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Preface

Thank you for your interest in the second edition of our book on dissipative
systems. The first version of this book has been improved and augmented in
several directions (mainly by the first author supported by the second and
third authors of the second version). The link between dissipativity and op-
timal control is now treated in more detail, and many proofs which were not
provided in the first edition are now given in their entirety, making the book
more self-contained. One difficulty one encounters when facing the literature
on dissipative systems is that there are many different definitions of dissi-
pativity and positive real transfer functions (one could say a proliferation),
many different versions of the same fundamental mathematical object (like
the Kalman-Yakubovich-Popov Lemma), and it is not always an easy task to
discover the links between them all. One objective of this book is to present
those notions in a single volume and to try, if possible, to present their rela-
tionships in a clear way. Novel sections on descriptor (or singular) systems,
discrete-time linear and nonlinear systems, some types of nonsmooth systems,
viscosity solutions of the KYP Lemma set of equations, time-varying systems,
unbounded differential inclusions, evolution variational inequalities, hyper-
stability, nonlinear H,, input-to-state stability, have been added. Conditions
under which the Kalman-Yakubovich-Popov Lemma can be stated without
assuming the minimality of the realization are provided in a specific section.
Some general results (like well-posedness results for various types of evolution
problems encountered in the book, definitions, matrix algebra tools, etc.) are
presented in the Appendix, and many others are presented in the main text
when they are needed for the first time. We thank J. Collado and S. Hadd
who made us some remarks, and we remain of course open to any comments
that may help us continue to improve our book.

Montbonnot, April 2006 Bernard Brogliato
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Notation

e IR: the set of real numbers; C the set of complex numbers; IN: the set of
nonnegative integers.

e IR" (C"): the set of n—dimensional vectors with real (complex) entries.
e AT: transpose of the matrix A € R"*™ or € C"*"™.

e A: conjugate of the matrix A € C™*"™.

e A*: conjugate transpose matrix of the matrix A € C**"™.

e A >0 (>0): positive definite (semi positive definite) matrix.

e )\(A): an eigenvalue of A € R"*™.

e o(A) the set of eigenvalues of A € IR"*™ (i.e. the spectrum of A).

o nax(4), Amin(A): the largest and smallest eigenvalue of the matrix A,
respectively.

® Omax(A) (omin(A4)): largest (smallest) singular value of A.

e p(A): the spectral radius of A, i.e. max{|\| : A € o(4)}.

o tr(A): the trace of the matrix A.

e AT: the Moore-Penrose inverse of the matrix A.

e ODE: Ordinary Differential Equation; PDE: Partial Differential equation.

e BV, LBV, RCLBV: Bounded Variation, Local BV, Right Continuous LBV.

e AC: Absolutely Continuous.

e [, the n x n identity matrix, O,, the n X n zero matrix.

. %(x) € IR™*™: the jacobian of the function f: IR" — IR™ at x.

e Vf(x) € R™™™: the euclidean gradient of the function f : IR" — IR™ at
2 (Vi) =5 (@),



xiv

Notation

A function is said to be smooth if it is infinitely differentiable; C° denotes
the set of continuous functions; C" denotes the set of r-times differentiable
functions f(-) with f(")(-) continuous.

f(#): right-limit of the function f(-) at ¢; (f(¢t7): left-limit).

|| - ||: Euclidean norm in R™ (||z]| = vVaTx for all z € IR™).

[|fllp: £Ly-norm of a Lebesgue integrable function f(-).

LH(jw): the phase of H(jw) € C.

LTI: Linear Time Invariant (system).

Ker(A): kernel of A € R"*™; Im(A): image of A € R™*™.

dom(f): domain of a function f.

K: closure of a domain K C IR" (K = K if and only if K is closed).

Int(K): interior of a domain K C IR"™ (Int(K) is always open), i.e. the set
of interior points of K (points z of K such that there is a neighborhood
of x inside K).

Re[] denotes the real part and Im[-] denotes the imaginary part.

a.e.: almost everywhere (usually in the Lebesgue measure sense).



1

Introduction

Dissipativity theory gives a framework for the design and analysis of control
systems using an input-output description based on energy-related considera-
tions. Dissipativity is a notion which can be used in many areas of science, and
it allows the control engineer to relate a set of efficient mathematical tools to
well known physical phenomena. The insight gained in this way is very useful
for a wide range of control problems. In particular the input-output descrip-
tion allows for a modular approach to control systems design and analysis.

The main idea behind this is that many important physical systems have
certain input-output properties related to the conservation, dissipation and
transport of energy. Before introducing precise mathematical definitions we
will somewhat loosely refer to such input-output properties as dissipative
properties, and systems with dissipative properties will be termed dissipa-
tive systems. When modeling dissipative systems it may be useful to develop
the state-space or input-output models so that they reflect the dissipativity of
the system, and thereby ensure that the dissipativity of the model is invariant
with respect to model parameters, and to the mathematical representation
used in the model. The aim of this book is to give a comprehensive presenta-
tion of how the energy-based notion of dissipativity can be used to establish
the input-output properties of models for dissipative systems. Also it will be
shown how these results can be used in controller design. Moreover, it will
appear clearly how these results can be generalized to a dissipativity theory
where conservation of other physical properties, and even abstract quantities,
can be handled.

Models for use in controller design and analysis are usually derived from
the basic laws of physics (electrical systems, dynamics, thermodynamics).
Then a controller can be designed based on this model. An important problem
in controller design is the issue of robustness which relates to how the closed
loop system will perform when the physical system differs either in structure
or in parameters from the design model. For a system where the basic laws of
physics imply dissipative properties, it may make sense to define the model so
that it possesses the same dissipative properties regardless of the numerical
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values of the physical parameters. Then if a controller is designed so that sta-
bility relies on the dissipative properties only, the closed-loop system will be
stable whatever the values of the physical parameters. Even a change of the
system order will be tolerated provided it does not destroy the dissipativity.

Parallel interconnections and feedback interconnections of dissipative sys-
tems inherit the dissipative properties of the connected subsystems, and this
simplifies analysis by allowing for manipulation of block diagrams, and pro-
vides guidelines on how to design control systems. A further indication of
the usefulness of dissipativity theory is the fact that the PID controller is
a dissipative system, and a fundamental result that will be presented is the
fact that the stability of a dissipative system with a PID controller can be
established using dissipativity arguments. Note that such arguments rely on
the structural properties of the physical system, and are not sensitive to the
numerical values used in the design model. The technique of controller design
using dissipativity theory can therefore be seen as a powerful generalization
of PID controller design.

There is another aspect of dissipativity which is very useful in practical
applications. It turns out that dissipativity considerations are helpful as a
guide for the choice of a suitable variable for output feedback. This is helpful
for selecting where to place sensors for feedback control.

Throughout the book we will treat dissipativity for state space and input-
output models, but first we will investigate simple examples which illustrate
some of the main ideas to be developed more deeply later.

1.1 Example 1: System with Mass Spring and Damper

Consider a one-dimensional simple mechanical system with a mass, a spring
and a damper. The equation of motion is

mi(t) + Di(t) + Ka(t) = F(t), 2(0) = 0,4(0) = o

where m is the mass, D is the damper constant, K is the spring stiffness, x
is the position of the mass and F' is the force acting on the mass. The energy
of the system is

1 1
V (x,4) = —mi? + - Ka?
2 2
The time derivative of the energy when the system moves is

%v (z(t), () = ma(t)a(t) + K (t)i(t)

Inserting the equation of motion we get

%V@@Aﬂ»:F@ﬂw—Dﬁ@



1.2 Example 2: RLC Circuit 3

Integration of this equation from ¢t = 0 to t = T gives

T T
V[x(T),g'c(T)]:V[x(O),x'(O)]Jr/O F(t):'c(t)dt—/o Di? (t)dt

This means that the energy at time ¢ = T is the initial energy plus the energy
supplied to the system by the control force F minus the energy dissipated
by the damper. Note that if the input force F' is zero, and if there is no
damping, then the energy V(-) of the system is constant. Here D > 0 and
V' [z (0),4(0)] > 0, and it follows that the integral of the force F' and the
velocity v = & satisfies

T
/0 F(t)v(t)dt >~V [z (0,3 (0)] (1.1)

The physical interpretation of this inequality is seen from the equivalent in-
equality

T
_/0 F(t)v(t)dt <V [z (0),i(0)] (1.2)

which shows that the energy — fOT F (t)x (t)dt that can be extracted from
the system is less than or equal to the initial energy stored in the system. We
will show later that (1.1) implies that the system with input ' and output v
is passive. The Laplace transform of the equation of motion is

(ms* + Ds + K) z(s) = F (s)

which leads to the transfer function
v () s
s ) =
F ms?2+ Ds+ K

It is seen that the transfer function is stable, and that for s = jw the phase
of the transfer function has absolute value less or equal to 90°, that is,

‘4%(;@)‘ <90° = Re [%(jw)} >0 (1.3)
for all w € [—o0,+00]. We will see in the following that these properties of

the transfer function are consequences of the condition (1.1), and that they
are important in controller design.

1.2 Example 2: RLC Circuit

Consider a simple electrical system with a resistor R, inductance L and a
capacitor C' with current ¢ and voltage u. The differential equation for the
circuit is
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di .
L () + Rit) + Ca(t) = u(t)

where .
x(t) :/ i(t")dt
0

The energy stored in the system is

1 1

The time derivative of the energy when the system evolves is

d . di, . . .
gV (@(8),i(t) = L ()i(t) + Ca(t)i(t)

Inserting the differential equation of the circuit we get

d ) ) .2
2V (@(0),i(t)) = u()i(t) — Ri*(t)

Integration of this equation from t =0 to ¢t = T gives

T T

Vie(T),i(T) =V]x(0),i(0)] +/ u(t)i(t)dt—/ Ri? (t)dt
0 0
Similarly to the previous example, this means that the energy at time t =T
is the initial energy plus the energy supplied to the system by the voltage u
minus the energy dissipated by the resistor. Note that if the input voltage u
is zero, and if there is no resistance, then the energy V(-) of the system is
constant. Here R > 0 and V [z (0), (0)] > 0, and it follows that the integral
of the voltage u and the current i satisfies

t
[ u@itds = -vie©.i0) (1.4)
0
The physical interpretation of this inequality is seen from the equivalent in-
equality

_/O w(s)i(s)ds <V [z (0),i (0)] (1.5)

which shows that the energy — fg u (s) 1 (s)ds that can be extracted from the
system is less than or equal to the initial energy stored in the system. We will
show later that (1.4) implies that the system with input « and output 4 is
passive. The Laplace transform of the differential equation of the circuit is

(Ls® + Rs+ C) z(s) = u(s)

which leads to the transfer function
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) s

—_\SsS) )= -

u( ) Ls?+ Rs+C

It is seen that the transfer function is stable, and that, for s = jw, the phase
of the transfer function has absolute value less or equal to 90°, that is,

Ry

<90° = Re B(jw)] >0 (1.6)

for all w € [—o00,+00]. We see that in both examples we arrive at transfer
functions that are stable, and that have positive real parts on the jw axis. This
motivates for further investigations on whether there is some fundamental
connection between conditions on the energy flow in equations associated
with the control equations (1.1) and (1.4) and the conditions on the transfer
functions (1.3) and (1.6). This will be made clear in chapter 2.

1.3 Example 3: A Mass with a PD Controller

Consider the mass m with the external control force u. The equation of motion
is

Suppose that a PD controller
u=—Kpxr— Kpzx
is used. Then the closed loop dynamics is
mi(t) + Kpz(t) + Kpx(t) =0

A purely mechanical system with the same dynamics as this system is called
a mechanical analog. The mechanical analog for this system is a mass m with
a spring with stiffness Kp and a damper with damping constant Kp. We see
that the proportional action corresponds to the spring force, and that the
derivative action corresponds to the damper force. Similarly, as in Example
1, we can define an energy function

1 1
Vix,2) = §m¢2 + 5KP$2

which is the total energy of the mechanical analog. In the same way as in
Example 1, the derivative action will dissipate the virtual energy that is ini-
tially stored in the system, and intuitively, we may accept that the system
will converge to the equilibrium = 0, £ = 0. This can also be seen from the
Laplace transform

(ms*+ Kps+ Kp) z(s) =0
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which implies that the poles of the system have negative real parts. The point
we are trying to make is that, for this system, the stability of the closed
loop system with a PD controller can be established using energy arguments.
Moreover, it is seen that stability is ensured for any positive gains Kp and
Kp independently of the physical parameter m. There are many important
results derived from energy considerations in connection with PID control,
and this will be investigated in Chapter 2.

1.4 Example 4: Adaptive Control
We consider a simple first order system given by
z(t) = a*x(t) + u(t)

where the parameter a* is unknown. An adaptive tracking controller can be
designed using the control law

u=—-Ke—arx+14, e=x—uxqg

where x4 is the desired trajectory to be tracked, & is the estimate of the
parameter a*, and K is the feedback gain. The differential equation for the
tracking error e is

&
—~
~
~—
|

a*z(t) +u(t) — 2a(t)

= a*z(t) — Ke(t) — a(t)z(t) + 2q(t) — 24(t)
— —Ke(t) - a(t)a(t)

where a = @ — a* is the estimation error. We now define

P(t) = —a(t)x(t)

which leads to the following description of the tracking error dynamics

de

) + Kelt) = v()

We define a function V, which plays the role of an abstract energy function
related to the tracking error e:

Ve(e) = ze

The time derivative of V. along the solutions of the system is

Ve(e(t) = e(t)v(t) — Ke*(t)

Note that this time derivative has a similar structure to that seen in Examples
1 and 2. In particular, the —Ke? term is a dissipation term, and if we think of
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1 as the input and e as the output, then the et term is the rate of (abstract)
energy supplied from the input. We note that this implies that the following
inequality holds for the dynamics of the tracking error:

T
/O e(t)yp(t)dt > —V, [e (0)]

To proceed, we define one more energy-like function. Suppose that we are
able to select an adaptation law so that there exists an energy-like function
V. (a) > 0 with a time derivative

Va (a(t)) = —e(t)v(t) (1.7)

We note that this implies that the following inequality holds for the adaptation
law:

[ el v o)
Then the sum of the energy functions
Vie,a)=Vel(e)+Val(a)
has a time derivative along the solutions of the system given by
V (e(t),a(t)) = —Ke(t)

This means that the energy function V' (e,a) is decreasing as long as e(-) is
nonzero, and by invoking additional arguments from Barbalat’s Lemma (see
Chapter A), we can show that this implies that e(t) tends to zero as t — +o0.
The required adaptation law for (1.7) to hold can be selected as the simple

gradient update
*d&(t)— (t)e(t)
g () =a(te

and the associated energy-like function is

Vo (a) = ~a?

a

N[ =

Note that the convergence of the adaptive tracking controller was estab-
lished using energy-like arguments, and that other adaptation laws can be
used as long as they satisfy the energy-related requirement (1.7).
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Positive Real Systems

The notion of Positive Real system may be seen as a generalization of the
positive definiteness of a matrix to the case of a dynamical system with in-
puts and outputs. When the input-output relation (or mapping, or operator)
is a constant matrix, testing its positive definiteness can be done by sim-
ply calculating the eigenvalues and checking that they are positive. When
the input-output operator is more complex, testing positive realness becomes
much more involved. This is the object of this chapter which is mainly devoted
to positive real linear time-invariant systems. They are known as PR transfer
functions.

The definition of Positive Real (PR) systems has been motivated by the
study of linear electric circuits composed of resistors, inductors and capaci-
tors. The driving point impedance from any point to any other point of such
electric circuits is always PR. The result holds also in the sense that any PR
transfer function can be realized with an electric circuit using only resistors,
inductors and capacitors. The same result holds for any analogous mechanical
or hydraulic systems. This idea can be extended to study analogous electric
circuits with nonlinear passive components and even magnetic couplings as
done by Arimoto [24] to study dissipative nonlinear systems. This leads us
to the second interpretation of PR systems: they are systems which dissipate
energy. As we shall see later in the book, the notion of dissipative systems,
which applies to nonlinear systems, is closely linked to PR transfer functions.

This chapter reviews the main results available for PR linear systems. It
starts with a short introduction to so-called passive systems. It happens that
there has been a proliferation of notions and definitions of various kinds of
PR or dissipative systems, since the early studies in the 1960s (to name a few:
ISP, OSP, VSP, PR, SPR, WSPR, SSPR, MSPR, ESPR; see the index for
the meaning of these acronyms). The study of their relationships (are they
equivalent, which ones imply which other one?) is not so easy and we bring
some elements of answers in this chapter and the next ones. This is why we
introduce first in this chapter some basic definitions (passive systems, positive
real systems, bounded real transfer functions), their relationships, and then
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we introduce other refined notions of PR systems. The reason why passive
systems are briefly introduced before bounded real and positive real transfer
functions, is that this allows one to make the link between an energy-related
notion and the frequency domain notions, in a progressive way. This, however,
is at the price of postponing a more rigorous and general exposition of passive
systems until later in the book.

2.1 Dynamical System State-space Representation

In this book various kinds of evolution, or dynamical systems will be analyzed:
linear, time invariant, nonlinear, finite-dimensional, infinite-dimensional, dis-
crete time, non-smooth, “standard” differential inclusions, “unbounded” or
“maximal monotone” differential inclusions etc. Whatever the system we shall
be dealing with, it is of utmost importance to clearly define some basic ingre-
dients:

A state vector z(-) and a state space X

A set of admissible inputs U

A set of outputs Y

An input/output mappping (or operator) H : u — y

A state space representation which relates the derivative of z(-) to z()
and u(-)

e An output function which relates the output y(-) to the state z(-) and the
input u(-)

Such tools (or some of them) are necessary to write down the model, or
system, that is under examination. When one works with pure input/output
models, one doesn’t need to define a state space X; however U and ) are
crucial. In this book we will essentially deal with systems for which a state
space representation has been defined. Then the notion of a (state) solution is
central. Given some state space model under the form of an evolution problem
(a differential equation or something looking like this), the first step is to
provide informations on such solutions: the nature of the solutions (as time-
functions, for instance), their uniqueness, their continuity with respect to the
initial data and parameters, etc. This in turn is related to the set of admissible
inputs . For instance, if the model takes the form of an ordinary differential
equation (ODE) %(t) = f(z(t),u(t)), the usual Carathéodory conditions will
be in force to define U as a set of measurable functions, and z(-) will usually
be an absolutely continuous function of time. In certain cases, one may want
to extend U to measures, or even distributions. Then x may also be a measure
or a distribution. Since it is difficult (actually impossible) to provide a general
well-posedness result for all the systems that will be dealt with in the rest
of the book, we will recall the well-posedness conditions progressively as new
models are introduced. This will be the case especially for some classes of
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nonsmooth systems, where solutions may be absolutely continuous, or of local
bounded variation.

From a more abstract point of view, one may define a general state-space
deterministic model as follows [364,510,512]:

There exists a metric space X (the state space), a transition map v :
IRxIRxXxU— X, and a readout map r : X x IR™ — IRP, such that:

e (i) The limit x(t) = lims,——o0o ¥(to,t,0,u) is in X for all ¢ € IR and all
u € U (then z(t) is the state at time ¢)

o (ii) (Causality) 9 (to,t1,x,u1) = ¥ (to,t1,z,uz) for all t1 > o, all z € X,
and all uy,us € U such that uq(t) = uz2(t) in the interval top <t <t

o (iii) (Initial state consistency) ¥ (to,to,zo,u) = xo for all ¢y € R, u € U,
and all xg € X

e (iv) (Semigroup property) 1 (t1,ta, ¥ (to, t1, o, u),u) = ¥(tg,te, xo,u) for
all zg € X, u € U, whenever tg < t; < tg

e (v) (Counsistency with input-output relation) The input-output pairs (u, y)
are precisely those described via y(t) = r (limg,——oo ¥ (to,t,0,u), u(t))
(vi) (Unbiasedness) ¥(to, t,0,0) = 0 whenever ¢t > to and (0,0) =0
(vii) (Time-invariance) (t1 + T,t2 + T, x0,u1) = ¥(t1,t2, To, uz) for all
T € IR, all t5 > t1, and all uy,us € U such that us(t) = ui1(t + 7))

Clearly item (vii) will not apply to some classes of time-varying systems,
and an extension is needed [512, §6]. There may be some items which do not
apply well to differential inclusions where the solution may be replaced by a
solution set (for instance the semigroup property may fail). The basic fact that
X is a metric space will also require much care when dealing with some classes
of systems whose state spaces are not spaces of functions (like descriptor vari-
able systems that involve Schwarz’ distributions). In the infinite-dimensional
case X may be a Hilbert space (i.e. a space of functions) and one may need
other definitions, see e.g. [39,507]. An additional item in the above list could
be the continuity of the transition map (-) with respect to the initial data
. Some nonsmooth systems do not possess such a property, which may be
quite useful in some stability results. A general exposition of the notion of a
system can be found in [467, Chapter 2]. We now stop our investigations of
what a system is since, as we said above, we shall give well-posedness results
each time they are needed all through the book.

2.2 Definitions

In this section and the next one, we introduce input-output properties of a
system, or operator H : u — H(u) = y. The system is assumed to be well-
posed as an input-ouput system, i.e. we may assume that H : Lo — Lo,
1

! More details on £, spaces can be found in Chapter 4.
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Definition 2.1. A system with input u(-) and output y(-) where u(t),y(t) €
R™ is passive if there is a constant B such that

téfvmmw26 (2.1)

for all functions u(-) and all t > 0. If, in addition, there are constants 6 > 0
and € > 0 such that

tT’TUTT tUT’TUTT € tT’T T)aT .
Az/<><m 26+5A (r)u(r)d +(Ay<>w>d (2.2)

for all functions u(-), and all t > 0, then the system is input strictly passive
(ISP) if 6 > 0, output strictly passive (OSP) if € > 0, and very strictly passive
(VSP) if 6 >0 and € > 0. [ |

Obviously 8 < 0 as the inequality (2.1) is to be valid for all functions
u(-) and in particular the control u(t) = 0 for all ¢ > 0, which gives 0 =

fg yT(s)u(s)ds > 3. Thus the definition could equivalently be stated with 8 <
0. The importance of the form of 5 in (2.1) will be illustrated in Examples 4.59

and 4.60; see also Section 4.4.2. Notice that [ y7(s)u(s)ds < L [T[yT (s)y(s)+
u” (s)u(s)]ds is well defined since both u(-) and y(+) are in L2 . by assumption.

Theorem 2.2. Assume that there is a continuous function V(-) > 0 such that

ww—wmséy@%mmS (2.3)

for all functions u(-), for all t > 0 and all V(0). Then the system with input
u(-) and output y(-) is passive. Assume, in addition, that there are constants
6 >0 and € > 0 such that

V() - V(0) < /0 o7 (5)u(s)ds — § /0 o (s)u(s)ds — € /0 T (8)y(s)ds (2.4)

for all functions u(-), for all t > 0 and all V(0). Then the system is input
strictly passive if there is a § > 0, it is output strictly passive if there is an
€ > 0, and very strictly passive if there is a > 0 and an € > 0 such that the
inequality holds. |

Proof: It follows from the assumption V(¢) > 0 that

AﬁbM@wz—wm

for all functions u(-) and all s > 0, so that (2.1) is satisfied with 8 := —V(0) <
0. Input strict passivity, output strict passivity and very strict passivity are
shown in the same way. |
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This indicates that the constant (3 is related to the initial conditions of the
system; see also Example 4.59 for more informations on the role played by .
It is also worth looking at Corollary 3.3 to get more informations on the real
nature of the function V'(-): V(-) will usually be a function of the state of the
system. The reader may have guessed such a fact by looking at the examples
of Chapter 1.

Corollary 2.3. Assume that there exists a continuously dzﬁerentiable func-
tion V() > 0 and a measurable function d(-) such that fo s)ds > 0 for all
t>0. Then

1. If .
V() <y (Hu(t) - d(t) (2.5)
for all t > 0 and all functions u(-), the system is passive.
2. If there exists a 6 > 0 such that

V(1) <y (t)u(t) — ou” (Dult) — d(t) (2.6)
for all t > 0 and all functions u(-), the system is input strictly passive
(ISP).

3. If there exists a € > 0 such that

V() < yT(8u(t) — ey (8)y(t) —d(t) (2.7)

for all t > 0 and all functions u(-), the system is output strictly passive
(OSP).
4. If there exists a § > 0 and a € > 0 such that

V() < yT(8u(t) — du (tu(t) —ey™ (8)y(t) — d(t) (2.8)
for all t > 0 and all functions u(-), the system is very strictly passive
(VSP). [

If V(-) is the total energy of the system, then (u,y) fo s)ds can be

seen as the power supplied to the system from the control, whlle d( ) can be
seen as the power dissipated by the system. This means that the condition
fo s)ds >0 for all ¢ > 0 means that the system is dissipating energy. The
term w(u y) = uTy is called the supply rate of the system.

Remark 2.4. All these notions will be examined in much more detail in Chap-
ter 4; see especially Section 4.5.2. Actually the notion of passivity (or dissi-
pativity) has been introduced in various ways in the literature. It is some-
times introduced as a pure input/output property of an operator (i.e. the
constant  in (2.1) is not related to the state of the system) [125,499, 500],
and serves as a tool to prove some bounded input/bounded output stabil-
ity results. Willems has, on the contrary, introduced dissipativity as a notion



14 2 Positive Real Systems

which involves the state space representation of a system, through so-called
storage functions [510,511]. We will come back to this subject in Chapter 4.
Hill and Moylan started from an intermediate definition, where the constant
3 is assumed to depend on some initial state xo [206-209]. Then, under some
controllability assumptions, the link with Willems’ definition is made. In this
chapter and the next one, we will essentially concentrate on linear time in-
variant dissipative systems, whose transfer functions are named positive real
(PR). This is a very important side of passivity theory in Systems and Control
theory.

2.3 Interconnections of Passive Systems

A useful result for passive systems is that parallel and feedback interconnec-
tions of passive systems are passive, and that certain strict passivity properties
are inherited.

U U U
1 hy Y1 1 hy hn Y

Y

U U
2 By Y2 Y2 hy 2

A

Fig. 2.1. Parallel and feedback interconnections.

To explore this we consider two passive systems with scalar inputs and out-
puts. Similar results are found for multivariable systems. System 1 has input
w1 and output y;, and system 2 has input us and output y». We make the
following assumptions:

1. There are continuous differentiable functions V;(¢) > 0 and V2(¢) > 0.

2. There are functions d; () and da(+) such that fot dy(s)ds > 0 and fot da(s)ds
>0 forallt>0.

3. There are constants §; > 0, o > 0, €; > 0 and e > 0 such that

Vi(t) = y1(t)ui (t) — 6145 (t) — e1yf — da(t) (2.9)

Va(t) = ya(t)us(t) — S2u3(t) — €23 — da(t) (2.10)
Assumption 3 implies that both systems are passive, and that system i is
strictly passive in some sense if any of the constants J; or €; are greater than
zero. For the parallel interconnection we have w1 = us = u, y = y1 + y2, and
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yu = (y1 +y2)u = y1u + you = yru1 + yauz (2.11)

By adding (2.9) (2.10) and (2.11), there exists a V(-) = V4(-) + Va(-) > 0 and
a d, =dy +ds + €1y} + e2y3 such that fg d,(t")dt' > 0 for all t > 0, and

V(t) = y(t)u(t) — du?(t) — dy(t) (2.12)

where § = 01 4+ d2 > 0. This means that the parallel interconnection system
having input « and output y is passive and strictly passive if 6; > 0 or d2 > 0.
For the feedback interconnection we have y1 = us =y, u1 = u — yo, and

yu = y1(u1 + y2) = y1u1 + Y1y2 = y1u1 + w2y (2.13)

Again by adding (2.9) (2.10) and (2.11) we find that there is a V(-) = V4 (-) +
Vo(-) > 0and a dfp, = di +do + §1u? such that fot dsp(s)ds > 0 for all t > 0
and

V(t) = y(t)u(t) — ey (t) — dsp(t) (2.14)

where € = €1 + €3 + d2. This means that the feedback interconnection is
passive, and in addition output strictly passive if €1 > 0, €5 > 0, or §5 > 0. By
induction it can be shown that any combination of passive systems in parallel
or feedback interconnection is passive.

2.4 Linear Systems

Let us now deal with linear invariant systems, whose input-output relation-
ships takes the form of a rational transfer function H(s) (also denoted as h(s)),
s € C, and y(s) = H(s)u(s) where u(s) and y(s) are the Laplace transforms
of the time-functions u(-) and y(-). Parseval’s Theorem is very useful in the
study of passive linear systems, as shown next. It is now recalled for the sake
of completeness.

Theorem 2.5 (Parseval’s Theorem). Provided that the integrals exist, the
following relation holds:

| atow it = o [ atiow G (2.15)

—00 27 —00

where y* denotes the complex conjugate of y and x(jw) is the Fourier trans-
form of x(t), where x(t) is a complex function of t, Lebesque integrable. W

Proof: The result is established as follows: the Fourier transform of the time
function x(t) is

z(jw) = /OO x(t)e It dt (2.16)

— 0o
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while the inverse Fourier transform is

x(t) ! /00 z(jw)e?“ dw (2.17)

:% .

Insertion of (2.17) in (2.15) gives

/ oty ()t = / h [% / h x(jw)ej”tdw} y* (t)dt (2.18)

— 0o —0o0 — 0o

By changing the order of integration this becomes

/_Z w(t)y* (t)dt = % /_Z z(jw) U_Z y*(t)ej”tdt] dw (2.19)

Here - - .
/ y*(t)ertdt = {/ y(t)e_j“’tdt} =y*(jw) (2.20)
and the result follows. [ |

u(s) y(s)

e h(S) ————»

Fig. 2.2. Linear time-invariant system

We will now present important properties of a linear time-invariant passive
system, which link the input-output passivity property to frequency-domain
conditions, using Parseval’s Theorem. These notions will be generalized later
in the book, both in the case of LTI and nonlinear systems. Their usefulness
will be illustrated through examples of stabilization.

Theorem 2.6. Given a linear time-invariant linear system with rational
transfer function h(s), i.e.

y(s) = h(s)uls) (2.21)

Assume that all the poles of h(s) have real parts less than zero. Then the
following assertions hold:

1. The system is passive < Re[h(jw)] > 0 for all w € [—o00, +0].

2. The system is input strictly passive (ISP) < There exists a § > 0 such
that Re[h(jw)] > 6 > 0 for all w € [—o0, +00].

3. The system is output strictly passive (OSP) < There exists an € > 0 such
that
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Remark 2.7. A crucial assumption in Theorem 2.6 is that all the poles have
negative real parts. This assures that in Parseval’s Theorem as stated in The-
orem 2.5, the “integrals exist”.

Proof: The proof is based on the use of Parseval’s Theorem. In this Theorem
the time integration is over ¢ € [0,00). In the definition of passivity there is
an integration over ¢ € [0,T]. To be able to use Parseval’s Theorem in this
proof we introduce the truncated function

_ Ju(r) when T <t
ui(r) = {O when 7>t (2.22)

which is equal to u(7) for all 7 less than or equal to ¢, and zero for all T greater
than ¢. The Fourier transform of ur(t), which is denoted ur(jw), will be used
in Parseval’s Theorem. Without loss of generality we will assume that y(t)
and u(t) are equal to zero for all ¢ < 0. Then according to Parseval’s Theorem

| vty = /OQ @i = 2 [y Gede  (2.23)
0

— 00 - % — 00
Insertion of y(jw) = h(jw)ur(jw) gives
t 1 [e'e]
| v = 5= [ hGwurieds, @2)
where

h(jw)ue(jw)ui (jw) = {Refh(jw)] + jIm[h(jw)]}u (jw)|* (2.25)

The left hand side of (2.24) is real, and it follows that the imaginary part on
the right hand side is zero. This implies that

' I . ,
/ u(r)y(r)dr = o / Re[h(jw)][us (jo) 2w (2.26)
0 —00
First, assume that Re[h(jw)] > § > 0 for all w. Then

t 5 o) ) B t
/0 u(r)y(r)dr > %/700 |Ut(]w)|2dw = 5/0 u2(7-)d7' (2.27)

The equality is implied by Parseval’s Theorem. It follows that the system
is passive, and in addition input strictly passive if 6 > 0.
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Then, assume that the system is passive. Thus there exists a § > 0 so that

t t ) _i ) y .w ) y
/0 y(s)u(s)dszzé/o u(s)ds = o 1w| +(jw)|7d (2.28)

for all u(-), where the initial conditions have been selected so that 8 = 0. Here
6 = 0 for a passive system, while § > 0 for a strictly passive system. Then

% /o:o Re[h(jw)]lur(jw)[*dw > % /O:O lur(jw)|?dw (2.29)
and
% jo (Re[h(jw)] — 0)|ur (jw)>dw > 0 (2.30)

If there exists a wy so that Re[h(jwp)] < 4, then inequality will not hold
for all w because the integral on the left hand side can be made arbitrarily
small if the control signal is selected to be u(t) = U coswyt. The results 1 and
2 follow.

To show result 3 we first assume that the system is output strictly passive,
that is, there is an € > 0 such that

/0 y(s)u(s)ds > e / P s)ds = - / [h(jeo) Plue o) P, (2.31)

— 00

This gives the inequality (see (2.26))

Rel[h(jw)] > € |h(jw)|? (2.32)

which is equivalent to

¢ |(Re[h(jw)])” + (Im[h(jw)])*| — Re[h(jw)] < 0 (2.33)

and the second inequality follows by straighforward algebra. The converse
result is shown similarly as the result for input strict passivity. |

Note that according to the theorem a passive system will have a transfer
function which satisfies

[Zh(jw)| <90° forall w € [—o0, 4] (2.34)

In a Nyquist diagram the theorem states that h(jw) is in the closed half
plane Re|[s] > 0 for passive systems, h(jw) is in Re[s] > 6 > 0 for input
strictly passive systems, and for output strictly passive systems h(jw) is inside
the circle with center in s = 1/ (2¢) and radius 1/ (2¢). This is a circle that
crosses the real axis in s =0 and s = 1/e.



2.4 Linear Systems 19

Remark 2.8. A transfer function h(s) is rational if it is the fraction of two
polynomials in the complex variable s, that is if it can be written in the form

Q(s)

") = Rs)

(2.35)

where Q(s) and R(s) are polynomials in s. An example of a transfer function
that is not rational is h(s) = tanh s which appears in connection with systems
described by partial differential equations.

Ezample 2.9. Note the difference between the condition Re[h(jw)] > 0 and
the condition for input strict passivity in that there exists a § > 0 so that
Re[h(jwo)] > 0 > 0 for all w. An example of this is

1
hi(s) = T (2.36)
We find that Re[h;(jw)] > 0 for all w because
. 1 1 wT
hi(jw) (2.37)

T 11l 1+ wl)? J1r(r)?

However there is no 6 > 0 that ensures Re[h(jwg)] > d > 0 for all w €
[—00, +00]. This is seen from the fact that for any § > 0 we have

1 [1-461

This implies that hi(s) is not input strictly passive. We note that for this
system

- ﬁ = Re[hy (jw)] (2.39)

which means that the system is output strictly passive with € = 1.

|ha(jw)

Ezxample 2.10. Consider a system with the transfer function

s+c

BT G aG T

(2.40)

where a, b and ¢ are positive constants. We find that

. _ jw—+c
ha(jw) = GoteiGort)

_ (chjw)(a—jw)(b—jw)
(@?+7) (+4?)

_ abetw?(a+b—c)+jw(ab—ac—be)—w?]
= @ Fo?) (7 4a?) :

From the above it is clear that
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1. If ¢ < a+b, then Re[ha(jw)] > 0 for all w € R. As Re[hz(jw)] — 0 when
w — 00, the system is not input strictly passive.
2. If ¢ > a + b, then ha(s) is not passive because Relhs(jw)] < 0 for w >

vabe/(c —a—b).

Example 2.11. The systems with transfer functions

hs(s)=1+Ts (2.41)
1+Tis
h = T <T 2.42
a(s) 1+ Tys’ 1 <12 (2.42)
are input strictly passive because
Re[hs(jw)] =1 (2.43)
and 2
, 14+ w*TiTs I
Relh = —1 2.44
e[ 4(]‘*’)] 1+(wT2)2 (T27 ] ( )
Moreover |hs(jw)|® < 1, so that
) T T .
Relha(jw)] > 7= > - [ha(je)l’ (2.45)
2 2

which shows that the system is output strictly passive with € = T7/T5. The
reader may verify from a direct calculation of |h4(jw)|* and some algebra that
it is possible to have Re[hy(jw)] > |ha(jw)|?, that is, e = 1. This agrees with
the Nyquist plot of hy(jw).

Example 2.12. A dynamic system describing an electrical one-port with resis-
tors, inductors and capacitors is passive if the voltage over the port is input
and the current into the port is output, or vice versa. In Figure 2.3 different
passive one-ports are shown. We consider the voltage over the port to be the
input and the current into the port as the output. The resulting transfer func-
tions are admittances, which are the inverses of the impedances. Circuit 1 is
a capacitor, circuit 2 is a resistor in parallel with a capacitor, circuit 3 is a
resistor in series with a inductor and a capacitor, while circuit 4 is a resistor
in series with a parallel connection of an inductor, a capacitor and a resistor.
The transfer functions are

hi(s) =Cs (2.46)
ha(s) = ]—1%(1 + RC) (2.47)
ha(s) Cs (2.48)

- 1+ RCs+ LCs?
1 1+ %s+LCs?
B R11+(RL1+%)S—|—LC52

ha(s) (2.49)
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Fig. 2.3. Passive electrical one-ports

Systems 1, 2, 3 and 4 are all passive as the poles have real parts that are
strictly less than zero, and in addition Re[h;(jw)] > 0 for all w € [—o0, +00]
and i € {1,2,3,4} (the fact that all the poles are in Re[s] < 0 is important; see
Theorem 2.14). It follows that the transfer functions have phases that satisfy
[Zh;(jw)] < 90°. In addition system 2 is input strictly passive as Re[hs(jw)] =
1/R > 0 for all w. For system 4 we find that

2
1 1 —w?LO)? + W g7 (1% v 1
Relhy(jw)] = = e > (2.50)
Rl (1 — szC)Q + WQﬁ Rl + R
which means that system 4 is input strictly passive. [ |

So far we have only considered systems where the transfer functions h(s)
have poles with negative real parts. There are however passive systems that
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have transfer functions with poles on the imaginary axis. This is demonstrated
in the following example:

Ezample 2.13. Consider the system ¢(t) = w(t) which is represented in transfer
function description by y(s) = h(s)u(s) where h(s) = L. This means that the
transfer function has a pole at the origin, which is on the imaginary axis. For
this system Re[h(jw)] = 0 for all w. However, we cannot establish passivity
using Theorem 2.6 as this theorem only applies to systems where all the poles
have negative real parts. Instead, consider

¢ t
[ wsutsids = [ yispits)as (2.51)

0 0

A change of variables y(t)dt = dy gives

t u(t)dt' = v t’d—l t)? 0)?] > L 0)2 2.52
/Oy( Ju(t’) —/y(o)y()y—Q[y() —y()]_—§y() (2.52)

and passivity is shown with 5 = —%y(O)Q. [ ]

It turns out to be relatively involved to find necessary and sufficient con-
ditions on h (jw) for the system to be passive when we allow for poles on
the imaginary axis. The conditions are relatively simple and are given in the
following Theorem.

Theorem 2.14. Consider a linear time-invariant system with a rational
transfer function h(s). The system is passive if and only if

1. h(s) has no poles in Re|[s] > 0.

2. Re[h(jw)] > 0 for all w € [—00, +00] such that jw is not a pole of h(s).

3. If jwo is a pole of h(s), then it is a simple pole, and the residual in s =
Jwo 1is real and greater than zero, that is, Ress—ju, h(s) = lims_j, (s —
Jjwo)h(jw) > 0.

The above result is established in Section 2.12. Contrary to Theorem 2.6,
poles on the imaginary axis are considered.

Corollary 2.15. If a system with transfer function h(s) is passive, then h(s)
has no poles in Re[s] > 0. [

Proposition 2.16. Consider a rational transfer function

(st a)(s+2)...
ils) = s(s+p1)(s+p2)...

where Re[p;] > 0 and Relz;] > 0 which means that h(s) has one pole at
the origin and the remaining poles in Re[s] < 0, while all the zeros are in
Re[s] < 0. Then the system with transfer function h (s) is passive if and only
if Re[h(jw)] > 0 for all w € [—00, +00]. [

(2.53)
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Proof: The residual of the pole on the imaginary axis is
2122 ...

Ress—oh(s) = ———— 2.54

’ (s) pip2.- .. ( )

Here the constants z; and p; are either real and positive, or they appear in
complex conjugated pairs where the products z;2] = |2;|? and p;p} = |p;|? are
real and positive. It is seen that the residual at the imaginary axis is real and
positive. As h(s) has no poles in Re[s] > 0 by assumption, it follows that the

system is passive if and only if Re[h(jw)] > 0 for all w € [—o0, +00]. [
Example 2.17. Consider two systems with transfer functions

5?2 +a?

h =5 0 0 2.55

1(8) S(SQ—FWS)’ a# 7"‘)07'é ( )
s

h = =7, 0 2.56

() = g w0 (2.56)

where all the poles are on the imaginary axis. Thus condition 1 in Theo-
rem 2.14 is satisfied. Moreover,

a2—w2

hi(jw) = —jm

(2.57)

) oW
ha(jw) = I = (2.58)
so that condition 2 also holds in view of Re[h;(jw)] = Re[ha(jw)] = 0 for all
w so that jw is not a pole in h (s). We now calculate the residual, and find

that
2

Ress—ohi (s) = — (2.59)
Wo
w2 _ a2
Ress=+juw, h1(s) = 02w2 (2.60)
0
1
Ress—tjw, ha(s) = 5 (2.61)

We see that, according to Theorem 2.14, the system with transfer function
ha(s) is passive, while hq(s) is passive whenever a < wy.

Ezxample 2.18. Consider a system with transfer function

1
h(s) = 3 (2.62)
The transfer function has no poles in Re[s] > 0, and Re[h(jw)] > 0 for all
w # 0. However, Ress—oh(s) = —1, and Theorem 2.14 shows that the system

is not passive This result agrees with the observation

t y(t) 1 ) )
[ wmtoas == [y = w02 -y 6

where the right hand side has no lower bound as y(t) can be arbitrarily large.
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2.5 Passivity of the PID Controllers

Proposition 2.19. Assume that 0 < T; < T; and 0 < « < 1. Then the PID

controller
_ 1+T;s 1+1Tys

h-(s) = K, 2.64
() P Tis 14+ aTys ( )
1S passive. [ |
This follows from Proposition 2.16.
Proposition 2.20. Consider a PID controller with transfer function
14+Tis 14T,
ho(s) = KBt 2% LH1as (2.65)

1+ 8T;s1+ adys

where 0 < Ty <T;, 1 << o0 and 0 < a < 1. Then the controller is passive
and, in addition, the transfer function gain has an upper bound |h,(jw)| < KTM
and the real part of the transfer function is bounded away from zero according
to Re [h,(jw)] > K, for all w. [

It follows from Bode diagram techniques that

, 1 K3
he(j)] < 8 10— = =2

z (2.66)

The result on the Re [h,(jw)] can be established using Nyquist diagram, or
by direct calculation of Re [h,(jw)]. |

2.6 Stability of a Passive Feedback Interconnection

hu(s) o ha(s) yls),

ho(s) <

yo(s

Fig. 2.4. Interconnection of a passive system hi(s) and a strictly passive system

hz(s)

Consider a feedback loop with loop transfer function ho(s) = hi(s)ha(s)
as shown in Figure 2.4. If hy is passive and hso is strictly passive, then the
phases of the transfer functions satisfy

|Lhy(jw)] < 90° and | Zha(jw)| < 90° (2.67)

It follows that the phase of the loop transfer function hg(s) is bounded by
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|£ho(jw)| < 180° (2.68)

As hy and hy are passive, it is clear that hg(s) has no poles in Rels] >
0. Then according to standard Bode-Nyquist stability theory the system is
asymptotically stable and BIBO stable 2. The same result is obtained if instead
h1 is strictly passive and hs is passive.

We note that, in view of Proposition 2.20, a PID controller with limited
integral action is strictly stable. This implies that

e A passive linear system with a PID controller with limited integral action
is BIBO stable.

For an important class of systems passivity or strict passivity is a structural
property which is not dependent on the numerical values of the parameters
of the system. Then passivity considerations may be used to establish sta-
bility even if there are large uncertainties or large variations in the system
parameters. This is often referred to as robust stability. When it comes to
performance it is possible to use any linear design technique to obtain high
performance for the nominal parameters of the system. The resulting system
will have high performance under nominal conditions, and in addition robust
stability under large parameter variations.

2.7 Mechanical Analogs for PD Controllers

In this section we will study how PD controllers for position control can be
represented by mechanical analogs when the input to the system is force and
the output is position. Note that when force is input and position is output,
then the physical system is not passive. We have a passive physical system if
the force is the input and the velocity is the output, and then a PD controller
from position corresponds to PI controller from velocity. For this reason we
might have referred to the controllers in this section as PI controllers for
velocity control.

We consider a mass m with position z(-) and velocity v(-) = @(-). The
dynamics is given by m(t) = u(t) where the force  is the input. The desired
position is x4(+), while the desired velocity is vq(-) = #4(-). A PD controller
u = Kp(1+4 Tys) [xa(s) — z(s)] is used. The control law can be written as

u(t) = Kp(za(t) — z(t)) + D(va(t) — v(t)) (2.69)

where D = K,T;. The mechanical analog appears from the observation that
this control force is the force that results if the mass m with position x is
connected to the position x4 with a parallel interconnection of a spring with
stiffness K, and a damper with coefficient D as shown in Figure 2.5.

2 Bounded Input-Bounded Output.
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Kp
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- 0— —O
— = -
T D o

Fig. 2.5. Mechanical analog of PD controller with feedback from position

If the desired velocity is not available, and the desired position is not
smooth a PD controller of the type

u(s) = Kpza(s) — Kp(1+Tgs)z(s), s€ C
can be used. Then the control law is

u(t) = K (za(t) — 2(t)) — Do(t) (2.70)

This is the force that results if the mass m is connected to the position
xq with a spring of stiffness K, and a damper with coefficient D as shown in
Figure 2.6.

- D —

T Zo

Fig. 2.6. Mechanical analog of a PD controller without desired velocity input

If the velocity is not measured the following PD controller can be used

1+ Tys

u(s) = P14+ aTys

[za(s) — x(s)] (2.71)
where 0 < o < 1 is the filter parameter. We will now demonstrate that this
transfer function appears by connecting the mass m with position z to a
spring with stiffness K7 in series with a parallel interconnection of a spring
with stiffness K and a damper with coefficient D as shown in Figure 2.7.

To find the expression for K; and K we let z; be the position of the
connection point between the spring K7 and the parallel interconnection. Then
the force is w = Kj(x1 — z), which implies that z1(s) = z(s) + u(s)/K;. As
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e O—" WA L0
=

D

T T ZTo

Fig. 2.7. Mechanical analog of a PD controller without velocity measurement

there is no mass in the point x; there must be a force of equal magnitude in
the opposite direction from the parallel interconnection, so that

u(s) = Klza(s) — 21(s)] + D[va(s) — vi(s)] = (K + Ds)[za(s) — z1(s)] (2.72)
Insertion of z1(s) gives
u(s) = (K + Ds)[zq(s) — z(s) — —wu(s)] (2.73)

We solve for u(s) and the result is

u(s) = K15 155 [ta(s) — 2(s)]

KK 1+ L2
= Klﬂ.;gﬁ[xd( s) — z(s)]

We see that this is a PD controller without velocity measurement where

_ KK
Kp_Kll-O-K
Ty =2
a :K1+K [0,1)

2.8 Multivariable Linear Systems

Theorem 2.21. Consider a linear time-invariant system
y(s) = H(s)u(s) (2.74)

with a rational transfer function matriz H(s) € C™*™, input u(t) € R™ and
input y(t) € R™. Assume that all the poles of H(s) are in Re|[s] < 0. Then,

1. The system is passive < Apin[H (Jw)+H* (jw)] > 0 for allw € [—o0, +o0].
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2. The system is input strictly passive < There is a § > 0 so that Apin[H (jw)
+H*(jw)] >0 > 0 for all w € [—00, +x].

Remark 2.22. Similarly to Theorem 2.6, a crucial assumption in Theorem 2.21
is that the poles have negative real parts, i.e. there is no pole on the imaginary
axis.

Proof: Let A € C™*™ be some Hermitian matrix with eigenvalues \;(A).
Let x € €™ be an arbitrary vector with complex entries. It is well-known
from linear algebra that 2*Ax is real, and that x* Az > Apin(A)|z|?. From
Parseval’s Theorem we have

Joy s)ds = 321 [y yils) (wi)i(s)ds

Yo 3 J oo wi (jw0) (ui)e (jw)dw

=5 f_ *(jw)ug(jw)dw

where we recall that u(+) is a truncated function and that s in the integrand is
a dumb integration variable (not to be confused with the Laplace transform!).
This leads to

JEyT (syu(s)ds = [°yT (s)uy(s)ds

1 o0

= 57 ) oo ¥ (jw)ur (jw)dw

2 s (w)y(jw) + v (jw)ue (jw)]dw

o0

= i 70 up Gw)[H (jw) + H* (jo)]ur (jw)dw
Because H(jw) + H*(jw) is Hermitian we find that

[ v @=L [ sl o) + 1 Gl Pde (219
0 T J-

The result can be established along the lines of Theorem 2.6. ]

2.9 The Scattering Formulation

By a change of variables an alternative description can be established where
passivity corresponds to small gain. We will introduce this idea with an ex-
ample from linear circuit theory. Consider a linear time-invariant system de-
scribing an electrical one-port with voltage e, current ¢ and impedance z (s)
so that
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e(s) = z(s)i(s) (2.76)

Define the wave variables
a=ec+z20 and b=e— zpi (2.77)

where zq is a positive constant. The Laplace transform is

a(s) = [2(s) + z0li(s)
b(s) = [2(s) — z0li(s)

Combining the two equations we get

b(s) = g(s)a(s) (2.78)

where .
2(8) — 20 —zzs -1
= p— 2.79
g(S) 20 +Z(S) 1+ z(s) ( )

20

is the scattering function of the system. The terms wave variable and scatter-
ing function originate from the description of transmission lines where a can
be seen as the incident wave and b can be seen as the reflected wave.

If the electrical circuit has only passive elements, that is, if the circuit is an
interconnection of resistors, capacitors and inductors, the passivity inequality
satisfies

/Ot e(m)i(t)dr >0 (2.80)

where it is assumed that the initial energy stored in the circuit is zero. We
note that
a® —b? = (e + 201)? — (e — 201)? = dzpei (2.81)

which implies

/0 "2 (r)dr — /0 "2 (r)dr — 4% /O ' e(ri(rydr (2.82)

From this it is seen that passivity of the system with input ¢ and output e
corresponds to small gain for the system with input ¢ and output b in the
sense that

/Ot b2 (r)dr < /Ot a*(T)dr (2.83)

This small gain condition can be interpreted loosely in the sense that the
energy content b2 of the reflected wave is smaller than the energy a? of the
incident wave. For the general linear time-invariant system

y(s) = h(s)u(s) (2.84)

introduce the wave variables
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a=y+u and b=y—u (2.85)

where, as above, a is the incident wave and b is the reflected wave. As for
electrical circuits it will usually be necessary to include a constant zg so that
a =1y + zou b =y — zou so that the physical units agree. We tacitly suppose
that this is done by letting zg = 1 with the appropriate physical unit. The
scattering function is defined by

h(s) —1

aboy_ YU
N 1+ h(s)

—(s)

a _y—|—u

(s) (2.86)

Theorem 2.23. Consider a system with rational transfer function h(s) with
no poles in Re[s] > 0, and scattering function g(s) given by (2.86). Then

1. The system is passive if and only if |g(jw)| < 1 for all w € [—o0, +00].

2. The system is input strictly passive, and there is a v so that |h (jw)| < v
for allw € [—o00, +00] if and only if there is a ' € (0,1) so that |g(jw)|* <
1—+". [ |

Proof: Consider the following computation
. h(jw)—1|2
l9(jw)? = it
_ |[n(w)|®—2Re[h(jw)]+1 (2.87)

 [h(Gw) P +2Re[h(jw)]+1

1 4Re[h(jw)]
[h(jw)+1]?

It is seen that |g(jw)| < 1 if and only if Re[h(jw)] > 0. Result 1 then
follows as the necessary and sufficient condition for the system to be passive
is that Re[h(jw)] > 0 for all w € [—o0, +0o0]. Concerning the second result,
we show the “if” part. Assume that there is a ¢ so that Re[h(jw)] > > 0
and a v so that |h (jw)| < for all w € [—00, +00]. Then
44

lg(jw)|” > 1 1)

(2.88)
and the result follows with 0 < 4/ < min (1, ﬁ). Next assume that
g(jw)|? <1 -+ for all w. Then

4Re [h(jw)] = 7' (|h(jw)|* + 2Re[h(jw)] + 1) (2.89)

and strict passivity follows from

Re [h(jw)] > >0 (2.90)

Finite gain of h (jw) follows from
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Y [h(G)? = (4 = 29) Re[h(jw)] +1' <0 (2.91)

which in view of the general result |h(jw)| > Re[h(jw)] gives the inequality

. 4-2v)
Ih(jw)|? — (WV) Ih(jw)| +1 <0 (2.92)
This implies that
, 4- 29
|h (jw)| < U-2) i ) (2.93)
||

We shall come back on the relationships between passivity and bounded
realness in the framework of dissipative systems and H., theory; see Sec-
tion 5.9. A comment on the input-output change in (2.85): the association
of the new system with transfer function g(s) merely corresponds to writing
down uy = +(a +b)(a — b) = (a® — b?). Thus if fot u(s)y(s)ds > 0 one gets
fot a?(s)ds > fot b2(s)ds: the Lo-norm of the new output b(¢) is bounded by
the Lo-norm of the new intput a(t).

2.10 Impedance Matching

In this section we will briefly review the concept of impedance matching.
Again an electrical one-port is studied. The one-port has a voltage source e,
serial impedance zp output voltage v and current <. The circuit is coupled to
the load which is a passive one-port with driving point impedance zj,(s) as
shown in Figure 2.8.

20($) S
() e u zr(s)
_ 5 T

Fig. 2.8. Impedance matching

The following problem will be addressed: suppose zg (s) is given and that
e (t) = Esinw,t. Select zy, (s) so that the power dissipated in 2z, is maximized.
The current is given by

i(s) = ———L (2.94)
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while the voltage over zy, is
u(s) = zr(s)i(s) (2.95)
The power dissipated in zj, is therefore
P(we) = sRefur (jw,)i* (jw.)]

