(m−1))−1 · U (β(m−1))∗. (33)

The above procedure eliminates the problem of separation. In Heinze [16] it is
declared that “only those problems of estimation remain which can also occur with
the general linear model, for example, problems due to multicolinearity or nearly
degenerate risk factor distributions”. Other methods have also been proposed for
removing the small sample bias and/or dealing with the separation problem. The
above technique has been proved superior to its alternatives [31].

It is known that the resulting profile likelihoods for the coefficients are often
asymmetrical, since they are close to boundary conditions. Thus, it is suggested that
the penalized likelihood ratio test should be used instead of a possible misleading
Wald-type inference statistic. In addition, the profile penalized likelihood confidence
intervals are in these cases more accurate than the asymptotic ones. In this paper the
profile penalized likelihood confidence intervals are computed using the algorithm
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of Venzon and Moolgavkar [15, 16, 29]. The computations were carried out in
MATLAB(R2009a).

4.2 The Proposed Logistic Model

The logistic regression model that is proposed for the description of the stochastic
neurophysiological system is given by

log
( πt

1 − πt

) = SFt + Vt − β0. (34)

The function SFt is called the summation function and is defined by

SFt = SF1,t + SF2,t =
uM∑

u=1

β1,u x1,t−u +
vM∑

v=1

β2,vx2,t−v, (35)

where x p,t−t ′ is the observation of the pth explanatory variable at time t−t ′ (p = 1, 2
and t ′ = u or v) and {β1,u, u = 1, . . . , uM ;β2,v, v = 1, . . . , vM } are unknown
coefficients.

The function Vt is called the recovery function and it can be described by a
polynomial function of order s which is given by

Vt =
{∑s

i=1 β3,i (τt − ζ − 1)i , if τt ≥ ζ + 1
0, if τt < ζ + 1

, (36)

where {β3,i } are the coefficients of the function and ζ is the minimum inter-spike
interval of the dependent variable. In addition, τt denotes the time elapsed since the
last event of the dependent variable. The β0 is an unknown constant value and its
role will be explained in the following section with the example [6, 19].

It must be pointed out that separation is not only a problem related with small or
medium sized data sets. When a logistic regression model like the one given by (34)
needs to be fitted to binary data which come from a counting procedure the quasi-
complete separation phenomenon is expected to occur even in large samples. As in the
case of the complete separation, the quasi-complete separation also results in infinite
maximum likelihood estimates when binary covariates are involved. Moreover, an
insufficient memory problem should also be expected when evaluating the ‘hat’
matrix H , since its dimension is n × n. Thus, a modification of the logistf routine
should be made in order to store only the diagonal elements of the ‘hat’ matrix. This
can be done as a two step procedure. First, compute the W 1/2 X (X T W X)−1 part of the
multiplication and then by using a loop evaluate only the diagonal elements needed.
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4.3 The Randomized Quantile Residuals

After fitting the model to the observed data, it is necessary to check if the fitted model
is valid, i.e. that the fitted values are correctly estimated and are adequately “close”
to the observed values. A common technique used to examine the adequacy of the
fitted model is based on the residuals, which can be thought of as measurements of
agreement between the observed and the fitted response values.

Suppose that the logistic regression model given by (28) is fitted to the n binary
responses yt , t = 1, . . . , n. Let F(yt ;πt ) = Pr(Yt ≤ yt ) = ∑yt �

m=0 πm
t (1 − πt )

1−m

be the cumulative binomial distribution of the t th binary response, where yt� is the
‘floor’ under yt , i.e. the greatest integer less than or equal to yt . Then the randomized
quantile residuals are defined by

rrq,t = Φ−1{ut }, (37)

where Φ(·) is the cumulative distribution function of the standard Gaussian, and ut

is a uniform random variable on the interval

(at , bt ] = (
lim
y↑yt

F(y; π̂t ), F(yi ; π̂t )
] ≈ [

F(yt − 1; π̂t ), F(yi ; π̂t )
]
.

The rrq,t follow the standard normal distribution, apart from sampling variability in
π̂t . The randomized quantile residuals were first defined by Dunn and Smyth and
can be similarly used for any discrete distributed response [10].

5 The Neurophysiological Example

In this section the neurophysiological system of the muscle spindle is studied when
it is affected simultaneously by an alpha (α) and a gamma motoneurone (γ ). The
muscle spindle is an element of the neuromuscular system and plays a important role
in the initiation of movement and the maintenance in posture. It is also a transducer
which responds to different stimuli applied on it. Most skeletal muscles contain a
number of these transducers, which lie parallel with the fibers of the muscle (known
as extrafusal fibers). The fibers within a muscle spindle, known as intrafusal muscle
fibers, are considerably shorter than the extrafusal fibers. These are three different
types of intrafusal fibers, the dynamical nuclear-bag (DNB), the static nuclear-bag
(SNB) and the nuclear chain (NC). The effect of a stimulus on the muscle spindle
is transmitted to the spinal cord by the terminal branches of the axons of sensory
neurons which are wrapped round all of the intrafusal fibers.

When a muscle is held at a fixed length, the sensory axons from the muscle spindle
produce nerve impulses at a constant rate that depends upon the muscle length.
The nerve impulse is a localized voltage change that occurs across the membrane
surrounding the nerve cell and axon. Its amplitude is approximately 100 mV, and its
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duration 1 ms. Nerve impulses are known as action potentials or, because of their
relatively short duration, spikes.

There are several classes of nerve cells which lie within the spinal cord in groups
called nuclei some of which may contain as many as 2000 cells. One of these groups,
called alpha motoneurones, have long axons which leave the spinal cord to inner-
vate the extrafusal muscle fibers forming the main mass of the muscles responsible
for generating forces or changes of length. The axons of the alpha motoneurones
normally conduct nerve impulses from the cell body to the extrafusal muscle fibers.
When a nerve impulse reaches the junction between the axon and the muscle fiber
a sequence of electro-chemical events occurs which leads to the contraction of the
entire muscle fiber. Another group of cells, called gamma motoneurones, lie within
the spinal cord and in the neighborhood of the alpha motoneurones. These cells
are considerably smaller in diameter than the alpha motoneurones and their long
axons innervate the intrafusal muscle fibers. When a gamma motoneurone affects
the muscle spindle by transmitting nerve impulses to the intrafusal muscle fibers, the
response of the muscle spindle sensory axons, called the I a response, is modified.
It has been suggested that activity in the gamma motoneurone axons may modify
the mechanical properties of the intrafusal fibers to discharge nerve impulses in the
sensory axon [1, 20, 21, 25, 30].

5.1 The Nonparametric Approach

The aim here is to construct 95 % confidence intervals for the cumulant densities of
the second- and third-order in order to study the behavior of the neuromuscular system
of the muscle spindle. In particular, the response of the primary sensory axon (I a) is
studied under the simultaneous effect of an alpha (α) and a gamma (γ ) motoneurone.
The point processes have been recorded in a time interval T = 11360 ms with a
sampling rate 1 point per ms. The number of events in each component of the point
process is Nγ (T ) = 691, Nα(T ) = 163 and NI a(T ) = 358.

In Fig. 1 the estimates of the second- and third-order cumulant densities qI a,α(u),
qI a,α(u), qI a,α(u, u −v) are presented for the case of the effect of an alpha motoneu-
rone on the I a sensory axon in the presence of a gamma motoneurone. It becomes
clear from previous work that the presence of the gamma motoneurone reduces the
effect of the alpha motoneurone on the muscle spindle and produces a second region
of positive interaction about the 30th ms. The patterns in the qI a,α,α(u, v) are in
agreement with the graphs of the second-order cumulant densities.

In Fig. 2 the estimates of the cumulant densities of second- and third-order
qI a,γ (u), qI a,α(u − v) and qI a,α,γ (u, u − v) for the case of the simultaneous effect
of an alpha and a gamma motoneurone are presented. Firstly, a positive interaction
is observed between the gamma motoneurone and the I a response of the sensory
axon in the region where the alpha motoneurone blocks the response of the sys-
tem. Secondly, it is seen that the cumulant density of third-order contains significant
information, because the correspondence with values of the second-order cumulant
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Fig. 1 The estimates of the second- and third-order cumulant densities qI a,α(u), qI a,α(u),
qI a,α(u, u − v) for the case of the effect of an alpha motoneurone on the I a sensory axon in
the presence of a gamma motoneurone.

Fig. 2 The estimates of the second- and third-order cumulant densities qI a,α(u), qI a,α(u),
qI a,α(u, u − v) for the case of the effect of an alpha motoneurone on the I a sensory axon in
the presence of a gamma motoneurone.



Risk Assessment of Complex Evolving Systems Involving Multiple Inputs 171

densities has been destroyed , whereas there are only eight points with significant
positive values for 10 ≤ u − v ≤ 20.

5.2 The Parametric Approach

The logistic regression model given by (34) is used here in order to study the behavior
of the muscle spindle by recording its response from the I a sensory to the combined
effect of an alpha and a gamma motoneurone (γ + α). The axon (I a) of the sen-
sory nerve fires when the potential of the membrane exceeds a critical level called
threshold. The potential of the membrane is influenced both by external and internal
processes. Let Yt denote the firing process of the I a sensory axon which is associated
with the muscle spindle. By choosing the time sampling h, the observations of the
output can be written as follows:

yt =
{

1, when an output spike occurs in (t, t + h]
0, otherwise

, (38)

where t = h, . . . , nh and N = nh is the time interval in which the time series is
observed. In our case we choose h = 1 ms. Let X p,t , p = 1, 2 denote the inputs of the
system imposed by (γ +α) stimulus. They consist of the observations x p,t , p = 1, 2
which are binary time series defined as the yt s.

Let θt denote the threshold level at the trigger zone at time t , given by θt =
θ∗

t + εt , where εt is the noise process which includes contributions of unmeasured
terms that influence the firing of the system. There is experimental evidence and
theoretical verification that εt follows approximately a normal distribution [4, 17].
θ∗

t is a function of t, which represents the form of threshold at time t . We assume
that θ∗

t = β0 i.e. an unknown constant.
The function representing the external processes that influence the potential of

the membrane at the trigger zone are the summation functions SF1,t and SF2,t . The
internal processes are responsible for possible spontaneous firing of the system and
they are described by the recovery function Vt . The minus before the β0 in the relation
(34) which symbolizes the threshold indicates that the strength of the external and the
internal processes must exceed the level of threshold in order to get an output event

All the estimates presented here are obtained by using the penalized method dis-
cussed in Sect. 4. The iterations were stopped when the sum of the distance between
the estimated parameters in two successive steps was lower than 1E-05.

In our case, which involves two inputs and one output, 138 parameters were
estimated (1 constant, 7 for the recovery function, 50 for the coefficients of the (γ )
summation function and 80 for the coefficients of the (α) summation function). The
estimated penalized log-likelihood function was l01 = −1062.9 and the estimated
penalized log-likelihood function of the null model, described as in the (γ ) case, was
l00 = −1360.2. In this case 2(l01 − l00) was 594.6 with a p-value equal to 0. The 138
parameters (without the profile likelihood confidence intervals) were estimated after
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Fig. 3 The (γ + α) case. a The estimated recovery function and the constant threshold, b the
penalized maximum likelihood estimates of the coefficients of the (γ ) part of the summation function
and c the penalized maximum likelihood estimates of the coefficients of the (α) part of the summation
function for the (α + γ ) case. The dotted lines above and below correspond to the 95 % profile
likelihood confidence intervals

18 iterations in 7.27 s. Figure 3a shows the recovery function described by a seventh
order polynomial, the constant threshold and the 95 % profile likelihood confidence
intervals. It is clear that there is an increase in the estimate of the recovery function
for about 40 ms but afterwards it stabilizes below the threshold. The presence of
the gamma motoneurone seems to increase the distance from threshold again and
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the system does not fire spontaneously when both the motoneurones are present.
The seventh order polynomial was selected for this case, since the penalized log-
likelihood for the eighth order polynomial was l1 = −1042.8 and the restricted
penalized log-likelihood for the sixth order polynomial was l0 = −1143.0 suggesting
a p-value equal to 0.5271.

Figure 3b shows the estimated coefficients for the (γ ) summation function
together with the 95 % profile likelihood confidence intervals when both the motoneu-
rones are present. We observe that between 11 and 40 ms, the coefficients of the
summation function are decreased by the presence of the alpha motoneurone, but
they remain positive. This suggests that in the interval between 11 and 40 ms the
response is still accelerated but the odds of firing are reduced by the presence of the
alpha motoneurone.

Figure 3c shows the estimated coefficients for the (α) summation function together
with the 95 % profile likelihood confidence intervals when both the motoneurones are
present. The estimated coefficients of the summation function remain positive and
unaffected for a very short period in the beginning, indicating that the acceleration of
the system’s firing is clearly a characteristic due to the effect of the alpha motoneu-
rone. After this we observe that the duration of the blockage has been reduced from
almost 40 ms to 10 ms. Moreover the increase in the summation function has started
about 30 ms earlier.

Figure 4a shows the Q–Q plot of the randomized quantile residuals of the fitted
model. The 5 % rejection regions were computed after 1000 Monte Carlo simulations.
Only 0.7 % of the 11,327 residuals lie outside the 5 % rejection regions with a small
deviation at large values. In addition, the Anderson–Darling statistic is 0.5643 with
a p-value 0.1442.

Fig. 4 The Q–Q plot of the
randomized quantile
residuals of the proposed
fitted model, for the (γ + α)
case.The 5 % rejection
regions after 1000 Monte
Carlo simulations are
presented by the dotted lines
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6 Conclusions

Two different approaches have been used in order to identify a stochastic system
involving stationary point processes (s.p.p.). The first approach is non-parametric and
is based on the second- and third-order cumulant densities. Estimates of these den-
sities are obtained by using the modified periodogram of the increments of the s.p.p.
Confidence intervals are also constructed which can reveal possible non-linearities
of the system. The second approach is parametric and is based on a logistic model.
The problem of the quasi complete separation which appears in the estimation of the
models parameters is solved very fast and efficiently. The model involves two inputs
and one output and describes a neuromuscular system called muscle spindle. The
behavior of the system is studied when it is affected by two stimuli, a gamma and
an alpha motoneurone. The presence of the alpha motoneurone reduces the effect
of the gamma motoneurone on the neuromuscular system, while the presence of the
gamma motoneurone restricts the blockage of the alpha motoneurone on the system
but it creates a second effect.
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Monitoring Environmental Risk
by a Methodology Based on Control Charts

Helton Saulo, Victor Leiva and Fabrizio Ruggeri

Abstract We propose a methodology based on control charts when the contaminant
concentration follows a Birnbaum-Saunders distribution, which is implemented in
the R software. We investigate the performance of this methodology through Monte
Carlo simulations. An example with real-world data is given as an illustration of the
proposed methodology.

Keywords Birnbaum-Saunders distribution · Contaminant concentration · Maxi-
mum likelihood and moment estimation · Monte Carlo simulation · R software ·
X-bar charts

1 Introduction

Control charts are popularly used tools for quality monitoring because these are
simple to interpret and easy to be updated whenever further data are available; see
Montgomery [27] and Figueiredo and Gomes [10]. These charts provide an earlier
alert when a process is going to be out-of-control, so that an action can be taken to
bring back it to the in-control state. Although such charts originated from industry
applications, their use has been extended to monitoring of environmental and health
risk; see Grigg and Farewell [11], Woodall [35], Morrison [26], and Manly [24].

The first ingredient of our methodology for monitoring environmental risk is the
control chart. International guidelines regulate dangerous concentrations of conta-
minants, which are often modeled by statistical distributions. By means of these
regulations and distributions, administrative targets and environmental alerts can be
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established. Such alerts allow human health to be protected, because they address
episodes of extreme contamination that need correctivemeasures. These episodes are
manifested by an increment of the incidence and severity of diseases; see Marchant
et al. [25]. Thus, environmental risk monitoring is important and can be conducted
by control charts.

Statistical distributions used for modeling contaminant concentrations are often
asymmetrical (with positive skewness) and have support in the set of real numbers
for values greater than zero. Consequently, the normal distribution is not suitable for
this type of modeling.

Often environmental researchers transform their data, using for example the Box-
Cox power transformations [7, 14], to eliminate asymmetry, so that the normal dis-
tribution can be used. However, it has been shown that analyses performed under an
inappropriate data transformation reduce the power of the study; see Huang and Qu
[12], Leiva et al. [18] and references therein. In any case, even when an appropriate
transformation is used, a problem of data interpretation still remains. An alternative
way to avoid the data transformation is to model them directly through a suitable
distribution. For this purpose, a number of researchers have utilized the lognormal
(LN) distribution for modeling environmental data, mainly due to its physical argu-
ments [29] and its relationship with the normal distribution. However, also the beta,
exponential, extreme values, gamma, inverse Gaussian, Johnson SB, log-logistic,
Pearson and Weibull distributions have been used for analyzing this kind of data,
although without theoretical arguments see Marchant et al. [25].

Our second ingredient is an asymmetric distribution named Birnbaum-Saunders
(BS), which has attracted considerable attention; see, e.g. Johnson et al. [13, pp. 651–
663], andFierro et al. [9]. This is due to its goodproperties, its relationwith the normal
distribution and its applications in diverse fields including environmental sciences;
seeLeiva et al. [16, 17, 19],Vilca et al. [33, 34], Ferreira et al. [8],Marchant et al. [25],
and Saulo et al. [32]. However, the most important aspect of the BS distribution is
that it has physical arguments and statistical properties similar to the LN distribution
to model this type of phenomena (e.g. asymmetry and an inverse bathtub shaped or
unimodal hazard rate -HR-). Nevertheless, the BS distribution has further properties
that the LN one does not have. This allows us to postulate the BS distribution as a
candidate to model contaminant concentrations. The BS distribution is implemented
in a statistical software named R (www.R-project.org) by the gbs package [4]. This
package allows us to obtain probabilities, estimate parameters, generate random
numbers and conduct goodness-of-fit. Applications of the BS distribution to quality
monitoring tools can be found in Balakrishnan et al. [3], Lio and Park [22], Lio et
al. [23], Leiva et al. [20] and references therein. Despite the good properties that
the BS distribution has, it does not share the reproductive property. Thus, sum of
random variables (RVs) with BS distribution (BSsum in short) does not have a BS
distribution. Raaijmakers [30, 31] found the BSsum distribution and we present here
its implementation in an R package called bssum.

The main objective of this paper is to propose a methodology based on control
charts formonitoring environmental riskwhen the contaminant concentration follows
a BS distribution. In particular, we analyze the pH levels of five rivers from the South

www.R-project.org
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Island of New Zealand. We develop X-bar control charts with the help of the BSsum
distribution.

The rest of the paper is organized as follows. In Sects. 2 and 3, we introduce BS
and BSsum distributions and their properties, features and implementations in the R
software. In Sects. 4 and 5, we propose the mentioned methodology and investigate
its performance through Monte Carlo (MC) simulations. In Sect. 6, we apply it to
real-world environmental data to illustrate its potential. In Sect. 7, we discuss some
conclusions of this work.

2 Birnbaum-Saunders Distribution

In this section, we provide some probabilistic, statistical and computational aspects
of the BS distribution, including several features and properties, which are useful for
developing the methodology proposed in Sect. 4.

The BS distribution has the following characteristics. It has two parameters, one
of shape α and another of scale β, with β being also a position parameter because it
corresponds to its median. In addition, the BS distribution is asymmetrical with posi-
tive skewness and unimodality. It allows us tomodel data that take values greater than
zero. Furthermore, the BS distribution is closely related to the normal distribution,
so that it inherits several of its good properties. Moreover, the BS distribution has a
HR with several shapes including increasing and unimodal, which are particularly
useful in environmental data analyses; see Vilca et al. [33].

When a RV X follows a BS distribution with parameters α > 0 and β > 0, the
notation X ∼ BS(α, β) is used. BS and standard normal distributions are related by
means of the RVs

X = β
(
αZ/2 + ((αZ/2)2 + 1)1/2

)2 and Z = 1

α
ξ (X/β) ∼ N(0, 1), (1)

where ξ(u) = √
u − 1/

√
u = 2 sinh(log(

√
u)). Relation in (1) allows us to obtain

W = 1

α2 ξ2 (X/β) ∼ χ2(1). (2)

Result given in (2) is useful for establishing goodness-of-fit by probability plots and
detecting atypical data by the Mahalanobis distance. If X ∼ BS(α, β), then its prob-
ability density (PDF) and cumulative distribution (CDF) functions are respectively
expressed as

fX (x;α, β) = 1√
2π

exp

(

− 1

2α2 ξ2
(

x

β

))
x−3/2(x + β)

2α
√

β
, (3)

FX (x;α, β) = P(X ≤ x) = Φ

(
1

α
ξ

(
x

β

))

, x > 0, (4)
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whereΦ(·) is theN(0,1) CDF. The quantile function (QF) of X (q×100th quantile) is

x(q;α, β)) = F−1
X (q;α, β) = β

(
αz(q)/2 + ((αz(q)/2)2 + 1)1/2

)2
, 0 < q < 1,

(5)

where F−1
X (·) is the inverse CDF of X and z(q) is the N(0,1) q × 100th quantile.

Thus, if q = 0.5, then x(0.5;α, β) = β and, as mentioned, β is the median of the BS
distribution. As also mentioned, this distribution is unimodal and its mode, denoted
by xm , may be computed as the solution of ω f ((ξ(xm/β)/α)2) = (α2 β xm (xm +
3β))/(2(xm −β)(xm +β)2), whereω f = f ′

X/ fX , with fX being the PDF of X given
in (3) and f ′

X denoting its derivative.
The HR of a RV X is defined in general by h X (x) = fX (x)/(1− FX (x)), so that

it can be easily obtained from (3) and (4) for the BS distribution. Then, the HR of
X ∼ BS(α, β) is given by

h X (x;α, β) = φ
( 1

α
ξ (x/β)

)
x−3/2(x + β)

2α
√

β Φ
(− 1

α
ξ(x/β)

) , x > 0, (6)

where φ(·) is the N(0,1) PDF. Note that the normal distribution has an increasing HR,
whereas gamma and Weibull distributions have increasing and decreasing HRs. Of
course, the exponential distribution with constant HR is obtained from any of these
two distributions. However, the LN distribution, often used to model environmental
data, has a non-monotonic HR, because it is initially increasing until its change
point and then it decreases to zero, that is, the LN distribution has a unimodal HR.
The BS distribution has a HR that behaves similarly to that of the LN distribution.
Nevertheless, the BS HR decreases to a positive constant value, such as it occurs
with real environmental data, and not to zero, as in the LN distribution. In real
environmental data, the tail of the concentration distribution behaves as the tail of an
exponential distribution. This means that if one samples repeatedly until exceeding
a threshold, then the amount of exceedance has the same distribution regardless of
the chosen threshold. This is one of the aspects that supports the use of the BS
distributions to model contaminant concentration data instead of other distributions
that are often considered for analyzing this type of data. From the BS HR expressed
in (6), note that increasing and unimodal shapes are obtained. For more details about
the BS HR, the reader can see Kundu et al. [15] and Azevedo et al. [2], whereas
details about environmental hazard analysis based on the HR can be found in Vilca
et al. [33]. A simple way to characterize the HR is by the scaled total time on test
(TTT) function. By using this function, we can detect the type of HR that the data
have and then choose a suitable distribution. The TTT function is given by

WX (u) = H−1
X (u)/H−1

X (1), 0 ≤ u ≤ 1,
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where H−1
X (u) = ∫ F−1

X (u)

0 (1 − FX (y)) dy. The plot of the points (r/n, Wn(k/n)),
with

Wn(r/n) =
∑r

i=1 x(i) + (n − r)x(r)
∑n

i=1 x(i)
, r = 1, . . . , n,

and x(i) being the i th observed order statistic, allows us to approximate WX (·); see
Aarset [1] and Azevedo et al. [2]. The change point of the BS HR, h X (x;α, β) say,
denoted by xc, is obtained as the solution of the equation

Φ

(

− 1

α
ξ(xc/β)

)

= − α β1/2 x1/2c (xc + β)2 f (axc )

2ω f (
1
α2 ξ

2(x/β)) (xc − β)(xc + β)2 + (xc + 3β)α2 β xc
,

whereas its limit value is 1/(2α2β); see Kundu et al. [15].
From the BS QF given in (5), a random number generator for X ∼ BS(α, β) is

given by Algorithm 1.

Algorithm 1 Random number generator for the BS distribution
1: Obtain a random number z from Z ∼ N(0, 1).
2: Set values for α and β of X ∼ BS(α, β).
3: Compute a random number x from X ∼ BS(α, β) using (5).
4: Repeat Steps 1 to 3 until the required number of data has been generated.

Some properties of the BS distribution are: (i) c X ∼ BS(α, cβ), for c > 0, and
(ii) 1/X ∼ BS(α, 1/β). These properties indicate that the BS distribution belongs to
the scale and closed under reciprocation families, respectively. These properties are
useful for diverse aspects related to estimation and modeling. From these properties,
for example, X/β and β/X have the same distribution. From (1), note that

Y = 1

2
ξ (X/β) ∼ N

(
0, α2/4

)
, (7)

that is, Y follows a normal distributionwithmean 0 and variance α2/4, which implies
X = β(1 + 2Y 2 + 2Y (1 + Y 2)1/2) ∼ BS(α, β). Using the transformation given in
(7), the r th moment of X can be shown to be

E(Xr ) = βk
k∑

j=0

(
2r

2 j

) j∑

i=0

(
j

i

)
(2r − 2 j + 2i)!

2r− j+i (r − j + r)!
(α

2

)2(r− j+i)
, r = 1, 2 . . .

(8)

From (8), it is possible to note that the mean and variance of X are respectively
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μ = E(X) = β
(
1 + α2/2

)
and V(X) = β2

(
α2 + 5α4/4

)
, (9)

whereas the coefficients of variation (CV), skewness (CS) and kurtosis (CK) are

CV(X) =
√
4α2 + 5α4

2 + α2 ,CS(X) = 44α3 + 24α

(4 + 5α2)3/2
and CK(X) = 3 + 558α4 + 240α2

(4 + 5α2)2
.

Note that CS(X) → 0 and CK(X) → 3, as α → 0, that is, when α is small, the
skewness and kurtosis of the BS distribution are similar to the skewness and kurtosis
of the normal distribution, respectively. The CV, CS andCK are invariant under scale,
that is, these coefficients are independent functions of the scale parameter β. Also,
if X has a BS distribution with parameters α and β, then 1/X has a BS distribution
with parameters α and 1/β, and we have that

E (1/X) =
(
2 + α2

)
/(2β). (10)

Several methods have been proposed for estimating the parameters of the BS distri-
bution. However, in all these methods, it is not possible to find explicit expressions
for its estimators, so that numerical procedures must be used.

Ng et al. [28] introduced a method of modified moments (MM) based on (10) for
estimating theBS parameters, which provides easy analytical expressions to compute
them. Specifically, let X1, . . . , Xn be a random sample of size n from X ∼ BS(α, β)

and x1, . . . , xn denote the observed data. Then, estimates of α and β are obtained by
using the MMmethod. This conducts to equating (9) and (10) to their corresponding
sample moments as

s = β
(
1 + α2/2

)
and 1/r =

(
1 + α2/2

)
/β, (11)

where s = (1/n)
∑n

i=1 xi and r = 1/((1/n)
∑n

i=1(1/xi )) are the arithmetic and
harmonic means of x1, . . . , xn , respectively. Solving equation in (11) for α and β, the
MM estimates of α and β are obtained as α̂ = (2((s/r)1/2−1))1/2 and β̂ = (s r)1/2.
These MM estimates can be used as starting values for the numerical procedures in
the maximum likelihood (ML) estimation method.

In Sects. 5 and 6, we perform simulated and real contamination data analyses
by using the R software, with the help of the gbs package; for more details about
how using this package, see Barros et al. [4]. Table4 (see Appendix A1) provides
examples of some commands that allow us to work with the BS distribution by
using the gbs package. Exploratory data analysis (EDA), including graphical tools,
can also be conducted with this package. In addition, ML and MM estimates of
the parameters of the BS distribution can be obtained. Furthermore, goodness-of-fit
of the BS distribution to contamination data can be performed by Anderson-Darling
(AD) andKolmogorov-Smirnov (KS) tests and probability plots; see Barros et al. [5].
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3 Approximated Forms of the BSsum Distribution

In this section, we provide an approximation for the PDF and CDF of the BSsum
distribution, which are useful for developing the proposed methodology. In fact,
knowing the BSsum distribution is particularly important to implement X-bar control
charts following a BS distribution, because then one can accurately obtain lower
(LCL) and upper (UCL) control limits for this chart. Shape analysis of the BSsum
distribution and an implementation in the R software are also discussed.

Recall fX (·;α, β) denotes the BS PDF with parameters α and β given in (3).
Without loss of generality, the scale parameter can be considered as β = 1 and then
the Laplace transform can be applied to this PDF obtaining

L fX (s;α, 1) = exp
(
1/α2

)

2α
√
2π

(√
π

s + a
+

√
π

a

)

exp(−2
√

(s + a)a), (12)

where a = 1/(2α2). Define the function

q(s) = 1

2

(
1 + 1/

√
s
)
exp

(
(1 − √

s)/α2
)

. (13)

After some calculations and using (13), we have L fX (s;α, 1) = q(1+2α2s). Then,

Q(s;α, k) = q(s)k = exp(2ka)

2k

k∑

i=0

(
k

i

)
exp(−2ka

√
s)

si/2 , (14)

where a is defined in (12). Now, the Laplace transform of a function μi (·) is

Lμi (s) = exp(−√
s)

si/2 . (15)

More details of the functionμi (·) can be found in Raaijmakers [30, 31]. Substituting
(14) and (15) in the Laplace transform of the function z(·), we have

Lz(s) = Q(s;α, k) = exp(2ka)

2k

k∑

i=0

(
k

i

)

(2ka)i Lμi ((2ka)2 s),

which implies

z(s) = exp(2ka)

2k

k∑

i=0

(
k

i

)

(2ka)i−2μi

(
s

(2ka)2

)
.

Thus, after using some theorems on the Laplace transform, the PDF of the sum of k
RVs BS, Y = ∑k

i=1 Xi say, is
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Fig. 1 PDF of X ∼ BS(α, β = 1.0) (a) and of Y ∼ BSsum(α, β = 1.0, k) (b), (c) for the indicated
values

fY (y;α, β = 1, k) = a

2k
exp(2ka − ay)

k∑

i=0

(
k

i

)

(2ka)i−2μi

(
y

4k2 a

)
, y > 0.

(16)

Then, when a RV Y follows a BSsum distribution with parameters α > 0, β > 0
and k = 1, 2, . . ., the notation Y ∼ BSsum(α, β, k) is used. Note that the PDF given
in (16) corresponds to a RV Y ∼ BSsum(α, β = 1, k), but the case for β �= 1 can
be easily obtained, because it is a scale parameter. Also, similarly to the relation
between the Erlang and gamma distributions, one can extend the BSsum distribution
to a more general setting for k > 0. However, this extension will be studied in a
future work. The CDF of Y ∼ BSsum(α, 1, k) is given by FY (y;α, 1, k) = P(Y ≤
y) = ∫ y

0 fY (u;α, 1, k) du, for y > 0, where fY (·;α, 1, k) is as given in (16). Thus,

FY (y;α, 1, k) = 1

2k
exp(2ka − ay)

k∑

i=2

li μi (y/(4k2a))

(2ka)2−i
+ Φ

(
ϕ(y;k)

α

)
, y > 0,

(17)

where li = li+2 − (k
i

)
, with lk+2 = lk+1 = 0, for i = 2, . . . , k, and ϕ(y; m) = √

y −
m/

√
y, for m = 1, 2, . . ., which is a generalization of the function ξ(·) given in (1)

because ξ(u) = ϕ(u; 1). The QF of Y ∼ BSsum(α, β, k)must be obtained from (17)
by using an iterative numerical method for solving y(q;α, β, k) = F−1

Y (q;α, β, k),
with 0 < q < 1.

Figure1(a) shows some shapes of the PDF of the BS distribution for some values
of the shape parameter α. Note that, as α decreases, the BS PDF is approximately
symmetrical. Plots for different values of β have not been considered, because it is a
scale parameter so that β = 1 is used without loss of generality. Figures1(b) and (c)
show displays plots of the PDF of the sum of k RVs with BS distribution for different
values of α. Notice that, as k decreases, the shape of the BSsum PDF becomes more
skewed to the right.
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The bssum package is implemented for a sum of k RVs with BS distribution, for
k = 1, . . . , 24, because for values of k > 24 one can use the central limit theorem
as approximation. Table4 (see Appendix A1) summarizes the main functions of this
package. To estimate parameters of the BSsum distribution, we consider the value
of k as fixed, so that only α and β must be estimated.

4 X-Bar Control Charts Under the BS Distribution

In this section, we introduce X-bar control charts to detect environmental risk for
contaminant concentration data following a BS distribution. We calculate the control
limits LCL and UCL by using the BSsum QF obtained from (17). Thus, to construct
a control chart for the mean concentration based on the BS distribution, we propose
Algorithm 2. Note that in Step 5 of this algorithm we use the median of the data
in order to add the central control limit (CCL). It is noteworthy to point out that
the median is considered as a better measure of central tendency than the mean for
asymmetrical and heavy-tailed distributions; see, e.g. Bhatti [6] and Leiva et al. [21].

Algorithm 2 Construction of the X-bar control chart under the BS distribution
1: Collect the observations x1, . . . , xk at k sampling points and compute their arith-

metic mean x̄ = 1/k
∑k

i=1 xi .
2: Estimate the parameters α and β of the BSsum distribution based on the sample

obtained from the RV sum Yi = ∑ik
j=k[i−1]+1 X j , for i = 1, . . . , n.

3: Set the false alarm rate (FAR) γ corresponding to the probability of declaring a
situation as out-of-control when it is actually in-control.

4: Calculate the LCL and UCL of the BS X-bar control chart based on the estimates
obtained in Step 2 of Algorithm 2 and the (γ /2) × 100th and (1− γ /2) × 100th
quantiles of the BSsum distribution divided by k.

5: Add the CCL to the BS X-bar control chart using the median of the data as
reference.

6: Declare a situation as out-of-control if the samplemean x̄ is outside of the interval
[LCL, UCL] and announce it. Otherwise, declare it as in-control.

7: Repeat Steps 1 to 6 m times, where m is the number of groups to be analyzed.

5 Simulation

In this section, we conduct two simulation studies, one for evaluating the behavior
of the ML estimators of the BSsum distribution, and another one for analyzing the
performance of the X-bar control chart for data following a BS distribution.
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5.1 Estimation

We conduct a MC simulation study for evaluating the performance of the ML esti-
mators of the BSsum distribution. The setting of this study considers samples of
size n ∈ {10, 25, 50, 100}, vector of true parameters (α, β, k) ∈ {(0.5, 1.0, 2.0),
(0.5, 1.0, 3.0), (0.5, 1.0, 5.0)}, and a number of MC replications equal to 1000. The
BSsum samples are generated by the rbss() function detailed in Table4.We report
the empirical mean, CS, CK, relative bias (RB) in absolute value and root of themean
squared error (

√
MSE) of the ML estimators in Table1, for each parameter, sample

size and some values of k. Note that the RB is defined as RB[θ̂] = |(E[θ̂] − θ)/θ |,
where θ̂ is the ML estimator of a parameter θ , and the sample CS and CK are
respectively calculated by

Table 1 Summary statistics from simulated BSsum data for the indicated estimator, n and k

n

10 25 50 100 10 25 50 100

α̂ β̂

k = 2

True value 0.5000 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 1.0000

Mean 0.4659 0.4911 0.4982 0.5022 1.1261 1.1351 1.1358 1.1343

CS 0.4030 0.0886 0.1069 0.1581 0.1475 0.1432 0.0986 0.1097

CK 3.2099 2.9349 3.0166 2.8593 2.7175 2.8960 3.0089 3.2466

RB 0.0683 0.0179 0.0036 0.0043 0.1261 0.1351 0.1358 0.1343√
MSE 0.1323 0.0734 0.0528 0.0377 0.1794 0.1598 0.1471 0.1408

k = 3

True value 0.5000 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 1.0000

Mean 0.4478 0.4722 0.4798 0.4832 1.0923 1.0856 1.0879 1.0876

CS 0.1653 0.1050 0.0928 0.0326 0.2567 0.2026 0.1601 0.1015

CK 3.0909 3.1401 2.9474 3.2031 3.2802 2.9131 2.8473 2.6788

RB 0.1045 0.0556 0.0404 0.0337 0.0923 0.0856 0.0879 0.0876√
MSE 0.1466 0.0837 0.0613 0.0470 0.1389 0.1048 0.0991 0.0932

k = 5

True value 0.5000 0.5000 0.5000 0.5000 1.0000 1.0000 1.0000 1.0000

Mean 0.4228 0.4614 0.4684 0.4696 1.0607 1.0602 1.0592 1.0565

CS −2.6994 −3.9311 −0.0389 0.0365 0.3524 0.1512 −0.0093 0.1427

CK 14.6201 53.4802 3.1518 3.0956 3.2242 3.2454 3.1560 2.6596

RB 0.1544 0.0772 0.0631 0.0607 0.0607 0.0602 0.0592 0.0565√
MSE 0.2167 0.1072 0.0761 0.0675 0.1008 0.0779 0.0682 0.0613
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CS[x] =
√

n[n − 1]
[n − 2]

n−1 ∑n
i=1[xi − x̄]3

[
n−1 ∑n

i=1{xi − x̄}2]3/2
and CK[x] = n−1 ∑n

i=1[xi − x̄]4
[
n−1 ∑n

i=1{xi − x̄}2]2
,

with x1, . . . , xn denote as before the observations from a sample. A glance at the
estimates in Table1 shows that, as the sample size increases, the RB and

√
MSE

of all of the estimators decrease, tending them to be unbiased, as expected. Also, α̂
and β̂ remain close to a normal distribution in terms of their CSs and CKs. Table1
suggests better results for the ML estimator α (β) as k decreases (increases).

5.2 Control Charts

We now conduct MC simulations to analyze the behavior of the X-bar control chart
for data following a BS distribution. We compute the average LCL and UCL as
well as their standard deviations (SDs). The simulation setting assumes m = 20
subgroups each of size k = 5, shape parameter α ∈ {0.5, 1.0, 2.0}, scale parame-
ter β = 1 and FAR γ ∈ {0.1, 0.01, 0.0027}. The average UCL and LCL and their
corresponding SDs are computed in the following manner: m × k observations are
generated from a BS distribution with scale and shape parameters α and β, respec-
tively, and m arithmetic means from k data for each group are calculated, simulating
Step 1 of Algorithm 2. Then, we follow Steps 2–6 of this algorithm. Such a proce-
dure is repeated 500 times and the average LCLs and UCLs are computed from these
generated values of LCLs and UCLs, respectively. The SDs are also computed as
the average from the respective 500 values. Table2 reports the results of these MC
simulations. Note that as α increases, the SDs tend to increase as well. Note also that
as the FAR γ decreases, the limits become farther apart.

Table 2 Average LCL and UCL and their SD for the indicated values of α and FAR, with β = 1

α γ = 0.1 γ = 0.01 γ = 0.0027

LCL UCL LCL UCL LCL UCL

Average

0.5 0.8169 1.6128 0.6750 1.9550 0.6156 2.1283

1.0 0.8487 2.9127 0.5979 3.9983 0.5066 4.6395

2.0 1.1802 8.8674 0.6610 13.5990 0.5267 16.0198

SD

0.5 0.0520 0.1358 0.0557 0.2037 0.0560 0.2289

1.0 0.1012 0.4321 0.0875 0.6933 0.0863 0.8730

2.0 0.2234 2.1196 0.1749 3.2660 0.1546 3.9838
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6 Example

In this section,we provide an examplewith real-world environmental data to illustrate
the methodology proposed in this work. Specifically, we use X-bar control charts
based on the BS distribution for monitoring pH concentration levels. Our statistical
analysis of the data consists of (i) determination of autocorrelation, (ii) descriptive
statistics and graphical tools for proposing a suitable distribution, (iii) detection of
the fitting of themodel to the data, and (iv) application of ourmethodology tomonitor
environmental risk using BS X-bar control charts.

6.1 The Data

We analyze data of the pH concentration level of five rivers from the South Island
of New Zealand described in Manly [24, pp. 135–138]. These data are displayed in
Table5 (see Appendix A2) and correspond to monthly values from January 1989 to
December 1997.

6.2 Data Analysis

Figure2 shows graphical plots of the autocorrelation function (ACF) and partial ACF
for River 1 data set. From this figure, one notes the absence of serial correlation.
Therefore, data can be modeled as coming from a random sample, that is, assuming
independent identically distributed RVs, which supports the use of our methodology.
A similar behavior is detected for the other data sets (omitted here).

Table3provides descriptive statistics of the data using the functionsquantile()
and descriptiveSummary() of the basics and gbs 2.0 packages, respec-
tively. In particular, Table3 presents empirical (sample) values for quantiles (Q p,
0 < p ≤ 100), minimum and maximum (x(1) and x(n), respectively), usual
(Rg = x(n) − x(1)) and interquartile (IQR = Q75 − Q25) ranges, and CV, CS and

Fig. 2 Plots of
autocorrelation (a) and
partial autocorrelation (b)
functions for River 1 data set
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Fig. 3 Histogram (a) probability plot with envelope (b) and TTT plot (c) for River 1 data set

CK. From these statistics, we note that a non-normal distribution can be reasonably
assumed for modeling these data, due to their asymmetric nature and their level of
kurtosis.

In order to evaluate adequacy of the model to the pH data of River 1, we apply
the KS test by using the function ksbs() of the gbs 2.0 package. The result of this
application is presented next:

One-sample Kolmogorov-Smirnov test

data: river 1

D = 0.068142 p-value = 0.078677

alternative hypothesis: two-sided

It does not provide statistical evidence for indicating that the data do not follow a
BS distribution (p-value = 0.078677). The histogram of the data and a probability
plot with simulated envelope, generated with the function envelopeBS() of the
gbs 2.0 package and shown in Fig. 3(a)-(b), support this conclusion. The TTT plot
suggests an increasing HR for these data; see Fig. 3(c). Similar results are obtained
for the remaining data sets (omitted here).

6.3 BS Control Charts

Once we verify that the BS distribution can be used to model the pH data, we then
apply the X-bar BS control chart to monitor the mean pH levels. Specifically, this
chart is used to look for changes in the average value of pH levels through time and so
monitoring environmental risk. Table5 provides these mean pH levels. The control
chart is constructed in the following way by using Algorithm 2. First, we estimate the
parameters of the BSsum distribution. This is done with the estbssum() function
detailed in Table4. Then, Steps 3–6 of Algorithm 2 are followed. As mentioned
in Step 3 of this algorithm, the limits are determined by the (γ /2) × 100th and
(1−γ /2)×100th quantiles of the BSsum distribution. In order to have a false alarm
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Fig. 4 BS X-bar control
chart for the mean of pH
level data
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only in 27 of each 10,000 cases, we assume γ = 0.0027. Thus, the LCL is 6.7849,
the UCL is 8.6386 and the CCL is 7.65. The corresponding BS X-bar control chart
is drawn in Fig. 4. From this figure, we see that no points outside of the control limits
are detected, indicating that the contamination levels are in-control and therefore it
is not needed to declare an environmental emergency.

7 Concluding Remarks

In this paper, we have proposed a methodology based on control charts for moni-
toring environmental risk when the contaminant concentration follows a Birnbaum-
Saunders distribution.Wehavediscussed and implemented the distribution of the sum
of random variables with BS distribution, which is not Birnbaum-Saunders. We have
implemented this methodology in the R software and investigated its performance
through Monte Carlo simulations. The results of this simulation study indicate the
good performance of the methodology. We have analyzed real-world environmental
data illustrating it, which have shown its potential.
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Appendix

A1: Basic Functions of the bssum and gbs packages (see
Table 4)

Table 4 Basic functions of the indicated package

Function Instruction Result

gbs package

EDA descriptiveSummary(x) It provides a summary with the most
important descriptive statistics

TTT TTT(x) It displays the TTT plot to detect the
shape of the HR

PDF dgbs(1.0, alpha = 0.5, beta = 1.0) 0.798

CDF pgbs(1.0, alpha = 0.5, beta = 1.0) 0.500

QF qgbs(0.5, alpha = 0.5, beta = 1.0) 1.000

Numbers rgbs(n = 100, alpha = 1.0, beta = 1.0) It generates 100 BS(1, 1) random
numbers

MME mmegbs(x) It estimates the BS parameters by the
MM method using the data x

MLE mlegbs(x) It estimates the BS parameters by the ML
method using the data x

Histogram histgbs(x, boxPlot = T, pdfLine = T) It produces a histogram and a boxplot
with estimated BS PDF using the data x

Envelope envelopegbs(x) It produces a probability plot with
envelope using the data x

AD test adgbs(x) It computes AD p-value for the data x

KS test ksgbs(x, graph = T) It computes KS p-value and plots
estimated theoretical BS and empirical
CDF using the data x

bssum package

PDF dbss(1, k = 2, alpha = 0.5, beta = 1) 0.121

CDF pbss(1, k = 2, alpha = 0.5, beta = 1) 0.016

QF qbss(0.5, k = 2, alpha = 0.5, beta = 1) 2.118

Numbers rbss(10, k = 2, alpha = 0.5, beta = 1) It generates 10 BSsum(0.5, 1, 2) random
numbers

MLE estbss(k, x) It estimates the BSsum parameters by the
ML method using the data x and k fixed

A2: pH levels for 5 Rivers (Ri) in New Zealand (see Table 5)
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Risk Problems Identifying Optimal
Pollution Level

George E. Halkos and Dimitra C. Kitsou

Abstract The determination of the optimal pollution level is essential in
Environmental Economics. The associated risk in evaluating this optimal pollution
level and the related Benefit Area (BA), is based on various factors. At the same
time the uncertainty in the model fitting can be reduced by choosing the appropriate
approximations for the abatement and damage marginal cost functions. The target
of this paper is to identify analytically and empirically the Benefit Area (BA) in the
case of quadratic marginal damage and linear marginal abatement cost functions,
extending the work of (Halkos and Kitsos, Appl. Econ. 37:1475–1483, 2005, [9]).

Keywords Optimal pollution level · Risk · Benefit area

1 Introduction

Rationality in the formulation and applicability of environmental policies depends
on careful consideration of their consequences for nature and society. For this reason
it is important to quantify the costs and benefits in the most accurate way. But the
validity of any cost–benefit analysis (hereafter CBA) is ambiguous as the results may
have large uncertainties. Uncertainty in the evaluation of their effects is present in
all environmental problems and this underlines the need for thoughtful policy design
and evaluation. We may have uncertainty in the underlying physical or ecological
processes, as well as in the economic consequences of the change in environmental
quality.

As uncertainty may be due to the lack of appropriate abatement and damage
cost data, we apply here a method of calibrating hypothetical damage cost estimates
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relying on individual country abatement cost functions. In this way a “calibrated”
Benefit Area (BAc) is estimated.

Specifically we try to identify the optimal pollution level under the assumptions
of linear marginal abatement and quadratic marginal damage cost functions. That
is, we consider another case of the possible approximations of the two cost curves
improving the work in [9] by extending the number of different model approxima-
tions of abatement and damage cost functions and thus the assumed correct model
eliminates uncertainty about curve fitting. The target of this paper is to develop the
appropriate theory in this specific case.

2 Determining the Optimal Level of Pollution

Economic theory suggests that the optimal pollution level occurs when the marginal
damage cost equals the marginal abatement cost. Graphically the optimal pollution
level is presented in Fig. 1 where the marginal abatement (MAC = g(z)) and the
marginal damage (MD = ϕ(z)) are represented as typical mathematical cost func-
tions.

The intersection of the marginal abatement (MAC) and marginal damage (MD)
cost functions defines the optimal pollution level (denoted as I in Fig. 1) with coor-
dinates (z0, k0), I (z0, k0). The value of z0 describes the optimal damage reduction
while k0 corresponds to the optimal cost of attaining that. The area in R2 covered
by the MAC and MD and the axis of cost is defined as the Benefit Area. That is,
the point of intersection of the two curves, I = I (z0, k0), reflects the optimal level
of pollution with k0 corresponding to the optimum cost (benefit) and z0 to the opti-
mum damage restriction. It is assumed (and we shall investigate the validity of this
assumption subsequently) that the curves have an intersection and the area created
by these curves (region AIB) is what we define as Benefit Area (see [15], among
others), representing the maximum of the net benefit that is created by the activities
of trying to reduce pollution.

Consider Fig. 1. Let A and B be the points of the intersection of the linear curves
MD = ϕ(z) = α + βz and MAC = β0 + β1z with the “Y–axis”. We are restricted
to positive values. For these points A = A(0, α) and B = B(0, β0) the values of
a = α and b = β0 are the constant terms of the assumed curves that represent MD
and MAC respectively.

Let us now assume that

MAC(z)= g(z) = β0+β1z, β1 �= 0 and MD(z) = ϕ(z) = αz2+βz+γ, α > 0.

The intersections of MD and MAC with the Y–axis are b = MAC(0) = β0 and
a = MD(0) = γ , see Figs. 2, 3 and 4. To ensure that an intersection between MAC
and MD occurs we need the restriction 0 < β0 < γ . yboxAssuming α > 0 three
cases can be distinguished, through the determinant of ϕ(z), say D, D = β2 − 4αγ ;
(a) D = 0 (see Fig. 2), (b) D > 0 (see Fig. 3) while the case D < 0 is without
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Fig. 1 Graphical presentation of the optimal pollution level (general case)

Fig. 2 C = C
(
− β

2α , 0
)
, α > 0

Fig. 3 C = C
(
− β

2α , 0
)
, E = E

(
0, ϕ

(
− β

2α

))
, ϕ

(
− β

2α

)
= min ϕ(z), α > 0
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Fig. 4 C = C
(
− β

2α , 0
)
, E = E

(
0, ϕ

(
− β

2α

))
, ϕ

(
− β

2α

)
= min ϕ(z), α < 0

economic interest (due to the complex–valued roots). Cases (a) and (b) are discussed
below, while for the dual α < 0 see Case (c). For more details see also [14].