= %RG[ZL (jwe)]i(jwe)i* (jwe)

1 Re[z. (jw,)] B2
2 Teo (Gwo) T2 (Gwe ) [0 (jw )2 (e )]

where (-)* denotes the complex conjugate. Denote

Zo(jwe) = Qo +]ﬂ0 or ZL(jwe) =ar +]ﬂL (296)

This gives
1 E?
_t O;L - (2.97)
2 (a0 +ar)?+ (Bo + Br)
We see that if a, = 0, then P = 0, whereas for nonzero ay, then |31 — oo,
gives P — 0. A maximum for P would be expected somewhere between these
extremes. Differentiation with respect to G gives

orP  E? —2ar(Bo + Br)
— = > I (2.98)
B 2 [(ao+ar)*+ (Bo+ BL)?
which implies that the maximum of P appears for 8y = —(y. Differentiation
with respect to oy, with 0, = —fy gives
2 2 _ 2
o°P E ag —ar, (2.99)

da 2 [(ao +ar)?+ (Bo + Br)??

and it is seen that the maximum is found for a; = ag. This means that the
maximum power dissipation in zy, is achieved with

21 (jwe) = 25 (Jwe) (2.100)

This particular selection of zj,(jw,) is called impedance matching. If the
voltage source e(t) is not simply a sinusoid but a signal with a arbitrary spec-
trum, then it is not possible to find a passive impedance zr,(s) which satisfies
the impedance matching condition or a general series impedance z(jw). This
is because the two impedances are required to have the same absolute values,
while the phase have opposite signs. This cannot be achieved for one particular
zr,(s) for all frequencies.

However, if zp(jw) = 20 is a real constant, then impedance matching at
all frequencies is achieved with z; = z5. We now assume that zy is a real
constant, and define the wave variables to be
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a=u+ 2zt or b=u— 2z (2.101)

Then it follows that
a=e (2.102)

for the system in Figure 2.8. A physical interpretation of the incident wave a is
as follows: let u be the input voltage to the one-port and let ¢ be the current
into the port. Consider the extended one-port where a serial impedance zg
is connected in to the one-port as shown in Figure 2.9. Then « is the input
voltage of the extended one-port.

a u zr,(s)

O O

Fig. 2.9. Extended one-port with a serial impedance zo

w(s) ——»;  z(s)
I O . O
= = =
a U b z
5 5 o— 1

Fig. 2.10. Physical interpretation of the reflected wave b where zZ = z1.(s) — 20(s)
The physical interpretation of the reflected wave b is shown in figure 2.10.

We clearly see that if z;, = zg, then
u=zt = b=0 (2.103)

This shows that if impedance matching is used with zg being constant, then
the scattering function is

g(s)=—==0 (2.104)
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Yo € Ut u Y
—_—( ) — hr(S) F——( )——— h(S) >

Fig. 2.11. Feedback interconnection of two passive systems

2.11 Feedback Loop

A feedback interconnection of two passive linear time-invariant systems is
shown in Figure 2.11 where signals are given by

y(s) = h(s)u(s), ut(s) = hr(s)e(s) (2.105)

u(t) = up(t) +ue(t),  e(t) =yolt) —y(t) (2.106)
We can think of h(s) as describing the plant to be controlled, and h,(s)
as describing the feedback controller. Here u; is the feedback control and
uy is the feedforward control. We assume that the plant h(s) and that the
feedback controller h,(s) are strictly passive with finite gain. Then, as shown
in Section 2.6 we have Z|ho(jw)| < 180° where ho(s) := h(s)h,(s) is the loop
transfer function, and the system is BIBO stable.
A change of variables in now introduced to bring the system into a scat-
tering formulation. The new variables are

a2 y+u and b 2 Y—u
for the plant and
A A
a,=us+e and b, =u;—e
for the feedback controller. In addition input variables
A
aoéyo—i—uf and by = yo —uy

are defined. We find that

ar=U+Yo—y=u—ur+yo—y=>bo—>b (2.107)
and
br=uw—yo+y=u—ur—yY+y=a—ap (2.108)
The associated scattering functions are
A h(s)—1 A hp(s)—1
= —— d r =
96) =T M ST
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Now, h(s) and h,(s) are passive by assumption, and as a consequence they
cannot have poles in Re([s] > 0. Then it follows that g(s) and g,(s) cannot
have poles in Re[s] > 0 because 1 + h(s) is the characteristic equations
for h(s) with a unity negative feedback, which obviously is a stable system.
Similar arguments apply for 1+ h(s). The system can then be represented as
in Figure 2.12 where

b(s) = g(s)a(s),  br(s) = gr(s)ar(s) (2.109)
a(t) =b,(t) +ao(t),  ar(t) =bo(t) —b(t) (2.110)
aop = Yo + uy
bo = yo —uy __a, b, a b

Y

— Y908 O 9(s)

_ 9o(s) J

Fig. 2.12. Equivalent system

In the passivity setting, stability was ensured when two passive systems were
interconnected in a feedback structure because the loop transfer function
ho(jw) had a phase limitation so that Zhg (jw) > —180°. We would now
like to check if there is an interpretation for the scattering formulation that is
equally simple. This indeed turns out to be the case. We introduce the loop
transfer function

90(s) = g(5)9r(5) (2.111)

of the scattering formulation. The function go(s) cannot have poles in Re [s] >
0 as g(s) and g, (s) have no poles in Re[s] > 0 by assumption. Then we have
from Theorem 2.23:

1. |g(jw)] <1 for all w € [—o0, +00] because h(s) is passive.
2. |gr(jw)| < 1 for all w € [—o0, +00] because h,(s) is strictly passive with
finite gain.

As a consequence of this,
l90(jw)| <1 (2.112)

for all w € [—o0,+0], and according to the Nyquist stability criterion the
system is BIBO stable.



36 2 Positive Real Systems

2.12 Bounded Real and Positive Real Transfer Functions

Bounded real and positive real are two important properties of transfer func-
tions related to passive systems that are linear and time-invariant. We will in
this section show that a linear time-invariant system is passive if and only if
the transfer function of the system is positive real. To do this we first show
that a linear time-invariant system is passive if and only if the scattering
function, which is the transfer function of the wave variables, is bounded real.
Then we show that the scattering function is bounded real if and only if the
transfer function of the system is positive real. We will also discuss different
aspects of these results for rational and irrational transfer functions.

We consider a linear time-invariant system y(s) = h(s)u(s) with input u
and output y. The incident wave is denoted a 2 y + u, and the reflected wave

is denoted b 2 y — u. The scattering function g(s) is given by

g(s) = % (2.113)

and satisfies b(s) = g(s)a(s). We note that

u(t)y(t) = [a2(0) ~ (1) (2.114)

For linear time-invariant systems the properties of the system do not depend
on the initial conditions, as opposed to nonlinear systems. We therefore as-
sume for simplicity that the initial conditions are selected so that the energy
function V/(t) is zero for initial time, that is V' (0) = 0. The passivity inequality
is then

0<V(t) = /0 u(s)y(s)ds = i/o [a%(s) — b2(s)]ds (2.115)

The properties bounded real and positive real will be defined for functions
that are analytic in the open right half plane Re[s] > 0. We recall that
a function f(s) is analytic in a domain only if it is defined and infinitely
differentiable for all points in the domain. A point where f(s) ceases to be
analytic is called a singular point, and we say that f(s) has a singularity at
this point. If f(s) is rational, then f(s) has a finite number of singularities, and
the singularities are called poles. The poles are the roots of the denominator
polynomial R(s) if f(s) = Q(s)/R(s), and a pole is said to be simple pole if
it is not a multiple root in R(s).
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Definition 2.24. A function g(s) is said to be bounded real if

1. g(s) is analytic in Re[s] > 0.
2. g(s) is real for real and positive s.
3. 19(s)| <1 for all Rels] > 0.

This definition extends to matrix functions G(s) as follows:

Definition 2.25. A transfer matriz G(s) € C™*™ is bounded real if all
elements of G(s) are analytic for Rels] > 0 and the Hoo—norm satisfies
[|G(3)||oc < 1 where we recall that ||G(s)||cc = SUP, ¢ R Tmax(G(jw)). Equiva-
lently the second condition can be replaced by: I, — GT (—jw)G(jw) > 0 for all
w € IR. Strict Bounded Realness holds when the > 0 inequalities are replaced
by > 0 inequalities.

Theorem 2.26. Consider a linear time-invariant system described by y(s) =
h(s)u(s), and the associated scattering function a = y +u, b = y — u and
b(s) = g(s)a(s) where

h(s)—1
= —— 2.11
o) = o (2.116)
which satisfies b(s) = g(s)a(s) a = y+u and b = y — u. Then the system
y(s) = h(s)u(s) is passive if and only if g(s) is bounded real. [ |

Proof: Assume that y(s) = h(s)u(s) is passive. Then (2.115) implies that

ta27'7' t27'7- .
/0 (r)d z/ob()d (2.117)

for all t > 0. It follows that g(s) cannot have any singularities in Re[s] > 0 as
this would result in exponential growth in b(¢) for any small input a(t). Thus,
g(s) must satisfy condition 1 in the definition of bounded real.

Let 0¢ be an arbitrary real and positive constant, and let a(t) = e?°'1(t)

where 1(t) is the unit step function. Then the Laplace transform of a(t) is
a(s) = S_lqo, while b(s) = % Suppose that the system is not initially

excited so that the inverse Laplace transform for rational g(s) gives

i - g(s) sit g(s) oot
b(t) = Z <Ress_s,i - Uo) e’ + (Ress_g0 p—— %0

=1

where s; are the poles of g(s) that satisfy Re[s;] < 0, and Ress—g, 9(s) _

S§—0o0
g(00). When ¢ — oo the term including e°°* will dominate the terms including
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et and b(t) will tend to g(oo)e?°?. The same limit for b(¢) will also be found
for irrational g(s). As a(t) is real, it follows that g(op) is real, and it follows
that g(s) must satisfy condition 2 in the definition of bounded realness.

Let so = 00 + jw, be an arbitrary point in Re[s] > 0, and let the input
be a(t) = Re[e**'1(t)]. Then b(t) — Reg(so)e**] as t — oo and the power

P(t) = i[aQ(t)-—-b2(t)] (2.118)

will tend to
1
P(t) = 1 [eQ”Ot cos? wot — |g(80)|262‘70t cos? (wot + ®)]
where ¢ = arg[g(so)]. This can be rewritten using cos®> o = % (14 cos2a), and

the result is

8P(t) = (1 + cos 2wot)e?0t — |g(s0)|?[1 + cos(2wot + 2¢)]e270!

= [1 — |g(30)|2]6200t + Re[(l _ 9(80)2) 62301‘,]

In this expression sy and o( are constants, and we can integrate P(t) to get
the energy function V(T):

V(t)= [ P(s)ds

= Ta55 (1 — l9(s0)2]e*" + 5 Re{ 5 [1 — g(s0)?|e**"}

First it is assumed that wy # 0. Then Re{ [l — g(s0)*]e**'} will be a
sinusoidal function which becomes zero for certain values of ¢. For such values
of ¢ the condition V() > 0 implies that

1
1 _ 21 200t >
Tl g0 et 2 0

which implies that
1—g(s0)]* >0

Next it is assumed that wp = 0 such that so = o is real. Then g(sg) will
be real, and the two terms in V' (¢) become equal. This gives

1
0<V({) = %[1 — gQ(SO)]eQ”Ot

and with this it is established that for all sg in Re[s] > 0 we have
1—lg(s0)[* 2 0= |g(s0)] <1

To show the converse we assume that g(s) is bounded real and consider
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g(jw) = hm g(o + jw) (2.119)
0>0

Because g(s) is bounded and analytic for all Re[s] > 0 it follows that this
limit exists for all w, and moreover

lg(jw)l <1

Then it follows from Parseval’s Theorem that with ar being the truncated
version of a we have

0< & 2 Ja(Gw)” (1 g(jw)[?) dw

=1 fo —0%(s)]ds
= fgu(s)y(s)ds
which shows that the system must be passive. |
Im
e
R
Re

Fig. 2.13. Contour in the right half plane.

Define the contour C which encloses the right half plane as shown in Figure
2.13. The maximum modulus theorem is as follows. Let f(s) be a function
that is analytic inside the contour C. Let M be the upper bound on |f(s)|
on C. Then |f(s)| < M inside the contour, and equality is achieved at some
point inside C' if and only if f(s) is a constant. This means that if g(s) is
bounded real, and |g(s)| = 1 for some point in Re[s] > 0, then |g(s)| achieves
its maximum inside the contour C, and it follows that g(s) is a constant in
Rels] > 0. Because ¢(s) is real for real s > 0, this means that g(s) =1 for all
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s in Re[s] > 0. In view of this [1 — g(s)]~! has singularities in Re[s] > 0 if
and only if g(s) = 1 for all s in Re[s] > 0.

If g(s) is assumed to be a rational function the maximum modulus theorem
can be used to reformulate the condition on |g (s)| to be a condition on |g (jw)|.
The reason for this is that a rational transfer function satisfying |g(jw)| < 1
for all w will also satisfy

Jim [g(jw)] = Tim_|o(s) (2.120)

s|—o0

Therefore, for a sufficiently large contour C' we have that |g(jw)| < 1 implies
lg(s)] < 1 for all Re[s] > 0 whenever g(s) is rational. This leads to the
following result:

Theorem 2.27. A rational function g(s) is bounded real if and only if

1. g(s) has no poles in Re[s] > 0.
2. [g(jw)| < 1 for all w € [—o00, +00].

Let us now state a new definition.

Definition 2.28. A transfer function h(s) is said to be positive real

(PR) if

h(s) is analytic in Re[s] > 0
h(s) is real for positive real s

1.
2.
3. Re[h(s)] > 0 for all Re[s] > 0

The last condition above is illustrated in Figure 2.14 where the Nyquist
plot of a PR transfer function H(s) is shown. The notion of positive realness
extends to multivariable systems:

Definition 2.29. The transfer matriz H(s) € C™ ™ is positive real if:

H(s) has no pole in Re[s] > 0
H(s) is real for all positive real s
H(s)+ H*(s) > 0 for all Re[s] >0 [

An interesting characterization of multivariable PR transfer functions is
as follows:

Theorem 2.30. Let the transfer matriz H(s) = C(sI, — A)~' + D € ¢"*™,
where the matrices A, B, C, and D are real, and every eigenvalue of A has
a negative real part. Then H(s) is positive real if and only if y*[H*(jw) +
H(jw)ly = y* I (jw)y >0 for allw € R and ally € C™. [
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Im(H (jw)] |

Re[H (jw)]

Y

Fig. 2.14. Positive real transfer function

This result was proved in [8, p.53]. The rational matrix I1(s) = ¢(sI,, —
A)1B— BT (sI,+ AT)71CT 4+ D + DT is known as the Popov function of the
system. It is a rational spectral function, since it satisfies IT(s) = IT7 (—s). The
introduction of the spectral function I7(s) allows us to state a result on which
we shall come back in Section 3.3. Let A : L3 . — L5 be a rational input-
output operator u(-) — y(-) = A(u(-)). Assume that the kernel of A has a
minimal realization (A4, B, C, D). In other words, the operator is represented in
the Laplace transform space by a transfer matrix H(s) = C(sI,,—A)"*B+D,
where (A, B) is controllable and (A, C) is observable. The rational matrix I7(s)
is the spectral function associated to A.

Proposition 2.31. The rational operator A is non-negative, i.e.

/0 u(r)A(u(r))dr >0

for all w € Lo, if and only if its associated spectral function II(s) is non-
negative. [ |

Proof: We assume that u(t) = 0 for all £ < 0 and that the system is causal.
Let the output y(-) be given as

y(t) = Du(t) + /Ot CeA'"" Bu(r)dr (2.121)
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Let U(s) and Y(s) denote the Laplace transforms of u(-) and y(-), re-
spectively. Let us assume that I7(s) has no pole on the imaginary axis. From
Parseval’s Theorem one has

+oo 1 +oo
/ T (E)u(t) + T (0 () de / V* (j)U (o) + U* (jw)Y ()

—0o0 - % —0o0
(2.122)
One also has Y (s) = (D + C(sI, — A)~*B) U(s). Therefore

+oo +oo
[ W ol = 5 [ UGGV e, (2123)

—00 27 —o0

It follows that:

e II(jw) > 0 for all w € IR implies that fj;o[yT(t)u(t) +uT (t)y(t)dt >0
for all admissible w(-).

e Reciprocally, given a couple (wp, Up) that satisfies UZ IT(jwo)Up < 0, there
exists by continuity an interval {2y such that UIII(jw)Uy < 0 for all
w € £2y. Consequently the inverse Fourier transform vg(-) of the function

Uy if w € 129
U(jw) = (2.124)
0 ifw¢ 2

makes the quadratic form % f!?o UL I (jw)Updw < 0. Therefore positivity
of A and of its spectral function are equivalent properties.

If T1(s) has poles on the imaginary axis, then Parseval’s Theorem can be
used under the form

400 1 +oo
/ e 2y T ()u(t)+u’ (t)y(t)]dt / U*(a+jw)S(a+jw)U (a+jw)dw

oo o oo
(2.125)
which is satisfied for all real a, provided the line a + jw does not contain any
pole of II(s). [ |

Remark 2.82. 1t is implicit in the proof of Proposition 2.31 that the initial
data on y(-) and u(-) and their derivatives, up to the required orders, are
zero. Consequently, the positivity of the operator A(-), when associated to a
state space representation (A4, B, C, D), is characterized with the initial state
2(0) = 0. Later on in Chapter 4, we shall give a definition of dissipativity,
which generalizes that of positivity for a rational operator such as A(-), and
which precisely applies with x(0) = 0; see Definition 4.22.

It is sometimes taken as a definition that a spectral function IT(s) is non-
negative if there exists a PR function H(s) such that I1(s) = H(s)+ HT (—s)
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[145, Definition 6.2]. We shall make use of Proposition 2.31 in Section 5.10
on hyperstability. Notice that Proposition 2.31 does not imply the stability
of the above mentioned operator (provided one has associated a state space
realization to this operator). The stability is in fact obtained if one makes
further assumptions like the observability and controllability. We shall come
back on these points in the next chapters on dissipative systems and their
stability, via the Kalman-Yakubovich-Popov Lemma; see Remark 3.32.
The next theorem links bounded realness with positive realness.

Theorem 2.33. Consider the linear time-invariant system y(s) = h(s)u(s),
and the scattering formulation a = y+u, b =y —u and b(s) = g(s)a(s) where
h(s)—1
= —— 2.12
o) = 1 (2.126)
Assume that g(s) # 1 for all Re[s] > 0. Then h(s) is positive real if and only
if g(s) is bounded real. [ |

Proof: Assume that ¢g(s) is bounded real and that g(s) # 1 for all Re[s] > 0.
Then [1 — g(s)] 7! exists for all s in Re[s] > 0. From (2.126) we find that

_1+g(s)
1—g(s)
where h(s) is analytic in Re[s] > 0 as g(s) is analytic in Re[s] > 0, and [1 —

g(s)]~! is nonsingular by assumption in Re[s] > 0. To show that Re[h(s)] > 0
for all Re[s] > 0 the following computation is used:

h(s) (2.127)

2Relh(s)] = h*(s) + h(s)

_ L4g7(s) | 1+g(s)
o () T T-g(s) (2.128)

o 19" (3)g(s)
[1—g*(s)][1—g(s)]

We see that Re[h(s)] > 0 for all Re[s] > 0 whenever ¢(s) is bounded real.
Next assume that h(s) is positive real. Then h(s) is analytic in Re[s] > 0,

and [1 + h(s)] is nonsingular in Re[s] > 0 as Re[h(s)] > 0 in Re[s] > 0.

It follows that g(s) is analytic in Re[s] > 0. From (2.128) it is seen that

lg(s)| <1in Re[s] > 0; it follows that g(s) is bounded real. [
It is noteworthy that Theorem 2.33 extends to multivariable systems:

Theorem 2.34. Let H(s) € C™*™ be a square transfer function, with
det(H(s) + H(—s)) # 0 for Re[s] > 0, and H(joo) + H(* (joo) > 0. Then
the bounded realness of G(s) = (G(s) — I,)(G(8) + I,) ™' implies that H(s)
is positive real. [ |

From Theorem 2.26 and Theorem 2.33 it follows that:
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Corollary 2.35. A system with transfer function h(s) is passive if
and only if the transfer function h(s) is positive real.

Example 2.36. A fundamental result in electrical circuit theory is that if the
transfer function h(s) is rational and positive real, then there exists an electri-
cal one-port built from resistors, capacitors and inductors so that hA(s) is the
impedance of the one-port [126, p. 815]. If e is the voltage over the one-port
and i is the current entering the one-port, then e(s) = h(s)i(s). The system
with input ¢ and output e must be passive because the total stored energy of
the circuit must satisfy

V(t) = e(t)i(t) — g(t) (2.129)

where ¢(t) is the dissipated energy.

FEzxzample 2.87. The transfer function

1
" tanhs

h(s)

is irrational, and positive realness of this transfer function cannot be es-
tablished from conditions on the frequency response h(jw). We note that
tanh s = sinh s/ cosh s, where sinhs = 1(e® — e™*) and coshs = $(e* + ™).
First we investigate if h(s) is analytic in the right half plane. The singularities

are given by

(2.130)

sinhs=0=¢—e*=0=¢e*(1—e2) =0

Here |e®| > 1 for Re[s] > 0, while

fl—e®)=0=e2=1
Therefore the singularities are found to be

sp = jkm, ke {0,+1,42..} (2.131)
which are on the imaginary axis. This means that h(s) is analytic in Re[s] > 0.
Obviously, h(s) is real for real s > 0. Finally we check if Re [h(s)] is positive
in Re[s] > 0. Let s = 0 + jw. Then

coshs = 1[e?(cosw + jsinw) 4+ e~ (cosw — jsinw)]
= cosho cosw + jsinhosinw

while
sinh s = sinh o cosw + j coshosinw (2.132)

This gives
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cosh o sinh o

Relh(s)] = >0, Rel[s]>0 (2.133)

| sinh 5|2
where it is used that o = Re[s], and the positive realness of h(s) has been
established. u

Consider a linear system represented by a rational function H(s) of the
complex variable s = o + jw:

bins™ 4+ -+ b
H(S) _ m - 0

"+ ap—18"" "+ -+ ao
where a;,b; € IR are the system parameters n is the order of the system and
r =n —m is the relative degree. For rational transfer functions it is possible

to find conditions on the frequency response h(jw) for the transfer function
to be positive real. The result is presented in the following theorem:

(2.134)

Theorem 2.38. A rational function h(s) is positive real if and only if

1. h(s) has no poles in Re[s] > 0.
2. Re[h(jw)] > 0 for all w € [—o0, +00] such that jw is not a pole in h(s).
3. If s = jwo is a pole in h(s), then it is a simple pole, and if wy is finite,
then the residual
Ress—ju,h(s) = lim (s — jwy)h(s)

s—jwq
1s real and positive. If wg is infinite, then the limit

Ry := lim hijw)

w—00 jw

1s real and positive. |

Proof: The proof can be established by showing that conditions 2 and 3 in
this Theorem are equivalent to the condition

Rel[h(s)] >0 (2.135)

for all Re[s] > 0 for h(s) with no poles in Re[s] > 0.

First assume that conditions 2 and 3 hold. We use a contour C' as shown
in Figure 2.15 which goes from —j{2 to j{2 along the jw axis with small
semicircular indentations into the right half plane around points jw, that
are poles of h(s). The contour C' is closed with a semicircle into the right
half plane. On the part of C' that is on the imaginary axis Re[h(s)] > 0 by
assumption. On the small indentations

Resa—jo, h
h(s) ~ DeSsmiweht(s) (2.136)
s — jwg
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Im

Fig. 2.15. Contour C of h(s) in the right half plane.

As Rels] > 0 on the small semi-circles and Res,—j,, h(s) is real and positive
according to condition 3, it follows that Re[h(s)] > 0 on these semi-circles.
On the large semi-circle into the right half plane with radius {2 we also have
Rel[h(s)] > 0 and the value is a constant equal to lim,_.o, Re[h(jw)], unless
h(s) has a pole at infinity at the jw axis, in which case h(s) =~ sRs on the
large semi-circle. Thus we may conclude that Re[h(s)] > 0 on C. Define the

function
f(S) — e—Re[h(s)]

Then |f(s)] < 1on C, and in view of the maximum modulus theorem, |f(s)] <
1 for all s € Re[s] > 0. It follows that Re[h(s)] > 0 in Re[s] > 0, and the
result is shown.
Next assume that Re[h(s)] > 0 for all Re[s] > 0. Then condition 2 follows
because
h(jw) = lirré h(o + jw)
>0
exists for all w such that jw is not a pole in h(s). To show condition 3 we
assume that wp is a pole of multiplicity m for h(s). On the small indentation
with radius 7 into the right half plane we have s — jw, = re/? where —7/2 <
6 < m/2. Then
h(S) ~ ReSS:jWoh(s) _ RQSS:ijh(S) efjmé (2137)

rm ejme rm

Clearly, here it is necessary that m = 1 to achieve Re[h(s)] > 0 because
the term e~™Y gives an angle from —mm/2 to mn/2 in the complex plane.
Moreover, it is necessary that Res,—;.,, h(s) is positive and real because e—Jmo
gives an angle from —7/2 to /2 when m = 1. The result follows. [ |
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The foregoing theorem extends to multivariable systems:

Theorem 2.39. The rational function H(s) € C™*™ is positive real if and
only if:

H(s) has no poles in Re[s] >0
H(jw) 4+ H*(jw) > 0 for all positive real w such that jw is not a pole of
H()

o If iwp, finite or infinite, is a pole of H(-), it is a simple pole and the
corresponding residual Ko is a semi positive definite Hermitian matriz.

2.13 Examples

2.13.1 Mechanical Resonances
Motor and Load with Elastic Transmission

An interesting and important type of system is a motor that is connected to
a load with an elastic transmission. The motor has moment of inertia .J,,,, the
load has moment of inertia Jy,, while the transmission has spring constant K
and damper coefficient D. The dynamics of the motor is given by

Jmém(t) = Tm(t) =Ty (t) (2138)

where 0,,,(+) is the motor angle, Ty, (-) is the motor torque, which is considered
to be the control variable, and T7,(+) is the torque from the transmission. The
dynamics of the load is .

JrOr(t) = TL(t) (2.139)

The transmission torque is given by
T, =-D (éL . o'm) K (01 — 6) (2.140)

The load dynamics can then be written in Laplace transform form as

(Jps* + Ds+ K) 01,(s) = (Ds + K) 0,,(s) (2.141)
which gives
1+27 3
Z—L(s) =0 (2.142)
m 1+ 22(71 + @

where K
2= — (2.143)

Jr,

and



48 2 Positive Real Systems

2Z D
— == 2.144
0" K (2.144)
By adding the dynamics of the motor and the load we get
O () + JLOL(t) = Ty (t) (2.145)
which leads to
14225
T8 0m () + Jps? ———L0,.(s) = T (5) (2.146)
L4278 + 4
and from this ,
14225+ 25
Om () = o (2.147)
T J32(1+2Cw‘—gl+j—%)
where
J = Jm+JL (2.148)

is the total inertia of motor and load, and the resonant frequency wi is given
by
1 J
1- 2 m

while the relative damping is given by

J
¢ = ,/ﬂz (2.150)

We note that the parameters w; and ¢ depend on both motor and load pa-
rameters, while the parameters 2, and Z depend only on the load.

The main observation in this development is the fact that 2; < wy. This
means that the transfer function 6,,(s)/T),.(s) has a complex conjugated pair
of zeros with resonant frequency (21, and a pair of poles at the somewhat
higher resonant frequency w;. The frequency response is shown in Figure 2.16
when K = 20, J,,, = 20, J = 15 and D = 0.5. Note that the elasticity does
not give any negative phase contribution.

By multiplying the transfer functions 6y, (s)/0,,(s) and 6,,(s)/T(s) the
transfer function
1+2Z4-

O o
T2 (L4200 + 5)

0

(2.151)

is found from the motor torque to the load angle.
The resulting frequency response is shown in Figure 2.17. In this case the
elasticity results in a negative phase contribution for frequencies above w; .

Example 2.40. Typically the gear is selected so that J,, = Jr. This gives

1
1 = —w =0.707Tw 2.152
1 /2 1 1 ( )
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Example 2.41. Let Z = 0.1 and J,, = Jr. In this case

0 L+ 5o
- (s) = Db (2.153)
T J32(1+2Cw‘—gl+j—%)
Passivity Inequality
The total energy of motor and load is given by
1 2 1 2 1 2
V(wm,wr,01,0m) = imem + ijLwL + iK[GL — Gm] (2.154)

where wy, (£) = 0, (t) and wr,(t) = 01 (). The rate of change of the total energy
is equal to the power supplied from the control torque T, (¢) minus the power
dissipated in the system. This is written

V(t) = W ()T (t) — D]wr(t) — wm (1)) (2.155)
We see that the power dissipated in the system is D{wr (t) — wm (t)]? which is

the power loss in the damper. Clearly the energy function V(¢) > 0 and the
power loss satisfies D[Aw(t)]? > 0,. It follows that

/t wm (8) T (s)ds =V (t) — V(0) + /t D[Aw(s)]*ds > —V(0) (2.156)
0 0

which implies that the system with input T;,(-) and output w,,(-) is passive.
It follows that

Re[liy(jw)] >0 (2.157)

for all w € [—o0, +00]. From energy arguments we have been able to show
that

O
—1800 S ZT—(]LA}) S OO. (2158)

2.13.2 Systems with Several Resonances
Passivity

Consider a motor driving n inertias in a serial connection with springs and
dampers. Denote the motor torque by 7,, and the angular velocity of the
motor shaft by w,,. The energy in the system is
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V(Wi Om, 01:) = §Jmw?2, + 3Ko1 (0 — 011)2
+iJpw?, + SK12(001 — 0r2)* + ...
+%JL,n—1W%’n,1 + 2K 1,0(00,n—1 — O0rn)?
+3 Ll

Clearly, V() > 0. Here J,, is the motor inertia, wy,; is the velocity of inertia
Jri, while K;_q; is the spring connecting inertia ¢ — 1 and ¢ and D;_;; is
the coefficient of the damper in parallel with K;_; ;. The index runs over
i=1,2,...,n. The system therefore satisfies the equation

V(t) = T ()wm (t) — d(t) (2.159)
where
d(t) = Dig(wr1(t) —wra(t))*+.. .4+ Dy_1n(Wpn1(t) —wra(t)? > 0 (2.160)

represents the power that is dissipated in the dampers, and it follows that the
system with input 7}, and output w,, is passive. If the system is linear, then
the passivity implies that the transfer function

hon(5) = = (5) (2.161)

has the phase constraint
|Zhm (jw)| < 90° (2.162)

for all w € [—o0, +00]. It is quite interesting to note that the only information
that is used to find this phase constraint on the transfer function is that the
system is linear, and that the load is made up from passive mechanical com-
ponents. It is not even necessary to know the order of the system dynamics,
as the result holds for an arbitrary n.

2.13.3 Two Motors Driving an Elastic Load

In this section we will see how passivity considerations can be used as a
guideline for how to control two motors that actuate on the same load through
elastic interconnections consisting of inertias, springs and dampers as shown
in Figure 2.18.

The motors have inertias J,,;, angle ¢; and motor torque 7T;,; where
i € {1,2}. Motor 1 is connected to the inertia Jz; with a spring with stiffness
K;1 and a damper Dy1. Motor 2 is connected to the inertia Jo with a spring
with stiffness K92 and a damper Dsgs. Inertia Jp; has angle gr;. The two
inertias are connected with a spring with stiffness K15 and a damper D1s.

The total energy of the system is
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Motor 1 Tm1 ng Motor 2

Kll’Dll KIZ’DIZ Wy i)
Lo | ]

A qp i .

Fig. 2.18. Two motors actuating on one load

V(gm1s @m2, qi) = 5[Im1dos + Jm2@ie + J1163, + Jr2dis

+K11(gm1 — q11)* + Koo (qma — qr2)? + Kia(qr1 — QL2)2]

and the time derivative of the energy when the system evolves is
V(t) = Trn1Gm1(t) + Trm2dma(t) — D11(Gm1(t) — Gra(t))?
+Da2(Gma(t) — 4r2(t))*  +Dia(dri(t) — dra(t))?

It is seen that the system is passive from (Tml,ng)T to (q'ml,me)T. The
system is multivariable, with controls T;,1 and T},2 and outputs ¢,,1 and ¢,2.
A controller can be designed using multivariable control theory, and passivity
might be a useful tool in this connection. However, here we will close one
control loop at a time to demonstrate that independent control loops can be
constructed using passivity arguments. The desired outputs are assumed to
be ¢gm1 = gm2 = 0. Consider the PD controller

Tm,Q = —fp2gdm2 — K?)Qdm,Q (2163)

for motor 2 which is passive from ¢,,2 to —T;,2. The mechanical analog of this
controller is a spring with stiffness K2 and a damper K, which is connected
between the inertia J,,2 and a fixed point. The total energy of the system
with this mechanical analog is

V(Gm1, Gm2,qL1:qr2) = 3[Im1G21 + Jm2@is + Jr1di, + Jr2qi,
+K11(qm1 — 1) + K22(qma — qr2)?
+K12(qr1 — qr2)? + Kp263]

and the time derivative is
V(t) = Ton1(t)gm1(t) — D11(dm1(t) — 4z1(t))? + Daz(dma(t) — dra(t))?

+Di12(4ra(t) — qra(t))? — Kuad3 (t)
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It follows that the system with input T}, and output ¢, is passive when
the PD controller is used to generate the control T,,5. The following controller
can then be used:

LTS ) = K[l +(B-1)

T1(s) = Kvlﬁmm

1

This is a PI controller with limited integral action if ¢; is considered as the
output of the system. The resulting closed loop system will be BIBO stable
independently from system and controller parameters, although in practice,
unmodelled dynamics and motor torque saturation dictate some limitations
on the controller parameters. As the system is linear, stability is still ensured
even if the phase of the loop transfer function becomes less that —180° for
certain frequency ranges. Integral effect from the position can therefore be
included for one of the motors, say motor 1. The resulting controller is

1+T;s
Tis

In this case the integral time constant T; must be selected e.g. by Bode dia-
gram techniques so that stability is ensured.

Ti(s) = Kp

q1(8) + Kp1sq1 (2.165)

2.14 Strictly Positive Real (SPR) Systems

Consider again the definition of Positive Real transfer function in Definition
2.28. The following is the standard definition of Strictly Positive Real (SPR)
transfer functions.

Definition 2.42 (Strictly Positive Real). A rational transfer func-
tion H(s) € C™*™ that is not identically zero for all s, is strictly
positive real (SPR) if H(s — €) is PR for some € > 0.

Let us now consider two simple examples:

Ezxample 2.43. The transfer function of an asymptotically stable first order
system is given by

1
H(s) = 2.166
()= — (2.166)
where A > 0. Replacing s by o + jw we get
1 A—j
H(s) = I b (2.167)

(c+AN)+jw  (0+ A2+ w?

Note that V Re[s] = 0 > 0 we have Re[H(s)] > 0. Therefore H(s) is PR.
Furthermore H(s — ¢€) for € = 3 is also PR and thus H(s) is also SPR.
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Ezample 2.44. Consider now a simple integrator (i.e. take A = 0 in the previ-
ous example)

1 1 o — jw
(s) s o+jw o024+ w? ( )

It can be seen that H(s) = X is PR but not SPR.

In view of Theorem 2.6, one may wonder whether an SPR transfer function
is ISP, OSP. See Examples 4.62, 4.64, 4.65.

2.14.1 Frequency Domain Conditions for a Transfer Function to
be SPR

The definition of SPR transfer functions given above is in terms of conditions
in the s complex plane. Such conditions become relatively difficult to be ver-
ified as the order of the system increases. The following theorem establishes
conditions in the frequency domain w for a transfer function to be SPR.

Theorem 2.45 (Strictly Positive Real). [226] A rational transfer function
h(s) is SPR if

1. h(s) is analytic in Re[s] > 0, i.e. the system is asymptotically stable
2. Re[h(jw)] > 0, for all w € (—o0,00) and
3. a) lim w?Relh(jw)] > 0 when r =1,

b) lim Re[h(jw)] > 0, ‘ l‘im % >0 when r = —1,

where r is the relative degree of the system. |

Proof: Necessity: If h(s) is SPR, then from Definition 2.42, h(s — ¢€) is PR
for some € > 0. Hence, there exists an €* > 0 such that for each € € [0, €*),
h(s—e) is analytic in Re[s] < 0. Therefore, there exists a real rational function
W (s) such that [§]

hs—e)+h(—s+e)=W(s—e)W(—s+e) (2.169)

where W (s) is analytic and nonzero for all s in Re [s] > —e. Let s = € + jw;
then from (2.169) we have

2 Re [h(jw)] = [W(jw)]> >0, Vw e (—o0,00) (2.170)
Now h(s) can be expressed as
b s™ + bmflsmil +---4+bis+ by
h(S) = n n—1
s" +an—18 +---4+ais+ap

Ifm=n—1,ie,r=1,b,_1#0, then from (2.171) it follows that b,_1; > 0
and ap_1bp—1 — bp—2 — €by,—1 > 0 for h(s — €) to be PR, and

(2.171)
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lim w? Re [h(jw)] = @n_1bn_1 —bp_2 > b1 >0 (2.172)

w?2—o00

Ifm=n+1,ie,r=-1,byt1 #0, then

1
Re [h(jw —€)] = ———— [(by — buy1an-1 — €bypy1) > +---] (2.173)
la(jw — €)]
Since Re [h(jw —€)] > 0V w € (—00,00) and

h(jw —€)

; - bnfl 2 07
|w|—o00 Jw

then b,+1 > 0, by, —bpt1an—1 > €byy1 > 0, and therefore 3.b) follows directly.

Sufficiency; Let (A,b,c,d, f) be a minimal state representation of h(s),
i.€.,

h(s) =c(sI — A)"'b+d+ fs (2.174)

From (2.174) we can write

h(s—€) = c(sI—A) " 'b+d+fs+e[c(s] — A—el) " (sI — A)~'b— f] (2.175)

Hence,

Re [h(jw — €)] = Re[h(jw)] + eRe [g(jw — €)] (2.176)
where g(jw—¢) = c(jwl, —A—el)~ (wan— A)~1b— f. There exists ane* >0
such that for all € € [0,€e*) and w € (—o0,00), (jwl, — A — el)~! is analytic.

Therefore for each € € [0,€*), |Re [g(jw — e)]| <k <ooforallw € (—o0,00)
and some k; > 0. If r = 0, then Re [h(jw)] > k2 > 0 for all w and some
ko > 0. Therefore

Re [h(jw — €)] = Re[h(jw)] + eRe[g(jw — €)] > k2 — €k1 > 0 (2.177)

for all w € (—00,00) and 0 < € < min {€*, ka/k1}. Hence, h(s — €) is PR and
therefore h(s) is SPR.

If 7 = 1, then Re [h(jw)] > k3 > 0 for all |w| < wp and w? Re [h(jw)] >
k4 > 0 for all |w| > wp, where wo, k3, k4 are finite positive constants. Similarly,
|w? Re [g(jw — €)]| < ks and [Re [g(jw — €)]| < k¢ for all w € (—o0,00) and
some finite positive constants ks, ks, Therefore, Re [h(jw — €)] > ks — ekg
for all |w| < wp and w?Re [h(jw —€)] > kg — €ks for all |w| > wp . Then,
for 0 < € < min {k3/ke, €, ka/ks} and Yw € (—o0,0), Re [h(jw — €)] > 0.
Hence, h(s — €) is PR and therefore h(s) is SPR.

If r = —1, then d > 0 and therefore
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Re[h(jw —€)] > d — eky (2.178)

Hence, for each € in the interval [0, min {¢*,d/k1}), Re [h(jw — €)] > 0 for all
w € (—00,00). Since

i "U9) _ p o
w—00 ]w
then
im PU2 =9 _p oy
w—0o0 Jw

and therefore, all the conditions of Definition 2.28 and Theorem 2.38 are
satisfied by h(s —e¢); hence h(s —¢) is PR, i.e., h(s) is SPR and the sufficiency
proof is complete. u

Remark 2.46. It should be noted that when r = 0, conditions 1 and 2 of
the Theorem, or 1 and Re[h(jw)] > § > 0 for all w € [—o0, 40|, are both
necessary and sufficient for h(s) to be SPR.

Notice that H(s) in (2.166) satisfies condition 3.a), but H(s) in (2.168)
does not. Let us now give a multivariable version of Theorem 2.45, whose
proof is given in [256] and is based on [226,508].

Theorem 2.47. Let H(s) € C™*™ be a proper rational transfer matriz, and
suppose that det(H(s) + HT (s)) is not identically zero. Then H(s) is SPR if
and only if

H(s) has all its poles with negative real parts

H(jw)+ HT (—jw) >0 for allw € R

and one of the following three conditions is satisfied:

-~ H(co)+ HT(0) >0

~ H(o0) + HT(00) = 0 and lim,,—,00 w?[H (jw) + HT (—jw)] > 0

— H(oo) + HT(0) > 0 (but not zero mor nonsingular)and there ezist
positive constants o and § such that

w2omin[H(jw) + HT(—jw)] >0, Vwl>4§ (2.179)

2.14.2 Necessary Conditions for H(s) to be PR (SPR)

In general, before checking all the conditions for a specific transfer function
to be PR or SPR, it is useful to check first that it satisfies a set of necessary
conditions. The following are necessary conditions for a system to be PR
(SPR)
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H(s) is (asymptotically) stable.

The Nyquist plot of H(jw) lies entirely in the (closed) right half complex
plane.

The relative degree of H(s) is either r =0 or r = +1.

H(s) is (strictly) minimum-phase, i.e. the zeros of H(s) lie in Re[s] <
0 (Rels] <0).

Remark 2.48. In view of the above necessary conditions it is clear that unsta-
ble systems or nonminimum phase systems are not positive real. Furthermore
proper transfer functions can be PR only if their relative degree is 0 or 1.
This means for instance that a double integrator, i.e. H(s) = 9—12 is not PR.
This remark will turn out to be important when dealing with passivity of
nonlinear systems. In particular for a robot manipulator we will be able to
prove passivity from the torque control input to the velocity of the generalized

coordinates but not to the position of the generalized coordinates.

2.14.3 Tests for SPRness

Stating necessary and sufficient conditions for a transfer function to be PR or
SPR is a first fundamental step. A second step consists in usable criteria which
allow one to determine if a given rational function is SPR or not. Work in this
direction may be found in [31,132,146,177,205,341,396,455,504,528,536]. We
can for instance quote a result from [455].

Theorem 2.49. [455] Consider H(s) = C(sl,,—A)"'B € C. H(s) is SPR if
and only if 1) CAB <0, 2) CA™'B <0, 3) A is stable, 4) A(I, — 25$) A has
no eigenvalue on the open negative real axis (—o00,0). Consider now H(s) =
C(sl, —A)™*B+D e C, D> 0. H(s) is SPR if and only if 1) A is stable,
2) the matriz (A — BE)A has no eigenvalue on the closed negative real azis
(—00, +00]. [

Stability means here that all the eigenvalues are in the open left-half of the
complex plane Re[s] < 0, and may be called strict stability. An interpretation
of SPRuess is that (A4, B,C, D) with D # 0 is SPR if and only if the matrix

pencil A~1 + A(A — 2£) is nonsingular for all A > 0 [455].

2.14.4 Interconnection of Positive Real Systems

One of the important properties of positive real systems is that the inverse
of a PR system is also PR. In addition the interconnection of PR systems
in parallel or in negative feedback (see Figure 2.19) inherit the PR, property.
More specifically we have the following properties (see [226]):

e H(s)is PR (SPR) & ﬁ is PR (SPR).

o If Hi(s) and Hy(s) are SPR so is H(s) = ai1Hi(s) + asHa(s) for a; >
0, ag >0, a1 + g > 0.
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o If Hi(s) and Ha(s) are SPR, so is H(s) = #@{2(5)
Remark 2.50. Note that a transfer function H(s) need not be proper to be
PR or SPR. For instance, the non-proper transfer function s is PR.

Remark 2.51. Let us recall that if (A, B, C, D) is a realization of the transfer
function H(s) € C, i.e. C(sl, — A)"'B + D = H(s), and if D # 0, then
(A—BC B _C 1

- 5 — Db ) is a realization of a system with transfer function %

(see for instance [246, p.76]).

()ul H, Yy

u
Y, H, 2

Fig. 2.19. Negative feedback interconnection of H; and Ha

2.14.5 Special Cases of Positive Real Systems

We will now introduce two additional definitions of classes of systems. Both
of them are PR systems but one of them is weaker than SPR systems and
the other is stronger. Weak SPR (WSPR) are important because they allow
the extension of the KYP Lemma presented in Chapter 3 for systems other
than PR. They are also important because they allow to relax the conditions
for stability of the negative feedback interconnection of a PR system and an
SPR system. We will actually show that the negative feedback interconnection
between a PR system and a WSPR produces an asymptotically stable system.
Both properties will be seen later.

Remark 2.52. Consider again an electric circuit composed of an inductor in
parallel with a capacitor. Such a circuit will exhibit sustained oscillatory be-
havior. If we have instead a lossy capacitor in parallel with a lossy inductor,
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it is clear that the energy stored in the system will be dissipated. However,
it is sufficient that at least one of the two is a lossy element (either a lossy
capacitor or a lossy inductor) to guarantee that the oscillatory behavior will
asymptotically converge to zero. This example motivates the notion of weakly
SPR transfer function.

Definition 2.53. (Weakly SPR) A rational function H(s) € C is weakly
SPR (WSPR) if

1. H(s) is analytic in Re[s] > 0.
2. Re[H (jw)] > 0, for all w € (—o00,0). [

In the multivariable case one replaces the second condition by H(jw) +
HT(—jw) > 0 for all w € IR. Tt is noteworthy that a transfer function may be
WSPR but not be SPR; see an example below. WSPRness may be seen as an
intermediate notion between PR and SPR. See Section 5.3 for more analysis
on WSPR systems, which shows in particular and in view of Examples 4.62
and 4.64 that WSPR is not SPR.

Definition 2.54. (Strong SPR) A rational function H(s) € C is strongly
SPR (SSPR) if

1. H(s) is analytic in Re[s] > 0.
2. Re[H(jw)] > § >0, for all w € [—00,00] and some 6 € IR. [

In the multivariable case the second condition for SSPRness becomes H (jw)+
HT(—jw) > 0 for all w € IR and H(co) + HT(00) > 0, or as H(jw) +
HT(—jw) > 81, for all w € [~o0,00]. From Theorem 2.6, it can be seen
that a SSPR transfer function is ISP. If the system has a minimal state space
realization (A, B, C, D) then H(s) + H?(—s) = C(sl, — A)"'B — BT (sI,, +
AT)71CT + D + DT so that the second condition implies D + DT > 0 =
D > 0. This may also be deduced from the fact that C(sI,, — A)"'B+ D =
S CA=1Bs™" 4+ D. The next result may be useful to characterize SSPR
functions.

Lemma 2.55. [146] A proper reational matriz H(s) € C™*™ is SSPR if and
only if its principal minors H;(s) € C* are proper rational SSPR matrices,
respectively, fori = 1,....m—1, and det(H (jw)+H?T (—jw)) > 0 for allw € IR.

The next lemma is close to Theorem 2.34.

Lemma 2.56. Let G(s) € C™*™ be a proper rational matriz satisfying
det(I, + G(s)) # 0 for Re[s] > 0. Then the proper rational matriz H(s) =
(I, + G(3)) (I, — G(s)) € €™*™ is SSPR if and only if G(s) is strictly
bounded real.



60 2 Positive Real Systems

Let us now illustrate the various definitions of PR, SPR and WSPR func-
tions on examples.

Example 2.57. Consider again an asymptotically stable first order system

1

Let us check the conditions for H(s) to be SPR.

1. H(s) has only poles in Re[s] < 0
2. H(jw) is given by

. 1 A — jw
H(jw) = N e gl (2.181)
Therefore,
Re[H (jw)] = Y to? >0 Yw € (—o0,00) (2.182)

w?2—00

o lim w?Re[H(jw)] = lim )\;Jj_i)‘wz =A>0

Therefore g%\ is SPR. However ﬁ is not SSPR because there does
not exist a & > 0 such that Re[H(jw)] > §, forall w € [—o0,00] since

w?2—oo
Ezample 2.58. Similarly it can be proved that H(s) = 1 and H(s) = 2

are PR but they are not WSPR. H(s) =1 and H(s) = zi‘gj are both SSPR.

The following is an example of a system that is WSPR but is not SPR.
Ezxample 2.59. Consider the second order system

sta+p
(s +a)(s+ )

Let us verify the conditions for H(s) to be WSPR. H(jw) is given by

H(s) = ;a, >0 (2.183)

. _ jwt+a+3
H(jw) = o Gora

sl (159

_ (wtatp)(aB—jw(atf)—w?)
(W2 +a?)(w2+5?)

Thus
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. u}2 (o3 (o3 « —w2
Re[H (jw)] = (a+B)+(a+p) (aB—w")

(W +a?)(w?+57) (2.185)
= % >0, for all w e (—o0,00)
so H(s) is weakly SPR. However H (s) is not SPR since
2
wablath) (2.186)

y
b0 (W2 + 02) (W2 + F2)

Ezample 2.60. [213] The transfer function wi;‘ﬁ is

e PRiIf0<a<3
e WSPRifO<a<3
e SPRifO0O<a<3

Let us point out that other definitions exist for positive real transfer func-
tions, like the following one:

Definition 2.61. [{/30] y-PR] Let 0 < v < 1. The transfer function H(s) €
C™*™ s said to be y-positive real if it is analytic in Rels] > 0 and satisfies

(v = DH*(s)H(s) + (> + D)(H*(s) + H(s)) + (v* = 1)I,, 20 (2.187)
for all s € Re[s] > 0. [
Then the following holds:

Proposition 2.62. [/30] If a system is y—positive real, then it is SSPR.
Conversely, if a system is SSPR, then it is y—positive real for some 0 < v < 1.

|
For single input-single output systems (m = 1) the index v can be used
to measure the maximal phase difference of transfer functions. The transfer

function H(s) € € is y—PR if and only if the Nyquist plot of H(s) is in the

1442 2y
1—~2 1—~2"

circle centered at and radius

Lemma 2.63. [/30] Let m = 1. If the system (A, B,C,D) with transfer
function H(s) = C(sI, — A)"'B + D is yv— PR, then

larg(H (s))| < arctan (13772) for all Re[s] >0 (2.188)
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Other classes of PR systems exist which may slightly differ from the above
ones; see e.g. [149,245]. In particular a system is said to be extended SPR if it
is SPR and if H(joo)+ HT (—joo) > 0. From the series expansion of a rational
transfer matrix one deduces that H(jw) = 3% CA"'B(jw)~* + D which
implies that D + DT > 0. The definition of SSPRness in [245, Definition 3]
and Definition 2.54 are not the same, as they impose that H(co)+H7T (00) > 0
only, with limy, o w?[H (jw) + HT (—jw)] > 0 if H(co) + HT(c0) is singular.
The notion of marginally SPR (MSPR) transfer functions is introduced in
[245]. MSPR functions satisfy inequality 2 of Definition 2.53, however they
are allowed to possess poles on the imaginary axis.

2.15 Applications

2.15.1 SPR and Adaptive Control

The concept of SPR transfer functions is very useful in the design of some
type of adaptive control schemes. This will be shown next for the control of
an unknown plant in a state space representation and it is due to Parks [394]
(see also [240]). Consider a linear time-invariant system in the following state
space representation

&(t) = Az(t) + Bu(t)
2.189
Lot~ exte (2159)
with state z(t) € IR", input u(t) € IR and output y(¢) € IR. Let us assume
that there exists a control input

u=—LTz+r(t) (2.190)

where 7(t) is a reference input and L € IR", such that the closed loop system
behaves as the reference model

i.(t) = (A — BLT)x,(t) + Br(t)
(2.191)
yr(t) = Cz, (1)

We also assume that the above reference model has an SPR transfer func-
tion. From the Kalman-Yakubovich-Popov Lemma, which will be presented
in detail in the next chapter, this means that there exists a matrix P > 0, a
matrix L', and a positive constant ¢ such that

A P+ PAy=—-L'L'T —cP
(2.192)
PB =oT

where
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Ay =A—-BLT

Since the system parameters are unknown, let us consider the following
adaptive control law:

w=—LTx+r(t)
) (2.193)
=—-LTzx+r(t)— LTx

where L is the estimate of L and L is the parametric error
L(t)=L(t)— L
Introducing the above control law into the system (2.189) we obtain

#(t) = (A— BLT)a(t) + B(r(t) — LT (H)z(t)) (2.194)

Define the state error £ = z — x, and the output error e = y — y,.. From
the above we obtain

9 (t) = Aai(t) — BLT (t)x(t)

(2.195)
e(t) = Cz(t)
Consider the following Lyapunov function candidate
V(z, L) =3Pz + LTP,L (2.196)
where P > 0 and Pr, > 0. Therefore
iam T ~T AT ~ ~T FT FT dL
V(@ L) = & (AP + PAx)E — 22" PBL & + 2L PL 7
Choosing the following parameter adaptation law
dL
= P la(t)e(t) = P la(t)Ci(t)
we obtain
V(#, L) =27 (AP + PAy)Z — 27 (PB — CT)LTx
Introducing (2.192) in the above we get
V(i) = -2 (L'L'T +eP)z <0 (2.197)

It follows that #,z and L are bounded. Integrating the above we get

/t i (s)(L'L'T + eP)z(s)ds < V(& (0), L (0))
0

Thus # € L. From (2.195) it follows that 2Z(-) is bounded and we conclude
that Z(-) converges to zero.
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2.15.2 Adaptive Output Feedback

In the previous section we presented an adaptive control based on the as-
sumption that there exists a state feedback control law such that the result-
ing closed-loop system is SPR. In this section we present a similar approach
but this time we only require output feedback. In the next section we will
present the conditions under which there exists an output feedback that ren-
ders the closed loop SPR. The material in this section and the next have been
presented in [219]. Consider again the system (2.189) in the MIMO (multiple-
input multiple-output) case, i.e., with state z(t) € IR", input u(t) € R™
and output y(t) € IRP. Assume that there exists a constant output feedback
control law

u(t) = —Ky(t) + r(t) (2.198)
such that the closed loop system
i(t) = Ax(t) + Br(t)
(2.199)
y(t) = Cx(t)
with

A=A—-BKC
is SPR, i.e. there exists a matrix P > 0, a matrix L', and a positive constant

¢ such that 3

A'P+PA=_L'L'T —¢cP
(2.200)
PB =CT

Since the plant parameters are unknown, consider the following adaptive con-
troller for r(t) = 0:

u(t) = —K(t)y(t)

where K (t) is the estimate of K at time ¢. The closed loop system can be
written as

i(t) = Aw(t) — B(K(t) - K)y(t)

y(t) = Cz(?)
Define

K{t)=K(t)-K

3 Similarly to in the foregoing section, this is a consequence of the Kalman-
Yakubovich-Popov Lemma for SPR systems.
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and consider the following Lyapunov function candidate
V(z,K) =27 Pz + tr (RTF_1K>

where I" > 0 is an arbitrary positive definite matrix. The time derivative of
V(-) along the system trajectories is given by

V(z,K) = 2T (ATP + PA)z — 22T PBKy + 2tr (KTrli (K))

Introducing (2.189) and (2.200) we obtain

Ve, K) =27 (ATP + PA)z — 2tr (K’ny — K’TF*I% (K’))

Choosing the parameter adaptation law

9 (&) = rytow o)

and introducing (2.192) we obtain

V(z) = —2T(L'L'T +eP)z2 <0

Therefore V(-) is a Lyapunov function and thus z(-) and K () are both
bounded. Integrating the above equation it follows that x € L. Since #(-)
is also bounded we conclude that z(¢) — 0 as ¢ — 0.

Hence the proposed adaptive control law stabilizes the system as long as
the assumption of the existence of a constant output feedback that makes the
closed-loop transfer matrix SPR is satisfied. The conditions for the existence
of such control law are established in the next section. Further work on this
topic may be found in [42] who relax the symmetry of the Markov parameter

CB.

2.15.3 Design of SPR Systems

The adaptive control scheme presented in the previous section motivates the
study of constant output feedback control designs such that the resulting
closed-loop is SPR. The positive real synthesis problem is important in its own
right and has been investigated by [179,428, 480, 505]. This problem is quite
close to the so-called passification or passivation by output feedback [153,
156,280]. Necessary and sufficient conditions have been obtained in [219] for a
linear system to become SPR under constant output feedback. Furthermore,
they show that if no constant feedback can lead to an SPR closed-loop system,
then no dynamic feedback with proper feedback transfer matrix can do it
neither. Hence, there exists an output feedback such that the closed-loop
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system is SPR if and only if there exists a constant output feedback rendering
the closed-loop system SPR.

Consider again the system (2.189) in the MIMO case, i.e., with state z(t) €
R", input u(t) € IR™ and output y(¢) € IRP and the constant output feedback
in (2.198). The closed loop is represented in Figure 2.20 where G(s) is the
transfer function of the system (2.189). The equation of the closed-loop T'(s)
of Figure 2.20 is given in (2.199).

+ u

(O G(s) y

K%

Fig. 2.20. Closed-loop system T'(s) using constant output feedback

Theorem 2.64. [41] Any strictly proper strictly minimum-phase system
(A, B,C) with the m x m transfer function G(s) = C(sl, — A)~'B and with
CB > 0 and symmetric, can be made SPR via constant output feedback. ™M

The fact that the zeroes of the system have to satisfy Re[s] < 0 is cru-
cial. Consider G(s) = (94'1)(22"1‘% There does not exist any static output
feedback v = ky + w which renders the closed-loop transfer function PR.

Indeed if w? = 2=% then Re[T'(jw)] < 0 for all k < 0. Therefore the strict
minimum phase assumption is necessary. Recall that a static state feedback
does not change the zeroes of a linear time invariant system. We now state
the following result where we assume that B and C are full rank.

Theorem 2.65 (SPR synthesis [219]). There exists a constant matriz K
such that the closed-loop transfer function matriz T'(s) in Figure 2.20 is SPR
if and only if

BTC=C"B>0
and there exists a positive definite matrix X such that

CTherm{B, XBTA}C| <0
When the above conditions hold, K is given by
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K=ctz(r-c cTzc)tcTz)ctt + 5

where Z = herm{PA} and P = C(BTC)=CT + B, XBY, and S is an arbi-
trary positive definite matriz. ]

The notation used above is herm{ X} = (X +X*), and X is defined as
XTX=0and XTX, =1,,X € R"".

In the single-input single-output case, the necessary condition BTC > 0
implies the relative degree of G(s) is one. It is noteworthy that the above two
results apply to systems with no feedthrough term, i.e. D = 0. An answer
is provided in [480, Theorem 4.1], where this time one considers a dynamic
output feedback. The system (4, B,C, D) is partitioned as B = [B; Bs],
C= {Cl ], D= (DH Du). It is assumed that (A, Bs) is stabilizable and
that (A, Cy) is detectable. The closed-loop system is said internally stable if

A+ ByDgCy BoCk
the matrix is stable (has eigenvalues with strictly
B Cy AK
negative real parts), where (Ax, Bx,Ck, D) is the dynamic feedback con-
troller.

Theorem 2.66. [/80] There exists a strictly proper (dynamic) state feedback
such that the closed-loop system is internally stable and extended SPR if and
only if there exists two matrices F and L such that

[ ] Dll + D’{‘l > 0
o The algebraic Riccati inequality

(A+ BoF)TP + P(A+ BoF) + (Cy + D1oF — BT P)T(Dy; + DI)) L.

(Cl + Do F — B{P) <0
(2.201)
has a positive definite solution Py
e The algebraic Riccati inequality

(A+ LCo)TG + G(A+ LCy) + (By + LDy — GCHT(Dyy + DT) L

(Bl + LDy — GCIT) <0
(2.202)
has a positive definite solution Gy,
o The spectral radius p(GyPy) < 1. ]

The conditions such that a system can be rendered SPR via static state
feedback are relaxed when an observer is used in the control loop. However
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this creates additional difficulty in the analysis because the closed-loop system
loses its controllability. See Section 3.4 for more information. Other works
related with the material exposed in this section, may be found in [49, 50,
177,205,330,448, 465,497,515, 516]. Despite there being no close relationship
with the material of this section, let us mention [19] where model reduction
which preserves passivity is considered. Spectral conditions for a single-input
single-output system to be SPR, are provided in [455]. The SPRness is also
used in identification of LTI systems [12]. Robust stabilisation when a PR
uncretainty is considered is studied in [180].



3

Kalman-Yakubovich-Popov Lemma

The Kalman-Yakubovich-Popov Lemma (also called the Yakubovich-Kalman-
Popov Lemma) is considered to be one of the cornerstones of Control and
Systems Theory due to its applications in absolute stability, hyperstability,
dissipativity, passivity, optimal control, adaptive control, stochastic control
and filtering. Despite its broad applications the Lemma has been motivated
by a very specific problem which is called the absolute stability Lur’e problem
[321,408]. The first results on the Kalman-Yakubovich-Popov Lemma are due
to Yakubovich [518,519]. The proof of Kalman [247] was based on factorization
of polynomials, which were very popular among electrical engineers. They later
became the starting point for new developments. Using general factorization of
matrix polynomials, Popov [407,409] obtained the Lemma in the multivariable
case. In the following years the Lemma was further extended to the infinite
dimensional case (Yakubovich [520], Brusin [87], Likhtarnikov and Yakubovich
[300]) and discrete-time case (Szegd and Kalman [483]).

The Kalman-Yakubovich-Popov Lemma (which will be shortly denoted as
the KYP Lemma) establishes an equivalence between the conditions in the
frequency domain for a system to be positive real, an input-output relationship
of the system in the time domain, and conditions on the matrices describing
the state-space representation of the system. A proof of this Lemma in the
multivariable case is also due to Anderson [11]. This result is very useful in
the stability analysis of dynamical systems and is also extensively used in
the analysis of adaptive control schemes. We will use this Lemma to prove
the Passivity Theorem which ensures the stability of a closed loop system
composed of two passive systems connected in negative feedback. Both results
are extensively used in the analysis and synthesis of dynamical systems. The
reader is referred to the survey [36] for more details on the history of the KYP
Lemma.
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3.1 The Positive Real Lemma

3.1.1 PR Transfer Functions

Let us consider a multivariable linear time-invariant system described by the
following state-space representation

&(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3.1)
x(0) = xo

where z(t) € R",u(t),y(t) € IR™ with n > m. The Positive Real Lemma can
be stated as follows [8].

Lemma 3.1 (Positive Real Lemma or KYP Lemma). Let the
system in (3.1) be controllable and observable. The transfer function
H(s) = C(sl, — A)™'B + D, with A € R"",B € R"™,C ¢
R™"™ D € R™™ is PR with H(s) € R™*™, s € C, if and only
if there exists matrices P = PT > 0, P ¢ R"™", L € R"*™and
W e R™™ such that:

PA+ATP=—LLT
PB-CT = —-LW (3.2)
D+ DT =wTw

The proof will be given below.

Example 3.2. Let us point out an important fact. It is assumed in Lemma 3.1
that the representation (A, B,C, D) is minimal. Then PRness of the trans-
fer function C(sl,, — A)~'B + D is equivalent to the solvability of the set of
equations (3.2) with P = PT > 0. Consider now the following scalar exam-
ple, where (A, B,C,D) = (—«,0,0,1), with « > 0. The transfer function is
H(s) = 0 that is PR. The set of equations (3.2) takes the form <—200zp (2)) <0,
which is satisfied for any p > 0. Obviously, however, this system is neither
controllable nor observable. This example shows that the minimality assump-
tion is not necessary for the set of equations (3.2) to possess a positive definite
solution. We shall come back on this topic in Section 3.3.

The first equation above is known as the Lyapunov equation. Note that
LL" is not positive definite but necessarily semi-positive definite as long as
m < n. The third equation above can be interpreted as the factorization



3.1 The Positive Real Lemma 71

of D + DT. For the case D = 0, the above set of equations reduces to the
first two equations with W = 0. If one comes back to the frequency domain
(Definitions 2.28 and 2.29) one sees that the stability is taken care of by the
first equation in (3.2) while the other equations rather deal with the positivity.
As recalled in the introduction of this chapter, the first published version of
the KYP Lemma was by Yakubovich [518,519] in 1962, with D = 0. The set
of equations (3.2) can also be written as

~PA-ATPCT -PB] [L
c-BTp D+DT | |WT

From (3.2) it follows that BTPB — BTCT = —BTLW. So if W = 0 one
gets CB = BTPB > 0. If B is full column rank then CB > 0. Thus the
first non-zero Markov parameter of the system is C'B, which means that the
uniform relative degree of the system is equal to 7 = (1, ...,1)T € IR™. Before
presenting the proof of the KYP Lemma, let us state a number of interesting
results, which link the set of equations (3.2), the positive realness, and a new
tool that is named a dissipation equality.

] [LTW] >0 (3.3)

Corollary 3.3. Let the system in (3.1) be controllable and observable, and let
D = 0. Assume that C(sl,, — A)~'B is PR. Then

t 1t
/ " (s)y(s)ds = V(a(t) = V(o) — / 2T()ATP + PAY(s)d (3.4)

0 0
for all t > 0, with V(z) = 32T Pz, P satisfies the LMI in (5.3), and the
equality is computed along state trajectories starting at x(0) = xo and driven
by u(-) on [0,t]. [

Proof: Positive realness and minimality imply that (3.2) is satisfied. By
simple calculation of the integral f; uT (s)y(s)ds and using the KYP Lemma
conditions, premultiplying &(¢t) by P, (3.4) follows. [ ]

The same holds if D # 0, as the reader may check. We shall see in the next
chapter that V() is a storage function for the system (A, B, (), and that the
equality in (3.4) is a dissipation equality. One may rewrite it as follows, with
an obvious “physical” interpretation:

—— —— 2
energy at time ¢  initial energy

V() Vizg) 4+ /0 " ($)(ATP 1 PAyr(s)ds +

dissipated energy

+ /0 ul(s)y(s)ds

—_——
externally supplied energy
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where we recall that AT P+ PA < 0. A dynamical system which satisfies (3.5)
along its trajectories is named dissipative. Notice that the minimality of the
triple (A, B,C) is used in Corollary 3.3, which therefore shows that PRness
implies the dissipation equality (3.4). However the following is also true.

Corollary 3.4. Let the triple (A, B, C) be given, where the matrices have ap-
propriate dimensions. Suppose that the KYP Lemma set of equations (3.2) is
solvable, i.e. there exists a triple (P = PT > 0,L,W) that solves (3.2). Then
the dissipation equality (3.4) holds along the system’s trajectories. |

Proof: One has @(t) = Axz(t) + Bu(t) & Px(t) = PAxz(t) + PBu(t) =
2T (#)Pi(t) = 2T (t)PAx(t) + 2T (t)PBu(t) & 2T (t)Pi(t) — 27 (t)PAz(t) —
2T (t)PBu(t) + uT (t)y(t) = uT(t)y( ). Integrating between 0 and ¢ we de-

duce that 1a7(t)Px(t) — Lo (O)Pa:(O) — 1[4 2T (r)(PA + ATP)x(r)dr +
fg uT(1)(BTP — C)x(r)dr = fo ( Ydr. From the second equation in
(3. 2) we get that Lo (¢)Px(t )—%xT 0)—3 [7 2T (r)(PA+AT P)x(r)dr =
fo 7)dr which is (3.4). [ ]

The mterebt of Corollary 3.4 is that no minimality on (A4, B, C) is required
L. We let the reader treat the case where D # 0, using Proposition A.63.
Corollary 3.3 assumes minimality but shows a stronger result, namely that
H(s) € PR < (3.2) = (3.4). The issues linked to minimality and the KYP
Lemma are examined in Section 3.3.

One notices from (3.4) that if zyp = 0 then f; uT (s)y(s)ds > 0: this in-
equality is always true for positive real transfer functions. This is to be linked
with Definition 2.1 (the “constant” [ is shown to be equal to —V (zg)), and
to Theorem 2.2: the function V(t) in Theorem 2.2 actually is a function of
the state z and is not an explicit function of time! As the reader may have
guessed, it plays the role of a Lyapunov function for the uncontrolled system
z(t) = Ax(t).

Corollary 3.3 proves that a minimal system satisfying (3.2) satisfies (3.4).
It is also of interest to show the converse: suppose that the system (3.1) with
D = 0 satisfies (3.4) for some positive definite quadratic function V' (z). Then
does it satisfy the KYP Lemma conditions? The answer is yes. Indeed notice
first that the dissipation equality (3.4) is equivalent to its infinitesimal form

ut (t)y(t) = 2T (t)Pi(t) — %xT(t)(ATP + PA)x(t) (3.6)

since it holds for all ¢ > 0. Continuing the calculations we get
T T L r T
u' (t)Cx(t) = x" (t)P(Ax(t) + Bu(t)) — 2% (t)(A" P+ PA)x(t) (3.7)

! Let A € IR™*™ be the transition matrix. Minimality of n is equivalent to having
(A, B) controllable and (A, C) observable.
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so that uT (¢)Cx(t) = 2T (t)PBu(t). Since this equality holds for any u(-) one
must have C7 = PB. This shows that the second KYP Lemma condition
is true. Now suppose that more generally the system satisfies a dissipation
equality as

/ T (s)y(s)ds = V(a(t)) — V(wo) — % / T ()0x(s)ds  (3.8)
0 0

with @ <0 and V(z) = 327 Pz, P = PT > 0. Then the uncontrolled system
is stable in the sense of Lyapunov since V(x(t)) < V(x(0)) for all ¢ > 0. Thus
ATP + PA <0 from Lyapunov’s Theorem. Using once again the infinitesimal

version of the dissipation equality we get
1
uT(t)yt) = 2T (t)(PA+ AT P)x(t) — ixT(t)Qx(t)

This must hold for any admissible input. Rewriting this equality with u(-) =0
we obtain that necessarily PA+ATP = —Q = —LL" for some matrix L. Thus
we have proved the following.

Corollary 3.5. Let (3.8) hold along the system’s trajectories with Q@ < 0,
V(z) = 2" Pz, P = PT > 0. Then the KYP Lemma set of equations (3.2)
also hold. ]

Remark 3.6. In the case D # 0, assuming that the dissipation equality (3.8)
holds yields after time-derivation

1 1
u?(C — BT P)x +u” Du — ixT(ATP + PA)x = —ixTQx >0 (3.9)

since @ < 0. In a matrix form this leads to

—ATP - PACT - PB
(z7 uT) (i) >0 (3.10)
C—-BTP D+ DT
Using Proposition A.63, (3.2) follows.

We have seen in the proofs of Theorems 2.6 and 2.21 that Parseval’s Theo-
rem allows us to assert that if H(s) is PR then fg uT (1)y(r)dr > 0, where the
underlying assumption is that x(0) = 0, and conversely (see Corollary 2.35).
Obviously the dissipation equality implies fg’ uT (7)y(T)dT > 0 when z(0) = 0.

Therefore concatenating all these results we get the following.
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KYP Lemma matrix equality (3.2)
¥ ((4, B,C, D) minimal)
PR transfer function < f(; uT (7)y(7)dT > 0 when x(0) = 0

)

Dissipativity with quadratic storage function

These developments and results somewhat shed new light on the relation-
ships between PR, transfers, passivity, dissipation, and the KYP Lemma set
of equations. However we have not yet proved the KYP Lemma, i.e. the fact
that the frequency domain conditions for positive realness, are equivalent to
the LMI in (3.2) when (A, B,C, D) is minimal. Several proofs of the KYP
Lemma appeared in the book [8].

Proof of the KYP Lemma: The proof that is reproduced now is taken
from Anderson’s work [11].

Sufficiency: This is the easy part of the proof. Let the set of equations in
(3.2) be satisfied. Then

H(s)+ HT(5) = DT + D+ BT (51, — AT)~'CT + C(sI,, — A)~'B.
WTW + BT [(s1, — AT)"'P + P(sI,, — A)~'] B+
+BT (31, — AT L\LW + WTLT(sI, — A)~'B
=WTW + BT (s, — AT)"' [P(s +5) — PA— ATP| (sI,, - A)~'+
+BT (31, — AT)"'LW + WTLT(sI, — A)~'B
=WTW + BT (sI,, — AT)'LW + WTLT(sI,, — A)"'B+
+BT(sI,, — AT)"'LLT(sI,, — A)~'B+
+BT (51, — AT)"'P(sI, — A)"'B(s + 5)
= [WT + BT (sI,, — AT)"'L] [W + LT (sI,, — A)"'B] +

+BT (51, — AT)"1P(sI, — A)"1B(s + 35)
(3.11)
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which is nonnegative definite for all Re[s] > 0.

Necessity: Suppose that rank(H (s)+H7T (—s)) = r almost everywhere. From
the PRness it follows that there exists an r x m matrix W (s) such that

H(s)+ HT(—s) = WOT(—S)WO(S) (3.12)
and

e (i) Wp(-) has elements which are analytic in Re[s] > 0, and in Re[s] > 0
if H(s) has elements which are analytic in Re[s] > 0.
(ii) Rank(Wp(s) = r in Re[s] > 0.
(iii) Wo(s) is unique save for multiplication on the left by an arbitrary
orthogonal matrix.

This is a Youla factorization. Suppose that all poles of H(s) are in
Re[s] < 0 (the case when poles may be purely imaginary will be treated
later). Equivalently all the eigenvalues of A have negative real parts,i.e. A is
asymptotically stable. From Lemmas A.66 and A.68 (with a slight adaptation
to allow for the direct feedthrough term) it follows that there exists matrices
L and W = Wy(o0) such that Wy(s) has a minimal realization (A4, B, L, W),
with two minimal realizations for H(s) + HT (—s) = W (—s)Wy(s) being
given by

A0 B cr
(A17B17017WTW) = 5 5 ,WTW (313)
0 —AT cT -B
and
A 0 B PB+ LW
(A3vB37C37WTW) = ) ) 7WTW
0 —AT PB+ LW —-B

where P is the unique symmetric positive definite solution of PA 4+ ATP =
—LL". From Lemma A.69 there exists nonsingular matrices 7 commuting

.. |A 0 B B _ cT
with {O —AT] and such that T' [CT] = [PB—I—LW} and (T-1)T [—B] =

[PB_—FBLW} . By Corollaries A.67, A.17 and A.70 there exists 71 commuting
with A such that T\B = B, and (T} 1)TCT = PB + LW. Now since T}
commutes with A one has

[B,AB,..] = [T\B,AT\B, ..| = [T\B,T\AB,..] = T\[B, AB, ..]  (3.15)
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The matrix [B, AB,...] has rank n because of the minimality of the real-
ization. Thus T = I,, and thus PB + LW = CT. The third equation in (3.2)
follows by setting s = oo in H(s) + HT (—s) = W' (—s)Wy(s).

In a second step let us relax the restriction on the poles of H(s). In this
case H(s) = Hy(s) + Ha(s) where H;(s) has purely imaginary axis poles, and
Hj(s) has all its poles in Re[s] < 0, and both Hi(s) and Hz(s) are positive
real. Now from Lemma A.71 it follows that there exists P, = P{' > 0 such that
P A1+ AT P, = 0and PyB; = CT', where (A1, By, C1) is a minimal realization
of Hy(s). For Hz(s) we may select a minimal realization (Ag, B, Cy, D) and
using the material just proved above we may write

PyAs + ATPy = —L,I7
PyBy = CF — LyW (3.16)

WTW = Dy + DT

It can be verified that the KYP Lemma set of equations (3.2) is satified by
taklngP = P1+P2, A= A1+A2, BT = [B%1 Bg], C = [Cl CQ], LT = [O Lg]
Moreover with (Ay, By, C1) and (As, By, Ca, D2) minimal realization sof Hj (s)
and Hs(s), (A, B,C, D) is a minimal realization of H(s). Indeed the degree
of H(s) is the sum of the degrees of H1(s) and Hs(s) which have no common
poles. It just remains to verify that the equations (3.2) hence constructed are
valid under any (full rank) coordinate transformation, since they have been
established for a particular form A; + As. [ |

The KYP Lemma has been derived in the so-called behavioural framework
in [162].

3.1.2 A Digression to Optimal Control

We will deal at several places in the book with optimal control and its link
with dissipativity. Let us nevertheless point out a first relationship. Provided
D + DT is full-rank (i.e. D + DT > 0 in view of (3.2)), the matrix inequality
in (3.3) is equivalent to the following algebraic Riccati inequation:

—PA-ATP—(Cc-B"P)"(D+D")"Y(C -BTP)>0 (3.17)

Equivalence means that the LMI and the Riccati inequality possess the
same set of solutions P. The KYP Lemma says that if the transfer function
D+C(sl,—A)"'Bis PR and (A, B,C, D) is minimal, then they both possess
at least one solution P = PT > 0. Let us recall that the optimal control
problem

+oo
min J (zo, u) = /0 (T ()Qx(t) + u™ (t)Ru(t))dt (3.18)

ueU
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under the constraints (3.1) and with R > 0, @ > 0, has the solution
u*(x) = —R71BT Pz where P is a solution of the Riccati equation —PA —
ATP 4+ PBR'BTP = @ > 0. When the cost function contains cross terms
227 Su then P is the solution of the Riccati equation —PA — ATP — (S —
BTP)RY(ST —PB) = Q > 0 and the optimal control is u*(z) = —R~1(ST —
BT P)z. The Belmann function for these problems is the quadratic function
V(z) = 2T Pz and V (x¢) = mingey J (o, u). If Q@ > 0 then P > 0 and V(z)
is a Lyapunov function for the closed-loop system @(t) = Az(t) + Bu*(z(t)),
as can be checked by direct calculation of V (z(t)) along the closed-loop tra-
jectories.

Therefore the Riccati inequality in (3.17) corresponds to the Riccati in-
equation of an infinite horizon L(Q problem whose cost matrix is given by

Q or
) (3.19)
CD+D

where D 4+ DT = WTW (= R) is the weighting matrix corresponding to u
in the cost function, S = C and Q = LL” > 0. The equivalence between
(3.3) and the Riccati inequality also holds with strict inequality (> 0) in both
(3.3) and (3.17). To recapitulate, the positive realness of the controllable and
observable LTI system (3.1) is equivalent to the KYP Lemma conditions (3.2),
which are equivalent to the linear matrix inequality (3.3), which is equivalent
to the Riccati inequality (3.17), whose solution provides the optimal feedback
control that corresponds to the optimal control problem in infinite horizon
with cost matrix (3.19). All this is relying on the condition D + DT > 0. The
controllability assumption on the system (3.1) can be interpreted in the light
of the optimal control problem, in the sense that controllability implies the
existence of some u(-) such that J(zo,u) < +o0.
The proof of the equivalence between the Riccati inequality and the linear
matrix inequality follows from Theorem A.61, which is instrumental in char-
acterizing dissipative systems with Riccati and partial differential inequal-
ities. The reader may have a look at Appendix A.5 where several results
of matrix algebra are recalled. We may apply Lemma A.62 to the matrix
D+ DT C—-BTP

M = . Then rank(M) = m is equivalent
CT —-PB —PA-ATP-LL"

to the Riccati equality

PA+ATP4+LLT +(CT — PB)(D+D")"Y(C - BT"P)=0  (3.20)

which is (3.17) with = instead of >. As we shall see further in the book, a
Riccati equation for a PR system corresponds in the nonlinear case to a partial
differential inequation (Hamilton-Jacobi inequalities), whose solutions serve as
Lyapunov functions candidates. The set of solutions is convex and possesses
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two extremal solutions (which will be called the available storage and the
required supply) which satisfy the algebraic Riccati equation, i.e. (3.17) with
equality, see Section 4.4.3, Lemma 4.47 and Proposition 4.48. More details
between the KYP Lemma and optimal control will be given in Section 3.8.
The case when D + DT = 0 and D + DT > 0 will be treated in Section 4.6.
Such cases possess some importance. Indeed PR functions may not have a
realization with a full rank matrix D. Let us end this subsection by recalling
another equivalence: the system (A, B,C, D) with a minimal realization and
D + DT > 0is PR if and only if the Hamiltonian matrix

A—-B(D+ DN~ lC B(D + DT)~1BT
(3.21)
_CT(D + DT)*lC AT ¢ CT(D + DT)leT
has no pure imaginary eigenvalues. This is a way to characterize SSPR transfer
matrices. Indeed notice that

+oo
H(s)=C(sI, —A)'B+D=)» CA™'Bs'+D
=1

so that H(co) = D. The SSPRness thus implies by Definition 2.54 (2) that
D>6>0(or D+ DT >6I, >0ifm> 2). It is noteworthy that D+DT >
0 & D > 0; however D is not necessarily symmetric.

3.1.3 Duality

The linear matrix inequality (3.3) thus defines a set P of matrices P > 0.

Lemma 3.7 (duality). Let (A, B,C, D) be such that the set P is not empty.
The inverse P~1 € P~1 of any element of P is a solution of the dual problem
(AT, 0T, BT D). [ |

Remember that the adjoint system is defined as (—AT,CT, BT, D).
Proof of Lemma 3.7: Clearly if P > 0 then P! > 0. From the following

matrix relation

—ApP~1_ p1AT pB_ p-icT

BT —cp? R
(3.22)
—-pP1o —ATp—-pPA CcT-PB] [-P 10
0 I,| |Cc-BTP R 0 I,

one sees that P~! € P if P € P, because the two matrices
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—AP~t — p7tAT B-piCT

BT —cp~! R

and
—ATp—_pPA CT-PB

C-BTP R

are simultaneously negative definite. The set P is the set that solves the KYP
Lemma linear matrix inequality for the dual system.
|

3.1.4 Positive Real Lemma for SPR Systems

Consider the set of equations in (3.2) and Definition 2.42 of a SPR transfer
function. Assume that a realization of the input-output system is given by the
quadruple (A4, B,C, D), i.e. C(sl, — A)"'B+ D = H(s), and (4, B,C, D) is
minimal. Then H(s — €) = C(sl, — eI, — A)"'B + D, and a realization of
H(s—e¢) is given by (A+e€l,, B,C, D). Saying that H(s—¢) is PR is therefore
equivalent to stating that (A + el,,, B, C, D) satisfies the KYP Lemma set of
equations (3.2), provided (A+el,, B, C, D) is minimal. Therefore (A, B, C, D)
is SPR if and only if (A + el,,)TP + P(A +¢l,,) = —LLT and the last two
equations in (3.2) hold, with P = PT > 0. The first equation can be rewritten
as ATP+ PA = —LLT —2eP. As is well known, this implies that the matrix
A is Hurwitz, i.e. all its eigenvalues have negative real parts. Indeed consider
the Lyapunov function V(z) = 2T Pz. Then along trajectories of the system
i(t) = Ax(t) one obtains V(z(t)) = 2T (t)(=LLT — 2eP)x(t) < —2eV (x(t)).
Consequently the system is exponentially stable. This in particular shows
that SPR transfer functions have poles with negative real parts, and confirms
Theorem 2.45.

The Lefschetz-Kalman-Yakubovich Lemma

We now present the Lefschetz-Kalman-Yakubovich (LKY) Lemma which gives
necessary and sufficient conditions for a system in state space representation
to be SPR.

Lemma 3.8 (Multivariable LKY Lemma). [485] Consider the system in
(3.1), with m > 2. Assume that the rational transfer matriz H(s) = C(sI —
A)T' B+ D has poles which lie in Re[s] < —y where v > 0 and (A, B,C, D) is
a minimal realization of H(s). Then H(s — p) for p > 0is PR if and only if
a matriz P = PT >0, and matrices L and W exist such that
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PA+ATP=—-LLT —2uP
PB-CT =—-LW (3.23)
D+ DT =wTw.

The conditions in (3.23) are more stringent than those in (3.3). Notice
that the first line in (3.23) can be rewritten as

P(ul, + A) + (AT + uI,)P = —LLT (3.24)

which allows one to recover (3.3) with A changed to ul, + A. The transfer
function of the triple (u1,, + A, B, C) precisely is H(s— ). Thus (3.23) exactly
states that (ul, + A, B,C) is PR and satisfies (3.3).

It is assumed in Lemma 3.8 that the system is multivariable, i.e. m > 2.
The LKY Lemma for monovariable systems (m = 1) is as follows.

Lemma 3.9 (Monovariable LKY Lemma). [485] Consider the system in
(3.1), with m = 1. Suppose that A is such that det(sl, — A) has only zeroes
in the open left-half plane. Suppose (A, B) is controllable, and let u > 0,
L = LT > 0 be given. Then a real vector q and a real matriz P = PT > 0
satisfying

PA+ ATP = —qq" — uL (3.25)
PB—CT = \2Dq '
exist if and only if H(s) is SPR and p is sufficiently small.
]

Lemma 3.8 is not an extension of Lemma 3.9 because the matrix L = LT >
0 is arbitrary in Lemma 3.9. We now state a result that concerns Definition
2.61.

Lemma 3.10. [{30] Assume that the triple (A, B, C) is controllable and ob-
servable. The system whose realization is (A, B, C, D) is y—positive real if and
only if there exist matrices L and W such that

PA+ATP = —(1-~2)CTC - LTL
PB=(1+~*)CT = (1-4%)CTD — LW (3.26)

WIW = (% = DI, + (72 = 1)DTD + (4% + 1)(D + D7)
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Time Domain Conditions for Strict Positive Realness

The next result is due to J.T. Wen [508] who established different relationships
between conditions in the frequency domain and the time domain for SPR
systems.

Lemma 3.11 (KYP Lemma for SPR Systems). Consider the LTI, min-
imal (controllable and observable) system (3.1) whose transfer matriz is given
by

H(s)=D+C(sl, — A)™'B (3.27)
where the minimum singular value oy (B) > 0. Assume that the system is
exponentially stable. Consider the following statements:

1. 1) There exist P > 0, P, L € R™", pmm(L) 2 ¢ > 0, Q € R™",
W e R™*™ that satisfy the Lur’e equations

ATP4+ PA=-QTQ-L (3.28)
BTP-Cc=wTQ (3.29)
WTW =D + DT (3.30)

1’) Same as 1) except L is related to P by

L =2uP (3.31)

for some p > 0.
2) There exists 7 > 0 such that for all w € IR

H(juw) + H*(je) = nln (3.32)
3) Forallw e R
H(jw)+ H*(jw) >0 (3.33)
4) For allw € R
H(jw)+ H*(jw) >0 (3.34)
and
lim w? (H(jw) + H*(jw)) > 0 (3.35)

5) The system can be realized as the driving point impedance of a multi-
port dissipative network.

6) The Lur’e equations with L = 0 are satisfied by the internal parameter
set (A + upl,, B, C, D) corresponding to T' (jw — ) for some p > 0.
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7) For all w € IR, there exists p > 0 such that

H(jw—p) + H"(jw—p) 20 (3.36)

8) There exists a positive constant p and a constant & (zo) € IR, £ (0) =0,
such that for all £ > 0

/ uT (s)y(s)ds > € (o) + p / lu(s)|P? ds (3.37)
0 0

9) There exists a positive constant vy and a constant & (x¢), £ (0) = 0, such
that for all ¢t > 0

/0 i (s)y(s)ds > € (x0) (3.38)

10) There exists a positive constant « such that the following kernel is
positive in Lo (R4; R™*™):

K (t—s)=Dj(t—s)+ CeAToNE=IB (1 — ) (3.39)
where § and I denote the Dirac measure and the step function, respec-

tively.
11) The following kernel is coercive in Lo ([0, T ;Bmxm), for all T":

K (t—s)=Dj(t—s)+Cert"*BI(t — s) (3.40)

These statements are related as follows:

— (2) & (8) < (11)
=
(if D > 0)
3
(1) = [1)= )= (5) < (6) = (7) = (9) < (10)
_—
(if D =0)
I
(3)
Proof:
(2) = (1)

Consider the optimization problem of finding u € L9 ((—00,00) ; IR™) to min-
imize

Jj = /_OO {2 (jw) FTZ(jw) + 20" (jw)§(jw) } dw
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where the superscript * denotes complex conjugate transposition and Z, ¥ and
u are the Fourier transforms of the x, x and u, respectively. By writing Z, in
terms of the initial condition and the input, the optimization index can be
expanded as
I = [ A= ((Gwln — A) " wo + (jwly — A) 7' Bu(jw))* FTF((jwl, — A) ™o

+(jwl, — A)~tBu(jw) + @ (jw)[(C(jwln — A)"'B + D)*
+(C(jwl, — A)™'B + D)Ji(jw)
+2U* (jw)C (jwl, — A)"Lagtdw
Consider the problem as an Lo —optimization. Then
Jr = (Ru,u) + (r,u) + k,

where the inner products are in the Lo sense. A unique solutions exists if R
is a coercive L(L3) (the space of bounded operators in £5) operator. Now,

R = H*(jw) + H(jw) — BT (—jwl, — AT)'FTF(jwl, — A)"'B
By condition (2), if

n>||F(jwl, — A) 7 B[}

then the operator R is coercive. By Plancherel’s Theorem, J; can be trans-
formed back to the time domain as

J = /OO [—x()" FTFa(t) + 2u” (t)y(t)] dt

Since a unique solution of the optimal control problem exists, the necessary
conditions from the maximum principle must be satisfied. The Hamiltonian
is given by

H(z,u) = 2" FTFz + 2u™ (Cx + Du) + AT (Az + Bu)
where ) is the costate or the Lagrange multiplier. The feedforward D in u” Du
can be regarded as the symmetrized D. Since condition (2) implies D > 0,
there exists W > 0 such that D+ D7 = WTW. The optimal u is obtained by
minimizing H:

|
u=—gWW=T(2Cz + BT)).

The costate equation is governed by
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A=2FTFz —20Tu— AT\
It can be shown [88] that A depends linearly on z. Let A = —2Px. Then

(PA+A"P+ FTF)z = (C—B"P)"u

=—(C-B™P)Y"W'wT(C-B"P)x
Since the equality holds for all z, we have

PA+ATP = —FTF —QTQ
(3.41)
C=BTP-WTQ

The first equation implies P > 0. By identifying L with F7F and choosing
FTF >0 and

Ur2nin(F) < B U 1 2
[Gwl = A)~'B|l3e

condition (1) is proved.
(1) =(2)
(When D > 0)
Given the Lur’e equations, compute the Hermitian part of the transfer func-
tion as follows :

H(jw) + H*(jw) = D+ DT + C(jwIl — A)"'B + BT (—jwl,, — AT)~1CT
=WTwW + (BT'P - W*Q) (jwl, — A)~'B

+BT (—jwl, — AT)™* (PB — QTW)

=WTW + BT (—jwl, — AT)"Y(—jwl, — AT)~ 1P

+P(jwl, — A)|(jwl, — A)~'B

~WTQ(jwl, — A)~'B — BT (—jwl — AT)~1QTW

=WTW + BT (—jwl,, — AT)"1(QTQ + L) (jwl, — A)~'B)
~WTQ(jwl, — A)~'B — BT (—jwI,, — AT)~1Q™W

= (WT - BT (—jwI, — AT)7'QT) (W — Q(jwl, — A)~'B)

+BT(—jwl, — AT 'L(jwl, — A)™'B>0

Assume condition (2) is false. Then there exist {un}, ||[un] =1, and {wy}
such that

S|

0 < ((H (jwn) + H* (jwn)) tn, un) <

As n — oo, if w, — oo, then

<(H (an) +H* (]wn))unvun> - <Dun7un> > Umin (D) >0
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which is a contradiction since the left-hand side converges to zero. Hence, u,,
and w, are both bounded sequences and therefore contain convergent subse-
quences Uy, and wy, . Let the limits be u, and w,. Then

((H (jwn) + H* (jwn)) un, upn) = 0.
This implies

Wu, — Q (jwolpn — A)f1 Bu, =0

LY2 (jwol, — A) "' Buy =0

Since L > 0, the second equality implies

(jwol, — A) "' Buy =0

Substituting back to the first equality yields Wu, = 0. The positive defi-
niteness of W (by assumption D > 0) implies contradiction. Hence, condition
(2) is satisfied.

(2) = (8)

Since (2) = (1), the Lur’e equation holds. Let
L r
Viz) = 2% Px
Then

V(x(t)) = z(t)PAz(t) + x(t)T PBu(t)
—%xT (#)La(t) — % Q2| + uT (1)Cix (1) + uT (YW T Qux(t)

_ —%xT(t)Lx(t) - % 1Q()?|| — w” (£)Du(t) + u" (W Qu(t) +
+ul (t)y(t)
= SO + T O(e) — & 1Qe(t) — Wu(h)

— @I + " @)

IN

IN

By integrating both sides [421] for all ¢ > 0 we get

/0 T (s)y(s)ds = —V (x0) (3.42)

Since (3.32) remains valid if D is replaced by D — ¢ for € sufficiently small,
(3.42) holds with y replaced by

y1=Cx+ (D —e)u
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Then (3.42) becomes

tUTS S)as € tUSQS— X
/0 ()y()dz/onmnd V(o)

Identifying —V (x,) with £(z,) and e with p in (3.37), condition (8) follows.
8) = (2)
Let ¢t — oo in (3.37), then

o0

[ s = ) +p [ futo)|
0 0

In particular, for z, = 0,

t'U,TS S S = u 2
/0 (s)y(s)d zp/o ()| dt

By Plancherel’s Theorem,

[ wmntadozp [ la)? a,

— 00 — 00

for all w € Lo. Suppose that for each n > 0, there exists w € C and w, € IR
such that
* . 2
w™H (jw)w > 7 ||w]
By the continuity of w*H (jw)w in w, there exists an interval {2 around w,
of length r such that
. 2
w H (jw)w > 7 |wl|
for all w € §2. Let

oy Jw ifwef?
ijw) = {0 otherwise

Clearly, @ € Ly. Then

/ i ()i ) = / T ()T (w)iliw)dw < ryll]?,

— 00 — 00

and

o ~ 2 2
b / w2 dw = rp o] 2.

—0o0
If n < p, this is a contradiction. Hence, there exists an interval n > 0 such

that (3.32) holds.
(8) = (11)
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Condition (11) follows directly from condition (8).

(1) — (%)
The implication is obvious if z, = 0. In the proof of (8) = (2), =, is taken
to be zero. Therefore, for z = 0 (11) = (8) = (2). It has already been
shown that (2) = (8). Hence, (11) = (2) = (8).

(1) = (1)

By definition.

(if D = 0)

If D =0, then W = 0. Rewrite (3.28) as

ATP+PA=-QTQ—L+2uP —2uP

For p small enough,

QTQ+L—2uP>0

Hence, there exists Q1 such that

ATP + PA=—-QTQ, — 2uP

Since (3.29) is independent of 1 when D = 0, (1) is proved.

(1) = (6)

By straightforward manipulation

(6) = (7)

Same as in (1) = (2) except L is replaced 2uP.

(7) = (6)

Positive Real (or KYP) Lemma

(4) = (7)

For p1 > 0 sufficiently small, A— pul,, remains strictly stable. Now, by direct
substitution

H(jw—p) + H*(jw — p) = D+ DT + C(jwl,, — A — pul,) ' B+
+ BT (—jwl, — AT — puI,,)~tCOT
= H(juw) + H* (ju)
+u [C(jwl, — A) 7 (jwl, — A— pl,) ' B+
+BT (—jwl, — AT — pl,) " (—jwl, — AT)71CT]
(3.43)
Therefore for any w € C™,

2w*H (jw — p)w > 2w*H (jw)w—

. . 3.44
o [CIBI |Gl — A | Geoln — A= pr)~Y|of? G4

Since

[(Gwln = A)zl| = |(jw] = [[A[]) [l
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it follows [375]

1
jwl, — A < ———
Gt =70 < o=

Then

2
2p [ICI B [lwll
ol = A el = 1A = ]|

2w H (jw — p)w > 2w* H (jw)w —

By (3.34), for allw € £2, 2 is compact in R, there exists k > 0, k dependent
on (2, such that

2w* H (jw)w > k ||lwl||? (3.45)
By (2.7b), for all w sufficiently large, there exists g > 0 such that
* . g 2
2w H (jwyw > 2 o (3.46)

Hence, there exists wy € R large enough so that (3.45) and (3.46) hold
with some g and &k dependent on w;. Then, for |w| < wy,

2
2p ||CI B [|w]l
ol = A ] = 1A = pIn]l

2(|C]IIBIl|wl?
> kwl|* = g sup
jwi<wn [0l = A llw = 1A = L]l

2w H (jw — p)w > k||w|)® — (3.47)

and for |w| > wy,

2 ||CJ| 1B [Jw]®
[ (3.48)
ol = 1Al flwl = l[A = pa ]|

[ 2]l IB] )
> | 9—n{ sup
w? wiman [ = AN [lw] = [A = w1

The terms in curly brackets in (3.47) and (3.48) are finite. Hence, there
exists p small enough such that (3.47) and (3.48) are both non-negative,
proving condition (7).

(7) = (4)

From (7) = (6), the minimal realization (A, B, C, D) associated T'(jw)
satisfies the Lur’e equation with L = 2uP. Following the same derivation as
in (1) = (2), for all w € C™, we have

2w H (jw — p)w >
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w (H(joo — )+ H*(joo — p))w =

=w* (W + BT (—jwl, — AT)71QT)(W + Q(—jwI, — AT)"'B)w
+2pw* BT (—jwl, — AT) 1 P(—jwl, — A7) Bw (3.49)
> 2uw* BT (—jwl, — AT) "1 P(—jwl, — AT)"'Bw

2 B ol

Since P is positive definite and, by assumption, oyin(B) > 0, T(jw) is
positive for all w € IR.

It remains to show (3.35). Multiply both side of the inequality above by
w?, then

w22/J/Jmin (P) Jr211in (B)

w2w* (H (jw) + H* (jw))w
(H(jw) + H*(jw))w > o] — 1Al

2
[[]

As w? — o0, the lower bound converges to w22 pimin(P)o?; (B) which is
positive.

(7) = (5)

If (3.36) is satisfied, H(jw — u) corresponds to the driving point impedance
of a miltiport passive network [8]. Hence, H(jw) corresponds to the impedance
of the same network, with all C' replaced by C' in parallel with resistor of
conductance pC' and L replaced by L in series with a resistor of resistance
L. Since all C, L elements are now lossy, or dissipative, H(jw) is the driving
point impedance of a dissipative network.

(7) = (5)

Reversing the above argument, if H(jw) is the driving point impedance
of a dissipative network, all L and C elements a lossy. Hence, by removing
sufficiently small series resistance in L and parallel conductance in C, the
network will remain passive. Hence, again by [8], condition (7) is satisfied.

(6) = (9)
Let
1 p
V(t,z(t)) = 567 x* Pz
Then
V(t,a(t) =
- %e%T (t)Px(t) + %eV‘xT (t)(PA+ ATP)a(t) + " 27 (t) PBu(t)
S Vi) - 5%@ — " Qu(t) = Wu®)|* + ¢ u” (Dy()

B x PRy
< (5777~ 1) Vital) + a0

Choose 0 < v < €/2||P||. Then by comparison principle, for all T' > 0,
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t
/ e uT (s)y(s)ds > —al Pz,
0

(9) = (6)

Define
ur(t) = e’ u(t)
(1) = e y(t) (3.50)
1(t) = e a(t)

where v > 0 is as given in (3.38). then

{tl(t) = (A + % . I) xl(t) + B’U,l(t)
(3.51)
Y1 (t) = C’a:l(t) + Dul(t)

The corresponding transfer function is

-1
Hi(jw)=D+C (ijn _A- %In) B

= H (- 3)

By setting ¢t = oo and z, = 0 in (3.38),

/ uT () (s)ds > 0
0

By Plancherel’s Theorem,
| ) @) + 15 Geintie) 2 0

— 0o

Since this holds true for all 4; (jw) € Lo

Hy(jw) + Hy (jw) = 0
Equivalently
. v o f 2
— )= — ) >
H (jw 2) H (]w ) >0
proving (7)

(9) = (10)

Use the transformation in (3.50), then condition (10) follows directly from

condition (9) with o = ~/2.

(10) = (9)
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If x, = 0, (10) = (9) is obvious. Since in the proof of (9) = (6), only the
z, = 0 case is considered, it follows, for the z, = 0 case, (10) = (9) = (6).
It has already been shown that (6) = (9). Hence, (10) = (6) = (9).

(2) = (4) = (3)

The implications are obvious. [ |

Remark 3.12. Stating H(jw) + H*(jw) > I, for all w € IR = (—o00,+00),
is equivalent to stating H(jw) + H*(jw) > 0 for all w € R U {—o00, +o0} =
[—00, +00]. This is different from H(jw) + H*(jw) > 0 for all w € IR because
such a condition does not imply the existence of a 6 > 0 such that H(jw) +
H*(jw) > 01, for all w € IR.

Ezample 3.13. 1f H(s) = {5, then H(jw) + H*(jw) = 1+w2, so H(s) is not
SPR despite Re[H (c0)] = 2. But H(0) + H*(0) = 0. If H(s) = 2, then
H(jw) + H*(jw) = 4t > ] for all w € [—00, +00].

This tranfer function
is SSPR. If H(s) = 8+1’ then H(jw) + H*(jw) = 1+2w2 > 0 for all w €
(—00, +00). Moreover lim,,_, 4 o 72 1+7 > 0, so H(s) is SPR.

1+w2

Further works on the characterization of PR or SPR transfer functions can
be found in [10,49,50,132,177,205, 339, 340, 396,448, 455,479,504, 530].

3.1.5 Descriptor Variable Systems

The KYP Lemma can be extended to a class of linear systems larger than
(3.1). Let us consider the following class of linear time invariant systems

Ex(t) = Az(t) + Bu(t)
y(t) = Cx(t) + Du(t) (3.52)

z(07) ==

with A, E € R"™", B,C € R"™, and D € IR™*™. When the matrix F is
singular (i.e., its rank is < m) then the system in (3.52) is called singular or
descriptor system. Throughout this section we shall assume that rank(E) < n
since otherwise we are back to the classical regular case. Descriptor systems
arise in various fields of applications, like for instance constrained mechanical
systems, or electrical circuits, since Kirschoff’s laws directly yield algebraic
equality constraints on the state. The next assumption will be supposed to
hold throughout the whole of this section.

Assumption 1 The pair (E, A) is regular, i.e. det(sE — A) is not identically
zero, s € C.

Let us recall some facts about (3.52). If the pair (E, A) is regular, then
there exists two square invertible matrices U and V such that the system can
be transformed into its Weierstrass canonical form
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Ei(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Dult) (3.53)
z(07) =9
_ Al 0 B Iq 0 B Bl
with A = UAV = ,E=UEV = ,B=UB = ,
0 I, 0N B,

C =0V = (C; C3). The (n—q)x (n—q) matrix N is nilpotent, i.e. N' = 0 for
some integer [ > 1. Generally speaking, solutions of (3.52) are not functions
of time but distributions (i.e. the general solutions may contain Dirac and
derivatives of Dirac measures). The system is called impulse free if N = 0. To

better visualize this, let us notice that the transformed system can be written
as [106]

T (t) = A1 (t) + Blu(t)

(3.54)
NfCQ (t) = X2 (t) + Bgu(t)
and the solution of (3.52) is = 1 + z2. One has
x1(t) = exp(tA1)zs(0) + exp(tAr) x Byu(t)
(3.55)

a(t) = — 3021 68T N (07) — Y2120 N Bould)(#)

When N = 0 the variable z3(-) is just equal to —Bsu(t) at all times.
Otherwise an initial state jump may occur, and this is the reason why we
wrote the left-limit 2(07) in (3.52). The exponential modes of the regular pair
(E, A) are the finite eigenvalues of sE — A, s € C, such that det(sE — A) = 0.

Definition 3.14. The descriptor system (3.52) is said to be admissible if the
pair (E, A) is regular, impulse-free and has no unstable exponential modes.

Proposition 3.15. [348] The descriptor system (3.52) is admissible and
SSPR (Strongly SPR) if and only if there exists matrices P € IR™*"™ and
W e R™™ satisfying

ETP=PTE>0, ETW =0

ATP 4+ PTA ATW + PTB — CT (3.56)
<0
(ATW + PTB-CTT WTB+ BT™W — D — DT
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When E = I,, then W = 0, P = PT and we are back to the classical KYP
Lemma conditions. In the next theorem PRness is understood as in Definition
2.29.

Theorem 3.16. [157] If the LMI
ETP = PTE >0

ATp4+pPTA PTB—CT (3.57)
<0

(PTB—-CT)T —D - D7

has a solution P € IR"™™", then the transfer matriz H(s) is PR. Conversely,
let H(s) =>"___ M;s' be the expansion of H(s) about s = co, and assume

that D+DT > Mo+MZ. Let also the realization of H(s) in (3.52) be minimal.
Then if H(s) is PR there exists a solution P € IR"™" to the LMI in (3.57).

|

Minimality means that the dimension n of E and A is as small as possible.

The main difference between Proposition 3.15 and Theorem 3.16 is that it

is not supposed that the system is impulsive-free in the latter. When the

system is impulse-free, one gets My = H(co) = D — C3Bsg, and the condition
D + DT > My + M is not satisfied unless Cy By + (C2B2)T > 0.

Proof: Let us prove the sufficient part of Theorem 3.16. Let s with Re[s] > 0
be any point such that s is not a pole of H(s). The matrix sE— A is nonsingular

for such a s. From Proposition A.63 it follows that we can write equivalently
the LMI in (3.57) as

ATP 4+ PTA=—LLT
PTB—C=—LW

(3.58)
D+DT >wTw

ETP=PTE >0

for some matrices L and W. From the first and last equations of (3.58) it
follows that

(sE— A)*P+ PT(sE — A) = —ATP — PTA+ 5ETP + sPTE
= LLT + Re[s|(e” P + PTE)—
(3.59)
— jIm[s](ETP — PTE)

— LL” + 2Re[s|ETP
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Notice that (sE — A)F(s) = B where F(s) = (sE — A)~"'B. Thus since
H(s) = C(sE — A)~'B + D and the second relation in (3.58) one has

H(s) =D+ CTF(s)
=D+ WTLTF(s) + BT PF(s) (3.60)

=D+ WTLTF(s) + F*(s)(sE — A)*PF(s)
Using now (3.60) and (3.59) and the third relation in (3.58) we obtain

H(s)+ H*(s) =D+ DT + WILTF(s) + F*LW+
+F*(s)[(sE — A)*P + PT(sE — A)]
>WTW + WTLTF(s) + F*(s) LW+
+ F*(s)(LLT + 2Re[s]ET P)F(s)

= (W + LTF(s))*(W + LTF(s)) + 2Re[s|F*(s)(ET P)F(s)
(3.61)
Since (W + LTF(s))*(W + LT F(s) > 0 and since Re[s] > 0 and ETP > 0,
we have Re[s]F*(s)(ET P)F(s) > 0. Thus from (3.61) we obtain

H(s)+H*(s) >0 (3.62)

Recall here that s has been assumed to be any complex with Re[s] > 0
and such that it is not a pole of H(s). Now suppose H(s) has a pole sg with
Re[sp] > 0. Then there exists a pointed neighborhood of sq that is free of any
pole of H(s) and thus H(s) satisfies (3.62) in this domain. However this is
impossible if sy were a pole of H(s). Therefore H(s) does not have any pole
in Re[s] > 0, and (3.62) is true for any s € C with Re[s] > 0. Thus H(s) is
PR.

|

In the proof we used the fact that the pair (E, A) is regular (see Assump-
tion 1) which equivalently means that the matrix sE' — A is singular for only
finitely many s € C.

Ezample 3.17. [541] Consider

100 ~100 1
E=|010|, A=]|0 —20|, B=|1
000 0 01 b (3.63)

C=[111], D=1
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where b is a constant. The pair (E, A) is regular, impulse-free and stable. One

° 1 1 1
— + b+ - 3.64
s+1 ( )

Hs) = st2 T3

and from

4
Tl Wt
it follows that H(s) is SSPR when b = 0 and is not SSPR when b = 1.

H(jw)+ H(—jw) —-2b+1 (3.65)

Another example is treated in Example 4.63. Further results on positive
realness of descriptor systems and applications to control synthesis, can be
found in [157,260, 348, 541]. The discrete-time case is analyzed in [287,517].

3.2 Weakly SPR Systems and the KYP Lemma

A dissipative network is composed of resistors, lossy inductors and lossy capac-
itors (see Example 3.90 for the case of nonsmooth circuits with ideal diodes).
Consider the circuit depicted in Figure 3.1 of an ideal capacitor in parallel
with a lossy inductor. Even though this circuit is not only composed of dis-
sipative elements, the energy stored in the network always decreases. This
suggests that the concept of SPR may be unnecessarily restrictive for some
control applications. This motivates the study of weakly SPR systems and its
relationship with the Kalman-Yakubovich-Popov Lemma. The transfer func-
tion of the depicted circuit is %. It can be checked from Theorem
2.45 that this is not SPR, since r = 1 and lim,, . 4 oo w?Re[H (jw)] = 0. Lozano
and Joshi [310] proposed the following Lemma which establishes equivalent
conditions in the frequency and time domain for a system to be weakly SPR
(WSPR).

Lemma 3.18. [310] [Weakly SPR] Consider the minimal (controllable and
observable) LTI system (3.1) whose transfer function is given by

H(s)=D+C(sl, — A)™'B (3.66)

Assume that the system is exponentially stable and minimum-phase. Under
such conditions the following statements are equivalent:

1.3 P>0,Pc RV, WecR™™, LecR"™

PA+ATP =—-LL"

PB-CT =_LW (3.67)

D+D"  =w'w
and such that the quadruplet (A4, B, L, W) is a minimal realization whose
transfer function: H(s) = W + LT (sI,, — A)~'B has no zeros in the jw
axis (i.e. rank H(jw) =m, V w < o).
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T

Fig. 3.1. An ideal capacitor in parallel with a lossy inductor.

2. H(jw)+ H*(jw) >0, V w e R.
3. The following input-output relationship holds

/Ot u'(s)y(s)ds + 3 > /Ot g7 (8)g(s)ds, ,¥t >0
with 8 = 2(0)T Pz(0), P > 0 and 3(s) = H(s)u(s).
Proof: (1) = (2)
Using (3.66) and (3.67) we obtain
H(jw) + H*(jw)
=D+ DT + C(jwl, — A)~'B + BT (—jwI, — AT)~1CT
=WTW + (BTP+WTLT)(jwl, — A)~'B
+BT (—jwl, — AT)"Y(PB + LW)
= WTW + BT (—jwl, — AT)"Y(—jwl, — AT)P
+P(jwl, — Al(jwl, — A)"' B+ WL (jwl, — A)"'B

+ BT (—jwI, — AT)"'LW

and so
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H(jw) + H* (jw)
= WTW + BT (—jwl, — AT)"'LLT (jwl, — A)~'B
+WTLT(jwI, — A~ B+ BT (—jwl, — AT)"' LW
= (W + LT (—jwI, — A)'BYT(W + LT (jwl, — A)~'B)
It then follows
H(jw) + H*(jw) = H (jw)H (jw) > 0 (3.68)

Since H (s) has no zeros on the jw-axis, H (jw) has full rank and, therefore,
the right-hand-side of (3.68) is strictly positive.