Case (a): α > 0, D = β2 − 4αγ = 0. In this case there is a double real root for
MD(z), say ρ = ρ1 = ρ2 = − β

2α . We need ρ > 0 and hence β < 0. To identify the
optimal pollution level point I (z0, k0) the evaluation of point z0 is the one for which

MD(z0) = ϕ(z0) ⇔ g(z0) = MAC(z0) ⇔ αz20 + βz0 + γ = β0 + β1z0 ⇔

αz20 + (β − β1)z0 + (γ − β0) = 0. (1)

Relation (1) provides the unique (double) solution when D1 = (β − β1)
2 − 4α(γ −

β0) = 0 which is equivalent to

z0 = −β − β1

2α
= β1 − β

2α
. (2)

As z0 is positive and α > 0 we conclude that β1 > β. So for the conditions are:
α > 0, β1 > β, 0 < β0 < γ we can easily calculate

k0 = MAC(z0) = β0 + β1
β1 − β

2α
> 0, (3)

and therefore I (z0, k0) is well defined. The corresponding Benefit Area (BAQL) in
this case is
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BAQL = (ABI) =
z0∫

0

ϕ(z) − g(z)dz =
z0∫

0

αz2 + (β − β1)z + (γ − β0)dz =
[

α
3 z3 + 1

2 (β − β1)z
2 + (γ − β0)z

]z0

z=0
=

α
3 z30 + 1

2 (β − β1)z
2
0 + (γ − β0)z0.

(4)

Case (b): α > 0, D = β2 − 4αγ > 0. For the two roots ρ1, ρ2, we have
|ρ1| �= |ρ2|, ϕ(ρ1) = ϕ(ρ2) = 0 and we suppose 0 < ρ1 < ρ2, see Fig. 3. The fact
that D > 0 is equivalent to 0 < aγ < (β/2)2, while the minimum value of the MD
function is ϕ(−β/(2α)) = (4αγ − β2)/(4α).

Proposition 1 The order 0 < ρ1 < ρ2 for the roots and the value which provides
the minimum is true under the relation

β < 0 < αγ <
(

β
2

)2
. (5)

Proof The order of the roots 0 < ρ1 < ρ2 is equivalent to the set of relations:

D > 0, αϕ
(
− β

2α

)
< 0, αϕ(0) > 0, 0 <

ρ1 + ρ2

2
. (6)

The first is valid, as we have assumed D > 0. For the imposed second relation

from (6) we have αϕ(− β
2α ) < 0 ⇔ α

4αγ−β2

4α < 0 ⇔ D > 0, which holds. As
both the roots are positive ρ1, ρ2 > 0, then the product ρ1ρ2 > 0 and therefore
γ
α

> 0 ⇔ αγ > 0. The third relation αϕ(0) = αγ > 0, in (6) is true already and

0 <
ρ1+ρ2

2 ⇒ 0 < − β
2α equivalent to β < 0. Therefore we get β < 0 < αγ < (

β
2 )2.

We can then identify the point of intersection I (z0, k0), z0 : MAC(z0) = MD(z0)
as before. Therefore under (5) and β1 > β0 we evaluate k0 as in (3) and the Benefit
Area BAQL can be evaluated as in (4).

Case (c): α < 0, D = β2 −4αγ > 0. Let us now consider the case α < 0. Under
this assumption the restriction D = 0 is not considered, as the values of ϕ(z) have
to be negative.

Under the assumption of Case (c), the value ϕ(− β
2α ) = 4αγ−β2

4α corresponds to

the maximum value of ϕ(z). We consider the situation where ρ1 < 0 < − β
2α < ρ2

(see Fig. 4) while the case 0 < ρ1 < − β
2α < ρ2 has no particular interest (it can be

also considered as in Case (b), see Fig. 3).

Proposition 2 For the Case (c) as above we have: ρ1 < 0 < − β
2α < ρ2 when

αγ < 0.

Proof The imposed assumption is equivalent to αϕ(0) < 0 ⇔ αγ < 0 as ρ1ρ2 < 0,
αϕ(− β

2α ) < 0 ⇔ αγ < (
β
2 )2. Therefore the imposed restrictions are αγ < 0 <

(
β
2 )2 (compare with (5)). Actually, αγ < 0.
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Case (c) requires that β0 < γ and β1 > 0. To calculate z0 we proceed as in (1)
and z0 is evaluated as in (2). Therefore, with α < 0 we have β1−β < 0, i.e. β1 < β.
Thus for β1 < β, αγ < 0, the BA as in (4) is still valid.

3 An Empirical Application

In the empirical application, regression analysis is adopted to estimate the involved
parameters. The available data for different European countries are used, as derived
and described by [3, 4].

The abatement cost function measures the cost of reducing tonnes of emissions
of a pollutant, like sulphur (S), and differs from country to country depending on
the local costs of implementing best practice abatement techniques as well as on the
existing power generation technology. For abating sulphur emissions various control
methods exist with different cost and applicability levels, see [3–6].

Given the generic engineering capital and operating control cost functions for
each efficient abatement technology, total and marginal costs of different levels of
pollutant’s reduction at each individual source and at the national (country) level
can be constructed. According to [3, 4, 8], the cost of an emission abatement option
is given by its total annualized cost (TAC) calculated by the addition of fixed and
variable operating and maintenance costs. For every European country a least cost
curve is derived by finding the technology on each pollution source with the lowest
marginal cost per tonne of pollutant removed in the country and the amount of
pollutant removed by that method on that pollution source.

Specifically the abatement cost curves were derived for all European countries
after considering all sectors and all available fuels with their sulphur content for the
year 2000. See [2], for technical details on deriving an abatement cost curve and on
using pre-during and post–combustion desulphurization techniques. Figure5 shows
the marginal cost curve in the case of Austria and for the year 2000.

For analytical purposes, it is important to approximate the cost curves of each
country by adopting a functional form extending the mathematical models described
above to stochastic models, [7]. At the same time, the calculation of the damage
function ϕ(z) is necessary as proposed in [9, 13, 14]. The only information available
is to “calibrate” the damage function, on the assumption that national authorities
act independently (as Nash partners in a non-cooperative game with the rest of the
world) taking as given deposits originating in the rest of the world, see [10].

The results are presented in Table1, where Eff is the efficiency of the benefit area,
in comparison with the maximum evaluated from the sample of countries under
investigation and can be estimated using as measure of efficiency the expression as
defined in [9]:

Eff =
(

BA

maxBA

)

× 100.
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Fig. 5 The marginal abatement cost curve for Austria and for the year 2000 (Source Modified from
[2])

Table 1 Coefficient estimates in the case of quadratic MD and MAC functions

Countries c0 c1 c2 b0 b1 b2 R2

Albania 0.7071 0.01888 0.0001397 −3.3818 0.015 0.0048 0.819

Austria 8.57143 0.055012 0.0001145 3.274 −0.221 0.004 0.748

Belgium 2.2424 0.03869 0.0001688 0.497 −0.124 0.003 0.851

Former
Czech.

37.794 0.100323 0.000059 11.241 0.2358 0.00018 0.723

Denmark 10.0 0.1923 0.0060811 −2.49 0.099 0.0053 0.923

Finland 4.021 0.0781 0.0001459 2.343 −0.098 0.0046 0.583

France 33.158 0.277352 0.000197 42.374 −0.053 0.0018 0.945

Greece 3.7373 0.034133 0.0000491 −1.614 0.342 0.0006 0.998

Hungary 5.101 0.031488 0.0000417 2.506 0.216 0.0004 0.923

Italy 21.01 0.030036 0.0000191 12.5 0.36 0.0003 0.689

Luxembourg 0.421 0.3161 0.0272381 −0.7272 0.01 0.09234 0.883

Netherlands 8.353 0.19513 0.0035144 −6.18 0.41 0.0009 0.794

Norway 1.421 0.07852 0.0001701 0.94 −0.244 0.0164 0.878

Poland 6.212 0.023153 0.000071 −8.023 0.324 0.00009 0.77

Romania 9.091 0.011364 0.0000624 5.502 0.19 0.0001 0.81

Spain 11.7 0.007288 0.0049742 10.21 −0.021 0.00014 0.992

Sweden 2.4 0.06423 0.0000932 4.074 −0.252 0.004 0.854

Switzerland 2.4 0.56027 0.002803 5.7543 −1.6289 0.11203 0.912

Turkey 14.9 0.01781 0.0000122 8.0622 0.011 0.00036 0.932

UK 19.1 0.06879 0.0000467 15.54 0.0264 0.0003 0.884
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Table 2 Calculated “calibrated” benefit areas (BAc)

Countries Linear–Quadratic

D z0 g(z0) G(z0) BA Eff

Albania 0.0785 29.594 −3.38 −52.05 81.24 3.5872

Austria 0.1609 84.649 3.3 294.1 628.6 27.756

Belgium 0.0474 63.406 0.5 37.2 182.8 8.0715

Former
Czech.

0.0378 160.988 11.24 5119.8 2264.6 100

Denmark 0.2735 58.138 −2.5 369.72 536.7 23.698

Finland 0.0619 46.182 2.4 154.72 114.3 5.0453

France 0.0428 149.22 42.4 7726.3 309.2 13.65

Greece 0.1076 16.83 −1.62 22.23 45.5 2.0095

Hungary 0.0381 13.66 2.51 54.72 17.9 0.7901

Italy 0.1191 25.22 12.5 431.19 108.1 4.7726

Luxembourg 0.5178 5.56 −0.73 1.4 5.8 0.2572

Netherlands 0.0985 54.98 −6.18 329.7 424.4 18.741

Norway 0.1356 21.056 0.94 16.75 30.6 1.3508

Poland 0.0956 46.67 −8.03 −18.57 333.7 14.734

Romania 0.0333 19.87 5.5 147.1 35.8 1.5803

Spain 0.0016 245.43 10.2 2563.2 527.8 23.305

Sweden 0.0732 73.35 4.1 147.1 201.7 8.9075

Switzerland 3.2893 17.87 5.56 55.8 76.5 3.378

Turkey 0.0099 147.82 8.1 1698.5 698.65 30.851

UK 0.0061 200.5 15.6 4452.1 759.9 33.551

Looking at Table2 is worthmentioning that large industrial upwind counties seem
to have a large benefit area. Looking at the European Monitoring and Evaluation
Program (EMEP) and the provided transfer coefficients matrices with emissions
and depositions between the European countries it can be seen that the countries
with large benefit areas are those with large numbers on the diagonal indicating the
significance of the domestic sources of pollution [1]. At the same time the large
off–diagonal transfer coefficients show the influence of one country on another in
terms of the externalities imposed by theEasternEuropean countries on the others and
the transboundary nature of the problem. In the same lines, near to the sea countries
may face small benefit areas as the damage caused by acidification depends on where
the depositions occur. In the case of occurrence over the sea it is less likely to have
much harmful effect, as the sea is naturally alkaline. Similarly if it occurs over
sparsely populated areas with acid tolerant soils then the damage is low, [10].
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4 Conclusions and Policy Implications

The typical approach defining the optimal pollution level has been to equate the
marginal (of an extra unit of pollution) damage cost with the corresponding marginal
abatement cost. An efficient level of emissions maximizes the net benefit, that is, the
difference between abatement and damage costs. Therefore the identification of this
efficient level shows the level of benefits maximization, which is the resulting output
level if external costs (damages) are fully internalized.

In this paper the corresponding optimal cost and benefit points were evaluated
analytically. We shown that the optimal pollution level can be evaluated only under
certain conditions. From the empirical findings is clear that the evaluation of the
“calibrated” Benefit Area, as it was developed, provides an index to compare the
different policies adopted from different countries. In this way a comparison of
different policies can be performed. Certainly the policy with the maximum Benefit
Area is the best, and the one with the minimum is the worst. Clearly the index BAc

provides a new measure for comparing the adopted policies.
It is clear that due to the model selection, the regression fit of the model, the

undergoing errors and the propagation create a Risk associated with the value of the
Benefit Area. This Associated Risk is that we try to reduce, choosing the best model,
and collecting the appropriately data.

Policy makers may have multiple objectives with efficiency and sustainability
being high priorities. Environmental policies should consider that economic devel-
opment is not uniform across regions and may differ significantly, [12]. At the same
time reforming economic policies to cope with EU enlargement may face problems
and this may in turn affect their economic efficiencies, [11].
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Finite Populations Sampling Strategies
and Costs Control

Dinis Pestana, Maria Luísa Rocha and Fernando Sequeira

To guess is cheap, to guess cheaply can be wrong and expensive.

Abstract Excellent data analysis methodologies fail to produce good results when
using bad data. Bad data arise from inadequate strategies at the collecting stage, that
are responsible for bias, or insufficient to produce accurate estimates of parameters
of interest. Sampling is the statistical subfield that uses randomness as an ally in
data gathering, the gold standard in ideal situations being to collect samples without
replacement (thus each item bringing in new information, and as a consequence the
estimator having reduced variance when compared to the corresponding sampling
with replacement estimator). A quick overview of sampling strategies is presented,
showing how they deal with cost control in non-ideal circumstances. Comments on
the use of immoderately large samples, on the reuse of samples, and on computa-
tional sample augmentation, and other critical comments on misuse of statistics are
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registered, in the hope that these alerts improve the obtention of statistical findings,
so often blurred because sophisticated statistical analysis is useless when it uses bad
data.

Keywords Sampling · Sample size · Sampling strategies · Accuracy

1 Introduction

Statistics is a privileged tool in building up knowledge from raw information, since
the aim of statistics is to infer from an observed sample what is likely to be true for
the whole population, i. e. to provide a formal standing to inductive reasoning. With
infinite populations dealing with incomplete information collected by sampling is
the unique option. In finite populations, although to observe entire populations via
a census is conceptually possible, sampling is in general more advisable, since a
census is always more time and resources consuming than sampling, and the cost
when dealing with large populations is indeed very high. For instance, the USA
2010 population census cost $42 per capita, a total of 13 billion and, at the end, bitter
controversies follow, as in PS: Political Science and Politics 33, namely [1, 5, 9], or
Statistical Science 9(4), namely [4, 7, 30], just to cite a few papers debating the issue.
Moreover, there exist members of the population that try to elude census (illegals
and homeless people, for instance), no census is perfect, and the cost of trying to
reach this thin slice of the population is unaffordable.

It is even arguable that the use of a large number of poorly trained temporary census
officers can endanger the quality of data gathering, and that appropriate sampling
(i.e., representative since a correct methodology is used, and the sample size ensures
high probability that the population heterogeneity is being taken into account), much
less expensive, could provide better results, since it uses a much smaller number
of high quality trained professional officers. The complementarity of census and
samples has also been used for instance in the 2010 U.K. population census, see
the Office for National Statistics report [27]. Observe also that when carrying out a
census some population units try to avoid observation, and it is more complicated to
deal with this kind of missing observations than with non-response in sampling.

No one would dispute that in all fields knowledge is based on partial information.
At the end of the XIXth century, Galton was prescient of the importance of Statistics
in tackling complex problems, and his well known statement meaning that Statistics
is an intellectual swiss jackknife in cutting through the layers of difficult problems

[Statistics are] the only tools by which an opening can be cut through the formidable thicket
of difficulties that bars the path of those who pursue the Science ofMan. (quoted by Pearson,
in The Life and Labours of Francis Galton)

was indeed prophetic.
Yet, although the role of Statistics as the core body of the experimental method

theory has been undisputed since Fisher developed Experimental Design, and Ney-
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man and Pearson shaped the theory of statistical testing, circa 1930, three decades
ago Statistics was seldom used in many branches of Science. Nowadays we have the
reverse situation, no serious experimental science journal publishes a paper devoid
of statistical analysis supporting the building of knowledge from information.

This progress is however controversial, in the sense that inmany situations the data
analysis is performed using bad data, and hence produces bad science.We fear that in
the near future the public will mistrust science, since fraud tied to economic interests
[14], mere incompetence, and the drive to publish hastily, together with a naïve trust
in bibliometrics evaluation [2] leads often to the publication of false conclusions
[19]. Perusing the documentation [18] on Ig Nobel prizes (that first make laugh, then
[sometimes] think) is recommended, to laugh and to have a critical appraisal of the
ways of modern academics. The ravaging effect of bad data are obvious from the
above references, or from editorials in outstanding journals such as The Lancet or
The New England Journal of Medicine,

Sampling theory has been developed to ascertain how to collect data. Gathering
data is a crucial step in knowledge building, and Fisher’s joke on diagnosis and
autopsy in his Presidential Address to the First Indian Statistical Congress, in 1938

To consult the statistician after an experiment is finished is oftenmerely to ask him to conduct
a post mortem examination. He can perhaps say what the experiment died of.

cleverly points out one of the principal causes of blunders in science.
Saving costs is a sensible goal, but unfortunately it is often done with the most

inadequate strategy: saving the expense of consulting a specialist, instead of saving
cleverly using sampling theory.

The main goal of sampling theory is to provide tools to obtain representative
samples, cost being a natural concern, since all rigorous sampling operations are
expensive. A representative sample must indeed reflect the heterogeneity of the pop-
ulation units, implying that the sample sizemust be large enough to reveal variability;
but sample size, which is obviously an increasing function of the population disper-
sion and, in finite populations, of size, depends also on the sampling design, that
must take into account questions such as:

• In sampling from finite populations, do we have a list of items in the target
population?—If the answer is negative, systematic sampling can be an interesting
alternative.

• Is there the need to infer for separate subgroups of the population?—If this is the
case, stratified sampling should be used, or post-stratification considered.

• Is it affordable to get a sample of the size needed with the optimal design?—
Non-response is an important issue, and eventual bias must be investigated, or
multiple imputation techniques [35] used. New developments of Statistics, namely
resampling techniques and computational augmentation of samples, and meta-
analysis of statistical evidence based on multiple samples, can contribute towards
solving this problem.

In the following sections we describe some of the most common designs, and
circumstances advocating their use. The idea is always: control everything you can,
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and what cannot be controlled must be randomised, since chance is the ultimate ally
to avoid bias in data gathering. Collect as much data as you need, but not much
more than that, since with too many data irrelevant differences become significant
very often. If you are tempted to simulate samples, investigate first whether the
computational augmentation of samples is truly advisable.

2 Sampling from Finite Populations: The Gold Standard

Most monographs on sampling focus on design-based sampling from finite popula-
tions. Design-based, as opposed to model-assisted based, indicates that randomness
intervenes through the probability of selection of items from the population to the
sample (while in model-assistedl based sampling [32] the assumption of some sto-
chastic model for the population has some bearing on the constitution of samples; for
a very elementary example assuming Poisson randomness [33] on quadrats sampling:
assuming that the population scatter has Poisson regularity, and that the observation
of appropriately—i. e., randomly—chosen “unit” plots, renamed quadrats, provides
enough information to estimate the density of the population, the population size
is estimated as the product of the estimated density by the proportion of sampled
quadrats).

When sampling from a finite population of size N in order to estimate some
parameter of interest—often the mean value (and observe that a proportion p is the
mean value of a Bernoulli model), or a function of the mean value μ such as the
total τ = Nμ—, an important step is to choose a sampling strategy, and from that to
decide the sample size needed to estimate the parameter with the degree of accuracy
needed, at a given confidence level.

The simplest situation arises when the selection cost per unit, for planning pur-
poses, is assumed to be the same for each possible item, and in addition we are not
interested in subpopulations.

Under that assumption, the gold standard is srswr—simple random sampling
without replacement. Observe that sampling without replacement implies a mild
form of dependency (exchangeability), and hence approximate confidence intervals
rely on asymptotic results for sums of mildly dependent random variables.

This sampling strategy is unique in the sense that the probability of selecting
any sample of size n is 1

(N
n )
. Observe also that selecting without replacement has

an interesting consequence: any observation brings in new information, with the
ultimate effect of reducing the estimator variance.

In fact, when estimating the mean value μ from a simple random sample X =
(X1, . . . , Xn), with equal selection probabilities πs = 1

N , either with or without
replacement, via the estimator μ̃ = 1

n

∑n
k=1 Xk (unbiasedminimumvariance linear),

the variance when using replacement is σ 2

n , while without replacement there is a
finite population correction reflecting the sampling fraction n

N , andwe obtain smaller
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variance σ 2

n
N−n
N−1 (which can be unbiasedly estimated by Ṽ (μ̃) = S2

n
N−n

N , where S2

is the sample variance).
Therefore, in casewewish to estimateμwith an error bound B at a (1−α)×100%

confidence level from a population whose standard deviation is σ , denoting z1− α
2
the

(1 − α
2 )-quantile of the standard normal,

• when sampling with replacement, the requirement z1− α
2

σ√
n

< B implies that we

should choose a sample size nw >
z2
1− α

2
σ 2

B2 .

• when sampling without replacement, the requirement z1− α
2

σ√
n

√
N−n
N−1 < B

implies that we should choose a sample size

nw∗ >
z21− α

2
σ 2 N

N−1

B2 + z21− α
2

σ 2

N−1

= N

1 + B2

z2
1− α

2
σ2

N−1

≈ N

1 + (N−1) B2

z2
1− α

2
s2

,

an expression that clearly shows that the sampling effort when sampling without
replacement should increase with the population size and the population variance.

As nw > nw∗ , the cost to achieve a fixed accuracy is reduced when sampling
without replacement. For instance, for N = 1927, σ = 5.38, to guarantee an error
bound B = 0.5,with confidence 95%, nw∗ ≥ 362, while if sampling with replace-
ment we should use nw ≥ 445. For smaller values of the standard deviation, less than
N B2

80 , say, for a population size of 1927, the size reduction is however very tiny, but
sampling without replacement still saves costs mainly because it is in general easier
and quicker to implement.

Observe that the use of standard normal quantiles of appropriate probability in the
case of sampling with replacement is a simple consequence of the classical central
limit theorem, since the independence assumption is true. When sampling without
replacement, the normal approximation is justified by the Erdös-Rényi [11] central
limit theorem extension assuming exchangeability, an information seldom stated in
sampling monographs.

In many situations, a sample of size greater than nw∗ is collected, the goal being to
overcome non-response, which is an important source of error and bias, since there is
a tacit belief that statistical inference using large samples will be more accurate. This
is trivially true, but irrelevant significance is a possible side effect of immoderately
large samples; hence the recommendation is: n ≥ nw∗ is a sensible guidance, much
larger samples will cost more and the benefit is arguable.



216 D. Pestana et al.

3 Deviating from the Gold Standard to Save Costs

Two main reasons to deviate from the gold standard are unequal costs per unit, or
unavoidable drawbacks such as the absence of a sampling frame. On the other hand,
the sample unit cost in multi-step cluster sampling is optimal. Note that with this
strategy more information than immediately needed is in general collected, with the
background purpose of using it in future studies; however the re-use of samples can
be a serious source of bias, and should be avoided.

On the other hand, advantages may arise using special strategies, such as pooling
units, or adapting the sampling scheme during implementation, according to whether
it provides good or bad results.

3.1 Stratified and Group Sampling

Stratified sampling is advisable when we can partition the population in a small
number of subpopulations. It is a combination of census (of the strata) and sampling,
in general srswr (within each stratum). Group (or cluster) sampling combines census
and sampling the other way round: as this sampling strategy is fit for the case of many
distinct subgroups, we first sample to choose some of the subgroups randomly (and
this procedure may be repeated if needed), and then include all the observable units
in the selected subgroups in our sample.

This is considered to be the sampling strategy with best return, in the sense that
the cost per unit is optimal. In general, this sampling strategy is useful when within
groups heterogeneity is big, while the cluster means are approximately equal.

Observe however that there might exist unaccounted dependencies biasing the
results, and that on the other hand this type of data collection is often done having
in mind the purpose of storing a wealth of information for future use. However, as
we comment in Sect. 4, reuse of samples should be avoided.

So, although we recognise that cluster sampling cuts costs, we shall focus on
stratified sampling.

Suppose that a population of size N can be classified into ν non overlapping strata,
so that the numbers of items in the strata are Nk, k = 1, . . . , ν. Suppose further that
the sampling unit costs are ck, k = 1, . . . , ν, and that the standard deviation within
each stratum is σk, k = 1, . . . , ν. An unbiased estimate of the population mean

is xst = 1
N

ν∑

k=1

Nk xk where the xk = 1
nk

∑nk
j=1 xk j are the unbiased mean strata

estimators, i.e. (xk1, . . . , xknk ) is the srsws collected in the k-th stratum.
We shall consider sampling efforts within stratawk, k = 1, . . . , ν; in other words,

if the sample total size is n, the within strata samples are of size nk = n wk . The
approximate sample size n required to estimate the population mean with confidence
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(1− a) × 100% is n =

ν∑

k=1

N 2
k σ 2

k

wk

N2B2

z2
1− α

2

+
ν∑

k=1

Nkσ
2
k

and optimal allocations do exist to minimise

costs for fixed variance strata: nk = n

Nkσk√
ck

ν∑

j=1

N j σ j√
c j

.

Stratified sampling is highly recommended when within strata heterogeneity is
small, and on the other hand heterogeneity of strata means is considerably higher.

3.2 Systematic Sampling

The unavailability of a sampling frame hinders srsw, but we can use alternative
designs to randomly select units from the population. For instance, we may be inter-
ested in the average caloric content of lunches of university students using a campus
restaurant, but there is no listing of the population, so srswr is out of question.

One of the most advisable ways of dealing with the problem is the following:
suppose we wish to take some measurement on 5% elements from the population,
and that we can have sequential access to themembers of the population.We can then
select a random integer in {1, 2, . . . , 20}, say 17, and therefore select in our sample
the 17th, the 37th,…, the (20k + 17)th element from the sequence, k = 1, 2, . . . , n,
with n determined by N ∈ [17 + 20n, 17 + 20(n + 1)).

Observe that with this systematic sampling strategy, the probability of selection
is the same for all individual units, but that the probabilities of selecting different
samples of the same size are radically diverse, in fact 0 for most subsets of the
population.

Systematic sampling is an interesting alternative in the absence of a sampling
frame, since we can fix a priori the sampling effort, and it emulates quite well
simple sampling in two extreme circumstances: when there is no structure in the
sequence of population items asweobserve them, or, on the other hand,when the units
roughly appear inmonotoneorder. In thehospital balanceof debts, for instance,where
chronological ordering of files may be correlated to costs, this sampling strategy
provides rich information, since is balances the representativity of debts from several
periods.

Obviously systematic sampling can be very misleading when sampling from peri-
odic sequences, namely when 1/ f , where f stands for the sample fraction, is approx-
imately the period. On the other hand, if 1/ f is much smaller than the period, sys-
tematic sample can provide some interesting insights, since it artificially creates
something similar to post-stracta or to clusters. For instance, many phenomena have
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a 12 months period, and a f = 1
4 sampling effort will provide interesting quarterly

data. Saving the cost of building up a rigorous and manageable sampling frame is
justification enough to use systematic sampling instead of srswr.

3.3 Combined, Sequential, and Adaptive Sampling

Combined and sequential sampling have been developments contributing to the US
II World War effort. In particular, sequential analysis developments, because of their
impact in quality control, have been classified restricted information until the end
of the war, so that the original Wald paper [39] publication has been delayed until
1945, when the hostilities ceased. Sample size is not fixed in advance; instead, data
are evaluated as they are collected, and further sampling is stopped in accordance
with a pre-defined stopping rule as soon as significant results are observed, and this
of course is bound to save costs in many instances. Observe however that this is not
properly a random sampling strategy, contrarily to the others that we briefly discuss in
this overview. However, as it can be considered an ancestor of more modern adaptive
sampling techniques, and it produces in fact important results, this technique deserves
a brief mention. Observe that sequential analysis is optimistic, in the sense that it
is expected that a stopping rule will act so that our purposes can be achieved with
smaller size samples than recommended using for instance srswr.

In the early forties, the need to detect recruits with venereal diseases led Dorfman
[10] to investigate the idea of pooling blood samples of several soldiers, say 10, and
to check whether the analysis would return a positive result. In that case, separate
10 analyses would be done to detect the infected ones, otherwise this single analysis
would give a clean bill of health to the 10 members of the group.

Suppose that the prevalence rate of the disease is p, and that in the first step we
analyse the amalgamated blood of n individuals. The expected number of analyses
needed to screen each group of n individuals with this pooling technique is then
n∗ = (1 − p)n + (n + 1) [1 − (1 − p)n], and in general n∗ � n, lowering costs.

The optimal group size can the be easily be computed, and it naturally increases
with the inverse of the prevalence rate. It is worth mentioning that this technique is
worth considering for p < 0.30663, and that there is an interesting discontinuity, in
the sense that there is an abrupt change of the optimal size from n = 1 to n = 3.

The idea of pooling also occurred to Turing and the team working at Bletchley
Park with the Banburismus technique: to test hypotheses about whether different
messages coded by German Enigma machines should be connected and analysed
together, but this and Turing’s work on sequential analysis, that it seems he devised
at the same time and independently of Wald, remained secret until 1975 [29].

Combined sampling has important applications in quality control, see [6] for an
extensive bibliography on the subject up to 1992, since unfortunately, as far as we
know, Part B of that Annotated bibliography of composite sampling has never been
published. Santos and co-workers have been investigating composite sampling when
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qualitative analyses have imperfect sensibility and/or specificity, and to quantitative
analyses, [24, 31] and references therein.

Adaptive sampling is a nice evolution of sequential sampling, in the sense that it
shares the same type of common sense. In fact, random samples on average perform
nicely, but there is in the essence of sampling the possibility of occasionally getting
samples that are not representative of the whole population. In particular, in cluster
sampling, there is the possibility that some of the clusters provide poor information.
Adaptive sampling, in simple terms, stems out from the belief that neighbouring
clusters have some similarity, and thus that poorly informative clusters should be
discarded in favour of increasing sampling effort in the vicinity of clusters providing
much information.

An example of adaptive sampling helps to understand why we claim that is more
realistic: suppose that we want to sample zones in the Newfoundland sea to evaluate
cod stocks, and that in a first step n randomly chosen square regions with a 3 marine
miles diagonal are chosen in the ocean chart.

When in one of those spots the research ship sails 0.25 marine miles without cod
catching, this spot is abandoned. On the other hand, if the catch of cod occurs in
some zone, the 8 neighbouring spots in the chart grid are added to the sampling plan.
Hence, there is a tacit recognition that some spots are useless, while others are useful
and hint that the neighbouring ones are also useful.

It is obvious that this adaptive scheme ismuchmore rewarding than afixed scheme,
that at the end of the day could eventually provide none information whatsoever for
our purposes. The many facets of adaptive sampling are detailed in [34, 37].

3.4 Distance Sampling

As we said before, in a large majority of cases sampling is done with the purpose
of cleverly estimating some parameter, namely a function of the mean value. This is
done taking for granted that the population size is a known constant N .

However, for instance in wildlife studies, N is unknown, and the purpose of sam-
pling is to estimate the population size. Crude but clever methods began to develop
at the end of the XIXth Century, for instance Petersen’s capture-recapture based
estimator [28], but in fact similar methods had already been used circa 1650 by
Bacon to estimate game abundance, and by Laplace in 1780 to estimate the popula-
tion of French departments. Subsequent sampling using this estimate must envisage
increased estimators variance, in the general spirit that in hierarchical models the
variance is the sum of two terms: the variance of the conditional mean plus the mean
of the conditional variance.

Distance sampling uses the common sense belief that detection capacity fades out
with distance. Hence, if someone looks around (point transects) some chosen spots,
or looks to both sides of some paths (line transects), it is expected that items on the
transect are indeed observed, but that the observation of items decays with distance
from the sampling agent. Sensible choice of the transects together with appropriate
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modelling of the decay rate of this observation function are the cornerstones to
estimate from the “censored” sample that has been observed. For further details,
[22, 25] and references therein.

4 Considerations

The initial stages of statistical inference were severely constrained by the incapacity
of dealingwith complexmodels. Fortunatelymost of the usual statistics are functions
of sums, and the central limit theorem asserted that a “normal” approximation could
be used for sums of random variables, under very broad circumstances. This was
very fortunate, since the cumulants of the normal are 0 but for the first and the
second (this is the ultimate reason why the central limit theorem holds for sums
of independent identically distributed random variables with finite variance), and
hence it is a pure location/scale parametrized family, linearly amenable to the very
well tabulated standard normal distribution. And assuming normality, excellent exact
results did follow todealwithmeans (Student’s t), variances (chi-square) andquotient
of variances (F), appropriate to deal with samples of all sizes, including small size
or moderately sized samples.

Also in the first half of the XXth Century, important results of nonparametric
statistics served to deal with important location/scale problems, distribution fitting,
asymmetry, randomness, association, and many other important questions, also with
small size or moderately sized samples.

In the mid century, the availability of computing devices capable of easily dealing
with large datasets and tricky distributions brought great developments in statistics.
Namely, the team led by Tukey [26, 38] advocated EDA (Exploratory Data Analysis)
so convincingly that a later return to Confirmatory Data Analysis has been necessary.
Other side effects of the development of computers have been the ease of use ofMonte
Carlo, Jacknife, Bootstrap, and many other techniques, an interesting turning point:
for instance, the question of robustness was suddenly as relevant as sufficiency, or
even more relevant.

Resampling techniques, and real time data collecting data, changed the state of the
art abruptly: instead of dealing with small samples, very large samples needed new
data mining techniques, in a sense devices to separate gold from ore in haphazard
collected data. This has been particularly important in fields such as geophysics,
astronomy, economics, where the daily automated collection of thousands of data is
easily feasible.

But even in other areas, such as life sciences, in which many experiments deal
with small samples, the situation changed abruptly due to two developments: on
one hand, the formal computational augmentation of samples and simulation; on the
other hand, the ease of communications strengthened collaboration bonds between
groups investigating similar questions, and retrieval of experimental data became a
recommendation, if not a standard (namely using the Cochrane Collaboration), so
that systematic reviews and meta analysis, an expression first appearing in [13] and
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nowadays ubiquitous in research, superseded the restrictive situation of analysing
small data sets.

Observe that this accumulation of data can, however, result in significance of
trulyminimal and irrelevant differences; cumulativemeta-analysis, stopping addition
of studies when the required quantity of information is reached, is an interesting
development, in a sense similar in spirit to sequential analysis. On the other hand,
computational sample augmentation can back-fire. For instance, due to the optimal
entropy of the standard uniform among (0,1)-supported random variables decreases
power when testing uniformity using computationlly augmented samples [8].

Another caveat, for those dealing with retrospective studies: observe that in many
situations the data that are being analysed are a haphazard sample, and inference in
that case is hazardous.

And a final caveat: gathering data is expensive, tiring, eventually boring, and this
often causes a very serious blunder: the same data are reused and reused to investigate
different questions. Using already collected data, eventually to do some confirmatory
data analysis on hypothesis suggested by those data at the exploratory stage is indeed
a source of questionable results.

Finally, a brief reference to some sources of more detailed information for those
who want to lean more on sampling. The Survey Kit [12] provides useful practical
information, and can be complemented by [23]; [21, 33] are excellent primers, as
well as [3, 36], and [35] a thorough treatment of more advanced topics; having
Hansen and Hurwitz as are co-authors is by itself a recommendation of [16]. The
pioneering papers by Hansen and Hurwitz [15] and by Horvitz and Thompson [17]
are well worth reading. Sampling rare populations [20] requires specific strategies,
be it in the area of small domains estimation, or in important issues such as estimating
the V a R (Value at Risk), high quantiles of great importance in the applications of
extreme value theory to risk.
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Industrial Production of Gypsum: Quality
Control Charts

Luís M. Grilo, Helena L. Grilo and Cristiano J. Marques

Abstract The production of gypsum (marketed if it accomplishes the required
specifications) occurs during the process of flue gas desulphurization in a Portuguese
Coal Thermoelectric Central. Important variables in this process are statistically
analyzed in the chemical laboratory and quality control charts are implemented to
monitor the entire process. In this study individuals and moving range charts of the
variable “density of gypsum slurry” are compared with the “more efficient” ones
obtained after a Box-Cox transformation. This transformation is used to normalize
the data, because its observations come from non-normal models—where classical
control charts are considered less appropriate, since they usually exhibit rates of false
alarms different from what would be expected. Although it is important to consider
different statistical approaches for quality control charts, during the monitoring of
an industrial process, in this case study the achieved results lead us, essentially, to
similar conclusions.
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1 Introduction

In the generation of electric power, in coal-based thermoelectric power plants, green-
house gases are released into the environment, which are harmful to living beings.
Among those emissions are nitrogen oxide (NOx), sulphur dioxide (SO2) and parti-
cles (fly ashes).

In Fig. 1 shows an installed Flue Gas Desulphurization (FGD) whose main objec-
tive is to reduce the content of SO2 from flue gas in order to achieve the prescribed
emission limit values. Basically, the removal of SO2 occurs by its reaction in the
absorbers with a suspension of limestone (CaCO3) through a series of partial reac-
tions (absorption/neutralization/oxidation). The final product of these reactions is
gypsum (CaSO4.2H2O), which is usually, on average, 96% pure and may be subse-
quently sold, mostly to the cement industry, if it satisfies the required specifications.
Thus a laboratory analysis of the statistical behavior of the relevant variables is nec-
essary. Examples of the relevant behavior are: “pH of gypsum slurry”, “% moisture
gypsum” and “density of gypsum slurry (DGS).”

In this case study we compare, only for the variable DGS, the classical control
charts (or Shewhart) with the ones obtained excluding severe outliers and also with
the control charts based on an adequate Box-Cox transformation [2]. After the Box-
Cox transformation, data have approximately a normal distribution, which allows
the application of statistical quality control charts for the usual normal model. These
transformations lead to the construction of relatively efficient quality control charts,
in terms of the false alarm rate and the time required to detect the occurred changes.
Several simulation studies prove the efficiency of Box-Cox transformations for nor-
malization, as well as the efficiency and robustness of statistical estimators for more
robust control charts [1, 3–5, 7, 8].

Fig. 1 Scheme of the FGD process
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2 Data Analysis

Quality control charts are usually mentioned in monitoring industrial production of
gypsum, but the presented variables often have empirical distributions that deviate
significantly from the assumption of normality (where outliers are identified, as well
as marked asymmetry and/or a high weight tail). In Fig. 2 we visualize parallel box
plots for the variable DGS from two installed absorbers. The non-normality of the
variable is evident from the asymmetry exhibited in the plots as well as the presence
of outliers (both moderate and severe).

Table1 shows the results of the test of normality for the variable DGS using both
the Kolmogorov-Smirnov test (with Lilliefors correction) and the Shapiro-Wilk test.
The obtained p-values are (nearly) equal to zero, leading us to reject the hypothesis
of normality for both absorbers. Since the sample size is not very high, we believe
that the Shapiro-Wilk test is more appropriate, although we also present the results
of the Kolmogorov-Smirnov.

Fig. 2 Box-plot of DGS
(g.cm−3), in the two
absorbers of FGD
installation

Table 1 Results of the normality test for the variable DGS (g.cm−3)

Tests of normality

Kolmogorov-Smirnova Shapiro-Wilk

DGS (g.cm−3) Statistic df p-value Statistic df p-value

Absorber 1 0.212 39 0.000 0.687 39 0.000

Absorber 2 0.291 39 0.000 0.483 39 0.000
aLilliefors significance correction
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3 Quality Control Charts

In statistical quality control a pair of charts (individuals and moving range) is used
to monitor variables data from an industrial process where a single measurement at
each collection period (sample of one measurement) is available. The individuals
chart displays a single measurement where each point of the process line represents
an individual case. In the moving range chart each point represents the absolute
difference between each value and the previous one. This chart measures the spread
in terms of the range of two consecutive samples.

As with other control charts, these types of Shewhart charts also enable us to
monitor a process for shifts which modify the mean or variance of the measured
statistic. The procedure followed in the preparation of these control charts is also
analogous to the charts of averages and ranges.

Calculation and Plotting

First, we should calculate the average of the n individual values,

x̄ = 1

n

n∑

i=1

xi

and the difference between data point, xi , and its predecessor, xi−1 with

MRi = |xi − xi−1| ; i = 2, 3, . . . , n.

Thus, for n individual values, we have n − 1 ranges with arithmetic mean

MR = 1

n − 1

n∑

i=2

MRi .

Individuals Control Limits

The Upper Control Limit (UCL), Central Line (CL) and Lower Control Limit
(LCL) for the individual values, considering sigma level 3, are obtained with the
formulas

UCL = X + 3

d2
× MR, CL = X and LCL = X − 3

d2
× MR.
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Moving Range Control Limits

The Upper Control Limit (UCL), Central Line (CL) and Lower Control Limit
(LCL) for the range, considering sigma level 3, are calculated with the formulas

UCL = D4 × M R, CL = MR and LCL = D3 × MR,

where D4 = 1 + 3 d3
d2

and D3 = 1 − 3 d3
d2
. From the usual tables given in most

textbooks on statistical process control (see, among others [6]), we have, for n = 2,

d2 = 1.128; d3 = 0.853; D3 = 0; D4 = 3.267.

In the individuals chart all the individual data are plotted serially, following the
order in which they were recorded, a line at the average value (CL) and lines at the
UCL and LCL values are also added to this plot.

In the moving range chart the calculated ranges MRi are plotted, a line is added
for the average value (CL) and a second line is plotted for the range UCL (note that
LCL = 0, because D3 = 0).

Although we have data for the “density of gypsum slurry” in the two installed
absorbers, from now on we are going to consider just the analysis of this variable in
the absorber 2.

4 Original Data (Under Non-normality)

In Figs. 3 and 4we have, respectively, the individuals andmoving range control charts
with rule violations, obtained with original data (under non-normality). Although,
the errors in decisions to declare the production process as an IN/OUT state could be
higher in this case, we decided to consider these types of charts because they are a
robust tool and the estimated control limits under non-normality may not be a serious
problem [9–11].

In Fig. 3 we see a point outside the 3 sigma upper control limit and two points
(samples 32 and 33) for a group of 8 consecutive points below the center line. In Fig. 4
we have 9 points violating control rules and we can identify some big differences
(sample ranges) between two consecutive samples.

These charts are also useful to analyze the DGS behavior and to compare them
with the control charts presented next.
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Rule Violations for Run

Sample Violations for Points

7 Greater than +3 sigma

7 2 points out of the last 3 above +2 sigma

32 8 consecutive points below the center line

33 8 consecutive points below the center line

3 points violate control rules.

Fig. 3 Individuals control chart for DGS (g.cm−3), with sigma level 3

Rule Violations for MR

Sample Violations for Points

7 Greater than +3 sigma

8 Greater than +3 sigma

8 2 points out of the last 3 above +2 sigma

28 8 consecutive points below the center line

29 8 consecutive points below the center line

30 4 points out of the last 5 below -1 sigma

30 8 consecutive points below the center line

31 8 consecutive points below the center line

32 4 points out of the last 5 below -1 sigma

32 8 consecutive points below the center line

33 8 consecutive points below the center line

34 8 consecutive points below the center line

9 points violate control rules.

Fig. 4 Moving range control chart for DGS (g.cm−3), with sigma level 3

5 Data Without Two Severe Outliers

According to the laboratory technicians’ opinions, severe outliers should be removed
since they believe that the unusual observations were caused either by a failure of the
vacuum carpets used in the dehydration of the production gypsum or some instability
in the used energy. As a result we decided to remove two severe outliers and now the
distribution could be considered approximately normal, for a 1% significant level
(in the last column of Table2: since p-value= 0.022> 0.01 we do not reject the null
hypothesis of normality).
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Table 2 Results of the normality test for the variable DGS (g.cm−3), without two severe outliers

Tests of normality

Kolmogorov-Smirnova Shapiro-Wilk

DGS (g.cm−3) Statistic df p-value Statistic df p-value

Absorber 2 0.145 37 0.047 0.930 37 0.022
aLilliefors significance correction

Rule Violations for Run

Sample Violations for Points

17 Greater than +3 sigma

1 points violate control rules.

Fig. 5 Individuals control chart for DGS (g.cm−3), with sigma level 3

Rule Violations for MR

Sample Violations for Points

10 Greater than +3 sigma

18 Greater than +3 sigma

18 2 points out of the last 3 above +2 sigma

29 8 consecutive points below the center line

30 8 consecutive points below the center line

31 8 consecutive points below the center line

5 points violate control rules.

Fig. 6 Moving range control chart for DGS (g.cm−3), with sigma level 3
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In Figs. 5 and 6 we have, respectively, the individuals and moving range control
charts with control rules violations, obtained after removing two severe outliers.
Only one point violates the control rules (a “new” data point falls outside the 3 sigma
limits, which represents a process change), in the Individuals chart (Fig. 5), and five
points violate the control rules (points outside the 3 sigma limits and consecutive
points below the center line), in the moving range chart (Fig. 6), which monitors
changes in the spread of a process. This approach, without two severe outliers, gives
us a better perspective of the real behavior of the variable DGS.

6 Box-Cox Transformation

Firstly we should note that, using original data and the software SigmaXL on Excel,
it isn’t possible to find any Box-Cox transformation that leads us to a normal data.
Thus, we apply to the data, without two severe outliers, the Box-Cox transformation
suggested by software SigmaXL, i.e. DGS−5. In Table3 we can see the optimal
lambda equal to (−5) and the p-value (>0.05) obtained for both Anderson Darling
and Shapiro-Wilk statistics, which leads us to believe that we now have a better
normal approximation than before.

In Figs. 7 and 8 we have, respectively, the individuals and moving range control
charts with control rule violations, based on data without two severe outliers and
after a Box-Cox transformation. In Fig. 7 a point violates the control rules and, as
expected, we have an inverse image, on a different scale, of Fig. 5. In the moving
range chart (Fig. 8) we see 5 points that violate control rules. The results of this
section lead to conclusions that are similar to the ones obtained before the Box-Cox
transformation (see previous subsection).

Table 3 Results of the normality test for DGS−5, without two severe outliers and after a Box-Cox
transformation

Box-Cox Power Transformation: DGS (g.cm−3)

Optimal Lambda -5

Final (Rounded) Lambda -5

Anderson Darling Normality Test
for Transformed Data

A-Squared 0.736

AD p-value Lambda 0.050

Tests of Normality

Kolmogorov-Smirnov (a) Shapiro-Wilk

DGS (DGS−5) Statistic df p-value Statistic df p-value

Absorber 2 0.137 37 0.078 0.942 37 0.055

aLilliefors significance correction
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Rule Violations for Run

Sample Violations for Points

17 Less than -3 sigma

1 points violate control rules.

Fig. 7 Individuals control chart for DGS (g.cm−3), with sigma level 3

Rule Violations for MR

Sample Violations for Points

10 Greater than +3 sigma

18 Greater than +3 sigma

29 8 consecutive points below the center line

30 8 consecutive points below the center line

31 8 consecutive points below the center line

5 points violate control rules.

Fig. 8 Moving range control chart for DGS (g.cm−3), with sigma level 3

7 Conclusions

In this study we use the individuals and moving range control charts to monitor
industrial process in three different situations, which enable us to verify that they
are sensitive in detecting changes during the process. When we compare the quality
control charts, before and after removing two severe outliers, we identify some par-
ticularities (in terms of average values and dispersion) of the behavior of DGS. But,
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when we analyze the quality charts, with respective control rules, before and after
applying a Box-Cox transformation, the results point in the same direction.

According toWheeler’s researchwork [9–11] a normal distribution is not required
in the calculation of control limits,whichmade these types of charts a very robust tool.
He also considers that “the transformation of the data to achieve statistical properties
is simply a complex way of distorting both the data and the truth” and if we check our
data for normality prior to place them on a process behavior chart we “are practicing
statistical voodoo”.Althoughwe agreewithWheeler, we also believe thatwith highly
skewed data the false alarm rate can be quite high and a Box-Cox transformation
could be recommended to obtain efficient and robust estimators. As a result, a non-
linear Box-Cox transformation, which in this case study seems unnecessary once we
reach similar conclusions.
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Risk Analysis with Reference Class
Forecasting Adopting Tolerance Regions

Vasilios Zarikas and Christos P. Kitsos

Abstract The target of this paper is to demonstrate the benefits of using tolerance
regions statistics in risk analysis. In particular, adopting the expected beta content
tolerance regions as an alternative approach for choosing the optimal order of a
response polynomial it is possible to improve results in reference class forecasting
methodology.Reference class forecasting tries to predict the result of a planned action
based on actual outcomes in a reference class of similar actions to that being forecast.
Scientists/analysts do not usually work with a best fitting polynomial according to a
prediction criterion. The present paper proposes an algorithm, which selects the best
response polynomial, as far as a future prediction is concerned for reference class
forecasting. The computational approach adopted is discussed with the help of an
example of a relevant application.

Keywords Risk analysis · Reference class forecasting ·General linear regression ·
Predictive models · Tolerance regions

1 Introduction

Risk analysis is a field which seeks to determine and assess factors that may endanger
the success of a plan/project or reaching a goal. This technique tries to find preventive
tasks in order to reduce the possibility of these unwanted factors from happening. It
also seeks to determine counter actions for dealing successfully with these possible
obstacles. Thus risk analysis at the end proposes actions to avert negative effects on
the competitiveness of the project.
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Risk analysis includes topics such us: Quantitative risk analysis, Probabilistic
risk assessment as an engineering safety analysis, Risk analysis for business, Risk
Management, Riskmanagement tools, CertifiedRiskAnalyst, Food safety risk analy-
sis etc.

In the present work we focus on to Risk analysis in business. One of the most
interesting methods developed for risk assessment is Reference class forecasting
(RCF) [1–15]. This is a method for future predictions about cost factors through
looking at similar past situations and their outcomes. RCF estimates predictions
about the outcome of a planned project based on actual outcomes in a reference class
of similar projects. Thesemethods behindRCFwere developed byDaniel Kahneman
and Amos Tversky. For his contribution to the theoretical support of refen mmnnp
jbrence class forecasting, Kahneman was awarded the Nobel Prize in Economics.

Kahneman and Tversky [13, 14] studied human psychology and discovered that
experts’ judgment is optimistic most of the times due to overconfidence and positive
mood to new developed projects. Managers and decision makers do not tend to
consider properly and seriously available distributional information about outcomes
even though they are aware of relevant data. Therefore, experts tend to underestimate
the uncertainties and costs, completion times, and risks of planned actions, whereas
they overestimate the various benefits and profits of the project outcomes.

Lovallo and Kahneman [12, 15] named this characteristic behavior of the experts
as the “planning fallacy” and they stated that it stems from the fact that experts take
an “inside view”. Wrong estimations are caused by decision makers and experts tak-
ing an “inside view”. The latter means that they were focused on the constituents
of the specific planned project tasks and deliverables, instead of on the actual out-
comes of similar ventures. The purpose of the reference class method is to utilize
similar projects that have already been completed to assess the risks of the planned
project. Based on this type of past information it is possible to extract distributional
information. Kahneman and Tversky concluded that the absence of consideration of
this distributional information, is perhaps the major source of error in forecasting.
Thus they stated that “Analysts should therefore make every effort to frame the fore-
casting problem so as to facilitate utilizing all the distributional information that is
available”.

Following the terminology of the relevant literature “Taking an outside view”
is the analytical task of utilizing distributional information from previous ventures,
similar to the one being forecast. Thus, RCF is the methodology for taking an outside
view on planned project tasks.

It has been found that wrong forecasts remain compelling even when experts are
fully aware of their nature i.e. optimism bias. This is because the awareness of a
perceptual or cognitive illusion does not by itself result in a better perception of
reality, according to Kahneman and Tversky.

RCF overcomes human bias. This bias is of two types: optimism bias and strategic
misrepresentation. This method attacks both issues by cutting directly to outcomes.
In experimental tests carried out by various researchers, this method has been proved
to be more accurate than conventional forecasting methods.
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RCF as applied to a particular project can be described by the following four
steps:

1. Identify as many members as possible of a reference class of past similar
plans/projects. In order to extract correct statistical inferences the reference class
should be at the same time broad enough to include many similar projects but
narrow enough to be truly consistently comparable with the project under risk
analysis investigation.

2. Estimate a probability distribution for all the reference classes that have been
generated by the study of past data. This is not a trivial task since it needs the
existence of credible, past data for many projects of each of the reference classes.

3. Decision about which reference class the project under investigation belongs to.
4. Comparison of the analysed project with the reference class distribution, in order

to evaluate themost probable outcome based on the existing statistical distribution
of outcomes.

RCF eliminates the various uncertain pieces of information and unknown para-
meters that will affect the project of study. Instead it sets the project in a statistical
distribution of outcomes from the class of reference projects. From a statistical point
of view the method “consists of regressing forecasters’ best gue1ss toward the aver-
age of the reference class and expanding their estimate of credible interval toward
the corresponding interval for the class” [14].

The idea of searching among past events patterns that closely fit the problem at
hand, for weighing outcome risks is of course sensible, although picking up past
similar ventures to extract outcome patterns has limitations.

The central proposal of this paper is to use the concept of tolerance regions and
use the best predictive model for all the regressions required on all the reference
categories used for forecasting. The adoption of the expected beta content tolerance
regions, as a better approach for choosing the optimal order of a response polynomial,
is an improvement since best predicts the next value within experimental region.
Thus, after selecting the correct class, all the regressions based on data belonging to
this class, should adopt the proposed algorithmic method. The given algorithm helps
to find the best polynomial model which should be used because this is the model
that best predicts on an average the future value, which lie in a certain interval with
some probability. Therefore our approach contributes directly at the center of the
reasoning of the RCF which is the correct prediction. This will be explained more
clearly below.

Now, let us clarify the difference between a confidence interval, a prediction
interval or a tolerance interval. Which of them is best for use in the method of RCF?
It is useful to give a brief review of the three distinct intervals that appear in statistical
analysis of data. In case of fitting a parameter to a model, the accuracy or precision
can be expressed as a confidence interval, a prediction interval or a tolerance interval
which are quite distinct.



238 V. Zarikas and C.P. Kitsos

The notion of Confidence intervals provides information about how well the best-
fit parameter, determined by regression, has been estimated. For example taking
many samples from a Gaussian distribution it is expected that about 95% of the
intervals will include the true value of the population best fit parameter. The crucial
remark is that the confidence interval informs about the likely location of the true
population parameter.

The definition of Prediction intervals on the other hand allows one to know where
you can expect to find the next sampled data point. For many samples and assuming
Gaussian distribution (a common assumption), it is expected next value to lie within
that prediction interval i.e. in 95% of the samples. The crucial point is that the
prediction interval provides information about the distribution of values, not the
uncertainty in determining the population parameter.

Finally the richest notion of interval is the tolerance interval. It is defined by
two different ratios/percentages. The first determines “how probable” it is desired
the value to be and the second expresses what fraction of the values the interval will
contain. In case the first value (how sure) is set to 50%, then a tolerance interval is the
same as a prediction interval. If it is set to a higher value (i.e. 95%) then the tolerance
interval is wider. Following now amore technical statistical terminology, under (as in
most applications) the assumption of a Gaussian distribution, it is usually asked the
90% of the sampled values to lie within the the tolerance interval with probability
0.95. It will be explained in next section that as far as the “future observation” is
concerned, i.e. the predicted value, the β expected tolerance interval, [16], is adopted.
Themainmerit of aβ expected tolerance interval is that remains invariant under affine
transformations, [17, 18].

Statistical criteria in model selection for applications, [19] among others, are
focused on finding the model that under some criteria “best” fits the data. These
criteria are, in principle, functions of the Residual Sum of Squares [20]. Choosing the
optimal order of a response polynomial has been treated as a multi-decision problem
by Anderson in the sixties [21]. For earlier references and recent developments see
for instance [22].

It is very common, albeit inappropriate, to use these best fitting models for predic-
tion too, since the “distance” criteria are not designed for this purpose. In the present
study we propose the modeling used in RCF to follow a “prediction” criterion. The
chosenmodel is the one that best predicts on an average the future value, which lie in a
certain interval with some probability. This is achieved using beta expected tolerance
regions. So, while the regression oriented prediction is based on the extrapolation
or interpolation of the best model fitting the data, the proposed method is based on
a probabilistic reasoning and provides the model which best predicts the next value
within experimental region. In Industry and Management we are more interested on
predicting the future observation or to have “an interval” where this value lies. This
leads us to tolerance regions.
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2 Background of the Method

The definition of the general linear model (GLM), uses the expression

Y = Xθ + σe (1)

where the involved matrices are Y ∈ �n×1, X ∈ �n×(p+1) , θ ∈ �(p+1)×1 and
e ∈ �n×1. Y represents the observed random vector of responses while X is a matrix
of known constants based on the p input variables. The quantity θ is a vector of
unknown parameters that determine the polynomial model and e is an unobserved
random vector of errors with E (e) = 0,E(e e′) = I where 0 ∈ �n×1 is a vector of
zeros and In = diag (1, 1, . . .) is the unit matrix and variance σ 2 > 0 unknown. It
is a common assumption, when statistical inference is performed, that

e ∼ N(0, In) (2)

withmean vector 0 and covariancematrix In . A joint (1−α)100% confidence region
of the parameters θ can be constructed, given a realization of Y :

CR (θ) =
{
θ : p s2F(p, v; 1 − α) ≥ (θ − θ̂ )(X ′ X)(θ − θ̂ )

}
(3)

where v = n − p , and α is the significant level and F , as usually, the F distribution,
with p and v degrees of freedom and s2 the (unbiased) estimate of σ 2. Expression
(3) defines an ellipsoid which plays an important role since with the help of it is
possible either to impose experimental design criteria, or to decide which input
variable X1, X2, . . . , X p ∈ �n×1 will participate to the model, see the pioneering
work of Hocking in [23].

The concept of confidence interval uses the determination of a region which
contains the parameters under investigation with a certain probability level, usually
(1−α)100% with α = 0.05. Although this interval is very widely used in statistics,
in many applications like econometric or industrial applications it is desirable to
have a “region” that contains a certain portion of the production, with a predefined
probability. That is the idea of the tolerance region, [24–26], seems the appropriate
one. The idea of confidence interval is mainly used to see how well the model fits the
data, while we adopt the idea of tolerance interval to see how well the model predicts
a “future” value. We shall use the notation Q for any tolerance region, while with T
we denote the one we decide as appropriate for our target: to predict the future value
as well as possible.

In principle a tolerance region is a statistic Q (X, y) = Q (X1, . . . ,Xn; y) from
�n to the Borel σ -algebra B in �, see [16, 25] among others. It can be proved that
functions M (X1, . . . ,Xn) ,W (X1, . . . ,Xn) always exist such that

Q (X1, . . . ,Xn; y) = (M (X1, . . . ,Xn) ,W (X1, . . . ,Xn)) (4)
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We also use for convenience the notation (M (X1, . . . ,Xn) ,W (X1, . . . ,Xn)) =
(M,W). Furthermore, a tolerance region, in case of sampling the random variables
from a continuous cumulative distribution, is expressed as [24],

Q (X1,X2, . . . ,Xn; y) = [(
X(k1),X(k1+k2)

)]
(5)

It can be proved that, see [24]

F
(
X(k1+k2)

) − F
(
X(k1)

) ∼ Beta (k2, n − k2 + 1) (6)

where Beta (k, m) is the Beta distribution and X( j) is the j th order statistics. Taking
a sample from a continuous distribution function, with k1 = r , r < n+1

2 then it can
be proved, see [27]

γ = P{[F (
X(k1+k2)

) − F
(
X(k1)

) ≥ β]} = 1 − Iβ (n − 2r + 1, 2r) (7)

where Iβ (p, q) is the Incomplete Beta distribution. It seems more appropriate in
applications to be referring to β content tolerance region at confidence level γ if and
only if:

γ = P[β ≤ PX {M,W}] (8)

In order to extend the tolerance regions [16], Kitsos in [17] adopted a statistical
invariant approach. Muller and Kitsos [18] adopted tolerance regions to construct
optimum experimental designs [28]. In this paper we adopt the tolerance regions to
construct the best linear econometric model.

For the General Linear Model Eq.1, and a realization y of Y it is desirable to
construct a particular regionT (X, y) such that the vectorY ∗ of the future observations
Y ∗
1 , Y ∗

2 ,...,Y
∗
m will lie in T (X, y) ⊂ �m with a high probability. The vector Y ∗ of

future responses will followmodel Eq.1, which is a reasonable common assumption.
Thus for a given matrix X∗ of the input observations we have

Y∗ = X∗θ + σe∗ (9)

with e∗ ∼ N (0, Im), 0 ∈ �m×1. The statistical distribution of Y ∗, therefore is defined
by the same parameters θ , σ from the parameter spaceΘ = �P ×�+, with elements
ϑ = (θ, σ ). Furthermore for given parameter vector θ , Y and Y ∗ are assumed to
be independent. It should be emphasised that is impossible to construct the region
T (X, y) so that: (i) Y ∗ ∈ T (X, y) with high probability and (ii) the above is true for
every parameter vector ϑ = (θ, σ ) and every realization y of Y . Pθ [Y ∗ ∈ T (X, y)]
is the probability that Y ∗ lies in T (X, y). Since the tolerance region T (X, y) cannot
satisfy simultaneously (i) and (ii) as above, the average tolerance region known as β

expectation tolerance region is used. Consequently, by definition, T (X, y) satisfies
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β = ∫
fY |θ (y)Pθ [Y ∗ ∈ T (X, y)]dy for every θ ∈ �p, [25]. It can be shown that

this β expectation tolerance region is also a prediction region. This is a consequence
of a theorem proved in [18] which states that: the β expectation tolerance region
T (X, y), Classical or Bayesian, for the linear model Eq.1 is evaluated from

T (X, y) = {ω ∈ �m : m(n − P)−1Fm,n−p1,β ≥ (ω − X∗θ̂ )′ S (X) (ω − X∗θ̂ )}
(10)

where θ̂ = (X′ X)−1X′ y is the Least Square Estimate (LES) of θ . Moreover, s2 and
S(X) satisfy s2 = σ̂ 2 (X, y) = (y−Xθ̂ )′(y−Xθ̂ ) and S (X) = Im+X∗(X′ X)−1X∗′.
Furthermore, Fm,n−p;β is theβ quantile of the F distributionwithm andn−p degrees
of freedom. It can be also proved, see in [18] Lemma 1, that

S−1 (X) = Im − X∗(X′ X + X∗′ X∗)−1X′∗ = Im − Λ(x) (11)

where the definition of Λ(X) is obvious.

2.1 The Best Predictive Model

Based on the above analysis it is possible now to construct theβ expectation tolerance
region for a given future response. Handling the volume of the “future” ellipsoid,
the best predictive model can be determined with the help of the following proposed
algorithm. The largest volume of the β expectation tolerance region corresponds
to the worst case of the input variables set, as far as prediction is concerned. The
best tolerance region is chosen using the “best amongst the worst method”, in other
words, amongst the regions with the max beta expected tolerance region, we choose
the one with the minimum β expected tolerance. The proposed algorithm (see [29]
for a detailed presentation) consists of two basic steps (Step A). Fit all possible linear
models for the subsets with k variables from p, k = 1, 2, ..., p. For the corresponding
k variables calculate the β expectation tolerance region Tk j (X, y) and select that k
which corresponds to the largest β expectation tolerance region. (Step B). Among
the max tolerance regions for the different k = 1, 2, ..., p choose the minimum one.
So choose the best subset of variables which corresponds to

k0 = min
1≤k≤P

max
j

{
Tk, j (X, y)

}
(12)

with k = 1, 2, ..., P and j = 1, 2. In the present paper an algorithm (developed in
Mathematica) adjusted to the case of the RCF method is presented.
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3 A Specific Example and the Developed Algorithm

In [29] an algorithm developed for the best predictive polynomial model was pre-
sented and tested in various case studies of different domains and datasets. In this
section a new version of the algorithm (written inMathematica), adjusted to the RCF
method will be described. In [30] a typical application of the RCF method is pre-
sented. As an example, the case studied in [30] will be used in order to demonstrate
exactly, which issues our proposal tackles in order to improve RCF. This application
concerns offshore wind capital cost estimation in the U.S. outer continental shelf.

Moreover, in [30], cost data fromexisting projectswere used as a basis for analogy.
For defining classes, the authors in [30] assumed that if the physical infrastructure
in two regions is similar, then the project characteristics may be similar, even if
other characteristics of development/installation strategies, marine vessel fleet, gov-
ernment regulation, etc. were different. In other words, the implicit assumption of
this approach is that the commonalities of offshore wind projects, associated with
the technology, infrastructure, capital intensity, complexity, and installation require-
ments outweigh the differences due to environmental, contractual and market con-
ditions. This is a common philosophy for all applications of the reference class
approach. Thus, this set of past projects, for which cost information was available
was used to improve the accuracy of comparative cost estimation by limiting the
sample to those projects that are similar to the project under analysis. After the deter-
mination of the various classes the RCF method was used to inform cost estimates
and uncertainty bounds of US offshore wind farms.

The present paper proposes two type of improvements which apply to this partic-
ular example. The first improvement can be applied at the very first determination
of the classes. RCF places the project in a statistical distribution of outcomes from
the class of reference projects. Consequently, we suggest that the best guess uses the
average of the reference class and expands the corresponding estimate of credible
interval toward the corresponding interval for the class [13]. The first improvement
comes into play as follows: instead of using the concept of confidence interval, as
defined in refCI, in order to estimate the percentile that corresponds to a risk of cost
overrun, one should use the concept of tolerance interval as defined in (10). The
latter applies to all specified classes. See also Table4, in an application concerning
Transport Planning in [8].

The second improvement concerns the predictions arising from the regressions
that usually appear for the chosen class. In the example of [30] regression models
of normalized capital costs were constructed to investigate the physical features that
impact expenditures. The present paper proposes that for all the regressions like these
concerning normalised Capital Expenditures (CAPEX) versus capacity or CAPEX
versus distance to shore, or CAPEX versus water depth or CAPEX versus steel price
index, instead of using a conventional simple linear regression one should use the
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proposed best fitting polynomial according to the criterion of best prediction. The
equations under investigation are

Capex = a0 + a1Capacity + a2Capacity2 + · · · + anCapacityn (13)

Capex = b0 + b1Distance + b2Distance2 + · · · + bkDistancek (14)

Capex = c0 + c1Depth + c2Depth2 + · · · + clDepthl (15)

Capex = d0 + d1Steel + d2Steel2 + · · · + dmSteelm (16)

Below we present a new version of the Mathematica code presented in [29]
adjusted for a case of the RCF method. This code provides the correct order of
the best fitting polynomial as well as its coefficients, as far as prediction with the
concept of tolerance regions is concerned. Thus, it is possible to find the order n and
all the values of coefficients ai , i = 0, . . . , n of the best for prediction polynomial
concerning Capacity. Similarly, the code can evaluate the order k, l, m and all the
values of coefficients bi , i = 0, . . . , k, ci , i = 0, . . . , l, di , i = 0, . . . , m of the best
for prediction polynomials concerning Distance to shore,Water Depth and European
Steel Price respectively. The code is presented in Appendix A. In this code the user,
can use the predefined function BESTMODEL(n), where n is the desired maximum
order of polynomial (up to 6). The user can also set the dataset concerning CAPEX
and the datasets concerning dataVARIABLE = (capacity, depth, distance, steel) at
the beginning of the code.

4 Conclusions

It was demonstrated in [29] that the discussed method which finds the best general
linear model for prediction adds real value and models correctly many scientific
and technological applications. The applicability of the method concerns a variety
of domains like investment decision making, medical estimations, business employ-
ment predictions or policy making, see [29]. For example, the method can be suc-
cessfully and meaningfully be applied in cases where (i) a gynecologist is interested
to find a polynomial relation between abdominal circumference and gestational age
or (ii) a sociologist in order to write a study regarding employment needs to have
a general linear model that relates the number of employees as a function of their
annual payroll or (iii) a bank loan department in order to drive strategy regarding
industrial research funding, wants to have a crude estimation regarding the relation
of the number of available engineers as a function of industry R and D expenditures.
Furthermore, the concrete theoretical background of the method ensures the validity
of the results. It was shown that for several datasets the selected polynomial differs
from the commonly selected one, if the choice respects the criterion of “the best
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predictive model”. This obviously does not to mean that there are no cases where the
two methods suggest the same polynomial.

In the present paper we have further proposed that the best predictive polynomial
according to the proposedmethod, i.e. using the tolerance intervals, is the appropriate
model for the RCF too. Since the purpose of RCF is as accurate as possible forecast-
ing, the main reason for using the presented adopted algorithm is that after selecting
the appropriate reference class, where our case belongs to, the aim is to find the best
polynomial model for prediction and not a model respecting a distance criterion.

Future work will be focused in analyzing and implementing the idea of tolerance
regions best predictive model in more RCF case studies in order to demonstrate the
potential of our proposal. In addition as a future research, it is worth to generalize
the proposed method for problems with multiple independent variables or for cases
like [28]. It would be interesting to develop integration with the experiment design
approach, although in most of the cases in classical experiment design theory, the
models are linear [31].

Acknowledgments We would like to thank the referees for the improvement of the English as
well for their valuable comments which help us to improve the paper. V. Zarikas acknowledges the
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5 Appendix

(* in this list we set data for matrix X. Here the user of the code has to insert data
either for Normalised Capacity, Capacity, Distance to Shore, Water depth or Euro-
pean Steel price index *)
dataVARIABLE = {, ., ., ., .};
(* in this list we set data for matrix Y which in our example concerns CAPEX *)
dataCAPEX = {, ., ., ., .};
data = Table[{xTRN[[m]], dataCAPEX[[m]]},
{m,Dimensions[dataVARIABLE][[1]]}];
Y = Table[{dataCAPEX[[n]]},
{n, Dimensions[dataVARIABLE][[1]]}];
(* here the function tst(n) gives the t student distribution probability density
function for the relevant tolerance region *)
tst[n_]:= Sqrt[-n + (1/n*(0.05*(Sqrt[n]*
Beta[n/2, 1/2]))ˆ(2/(1 + n)))ˆ(-1)];
(* here the code normalises data concerning matrix X in the interval [-1,1]*)
n := Dimensions[dataVARIABLE][[1]];
A := (U + DD)/2;
B := U - A;
DD = Min[dataVARIABLE];
U = Max[dataVARIABLE];
xTRN := (dataVARIABLE - A)/B;
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(* the coefficients of the six polynomials which will be tested with both ctiteria are
structured below *)
X[0] := Table[{1}, {i, Dimensions[dataVARIABLE][[1]]}];
X[1] := Table[{1, xTRN[[i]]}, {i,
Dimensions[dataVARIABLE][[1]]}];
X[2] := Table[{1, xTRN[[i]], xTRN[[i]]ˆ2},
{i,Dimensions[dataVARIABLE][[1]]}];
X[3] := Table[{1, xTRN[[i]], xTRN[[i]]ˆ2, xTRN[[i]]ˆ3},
{i,Dimensions[dataVARIABLE][[1]]}];
X[4] := Table[{1, xTRN[[i]], xTRN[[i]]ˆ2, xTRN[[i]]ˆ3,
xTRN[[i]]ˆ4}, {i, Dimensions[dataVARIABLE][[1]]}];
X[5] := Table[{1, xTRN[[i]], xTRN[[i]]ˆ2, xTRN[[i]]ˆ3,
xTRN[[i]]ˆ4,xTRN[[i]]ˆ5},
{i, Dimensions[dataVARIABLE][[1]]}];
X[6] := Table[{1, xTRN[[i]], xTRN[[i]]ˆ2, xTRN[[i]]ˆ3,
xTRN[[i]]ˆ4,xTRN[[i]]ˆ5, xTRN[[i]]ˆ6},
{i, Dimensions[dataVARIABLE][[1]]}];

(* the variable structure of the six polynomials which will be tested with both
ctiteria are structured below *)
Xop[0] := {{1}}; Xop[1] := {{1}, {t}};
Xop[2] := {{1}, {t}, {tˆ2}};

Xop[3] := {{1}, {t}, {tˆ2}, {tˆ3}};
Xop[4] := {{1}, {t}, {tˆ2}, {tˆ3}, {tˆ4}};
Xop[5] := {{1}, {t}, {tˆ2}, {tˆ3}, {tˆ4}, {tˆ5}};
Xop[6] := {{1}, {t}, {tˆ2}, {tˆ3}, {tˆ4}, {tˆ5}, {tˆ6}};
(* This expression should be maximised *)
EXPR := (Xop[i]\[Transpose].Inverse[(X[i]\[Transpose].
X[i])].Xop[i])[[1]];

(* the function below finds the value of t inside the region [-1,1] that maximises
EXPR *)
MAX[nn_] := (i = nn; NMaximize[{EXPR[[1]],
-1 <= t <= 1}, t] );
(* LP is the prediction criterion of the proposed method. It is the length of the
tolerance region and it is evaluated for the t found before that maximises EXPR *)
LP := 2*tst[Dimensions[datax][[1]] - i]/
Sqrt[Dimensions[datax][[1]] - i]
((INVS1p)ˆ(1/2))*(RSSp)ˆ(1/2);

bi:=Inverse[X[i]\[Transpose].X[i]].(X[i]\[Transpose].Y);
RSSp := Transpose[Y - X[i]. bi] . (Y - X[i]. );
(* this is the conventional RMS criterion for best fitting model *)
RMS := RSSp/(Dimensions[datax][[1]] - i - 1);
INVS1p := Inverse[1 - Xop[i]\[Transpose].
Inverse[(X[i]\[Transpose].X[i] +
Xop[i].Xop[i]\[Transpose])]. Xop[i]];
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(*This mathematica function is the one that the user of the programme only needs
to use. He has to set as argument of this function the largest order of the polynomial
to be tested. i.e. 6. This function evaluates and returns for each order of the polyno-
mial the prediction criterion LP and the conventional criterion RMS. It also returns
for each order of the polynomial the plot of the data together with the best fitting
polynomial for prediction. Finally it plots also the Expression that is maximized for
a certain t *)
BESTMODEL[q_] := (nn = q;Do[ i = k;
Print[’’i=’’, i,’’ max’’,
NMaximize[{EXPR[[1]], -1 <= t <= 1}, t] ];

gg = Plot[EXPR[[1]], {t, -1, 1}]; g1 = ListPlot[data];
g2= Plot[Xop[i]\[Transpose].bi, {t, -1, 1}];
Print[Xop[i]\[Transpose].bi];
asd := NMaximize[{EXPR[[1]], -1 <= t <= 1}, t] [[2]][[1]];
Print[’’RMS=’’, RMS]; t = t /. asd; Print[’’LP=’’, LP];
Print[Show[gg]]; Print[Show[g1, g2, PlotRange -> All]];
t =., {k, 0, nn}] )
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Randomly Stopped kth Order Statistics

Sandra Mendonça, Dinis Pestana and M. Ivette Gomes

Abstract Randomly stopped order statistics when the stopping rule is generated
by a basic count distribution are investigated. Unified expressions in terms of the
subordinator are presented, extending results from geometrically thinned sequences.
Using the results on limit stable distributions for max-geometric laws, and Smirnov’s
techniques to deal with limit laws of extreme order statistics, some results on stability
of Panjer subordinated randomly stopped order statistics are discussed.

Keywords Randomly stopped order statistics · Panjer family · Basic count distri-
butions · Order statistics · Geometric thinning

1 Introduction

Risk analysis and extreme value theory (EVT) walk naturally hand-in-hand. Let
{Xi , i ∈ N}, withN the set of positive natural numbers, be a sequence of independent
and identically distributed (iid) random variables (rvs), replicas of X , an absolutely
continuous rv, with a common cumulative distribution function (cdf) FX . Let us
further denote by (X1:n ≤ · · · ≤ Xn:n) the set of ascending order statistics associated
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with a random sample (X1, . . . , Xn). Classical EVT deals with the behaviour of the
sequences of extreme upper and lower order statistics, and in particular with the
sequence of maximum values {Xn:n, n ∈ N}. Suppose that it is possible to linearly
normalise the sequence of maximum values so that we get a non-degenerate limiting
rv. Then such a limiting rv has a max-stable cdf G given by

G(x) ≡

⎧
⎪⎨

⎪⎩

G1 (x) = exp
(−x−α

)
I(0,+∞) (x) ,

G2 (x) = exp
[− (−x)α

]
I(−∞,0) (x) + I[0,+∞) (x) ,

G3 (x) = exp
[− exp(−x)

]
,

(1)

where α > 0 (cf., e.g., [2]). We then say that FX belongs to the max-domain of the
attraction of G.

Rachev and Resnick (cf. [8]) considered the limiting behaviour of the maximum
of the linearly normalised vector (X1, . . . , X N ), with N a geometric rv. They have
then shown that, under adequate conditions, the so-called geo-max stable limit laws
G have a cdf related to the extreme value cdf G given in (1) through the expression

G (x) = 1

1 − ln G (x)
.

Therefore, the geo-max stable types cdfs are given by

G (x) ≡

⎧
⎪⎪⎨

⎪⎪⎩

G1 (x) = 1
1+x−α I(0,+∞) (x) ,

G2 (x) = 1
1+(−x)α

I(−∞,0) (x) + I[0,+∞) (x) ,

G3 (x) = 1
1+exp(−x)

,

(2)

respectively known as the loglogistic, the backward loglogistic and the logistic dis-
tributions.

In this work inspired by the Rachev and Resnick theory on stable limits of ran-
domly stopped maxima with geometric subordinator—also called geo-max stability
(see [8]), we take this theory a step further, in a parallel way to classical EVT.

In Sect. 2 we briefly discuss randomly stopped order statistics, and in Sect. 3 we
describe the basic count distributions, the Panjer distributions [6]—Poisson, bino-
mial and negative binomial, that in a sense are the yardstick with unitary dispersion
coefficient, underdispersed and over dispersed count variables—, and Sundt’s [12]
extension (logarithmic and extended negative binomial). Next, in Sect. 4, we present
unified expressions for the distribution of randomly stopped order statistics when
the stopping rule is generated by a Panjer class subordinator. We start Sect. 5 resta-
ting Rachev and Resnick results on limiting stable laws for geometrically thinned
sequences of iid rvs. We then refer to e-Bay auctions, to claim that there are situ-
ations for which the mentioned order statistics of geometrically thinned sequences
are important. Finally, in Sect. 5.3, inspired on Smirnov’s work [10] on what he calls
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asymptotic results for variational series, we investigate stability results for order
statistics of geometrically thinned sequences.

2 Randomly Stopped Order Statistics

Let N be a discrete rv with a support contained in the set of the natural numbers N0.
Let us further assume that N is independent of any of the elements of the sequence
of iid rvs, {Xi , i ∈ N}.
Definition 1 Conditionally to the event N ≥ k ∈ N, the kth ascending and
descending N -randomly stopped order statistics are respectively the conditional rvs
Xk:N |N ≥ k and X N−k+1:N |N ≥ k.

Remark 1 Although redundant, it is useful to state that X N :N denotes the
N -randomly stopped maximum and X1:N denotes the N -randomly stopped mini-
mum.

The cdf of the kth N -randomly stopped order statistic is given by

FXk:N |N≥k (x) = P [Xk:N ≤ x, N ≥ k]

P [N ≥ k]

= 1

P [N ≥ k]

+∞∑

j=k

P [Xk:N ≤ x, N ≥ k|N = j]P [N = j]

= 1

P [N ≥ k]

+∞∑

j=k

FXk: j (x)P [N = j] (3)

and, although redundant, as it will be useful,

FX N−k+1:N |N≥k (x) = 1

P [N ≥ k]

+∞∑

j=k

FX j−k+1: j (x)P [N = j] . (4)

The relation Xk:n
d= − [

(−X)n−k+1:n
]
of order statistics of independent rvs is

inherited by N -randomly stopped order statistics:

Proposition 1 Given N, a discrete rv with a support contained in N0, {Xi , i ∈ N},
a sequence of iid rvs, independent of N and equal in distribution to X, an absolutely
continuous rv, and k ∈ N, we have

Xk:N |N ≥ k
d= − [

(−X)N−k+1:N |N ≥ k
]
. (5)
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Proof Using the equalities (3) and (4), and the well known expression

1 − FXk:n (x) =
k−1∑

i=0

(
n

i

)

[FX (x)]i [1 − FX (x)]n−i

(

we can also write FXn−k+1:n (x) = ∑k−1
i=0

(
n

i

)

[1 − FX (x)]i [FX (x)]n−i
)

, we

obtain

FXk:N |N≥k (x) =
+∞∑

j=k

{

1 −
k−1∑

i=0

(
j

i

)

[FX (x)]i [1 − FX (x)] j−i

}
P [N = j]

P [N ≥ k]

= 1 −
+∞∑

j=k

k−1∑

i=0

(
j

i

)

[FX (x)]i [1 − FX (x)] j−i P [N = j]

P [N ≥ k]

and

FX N−k+1:N |N≥k (x) =
+∞∑

j=k

k−1∑

i=0

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i P [N = j]

P [N ≥ k]
(6)

=
+∞∑

j=k

k−1∑

i=0

(
j

i

)
[
F−X (−x)

]i [
1 − F−X (−x)

] j−i P [N = j]

P [N ≥ k]

= 1 − F(−X)k:N |N≥k (−x) = F−[
(−X)k:N |N≥k

] (x) ,

which lead us to (5). �

Using the equality (6), we easily prove the following theorem.

Theorem 1 Given N, a discrete rv with support contained in N0, {Xi , i ∈ N}, a
sequence of iid rvs, independent of N and equal in distribution to X, an absolutely
continuous rv, and k ∈ N, we have

FX N−k+1:N |N≥k (x) = 1 −
+∞∑

i=k

[1 − FX (x)]i
+∞∑

j=0

P [N = j + i]

P [N ≥ k]

×
(

j + i

i

)

[FX (x)] j . (7)
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Proof In fact,

FX N−k+1:N |N≥k (x) =
+∞∑

j=k

P [N = j]

P [N ≥ k]

k−1∑

i=0

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i

=
+∞∑

j=k

P [N = j]

P [N ≥ k]

⎧
⎨

⎩
1 −

j∑

i=k

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i

⎫
⎬

⎭

= 1 −
+∞∑

i=k

+∞∑

j=0

P [N = j + i]

P [N ≥ k]

(
j + i

i

)

[1 − FX (x)]i [FX (x)] j .

�

3 Count Distributions

A discrete distribution with support N0 or N, or any initial subsection of either N0
or N, is a count distribution. Adequate count distributions are the appropriate choice
for use as subordinators of randomly stopped order statistics.

Three of the most frequently used discrete models have an interesting property: a
simple recursive relation for the successive probability atoms that has been several
times rediscovered in different contexts (for instance, Katz [4] used it to organise
a family of discrete models in the same spirit of the Pearson family), cf. [7]. An
important breakthrough has been Panjer’s [6] idea of using the above mentioned
recursive expression to iteratively compute or approximate densities of the aggregate
claim in risk theory, cf. [9].

Definition 2 We say that a discrete rv Na,b belongs to the Panjer family of order 0
(0-Panjer family) if its probability mass function (pmf) satisfies the relation

pn+1 = P
[
Na,b = n + 1

] =
(

a + b

n + 1

)

pn, n ∈ N0. (8)

Table1 identifies the three nondegenerate members of 0-Panjer family (cf. [6]).
Hence the 0-Panjer distributions are exactly the discrete Morris natural expo-

nential families whose variance is at most a quadratic function of the mean value
(cf. [5]).

The NegativeBinomial (1, p), usually referred to as the Geometric (p) distrib-
ution, and the Poisson(p) are the most commonly used subordinators of randomly
stopped variables, essentially due to the simplicity of their Panjer set of coefficients,
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Table 1 Members of the 0-Panjer family

Distribution pn a b

Poisson (p), (p > 0) exp(−p)
pn

n! , n ∈ N0 0 p

Binomial (m, p),
(m ∈ N, p ∈ (0, 1))

{ ( m
n

)
pn (1 − p)m−n , n = 0, ..., m

0, n = m + 1, ...
−p
1−p

m+1
1−p p

NegativeBinomial
(r, p),
(r ∈ N, p ∈ (0, 1))

(
n+r−1

n

)
pn (1 − p)r , n ∈ N0 p (r − 1) p

(0, p) and (p, 0), respectively.Analysis of the Panjer recursion byPestana andVelosa
[7] exhibits how cumbersome the expressions for the general Panjer coefficients
(a, b) are as opposed to the elegant expressions associated with the coefficient pairs
(0, p) and (p, 0) of the Poisson and of the geometric subordinator cases.

Remark 2 A non-recursive expression for the 0-Panjer pmf would be:

pn+1 = P
[
Na,b = n + 1

] =
(

a + b

n + 1

)

pn

=
(

a + b

n + 1

) (

a + b

n

)(

a + b

n − 1

)

· · ·
(

a + b

n − k

)

· · · (a + b) p0

= p0
(n + 1)!

n+1∏

k=1

(ka + b) , n ∈ N0.

In short,

pn = p0
n!

n∏

k=1

(ka + b) , n ∈ N.

For a = 0 (in the Poisson case),

pn = p0
n! bn , n ∈ N.

When in expression (8) we use instead of the condition n ∈ N0 the condition n ≥ L
(and take pn = 0, for n < L) we obtain an extension of the Panjer family that we
name the L-Panjer distribution (cf. [11]).
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For L = 1, two new nondegenerate Panjer distributions do exist (cf. Sundt and
Jewell [12]): the Logarithmic (p), with pmf defined for n ∈ N by

pn = − 1

ln (1 − p)

pn

n
, p ∈ (0, 1) , (9)

and Engen’s [1] extended negative binomial (ENB) distribution with pmf given by

pn = α Γ (n + α)

n! Γ (1 + α)

pn (1 − p)α

1 − (1 − p)α
, (10)

for α ∈ (−1, 0), p ∈ (0, 1] and n ∈ N (cf. also [13]).
The ENB distribution is very cumbersome but useful in some ecological and

population dynamics models. Observe that ENB distribution has Panjer coefficients
(p,−p (1 − α)) and that letting α → 0 we obtain the Logarithmic(p) distribution,
that has Panjer coefficients (p,−p).

Although the above two new Panjer families (logarithmic and ENB) are not left
truncated 0-Panjer distributions, for L ≥ 2, Hess et al. [3] have established that any
L-Panjer distribution is the left endpoint truncation of an (L − 1)-Panjer distribution.
For that reason, they called the binomial, the Poisson, the negative binomial, the
logarithmic and the ENB distributions the basic count models.

4 Stopped Order Statistics with Panjer Subordinators

Randomly stopped order statistics with Panjer subordinators do have intrinsic inter-
est, although results are cumbersome except for the Poisson, the geometric and the
logarithmic cases. The expressions of their cdfs have however some similarities.

4.1 Stopped Order Statistics with 0-Panjer Subordinator

Theorem 2 If N (p) is a member of 0-Panjer family then

FX N (p)−k+1:N (p)|N (p)≥k (x) = 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]
,
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with

p∗ =
{

p [1 − FX (x)] , if N (p) is Poisson or binomial distributed,

p [1 − FX (x)]/ [1 − pFX (x)] , if N (p) is negative binomial distributed.

Proof Wewill show the result separately for each family distribution of the 0-Panjer
family.

1. Let N (p) be a rv with Poisson distribution with mean value p > 0, i.e.,

P [N (p) = i] = exp (−p)
pi

i ! , for i ∈ N0.

From (7) we know that:

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

[1 − FX (x)]

i !
i +∞∑

j=0

exp (−p)
p j+i

( j + i)!
( j + i)!

j !
× [FX (x)] j

= 1 − exp (−p)

P [N (p) ≥ k]

+∞∑

i=k

[1 − FX (x)]i pi

i !
+∞∑

j=0

1

j ! [pFX (x)] j

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

exp {−p [1 − FX (x)]} {p [1 − FX (x)]}i

i !

= 1 − P [N (p [1 − FX (x)]) ≥ k]

P [N (p) ≥ k]
.

2. Let N (p) ≡ N (m, p) be a rv with binomial distribution with parameters p ∈
(0, 1) and m ∈ N, i.e.,

P [N (p) = k] =
(m

k

)
pk (1 − p)m−k I{0,1,...,m} (k) .

Let 1 ≤ k ≤ m. Again from (7), we know that:

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

×
m∑

i=k

[1 − FX (x)]

i !
i m−i∑

j=0

(
m

j + i

)

p j+i (1 − p)m−( j+i) ( j + i)!
j ! [FX (x)] j
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= 1 − 1

P [N (p) ≥ k]

×
m∑

i=k

{p [1 − FX (x)]}i

i !
m!

(m − i)! (1 − p)m−i
m−i∑

j=0

(
m − i

j

)[
pFX (x)

1 − p

] j

= 1 − 1

P [N (p) ≥ k]

×
m∑

i=k

{p [1 − FX (x)]}i
(m

i

)
(1 − p)m−i

(

1 + pFX (x)

1 − p

)m−i

.

= 1 − 1

P [N (p) ≥ k]

m∑

i=k

(m

i

)
{p [1 − FX (x)]}i (1 − p [1 − FX (x)])m−i

= 1 − P [N (p [1 − FX (x)]) ≥ k]

P [N (p) ≥ k]
.

3. Let N (p) ≡ N (r, p) be a rv with negative binomial distribution with parameters
p ∈ (0, 1) and r ∈ N, i.e.,

P [N (p) = k] =
(

k + r − 1

k

)

pk (1 − p)r IN0 (k) .

Let k ∈ N. From (7) we know that:

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

×
+∞∑

i=k

[1 − FX (x)]

i !
i +∞∑

j=0

(
j + i + r − 1

j + i

)

p j+i (1 − p)r ( j + i)!
j ! [FX (x)] j

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

(1 − p)r {p [1 − FX (x)]}
i ! (r − 1)!

i

×
+∞∑

j=0

( j + i + r − 1)!
j ! [pFX (x)] j .

Noting that, for |y| < 1, (i−1)!
(1−y)i = ∑+∞

j=0
( j+i−1)!

j ! y j , we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

(1 − p)r {p [1 − FX (x)]}i

i ! (r − 1)!
(i + r − 1)!

[1 − pFX (x)]i+r
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= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

(
i + r − 1

i

) {
p [1 − FX (x)]

1 − pFX (x)

}i (
1 − p

1 − pFX (x)

)r

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

(
i + r − 1

i

) {
p [1 − FX (x)]

1 − pFX (x)

}i

×
(

1 − p [1 − FX (x)]

1 − pFX (x)

)r

,

i.e. the result in the theorem follows. �

4.2 Stopped Order Statistics with Genuinely 1-Panjer
Subordinator

The Panjer families of different orders form an increasing chain. Besides the three
nondegenerate distributions that belong to the 0-Panjer family, the 1-Panjer family
has as nondegenerate members the Logarithmic (p) distribution defined for n ∈ N by
expression (9) and the ENB distribution (cf. [13]), defined by expression (10) for
α ∈ (−1, 0), p ∈ (0, 1] and n ∈ N.

Theorem 3 If N (p) is logarithmic distributed with pmf given by (9) (with p ∈ (0, 1)
and n ∈ N), then

FX N (p)−k+1:N (p)|N (p)≥k (x) = 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

P [N (p) = 1]

P [N (p∗) = 1]

p∗

p

with

p∗ = p [1 − FX (x)]

1 − pFX (x)
.

Proof Let p ∈ (0, 1) and n, k ∈ N. Consider N (p), a rv with logarithmic distribu-
tion, i.e. pmf given by

pn = − 1

ln (1 − p)

pn

n
. (11)

From the equality (7),

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

[1 − FX (x)]i

i !
+∞∑

j=0

−1

ln (1 − p)

p j+i

j + i

( j + i)!
j ! [FX (x)] j
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= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

{p [1 − FX (x)]}i

i !
−1

ln (1 − p)

×
+∞∑

j=0

( j + i − 1)!
j ! [pFX (x)] j

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

{p [1 − FX (x)]}i

i !
−1

ln (1 − p)

(i − 1)!
[1 − pFX (x)]i

.

Taking p∗ = p[1−FX (x)]
1−pFX (x)

we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

ln (1 − p∗)
ln (1 − p)

+∞∑

i=k

−1

ln (1 − p∗)
(p∗)i

i

= 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

ln (1 − p∗)
ln (1 − p)

.

Since
p1 = − p

ln (1 − p)
⇒ ln (1 − p) = −p

P [N (p) = 1]
,

the result in the theorem follows. �

Theorem 4 If N (p) has an ENB distribution with pmf given by (10) with α ∈
(−1, 0), p ∈ (0, 1] and n ∈ N, then

FX N (p)−k+1:N (p)|N (p)≥k (x) = 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

(
1 − p∗

1 − p

)α
P [N (p) = 1]

P [N (p∗) = 1]

p∗

p
(12)

with

p∗ = p [1 − FX (x)]

1 − pFX (x)
.

Proof Let α ∈ (−1, 0), p ∈ (0, 1] and n, k ∈ N. Consider N (p) a rv with an ENB
distribution with pmf given by

pn = α Γ (n + α)

n! Γ (1 + α)

pn (1 − p)α

1 − (1 − p)α
.
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Again using (7), we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 −
+∞∑

i=k

[1 − FX (x)]i

P [N (p) ≥ k] i !

×
+∞∑

j=0

αΓ ( j + i + α)

( j + i)!Γ (1 + α)

p j+i (1 − p)α

1 − (1 − p)α
( j + i)!

j ! [FX (x)] j

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

{p [1 − FX (x)]}i

i !Γ (1 + α)

α (1 − p)α

1 − (1 − p)α

×
+∞∑

j=0

Γ ( j + i + α)
1

j ! [pFX (x)] j .

Since +∞∑

j=0

Γ ( j + i + α)
1

j ! [pFX (x)] j = Γ (α + i)

[1 − pFX (x)]α+i

we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − 1

P [N (p) ≥ k]

+∞∑

i=k

{p [1 − FX (x)]}i

i !Γ (1 + α)

α (1 − p)α

1 − (1 − p)α
Γ (α + i)

[1 − pFX (x)]α+i

= 1 − 1

P [N (p) ≥ k]

(1 − p)α

1 − (1 − p)α
1

[1 − pFX (x)]α
1 − (1 − p∗)α

(1 − p∗)α

×
+∞∑

i=k

αΓ (α + i)

i !Γ (1 + α)

(
p∗)i (1 − p∗)α

1 − (1 − p∗)α

with p∗ = p[1−FX (x)]
1−pFX (x)

= p−1+1−pFX (x)
1−pFX (x)

= 1 − 1−p
1−pFX (x)

. Hence,

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

1

[1 − pFX (x)]α
(1 − p)α

1 − (1 − p)α
1 − (1 − p∗)α

(1 − p∗)α
.

But

p1 = αp (1 − p)α

1 − (1 − p)α
⇒ (1 − p)α

1 − (1 − p)α
= P [N (p) = 1]

αp
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and hence

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

1

[1 − pFX (x)]α
P [N (p) = 1]

αp

αp∗

P [N (p∗) = 1]

= 1 − P
[
N (p∗) ≥ k

]

P [N (p) ≥ k]

1

[1 − pFX (x)]α
P [N (p) = 1]

P [N (p∗) = 1]

p∗

p
,

and (12) follows. �

5 Order Statistics of Geometrically Thinned Sequences

Poisson thinned sequences and geometrically thinned sequences have specially nice
properties. In this section we will study the particular case of the geometrically
random stopped order statistics as defined by Rachev and Resnick in (cf. [8]).

5.1 Stable Limit Laws for Maxima of Geometrically Thinned
Sequences

For p ∈ (0, 1), define q := 1 − p and let N (p) be a geometrically distributed rv
such that

P [N (p) = k] = pqk−1, k ∈ N. (13)

Notice that this rv has the same distribution as the rv N∗ + 1 where N∗ has a
NegativeBinomial(1, 1 − p) distribution, as defined in Table1.

Let {Xi , i ∈ N} be a sequence of iid rvs, replicas of X , an absolutely continuous
rv, all independent of N , with a common cdf FX . Suppose that X belongs to the
max-domain of the attraction of one of the possible types of max-stable distributions
with cdf given in (1), generally denoted G(x). The limit laws G , when p → 0, of the
maximum of the vector (X1, ..., X N ), properly normalised by functions of p, were
described by Rachev and Resnick (cf. [8]). They are related to the extreme value cdf
given in (1) through the expression G (x) = 1/ (1 − ln G (x)) , and they have been
provided in (2).
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5.2 To Whom are the Geometrically Thinned Second
Maxima Important?

In auctions such as the e-Bay the final price is a fixed increment of the second
maximum biding. For interesting, fairly rare and expensive items many bidders wait
until the very end beforemaking their bid (which is called “sniping”). Since theywait
till the very last moment, they do not know the others bids and are therefore bidding
independently of each other. On the other hand, internet speed and communication
jams preclude some bids to arrive before the auction is closed, and we shall accept
that this thinning is geometric, and that for the same valuable item bids are iid.

Some sellers auction similar items at different times, and sometimes under dif-
ferent identities, for instance we have seen, dozens of times, auctions of a rocking
mother and child or of the king and queen, by Henry Moore, without a certificate
of authenticity (COA), and numbered using some cypher from 1 to 9 (Moore only
cast less than 10 of those miniatures). It is of course expected that the sellers will
continue to put similar items on sale on the future, and that (s)he wants to maximise
the selling price.

The seller can force bids to be greater than a “reserve price”. Hence the problem
is to determine the distribution of the geometrically thinned maximum, given that
several previous thinned second maxima have been recorded. The seller can then
choose an appropriate threshold as starting bid or as a reserve price, depending obvi-
ously on his greed and on his need to make money, conflicting issues in determining
the probability of selling he wants to attain.

For instance, the same seller currently advertises at e-Bay Giacometti’s Walking
Man with an auction starting price US$600 (1 day left, 0 bids), or “buy it now” for
US$780. Similar items have been advertised by the same seller, effective published
selling prices ranging from US$600—observe that this happens whenever there is
only one bid, that can be considerably higher than the final selling price—toUS$679,
and therefore we estimate that the fair price the seller can expect is approximately
US$675, but that the maximum bid is greater than US$679. Sales also occurred
when the seller used the option “buy it now or best offer”, but for those there is
only the information “Best Offer accepted” without disclosing the selling price;
with the very incomplete disclosure of best offers or biddings, we cannot estimate
the maximum, although we believe it is less than US$780. The seller however has
complete information, and surely uses it to estimate the maximum price he can get
and therefore to determine the starting bid and the immediate selling price he accepts.
The fact that occasionally he uses the option “or best offer” seems to indicate that
the seller guesses that US$780 is an optimistic estimate of the fair price for that item.
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5.3 Limit Theorems for Geometrically Randomly
Stopped Order Statistics

The randomly stopped order statistics inherit some of the simple properties of order
statistics in the traditional iid scheme. The extensions of Smirnov [10] asymptotic
limit distributions for the geometrically randomly stopped order statistics that follow
exhibit some of those similarities.

Consider the rv N (p) with pmf given by (13). In this section we will study the
limit behaviour (when p ↓ 0) of the distributions of X N (p)−k+1:N (p)|N (p)≥k and of
Xk:N (p)|N (p)≥k , properly normalised. Let us start with X N (p)−k+1:N (p)|N (p)≥k and
call G (k) the associated limit distribution. From expression (6) we know that:

FX N (p)−k+1:N (p)|N (p)≥k (x) =
+∞∑

j=k

k−1∑

i=0

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i P [N (p) = j]

P [N (p) ≥ k]
.

Replacing the expression of the pmf of N (p) given by (13) and noting that

1 =
j∑

i=0

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i we can write

FX N (p)−k+1:N (p)|N (p)≥k (x) = p
+∞∑

j=k

(1 − p) j−1

(1 − p)k−1

×
⎡

⎣1 −
j∑

i=k

(
j

i

)

[1 − FX (x)]i [FX (x)] j−i

⎤

⎦ .

After some simplifications and the exchange of the order of the two sums we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x)

= 1 − p

(1 − p)k−1

+∞∑

i=k

[1 − FX (x)]i (1 − p)i−1
+∞∑

j=0

(
j + i

i

)

[(1 − p) FX (x)] j .

Finally, using the equality
∑+∞

j=0

[(
j + i

i

)

y j
]

= 1
(1−y)i+1 , |y| < 1, we obtain

FX N (p)−k+1:N (p)|N (p)≥k (x) = 1 −
[

1 − pFX (x)

1 − (1 − p) FX (x)

]k

. (14)

Suppose that the rv X N (p):N (p), conveniently normalised, weakly converges to a
nondegenerate rv with cdf G , i.e., that there exists α = α(p) and β = β(p) > 0,
such that
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lim
p↓0F X N (p):N (p)−α(p)

β(p)

(x) = lim
p↓0FX N (p):N (p)

(β (p) x + α (p)) = G (x) .

Let x p = β (p) x + α (p). Hence, from (14) with k = 1, we conclude that

lim
p↓0FX N (p):N (p)

(
x p

) = lim
p↓0

{

1 −
[

1 − p FX
(
x p

)

1 − (1 − p) FX
(
x p

)

]}

= lim
p↓0

p FX
(
x p

)

1 − (1 − p) FX
(
x p

) = G (x) .

For general k we have then

lim
p↓0FX N (p)−k+1:N (p)|N (p)≥k

(
x p

) = lim
p↓0

⎧
⎨

⎩
1 −

[

1 − p FX
(
x p

)

1 − (1 − p) FX (x)

]k
⎫
⎬

⎭

= 1 − [1 − G (x)]k ,

proving the following theorem.

Theorem 5 Let p ∈ (0, 1), define q := 1 − p and consider the rv N (p) with pmf
given by (13). If X N (p):N (p) properly normalised weakly converges to a nondegen-
erate rv with cdf G , i.e., if there exists α (p) and β (p) > 0, such that

lim
p↓0FX N (p):N (p)

(β (p) x + α (p)) = G (x) ,

then the kth geometric maximum, X N (p)−k+1:N (p)|N (p) ≥ k, properly normalised
with the same functions, i.e., the rv

X N (p)−k+1:N (p)|N (p)≥k − α (p)

β (p)
,

weakly converges to a nondegenerate rv with cdf G (k) given by

G (k) (x) = 1 − [1 − G (x)]k .