(2) = (1)
In view of statement 2, there exists an asymptotically stable transfer func-
tion H(s) such that (see [406] or [145])

H(jw) + H*(jw) = H (jw)H(jw) >0 (3.69)
Without loss of generality let us assume that
H(s) =W+ J(sI, — F)"'G (3.70)

with (F, J) observable and the eigenvalues of I satisfying A\;(F) <01 <i < n.
Therefore, there exists P > 0 (see [272]) such that

PF+FT'p=—jJ" (3.71)
Using (3.70) and (3.71) we have

' (—j)H(jw) = [W + J(—gwl, — F)"'G|T

<[W + J(jwl, — F)~'G]

(3.72)
=WTWw + WTJ(ijn — F)*lG
+GT (—jwl, — FT)"'JTW + X
where
X = GT(—ijn — FT)*lJTJ(ijn — F)*lG
= —G"(—jwl, — FT)7'[P(F — jwl,)
(3.73)

+(FT + jwl,)P)(jwl, — F)~'G

= GT(—jwl, — FT)"'PG + GTP(jwl, — F)~1G
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Introducing (3.73) into (3.72) and using (3.69):

T (—jw)H(jw) = WIW + (WTJ + GTP)(jwl, — F)~'G
+GT (—jwl, — FOY"Y(JTW 4 PG)
— H(jw) + HT (—jw) (3.74)
= D+ DT + C(jwl, — A)~'B
+BT (—jwl, — AT)~1CT

From (3.74) it follows that WTW = D + DT Since the eigenvalues of A
and F satisfy A\;(A4) < 0 and \;(F') < 0, then

C(jwl, — A)™'B=WTJ+GTP)(jwl, — F)'G (3.75)

Therefore the various matrices above can be related through a state space
transformation, i.e.

TAT-'=F
TB=G i (3.76)
CT='=WTJ+GTP

Defining P = TTPT and LT = JT and using ( 3.71) and ( 3.76)
—LL" = -TTJTJT
=TT(PF+FTP)T
=T"PTT'FT+T"F'T-"T"PT
=PA+ATP
which is the first equation of (3.67). From (3.76) we get
C=wTJT +G"PT
= WTLT + GTT-TTTPT (3.77)
=WTLT + BTP
which is the second equation of (3.67). H(s) was defined by the quadruplet
(F,G,J,W) in (3.70) which is equivalent, through a state-space transforma-

tion, to the quadruplet (T=YFT, T~'G, JT, W). In view of (3.76) and since
LT = JT, H(s) can also be represented by the quadruplet (A, B, LT, W) i.e.
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H(s) =W + LT (sI,, — A)~!

(3.78)

We finally note from (3.69) that H(jw) has no zeros on the jw-axis.

(1) =@3)

Consider the following positive definite function: V(z) = 227 Pz. Then

using (3.67) we obtain
Viz) = 12T (PA+ ATP)z + 2" PBu
= —%xTLLTa: +uTBT Pz

—1aTLL 2z + T (C — WTLT)z

=—12TLLT2 + uTy — 20T (D + DT)u —uTWT LTz
= 1 2T LL Tz +uTy — 1 uWITWITWu —u™WTLT x

=uly— 3 (LTz+ Wu)T (LTz + Wu)
=uly— 377y

where ¥ is given by
) + Bu(t)

t) + Wu(t)

Therefore, in view of (3.6
g(s) = H(s)u(s),

with H(s) = W + LT (sI,, — A)~1B. Integrating (3.79) gives

t t

[ eweas 525 [ @
0 0

with 3 = V (x(0)).
(3)=(2)

Without loss of generality, consider an input w such that fg U
+o00, V t > 0. Dividing (3.82) by fg u”T (s)u(s)ds, we obtain

fguT()()ds—f—V fo (s)(s)ds
fo uT(s)u(s)ds B fo uT( s)u(s)ds

(3.79)

(3.80)

(3.81)

(3.82)

T(s)u(s)ds <

(3.83)
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This inequality should also hold for ¢ = co and z(0) =0, i.e.

o uT(e)y(s)ds _ Jy~ g7 (s)(s)ds

JoSuT (s)u(s)ds — [° uT(s)u(s)ds

(3.84)

Since H(s) and H(s) are asymptotically stable, u € Lo = 3,7 € L2 and
we can use Plancherel’s Theorem [421], see also Sections 4.1, 4.2 and 4.3 for
L, functions and their properties. From the above equation we obtain

S22 U (w)(H (jw)+H™ (jw))U (jw) dw > S22, U () H (jw)H (jw)U (jw)dw
S22, U (jw)U (jw)dw - S22, U (jw)U (jw)dw

Since H(s) has no zeros on the jw-axis, the right-hand-side of the above
equation is strictly positive and so is the left-hand-side for all nonzero U (jw) €
Lo, and thus

H(jw)+ H*(jw) >0, V w € (—00,00)

3.3 KYP Lemma for Non-minimal Systems

The KYP Lemma as stated above is stated for minimal realizations (A, B, C, D),
i.e. when there is no pole-zero cancellation in the rational matrix C(sI, —
A)~1B. However as Example 3.2 proves, non-minimal realizations may also
yield a solvable set of equations (3.2). The KYP Lemma can indeed be stated
for stabilizable systems, or more generally for uncontrollable and /or unobserv-
able systems. This is done in [110,150,151,390,412,444,445]. The motivation
for such an extension stems from the physics, as it is easy to construct systems
(like electrical circuits) which are not controllable or not observable. There
are also topics like adaptive control, in which many poles/zeroes cancellation
occur, so that controllability of the dynamical systems cannot be assumed.
Let us recall a fundamental result. Consider any matrices A, B, C, D of ap-
propriate dimensions. Then the KYP Lemma set of equations (3.2) implies
that

(jw) = C(iwl, — A)'B - BT (jwu+A")"'CT" + D+ D" >0 (3.85)

for all w € IR, where the spectral density function IT(-) was introduced by
Popov, and is named Popov’s function, as we already pointed out in Sec-
tion 2.12, Theorem 2.30 and Proposition 2.31. There we saw that one can
characterize a positive operator with the positivity of the associated spec-
tral function. In a word a necessary condition for the solvability of the KYP
Lemma set of equations is that the Popov function satisfies (3.85). The spec-
tral function satisfies II(s) = II(—s) with s € C. In addition, if the pair



3.3 KYP Lemma for Non-minimal Systems 101

(A, B) is controllable, then the inequality (3.85) implies the solvability of
the KYP Lemma set of equations, i.e. it is sufficient for (3.2) to possess
a solution (P = PT L, W). It is worth noting that, under minimality of
(A, B,C, D), that the KYP Lemma set of equations solvability and the posi-
tive realness of H(s) = C(sl, — A)~!B+ D are equivalent. Let us notice that
II(jw) = H(jw) + H*(jw). Let us summarize:

KYP Lemma equations solvability
{} (if (A, B) controllable) | (for all w € IR | jw is not a pole of II(s))
1I(jw) =20
{ (if A is Hurwitz)
H(s)=C(sl, — A)"'B+ D is PR

4 (D=0)

KYP Lemma equations solvability with P = PT > 0

The first implication was proved by Kalman [247]. Notice that the second
equivalence is stated under no other assumption that all eigenvalues of A have
negative real parts. In particular no minimality of (4, B, C, D) is required. The
last implication shows that the KYP Lemma solvability is sufficient for PRness
of the transfer matrix, without minimality assumption [445] (the proof is led
in [445] with D = 0). It is important to recall that “KYP Lemma equations
solvability” does not mean that P is positive definite, but only the existence
of a solution (P = PT,L,W). When P is searched as a non-negative definite
matrix, then we have the following:

KYP Lemma equations solvability with P = PT > 0

{ (if (4, B,C, D) minimal)

C(sl, — A)"'Bis PR

The original result of Popov, building on earlier works of Kalman and
Yakubovich, was as follows:
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KYP Lemma equations solvability with P = PT >0

{ (if (A, B,C) minimal)

II(jw) > 0 for all w € IR.

One may have a look at Theorem 3.46 where the link between the Popov
function positivity and the KYP Lemma set of equations solvability is con-
cerned, and a complete proof is provided. In particular it then becomes clear
where the controllability assumption comes into play in this result. However
the controllability assumption is not at all necessary for the KYP Lemma set
of equations to possess a solution. It is therefore of interest to relax as much
as possible this assumption. Perhaps one of the first, if not the first, result
relaxing the controllability is due to Meyer [353].

Lemma 3.19 (Meyer-Kalman-Yakubovich Lemma). Given a scalar D
> 0, vectors B and C, an asymptotically stable matriz A, and a symmetric
positive definite matriz L, if

D
Re[H (jw)] = Re - + C(jwl, — A)7'B| >0 for all we IR (3.86)

then there exists a scalar € > 0, a vector ¢ and P = PT > 0 such that

ATP + PA= —qq" — €L
(3.87)
PB-C" =+/Dgq
[

An application of the MKY Lemma is in Section 8.2.2.

3.3.1 Spectral Factors

The first set of results that we present rely on the factorization of the Popov
function, and have been derived by Pandolfi and Ferrante [151,390]. If I1(s)
is a rational matrix that is bounded on the imaginary axis and is such that
II(jw) > 0, then there exists a matrix M(s) which is bounded in Re[s] > 0
and such that IT(jw) = M7 (jw)M (jw). The matrix M(s) of a spectral fac-
torization has as many rows as the normal rank of I7(s). The normal rank of
a polynomial matrix is defined as the rank of IT(s) considered as a rational
matrix. If II(s) € C™*™, and if det(II(s)) is not the zero function (for in-
stance, if the determinant is equal to s — 1), II(s) is said to have normal rank
m. More generally a polynomial matrix has rank ¢ if ¢ is the largest of the
orders of the minors that are not identically zero [246, §6.3.1].
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Let us consider an eigenvalue sy of A and a Jordan chain of sg, i.e. a finite
sequence of vectors satisfying Avy = sgvg, Av; = sov; +v;-1, 0 < i <r —1,
where 7 is the length of the Jordan chain. One has

E i
ety = e*otyy, ettuy = et g 5 Uk—i (3.88)
il
i=0

An eigenvalue sy may have several Jordan chains, in general in finite
number. We suppose these chains have been ordered, and we denote the
ith one as Jy, ;. The factor M(s) is used together with the Jordan chain
Jso,i = (Vo, V1, ..., Vg—1), to construct the following matrix:

My 0 0 ... 0

M, My 0 ..0
Mgi=| - (3.89)

M,y My_o M,_3 ... My

One has

1dv - 1d -
M=y g M (=50) = [h!dshM <‘S>LO (3-90)

In other words h!Mj, is the hth derivative of the function M7 (—s) calcu-
lated at s = so. All the matrices My, ; as well as the rational functions II(s)
and M (s) are calculable from A, B, C and D. The notation collag, a1, ..., ap]

is for the column matrix [ag ay ... a,]%.

Theorem 3.20. [390] Let the matrices M, ; be constructed from any spectral
factor of I1(s) and assume that every eigenvalue of A has a negative real part.
If the transfer function H(s) is positive real, then there exist matrices L, W
and P = PT > 0 which solve the KYP Lemma set of equations (3.2), if and
only if the following conditions hold for every Jordan chain Js, ; of the matriz

A:

col[CT vy, CT vy, ..., CTvpy] € Im( M, ;) (3.91)
|

For the proof (that is inspired from [32]) the reader is referred to the paper
[390]. It is noteworthy that there is no minimality assumption in Theorem
3.20. However P is only semi-positive definite.

Ezample 8.21. [390] Let C =0, B # 0, D = 0. Then II(s) = 0 and the set of
equations ATP + PA = —LL"T, PB = CT — LW is solvable. One solution is
L =0, P =0. This proves that Theorem 3.20 does not guarantee P > 0.
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A second Theorem relaxes the Hurwitz condition on A.

Theorem 3.22. [151] Let A € R"*", B € R"™, C € R™", and D €
R™ ™. Assume that o(A)Na(—AT) = (). If the KYP Lemma set of equations
(3.2) is solvable, i.c. there exist matrices P = PT, L, W which solve it, then
II(jw) > 0 for each w and the condition (3.91) holds for every Jordan chain
Jso,i Of the matriz A. Conversely, let II(jw) be nonnegative for each w and
let (3.91) hold for every Jordan chain of A. Then the set of equations (3.2)
is solvable. Condition (3.91) does not depend on the specific spectral factor
M(s) of II1(s). [

A matrix A satisfying o(A) N o(—AT) = () is said unmixed.

Remark 3.23. Until now we have spoken only on controllability, and not of
observability. Thus one might think that the unobservable part has no influ-
ence neither on (3.85) nor on the solvability of (3.2). Things are more subtle
as shown in the next subsection.

3.3.2 Sign-controllability

To start with, let us consider the following system [150]: A = ((I) ?), C =
0

(I 0),3:(1

infinitely many solutions, which can be parametrized as triples

(7] [%])

with P; <0, and Q1QT = —2P;. However the system of equations obtained
by eliminating the unobservable subspace associated to (A, C') has no solution,
because the second equation for this reduced system takes the form 0 = I —
0. This example shows that unobservability is not so innocent in the KYP
Lemma solvability (which is to be understood here as the existence of a triple
(P = PT, L, W) that solves (3.2)).

), D = 0. Then the KYP Lemma set of equations in (3.2) has

The sign-controllability of a pair of matrices is defined in Appendix A.4.
Let us assume that (A, B) is sign controllable. Then there exists a feedback
u(t) = Kz(t) + v(t) such that the new transition matrix A+ BK is unmixed.
One can start from a system such that A is unmixed.

Before stating the next Lemma, let us perform a state space transforma-
tion. We assume that (A, C) is not observable. The Kalman observability form

reads A = A 0 , C = (C1 0). Let us define
Ao Ay

A=[o(A) No(~AN)] U [o(Ay) No(~AF) N (L)),

and select a basis such that
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- (A 0
a= (¥ 0)

2) = A, 0(A3) N A = (). Then A, may be partioned conformably as

o

with o

|

2 ) Then A and C may be partitioned as

A 0O
A:
<A21 A2>

C=(Cy 0)

A 0
A= 4l
! <A21 Az)

Agy = (Agy 0)

D Iy

21

with

C1=(Cy 0)

One may check that o(As)No(—AT) = (. The matrix B can be partitoned
By
By
the matrix (0 I), where the identity matrix I has the size of Az, is unob-
servable for the pair (A,C) and is the largest unobservable subspace such
that the corresponding dynamics does not intersect the backwards dynamics
of the remainning part, i.e. 0(A2) N o(—A¥) = (. This space is named the
unmixing unobservable subspace. The system (A1, By, C1, D) obtained from
(A, B, C, D) by eliminating the part corresponding to the unmixing unobserv-
able subspace, is called the mized+observable subsystem. When A is unmixed,
the mixed+observable subsystem is exactly the observable subsystem. In such
a case the unobservable part of the system plays no role in the solvability of
the KYP Lemma set of equations (3.2).

conformably with the partitioning of A as B = ( ) The image space of

Theorem 3.24. [150] Given a quadruple (A, B,C, D), let A be unmized and
(A1, B1,C1, D) be the matrices associated to the observable subsystem. Then
the KYP Lemma set of equations (3.2) possesses solutions (P = PT L, W) if
and only if the set of equations

A{Pl + PiA = —LlL,{'
PB =Cl — W, (3.92)

WlTW1=D—|—DT

possesses solutions (Py = PL'| L1, W1). [ |
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Once again we insist on the fact that it is not required here that P nor
P, be positive definite or even semi positive definite matrices. The result of
Theorem 3.24 relies on the unmixity of A. However the following is true, which
does not need this assumption.

Theorem 3.25. [150] The KYP Lemma set of equations (3.2) possesses so-
lutions if and only if (3.92) possesses solutions. [ |

3.3.3 State Space Decomposition

The result presented in this subsection also relies on a decomposition of the
state space into uncontrollable and unobservable subspaces. It was proposed
in [444]. Let us start from a system (A, B,C). The Kalman controllability
and observability matrices are denoted as K. and K,, respectively. The state
space of the linear invariant system (A, B, C) is given by the direct sum

X=X1Xo00 X350 Xy

where sp(K.) = X1 ® Xs, sp(K.)NKer(K,) = X1, Ker(K,) = X1 ® X3. The
notation sp(A) means the algebraic span of the column vectors of A. Then
the following holds.

Theorem 3.26. [444] Let (A, B,C) be a realization of the rational matriz
H(s). Let K be any matriz satisfying

X1 @ X Csp(K)X1 © Xo® X3

Then H(s) is positive real if and only if there exist real matrices P = PT >0
and L such that

KT(PA+ATP+ LLT)K =0
(3.93)
KT(PB-CT)=0
If B has full column rank, then H(s) is positive real if and only if there
exist real matrices P = PT and L, with KT PK > 0, such that

KT(PA+ATP+ LLT)K =0
(3.94)
PB-CT=0
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3.3.4 A Relaxed KYP Lemma for SPR Functions with Stabilizable
Realization

The next result is taken from [110]. Let us consider the system in (3.1)
and suppose (A4, B,C,D) is a minimal realization, m < n. Suppose that
H(s) + HT(—s) has rank m almost everywhere in the complex plane, i.e. it
has normal rank m (this avoids redundant inputs and outputs). The following
Lemma gives us a general procedure to generate uncontrollable equivalent re-
alizations from two minimal realizations of a given transfer matrix H(s). The
uncontrollable modes should be similar and the augmented matrices should
be related by a change of coordinates as explained next.

Lemma 3.27. [110] Let (A;, B;,Ci, D;), i = 1,2 be two minimal realizations
of H(s), i.e. H(s) = Ci(sl, — A;))"'B; + D; for i = 1,2. Now define the
augmented systems

Ai 0 Bi

0 Ag; 0 (3.95)
C; =(C; Coi)) D;=D;
where the dimensions of Ag1 and Age are the same. Moreover there exists a
nonsingular matriz To such that App = TOAOQTO_l and Coy1 = C()QTO_l. Then
(4;,B;,C;,D;), 1 = 1,2 are two equivalent realizations. [ ]

As a dual result we can generate unobservable augmented realizations of
H (s) as established in the following Corollary.

Corollary 3.28. Let X; (A;, B;, Ci, D;) for i = 1,2 be two minimal realiza-
tions of Z(s), i.e. Z(s) = C; (sI — A;)"" By + D; for i = 1,2. Now define the

augmented systems:
Ai——<0i ]0,) Bi__<B,i>
01 20 (396)

Ci=(C0)  D,=D,

where the dimensions of Ag1 and Aoz are the same. Moreover, there exists a
nonsingular matriz Ty such that Ao = T()A()QT(;I and Bo1 = TyBo2. Then
Y (Ai, B;,Ci,D;) fori=1,2 are two equivalent realizations of H(s). [ |

Theorem 3.29. [110] Let H(s) = C(sI,, — A)"'B+ D be an m x m transfer
matriz such that H(s) + HT(—s) has normal rank m, where A is Hurwitz,
(A, B) is stabilizable, (A,C) is observable. Assume that if there are multiple
eigenvalues, then all of them are controllable modes or all of them are uncon-
trollable modes. Then H(s) is SPR if and only if there exist P = PT >0, W,
L and a constant € > 0 such that
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PA+ ATP=_LT[ —¢P
PB=CT - LTW (3.97)

WTW =D+ DT
|

This theorem is interesting since it states the existence of a positive definite
solution to the KYP Lemma set of equations, and not only its solvability
with P = PT or P = PT > 0. The assumption that H(s) + H?(—s) has
normal rank m is in order to avoid redundances in inputs and/or outputs.
The assumption that the intersection of the set of controllable modes with
the set of uncontrollable modes is empty, is used only in the necessary part of
the proof.

Proof: Sufficiency: Let u € (0,€/2) then from (3.97)

P(A+pul,) + (A+ul,)TP=—LTL — (e — 2u)P (3.98)
which implies that (A + ul,) is Hurwitz and thus Z(s — u) is analytic in
Re[s] > 0. Define now for simplicity

2

&(s) = (s, — A)~!

Therefore:

H(s—p)+H"(—s —p) = D+D" +OP(s — M)E—FETET(—S - u)éT
—WTW + [ETP + WTL} B(s—WB+B' & (—s—p) [PB+LTW]
=WTW + WTLd(s — ) B + ETET(—S — ) LTW+
+B"Po(s—wWB+B' & (—s—u)PB

=WTW +WTLd(s — u)B + FTET(—S —p) LW+

B'0"(—s—p) [ " (~s =P+ PP (s — )| #(s — ) B

=WITW +WTLd(s — u)B + FTET(—S — ) LTW + ETﬁT(—s — 1)
{[_(sﬂm_ﬂ PP [(S_M)I_Z]}a(s_mﬁ

=WTW + WTLd(s — ) B + ETET(—S — ) LTW+

B 3 (—s—p) {_MD —A'p- pz} ®(s— u)B

=WTW + WTLd(s — ) B + ETET(—S — ) LTW+

ETﬁT(—s — ) {LTL + (e —2u) P} &(s — n)B

=WTW +WTLd(s — u)B + FTET(—S — ) LTW+

ETiT(—S — W) LTL®(s — p) B + (e — 2p) ETiT(—S — p)PP(s — u)B
- [wT +B'G (—s— M)LT} [W + L(s — ) B] +

(e —2u)B' &' (—s — p)PB(s — 1) B
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From the above it follows that H(jw — u) + HT (—jw — u) > 0, Yw €
[0, +00] and H(s) is SPR.

and observable realization of H(s) and X' (A, B,C, D) a minimal realization
of H(s). Given that the controllable and uncontrollable modes are different
we can consider that the matrix A is block diagonal and therefore H(s) can
be written as

wo-call*i 4 0] [log o
¢ [s1,—4] \\E,J K

where the eigenvalues of Ay correspond to the uncontrollable modes. As stated
in the preliminaries, the condition o (A) No (Ag) = @ ( where o (T') means the
spectrum of the square matrix T') means that the pairs (C, A) and (Cp, Ao)

are observable if and only if (C, A) = ([C Col, {61 14(1) }) is observable.
0

Note that A, Ay are both Hurwitz. Indeed A is stable because X' (A, B, C, D)
is a minimal realization of H(s) which is SPR. Ay is stable because the system
is stabilizable. Thus there exists ¢ > 0 such that H(s — ) € PR and H(s —
) € PR for all u € [0,6]. Choose now e > 0 sufficiently small such that

U(s) 4 Z(s — 5) € SPR. Then the following matrices are Hurwitz:

A, = A+ £le R/(n+7n0)x(n+no)
Ac = A+ ST e RV (3.100)
Age = Ag + §1 € R™ox™o,

Note that A, is also block diagonal having block elements A, and Ay, and
the eigenvalues of A. and Ag. are different. Let X (Ae, B,C, D) be a mini-

mal realization of U(s) and X, (AE,B , C,D) an observable and stabilizable
realization of U(s). Therefore

U(s) = C(sl, — A)"'B+ D =C(sl, — A)"'B+ D (3.101)

Note that the controllability of the pair (A, B) follows from the control-
lability of (A4, B). Since A is Hurwitz, it follows that (ZE,E) is stabilizable.
From the spectral factorization Lemma for SPR transfer matrices [527], [256,
Lemma A.11, pp. 691], or [11], there exists an m x m stable transfer matrix
V(s) such that

U(s)+ UT(=s) = VT (=s)V(s) (3.102)
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Remark 3.30. Here is used implicitly the assumption that Z(s) + Z7(—s) has
normal rank m, otherwise the matrix V(s) would be of dimensions (r x m),
where 1 is the normal rank of Z(s) + Z7(—s).

Let Xy (F, G, H, J) be a minimal realization of V' (s), F' is Hurwitz because
V (s) is stable; a minimal realization of VT (—s) is Xy« (=FT, HT, -G, JT).
Now the series connection V7'(—s)V (s) has realization (see [257, p. 15] for the
formula of a cascade interconnection)

F 0 G
LV (—s)v(s) <[HTH _FT] ; |:HTJ:| ; [JTH —GT} , [JTJ}> (3.103)

Although we will not require the minimality of Yy r(_g (s in the se-
quel, it can be proved to follow from the minimality of Xy (F,G, H,J) ,
see [11,256]. Let us now define a nonminimal realization of V(s) obtained
from Xy (F,G, H,J) as follows:

r=[oa]) e=[i]

H=[H Hy], J=J

(3.104)

and such that Fp is similar to Agpe and the pair (Hy, Fp) is observable, i.e.
3Ty nonsingular such that

Fo = To Ao Ty (3.105)
This constraint will be clarified later on. Since o(Fy) No(F) = B then the
pair

(H,F)= ([H Hy], |:§FOO]> (3.106)

is observable. Thus the nonminimal realization Xy (F, G, H, 7) of V(s) is
observable and stabilizable. Now a nonminimal realization of VT (—s)V(s)

based on Xy (F,G, H,J)

- F 0 G e 7 [T
2yr(—s)v(s) ( 77 7| Fle : {JTH —GT} , [J J]) (3.107)
is (see [257, p. 15])

F O 0 O G

0 Fy 0 O 0

= HT'H HTHy, —FT o |H'J

Lyr—svis) = ngH HgHO 0 _FOT ngJ (3.108)

JTH JTHy, -GT 0 JTJ
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From the diagonal structure of the above realization, it could be concluded
that the eigenvalues of Fjy correspond to uncontrollable modes and the eigen-
values of (—F{) correspond to a unobservable modes. A constructive proof is
given below.

Since the pair (H, F) is observable and F is stable, there exists a positive
definite matrix

— =T K r
K=K = {rT Ko} >0 (3.109)
solution of the Lyapunov equation
KF+F K=-H H (3.110)

This explains why we imposed the constraint that (Hg, Fy) should be ob-
servable. Otherwise there will not exist a positive definite solution for (3.110).

Define T := [ ! 0} ; T = { I 0} and use it as a change of coordinates

KI ~K I
for the nonminimal realization fvT(_S)V(S) above to obtain
F 0 0 0
0 Fpy 0 0 %;
¥ — 0 0o —rFT 0 .
2y (—s)vis) = 0 o 0 _pr|UH+ GTK)T (3.111)
JH+G'K ¢ o JTJ

Now it is clear that the eigenvalues of Fy correspond to uncontrollable
modes and the eigenvalues of (—F{ ) correspond to unobservable modes.

From (3.101) a nonminimal realization of U(s) is X¢ (A, B,C, D) . Thus
a nonminimal realization for UT (—s) is X, (—Zz, UT, —ET, ﬁT> . Using the

results in the preliminaries, a nonminimal realization of U(s) + U% (—s) is

B

A, 0
T aT

0 —A,

)

— — =T
EUQHUTGﬂ)< wcy_BT},P)+1)}>. (3.112)
Using (3.102) we conclude that the stable (unstable) parts of the realiza-
tions of U(s) + UT(—s) and VT (—s)V(s) are identical. Therefore, in view of
the block diagonal structure of the system and considering only the stable
part we have

— [Fo] .- .. . [A 0],
F= 0 F = RAR _R{OAOJR
— G — B
o= [] " np - 7]

(3.113)
JH+G K=CR'=[CCy] R

JTJ=D+D"
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The above relationships impose that the uncontrollable parts of the real-
izations of U(s) and V(s) should be similar. This is why we imposed that Fj
is similar to Age in the construction of the nonminimal realization of V'(s).

From the Lyapunov equation (3.110) and using F = RA.R™! in (3.113),
we get

KF+F K = -0 H

KRAR+R"A R'K = -H H

RTKRA. +A. RTKR = -R'H HR (3.114)
PA.+A. P =-I7L

where we have used the definitions P 2 RTKR; L 2HR. Introducing (3.100)
we get the first equation of (3.97). From the second equation of (3.113) we
have G = RB. From the third equation in (3.113) and using W = J we get

JH+G K —CR!
JTHR+G R TRTKR=C
it e (3.115)
WTL+B' P -C
PB —c'—™w

which is the second equation of (3.97). Finally from the last equation of
(3.113), we get the last equation of (3.97) because W = J. [ |

Ezample 8.31. Consider H(s) = mfj%, for some a > 0, b > 0, b # a. Let
a nonminimal realization of H(s) be

—a 0 0
z(t) = x(t) + u(t)
0 —b L (3.116)

y(t) =[8 olz(t)
with @ # 0 and § # 0. For all € < min(a, b) one has

(a+b—e€)?p3> 0[5
2b—e)(2a—e
p_ ( )( ) -0

af o?

foralla > 0,b >0, a # 0, §# 0. The matrix L = :I/J;Z%zﬂ \/2b—ea} and

P satisfy the KYP Lemma set of equations .

Remark 3.32. Proposition 2.31 states that positivity of an operator is equiv-
alent to the positivity of its Popov’s function. There is no mention of sta-
bility. This is in accordance with the above versions of the KYP Lemma for
which the stability (i.e. solvability of the KYP Lemma set of equations with
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P = PT > 0) requires more than the mere positivity of the spectral function.

3.4 SPR Problem with Observers

The KYP Lemma for non-controllable systems is especially important for the
design of feedback controllers with state observers [111,241,242], where the
closed-loop system may not be controllable. This may be seen as the extension
of the works described in Section 2.15.3 in the case where an observer is added
to guarantee that the closed-loop is SPR.

Theorem 3.33. [111] Consider a system with stable transfer function H(s) €
C™*™, and its state space realization

&(t) = Ax(t) + Bu(t)
(3.117)
y(t) = Cx(t)
where (A, B) is stabilizable and (A, C) is observable. Then there exists a gain
observer L and an observer

i(t) = Az(t) + Bu(t) + LO(x(t) — &(t))

(3.118)

z(t) = Mz(t)
such that o(A — LC) is in the open left-hand complex plane, and the transfer
function between u(-) and the new output z(t) = My (i" f a:) = Mi(t), with

M = BT P, is characterized by a state space realization (Ag, By, My) that is
SPR, where
A 0 B
Ao = (0 A—LC)’ Bo = (0)

The modes associated to the matrix (A — LC') are non-controllable.

3.5 The Feedback KYP Lemma

The feedback KYP Lemma is an extension of the KYP Lemma, when one
considers a controller of the form w(t) = Kx(t). This is quite related to the
material of Section 2.15.3: which are the conditions under which a system can
be made passive (or PR) in closed-loop? Let us consider the system
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z(t) = Ax(t) + Bu(t)

(3.119)
y(t) = Cu(t)
with the usual dimensions and where all matrices are real.
Definition 3.34. The system in (3.119) is said to be
A-\, B
e Minimum phase if the polynomial det is Hurwitz (it has all
C 0

its zeroes in the open half plane)
e Strictly minimum phase if it is minimum phase and the matriz CB is

nonsingular
e Hyper minimum phase if it is minimum phase and the matriz CB is pos-
itive definite ]

The next Theorem is close to what is sometimes referred to as Fradkov’s
Theorem [56].

Theorem 3.35. [16,15/-156] Let rank(B) = m. Let Q = QT < 0. Then

o (A) There exists P = PT > 0 and K such that P(A+BK)+(A+BK)TP <
Q and PB = CT

if and only if
o (B) the system in (3.119) is hyper minimum phase
if and only if

o (C) there exists P = PT > 0 and K such that P(A + BKC) + (A +
BKC)'P < Q and PB=CT

if and only if

o (D) the matriz CB is symmetric positive definite and the zero dynamics
of the system in (3.119) is asymptotically stable

Moreover the matriz K can be chosen as K = —aC where a > 0 is large
enough. Assume that in addition Ker(C) C Ker(Q). Then

o (E) There exists P = PT > 0 and K such that A+ BK is Hurwitz and
P(A+ BK)+ (A+BK)'P < Q and PB=C"T

if and only if
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o (F) the matriz CB is symmetric positive definite, the pair (A, B) is stabi-

A-)\, B
lizable, all the zeroes of the polynomial det are in the closed
c 0
left half plane, and all the pure imaginary eigenvalues of the matriz pencil
AB I, 0
R(\) = - have only linear elementary divisors A\ — jw
C o0 00

if and only if

e (G) the matriz CB is symmetric positive definite, the pair (A, B) is sta-
bilizable and the system (3.119) is weakly minimum phase. ]

Both matrix equations in (A) and (C) are bilinear matrix inequali-
ties (BMIs). The feedback KYP Lemma extends to systems with a direct
feedthrough term y = Cz + Du. It is noteworthy that Theorem 3.35 holds
for multivariable systems. If u(t) = Kuz(t) + v(t), then (A) means that the
operator v — y is SPR. It is known that this control problem is dual to the
SPR observer design problem [22]. Related results are in [23]. We recall that a
system is said weakly minimum phase if its zero dynamics is Lyapunov stable.
The zero dynamics can be explicitly written when the system is written in a
special coordinate basis as described in [432-434]. The particular choice for K
after item (D) means that the system can be stabilized by output feedback.
More work may be found in [153]. The stability analysis of dynamic output
feedback systems with a special formulation of the KYP Lemma has been
carried out in [241].

3.6 Time-varying Systems
Let us consider the linear system:
#(t) = A()z(t) + B(t)u(t)
y(t) = C(t)x(t) + D(t)ult) (3.120)

Ji(to) =20

where the functions A(-), B(-), C(-), D(-) are supposed to be piecewise con-
tinuous, and D(t) > el,,, € > 0. It is assumed that all (¢,2) with ¢t > ¢o are
reachable from (%9, 0), and that the system is zero state observable (such con-
trollability and observability conditions may be checked via the controllability
and observability grammians, see e.g. [467]). It is further assumed that the re-
quired supply is continuously differentiable in both ¢ and z, whenever it exists
(the required supply is a quantity that will be defined in Definition 4.36. The
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reader may just want to consider this as a regularity condition on the system
(3.120)). The system (3.120) is supposed to be well-posed; see Theorem 3.55,
and it defines an operator A : w(t) — y(t). The kernel of A(-) is given by
K(t,r) = Ct)D(t,r)B(r)1(t — r) + BT ()®T (r,t)CT (tr)1(r — t) + R(t)6—,
where 1(t) = 0if ¢t < 0, 1(t) = 2 if ¢t = 0 and 1(t) = 1if ¢t > 0,
R(t) = D(t) + DT(t), 6; is the Dirac measure at t, @(-,-) is the transition
matrix of A(t), i.e. ®(t,r) = X(t)X~!(r) for all t and 7, and LX = A(t)X (¢).
Then A(u(t)) = [*_ K(t,r)u(r)dr.

Lemma 3.36. The operator A(-) is nonnegative if and only if there exists an
almost everywhere continuously differentiable function P(-) = PT(-) > 0 such
that on (to,t)

QS

ST R

>0 (3.121)

where

(3.122)

Nonnegativity of A(-) is understood as in Proposition 2.31.

3.7 Interconnection of PR Systems

We will now study the stability properties of positive real or strictly positive
real systems when they are connected in negative feedback. We will consider
two PR systems Hi : u; — y1 and Hs : us — yo. Hj is in the feedforward path
and Hj is in the feedback path(i.e. u; = —y2 and ug = y1). The stability of
the closed loop system is concluded in the following Lemma when H; is PR
and Hs is weakly SPR.

Lemma 3.37. Consider a system Hy : w1 — y1 in negative feedback with a
system Hs : us — yo as shown in Figure 3.2, where Hy is PR and Hs is
WSPR. Under those conditions uy,us,y1 and ys all converge to zero exponen-
tially.

|
Proof: Let us define the following state-space representation for system H (s)
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C)ul H, Y

u
¥, H, 2

Fig. 3.2. Interconnection of H; and H»

{tl(t) = Alxl(t) + Blul(t)
(3.123)
y1(t) = Cra1(t) + Drua(?)

Since Hi(s) is PR there exists matrices P > 0,P € R"™" W €
R™*™ L € IR™™ such that

P A+ A{Pl = —LlL?
P B, — ClT =-—-LW (3.124)
Dy + D? = W1TW1

Define the following state-space representation for the system Ha(s)

{tg (t) = AQLCQ (t) + BQ’LLQ (t)
(3.125)
yg(t) = ngg(t) + DQUQ(t)

Since Hs(s) is WSPR there exists matrices P > 0,€ R™", W €
R™*™ L € IR™™ such that

PyAg + AT Py = —L,L7

P,By — CI = LW, (3.126)
Dy + DT = WL W,y
and o
Ho(s) = Wa + LE(sI, — As) ' By (3.127)

has no zeros in the jw-axis. Consider the following positive definite function

Vi(x;) = o] Py, i=1,2.
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Then using (3.124) and (3.126):

Vi(z;) = (T AT + uT BT )Px; + 2T P;(Asz; + Byuw;)

= 2T (AT P, + P A;)x; + 2ul BT P

—al'LiLTx; + 2ul (BT P, + WI L)z, — 2uI WE LT,

—{EZTLlL;T{EZ + QUZT[Cl{EZ + Dlul] — 2UZTDZ‘UZ‘ — 2UZTWZTL;T{EZ

—al'L;LTx; + 2ul'y; — 2uT Dju; — 20T WI LT 2,

—(LExs + Wiwg) T (L] i + Wiug) + 2ul'ys
(3.128)
where we have used the fact that

Define 3; = LT z; + Wiu; and V(x) = Vi(x1) + Va(z2), then
V(en,22) = =51 51 — 2 J2 + 2(u] y1 +uz y2)
Since u; = —y2 and uy = y; it follows that
uiyr+uzys = —y3 Y1 +yi yo =0
Therefore
V(wy,22) = —31 1 — U3 G2 < ~T P,

which implies that V'(-) is a nondecreasing function and therefore we conclude
that x; € L. Integrating the above equation:

—V(0) <V (t) - V(0) < —/O gL (8)§i(s)2ds (3.129)
Then .
/0 73 (s)72(s)ds < V(0) (3.130)

The feedback interconnection of H; and Hs is a linear system. Since z; €
L, the closed loop is at least stable, i.e. the closed-loop poles are in the left-
half plane or in the jw-axis. This means that wu;,y; may have an oscillatory
behavior. However the equation above means that y, — 0. By assumption
Hj(s) has no zeros on the jw axis. Since the state is bounded, ua(-) can not
grown unbounded. It follows that us(t) — 0 as ¢ — +o00. This in turn implies
that y2(t) — 0 since Hs is asymptotically stable. Clearly us(t) — 0 and
y2(t) — 0 as t — +o0. [ |
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3.8 Positive Realness and Optimal Control

The material of this section is taken from [513,514]. As we have already
pointed out in Section 3.1.2, strong links exist between dissipativity and opti-
mal control. In this section more details are provided. Close results were also
obtained by Yakubovich [349,520,523].

3.8.1 General Considerations

Let us start with some general considerations which involve some notions
which have not yet been introduced in this book, but will be introduced in
the next chapter (actually, the only missing definitions are those of a storage
function and a supply rate: the reader may thus skip this part and come back
to it after having read Chapter 4). The notions of dissipation inequality and
of a storage function have been introduced (without naming them) in (2.3),
where the function V(-) is a so-called storage function and is a function of
the state z(-) (and is not an explicit function of time). Let us consider the
following minimization problem

+oo
Vi(ao) 2 min / w(u(s), z(s))ds (3.131)
u 2,e JO
with
w(u, ) = ul Ru + 2u” Cx + 27 Qx (3.132)

with R = RT, Q = Q7, subject to @(t) = Ax(t) + Bu(t), #(0) = zo. It is
noteworthy that Vy(zo) is nothing else but the value function of the principle
of optimality. The set £, . is the extended set of Ly-bounded functions; see
Section 4.3.5. If w(u,z) > 0 for all x € IR™ and all uw € IR™ then the value
function satisfies

Vi((0)) < Vy (a(tr) + /O w(u(t), o(t)dt (3.133)

for all t; > 0, or, if it is differentiable, the infinitesimal equivalent

ovy

o @)[f(x) + g(x)u] + w(u,z) >0, V€ R",u € R™. (3.134)

One realizes immediately by rewriting (3.133) as the dissipation inequality

Vi (@(0)) = ~Vy(a(t)) - / Cw(u(t), ()t (3.135)
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that —V¢(-) plays the role of a storage function with respect to the supply
rate —w(u, ). Let us end this subsection making a small digression on the
following well-known fact: why is the optimal function in (3.131) a function
of the initial state? To see this intuitively, let us consider the minimization
problem

+oo
inf / (2(t) + 22 (1)) dt (3.136)
uel Jo

subject to (t) = u(t), £(0) = xo. Let U consist of smooth functions. Then
finiteness of the integral in (3.136) implies that lim;— 4 2(t) = 0. Take any
constant @ € IR. Then

o7 2ax(tyult)dt = [,7 2ax(t)i(t)dt =
(3.137)
= foJroo %[aa:Q(t)]dt = [az?(t)]7> = —axg.

So indeed inf, ¢y f0+oo(u2(t) + 22(t))dt is a function of the initial state.

3.8.2 Least Squares Optimal Control

We have already pointed out the relationship which exists between the linear
matrix inequality in the KYP Lemma (see Section 3.1.2) and optimal control,
through the construction of a Riccati inequality that is equivalent to the
linear matrix inequality (LMI) in (3.3). This section is devoted to deepen
such relationships. First of all, let us introduce (or re-introduce) the following
algebraic tools:

e The linear matrix inequality (LMI)

GA+ ATG+QGB+CT
>0 (3.138)

BTG+ C R

e The quadratic matrix inequality (QMI) or algebraic Riccati inequality
(ARI)

GA+ATG - (GB+CTHRYBTG+C)+Q>0 (3.139)
e The algebraic Riccati equation (ARE)

GA+ATG - (GB+CTRYBTG+C)+Q=0 (3.140)
e The frequency-domain inequality (FDI)
H(3,8) = R+ C(sl, — A)~'B+ BT (sI,, — AT)"1CT+

(3.141)
+BT (51, — AT)"'Q(sI,, — A)"'B >0
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where s € C and 5 is its complex conjugate. Notice that H(s,s) can be
rewritten as

H(E,s) = <(§In _I:j)lB>T (g C};) <(an _1;4)13> (3.142)

Remark 3.38. Comparing (3.138) and (3.17) it is expected that G < 0 in
(3.138), and in (3.139) and (3.140) as well.

Let R = D + D”. The function H(3,s) in (3.141) is also known as the
Popov function I1(s), and was formally introduced by Popov in [410] (the
first time it has been introduced may even be in [86]). It is worth noting that
when Q = 0 then H(3,s) = H(s)+ HT(5) where H(s) = C(sl,, — A)"'B+D.
Thus H(—jw, jw) > 0 a the condition for the PRness of H(s). By extension
one may also call the function in (3.141) a Popov function [391]. Notice that
H(5,s) in (3.142) is linked to the system @(t) = Az(t) + Bu(t) as follows. For
every 4 € C™ and every w € IR such that jw is not an eigenvalue of A, we
have

uT H (jw, —jw)u = (x(_jw’ “)>T (g C;;) <x(~7“” “)) (3.143)

u u

where x(jw, u) is defined from jwz = Az+Bu, i.e. (jw,u) = (jwl,—A)~! Bu.
See for instance Theorem 3.46 for more information on the spectral function
and its link with the KYP Lemma set of equations. One sometimes calls any

T
triple of matrices A, B and (Q ¢

C R ) a Popov triple.

Remark 3.39. In the scalar case the ARE (3.140) becomes a second order
equation aG? + bG + ¢ = 0 with real coefficients. It is clear that without
assumptions on a, b, and ¢ there may be no real solutions. Theorem A.53 in
Appendix A.4 states conditions under which an ARE as in (3.140) possesses
a real solution.

We will denote the inequality in (3.133) as the DIE (for dissipation inequal-
ity), keeping in mind that the real dissipation inequality is in (3.135). Let us
introduce the following optimal control problems, with w(x,w) in (3.132).

+oo
V(o) 2 min/ w(u(s),z(s))ds, lim () =0 (3.144)
0

uELs e t—400

“+o0
V™ (z0) 2 — min/o w(u(s),z(s))ds, lim () =0 (3.145)

uELo e t——+o00



122 3 Kalman-Yakubovich-Popov Lemma

t
A .
Va(zo) = ueﬁmglf,ltzo/o w(u(s), z(s))ds (3.146)

These four problems (i.e. (3.131), (3.144), (3.145) and (3.146)) are subject
to the dynamics @(t) = Az(t) + Bu(t), with initial data z(0) = zo.

Assumption 2 We assume that the pair (A, B) is controllable throughout
Section 3.8.2.

Therefore this assumption will not be repeated. One notes that the four
functions in (3.131), (3.144), (3.145) and (3.146) are quadratic functions of
the state xg. Let us summarize few facts:

o V.(-) <0 (take t = 0 in (3.146) to deduce that the minimum cannot be
positive).

o V,() < Vi(-) < V*(): indeed, if the scalar fg w(u(s), z(s))ds sweeps a
certain domain in IR while ¢ > 0, then the scalar f0+°o w(u(s), z(s))ds must
belong to this domain. And similarly if the scalar fOJrOO w(u(s), z(s))ds

sweeps a certain domain while u € Lo ., the scalar fOJrOO w(u(s), z(s))ds
subject to the limit condition must lie inside this domain.

o V,() < 400,Vi(:) < +o0, V*F(-) < +o0: by controllability the integrand
w(u, x) is bounded whatever the final (bounded) state, so the lowerbound
is bounded.

e V() > —oo: note that

+oo +0o0
— min /0 w(u(s),z(s))ds = max —/O w(u(s), z(s))ds.

u€Lls e u€Ly e

By controllability one can surely find a control u that drives the system
from z( to some other state, and such that the scalar f0+°o w(u(s), z(s))ds
is bounded. So the supremum surely cannot be —oo.

o Vi(-), V*(), and V,(-) satisfy the DIE (3.133). By direct inspection
Vi(zo)—Vi(z1) = Lfﬂl w(u(s), z(s))ds and similarly for the other two func-
tions.

o If for all # € IR™ there exists a v € IR™ such that w(z,u) < 0 then
Va(-) = Vi (-). A sufficient condition for this is that R > 0, or that @ = 0.

e If there exists a feedback controller u(z) such that w(u(z),z) < 0 and
such that z(t) = Axz(t) + Bu(x(t)) has an asymptotically stable fixed
point z = 0, then V,,(-) = V¢ () = VT(-).

o If w(u,z) = uTy and an output y = Cz + Du is defined, then the optimal
control problem corresponds to a problem where the dissipated energy is
to be minimized.

o If w(x,0) > 0 then the functions V(-) which satisfy the DIE in (3.133)
define Lyapunov functions candidate since —V'(+) is then non-increasing
along the (uncontrolled) system’s trajectories, as (3.135) shows.
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The second part of the last item is satisfied provided the system is asymp-
totically stabilizable, which is the case if (A4, B) is controllable. The first part
may be satisfied if R = 0, @ = 0, and the matrix A+ BC is Hurwitz. The first
part of the last-but-one item, is satisfied if R = 0, @ = 0 (take u = —Cx).

Lemma 3.40. Let R > 0. For quadratic functions V(z) = 7Gx, G = G7,
the DIE in (3.133) is equivalent to the LMI. [ |

Proof: From (3.134) one obtains

22T G[Ax + Bu] > —w(u,z), ¥V € R",u € R™ (3.147)

The LMI follows from (3.147). Then the proof is as in Section 3.1.2.
|
Let us now present some Theorems which show how the LMI, the ARI, the
ARE and the FDI are related one to each other and to the boundedness prop-
erties of the functions Vy(-), VT (-). The proofs are not provided entirely for
the sake of brievity. In what follows, the notation V(-) > —oo and V (-) < 400
mean respectively that the function V' : IR™ — IR is bounded for bounded
argument. In other words, given xy bounded, V(x¢) is bounded. The control-
lability of (A, B) is sufficient for the optimum to be bounded [246, p.229].

Theorem 3.41. The following assertions hold:

o Vi() > —o0 <= there exists a real symmetric solution G = GT < 0 to
the LMI.

o VT(:)> —co <= there exists any real symmetric solution G = GT to the
LML
Vi(-) > —o0 = the FDI is satisfied whenever Re(s) >0, s € C.
V*(:) > —0o = the FDI is satisfied along Re(s) =0, s € C. [ |

Proof: Let us prove the last two items. If there exists a solution G = GT to

the LMI, then

—(I,5 - AT)G — G(I,s — A) GB+CT —20P 0
> (3.148)

BTG +C R 0 0

with s =0+ jw, 0 € R, w € IR, and § = 0 — jw. Postmultiplying by

[gﬁns - A)lB] (3.149)

and premultiplying by [BT (I,,5 — AT)~! I,,] one obtains

H(3,s) > —20BT(I,5 - AT)"'G(I,s — A)"'B (3.150)
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From the first item and since o > 0 one sees that indeed (3.150) implies
the FDI (as P is non-positive definite).
|
The following theorems characterize the solutions of the ARE.

Theorem 3.42. Let R = RT > 0.

e The ARE has a real symmetric solution if and only if H(—jw,jw) > 0
for all real w, jw & o(A). There is then only one such solution denoted
as GT, such that Re(A(A1)) < 0, AT = A - BR™YBTG* + C), and
only one such solution denoted as G~, such that Re(A(A7)) > 0, A~ =
A—BRYBTG~ +0).

o Any other real symmetric solution G satisfies G~ < G < GT. ]

One recognizes that AT and A~ are the closed-loop transition matrices
corresponding to a stabilizing optimal feedback in the case of AT. G is
called the stabilizing solution of the ARE. V*(:) and V~(-) are in (3.144)
and (3.145) respectively. It is noteworthy that if in the first assertion of the
Theorem one looks for negative semi-definite solution of the ARE, then the
equivalence has to be replaced by “only if”. In such a case the positivity of
the Popov function is only a necessary condition.

Theorem 3.43. Assume that R = RT > 0. Then

e V() > —o00 and V= < +oo <= there exists a real symmetric solution
to the ARFE.
Moreover V¥ (z) = 2TGVz and V= (2) = 27G~x.
Vi() > —00 <= there exists a real symmetric non-positive definite solu-
tion to the ARE.

o  Consequently V() > —oo if and only if G= < 0. When G~ < 0 then
Vi()=V*H()=2TG"x.

e The optimal closed-loop system @(t) = A%x(t) is asymptotically stable if
G~ <0 and Gt > G~, where A" is defined in Theorem 3.42. [ |

One can already conclude from the above results that the set of solutions to
the KYP Lemma conditions (3.2) possesses a minimum solution P~ = —G*
and a maximum solution P* = —G~ when D+ DT > 0, and that all the other
solutions P > 0 of the ARE satisfy —G* < P < —G~. The last two items
tell us that if the ARE has a solution G~ < 0 then the optimal controller
asymptotically stabilizes the system. In this case lim;_, o x(t) = 0 so that
indeed V¢(:) = VT (.).

The function —V(-) corresponds to what we shall call the available storage
(with respect to the supply rate w(z,u)) in Chapter 4. The available storage
will be shown to be the minimum solution to the ARE, while the maximum
solution will be called the required supply. Also dissipativity will be character-
ized by the available storage being finite for all x € X and the required supply
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being lower-bounded. The material in this section brings some further light on
the relationships that exist between optimal control and dissipative systems
theory. We had already pointed out a connection in Section 3.1.2. Having in
mind that what we call a dissipative linear invariant system is a system which
satisfies a dissipation equality as in (3.4), we can rewrite Theorem 3.42 as
follows:

Theorem 3.44. [511] Suppose that the system (A,B,C,D) in (3.1) is
controllable and observable and that D + DT is full rank. Then the ARE
PA+ ATP + (PB - CT)(D + DT)="Y(BTP — C) = 0 has a real sym-
metric non-negative definite solution if and only if the system in (3.1)
is dissipative with respect to the supply rate u'y. If this is the case
then there exists one and only one real symmetric solution P~ such that
Re(MA7)) <0, A~ = A+ B(D + DV)"Y(BTP~ — C), and one and
only one real symmetric solution Pt such that Re(A\(A*)) > 0, AT =
A+ B(D+ DT)~Y(BTP* — C). Moreover 0 < P~ < P* and every real
symmetric solution satisfies P~ < P < P7T. Therefore all real symmet-
ric solutions are positive definite. The inequalities H (jw) + HT (jw) > 0
for all w € R, Re(M(A™)) < 0, Re(A(AT)) > 0, and P~ < P*, hold
stmultaneously.

It will be seen later that the matrices P™ and P~ play a very particular role
in the energy properties of a dynamical system (Section 4.4.3, Remark 4.37).
Theorem 3.44 will be given a more general form in Theorem 4.58. The matrix
P~ is the stabilizing solution of the ARE. Algorithms exist that permit to
calculate numericallt the extremal solutions P~ and P¥; see [145, Annexe
5.A] where a Fortran routine is proposed.

Remark 3.45. Let us study the case when C' = 0 and Q = 0, with R = I,
without loss of generality. The ARE then becomes

ATG+GA-GBBTG =0 (3.151)
and obviously G = 0 is a solution. It is the solution that yields the free terminal
time optimal control problem of the optimization problem f0+oo u (t)u(t)dt.
If the matrix A is Hurwitz, G = 0 is the maximum solution of (3.151). If — A4
is Hurwitz, G = 0 is the minimum solution to the ARE.

Extensions towards the singular case (R > 0) can be found in [506]; see
also Remark 4.94.

3.8.3 The Popov Function and the KYP Lemma LMI

We did not provide most of the proofs of the results of this section, and in
particular Theorem 3.42. Let us end this section with a result that links the
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positivity of the Popov function, and a KYP Lemma LMI, and its complete
proof.

Theorem 3.46. [145] The spectral function

Qs )
1(s) = [BT(=sI, — AT)"" I,,] (“In -4

; B) (3.152)
ST R m

where the pair (A, B) is controllable, is non-negative if and only if there exists
P = PT such that

Q- ATP-PA S—PB
>0

ST —BTp R

Before passing to the proof we need some intermediate results.

Lemma 3.47. [145] Let II(s) be the spectral function in (3.152), which we
say is described by the five-tuple (A, B,Q, S, R). Then

o i) II(s) is also described by the five-tuple (Aa, B2, Q2, Sa2, Ra) where

S A=A

- By=B8B

~ Q=Q-ATP_PA
- S =S8-PB

- Ry=R

where P = PT is any matriz.

e i) For H(s) = I, — C(sI, — A+ BC)™'B where C is any m x n ma-
triz, the spectral function H™ (s)II(s)H(s) is described by the five-tuple
(A1731,Q1751,R1) where

A, =A- BC

- B;=B

- Q1=Q+CTQC-SC-CTS
- $1=S-CTR

- R =R.