For the kth geometric order statistic a similar reasoning leads to the equality

FXk:N (p)|N (p)≥k(x) =
[

FX (x)

p + (1 − p) FX (x)

]k

.
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Taking x p = β (p) x + α (p), suppose that the limit L (x) of FX1:N (p)

(
x p

)
, when

p ↓ 0, exists:

lim
p↓0 FX1:N (p)

(
x p

) = L (x) = lim
p↓0

FX
(
x p

)

p + (1 − p) FX
(
x p

) .

Then

lim
p↓0 FXk:N (p)|N (p)≥k

(
x p

) = lim
p↓0

[
FX

(
x p

)

p + (1 − p) FX
(
x p

)

]k

= L k (x) ,

which leads to the following theorem.

Theorem 6 Let p ∈ (0, 1), define q := 1 − p and consider the rv N (p) with pmf
given by (13). If X1:N (p) properly normalised weakly converges to a nondegenerate
rv with cdf L , i.e., if there exists α (p) and β (p) > 0, such that

lim
p↓0FX1:N (p)

(β (p) x + α (p)) = L (x) ,

then the kth geometric order statistic, Xk:N (p)|N (p) ≥ k, similarly normalised, i.e.,
the rv

Xk:N (p)|N (p)≥k − α (p)

β (p)
,

weakly converges to a nondegenerate rv with cdf L (k) given by L (k) (x) = L k (x) .
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The Role of Asymmetric Families
of Distributions in Eliminating Risk

Fernanda Otília Figueiredo and Maria Ivette Gomes

Abstract Modeling is always a crucial component of the risk assessment process.
The use of adequate classes of distributions to model real data sets seems sensible to
accommodate specific peculiarities of the data and enable us to implement resistant
procedures, less sensitive to changes in themodel. Despite the practical advantages of
using the normal distribution, it is recognized that most of the data from diverse areas
of application, such as economics, environment, finance, insurance, meteorology,
reliability and statistical quality control, among others, usually exhibit moderate
to strong asymmetry and heavier tails than the normal tail. This study motivates
the use of two classes of skew-normal distributions that include highly skewed and
heavy-tailed distributions as well as models that are close to the Gaussian family.
Some guidelines for inference on the parameters of the model are suggested, and
applications to real data sets are presented.

Keywords Asymmetric families of distributions · Control charts ·Data modeling ·
Skew-normal · SPC

1 Introduction

Although the methods for assessment of risk may differ among organizations, firms,
industries and areas of research, modeling is always a crucial component of the risk
assessment process. Nowadays it is well known among statisticians that the use of
adequate classes of distributions to model real data sets enables the accommodation
of specific peculiarities of the data. Even if confronted with more sophisticated
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estimation procedures, the computational capabilities we have access to these days
enable us to usemore resistant procedures, i.e., less sensitive to changes in themodel.

We are often confronted with data sets from asymmetric parents, with different
degrees of asymmetry and tail weight. This hasmotivated the detailed study of several
asymmetric distributions, both univariate and multivariate.

In this paper, we shall pay attention to two different families of distributions with
varying asymmetry, denoted byF1 andF2, both including the Gaussian distribution
as a particular case. These families are obtained through the application of different
mechanisms of asymmetry to the normal distribution. Those mechanisms enable
us to have access to distributions with different degrees of asymmetry and tail-
weight. It is worth noting that despite the relevant role of the normal distribution
in statistical quality control, most of the available data sets are from non-Gaussian
processes. Particularly in the area of reliabilitymost asymmetric distributions, like the
exponential, theWeibull, the gammaand the log-normal, are used as life distributions,
so that we can easily accommodate the instantaneous hazard rate behavior. And even
in potentially normal processes, the distribution underlying the data often differs a
lot from a normal distribution due to uncontrollable factors. Thus it makes sense to
use more general families that can accommodate those possible differences. Indeed,
despite the practical advantages of using the normal distribution, it is recognized that
most of the data from diverse areas of application, such as economics, environment,
finance, insurance, meteorology, reliability and statistical quality control, among
others, usually exhibitmoderate to strong asymmetry and tails heavier than thenormal
tail, with an exponential decay and a penultimate Weibull behavior (see Beirlant
et al. [9]).

The scope of this article is sketched in the following. In Sect. 2, we introduce
the families of distributions under consideration, emphasizing some of their proper-
ties, in order to show their versatility and to motivate their use in practical applica-
tions. Section3 is devoted to the modeling of a few real data sets through the use of
these asymmetric normal distributions. Finally, in Sect. 4, some general concluding
remarks are put forward.

2 Asymmetric Families of Distributions Under
Consideration

Let us consider the usual notation φ andΦ for the probability density function (p.d.f.)
and cumulative distribution function (c.d.f.) of a standard normal random variable
(r.v.), respectively.

In the family F1, introduced in O’Hagan and Leonard [15] and later on studied
in more detail by several authors, among whom we mention Azzalini [3, 4] and
Azzalini and Regoli [8], we have distributions with a p.d.f. given by
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f1(x; λ, δ, α) = 2

δ
φ

(
x − λ

δ

)

Φ

(
α(x − λ)

δ

)

, x ∈ R, (1)

with λ, α ∈ R and δ ∈ R
+.

In the family F2, introduced in Fernandez and Steel [10], we find distributions
with a p.d.f. given by

f2(x; λ, δ, α) =

⎧
⎪⎪⎨

⎪⎪⎩

2

δ(α + 1/α)
φ

(
α(x − λ)

δ

)

, if x < λ,

2

δ(α + 1/α)
φ

(
x − λ

αδ

)

, if x ≥ λ,

(2)

with λ ∈ R and δ, α ∈ R
+. This family has also been considered by several other

authors, among whom we mention Ferreira and Steel [11] and Abtahi et al. [1]. If X
is a r.v. with p.d.f. either inF1 or inF2, a linear transformation of the type (X −λ)/δ

enables us to get the standardized versions of these families, i.e., distributions with
location 0 and scale 1.

Several generalizations of these families have been recently considered in the
literature. As an example, and for the multivariate case, see Azzalini [5] and Azzalini
and Capitanio [7]. We further mention asymmetric distributions defined in intervals
on the basis of these unimodal families, a nice alternative for modeling data from a
mixture model (see Jamalizadeb et al. [13]).

Without loss of generality, and to illustrate some of their properties, we consider
the standardized versions of the aforementioned families F1 and F2. We further
denote their p.d.f.’s by fi (x;α) := fi (x; 0, 1, α), for i = 1, 2. The parameter α

enables us to control the asymmetry and the tail-weight of the distribution, as we
shall see in Sects. 2.1 and 2.2.

2.1 Properties of the F1 Family

The normal distribution obviously belongs to the familyF1.We just need to consider
α = 0 in (1). For α �= 0 we get asymmetric distributions, either with a positive (α >

0) or a negative (α < 0) asymmetry. These distributions become more asymmetric,
as the distance between α and zero increases. Such a feature is illustrated in Fig. 1,
where we should take into account the property, f1(x;α) = f1(−x;−α), for x ∈
R and ∀α ∈ R, easy to derive from the expression of the p.d.f. in (1).

An r.v. X with p.d.f. f1(x;α) has finite moments of all orders, ∀α ∈ R. The
ordinary moments of order k, with k being any positive integer, are given by

E(Xk) =

⎧
⎪⎨

⎪⎩

1 × 3 × · · · × (k − 1), k = 2, 4, 6, . . .√
2 k! α

2
k−1
2

√
π(1 + α2)

k
2

(k−1)/2∑

m=0

m!(2α)2m

(2m + 1)! ( k−1
2 − m

)! , k = 1, 3, 5, . . .

(3)
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Fig. 1 Graphical representation of f1(x; α) for several non-negative values of α

Consequently, the mean value and the variance of the r.v. X are respectively given
by

E(X) =
√
2α

√
π(1 + α2)

and V(X) = 1 − 2α2

π(1 + α2)
.

Note that in F1, if α → ±∞ we get a truncated version of the normal distribution.
Thus, in this family of asymmetric distributions, the increase of the weight of the
right (α > 0) or the left (α < 0) tail is accompanied by a decrease of the weight of
other tail.

However, the tail weight depends strongly on α. If α > 0 the right-tail of the
distribution becomes heavier than that of a normal distribution, whereas the weight
of the left-tail becomes weaker than the one of the normal. Things go the other way
round if α < 0. Indeed, when we change the sign of α the p.d.f. becomes reflected
on the opposite side of the y-axis. Other properties of these models can be found in
Figueiredo and Gomes [12] and Azzalini [5].

It is still relevant to mention that if we consider two r.v.’s X1 and X2 with a normal
distribution, either independent or linearly correlated, the sample statistics Tmax =
max(X1, X2) and Tmin = min(X1, X2) have an asymmetric normal distribution in
F1. These univariate statistics Tmax and Tmin thus enable the implementation of
control charts to simultaneously monitor two relevant quality characteristics, and are
alternatives to themultivariate control charts based onHotelling’s statistic.Moreover,
they can be used when we have only access to a unique observation at a certain time
period. We should not obviously exclude the cases in which those variables X1 and
X2 are averages of n observations of two crucial process variables.

We next illustrate the performance of the one-sided control chart based on the
statistic Tmax, in the monitoring of a bivariate normal process (X1, X2), assuming
without loss of generality that the r.v.’s X1 and X2 are independent and identically
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Table 1 ARL of the one-sided Tmax-chart, based on independent Xi ∼ N(μ, σ ), for i = 1, 2

δ\θ 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0 2.5

0.0 370.4 156.7 80.7 47.8 31.4 22.2 16.7 13.1 10.7 9.0 7.7 4.6

0.1 268.0 119.5 64.1 39.1 26.3 19.0 14.6 11.6 9.6 8.1 7.1 4.3

0.2 195.8 91.8 51.2 32.2 22.2 16.4 12.7 10.3 8.6 7.4 6.5 4.1

0.3 144.4 71.1 41.1 26.7 18.8 14.2 11.2 9.2 7.7 6.7 5.9 3.8

0.4 107.4 55.5 33.3 22.2 16.0 12.3 9.9 8.2 7.0 6.1 5.4 3.6

0.5 80.7 43.6 27.1 18.6 13.7 10.7 8.7 7.3 6.3 5.6 5.0 3.4

0.6 61.2 34.6 22.2 15.7 11.8 9.4 7.7 6.6 5.7 5.1 4.6 3.2

0.7 46.8 27.6 18.3 13.3 10.2 8.2 6.9 5.9 5.2 4.7 4.3 3.1

0.8 36.2 22.2 15.2 11.3 8.9 7.3 6.2 5.4 4.8 4.3 4.0 2.9

0.9 28.2 18.0 12.7 9.7 7.7 6.5 5.5 4.9 4.4 4.0 3.7 2.8

1.0 22.2 14.7 10.7 8.3 6.8 5.7 5.0 4.4 4.0 3.7 3.4 2.6

1.5 7.7 6.1 5.0 4.3 3.8 3.4 3.1 2.9 2.7 2.6 2.5 2.1

2.0 3.4 3.0 2.7 2.5 2.4 2.3 2.2 2.1 2.0 2.0 1.9 1.8

2.5 1.9 1.8 1.8 1.7 1.7 1.7 1.6 1.6 1.6 1.6 1.6 1.5

Under control, μ = μ0 (δ = 0) and σ = σ0 (θ = 1), whereas out of control, μ → μ1 = δ > 0
and/or σ → σ1 = θ > 1

distributed. When the process is under control, let us assume that those variables
have a mean value μ = μ0 = 0 and a standard deviation σ = σ0 = 1. Then, the
c.d.f. and the p.d.f. of the control statistic Tmax = max(X1, X2) are given by

F(t) = P(Tmax ≤ t) = Φ2(t), t ∈ R, (4)

and
f (t) = 2φ(t)Φ(t), t ∈ R, (5)

respectively. This shows that Tmax has a standardized asymmetric distribution belong-
ing to the family F1, with a shape parameter α = 1. When the process is out of
control, let us assume that the mean value and/or the process standard deviation
change to the values μ = μ1 = δ > 0 and σ = σ1 = θ > 1, respectively. To assess
the performance of the Tmax-chart we shall analyze its ARL-behavior, with ARL
denoting the Average Run Length, i.e., the mean number of samples taken until the
chart signals. The Upper Control Limit (UCL) of the one-sided Tmax-chart that leads
to an ARL under control equal to 370.4, or equivalently, a false alarm rate equal to
0.0027, is the solution of the equation Φ2(UCL) = 1 − 0.0027, i.e., the value UCL
= 2.99977. The corresponding ARL values of the chart when the process is out
of control are presented in Table1. These values show the interesting performance
of this Tmax -chart. Indeed, the ARL decreases quickly when the mean value and/or
the standard deviation increases. This shows the high capacity of the chart in the
detection of changes in the process’s parameters. For further details on the topic, see
Figueiredo and Gomes [12].
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Algorithm 2.1 enables the simulation of a random sample (X1, X2, . . . , Xn) from
the distribution f1(x;α) ∈ F1.

Algorithm 2.1

For i = 1 until n, repeat:

1. Generate two independent observations, Z1 and Z2, from a standard normal
distribution;

2. Fix α;
3. If Z1 < α Z2, take Xi = Z2; otherwise, take Xi = −Z2.

2.2 Properties of the Family F2

It can easily be seen that α = 1 in (2) provides the normal distribution. For values of
α �= 1, we get positive asymmetry (α > 1) or negative asymmetry (0 < α < 1), and
distributions again more asymmetric as the distance between α and one increases.
These features are shown in Fig. 2. Take also into account the fact that f2(x;α) =
f2(−x; 1/α), for x ∈ R and ∀α ∈ R

+, a property easily derived from the p.d.f.
in (2).

For an r.v. X with p.d.f. f2(x;α), the ordinary moments of order k, with k being
any positive integer, are given by

E(Xk) = Mk

(
αk+1 + (−1)k/αk+1

α + 1/α

)

, with Mk =
∞∫

0

2skφ(s)ds. (6)

Fig. 2 Graphical representation of f2(x; α) for several values of α ≥ 1



The Role of Asymmetric Families of Distributions in Eliminating Risk 273

Note that Mk is the ordinary moment of order k of an r.v. S with a half-normal
distribution. Indeed, the half-normal p.d.f. is given by f (s) = 2φ(s), for s ≥ 0. In
particular, M1 = √

2/π and M2 = 1. Consequently, the mean value and the variance
of the r.v. X are given by

E(X) =
√

2

π

(
α2 − 1

α

)

and V(X) =
(

1 − 2

π

)(
α4 − 2α2 + 1

α2

)

+ 1,

respectively.
We have seen that the distributions in the family F1 have finite moments of any

order, converging to finite values when α → ±∞. The same does not happen with
the distributions in F2. Here, these moments diverge to infinity when α → +∞ or
when α → 0.

Algorithm 2.2 enables the random generation of a sample (X1, X2, . . . , Xn) of
random values from a distribution f2(x;α) ∈ F2.

Algorithm 2.2

For i = 1 until n, repeat:

1. Generate a random number U from a uniform distribution in (0, 1);
2. Fix α;

3. If U ≤ 1/(1 + α2) consider Xi = Φ−1
(
U (1 + α2)/2

)

α
; otherwise, consider

Xi = αΦ−1
(

U (1 + α2)

2α2 + α2 − 1

2α2

)

.

2.3 A Few Considerations on the Estimation of the Unknown
Parameters

The maximum likelihood (ML) estimates of the unknown parameters of the distribu-
tion in any of the familiesFi , for i = 1, 2, can be obtained only numerically through
iterative procedures. The same happens with the moment estimates. The R-package
sn, implemented by Azzalini [6], enables us to easily obtain those estimates for
models in the familyF1.

A simpler estimation procedure has been proposed by Abtahi et al. [1]. They start
with the use of the data mode (mo) and inter-quartile range (IQR) as location and
scale estimates, i.e., λ̂ = mo and δ̂ = IQR. To estimate the shape parameter, they
suggest the use of an asymmetry indicator defined in Arnold and Groeneveld [2],
given by AG := 1 − 2P(X < mode(X)), that can be estimated by
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ÂG = 1 − 2

n

n∑

i=1

I(−∞,0)(xi − mo),

where IA(.)denotes the indicator functionof the set A. This asymmetry indicator,AG,
lies between −1 and 1, taking negative (positive) values whenever the distributions
are negatively (positively) asymmetric, and the value zero in the case of symmetric
distributions. They thus propose the following estimates of α. For models f1 ∈ F1,
the estimate is the solution of the equation

1 − ÂG

2
=

0∫

−∞
2φ (x) Φ

(
α̂x

)
dx = 1

2
− 1

π
arctan(α̂),

i.e.,
α̂ = tan

(π

2
ÂG

)
,

where tan(·) and arctan(·) denote, as usual, respectively the tangent and the arc-
tangent functions. For models f2 ∈ F2, the suggested estimate of α is the solution
of the equation

1 − ÂG

2
= 1

α̂2 + 1
,

i.e.,

α̂ =
√

2

1 − ÂG
− 1.

3 Applications to Real Data

To illustrate the importance of these families of distributions in applied areas, we
consider four real data sets to which we fit asymmetric normal distributions in the
familiesFi , for i = 1, 2. We analyze the following data sets:

• RESV: Resistence to the opening of 1 litre glass bottles with a non-alcoholic
beverage, measured in psi pressure units; n = 100 observations (Source: Mont-
gomery [14], Table9.1, p. 368.)

• TVER: Summer average temperature (153 days) in Munich, measured in Celsius
degrees, in the period 1781–1988; n = 208 observations. (Source: Eamonn Keogh’s
and StatLib databases.)

• TNEG: Sum of winter negative temperatures (153 days) in Munich, measured in
Celsius degrees, in the period 1781–1988; n = 208 observations. (Source: Eamonn
Keogh’s and StatLib databases.)
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• ECO2: Total CO2 emissions in USA, measured in megagrams per person and per
month, in the period from January 1981 until December 2003; n = 276 observa-
tions. (Source: Carbon Dioxide Information Analysis Center, Tenessee USA and
Department of Agricultural & Resource Economics, Oregon USA.)

In Fig. 3 we present the histograms associated with these data sets and the esti-
mated p.d.f.’s, fi ∈ Fi , for i = 1, 2. In Table2 we provide the estimates of the
parameters of the fitted models, and the p-value of the Kolmogorov-Smirnov (K-S)
test. For sake of simplicity, the parameters of f1 were estimated through ML, using
the R-package sn, and for the parameters of f2 we have used the estimates suggested
by Abtahi et al. [1].

On the basis of the presented results, we can conclude that the familyF1 provides
the models that better describe the data sets under analysis. On the basis of the K-S
goodness-of-fit test, there is no reason to reject f1 as an adequate model to fit the
data; at the most common significance levels of 1 and 5%, the models f2 are rejected
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Fig. 3 Histograms and fitted f.d.p.’s, f1 (—-) and f2 (. . . .)

Table 2 Estimates of the parameters of the fitted models and p-value of the K-S goodness-of-fit
test

Data Model λ̂ δ̂ α̂ p-value (K-S
test)

RESV f1 286.1546 38.7629 –1.0224 0.5084

f2 265.8621 32.0000 0.9417 >5%

TVER f1 14.2940 1.1474 1.8387 0.9969

f2 14.7922 1.0400 1.2396 �5%

TNEG f1 103.9236 218.3129 5.6269 0.9948

f2 175.4237 180.7000 1.6475 <1%

ECO2 f1 0.4037 0.0504 3.5348 0.6628

f2 0.4274 0.0437 1.2568 <1%
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for the data sets TNEG and ECO2, contrary to what happens for the data sets RESV
and TVER.

4 Concluding Remarks

For an adequate modeling of real data, we are fully convinced that it is better to
play with flexible families of models, with different types of p.d.f.’s. This is surely
more sensible than to consider the fitting to a specific and simple model, dependent
only on the estimation of a location and a scale parameter, like the normal model.
To model possibly asymmetric data, it is adequate to consider models in F1. To
describe approximately normal or quasi-symmetric data, both classes F1 and F2
provide adequate models. In both of these models, the parameters can be estimated
either through the ML method or through other estimation procedures, like the ones
mentioned above, in Sect. 2.3.
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Parametric and Semi-parametric
Approaches to Extreme Rainfall
Modelling

Isabel Fraga Alves and Pedro Rosário

Abstract In a meteorological setup, considering a data set of daily rainfall in
Barcelos, Portugal, a survey of possible parametric and semi-parametric approaches
in Extreme Value Theory is presented, with the main goal of the analyzing high
observations of records over time, since these might entail negative consequences
for society. These analysis embraces estimation of several extreme value parameters,
including return levels associated with T -year return periods, for large T .

Keywords Extreme value parameters ·Extreme value theory ·Parametric and semi-
parametric approaches · Return levels · Rainfall

1 Introduction

When we are dealing with meteorological data there is the need to differentiate
between two situations: the case of data set concentrated around the average, with
no disastrous consequences for the society; and on the other hand, the case of data
away from the center of a distribution, that can have a very negative impact and
which is important to quantify. Typically, one is interested in the analysis of maximal
observations and records over time, since these entail the negative consequences.
Rainfall is a good example of this: the engineering structures associatedwith extremal
precipitation levels, need to be constructed to withstand the extremal behavior of this
process; for example, a reservoir must be able to store the amount of rain expected
to fall in some specific location.

Extreme Value Theory (EVT) is the theory of modeling and measuring events
which occur with very small probability, and has proved to be a powerful and use-
ful tool to describe atypical situations that may have a significant impact in many
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application areas, where knowledge of the behavior of the tail of a distribution is
of main interest. The classical result is the Gnedenko theorem [10]. It establishes
that there are three type of possible limit distributions (max-stable) for maxima of
blocks of observations, which are unified in a single representation—the General-
ized Extreme Value (GEV) distribution. The second theorem in EVT is the so called
Pickands-Balkema-de Haan theorem [1, 16]. Loosely speaking, it allows us to model
the Generalized Pareto (GP) distribution to the excesses of high thresholds—POT
approach—for distributions in the domain of a GEV distribution. Complementary
to these parametric approaches, we also consider up a possible semi-parametric
approach, comparing it with the previous ones. Additional information about para-
metric and semi-parametric inference for extreme values can be found in some
overview papers (see [3, 5, 11], for instance) and reference books in the field of
EVT and its real world applications (see [2, 4, 6, 7, 9, 18]).

For rainfall data in Barcelos, we will employ these two approaches to estimate
a p-return levels associated with T = 1/p-year return periods, for small p, some
extreme quantiles and the probability of exceedance of a high level. Design levels
typically correspond to return periods of 100 years or more; however, time series of
100 or more years are rare. A model for extrapolation is required and here integrates
with the EVT, a theory specifically designed for modelling rare events.

The paper is structured as follows: in Sect. 2 we present some parameters of rare
events for real world problems, describe the rainfall data and motivate the EVT
framework. Then we move on with Sects. 3 and 4, in which we shortly sketch some
parametric and semi-parametric approaches, prescribed for the respective univariate
data type available a priori. In Sect. 5 wemake some final statements about how both
approaches benefit a complementary statistical analysis of extreme values.Moreover,
throughout the text, we will often mention useful capabilities of some libraries of
R-package [17].

2 Preliminaries

In this section some preliminary concepts are presented. Denote by F the distribu-
tion function (DF) underlying the data under study and F← its generalized inverse.
Typical design values are:

Definition 1 (T -year Return Level: uT ) A value which is exceeded once in a year
with a probability 1/T

uT = F←(1 − 1/T ) (1)

Definition 2 (uT -Return Period: T ) Average number of years between occurrences
of an event of magnitude greater than a predefined high level uT

T = 1

P[X > uT ] (2)
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Definition 3 (Small Exceedance Probability) The probability for an exceedance of
a very high level

px = P[X > x],with x > xn:n =: sample maximum (3)

If in (1) the value 1/T =: p is very small, say p < 1/n, with n denoting the
available sample size, then we are dealing with high or extreme quantiles and it is
crucial for modelling rare events.

We cannot simply assume that these atypical values are impossible. Design levels
correspond to return periods of 100 years or more and the empirical cumulative
distribution function (ECDF) is not enough! It is pertinent here to quoteEmilGumbel:

Il est impossible que l’improbable n’arrive jamais.
Il y aura toujours une valeur qui dpassera toutes les autres.
Emil Gumbel (1891–1966)

Daily rainfall in Barcelos 1932–2008The following data set, represented in Fig. 1, is
freely available from www.snirh.pt and has also been analyzed in [14, 15], including
high quantiles estimation for monthly maxima.

If we ‘zoom into’ of the upper part of ECDF for daily rainfall in Barcelos (see
Fig. 1), and aim to estimate 100-year return level, the best we can do with the ECDF
is giving the sample maximum, and the same applies to any T -year return level, with
T > 75. Consequently, extrapolation is required.

Fig. 1 Daily rainfall in Barcelos 1932–2008 (up). ECDF for daily rainfall in Barcelos: all data
(down left); Top data (down right); qT denotes qT := 1 − pT = 1 − 1

365×T

www.snirh.pt
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3 Parametric Approaches

3.1 Annual Maxima Approach—Gumbel Method

EVT provides limit laws for an extrapolation beyond sample. The classical result is
the Gnedenko theorem [10], which establishes that there are three type of possible
limit distributions max-stable for maxima of blocks of n independent and identically
distributed (iid) observations with common (DF) F , Mn , which are unified in a single
representation—the GEV distribution

Gγ (x) = exp
{
− [

1 + γ x
]−1/γ
+

}
, γ ∈ R. (4)

[Notation: x+ := max(0, x)]. That is, if there are sequences an > 0 and bn , such
that P [(Mn − bn)/an ≤ x] −→ G(x), as n → ∞, for some non-degenerated fd G,
then G is of the same type of Gγ (x) and we say that F belongs to the max-domain
of attraction Gγ [Notation: F ∈ D(Gγ )].

Consider the available data—Daily rainfall in Barcelos 1932–2008—divided in
m blocks, usually years, and pick up the maximum in each block, as illustrated in
Fig. 2.

Aquick summaryof descriptive statistics for annualmaximadata (annual_max)
is given by the following R-Package [17] command

> summary(annual_max)

Min. 1st Qu. Median Mean 3rd Qu. Max.

42.00 62.25 68.40 73.99 86.50 146.00

The autocorrelation function (ACF) for daily and annual maxima of daily rainfall
records is represented in Fig. 3, which highlights the absence of a significant depen-
dence for the latter. We should also mention that the tendency is not significant,
which was concluded from a preliminary statistical test study.

Fig. 2 Blocks of years, daily data and Annual Maxima (left); Annual Maxima (right)
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Fig. 3 ACF for daily rainfall (left) and for annual maxima (right) [R-package]

Letting Y denote the annual maximum of a random sample of n rainfall values
max(X1, X2, . . . , Xn), assume that our available sample consists of m iid annual
maxima: Y1, Y2, . . . , Ym . Fit the GEV distribution Gγ (x; λ, δ) := Gγ ((x − λ)/δ),
where γ denotes the Extreme Value Index (EVI), λ a real valued location parameter
and δ a positive scale parameter.

Thereafter use (γ̂ , λ̂, δ̂) in the associated GEV fit for Y to estimate rare events:

• Exceedance probability for high level u, 1 − Gγ (u; λ, δ),

• Return period for level u, Tu = 1

1 − Gγ (u; λ, δ)
,

• T -year return level, G←
γ

(
1 − 1

T ; λ, δ
)
.

Let ML and PWM be, respectively, the Maximum Likelihood and Probability
Weighted Moments estimators [12]; in last column of Table1 we also include the
probability of annual maxima of rainfall levels around Barcelos station that are above
159 mm, a level that has also been considered in [15].

With the GEVML fit, the 95%-CI for Return Levels, using profile log-likelihood,
are (see also Fig. 4)

• MLE Return Level 100-year = 133.867 mm (118.428, 174.901),
• MLE Return Level 400-year = 152.798 mm (130.070, 226.663);

Table 1 ML and PWM estimates in annual maxima approach [R-library(fExtremes)]

γ̂ λ̂ δ̂ P̂[Y > 159]
ML −0.030 65.19 16.00 0.0016

PWM −0.027 65.08 16.18 0.0018
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Fig. 4 95%-CI for return levels and profile log-likelihood: 100-year (left); 400-year (right).
[R-library(evir)]

3.2 TOP Annual Approach—10 Largest Observations Per Year

At this stage, we take into account the 10 largest observations per year (see Fig. 5).
The TOP annual approach relies on a convenient parametric model underlying the
sample of the r largest observations, observed for the m years.

Consider the limit joint model for r top order statistics (o.s.), r fixed, with joint
limit density function

g1,...,r (w1, . . . , wr ) := Gγ (wr )

r∏

i=1

gγ (wi )

Gγ (wi )
, for w1 > · · · > wr , (5)

with gγ (w) := ∂Gγ

∂w (w). In statistical inference for rare events, a possible approach is
to model with the above joint structure the top observations (TO) available from
the sample. More precisely, F ∈ D(Gγ ) for an > 0 and bn iff the r -vector(

Xn:n−bn
an

, . . . ,
Xn−r+1:n−bn

an

)
has joint limit density function given in (5).

In Table2 the estimation results are summarized.

Fig. 5 Blocks of years, daily data and 10 top observations per year
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Table 2 Parameters of GEV fit to annual maximum, by TO approach, with r = 1 (annual maxima),
r = 5 and r = 10, by ML. [R-library(ismev)]

# TO γ̂ λ̂ δ̂ P̂[Y > 159] rl 100-year rl 400-year

r = 1 −0.030 65.19 16.00 0.0016 133.867 152.798

r = 5 0.013 66.38 15.60 0.0033 140.265 163.442

r = 10 0.005 66.95 15.04 0.0024 136.880 158.302

3.3 Monthly Maxima Approach

Nowwe consider monthly maxima data of daily rainfall (mm) in Barcelos, similar to
dataworkedout in [14, 15],where highquantiles Q1−p ofmonthlymaximahavebeen
estimated.Results are summarized inTable3: thefirst row refers directly to estimation
through GEV fit to monthly maximum, as in Sect. 3.1, but with 919 monthly blocks;
in the second, third and fourth rows, since we are relying on monthly maxima, the
GEV fit to the annual maximum, based on TO approach with r = 1, 5, 10, provides
estimated high quantiles of monthly maximum by the input of annual estimated
parameters λyear , δyear , γyear at the expression Q1−p := G←

γ

(
(1 − p)12; λ, δ

)
,

relying on max-stability.

3.4 Monthly Maximum—POT Approach

The basic idea behind the Peaks Over Threshold (POT) approach is to base statistical
inference for extremes on the excesses over a high threshold. In Fig. 6, we combine
monthlymaximawith the excesses over the threshold u = 42mm,which corresponds
to the minimum of annual maxima in the period under study. Note that although

Table 3 Estimates of high quantiles for monthly maximum—several approaches

Q̂1−p (mm) 0.05 0.01 0.001 0.0001 0.00001

Month-max 73.530 104.995 153.034 205.422 262.641

Annual-max
fit, r = 1

72.900 97.966 131.387 162.491 191.487

Annual-max
fit, r = 5

73.972 99.824 137.330 175.864 215.517

Annual-max
fit, r = 10

74.258 98.923 134.150 169.687 205.595

Empirical
quantiles

71.28 98.90 – – –
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Fig. 6 Monthly maximum—POT (u = 42mm = min(annual maxima))

independence of monthly maxima is questionable, the monthly maxima excesses
over u = 42 perform reasonably well in what concerns independence (see Fig. 7).

The theory behind modelling such a data base involves the Generalized Pareto
approximation to the distribution of (X−u)|X > u, for a convenient high threshold u,

Fu(y) = P[X − u ≤ y|X > u] = F(u + y) − F(u)

1 − F(u)
, 0 ≤ y ≤ x F − u,

Fig. 7 ACF for monthly maxima (left) and for monthly maxima excesses over u = 42 (right)
[R-package]
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with x F denoting the right endpoint of F . That is, we fit a Generalized Pareto DF

Fu(y) ≈ Hγ (y; σu) := 1 −
(

1 + γ
y

σu

)−1/γ

+
, γ ∈ R, σu > 0,

using the estimated parameters Hγ̂ (y; σ̂u).
This is supported by Pickands-Balkema-de Haan theorem [1, 16], which states

that
F ∈ D(Gγ ), γ ∈ R ⇔ lim

u→x F
sup

0<y<x F −u

∣
∣Fu(y) − Hγ (y; σu)

∣
∣ = 0.

Highquantiles formonthlymaximaof daily rainfall inBarcelos, Q1−p = F←(1−p),
are obtained by approximating

Q̂1−p := F̂←(1 − p) ≈ u + σ̂u

γ̂

((
np

Nu

)−γ̂

− 1

)

,

with threshold u = 42, for a number of excesses Nu = 244 from a total number of
months n = 919 (Table4). The estimated values are σ̂u = 19.82 and γ̂ = −0.088.

It is also possible to obtain T -year return levels, estimated by

uT ≈ u + σ̂

γ̂

((
np

Nu

)−γ̂

− 1

)

• T = 100-year return level: with p = 1/(100 × 12) then uT ≈ 131.56mm,
• T = 400-year return level: with p = 1/(400 × 12) then uT ≈ 147.12mm,

which compare well with the previous corresponding values by the Annual Maxima
approach in Sect. 3.1, 133.867 and 152.798mm, respectively.

Table5 summarizes high quantile estimation for monthly maxima of daily rainfall
in Barcelos. It is worthwhile to highlight that this estimation using POT-methodology
may depend heavily on the threshold u.

In Fig. 8 we show the EVI and the 0.01-quantile estimation, against various values
of k, relating also the particular value of k = 244 with the threshold u = 42. Two
estimationmethodologies are compared:ML and PWM(details for the latter in [13]).

Table 4 Estimates of high quantiles for monthly maximum POT approach [R-library(ismev)]

Q̂1−p 0.05 0.01 0.001 0.0001 0.00001

POT month-max
(u = 42)

72.768 98.435 129.367 154.616 175.227
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Table 5 Estimates of high quantiles for monthly maximum—parametric approaches

Q̂1−p (mm) 0.05 0.01 0.001 0.0001 0.00001

Month-max 73.530 104.995 153.034 205.422 262.641

POT
month-max
(u = 42)

72.768 98.435 129.367 154.616 175.227

Annual-max
fit, r = 1

72.900 97.966 131.387 162.491 191.487

Annual-max
fit, r = 5

73.972 99.824 137.330 175.864 215.517

Annual-max
fit, r = 10

74.258 98.923 134.150 169.687 205.595

Empirical
quantiles

71.28 98.90 – – –

Fig. 8 Monthly maximum—POT: EVI (left) and 0.01-quantile (right) estimation, against
k—[R-library(evir)]

4 Semiparametric Approach: k + 1 Top Observations

In a semiparametric setup, we do not assume that there is any parametric model
underlying the data. Alternatively, we assume that the observations X1, X2, . . . , Xn

are iid with common (DF) F ∈ D(Gγ ), for some γ ∈ R. The statistical inference is
then pursued on the bases of the top part of the available sample

Xn:n ≥ Xn−1:n ≥ · · · ≥ Xn−k:n,

where the random threshold Xn−k:n is an intermediate o.s., with

k ≡ kn → ∞, with k/n → 0, when n → ∞.

It is as if the deterministic threshold u of POT Sect. 3.4 is now replaced by a ran-
dom Xn−k:n , and sometimes we call this a PORT approach (Peaks Over Random



Parametric and Semi-parametric Approaches to Extreme Rainfall Modelling 289

Threshold). EVI parameter estimation is the main goal in a first stage. In the litera-
ture, there are several estimators γ̂k,n with good properties. Here we only consider
the classical Moment estimator γ̂ M

k,n for γ ∈ R, presented in [8], defined by (6)

γ̂ M
k,n = M (1)

k,n + 1 − 1

2

{

1 − (M (1)
k,n)2

M (2)
k,n

}−1

(6)

with

M (r)
k,n = 1

k

k∑

i=1

(log Xn−i+1:n − log Xn−k:n)r , r = 1, 2.

An extremal quantile estimator, under this semiparametric setup, and for γ �= 0, is
given by

F̂←(1 − p) = Xn−k:n + â
(n

k

) ( k
np )γ̂ − 1

γ̂
(7)

with â
( n

k

) = Xn−k:n M (1)
k,n(1 − γ̂ −

k,n) and γ̂ −
k,n = 1 − 1

2

{

1 − (M(1)
k,n)2

M(2)
k,n

}−1

.

The EVI and the extremal quantile estimates are plotted against k in Figs. 9 and 10.

Fig. 9 Monthly maximum—semiparametrics and parametrics—EVI estimation
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Fig. 10 Monthly maximum—semiparametrics and parametrics—extremal quantile estimation

We also represent in Fig. 9 and in Fig. 10 the sample paths of the correspond-
ing estimates under parametric setup, POT-ML and POT-PWM of Sect. 3.4 and the
threshold at k = 244 corresponding to u = 42 is also marked with a vertical dashed
line. In addition, the EVI and the 100-months return level—or, equivalently, the 0.01-
quantile for monthly maximum—obtained by Annual Maxima approach of Sect. 3.1
are also marked with horizontal lines (check also Tables1, 2, 3, 4 and 5).

5 Concluding Remarks

In this paper, parametric and semi-parametric approaches have been considered to
estimate parameters of rare events, such as the EVI, high return levels and small
exceedance probabilities. All the aforementionedmethodologies are based in approx-
imations, which rely on asymptotic results that require that the sample size goes to
infinity (n → ∞). In practice, onehas a samplewith afinite sample sizen, and thepar-
ticular choice of the threshold u for POTmethod or the value of top number of obser-
vations k in semi-parametric setup, is not an easy task; in the first case, the theoretical
results also require that the threshold goes to the right endpoint (u = un → x F ),
while in the second case, the underlying asymptotic framework considers that the top
order statistic is of intermediate nature (k = kn → ∞, k/n → 0). This rainfall case
study illustrates how the different statistical approaches can contribute in practice to
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an overall choice of the most adequate sample region for inference in extremes. In
conclusion, we should say that the parametric and semiparametric approaches do not
compete. Instead, the two approaches are complementary to each other, as the last
two Figs. 9 and 10 clearly show, which is validated by the flat pattern of the sample
paths in a certain upper common region, where all the estimates are similar.

Acknowledgments Research partially supported by FCT: PEst-OE/MAT/UI0006/2011 and 2014,
EXTREMA-PTDC/MAT/101736/2008.
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A Log Probability Weighted Moment
Estimator of Extreme Quantiles

Frederico Caeiro and Dora Prata Gomes

Abstract In this paper we consider the semi-parametric estimation of extreme quan-
tiles of a right heavy-tail model. We propose a new Probability Weighted Moment
estimator for extreme quantiles, which is obtained from the estimators of the shape
and scale parameters of the tail. Under a second-order regular variation condition on
the tail, of the underlying distribution function, we deduce the non degenerate asymp-
totic behaviour of the estimators under study and present an asymptotic comparison
at their optimal levels. In addition, the performance of the estimators is illustrated
through an application to real data.

Keywords Extreme quantile · Extreme value index · Log probability weighted
moment · Optimal level · Statistics of extremes

1 Introduction

Let us consider a set of n independent and identically distributed (i.i.d.), or possi-
bly weakly dependent and stationary random variables (r.v.s), X1, X2, . . . , Xn , with
common distribution function (d.f.) F .We shall assume that F := 1−F has a Pareto-
type right tail, i.e., with the notation g(x) ∼ h(x) if and only if g(x)/h(x) → 1, as
x → ∞,

F(x) ∼ (x/C)−1/γ , x → ∞, (1)

with γ > 0 and C > 0 denoting the shape and scale parameters, respectively. Then
the quantile function U (t) := F←(1− 1/t) = inf{x : F(x) ≥ 1− 1/t}, t > 1 is a
regularly varying function with a positive index of regular variation equal to γ , i.e.,
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lim
t→∞ U (t x)/U (t) = xγ . (2)

Consequentially, we are in the max-domain of attraction of the Extreme Value dis-
tribution

EVγ (x) :=
{
exp(−(1 + γ x)−1/γ ), 1 + γ x > 0 if γ �= 0
exp(− exp(−x)), x ∈ R if γ = 0.

(3)

and denote this by F ∈ DM (EVγ ). The parameter γ is called the extreme value index
(EVI), the primary parameter in Statistics of Extremes.

Suppose thatwe are interested in the estimation of a extremequantileqp , a extreme
value exceeded with probability p = pn → 0, small. Since qp = F←(1 − p) ∼
Cp−γ , p → 0, for any heavy tailed model under (1), we will also need to deal
with the estimation of the shape and scale parameters γ and C , respectively. Let
Xn−k:n ≤ · · · ≤ Xn−1:n ≤ Xn:n denote the sample of the k + 1 largest order
statistics (o.s.) of the sample of size n, where Xn−k:n is a intermediate o.s., i.e., k is
a sequence of integers between 1 and n such that

k → ∞ and k/n → 0, as n → ∞. (4)

The classic semi-parametric estimators of the parameters γ and C , introduced in
[21], are

γ̂ H
k,n := 1

k

k∑

i=1

(ln Xn−i+1:n − ln Xn−k:n) , k = 1, 2, . . . , n − 1, (5)

and

Ĉ H
k,n := Xn−k:n

(
k

n

)γ̂ H
k,n

, k = 1, 2, . . . , n − 1, (6)

respectively. The EVI estimator in (5) is the well know Hill estimator, the average of
the log excesses over the high threshold Xn−k:n . The classic semi-parametric extreme
quantile estimator is the Weissman-Hill estimator [23] with functional expression

Ŵ
H

k,n(p) := Xn−k:n
( k

np

)γ̂ H
k,n

, k = 1, 2, . . . , n − 1. (7)

Most classical semi-parametric estimators of parameters of the right tail usually
exhibit the same type of behaviour, illustrated in Fig. 1: we have a high variance for
high thresholds Xn−k:n , i.e., for small values of k and high bias for low thresholds,
i.e., for large values of k. Consequently, the mean squared error (MSE) has a very
peaked pattern, making it difficult to determine the optimal k, defined as the value
k0 where the MSE is minimal. For a detailed review on the subject see for instance
[19] and [3].
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Fig. 1 Illustration of the
asymptotic squared bias,
variance and mean squared
error patterns, as function of
k, of most classical
semi-parametric estimators,
for a sample of size n = 250

0 50 100 150 200 250

k

(BIAS)2

VAR

MSE

Apart from the classical EVI, scale and extreme quantile estimators in (5), (6)
and (7), respectively, we shall introduce in Sect. 2 the corresponding Log Pareto
Probability Weighted Moment estimators. In Sect. 3, we derive their non degenerate
asymptotic behaviour and present an asymptotic comparison of the estimators under
study at their optimal levels.

2 Pareto Log Probability Weighted Moment Estimators

The probability weighted moments (PWM) method, introduced in [20] is a gen-
eralization of the method of moments. The PWM of a r.v. X , are defined by
Mp,r,s := E(X p(F(X))r (1− F(X))s), with p, r, s ∈ R. When r = s = 0, Mp,0,0
are the usual non-central moments of order p. Hosking andWallis [22] advise the use
of M1,r,s because the relation between parameters and moments is usually simpler
than for the non-centralmoments.Also, if r and s are positive integers, Fr (1−F)s can
be written as a linear combination of powers of F or 1− F and usually work with one
of themoments ar := M1,0,r = E(X (1−F(X))r ) or br := M1,r,0 = E(X (F(X))r ).
Given a sample size n, the unbiased estimators of ar and br are, respectively,

âr = 1

n

n−r∑

i=1

(n−i
r

)

(n−1
r

) Xi :n, and b̂r = 1

n

n∑

i=r+1

(i−1
r

)

(n−1
r

) Xi :n .

The first semi-parametric Pareto PWM (PPWM) estimators for heavy tailed models
appeared in [5], for the estimation of the shape and scale parameters γ and C , and
in [10], for the estimation of extreme quantiles and tail probabilities. Since all those
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PPWMestimators use the samplemean, they are only consistent if 0 < γ < 1.Caeiro
and Gomes [7] generalized the estimators in [5] with a class of PPWM estimators,
consistent for 0 < γ < 1/r with r > 0. In order to remove the right-bounded
support of the previous PPWM estimators and have consistent estimators for every
γ > 0, we shall next introduce new semi-parametric estimators based on the log-
moments lr := E((ln X)(1 − F(X))r ). For non-negative integer r , the unbiased
estimator of lr is given by

l̂r = 1

n

n−r∑

i=1

(n−i
r

)

(n−1
r

) ln Xi :n .

For the strict Pareto model with d.f. F(x) = 1− (x/C)−1/γ , x > C > 0, γ > 0 the
Pareto log PWM (PLPWM) are lr = ln(C)/(1 + r) + γ /(1 + r)2.

To obtain the tail parameters estimators of γ and C of a underlying model with
d.f. under (1), we need the followings results:

• Xn−k:n
C(n/k)γ

converges in probability to 1, for intermediate k;
• the conditional distribution of X |X > Xn−k:n , is approximately Pareto with shape
parameter γ and scale parameter C(n/k)γ .

The PLPWM estimators of γ and C , based on the k largest observations, are

γ̂
PLPWM

k,n := 1

k

k∑

i=1

(

2 − 4
i − 1

k − 1

)

ln Xn−i+1:n, k = 2, . . . , n, (8)

and

Ĉ
PLPWM

k,n :=
( k

n

)γ̂
PLPWM
k,n

exp
{

Dk,n
}
, k = 2, . . . , n, (9)

with Dk,n := 1
k

∑k
i=1

(
4 i−1

k−1 − 1
)
ln Xn−i+1:n . Notice that γ̂

PLPWM

k,n is a weighted

average of the k largest observations, with the weights gi,k := (2 − 4 i−1
k−1 ). Since

gi,k = −gk−i+1,k , the weights are antisymmetric and their sum is zero. On the basis
of the limit relation qp ∼ Cp−γ , p → 0, we shall also consider the following
quantile estimator

Q̂
PLPWM

k,n (p) :=
( k

np

)γ̂
PLPWM
k,n

exp
{

Dk,n
}
, k = 2, . . . , n, (10)

valid for γ > 0.
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3 Asymptotic Results

3.1 Non Degenerate Limiting Distribution

In this section we derive several basic asymptotic results for the EVI estimators in (5)
and (8) and for the quantiles estimators, Ŵ

H

k,n(p) and Q̂
PLPWM

k,n (p). Asymptotic results
for the scale C-estimators are not presented but can be obtained with an analogous
proof.

To ensure the consistency of the EVI semi-parametric estimators, for all γ > 0,
we need to assume that k is an intermediate sequence of integers, verifying (4). To
study the asymptotic behaviour of the estimators, we need a second order regular
variation condition with a parameter ρ ≤ 0 that measures the rate of convergence of
U (t x)/U (t) to xγ in (2) and is given by

lim
t→∞

lnU (t x) − lnU (t) − γ ln x

A(t)
= xρ − 1

ρ
⇔ lim

t→∞

U (t x)
U (t) − xγ

A(t)
= xγ xρ − 1

ρ
,

(11)

for all x > 0, with |A| a regular varying function with index ρ and xρ−1
ρ

= ln x if
ρ = 0.

Theorem 1 Under the second order framework, in (11), and for intermediate k,
i.e., whenever (4) holds, the asymptotic distributional representation of γ̂ •

k,n, with •
denoting either H or PLPWM, is given by

γ̂ •
k,n

d= γ + σ• Z•
k√

k
+ b• A(n/k)(1 + op(1)), (12)

where
d= denotes equality in distribution, Z•

k is a standard normal r.v.,

bH = 1

1 − ρ
, bPLPWM = 2

(1 − ρ)(2 − ρ)
, σH = γ and σPLPWM = 2√

3
γ.

If we choose the intermediate level k such that
√

k A(n/k) → λ ∈ R, then,

√
k(γ̂ •

k,n − γ )
d→ N (λ b• , σ

2
• ).

Proof For the Hill estimator, the proof can be found in [13]. For the PLPWM EVI-

estimator, note that
∑k

i=1

(
2 − 4 i−1

k−1

)
= 0 and consequently

γ̂
PLPWM

k,n = 1

k

k∑

i=1

(

2 − 4
i − 1

k − 1

)

ln
Xn−i+1:n
Xn−k:n

= 1

k

k∑

i=1

gi,k ln
Xn−i+1:n
Xn−k:n

, k < n.
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We canwrite X
d= U (Y )where Y is a standard Pareto r.v., with d.f. FY (y) = 1−1/y,

y > 1. Consequently and provided that k is intermediate, we can apply Eq. (11) with

t = Yn−k:n and x = Yn−i+1:n/Yn−k:n
d= Yk−i+1:k , 1 ≤ i ≤ k, to obtain

ln
Xn−i+1:n
Xn−k:n

d= γ ln Yk−i+1:k + Y ρ
k−i+1:k − 1

ρ
A(Yn−k:n)(1 + op(1)).

Then, since nYn−k:n/k
p→ 1, as n → ∞,

γ̂
PLPWM

k,n
d= 1

k

k∑

i=1

gi,k

{

γ Ek−i+1:k + Y ρ
k−i+1:k − 1

ρ
A(n/k)(1 + op(1))

}

,

where {Ei }i≥1, denotes a sequence of i.i.d. standard exponential r.v.’s. The distribu-
tional representation of the EVI-estimator γ̂

PLPWM

k,n follows from the results for linear

functions of ordinal statistics [12], i.e., Z
PLPWM

k =
√

k
σPLPWM

1
k

∑k
i=1(gi,k Ek−i+1:k − 1)

is a standard normal r.v. and 1
k

∑k
i=1 gi,k

Y ρ
k−i+1:k−1

ρ
converges in probability towards

2
(1−ρ)(2−ρ)

, as k → ∞.

The asymptotic normality of
√

k(γ̂ •
k,n − γ ) follows straightforward from (12).

Remark 1 Notice that γ̂
PLPWM

k,n has a smaller asymptotic bias, but a larger asymptotic

variance than γ̂
H

k,n . A more precise comparison will be dealt in Sect. 3.2.

Remark 2 For intermediate k such that
√

k A(n/k) → λ, finite, as n → ∞, the
Asymptotic Mean Squared Error (AMSE) of any semi-parametric EVI-estimator,
with asymptotic distributional representation given by (12), is AMSE(γ̂ •

n,k) :=
σ 2•
k + b2• A2(n/k), where Bias∞(γ̂ •

n,k) := b• A(n/k) and V ar∞(γ̂ •
n,k) := σ 2• /k.