Proof: i) Let Il»(s) be the Popov function described by the five-tuple
(A27B27Q2,SQ,R2). Then

IIs(s) — II(s) = —BT(sI, — AT)~ (AT P + PA)(sI, — A)~'B—
—BT(=sl, — AT)"'PB — BT P(sI, — A)~}

— _BT(—sI, — AT)YATP 4 PA+ P(sI, — A)+ (3.153)
+ (=sI,, — AT)P](sI,, — A)~*

=0.
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ii) Notice that (sI, — A)"'BH(s) = (sI, — A + BC)~1B. The Popov
function HT (s)IT(s)H(s) can be written as

HT (s)II(s)H(s) =

Q S\ [(sl, —A+BC)™'B
=[BT (-sI, — AT+ CTBT)=* HT(-s)]
ST R H(s)

Q1 51 (sl, —A1)"'B
=[BT (~sI, — AT + ¢TBT)~! I,]
ST Ry I,
(3.154)
which ends the proof. ]

Lemma 3.48. Let A € IR™*", B € IR**®, C € IR™*®. The solution of the
equation AP + PB = C is unique if and only if the set of eigenvalues of A
and the set of eigenvalues of —B, have no common element. ]

In the next proof the notation (A, B,Q,S,R) @n (A", B',Q",S",R)
means that one has applied the two transformations of Lemma 3.47 succes-
sively. The two Popov functions which correspond one to each other through
such a transformation are simultaneously non-negative.

Proof of Theorem 3.46: Let C be a matrix such that (A — BC') is asymp-
totically stable. Let J be the unique solution of

(A-BO)TJ+J(A-BC)=Q+CTRC - SC —CTST (3.155)

One checks that (4, B,Q, 5, R) ‘% (A — BC,B,0,HT,R) with H —

S — JB — CTR. Under these conditions the positivity of IT(s) is equivalent to
that of

I'(s) = H(sI, — A+ BC) 'B+ BT (—sI,, — AT + CTBT)HT + R (3.156)
i.e. is equivalent to the existence of a matrix G = GT > 0 such that

—(A-BC)TG—G(A—BC) HT —GB
(3.157)
H- BTG R

But for P = G + J a direct computation shows that
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Q—-ATP—-PAS—PB

st —BTp R

I, CT —(A-BC)'P-P(A-BC) HT - PB I, 0

0 I, H-BTPp R C I,
(3.158)
which ends the proof. ]

It is noteworthy that the matrix P in Theorem 3.46 is not necessarily
positive definite. We will need those results when we deal with hyperstability.
We notice that Theorem 3.46 states an equivalence under a controllability as-
sumption of the pair (A, B). But it does not say that it is necessary that (4, B)
be controllable for the result to hold; see Section 3.3 for more informations on
this point.

Popov’s Function and Triples

Remember that given a Popov’s function as in (3.142) we call (A, B, Q,C, R)
a Popov triple.

Definition 3.49. Two Popov triples (A,B,Q,C,R) and (A,B,Q,C,R) are
called (X, F)-equivalent if there exist matrices F € IR™ "™ and X = X7
R™™" such that
A=A+BF, B=B
O=Q+LF+FTLT + FTRF + AX + XA (3.159)

L=L+FTR+XB R=R

One then writes (A B,Q,C,R) ~ (A B,Q,C R) Two Popov triples
(A,B,0,C,R) and (A, B,0, C,R) are called dual if A = —AT, =L,
L=-B, R=R. |

From the material which is presented above, it should be clear that a Popov
triple can be seen as the representation of a controlled dynamical system
z(t) = Ax(t) + Bu(t) together with a functional with a quadratic cost as in
(3.132). To a Popov triple X' one can therefore naturally associate a Popov’s
function (3.142), a Riccati equality, and an extended Hamiltonian pencil

I, 00 A 0 B
My —~Ns=X|01I1,0| - |-Q—-AT —CT (3.160)
000 ¢ BT R

which shall be denoted as EHP(X).
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Lemma 3.50. [225] (a) If ¥ = (A,B,Q,C,R) ~ ¥ = (A, B,Q,C, R), then
IIx(s) = Sp(s)II5(s)Sr(s), where Sp(s) = F( n— A" 'B+1,

(b) If ¥ = (A,B,0,C,R) and £ = (A,B,0,C,R) are two dual Popov
triples, then IIs(s) = IIx(s). [ |

The following holds:

Lemma 3.51. [224,225] Let ¥ = (A, B,Q,C, R) be a Popouv triple; the fol-
lowing statements are equivalent:

e There exists an invertible block 2 x 2 matriz V' with upper right block zero,

such that R = VT JV, where J = 0 , and the Riccati equality
Iy,

ATP+PA—(PB+CT)R™Y(BTP+ C())+ Q i 0 has a stabilizing solution

) ZZ has a J—spectral factorization Ils, = G*JG, with G, G~ being ratio-

nal m X m matrices with all poles in the left open complex plane. |

These tools and results are useful in the Ho, theory; see [224, Lemma 2,
Theorem 3.

3.8.4 A Recapitulating Theorem

Let us state a Theorem proved in [349] and which holds for stabilizable sys-
tems (there is consequently also a link with the material of Section 3.3). This
theorem summarizes several relationships between the solvability of the KYP
Lemma set of equations and the regular optimal control problem, under a
stabilizability assumption only.

Theorem 3.52. Let the pair (A, B) be stabilizable. Then the following asser-
tions are equivalent:

o (i) The optimal control problem: (3.131) and (3.132) subject to &(t) =
Ax(t)+Bu(t), (0) = xo, is regular, i.e. it has a solution for any xo € R",
and this solution is unique.

e (ii) There exists a quadratic Lyapunov function V(z) = x*Px, P* = P,
such that the form V +w(u, z) = 22* P(Az+ Bu) +w(u, z) of the variables
x € C" and u € C™ is positive definite.

o (iii) The condition w(u,z) > §(x*r+u*u) for any value of w € R, x € C",
u € C" satisfying jwr = Ax + Bu, holds for some 6 > 0.

e (iv) The matriz R = R in (3.132) is positive definite and the set of
equations PA+ A*P + Q = kRk*, PB + C* = —kR, possesses a solution
in the form of real matrices P = PT and C, such that the controller
u = Cz stabilizes the system &(t) = Ax(t) + Bu(t).
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e (v) R >0 and det(jwJ — K) # 0 for all w € R, with J = ,

CTR™'C -Q AT — CR™'BT
K=
A—BR'CT BR'BT
e (vi) R > 0 and there exist a quadratic form V = x*Pz, P = P*, and
a matriz k € R™™, such that V + w(u,z) = |R2(u — k*z)|> and the
controller u = k*x stabilizes the system &(t) = Ax(t) + Bu(t).
o (vii) The functional Vy(-) in (3.131) is positive definite on the set M(0) of
processes (x(+),u(+)) that satisfy ©(t) = Az(t) + Bu(t) with x(0) = xo =0,
i.e. there exists § > 0 such that

+00 +oo
/ wu(t), z(t))dt > § / @7 (D)2 (t) + uT (u(t))2dt
0 0
for all (z(+),u(-)) € M(0), where M(xq) is the set of admissible processes.

Let at least one of these assertions be valid (which implies that they are all
valid). Then there exists a unique pair of matrices (P, k) which conforms with
the requirements of item (iv). In the same way there is a unique pair which
complies with the requirements of item (vi) , and the pairs under consideration
are the same. Finally any of the items (i) through (vii) implies that for any
initial state xo € R™ one has V(xo) = xf Pxo = minpq(ge) V(z(-),u(-)). =

The set M (z) of admissible processes consists of the set of pairs (z(-), u(-))
which satisfy @(t) = Az(t) + Bu(t) with x(0) = xo, with u € L. If (A, B) is
controllable then M(zg) # 0 for any xo € R".

3.8.5 On the Design of Passive LQG Controllers

The Linear-Quadratic-Gaussian (LQG) controller has attained considerable
maturity since its inception in the 1950s and 1960s. It has come to be generally
regarded as one of the standard design methods. One attribute of LQG-type
compensators is that, although they guarantee closed-loop stability, the com-
pensator itself is not necessarily stable. It would be of interest to characterize
the class of LQG-type compensators which are stable. Going one step further,
if the LQG compensator is restricted to be not only stable, but also passive,
this would define an important subclass. The importance of such compensators
is that they would not only be passive, but would also be optimal with respect
to an LQG performance criteria. One reason for considering passive compen-
sators is that, when used to control positive real plants, they offer excellent
robustness to modeling errors as long as the plant is PR. An important appli-
cation of passive compensators is vibration suppression in large flexible space
structures (LFSS), which are characterized by significant unmodeled dynam-
ics and parameter errors. The linearized elastic-mode dynamics of LFSS [253]
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with compatible collocated actuators and sensors are PR systems regardless
of the unmodeled dynamics or parameter uncertainties can, therefore, be ro-
bustly stabilized by an SPR compensator.

The objective of this section is to investigate the conditions under which
an LQG-type compensator is SPR, so that one can simultaneously have high
performance and robustness to unmodeled dynamics.

Consider a minimal realisation of a PR system expressed by the following
state space representation:

&(t) = Az(t) + Bu(t) + v(t)
(3.161)
y(t) = Cz(t) +w(t)

where v(-) and w(-) are white, zero-mean Gaussian noises. Since the system
is PR, we assume, without loss of generality (see Remark 3.54 at the end of
this section), that the following equations hold for some matrix @, > 0:

A+ AT = —Qa <0 (3.162)

and

B=C"T (3.163)

The above conditions are equivalent to the Kalman-Yakubovich-Popov
Lemma. The LQG compensator for the system (3.161), (3.162) and (3.163) is
given by (see [9])

u(t) = —u'(t) (3.164)

#(t) = [A— BR'BT"P. — P;BR,'B"] &(t) + PyBR,'y(t) (3.165)

u'(t) = RT'BT P.i(t) (3.166)

where P, = PCT > 0 and Py = Pf > 0 are the LQ-regulator and the
Kalman-Bucy filter Riccati matrices which satisfy the algebraic Riccati equa-

tions
PA+A"P.— P.BR'BTP.+Q =0 (3.167)

PyAT + APy — PyBR,'BTP; + Qv =0 (3.168)

where @@ and R are the usual weighting matrices for the state and input, and
Qv and Ry are the covariance matrices of v and w. It is assumed that Q > 0
and that the pair (A, Q%,/ 2) is observable. The main result is stated as follows:
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Theorem 3.53. [312] Consider the PR system in (3.161), (3.162)
and (3.163) and the LQG-type controller in (3.164) through (3.168). If
Q, R, Q, and R,, are such that

Qv =Q,+BR'BT (3.169)
Ry, =R (3.170)

and A
Q-BR'B"=Qp>0 (3.171)

then the controller in (3.165) through (3.166) (described by the transfer
function from y to w ) is SPR.

Proof: Introducing (3.162), (3.169), (3.170) into (3.168), it becomes clear that
Py =1 is a solution to (3.168). From (3.167) it follows:

P.(A-BR'B"P. - BR'B")+ (A-BR'B"P.—- BR™'BT)TP.

=—-Q—-P.BR'B"P.— P.BR'BT — BR™'BTP,
=—-Q—(P.+IBR'BT(P.+ 1)+ BR'B”

=-—Qp— (P.+1)BR'BT(P.+1)<0

where Qp is defined in (3.171). In view of (3.163 ), (3.170) and the above, it
follows that the controller in (3.165) and (3.166) is strictly positive real. ™

The above result states that, if the weighting matrices for the regulator
and the filters are chosen in a certain manner the resulting LQG-type compen-
sator is SPR. However, it should be noted that this compensator would not be
optimal with respect to actual noise covariance matrices. The noise covariance
matrices are used herein merely as compensator design parameters and have
no statistical meaning. Condition (3.171) is equivalent to introducing an addi-
tional term y” R~y in the LQ performance index (since Q = Qg +CR™*CT)
and is not particularly restrictive. The resulting feedback configuration is
guaranteed to be stable despite unmodeled plant dynamics and parameter
inaccuracies, as long as the plant is positive real. One application of such
compensators would be for controlling elastic motion of large flexible space
structures using collocated actuators and sensors. Further work on passive
LQG controllers has been carried out in [99,160, 165,179,237, 238].
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Remark 3.54. Consider a positive real system expressed as

2(t) = Dz(t) + Fu(t)

(3.172)
y(t) = Gz(1)
Then, there exists matrices P > 0 and L such that
PD+DTP=—-LLT
(3.173)

PF=GT

Define & = P2z, where P2 is a symmetric square root of P [272]. Intro-
ducing this definition in (3.172), we obtain a state space representation as the
one in (3.161), but with A = P2DP~%, B = Pz F, C = GP~2. Multiplying
the first equation in (3.173) on the left and on the right by P2 we obtain
(3.162) with Q4 = P2 LLTP~=. Multiplying (3.173) on the left by P~ 2 we
obtain (3.163). n

3.8.6 Summary

Let us recapitulate some of the material in the previous subsections. We con-
sider the two matrix polynomials

R(P)=ATP+ PA+(C—B"P)T(D+DT)~'(C — BTP)
(3.174)
S(G) = AG + GAT + (B - GCT)(DT + D)~"(B — GCT)T

and the linear invariant system (X)) : &(t) = Axz(t) + Bu(t), y(t) = Cz(t) +
Du(t) which is controllable and observable.
Then all the following statements are equivalent one to each other [480]:

1) The transfer function of (X') is extended SPR.
2) There exists a positive definite matrix P such that

ATP+PA CT - PB
<0 (3.175)
C-BTP —(D+ D7)
3) D+ DT > 0 and the ARI R(P) < 0 has a positive definite solution P;.
4) D + DT > 0 and the ARE R(P) = 0 has a solution P, such that
A+ (D + DT)Pg has all its eigenvalues with strictly negative real parts.
e 5) There exists a positive definite matrix G such that

AG +GAT B-GCT
<0 (3.176)
BT —cG —(DT +D)
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6) D + DT > 0 and the ARI S(G) < 0 has a positive definite solution G;.
7) D+ DT > 0 and the ARE S(G) = 0 has a solution G, such that
A+ (D + DT)G. has all its eigenvalues with strictly negative real parts.

In addition, assume that any of the above statements 1)-7) holds. Then:

e 8) If the matrix P (resp. P;) solves the inequality (3.175) (resp. R(P) <
0) then its inverse P~1 (resp. P; ') solves the inequality (3.176) (resp.
S(G) < 0), and vice-versa.

e 9) The inequalities 0 < P. < P; and 0 < G, < G; hold.

Lemma 3.7 is used to prove some of the above equivalences. More on Ric-
cati equations can be found in [273,416]; see also Appendix A.4. Point 2)
above and Theorem A.61 show that extended SPR. functions and SSPR, func-
tions can be tested with the same LMI conditions and are therefore equivalent
notions.

Let us recall a fundamental result which is also closely linked to the KYP
Lemma solvability under no-controllability assumption of (A, B). Given A €
R™V™ B e RV™ M =MT ¢ R"™>*+m) with det(jwl, — A) # 0 for
w € IR (A does not have imaginary eigenvalues) and (A, B) controllable, the
next two statements are equivalent [145,412]:

. _ _1 * . o —1
. (@wanA) B) M((awInIfU B)SOforauwe[—oo,+oo].

e There exists a matrix P = PT € IR"*"™ such that

ATP + PA PB
M + <0 (3.177)
BTP 0
T
When M = g D i pr | onerecovers the KYP Lemma set of equations.

When @ > 0 then P > 0 and A is Hurwitz. The corresponding equivalence
with strict inequalities holds even if (A, B) is not controllable. This equivalence
therefore somewhat generalizes Proposition 2.31. The generalization of this
equivalence for a limited range of frequencies |w| < @, has been proposed
in [229,230]. This has important practical consequences.

3.8.7 A Digression on Semidefinite Programming Problems

The above equivalence makes a nice transition to the relationships between
semidefinite programming problems (SDP) and the KYP Lemma. Let us con-
sider a SDP of the form
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minimize q7x + Zé:l Tr(QrPr)

AEP]C + P, A, P.B;
subject to + 3P @My, > N, k=1,...,L
BI'P, 0
(3.178)

where the variables (unknowns) are x € IRP and P, = PL € IR™ "™ the
problem data are ¢ € IRP, Qp = QT € IR™ "™, Ay, € R™ "™ By, € IR™ "™,
My, = M € R X (tmi) ang N, = NE € RmeFmi)x (metme) - Gyep
a SDP is named a KYP-SDP [498] because of the following. As seen just above
the KYP Lemma states a frequency domain inequality of the form

((jwln ;mA)lByM (qufn ;mA)lB> <0 (3.179)

for all w € [—o00, 400}, with M symmetric and A has no imaginary eigenvalue
(equivalently the transfer function C(sI,, — A)~!B + D has no poles on the
imaginary axis). And (3.179) is equivalent to the LMI in (3.177). The con-
straints in the KYP-SDP in (3.178) possess the same form as (3.177) where
M is replaced by an affine function of the variable x. Let us take Q; = 0, then
the KYP-SDP can equivalently be rewritten as

minimize ¢Tx

ol — ANV-1B 0\ o a1
subject to (Ow[n IAk) Bk) (My(z) — Ny ((JWIn IAk) Bk) >0

k=1,..,L

(3.180)
where the optimization variable is z and My(z) = Y¥_, x;My,. Applica-
tions of KYP-SDPs are in optimization problems with frequency-domain in-
equalities, linear systems analysis and design, digital filter design, robust con-
trol analysis using integral quadratic constraints, linear quadratic regulators,
quadratic Lyapunov functions search, etc. More details may be found in [498].
We do not provide more details on this topic since this would bring us too far
away from our main interest in this book.

3.9 The Lur’e Problem (Absolute Stability)

3.9.1 Introduction

In this section we study the stability of an important class of control systems.
The Lur’e problem has been introduced in [321], it was very popular in the
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1950s 2 and can be considered as the first steps towards the synthesis of
controllers based on passivity. For a complete account on the Russian school
to the Lur’e problem, [524] is mandatory reading. Consider the closed-loop
system shown in Figure 3.3. We are interested in obtaining the conditions
on the linear system and on the static nonlinearity such that the closed-loop
system is stable. This is what is called the Lur’e problem.

Linear
system

o (ty)
s
—

Fig. 3.3. The Lur’e problem

The linear system is given by the following state-space representation:

z(t) = Ax(t) + Bu(t)
(2) (3.181)
y(t) = Cx(t) + Du(t), =(0) =0

with z(t) € R",u(t),y(t) € R™, m < n. The static nonlinearity ¢ : IR x
R™ — IR™ is possibly time-varying and described by

{ 2(t) = ¢(t, y(t)) (3.182)

u(t) = —z(¢t) (interconnection relation)

The linear system is assumed to be minimal, ¢.e. controllable and observ-
able which means that

rank [B AB ... A”*IB} =n,

2 Of the 20th century.
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and

C
rank C.A
O An-1
The nonlinearity is assumed to belong to the sector [a,b], i.e.:

i) ¢(t,0)=0 Vt>0
i) [o(t,y)—ayl" by—o(ty)) >0 V>0, Vy(t)eR"

In the scalar case (m = 1), the static nonlinearity is shown in Figure 3.4.

O(t,y)

ay

Y

Fig. 3.4. Static nonlinearity for n =1

3.9.2 Well-posedness of ODEs

The function ¢(-,-) must be such that the closed-loop system possesses a
unique solution. For an ordinary differential equation z(t) = f(x(¢),t), the
so-called Carathéodory conditions are as follows:

Theorem 3.55. [107] Let I = {(z,t) | |[x—x0|| < b,|[t—7| < a,a € R", b€
R"}, and let us assume that f : I — IR satisfies:

o (i) f(x,-) is measurable in t for each fized x

o (i) f(-,t) is continuous in x for each fixed t

o (iii) there exists a Lebesque integrable function m(-) on the interval [t—7| <
a such that | f(x,t)| < m(t) for all (z,t) € I
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Then for some a > 0 there exists an absolutely continuous solution x(-) on
some interval |t — 7| < B, B >0, satisfying x(7) = xo. [ |

One notices that, due to the absolute continuity of the solution z(-), it
follows that the equality &(t) = f(x(¢),t) is satisfied almost everywhere in the
Lebesgue measure (i.e. for all ¢ in the said interval, except on a set of zero
Lebesgue measure). When f(-, -) satisfies || f (¢, z)— f (¢, v)|| < ©(|t—7],||z—y]])
where 9 (-, ) is continuous and non-negative, then uniqueness of the solution
starting at xo is guaranteed (and its derivative is unique up to a set of zero
Lebesgue measure in the said interval of time). When f(-,+) is a C" function
of both x and ¢, then local existence and uniqueness of a solution which is also
a C" function of both z and ¢, is guaranteed [28]. The basic and “classical”
well-posedness results for an ordinary differential equation @(t) = f(¢, z(t))
are as follows:

Theorem 3.56 (Local Existence and Uniqueness [96]). Let f(t,x) be
continuous in a neighborhood N of (to,z9) € IR x IR"™, and be locally Lipschitz
with Lipschitz constant k. Then there exists o > 0 such that the ODE &(t) =
f(t,z(t)) possesses in the interval I = [tg—a, to+a] one and only one solution
x: I — IR" such that x(0) = xo. [ |

The definition of Lipschitz functions is in Definitions 4.2 and 4.3.

Theorem 3.57 (Global Uniqueness [96]). Let f(t,z) be locally Lipschitz.
Let I C IR be an interval (I may be open, closed, unbounded, compact, etc).
If x1(7) and z3() are two solutions of ©(t) = f(t,x(t)) on I and if they are
equal for some tog € I, then they are equal on the whole I. If in addition f(t,x)
is continuous in some domain U C IR x IR" and if (to,z0) € U, then there
exists a mazximum interval J 3 to in which a solution exists, and this solution
1S unique. [ |

Theorem 3.58 (Continuous Dependence on Initial Data). Let f :
W — IR", W C IR" an open set, be Lipschitz with constant k. Let x1(-)
and xz2(-) be solutions of ©(t) = f(x(t)) on the interval [to,t1]. Then for all
t € [to, t1], one has ||z1(t) — z2(t)|] < ||z1(to) — z2(to)|| exp(k(t — to)). [ |

The proof of Theorem 3.58 is based on Gronwall’s Lemma which is re-
called later in the book (Lemma 3.68). It is noteworthy that some of the
nonsmooth dynamical systems which are studied in this book do not enjoy
the continuity in the initial data property, like Lagrangian systems subject to
complementarity conditions (unilateral constraints).

In Section 3.9.4, well-posedness will be extended to multivalued and nons-
mooth feedback nonlinearities. Then new tools for studying the well-posedness
are required. Concerning the closed-loop system (3.181) and (3.182), one has
fz(t),t) = Az(t) — Bo(t,Cz(t)) when D = 0, and the conditions on ¢(t, y)
which assure that the vector field fits within the conditions of Theorems 3.55,
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3.56 or 3.57, are easily deduced. It is worth noting that when D # 0 some
care is needed. Indeed one obtains

y = Cz — D¢(t,y), (3.183)

and the output mapping makes sense only if Equation (3.183) has a unique
solution y = h(x) for all t > 0 and all x € IR". A single-valued mapping p(+)
is monotone if (z — ',y — y’) > 0 whenever z = p(y) and z’ = p(y'). It is
strongly monotone if (x — ',y —y') > al|ly — ¢'||* for some a > 0.

Lemma 3.59. Let D > 0 and ¢ : R™ — IR™ be monotone. Then the equation

y=Cz— Do(y) (3.184)

possesses a unique solution y = h(z) for all x € R™. [ |

Proof: The proof uses the fact that the generalized equation 0 € F(z) pos-
sesses a unique solution provided the mapping F(-) is strongly monotone
on IR™ [137, Theorem 2.3.3]. We are thus going to show that the mapping
y — y + D¢(y) is strongly monotone. Take two couples (z,z’) and (y,y’) in
the graph of this mapping, i.e. ' = x + D¢(x) and y' = = + D¢ (y). Then

(z—y)T(@' —y) = (z—y)"(x —y+ Dé(x) — Dp(y))
=(@—-y) " (x—y)+ (@ —y) " D(o(z) — ¢(y))
> (z—y) (@ —y) + Anin(D)(x — v)T (¢(z) — B(y))

> (@—y)(z—y)

(3.185)
This inequality precisely means that y — y + D¢(y) is strongly monotone
[137, Definition 2.3.1]. Thus y — y + D¢ (y) + « for some a € IR™ is strongly
monotone as well. |
The proof of the above fact applies to generalized equations of the form
0 € F(x) + Nkg(z), where Nk (-) is the normal cone to the closed convex
set K C IR" (we shall come back on convex analysis later in this chapter).
It happens that N~ () = {0} for all z € IR". But it is worth keeping in
mind that the result would still hold by restricting the variable y to some
closed convex set. Coming back to the Lur’e problem, one sees that a direct
feedthrough of the input in the output is allowed, provided some conditions are
respected. Positive real systems with D > 0 (which therefore have a uniform
vector relative degree r = (0,...,0)T € IR™), or with D > 0, meet these

conditions.
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3.9.3 Aizerman’s and Kalman’s Conjectures

Lur’e problem in Figure 3.3 can be stated as follows: Find the conditions
on (A,B,C,D) such that the equilibrium point z = 0 of the closed-loop
system is globally asymptotically stable for all nonlinearities ¢(-) in the sec-
tor [a,b]. Then the system is said to be absolutely stable. Another way to
formulate it is as follows: suppose the nonlinearity ¢(-,-) belongs to the sec-

tor [0, k]. The absolute stability problem is to find the value k* 2 inf{k >
0 | there exists ¢*(-) in the sector [0, k] for which the feedback system
(3.181) (3.182) is not asymptotically stable}. Equivalently, the feedback sys-
tem (3.181) (3.182) is asymptotically stable for any nonlinearity in the sector
[0, £*]. In the next sections, we shall first review three celebrated conjectures
which happen to be true only in very specific cases. Then we shall see what
happens when the feedback nonlinearity ¢(-,-) is no longer a function but a
multivalued function. This demands new mathematical tools to be correctly
handled, and we shall spend some time on this. Then two celebrated results,
the circle criterion and the Popov’s criterion, will be presented.

+ U
Linear System y

Fig. 3.5. Linear system with a constant output feedback

Conjecture 3.60 (Aizerman’s conjecture). If the linear subsystem with D = 0
and m = 1 in Figure 3.5 is asymptotically stable for all ¢(y) = ky, k € [a, b],
then the closed loop system in Figure 3.6 with a time-invariant nonlinearity
¢(+) in the sector [a, b] is also globally asymptotically stable. [ |

Aizerman’s conjecture states that if the vector field Az + bo(y) is Hurwitz
for all linear characteristic functions ¢(+), then the fixed point z = 0 should be
globally asymptotically stable for any continuously differentiable ¢(-) whose
slope remains bounded inside [a, b].
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Conjecture 3.61 (Kalman’s conjecture). Consider the system in Figure 3.6
with a nonlinearity such that ¢(t,y) = ¢(y) (i.e. a time-invariant and con-
tinuously differentiable nonlinearity), m = 1, ¢(0) = 0 and a < fl—f(y) <b.
Then the system in (3.181) with D = 0 is globally asymptotically stable if it

is globally asymptotically stable for all nonlinearities ¢(y) = ky, k € [a,b]. ®

0 Y
+©4> Linear System

O(t,y) |-

Fig. 3.6. Linear system with a sector nonlinearity in negative feedback

Thus Kalman’s conjecture says that if A—kBC' is Hurwitz for all k € [a, b],
x = 0 should be a globally stable fixed point for (3.181) (3.182) with ¢(-)
as described in Conjecture 3.61. However it turns out that both conjectures
are false in general. In fact, the absolute stability problem, and consequently
Kalman conjecture, may be considered as a particular case of a more general
problem known in the Applied Mathematics literature as the Markus-Yamabe
conjecture (MYC in short). The MYC can be stated as follows [350]:

Congjecture 3.62 (Markus-Yamabe’s conjecture). If a Ct map f : R" — IR"
satisfies f(0) = 0 and if its Jacobian matrix % is stable for all zg € R",

x

then 0 is a global attractor of the system () Z fz(t)). [ |

In other words, the MYC states that if the Jacobian of a system at any
point of the state space has eigenvalues with stricty negative real parts, then
the fixed point of the system should be globally stable as well. Although this
conjecture seems very sound from an intuitive point of view, it is false for
n > 3. Counter examples have been given for instance in [104]. It is however
true in dimension 2, i.e. n = 2. This has been proved in [175]. The proof
is highly technical and takes around 40 pages. Since it is, moreover, outside
the scope of this monograph dedicated to dissipative systems, it will not be
reproduced nor summarized here. This is however one nice example of a result
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that is apparently quite simple and whose proof is quite complex. The Markus-
Yamabe conjecture has been proved to be true for gradient vector fields, i.e.
systems of the form @(t) = V f(x(t)) with f(-) of class C? [334]. It is clear that
the conditions of the Kalman’s conjecture with f(z) = Az + bo(y), ¢(0) = 0,
make it a particular case of the MYC. In short one could say that Kalman’s
conjecture (as well as Aizerman’s conjecture) is a version of MYC for control
theory applications. Since, as we shall see in the next subsections, there has
been a major interest in developing (sufficient) conditions for Lur’e problem
and absolute stability in the Systems and Control community, it is also of
significant interest to know the following result:

Theorem 3.63. [35, 46] Kalman’s conjecture is true for dimensions n =
1,2,3. It is false for n > 3. [ ]

Since it has been shown in [175] that the MYC is true for n = 1,2, it
follows immediately that this is also the case for the Kalman’s conjecture.
Aizerman’s conjecture has been shown to be true for n = 1,2 in [163], proving
in a different way that Kalman’s conjecture holds for n = 1,2. The following
holds for the case n = 3:

Theorem 3.64 (n = 3 [35]). The system
@(t) = Ax(t) + be(y(t))

y(t) = cla(t)

(3.186)

with z(t) € R®, y(t) € R, b € R®, ¢ € R*, min, %(y) = 0, max, j_i(y) =
k € (0,400), ¢(0) = 0, is globally asymptotically stable if the matrices A +
Z—i(y)CT € R™™" are Hurwitz for all y(t) € RR. m

3.9.4 Multivalued Nonlinearities

It is of interest to extend the Lur’e problem to the case where the static
nonlinearity in the feedback loop is not differentiable, or even not a single-
valued function (say, a usual function), but is a multivalued function. The
material in this section is taken from [81]. Before stating the main results, we
need to introduce some basic mathematical notions from convex analysis. The
reader who wants to learn more on convex analysis and differential inclusions
with monotone mappings, is invited to have a look at the textbooks [66, 168,
210, 359].

Basic Facts on Convex and Nonsmooth Analysis

Let K C IR"™ denote a convex set. Its indicator function is defined as
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Fig. 3.7. Tangent and normal cones

0 ifzek
VY (r) = (3.187)
jooifx & K

A convex function f : IR" — IR satisfies f(Az+(1—-N)y) < Af(2)+(1—-N)f(y)
for all 0 < A < 1, and for all z and y in its (convex) domain of definition.
The indicator function ¥ (-) is convex if and only if K is convex. A convex
function is not necessarily differentiable, so that a more general notion of a
derivative has to be introduced. The subdifferential of a convex function f(-)
at y is denoted as Jf(y) and is the set of subgradients, i.e. vectors v € IR"
satisfying

f@) = fy) =" (& —y) (3.188)

for all x € IR™. Geometrically, (3.188) means that one can construct a set of
affine functions (straight lines) y +— (x — y)Ty + f(z) whose “slope” v is a
subgradient of f(-) at . The set 9 f(y) may be empty, however if f(-) is convex
and f(y) < 4oo then df(y) # 0 [359]. The simplest example is f : R — R™,
2 +— |z|. Then

-1 if <0
of(x) =< [-1,1]ifx=0 (3.189)
1 ifz>0

One realizes in passing that d|x| is the so-called relay characteristic and
that 0 € 0|0|: the absolute value function has a minimum at x = 0. The
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subdifferential of the indicator of K (which is convex if K is convex) is given
by
{0} ifze Int(K)

M (z) = { Ng(z)ifz € 0K (3.190)

0 ife g K
where 0K is the boundary of K, and

Ni(z)={z|2T(¢-2)<0,¥¢e K} (3.191)

is the outwards normal cone to K at x. Notice that 0 € Ng(z) and that
we have drawn the sets x + Nk (z) rather than Nk (z) in Figure 3.7. Also
Ng(xz) = {0} if z € Int(K), where Int(K) = K \ OK. The set in (3.190) is
the subdifferential from convex analysis.

Ezample 3.65. If K = [a,b] then Nk (a) = IR~ and Nk (b) = R™.

Remark 3.66. The symbol 0 is used in three different meanings in this section:
boundary of a set, subdifferential and partial derivative. Since this notation
is classical we choose not to change it.

Definition 3.67. Let K be a convex cone. Its polar cone (or negative cone)
18

K*={seR" | (s,z) <0 forallz e K} (3.192)

The inwards tangent cone Tk () is the polar cone to Nk (x) and is defined
as Tx(z) = {2z | V¢ € Nk(x),(Tz < 0}. Both the normal and the tangent
cones are convex sets. If the set K is defined as {z | h(z) > 0} for some
differentiable function h : IR™ — IR™, then an alternative definition of the
tangent cone at x is [358]

Tx(z) = {ve R | vIVhi(z) >0, Vie J(x)} (3.193)

with J(z) = {i € {1,...,m} | hi(z) < 0}. One notes that this definition
coincides with the first one as long as € K, and that K needs not be convex
to define Tk (z) in (3.193). Some examples are depicted in Figure 3.7; see
also [69].

A mapping p(-) from X to Y is said to be multivalued if it assigns to
each element x of X a subset p(z) of Y (which may be empty, contain just
one element, or contain several elements). The graph of a mapping p(-) is
defined as gph(p) = {(z,y) | v € p(x)}. The mappings whose graphs are in
Figure 3.8 (c-f) are multivalued. A multivalued mapping p(-) is monotone if
(x —2")T(y —y') > 0 for any couples (z,y) and (2/,y’) in its graph, i.e. 2’ €
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p(y') and x € p(y). When n = 1 monotone mappings correspond to completely
non-decreasing curves. When p(+) is single-valued, monotonicity simply means
(p(y) = p(y")) " (y—y') > 0 for all y and y'. Let dom(p) = {z|x € X, p(x) # 0}
be the domain of p(-). Recall that the domain of a (single-valued) function f(-)
is dom(f) = {z | f(z) < +o0}. A monotone mapping p(-) is maximal if for
any € X and any y € Y such that (y —y1,z — 1) > 0 for any =1 € dom(p)
and any y; € p(x1), then y € p(z). Complete nondecreasing curves in IR?
are the graphs of maximal monotone mappings. Another interpretation is
that the graph of a maximal monotone mapping cannot be enlarged without
destroying the monotonicity (hence the notion of maximality). Examples of
monotone mappings (n = 1) are depicted in Figure 3.8. They may represent
various physical laws, like dead-zone (a), saturation or elasto-plasticity (b),
corner law — unilateral effects, ideal diode characteristic — (c), Coulomb friction
(d), MOS transistor ideal characteristic (e), unilateral and adhesive effects (f).
Maximal monotone mappings play an important role in the study of infinite
dimensional systems. As is illustrated next, they also find nice application
in the Lur’e problem. One can see easily that if an operator H : u — y is
monotone, then it is also passive.

(a) (b) ©

(d) (£)
d 1/ /

—a —b —a —b

— "

Fig. 3.8. Monotone mappings (one-dimensional case)

We finally end this section by recalling classical tools and definitions which
we shall need next:
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Lemma 3.68 (Gronwall’s Lemma). Suppose f : RT — IR is a con-
tinuous function, and b > 0, ¢ > 0, are some constants. Then, if f(t) <

b+ fot cf(s)ds for all t >0, one has f(t) < bexp(ct) for allt > 0. [ |
We recall the definition of an absolutely continuous function.

Definition 3.69. Let —0co < a < b < 4o00. A function [ : [a,b] — R" is
absolutely continuous if for all € > 0 there exists a § > 0 such that for all
n € IN and any family of disjoint intervals (a1, 51), (ag, B2), -...,(an, Br) in
R satisfying > i, (B; — o) < 8, one has i | f(Bi) — flas)| <e. [ |

In fact absolutely continuous (AC) functions are usually better known as
follows:

Theorem 3.70. An AC function f : |a, b] — B zs almost everywhere differ-

entiable with derwative f(-) € Ly and f(z) f f@)dt for any a < z.
]

Theorem 3.70 can also be stated as: there exists a Lebesgue integrable
function g(-) such that f(¢t) = [g(r)dr (dr being the Lebesgue measure).

In a more sophisticated and pedantic language, df = g(t)dt as an equality
of measures, which means that f(¢t) = g(¢) almost everywhere. A function is
Lipschitz continuous if and only if it is absolutely continuous and its derivative
f is essentially bounded in the sense that there exists a compact set K such
that f(t) € K for almost all ¢ € [a,b]. All continuously differentiable (C)
functions defined on a compact interval of IR, are AC. AC functions are of
bounded variation (see Definition 6.58) on such an interval and possess a
derivative almost everywhere. For functions defined on IR one then may define
the notion of local AC, which simply means that the restriction of the function
on any bounded interval of IR is AC. Let us now introduce the notion of lower
semi-continuity.

Definition 3.71. Let f : X C R" — IR. The function f(-) is said lower
semi-continuous (Isc) at x* € X if liminf,_, f(x) > f(z*). [ |

Obviously a continuous function at z* is also Isc at z*. But the contrary
is false (otherwise both properties would make one!). An lsc function can be
discontinuous. The sublevel sets are defined as S, (f) = {xr € X | f(z) <r}.

Proposition 3.72. 4 function f : R" — IRU{+0o0} is lower semi-continuous
on IR™ if and only if the sublevel-sets S,.(f) are closed (possibly empty) for all
r € R. ]

The subdifferential dp(-) of a convex lower semicontinuous function on
IR" is a maximal monotone mapping, and dp(z) is a convex closed do-
main (possibly empty) of IR". One has for instance ¢(z) = ¢ jp- (2) in Fig-

ure 3.8 (c), p(x) = |z| + % for (d), P(x) = V(ooa](T) = V|_a o0 (@) +
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—b)2if x| > b
{ . 20 o (e). If p(z1, -+ ,om) = paloa] + -+ + pmlom| +

if |z| < b
12Tz, then 0p(0) = ([—p1, gl o [—Hm, 1tm])T . Let us now state a classical
result of convex analysis, which is a generalization of the chain rule [168].

Proposition 3.73. Assume that f : Y — (—o00,+00] is conver and lower
semi-continuous. Let A : X — 'Y be a linear and continuous operator. Assume
that there exists a point yo = Axg at which f(-) is finite and continuous. Then

O(foA)(z) = ATof (Ax) (3.194)
forallxz € X. [ ]

Further generalizations exist, see [415, §10.B]. Let us now state a gen-
eralization of the existence and uniqueness results (Theorems 3.55 to 3.57).
The next theorem is known as the Hille-Yosida Theorem when the operator
A:x— Az is linear.

Theorem 3.74 (Existence and uniqueness of solutions of monotone
inclusions). [66, Theorem 3.1] Let A be a mazimal monotone operator map-
ping R" into IR™. Then for all xy € dom(A) there exists a unique Lipschitz
continuous function z(-) on [0,+00) such that

(t)+ Az(t) 20
(3.195)
z(0) = zo

almost everywhere on (0,400). The function satisfies x(t) € dom(A) for
all t > 0, and it possesses a right-derivative for all t € [0,400). If z1(")
and x2(+) are two solutions then ||x1(t) — z2(t)|| < ||z1(0) — z2(0)|| for all
t € [0,+00). In case the operator A is linear then x(-) € C([0,+00), R™) N
C°([0, +00), dom(A)). Moreover [|z(t)|| < |lzo|| and [|2(®)]] < ||Az(t)l| <
[|Axo|| for all t > 0. [ |

It is noteworthy that the notion of an operator in Theorem 3.74 goes
much further than the mere notion of a linear operator in finite dimension. It
encompasses subdifferentials of convex functions, as will be seen next. It also
has important applications in infinite-dimensional systems analysis.

+1 ifx>0
Ezample 3.75. Let Az = < [0,1] if = 0 . Then the solution is
—1ifz<0

_ (wo—t)+ 1fx020
:E(t)_{xo ifxg <0



148 3 Kalman-Yakubovich-Popov Lemma
The Multivalued Absolute Stability Problem

It is of interest to extend the absolute stability problem with a single-valued
feedback nonlinearity, to the case where the operator ¢ : y — yr, = ¢(y) is
a maximal monotone operator. The state space equations of the system are
given by

. a.e.

z(t) "= Ax(t) — Byr(t)

y(t) = Cx(t) (3.196)

yr € 9p(y),

where y(t),yr(t) € R™, z(t) € R" and a.e. means almost everywhere in the
Lebesgue measure. The fixed points of (3.196) can be characterized with the
generalized equation

0 € {Azp} — Bop(Cxg).

One notices that the system in (3.196) is a differential inclusion, due to
the multivalued right-hand-side. Indeed the subdifferential dp(y) is in gen-
eral multivalued. What is the difference between the differential inclusion in
(3.196) and, say, Filippov’s systems, which readers from Systems and Control
are more familiar with? The main discrepancy between both is that the right-
hand-side of (3.196) need not be a compact (bounded) subset of the state
space X C IR", for all x € X. It can for instance be a normal cone, which is
usually not bounded (the normal cone at a of the interval [a,b], a < b, is the
half line IR™; see Example 3.65). Of course there is a nonzero overlap between
the two sets of inclusions: If the feedback loop contains a static nonlinearity
as in Figure 3.8 (d), then the inclusion (3.196) can be recast either into the
“maximal monotone” formalism, or the “Filippov” formalism. Actually, Fil-
ippov’s systems are in turn a particular case of what one can name “standard
differential inclusions”, i.e. those inclusions whose right-hand-side is compact,
convex, and possesses some linear growth property (see [124] for more details).
To summarize, the basic assumptions on the right-hand-sides of both types of
inclusions differ so much that their study (mathematics, analysis for control)
surely differ a lot as well.
Let us assume that

a) G(s) = C(sI — A)~'B, with (A, B,C) a minimal representation, is a SPR
transfer matrix. In particular from the KYP Lemma this implies that
there exists positive definite matrices P = PT and Q = Q7 such that
PA+ATP=-Qand BTP=C.

b) B is full column rank, equivalently Ker(B) = {0}. Thus CA~'B +
BTA-TCT is negative definite 3.

c) ¢ : R" — IRU{+o0} is convex lower semi-continuous, so that dy is a
maximal monotone multivalued mapping.

3 Indeed BTA™TCT + CA™'B=-BTATQA'B <.
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Lemma 3.76. [81] Let assumptions a)—c) hold. If Cz(0) € dom dp, then
the system in (3.196) has a unique absolutely continuous (AC) solution on
[0, 4+00). [

Proof: Let R be the square root of P, i.e. R = RT > 0, RR = P. Consider the
convex lower semi-continuous function f : R" — RU{+oo} defined by f(z) =
©(CR™12). Using a) shows that Ker(CT) = {0} so that Im(CR™!) = Im(C) =
IR™. From Proposition 3.73 it follows that df(z) = R™'CTOp(CR™'z). Let
us prove that the system

3(t) € RART2(t) — 0f(2(t))
(3.197)
2(0) = Rx(0)

has a unique AC solution on [0, 4+00). First, to say that Cz(0) € dom dy is
to say that CR™'2(0) € dom 9y, and this just means that 2(0) € dom 9f.
Second, it follows from the KYP Lemma that RAR™ + (RAR™)T is nega-
tive definite. Therefore the multivalued mapping —RAR~! + df is maximal
monotone [66, Lemma 2.4]. Consequently the existence and uniqueness result
follows from Theorem 3.74.

Now set x(t) = R7'z(t). It is straightforward to check that x(t) is a
solution of the system in (3.196). Actually the system in (3.197) is deduced
from (3.196) by the change of state vector z = Rux. [ |

As an example, let us consider dissipative Linear Complementarity Sys-
tems (LCS) [83,94]:

#(t) = Az(t) + BA(?)
(3.198)
0<y(t)=Ca(t) LA>0

where (A, B, () satisfies a) and b) above, y(t), \(t) € IR™, and Cz(0) > 0.
The second line in (3.198) is a set of complementarity conditions between y and
), stating that both these terms have to remain non-negative and orthogonal
one to each other. The LCS in (3.198) can be equivalently rewritten as in
(3.197) with o(y) = w(R+)m (y), noting that

0<ylA>0 <= -)\€ 61/)(1R+)m(y) (3.199)

which is a basic result in convex analysis, where ¢ (-) is the indicator function
in (3.187). Lemma 3.76is extended in [85] to the case of non-autonomous
systems with both locally AC and locally BV inputs, both in the linear and
nonlinear cases 4. The non-autonomous case yields another, more complex,
type of differential inclusion named first order Moreau’s sweeping process.

4 Linearity refers in this context to the vector fields, not to the system itself that
is nonlinear as it is unilaterally constrained.
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Remark 3.77. Let us note in passing that Lemma 3.76 applies to nonlinear
systems as #(t) = — > p_, 2T (t) —yL(t), y = z, yr € 0p(y), x € IR. Indeed
the dynamics —yy, — y is strictly dissipative with storage function V (z) = %,

so that P =1 and z = z.

Let us notice that y € dom Jdp. Finally there exists a Lebesgue integrable
function w(t) such that z(t) = [w(7)dr, where dr is the Lebesgue measure.
Hence dx = w(t)dt as an equality of measures.

Lemma 3.78. [81] Let assumptions a)—c) hold, the initial data be such that
Cxz(0) € dom Op, and assume that the graph of Op contains (0,0). Then: i)
x = 0 is the unique solution of the generalized equation Ax € BOp(Cx) ii)
The fized point x = 0 of the system in (3.196) is exponentially stable. |

Proof: The proof of part i) is as follows. First of all notice that z = 0 is
indeed a fixed point of the dynamics with no control, since 0 € Bdp(0).
Now Az € Bop(Cx) = PAx € PBOp(Cz) = 2T PAx = 270g(x), where
g(x) = p(Cx) (use Proposition 3.73 to prove this), g(-) is convex as it is
the composition of a convex function with a linear mapping, and we used
assumption a). The multivalued mapping dg(z) is monotone since g(-) is
convex. Thus x7dg(x) > 0 for all x € IR™. Now there exists Q = Q7 > 0
such that 27 PAz = —%xTQx < 0 for all z # 0. Clearly then x satisfies the
generalized equation only if x = 0.

Let us now prove part ii). Consider the candidate Lyapunov function
W(z) = 327 Pz. From Lemma 3.76 it follows that the dynamics in (3.196)
possesses on [0, 4+00) a solution z(¢) which is AC, and whose derivative (t)
exists a.e.. The same applies to W (-) which is AC [421, p.189)]. Differentiating
along the closed-loop trajectories we get

dWoz) 4y &L 2T (1) Pw(t)

=" (t)P(Az(t) — Byr(t)) = —a” ()Qx(t) — 2™ (t) PBy(t)

= =21 ()Qx(t) — 27 (t)CTyL(t)

(3.200)
where yr is any vector that belongs to dp(Cx). The equality in the first
line means that the density of the measure d(W o x) with respect to the
Lebesgue measure dt (which exists since W(z(t)) is AC) is the function

2T Pw. Consequently w +27Qx € —aTCTop(Cx) = —2Tdg(x) ae.,
where W is computed along the system’s trajectories. Let us consider

any z € Jg(x). One gets W AL —2TQx — 272 < —2TQx from the

property of monotone multivalued mappings and since (z,z) = (0,0) be-

longs to the graph of dg(x). The set of time instants at which the inequality
d(Wox) <

o —2TQu is not satisfied is negligible in the Lebesgue measure. It
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follows that the function of time W( ), which is continuous, is nonincreasing.
Thus one has W (t) fo 2T Qr — 2T2)dr < — f; 2T Qxdr. Conse-
quently §Amin(P)a: z < W fo Amin(Q)xT 2d7, where Apin(+) is the small-
est eigenvalue. By the Gronwall’s Lemma 3.68 one gets that %/\min(P)xTx <

W (0) exp ( 2 :‘:E%t) which concludes the proof. [ |

It is worth noting that part i) of Lemma 3.78 is a particular case of gen-
eralized equation 0 € F'(x), where F'(-) is a maximal monotone operator.

Example 3.79. Let us consider a one degree-of-freedom mechanical system
with Coulomb friction

oy A .

mi(t) = —psgn(q(t)) + u(t) (3.201)
where ¢(t) is the position of the system, p is the friction coefficient and the
control is given in Laplace transform by u(s) = H(s)q(s). Defining z; = ¢
and xo = ¢ and u = aq + 8¢ we obtain

0= (o )otr= (1 )mto

: 3.202

() € Dli(t) (3:202)
y(t) = z2(t)

The transfer function of the triple (A4, B,C) is G(s) = £ —— —5:—a> Which

obviously cannot be SPR but only PR with a suitable choice of < 0 and
B < 0; see Section 2.14. Thus more advanced tools will be needed to study
the asymptotic stability of (3.201); see Chapter 7, Section 7.2.5.

Dissipation inequality and storage function:

We consider the same inclusion as in (3.196) but with an input, i.e.
i(t) 2 Ax(t) — Byp(t) + Bu(t)
y(t) = Cz(t) (3.203)

yr € 0p(y)
It is then not difficult to calculate that

f(f uT(s)y(s)ds = fo s)Cx(s)ds = fo (s)BT Px(s)ds

= fo x(s) + Byr(s))T Px(s)ds

\ /\

32T (t)Px(t) — 527 (0)Px(0) = W (x(t)) — W (x(0))
(3.204)
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Therefore W (-) is a storage function for (3.203) that is smooth despite the
system is nonsmooth.We notice that if Bu(t) in (3.203) is replaced by Eu(t)
for some matrix E' and with both (A, E, C) and (4, B, C) being PR, then the
above developments yield that W(-) is a storage function provided the two
triples have a set of KYP Lemma equations with the same solution P, so that
BTP=C.

Another kind of nonsmooth characteristic that does not fit with the maxi-
mal monotone static nonlinearities can be found in [266] where the passivity of
an oscillator subject to a Preisach hysteresis is shown. The absolute stability
of systems with hysteresis non-linearities is also treated in [393].

3.9.5 Dissipative Evolution Variational Inequalities
Introduction

In this section we introduce a new formalism that is useful in many appli-
cations: evolution variational inequalities (in finite dimension). Let K C R"
be a nonempty closed convex set. Let F' : R™ — IR"™ be a nonlinear opera-
tor. For (t9,x0) € R x K, we consider the problem P(to,x¢): Find a function
t — a(t) (t > to) with z € CO[tg, +00); R"), L& € L ([to, +00); R™) and
such that:

z(t) € K, t > to
(92 (t) + F(2(t)),v —z(t)) >0, Vo € K, ae. t > tg

x(to) = X9
(3.205)

Here (., .) denotes the euclidean scalar product in R™. It follows from standard
convex analysis that (3.205) can be rewritten equivalently as the differential
inclusion
G (1) + F(x(t)) € —Ng ((t))
(3.206)
() e K

where the definition of the normal cone to a set K is in (3.191). If K = {z |
Cz > 0} the reader may use Proposition 3.73 together with (3.187), (3.190)
and (3.199) to deduce that (3.206) is the LCS

9E(t) + F(x(t)) = CTA(t)
(3.207)
0<Cx(t) LAE) >0
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Still, another formulation for (3.206) is as follows:

(@) +F(x(t),t),v—z(t)) +o(v) —p(x(t)) >0, Vv e R", ae.t >0 (3.208)

with ¢(z) = Yi(z) and z(t) € dom(dp), t > 0, where dom(dp) = {z €
R"™ | 9 # 0} is the domain of the multivalued mapping 9. In general ¢(-)
is a proper convex and lower semi continuous function. One has dom(dy) C
dom(p) = {x € R" | ¢(x) < +oo} and dom(d¢) = dom(y): the two
domains differ only by the boundary. More on the equivalence between various
formalisms like the above ones can be found in [84]. The maximal monotone
property of operators is at the core of the equivalence. Let us give a well-
posedness result, which is one variant of the famous Kato’s Theorem [251].

Theorem 3.80. [167] Let K be a nonempty closed convex subset of R" and
let A€ R™™". Suppose that F': R™ — IR" can be written as

F=FR+9

where Fy is Lipschitz continuous, ® € C*(R";R) is convex and &' denotes
its derwative. Let tg € R and vy € K be given. Then there exists a unique
x € CO([tg, +00); R™) such that

d
= € Loc.elfto, +o0): R") (3.209)
x is right-differentiable on [ty, +00) (3.210)
z(to) = wo (3.211)
z(t) € K, t > to (3.212)
<%(t) + Ax(t) + F(z(t),v —x(t)) >0, Vv € K, a.e. t >t (3.213)

Suppose that the assumptions of Theorem 3.80 are satisfied and denote by
x(.;t0, o) the unique solution of Problem P(t¢, o) in (3.205). Suppose now
in addition that

0e K (3.214)
and
—F(0) € Nk(0) (3.215)
that is
(F(0),h) >0,Yhe K
Then

{E(t;to,()) = 0, t > to

i.e. the trivial solution 0 is the unique solution of problem P(¢o,0).
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Lyapunov Stability

Definition 3.81. The equilibrium point x = 0 is said to be stable in the sense
of Lyapunov if for every e > 0 there exists n = n(e) > 0 such that for any
xo € K with ||xol| < n the solution x(-;to,x0) of problem P(ty,xo) satisfies
Hx(t;to,xo)H S g, Vit 2 to.

Definition 3.82. The equilibrium point x = 0 is asymptotically stable if it is
stable and there exists 6 > 0 such that for any xg € K with ||zo| < & the
solution x(;to, xo) of problem P(to, o) fulfills limy_ 4o ||2(t; to, o)| = 0.

We now give two Theorems inspired from [170] that guarantee that the
fixed point of the systems is Lyapunov stable.

Theorem 3.83. [167] Suppose that the assumptions of Theorem 3.80 to-
gether with the condition (3.215) hold. Suppose that there exist o > 0 and
V e CY(R™;R) such that

D)
V(z) = a(llz]]), = € K, [lz]| <o

with a : [0,0] — R satisfying a(t) > 0, Vt € (0,0)
(2) V(©0)=0
3) z-V'(z)eK,z€dK, ||z| <o
(4) (Az+ F(x),V'(x)) >0,z €K, ||z]| <o

Then the trivial solution of (3.212) and (3.213) is stable. [ |

Theorem 3.84. [167] Suppose that the assumptions of Theorem 3.80 to-
gether with the condition (3.215) hold. Suppose that there exist A > 0, 0 > 0
and V € CH(R"™;R) such that

1)
V(z) > a(||z]]), for adlz e K, ||z|| <o

with a : [0,0] — R satisfying a(t) > ct™, Vt € [0,0], for some constants
c>0,7>0

(2) V(0)=0

(3) z-V'(z) €K, forallx € 0K, ||z| <o

(4) (Ax+ F(x),V'(x)) > AV (z), foralz e K, |z <o

Then the trivial solution of (3.212) and (3.213) is asymptotically stable. M

Copositive Matrices on a Set
We shall also need the definition of a number of sets of matrices.

Definition 3.85. [167] The matriv A € R™*" is Lyapunov positive stable
on K if there exists a matriz P € R™*"™ such that
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: (Px,z)
(1) 1nf$€K\{0} W >0
(2) (Az, [P+ PTz) >0,V e K
(3) 2€dK=[I-[P+PllzeK [ ]
Definition 3.86. [167] The matriz A € R"*" is Lyapunov positive strictly-
stable on K if there exists a matriz P € R™ "™ such that

: (Px,z)
(1) 1nf$€K\{0} W > 0

(2) inf$€K\{0} %TIQPTM >0

(3) 2€dK=[I—-[P+PllzeK [

Remark 3.87. Condition (1) of Definitions 3.85 and 3.86 is equivalent to the
existence of a constant ¢ > 0 such that

(Pz,x)>c|x|* Vz € K (3.216)
Indeed, set
= inf @
cek\{0} |z
If +00 > C > 0 then it is clear that (3.216) holds with ¢ = C. If C = 400

then necessarily K = {0} and the relation in (3.216) is trivial. On the other
hand, it is clear that if (3.216) holds then C > ¢ > 0.

Recall that a matrix P € R™*" is said to be copositive on K if
(Pz,x) >0,V € K
A matrix P € R™*" is said to be strictly copositive on K if
(Pz,z) >0,V € K\{0}

These classes of matrices play an important role in complementarity theory
(see e.g. [137,367]). The set of copositive matrices contains that of positive
semi definite (PSD) matrices [367, p.174]. Indeed a PSD matrix is necessarily
copositive on any set K. However it is easy to construct a matrix that is
copositive on a certain set K, but which is not PSD.

Let us here denote by Px (resp. Pj) the set of copositive (resp. strictly
copositive) matrices on K. Let us also denote by ’P?;Jr the set of matrices
satisfying condition (1) of Definition 3.85, that is

(Bx, x) }

PEF={BeR™": inf
K= eek\{0} |[|z[|?

It is clear that
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PET Cc PE C Pk
K1 C Ky= Pt cPLt

Let us now denote by L the set of Lyapunov positive stable matrices on
K and by L?’ the set of Lyapunov positive strictly-stable matrices on K. We
see that

Lx ={AeR"™":3P e PL* such that (I — [P+ PT)(OK) Cc K
and PA+ A"P € Pk}
and
£t ={AeR"":3P € P such that (I — [P+ PT])(0K) C K

and PA+ ATP e Pt}

Let us note that P needs not be symmetric. In summary, the classical pos-
itive definite property of the solutions of the Lyapunov matrix inequality, is
replaced by the copositive definite property.

PR Evolution Variational Inequalities

To see how evolution variational inequalities are related to the systems in the
foregoing section, let us come back to the system in (3.196):

i(t) "= Az(t) — Byr(t)
y(t) = Cx(t) (3.217)

yr € 0p(y)

and let us assume that the convex function ¢(y) is the indicator of a closed
convex set K C IR" with 0 € K. We therefore rewrite the problem as:
Find z € C°([0, 00); R™) such that 2% € L. (0, +o0; R") and

dxr

E(t) = Ax(t) — Byr(t), a.e.t >0 (3.218)
y(t) = Cx(t) (3.219)

y(t) e K (3.220)

yL(t) € 0k (y(t)) (3.221)

z(0) = zg (3.222)

Assume there exists a symmetric and invertible matrix R € R"*" such
that R~2C7T = B. Suppose also that there exists



3.9 The Lur'e Problem (Absolute Stability) 157
Yo 2 CR 'z € Int(K). (3.223)

Then using the change of state vector z = Rx and setting
K={heR":CR 'he K} (3.224)

we see that problem (3.218) to (3.222) is equivalent to the following one: find
z € 0°([0,00); R™) such that % € Loo.o([0,00); R") and

(%(t) — RAR™2(t),v — 2(t)) > 0,Yv € K, a.e. t > 0 (3.225)

Indeed, it suffices to remark that
CreK&szeK

2(0) = zp < 2(0) = Rxg

and
dx dz 1 -1
o € Av— BOY(Ca) & R € RAR™'Re — RBOVx (CR™' Ra)
d
= d—j € RAR™'z — R™\R?Bdyx (CR™'2)
d
= d—'z € RAR 'z — R1CT9px (CR™2)
dz _
& € RAR™ "z — OV (2)

Indeed, ¥z (2) = (¥x o CR™1)(2) and thanks to (3.223) we obtain dvz (2) =
R_lcTaz/JK(CR_lz). We remark also that the set K is closed convex with
0 € K. The variable change z = Rx is exactly the same as the variable change
used in Lemma 3.76. The following holds:

Lemma 3.88. [167] Let K C R" be a closed convez set containing x = 0, and
satisfying the condition (8.223). Define K as in (3.224). Suppose that there
exists a symmetric and invertible matriz R € R™™"™ such that R72CT = B.
i) If —-RAR™ € Ly then the trivial equilibrium point of (3.218)-(3.221) is
stable.

i) If —RAR™! € E'}: then then the trivial equilibrium point of (3.218)-
(3.221) is asymptotically stable. [ |
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Example 3.89. Positive real evolution variational inequalities Assume
that G(s) = C(sI—A)~!B, with (A4, B, C') a minimal representation, is strictly
positive real. From the Kalman-Yakubovitch-Popov Lemma there exist P =
PT positive definite and Q@ = Q7 positive definite such that PA+ATP = —Q
and BT P = C. Choosing R as the symmetric square root of P,i.e. R= RT R
positive definite and R? = P, we see that BT R? = C' and thus R~2C7T = B.
Moreover

(PAz,z) + (AT Pz, z) = —(Qx,z),Vr € R" (3.226)
Thus 1
(Az, Px) = —§<Qx,x>,Va: eR" (3.227)
It results that
—(RAz, Rx) > 0,Vz € R"\{0} (3.228)

Setting z = Rx, we see that
—(RAR™'2,2) > 0,Vz € R"\{0} (3.229)

So —RAR™' € Pt C 77};"’ C ﬁ;;r. All the conditions of Lemma 3.88 (part
ii)) are satisfied and the trivial solution of (3.218)—(3.221) is asymptotically
stable. The results presented in the foregoing section are here recovered. In
case G(s) is positive real then Lemma 3.88 (part 1)) applies. As shown above
(see Lemma 3.78) the equilibrium point is unique in this case.

Ezxample 3.90. PR electrical circuit The following example is taken from
[82].
D,

UDI :
% Ry —
L 3 Up,

9

T2

Y Ry

A

Fig. 3.9. A circuit with ideal diodes



3.9 The Lur’e Problem (Absolute Stability) 159

Let us consider the circuit in Figure 3.9 (R1, R2, R3 > 0, Lo, Ls > 0). One
has 0 < —up, L 29 > 0and 0 < —up, L —x3+ 2 > 0, where up, and up,
are the voltages of the diodes. The dynamical equations are

X1 (t) = xg(t)
ia(t) = = (B ) (1) + Baa(t) — Ll mn(0) + £ (0) + £ ha(0)
g(t) = — (52 ) g () + Boaa(t) — £ (8)
)\1('&) —X (t) + afg(t)
0<(/\2(t))l( 3@@) )>0

(3.230)
where z1(+) is the time integral of the current across the capacitor, za(-) is
the current across the capacitor, and z3(-) is the current across the inductor
L- and resistor Ro, — A1 is the voltage of the diode D7 and — )5 is the voltage
of the diode Dy4. The system in (3.230) can be written compactly as the LCS:
#(t) = Az(t) + BA(t), 0 < A(t) L y(t) = Cz(t) > 0, with

0 1 0
A -t _RitR: R
= IsC Iz L
3C4 R, 3 _3R1+R2
L2 L2
0 0

(L L _(01-1
=7, S ’C_(ou))

2

The monotonicity (consequently the passivity) of the voltage-current relation
0 <wu 14> 0at the poles of the diodes is certainly an essential property both
for existence and uniqueness of solutions, and for stability. We recall that this
relation is a multivalued mapping whose graph is as in Figure 3.8 (¢). We set

1
200
P=[(0 L0
0 0 Lo

It is clear that P is symmetric and positive definite. Moreover, we see that
ATP 4+ PA = —Q with

0 0 0
Q = 0 2(R1 + Rg) —2R;
0 —2R; 2(Ri+ Ry)

The matrix Q € IR**? is symmetric and positive semi-definite. Moreover,
PB = C7T and the system in (3.230) is positive real, as expected from the
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physics. We deduce that (3.230) can be rewritten as an evolution variational
inequality

(2(t) — RAR2(t),v—2(t)) > 0,Yv € K, a.e. t > 0
_ (3.231)
2t) € K, t>0

where z = Rz, R is a symmetric positive definite square root of P and K =
{h € R" : CR7'h € K}. The change of state matrix R and the new state
vector z are easily calculated (z; = Fxl, z9 = /Lsxa, z3 = \/Laxs). [ |

It follows from the above that an extension of the KYP Lemma matrix
inequalities to linear evolution variational inequalities is possible at the price
of replacing positive definiteness by copositive definiteness of matrices. How-
ever what remains unclear is the link with frequency-domain conditions. In
other words, we have shown that if the triple (4, B, C) is PR (or SPR), then
it satisfies the requirements for the evolution variational inequality in (3.225)
to possess a Lyapunov stable equilibrium. Is the converse provable? Certainly
the answer is negative, as some examples show that the matrix A can be un-
stable (with eigenvalues with positive real parts) while A € £57 (thus the
corresponding evolution variational inequality has an asymptotically stable
fixed point). Extension of the Krasovskii-LaSalle invariance principle to evo-
lution variational inequalities, has been considered in [82]. In Chapter 6, we
shall examine second order evolution variational inequalities, which arise in
some problems of mechanics with nonsmooth contact laws.

3.10 The Circle Criterion

Let us come back to the Lur’e problem with single-valued nonlinearities in the
feedback loop. Consider the observable and controllable system in (3.181). Its
transfer function H (s) is

H(s)=C(sl,—A) 'B+D (3.232)

Assume that the transfer function H(s) is SPR and is connected in negative
feedback with a nonlinearity ¢(-) as illustrated in Figure 3.10. The conditions
for stability of such a scheme are stated in the following Theorem.

Theorem 3.91. Consider the system in Figure 3.10. If H (s) in (3.232) is
SPR, the conditions of Lemma 3.59 are satisfied and if ¢(t,y) is in the sector
[0,00), i.e.:

i) $(t,0)=0 Vt>0

i) yTo(t,y) >0 vt > 0, VyeR™

then the origin is a globally exponentially stable equilibrium point. |
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Y

—— H(s)

®(t,y)

A

Fig. 3.10. Linear system with a sector nonlinearity in negative feedback

Proof: Since H (s) = C (sI — A)"" B + D is SPR, then there exist P > 0,
Q@ and W, € > 0 such that

ATP+PA =—-eP-Q7Q
BTPp+WwWTQ=C (3.233)
wTw =D+ DT

Define the Lyapunov function candidate V(x) = 27 Pz. Then
V(z(t)) = &7 (t)Pz(t) + 27 (t)Pi(t)
= [Az(t) = B(t,y(1)]" Pa(t) + 27 (t)P [Ax(t) - Bo(t,y(1))]
=aT(t) (ATP + PA) z(t) — ¢ (t,y(t)) BT Px(t) — 2 (t)PBo(t,y(t))
(3.234)

Note that BTP = C — WTQ. Hence, using the above, (3.181) and the
control u = —¢(t,y), we get

ol () PB(t, y(t)) = ¢* (t,y(t)) BT Px(t)
= ¢ (t,y(1))Ca(t) — o7 (t, y() W' Qu(t)
= ¢"(t,y(t)) [y(t) — Du(t)] — & (t,y(t) W' Qu(t)
= ¢ (t,y(t)) [y(t) + Do(t,y(1)] — 7 (L, y(t)) W' Qu(t).
Substituting the above into (3.234) we get
V((t)) = —ea” (1) Pa(t) — 2T ()Q" Qx(t) — ¢"(1) (D + D) 6(1)
—¢T (W Qu(t) — 2T (t)QTW(t) — ¢" (t)y(t) — y" (H)e(t)
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Using (3.233) and the fact that y7¢ > 0 we have

V(x(t) < —ex” (t)Pa(t) — 2T ()QT Qu(t) — ¢7 (¢, y(t) W Wo(t, y(t))—
=6t y(1)" W Qu — 2T QTWo(t,y(t))
= —ex™ (1) Pa(t) — [Qu(t) + W (t,y(1)]" [Qu(t) + We(t,y(1))]
< —ex?'(t)Px(t)

Define 2(t) 2 —[Qu(t) + Wo(t,y(t)])” [Qu(t) + W(t,y(t))] which can
also be rewritten as V(z(t)) = —eV (xt)) + 2(¢)

Thus .
V(z(t)) = eV (0) + [e <=z (1) dr
0
< eV (0)
Finally the fixed point x = 0 is globally exponentially stable. ]

3.10.1 Loop Transformations

The above theorem applies when ¢(-, ) belongs to the sector [0, c0). In order
to use the above result when ¢(-, -) belongs to the sector [a, b] we have to make
some loop transformations which are given next.

> ot y)

> al,

Fig. 3.11. Loop transformations

1) If ¢(-,-) belongs to the sector [a,b] then ¢; = ¢ (t,y) — a belongs to the
sector [0,b — a] . This is illustrated in Figure 3.11.
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2) If ¢1(-,-) belongs to the sector [0, ¢] with ¢ = b — a then we can make the
transformation indicated in Figure 3.12 where § = ¢ (t,u4) and 6 > 0 is
arbitrarily small number. Therefore, as is shown next, ¢2(+) belongs to the
sector [0, 00).

’ >Q : >¢1<tay>

c>>0>0

L

c—0 ]

Fig. 3.12. Loop transformations

Note that if ¢; = ¢, then

¢ _Ec—5)a
U P
Therefore:
1. ife=c¢, lim £ = o0
6_—»0“
2. ife=0, %:O

Using the two transformations described above, the system in Figure 3.10
can be transformed into the system in Figure 3.13. We then have the following
corollary:

Corollary 3.92. If Hy in Figure 3.13 is SPR and the nonlinearity ¢(-,-) be-

longs to the sector [0,00) then the closed-loop system is globally exponentially
stable. ]

Note that Hs is SPR if and only if

. . 21
Hl(]w) + Hl (]u)) + m >0
with Hy (s) = H (s)[I +aH (s)]”" and § << 1. For m = 1 the above result
has a graphical interpretation which leads to the circle criterion. Suppose
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Sy T H
O‘;Q T T

L 1/(b-a-3)

. -

IF """"""""""" 1

| I/(b-a-5) !

i e |

| ]

Fig. 3.13. Loop transformations

z =z + jy is a complex number and a,b € IR with a < b, a # 0. Consider the

condition

z 1
=R >0
g e{1+az+b—a}

Now one has

z 1 _ z+jy 1
14+az + b—a = 1+4a(z+jy) + b—a

_ stiylbar—jey] | 1
(14ax)?+y2a2 b—a

Therefore

_ z(14ax)+ay?

1
1= ran e T oma >0

or equivalently
0<(b—a){z(l+azr)+ay?}+(1+ az)’ + y2a?
= (b—a){z+az® + ay®} + 1+ 2az + a®2? + a?y?

=ba{z?+y*} +x(b+a)+1

(3.235)
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which implies

2 2
a+b) 1 (a+0) =0

2 -
bay” + ba (x + 2ab 4ab

Note that
1 (a +b)? _ dab—a® —2ab—b* _(a—b)2
4a2h2 4ab o 4ab

Introducing the above into (3.235) we get

a+b>2> (a — b)?

bay? + b
oWt a(x—i— 2ab 4ab

If ab > 0 this can be written as

2 2
9 a+b (a—0b)
Y~ ba <x+ 2ab > 4a2b?
or
a+b |a — b
#t 2ab |~ 2 |ab
If ab < 0 then
n a+b - la —b]
2ab 2 |abl

Let D(a,b) denote the closed disc in the complex plane centered at %’é’
and with radius 2=%. Then

2|ab|
z 1
R 0
e{1+az+b—a}>

if and only if
a+b

2ab

la —b|
2 |abl’

‘z—i— ab >0

In other words, the complex number z lies outside the disc D(a,b) in case
ab > 0 and lies in the interior of the disc D(a,b) in case ab < 0. We therefore
have the following important result.
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Theorem 3.93 (Circle criterion). Consider again the system for
m=1 in Figure 3.13. The closed loop system is globally exponentially
stable if:

(i) 0 < a < b : The plot of h(jw) lies outside and is bounded away
from the disc D(a,b). Moreover the plot encircles D(a,b) exactly
v times in the counter-clockwise direction, where v is the number
of eigenvalues of A with positive real part.

(1) 0 =a < b : Ais a Hurwitz matriz and

Re {H(jw) + %} >0 (3.236)

(i) a < 0 < b : A s a Hurwitz matriz; the plot of h(jw) lies in the
interior of the disc D(a,b) and is bounded away from the circum-
ference of D(a,b).

(iv) a < b <0 : Replace h(.) by —h(.), a by —b, b by —a and apply (i)
or (ii) as appropriate.

Remark 3.94. 1f b — a — 0 the “critical disc” D(a,b) in case (i) shrinks to
the “critical point”0 —1/a of the Nyquist criterion. The circle criterion is
applicable to time-varying and/or nonlinear systems, whereas the Nyquist
criterion is only applicable to linear time invariant systems.

A generalization of the circle criterion for the design of a finite-dimensional
controller for unstable infinite-dimensional systems, has been proposed in
[509]. The case of an infinite-dimensional linear system, illustrated by an elec-
trical transmission line, is considered in [172].

3.11 The Popov Criterion

Unlike the circle criterion, the Popov criterion [406-408] is applicable only to
autonomous single input-single output (SISO) systems:

m(t) = Ax(t) + bu(t)
£(t) = u(t)

y(t) = ca(t) + d&(t)
u(t) = —¢(y(?))

where u(t),y(t) € R, ¢ : R — IR is a time-invariant nonlinearity belonging
to the open sector (0, 00), i.e.

#(0) =0, yo(y) >0, Vy#0
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The linear part can also be written as:

(3.237)
v =[edal| 5]
Hence the transfer function is
h(s) = g +e(sT —A)7'b

which has a pole at the origin. We can now state the following result:

Theorem 3.95 (Popov’s criterion). Consider the system in
(3.237). Assume that

1. A is Hurwitz

2. (A, b) is controllable

3. (¢, A) is observable

4.d>0

5. ¢(-) belongs to the sector (0, 00)

Then the system is globally asymptotically stable if there exizts r > 0
such that Re[(1 + jwr)h(jw)] >0, V we R.

Remark 3.96. Contrary to Popov’s criterion, the circle criterion does not apply
to systems with a pole at s = 0 and ¢(-) belongs to the sector (0, c0).

Proof of Popov’s criterion: Note that

s(sI = A)™h = (sI — A+ A)(s] — A)7!
=1+ A(sI — At

Hence

(1+rs)h(s) = (1 +rs) [% +e(sI—A)~" b}
=44 rd+c(sI — A~
+reb +reA(sI — A)~tb

. Note that o I8 purely imaginary. From the above and by assumption we
ave
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Re[(1 + jwr)h(jw)] = Re [r (d + cb) + ¢ (I + rA) (jw — A)~'b] >0
Define the transfer function
g(s)=r(d+cb)+c(I+rA) (s —A) b
i.e. {A,b,c(I+71A),r(d+ cb)} is a minimal realization of g(s). If Re [g(w)] >

0 then there exists P > 0,q and w and € > 0 such that

bI'P+wq =c(I+rA)
w? = 2r(d + cb)

Choose the Lyapunov function candidate

{ATP+PA= —eP —q"yq

V(z,&) =a"Pr+d&+2r [} ¢(0)do

Given that ¢(-) belongs to the sector [0, 00) it then follows that [ ¢ (o) do >
0. Hence V (z,£) is positive definite and radially unbounded

V(z,&) =i Px+aT Pi+ 2d¢ + 2rd(y)y

= (Az — b)" Pz + 27 P(Az — bg)—

—2dt¢ + 2r [c (Az — bg) — dg]
Note from (3.237) that d¢ =y — ¢, thus
V(a(t),£(t) = 27 (t)(ATP + PA)(t) — 2¢(y()b" P (t)+
+20(y(t))e(I + rA)z(t) — 2r (d + cb) 6* (y(1)) — 2y(t)d(y(t))
= —ex” (t)Pa(t) — (qu(t) — wo(y(1)*~

—r(d+cb) P (y(t)) — 2y()d(y(1))

Since g(jw) — r(d + ¢b) as w — oo it follows that r(d + ¢b) > 0. Hence

V(x(t),£(t) < —ea” (t)Px(t) — 2y(t)p(y(t)) <0, Yo € R",¥e>0

We now show that V(z, &) < 0 if (z,€) # (0,0). If z # 0 then V(z,&) < 0
since P > 0. If x = 0 but £ # 0, then y = d€ # 0, and ¢y > 0 since ¢(-) belongs

to the sector [0, 00). Therefore the system (3.237) is globally asymptotically
stable. |
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Corollary 3.97. Suppose now that ¢(-) belongs to the sector (0,k),k > 0.
Then the system is globally asymptotically stable if there exists v > 0 such
that

Re (1 + jwr)h(jw)] + % >0 (3.238)
| |

Proof: It follows from the loop transformation in Figure 3.14, where

a g S
.  5,6)
—!Q—:——b o(s) )

I |

I 1 | |

I 1 |

'. —_—

l K] l

I |

becccccceee e ——- -

B R

1

I } = |

l K| l

I |

I |

i ®

L e 10

Fig. 3.14. Loop transformations

o =o[l-1e]
g1 =9(s)+ %

= (1 + jwr)(hjw) + %

Re(g1) = Re[h(jw)] + rwIm[h(jw)] + 1+ > 0.
|

Remark 3.98. The circle and the Popov’s criteria owe their great success to
the fact that they lend themselves to graphical interpretations as pointed out
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above for the circle criterion. Consider for instance the inequality in (3.238).
Consider the function M (jw) = Re[h(jw)] + jwIm[h(jw)], w > 0. Note that
Re[(1+jwr)h(jw)] = Re[h(jw)|—rwIm[h(jw)] = Re[M (jw)]—rIm[M (jw))].
Then condition (3.238) means that there must exist a straight line with an
arbitrary, fixed slope, passing through the point (—4,0) in the complex plane,
such that the plot of M (jw) lies to the right of this line. The slope of this
line which is tangent to the plot of M (jw) is equal to % The line is usually
called the Popov’s line. In the multivariable case the graphical interpretation
becomes too complex to remain interesting; see [417].

Further reading: The circle criterion has been introduced in [431, 532,
533] and generalized after. Further results on the absolute stability problem
and Popov’s criterion, can be found in [56,102,136,166,181,182,196,200,212,
217,218,220, 221, 258,265,293, 335,336, 369, 382,395, 456,487,503, 538]. These
references constitute only a few of all the works that have been published on
the topic. The reader is also referred to Section 5.10 on hyperstability. It is also
worth reading the European Journal of Control special issue dedicated to V.M.
Popov [134]. Generalization of the Popov criterion with Popov multipliers
can be found in [48,190,244]. An interesting comparative study between the
cicle criterion, the Popov criterion, and the small gain Theorem, has been led
in [193] on a 4th order spring-mass system with uncertain stiffness. The result
in terms of conservativeness is that the Popov criterion design supersedes the
circle criterion design and that the small gain design is the most conservative
one.

3.12 Discrete-time Systems

3.12.1 The KYP Lemma

In this section we investigate how the KYP Lemma may be extended to
discrete-time systems of the following form:

xz(k+1) = Az(k) + Bu(k)
(3.239)
y(k) = Cz(k) + Du(k)

with z(k) € R", u(k) € R™, y(k) € IR™. The KYP Lemma for systems as
(3.239) is due to [211,483].

Definition 3.99. A discrete transfer matriz H(z) is positive real if

o H(z) has analytic elements in |z| > 1, z€ C
o H(z)+H*(2)>01in|z| >1

A discrete transfer matriz H(z) is strictly positive real if

o H(z) has analytic elements in |z| > 1
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o H(e)+ H*(e'?) > 0 for 6 € [0,27)

A discrete transfer matriz H(z) is strongly strictly positive real if it is SPR
and H(oo) + GT(00) > 0. [

It is noteworthy that the condition H(z) + H*(z) > 0 in |z| > 1 implies
that H” (e77%) + H(e’?) > 0 for all real # such that no element of H(z) has a
pole at z = e??.

Lemma 3.100. Let H(z) = C(zI, — A)"'B + D be a square matriz of real
rational functions of z, with no poles in |z| < 1. Let (A, B,C, D) be a minimal
realization of H(z). If for (A, B,C, D) there exist a real symmetric positive
definite matrix P and real matrices L and W such that

ATPA—P=—L"L
ATPB=CT — LW (3.240)

WTwW =D+ D" — BTPB
then the transfer function H(z) is positive real. [ |

Similarly to their continuous-time counterpart, the KYP Lemma con-
ditions can be written as an LMI, using for instance Proposition A.63.
One immediately notices from (3.240) that necessarily D # 0, otherwise
WTW = —BTPB (and obviously we assume that B # 0). If B has full
rank m, then D must have full rank m so that D + D? > 0. Therefore a
positive real discrete time system with full rank input matrix has a relative
degree 0. Consequently in the monovariable case the relative degree is always
zero. However it is worth noting that this is true for passive systems only, i.e.
systems which are dissipative with respect to the supply rate w(u,y) = uly.
If a more general supply rate is used, e.g. w(u,y) = u? Ru + 2u? Sy + y* Qy,
then the relative degree may not be zero.

When W =0 and L =0 in (3.240) the system is said lossless. Then

%xT(k )Pk +1) %xT(k)Px(k) — T (k)ulk) (3.241)

for all u(k) and k > 0, which in turn is equivalent to

1 1 N
ExT(k +1)Px(k+1) - 5gcT(O)P:c(O) = ; yT (i)u(i) (3.242)

for all (0) and k& > 0. Let us now formulate a KYP Lemma for SPR, functions.

Lemma 3.101. [93,250] Let (A, B,C, D) be a minimal realization of H(z).
The transfer matriz H(z) is SPR if and only if there exist matrices P = PT >
0, L and W such that
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P=ATPA+LTL
0=BTPA-C+WTL (3.243)

0=D+DT —BTPB-WTw

is satisfied, the pair (A, L) is observable, and mnk(f](z)) =m for z = eI,
w € R, where (A, B, L,W) is a minimal realization of H(z). [ |

Similarly to the continuous time case, PR systems possess stable zeroes.
Let us assume that D is full rank. Then the zero dynamics is given by
Apz(k) = (A— BD'C)x(k) (3.244)

which exactly is the dynamics on the subspace y(k) = 0. Then we have the
following result:

Proposition 3.102. [973] Let the system (8.289) be passive. Then the zero
dynamics exists and is passive. |

Proof: Let us recall that passivity means that the system satisfies

V(z(k+1)) = V(z(k) <u(k)y(k) (3.245)

along its trajectories, with V(z) = 327 Pz and P is the solution of the KYP
Lemma LMI in (3.240). One has V(Apz) — V(2) = 2T Mz, with M = (A —
BD7'C)TP(A - BD7IC) — P. If M < 0 then the zero dynamics is stable.

Using the second equality of the KYP Lemma conditions, one obtains

M= (ATPA—-P)-CT[D'+DT)IC+LWD~'C+
(3.246)
+(LWD ) +CcTD-TBTPBD1C
Using the equality CTD~T(DT + D)D~1C = CT[D~' 4+ D~T|C and using
the third equality of the KYP Lemma conditions(3.240), one gets
M = (ATPA—-P)+ LWD 'C+ (LWD~1C)T — (D 1C)TWTW(D~1C)

= (ATPA-P)—[L— (D'C)"WT)L - (D~*C)TWT|T + LLT

(3.247)
Injecting the first matrix equality in (3.240) one concludes that M < 0.
Therefore PR systems have a stable zero dynamics. |

Positive real discrete-time transfer functions have proved to be quite use-
ful for identification; see [277,278,306]. In particular the so-called Landau’s
scheme of recursive identification [278] is based on PRness. Further works can
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be found in [51,90,182,193,249,329,362,373,374,542]. Infinite dimensional dis-
crete time systems and the KYP Lemma extension have been studied in [29].
The time-varying case received attention in [140,141,145]. In relation to the
relative degree zero property pointed out above, let us state the following
result:

Lemma 3.103. [326] Let H : IR" — IR" be a linear operator (possibly time-
varying and unstable). Suppose that H is strictly causal, i.e.: if x(k) = 0 for
all0 <k <n-—1 then H(xz(k)) =0 for all0 < k <n. Then H is passive if
and only if H = 0. [ ]

Passivity means here that >, _, 27 (k)H(z(k)) > 0 for all n € IN and
all real-valued sequences {x(k)}r>0. Applications of passivity in discrete-time
systems may be found in [112] for the design of repetitive controllers and
in [109] for haptic interfaces. The discrete passivity inequality has also been
used in the setting of time-discretised differential inclusions where it proves
to be a crucial property for the behaviour of the numerical algorithms [2] (see
also [338] in the nonlinear framework of Lagrangian systems).

3.12.2 The Tsypkin Criterion

The Tsypkin criterion may be considered as the extension of Popov’s and the
circle criteria, for discrete time systems. It was introduced in [492-496]. For a
discrete-time system of the form

xz(k+1) = Az(k) — B¢(Cx, k) (3.248)

Tsypkin proved the absolute stability (i.e. the global asymptotic stability for
all ¢(-,-) in the sector (0,x)) if the poles of the transfer function H(z) =
C(sI, — A)~!B lie inside the unit disk and

Re[H(z)] + 1 >0 for |z|=1 (3.249)
K

This is the discrete-time analog of the circle criterion. When ¢(-) is time
invariant and monotone, absolute stability holds if there exists a constant
6 > 0 such that

1
Re[(1+6(1 -2z ") H(2)]+~>0 forall |z| =1 (3.250)
K
This is the discrete time analog of the Popov’s criterion.

We present now the multivariable extension of Tsypkin’s result [250]. Let
us consider a minimal realization (A, B, C) of the transfer function H(z). The
discrete time system with a nonlinearity in the feedback is
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z(k +1) = Az(k) — Bo(y(k))
(3.251)
y(k) = Cx(k)

The nonlinearity is described as follows. Let M = MT > 0 be m x m real
matrix. The set @ 5 ¢(-) is

@ ={¢: R™ — IR™ such that ¢ (y)[Mo(y) —y] <0

for y € R™,y # 0,¢(-) is continuous
(3.252)
o(y) = [61(y1), 92(y2), ey G (ym)]", and

0 < 22200 5 ¢ R,6 € Ryo#6,i=1,..,m}

o—

When m = 1 then we get the usual sector condition 0 < ¢(y)y < My?.
We also define the matrices

AOnXm
Ao = {C Omm ]
B
5= o]
Co=[C -1
S =[C 0]

where O,,, denotes the zero m x m matrix.

Theorem 3.104. [250] Let (A, B,C) be minimal, N =diag[Ny, ..., Np] be
positive definite, and assume that det(CA=1B) # 0, and that (A,C + NC —
NCA™1Y) is observable. Then

H(z) = M~ + I, + (1 — 27 )N]H () (3.253)
is SPR if and only if there exist matrices P = PT >0, L and W such that
P=ATPA, +L"TL
0=BI'PA, -~ NC,—S+WTL (3.254)

0=2M"'-BTPB, -WTW
Then the following function
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V(z) = [z7 y7|P [ﬂ +2§:/0m N;pi(o)do (3.255)

where y; = Cix, C; denotes the ith row of C, is a Lyapunov function for the
negative feedback interconnection of H(z) and the nonlinearity ¢(-), whose
fiexd point is globally asymptotically stable for all ¢(-) € &. [ ]

Further details on the Tsypkin criterion can be found in [281] and in the
special issue [222]. See also [197,198].

3.12.3 Discretization of PR Systems

In this section we are interested in a problem with a high practical interest:
given a PR or SPR continuous time system, is PRness preserved through time
discretization? The material is taken from De La Sen [447]. Let us start by
recalling some facts and definitions.

Consider the transfer function H(s) = 1\]\/;((5@)) = H;(s)+d, where the relative

degree of H(s) is 0, d € IR and H;(s) = ]]\\[41((;)) H,(s) is strictly proper. The
system is assumed to be stabilizable and detectable, i.e. N(s) = Ny (s)+dM(s)
and M (s) may possess common factors in the complex half plane Re[s] < 0.
Let (A, B,C, D) be a state representation of H(s). One has M (s) =det(sI, —
A) and N(s) = CAdj(sI, — A)B + D det(sl, — A), where Adj(-) is the
adjoint matrix of the square matrix (-). If M(s) and N(s) are coprime then
(A, B,C, D) is minimal (controllable and observable) but by assumption if
they are not coprime the uncontrollable or unobservable modes are stable.

We assume that the system is sampled with a zero-order hold device of
sampling period Ts, and we denote t, = kT,, x = x(t;) and so on. The
continuous time system (A4, B, C, D) becomes when discretized a discrete time
system

Tp1 = g + Tuy
(3.256)
Yit1 = CTpq1 + Dugia
for all k > 0, k € IN, & = exp(AT,), I = (fOTS exp(A(T, — T))dT) B. The

discrete transfer function from u(z) to y(z), z € C, is given by

G(2) = J\]\;(;((zz)) _z (lfexpifTss)H(S)) =Gi(2)+ D,Gy(z) = ]X;:((ZZ))
(3.257)
where G1(z) has relative degree 1 and real coefficients

Nia(z) = CAdj(21,, — &)
(3.258)
My(z) = det(zI,, — @) = 2" + > mz" ",
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where Adj(zI,, — @) = S (S0 Zh " 542" F=1) &', n is the dimension of
the state vector x, Ng(z) = N14(2) + DM (2), the degree of the polynomial
N14is n—1 and the degree of Ny and My is n. It is well-known that the poles
of G(z) and of G1(z) are equal to exp(AaTs) for each eigenvalue A4 of the
matrix A, so that the stability is preserved through discretization. However
such is not the same for the zeros of G (z) which depend on the zeros and the
poles of Hj(s), and on the sampling period Ts. It cannot be guaranteed that
these zeros are in |z| < 1. It is therefore clear that the preservation of PRness
imposes further conditions.

Let us denote Hy the set of stable transfer functions, possibly critically
stable (i.e. with pairs of purely imaginary conjugate poles). Let us denote G
the set of discrete stable transfer functions, possible critically stable.

Theorem 3.105. Consider Hi(s) € Hy with a numerator N1(s) of degree
n — 1, fulfilling the following conditions:

e Hi(s) has a nonempty set of critically stable poles Cp with at most one
simple pole at s = 0, and any number N > 0 of simple critically stable
complex conjugate poles s = +js; (i =1,2,...,No, N = 2M\p).

o The residuals for all the critically stable poles are real and nonnegative.

Consider H(s) = Hi(s) + d , its discretized transfer function G(z) =
=1z (@) = G1(2) + D, and its transformed transfer function G.(w) =

G (z 2 1+w). Then the following hold:

1—w

o (i) G7t € Gy (equivalently G;* € Hy) for all sufficiently large absolute
values of D, provided that —3 < Arg(G.(w)) < § for w = :;:—: for all
s e Cy.

e (ii) If (i) holds then there is a constant D > 0 such that for all D > D,
G(z) is (discrete) positive real and G,(w) is (continuous) positive real.

It is interesting to note that (ii) is directly related to the comment made
right after the KYP Lemma 3.100. The homographic transformation w = :&
transforms the region |z| < 1 into Re[w] < 0, consequently the stability of

G, (w) follows if all its poles are inside Re[w] < 0.
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Dissipative Systems

In this chapter we will further study the concept of dissipative systems which
is a very useful tool in the analysis and synthesis of control laws for linear
and nonlinear dynamical systems. One of the key properties of a dissipative
dynamical system is that the total energy stored in the system decreases with
time. Dissipativeness can be considered as an extension of PR systems to
the nonlinear case. Some relationships between Positive Real and Passive sys-
tems have been established in Chapter 2. There exist several important sub-
classes of dissipative nonlinear systems with slightly different properties which
are important in the analysis. Dissipativity is useful in stabilizing mechani-
cal systems like fully actuated robots manipulators [71], robots with flexible
joints [6,72,78,80,318], underactuated robot manipulators, electric motors,
robotic manipulation [25], learning control of manipulators [26,27], fully actu-
ated and underactuated satellites [133], combustion engines [176], power con-
verters [18, 135,234, 235,458, 460], neural networks [122, 203, 528, 529], smart
actuators [171], piezo-electric structures [269], haptic environments and inter-
faces [109,128,284,285,289,309,333,422,423,454], particulate processes [131],
process and chemical systems [108, 152,457,459, 525], missile guidance [283],
model helicopters [332], magnetically levitated shafts [355,356], biological and
physiological systems [191,192], flat glass manufacture [526], visual feedback
control [252], etc. Some of these examples will be presented in the following
chapters.

Dissipative systems theory is intimately linked to Lyapunov stability the-
ory. There exists tools from the dissipativity approach that can be used to
generate Lyapunov functions. A difference between the two approaches is that
the state of the system and the equilibrium point are notions that are required
in the Lyapunov approach while the dissipative approach is rather based on
input-output behavior of the plant. The input-output properties of a closed
loop system can be studied using £, stability analysis. The properties of L,
signals can then be used to analyze the stability of a closed loop control sys-
tem. £, stability analysis has been studied by Desoer and Vidyasagar [125].
A clear presentation of this notions will also be given in this book since they
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are very useful in the stability analysis of control systems and in particular
in the control of robot manipulators. Popov introduced in 1964 the notion of
hyperstability which will be defined precisely in Section 5.10 and is in fact
quite close to dissipativity. This together with the celebrated Popov’s crite-
rion for absolute stability, Popov multipliers [244], the Popov controllability
criterion, Popov parameters [246], certainly places V.M. Popov as one of the
major contributors in dissipative systems and modern control theories. As
quoted from [153]: V.M. Popov was the first who studied passivity in detail
for linear control systems and gave its characterization in terms of frequency
domain inequality meaning positive realness of the system. Dissipativeness of
dynamical systems as it is known in the “modern” Systems and Control com-
munity has been introduced by Willems [510,511]. Hill and Moylan [206,207]
carried out an extension of the Kalman-Yakubovich-Popov (KYP) Lemma to
the case of nonlinear systems with state space representations that are affine
in the input. Byrnes et al. [89] further developed the concept of dissipative
systems and characterized the class of dissipative systems by obtaining some
necessary conditions for a nonlinear system to be dissipative and studied the
stabilization of dissipative systems.

Before presenting the definitions of dissipative systems we will study some
properties of £, signals which will be useful in studying the stability of closed
loop control systems.

4.1 Normed Spaces

We will briefly review next the notation and definitions of normed spaces,
L, norms and properties of £, signals. For a more complete presentation
the reader is referred to [125] or any monograph on mathematical analysis
[419-421]. Let E be a linear space over the field K (typically K is IR or the
complex field €). The function p(.), p: E — IRT is a norm on E if and only
if:

l.zeFEandax#0 = p(z) >0, p(0)=0
2. plax) = |a|p(z),Ya € K,Vz € E
3. p(z+y) < plx)+ p(y), Y,y € E (triangle inequality)

4.2 L, Norms

Let z : IR — IR be a function, and let |-| denote the absolute value. The most
common signal norms are the £, £o, £, and L., norms which are respectively
defined as

|2 |2 [ |=(t)] dt
|2 1125 (f [a(t)]?dt)

=
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[ |[,2 ([ 2(t)[Pde)* for 2 <p < +oo

|| z ||oo = ess sup |z(t)|dt
te

= inf{a| |2(t)| < a, a.e.}

= sup |z(t)]

t>0

where the integrals have to be understood on IR, i.e. [ = flR or, if the signals
are defined on R, as f0+oo. We say that a function f(-) belongs to £, if

and only if f is locally Lebesgue integrable (i.e. |f;7 f(®)dt| < +oo for any
R>0b>a)and | f|p, < +oo. To recapitulate:

o Forl<p<+oo, L,(I)={f:1— IR, f(-)is Lebesgue measurable and
1

(f; [f@)|Pdt)* < 4o00}.
o Lo(I)={f:1I— RR,f()is Lebesgue measurable, defined and bounded
almost everywhere on I}.

Most of the time we shall write £, instead of £,(I), especially when I =
IR™. In order to encompass multivariable systems, it is necessary to introduce
the norm for vector functions f : IR — IR", where f; € £, foreach 1 <i<n

A n 1
and || fll, = X270, |Ifill3)
Proposition 4.1. If f € L1 () Lo then f € L, for all 1 <p < 4o0. [ |

Proof: Since f € £y, the set A 2 {t| |f(¢)| > 1} has finite Lebesgue measure.
Therefore, since f € Lo

[1srat <o, ¥pe 1, 4o0)
A
Define the set B 2 {t| |f(t)| < 1}. Then we have

/B F(®)Pdt < /B F)ldt < / F@®)ldt < 00,¥ p € [1, +00)

Finally

/ Pt = /A PPt + /B F(B)Pdt < +oo
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4.2.1 Relationships Between L1, £L> and L., Spaces.

In order to understand the relationship between L1, Lo and L, spaces let us
consider the following examples that have been introduced in [125]:

fit) =1

fa(t) = 5
o AlO) = g
o fu(t)y=¢et 1
o f5(t) = 14p lff
o filt) = et

It can be shown that (see Figure 4.1)

fig Ly, f1¢ Lo and fi € Lo
fo¢ Ly, fa€Loand fr € L
fg%ﬁl,fgeﬁgandJ%%ﬁoo
f46£1,f46£2andf4€£oo
f56£1, 5E£2andf5¢£oo
Je € L1, fo & Lo and fs & Loo

LOO
L2
fl
f
f 3
2 L1
f
5
f
4 f6

Fig. 4.1. Relationships between L1, Lo and Lo

4.3 Review of Some Properties of L, Signals

The following facts are very useful to prove convergence of signals under dif-
ferent conditions.
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Fact 1: If V : R — IR is a non-decreasing function (see figure 4.2) and if
V(t) < M for some M € IR and all ¢t € IR, then V (-) converges.

Proof: Since V(-) is non-decreasing, then V(-) can only either increase or
remain constant. Assume that V() does not converge to a constant limit.
Then V(-) has to diverge to infinity since it cannot oscillate. In other words
there exists a strictly increasing sequence of time instants ¢y, t2, t3 ... and a
d > 0 such that V(t;) +J < V(t;41). However this leads to a contradiction
since V' has upper-bound M. Therefore, the sequence V' (¢;) has a limit for any

sequence of time instants {¢;};>1 so that V(-) converges. [ |
0 t
M ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
A\

Fig. 4.2. A nondecreasing function V (-).

Examples:

o fo T)dr < 0 = fo 7)|dr converges

o Let V() be differentiable. Then V(-) > 0 and V(-) < 0 = V/(-) con-
verges.

Fact 2: If fo |f(t")|dt" converges then fo "\dt' converges. Proof: In view
of the assumption we have

) ! d/: ! dl ! d/
oo>/0 ()t /tlf(t)>0|f(t)l ’ +/tf(t)§0|f(t)lt

Then both integrals in the right-hand side above converge. We also have

Nt — Ndt — Ndt'
/0 F(t)dt /tlf(t)>0|f(t)l ’ /tf(t)<0|f(t)l '

Then fo T)dT converges too. [

Fact 3: f € L, implies that f has a limit.
Proof: By assumption we have

F(8) — FO)] = | / f(s)ds| < / (s)lds < oo
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Using Fact 1 it follows that fg |f( f )|ds converges. This implies that

fo s)ds converges which in turn implies that f(-) converges too. |

Fact 4: If f € £5 and f € £y then f(t) — 0 as t — +oo and f € Lo
Proof: Using the assumptions

72(8) = F20)] = | fy 2[F2(s))ds]
< Jo [ [£2(s))lds
=2 [ f(s)f(s)|ds (4.1)

< J f?(s)ds+fg F2(s)ds
< +0o0

In view of Fact 3 it follows that |%£[f?]| € L£; which implies that
fo =1 [f2(s)]ds converges which in turn implies that f2 converges. But by as-
sumption fo f?(s)ds < oo, then f has to converge to zero. Clearly f € Lo
Fact 5: f € £, andf€£1:>f—>0.

Proof: Using Fact 3 it follows that f € £ = f has a limit. Since in addition
we have fg |f(s)|ds < oo then f has to converge to zero. [ |

Before presenting further results of £, functions, some definitions are in
order.

Definition 4.2. The function (t,x) — f(t,x) is said to be globally Lipschitz
(with respect to ) if there exists a bounded k € IRT such that

|f(t,x) — f(t,2")| < klx —2/|, Va, 2’ € R",t € RT (4.2)
|

Definition 4.3. The function (t,x) — f(t,z) is said to be locally Lipschitz
(with respect to x) if (4.2) holds for all x € K, where K C IR" is a compact
set. Then k may depend on K. |

Ezample 4.4. Let f : x — x2. Then f(-) is locally Lipschitz in [—1,1] since
|22 — 92| = |z — yl|lz + y| < 2|z — y|, for all z,y € [-1,1].

Definition 4.5. The function (t,z) — f(t,x) is said to be Lipschitz with
respect to time if there exists a bounded k such that

|f(t,x) — f(t' )| <k[t—t]|, V 2 € R",t,t' € RT



4.3 Review of Some Properties of £, Signals 183

Definition 4.6. The function f(-) is uniformly continuous in a set A if for
all € > 0, there exists 6(€) > 0:

[t—t|<d=|f(t)—f{th <e V t,t' €A

Remark 4.7. Uniform continuity and Lipschitz continuity are two different no-
tions. Any Lipschitz function is uniformly continuous. However the inverse
implication is not true. For instance the function z +— +/x is uniformly contin-
uous on [0, 1], but it is not Lipschitz on [0, 1]. This may be easily checked from
the definitions. The criterion in Fact 6 is clearly a sufficient condition only
(“very sufficient”, one should say!) to assure uniform continuity of a function.
Furthermore, uniform continuity has a meaning on a set. Asking whether a
function is uniformly continuous at a point is meaningless [420].

Fact 6: f € Lo, = f is uniformly continuous.
Proof: f € L implies that f is Lipschitz with respect to time ¢ and that
f(-) is uniformly continuous.
Fact 7: If f € £ and is Lipschitz with respect to time then lim;— 1 o, f(¢) = 0.
Proof: By assumption: f; f2(s)ds < oo and |f(t) — f(t')] < k|t — /|, Vt,t.
Assume that

|f(t1)| > € for some t1,¢ >0

and
|f(t2)] =0 for some to >t

then
€ < |f(tr) = f(t2)] < kltr — 12
i.e. [ty —t2| > . We are now interested in computing the smallest upper-
bound for fttf f2(t)dt . We will therefore assume that in the interval of time

(t1,t2) the function f(-) decreases at maximum rate which is given by k in
the equation above. We therefore have (see Figure 4.3):

t2 ) €2§ €
ds > —F = —
/ﬂf(S)sf B2

Since f € Lo, it is clear that the number of times |f(¢)| can go from 0 to €
is finite on IR. Since € > 0 is arbitrary, we conclude that f(t) — 0 ast — co.l
Fact 8: If f € £,(1 < p < o0) and if f is uniformly continuous, then f(t) — 0
as t — +o0.

Proof: This result can be proved by contradiction following the proof of Fact

7. m Fact 9: If f1 € Lo and fg € Lo, then f1 + f2 € Lo.
Proof: The result follows from
J (@) + f2(0)dt = [(f2() + 3 () + 2f1(t) fo(t))dt

J
2

IN I

J(F2(t) + f2(8))dt < +o0
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7 x

Fig. 4.3. Proof of Fact 7

|
The following Lemma describes the behavior of an asymptotically stable
linear system when its input is L2 bounded.

Lemma 4.8. Consider the state space representation of a linear system
z(t) = Azx(t) + Bu(t) (4.3)

with u(t) € R™,z(t) € R"and A exponentially stable. If u € Lo then x €
LoN Lo, & € Lo and limy_ 4o x(t) = 0. [ |

Remark 4.9. The system above with u € Lo does not necessarily have an
equilibrium point. Therefore, we cannot use the Lyapunov approach to study
the stability of the system.

Proof of Lemma 4.8: Since A is exponentially stable then there exists
P =P7T >0,Q > 0 such that

PA+ATP=-Q

which is the well known Lyapunov equation. Consider the following positive
definite function

V(z,t) = 2T Pz + k;/too u”' (s)u(s)ds

where k is a constant to be defined later. V(-,-) is not a Lyapunov function
since the system may not have an equilibrium point. Note that since u € Lo,
there exists a constant k' such that

/Ot uT (s)u(s)ds + /too u®' (s)u(s)ds = k' < oo

Taking the derivative with respect to time we obtain
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uT ()u(t) + % [/oo uT(S)u(s)ds] =0
Using the above equations we get
V(x(t),t) = 2(t)Px(t) + 27 (t) Pi(t) — kuT (t)u(t)

= (2T (t)AT +uT (t)BT)Px(t) + 2T (t)P(Ax(t) + Bu(t))—

—kuT (t)u(t)
=27 (t)(ATP + PA)x(t) + 2u” (t)BT Px(t) — kuT (t)u(t)
= —2T()Qx(t) + 2uT (t) BT Px(t) — ku™ (t)u(t)
(4.4)
Note that
2u” BT Py < 2|u” BT Px|
< 2lju [|IBTP] |||
1 (4.5)
< 20l 1B7 Pl [5-2] " [2252]* ol
< |lullP| BT PP 52 + 2252 |]|”

where we have used the inequality 2ab < a? + b2, for all a,b € IR. Choosing
k= ||BTP||2ﬁ we get

V((t), 1) < -2 o)

Therefore V(+,-) is a non-increasing function and thus V' € L, which implies
that x € L. Integrating the above equation we conclude that x € L5. From
the system equation we conclude that @ € Lo (see also Fact 9). Finally x, 2 €
Lo = limy_, 1 z(t) = 0 (see Fact 4). [ |

A more general result is stated in the following Theorem which can be
found in [125, p.59] where * denotes the convolution product.

Theorem 4.10. Consider the exponentially stable and strictly proper system

&(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

(4.6)

and its transfer function
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H(s)=C(sl, — A)"'B

Ifue Ly, theny=hx*xu € L, N Ly, y € Ly forp=1,2 and co. For
p=1,2, then lim;_ 4 y(t) = 0.

|

The function A() in the Theorem is the inverse Laplace transform of H (s).

Theorem 4.10 is a consequence of the Datko-Pazy Theorem [123,399] formu-
lated in an infinite-dimensional framework.

4.3.1 Example of Applications of the Properties of £, Functions in
Adaptive Control

Let us first briefly review the Gradient type Parameter Estimation Algorithm,
which is widely used in adaptive control and in parameter estimation. Let
y(t) € R,¢(t) € IR" be measurable functions ! which satisfy the following
linear relation:

y(t) =0T o(t)

where 6(t) € IR™ is an unknown constant vector. Define §(t) = ¢(t)T0(t) and
e(t) = (t) — y(t); then

et) = 0(t)" (1) (4.7)
where 0(t) = 0(t)—6. Note that ‘(ii—f = Z—f. Define the following positive function
~ 1

V(0,0) = 5 (4.8)
then
Lo~ 9Vdl OV do
V.0 = 5+ 5o (4.9)

Let us choose the following parameter adaptation algorithm:

C;f(t) = _ (%‘g)T (4.10)

Introducing (4.7) and (4.8) into (4.10) gives

do oe\ "

The parameter adaptation law (4.10) is motivated by the fact that when ¢ =0,
then introducing (4.10) into (4.9) leads to

! Here measurable is to be taken in the physical sense, not in the mathematical
one. In other words we assume that the process is well-equipped with suitable
Sensors.
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o= (29) () <

670, then W(é) =070 = —07 pe. Integrating we obtain

Let W(0) = 4
t

(=07 ¢)edt = W (B(t)) — W (6(0)) = W (6(0))

S—

We conclude that the operator H : e — —07¢ is passive.

187

Ezample 4.11. (Adaptive control of a simple nonlinear system) Let

a(t) = fxz@)T0 + bu(t)

where u(t), z(t) € IR. Define

and
= baps 1,
Vb, z) = 29 0+ 5%

Then along trajectories of the system we get

= b0()" f(a(t)2(t) + () (f ()76 + bu(t))
= ba(D)[(0(t) — )" f(x(t)) + 67 f(a(t)) + u(t)]

= —bz?*(t) + bx(t)v(t)

(4.11)

From the last equation it follows that for v = 0, V(:) is a non-increasing
function and thus V,z,0 € L. Integrating the last equation it follows that
x € Lo N L. Assume that f(-) has the required property so that z € Lo, =
f(x) € L. Tt follows that u € L and also & € L. © € Lo and & € Lo
implies lim;_, o (t) = 0. Let us note from the last line of (4.11) that the
operator H : v — x is output strictly passive (OSP) as will be defined later.
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|

In order to present the Passivity theorem and the Small gain theorem

we will require the notion of extended spaces. We will next present a brief

introduction to extended spaces. For a more detailed presentation the reader
is referred to [125].

4.3.2 Linear Maps

Definition 4.12 (Linear maps). Let E be a linear space over K (IR orC).
Let L(E, E) be the class of all linear maps from E into E. L(E, E) is a linear
space satisfying the following propertiesV x € E,¥Y A,B € L(E,E),Va € K :

(A+ B)x = Az + Bz
(dld)z = a(Ax) (4.12)

(AB)x = A(Bx)

4.3.3 Induced Norms
Definition 4.13 (Induced Norms). Let |.| be a norm on E and A €

L(E,E). The induced norm of the linear map A is defined as

A Az
”A” = Sup lml
=70 4.13

= sup |Az| (4.13)

|z|=1

4.3.4 Properties of Induced Norms

If |A|l < oo and ||B|| < oo then the following properties hold for all z €
FaeK

L |Az| < [[All|z]

2. [|@All = [of || Al

3. A+ B| < [lA] + B

4. [|AB[| < [[A[l[I1B]]

Ezxample 4.14. Let H be a linear map defined on F in terms of an integrable
function A : IR — IR

H:u—>Huéh*u, Vue L™
i.€e. .
(Hu)(t) = / h(t — T)u(r)dr, ¥t € R
0
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Assume that ||hlly = [ [h(t)]dt < co.
Theorem 4.15. Under those conditions the following properties hold:
a) H: L® — L
b) [Hllow = 1Al and | ulloo < [1hl]1[ullocs ¥u € £

and the right-hand side can be made arbitrarily close to the left-hand side of
the inequality by appropriate choice of u. [ |

Proof: By definition and from (4.13) we obtain

[Hlloo = sup)ju) =1 |[Hulls
= sup ||h*ulo

llulle=1

— Sop sup|(hew) (1)
[[ulloo=1 t>0

= sup |:Sup’f0 (t—7)u )dTH
lullse=1 Lt>0

< sup bupfo |h(t — )| |u(r )|d7'}
lullw=1 Lt>0
Since ||uljoo = 1 we have

| Hlloo < sup [y [A(t —7)| dr
t>0
= sup [ |h(t —7)|dr
t>0
= supfO |h(t")| dt/

< Jo [n()]dt = ||kl
We can choose u(7) =sgn[h(t — T)], t € IN. Thus

(h % u)(t) = /0 B(t = 7)dr < | * ]|

Therefore

fo |h(7")|dT" = fo |h(t — 7)|dT

< [ oo
(4.14)
< [ Hlloo < [IAlly
= Jo Ih(#)]dt!
Letting t — oo it follows that ||H||eo = ||A|1- [ |
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4.3.5 Extended Spaces

Consider a function f : Rt — R and let 0 < T < +o00. Define the truncated

function
fOife<T

fr(t) = (4.15)
0 ift>T

The function fr is obtained by truncating f(-) at time 7". Let us introduce
the following definitions:

T: subset of R (typically, T = IR" or IV),
V: normed space with norm ||.|| (typically V = R, R", C, C"),
F=A{f| f:7T — V} the set of all functions mapping 7 into V.