Let k•
0 denote the level k, such that AMSE(γ̂ •

n,k) is minimal, i.e., k•
0 ≡ k•

0(n) :=
argmink AMSE(γ̂ •

n,k). If A(t) = γβtρ , β �= 0, ρ < 0 which holds for most com-
mon heavy tailed models, like the Fréchet, Burr, Generalized Pareto or Student’s t,
the optimal k-value for the EVI-estimation through γ̂ •

n,k is well approximated by

k•
0 =

(
σ 2• n−2ρ

(−2ρ)b2•γ 2β2

) 1
1−2ρ

. (13)

Remark 3 The estimation of the shape second-order parameter ρ can be done using
the classes of estimators in [11, 16, 17] or [8]. Consistency of those estimators
is achieved for intermediate k such that

√
k A(n/k) → ∞ as n → ∞. For the

estimation of the scale second-order parameter β, for models with A(t) = γβtρ ,
β �= 0, ρ < 0, we refer the reader to the estimator in [18]. That estimator is
consistent for intermediate k such that

√
k A(n/k) → ∞ as n → ∞ and estimators
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of ρ such that ρ̂ − ρ = op(1/ ln n). Further details on the estimation of (ρ,β) can be
found in [9].

For the extreme quantile estimators in (7) and (10), their asymptotic distributional
representations follows from the next, more general, Theorem.

Theorem 2 Suppose that • denotes either H or PLPWM EVI-estimators with distri-
butional representation given by (12). Under the conditions of Theorem 1, if p = pn

is a sequence of probabilities such that cn := k/(np) → ∞, ln cn = o(
√

k) and√
k A(n/k) → λ ∈ R, as n → ∞, then,

√
k

ln cn

(
Q̂•

k,n(p)

qp
− 1

)
d=

√
k

ln cn

(
Ŵ •

k,n(p)

qp
− 1

)
d= √

k
(
γ̂ •

k,n − γ
)
(1 + op(1)).

(14)

Proof Since qp = U (1/p), we can write

Ŵ •
k,n(p)

qp
= Xn−k:n

U (n/k)
.

U (n/k)

U (ncn/k)
(cn)

γ̂ •
k,n .

Using the second order framework, in (11), with t = n/k and x = k
n Yn−k:n , results in

Xn−k:n
U (n/k)

d= 1+ γ√
k

Bk +op(A(n/k))where Bk := √
k

( k
n Yn−k:n − 1

)
is asymptotically

a standard normal random variable. Using the results in [14], Remark B.3.15 (p.

397),
(

U (cn .n/k)

U (n/k)cγ
n

)−1 = 1 + A(n/k)
ρ

(1 + o(1)) follows. Then, since (cn)
γ̂ •

k,n−γ d=
1 + ln(cn)(γ̂ •

k,n − γ )(1 + op(1)), we get

Ŵ •
k,n(p)

qp

d= 1 + ln(cn)(γ̂ •
k,n − γ )(1 + op(1)) + γ Bk√

k
+ A(n/k)

ρ
(1 + op(1)),

and the second equality in (14) follows immediately.
For the other quantile estimator, we can write

Q̂•
k,n(p) = Xn−k:n

( k

np

)γ̂ •
k,n

exp{D̃k,n} = Ŵ •
k,n(p) exp{D̃k,n},

with D̃k,n := 1
k

∑k
i=1

(
4 i−1

k−1 − 1
)
ln Xn−i+1:n

Xn−k:n . Then, since we have

exp{D̃k,n} d= 1 + γ√
3k

Pk − ρ A(n/k)(1 + op(1))

(1 − ρ)(2 − ρ)
,

with Pk a standard normal r.v., the first equality in (14) follows.
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3.2 Asymptotic Comparison at Optimal Levels

We now proceed to an asymptotic comparison of the PLPWM EVI estimator in (8)
with the Hill estimator in (5) and the PPWM EVI estimator in [5], at their optimal
levels. This comparison is done along the lines of [6, 13], among others. Similar
results hold for the extreme quantile estimators, at their optimal levels, since they
have the same asymptotic behaviour as the EVI estimators, although with a slower
convergence rate.

Let k•
0 be the optimal level for the estimation of γ through γ̂ •

k,n given by (13), i.e.,
the level associated with a minimum asymptotic mean square error, and let us denote
γ̂ •

n0 := γ̂ •
k•
0 ,n

, the estimator computed at its optimal level. Dekkers and de Haan [15]

proved that, whenever b• �= 0, there exists a function ϕ(n; γ, ρ), dependent only on
the underlying model, and not on the estimator, such that

lim
n→∞ϕ(n; γ, ρ)AMSE(γ̂ •

n0) =
(
σ 2•

)− 2ρ
1−2ρ

(
b2•

) 1
1−2ρ =: LMSE(γ̂ •

n0). (15)

It is then sensible to consider the following:

Definition 1 Given two biased estimators γ̂
(1)
n,k and γ̂

(2)
n,k , for which distributional

representations of the type (12) hold with constants (σ1, b1) and (σ2, b2), b1, b2 �= 0,
respectively, both computed at their optimal levels, k(1)

0 and k(2)
0 , theAsymptotic Root

Efficiency (AREFF) indicator is defined as

AREFF1|2 :=

√
√
√
√
√

LMSE
(
γ̂

(2)
n0

)

LMSE
(
γ̂

(1)
n0

) =
((

σ2

σ1

)−2ρ ∣
∣
∣
∣
b2
b1

∣
∣
∣
∣

) 1
1−2ρ

, (16)

with LMSE given in (15) and γ̂
(i)
n0 := γ̂

(i)

k(i)
0 ,n

, i = 1, 2.

Remark 4 Note that thismeasurewas devised so that the higher theAREFF indicator
is, the better the first estimator is.

Remark 5 For the PPWM EVI estimator, in [5], we have

bPPWM = (1 − γ )(2 − γ )

(1 − γ − ρ)(2 − γ − ρ)
and σPPWM = γ

√
1 − γ (2 − γ )√

1 − 2γ
√
3 − 2γ

, 0< γ < 0.5.

To measure the performance of γ̂
PLPWM

k,n , we have computed the AREFF-indicator,
in (16), as function of the second order parameter ρ. In Fig. 2 (left), we present the
values of

AREFFPLPWM|H(ρ) = (
(3/4)−ρ (1 − ρ/2)

) 1
1−2ρ , (17)
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Fig. 2 Left Plot with the indicator AREFFPLPWM|H (ρ), in (17), as a function of ρ. Right Contour
plot with the indicator AREFFPLPWM|PWM , as a function of (γ ,ρ)

as a function of ρ. This indicator has a maximum near ρ = −0.7, and we have
AREFFPLPWM|H > 1, if −3.54 < ρ < 0, an important region of ρ values in
practical applications. It is also easy to check that lim

ρ→−∞ AREFFPLPWM|H(ρ) =
√
3/2 ≈ 0.866 and lim

ρ→0
AREFFPLPWM|H(ρ) = 1.

In Fig. 2 (right) we show a contour plot with the comparative behaviour, at optimal
levels, of thePLPWMandPPWMEVI-estimators in an important region of the (γ ,ρ)-
plane. The grey colour marks the area where AREFFPLPWM|PPWM > 1. At optimal
levels, there is only a small region of the (γ ,ρ)-plane where the AREFF indicator
is slightly smaller than 1. Also, the AREFFPLPWM|PPWM indicator increases, as γ

increases and/or ρ decreases.

4 A Case Study

As an illustration of the performance of the estimators, we shall consider the analysis
of the Secura Belgian Re automobile claim amounts exceeding 1,200,000 Euro, over
the period 1988–2001. This data set of size n = 371 was already studied by several
authors [1, 2, 4].

In Fig. 3, we present, at the left, the EVI estimates provided by the Hill and
PLPWM EVI-estimators in (5) and (8), respectively. At the right we present the cor-
responding quantile estimates provided by Weissman-Hill and PLPWM estimators,
in (7) and (10), with p = 0.001. For a fair comparison of the PLPWM estimators
with the equivalent classic estimators, the PLPWM estimators are now based on the
top k + 1 largest o.s.’s. For this dataset, we have ρ̂ = −0.756 and β̂ = 0.803,
obtained at the level k1 = [n0.999] = 368 [4]. Using these values, the estimates of
the optimal level, given by (13), are k̂ H

0 = 55 and k̂ P L PW M
0 = 76. Consequently,
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Fig. 3 Left Estimates of the EVI for the Secura Belgian Re data; Right Estimates of the quantile
qp with p = 0.001 for the Secura Belgian Re data

we have γ̂
H

55,371 = 0.291 and γ̂
P L PW M

76,371 = 0.286. Finally, the quantile estimates are

given by Ŵ H
55,371(p) = 12622248 and Q̂ P L PW M

76,371 (p) = 12373324.

5 Some Overall Conclusions

Based on the results here presented we can make the following comments:

• Regarding efficiency at optimal levels, the new PLPWM estimators are a valid
alternative to the classic Hill, Weissman-Hill and PPWM estimators. And they are
consistent for any γ > 0, which does not happen for the PPWM estimators.

• The analysis of the automobile claim amounts gave us the impression that the
PLPWM EVI and extreme quantile estimators have a much smoother sample
pattern than the Hill and the Weissman-Hill estimators.

• It is also important to study the behaviour of the new PLPWM estimators for small
sample sizes. That topic should be addressed in future research work.

Acknowledgments Research partially supported byFCT–Fundação para aCiência e aTecnologia,
project UID/MAT/00297/2013 (CMA/UNL), EXTREMA, PTDC/MAT /101736/2008.
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Abstract The main objective of statistics of univariate extremes lies in the
estimation of quantities related to extreme events. In many areas of application,
like finance, insurance and statistical quality control, a typical requirement is to
estimate a high quantile, i.e. the Value at Risk at a level q(VaRq), high enough, so
that the chance of exceedance of that value is equal to q, with q small. In this paper
we deal with the semi-parametric estimation of VaRq , for heavy tails, introducing
a new class of VaR-estimators based on a class of mean-of-order-p (MOP) extreme
value index (EVI)-estimators, recently introduced in the literature. Interestingly, the
MOP EVI-estimators can have a mean square error smaller than that of the classical
EVI-estimators, even for small values of k. They are thus a nice basis to build alter-
native VaR-estimators not only around optimal levels, but for other levels too.The
new VaR-estimators are compared with the classical ones, not only asymptotically,
but also for finite samples, through Monte-Carlo techniques.

Keywords Heavy right tails · Semi-parametric estimation · Statistics of extremes ·
Value-at-risk estimation

M.I. Gomes (B) · D. Pestana · M.F. Brilhante
Centro de Estatística e Aplicações, Faculdade de Ciências, Universidade de Lisboa,
Lisbon, Portugal
e-mail: ivette.gomes@fc.ul.pt

M.I. Gomes · D. Pestana
Instituto de Investigação Científica Bento da Rocha Cabral, Lisbon, Portugal
e-mail: dinis.pestana@fc.ul.pt

M.F. Brilhante
Universidade dos Açores (DM), Ponta Delgada, Portugal
e-mail: fbrilhante@uac.pt

© Springer International Publishing Switzerland 2015
C.P. Kitsos et al. (eds.), Theory and Practice of Risk Assessment,
Springer Proceedings in Mathematics & Statistics 136,
DOI 10.1007/978-3-319-18029-8_23

305



306 M.I. Gomes et al.

1 Introduction and Scope of the Paper

A relevant situation in risk management is the risk of a big loss that occurs rarely
or even very rarely. Such a risk is generally expressed as the Value at Risk (VaR),
i.e. the size of the loss that occurred with a fixed small probability, q. We are thus
dealing with a (high) quantile,

χ1−q ≡ VaRq := F←(1 − q),

of an unknown cumulative distribution function (CDF) F , with F←(y) = inf {x :
F(x) ≥ y} denoting the generalized inverse function of F . As usual, let us denote
by U the generalized inverse function of 1/(1 − F). Then, for small q, we want to
estimate the parameter

VaRq = U (1/q) , q = qn → 0, nqn ≤ 1,

i.e. we want to extrapolate beyond the sample. Since in real applications one often
encounters heavy tails, we shall assume that the CDF underlying the data satisfies

1 − F(x) ∼ c x−1/ξ , as x → ∞, (1)

for some positive constant c. Equivalently, and for some C > 0,

U (t) ∼ C tξ , as t → ∞, (2)

where the notation a(y) ∼ b(y) means that a(y)/b(y) → 1, as y → ∞. The
parameter ξ in either (1) or (2) is the extreme value index (EVI), the primary parameter
of extreme (and large) events.

Generally [18], if we consider a random sample (X1, . . . , Xn) from F and if we
can find attraction coefficients (an, bn), with an > 0 and bn ∈ R, such that the
sequence of suitably normalized maxima, {(Xn:n − bn)/an}n≥1, converges to a non-
degenerate random variable (RV), then such a RV is compulsory of the type of a
general extreme value (EV) RV, with CDF

EVξ (x) =
{
exp(−(1 + ξ x)−1/ξ ), 1 + ξ x > 0, if ξ 
= 0,
exp(− exp(−x)), x > 0, if ξ = 0.

(3)

We then say that F is in the max-domain of attraction of EVξ , and use the notation
F ∈ DM (EVξ ). If (1) holds, or equivalently (2) holds, the limit law in (3) also
appears, but with ξ > 0.

Weissman [34] proposed the following semi-parametric VaR-estimator:
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Q(q)

ξ̂
(k) := Xn−k:n

(
k

nq

)ξ̂

, (4)

where Xn−k:n is the (k + 1)th top order statistic (o.s.), ξ̂ any consistent estimator
for ξ and Q stands for quantile. Further details on semi-parametric estimation of
extremely high quantiles for any real EVI can be found in de Haan and Rootzén [13]
and Ferreira et al. [15]. For heavy right-tails, Gomes and Figueiredo [23], Matthys
and Beirlant [31] Mathys et al. [32], Gomes and Pestana [24] and Caeiro and Gomes
[8, 9], among others, dealt with reduced bias VaR-estimation, a topic beyond the
scope of this paper.

The estimator in (4) is an asymptotic estimator, in the sense that it provides useful
estimates when the sample size n is high. Also, and as usual in semi-parametric
estimation of parameters of extreme events, we need to work with an intermediate
sequence of integers,

k = kn → ∞, k ∈ [1, n), k = o(n) as n → ∞. (5)

For heavy tails, the classical EVI-estimator, usually the one which is used in (4), for
a semi-parametric quantile estimation, is the Hill estimator ξ̂ = ξ̂ (k) =: H(k) [30],
with the functional expression,

H(k) := 1

k

k∑

i=1

Vik, Vik = ln
Xn−i+1:n
Xn−k:n

, 1 ≤ i ≤ k. (6)

If we plug in the Hill estimator H(k) in (4), we get the so-called Weissman-Hill
quantile or VaRq -estimator, with the obvious notation, Q(q)

H
(k). Since Q(q)

H
(k) is

skewed (see [24]), it is advisable to work with the lnVaR estimator

ln Q(q)

ξ̂
(k) = ln Xn−k:n + ξ̂ (k) ln

(
k

nq

)

, (7)

for any consistent EVI-estimator, ξ̂ (k). Again, if we plug H(k) into (7), we get the
so-called Weissman-Hill lnVaR estimator, with the obvious notation ln Q(q)

H
(k).

In order to be able to study the asymptotic behavior of ln Q(q)
H

(k), as well as of
alternative lnVaRq -estimators, it is useful to impose a second-order expansion on the
tail function 1− F or on the function U . Here we shall assume that we are working
in Hall-Welsh class of models [29], where, as t → ∞ and with C, ξ > 0, ρ < 0
and β non-zero,

U (t) = Ctξ
(
1 + A(t)/ρ + o

(
tρ

) )
, A(t) = ξ β tρ. (8)
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The class in (8) is a wide class of models, that contains most of the heavy-tailed par-
ents useful in applications, like theFréchet, theGeneralized Pareto and theStudent-tν ,
with ν degrees of freedom. Indeed, (8) implies either (1) or (2).

Since

H(k) =
k∑

i=1

ln

(
Xn−i+1:n
Xn−k:n

)1/k

= ln

(
k∏

i=1

Xn−i+1:n
Xn−k:n

)1/k

, 1 ≤ i ≤ k < n,

we observe that the Hill estimator is the logarithm of the geometric mean (or mean-
of-order-0) of Uik := Xn−i+1:n/Xn−k:n, 1 ≤ i ≤ k < n. More generally, Brilhante
et al. [3] considered as basic statistics themean-of-order-p (MOP) ofUik , 1 ≤ i ≤ k,
p ∈ R

+
0 , i.e., the class of statistics

Ap(k) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(
1
k

k∑

i=1
U p

ik

)1/p

, if p > 0,

(
k∏

i=1
Uik

)1/k

, if p = 0,

and the following class of EVI-estimators:

Hp(k) ≡ MOP(k) ≡ ξ̂Hp (k) :=
⎧
⎨

⎩

(
1 − A−p

p (k)
)
/p, if 0 < p < 1/ξ,

ln A0(k) = H(k), if p = 0,
(9)

with H0(k) ≡ H(k), given in (6). This class of MOP EVI-estimators, studied in
Brilhante et al. [3], depends now on this tuning parameter p ≥ 0, and was shown
to be highly flexible. Note that the restriction 0 < p < 1/ξ in (9) ensures the
consistency of the MOP EVI-estimators.

The aim of this paper is to find the asymptotic and finite sample properties of
alternative estimators for lnVaRq , replacing, in (7), ln Q(q)

ξ̂
(k) by the new lnVaRq

estimators ln Q(q)
Hp

(k) based on the MOP EVI-estimator, Hp(k), in (9). If we choose
the value of p that provides the highest asymptotic efficiency for Hp(k) (see [4]),
the new estimators have an asymptotic mean square error (MSE) smaller than the
Weissman-Hill lnVaR-estimators for all k. Consequently, they are alternatives to
the previous estimators not only around optimal levels but for all k. The outline of
the paper is as follows. In Sect. 2, we briefly discuss general first and second-order
frameworks under a heavy-tailed set-up. The classes of EVI and VaR-estimators
under study are discussed in Sect. 3, where we also deal with asymptotic properties of
the EVI and lnVaR-estimators under consideration. Section4 is devoted to a Monte-
Carlo simulation, that enables the derivation of the distributional properties of the
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new classes of MOP lnVaR-estimators. Finally, in Sect. 5, we provide some general
remarks on the topic.

2 A Brief Review of General First and Second-Order
Conditions for Heavy Right Tails

In the area of statistics of extremes and whenever working with large values, i.e. with
the right tail of the model F underlying the data, a model F is usually said to be
heavy-tailed whenever the right tail-function,

F := 1 − F

is a regularly varying function with a negative index of regular variation equal to
−1/ξ , ξ > 0. We then use the notation F ∈ R−1/ξ . Note that a regularly varying
function with an index of regular variation equal to a ∈ R, i.e. an element of Ra ,
is a positive measurable function g(·) such that for all x > 0, g(t x)/g(t) → xa , as
t → ∞ (see [2], for details on regular variation). Heavy-tailed models are thus such
that F(x) = x−1/ξ L(x), ξ > 0, with L ∈ R0, a regularly varying function with
an index of regular variation equal to zero, also called a slowly varying function at
infinity. Equivalently, with F←(x) := inf{y : F(y) ≥ x}, the reciprocal tail quantile
function U (t) := F←(1 − 1/t), t ≥ 1, is of regular variation with index ξ [11],
i.e. U ∈ Rξ . If either (1) or (2) holds, the slowly varying function L(·) behaves as a
constant.

We thus have the validity of any of the equivalent and general first-order condi-
tions,

F ∈ D+
M := DM

(
EVξ

)

ξ>0 ⇐⇒ F ∈ RV−1/ξ ⇐⇒ U ∈ RVξ . (10)

The second-order parameter ρ (≤ 0) measures the rate of convergence in the gen-
eral first-order conditions, in (10), and can be defined as the non-positive parameter
in the limiting relation,

lim
t→∞

lnU (t x) − lnU (t) − ξ ln x

A(t)
=

{ xρ−1
ρ

, if ρ < 0,
ln x, if ρ = 0,

x > 0, andwhere |A|must be of regular variationwith an indexρ [17]. This condition
has been widely accepted as an appropriate condition to specify the right tail of a
Pareto-type distribution in a semi-parametric way and easily enables the derivation
of the non-degenerate bias of EVI and VaR-estimators, under a semi-parametric
framework. Further developments of the topic can be found in de Haan and Ferreira
[14]. If we consider only negative values of ρ, we are then in the class of models in
(8), or equivalently either (1) or (2) holds.
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3 EVI and VaR-Estimators Under Heavy-Tailed
Frameworks: Asymptotic Behavior

Let N (μ, σ 2) stand for a normal RV with mean value μ and variance σ 2. In
Sect. 3.1wedealwith known results on the asymptotic behavior of theEVI-estimators
under consideration. A parallel but new study is performed in Sect. 3.2 for the VaR-
estimators.

3.1 The EVI-Estimators

It follows from the results of de Haan and Peng [12] that in Hall-Welsh class of
models in (8), and for intermediate k-values, i.e. if (5) holds,

√
k (H(k) − ξ)

d= N
(
0, ξ2

)
+ √

k

(
ξ β (n/k)ρ

1 − ρ

)

(1 + op(1)), (11)

where the bias ξ β
√

k (n/k)ρ/(1− ρ) can be very large, moderate or small, i.e. go
to infinity, constant or zero, as n → ∞.

Just as proved in Brilhante et al. [3], the result in (11) can be generalized. Under
the same conditions as above, for 0 ≤ p < 1/(2ξ), and with Hp(k) given in (9),

√
k

(
Hp(k) − ξ

) d= N

(

0,
ξ2(1 − pξ)2

1 − 2pξ

)

+√
k

(
ξ β (n/k)ρ(1 − pξ)

1 − ρ − pξ

)

(1+op(1)).

(12)

3.2 Extreme Quantile or VaR-Estimators

Under condition (8), the asymptotic behavior of ln Q(q)
H

(k) is well-known [34]:

√
k

ln(k/(nq))

(
ln Q(q)

H
(k) − ln VaRq

)
d= N

( λ

1 − ρ
, ξ2

)
,

provided that the sequence k = kn satisfies the condition lim
n→∞

√
k A(n/k) = λ ∈ R,

finite, with A(·) the function in (8).

Regarding VaR-estimation, we shall here consider, as possible alternatives to the
classical Weissman-Hill lnVaR-estimator, ln Q(q)

H
(k), the class of estimators

ln Q(q)
Hp

(k) := ln Xn−k:n + Hp(k) ln

(
k

nq

)

, (13)

with Hp given in (9).
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As previously mentioned, for intermediate k, i.e., whenever (5) holds, we are
dealing with semi-parametric lnVaRq estimators, of the type of ln Q(q)

ξ̂
in (7), where

ξ̂ ≡ ξ̂ (k) can be any semi-parametric estimator of the tail index ξ , and here it is
taken to be the MOP EVI-estimator in (9). We may state the following:

Theorem 1 In Hall-Welsh class of models in (8), for intermediate k, i.e. k-values
such that (5) holds, whenever

ln (n qn) = o
(√

k
)

, (14)

√
k A(n/k) → λ, finite, possibly non-null, and for any p < 1/(2ξ)

√
k

ln(k/(nq))

(
ln Q(q)

Hp
(k) − ln VaRq

)
d−→

n→∞N

(

0,
ξ2(1 − pξ)2

1 − 2pξ

)

, (15)

with Hp any of the estimators in (9).

Proof We may write

ln Xn−k:n
d= lnU (n/k) + ξ Bk√

k
+ op(A(n/k)),

with Bk asymptotically standard normal. Since

ln VaRq = lnU

(
1

q

)

= lnU

(
n

k
× k

nq

)

,

we have, with A(t) the function in (8),

ln Q(q)

ξ̂
(k) − ln VaRq

d= −
(

lnU

(
n

k
× k

nq

)

− lnU
(n

k

))

+ ξ Bk√
k

+ ξ̂ (k) ln

(
k

nq

)

+ op(A(n/k))

d=
(
ξ̂ (k) − ξ

)
ln

(
k

nq

)

+ ξ Bk√
k

− (k/(nq))ρ − 1

ρ
A(n/k)(1 + o(1)) + op(A(n/k)).

Consequently, since (k/(nq))ρ = o(1),

ln Q(q)

ξ̂
(k) − ln VaRq

d=
(
ξ̂ (k) − ξ

)
ln

(
k

nq

)

+ ξ Bk√
k

+ A(n/k)

ρ
+ op(A(n/k)).
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The dominant term is thus of the order of
{
ln (k/(nq)) /

√
k
}
, that must converge

towards zero, and this is true due to condition (14). The results in (15) follow
from (12).

Apart from the MOP lnVaR-estimator, in (13), we have further considered in the
lnVaR-estimator in (7), the replacement of the estimator ξ̂ (k) by one of the most
simple classes of corrected-bias Hill estimators, the one in Caeiro et al. [7]. Such a
class is defined as

CH(k) ≡ CH(k; β̂, ρ̂) := H(k)
(
1 − β̂(n/k)ρ̂/(1 − ρ̂)

)
. (16)

The estimators in (16) can be second-orderminimum-variance reduced-bias (MVRB)
EVI-estimators, for adequate levels k and an adequate external estimation of the
vector of second-order parameters, (β, ρ), introduced in (8), i.e. the use of CH(k)

can enable us to eliminate the dominant component of bias of the Hill estimator,
H(k), keeping its asymptotic variance. Indeed, from the results in Caeiro et al. [7],
we know that it is possible to adequately estimate the second-order parameters β and
ρ, so that we get

√
k (CH(k) − ξ)

d= N
(
0, ξ2

)
+ op

(√
k(n/k)ρ

)
,

i.e. CH(k) overpasses H(k) for all k. Overviews on reduced-bias estimation can be
found in Chap.6 of [33], Gomes et al. [25] and Beirlant et al. [1].

For the estimation of the vector of second-order parameters (β, ρ), we propose
an algorithm of the type of the ones presented in Gomes and Pestana [24], where the
authors used the β-estimator in Gomes andMartins [21] and the simplest ρ-estimator
in Fraga Alves et al. [16], both computed at a level k1 = �n0.999�, with the notation
�x� standing for the integer part of x . More recent estimators of β can be found in
Gomes et al. [26] and Caeiro and Gomes [5, 6]. For alternative estimation of ρ, see
Goegebeur et al. [19, 20] and Ciuperca and Mercadier [10].

4 Simulated Behaviour of the lnVaR Estimators

Wehave implemented large-scalemulti-sampleMonte-Carlo simulation experiments
of size 5000×20, essentially for the new classes of lnVaR-estimators, ln Q(p)

Hp
(k), in

(13), with Hp given in (9), for a few values of p. We have considered sample sizes
n = 100, 200, 500, 1000, 2000 and 5000, and ξ = 0.1, 0.25, 0.5 and 1, from the
following models:

1. Fréchet(ξ) model, with CDF F(x) = exp(−x−1/ξ ), x ≥ 0 (ρ = −1);
2. Extreme value model, with CDF F(x) = EVξ (x), in (3) (ρ = −ξ);
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3. Burr(ξ, ρ) model, with CDF F(x) = 1 − (1 + x−ρ/ξ )1/ρ , x ≥ 0, for the afore-
mentioned values of ξ and for ρ = −0.25,−0.5 and −1;

4. Generalized Pareto model, with CDF F(x) = GPξ (x) = 1 + ln EVξ (x) =
1 − (

1 + ξ x
)−1/ξ , x ≥ 0 (ρ = −ξ).

We have further considered

5. Student-tν underlying parents, with ν = 4 (ξ = 1/ν = 0.25; ρ = −2/ν =
−0.5), with probability density function

f (x; ν) = Γ ((ν + 1)/2)√
πνΓ (ν/2)

(
1 + x2/ν

)−(ν+1)/2
, t ∈ R.

For details on multi-sample simulation, see Gomes and Oliveira [22].

4.1 Mean Values and MSE Patterns as a Function of k

For each value ofn and for each of the aforementionedmodels,wehavefirst simulated
the mean value (E) and root MSE (RMSE) of the lnVaR-estimators under consider-
ation, as functions of the number of top order statistics k involved in the estimation,
and on the basis of the first run of size 5000. As an illustration, we present Figs. 1
and 2, respectively associated with GP0.25 and EV0.25 parents. In these figures, we
show, for n = 1000, q = 1/n, and on the basis of the first N = 5000 runs, the sim-
ulated patterns of mean value, E[·], and root mean squared error, RMSE[·], of a few
RV’s ln Q(p)

ξ̂
(k) − ln χ1−q , based on the statistics ln Q(p)

ξ̂
(k) in (7), with ξ̂ replaced

by both Hp, in (9), for some values of p, and CH in (16). We shall use the obvious
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Fig. 1 Underlying GP parent with ξ = 0.25 (ρ = −0.25)
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Fig. 2 Underlying EV parent with ξ = 0.25 (ρ = −0.25)

notations ln Q p and ln QCH. Apart from p = 0, associated with the Weissman-Hill
lnVaR-estimator, we have considered p = p j = j/(10ξ), j = 1, 2, 4, all within the
framework of Theorem 1, as well as j = 7 for which we can no longer guarantee
the asymptotic normality of the new lnVaR-estimators.

We further present in Figs. 3 and 4, similar results but for two other models, a
Student t4 (ρ = −0.5) and a Fréchet(1) (ρ = −1), where the patterns are slightly
different, from the ones obtained before for ρ = −0.25.
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Fig. 3 Underlying Student tν parent, with ν = 4 (ξ = 1/ν = 0.25, ρ = −2/ν = −0.5)
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Fig. 4 Underlying Fréchet parent, with ξ = 1 (ρ = −1)

4.1.1 Mean Values, RMSEs and Relative Efficiency Indicators at
Optimal Levels

We have further computed the Weissman-Hill lnVaR-estimator ln Q(q)
H (k) ≡ ln

Q(q)
H0

(k), with ln Q(q)

ξ̂
(k) defined in (7), at the simulated value of k(q)

0|H0
:= argmink

RMSE
(
ln Q(q)

H (k)
)
, the simulated optimal k in the sense of minimum RMSE. Such

a value is not relevant in practice, but provides an indication of the best possible
performance of theWeissman-Hill lnVaR-estimator. Such an estimator is denoted by
ln Q00.We have also computed ln Q p0, for a few values of p. As an illustration of the
bias of the new lnVaR-estimators, at optimal levels, see Tables1 and 2. We present
there, for n = 100, 200, 500, 1000, 2000 and 5000, the simulated mean values at
optimal levels of the lnVaR-estimators under study. Information on 95% confidence
intervals (CIs), computed on the basis of the 20 replicates with 5000 runs each, is
again provided. Among the estimators considered, the one providing the smallest
squared bias is underlined, and written in bold.

We have further computed the simulated indicators,

REFFp|0 := RMSE (ln Q00)

RMSE
(
ln Q p0

) . (17)

A similarREFF-indicator, REFFCH|0 has also been computed for the lnVaR-estimator
based on CH EVI-estimators, in (16).

Remark 1 This indicator has been conceived so that an indicator higher than one
means a better performance than the one of theWeissman-Hill lnVaR-estimator. Con-
sequently, the higher these indicators are, the better the associated lnVaR-estimators
perform, compared to ln Q00.
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Table 1 Simulated mean values, at optimal levels, of T00 := ln Q00 − ln χ1−q , q = 1/n (first row)
and REFF-indicators of ln QCH|0 − ln χ1−q and ln Q p j |0 − χ1−q , for p j = j/(10ξ), j = 1, 2, 4
and 7, for GP and EV parents, with ξ = 0.25 (ρ = −0.25), together with 95% CIs
n 100 200 500 1000 2000 5000

GP parent, ξ = 0.25

H 0.077± 0.0058 0.078± 0.0040 0.081± 0.0056 0.084± 0.0051 0.083± 0.0043 0.083± 0.0037

CH −0.093 ± 0.0041 0.002 ± 0.0031 0.090± 0.0038 0.089± 0.0044 0.086± 0.0035 0.085± 0.0027

p1 0.063± 0.0051 0.070± 0.0055 0.073± 0.0040 0.074± 0.0023 0.077± 0.0027 0.078± 0.0021

p2 0.063± 0.0051 0.060± 0.0035 0.064± 0.0029 0.067± 0.0029 0.071± 0.0028 0.073± 0.0022

p4 −0.009 ± 0.0021 0.016± 0.0024 0.011 ± 0.0013 0.006 ± 0.0008 0.006 ± 0.0022 0.003 ± 0.0009

p7 −0.153 ± 0.0046 −0.171 ± 0.0024 −0.120 ± 0.0011 −0.053 ± 0.0006 −0.009 ± 0.0004 −0.001 ± 0.0003

EV parent, ξ = 0.25

H 0.075 ± 0.0060 0.081 ± 0.0056 0.080± 0.0050 0.083± 0.0041 0.084± 0.0040 0.080± 0.0038

CH −0.083 ± 0.0088 −0.086 ± 0.0058 −0.067 ± 0.0040 0.028± 0.0034 0.084± 0.0032 0.084± 0.0027

p1 −0.083 ± 0.0045 −0.094 ± 0.0053 −0.031 ± 0.0056 0.020 ± 0.0028 0.080± 0.0022 0.076± 0.0025

p2 −0.103 ± 0.0041 −0.094 ± 0.0051 −0.003 ± 0.0031 0.012 ± 0.0021 0.065± 0.0012 0.073± 0.0017

p4 −0.156 ± 0.0034 −0.111 ± 0.0040 −0.120 ± 0.0027 −0.114 ± 0.0013 −0.045 ± 0.0007 0.005 ± 0.0003

p7 −0.238 ± 0.0026 −0.177 ± 0.0015 −0.137 ± 0.0021 −0.124 ± 0.0039 −0.122 ± 0.0028 −0.131 ± 0.0037

Table 2 Simulated mean values, at optimal levels, of T00 := ln Q00 − ln χ1−q , q = 1/n (first row)
and REFF-indicators of ln QCH|0 − ln χ1−q and ln Q p j |0 − χ1−q , for p j = j/(10ξ), j = 1, 2 and
4, for Student t4 (ξ = 0.25, ρ = −0.5) and Fréchet parents with ξ = 0.25 (ρ = −1), together with
95% CIs
n 100 200 500 1000 2000 5000

Student t4 parent, (ξ, ρ) = (0.25, −0.5)

H 0.065± 0.0520 0.065± 0.0041 0.073± 0.0055 0.071± 0.0028 0.071± 0.0031 0.070± 0.0032

CH −0.072 ± 0.0023 −0.079 ± 0.0060 −0.080 ± 0.0026 −0.011 ± 0.0024 0.031 ± 0.0017 0.051 ± 0.0012

p1 0.052 ± 0.0052 0.062± 0.0051 0.064± 0.0035 0.066± 0.0030 0.068± 0.0029 0.067± 0.0018

p2 0.053± 0.0062 0.051 ± 0.0033 0.053± 0.0044 0.062± 0.0025 0.064± 0.0022 0.063± 0.0020

p4 0.074± 0.0044 0.053± 0.0036 0.052 ± 0.0026 0.055± 0.0027 0.057± 0.0018 0.058± 0.0020

Fréchet parent, (ξ, ρ) = (0.25, −1)

H 0.227± 0.0089 0.213± 0.0101 0.197± 0.0052 0.183± 0.0046 0.160± 0.0071 0.137± 0.0038

CH −0.232 ± 0.0100 −0.198 ± 0.0092 −0.162 ± 0.0039 −0.139 ± 0.0050 −0.116 ± 0.0039 −0.010 ± 0.0027

p1 0.222± 0.0105 0.209± 0.0072 0.188± 0.0058 0.178± 0.0051 0.158± 0.0054 0.135± 0.0039

p2 0.201± 0.0075 0.209± 0.0085 0.186± 0.0060 0.169± 0.0039 0.157± 0.0027 0.132± 0.0034

p4 0.191 ± 0.0060 0.191 ± 0.0076 0.180± 0.0045 0.169± 0.0038 0.155± 0.0041 0.132± 0.0028

In the first row of Tables3 and 4, we provide the RMSE of ln Q00, denoted
by RMSE0, so that we can easily recover the RMSE of all other estimators. The
subsequent rows provide the REFF-indicators of the lnVaR-estimators based on CH
and on Hp. The highest REFF indicator is underlined and bolded. Among the MOP
lnVaR-estimators within the scope of Theorem 1, we place the highest value in italic
and underlined, whenever such a value is not the highest one among all estimators
under consideration.



A Mean-of-Order-p Class of Value-at-Risk Estimators 317

Table 3 Simulated RMSE of ln Q00, q = 1/n (first row) and REFF-indicators of ln QCH|0 and
ln Q p j |0, for p j = j/(10ξ), j = 1, 2, 4 and 7, for GP and EV parents, with ξ = 0.25 (ρ = −0.25),
together with 95% CIs
n 100 200 500 1000 2000 5000

GP parent, ξ = 0.25

RMSE0 0.345 ± 0.0351 0.307 ± 0.0356 0.268 ± 0.0297 0.245 ± 0.0259 0.224 ± 0.0216 0.200 ± 0.0201

CH 1.243 ± 0.0086 1.492 ± 0.0092 1.256 ± 0.0074 1.174 ± 0.0035 1.131 ± 0.0035 1.093 ± 0.0029

p1 1.116 ± 0.0026 1.098 ± 0.0018 1.082 ± 0.0018 1.072 ± 0.0019 1.063 ± 0.0015 1.053 ± 0.0011

p2 1.299 ± 0.0055 1.239 ± 0.0047 1.187 ± 0.0030 1.160 ± 0.0039 1.136 ± 0.0031 1.11 ± 0.0021

p4 2.477 ± 0.0115 2.676 ± 0.0182 2.442 ± 0.0147 2.361 ± 0.0158 2.350 ± 0.0154 2.430 ± 0.0163

p7 1.239 ± 0.0064 1.269 ± 0.0085 1.633 ± 0.0133 2.516 ± 0.0166 4.438 ± 0.0153 7.738 ± 0.0571

EV parent, ξ = 0.25

RMSE0 0.353 ± 0.0358 0.311 ± 0.0364 0.270 ± 0.0276 0.246 ± 0.0257 0.224 ± 0.0216 0.200 ± 0.0209

CH 1.009 ± 0.0048 1.056 ± 0.0080 1.290 ± 0.0137 1.695 ± 0.0086 1.299 ± 0.0086 1.173 ± 0.0043

p1 1.050 ± 0.0055 1.078 ± 0.0066 1.500 ± 0.0262 1.754 ± 0.0107 1.438 ± 0.0088 1.253 ± 0.0050

p2 1.088 ± 0.0064 1.099 ± 0.0056 1.751 ± 0.0180 1.886 ± 0.0115 1.662 ± 0.0091 1.356 ± 0.0057

p4 1.126 ± 0.0081 1.146 ± 0.0052 1.154 ± 0.0066 1.312 ± 0.0096 2.849 ± 0.0230 4.772 ± 0.0244

p7 1.049 ± 0.0075 1.106 ± 0.0065 1.111 ± 0.0057 1.086 ± 0.0067 1.053 ± 0.0057 1.003 ± 0.0064

Table 4 Simulated RMSE of ln Q00, q = 1/n (first row) and REFF-indicators of ln QCH|0 and
ln Q p j |0, for p j = j/(10ξ), j = 1, 2, and 4, for Student t4 (ξ = 0.25, ρ = −0.5) and Fréchet
parents with ξ = 0.25 (ρ = −1), together with 95% CIs
n 100 200 500 1000 2000 5000

Student t4 parent, (ξ, ρ) = (0.25, −0.5)

RMSE0 0.300 ± 0.0291 0.264 ± 0.0264 0.228 ± 0.0232 0.207 ± 0.0192 0.188 ± 0.0180 0.164 ± 0.0132

CH 0.991 ± 0.0170 1.030 ± 0.0058 1.164 ± 0.0092 1.609 ± 0.0115 1.684 ± 0.00115 1.468 ± 0.0083

p1 1.093 ± 0.0033 1.079 ± 0.0021 1.064 ± 0.0024 1.054 ± 0.0016 1.047 ± 0.0013 1.039 ± 0.0014

p2 1.219 ± 0.0041 1.181 ± 0.0041 1.137 ± 0.0045 1.116 ± 0.0028 1.097 ± 0.0025 1.077 ± 0.0021

p4 1.524 ± 0.0078 1.348 ± 0.0044 1.242 ± 0.0063 1.195 ± 0.0049 1.154 ± 0.0044 1.113 ± 0.0034

Fréchet parent, (ξ, ρ) = (0.25, −1)

RMSE0 0.683 ± 0.0757 0.600 ± 0.0642 0.501 ± 0.0435 0.432 ± 0.0368 0.372 ± 0.0308 0.303 ± 0.0307

CH 0.899 ± 0.0035 0.850 ± 0.0683 0.929 ± 0.0035 00.968 ± 0.0066 1.019 ± 0.0066 1.144 ± 0.0058

p1 1.033 ± 0.0010 1.028 ± 0.0017 1.023 ± 0.0011 1.021 ± 0.0011 1.019 ± 0.0012 1.018 ± 0.0009

p2 1.066 ± 0.0023 1.052 ± 0.0038 1.038 ± 0.0020 1.033 ± 0.0020 1.029 ± 0.0023 1.026 ± 0.0022

p4 1.101 ± 0.0045 1.070 ± 0.0062 1.042 ± 0.0039 1.028 ± 0.0033 1.017 ± 0.0042 1.011 ± 0.0034

4.1.2 Discussion

1. Note that the functionals T under play are functions of ln X . Consequently, if X
is a Fréchet(ξ) RV, denoted Fξ , the uniform transformation enables us to write

exp
( − F−1/ξ

ξ

) d= U ⇐⇒ ln Fξ
d= −ξ ln(− ln(U )),

i.e. ln Fξ /ξ does not depend on ξ . This also happens with a Burr(ξ, ρ)model. For
such a RV, now denoted by Bξ,ρ , we get
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(
1 + B−ρ/ξ

ξ,ρ

)1/ρ d= U ⇐⇒ ln Bξ,ρ
d= −ξ ln

(
Uρ − 1

)
/ρ,

i.e. again ln Bξ,ρ/ξ does not depend on ξ . Due to the above mentioned reasons,
the REFF-indicators, E(T/ξ) and RMSE0/ξ do not depend on ξ for Fréchet and
Burr(ξ, ρ) underlying parents. Also, with the same notation, ln Bξ,ρ/ξ = ln B1,ρ .
Moreover, with the obvious notation GPξ for a GP RV, with EVI ξ , we have
GPξ = ln Bξ,−ξ /ξ . Consequently, the equivalent tables for Burr(ξ, ρ) RVs, with
ρ = −0.25, are trivially obtained from Table3, GP parent. Particularly, the REFF
indicators are the same.

2. Regarding bias, the MOP lnVaR–estimators often outperform the MVRB EVI-
estimators whenever |ρ| < 0.5.

3. For values of |ρ| ≤ 0.25 the use of lnVarQ p, with p = p7, always enables a
reduction in RMSE. Moreover, the bias is also reduced comparatively with the
bias of the Weissman-Hill lnVaR-estimator with the obtention of estimates closer
to the target value lnVaRq , for q = 1/n. Note however that such a value of p is
beyond the scope of Theorem 1. Such a reduction is particularly high for values
of ρ close to zero, even when we work with models again out of the scope of
Theorem 1, like the log-gamma and the log-Pareto. This is surely due to the high
bias of the Weissman-Hill lnVaR-estimators for this type of models with ρ = 0.

5 Concluding Remarks

• The patterns of the estimators’ sample paths are always of the same type, in the
sense that for all k the lnVaR-estimator, ln Q(q)

Hp
decreases as p increases.

• It is clear that Weissman-Hill lnVaR-estimation leads to a strong over-estimation
of the EVI and the MOP provides a more adequate lnVaR-estimation, being even
able to beat the MVRB lnVaR-estimators in a large variety of situations.

• The results obtained lead us to strongly advise the use of the log-quantile estimator
ln Q p for an adequate value of p, provided by a bootstrap algorithm of the type
devised for an EVI-estimation in Gomes et al. [27, 28].
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Adaptive Choice and Resampling Techniques
in Extremal Index Estimation

Dora Prata Gomes and M. Manuela Neves

Abstract This work deals with the application of resampling techniques together
with the adaptive choice of a ‘tuning’ parameter, the block size, b, to be used in the
bootstrap estimation of the extremal index, that is a key parameter in extreme value
theory in a dependent setup. Its estimation has been considered by many authors
but some challenges still remain. One of these is the choice of the number of upper
order statistics to be considered in the semiparametric estimation. Block-bootstrap
and Jackknife-After-Bootstrap are two computational procedures applied here for
improving the behavior of the extremal index estimators through an adaptive choice
of the block size for the resampling procedure. A few results of a simulation study
will be presented.

Keywords Adaptive choice · Block size · External index · Exterme value theory ·
Resampling techniques

1 Introduction and Preliminaries

When natural calamities of great magnitude happen, we are concerned with the
occurrence and the frequency of such events because of their human and economic
effects. There are a large variety of fields of application such as, e.g., environment,
finance, internet traffic, reliability and survival analysis, where values of interest are
the extreme values.

The classical assumption in Extreme Value Theory (EVT) is that we have a set of
independent and identically distributed (i.i.d.) random variables (r.v.’s), X1, . . . , Xn ,
from an unknown distribution function (d.f.) F and we are concerned with the
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limit behavior of either Mn ≡ Xn:n = max(X1, . . . , Xn) or mn ≡ X1:n =
min(X1, . . . , Xn), as n → ∞.

For the case of the maximum value, whenever it is possible to normalize Mn so
that we get a non-degenerate limit as n → ∞, the resulting limit is of the Extreme
Value (EV) type d.f.,

EVγ (x) :=
{
exp(−(1 + γ x)−1/γ ), 1 + γ x > 0 if γ �= 0
exp(− exp(−x)), x ∈ R if γ = 0.

(1)

In d.f. (1) the parameter γ is called the extreme value index, whose estimation is
of primordial importance. Other parameters of extreme events can appear, such as a
high quantile, the probability of exceedance or the return period of a high quantile,
that need to be suitably estimated on the basis of an available sample.

The estimation is usually performed under a semiparametric approach based on
probabilistic asymptotic results on the tail of the unknown distribution. Several dif-
ficulties arise when we intend to obtain reliable semiparametric estimates of the
parameters of extreme events. These estimates are usually calculated on the basis of
the largest k order statistics in the sample, and they are strongly dependent on k.

For overcoming this difficulty Jackknife and Bootstrap procedures are known as
giving more stable estimates around the target value, for i.i.d. sequences. However,
in many practical situations, the i.i.d assumption is not always valid. For example,
for the amount of rain in a given location on consecutive days, it is obvious that the
chance of rain after a rainy day is higher than the chance of rain after a dry day.

Whenever independence is no longer valid, some important dependent sequences
have been studied and the limit distributions of their order statistics under some
dependence structures are known. Stationary sequences are examples of such
sequences and are realistic for many real problems.

Suppose we have n observations from a stationary process {Yn}n≥1 with marginal
distribution function F . For large n and a high level un , we have

Fn(un) = P[max(Y1, . . . , Yn) ≤ un] ≈ Fnθ (un),

where θ ∈ [0, 1] is a constant for the process, known as the extremal index. This
concept, even appearing in papers from Newell [24], Loynes [22], O’Brien [25], was
only well characterized by Leadbetter [19].

As dependence in stationary sequences can assume several forms, some conditions
have to be imposed. The first condition, known as the D(un) dependence condition,
Leadbetter et al. [21], ensures that any two extreme events can become approximately
independent as n increases when separated by a relatively short interval of length
ln = o(n). Hence, D(un) limits the long-range dependence between such events.

Provided that a stationary sequence {Yn}n≥1 has limited long-range dependence
at extreme levels, the maxima of this sequence follow the same distributional limit
law as the associated independent sequence, {Xn}, but with other values for the
parameters. Actually, see Leadbetter et al. [21], if {Yn}n≥1 is a stationary sequence
with marginal distribution F , {Xn}n≥1 an i.i.d. sequence of r.v.’s with the same dis-
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tribution F , Mn := max (Y1, . . . , Yn) and M̃n := max (X1, . . . , Xn), under the
D(un) condition, with un = an x + bn , Pr

{
(M̃n − bn)/an ≤ x

} −→
n→∞ G1(x)

as n −→ ∞, for normalizing sequences {an > 0} and {bn}, if and only if,
Pr {(Mn − bn)/an ≤ x} −→

n→∞ G2(x) where G2(x) = Gθ
1(x), for a constant θ such

that 0 < θ ≤ 1.
So, given that G1(·) ≡ EVγ (·), the limit law G2(·) ≡ EV θ

γ (·) is an extreme value
d.f. with location, scale and shape parameters (μθ , σθ , γθ ) given by

μθ = μ − σ
1 − θγ

γ
, σθ = σθγ and γθ = γ,

where (μ, σ, γ ) are the location, scale and shape parameters, respectively, of the
limit law of the i.i.d sequence.

The quantity θ is the aforementioned extremal index. This parameter, apart from
being of interest in its own right, is crucial for determining the limiting distribution
of extreme values from the stationary process.

The extremal index θ , 0 ≤ θ ≤ 1 is directly related to the clustering of
exceedances: θ = 1 for i.i.d. sequences and θ → 0 whenever dependence increases.
The case θ = 0 appears in pathological situations. For ‘almost all cases’ of interest,
we have θ > 0.

For illustration of the behavior of a stationary process for some values of θ let us
consider the following example:

Example 1 Moving Maximum Process (MM process). Let {Zn}n≥0 be a sequence
of i.i.d. variables from the model F(z) = exp(−z−1), with z ≥ 0 and for a ≥ 0
define

Y0 = Z0, Y j = (a + 1)−1 max
{
aZ j−1, Z j

}
, j = 1, 2 . . .

Pr{Mn ≤ un} = Pr{M̃n ≤ un}θ as n → ∞ where θ = 1/(a + 1) lies in the interval
[1/2, 1], Davison [3].

Figure1 shows a partial realization of variables following the above process with
a = 0.2; 0.4; 1, which corresponds to θ = 0.833; 0.714; 0.5, respectively. The

j

j

j j

x jx jx

Fig. 1 Values from the moving maximum process with a = 0.2 (θ = 0.833), a = 0.4 (θ = 0.714)
and a = 1 (θ = 0.5). As a(θ) increases (decreases) we notice some clusters appearing



324 D. Prata Gomes and M.M. Neves

maxima show increasing clustering as a → 1which corresponds to decreasing values
of θ .

In next section some of the classical estimators of θ are referred to. Their asymp-
totic properties are pointed out. However despite nice asymptotic properties, for finite
samples the estimates strongly depend on the upper level un .

2 Extremal Index Estimation

Classical estimators of θ have been developed based on characterizations of θ given
by Leadbetter [19], O’Brien [26].

We consider the most common interpretation of θ , as being the reciprocal of the
‘mean time of duration of extreme events’which is directly related to the exceedances
of high levels, Hsing et al. [14] and Leadbetter and Nandagopalan [20]

θ = 1

limiting mean size of clusters
.