The normed linear subspace L is given by

LELf:T-VI]|f] < oo}

Associated with L is the extended space L. defined by

L2 {f:T > V|VTeT,|fr| < oo}

In other words, the sets £, . or simply L., consist of all Lebesgue measurable
functions f such that every truncation of f belongs to the set £, (but f may
not belong to Ly, itself, so that £, C L, ). The following properties hold for
all feLlye:

1. The map t — || f¢|| is monotonically increasing
2. |[fell = 1If1l as t — 400

1
Remark 4.16. One sometimes speaks of £, o, which means that ( [} | f(¢)[Pdt)*
< 400 for all compact intervals I C IR. Obviously L 10c = Lp,e-

We can now introduce the notion of gain of an operator which will be used
in the small gain Theorem and the passivity Theorem.

4.3.6 Gain of an Operator

In the next Definition, we consider a general operator with state, input, and
output signal spaces. In particular, the input-output mapping is assumed to
be causal, invariant under time shifts, and it depends on the initial state zq.
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Definition 4.17. [206] Consider an operator H : L. — L.. H is
weakly finite-gain stable (WFGS) if there exist a function 8(-) and a
constant k such that

[(Hu)r| < Kllur|| + 5(zo)

for all admissible u(-) and all zo. If B(xo) = 0, we call H finite-gain
stable (FGS).

In a more rigorous way, the input-output operator H should be denoted as
H(zg) or H,, as it may depend on xg. This is a situation completely analogous
to that of passive operator as in Definition 2.1, where the constant § may in
general depend on the initial state . One may be surprized that the notion of
state intervenes in a definition that concern purely input-output operators (or
systems). Some definitions, indeed, do not mention such a dependence. This
is related to the very basic definition of what a system is, and well-posedness.
Then the notions of input, output and state can hardly be decoupled, in
general.

We call the gain of H the number k (or k(H)) defined by

k(H) =inf{k € R"/ 38 : |(Hu)7| < k|jur| + B, Yu € L, VT € R*}
Let us recall the case of linear time invariant systems of the form

z(t) = Ax(t) + Bu(t)
(4.16)
y(t) = Cz(t) + Du(t), z(0) ==z € R".
Theorem 4.18. Suppose that the matriz A has all its eigenvalues with nega-
tive real parts (<= (t) = Ax(t) is asymptotically stable). Then the system

(4.16) is finite-gain stable where the norm can be any L, with 1 < p < +o0.
In other words u € L, =y € L, and ||y|lp < kpl|ul|p for some k, < +00. R

A rather complete exposition of input/output stability can be found in
[500, Chapter 6].

4.3.7 Small Gain Theorem

This Theorem gives sufficient conditions under which a bounded input pro-
duces a bounded output (BIBO).

Theorem 4.19 (Small gain). Consider Hy : L. — L. and Hy : Lo — L.
Let e1,eo € L. and define (see Figure 4.4)

{ul =e1 + Hae

Uy = ey — Hyer (4.17)
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¥, H, ez< > u,

Fig. 4.4. Closed-loop system with two external inputs

Suppose there are constants 1, 32,71,v2 > 0 such that for all t € R™:

|(Hier)rl < mlleir| + 81 (4.18)
|(Hze2)7 |l < v2llear| + B2

Under those conditions, if 43y < 1, then:

i)
lerell < (1 —yv2) " (urell + v2lluzell + B2 + ~261)
lleaell < (1 —vay2) " (Juzel + v lluael + B1 + 7132)

ii) If in addition, ||ui]],|luz|| < 400, then e1,e2,y1,y2 have finite norms. ™

Proof: From (4.17) we have
e1r = uir — (Haea)t
4.19
ezt = ug + (Hyier): (4.19)

Then
lerell < llurell + [[(Hae2)e|l < [lure|l + vellexll + B2

leaell < [luzell + [(Hier)ell < lluzell +yallexe]| + B

Combining these two inequalities we get

llexell < lluaell + B2 + ya(lluaell + vallexell + Br)
lleael] < [Juell + By + 1 (luaell + 2 llezell + Be)
Finally
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lewe] < (1 —yiy2) ™ [lwaell + velluzel| + B2 + 72/31]
llearll < (1= my2) ™" [lluaell + yillwrell + B + 712

The remainder of the proof follows immediately. ]

Clearly to be consistent with Definition 4.17, the constants (1, B2, 1
and 2 may also depend on initial states x1 9 and z2 . This obviously does
not modify the above calculations. A general notion of dissipativity will be
introduced, and some links with the gain theory will be established in Sections
4.4 and 5.1.

4.4 Dissipative Systems

4.4.1 Definitions

We will now review the definitions and properties of dissipative systems. Most
of the mathematical foundations on this subject are due to Willems [512], and
Hill and Moylan [206,207]. One difficulty when looking at the literature on
the subject, is that there are many different notions of dissipativity which are
introduced in many papers published here and there. One of the goals of this
chapter is to present all of them in one shot and also the existing relationships
between them. Consider a causal nonlinear system (X) : u(t) — y(t); u(t) €
Lpe,y(t) € Lpe, represented by the following state-space representation affine
in the input:

o(t) = fz(t) + g(z(t))u(t)
(X) q y(t) = hz(t) + j((t))ul?) (4.20)
z(0) = xo

where z(t) € R", u(t),y(t) € R™, f(-),9(-),h(-) and j(-) possess sufficient
regularity so that the system with inputs in Lo . is well-posed (see Section
3.9.2), and f(0) = h(0) = 0. In other words the origin = 0 is a fixed point
for the uncontrolled (free) system, and there is no output bias at x = 0. The
state space is denoted as X C IR™. Let us call w(t) = w(u(t),y(t)) the supply
rate and be such that for all admissible u(-) and 2(0) and for all t € IR"

/ |w(u (s))]ds < 400 (4.21)

i.e. we are assuming w(-) to be locally Lebesgue integrable independently
of the input and the initial conditions. In an electric circuit fo s)ds can be
asbomated with the energy supplied to the circuit in the mterval (0,), 1

fo ) ds where v(-) is the voltage at the terminals and i(-) the current
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entering the circuit, see the example in Chapter 1. In the following, what we
will often call an admissible input, simply means that the ordinary differen-
tial equation in (4.20) possesses a unique differentiable solution. Hence it is
sufficient that the vector field f(x(t)) + g(x(t))u(t) satisfies the Carathéodory
conditions (see Theorem 3.55): u(-) may be a Lebesgue measurable function
of time.

Definition 4.20 (Dissipative System). The system (X) is said to
be dissipative if there exists a so-called storage function V(z) > 0 such
that the following dissipation inequality holds:

V(x(t)) < V(x(0)) +/0 w(u(s), y(s))ds (4.22)

along all possible trajectories of (X) starting at x(0), for all z(0), ¢ > 0
(said differently: for all admissible controllers u(-) that drive the state
from z(0) to x(t) on the interval [0,t]).

It follows from Lemma 3.1 and Corollary 3.3 that controllable and observ-
able LTI systems with a positive real transfer functions, are dissipative with
quadratic storage functions (see also [489] in the context of behavioural ap-
proach to linear dynamical systems). Two comments immediately arise from
Definition 4.20: first storage functions are defined up to an additive constant;
second, if the system is dissipative with respect to supply rates w;(u,y),
1 < i < m, then the system is also dissipative with respect to any supply
rate of the form 27;1 oa;wi(u,y), with a; > 0 for all 1 <4 < m. One notices
that the Definition 4.20 (sometimes referred to as Willems’ dissipativity) does
not require any regularity on the storage functions: it is a very general defini-
tion. Actually, storage functions do possess some regularity properties under
suitable assumptions, see Section 4.4.5. When one imposes that the storage
functions be of class C" for some integer » > 0, then one speaks of C"-
dissipativity. A third comment may be done: Willems’ definition postulates
that dissipativity holds whenever a storage function exists. Some other au-
thors like Hill and Moylan, start from a definition that is closer to Definition
2.1, and then prove the existence of storage functions.

Example 4.21. Let us continue with Example 3.2. The input-output product
satisfies fg u(t)y(t)dt' = fg u?(t')dt’ > 0 for any initial data z(0). Now choose
V(z) = 322, One has V(z(t)) < V(2(0)) since solutions strictly decrease.
Thus V(x(t)) — V(2(0)) < 0 and V(z(t)) — V(x(0)) < fg u(t)y(t')dt'": the
system is dissipative, though neither observable nor controllable (but, it is
stable).
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It is noterworthy that (4.22) is equivalent to the following: there exists
W (-) such that V(z1) — V(o) < W(x1,20) with

t
W(xy,20) = inf w(u(s),y(s))ds (4.23)
u(-)eU Jo
along admissible controls which drive the state from zy to x; on the time
interval [0, t]. In the following we shall use either 0 or ¢y to denote the initial
time for (4.20). Dissipativity is also introduced by Hill and Moylan [207] as
follows:

Definition 4.22. The system (X)) is dissipative with respect to the supply rate
w(u,y) if for all admissible u(-) and all t; >ty one has

/tl wu(t), y(®))dt > 0 (4.24)

to

with x(tg) = 0 and along trajectories of (X). [ |

This corresponds to imposing that storage functions satisfy V' (0) = 0. This
is justified by the fact that storage functions will often, if not always, be used
as Lyapunov functions for studying the stability of an equilibrium of (X') with
zero input u(-). In a slightly more general setting, one may assume that the
controlled system has a fixed point z* (corresponding to some input u*, and
with f(2*) 4+ g(z*)u* =0, y* = h(z*) + j(2*)u*, and w(u*,y*) = 0), and that
V(x*) < +o00. Then changing V(-) to V(-) — V(z*) one obtains V(z*) = 0
(we could even have stated this as an assumption in Definition 4.20, as done
for instance in [510]). In the sequel of this chapter, we shall encounter some
results in which dissipativity is indeed assumed to hold with V' (0) = 0. Such
results were originally settled to produce Lyapunov functions, precisely. Hill
and Moylan start from (4.24) and then prove the existence of storage functions,
adding properties to the system. The motivation for introducing Definition
4.22 is clear from Corollary 3.3, as it is always satisfied for linear invariant
positive real systems with minimal realizations.

Another definition [206] states that the system is weakly dissipative with
respect to the supply rate w(u,y) if ftzl w(u(t),y(t))dt > —B(z(ty)) for some
B(-) > 0 with 5(0) = 0 [531] (we shall see later the relationship with Willems’
Definition; it is clear at this stage that weak dissipativity implies dissipativity
in Definition 4.22, and that Willem’s dissipativity implies weak dissipativity
provided V(0) = 0). Still, another definition is as follows [232]:

Definition 4.23. The system (X)) is said dissipative with respect to the supply
rate w(u,y) if there exists a locally bounded nonnegative function V : R" —
IR, such that

V(x) > sup {V(x(t)) —/0 w(u(s),y(s))ds : x(0) = x} (4.25)

t>0,u€l
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where the supremum is therefore computed with respect to all trajectories of
the controlled system with initial condition x and admissible inputs. |

This definition requires the local boundedness of storage functions (a real
valued function is locally bounded, if sup,cx | f(z) |< C for some bounded
constant C' > 0 and any compact set K of its domain). This additional prop-
erty happens to be important for further characterization of the storage func-
tions as solutions of partial differential inequalities (see Section 4.6). Apart
from this additonal property, one sees that if V(z)(= V(2(0)) satisfies (4.25),
then it satisfies (4.22). Conversely since (4.22) is satisfied for all ¢ > 0 and for
all admissible u(-), if V(z(0))(= V(x)) satisfies (4.22) then it satisfies (4.25).
Thus under the local boundedness assumption, Willems’ original definition
and the definition stemming from (4.25), are equivalent. The fact that Defini-
tion 4.20 implies Definition 4.22 provided that V' (0) = 0 is clear. The converse
will be investigated in Section 4.5.2.

There is another definition of dissipativity that is sometimes used by Hill
and Moylan:

Definition 4.24. The system (X)) is said to be cyclo-dissipative with respect
to the supply rate w(u,y) if

/11 w(u(s),y(s)ds >0 (4.26)

to

for all t1 > to, all admissible u(-), whenever x(ty) = x(t1) = 0. [ |

The difference with Definition 4.20 is that the state boundary conditions
are forced to be the equilibrium of the uncontrolled system: trajectories start
and end at x = 0. A cyclo-dissipative system absorbs energy for any cyclic
motion passing through the origin. Cyclo-dissipativity and dissipativity are
related as follows:

Theorem 4.25. [209] Suppose that the system (X) defines a causal input-
output operator Hyy, and that the supply rate is of the form w(u,y) = yT Qu+
29T Su+u” Ru, with Q non-positive definite. Suppose further that the system
is zero state detectable (i.e. u(t) =0,y(t) =0Vt >0 = lim;oc 2(t) =0).
Then dissipativity in the sense of Definition 4.22 and cyclo-dissipativity of
(X)) are equivalent properties. [ ]

The proof of this Theorem relies on the definition of another concept known
as ultimate dissipativity, which we do not wish to introduce here for the sake
of briefness (roughly, this is dissipativity but only with ¢t = 400 in (4.22)).
The reader is therefore referred to [209] for the proof of Theorem 4.25 (which
is a concatenation of Definitions 2, 3, 8 and Theorems 1 and 2 in [209]). Let
us recall that an operator H : u — y = H(u,t) is causal if the following
holds: for all admissible inputs u(-) and v(-) with u(7) = v(r) for all 7 < ¢,
then H(u(-),t) = H(v(-),t). In other words, the output depends only on the
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past values of the input, and not on future values. It is noteworthy here that
causality may hold for a class of inputs and not for another class.

A local definition of dissipative systems is possible. Roughly, the dissi-
pativity inequality should be satisfied as long as the system’s state remains
inside a closed domain of the state space [404].

Definition 4.26 (Locally dissipative system). Let X be the system’s state
space. Let U, = {u(-) | u(-) € U for allt € R}. The dynamical system is
locally dissipative with respect to the supply rate w(u,y) in a region 2 C X if

t
/ w(u(s),y(s))ds >0 (4.27)
0
for allu € U, t > 0, such that x(0) =0 and x(s) € 2 for all 0 < s < t. [ ]
Still, another notion is known as the quasi-dissipativity:

Definition 4.27. [{03] The system (X) is said quasi-dissipative with respect
to the supply rate w(u,y) if there exists a constant o > 0 such that it is
dissipative with respect to the supply rate w(u,y) + a. [ ]

Actually, dissipativity is understood here as weak dissipativity, i.e.

/0 wu(s), y(s))ds > p

with 8 < 0 (see Definition 2.1). The interest of quasi-dissipativity is that a
quasi-dissipative system can contain a source of energy with finite power.

To conclude this subsection, we have at our disposal several notions of dissi-
pativity: Willems’, Hill and Moylan’s, Definition 2.1, weak dissipativity (which
is intermediate between Definition 2.1 and Willems’), cyclo-dissipativity,
quasi-dissipativity, ultimate dissipativity, local dissipativity, Definition 4.23.
There are more (like J—dissipativity [397], which is used in specific settings
like Ho, control), exponential dissipativity (see Theorem 5.68), definitions
taylored to systems with time-varying parameters [302], and Popov’s hyper-
stability.

Remark 4.28. Some properties are stated as f; for all t > 0, and others as fttol
for all t; > to. If trajectories (state) are independent of the initial time but
depend only on the elapsed time, clearly both ways of stating dissipativity are
equivalent.

4.4.2 The Signification of 3

The next result helps to understand the signification of the constant 5 (apart
from the fact that, as we shall see later, one can exhibit examples which
prove that the value of §(0) when ( is a function of the initial state, has a
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strong influence on the stability of the origin = 0). The supply rate that is
considered is the general supply rate w(u, y) = y* Qy+2yT Su+u” Ru, where
Q = QT and R = RT (but no other assumptions are made, so that Q and R
may be zero). The definition of weak dissipativity is as seen above, but in a
local setting, ¢.e. an operator G' : Y — Y which is denoted as G, as it may
depend on the initial state. For a region {2 C IR" we denote G({2) the family
of operators G, for all zy € 2. Considering such domain {2 may be useful for
systems with multiple equilibria, see Example 4.34. Mimicking the definition
of weak finite gain (Definition 4.17):

Definition 4.29. [206] The operator G(£2) is said weakly w(u,y)— dissipative
if there exists a function 3 : 2 — IR such that

/0 wu(s), y(s))ds > Blzo), (4.28)

for all admissible u(-), all t > 0, and all zo € 2. If B(xo) = 0 in 2 then
the operator is called w(u, y)— dissipative. ]

This definition has some local taste as it involves possibly several equilibria
of the system (the set 2). Therefore when time comes to settle some stability
of these equilibria, it may be that only local stability can be deduced. We also
need a reachability definition. The distance of x to 2 is d(z, 2) = inf,,cn || —
$0| |

Definition 4.30. [206] A region X1 C IR" is uniformly reachable from
2 C IR"™ if there exists a class K function «(-), and for every x1 € X1 there
exists xg € §2, a finite t1 > to and an admissible u(-) such that the trajectory
of the controlled system originating from xo at to satisfies x(t1) = x1 and
[t u(s)Tu(s)ds < a(d(ar, 2)). n

Uniform reachability means that a state x; can be driven from some other
state xg with an input that is small if the distance between the two states is
small. It is local in nature.

Theorem 4.31. [206] If G(12) is weakly w(u,y)—dissipative, and X1 is uni-
formly reachable from 2, then G(X1) is weakly w(u,y)—dissipative. [ |

Proof: Take any x1 € X; and any ¢1 > tg, any xg € £2, any u(-) € U such
that the controlled trajectory emanating from xzo at tg ends at x; at ¢t;. The
value of u(t) for t > t; is arbitrary. The inequality in (4.28) can be rewritten
as

/0 w(u(s), y(5))ds > Prew (1) (4.29)
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with Bpew(x1) = B(x0) — Jl w(u(s), Gz, (u(s)))ds, and we used the fact
that the operator is invariant under time shifts. The value (e (21) depends
only on z7 and not on u(-) because the control that intervenes in the definition
of Bnew(x1) is the specific control which drives g to x1. Thus Gy, is weakly
dissipative. [ |

If B(xzo) = 0 then the system is dissipative with respect to one initial state
(in the sense of Definition 4.22 if o = 0). But it is weakly dissipative with
respect to other reachable initial states. Therefore a way to interpret ( is that
it allows to take into account non-zero initial states. In Example 4.60 we will
see that weak finite-gain stability is not enough to assure that the uncontrolled
state space representation of the system has a Lyapunov stable fixed point.
It follows from this analysis that defining passivity as fot uT (s)y(s)ds > 0 for
any initial state makes little sense if the initial state is not included in the
definition (or implicitly assumed to be zero).

The equivalence between Willems’ definition and weak dissipativity follows
from the following:

Theorem 4.32. [206] For some X1 C X, G(X1) is weakly dissipative
if and only if there exists a function V : X1 — IR, with V(z) > 0 for
all x € X, such that

V(z1) —|—/ w(u(s),y(s))ds > V(z2) (4.30)

to

for all z1 € X1, all admissible u(-) € U, all t > to, with y(t) =
Gy, (u(t)) and x(t) = 2 is the state starting at x1 at to.

Proof: Let us denote V(u,y,to,t) 2 ftf) w(u(s),y(s))ds. By time-invariance
V(u,y,to,t) depends only on ¢t — to but not on ¢ and ¢, separately. Let

Vi) = — inf V(u, Gy, u,t1,t). Because of ¢t > t1, t may be chosen as
u(-) €U, t>t1

t; and consequently V(z1) > 0. For any ¢ > t; and ¢ > to one has V(zy) >
—V(u,Ggyu,ty,t2) — V(u, Gyou, ta,t), where z(ta) = xo is the state which
starts at 1 at time ¢; and with the control w on [t1,t2]. Since this inequality
holds for all w, it is true in particular that V(z1) > —V(u, Gy u,t1,t2) —

— inf  V(u,Gg,u,ts,t) from which (4.30) follows. The inequality (4.28)
u(-)EU,t>ts

implies that V(z1) < —8(z1) so that 0 < V(x) < +oo for all z € X;. Now

starting from (4.30) one sees that V(z1) —l—fti) w(u(s),y(s))ds > 0 which shows

that the system is w(u, y)—dissipative. ]
Moreover:

Theorem 4.33. [206] Assume that X1 C X is uniformly reachable from
2 C X. Then G(£2) is w(u,y)—dissipative if and only if there exists a function
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V 1 X1 — R satisfying the conditions of Theorem 4.32 and V(x) = 0 for all
x € (2. [ |

Proof: If G(£2) is w(u,y)—dissipative and X is reachable from (2, then
Theorem 4.31 shows that G, is w(u, y)—dissipative. Following the same steps
as in the proof of Theorem 4.32, the only thing that remains to be shown is
that V(x) = 0 for all x € 2. The bounds 0 < V(z) < B(x) for all z € X; and
Definition 4.29 imply it. The converse is a direct consequence of (4.30). H

Thus summarizing Theorems 4.25, 4.32 and 4.33:

cyclo-dissipativity
Definition 4.24

$ (if ZSD and Q <0)

Hill and Moylan’s dissipativity
Definition 4.22

1 (if reachability)

weak w(u, y)—dissipativity [w(u,y)—dissipativity + reachability]
Definition 4.29

0

Willems’ dissipativity [Willems’ dissipativity +V(0) = 0]
Definition 4.20

(if local boundedness of the storage function)

)

Definition 4.23

The link between w(u, y)—dissipativity and dissipativity in Definition 4.22
can also be established from Theorem 4.33. The equivalence between weak
w(u, y)—dissipativity and the other two, supposes that the required dynamical
system that is under study is as (4.20), so in particular 0 € (2.

Ezample 4.34. [206] To illustrate Definition 4.29 consider the following sys-
tem:

z(t) = —asin(z(t)) + 2yu(t)
y(t) = —asin(z(t)) + yu(t) (4.31)

z(0) = xo
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with & > 0. Then V(z) = a(1 —cos(x)), V(xo) = 0 for all zg = £2nm, n € IN.
Thus 2 = {xg | xp = £2n7}. This system is finite-gain stable, and the
equilibria are (locally) asymptotically stable.

4.4.3 Storage Functions (Available, Required Supply)

Having in mind this preliminary material, the next natural question is, given a
system, how can we find V' (z)? This question is closely related to the problem
of finding a suitable Lyapunov function in the Lyapunov second method. As
will be seen next, a storage function can be found by computing the maximum
amount of energy that can be extracted from the system.

Definition 4.35 (Available Storage). The available storage V,(-)
of the system (X)) is given by

0<Valw)=  sup —{ /Otww(s),y(s))ds} (4.32)

e=w(0),u(-),t20

where Vo (x) is the maxzimum amount of energy which can be extracted
from the system with initial state x = z(0).

The supremum is taken over all admissible u(-), all ¢ > 0, all signals with
initial value z(0) = z, and the terminal boundary condition z(t) is left free.
It is clear that 0 < V(x) (just take ¢ = 0 to notice that the supremum cannot
be negative). When the final state is not free but constrained to z(t) = 0
(the equilibrium of the uncontrolled system), then one speaks of the virtual
available storage, denoted as V*(-) [209]. Another function plays an important
role in dissipative systems, called the required supply. We recall that the state
space of a system is said reachable from the state z* if, given any x and ¢ there
exist a time ¢g < ¢ and an admissible controller u(-) such that the state can be
driven from z(ty) = * to x(t) = . The state space X is connected provided
every state is reachable from every other state.

Definition 4.36 (Required Supply). The required supply V,.(-) of
the system (X)) is given by

0
Vi(x) = inf , d 4.33
@ =t { [ wtusaas) (1.33)
with x(—t) = x*, x(0) = z, and it is assumed that the system is
reachable from x*. The function V,.(z) is the required amount of energy
to be injected in the system to go from x(—t) to x(0).
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The infimum is taken over all trajectories starting from x* at ¢ and ending
at (0) = = at time 0, and all ¢ > 0 (or, said differently, over all admissible
controllers u(-) which drive the system from x* to x on the interval [—¢,0]).
If the system is not reachable from z*, one may define V,.(z) = +o0.

Remark 4.37. The optimal “extraction” control policy which allows one to
obtain the available storage in case of an LTI system as in (3.1) is given by
u = (D+DT)"1(BT P~ —(C)x, and the optimal “supply” control policy which
allows one to obtain the required supply is given by u = (D+DT)~1(BT P+ —
C)z, where PT and P~ are as in Theorem 3.44.

Remark 4.38. Contrary to the available storage, the required supply is not
necessarily positive, see however Lemma 4.45. When the system is reversible,
the required supply and the available storage coincide [512]. It is interesting to
define accurately what is meant by reversibility of a dynamical system. This
is done thanks to the definition of a third energy function, the cycle energy:

ty

Vaw)=  inf / w()Ty(b)dt (4.34)

u(:),to<t1,2(t0)=0 Jy,

where the infimum is taken over all admissible u(-) which drive the system
from z(tg) = 0 to x. The cycle energy is thus the minimum energy it takes
to cycle a system between the equilibrium z = 0 and a given state x. One
has V,(-) + Vo(-) = V.(-) (assuming that the system is reachable so that the
required supply is not identically 4+00). Then the following is in order:

Definition 4.39 (Reversibility). Let a dynamical system be passive in the
sense of Definition 2.1 with 8 = 0, and let its state space representation be
reachable. The system is irreversible if Vo.(z) = 0 only if x = 0. It is said
uniformly irreversible if there exists a class Koo function a(-) such that for all
x € R": V() > af]|x]]). The system is said to be reversible if V.(x) =0 for
all x € R", i.e. if Vo(+) = V.. (). [ |

The following is taken from [209].
Ezxample 4.40. Let us consider the one-dimensional system
z(t) = —x(t) + u(t)
y(t) = z(t) + su(t) (4.35)

z(0) = xo.
This system is dissipative with respect to the supply rate w(u, y) = uy. Indeed
t to, . 22(s)]? t
Jou(®)y(s)ds = [yl(@(s) + z(s)x(s) + 3u?(s)]ds = {%}0 + [ (@3(s) +
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tu?(s))ds > —'7327(0). Then V,(z) = sz\/ng and V,.(z) = %x? Indeed the
available storage and required supply are the extrema solutions of the Riccati
equation ATP + AP + (PB — CT)(D + DT)=Y(BTP — C) = 0, which is in
this case p? — 4p + 1. Moreover the available storage and the virtual available
storage (where the terminal state is forced to be & = 0) are the same. One
sees that V(x) = 22 is a storage function.

The following results link the boundedness of the functions introduced in
Definitions 4.35 and 4.36 to the dissipativeness of the system. As an example,
consider again an electrical circuit. If there is an ideal battery in the circuit,
the energy that can be extracted is not finite. Such a circuit is not dissipative.
The following results are due to Willems [510, 511].

Theorem 4.41. [510, 511] The available storage Vo (-) in (4.32), is
finite for all x € X if and only if (X) in (4.20) is dissipative in the
sense of Definition 4.20. Moreover, 0 < Vo (x) < V(x) for allz € X
for dissipative systems and V,(-) is itself a possible storage function.

Proof:

(=) In order to show that V,(z) < oo = the system (X) in (4.20) is dissipa-
tive, it suffices to show that the available storage V, in (4.32) is a storage
function i.e. it satisfies the dissipation inequality

Va(z(t)) < Vo(2(0)) +/0 w(t)dt

But this is certainly the case because the available storage V,(x(t)) at
time ¢ is not larger than the available storage V,(x(0)) at time 0 plus the
energy introduced into the system in the interval [0, ¢].

(«<=) Let us now prove that if the system (X') is dissipative then V,(z) < oo.
If (X)) is dissipative then there exists V(z) > 0 such that

V(2(0)) +/0 wt)dt > V(x(t)) > 0

From the above and (4.32) it follows that

OB /Otwu)dt}:va(x)

z=x(0),t>0,u

Since the initial storage function V' (2(0)) is finite it follows that V,(z) <
+00. The last part of the Theorem follows from the definitions of V,(:)
and V(-) (see (4.25)). [ |
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Therefore dissipativeness can be tested by attempting to compute V,(z):
if it is locally bounded, it is a strorage function and the system is dissipa-
tive with respect to the supply rate w(u,y). This is a variational approach.
Compare (4.32) with (4.25). It clearly appears why, among all possible stor-
age functions satisfying (4.25), the available storage is the “smallest” one.
Testing the dissipativity of the system (X) is by Theorem 4.41 equivalent
to testing whether or not inf, ey f0+oo w(u(t),y(t))dt under the constraints
z(t) = f(x(t)) + g(z(t))u(t), (0) = xq, is finite for all o € R". As we saw
in Section 3.8.2 the value of this infimum yields the negative of the available
storage function. Similar results can be derived from the cyclo-dissipativity:

Lemma 4.42. [209] Let the system (X) be cyclo-dissipative. Then

(i) Vi(2(0)) < 400 for any reachable state x(0) and with x(—t) =0

(i) V¥ (x(0)) > —oo for any controllable state x(0)

(i) Vi (0) = Vo(0) = 0 if (1) = 0

(iv) Vio(x) > VX (z) for any state z € X [ |

Controllability means in this context that there exists an admissible u(-)
that drives the state trajectory towards x = 0 at a time ¢ > 0. Proof:
(i) and (ii) are a direct consequence of reachability and controllability, and
the fact that w(u(s),y(s)) is integrable. Now let x(0) be both reachable
and controllable. Let us choose a state trajectory which passes through the
points x(—t) = z(t) = 0, and with x(0) = 2. Then fi) u(s),y(s))ds +
fg (u(s),y(s))ds > 0, from the definition of cyclo- d1581pat1v1ty From the def-
initions of V*( ) (paragraph below Deﬁnltlon 4.35) and V,.(+), (iv) follows using

u(s),

that f y(s))ds > — fo ),4(s))ds. (iv) remains true even in the
case of uncontrollability and unreauchability7 as in such a case V;.(2(0)) = +o0
and V4, (z(0)) = —oc. [ |

Similarly to the above results concerning the available storage, we have
the following:

Theorem 4.43. [510,511] The system (X) in (4.20) is dissipative in
the sense of Definition 4.20 if and only if the required supply satisfies
Vi(z) > =K > —oo for all x € X and some K € IR. Moreover,
0 < Vo(z) <V(x) < Vp(x) for all x € X for dissipative systems.

Before presenting the next Lemma, let us introduce a notion of reachability.

Definition 4.44 (Locally w—uniformly reachable). [209] The system (X)
is said to be locally w—uniformly reachable at the state x* if there exists a
neighborhood 2 of x* and a class K function p(-) such that for each x € (2
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there exist t > 0 and an admissible u(-) driving the system from x* to x on
the interval [0,t) and

I/0 w(u(s),y(s))ds| < p(|la —2"|]) (4.36)

The system is said to be locally uniformly w—reachable in 2 if it is locally
uniformly w—reachable at all states x* € 2. [ ]

A way to characterize such a property is indicated later; see Proposition
4.76. The following provides informations on whether or not the required
supply may serve as a storage function. It is extracted from [401, Theorem 2].

Lemma 4.45. Let the system (X)) be dissipative in the sense of Definition 2.1
with respect to the supply rate w(u,y), and locally w—uniformly reachable at
x*. Let V(-) be a storage function. Then the function V.(-) + V(2(0)) is a
continuous storage function. |

One sees that if the storage function satisfies V(0) = 0 and if (0) = 0
then the required supply is a storage function. The value V (2(0)) plays the
role of the bias —f in Definition 2.1. When V' (0) = 0 the system has zero bias
at the equilibrium x = 0. In fact a variant of Theorem 4.41 can be stated as
follows, where dissipativity is checked through V,(-) provided the system (X')
is reachable from some state z*.

Lemma 4.46. [}42] Assume that the state space of (X)) is reachable from
x* € X. Then (X)) is dissipative in the sense of Definition 4.20 if and only if
Va(z*) < +00. [

The conditions of Theorem 4.41 are less stringent since reachability is not
assumed. However in practice, systems of interest are often reachable so that
Lemma 4.46 is important.

Notice that given two storage functions Vi (+) and V5 (-) for the same supply
rate, it is not difficult to see from the dissipation inequality that for any
constant A € [0, 1] then AVi(:) + (1 — A)Va(+) is still a storage function. More
formally:

Lemma 4.47. The set of all possible storage functions of a dissipative system
is convex. In particular A\Vo(-) + (1 — M\)V,.(+) is a storage function provided
the required supply is itself a storage function.

Proof: Let Vi(-) and Va(:) be two storage functions. Let 0 < A < 1 be a
constant. Then it is an easy computation to check that AVi () + (1 — X\)Va(+)
is also a storage function. Since the available storage and the required supply
are storage functions, the last part follows. ]

The available storage and the required supply can be characterized as
follows:
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Proposition 4.48. Consider the system (X) in (4.20). Assume that it
is zero state observable (u(t) = 0 and y(t) = 0 for all t > 0 imply that
z(t) = 0 for all t > 0), with a reachable state space X, and that it is
dissipative with respect to w(u,y) = 2uTy. Let j(x)+ jT (x) have full rank
for allz € X. Then V,(-) and V,.(-) are solutions of the partial differential
equality:

VVT(z)f(x)+

+ (2 (@) = 5VVT(2)9(2)) ((2) + 57 () 7" (h(2) — 59" (2)VV () =0

Before presenting the proof we need an intermediate result:

Lemma 4.49. Let a function V (-) be differentiable. Let W (z) =—VV T (z)f(z)
and S(z) = h” (x)— LVVT(2)g(x). Then along any trajectory of (X) in (4.20)
and for all t1 and to with t1 > tg, one has

S 2u(t)Ty(t)dt =

) W(z(t)) S(z(t) 1
= V(@) + [ 1 u" (@) dt
ST(a(t)) jz() +57(2(t) ) \u
(4.38)
]

Proof: The proof is led by calculating the integral of the right-hand-side of
(4.38). [ |

Proof of Proposition 4.48: Let us rewrite the available storage as

o =— i [uses) @

Using Lemma 4.49 one gets
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- _m:mmifif(o,tzo Valz@lo+ 1 O1P(() (4.40)

= Va(z) - Va(z(t) + [y 11 uT (1) D(x(t))

inf
z=z(0),u(-),t>0

where we used that z(0) = = and D(z) =

Therefore

1

- in z t u” T )
0= o o) Vel (t)>+/0[1 ()]D(x(t)) ) dt (4.41)

If the infimum exists and since j(z(t))+;7 (z(t)) is supposed to be full rank,
it follows that its Schur complement W, (z) — S, (z)(j(z) + 5T (x))71ST(z) = 0
(see Lemma A.62), which exactly means that V,(-) satisfies the partial differ-
ential inequality (4.37). A similar proof may be made for the required supply.
|
In the linear time invariant case, and provided the system is observable and
controllable, then V, (z) = 27 P,z and V,.(z) = 2T P,z satisfy the above partial
differential equality, which means that P, and P, are the extremal solutions of
the Riccati equation AT P+PA+(PB—CT)(D+DT)~Y(BTP—-C) = 0. Have
a look at Theorems 3.42, 3.43 and 3.44, and Theorem 4.43. One especially
deduces that the set of solutions P = PT > 0 of the KYP Lemma set of
equations in (3.2) has a maximum P, and a minimum P, elements, and that all
other solutions satisfy 0 < P, < P < P,. What is called GT in Theorem 3.43
and is equal to — P, and what is called G~ is equal to — P, (it is worth recalling
that minimality of (A, B, C, D) is required in the KYP Lemma solvability with
positive definite symmetric solutions, and that the relaxation of the minimality
requires some care; see Section 3.3). Similarly P~ and P* in Theorem 3.44
are equal to P, and P, respectively.
The following is a consequence of Theorem 2.2 and relates to a notion
introduced at the beginning of this book for input-output systems, to the
notion of dissipativity introduced for state space systems.

Theorem 4.50 (Passive systems). Suppose that the system (X) in (4.20)
is dissipative with supply rate w(u,y) = uTy and storage function V(-) with
V(0) =0, i.e. for allt > 0:

V(z(t)) < V(z(0)) —1-/0 u”' (s)y(s)ds (4.42)
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Then the system is passive. |

Passivity is defined in Definition 2.1. Let us recall that a positive real (PR)
system is passive; see Corollary 2.35.

Definition 4.51 (Strictly state passive systems). A system (X) in
(4.20) is said to be strictly state passive if it dissipative with supply rate
w = uTy and the storage function V(-) with V(0) = 0, and there exists a
positive definite function S(x) such that for all t > 0:

V() < V(z(0) + /0 o7 (s)y(s)ds — /0 S@)dt  (4.43)

If the equality holds in the above and S(x) = 0, then the system is said to be
lossless . m

Some authors [228] also introduce a notion of weak strict passivity that is
more general than the strict state passivity: the function S(x) is replaced by
a dissipation function D(z,u) > 0, D(0,0) = 0. One gets a notion that is close
to (4.55). The notion of weak strict passivity is meant to generalize WSPR
functions to nonlinear systems.

Theorem 4.52. [510] Suppose that the system (X) in (4.20) is lossless with
a minimum value at x = x* such that V(z*) = 0. If the state space is reachable
from x* and controllable to x*, then Vo () = V,.(+) and thus the storage function
is unique and given by V(z) = ft? w(u(t),y(t))dt with any t; <0 and v € U
such that the state trajectory starting at * at tq is driven by u(-) to z =0 at

t = 0. Equivalently V(z) = — ;1 w(u(t),y(t))dt with any t1 > 0 and u € U
such that the state trajectory starting at x at t = 0 is driven by u(-) to * at
t1. | ]

Remark 4.53. If the system (X) in (4.20) is dissipative with supply rate
w = uly and the storage function V(-) satisfies V(0) = 0 with V() pos-
itive definite, then the system and its zero dynamics are Lyapunov stable.
This can be seen from the dissipativity inequality (4.22) by taking w or y
equal to zero.

Ezample 4.5 (passivity C dissipativity). Consider H(s) = %jr; From Theo-
rem 4.18 this system has a finte £,-gain for all 1 < p < 400 and it is dissipative
with respect to all supply rates w(u,y) = v|ulP —d|y|P, 1 < p < 4+o00. However
H(s) ¢ PR and it is not passive, i.e. it is not dissipative with respect to the

supply rate w(u,y) = uy.

A general supply rate has been introduced by [207] which is useful to
distinguish different types of strictly passive systems and will be useful in the
Passivity Theorems presented in the next section. Let us reformulate some
notions introduced in Definition 2.1 in terms of supply rate, where we recall
that 8 < 0.
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Definition 4.55 (General Supply Rate). Let us consider a dissi-
pative system, with supply rate

w(u,y) =y"Qy +u" Ru+ 2y Su (4.44)

with @ =QT, R=R". If Q =0, R= —¢l,,, e >0, S = 1I,, the
system is said to be input strictly passive (ISP), i.e.

tTSU,SS € tuTSUSS
Ay()()d26+ A (s)u(s)d

If R=0,Q=—-6l,,6>0,5= %Im, the system is said to be output
strictly passive (OSP), i.e.

/@F@mwmszﬁ+q/yﬂﬂmgw
0 0

If Q=—-6I,,6>0, R=—¢cl,,e>0, 5= %Im, the system is said
to be very-strictly passive (VSP), i.e.

" or "or "or
/Oy (s)u(s)ds—i—BZé/o Yy (s)y(s)ds—i—e/o u' (s)u(s)ds

Note that Definitions 4.51 and 4.55 do not imply in general the asymptotic
stability of the considered system. For instance SJ;“Z is ISP as stated in Defini-
tion 4.55; see also Theorem 2.6. Though this will be examined at several places
of this book, let us explain at once the relationship between the finite-gain
property of an operator as in Definition 4.17, and dissipativity with respect to
a general supply rate. Assume that the system (X') is dissipative with respect

to the general supply rate, i.e.

V(x(t)) = V(2(0)) < /0 [y" (5)Qu(s) +u” (s)Ru(s) + 2y" (s)Sy(s)lds (4.45)

for some storage function V(-). Let S = 0. Then it follows that

- / VT (5)Qy(s)ds < / o (s) Ru(s)ds + V (2(0)) (4.46)
0 0

Let @ = —01,, and R =€l,;,, § > 0, € > 0. Then we get

/IyT(s)Qy(s)ds < g/ uT(s)Ru(s)ds + V(x(0)) (4.47)
0 0
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so that the operator u +— y has a finite L£o-gain with a bias equal to V(z(0)).
Dissipativity with supply rates w(u,y) = —dy’y + euTu will be commonly
met, and is sometimes called the H,.-behaviour supply rate of the system.
Therefore dissipativity with @ = —dl,, and R = €l,, and S = 0 implies
finite-gain stability. What about the converse? The following is true:

Theorem 4.56. [206] The system is dissipative with respect to the
general supply rate in (4.44) with zero bias (f = 0) and with Q < 0,
if and only if it is finite-gain stable.

We note that the constant k in Definition 4.17 may be zero, so that no
condition on the matrix R is required in this Theorem. The = implication
has been shown just above. The <= implication holds because of zero bias.
Then it can be shown that 0 < fg [y (5)Qu(s)+uT (s)Ru(s)+2yT (s)Sy(s)]ds.
Dissipativity is here understood in the sense of Hill and Moylan in Definition
4.22.

Remark 4.57. A dynamical system may be dissipative with respect to several
supply rates, and with different storage functions corresponding to those sup-
ply rates. Consider for instance a linear time invariant system that is asymp-
totically stable: it may be SPR (thus passive) and it has a finite gain and is
thus dissipative with respect to a H,, supply rate.

Let us make an aside on linear invariant systems. A more general version
of Theorem 3.44 is as follows. We consider a general supply rate with @ <0
and R= R+ SD+ DTS+ DTQD > 0. We denote S = S + DTQ. Then

Theorem 4.58. [531] Consider the system (A, B,C, D) with A asymptoti-
cally stable. Suppose that

— twus S S —E tUTSUS S xZ .
[ ot vens <=5 [l ueds < o) @)
where B(-) > 0 and 5(0) = 0. Then

o There exists a solution P > 0 to the ARE
ATP + PA+ (PB—-CTSTYRT(BTP - SC)-CTQC =0  (4.49)
such that A* = A+ BR™Y(BTP — SC) is asymptotically stable, and

o there exists a solution P > 0 to the ARI

ATP + PA+ (PB—-CTSTYRT(BTP - 8C)-CTQC <0 (4.50)



4.4 Dissipative Systems 211

Conversely, suppose that there exists a solution P > 0 to the ARE (4.49)
such that the matriz A* = A+ BR™Y(BTP — SC) is asymptotically stable.
Then the matriz A is asymptotically stable and the system (A, B,C,D)
satisfies (4.48) with the above supply rate. [ ]

We shall see in Section 4.5 and Chapter 5 that this can be generalized to a
class of nonlinear systems.

4.4.4 Examples

Example 4.59. At several places we have insisted on the essential role played
by the constant 8 in Definition 2.1. Let us illustrate here how it may influence
the Lyapunov stability of dissipative systems. For instance let us consider the
following example, brought to our attention by David Hill, where the open-
loop system is unstable:

ax(t
y(t) = — 1225 (4.51)

z(0) = xo
with o > 0. Let us note that

Jig wy(®)dt = = J;1 () = (0) r5 dt
(4.52)

> —%[arctan(xQ(tl)) — arctan(z?(to))]

Thus the system is passive with respect to the storage function V(z) =
$(5 — arctan(2?)) and V(z) > 0 for all finite z € IR". Hence the system is
dissipative despite the fact that the open-loop is unstable. Note however that
—V(0) = B(0) < 0 and that the system loses its observability at z = oo.
We shall come back later on conditions that assure the stability of dissipative
systems. |

Ezample 4.60. [206] The system is now given by

az(t)

L(t) = x(t) + 15y + 2yu(t)

y(t) = — 75505 + u(t) (4.53)

x(0) = zg
with o > 0. Then we get that
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/0 (vu” (s)u(s) —y" (s)y(s))ds = V(x(t)) — V (x0) (4.54)

with the same V(x) as in the previous example. Thus the system is weakly
finite-gain stable, but the unique equilibrium of the uncontrolled system x = 0
is Lyapunov unstable. We notice that the system in (4.53) is not passive.
Therefore weak finite-gain stability is not sufficient to guarantee the Lyapunov
stability. |

In view of the above generalizations of the dissipativity and supply rate,
a dissipation equality that is more general than the one in Definition 4.51
can be introduced with a so-called dissipation function D(z,u,t) > 0 for all
z € X, admissible u, and ¢t > 0, such that along trajectories of the system
(X)) one gets

V(z(t),t) = V(x(0),0) —|—/0 w(u(s),y(s))ds + D(x(0), u,t) (4.55)

Ezxample 4.61. Let us continue with Example 4.40. Let us consider the storage
functions V(z) = lC’a:2 with2—v/3 < C < 2+\f 3. It is easily computed that
the dissipation functlon is D(z, u,t) fo Yeu(s))? + Reu?(s)]ds, with
Yo = g and R. = 1 — Cv2 . The ch01ce for thls notation stems from the
electrlcal circuit mterpretation where C' is a capacitor and R, is a resistance.
It is worth noting that for each value of the coefficient C, then there is a
different physical realization (different resistors, capacitors), but the state
equations (4.35) remain the same. Comparing with Definition 4.51, one has
S(z) = 2% when C = 1. Comparing with the ISP Definition 4.55 one has
€ = R, provided R, > 0. An interesting interpretation is in term of phase
lag. Let us choose the two outputs as y1 = /Reu and yp = \/a(x — YeU).
Then the transfer function between ys(s) and u(s) (the Laplace transforms of
both signals) is equal to \/5% As C varies from 2 — /3 to 24 /3, 7.
varies monotonically from —2(v/3 + 1) to 2(v/3 — 1). Thus the phase lag of
y2(s) with respect to u(s) increases monotonically with C. Let us now study
the variation of the dissipation function D(z,u,t) with C. For small C the
low-dissipation trajectories are those for which ||z|| is decreasing. For large C,
the low-dissipation trajectories are those for which ||z|| is increasing. There
are two extreme cases, as expected: when C' = 2—+/3, then V(x) = V,(x) and
it is possible to drive the state to the origin with an arbitrarily small amount
of dissipation. In other words, the stored energy can be extracted from the
system. Doing the converse (driving the state from the origin to some other
state) produces a large amount of dissipation. The other extreme is for C' = 2+
V/3, then V(x) = V,.(z). In this case any state is reachable from the origin with
an arbitrarily small amount of dissipation. The converse (returning the state
to the origin) however dissipates significantly. This illustrates that for small C'
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the dissipation seems to be concentrated at the beginning of a trajectory which
leaves the origin x = 0 and returns back to the origin, and that the opposite
behaviour occurs when C is large. This simple example therefore allows one
to exhibit the relationship between phase lag and dissipation delay.

Ezample 4.62. If a system (A, B,C,D) is SPR and the vector relative de-
gree r = (1 ... DT € R™ (i.e. D = 0), then the system is OSP. Indeed
from the KYP Lemma 3.11, defining V(z) = 27 Pz one obtains V (z(t)) =
2T (#)(QQT + L)x(t) + 2yT (t)u(t) along the system’s solutions. Integrating
and taking into account that L = 2uP is full rank, the result follows. It is
noteworthy that the converse is not true. Any transfer function of the form
7y, 0> 0,0 <a < 2Vbis SPRif and only if 0 < a < a. However 5
is not SPR (obvious!) but it defines an OSP system. One realization is given
by a':l( ) = arg(t), Zo(t) = —x1(t) — arg( ) + u( ) y(t) = x2(t). One checks
that fo y(s)ds > —1(23(0) + 23(0)) + fo s)ds. Thus SPRness is only
sufficient for OSPness, but it is not necesbary

Ezample 4.63. Consider the non-proper system y(t) = 4(t) + au(t), a > 0,
with relative degree r = —1. This system is SSPR and ISP since Re [jw + a] =

a and
t t

[ttt ="+ a [

0 0

This plant belongs to the descriptor-variable systems (see Section 3.1.5),
with state space representation:

fbl(t) = xg(t)
0=—xz1(t) + u(t)

y(t) = a(t) + au(t)

This can be rewritten as

(0) (20) = (200) () Co) g
y(t) = (0 Da(t) + au(t

This system is regular since det(sE — A) = 1. The conditions of Proposition
3.15 and of Theorem 3.16 can be checked on this example. PRness can be
checked with P = 0, while SSPRness amounts to finding ps; > 0, p11 # po2,
and wo; such that aws; + 4 < 0, with a = —(p11 —p22)? — (P11 —D22) (P22 — 1),
B = (p11 — p22)*a + pa1(p11 — pa2)(p22 — 1) + pa1(p22 — 1)%

Ezample 4.64. If a system (A, B,C, D) is SPR and if the matrix
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Q+LLT LW
= A
Q =
wTLT™ D+ DT
is positive definite with Q = —AT P— P A, then the system is VSP. This can be
proved by using again V (z) = 27 Px. Let us denote 7 = (i) . Differentiating

and using the KYP Lemma 3.11, one gets V ((t)) = —z7 (£)Qz(t)+2y™ (t)u(t).
One deduces that

t1 t1 t1
/ ul (t)y(t)dt > =V (x(ty)) + 6/ u”' (s)u(s)ds + a/ yT(s)y(s)ds
to to to
for some & > 0 and a > 0 small enough 2. Note that the condition Q > 0
implies that the vector relative degree of (A, B,C, D) is equal to (0 ... 0)7,
which implies that the matrix D # 0. Indeed D + DT = WTW and W = 0
implies that @ does not have full rank. In the monovariable case m = 1, then
r = 0. In the multivariable case, Q > 0 implies that W has full rank m. Indeed
we can rewrite Q@ > 0 as 27(Q + LLT )z + u"WTWu — 22T LWu > 0. If W
has rank p < m, then we can find a u # 0 such that Wu = 0. Therefore for
the couple x = 0 and such a u, one has 7 Qz = 0 which contradicts Q > 0.
We deduce that 7 = (0 ... 0)T € IR™. VSP linear invariant systems possess a
uniform relative degree 0.

Ezample 4.65. If a system (A, B, C, D) is SPR, then it is strictly passive with
S(x) = 27 Qx. This can be proved using the KYP Lemma.

Ezample 4.66. Consider the system H(s) = s7a:@ > 0. We will now prove
that the system is H(s) is OSP. The system is described by

y(t) = —ay(t) + u(t)
Let us consider the positive definite function V(y) = %yQ. Then

V(y(1)) = y(t)g(t) = —ay®(t) + u(t)y(t)
Integrating we obtain

~V((0)) < V((®) — V(5(0) = —a / Y2 (s)ds + / u(s)y(s)ds

:>/O u(s)y(s)ds—l—V(O)Za/O y*(s)ds

Thus the system is OSP. Taking a = 0, we can see that the system whose
transfer function is %, defines a passive system (the transfer function being
PR).

2 Once again we see that the system has zero bias provided x(tg) = 0. But in
general §(z(to)) # 0.
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Remark 4.67. As we saw in Section 2.9 for linear systems, there exists a re-
lationship between passive systems and Lo—gain [125]. Let X : u — y be a
passive system as in Definition 2.1. Define the input-output transformation
u=vw+ z, y =yw — z, (compare with (2.85)) then

p< /UT(S)y(S)dS = /(VQwT(S)w(S) — 27 (s)2(s))ds
0 0

which is equivalent to

t t

/zT(s)z(s)ds < /72wT(s)w(s)ds -p
0 0

which means that the system X’ : w — 2 has a finite £o—gain.

Ezample 4.68 (L2-gain). Let us consider the system #(t) = —x(t) + u(t),
y(t) = x(t). This system is dissipative with respect to the H., supply rate
w(u,y) = y?u? — y? if and only if there exists a storage function V(z) such
that fg (v2u?(1)—y*(7))dr > V(2(t))—V (2(0)). Equivalently the infinitesimal
dissipation inequality holds, i.e. v2u?(t) — y?(t) — V (2(t))(—z(t) 4+ u(t)) > 0.
Consider V(z) = pz?. The infinitesimal dissipation inequality then becomes
Y2u?(t) — 2%(t) — 2pz(t)(—x(t) + u(t)) > 0. In a matrix form this is equivalent

2p—1 —p
to having the matrix > 0. This holds if and only if
-»
P(2p—1)-p° >0 (4.57)

This polynomial in p has a real solution if and only if ¥2 > 1. This polynomial
is a Riccati inequality whose solvability is equivalent to 2 > 1. The system
has an £, gain equal to 1, and the condition that v? > 1 agrees with this.
Indeed the fact that the system is dissipative with respect to the above H,
supply rate implies that the Hoo-norm of its transfer function is < v (this is
known as the Bounded Real Lemma; see Section 5.9).

This example together with Example 4.64 illustrates that the same system
can be dissipative with respect to several supply rates, and with different
storage functions.

Proposition 4.69. Consider the system represented in Figure 4.5, where ¢(-)
is a static nonlinearity, ¢ > 0 and c¢(c) >0 for alloc € R. Then H :ur—y
18 passive. |

Proof: Let us adopt the classical notation (u|y): = fgu(s)y(s)ds. Then
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o Y
— > ﬁ —>» Oo) T »

Fig. 4.5. A linear system and a static nonlinearity in cascade

(y [u)e = (d(o)|u):

= (¢(0)lgo + o)

=q [y #(0(s))&(s)ds + [, o(s)elo(s)]ds (4.58)
f;’é&% Jo + [ o(s)(0(s))ds
> fo t)¢ qfo O)¢

where we have used the fact that o(t)¢(c(t)) > 0 for all ¢ > 0. Note that
= fog @(§)d¢ > 0 and is therefore qualified as a storage function, o(-)
being the state of this system.

Proposition 4.70. If a system is output-strictly passive, then it is also weakly
finite gain stable, i.e. OSP = WFGS. [ ]

Proof: The following upperbound can be computed:

8 [3y2(s)ds < B+ [ u(s)y(s)ds
< B+ fyuls)y(s)ds + 5 [y (Vau(s) — L)%t (4.59)
=0+3 fo s)ds + 55 fo ds

Choosing A = % one gets

é/t 2(s)ds<ﬂ—|—i/tu2(s)alt
2/, Y =775/,

which ends the proof. [ ]

Several results are given in [512] which concern the Lyapunov stability of
systems which are finite-gain stable. They are not presented in this section
since they rather belong to the kind of results presented in Section 5.1.
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Example 4.71. Let us consider two linear systems in parallel, i.e.

Y1 (t) = klu(t)

Y2(t) = —aya(t) + kau(t) (4.60)

y(t) =yi(t) +y2(t)

where a > 0. Thus, for some constants § and k3

f; u(s)y(s)dt = f; u(s)y1(s)ds + fof u(s)y2(s)ds

> k1 fg u?(s)ds + B+ ks f02 y3(s)ds
(4.61)
> B [u2(s)ds + B+ K [y (43 (s) + y3(s))ds

> B [Tu(s)ds + B+ 5 [ (yi(s) + ya(s))?ds

where k' < k3 and k' < ﬁ So the system (X) : u+— y is VSP.