Identifying clusters by the occurrence of downcrossings or upcrossings, we can
write

θ = lim
n→∞Pr [X2 ≤ un|X1 > un] = lim

n→∞Pr [X1 ≤ un|X2 > un]. (2)

The classical up-crossing estimator (UC-estimator), Θ̂UC Gomes [6–8]Nandagopalan
[23] is a naive estimator that can be derived directly as an empirical counterpart of
(2),

Θ̂UC ≡ Θ̂UC (un) :=
∑n−1

i=1 I (Xi ≤ un < Xi+1)
∑n

i=1 I (Xi > un)
, (3)

for a suitable threshold un , where I (A) denotes, as usual, the indicator function of A.
Consistency of this estimator is obtained provided that the high level un is a

normalized level, i.e. if with τ ≡ τn fixed, the underlying d.f. F verifies

F(un) = 1 − τ/n + o(1/n), n → ∞ and τ/n → 0.

Additional estimators of the extremal index can be defined by different forms of
identifying clusters. Let us refer to two very popular and well studied estimators:
the block estimator and the runs estimator, Hsing [12, 13]. The blocks estimator,
is derived by dividing the data into approximately kn blocks of length rn , where
n ≈ kn × rn , i.e., considering kn = [n/rn]. Each block is treated as one cluster and
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the number of blocks in which there is at least one exceedance of the threshold un is
counted. The block estimator, Θ̂ B

n (un), is then defined as

Θ̂ B
n (un) :=

∑kn
i=1 I

(
max

(
X(i−1)rn+1, . . . , Xirn

)
> un

)

∑n
i=1 I (Xi > un)

.

If we assume that a cluster consists of a run of observations between two
exceedances, then the “runs estimator” is defined as:

Θ̂ R
n (un) :=

∑n
i=1 I

(
Xi > un,max

(
Xi+1, . . . , Xi+rn−1

) ≤ un
)

∑n
i=1 I (Xi > un)

.

Under mild conditions, limn→∞ θ B
n = limn→∞ θ R

n = θ . Other properties of these
estimators have been well studied by Smith and Weissman [30] and Weissman and
Novak [31].

In this paper our attention will be focused on the UC-estimator and given the sam-
ple Xn := (X1, . . . , Xn) and the associated ascending order statistics, X1:n ≤ · · · ≤
Xn:n , we shall consider the level un as a deterministic level u ∈ [Xn−k:n, Xn−k+1:n[.

The UC−estimator, in (3) can now be written as a function of k, the number of
top order statistics above the chosen threshold,

Θ̂UC ≡ Θ̂UC (k) := 1

k

∑n−1

i=1
I (Xi ≤ Xn−k:n < Xi+1).

Formany dependent structures, the bias of Θ̂UC (k) has two dominant components
of orders k/n and 1/k (see Gomes et al. [9]),

Bias[Θ̂UC (k)] = ϕ1(θ)

(
k

n

)

+ ϕ2(θ)

(
1

k

)

+ o

(
k

n

)

+ o

(
1

k

)

, (4)

whenever n → ∞ and k ≡ k(n) → ∞, k = o(n).
The Generalized Jackknife methodology has the properties of estimating the bias

and the variance of any estimator, leading to the development of estimators with bias
and mean squared error often smaller than those of an initial set of estimators.

Using the information obtained from (4) and based on the estimator Θ̂UC com-
puted at the three levels, k, [k/2] + 1 and [k/4] + 1, where [x] denotes, as usual,
the integer part of x , Gomes et al. [9] derived a reduced-bias estimator for θ , the
Generalized Jackknife estimator of order 2, Θ̂G J , defined as

Θ̂G J ≡ Θ̂G J (k) := 5Θ̂UC ([k/2] + 1) − 2
(
Θ̂UC ([k/4] + 1) + Θ̂UC (k)

)
.

This is an asymptotically unbiased estimator of θ , in the sense that it can remove
the two dominant components of bias referred to in (4). Under certain conditions,
estimators Θ̂UC and Θ̂G J are consistent and asymptotically normal if θ < 1,
see Gomes et al. [9] and Nandagopalan [23].
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k k k

Fig. 2 Simulated mean values, MSE, variance and Bias2 of the UC-estimator and Generalized
Jackknife estimator (from left to right) for the ARMAX process with θ = 0.4 and a sample size
n = 1000

For illustrating the properties of the Θ̂UC and Θ̂G J estimators, let us consider the
following max-autoregressive process:

Example 2 Max-Autoregressive Process (ARMAX process). Let {Zi }i≥1 be a
sequence of independent, unit-Fréchet distributed random variables. For 0 < θ ≤ 1,
let

Y1 = Z1 Yi = max{(1 − θ)Yi−1, θ Zi } i = 2, . . .

For un = ny, 0 < y < ∞, Pr
{

Mn ≤ un
}→ exp

(− θ/y
)
, as n → ∞. The extremal

index of the sequence is equal to θ , Beirlant et al. [1].

Some remarks on Fig. 2.

• The Θ̂UC
n estimator, shows a very strong bias. The bias is the dominant component

of the MSE, see Fig. 2 (middle).
• MSE(Θ̂UC

n ) is very sharp, which reveals a need for a very accurateway of choosing
k in order to obtain a reliable estimate of θ .

• The Generalized-Jackknife estimator, Θ̂G J
n , shows a more stable simulated mean

value, near the target value of the parameter but at expenses of a very high variance,
which does not enable it to outperform the original estimator, regarding MSE at
optimal levels.

• MSE(Θ̂G J
n ) is not so sharp as MSE(Θ̂UC

n ), suggesting then less dependence on
the value un , for obtaining the estimate of θ .

Recently the use of adequate bootstrap procedures has resulted in improving the
behavior of the estimators for a finite sample. Let us refer to Prata Gomes and Neves
[27], Prata Gomes and Neves [28], Gomes et al. [10] for some results on the use of
resampling procedures in extreme value estimation.

However the choice of the level k still remains an interesting research topic.
Regarding the compromise between bias and variance given by the mean squared
error, MSE, some authors have shown that, in extreme value theory, resampling
methodologies have been performing quite well for estimating the optimal num-
ber of order statistics to be used in the estimation of parameters of rare events,
see Gomes et al. [9, 10].
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3 Resampling Techniques for Dependent Case

In their classical form, as first proposed by Efron [4], bootstrap methods are designed
for use in samples collected under an independent set-up.

In context of dependent data, the situation is more complicated. Singh [29] men-
tioned the inadequacy of the classical bootstrap under dependence.

Several attempts have been made to extend the bootstrap method to the dependent
case. A breakthrough was achieved when resampling of single observations was
replaced by block resampling.

Bootstrap methods using different blocks have been proposed to attempt to repro-
duce difference aspects of the dependence structure of the observed data in the
resampled data: Moving Block Bootstrap (MBB), Non-Overlapping Block Boot-
strap (NBB), Circular Block Bootstrap (CB) and Stationary Bootstrap (SB) are the
most well known.

The accuracy of block bootstrap estimators, critically depends on the block length
that must be supplied by the user.

As a simple illustration, let us examine Fig. 3 with the values from a sample of
size n = 100 generated from the ARMAX process with θ = 0.1 and the values
obtained by bootstrapping the original sample, through the classical procedure and
by block resampling using several block sizes.

The orders of magnitude of the “optimal” block sizes are known in some inference
problems [2, 11, 15, 16, 18] as b ∼ Cn1/k, with k = 3, 4 or 5, values to be used
for the estimation of bias, variance, or one-sided distribution function/two-sided
distribution function, respectively. This result, of practical and theoretical interest,
will be used here as the basis for choosing the “optimal” block length for resampling.
Two main approaches can be pointed out: the cross validation method proposed by
Hall et al. [11] and the plug-in method based on Lahiri et al. [18].

Extremal index estimators usually have a high bias; so much so that in most cases
the bias is the main component of the MSE. There is then a need for bias reduction.
Based on Lahiri et al. [18], a nonparametric plug-in (NPPI) method for selecting the
“optimal” block length in order to reduce the bias, will be considered. This method
employs nonparametric resampling procedures to estimate the relevant constants
in the leading term of the “optimal” block length and, hence, does not require the
knowledge and/or derivation of explicit analytical expressions for the constants.

Fig. 3 Values from a sample of size n = 100 generated from the ARMAX process with θ = 0.1
and resampled equal size samples considering the classical i.i.d. resample, blocks of size 2, 5 and
15, from left to right
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3.1 Main Steps of NPPI Method

Given the sample (X1, X2, . . . , Xn) from an unknown model F , let us consider Θ̂n ,
any estimator of θ and let Θ̂∗

n (b) be the corresponding bootstrap estimator based on
blocks of size b. Let us denote by φn ≡ Bias

(
Θ̂n

) = E
(
Θ̂n

) − θ, the bias of Θ̂n , so

φ̂∗
n (b) ≡ ̂Bias(b) = E∗

(
Θ̂∗

n (b)
)−Θ̂n is the corresponding block bootstrap estimator

of Bias
(
Θ̂n

)
based on blocks of size b.

Under suitable regularity conditions, the variance and the bias of a block bootstrap
estimator admit expansions of the form (see Lahiri [16]),

n2a V ar
(
φ̂∗

n (b)
) = C1n−1br + o

(
n−1br

)
as n → ∞ (5)

naBias
(
φ̂∗

n (b)
) = C2b−1 + o

(
b−1

)
as n → ∞ (6)

over a suitable set of possible block lengths b ∈ {2, . . . , n}, where C1 ∈ (0,∞) and
C2 ∈ R are population parameters, r ≥ 1 is an integer, and a ∈ [0,∞[ is a known
constant. For φn ≡ Bias, Hall et al. [11] consider that (5) and (6) hold with r = 1
and a = 1.

It is known Hall et al. [11] that the variance of a block bootstrap estimator is
an increasing function of the block length b while its bias is a decreasing function
of b. From (5) and (6) an expansion for MSE(φ̂∗

n (b)) is obtained and leads to the
asymptotic MSE-optimal block length, b0 ≡ b0n (see Hall et al. [11] and Lahiri [16]):

b0n =
(
2C2

2

C1

)1/(r+2)

n1/(r+2)(1 + o(1)). (7)

Estimation of C1 and C2, under the NPPI method, is done considering the leading
part of (5) and (6),

C1 ∼ nb−r n2a V ar
(
φ̂∗

n (b)
)

and C2 ∼ bnaBias
(
φ̂∗

n (b)
)
.

This suggests the use of consistent estimators of V ar
(
φ̂∗

n (b)
)
and Bias

(
φ̂∗

n (b)
)
and

define estimators of the parameters C1 and C2 as

Ĉ1 = nb−r n2a
̂V arn and Ĉ2 = bna

̂Biasn, (8)

where ̂V arn ≡ ̂V arn(b1) and ̂Biasn ≡ ̂Biasn(b1) are consistent estimators of the
variance and the bias, respectively, of the block bootstrap estimator φ̂∗

n (b) based on
some suitable initial block length b1.

Following the suggestion of Lahiri et al. [18] of using the Jackknife-After-
Bootstrap (JAB) method of Efron [5] and Lahiri [17] for estimating V ar

(
φ̂∗

kn(b)
)
,

Prata Gomes and Neves [27] built a computational procedure based on the estimation
of the variance and the bias of the Block Bootstrap estimator in order to estimate
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the “optimal” block length, in the sense of minimizing the mean square error of the
estimator of the Bias of extremal index estimators.

JAB estimator of the variance of φ̂∗
n (b) is defined as:

̂V AR J AB

(
φ̂∗

n (b)
)

= m

(nb − m)M

M∑

i=1

(
φ̃

(i)∗
kn (b) − φ̂∗

kn(b)
)2

(9)

where nb = n − b + 1 is the number of overlapping blocks of length b, contained
in (X1, . . . , Xn) and φ̃i

n(b) = m−1
(
	φ̂n(b) − (	 − m)φ̂i

n(b)
)
is the ith block-deleted

jackknife pseudo-value of φ̂∗
n (b), i = 1, . . . , M , b = c1n1/5, with c1 = 1 and

m = c2n1/3b2/3 with c2 = 1.
A consistent estimator of Bias(φ̂∗

n (b)), Lahiri et al. [18], is given by

̂Biasn ≡ ̂Biasn(b) = 2
(
φ̂∗

n (b) − φ̂∗
n (2b)

)
. (10)

The NPPI estimator b̂0n of the “optimal” block length b0n is then obtained from (7)
and (8) as

b̂0n =
(
2Ĉ2

2

Ĉ1

)1/(r+2)

n1/(r+2)(1 + o(1)). (11)

4 A Few Results from a Simulation Study

An extensive simulation study is being carried out by the authors and some results
have already been shown in Prata Gomes and Neves [28]. Here one illustration of
that study is given, using the MM and ARMAX processes defined previously.

k k k

Fig. 4 One sample path of the estimators Θ̂UC and Θ̂G J for a sample of size n = 500 from the
ARMAX process and block bootstrap estimates using “optimal” block length for θ = 0.1, θ = 0.4
and θ = 0.8
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k k k

Fig. 5 One sample path of the estimators Θ̂UC and Θ̂G J for a sample of size n = 500 from
the moving Maximum process and block bootstrap estimates using “optimal” block length for
θ = 0.5263, θ = 0.7143 and θ = 0.9091

A simple path of the estimators Θ̂UC and Θ̂G J is generated. The optimal block
length is obtained for each sample and block bootstrap estimates, using the optimal
block length, are then obtained for each estimator.

The simulation procedure is developed in the following steps:

• Generate a random sample of size n = 500 (in our study obtained from the
ARMAX process with θ = (0.1, 0.4, 0.8) and from the MM process with a =
(0.1, 0.4, 0.9), what corresponds to θ = (0.9091, 0.7143, 0.5263);

• Define an initial block size, b1 = C3n1/5, see Sect. 3. when̂V arn and̂Biasn were
defined, and the JAB blocking parameter, m = C4n1/3b12/3. Lahiri et al. [18]
pointed out that with C3 = 1 for the initial block length b1 gives the best result for
different functionals of interest, and the value of C4 for calculating m is C4 = 1
for the bias and variance functionals.

• TheNPPImethodwas applied for estimating the “optimal” block length for resam-
pling, which depends on the value of k. Now the value of block sizewith the highest
frequency was adopted as the “optimal” block length.

• Finally block bootstrap estimates for the Θ̂UC and Θ̂G J were obtained.

Figures4 and 5 show sample paths for Θ̂UC and Θ̂G J estimates, and the corre-
sponding block bootstrap estimates, where the block size is also indicated.

5 Some Overall Conclusions

A general method for estimating the “optimal” block length for resampling in the
situation of dependence was presented. This was used in a simulation study for
estimating the extremal index. Two estimators of that parameter were used and
bootstrap versions of those estimators based on a block resampling scheme were
considered. Estimates from the Generalized Jackknife estimator revealed promising
results, showing a more stable path.

Monte Carlo simulations allow us to analyze the behavior of our procedures,
given that the true values of the parameters are known. In real case studies it is not
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obvious how to choose the threshold appropriately. Without an adequate procedure
for choosing the level k to be used in the estimation, it will thus be difficult to justify
any particular estimate for the extremal index. This is a topic out of the scope of this
paper, but that constitutes work already in progress.

We have presented a procedure that allows us not only to obtain more stable
estimators but also enables the development of reduced bias estimators. To improve
the procedure used is the next step.
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Some Estimation Techniques in Reliability
and Survival Analysis Based
on Record-Breaking Data

Inmaculada Barranco-Chamorro and Sneh Gulati

Abstract In this paper we review some of the classical and Bayesian results on
statistical inference from records that can be used in reliability and survival analysis.
We focus on some important lifetimemodels, giving special attention to heavy-tailed
distributions in order to consider applications of record-breaking data to the study
of extreme events. Results on the estimation of the number of observations needed
to attain a given number of records are also studied in depth. Numerical illustrations
and results on the estimation of cost functions are included as well. This chapter can
serve as a guide for people interested in making inferences in the fields of reliability
and survival analysis when only record values are available.

Keywords Record values · Heavy tailed distributions · Classical inference ·
Bayesian inference · Sample-size estimation

1 Introduction

Human beings are fascinated with records. We devour literature on record-breaking
events and hold our breath for the next one; who will beat Paul Biedermann’s 200m
freestyle world record of 1:42, what will be next high reached by the DOW Jones
index; will there be a hurricane that will top Hurricane Katrina’s record 25 billion
dollar loss; just to name a few examples. It is not just the general public that is
fascinated with records, it turns out that the statisticians also love records and record-
breaking data as is evidenced by the plethora of papers and books on the subject.
They want to develop the mathematical theory that defines record-breaking data
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and use it to predict the next record. From a statistical perspective, record-breaking
data routinely arise in reliability and survival analysis where units are observed
sequentially and only successive maxima (or minima) are recorded. The resulting
data not only lead to considerable measurement savings, but can often serve equally
well in making the required inference in certain situations. For example, in reliability
and survival studies, the practitioner is often interested in estimating a guarantee
value; essentially an upper or a lower quantile. Clearly when the observed data
consist of successive maxima (or minima) an upper (or a lower) quantile can be
easily estimated (see [11] for details.) Moreover, as seen in [2, 5], and references
therein, records are also potentially useful in diverse fields such as insurance theory,
industrial stress-testing, climatology and geosciences, etc.

Mathematically record-breaking data are defined as follows:
Let Y1, Y2, . . . be independent identically distributed (iid) random variables (rv’s)

with common cumulative distribution function (cdf) F . The cdf F is assumed to
be absolutely continuous with probability density function (pdf) f . In addition, we
assume that the rv’s Y j are observed sequentially, i.e., Y j is observed at time j .

An observation Y j is called an upper record value (or simply a record) if its value
exceeds that of all previous observations, i.e. Y j is an upper record if Y j > Yi for all
i < j . Lower records can be defined similarly. Details and general properties about
records can be found in [2, 5] or [20].

The following variables are associated with record-breaking data:

The record time sequence:

L(1) = 1

L( j) = min
{
i : i > L( j − 1), Yi > YL( j−1)

}
, for j ≥ 2.

The record value sequence:

X j = YL( j), j ≥ 1.

Note that X1 is taken as the reference value or trivial record. The rest are nontrivial
records.
The record counting process:

N (n) : “number of records among Y1, . . . , Yn” (1)

Since the Yi ’s are iid absolutely continuous rv’s, {L( j)} and N (n) are distribu-
tion free, i.e., the parent cdf F will not affect distributions of these variables. The
distribution of the record values X j is obviously affected by F .

Record-Breaking data were first studied in a stochastic setting by [8] who showed
that the record times (and the inter-record times) have an infinite expectation. Since
then the number of authors who have studied and continue to study record-breaking
data both from a stochastic and inferential perspective has mushroomed. Inferential
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procedures from records have spanned a wide range of topics: parameter estimation,
hypothesis testing, lifetime and hazard function estimation and prediction [11].

The purpose of this paper is to review some results on inference from records that
can be used in risk and reliability analysis especially in the context of estimation and
prediction of extreme events. We focus our attention on the study of records from
heavy tailed distributions since such distributions are often used to describe insured
losses and serve as a model for extreme events. From an insurer’s perspective, it is
critical to know when the next catastrophic event will strike and what its magnitude
will be so that they can obtain the necessary reinsurance coverage. Thus estimation
and prediction of these extremes is especially important from a statistical viewpoint.
Equally important for an insurance company is the ability to estimate the original
sample size based on the number of observed records. Given the highest recorded
flood levels in a city, it is of interest to knowmanydays of flooding did the city actually
experience. Similarly, while it is important to knowwhat the extreme hurricane losses
were, it is just as important to know the number of times a company had to pay out
due to hurricane losses as well as the actual amounts. The problem of sample size
estimation is also important in geostatistics. For instance, [14] estimated the number
of glacial advances from the number of surviving debris (called moraines). He dealt
with this issue as a problem of estimation of the sample size from the number of
records. In reliability and survival analysis, the problem of sample size estimation
manifests itself in fatigue tests. These tests are mandatory to ensure the integrity of
structures; however since they are essentially destructive, the underlying sample size
must be carefully chosen in order to find a good balance between the accuracy of the
estimation and the cost of the experiment.

The organization of the paper is as follows.We study the estimation and prediction
of extreme events (in the context of record values) from a classical perspective in
Sect. 2, while in Sect. 3 we study the same topics in a Bayesian framework. Finally,
in Sect. 4, we review results on the estimation of the original sample size based on
the number of observed records. Numerical examples to illustrate the applications
of some of these results are presented at the end of every section.

2 Distribution Theory for Records from Heavy Tailed
Distributions

As mentioned in the introduction, manufacturers and insurers need to hedge them-
selves against extreme events and thus be able to predict them accurately. Given
past extreme events, we can think of the future extreme event as a future record-
breaking event and use appropriate record-breaking theory for estimation and pre-
diction. Hence in this section, we review some inferential results on record-breaking
data from some of the heavy tailed distributions used to model extreme events.
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2.1 Pareto and Related Distributions

The Pareto distribution has extensive applications in hydrology, income distributions
and the insurance claims. Arnold and Press [4] stated that this model is useful for
approximating data that arise from distributions with fat tails [12]. Since Pareto-type
distributions are the most commonly used class of distributions to describe extreme
events, we will use this class as our focal point.

Definition 1 A rv Y follows a generalized Pareto distribution (GPD) if its cdf is
given by

Fθ,σ,β(y) =
⎧
⎨

⎩

1 −
[
1 + β

(
y−θ
σ

)]−1/β
for β �= 0

1 − exp
(
− y−θ

σ

)
for β = 0

(2)

This model has three parameters: location θ , θ ∈ IR; scale σ , σ > 0; and shape β,
β ∈ IR. For β ≥ 0 the support for y is given by y ≥ θ , whereas for β < 0 the support
is θ ≤ y ≤ θ − σ

β
.

A rv with cdf given in (2) is denoted by Y ∼ G P D(θ, σ, β). (Note that the GPD
is equivalent to the two-parameter exponential distribution for β = 0, while for the
case when both β = 0 and θ = 0 it reduces to the exponential distribution. Finally,
for β > 0 and θ = σ/β, the GPD is equivalent to the classical Pareto distribution.)

2.2 Results for the Generalized Pareto Distribution

Consider the first k upper records: X1, . . . , Xk from the GPD defined in (2). Let
Zi denote the standardized records, that is Zi = (Xi − θ)/σ . (Note then that Zi ∼
GPD(0, 1, β).) The singlemoments of themth standardized record value Zm , E[Zr

m],
denoted by μ

(r)
m , are given by (from [27]; originally in [6])

μ(r)
m = 1

βr

r∑

i=0

Cr
i (−1)r−i

(1 − βi)m
, r = 1, 2, . . . , (3)

with Cr
i = (r

i

)
.

The double moments of the record values Zm and Zn with m < n, E[Zr
m Zs

n],
denoted by μ

(r,s)
m,n , are given by

μ(r,s)
m,n = 1

βr+s

s∑

j=0

r∑

i=0

Cs
j C

r
i (−1)s+r−i− j

(1 − β j)n−m(1 − β j − βi)m
, r, s = 1, 2, . . . m < n

(4)
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Using the generalized least-squares approach and the moments given above the Best
Linear Unbiased Estimators (BLUEs) of θ and σ , denoted by θ∗ and σ ∗, are given
by (see [5, 7] for details):

θ∗ =
{

μ′Σ−1μ1′Σ−1 − μ′Σ−11μ′Σ−1

(μ′Σ−1μ)(1′Σ−11) − (μ′Σ−11)2

}

X =
k∑

i=1

ai Xi (5)

σ ∗ =
{

1′Σ−11μ′Σ−1 − 1′Σ−1μ1′Σ−1

(μ′Σ−1μ)(1′Σ−11) − (μ′Σ−11)2

}

X =
k∑

i=1

bi Xi (6)

where μi = E[Zi ], μ = (μ1, . . . , μk)
′, σi, j = Cov[Zi , Z j ], Σ = ((σi, j )) with

1 ≤ i, j ≤ k; X = (X1, . . . , Xk)
′ and 1 = (1, . . . , 1)′.

Their variances and covariances are

Var[θ∗] = σ 2
{

μ′Σ−1μ

(μ′Σ−1μ)(1′Σ−11) − (μ′Σ−11)2

}

= σ 2V1 (7)

Var[σ ∗] = σ 2
{

1′Σ−11

(μ′Σ−1μ)(1′Σ−11) − (μ′Σ−11)2

}

= σ 2V2 (8)

Cov[θ∗, σ ∗] = σ 2
{ −μ′Σ−11

(μ′Σ−1μ)(1′Σ−11) − (μ′Σ−11)2

}

= σ 2V3. (9)

The BLUEs are used to propose pivots and confidence intervals for the location and
scale parameters. The pivotal quantities are

R1 = θ∗ − θ

σ
√

V1
, R2 = σ ∗ − σ

σ
√

V2
, and R3 = θ∗ − θ

σ ∗√V1
. (10)

R1 and R3 are used to make inferences about θ when σ is known and unknown,
respectively, while R2 is used to make inferences about σ . Percentage points of these
pivotal quantities were computed in [27] via Edgeworth approximations and Monte
Carlo simulations.

Finally, the Best Linear Unbiased Predicted value (BLUP) of the next record,
X∗

k+1, can be written as a linear function of BLUEs of θ and σ based on the first k
records (θ∗

k and σ ∗
k ) as

X∗
k+1 = θ∗

k + σ ∗
k μk+1, (11)

and prediction intervals for the next record value Xk+1 can be given by using the
pivotal quantity

Tk+1 = Xk+1 − Xk

σ ∗
k

. (12)

As before percentage points of the above pivotal quantity are usually computed
via simulations.
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At this point, it is important to note that the methodology followed in [27] for
the GPD is general, and it can be applied to other similar settings where we want
to estimate the location and scale parameters of a distribution as well as predict the
next record based on the first k records. Once again, we refer the reader to [7] or [5]
for the relevant general methodology.

2.3 Results for Some Other Distributions

In this subsection, we summarize some results related to record values for two other
heavy tailed distributions. Results for additional distributions are not presented since
the general methodology presented in Sect. 2.2 applies to most of these distributions.

Generalized Exponential Distribution

Definition 2 A rv Y follows a Generalized Exponential Distribution (GED) if its
cdf is given by

Fθ,σ,β(y) =
{
1 − e−(y−θ)/σ

}β

, y > θ, θ ∈ IR, σ > 0, β > 0. (13)

This distributionwas introduced in [13] as an alternative to the gamma andWeibull
models. Note that above distribution is characterized by a location, scale and a shape
parameter. Using lower records and the general methodology outlined in the pre-
vious section, [22] developed inferential results for this distribution. These include
expressions for the standardized moments of lower records, the BLUEs of θ and σ ,
and predictions of future records from a classical point of view.

Modified Weibull Distribution

Definition 3 A rv Y follows a Modified Weibull Distribution (MWD) if its pdf is
given by

fa,b,λ(y) = a(b + λy)yb−1eλy exp(−aybeλy), y > 0, a > 0, b ≥ 0, λ > 0.
(14)

This distribution was introduced in [15] as a new lifetime model, it can also be used
to model tail behavior, and records from this distribution were studied by [26]. Note
that the MWD includes the Weibull distribution as a special case (λ = 0) and the
Type I extreme value distribution (b = 0). Although, in this model, we have a shape
parameter b and two scale parameters, (a, λ), the generalized least-squares approach
can be applied again. Sultan [26] derived the single and the product moments for
upper record values from the MWD, new recurrence relations between them, the
BLUEs of the underlying parameters and some characterizations.
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2.4 Numerical Illustrations

Nextwe include a numerical illustration given in [5]. They used the data given by [23]
on 1h mean concentrations of sulfur dioxide (in pphm) form Long Beach, California
for the years 1956–1974 and extracted upper records for the month of October. These
values are given by: 26, 27, 40 and 41. Chan [10] considered log-record values of the
above data (given by 3.258, 3.296, 3.689 and 3.714) and assumed that they had come
from a Type I extreme value distribution (min) with parameters θ and σ (cdf given

by F(y) = 1 − exp(−e
y−θ
σ ).) For the extreme value distribution, the expressions

(5), (6) and (11) can be simplified to (see [5] for details):

θ∗ = αk

k

k−1∑

i=1

Xi + (1 − αk)Xk (15)

σ ∗ = Xk − 1

k − 1

k∑

i=1

Xi (16)

and

X∗
k+1 = Xk + 1

k(k + 1)

k−1∑

i=1

(Xk − Xi ) (17)

where αk = −γ +∑k
i=1

1
i and γ is the Euler’s constant.

Using (15) and (16), then the BLUE’s of θ and σ are calculated to be θ∗ = 3.338
and σ ∗ = 0.300. Moreover, using (17), an estimate of the next log-record value is
given by 3.788166. Arnold et al. [5] also computed a conditional 90% interval for
the next upper log-record to be (3.714, 3.9737). Note that one can exponentiate this
interval to obtain the corresponding 90% interval for the next upper record in terms
of the original data.

Another application consisting of real record values for the Weibull distribution
can be seen in [25].

3 Bayesian Prediction of Future Records

While the results summarized in Sect. 2 have involved classical theory, estimation
and prediction problems in the context of records can be satisfactorily solved in the
Bayesian framework (see [3]). This is due to the fact that from a sequence of n iid
rv’s, we expect to have only a few records, so additional prior information is usu-
ally welcome and useful for inferential purposes. In this sense, Bayesian inferential
methods can provide better results than classical ones. The general methodology
applicable to all families of distributions, and detailed in [3], is as follows:
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Suppose that the data consist of the first upper record values X1, X2, . . . , Xk

from a continuous distribution F(x |θ), with θ ∈ Θ ⊆ IR p where Θ denotes the
underlying parameter space. The likelihood function of the record values is given
in [5]

L(θ, x) = f (xk |θ)

k−1∏

i=1

f (xi |θ)

1 − F(xi |θ)
, where x = (x1, . . . , xk). (18)

The prior information of the experimenter is expressed in terms of a proper conjugate
prior distribution, π(θ), defined on the parameter space Θ . Multiplying π(θ) by the
likelihood of the records, given in (18), updates the prior to posterior densityπ∗(θ |x).
The posterior density can be used not only to compute the Bayesian estimates of the
underlying parameters but also provides the following predictive density of the future
sth record y = x∗

s , given the first k records as

f ∗(y|x) =
∫

Θ

gk(y|θ) π∗(θ |x)dθ (19)

where gk(·) is the conditional pdf of the sth record given that the kth record has been
observed, with s > k and is given by (see [5])

gk(y|θ) = gk(y|x, θ) = {H(y) − H(xk)}s−k−1

Γ (s − k)

f (y|θ)

1 − F(xk |θ)
, xk < y (20)

Here H = − ln(1 − F) and ln(·) denotes the natural logarithm.
Finally, the Bayes point predictor of the sth future record under squared error loss

is obtained as the expected value of (19).
AL-Hussaini and Ahmad [3] used this methodology to obtain prediction intervals

for future records from the Burr, Pareto, and Weibull distributions. Bayesian estima-
tors of the underlying parameters and their point predictors for these models were
also considered in [1].

3.1 Applications to the Pareto Distribution

As mentioned earlier, the Pareto distribution is one of the most important classes
of distributions when it comes to describing extreme events. Thus we now look at
results on the prediction of future records from the Type I Pareto distribution.

Type I Pareto distribution
Prediction of future records for the Type I Pareto distribution was addressed not only
in [3] using the methods detailed above, but also in [1, 16]. Madi and Raqab [16]
considered prediction of future record values and record average for the Type I Pareto
distribution only,whereas [1, 3] consideredBayesian estimation for the parameters of
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several life distributions, including the Pareto. Here we will present the results of [1]
as applied to the Type I Pareto distribution. This is because, amongst the references
stated above, these authors are the only ones who explicitly gave the expression for
the point predictor of the future record value as well as a confidence interval for a
future record.

We assume then that the data consist of k first upper record values X1, X2, . . . , Xk

from the Type I Pareto distribution with cdf

F(x |θ, α) = 1 −
(

θ

x

)α

, x ≥ θ, θ > 0, α > 0. (21)

Using an appropriate conjugate prior, the posterior density of (θ, α) is computed as

π∗(θ, α|x) = (b + 1) {I (xk, M)}k+a

Γ (k + a)θα−k−a
e−α I (xk ,θ), 0 < α, 0 < θ < M (22)

where a, b, c and d are positive real numbers (hyperparameters of the prior density),
I (u, v) = ln(u) + ln(c/vb+1) and M = min{x1, d}.

Ahmadi and Doostparast [1] used the posterior density of (θ, α) to compute the
following Bayes point predictor for the Xs , the sth future upper record (s ≥ k + 1):

X̂s(B) = Xk Es+a−1

B(k + a, s − k)

s−k−1∑

j=0

E− j
∫ 1

0

{E − ln z} j−s−a

z2
dz (23)

where E = I (Xk, M).
Moreover, [1] showed that for Xs , t (Xs) = I (xk, M)/I (Xs, M) follows a Beta

distribution with parameters k + a and s − k, which is independent of Xs , and thus it
is a pivotal quantity for Xs . It can therefore be used to construct a prediction interval
for Xs which is given as

(

Xk exp

{

I (Xk, M)

(
1

b1−γ /2
− 1

)}

, Xk exp

{

I (Xk, M)

(
1

bγ /2
− 1

)})

(24)

where bγ is the γ th percentage point of the Beta(k + a, s − k) distribution.

3.2 Numerical Illustration

In [1], seven records were simulated from a P(2, 3) distribution. Their values were:
3.0889, 3.3358, 3.7241, 4.4956, 5.3649, 5.8284, 6.0071. They considered (22) with
prior hyperparameters a = 1, b = 2, c = 20, d = 15. The Bayes estimates of α and
β were α̂B = 5.6930 and β̂B = 2.8969. By applying (24), a 95% prediction interval
for the 8th upper record in the sample is (6.0339; 13.6832).
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We now turn to a review of some results on estimation of the complete sample
size based on the number of records.

4 Methods for Estimating the Sample Size Based
on the Number of Record-Breaking Data

The aim of this section is to review some methods for estimating the unknown
sample size based on the record counting process, N (n), defined in (1). Methods
in the literature for estimating n are given in [9, 17, 18], where estimators of the
unknown sample size n are proposed based on the number of records, N (n) = k.
Practical applications of these techniques can be seen in [14, 24].

First,we reviewsomegeneral results about the record countingprocess
{

N (n)
}

n≥1.
Details can be found in [5].

Lemma 1 1. The probability mass function (pmf) of N (n) is

P
[

N (n) = k
]

= s(n, k)

n! , k ∈ {1, . . . , n}, (25)

where s(n, k) denotes an (unsigned) Stirling number of the first kind.

2. For large n, [21] proposed the following approximation to (25)

P
[

N (n) = k
]

= e−λn
λk−1

n

(k − 1)! + O

(
1

ln(n)

)

(26)

with λn = ln(n) + γ − 1 and γ is Euler’s constant (γ = 0.5772 . . .).
3. N (n) can be written as

N (n) =
n∑

j=1

I j (27)

where I j are independent Bernoulli rv’s with I j ∼ Ber
(
1
j

)
. Expression (27) can

be used to derive properties of N (n). For instance, we have that the probability
generating function (pgf) of N (n), G N (n) (s), is

G N (n) (s) = 1

n!
n∏

j=1

( j + s − 1), s ∈ IR (28)

and the following approximation to E
[
N (n)

]

E
[

N (n)
]

≈ ln(n) + γ (29)
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4. For inferential purposes, we highlight that the support of N (1) is only one point,
N (1) = 1. So, by applying a result given in [18], we have that the family of pmf’s
of N (n) is complete.

Now we turn our attention to methods in the literature for estimating n.

4.1 Methods for Estimating n

From the properties of N (n) given in Lemma 1, [17] proposed three methods for esti-
mating n: an unbiased estimator, the maximum likelihood and the moments method
estimator. They are based on the observed value of N (n) and are listed next.

4.1.1 Unbiased Estimation of n

An unbiased estimator of n, T1, is given by

T1 = 2N (n) − 1 (30)

Properties of T1

1. T1 is the only unbiased estimator of n based on N (n). This fact follows from the
fact that the family of pmf’s of N (n) is complete.

2. The variance of T1 is given by

Var[T1] = (n + 3)(n + 2)(n + 1)

6
− (n + 1)2. (31)

4.1.2 Maximum Likelihood Estimation of n

Let k0 denote the observed value of records and let pn(k) = P
[
N (n) = k

]
. The

maximum likelihood estimator (MLE) is T2 = n̂ with n̂ satisfying

pn̂(k0) = max
n

pn(k0) (32)

Properties of T2

1. T2 was characterized in [17] in terms of the mode of pmf of N (n), Mo(N (n)).
Explicitly

T2 = min{n / Mo(N (n)) = k0}, k0 being the observed value of N (n). (33)
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2. Appropriate software should be used to calculate T2 by using (33). If the calcu-
lation of (33) is cumbersome then the next approximation can be useful.

3. Cramer [9] derived bounds for T2 and proposed the following approximation for
T2 when N (n) ≥ 3

n+ =
⎢
⎢
⎢
⎣exp

⎧
⎨

⎩

N (n)

2
+ 3

4
− γ +

√

(2N (n) − 3)2

16
− ζ(2) + ζ(3)

⎫
⎬

⎭

⎥
⎥
⎥
⎦ (34)

where �x denotes the integer part of x and ζ(·) the Riemann zeta function.
n+ provides a good approximation to the MLE of n as can be seen in [9], Table3.

4. Cramer [9] derived the following approximations for E[T2] and Var[T2]

E[T2] ∈
[
G N (n) (e)e−2γ , G N (n) (e)e−γ

]
(35)

Var[T2] ∈
[

e−4γ

Γ (e2)
ne2−1,

e−2γ

Γ (e2)
ne2−1

]

, (36)

where G N (n) (·) was given in (28). For large n, G N (n) (e) in (35) can be approximated

by ne−1

Γ (e) .

4.1.3 Method of Moments Estimator of n

From (29) a Method of Moments Estimator (MME) of n is given by T3 = eN (n)−γ .

Properties of T3

The mean and variance of T3 are

E[T3] = G N (n) (e)e−γ (37)

V ar [T2] = e−2γ
[
G N (n) (e2) − G N (n) (e)2

]
(38)

with G N (n) (·) given in (28). In order to obtain an integer estimate of n, T3 should be
modified to T ∗

3

T ∗
3 = nint(T3) = nint

(
eN (n)−γ

)
(39)

where nint(·) denotes the nearest integer function.
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4.1.4 Additional Properties

It is illustrated in [9, 17] that for k0 ≥ 3 the following relationship holds for T1, T2,
and T3:

T1 < T2 ≤ T3 (40)

Remark 1 For k0 = 1, T1 = T2 = 1 and T ∗
3 = 2, while for k0 = 2 we have that

T1 = 3, T2 = 2 and T ∗
3 = 4.

Also we highlight that, while we have explicit expressions for T1, T3 and their
characteristics, computational methods and/or approximations are needed to calcu-
late T2, its mean and variance.

Finally, note that T2 and T3 are biased estimators of n, since from (40)

n < E[T2(N (n))] ≤ E[T3(N (n))].

The biases of T2 and T3 can be assessed by using (35) and (37), respectively.

4.1.5 Numerical Illustration

We use the following example from [5] to illustrate the practical use of the methods
given in Sect. 4. A rock crushing machine has to be reset if, at any operation, the
size of the rock being crushed is larger than any that has been crushed before. In this
setting, let us suppose we just know the number of times that the machine has been
reset, that is the number of record-breaking values. We want to estimate the total
number of operations based on the number of times it has been reset.

Suppose that we observe that the machine has been reset three times, i.e. k0 = 3.
By applying (30), (33), and (39), we have the following estimates of n given in
Table1. Note that the data set for the sizes of the rocks up to the third time the
machine had to be reset as given in [5] and consisted of the following n = 12 values:
9.3, 0.6, 24.4, 18.1, 6.6, 9.0, 14.3, 6.6, 13.0, 2.4, 5.6, 33.8. Thus, for this data set, the
best estimator of the sample size turns out to be T ∗

3 .
We also want to point out here that for the above data set, Arnold et al. [5] assumed

an underlying exponential distribution and using a vague prior, they computed a
95% Bayesian prediction interval for the fourth record as (33.8, 91.7). Arnold et al.
[5] also investigated the use of a one-parameter Rayleigh distribution (and a two-
parameter Rayleigh) for the same data, to compute a 90% prediction interval for the
fourth record as (33.8, 49.6) (under the assumption of a two-parameter Rayleigh, the
interval was computed as (33.8, 69.1).)

To conclude this section,we propose a result that can be used to estimate a function
of the sample size.
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Table 1 Estimates of n for k0 = 3

N (n) = k0 T1 T2 T ∗
3

3 7 8 11

4.2 Unbiased Estimation of Functions of the Sample Size

It is possible to apply the results given in [18] to N (n) to develop unbiased estimators
of functions of sample size. These estimators can be useful in stress and fatigue
tests where the practitioner is often interested in the cost of the experiment which is
typically a function of the number n of items in the test.

Let S(N (n)) denote the support of N (n) and pn(k) the pmf of N (n). Note that
S(N (n)) = {1, 2, . . . , n}.
Lemma 2 The family of pmf’s of N (n) is recursive on S(N (n)), (see [18]).

This result means that the support and the pmf of N (n) satisfy certain recursive
relations. Explicitly

1. The support of S(N (n)) satisfies

S(N (1)) = 1 and S(N (n+1)) = S(N (n)) ∪ {n + 1}

2. For n ≥ 1, the pmf of N (n) satisfies the recursive relation

pn+1(k) = qn+1 pn(k) + (1 − qn+1)pn(k − 1),

where qn+1 = n
n+1 and p1(1) = 1.

Theorem 1 Any function of sample size, h(n), admits an unbiased estimator based
on N (n), g(N (n)). This is characterized by the following relationships

g(1) = h(1) (41)

g(n + 1) =
{

(n + 1)h(n + 1) − nh(n) −
n∑

i=1

g(i)pn(i − 1)

}
1

pn(n)
(42)

Since S(N (1)) = {1}, the family of pmf’s of N (n) is complete. Therefore the unbiased
estimator of h(n) based on N (n) is uniquely determined. (See [18])

4.2.1 Application: Estimation of Cost Functions in Stress and Fatigue
Testing

Engineers often test items to determine their operating life under a given level of
stress, breaking points or safe usage limits. These kind of studies are also usual in
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Table 2 Estimates of some cost functions for N (n) = 3

N (n) = 3 T C(n) = n2 + n + 1 MC(n) = 2n + 1 V (n) = n2+n+1
n

Estimates 39 15 8

material sciences where they are known as fatigue testing. Details and examples
can be seen in [19]. In this setting, inference based on records can be of interest.
Specifically, suppose that we are sampling from a continuous rv and we only know
the number of records, but we want to estimate the cost of the experiment given
as a function of the number of items in the test , n. Some cost functions used in
Economics are

Total Cost denoted by T C(x).
Marginal Cost defined as MC(x) = d

dx T C(x).

Average Cost defined as AV (x) = T C(x)
x .

Particular cases of total cost functions of the sample size that can be of interest in
reliability and survival analysis are

1. T C(n) = a + bn + cn2, with c > 0. This cost function leads to increasing
marginal costs.

2. T C(n) = a + bn + cn2 + dn3, with appropriate coefficients b, c, d, produces
U-shaped marginal costs.

Clearly the above cost functions are non linear functions of n, and therefore results
in Theorem1 can be applied.

As illustration consider the total cost function T C(n) = n2+n +1, n ≥ 1. In this
case MC(n) = 2n + 1 and AV (n) = n2+n+1

n . If we observe 3 records, by applying
(42), we have the estimates given in Table2.
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Abstract Trade credit refers to providing goods and services on a deferred payment
basis. Commercial credit management is a matter of great importance for most small
and medium enterprises (SMEs), since it represents a significant portion of their
assets. Commercial lending involves assuming some credit risk due to exposure
to default. Thus, the management of trade credit and payment delays is strongly
related to the liquidation and bankruptcy of enterprises. In this paper we study the
relationship between trade credit management and the level of risk in SMEs. Despite
its relevance for most SMEs, this problem has not been sufficiently analyzed in the
existing literature. After a brief review of existing literature, we use a large database
of enterprises to analyze data and propose a multivariate decision-tree model which
aims at explaining the level of risk as a function of several variables, both of financial
and non-financial nature. Decision trees replace the equation in parametric regression
models with a set of rules. This feature is an important aid for the decision process
of risk experts, as it allows them to reduce time and then the economic cost of their
decisions.
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1 Introduction

The current financial crisis has renewed the interest in research and development
of failure prediction models for all of the corporate and retail sectors [3]. The lit-
erature on the modeling of credit risk for large, listed companies is extensive, and
it either uses historical accounting data to predict insolvency or models that rely
on market information. However, market information is not available for small and
medium enterprises (SMEs), which require risk management tools and methodolo-
gies specifically developed for them. Research on credit risk management for SMEs
is relatively scarce. This research aims to partially fill this void by analyzing the risk
of trade credit operations in SMEs. Trade credit (TC) involves supplying goods and
services on a deferred payment basis; that is, giving the customer time to pay. Thus,
TC is an ‘implicit short-term loan from non-financial suppliers to their clients. It
occupies a prominent place in the world of business and is one of the most important
forms of credit available to businesses. Because TC represents such an important
share of total assets or liabilities, managing it is critical for the businesses, especially
for SMEs.

While the actual cost of institutional credit remains close to the nominal cost,
the cost of TC can vary widely. In effect, if significant discounts for early payment
are considered, TC can become an expensive way of borrowing. The cost of TC
is reflected in both the level of credit (the amount purchased on credit) and the
length of the credit period (the number of days taken before payment is made). We
discuss here some basic concepts and models to predict default risk in SMEs based
on TC indicators. We explore the use of several models, including both classical
statistical and econometricmodels (e.g., logistic regression andmultiple discriminant
analysis) as well as data-mining techniques (e.g., decision trees, neural networks,
nearest neighbor, etc.). As discussed in the abstract, our results suggest that decision
trees have the best fit, where CHAID (Chi-squared Automatic Interaction Detector)
provides better prediction of defaults than CART (Classification and Regression
Tree). We also find that the most important predictor is the ratio of accounts payable
over total liabilities, with larger values of this ratio implying a greater risk of default.
Other important predictors are the ratio of accounts payable over accounts receivable
and sales growth.

The remainder of this paper is organized as follows. Section2 contains a litera-
ture review on the topic. Section3 addresses measurement and estimation issues of
default risk. Section4 describes the data employed in this study. Section5 provides
an overview of our methodology. Finally, Sect. 6 offers some concluding remarks.

2 Literature Review

Early research into corporate failure prediction involved determining which account-
ing ratios best predict failure, primarily employing Multiple Discriminant
Analysis (MDA) or Logit/Probit models. Usually, ratios are calculated a year before
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bankruptcy or default and thus these are static models. Altman [1] and Ohlson [20]
pioneered models to predict failure using these financial ratios. Altman used MDA,
which was echoed by Deakin [11] and Micha [19], inter alia. Ohlson introduced a
logistic regression model, which has several advantages over MDA (see next section
for a discussion on this matter) and a wealth of studies followed this direction [4, 5].

Credit risk models for private companies are limited by data availability. Market
datum are not available for unlisted firms. Moreover, some of the datum required to
calculate accounting ratios in studies of the failure of listed companies is not available
for SMEs. Other studies using a variety of statistical techniques, have contributed to
the knowledge of the insolvency indicators, both financial [2, 9] and non-financial
[3, 14] that arise in SMEs. In particular, Fantazzini [12] propose a non-parametric
survival approach with a random-forest model, but they also conclude that a simpler
logit model outperforms the random-forest model in the out-of-sample validation.

As we discussed in the previous section, managing trade credit is critical for the
businesses, especially for SMEs, as it represents an important share of total assets.
Therefore, it is not surprising that recent research has focused on the links between
the management of TC (and delays in payment) and the liquidation or bankruptcy of
enterprises, or even the refinancing (or restructuring) of debt [10, 29]. Commercial
lending involves credit risk due to exposure to default that can have negative effects
on probability and liquidity [8]. According to [21], the proper management of the TC
offered (as a supplier) is critical to the survival and success of business. These authors
also conclude that most SMEs are not proactive in their management of credit, and
that they do not employ risk models (according to them, about 83% of SMEs do not
classify their customers using risk categories).

As noticed byBoissay [7], credit-constrained firms facing liquidity problems from
their customers are more likely to not pay their suppliers. However, because of the
difficulty of obtaining data, the line of research that studies the relation between the
management of TC and risk is not sufficiently developed.

3 Measuring Default Risk in SMEs

According to European standards, SMEs have less than 250 employees and sales
figures under 50 million EUR (or total assets under 43 million EUR). As pointed
out by Altman et al. [3], two of the main factors behind failed SMEs are insufficient
capitalization and lack of planning. In the related literature it is common to find terms
related to high levels of risk, such as: insolvency, bankruptcy, failure, default, etc.
All of these terms are quite similar, albeit with small differences. In fact, they can be
used interchangeably in a modeling framework, since they are usually transformed
into a binary variable that takes on the value 1 if the event occurs and takes on the
value 0 otherwise. In this paper we use the term default. Accordingly, we use the
probability of default (PD) as a measure of risk. Notice, however, that failure and
closure are different concepts: while failure generally implies closure, the inverse is
not true a firm’s closure may be due to other reasons. Several factors can affect a PD,
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such as the firm’s leverage, profitability or cash flows. A scoring model specifies how
to combine the different pieces of information in order to get an accurate assessment
of the PD.

Assume we have have annual firm-level data on default factors and default behav-
ior. The binary variable of default will take on value 1 if the firm eventually defaults
in the year following the one observed for the factors, and zero otherwise. A score
summarizes the information contained in factors x1, x2, ..., xk that affect the PD.
Ideally, the scoring model should predict a high PD for those firms that eventu-
ally will default and a low PD for those that will not. Logistic regression models
can be used to predict default because the response variable is binary and they
yield a score between 0 and 1, which can be interpreted as the client’s PD. The
model coefficients signal the importance of each predictor in the explanation of the
estimated probability of default. A score summarizes the information contained in
factors that affect the PD, e.g.: score = b0 + b1x1 + b2x2 + · · · + bk xk . The logis-
tic function, P = 1/(1 + exp(−score)), is usually applied to link scores to PDs.
The ratio P/(1 − P) is called odds-ratio and facilitates the model interpretation.
Log[P/(1− P)] is called logi t (P) and thus the associated models are called logit
models. A natural way of estimating the coefficients of the model is throughout the
maximum likelihoodmethod, i.e., the coefficients are chosen such that the probability
of observing the given default behavior is maximized.

Alternative nonlinear techniques that can be used to approach this problem include
decision trees and neural networks, among others [6, 16]. A decision tree is a set
of conditions organized in a hierarchical structure, so that the final decision can be
determined by the fulfillment of the rules from the root of the tree to one of its end
nodes. One of the great advantages of this technique is that the possible options
from a given condition are exclusive, the analysis of a situation, which allows one to
analyze a situation, follow the tree properly, get an action or take a decision.

Two of the main techniques for developing trees are CART (Classification and
Regression Tree) and CHAID (Chi-squared Automatic Interaction Detector): CART
performs binary partitions and assigns a mean and variance to each node, trying
to select partitions that reduce the variance of the child nodes; CHAID performs
non-binary partitions and uses a Chi Square test to determine the optimal partition.

Instead of the well-known R2 statistic, suitable for linear models, in the case
of nonlinear models we can report the Pseudo − R2, which is also bounded by 0
and 1—with higher values indicating a better fit. However, in this work we use an
alternative measure of fit which is frequently used in binary models: the ROC curve.
AROC curve is a technique for visualizing, organizing and selecting classifiers based
on their performance. It has its origin in Signal Detection Theory [28] and has been
widely accepted and commonly used in fields such as Psychology [18] andMedicine
[30]. It has also been introduced in other fields that are more related with our work,
such as Economics [27] and Data-mining [15]. ROC curves are particularly useful
for comparing the classification power of different estimatedmodels. Details of ROC
curves are provided in [13]. The degree of predictability of the model is defined by
the area under the ROC curve (AUC), which is constructed for all possible cutoff
points to classify positive or negative events. Since the AUC is a portion of the area of
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the unit square, its value will always be between 0 and 1, where the random guessing
procedure has an area of 0.5. As with the Pseudo − R2, the greater is the AUC the
better is the classifier.

Alternative measures of risk that can be used to approach the problem of trade
credit risk are Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). VaR and
CVaR have been widely used in the field of financial engineering (e.g. [25, 26]).
CVaR is used in conjunction with VaR and is applied for estimating the risk with non-
symmetric cost/return distributions. Rockafellar and Uryasev [23, 24] introduced a
new approach to select a set of investments with the reduced risk of high losses. The
problem was solved by calculating VaR and minimizing CVaR simultaneously. For
trade credit VaR can be defined as accepted threshold of risk by decision-maker, in
that case CVaR would be worst case accepted level of TC risk. Optimization models
with VAR and CVaR could be used to shape the distribution of TC risk in a favorable
way for a decision maker.

4 Data Sources

The Iberian Balance sheet Analysis System (SABI) is a database that includes infor-
mation on the balance sheets of more than 1.2 million Spanish and more than 0.4
million Portuguese companies. A random sample (extracted from SABI) with more
than 5,000 activeSpanishSMEswas used.We selected activeSMEsoffering account-
ing records for the previous year (e.g., 2011), so that we could extract data on at least
one of the following variables: accounts receivable, or accounts payable. The SABI
database does not provide information on companies default behavior, but it provides
some risk measures. One of these measures is the scores from the Multi Objective
Rating Evaluation (MORE), a proprietary scoring model. TheMORE rating consists
of 10 categories indicated by traditional symbols used by rating agencies: AAA to
D, with CC being the 8th if we rank them from most creditworthy to less creditwor-
thy. One of our goals is to develop a scoring model, alternative to MORE, based on
predictors related to TC. Our scoring model should have a transparent and replicable
methodology under the assumption that SMEs typically apply homogeneous risk
rules to all their TC customers. In contrast to MORE, in this research we also pro-
pose a model that allows for customized TC rules that suit different customers and,
thus, leads to reduced levels of default risk. In our model we use a binary depen-
dent variable (response) which, based on the MORE score, classifies SMEs into two
categories: risky and non-risky companies. The former comprise companies with
standard CC or lower rating featuring a relatively high probability of default. The
non-risky companies comprise all the remaining SMEs in the samplewith a relatively
low probability of default.

As for the independent variables (predictors) most of them are variables related
to TC. Specifically, we used: (a) DAR: “Days accounts receivable (debtors)”;
(b) DAP: “Days accounts payable (creditors)”; (c) AR_Assets: “Ratio (Accounts
receivable/Total assets)”; (d) AP_Liab: “Ratio (Accounts payable/Total liabilities)”;
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Table 1 Descriptive statistics of the considered variables

Variable N Min Max Mean St. Dev

Descriptive statistics

Employees 5094 1 244 9.20 18.673

Age 5093 3.0056 87.7889 15.038873 8.9831294

Log_AR_Assets 5094 −15.26 0.00 −2.2883 1.90025

Log_AR_Liab 5094 −12.56 4.05 −1.7992 1.52436

Log_AP_AR 5048 −10.04 13.56 0.5515 1.88502

Log_SalesGrowth 5094 −9.34 6.24 −0.0826 62420

Log_ARGrowth 5094 −9.71 10.74 −0.0681 1.14850

Log_APGrowth 5094 −8.34 7.05 −0.0333 0.81845

Log_DAP 5094 −2.66 13.20 4.8826 1.45649

Log_DAR 5094 −2.30 14.05 3.5273 2.01879

ValidN (listwise) 5047

(e) AP_AR: “Ratio (Accounts payable/Accounts receivable)”; (f) APGrowth: “Ratio
(Accounts payable [last year]/Accounts payable [previous year])”; and (g)
ARGrowth: “Ratio (Accounts receivable [last year]/Accounts receivable [previous
year])”. We also used some other factors which, although not directly related to
default on TC, help us account for the existing heterogeneity of SMEs. These factors
are: number of employees, age (years in operation), activity sector, and sales growth
in the last year. All the variables were obtained for the last accounting year, that is,
2011. Growth variables were derived comparing 2011 and 2010. Table1 shows some
descriptive statistics of the variables. Also, the associated correlations are given in
Table2.

5 Methodology and Results

All enterprises with less than three years of operation were excluded from the study,
since their accounting ratios and business behavior are not consolidated enough and
their inclusion could mislead the results of the analysis. In the first step, we per-
formed a log transformation of our continuous independent variables featuring high
concentration on low values but long positive tails. We also used dummy predictors
to include one categorical variable; namely activity sector (agriculture, manufactur-
ing, building, services). In a second stepwe estimated variousmodels, including both
classical statistical and econometricmodels (logistic regression andmultiple discrim-
inant analysis) as well as data-mining techniques (CART and CHAID decision trees,
neural networks, and nearest neighbor). Our results suggest that decision trees show
the best fit. An appealing feature of decision trees is that they are easy to implement
and interpret. Neural networks provided equivalent results in our case, but they are
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much more difficult to interpret so we preferred to go with the decision trees. Results
obtained with CHAID and CART decision trees are very similar, but CHAID seems
to provide slightly better predictions for the target category (“default”). Therefore,
our preferred model is a decision tree based on the CHAID technique. Our model has
a maximum depth of 5 levels, a minimum node size of 20 individuals, the Pearson
Chi-Square statistic is used to decide the joining and division of nodes, and there
are 6 intervals for the continuous predictors. The tree has 51 terminal nodes, which
can be considered too many and could lead to an over-fitting problem. In order to
minimize this problem,we carry out a 10-fold Cross Validation to validate the results.

Figures1 and 2 suggest that our CHAID model shows a fairly acceptable per-
formance: AUC = 0.808 with respect to MORE, and 84% of success in predicting
the right category. In fact, it shows a reasonable success in predicting both cate-
gories (96.2% of non-defaults and 29.2% of defaults were successfully predicted).
Furthermore, it shows a better goodness of fit than the logit model.

Figure3 shows the first two branches (13 nodes) of the final tree due to space
limitations we do not depict the whole tree here.

The most important predictor is the “accounts payable/total liabilities” ratio.
Larger values of this ratio imply a greater risk of default, with thresholds located
at 0.36 and 0.59 (after transforming the model back to the levels). Other important
variables are the “ratio of accounts payable over accounts receivable” and “sales
growth” (SG). Our analysis of nodes 1 and 3 and their child nodes indicates that
when AP_Liab is high or low, the second important variable to look at is SG. As
expected, the lower the value of SG the riskier is the company. However, when
AP_Liab is medium (node 2), the second important variable is AP_AR, with larger
values relating to riskier firms, too. While all of the initial variables are included in
the final model, it result that the variables “accounts payable growth” and “activity
sector” have less influence on the firm’s score than the other ones.

Fig. 1 ROC curves for the
CHAID and logit models
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Fig. 2 Numerical performance of the CHAID and logit models

In order to test the performance of our model, we used a reference model: the
classical logit model proposed by Pozuelo et al. [22]. This logit model offers results
which are fairly close to those obtained with MORE (AUC = 0.92 with respect to
MORE). The logit model takes into account the main financial dimensions, such
as: solvency, liquidity, profitability, leverage, etc. This logit model provides a good
benchmark because it uses the same database (SABI) and the same population (Span-
ish SMEs) as in our study. An advantage of this model over the Altman model is
that financial ratios used by Altman are not very common in Spanish balance sheets.
Accordingly, some studies [17] emphasize the limited applicability of the Altman
model on Spanish firms.

6 Conclusions and Future Work

Our research, based on a credit scoring model, provides evidence that trade credit
is a good proxy of risk for Spanish SMEs. This means that firms can reduce their
risk by managing TC properly, which implies adjusting the ratio of accounts payable
over total liabilities as a first step. Our research also makes a significant contribution
to the relatively scarce literature on the application of decision trees to credit risk
analysis. The decision tree is distinguished by several aspects that provide better
practical results than the parametric models. The results obtained using tree methods
for classification or regression can be summarized in a series of (usually few) logical
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Fig. 3 First two branches of our CHAID tree model

if-then conditions (tree nodes). This makes it easy to understand and interpret the
model.

This paper aims at being a first step towards a project where themain goal is to help
companies reduce their global risk by customizing TC rules to different customers. In
futurework,we plan to combine the scoringmodel developed herewithmetaheuristic
algorithms in order to support TC risk decision-making in SMEs. We also plan to
develop new optimization models with VaR and CVaR as risk measures for TC.
These kind of models will provide a decision maker with a tool for evaluating the
relationship between expected and worst-case TC risk level.
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Signatures of Systems with Non-exchangeable
Lifetimes: Some Implications
in the Analysis of Financial Risk

Roy Cerqueti and Fabio Spizzichino

Abstract We review the basic aspects of the concept of signature for a coherent
system. The cases of exchangeability and non-exchangeability are compared in view
of possible applications to the analysis of financial risk. The case of a special class
of basket option is finally analyzed.

Keywords Coherent systems · Signature · Excheangeability · Option theory

1 Introduction

The concept of signature, introduced by [12], is a simple and useful tool for the
analysis of a reliability system. Since its first inception, the relevance of this concept
when dealing with “coherent systems” (see [2]) became evident. For a wide review
of this topic we address the reader to the references cited in the bibliography and, in
particular, to [3, 5, 6, 13].

One basic problem in system reliability lies in the analysis of the relationship
between the reliability of a system and that of each of its single components. The
concept of signature produces, in a sense, a change of perspective and focuses on the
(random) number of components’ failures that lead the system to its own failure.

Initially, signature has been employed under the condition of components with
independent and identically distributed lifetimes. Such a concept, in fact, is spe-
cially relevant in that case, where a large part of the casualty in the system’s lifetime
is induced by the casuality in the temporal order in which the different compo-
nents fail. Systems with i.i.d. components, on the other hand, do not always fit with
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real-world applications. It has then been noticed that the definition of signature can
be extended, in a completely natural way, to the case of exchangeable components
(see [9, 10]). This extension is particularly important, because it allows us to consider
components’ lifetimes that are conditionally i.i.d. rather than just i.i.d.

As a further generalization, more recent studies dealt with the concept of signa-
ture even in cases of non-exchangeability (see e.g. [8, 11, 15]). The case of non-
exchangeability leads to two different concepts of signature: the first one is only
related to the structure of the system, while the other one is related to both the struc-
ture of the system and to the joint distribution of the components lifetimes. The
former is concerned with the symmetry properties of the system [15], while the latter
can play a role in the computation and approximation of the system reliability in
particular (see e.g. [8, 11, 15]).

To the best of our knowledge, the concept of signature has been employed so
far exclusively in the field of reliability systems. The case of non-exchangeable
components provides however a realistic representation of a wider family of systems
and networks appearing in the applied sciences. The possibility of extending this
concept to non-exchangeable cases, open then the path to applications to other fields.
In particular we think that signature can play a useful role in the field of Economics
and financial risk even if this path remains unexplored.

As a preliminary task in the direction of filling this gap, it is important to under-
stand the differences, as far as properties and meaning of signatures are concerned,
between the two cases of exchangeability and non-exchangeability.

In this note we deal with some aspects of this issue and point out some relevant
implications. Some of such implications will be also demonstrated by considerations
of financial character.

More precisely, the remaining part of the paper is organized as follows. In Sect. 2
we briefly recall the concepts of signatures and present preliminaries and notation.
In Sect. 3 we discuss the main differences between the cases of exchangeable and
non-exchangeable lifetimes. A discussion about some related aspects from the point
of view of financial applications, will be presented in the Sect. 4, with a specific focus
on basket options.

2 Preliminaries, Notation, and Definitions of Signatures

We consider a reliability system S formed by n components C1, . . . , Cn . Given
j = 1, . . . , n and a time t > 0, the status of the j th component at time t is a binary
variable Y j (t) defined by

Y j (t) =
{
1 if Cj is working at time t
0 if Cj is down at time t.

Each component is assumed to be working at time t = 0, and hence Y j (0) = 1, for
each j = 1, . . . , n. The status of the system can analogously be defined by letting
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YS(t) =
{
1 if S is working at time t
0 if S is down at time t,

Fix t ≥ 0. One assumes that YS(t) is exclusively determined by Y1(t), . . . , Yn(t)
and defines the structure function of the system as the function ϕS : {0, 1}n → {0, 1}
such that:

YS(t) = ϕS (Y1 (t) , . . . , Yn (t)) .

ϕS is usually assumed to be coherent, i.e. the following conditions are satisfied:

• ϕS(0, . . . , 0) = 0, ϕS(1, . . . , 1) = 1;
• ϕS is non-decreasing with respect to its components;
• each component of S is relevant

Now, denote by G the set of the path vectors of the system, i.e.

G = {y ∈ {0, 1}n|ϕS (y) = 1}.

Trivially y = (1, . . . , 1) is a path vector and thus YS(0) = 1.
The lifetime of S and that of the j th component are respectively given by X S and

X j , where

X S = inf{t ≥ 0 | YS(t) = 0} = inf{t ≥ 0 | (Y1(t), . . . , Yn(t)) /∈ G },

and
X j = inf{t ≥ 0 | Y j (t) = 0}.

Furthermore, RS(t) denotes the reliability function of the system at time t , namely:

RS(t) ≡ P{X S > t}, ∀ t ≥ 0. (1)

The term RS(t) depends both on the structure function ϕS and on the joint distribu-
tions of the components’ lifetimes. As we are going to discuss in the following, the
concept of signature provides an insight about the structure of such dependence.

We first recall the formal definitions of structure signature and probability signa-
ture. For this purpose we need the following further assumptions and notation.

First of all, it is convenient to imagine that each component continues to work
until its own failure, even if the system has already failed, so that all the lifetimes
X1, . . . , Xn are well defined and can be eventually observed.We assume furthermore
that the joint distribution of the elements of the vector X = (X1, . . . , Xn) is such
that

P{X1 �= · · · �= Xn} = 1. (2)



364 R. Cerqueti and F. Spizzichino

By considering the order statistics X(1), . . . , X(n) of the vector X we thus have:

P{X S = X(k)}, (3)

for one and only one k = 1, . . . , n.
Before continuing, let us remark that the failures of the subsequent components

give rise to the progressive observation of a permutation of {1, . . . , n}. All the n!
possible permutations can be observed and each permutation describes a possible
temporal order in which the different components fail.

Consider the events Ek , defined by

Ek ≡ {X S = X(k)}, k = 1, . . . , n. (4)

E1, . . . , En form then a partition of the sample space, i.e. one and only one of them
will be observed.

Denote byP the set of all the permutations of {1, . . . , n} and consider the random
vector (J1, . . . , Jn) defined by:

Jk = i when X(k) = Xi , ∀ k = 1, . . . , n, (5)

i.e. Jk indicates the identity of the component which fails in correspondence of the
kth observed failure. We also set

Ak ≡ {( j1, . . . , jn) ∈ P | J1 = j1, . . . , Jn = jn ⇒ X S = X(k)}.

While the events E1, . . . , En formapartition of the sample space, the sets A1, . . . , An

form a partition of the set P and we have

n∑

k=1

|Ak | = n!.

As to the logical relation between these two partitions, we can write

{(J1, . . . , Jn) ∈ Ak} = {X S = X(k)} ≡ Ek .

One basic remark is that (A1, . . . , An) is determined by the structure function ϕS .
We can now recall the definitions of two different notions of signatures

Definition 1 • The structure signature of S is p ≡ (p1, . . . , pn), where

pk = |Ak |
n! , k = 1, . . . , n.
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• The probability signature of S is p̂ ≡ (
p̂1, . . . , p̂n

)
, where

p̂k = P(Ek), k = 1, . . . , n.

See [8, 10–12, 15]. Concerning the events {Ek}k=1,...,n we can write, by recalling
(4),

X S =
n∑

k=1

X(k)1Ek , (6)

and, by applying the lawof total probabilities and by (1), (4) and (6),we can conclude:

RS(t) ≡
n∑

k=1

P (Ek) · P{X(k) > t |Ek}. (7)

In view of the definitions above, the decomposition (7) can be rewritten in terms of
the probability signature:

RS(t) ≡
n∑

k=1

p̂k · P{X(k) > t |Ek}. (8)

3 Two Different Scenarios and Different Roles of Signatures

Concerning the two concepts of probability signature and of structure signature we
observe different properties depending on the type of joint distribution that is assessed
for the lifetimes of the components. Asmentioned above, the scenario obtained under
the condition of exchangeability is fairly special and it is rather different from the
one that emerges in the non-exchangeable cases. Even the relations existing between
the two concepts and their roles in applied problems are generally different in the two
cases. These differences will be briefly outlined in this section, where the cases of
exchangeability and non-exchangeabilitywill be treated separately. The condition (2)
is however assumed in any case, since it is necessary for the definitions of signatures
to be meaningful. More arguments on this topic can be found in the cited references;
some potentially useful examples are discussed in [16].

Before starting our discussion here, it is useful to pay attention to a couple of
simple remarks. First, we notice that, from a purelymathematical viewpoint, both the
vectors p and p̂ can be seen as probability distributions over the space {1, . . . , n}. The
probability signature p̂, in particular, can be seen as the probability distribution of the
random variable M , defined as follows: M is the number of the observed component
failures up to the failure of the system. A very special class of coherent systems is
relevant in the reliability field and in a signature-based analysis, in particular. This
is the class of systems of the type k : n (for k = 1, . . . , n). A system k : n is one
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which is able to work as long as at least k of its components are working, namely it
fails at the instant of the (n − k + 1)th components’ failure. In particular, a parallel
system is a system 1 : n and a series system is a n : n system. In the case of a k : n
system we have P(M = n − k + 1) = 1 and both p, p̂ are degenerate probability
distributions, with pn−k+1 = p̂n−k+1 = 1. Notice also that, in these cases, the
structure of the system is perfectly symmetric. In other words all the components in
the system contribute in a same way in maintaining the system in its working state.

3.1 The Exchangeable Case

Wefirst consider the casewhere the components’ lifetimes X1, . . . , Xn are exchange-
able random variables. Namely the joint distribution of X is invariant with respect to
permutations of the variables. As an immediate consequence of this assumption, the
random permutation (J1, . . . , Jn), defined in (5), is distributed uniformly over P ,
i.e.:

P{(J1, . . . , Jn) ∈ B} = |B|
n! , ∀ B ⊆ P.

This entails the following simple result (see e.g. the discussion in [15]).

Proposition 1 1. For k = 1, . . . , n, one has

p̂k = pk;

2. the events
(
X(k) > t

)
and Ek are independent;

3. the reliability function of the system is:

RS(t) =
n∑

k=1

pk P{X(k) > t}. (9)

We notice that item 3. is an immediate consequence of 1. and 2. and of the total
probability formula (8). Moreover, items 1. and 2 are immediate consequences of
the assumption that all the permutations ( j1, . . . , jn) are equally probable as values
for (J1, . . . , Jn).We recall that each permutation describes a different temporal order
in which the different components fail.

The statements in Proposition1 are relevant from an applied point of view. From
1. we see that, in the exchangeable case, structure signature and reliability signature
collapse into one and the same concept. Thus the probability distribution of the
randomvariable M only depends on the structure of the system and it is not influenced
by the joint probability law of the lifetimes X1, . . . , Xn . This lack of interaction is
confirmed by item 2.

Let us now examine item 3. in details. It is clear that RS(t) generally depends on
the pair (ϕS, FX) where ϕS is the structure of the system and FX denotes the joint
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probability distribution function of the lifetimes X1, . . . , Xn . Such dependence may
turn out to be rather complex, in some cases. The special form (9) of the formula
of total probabilities (8) has then the following interpretation: when X1, . . . , Xn are
exchangeable (9) shows that RS(t) depends on ϕS only through the system signature
p (which is only a function of ϕS and is it is not influenced by FX). On the other
hand, RS(t) is influenced by FX only through the vector of the marginal distributions
of the order statistics X(1), . . . , X(n).

These facts entail the following implications:

1. Consider two coherent systems S′ and S′′ formed with different sets of compo-
nentsC ′

1, . . . , C ′
n andC ′′

1 , . . . , C ′′
n , respectively, and such that they share the same

structure functions, i.e. ϕ′
S ≡ ϕ′′

S . Then, as long as the vectors of the components’
lifetimes are exchangeable, S′ and S′′ share the same (probability and structure)
signature, even if the joint distributions are different.

2. Think of a coherent system S, all the components of which play similar roles as
to the system’s capability to work. In such a case, we are allowed to interchange
the respective positions of any two components in the system. This situation is
met, for instance, in a network where all the components are just transmission
nodes, possibly with different capacities but similar in nature. For such a system
S, consider a permutation π ∈ P and denote by Sπ the system obtained by
permuting the components through π . Then the reliability functions RS(t) and
RSπ (t) coincide, for any t .

3.2 The Non-exchangeable Case

In this subsectionweconsider the casewhen X1, . . . , Xn are not exchangeable, so that
we cannot rely anymore on Proposition1. As a first consequence, the structure sig-
nature and the reliability signature do not necessarily coincide. We can still consider
the structure signature p which, by definition is a combinatorial invariant, only deter-
mined by the structure ϕS . But this vector does not carry complete information about
the probabilities p̂1, . . . , p̂n . Actually, the vector p̂ is influenced also by the choice
of the joint distribution function FX. Moreover, the formula (8) cannot be reduced
to (9). Generally both the vectors p̂ and

(
P{X(1) > t |E1}, . . . , P{X(n) > t |En}

)
,

whose scalar products produce RS(t), depend on both the data ϕS, FX.
It is now interesting to briefly point out the different roles of p̂ and p in reliability

problems.
p̂ can be applied in different ways. It can be used in particular for defining the pro-

jected system, which provides in a sense the best approximation of the original system
[8, 11]. Furthermore it could be used for extending to the non-exchangeable case
comparisons, between two systems, that have been developed for i.i.d components
and that are based on the structural signature. See also below.

For the purpose of analyzing the possible role of p, it is again convenient
to consider a coherent system S whose components have similar roles, so that
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interchanging the respective positions of any two components makes sense. For
these cases we would like to investigate what happens if we permute, according to
some permutation π ∈ P , the positions of the components.

Fix a permutation π and recall that Sπ denotes the new system, obtained by
applying π on the components of S. The structure function of Sπ is just given by

ϕπ(y) = ϕ (yπ ) . (10)

Since the reliability function depends on the probability signature and the latter
depends on the joint distribution function of the lifetimes then, generally, RSπ (t) �=
RS (t), for t > 0. We denote by R∗(t) the symmetrized reliability function defined
as follows:

R∗(t) = 1

n!
∑

π∈P
Rπ (t) . (11)

Notice thatwe implicitly identified R(1,...,n) with RS , where {1, . . . , n} is the identical
permutation.

It is also useful to adopt the notation R(F)
S (t), in order to stress the dependence of

the reliability function on the joint law F of the components lifetimes X1, . . . , Xn .
Furthermore we denote by Fπ the joint law of the permuted vector Xπ . One can see
that

R(F)
π (t) = R(Fπ )

{1,...,n}(t).

Denote now by Π a random permutation of {1, . . . , n}, uniformly distributed over
P , and set (

X∗
1, . . . , X∗

n

) = (
XΠ1 , . . . , XΠn

)
.

Finally we denote by F∗ the joint distribution function of
(
X∗
1, . . . , X∗

n

)
and by

R(F∗)
S (t) the reliability function of the system S when the lifetimes of its components

are
(
X∗
1, . . . , X∗

n

)
. The random vector

(
X∗
1, . . . , X∗

n

)
is exchangeable and it is such

that the vectors of the order statistics
(

X∗
(1), . . . , X∗

(n)

)
and

(
X(1), . . . , X(n)

)
share

the same joint law. All these properties and positions lead us to the following result.

Proposition 2 All the systems Sπ , for π ∈ P , share the same structure signature p.
Furthermore

R(F∗)
S (t) =

n∑

k=1

pk P{X(k) > t}, (12)

R∗(t) = R(F∗)
S (t) . (13)

See [15] for details. Thus we see that R∗(t) can be interpreted as the reliability
function of a fictitious system (the average system), having the same structure of S
and same components of S; but such that the components are distributed at random
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among the different positions. As shown by (12) R∗(t) is, typically, more easily
computed than R(t). Even if itsmeaning is fictitious it can still be of interest. Consider
in this respect the function

μ(t) = |R(X)
S (t) − R∗(t)|. (14)

We expect that R(X)
S (t) − R∗(t) ≥ 0 when the system is correctly designed. The

function μ(t) expresses a sort of distance between the reliability function and the
symmetrized reliability function R∗(t) for the system S. It is related to the amount of
asymmetry of the system S: the larger the symmetry level of the structure function
ϕS , the smaller the difference in the left-hand side of (14). On the other hand, it can be
argued that themore the structure signature is a concentrated probability distribution,
the smaller is the asymmetry of the system. Recall in this respect that, as we had
noticed above, degenerate signatures, in particular, correspond to the completely
symmetric structures of the type k : n. We then see that the structure signature has
a double role: it allows us to compute R∗(t) by means of (12) and provides us with
some information about the error that arises, in the computation of the reliability
function, when we approximate R(t) by R∗(t), namely when we replace the “true”
distribution of X1, . . . , Xn with the exchangeable distribution which gives rise to the
same joint distribution for the order statistics.

Let S′, S′′ be two systems with the same number of components and let p′, p′′ be
their structural signatures respectively.As alreadymentionedp′, p′′ also permit one to
compare S′, S′′ in the following sense: different types of stochastic orderings between
the probability distributionsp′, p′′ imply corresponding stochastic orderings between
the reliability functions of S′, S′′, when a vector of the same i.i.d. components is
installed in the two systems (see [6]). This can be a good way to compare the two
systems, even for cases when the components are not exchangeable. Furthermore
one can conjecture that results similar to those in [6] could be extended to non-
exchangeable case, in terms of p̂′, p̂′′.

4 A Special Class of Basket Options and Implications
of Non-exchangeability

In this section we focus attention on financial applications and, more precisely, on
the risk associated to the so-called basket options. On one hand we point out that the
topic of signature can be of some interest also in this field. On the other hand we
further discuss, just from an economic viewpoint, the implications related with the
difference between exchangeability and non-exchangeability, as far as signature is
concerned.

Basket options constitute one of the most popular and traded structured products,
and belong to the wide family of exotic options (see [17]). The success of this
financial product lies in low prices, in the management of the risk profile through
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an appropriate selection of correlated assets in the basket and in the reduction of
the transaction costs. The payoff of this product is linked to the performance of a
collection (basket) of assets. On such a basis, the option may be of various typologies
in nature.Wewill consider here a particularmodel of basket options, where the basket
is composed of a set of n assets, formed with a subset of r “important” assets and
a set of s “standard” assets, n = r + s. For all the assets, irrespectively of whether
they are important or not, a lower barrier is considered which should not be crossed
until the maturity time of the option (see e.g. [1, 4, 7]).

We can think of an important asset as one for which a very big amount of stocks
is traded on the market. We can then expect that its volatility is smaller than that of
the assets with less stocks and this may reflect in a lower riskiness.

Let T > 0 be the expiration time (or time to maturity) for the option and α > 0
be the common barrier for all the assets in the basket. Furthermore, for t ≥ 0 and
j = 1, . . . , n, letΛ j (t)be the stochastic process describing the evolution of the return
of the j th asset. We consider then the n-dimensional vector of (random) failure times
X = (X1, . . . , Xn) such that:

X j = inf{t > 0 | Λ j (t) ≤ α}. (15)

X j will be then interpreted hereafter as the lifetime of the j th asset and it can be also
convenient to set

Y j (t) =
{
1 if X j > t,
0 otherwise.

.

A basket option will be viewed as a coherent system S whose n components
C1, . . . , Cn are the assets in the basket. Once the financial structure of the option has
been fixed, one defines the failure time of the option a random variable X S , suitably
defined as a function of X1, . . . , Xn .

At the expiration time T the holder of the option obtains a return RetT > 0, under
the condition

X S > T .

For t ≥ 0, the reliability function of the option at time t is

RS(t) ≡ P{X S > t}.

Generally, the price of a financial product is clearly related with its risk level. For our
basket option, an appropriate measure of riskiness is the value RS(T ), which then
plays a relevant financial role.

In order to exactly define the very nature of the options that we consider or, in
other words, to describe the structure function of the system, we in particular focus
attention on financial models defined in terms of a nonincreasing function

ρ : {1, . . . , n} → {0, 1, . . . , r + 1},
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satisfied the condition with a meaning described as follows: the option has a fatal
default at the first time in which the failures of k assets are observed, with k such that
at least ρ(k) failures are due to the more important assets. It is natural to assume that
the function ρ(k) is nonincreasing. A few more precise details about its definition
are however in order.

The condition ρ(k) = 0 obviously means that the failure of k standard assets is
enough to determine the default of the option. The position ρ(k) = r + 1 means
that k is so small that the failure of k assets cannot produce the option’s default,
even in the case when all the failed assets are important ones. The minimum number
of failures able to determine the default is the minimum value of k that satisfies
the condition ρ(k) ≤ k. The maximum possible number of failures that can be
conceptually observed up to the default coincides with the minimum value of k such
that ρ(k) = 0.

Let us now proceed to formally define the option’s default time X S .
Set

Nk ≡
r∑

j=1

(
1 − Y j

(
X(k)

))
.

Nk then denotes the number of assets that have already failed at the moment of the
kth overall failure. We let

X S = X(k)

if and only if
Nk ≥ ρ(k), Nh < ρ(h),

for h = 1, . . . , k − 1.
In other words, the family of the path vectors of the systems is defined by

⎧
⎨

⎩
y ∈ {0, 1}n | r −

r∑

j=1

y j < ρ

⎛

⎝n −
n∑

j=1

y j

⎞

⎠

⎫
⎬

⎭
. (16)

We notice that such a system manifests the following structure of partial symmetry:
all the important assets share a common role and also all the standard assets share
a common role of their own. In a sense this structure could be seen as a natural
generalization of the famous k-out-of-n models. To designate our models, we may
use the term (n − ρ(k))-out-of-n systems.

Remark 1 In the field of basket options, a further generalization could be sometimes
more realistic: one may admit that the above numbers ρ(k) are replaced by numbers
ρ(k; J ) also depending on the subsets J ⊂ {1, . . . , s} of standard assets that failed
up to the time X(k). The assumption that ρ(k) is a non-decreasing function of k,
should be replaced by a new condition involving also the monotonicity with respect
to J . Models of this type are also related to the concept of system with weighted
components, analyzed in [14].
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To the best of our knowledge, coherent systems of the type (n − ρ(k))-out-of-n
have not been considered so far from the point of view of a signature analysis. The
following result shows the formof their structure signaturep = (p1, . . . , pn). Denote
by Iρ the set {k ∈ {1, . . . , n} | 0 < ρ(k) ≤ k}.
Proposition 3 (a) Let k ∈ Iρ . Then:

pk =
ρ(k−1)−1∑

j=0

(
r
j

) (
n − r

k − j − 1

)

(
n

k − 1

) −
ρ(k)−1∑

j=0

(
r
j

) (
n − r
k − j

)

(
n
k

) ; (17)

(b) pk = 0 if ρ(k) = r + 1;
(c) pk = 0 if ρ(k) = ρ(k − 1) = 0;
(d) Let k be such that ρ(k) = 0, ρ(k − 1) > 0. Then

pk = 1 −
∑

h �=k

ph .

Proof (a) First, we recall that the structure signature of a system coincides with the
probability signature, where the latter is computed under the assumptions that
the components are i.i.d. Thus we need to compute the probabilities

P
(
X S = X(k)

)
, k = 1, . . . , n,

under the assumption that the assets’ lifetimes X1, . . . , Xn are i.i.d.
For k ∈ Iρ , we consider the quantity Pk := ∑n

h=k+1 ph , so that

Pk = P
(
X S > X(k)

) = P (Nk < ρ(k)) =
ρ(k)−1∑

j=0

P (Nk = j) .

Then

pk = Pk−1 − Pk =
ρ(k−1)−1∑

j=0

P (Nk−1 = j) −
ρ(k)−1∑

j=0

P (Nk = j) .

In view of the assumption that the assets’ lifetimes X1, . . . , Xn are i.i.d., the
terms P (Nk = r) are given by hypergeometric probabilities. More precisely:

P (Nk = j) =

(
r
j

)(
n − r
k − j

)

(
n
k

) .
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(b) The condition ρ(k) = r + 1 means that the observation of k failures cannot
cause the default of the option. Thus pk = 0.

(c) If ρ(k) = 0 then k failures cause the default of the option, if the latter had
not defaulted before. Thus the probability of a default at X(k) is null when
ρ(k − 1) = 0.

(d) It trivially follows from (a), (b) and (c), since
∑n

k=1 pk = 1.

As already discussed in Sect. 2, the signature analysis of a system is strongly influ-
enced by the conditions of exchangeability or non-exchangeability among the com-
ponents.

In the present context, exchangeability of X1, . . . , Xn is reflected by a symmetry
condition among the behavior of the assets’ returns Λ1, . . . , Λn and the following
statement can in particular be made: at any fixed time t , the probability that h < n
returns are above the threshold α, while the remaining n − h returns are below α, is
independent on the specific selection of the h assets.

We are in the non-exchangeability case when such a statement is no longer true.
In this respect, non-exchangeability can be viewed as a condition of “heterogeneity”
among the assets of the basket. Specifically, in analyzing the joint behavior of the
assets at the expiration date T , the identity of any single asset matters. This is actually
a typical circumstance in the above setting. Exchangeability is then only an extreme
and idealized condition, for us.

Let us briefly mention some relevant implications of non-exchangeability on the
signature analysis.

As a first remark, we can say that the special structure (n − ρ(k))-out-of-n is just
appropriate for the financial model of heterogeneity, where the assets can be of only
two “types”.

We canmoreover recall that the probability signature is different from the structure
signature detailed in (17). When the important assets are more reliable than the other
ones, the probability signature is stochastically larger than the structure signature.
This circumstance would guarantee that the “projected system” is less risky than the
“average system”, where the “projected system” provides a better approximation of
the reliability of the system (of the option, in our case) than the “average system”
[11].

A further remark concerns the effect of some possible piece of new information
about themarket. Suppose that short after time 0, an event A is observed that modifies
the evaluation of the future performance of the assets (such as e.g. the failure of an
important asset, outside the basket). This has a double effect on the terms in the r.h.s.
of Eq. (8). Not only the factors P{X(k) > t |Ek} change into P{X(k) > t |Ek ∩ A}, but
also theweights p̂k are influenced by the replacement of joint distribution (prior to A)
with a different one (posterior to A), when at least one of the two is not exchangeable.
This circumstance may have the following relevant consequence. On the basis of
a same set of assets, consider two different options O1 and O2, characterized by
different and non-comparable functions ρ1(k) and ρ2(k). Compare then O1 and O2
in terms of their levels of riskiness and then in terms of their price: it can happen
that the ordering between O1 and O2 posterior to A is the opposite of the ordering
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if the comparison had been made prior to A. In view of the validity of the formula
(9), this situation cannot manifest when the prior and posterior joint distributions are
both exchangeable.

The condition of non-exchangeability is even more intrinsic to the nature of the
option, when we consider the models mentioned in Remark1. In such models a
character of heterogeneity is present and it makes sense to compare two different
options obtained by different arrangements in the system of a same set of assets.
The problem then arises of determining the most efficient permutation. It is useful to
recall in this respect that the structure signature and probability signature are of help
in such an analysis. The fact that probability signature can be influenced by arrival
of new information can be an interesting issue for further research.
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Detecting an IO/AO Outlier in a Set
of Time Series

Vassiliki Karioti

Abstract The analysis of time series is an important area of statistics and it is
necessary to understand the nature of outliers, in order to use appropriate methods to
detect, or accommodate them. An interesting aspect is the case of detecting an outlier
(Type IO or Type AO) in a set of autoregressive time series at the same time point.
For example, consider a phenomenon in neighbouring regions. Measurements of the
phenomenon in each region is a time series, so a set of series is creating. It is possible,
an external factor affecting all regions, to cause unusual values, and then an outlier
is appeared in each series of the set at the same time point. Tests for an innovative
outlier affecting every member of a set of autoregressive time series at the same
time point are developed. In one model, the outliers are represented as independent
random effects; likelihood ratio tests are derived for this case and simulated critical
values are tabulated. In a second model, assuming that the size of the outlier is the
same in each series, a standard regression framework can be used and correlations
between the series are introduced. In the case of additive outlier, the outliers are
represented only as independent random effects.

Keywords Time series · Innovative outliers · Additive outliers · Autoregressive
models

1 Introduction

Sets of time series are modeled in various ways in the large statistical literature on
longitudinal data, but the detection of outliers does not seem to have been investigated
in detail in any of the approaches. The detection of unusual values can play an
important role in risk assessment aswell as inmanyother areas. For example, consider
a phenomenon that is measured in each of several neighboring regions, thus creating
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a set of series. An external factor could affect all regions, creating unusual values,
so that an outlier appears in each series of the set at the same time point.

In this paper, we can consider the case of detecting outliers, when the data consist
of a set of time series.Models of classical time series formare considered, in particular
AR(p). We construct tests for outliers based on likelihood ratio and investigate their
performance in detail for the AR(1) case.

There are two basic types of outliers in time series:

1. Additive Outlier (AO) and
2. Innovative Outlier (IO).

The first type is an outlier that affects a single observation. The second one acts as
an addition to the noise term at a particular series point.

This paper is organized as follows. In Sect. 2, we present our basic models of time
series in case that an outlier of type IO appears in each series of the set at the same
time point. In Sect. 3, we present the time series models in case that an outlier of type
AO appears in each series of the set at the same time point. In Sect. 4, we construct
tests for IO outliers based on likelihood ratio and investigate their performance in
detail for the AR(1) case. A simulation study for determining the critical values of
the test statistic for a random IO and the powers of the likelihood tests are presented
in Sect. 5. One typical example, of the profits of ten businesses for ten years, will be
used as an illustration in Sect. 6 of this paper. Finally, the conclusions are represented
in Sect. 7.

2 Models for Innovative Outlier

We construct models for the innovative outlier (IO) introduced by [2], in which the
value of the “innovation” or noise is extreme. This affects not only the particular
observation at which it occurs but also subsequent observations.

Twomodels are considered. In one model, the outliers are represented as indepen-
dent random effects. In a second model, assuming that the size of the outlier is the
same in each series, a standard regression framework can be used and correlations
between the series are introduced.

For an IO of random size, we take the stationary AR(p) model for a single time
series with IO in the form used by [2, 4], and extend it to a set of series. For a
set of i = 1, . . . , m time series Yit , where the length of the ith series is the ni ,
the autoregressive parameters {ar } are the same in each series, and every series is
affected by an outlier at the same time q, then

Yit =
p∑

r=1

ar Yi,t−r + ηi t ,

Yiq =
p∑

r=1

ar Yi,q−r + Δi + ηiq .
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The outlier in the i th series is Δi ∼ N (Δ, σ 2
δ ) and is independent of the

innovation terms nit , which are i.i.d. N (0, σ 2) for all i and t . Thus, writing
uit = Yit − ∑p

r=1 ar Yi,t−r , we have uit ∼ N (0, σ 2) for t = 1, . . . , ni , t �= q,
uiq ∼ N (Δ, σ 2 + σ 2

δ ) for i = 1, . . . , m. We will examine conditional likelihoods
given the first p terms of the series, so we assume that q > p. We will further assume
that ni > q for all i so that the outlier does in fact appear in every series.

To construct a test for the existence of the IO in our models, we use the two-
stage maximum likelihood principle, [1]. Let Tq be a likelihood ratio test statistic
for an outlier at the specific time point q. Then the test statistic for an outlier at
unknown time is T ∗ = max(Tq), or min(Tq) as appropriate. To implement this, we
must first write the likelihoods under the null and alternative hypotheses. For the
case of random IO, we do this by looking at the distribution of the terms uit defined
above. The likelihood for each series (conditional on its first p terms) is the product
of ni − p terms of the form N (0, σ 2) under H0 (no outlier). Similarly, under H1
(outlier at known time q) the conditional likelihood of each series is the product of
ni -p-1 terms of the formN (0, σ 2) and one of the form N (Δ, σ 2 + σ 2

δ ).
Thus, the maximized log–likelihood (without the constant terms) under null and

alternative hypothesis respectively are given by:

yit = ayi,t−1 + ni,t−1.

So, T = −[N − m(p + 1)] ln σ̃ 2 + (N − mp) ln σ̂ 2 − m ln τ̃ 2 where

σ 2 = 1
N−mp

∑

i

∑

t

û2
i t , ûi t = yit −

p∑

i=1

âr yi,t−r

(the estimators of the parameters under H0),

Δ̃ = 1
m

∑

i

ũiq ,

τ̃ 2 = 1
m

∑

i

(ũiq − Δ̃)2, where τ 2 = σ 2 + σ 2
δ ,

σ̃ 2 = 1
N−m(p+1)

∑

i

∑

t �=q

ũ2
i t ,

ã =
σ̃−2 ∑

i

∑

t �=q
yit yi,t−1 + τ̃ 2

∑

i
(yiq − Δ̃)yi,q−1

σ̃−2
∑

i

∑

t �=q
y2i t + τ̃ 2

∑

i
y2i,q−1

(estimators of the parameters underH1).

For an IO of fixed size, we suppose that Δi = Δ. Writing the model in regression
format, the model for each series is given by the following equation:
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yi∼
= Xiβ∼

+ εi∼
, where

yi∼
= (yi,p+1, . . . , yin)′,

εi∼
= (n p+1, . . . , n p)

′,

β
∼

= (a1, . . . , ap)
′,

Xi , is an (n − p) × pmatrix containing lagged values of y.

Assuming that allm series have the same length n, the abovemodel can be written as:

y
∼

= Xβ
∼

+ ε∼.

The vectors y
∼
, ε∼ and the matrix X are formed by stacking yi∼

, εi∼
and Xi respectively.

The error structure ε∼ is V = E(ε∼ε′
∼ ) = Σ ⊗ I , where Σ is the m × m covari-

ance between the values of the innovations nit occurring at the same time t in the
different series.

In all models, values at different times are always assumed to be independent,
within as well as between series. Under H1, an IO outlier of size Δ is occurring at
time q. The matrices Xi acquire an extra column (0, . . . , 0, 1, 0, . . . , 0) where the
solitary non-zero element occurs in the position corresponding to time q, and the
vector of coefficients acquires an extra element Δ.

We consider three different models:

1. Heteroscedasticity. nit ∼ N (0, σ 2
i ) for each i , Σ = diag(σ12, . . . , σm2), as the

series are considered independent.
2. Σ is unrestricted. In this model unspecified correlations between the series is

considered.
3. All the series are equally correlated. Σ = σ 2(1 − ρ)I + ρJ, where ρ is the

common correlation, I the identity matrix and J the matrix whose elements are
all unity.

To fit these models we draw on standard theory for the estimation of systems
of equations.

3 Models for Additive Outlier

On the other hand, the Additive Outlier (AO) acts like an error of observation
occurring at that time only and, since it does not enter into the structure of the
series, does not effect subsequent observations.

The distribution of uit is conditional to the outlier Δi , so the distribution is as
follow:



Detecting an IO/AO Outlier in a Set of Time Series 381

N (0, σ 2) for p < t < q and for p + q < t ≤ ni ,

N (Δi , σ
2) for t = q,

N (−at−qΔi , σ
2) for q < t ≤ p + q.

We consider the case of the random AO as we did for the random IO, as the case
of fixed AO is more complicated as there are non linear constraints of β.

The likelihood under the null hypothesis is the same as the null in the case of
random IO. But, under the alternative,

l1 = − ln σ 2

2

m∑

i=1

(ni − p) − ln 2π
2

m∑

i=1

(ni − p) − m
2 ln θ2 − m

2 lnΓ −

1
2σ 2

m∑

i=1

ni∑

t=p+1

U 2
ti (a) + 1

2Γ

m∑

i=1

(
Bi
σ 2 − δ

θ2

)2 − mδ2

2θ2
,

where

Γ = A
σ 2 + 1

θ2
,

A =
p+q∑

t=q

a2
t−q =

p∑

j=0

a2
j , a0 = −1,

Bi =
p+q∑

t=q

at−qUti =
p∑

j=0

a jU( j+q)i ,

Uti = Xti −
p∑

j=1

a j X(t− j)i ,

Δ ∼ N (δ, θ2).

It is obvious that the above equations are complicated and a simulation is necessary
in order to find out the estimators of the parameters.

4 Testing

Even if the distribution of a test statistic Tq , for an outlier at a specific point is Known,
the distribution of T ∗ is usually unknown, because of the correlations between the
various Tq . A common solution is to use Bonferroni adjustments, [1, 3]. Therefore,
a/(n− p)%critical values in the tail of the distribution of Tq provide a conservative a
% level test for T ∗. It is often the case that the degree of conservatism is very small in
testing for a single outlier, so that the critical values are very good approximations, [3].
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In the present problem, the distribution of Tq is unknown.However, being based on
likelihood ratios, Tq , can be tested approximately against chi-squared critical values,
if the standard asymptotic result holds. Consequently, a test of T ∗ at the nominal
5% level could be carried out by comparing the test statistic T = −2(l̂0 − l̂1) to the
upper 5/(n − p)% point of the chi-squared distribution.

In fact, the theory does not apply to the random effects model, because the null
hypothesis includes the restriction σ 2

δ = 0, which falls on the boundary of the
parameter space. However, it does apply to equally sized outliers. The relevant chi-
squared distribution has one degree of freedom (since H0 differs from H1 by the
constraint Δ = 0).

5 Simulation Study

Themain aim of our simulation study is to verify if the critical values provided by the
above approximation work well enough, and to provide simulated percentage points.
Consequently, we examined data simulated under the null hypothesis. We restricted
our attention to models of order p = 1, and also assumed that every time series in
a set had the same length n. In all cases, we generated series of length n + 50, then
discarded the first 50 observations and retained the last n for analysis.

For the random IO, using the pseudorandom standard normal distributionRNNOR
from the IMSL library n +50 standard normal variates are generated for each series.
The observations yi t were then obtained using the equation yit = ayi,t−1 + ni,t−1
(where the subscript on the single autoregressive parameter a1 has been dropped).

The following Table1, presents simulated critical values for testing for IO random
outlier. They appear to be independent of the autoregressive parameter a. Critical
values are higher for larger n because the statistic is the maximum of n − p values,
but they are also expected to be smaller for larger m because the statistic at any
particular time represents an analysis across the m series.

Moreover, in order to examine the performances of the test statistic in the presence
of an IO affecting every series, further simulations were carried out. Data were
generated as described above, with the addition of the outlier at a selected time
point. The test works well (results not shown). Power appears to be independent of
the autoregressive parameter.

6 Example

For illustration, the above procedure, for random IO, has been applied to the profits
of ten businesses for ten years and particular from 2002 until 2011. The data are
plotted in Fig. 1, which suggests that at the year 2008 may be an outlier in each series
of the set.
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Table 1 Simulated critical values for IO random outlier

No. of series m No. of series n a 1% 5%

10 25 0.1 17.143 13.714

0.5 17.272 13.686

0.75 17.564 13.676

0.9 17.530 13.872

50 0.1 18.958 15.218

0.5 18.505 15.154

0.75 18.968 15.203

0.9 18.751 15.227

20 25 0.1 16.637 13.049

0.5 16.501 13.014

0.75 16.288 13.014

0.9 16.174 12.857

50 0.1 17.762 14.33

0.5 17.759 14.449

0.75 17.666 14.348

0.9 17.604 14.322

Fig. 1 Time series plot of the profits of the ten businesses

We apply the likelihood test withm= 10 and n= 10 for each series. The two–stage
likelihood statistic is 61.2556 at position 7 that means at the year 2008, and com-
paring this with the tabulated critical values, we conclude that there is an outlier.
Probably that year, an external factor had been affected all businesses and caused
unusual values.
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7 Conclusions

In the present paper, we return to the question of outlying values, but under the
assumption that every series in the set is affected at the same time. Our results show
that the analysis for an IO is quite simple, particularly if the size of the outlier can be
assumed to be the same in every series. In that case, chi-squared significance levels
can be employed with our likelihood ratio tests. In the case of outliers of random
size, simulated significance levels are preferred.

Important extensions that should be investigated include extending the random IO
model to allow correlations between series, allowing unequal autoregressive coef-
ficients between series, and other structures for the covariance matrix Σ beyond
the equicorrelation case. For example, when the time series in the set arise from
different geographical areas, the correlation between two series might incorporate a
function based on the geographical distance between them, or be non-zero only for
neighboring areas.

Although, AO outliers may also be investigated, they are not so likely applicable
to a set of time series. It is straightforward to produce a likelihood ratio test for
random AO, but the theory for an AO of fixed size is more complicated.
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Response Surface Methodology: A Review
of Applications to Risk Assessment

Teresa A. Oliveira, Conceição Leal and Amílcar Oliveira

Abstract Risk Analysis has assumed a crucial relevance over the past few years,
particularly in dynamical systems with increasing complexity. Thanks to recent tech-
nological advances, the use of simulation techniques to estimate models has become
the norm rather than the exception. These simulated models are used to predict the
behavior of a system, to compute the probability of occurrence of a specific event
and to predict the consequence of the said event. Uncertainty associated with the
simulation, either in model parameters or in experimental data, requires its quan-
tification as a prerequisite in probabilistic risk assessment. The computational costs
of numerical simulations are often very high, thus the use of metamodels arises
as a pressing necessity. Response Surface Methodology is known to be a suitable
tool, both for the estimation of metamodels for the behaviors of systems and risk
assessment, and for the quantification of uncertainty. A review of applications and
of various aspects on the use of Response Surface Methodology in Risk Assessment
Systems will be presented.

Keywords Monte Carlo method · Risk analysis · RSM · Sensitivity analysis ·
Uncertainty

1 Introduction

Risk Analysis is the process of systematically identifying and assessing potential
risks and uncertainties that occur in a system and then find a viable strategy to
more efficiently control these risks. It involves the likelihood of occurrence and the
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magnitude of consequences of a specified hazard realization. It is a topic with great
impact on modern society, whether in the context of research or within the applica-
tions’ area, since it is the analytical process providing information on undesirable
events which may pose a potential danger. The different perspectives by which risk
is addressed in several scientific areas, the multitude of applications and different
social connotations assigned to it, make it difficult to attain objectification, assess-
ment, management and risk communication, and make the boundaries that separate
these aspects ambiguous.

Risk Assessment will be approached as a scientific process whose methodology
can be qualitative, quantitative, or semi-quantitative, if it combines the above two
forms of analysis. In qualitative risk assessments, the results are expressed in a
descriptive way, while in quantitative processes, risk is quantified by combining the
probability or frequency of occurrence of an imminent danger to themagnitude of the
result of this occurrence [40]. Risk assessment methodology and the way it quantifies
error varies according to the application areas. However, the ultimate goal is always
risk characterization, in order to provide data for decision making.

The work fields for application of risk analysis are extremely wide, as evidenced
by the extensive documentation on it. It varies from the application to projectmanage-
ment or industrial mega-projects, to different Engineering fields, from environmental
and ecological protection to possible natural disasters or those resulting from human
error, from public health to the financial system, from transmission of information
to terrorism or sabotage. The complexity of most systems, the impossibility to use
real systems, the lack of data arising from such failure or the high costs of obtaining
it, make the use of simulation an almost mandatory option in many situations. This
tool allows estimation of models to predict behaviors of systems, in particular those
concerning the identification of hazards, to estimate the probability of occurrence of
a particular event and the consequences from that occurrence. The form of uncer-
tainty present in the simulation, either in the model parameters or in the data used, or
in the form of the model itself, show that uncertainty quantification is a prerequisite
in probabilistic risk assessment.

The deterministic method of risk assessment relies on the assumption that the
events are completely predetermined and the evaluation takes only some values into
account, for example: the extreme values, the mean value, the 95th percentile and
the optimum value. This approach has several drawbacks, as it uses only few values
with the same weight, which is not realistic. Also the interdependence between the
input values and the different impact they have on the output values is not consid-
ered, provoking the oversimplification of the model and the resulting reduction of
its accuracy.

In probabilistic risk assessment, uncertainty is considered and the risk is charac-
terized by a probability distribution, whose model is used to create/simulate different
risk scenarios. The numerical simulation often involves high computational costs, in
such way that it requires the use of metamodels. Response Surface Methodology is
a suitable tool for the metamodels estimation, both in the case of systems’ behaviors
and risk assessment and in the quantification of uncertainties, thus revealing itself as
a good alternative to Monte Carlo simulations. The next section presents a review of
various aspects on the use of Response Surface Methodology in risk assessment.
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2 Response Surface Methodoloy and Risk

The identification and characterization of hazards, the identification of patterns of
exposure, the identification and analysis of main risk factors and events that may
affect a system in what concerns the impact, the likelihood of occurrence and the
propagation of uncertainties, are aspects to take into account in risk analysis. In
all these matters the simulation and modeling have a fundamental role, since one
seeks to evaluate different scenarios, to anticipate actions, to prevent, to mitigate
and, if possible, to eliminate situations that could cause damage. It is through the
implementation of these actions that the Response Surface Methodology (RSM) [5,
6, 29] plays an important role. The application of this methodology provides models
that allow the characterization and/or optimization of a system or its components, or
simple metamodels that replace complex numerical simulation models, and can be
used within a framework of computationally intensive uncertainty analysis, making
it a tool that must be taken into account in risk analysis.

Although this methodology has applications in increasingly diverse areas, it is
in industry and especially in engineering projects that the widest range of applica-
tions has visible impact. RSM is an extremely useful tool for planning products and
processes, for modeling and for optimizing systems. The quest of quality improve-
ment and innovation in products and industrial processes at the lowest possible costs
has inspired the need to improve statistical tools and seek new approaches, thus
RSM has followed this trend. Many authors are important references as they address
the methodology in several publications emphasizing its relevance in the referred
areas of industry and particularly in engineering, for example Douglas Montgomery,
Raymond Myers, George Box and his co-authors.

Response Surface Methodology consists of building a function that simulates the
behavior of the real model in the space of the input variables. This methodology is
based on the assumption that the answer η to a product, a process or a system is a
function of a set of variables x1, x2, . . . , xk and that this function can be approximated
by a function f in such way that η = f (x1, x2, . . . , xk) + ε. The form of the true
function f is unknown and ε is an error component that represents the variation
sources other than those referred to in f . In the traditional way of application of
the methodology, it is assumed that ε is normally distributed with mean value zero
and constant variance, but other forms of implementation have arised which are
free of these assumptions. The function f is estimated with a set of experimental
or simulated points. One can introduce in the model controlled variables (factors),
or include random variables that represent the system’s uncertainties—stochastic
response surface. To replace the real function, different mathematical models can
be used, namely the expansion in Taylor polynomials and polynomial chaos, whose
parameters need to be estimated since they are unknown.

This methodology has been used successfully in the treatment of risk, in areas
such as radioactive waste disposal [19], environmental aspects [23, 24, 47], geolog-
ical aspects [30, 32, 33, 38], structural problems of reliability [3, 7, 11, 13, 16, 17,
22, 28, 35–37, 39, 42–45], etc. The stochastic form of methodology with expansion
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in polynomial chaos is widely used. Also in terms of risk analysis the importance
of RSM in industry and in particular to engineering projects becames crucial. These
projects often involve very complex systems with several risks and effectively man-
aging the balance between productivity and security is a challenge inmany industries
which operate critical engineering systems. This complexity leads to complex com-
putational models, underscoring the need for accurate studies and thus involving high
associated computational cost. RSM plays a key role in the simulation and analysis
of these systems.

The most widely known quantitative definition of risk is that the risk of an event
is the product of the probability of the occurrence of the event by the magnitude
of its consequences (potential loss). In this approach, the product of the response
probability model for the response of the model of consequences, in each scenario,
provides a probabilistic measure of the risk of the event. Ameasure of the overall risk
is obtained by adding a measure of the risk of each individual event in the system.

The risk curve represents the variation of the magnitudes of the consequences
of the event based on the estimated probabilities for the occurrence thereof. Part
of the difficulty of assessing the risk lies in the estimation of its components: the
likelihood of an adverse event and the potential loss arising from the occurrence of
such event. The two components of risk assessment are estimated using numerical
simulation models or metamodels. In any case, the modelling of physical systems
is complicated by the existence of several sources of uncertainty. However, despite
the difficulty in incorporating uncertainties in the modeling process, they should be
considered, since they allow the evaluation of the accuracy of the risk estimation.

The simulation model of risk may include variables controlled by the investigator
but must include random variables that represent the uncertainty of the system, so
it can assess its relevance in the system and its spread in the response, see Fig. 1.
For example, [33] consider an integrative approach of response surface in which
the simulation model of underground CO2 storage includes both types of variables.
However, in many approaches only the uncertain variables are included in the risk
assessment model.

2.1 Sensitivity Analysis

The number of input variables in the model determines the computational cost of
the simulation process of a probabilistic scenario (set of events that can occur in a
system, planned or proposed from real data). Since it is necessary to simulate different
scenarios to obtain estimations for the components of risk quantification, the lower
the number of variables in the model, the lower will be the computational cost. The
sensitivity analysis consists in assessing the uncertainty of each variable involved in
the system and the variability of the phenomenon, allowing the identification of the
distributions where uncertainty has a greater impact on the model response.
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Response Surface Methodology can be used in the sensitivity analysis, especially
in stochastic processes. The use of a metamodel which is simpler than numerical
simulation model allows the reduction of computational cost, besides allowing the
identification of possible interactions between variables. Reference [2] present RSM
as an efficient tool in the sensitivity analysis. Reference [23] use theResponse Surface
for the sensitivity analysis in a study of the impact of the transfer of radionuclides
to man after the release of gas from a nuclear installation. Reference [41] use a
methodology based on RSM for the sensitivity analysis in a hydrologic model.

2.2 Uncertainty Analysis

Uncertainty is the lack of knowledge about the true value of a variable, the lack of
knowledge about the model that best describes a system of interest or about which
of several alternative probability distribution functions must represent an amount of
interest [14]. Uncertainty may be associated to various system elements such as mea-
surements in the input data, values of the parameters and themodel structure and even
to algorithms for obtaining the model and the human behavior. Thus, it is common to
consider three components in uncertainty: structural uncertainty regarding the igno-
rance about the true model, the uncertainty in the parameters, introduced with the

Fig. 1 Illustration of risk simulation model
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need to use estimates for their values, and stochastic uncertainty resulting from the
possibility of the variation of the parameters or of other important system amounts.

The uncertainty in the model can be addressed in two perspectives: one that
assumes that the model for risk assessment or of its components does not vary,
and another in which they vary according to the time or space in which the risk
is assessed. In the first case, the significance of model uncertainty is in knowing
whether and when the model can be applied to produce reasonable results or when
it will fail. Validation is the best way to assess the model uncertainty [20, 21].
To implement the validation process several techniques can be applied. Examples
include the comparison of values predicted by the model with numerous data sets
obtained independently and under the same conditions as those underlying the risk
assessment, cross-validation, the Bootstrap methodology or Jackknife method [10].
In the case where the risk evaluation model varies in time or space, it is possible to
use several approaches to quantify the impact of uncertainty in the model. One can
assess the consequences of this variation through the different simulation models,
compare different values of the input variables in different models and use different
Bayesian approaches to analyze the model uncertainties [4, 8, 9].

The stochastic uncertainty analysis—in the model parameters and the input
variables—is the found in literature of risk analysis and the one that has aroused
the most interest from the point of view of science or decision-making, given the
fact that these sources of uncertainty will have an impact on the response risk assess-
ment model. The propagation of uncertainty in the response of the model is of major
importance in risk analysis, since decision-making is influenced by the risk estimate
obtained from the model response. The uncertainty analysis allows checking out the
confidence level in model estimates, identifying the main sources of uncertainty and
quantifying the degree of confidence in the data and the existing model.

Several quantitative methodologies have been developed to analyze the
propagation of stochastic uncertainties, and probability theory, along with statis-
tics, provide the main concepts of its implementation, given the need to estimate the
parameters and the quantification of randomness. These methodologies vary with
the complexity of the system and with the model that is used to assess the risk. We
will focus on some methods based on sampling by Monte Carlo simulation or Latin
Hypercube and Response Surface Methods.

Stochastic uncertainty analysis comprises three main stages: (1) the characteriza-
tion of uncertainty in model parameters or input variables based on their probability
density functions (PDF) or cumulative distribution function (CDF), (2) the spread
of these functions by model equations to obtain the PDF or CDF functions of the
variable(s) response, and (3) the management of uncertainty.

The characterization of uncertainty in model parameters or in the input variables
is based on their respective PDF functions. However, these functions are usually
unknown andmust be estimated using experimental or simulated data or assumptions
on it must be taken into account.

Characterization of the uncertainty in the response variable is provided by the
probability distribution of the responses of the model. Since this is unknown, an
estimate can be obtained by numerical simulation of a high number of input data
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samples to use in the model, thus to obtain a high number of responses. Monte Carlo
sampling or the Latin Hypercube are the most used methods to obtain samples of the
input values.

For each input parameter with associated uncertainty or variability, the appli-
cation of Monte Carlo method requires that a probability distribution (or frequency
distribution) and the uncertainty limits for each parameter be given. Themethod con-
sists of generating repeated independent pseudo-random values of uncertain input
variables, from the known distribution (assumed or estimated) and within the limits
of the imposed restrictions, followed by the application of the model using these
values to generate a set of responses that are analyzed statistically in order to obtain
an empirical probability distribution from the responses.

As an alternative to the traditional sampling method of Monte Carlo, the Latin
Hypercube Design can be used to select the samples of the input values in a rela-
tively simple way and without losing generality in applications. In addition, with this
method one can obtain samples that reflect the shape of the function of density from
which the sample is generated more accurately. This allows to obtain an estimate of
the probability distribution that, in general, is better or equal to that obtained with
the Monte Carlo [19].

To produce an accurate estimate of the probability distribution function, it is nec-
essary to simulate a very large number of scenarios. Since the method described
is computationally intensive, its use may be impractical because of the high com-
putational costs, in case of a too complex system or whenever complex models
are involved.

In the next section we will explore a methodology that solves some of these
problems, since generally it converges more quickly to the solution.

3 The Stochastic Response Surface
Methodology—Expansion into Polynomial Chaos

The use of Monte Carlo method or Latin Hypercube to study the propagation of
uncertainty and to estimate the probability distribution of the response may have, as
mentioned above, very high computational costs. For this reason, it is necessary to
rely on methodologies that converge more quickly to the solution.

Stochastic Response Surface Methodology (SRSM) allows the generation of a
reduced responsemodel, computationally less demanding and statistically equivalent
to the complete numerical model. For the estimation of its coefficients only the
results of a limited number of simulations of the complete model are needed. Two
case studies are presented by [25]. The basic idea of the methodology is to represent
the response of a model to changes in variables, using a response surface defined
with an orthogonal polynomial basis with respect to a probability measure on the
space of parameters. SRSM relies on the assumption that the random variables,
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whose probability density functions are square integrable, can be approximated by the
expansion in stochastic series of random variables or their direct transformation [1].

In the classic version of the methodology, a vector of random variables ξ =
(ξi ), i = 1, . . . , n, is selected, under N (0, 1) distribution, representing uncertain
variables of a model in such way that xi = h(ξi ). This selection made, response
variables are represented as a function of the same vector of random variables:
Y = f (c, ξ), with c being a vector of coefficients to estimate. Estimates of model
coefficients are obtained through the response of the system model to the various
achievements of ξ . The coefficients ci quantify the dependence of response Y on the
input vector ξ , for each realization of x .

The form of the function f is the result of the polynomials chaos expansion (Ψi

polynomials which form a base of orthogonal polynomials to a given probability
measure) and is expressed by:

Y = f (c, ξ) = c0Ψ0 +
∞∑

i1=1

ci1Ψ1(ξi1) +
∞∑

i1=1

i1∑

i2=1

ci1i2Ψ2(ξi1,ξi2) + · · ·

In the case of the classical approach, the measure is Gaussian and the polynomials
are the Hermite polynomials, see [15, 46]. Reference [48–51] showed that it is pos-
sible to obtain a better approximation of the response variables using non-Gaussian
expansions in polynomials chaos. In this case, the Hermite polynomials are replaced
by orthogonal polynomials with respect to the probability measure of input variables
[48]. This approach was designated as the generalized polynomial chaos expansion.
[12] presented conditions on the probability measures involving the mean square
convergence of the generalized polynomials chaos expansion.

Reference [30] proposed a newgeneralization of themethodology, called arbitrary
polynomial chaos expansion or data-driven chaos expansion. In this new approach,
the probability distributions and the probability measures are arbitrary. Statistical
moments are the only source of information that is propagated in the stochasticmodel.
Probability distributions may be discrete, continuous, or continuous discretized, may
be specified through an analytical way (PDF or through CFD), numerically using a
histogram or by using raw data. In this approach, all distributions are admissible for
the input variables of a given model, as long as they have a finite number of moments
in common. Thus, in the case of considering a truncated polynomial, only a finite
number of moments needs to be known, with no need for complete knowledge of the
probability density function or even its existence, which frees the researcher from the
need of assumptions that may not always be supported by existing data. According
to the literature, this expansion converges exponentially and faster than the classical
expansion.

The estimation of model parameters depends on model complexity [24]. In case
the model is invertible, the parameters can be obtained directly from the input ran-
dom variables (ξi )

n
i=1. If the model equations are mathematically manipulated, in

spite of nonlinearities, then the model coefficients can be obtained afterwards, by
an appropriate norm minimization of residuals, replacing the input random variables
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by the respective transformations in terms of Gaussian variables N (0, 1) (Galerkin
method). When the model equations are difficult to manipulate the coefficients can
be estimated by the collocation points methods. Each set of points chosen such that
the model estimates are accurate at these points, gives a set of N linear equations
whose solution allows us to obtain the N parameters.

Reference [24] present some methods for parameter estimation, all based on the
collocation points methods: Probabilistic Collocation Method, Efficient Collocation
Method and Regression Based Method and these authors discuss advantages and
disadvantages for each method.

The expansion in polynomials chaos is a simple but powerful tool for stochastic
modeling. Probability density functions, probability distribution functions or other
statistics of interest can be estimated and quickly evaluated via Monte Carlo simula-
tion, once the evaluation of a polynomial function is faster than the original equations
model evaluation.

In the case of risk analysis, to use arbitrary expansion one can directly consider
a set of large-sized data or probability density function of maximum or relative
minimum entropy, since, in this case, the relevant moments of the polynomial chaos
expansion are compatible with those of the input variables. The bootstrap resampling
methodmay be used to obtain more precise estimates of the moments from a reduced
set of data available, providing a more accurate estimation of the risk assessment
model. Reference [34] propose such an application on calibration models to history
matching for CO2 storage in underground reservoirs.

4 Applications and Computational Resources

Response Surface Methodology plays a key role on the generation of fast mod-
els, or metamodels (proxy models), replacing the simulator in complex processes
which requires many simulations. The applications are varied and many of them
concern Stochastic Response Surface Methodology, a specially suited approach for
the quantification of uncertainty.

Besides the examples already mentioned, some other applications deserve a spe-
cial reference, like simulations taking place in underground stocking ofCO2, see [27,
38] as an example of classical methodology, [31–34] using approaches with polyno-
mial chaos expansion; risks associated with natural or human threats, see [22]; and
seismic vulnerability of structures and buildings, see [39].

Reference [26] use the methodology to assess the potential of flooding resulting
from a tropical cyclone, and [18] use the probabilistic risk assessment methodology
in the probabilistic assessment of the risk in an accident with a nuclear reactor.
Reference [24] apply the methodology to two case studies: one for the analysis of
uncertainty concerning the carcinogenic effects of the perchloroethylene in humans
and the other directed to assess the concentrations of environmental pollutants and
of emission sources.
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Table 1 Some R package

Package Description

rsm Provides functions to generate response-surface designs, fit first-and
second-order response-surface models, make surface plots, obtain the path of
steepest ascent, and do canonical analysis

propagate Propagation of uncertainty using higher-order Taylor expansion and Monte Carlo
simulation

FME Provides functions to help in fitting models to data, to perform Monte Carlo,
sensitivity and identifiability analysis. It is intended to work with models written
as a set of differential equations that are solved either by an integration routine
from package deSolve, or a steady-state solver from package rootSolve

lhs Provides a number of methods for creating and augmenting Latin Hypercube
Samples

The implementation of Response Surface Methodology in its classical form, as
far as the optimization and the response surface exploration is concerned, is avail-
able, for example, in the commercial software Design-Expert, Optimus or SAS. Free
software R has a specific package for the implementation of the methodology in its
classical form, rsm, and some packages with tools that enable the implementation
of more current forms of this methodology, namely those concerning the generation
of designs, different from the classical ones, the implementation of Monte Carlo (cf.
Table1). However, there is no record of any package that enables the implementation
of the stochastic form of the methodology. There are some free tools that assist the
implementation of the SRSM, particularly those provided by the Community Portal
for Automatic Differentiation and by The DAKOTA Project.

5 Considerations and Conclusion

In general, response surface methods are well developed and find applications in
many fields. The application of RSM in association with other techniques such as
neural networks, computer simulation or genetic algorithms can be found in many
applications ranging from Industries, Physical and Chemical Sciences, Engineer-
ing, Biological and Clinics Sciences, Food Sciences, Social Sciences, Agriculture,
Aeronautics to other (countless) areas. Response surface approximations serve as
surrogate models for the full mathematical model that can be used to quickly inter-
rogate regions of the input space that were not sampled. Risk Assessment is a field
where the RSM can be used, namely for modeling consequences from a event and
uncertainties in the model, where SRSM may prove itself as a very useful tool.

It’s a fact that there are some research projects in which the sharing experiences
becomevaluable for the tools and assistance they provide in the implementation of the
SRSM, with particular emphasis on uncertainty analysis. Nevertheless, it would be
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interesting to go further and explore, in R Project, the construction of computational
tools enabling implementation of the stochastic approach of RSM, since the project is
of free access. This would be specially interesting in the particular case of polynomial
chaos expansion.
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FF-Type Multivariate Models in an Enforced
Regression Paradigm

Jerzy K. Filus and Lidia Z. Filus

Abstract We consider the stochastic dependence of a given random variable Y on
a set of its explanatory variables. Using our earlier method of parameter dependence
we obtain a description of this dependence in the form of a conditional probability
distribution of Y, given any realization of the explanatory variables.We obtain a wide
class of conditional distributions, including most of the important non-Gaussian
cases, in an explicit, tractable, analytical form which, basically, is not known in
the current literature. This fact automatically prompts one to extend the existing
regression models, which usually are given in form of conditional expectations,
to models based on the corresponding conditional probability distributions, given
the same values of the data. The latter models, obviously, contain more statistical
information and thus are expected to give better predictions. We also included some,
related to the conditional, multivariate probability densities.

Keywords Regression ·Conditional probability distributions as enforced (extended)
regression · Multivariate probability distributions

1 Introduction

We apply the method of parameter dependence [1–4], used for the construction
of a variety of multivariate probability distributions, to analyze closer the (weak)
dependence of a given random variable Y from a set of explanatory random variables,
say, X1, . . . , Xk [5].
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High generality of the method of parameter dependence opens the possibility to
present it now as a base for settings of the theory that, in a sense, extends andmodifies
the theory of classical regression and the underlying models.

Recall that, perhaps up to the presence, the vast majority of (stochastic) models
and methods, employed in the classical regression theory and its applications, were
essentially related to the conditional expectation

E[Y |x1, . . . , xk] (1)

of a random variable (or a vector) of themain interest Y, given realizations x1, . . . , xk

of a set of explanatory random variables X1, . . . , Xk . This kind of stochastic model
for the statistical theory of regression is limitedwith respect to an amount of statistical
information and thus the precision of the corresponding predictions is limited aswell.

Obviously, a better (i.e., more precise) model compared to (1) would be the sto-
chastic model in the form of a whole conditional probability distribution (not just its
expected value) of the same random variable Y, given the same occurrences of the
explanatory values x1, . . . , xk .

A practitioner statistician would certainly be more happy having the possibility
to enrich the typical regression model (1) by the following conditional cdf:

P(Y ≤ y) = Gk(y|x1, . . . , xk), (2)

or, whenever it exists, the corresponding conditional pdf:

gk(y|x1, . . . , xk). (3)

As model (1) is part of the (2) or (3) model, (2) as well as its theory, is the, proposed
here, natural extension of this part of the classical regression theory which deals with
(1)—like models. Of course, this possibility was well-known fact for a long time.
But using the stochastic dependence models in the form (2) and (3) was (possibly,
only, with exception of the conditionals associated with the classical multivariate
normal pdfs) seen as not realistic. The reason for this shortcoming is explained as
follows. In almost all non-Gaussian situations there were no well defined and handy
enough analytical forms of the conditional distributions (2) that would explicitly and
meaningfully reflect the stochastic dependences of the random variables Y from the
explanatory ones X1, . . . , Xk . Discovering the pattern (of the parameter dependence)
[1, 2] for an explicit description of the stochastic dependences and, associatedwith it,
new possibilities for construction of the conditional distributions (2) on a mass-scale
gave us hope to enrich the statistical regression theory in a new way.

The main goal for all that is an expected (in many practical cases) improvement
in accuracy of predictions for the phenomena so far modeled by regular (conditional
expectation) regression methods.

At this point let us recall the known fact that some (to a measure similar) results
were obtained and the corresponding theory exists in the literature. This theory,
knownas thequantile regression methodswasfirst introducedbyKoenker andBassett
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in 1978 [6], and is continued by some authors up to now. Similar to ours, this approach
is aimed to complement the classical linear regression analysis, mainly by replacing
the typical investigations centered on the conditional expectation E[Y |x1, . . . , xk] by
more general considerations on the conditional quantiles directly associated with the
(whole) conditional probability distribution. The main advantage of the extension
is the possibility to obtain more statistical information than by using traditional
methods of regression. The essential difference between those methods and our
present approach mainly relies on the parametric character of the, here presented,
extended regression models. In practice this means that our models are capable of
embracing (in one analytic formula) the probabilities P(Y ≤ y|x1, . . . , xk) for all
the y values at the same time (for any y, this probability as a function of the arguments
x1, . . . , xk we call the enforced regression function of the second kind) not just for
each quantile y separately, which, practically, reduces the investigations to few values
of y, only. As for the multivariate normal case exception, it should be admitted that
in the extended regression theory presented here, both the common restrictions on
the normality and the linearity of the regression function, can be relaxed in a natural
way.

Thegeneral pattern for our stochastic dependencedescription is obtainedbymeans
of some method of conditioning. This method relies on a kind of randomization of
the originally constant parameter(s) (the baseline, i.e., no explanatory random vari-
ables influence case) of pdf g0(y) of the random variable Y. Namely, we consider
these parameters as continuous (and in general nonlinear) function of the indepen-
dent explanatory random variables X1, . . . , Xk , each of them having some known
probability distribution. For example, Y may be considered as the life time of an
object and X1, . . . , Xk may be extra stresses put on this object.

This procedure yields the determination of a set of classes of conditional pdfs
gk(y|x1, . . . , xk) or cdfs Gk(y|x1, . . . , xk) of the random variable Y, given the real-
izations of the independent (explanatory) random variables X1, . . . , Xk . Our pur-
pose is to provide a method for explicit determination of any conditional proba-
bility P(a ≤ Y ≤ b|x1, . . . , xk) for all: −∞ ≤ a < b ≤ ∞, (also assuming
that P(Y = ±∞) = 0) in a concise analytical form as a function of the realizations
x1, . . . , xk of the explanatory random variables X1, . . . , Xk . In particular, in Sect. 5.2
we consider conditional survival functions P(Y ≥ y|x1, . . . , xk) with Y interpreted
as the life time of an object and X1, . . . , Xk as stresses that the object endures.

The above probabilities that the object would survive at least time period of length
y (for any y) is an analytically given continuous function, say r(x1, . . . , xk) of the
stresses realizations x1, . . . , xk . This function is also considered (see Sect. 5.2) as
the enforced regression of the second kind, and this is the main stochastic model
we construct in this paper. In Sect. 5.1 we precede this by the notion of enforced
regression of the first kind which also covers, in a new way, conditional expectations
E[Y |x1, . . . , xk] when the baseline probability distribution of Y is neither normal
nor exponential. When Y is normally distributed, the enforced regression of the first
kind becomes identical with the ordinary (not necessarily linear) regression function.
Both first and second kind of the enforced regression are based on the parameter
dependence (also called weak dependence) between the random variable Y and the
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set of randomvariables X1, . . . , Xk .We explain this kind of stochastic dependence in
Sect. 2. In Sects. 3 and 4 we consider the, defined in Sect. 2, conditional probability
distributions in the wider framework of joint multivariate distributions. The main
results concerning the enforced regression are placed in Sect. 5.

2 Parametric Description of the Stochastic Dependences

2.1 The Probability Distribution of the Life-time

We are interested in the probability distribution of a random variable Y which, in
particular, may correspond to the (random) life-time of an object. In case of actuary
applications, Y may be considered as the residual life-time of a client whose age at
the moment of registration is t . Assume that in the (regular situation) the residual
life-time Y has a given known probability density function f (y; θ), where θ is its
scalar or vector parameter. In some significant cases the situation complicates because
of the presence of extra (disturbing facts) taking place when potential clients were
subjected to special stresses that could affect their residual life-time. In some cases
the amount of a given stress can be measured by a (possibly random) quantity Xi .
For example, Xi can be the time the stress was endured, multiplied by its intensity,
for example as the amount of nicotine or alcohol consumed in an average day. Thus,
the disturbing factors having an impact on the residual life-time Y , (its probability
distribution) may be considered as either a single random variable X or as a set of
such (independent) random variables X1, X2, . . . , Xk , k = 2, 3, . . .

2.2 General Stochastic Mechanism

We aim to find an efficient way to describe, analytically, the general stochastic mech-
anism by which a random stress X influences the random life-time Y . In the general
version (of the extended regression theory) the question can be formulated as: how
can one analytically express the influence of any random variable X on another
random variable Y probability distribution, when the two are not independent and
with no given explicit algebraic relation (transformation) between them.

The stochastic (indirect) influence of a value x, corresponding to the random event
(observation) X = x , on possible values y of the random variables Y (the stochastic
impact of x on y) is understood as the impact of x on the probability (or probability
density or hazard rate) of occurring y, when X = x happens. This, in general, means
that different values x , x∗ of X may bring different probabilities (or densities) of
the given random event Y = y. Speaking more generally, in the considered setting,
the random event X = x , influences the probabilities P(Y ≤ y), for any fixed real
value y.



FF-Type Multivariate Models in an Enforced Regression Paradigm 403

In other words, we are seeking for the conditional probability distributions P(Y ≤
y|X = x), or the corresponding conditional probability densities, hazard rates, etc.
In the framework we have chosen, the phrase: Size of an incentive (or, in particular,
stress) x changes the probability density f (y; θ) of the life-time Y or (equivalently),
the x changes Y s hazard (failure) rate λ(y; θ) through a change of the parameter
θ will be understood as: the stress X changes, (proportionally to its magnitude x)
the numerical value of the parameter(s) θ . In yet other words a change in θ is
proportional to a magnitude x of the stress X , given the random event X = x .
To describe the (deterministic) relationship between θ and x one can impose, as
new values of θs, a hypothetical continuous (not necessarily linear) function of x :
θ = θ(x). For example, we may let θ → θ(x) = θ · (1 + ax + bx2) and then,
assuming such a model, statistically estimate the (new) parameters a and b, where
the factor θ on the right hand side of the above equality may be known from previous
(baseline) estimation procedures. We obtain the conditional density g2(y|x) of Y ,
given X = x , as defined by

g2(y|x) = f (y; θ(x)). (4)

(Here notice that to define any new object we usually need to prove its existence
and uniqueness. In the above case however, the proof is straightforward, simply
given by indication. The existence and uniqueness of g2(y|x) above (as well as in
all other similar cases present in this work) directly follows from the existence and
uniqueness of any f (y; θ), which is a known fact, and from the fact that the function
θ(x) is chosen to be a known.Obviously, two different continuous functions θ(x)will
produce two different objects f (y; θ(x)) for the same original density f (). The only
requirement that a given function θ(x) fits to g2(y|x) is: the range of that function is
included in the range of the values of the parameter θ (often the set of all positive
reals) which is satisfied. These recognitions complete the required proof).

The last key formula yields directly the extended regression theory formulation
(see Sect. 5). Equivalently, one can define the conditional hazard (failure) rate by
transforming the original hazard rate λ2(y, θ) of Y to the conditional one

λ2(y|x) = λ2(y, θ(x)). (5)

It is examined closer, below.

3 Further Development

3.1 Bivariate Normal Case

Having defined the conditional pdf g2(y|x) and the marginal pdf g1(x) of the stress
X , we automatically obtain the joint pdf h(x, y) of the random variables X and Y
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simply as the arithmetic product

h(x, y) = g2(y|x)g1(x) (6)

(when the random vector (X, Y ) is meaningful in the investigations).
Anyway this, apparently, is the method (also called the parameter dependence)

for constructing bivariate and multivariate probability densities. Being a general
method of construction it can be considered as an extension of the paradigm on
which the construction of classical bivariate and multivariate Gaussian densities is
based [1, 2]. The same applies to the associated Gaussian conditional densities. So,
the method of parameter dependence is just an extension of the method of how the
classical multivariate normal were constructed. (The same statement may apply to
the, considered in Sect. 5, enforced regression.) We explain this closer in below.

Realize that, as any bivariate pdf, the classical bivariate normal g(x, y) can be
uniquely represented as the product

f2(y|x) f1(x) = g(x, y), (7)

where here f1(x) is any univariate (here the marginal) normal N (μ1, σ1) pdf of the
marginal X . f2(y|x) is the conditional pdf of Y , given the random event (X = x)

realizes, obviously with the probability density f1(x). Notice that as the marginal
normal (not yet influenced baseline) pdf f2(y) of Y is

f2(y) = 1

σ2
√
2π

e
−(y−μ2)2

2σ22 (8)

the corresponding conditional pdf f2(y|x) of Y (influenced by the event ‘X = x’) is

f2(y|x) = 1

s2
√
2π

e
−(y−μ2−a(x−μ1))2

2s22 , (9)

where a = ρ σ2
σ1

and s22 = σ 2
2 (1 − ρ2), ρ being the linear correlation coefficient. It

is quite clear now that for the bivariate normal pdfs device the transition f2(y) →
f2(y|x)may be regarded as the result of the, here considered, stochastic action of the
random variable X on Y , resulting in the new random variable Y ∗ (for simplicity, in
our notation will be Y ∗ = Y ) or just as an action of the random variable X (arbitrary)
realization x on the (density of) y, (x → f2(y)).

As in the case considered above, this action (impact) affects the parameter μ2
of the marginal N (μ2, σ2) of Y in such a way that it is transformed from μ2 to
μ∗
2 = μ2 + a(x − μ1). The latter value μ∗

2 of the parameter clearly became a
continuous function of the argument x , μ2(x).



FF-Type Multivariate Models in an Enforced Regression Paradigm 405

3.2 FF-Normal (Pseudonormal) Models

It should now be obvious that the above old classical normal bivariate model
obeys exactly the same pattern of influence X → Y as we outline in this paper.
The (only) difference between the two approaches is that the (parameter) function
μ2(x) = μ2 + a(x − μ1), used in the normal pdf case, is only linear, and is applied
only for this particular parameter μ2 of this particular conditional distribution. How-
ever, in general, there is no need for such restrictions (to the normal cases only),
even if sometimes an extension of that normal pattern results with some (usually
modest) prices. We may enrich the above linear function μ2 + a(x − μ1) by adding
a (correcting) quadratic term to obtain other parameter (function)

μ∗
2(x) = μ2 + a(x − μ1) + A(x − μ1)

2, (10)

and obtain another, corresponding, conditional, but still normal, pdf f ∗
2 (y|x) of Y ,

given the value x of X . The anticipated gain is, in some cases, a better accuracy in
the sense of a (new) model’s fit to the given data.

Note that as A → 0 the new (pseudonormal) model approaches the original
classical normal. There is also no reason to avoid further extensions of the quadratic
polynomial parameter function (3) to polynomials of higher degrees,whenever itmay
improve the models accuracy. But instead of polynomials we may apply any other
suitable continuous parameter function r(x − μ1), such as exponential, logarithmic,
trigonometric, etc. in (x − μ1).

Now the action x → Y parallels transforming the parameter μ2 of Y in the way
μ2 → μ2 + r(x − μ1), which results in a new (still normal) conditional pdf of Y |x :

f2(y|x) = 1

s2
√
2π

e
−(y−μ2−r(x−μ1))2

2s22 (11)

Also the parameterσ2 ofY can be affected by (a stress) x , so thatσ2 → (q(x−μ1))σ2,
where σ2 = s2√

(1−ρ2)
, and q(x −μ1) is any (proper) non-negative continuous function

of the (x − μ1), while ρ is the linear correlation coefficient of the original bivariate
normal version of the now extended model.

Now we can formulate general

Definition 1 Definition of a pseudonormal extension of the bivariate normal pdf as
given by the product

g(x, y) = f ∗∗
2 (y|x) f1(x), (12)

where the marginal pdf f1(x) of X is the, as before, ordinary N (μ1, σ1) pdf, while
the other factor in (12), the (general) conditional pdf, is given as

f ∗∗
2 (y|x) = [((q(x − μ1))σ2

√
2π)]−1e

−(y−μ2−r(x−μ1))2

2(q(x−μ1))2σ22 (13)
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Particular Examples of the bivariate pseudonormal pdfs easily follow formulas (10)
and (11).

For earlier results on, what we called ‘pseudonormals’, see for instance [7, 8] and
the books [9, 10].

Here, however, we propose to rename the notion of pseudonormal to FF-normal
or FF-Gaussian. In parallel, we change the names of similar notions such as pseu-
doexponential, pseudoWeibullian, pseudogamma (distributions) to FF-exponential,
FF-Weibullian, FF-gamma . . ., respectively, and we will use them from now on
throughout.

In order to construct more stochastic dependence X → Y models (where X
is considered as an explanatory variable for Y), realize that there is no reason to
reduce the considerations to the normal → F F − normal extension pattern. We
may, instead, apply the above method of parameter dependence to almost any other
parameter dependent probability distribution (density) of a Y . Moreover, there is
neither theoretical necessity nor practical need for assuming that the explanatory
variable X (stress) and the variable of interestY belong to the sameclass of probability
distributions. Actually, each of them separately can be chosen from any reasonable
class of cdfs. In particular, the pdf f1(x) of X present in formula (12) need not
necessarily be normal. It can be, for example, the gamma, but in such cases the
model given by (12) and (13) is not FF-normal any more (still, however, may be
considered as an extension of the FF-normal, say semi FF-normal). That freedom
(and relative easiness) in the models construction procedure yields a remarkable
generality, and therefore it brings a promise to be applied in many other than the, so
far considered, real-life problems.

3.3 Non FF-Normal Models

Example 1 Consider the following FF - exponential case. Suppose the residual life-
time Y , in absence of a given stress X , has the exponential pdf

f (y; θ) = θ−1e
−x1
θ (14)

Consider a non-zero stress X = x , affecting the life-time Y , so turning it into the
random variable Y |x . Denote the involved stochastic mechanism by (x → Y ) →
(Y |X = x), or as densities transformation f (y) → f (y|x). As a result of that,
the parameter θ of density (14) transforms into a parameter θ∗ = θϕ(x), that is
continuously dependent on an amount x of the stress X . Mathematically, that results
in the following determination of the conditional density of Y |X = x , by formula:
f (y|x) = f (y; θϕ(x)), where ϕ(x) is assumed to be any (properly chosen, for
a given practical situation) continuous function of x , when random event X = x
happens. One such a function with nice analytical properties (easy calculations), we
propose, is

ϕ(x) = 1 + Axr (15)
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[or, in higher dimension cases ϕk(x1, . . . , xk) = 1 + A1xr
1 + A2xr

2 + · · · + Ak xr
k ]

where r, A (or r, A1, . . . , Ak) are positive real parameters with specially important
cases, for r = 1 or r = 2. The parameters are to be estimated and verified by
statistical methods, provided that the given above function ϕ(x) is a properly chosen
(sub)model. (Sobasically,most of the statisticalwork to bedone retains itsparametric
character). Under the assumption (15) the formula (14) takes the form:

f (y|x) = (θ(1 + Axr ))−1e
−y

θ(1+Axr ) (16)

If the marginal pdf g(x) of stress X has an exponential pdf., then the product
g(x) f ∗(y|x) = g(x, y) is regarded as the bivariate FF-exponential pdf of the ran-
dom vector (X, Y ). However, it is not the only possibility. The marginal pdf g(x) of
X can belong to any class of pdfs or cdfs, including discrete type. For example, the
stress X can be Gaussian. We then obtain semi FF-exponential bivariate distribution
once we extend the class of the considered models. Now again, admit that there may
be more than one stress that affects the life-time Y .

4 Several Covariates Case

In practice we rather should consider a set of few (the most influential factors)
stresses X1, . . . , Xk , that all together have an essential impact on, say, a client resid-
ual life-time: Y |x1, . . . , xk . The stresses X1, . . . , Xk must be either stochastically
independent or their joint pdf or cdf, should be known. Consider, now, closer the case
of multiple stresses say, X1, . . . , Xk , so we need to determine the conditional pdfs
f (y|x1, . . . , xk) of the (life-time)Y , given the stresses (X1, . . . , Xk) = (x1, . . . , xk).
But the transition from a single stress to the multiple is, actually, easy and also
may be considered as the extension of the multivariate Gaussian distribution para-
digm. Therefore, we first refer to this classical concept. In that, the conditional pdf
f (xk+1|x1, . . . , xk) of Xk+1, k = 1, 2, . . ., given values x1, . . . , xk (with the random
vector (X1, . . . , Xk) distributed according to the k-variate normal distribution with,
in particular, k = 2) is defined as:

fk+1(xk+1|x1, . . . , xk) = 1

sk+1
√
2π

e

−(xk+1−μk+1−a1(x1−μ1)−a2(x2−μ2)−···−ak (xk−μk ))2

2s2k+1

(17)

Thus, we can achieve our goal (the construction), ones we extend the class of linear
functions: a1(x1−μ1)+a2(x2−μ2)++ak(xk −μk) by a wider class of continuous
(nonlinear, in particular quadratic) parameter functions, say: Rk((x1 − μ1), (x2 −
μ2), . . . , (xk − μk)).

The general idea is to replace the parameter μk+1 of the original normal pdf of
Xk+1 by a linear (for the normal) or nonlinear (for the FF-normal) parameter function
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Rk(. . .) i.e., the procedure obeys the scheme:
μk+1 → Rk((x1 − μ1), (x2 − μ2), . . . , (xk − μk)).

This scheme corresponds to the considered stochastic impact of the randomquantities
(the stresses) X1, . . . , Xk on the random variable (the life-time) Xk+1 = Y . It is, we
have described the stochastic relation: (X1, . . . , Xk) → Y .

Recall that, the linear case corresponds to an ordinary normal, while nonlinear
to the FF-normal. The constructions that use the method of parameter dependence
turn out to be universal to a quite large extend.

Remark 1 In case of any parameter- dependent distribution function of a random
variable Y , the parameter, say θ can be considered (after being replaced) as a
parameter-function θ(X1, . . . , Xk) of k random arguments. The parameter in the
form θ(X1, , Xk) is, of course, a random variable. Realize, however, that this kind
of the parameters randomization is not just (the simple, and very well known)
compounding concept. In the compounding concept (for k = 1) we have always
θ(X1) = X1 so that identity function is the only parameter function applied. Thus,
the compounding may only be considered as the very special case of the parameter
dependence pattern.

5 The Enforced Regression as the Conditional Probability

There are two basic ways the conditional densities defined in this work may be
applied to the concept of enforced regression. Firstly, remaining closer to the classi-
cal concept of the regression we may, in a new way, enrich that classical models by
using the conditional expectation to adopt it to non-Gaussian situations. For example
if the r.v. of the main interest Y has either Weibull, Gompertz or gamma distribu-
tion its rather unlikely that its conditional expectation would be a linear function
the explanatory rvs. X1, . . . , Xk , whatever they represent. Notice that the baseline
expectations are functions of the distribution parameters and the parameters will then
become functions (linear, in particular) of X1, . . . , Xk . Such approach is (according
to our best knowledge) not known in current literature. Secondly, we may apply our
conditionings to determine, in one general formula, all the conditional probabilities:
P(a ≤ Y ≤ b|x1, . . . , xk) for all: −∞ ≤ a < b ≤ ∞ (and P(Y = ±∞) = 0)
so, in particular, all the conditional quantiles of Y . These conditional probabilities as
general functions of realizations x1, . . . , xk of the random variables X1, . . . , Xk may
be considered as a new version of the stochastic models alternative to the well known
models of classical regression. It is expected that they will contain significantly more
information than the classical regression functions.
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5.1 Conditional Expectations for the Parameter
Dependence Pattern

As an example, consider the following three nonGaussian probability distributions:
gamma, Weibullian and Gompertz of a random variable, here commonly denoted by
Y . We use the following parameterizations of their densities:

1. For the gamma:

f (y;β, θ) = yβ−1e
−y
θ /θβΓ (β) (18)

2. For the Weibullian:
f (y;β, θ) = θβyβ−1e−θyβ

(19)

3. For the Gompertz:

f (y;β, θ) = βθeβy+θ e−θeβy
(20)

As in above text, we assume that each time the parameters β and θ continuously
depend on realizations x1, . . . , xk of explanatory random variables X1, . . . , Xk . This
assumption turns the above three densities into the conditional densities of Y , given
x1, . . . , xk while the class of the densities is invariant, so remains the gamma or
Weibullian or Gompertz, respectively, in y. In parallel, the (original) expected values
of the three densities turn into the following conditional expectations, given real-
izations of the X1, . . . , Xk . According to that rule we define the following enforced
regression functions of first kind, say R(x1, . . . , xk):

1*. For the gamma:

R(x1, . . . , xk) = E[Y |x1, . . . , xk] = β(x1, . . . , xk)θ(x1, . . . , xk). (21)

2*. For the Weibull:

R(x1, . . . , xk) = E[Y |x1, . . . , xk] = θ(x1, . . . , xk)Γ

(

1 + 1

β(x1, . . . , xk)

)

.

(22)

3*. For the Gompertz:

R(x1, . . . , xk)= E[Y |x1, . . . , xk]=
(

1

β(x1, . . . , xk)

)

eθ(x1,...,xk )Ei(−θ(x1, . . . , xk))

(23)

where Ei() is known to be Ei(z) =
∞∫

−z
v−1e−vdv.
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In each of the above cases, a choice of the parameter functions β(x1, . . . , xk),
θ(x1, . . . , xk) theoretically is arbitrary but in applications would be dictated by the
fit to data criterion. More specifically, for cases 1* and 2* it is reasonable to chose

β(x1, . . . , xk) = β(1 + ϕ(x1, . . . , xk)) and θ(x1, . . . , xk) = θ(1 + μ(x1, . . . , xk))

where the values β and θ of the baseline expectations parameters on the right hand
site of above equalities (understood there as the old parameters) could be assumed
to be known.

Here, for example, both the functionsϕ(x1, . . . , xk) andμ(x1, . . . , xk) can be cho-
sen linear or quadratic forms in x1, . . . , xk or exponent or logarithm of such forms.
Obviously, other choices are permitted too. In case of Gompertz conditional expec-
tation 3*, requirement that θ(x1, . . . , xk) is an independent of x1, . . . , xk constant,
say θ∗ would be reasonable for sake of the simplicity.

5.2 Conditional Survival Probabilities

The conditional expectations, as considered above, still bring much less information
about a modeled reality than the conditional probabilities of events that one may be
most interested with. For example, in a medical trial doctors may be interested in a
probability that a patient will survive the next five years time period. More precisely,
suppose that a given fixed age person is diagnosed with a given kind of cancer. If
the person is not a smoker and will be given a specific treatment the probability she
will survive at nearest five years is known to be p0. For the same person who has
been smoking tobacco it is less than p0 but depends on amount x of smoking. This
amount can be measured, for example, as arithmetic product of length of smoking
time period and an intensity of smoking (number of milligrams of nicotine per day
per one kilo of weigh). Our expectation is to find the probability p of, say, five years
survival as a continuous function of the smoking level x : p = p(x) with p(0) = p0.

Besides of smoking, the patient could endure other stresses such as drinking
alcohol, excessive consuming sugar, time spending in prison etc. Since (especially
when actuary problems are involved) more often than with a single patient the
doctors researchers have to do with a whole population of them, we propose to
consider the stresses as random variables X1, X2, . . . , Xk . Any (measured) real-
izations x1, x2, . . . , xk of these random variables are assumed to uniquely deter-
mine the conditional probability of five years survival, given these (stresses) real-
izations: P(Y ≥ 5|x1, x2, . . . , xk) which is a continuous function of that arguments
x1, x2, . . . , xk .

As it was mentioned, similar theory under the name quantile regression meth-
ods is known in literature and was initiated in [6], where the probabilities P(Y ≤
y0|x1, x2, . . . , xk) were investigated for a fixed y0 by nonparametric methods.

Unlike, what we present here is the parametric approach (assuming that the
considered classes of the parameter functions β(x1, . . . , xk) and θ(x1, . . . , xk) are
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parametric such as the linear, the power, the exponential etc., whose the parameters
are to be estimated) where we aim to find analytic formulas valid for any (variable)
value y instead of a single constant value y0, only.

Basically, in what follows, we limit ourselves to the conditional survival prob-
abilities: P(Y ≥ y|x1, x2, . . . , xk) = r(y; x1, x2, . . . , xk). These probabilities as
functions of y and of the realizations x1, x2, . . . , xk we called the enforced regres-
sion functions of second kind.

For the three probability distributions considered in Sect. 5.1 one obtains the fol-
lowing three formulas as survival functions of the arguments y, x1, x2, . . . , xk :

1.** For the gamma:

P(Y ≥ y|x1, x2, . . . , xk)

= 1 − γ [β(x1, x2, . . . , xk), y/θ(x1, x2, . . . , xk)]/Γ [β(x1, x2, . . . , xk)], (24)

where γ [s, x] =
x∫

0
t s−1e−t dt is the lower incomplete gamma function and meaning

of the gamma density’s parameters β(), θ() is given by (18).

2.** For the Weibull:

P(Y ≥ y|x1, x2, . . . , xk) = e−θ(x1,x2,...,xk )yβ(x1,x2,...,xk )

, (25)

where the meaning of the Weibull density’s parameters β(), θ() is given by (19).

3.** For the Gompertz:

P(Y ≥ y|x1, x2, . . . , xk) = e−θ(x1,x2,...,xk )eβ(x1,x2,...,xk )y−1. (26)

Here, the meaning of the parameters is given by (20).
Recall, that the Gompertz distribution is commonly applied in modeling of resid-

ual life time of adults for actuary and demographic purposes while theWeibull model
is typically of use in reliability of technical devices investigations. Also the gamma is
pretty often used in reliability. Notice, that for Gaussian and exponential distributions
all the formulas from Sect. 5 become almost trivial so we omitted them.

With exception of 1* the above enforced regression functions as the func-
tions of x1, x2, . . . , xk may, in general, be pretty complicated. This, of course,
brings limitations on (parametric) classes of the corresponding parameter functions
β(x1, x2, . . . , xk) and θ(x1, x2, . . . , xk). Between others, number k of the explana-
tory variables should not be too large (say, no more than 4 or 5). To simplify underly-
ing statistical investigations they should be proceeded by some numerical analysis.
Depending on how important is an expected gain of the above stochastic models
precision (of the conditional probabilities predictions) we may afford for less or
more complexity of the chosen parameter functions. Also more complex models
will require more data (higher sample sizes). To apply the above defined enforced
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regression successfullymany of numerical and statistical problems could be involved
requiring proper solutions. This part of work is, however, beyond the scope of this
paper.
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