4.4.5 Regularity of the Storage Functions

Until now we have not said a lot on the properties of the storage functions:
are they differentiable (in x)? Continuous? Discontinuous? We now state some
results which guarantee some regularity of storage functions. As we already
pointed out, storage functions are potential Lyapunov functions candidate. It
is well-known that Lyapunov functions need not be smooth, neither differen-
tiable.

Continuous Storage Functions

Probably the first result in this direction is the following Lemma, for which
we first need a preliminary definition.

Definition 4.72. [209] A function V : X — IR is called a virtual storage
function if it satisfies V(0) =0 and

ty
V(zo) +/ w(u(s)y(s)ds > V(xq1) (4.62)
to
for all t1 > tg and all admissible u(-), with x(tg) = xo and x(t1) = x1. [ |

Clearly if in addition one imposes that V' (z) > 0 then one gets storage
functions.
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Lemma 4.73. [209] Let the system (X) be locally w-uniformly reachable in
the sense of Definition 4.44. Then any virtual storage function which exists
for all x € X is continuous. [ |

Proof: Consider an arbitrary state zo € X, and let a virtual storage function
be V(-). Then for any z; in a neighborhood {2 of zg, it follows from (4.62)
that o
V(zo) —|—/ w(u(s),y(s)ds > V(z1) (4.63)
to
where the time ¢; corresponds to ¢ in (4.36) and the controller u(-) is the
one in Definition 4.44 (in other words, replace [0, t] in (4.36) by [to, t1]). From
(4.36) and (4.63) and considering transitions in each direction between xg and
x1, one deduces that | V(z1) — V(zo) |< p(|| 1 — 20 ||). Since x; is arbitrary
in {2 and since p(-) is continuous, it follows that V(-) is continuous at x¢.
|
The next result concerns storage functions. Strong controllability means
local w—uniform reachability in the sense of Definition 4.44, plus reachability,
plus controllability. We recall that a system is controllable if every state x € X
is controllable, i.e. given x(tp), there exists t; > to and an admissible u(-)
on [tg,t1] such that the solution of the controlled system satisfies z(t;) =
0 (sometimes this is named controllability to zero). Reachability is defined
before Definition 4.36. Dissipativity in the next Theorem, is to be understood
in Hill and Moylan’s way; see (4.24).

Theorem 4.74. [209] Let us assume that the system (X) in (4.20) is strongly
controllable. Then the system is cyclo-dissipative (resp. dissipative in the sense
of Definition 4.22) if and only if there exists a continuous functionV : X — IR
satisfying V(0) = 0 (resp. V(0) = 0 and V(x) > 0 for all x € X) and
V(z(t)) < w(u(t),y(t)) for almost all t > 0 along the system’s trajectories. m

A relaxed version of Theorem 4.74 is as follows:

Theorem 4.75. [401] Let the system x(t) = f(x(t),u(t)) be dissipative in
the sense of Definition 2.1 with supply rate w(z,u), and locally w—uniformly
reachable at the state x*. Assume that for every fized u, the function f(-,u) is
continuously differentiable, and that both f(x,u) and %(x,u) are continuous
in x and u. Then the set R(x*) of states reachable form x* is an open and
connected set of X, and there exists a continuous function V : R(xz*) — IR™
such that for every xo € R(z*) and every admissible u(-)

V(x(t))—V(xo)g/O w(z(s), u(s))ds (4.64)

along the solution of the controlled system with x(0) = zg. An example of
such a function is V,.(x) + 3, where (3 is a suitable constant and V,.(x) is the
required supply as in Definition 4.36. [ |
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We have already stated the last part of the Theorem in Lemma 4.45.
The proof of Theorem 4.75 relies on an extended version of the continuous
dependence of solutions with respect to initial conditions, and we omit it
here. Let us now state a result that is more constructive, in the sense that it
relies on verifiable properties of the system. Before this, we need the following
intermediate Proposition.

Proposition 4.76. [401] If the linearization of the vector field f(z) + g(x)u
around x = 0, given by 2(t) = Az(t) + Bu(t) with A = %(0) and B = %(0),
is controllable, then the system (X) in (4.20) is locally w—uniformly reachable
at x = 0. |

Of course, controllability of the tangent linearization is here equivalent
to having the Kalman matrix of rank n. This sufficient condition for local
w—uniform reachability is easy to check, and one sees in passing that all time-
invariant linear systems which are controllable, also are local w—uniformly
reachable. Then the following is true, where dissipativity is understood in Hill
and Moylan’s sense; see (4.24):

Corollary 4.77. [/01] Let the system (X) be dissipative and suppose its tan-
gent linearization at x = 0 is controllable. Then there exists a continuous
storage function defined on the reachable set R(x*). ]

Refinements and generalizations can be found in [402]. In Section 4.5 gener-
alizations of the Kalman-Yakubovich-Popov Lemma will be stated which hold
under the restriction that the storage functions (see then as the solutions of
partial differential inequalities) are continuously differentiable (of class C'! on
the state space X). It is easy to exhibit systems for which no C! storage func-
tion exists. This will pose a difficulty in the extension of the KYP Lemma,
which relies on some sort of infinitesimal version of the dissipation inequality.
Indeed the PDIs will have then to be interpreted in a more general sense.
More will be said in section 4.6. Results on dissipative systems depending
on time-varying parameters, with continuous storage functions may be found
in [302].

Differentiable Storage Functions

Let us end this section on regularity with a result that shows that in the one-
dimensional case, the existence of locally Lipschitz storage functions implies
the existence of continuous storage functions whose restriction to IR™\ {z = 0}
is continuously differentiable. Such a set of functions is denoted as C}. We
specialize here to systems which are dissipative with respect to the supply rate
w(u,y) = y2uTu—yTy. This is a particular choice of the general supply rate in
(4.44). In the differentiable case, the dissipation inequality in its infinitesimal
form is
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VT (@(t)[f (@(t) + g(a(t))u] < y*u" (Bu(t) -y O)y(t) (4.65)

Let us define the following generalized derivative of the (non-differentiable)
function V() at =

OV (z) = lim inf ﬁ[v@ +h) —V(x)—¢"h] (4.66)
where ¢ € IR". When 0V (z) > 0, one calls ¢ a viscosity subgradient of V(-) at
x. The set of all such vectors (, i.e. D~V (z), is possibly empty, but can also
be non-single-valued (in other words: multivalued!). The viscosity subgradient
is also sometimes called a regular subgradient [415, Equation 8(4)]. In case the
function V() is proper convex, then the viscosity subgradient is the same as
the subgradient from convex analysis defined in (3.188) [415, Proposition 8.12],
and if V(-) is differentiable it is the same as the usual Euclidean gradient. An
introduction to viscosity solutions is given in Section A.3 in the Appendix.
With this machinery in mind, one may naturally rewrite (4.65) as

CTLf(2(t) + gz()u] < y*u” (Bu(t) —y" (y(t), V¢ €OV (x)  (4.67)

for all x € X \ {0} and all admissible u(-) (see Proposition A.52 in the Ap-
pendix). If the function V(-) is differentiable, then (4.67) becomes the usual
infinitesimal dissipation inequality VVT (z)[f (z(t)+g(z(#))u] < v2uT (#)u(t)—
yT (t)y(t). As we saw in Section 3.9.4, it is customary in nonsmooth and con-
vex analysis, to replace the usual gradient by a set of subgradients. The set
of all continuous functions V : IR"™ — IR that satisfy (4.67) is denoted as
W(X,~?). The set of all functions in W(X,~?) which are proper (radially
unbounded) and positive definite, is denoted as Wao (X, 7?).

Theorem 4.78. [{18] Let n =m =1 in (4.74) and assume that the vector
fields f(x) and g(x) are locally Lipschitz. Assume that for some v > 0 there
exists a locally Lipschitz V€ Weo(X,7%). Then Wso (2,73 N CL # 0. [

The proof is rather long and technical so we omit it here. This result means
that for scalar systems, there is no gap between locally Lipschitz and C¢ cases.
When n > 2 the result is no longer true as the following examples prove [418].

Ezample 4.79. [418] Consider the system (X7) with n =m = 2:

1(t) = 21(t) | (21 (t)+ | 22(t) | +ur(t))
(4.68)
@2 (t) = w2(t)(—21(t)— | 22(t) | +ua(t))

Let us define Vi(x) = 2| 1 | +2 | 22 |, which is a proper, positive definite
and globally Lipschitz function. Moreover V7 € W, (X1, 1). However it is not
C¢ and any function that is C} and which belongs to W(X1, 1), is neither
positive definite nor proper [418, Proposition 2.2].
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Ezample 4.80. [418] Consider the system (X3) with n =m = 2:

{tl(t) = —xl(t) + 2 (t) + Ul(t)
, (4.69)
g (t) = 3x3 (¢) (=1 (t) — w2(t) + ua(t))

2

Let us consider Va (1, 22) = 23+ 23 . This function is proper, positive definite,
and continuous. Moreover Vo € Wy, (X2,1). However any locally Lipschitz
function in W(Xs9, 1) is neither positive definite nor proper.

Things are however not so dramatic as the next Theorem shows:

Theorem 4.81. [/18] For any system (X) with locally Lipschitz vector fields
f(x) and g(z),

inf {7y | Weo(2,7) # 0} =inf {7 | Wao(Z,7*) N Cj # 0} (4.70)
[ |

In other words, Theorem 4.81 says that, given a +, if one is able to exhibit
at least one function in Wy, (X, v?), then increasing slightly ~ allows one to
get the existence of a function that is both in Wu(X,~?) and in C¢. This is
a sort of regularization of the storage function of a system that is dissipative
with respect to the supply rate w(u,y) = v?ulu — yTy.

Remark 4.82. The results hold for systems which are affine in the input, as in
(4.20). For more general systems they may not remain true.

Ezxample 4.83. Let us lead some calculations for the system and the Lyapunov
function of Example 4.79. We get

2 or —2 or [—2,2]

8V1 (Z‘) =

2 or —2 or [—2,2]
(4.71)

T T T

z; >0 2;<0 z2; =0
Thus the left hand side of (4.67) is

Gulzy| (=21 + |z2] 4+ u1)

(4.72)

Coxa(—x1 — |z2| + u2)

Thus we may write the first line, taking (4.71) into account, as
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2(—2% + z1|w2| + z101) if 21 >0
2z} — w1|xa| — 21w) if 21 <0 (4.73)

[=2]z1 (=21 + |z2| + w1); 2]z [(—21 + |22 + wa)] = {0} if 21 =0

and similarly for the second line. It happens that V'(-) is not differentiable at
2z =0, and that f(0)+g¢(0)u = 0. Let y1 = x1, y2 = x2. Consider the case 1 >
0, x5 > 0. We obtain —2yTy+2yTu < —2yTy+yTy+uTu = —y+yTy+uTu.
For x5 > 0 and 21 = 0 we obtain —2y3+2ysus < —y+y y+ulu = —y2+u’u.

4.5 Nonlinear KYP Lemma

4.5.1 A Particular Case

The KYP Lemma for linear systems can be extended for nonlinear systems
having state-space representations affine in the input. In this section we will
consider the case when the plant output y is not a function of the input u. A
more general case will be studied in the next section. Consider the following
nonlinear system

o(t) = f(x(t) + g(z(t))u(t)
(&) q y(t) = h(x(t)) (4.74)
x(0) = xo

where z(t) € R", u(t) € R™, y(t) € R™, f : R" — IR" with f(0) = 0,
R(0) =0, g : R" — R™™, h : R" — IR™, are smooth functions of z. We
then have the following result.

Lemma 4.84 (KYP Lemma for nonlinear systems). Consider the non-
linear system (4.74). The following statements are equivalent.

(1) There exists a C' storage function V(x) > 0, V(0) = 0 and a function
S(x) > 0 such that for allt > 0:

V() — V(@(0) = /O o7 ()u(s)ds — /0 S(a(s))ds (4.75)

The system is strictly passive for S(x) > 0, passive for S(z) > 0 and
lossless for S(x) = 0.
(2) There ezists a C' non-negative function V : X — IR with V(0) = 0, such
that
LiV(z) =—-S(x)
(4.76)
L,V(x) = hT(x)
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where L,V (x) = 8‘(;750‘7’)9(3:). [ |

Remark 4.85. Note that if V(x) is a positive definite function (i.e. V(x) > 0),
then the system #(¢) = f(z(t)) has a stable equilibrium point at x = 0. If in
addition S(z) > 0 then z = 0 is an asymptotically stable equilibrium point.

Proof of Lemma 4.84:
e (1)= (2). By assumption we have
V(a(t)) — V((0)) = /0 o7 (s)u(s)ds — /0 S(x(s))ds (4.77)

Taking the derivative with respect to ¢ and using (4.74)

d(Vox oV(zx) .
(o) (1) = 2V ) (¢)

= ) (£(2(t)) + gla(t))ult)) .

2 LV ((t) + LyV (x(t))ult)

= yT(t)u(t) — S(a(t) (sce (4.74))

Taking the partial derivative with respect to u, we get LV (z) = —S(x)
and therefore L,V (z) = hT (z).
e (2)=(1). From (4.74) and (4.76) we obtain

LVd; 2 (t) = LV (a(t) + LV (x(t))u(t) = =S(x(t)) + h' (x(t))u(t)
Integrating the above we obtain (4.74). m

Remark 4.86. From these developments, the dissipativity equality in (4.75) is
equivalent to its infinitesimal version V = L;V 4 L,Vu = hT (z)u(t) - S(z) =
(u,y) — S(z). Obviously this holds under the assumption that V(-) is suf-
ficiently regular (differentiable). No differentiability is required in the gen-
eral Willems’ Definition of dissipativity, however. Some authors [228] system-
atically define dissipativity with C! storage functions satisfying of(||z||) <
V(z) < B(||z||) for some class-Ko functions, and infinitesimal dissipation
equalities or inequalities. Such a definition of dissipativity is therefore much
more stringent than the basic definitions of Section 4.4.

4.5.2 Nonlinear KYP Lemma in the General Case

We will now consider the more general case in which the system is described
by the following state-space representation affine in the input:
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() = f(x(t)) + g(z(t))u(t)
(&) (4.79)
y(t) = h(z(t) + j(2(t))u(d),
where z(t) € R", u(t) € R™, y(t) € R™, and f : R" — R", g : R" —
R h:R"— R™, j: R"— IR™™, are smooth functions of z with
f(0) = 0,h(0) = 0. What follows may be seen as settling the material of
Definiton 2.1, Theorem 2.2 and Corollary 2.3 in the context of dissipative
systems.

Assumption 3 The state space of the system at (4.79) is reachable from
the origin. More precisely given any x1 and t1, there exists tg < t1 and an
admissible control u(-) such that the state can be driven from x(tg) = 0 to
x(tl) =1.

Assumption 4 The available storage Vo (-), when it exists, is a differentiable
function of x.

These two assumptions are assumed to hold throughout this section. Con-
sider the general supply rate:

w(u,y) =y Qy + 2y" Su+u” Ru
(4.80)
s3]l

with @ = Q7, R = RT. We then have the following Theorem which is due to
Hill and Moylan [207], and concerns the dissipativity as in Definition 4.22.
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Lemma 4.87 (NL KYP Lemma: general case). The nonlinear
system (4.79) is dissipative in the sense of Definition 4.22 with respect
to the supply rate w(u,y) in (4.80) if and only if there exists functions
V:R"— R, L:R"— R, W:IR"— RY”™ (for some integer q),
with V (-) differentiable, such that:

Viz) >0
V(0) =0
VVT(x)f(x) = h" (2)Qh(z) — L™ (x)L(x) (4.81)

where

S(x) 2 Qj(x) + S
(4.82)

R(z) 2 R+ j7(2)S + STj(z) + j7 (2)Qj(x)

Proof:
Sufficiency. From (4.80), (4.79), (4.81) and (4.82) we obtain

w(u,y) = y"Qy + 2y" Su + u” Ru
= (h(@) +j(@)0)" Q(h() + j(x)u) + 2(h(z) + j(x)u)" Su +u’ Ru
= b (2)Qh(z) + 2u”jT (2)Qh(z) + u” jT (z)Qj(z)u + u” Ru+
+2u”§7 (2)Su + 207 (x)Su
= nT(2)Qh(z) + 2uT§T (x)Qh(x) + uT R(x)u + 2hT (x)Su

(4.83)
so that
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w(u,y) = VVT(2)f(z) + LT (z)L(z) + u” R(z)u + 20T [ST + ;T (x)Q]h(z)
= VVT(2)f(z) + LT (z)L(z) + u” R(z)u + 2uT ST (z)h(x)
=VVT(2)f(z) + LT (z)L(z) + " W (2)W (z)u + uT g7 (z)VV (z)+
+2uT W7 (2)L(x)
= VT (2)i + (L(z) + W(x)u)T (L(z) + W (z)u)
> VT (2)i = V(z)

(4.84)
Integrating the above we get

¢
/ w(s)ds > V(z(t)) — V((0) (4.85)
0
Necessity. We will show that the available storage function V,(z) is a solu-
tion to the set of equations (4.81) for some L(-) and W (-). Since the system
is reachable from the origin, there exists u(.) defined on [¢_1,0] such that
z(t—1) = 0 and x(0) = z¢. Since the system (4.79) is dissipative it satisfies
(4.24), then there exists V(x) > 0,V (0) = 0 such that:
t 0 t
ft,l w(s)ds = ft,l w(t)dt + [ w(s)ds
> V(z(t)) = V(x(t-1))

>0

Remember that f:ﬁl w(s)ds is the energy introduced into the system. From

the above we have . 0
/ w(s)ds > —/ w(t)dt
0 t_1

The right-hand side of the above depends only on zy. Hence, there exists a
bounded function C(-) € IR such that

/Iw(s)ds > C(zg) > —o0
0

Therefore the available storage is bounded:

0<Vi(w)=  sup {—/Otw(s)ds} < toc.

z=x(0),t1>0,u

Dissipativeness in the sense of Definition 4.22 implies that V,,(0) = 0 and the
available storage V,(z) is itself a storage function, i.e.
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Va(2(8)) — Vi (2(0)) g/o w(s)ds ¥ ¢ >0

or

dt

Since the above inequality holds for all ¢ > 0, taking the derivative in the
above it follows that

0< /0 (w(s) — Ve (s))ds v £ >0

dVaox) a

0 < w(ua y) - dt d(xvu)
Introducing (4.79)
d(z,u) = w(u,y) — —d(‘f;to””)
= wlu, h(z) + j(x)u] — F=(x) [f(2) + g(x)u] (4.86)

>0

Since d(x,u) > 0 and since w(u,y) = y* Qy + 2yT Su + u” Ru, it follows that
d(x,u) is quadratic in u and may be factored as

d(w,u) = [L(x) + W (z)u]" [L(x) + W ()]

for some L(z) € R?,W(z) € RT™ and some integer q. Therefore from the
two previous equations and the system (4.79) and the Definitions in (4.82) we
obtain

d(x,u) = =Gz () [f(2) + g(@)u] + (h(z) + j(2)u)" Q(h(z) + j(x)u)+
+2(h(z) + j(2)u)T Su + uT Ru
= —VV/ (2)f(z) = VV ] (2)g(z)u + h" (x)Qh(x)+
+2h7 (2) [Qj () + SJu+u” [R+ jT(2)S + STj(x) + j7 ()Qj(z)] u
= —VV,/ (2)f(z) = VV] (2)g(x)u + h" (x)Qh(x)+
+2h7 (2)S (z)u + uT R(z)u
= LT (z)L(x) + 2L7 ()W (2)u + uTWT ()W (z)u

(4.87)
which holds for all z, u. Equating coefficients of like powers of u we get:
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V! (@) f(z) = BT (2)Qh(x) — LT () L(x)

39" (@) VVa(x) = 57 (2)h(x) — WT(2)L(x) (4.88)

R(z) = WT(z)W(x)

which concludes the proof. [ |

If cyclo-dissipativity is used instead of dissipativity, then the first two
conditions on the storage function V'(-) can be replaced by the single condition
that V(0) = 0 [209]. Consequently, Lemma 4.87 proves that:

Hill-Moylan’s dissipativity 4 reachability from 2 = 0 + C? available
storage

)

Willems’ dissipativity with one C! storage function V (-) with
V(0) =0.

Actually the Lemma proves the = sense, and the <= sense is obvious. Using
the sufficiency part of the proof of the above Theorem we have the following
Corollary, which holds under Assumptions 3 and 4:

Corollary 4.88. [207] If the system (4.79) is dissipative with respect to the
supply rate w(u,y) in (4.80), then there exists V(z) > 0,V (0) = 0 and some
L:X—R,W:X — R such that

W = — [L(z) + W(2)u]" [L(z) + W (z)u] + w(u, y).
||

Under the conditions of Corollary 4.88, the dissipation function in (4.55) is
equal to D(x(0),u.t) = [ [L(a(s)) + W(a(s))u(s)]” [L(a(s)) + W(x(s))u(s)]
ds. What about generalizations of the KYP Lemma when storage functions
may not be differentiable (even possibly discontinuous)? The extension passes
through the fact that the conditions (4.81) and (4.82) can be rewritten as a
partial differential inequality which is a generalization of a Riccati inequation
(exactly as in Section 3.1.2 for the linear time invariant case). Then relax the
notion of solution to this PDI to admit continuous (or discontinuous) storage
functions. See Section 4.6.

Remark 4.89. The Lemma 4.84 is a special case of Lemma 4.87 for

1
Q=0,R=0,5=Ij=0
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In that case (4.81) reduces to
{VVT(w)f(x) = —L"(z)L(z) = —S(x)
g7 (@)VV (z) = h(z)

Remark 4.90. If j(z) = 0, then the system in (4.79) cannot be ISP (that
corresponds to having R = —el in (4.80) for some € > 0). Indeed if (4.79) is
dissipative with respect to (4.80) we obtain along the system’s trajectories:

Vo) (1) = w(u(t), y(t))

= W7 (@(t)Qh(x(t)) — L(x(t) LT (x(t)) + 2h7 (x(1))S (x(t))u(t)

(4.89)

+2y7 (H)Qj ((t))u(t) + 2y (1) Su(t) — 2u™ (t)57 (x(1)) Qs (= (t) Ju(t)
—2u® (t)j7 (x(t)) Su(t)

— T (HQu(E) + 2y7 (1) Su(t) — cul ()ut)
(4.90)
If j(x) = 0 we get —L(x)LT (z) = —euTu which obviously cannot be satisfied
with = and w considered as independent variables (except if both sides are
constant and identical). This result is consistent with the linear case (a PR
or SPR function has to have relative degree 0 to be ISP).

4.5.3 Time-varying Systems

All the results presented until now deal with time-invariant systems. This
is partly due to the fact that dissipativity is a tool that is used to study
and design stable closed-loop systems, and the Krasovskii-LaSalle invariance
principle is at the core of stability proofs (this will be seen in Chapter 5). As
far as only dissipativity is in question, one can say that most of the tools we
have presented in the foregoing sections, extend to the case:

&(t) = f(z(t,t) + g(z(t), t)u(t)
(X4) (4.91)

y(t) = h(z(t),1) + 5 (2(t), )u(t)
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where the well-posedness conditions are assumed to be fulfilled (see section
3.9.2). The available storage and required supply are now defined as

t1
Va(to,z) = sup —/ w(u(t),y(t))dt (4.92)
a::w(to),u(-),tlzto to
and
to
Vi(to,z) = inf / w(u(t),y(t))dt (4.93)
u(+),t<to Jy

Then one has:

Lemma 4.91. Let Assumptions 3 and 4 hold for (4.91). Suppose moreover
that the required supply V,.(t,x) is continuously differentiable on R"™ x IR.
The system (4.91) is dissipative in the sense of Definition 2.1 with = 0 if
and only if there exists a continuous almost everywhere differentiable function
V:RxR"— R, V(tx) >0 for all (t,z) € R x IR", V(t,0) = 0 for all
t € IR, and such that

~VWT (@) f(x) = G5 ' (z) = 3VVT(x)g(x,t)
>0 (4.94)
h(x) = 59" (2, )YV (x)  j(x,t) + 57 (z,1)

4.5.4 Nonlinear-in-the-input Systems

So far only nonlinear systems which are linear in the input have been consid-
ered in this book. It seems that there is no KYP Lemma extension for systems
of the form

y(t) = h(z(t), u(t)) (4.95)

z(0) = zo
with f(0,0) = 0 and h(0,0) = 0. It is assumed that f(-,-) and h(-,-) are

smooth functions (infinitely differentiable).

Proposition 4.92. [305] Let 2 = {x € R" | %f(x,O) = 0}. Necessary
conditions for the system in (4.95) to be passive with a C? storage function
V() are that

o ()2l f(2,0)<0
(b) %—‘;g(x,O) = h"(z,0) for all x € 2
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o (¢)X¥ %UJ;( ,0).% < % (x,0) + 8h(a: 0) for all x € 02
where f;(x,u) is the ith component of the vector function f(x,u). ]

Proof: [303] Consider an auxiliary function F' : R" x IR™ — IR defined as
F(z,u) = %—‘;f(x,u) — hT (2, u)u. Since the system in (4.79) is passive, it is
clear that F(x,u) <0 for all u € Bm Therefore (a) follows by setting u = 0.
For all x € {2, one has F(x,0) = aq« (2,0) = 0. Thus F(z,u) < F(z,0) =0
for all z € 2 and for all w € IR™. In other words F'(z, ) attains its maximum
at u = 0 on the set (2. Let us now define go(z) = %(x, 0). We obtain for all
x € (2

0=55(r,0) = 575, 0) T (x,0)

x u T
0> 11; (x,0) = —8((8V/8bl(8f/8 ) lu=0 (%(m 0) + % (x,O)) (4.96)
n 9, onT
from which (b) and (c) follow. [ |

4.6 Dissipative Systems and Partial Differential
Inequalities

As we have seen in Section 4.4.5, storage functions are continuous under some
reasonable controllability assumptions. However it is a much stronger assump-
tion to suppose that they are differentiable, or of class C'. The versions of
the KYP Lemma that have been presented above, rely on the property that
V(-) is C*. Here we show how to relax this property, by considering the in-
finitesimal version of the dissipation inequality: this is a partial differential
inequality which represents the extension of the KYP Lemma to the case of
continuous, non-differentiable storage functions.

4.6.1 The linear invariant case

First of all and before going on with the nonlinear affine-in-the-input case,
let us investigate a novel path to reach the conclusions of Section 3.1.2. We
consider the linear time-invariant system

&(t) = Ax(t) + Bu(t)
(4.97)
y(t) = Cz(t) + Dz(t)

Let us define the Hamiltonian function
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H(z,p) = s, [p" (Az + Bu) — w(u, y)] (4.98)

where the supply rate is chosen as w(u,y) = u”y. By rearranging terms one
gets

H(z,p) = pT Az + sup [(p" B — 27CT)u — u” Du) (4.99)
uwelR™

D>0

Let us assume that D > 0 (<= D + DT > 0), so that the maximizing u is
given by

u* = (D+ D"y 1 (BTp - Cx) (4.100)

and the matrix D + D7 arises from the derivation of u” Du. Injecting u* into
H(z,p) and rewriting u” Du as Ju” (D + DT)u, one obtains

1
H(z,p) = pT Az + i(BTp — C2)T(D+ D) "Y(BTp - Cx) (4.101)

Let us now consider the quadratic function V(z) = 127 Pz, P = PT, and

2
H(x,P) = H(x, %—‘;). We obtain

H(z,P)=2"PAx + %(BTPx —Cx)"(D+D")"Y(BT Pz — Cz) (4.102)

Now imposing that H(z,P) < 0 for all # € IR" and using 27 PAxr =
12T (ATP 4+ PA)z we get

ATP+ PA+ (PB-CT)D+ D)"Y (BTP-0) <0, (4.103)

which is the Riccati inequality in (3.17). We have therefore shown that under
the condition D > 0 the inequality H (z, %) < 0 is equivalent to the Riccati
inequality in (4.103), thus to the matrix inequality in (3.3).

D=0

Let us now investigate what happens when D = 0. Following the same rea-
soning one finds that the maximizing input does not exist (the function to
maximize is (p7 B — 2T CT)u) so that it is necessary for the supremum to have
a meaning (to be different from +o00) that p” B — 27CT =0 for all z € R".
Choosing the same storage function as above it follows that H(z, %) <0

yields PA+ ATP <0 and PB =CT.
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D >0

Let f : R™ — IRU {400} be a function not identically +oo, minorized by
an affine function. Then the conjugate function of f(-) is defined by [210,
Definition 1.1.1]

)2 swp o [Tu— f(u) (4.104)
wedom(f)
Doing the analogy with (4.98) one finds f(u) = u? Du, z = BTp — Cx, and
H (z) is the sum of the conjugate of f(u) and p” Az. It is a basic result from
convex analysis that if D 4+ DT > 0 then

f*(z)=2"(D+ D)7z, (4.105)

from which one straightforwardly recovers the previous results and the Riccati
inequality. We also saw what happens when D = 0. Let us now investigate
the case D + DT > 0. We get [210, Example 1.1.4]:

+o0 if 2 ¢ Im(D + DT)
(=) = (4.106)
zT(D+ D7)z if z € Im(D + DT)

where (D + D7) is the Moore-Penrose pseudo-inverse of (D + D). Replacing
z by its value we obtain

H(z,p) = p" Az+

“+o00 if BTp — Cz ¢ Im(D + D7)
+
(BTp — Cz)T (D + DT)(BTp — Cz) if BTp — Cx € Im(D + D7)
(4.107)
Setting p = %—‘; and V = %xTPx with P = PT it follows from H(z,p) < 0

for all z € IR"™, that P is the solution of a degenerate Riccati inequality (DRI):

(i) Im(B"P — C) C Im(D + D7)
(4.108)
(ii) PA+ATP+ (BTP-0O)'(D+D")(BTP-C)<0

Is (4.108) equivalent to the KYP Lemma conditions? The following can be

proved:

o (3.2) = (4.108) (i),
e The conditions in (3.2) are equivalent to
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(i) LLT — LW(WTW)TWTL >0
(4.109)
(i) LW[L, —WTWWTW)I =0
whose proof can be deduced almost directly from Lemma A.65 noticing
that WTW > 0.

Notice that (4.109) (ii) is equivalently rewritten as

PB—-CT =PB—-CT(D+DT)D+ D7)t (4.110)

It follows from (4.110) and standard matrix algebra [272, p.78,p.433] that
Im(BTP — C) =Im[(D + DT)Y(D + DT)(BTP — C)] C Im[(D + DT)T(D +
DT € Im((D + DT)) = Im(D + DT). Thus (4.110) <= (4.109) (ii) <=
(4.108) (i). Now obviously (4.109) (i) is nothing else but (4.108) (ii). We
therefore conclude that the conditions of the KYP Lemma in (3.2) are equiv-
alent to the degenerate Riccati inequality (4.108).

To summarize:

(ARI) in (4.103) [«<= KYP conditions (3.2) |
T (D>0)

Hamiltonian function in (4.98)

D=0 pMIin (3.2) with W =0
4 (D=0)

DRI in (4.108) or RORE in (A.40)

It is worth noting that there is no minimality assumption in (4.97).

Remark 4.93. In the degenerate case D+ DT > 0 with rank(D+D7T) = r < m,
there exists an orthogonal transformation I' = [I'} %] such that

rr Ry 0
(D+ DN L) = (4.111)
rr 00

with Ry > 0. When H(s) is PR the transfer function I'" H(s)I" = I'TC(sI,, —
A)IBIr'+ I'' DI is PR [506].

Remark 4.94 (Singular optimal control). As we saw in Section 3.1.2 and Sec-
tion 3.8, the link between passivity (the KYP Lemma) and optimal con-
trol exists when R = D + DT > 0. The optimal control problem is then
regular. There must exist a link between the KYP Lemma conditions with
D + DT > 0 and singular optimal control problems. We consider the optimal
control with cost function w(u,z) = uTy = u*(Cx + Du) = u? Ru+ 27 Cu.
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Let rank(D + DT) = r < m, and s = m — 7 be the dimension of the singular
control. Let n < s and partition B and C as B = [B; By] and C = {gl},
2
with B € anr, Bs € Rnxs, C, € Brxn’ Cy € IR**™. Then (A,B,C, D) is
PR if and only if D + DT > 0 and there exists P = CB(BB) > 0 satisfying
PB=CT and
—PA—-ATP —PB; +CT

>0 (4.112)

-BIP+C Ry

The proof can be found in [506]. It is based on the fact that when D + D7 is
not full rank, then (3.3) can be rewritten as —PBy + C = 0 and (4.112).

Remark 4.95. In [213] an algorithm is proposed which allows one to construct
a reduced Riccati equation for the case D + DT > 0. The authors start from
the KYP Lemma LMI for the WSPR case (then indeed D is not full rank
otherwise the transfer would be SSPR). We recall this algorithm and this
important result on a degenerate Riccati equation in Appendix A.4.

4.6.2 The Nonlinear Case y = h(x)

We consider in this section the system (X) in (4.74). Let us first state the
following Theorem, which shows what kind of partial differential inequality,
the storage functions of dissipative systems (i.e. systems satisfying (4.25)) are
solutions of. Let us define the Hamiltonian function

H(z,p) = p" f(z) + (SI)ISU[pTg(x)u —w(u,y)] (4.113)
Also let Vi(z) = lim,_,, inf V(2) be the lower semi-continuous envelope
of V(-). A locally bounded function V : X — IR is a weak or a viscosity
solution to the partial differential inequality H(z,VV) < 0 for all z € X,
if for every C! function ¢ : X — IR and every local minimum zy € IR" of
Vi — ¢, one has H (z, %(ﬁ(xo)) < 0. The PDI H(z,VV) <0 for all z € X
is also called a Hamilton-Jacobi inequality. The set U plays an important
role in the study of the HJI, and also for practical reasons (for instance,
if u is to be considered as a disturbance, then it may be assumed to take
values in some compact set, but not in the whole of IR™). Let us present
the following theorem, whose proof is inspired by [304]. Only those readers
familiar with partial differential inequalities and viscosity solutions should
read it. The others can safely skip the proof. The next Theorem concerns the
system in (4.74), where f(-), g(-) and h(-) are supposed to be continuously
differentiable, with f(0) = 0, h(0) = 0 (thus z = 0 is a fixed point of the
uncontrolled system), and %, % and % are globally bounded.
Theorem 4.96. [232] (i) If the system (X) in (4.74) is dissipative in the
sense of Definition 4.23 with storage function V(-), then V() satisfies the
partial differential inequality
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H(z,VV(z)) = VVT(2)f(z) + sup [VVT(z)g(x)u — w(u,y)] <0 in R"
u(-)eU
(4.114)
(ii) Conwversely, if a nonnegative locally bounded function V (-) satisfies (4.114),
then (X)) is dissipative and Vi (x) is a lower semi-continuous storage function.
|

The suprema in (4.113) and (4.114) are computed over all admissible u(-).
It is noteworthy that the PDI in (4.114) is to be understood in a weak sense
(V (+) is a viscosity solution), which means that V'(-) needs not be continuously
differentiable to be a solution. The derivative is understood as the viscosity
derivative, see (4.66) and Appendix A.3.

In short, Theorem 4.96 says that a dissipative system as (X) in (4.74)
possesses a storage function that is at least lower semi-continuous.

Proof of Theorem 4.96:

(i) Let ¢(-) € C*(IR™) and suppose that V, — ¢ attains a local minimum at
the point 2o € IR". Let us consider a constant input u (u(¢) = u for all ¢t > 0),
and let z(t) be the corresponding trajectory with initial condition x(0) = xg.
For sufficiently small ¢t > 0 we get

Vi(o) — Vi(2(t)) < d(xo) — d(x(t)) (4.115)

since V, — ¢ attains a local minimum at the point z¢ € IR". Since the system
(X)) is dissipative in the sense of Definition 4.23 with storage function V'(-),
and since V,(-) satisfies the dissipation inequality each time its associated
storage V'(-) does, it follows that

t
Vialao) = Vela(®) 2 - [ wlu,y(s))ds (1116)
0
Combining (4.115) and (4.116) one obtains
_ 1 [t
M - 2/0 w(u,y(s)ds <0 (4.117)
By letting t — 0, ¢t > 0, one gets
VT (x0) + Vo (20)g(xo)u — w(u, h(zp)) < 0 (4.118)

Since this inequality holds for all w, it follows that

H(x0,V(0)) = Vo (x0) f (o) + Slelg[WT(xo)g(xo)u — w(u, h(zo))] <0
(4.119)
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holds for all u € U. We have therefore proved that V' is a viscosity solution
of (4.114).

(ii) Let us define Ur = {u € U ||| u ||[< R}, R > 0. Let Ug denote the set
of controllers with values in Ug. Since V, () is lower semi continuous, there
exists a sequence {¥;}2°, of locally bounded functions such that ¥; < V, and
v, —» Vyasi— 400, ¥ > V,. Let 7 > 0 and define

Zi(x,8) = sup {%(m(r)) - /T w(u(r)y(r))dr | x(s) = x} (4.120)

ueEUR

Then Z4(+) is continuous and is the unique solution of

Vs 1 (VZ3)T (2,5)f (@) + Subyepry (VZi)T (2, )9 (2)u — w(u,y)] = 0

in R" x (0,7)

Ziy(w,7) = wilw) in R
(4.121)
Compare (4.120) and (4.121) with (4.25) and (4.113) respectively. By def-
inition of a so-called viscosity supersolution, it follows that precisely Vi(:)
is a viscosity supersolution of this partial differential equality (roughly, be-
cause V,(-) upperbounds ¥;(-) and is a viscosity solution of (4.114)). By the
comparison Theorem it follows for all integer ¢ > 1 that

Vi(x) > Zi(x,s) V¥ (x,5) € R™ x [0,7] (4.122)
Setting s = 0 yields

Vi(x) > sup {%(m(r)) - /OT w(u(r),y(r))dr | z(0) = a:} (4.123)

ueEUR

Letting ¢ — +o00 we obtain

Vi(x) > sup {V*(x(r)) - /OT w(u(r),y(r))dr | z(0) = a:} (4.124)

u€EUR

Letting R — 400

Vi(z) > sup {V*(a:(T)) — /OT w(u(r),y(r))dr | x(0) = a:} (4.125)

ueU

where we recall that U is just the set of admissible inputs, i.e. locally square
Lebesgue integrable functions of time (locally £2) such that (4.21) is satisfied.
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This last inequality holds for all 7 > 0, so that (4.25) holds. Consequently (X)
is dissipative and V,(+) is a storage function.
|
When specializing to passive systems then the following holds:

Corollary 4.97. [2532] The system (X) in (4.74) is passive if and only if
there exists a locally bounded non-negative function V(-) such that V(0) = 0
and

VT (z)f(z) + ??SU[VVT(x)g(x)u —uTy] <0in R" (4.126)

In case U= IR™ then (4.126) reads
VVT(2)f(z) <0
(4.127)
VVT(@)g(x) = h(z)
for all x € IR™. [ |

In (4.127), solutions are supposed to be weak, i.e.: if Z(-) € C'(IR") and
V, — £ attains a local minimum at z¢ € IR", then

VET(QTQ)JC(J?()) < 0
(4.128)
VET (20)g(z0) = h(zo).

One sees that the set of conditions in (4.128) is nothing else but (4.76) ex-
pressed in a weak (or viscosity) sense.

4.6.3 The Nonlinear Case y = h(x) + j(x)u

We now consider systems as in (4.79), and the supply rate is w(u,y) =
Y?uTu —y'y (Q = —I,, R = %I,,, S = 0 in Definition 4.55). The dissi-
pation inequality then reads

V(x(t)) = V(2(0)) < /0 [ul (s)u(s) =y (s)y(s)lds (4.129)

If one supposes that V(0) = 0 and x(0) = 0 then it follows from (4.129)
that

0< V(a(t) < / 2T (s)u(s) — y" ()y(s))ds (4.130)

from which one deduces that

/ yT (s)y(s)ds g'yQ/ u”'(s)u(s)ds (4.131)
0 0
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which simply means that the system defines an input-output operator H,
which has a finite £o—gain at most v (see Definition 4.17), and H,—o has
zero bias. An argument of local w—uniform reachability assures that storage
functions are continuous. Let us assume that V(+) is a smooth storage function.
Then the dissipation inequality (4.129) is equivalent to its infinitesimal form

VVE(@)[f(2) +g(@)u] + (h(z) +j(z)u) " (h(x) +j(x)u) =7 u"u < 0. (4.132)

Since the dissipation inequality is required to hold for a certain set U of ad-
missible inputs, the infinitesimal form (4.132) is a Hamilton-Jacobi inequality
H(z,VV(x)) <0, with Hamiltonian function

H(z,p) = sup [p" (f(z) + g(x)u) + (h(z) + j(2)u)" (h(x) + j(z)u) — v*u’u]

uelU
(4.133)
If in addition the term A(x) = v21,,, — j(z)Tj(x) > 0 for all z € X, then
the Hamiltonian can be written in a explicit way as

H(z,p) = p"[f(2) + g(2) A~} ()5 (2)" h(x)] + 1p" g(x) A~ (2)g(x) p+

(@) (L + () A (2)j(2) ()

(4.134)

Let us note once again that if u(-) is considered as a disturbance, and not

a control input, then it makes perfect sense to consider the set U in which
the disturbance is supposed to live. This is also the case if the admissible
inputs are bounded because of physical saturations. Those developments are
then at the core of the H,, theory for nonlinear systems [442]. Similarly to the
above, the obstacle in studying such PDIs is that storage functions may not be
differentiable: in general they are only continuous. How does this machinery
extends to such a case? Once again weak (or viscosity) solutions are the key.

Theorem 4.98. [33] Suppose that V : X — IR™ is continuous. Then V() is
a storage function for the system (X) in (4.79) if and only if it is a viscosity
solution of the Hamilton-Jacobi inequality H(z,VV (x)) < 0 for all x € X,
with H(-,-) given in (4.133). [ |

Under some conditions, the available storage and required supply are
proved to be the viscosity solutions of Hamilton-Jacobi equalities, thereby
extending (4.37).

Assumption 5 Given xg € IR" and t1 < to with to — t1 sufficiently small,
there exists a bounded set By, C IR™ such that

su W (x —ax—tQQUTU_T _
- {Vatatt) = vitw) = [ ) = 7 @) <0

(4.135)
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where x(t) and y(t) correspond to the solution initialized at xo and controlled
by u(-) on [t1,1].

Assumption 6 Given zo € IR" and ty < t1 with t1 — to sufficiently small,
there exists a bounded set By, C IR™ such that

u
u

su " (x0) — Vi (x —t12uTu_T _
- {0 = atate) = [ 02T @t~ o Outeae} =0

(4.136)

where x(t) and y(t) correspond to the solution initialized at xo and controlled
by u(-) on [t1,t].

Theorem 4.99. [33] Assume that the system in (4.79) has finite-gain at most
v and is uniformly controllable, so that V,(-) and V,.(-) are both well-defined
continuous storage functions. Then

Va(+) is a wviscosity solution of —H(x,VV(z)) = 0 if Assumption 6 is
satisfied.

Vi.(+) is a wiscosity solution of H(x,VV (x)) = 0 if Assumption &5 is satis-
fied.

Remark 4.100. @ Storage functions that satisfy (4.81) can also be shown to

be the solutions of the following partial differential inequation:

VT (1) () + (07 (2) ~ 5 VVT (@)g(@)) R () (h(a) ~ 597 (1) 9V (@) < 0
(4.137)
when R = j(z) + j7(z) is full-rtank, R =0, Q = 0, S = 1. The proof
is exactly the same as in the linear time invariant case (Section 3.1.2).
The available storage and the required supply satisfy this formula (that is
similar to a Riccati equation) as an equality (Proposition 4.48).
In the linear invariant case, the equivalent to Hamilton-Jacobi inequalities
are Riccati equations, see Section 3.1.2. This also shows the link with
optimal control. Hamilton-Jacobi equalities also arise in the problem of
inverse optimal control, see section 4.6.5.
In the time varying case (4.91), the PDI in (4.137) becomes

%—‘;(x, t)+VVT(z,t)f(x,t)+

+(BT (,1) = YV (2, 0)g(z, )R~ (2, 1) (h(x,) — 597 (2,0)VV (2,1)) <0
(4.138)
| |
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In order to illustrate the above developments let us present an example,
taken from [116].

Example 4.101. Consider the following system
d1(t) = 21 ([ () — D(r?(t) — 4) +r(@)(r* () — 4u(t)] — 22(t)
Bo(t) = o (t)[(r2(¢) — 1)(r2(t) — 4) + r(t)(r*(t) — 4)u(t)] + 21 (¢) (4.139)

y(t) =r3(t) -1, r=+/22+ 23

In polar coordinates one gets

0(t) =1 mod [27] (4.140)
y(t) =r*(t) - 1
The set S = {z € R* | r = 1} is invariant under the uncontrolled

dynamics (u = 0), and is asymptotically stable. The open set R = {z € IR? |
0 < r < 2} is the largest basin of attraction of S (still with u = 0). Moreover
all points in R are reached from S in finite time by suitable control. Invariance
of S is easy to check as f(x) = 23 +22% — 1 is a first integral of the uncontrolled
system. The objective is to prove that the system in (4.139) is dissipative with
respect to the supply rate w(u,y) = v?uTu — 3Ty, for all v > 1. Let us look
for a storage function of the form V(r?). Thus %(m) = (224 2x2)%. The
pre- Hamiltonian function PH(-) (that is the function to be supremized in
(4.113)) is equal to

dv

PH(r,u) = 2d(7"2)

r2[(r2 =1)(r?* —4) +r(r* —4)u] —*uTu+ (r? —1)% (4.141)

and the maximizing controller is

u= %7‘2(7‘2 - 4)2dc(l;/2) (4.142)
So the Hamilton-Jacobi inequality in (4.114) reads on 0 < r < 2:
H(r V() = [r2(r2 — 4) % + (2 - 1)] -
(4.143)

— (1= %) o2 - a2 (d%))z <0

2
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Obviously this PDI has a solution if and only if v > 1. By inspection one
sees that any solution to the ordinary differential equation 72(r? — 4) d((lrvz) +
(r? — 1) = 0 with minimal set condition V(1) = 0 solves this HJI. One such

solution is given by

Vir) = —i In(r?) — %1n(4 —r?) + Zln(?)) (4.144)

This V(r) is locally bounded on the set R, V(r) > 0, it is radially un-
bounded for all z — JR (all states approaching the boundary of R, in par-
ticular the origin), and V(r) = 0 on the circle S. Therefore the system in
(4.139) is dissipative with respect to supply rates w(u,y) = v>uTu —yTy, for
all v > 1. The exhibited storage function is differentiable. One can check by
calculation that V(r) = — 1(r2—1)% < 0 along trajectories of the uncontrolled

system and for all z € R. One has V(r) =0 forallz € S . [ |

Let us summarize the developments in this section and the foregoing ones,
on the characterization of dissipative systems.

H(z,VV(x)) <0 with Hamiltonian function in (4.113) or (4.133) or
(4.134)

4

PDI in (4.114) or (4.126) or in Theorem 4.98, general lsc storage
functions (viscosity solutions)

4
PDI in (4.137) or (4.76), C! storage functions

)

nonlinear KYP Lemma 4.84 or 4.87 with C' storage functions

U
Riccati inequality (3.17) for LTI systems

0

KYP Lemma for LTT systems

0

PR transfer functions

where the “implications” just mean that the problems are decreasing in math-
ematical complexity.
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4.6.4 Recapitulation

Let us take advantage of the presentation of this section, to recapitulate some
tools that have been introduced throughout the foregoing: Riccati inequalities,
Hamiltonian function, Popov’s functions, and Hermitian forms. A Hermitian
form has the general expression

x
H(z,y) = [xT yT]E (4.145)
Y
QYT
with z € R", y € R", ¥ = , Qe R™™ Y ¢ RV, R¢c R"",
Y R

Q=Q", R=R". Let y = Px for some P = PT ¢ IR"*". Then

H(x, Px) =0 for all x € IR"
if and only if

Q+PY+Y'P+PRP=0 (P=PT).

The proof is done by calculating explicitly H(z, Px). The analogy with
(4.102) and (4.103) is straightforward (with equalities instead of inequalities).
A solution to the ARE is stabilizing if the ODE i(t) = 9f|,=p. = 2(Y +
RP)xz(t) is globally asymptotically stable. The results of Theorems 3.42, 3.43,
3.44 and 4.58 allow us to assert that stabilizing solutions exist in important
cases.

Linking this with the spectral (or Popov’s) function I1(s) in Theorems
2.30 and 3.46, or (3.141) (3.142), we see that taking x = (jwl, — A)~1B and
y = I, in (4.145) (with appropriate dimensions of the matrices Y € R™*"
and R € IR™*™) yields that IT(jw) is a rational Hermitian matrix valued
function defined on the imaginary axis. The positivity of IT(jw) is equivalent
to the passivity of the system with realization (A, B,Y’), which in turn can
be characterized by a LMI (the KYP Lemma set of equations) which in turn
is equivalent to an ARI: the loop is closed!

4.6.5 Inverse Optimal Control

A particular optimal control problem is to find the control input u(-) that
minimizes the integral action [;~[g(z(t)) + u” (t)u(t)]dt under the dynamics
in (4.74), where ¢(z) is continuously differentiable and positive definite. From
standard dynamic programming arguments it is known that the optimal in-
put is u*(x) = —%gT(x)aa—‘gT(x), where V*() is the solution of the partial
differential equation, called a Hamilton-Jacobi-Bellman equation:
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* * * T
88‘; () f(x) — i (%(w)g(m)g (z )68‘; (z )) +4q(x)=0 (4.146)

Moreover V*(z(t)) = inf,(.) [~ [q )+ uT (7)u(r)]dr, V*(0) = 0. One rec-
ognizes that u*(x) is nothlng else but a static feedback of the passive output
of the system (4.74) with storage function V*(-). Applying some of the results
in this section and in Section 5.4 one may additionally study the stability
of the closed-loop system with the optimal input (see in particular Theo-
rem 5.24). Let us consider the linear time-invariant case with quadratic cost
q(z) = 27 Qz. Then one looks for storage functions of the form V (z) = 27 Pz.
The Hamilton-Jacobi-Bellman equation in (4.146) then becomes the Riccati
equation

PA+ATP-PBBTP+Q =0 (4.147)

The optimal controller is classically given by u*(z) = —B” Pz (recall that
VVi(z) = %T(x) = 2Pz). It is worth comparing (4.147) with (3.17) (take
D+ DT =1, C =0, and the cost is PA + AT P + Q). See also (3.138).

Let us now describe the so-called inverse optimal control problem [363,365].
We are given the system

#(t) = f(x(t)) + Bu(t), z(0)= =g (4.148)

where f(-) is smooth, f(0) =0, and B is a constant matrix. We are also given
a performance index

V = lim [n(x(t)) —|—/ (LT (2(s))L(z(s)) + u” (s)u(s))ds (4.149)

t——+oo 0

with n(z) > 0 for all x € X, n(0) = 0, L(0) = 0, and a feedback controller

uw*(z) = —k(z). (4.150)

Let us assume that «*(z) is optimal with respect to the performance index
(4.149), and let us denote the minimum value of V as ¢(zp). In general,
there is not a unique L(z) and n(z) for which the same controller is optimal.
In other words there may exist many different L(x), to which correspond
different ¢(z), for which the same controller is optimal. The inverse optimal
control problem is as follows: given the system (4.148) and the controller
(4.150), a pair (¢(-), L(+)) is a solution of the inverse optimal control problem
if the performance index (4.149) is minimized by (4.150), with minimum value
@d(xo). In other words, the inverse approach consists of designing a stabilizing
feedback control law, and then to show that it is optimal with respect to a
meaningful and well defined cost functional.
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Lemma 4.102. [365] Suppose that the system in (4.148) and the controller in
(4.150) are given. Then a pair (¢(-), L(-)) is a solution of the inverse optimal
control problem if and only if ¢(z) and L(x) satisfy the equations

V¢! (2)[f(x) — 3Bk(z)] = —L" () L(x)

BTV ¢(z) = k(z)
(4.151)
$(0) =0

¢(x) >0 for allz e X [ |
The following should not be surprising to the reader who has followed the
previous developments.

Lemma 4.103. [365] A necessary and sufficient condition for the existence
of a solution to the inverse optimal control problem, is that the system

z(t) = f(x(t)) — %Bk(m(t)) + Bu

(4.152)
y(t) = k(x(t))
be passive. If this is the case, then there exists two solutions (¢q(+), Lo () and
(¢r (), Lr(+)) of (4-151) such that all other solutions satisfy ¢q(x) < P(x) <
¢r(x) for allz € X. [ |

Indeed the equations in Lemma 4.102 are nothing else but the KYP Lemma
conditions for the system (4.152). The interpretation of ¢,(x) and ¢, (z) as
the available storage and required supply, respectively, is obvious as well. One
recovers the HJB equation (4.146) replacing g(z) by B and q(x) by LT (z)L(x).

Remark 4.104. The inverse optimal control problem was first solved by Kalman
[248] in the case of linear systems with linear state feedback. Other works can
be found in [142].

Let us end this section with a result that completes the above ones. We
consider the system

@(t) = f(x(t)) + g(x(t))u(t)
y(t) = h(z(t) +j(x(t))u(t) (4.153)
z(0) = zo

where all the mappings are continuously differentiable and f(0) = 0, A(0) = 0.
Let us define the set of stabilizing controllers:



246 4 Dissipative Systems
S(xo) = {u(-) | u €U and solution of (4.153) satisfies z(t) — 0 ast — 400}

We also consider a nonlinear nonquadratic performance criterion

J(zo,u(-)) = /OOO[L(x(t)) + T (t)Ru(t))dt (4.154)
with L: R" — R™, 0 < R € R™*™,

Theorem 4.105. [363, 502] Consider the system in (4.153) with the per-
formance index in (4.154). Let us assume that there exists a continuously
differentiable and radially unbounded function V : R"™ — IR with V(0) = 0
and V(x) > 0 for all x # 0, salisfying

L(z) + VTV (2)f(z) - ivTV(x)g(x)RflgT(x)VV(x) =0 (4.155)

Moreover let h(x) = L(x) and suppose that the new system in (4.153) is
zero-state observable. Then the origin x = 0 of the closed-loop system

i(t) = F(a(t)) - g@®)d(x(t)), ©(0) =0, t20 (4.156)
is globallly asymptotically stable with the feedback control input

(@) = () = —%RflgT(x)W(x) (4.157)

The action in (4.154) is minimized in the sense that

J(@o,$(a()) = min J(xo,u(), @0 € R" (4.158)
and we have J(zg, ¢(x(-))) = V(xo), xo € R" [

The extension of Theorem 4.105 towards the output feedback case is given
in [99, Theorem 6.2]. The equation in (4.155) is a Hamilton-Jacobi-Bellman
equation. Consider the Hamiltonian function

H(z,p,u) = L(z) + u" Ru+p" (f(z) + g(x)u) (4.159)
One may calculate that the HJB equation in (4.155) is in fact

min H(z,u,VV(z)) =0,
using the strict convexity of the integrand in (4.154) (since R > 0), so that the
minimizing input is u(z) = —%R’lgT(x)p. Various application examples may
be found in [502], like the stabilization of the controlled Lorenz equations,
the stabilization of the angular velocity with two actuators, and with one
actuator.
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4.7 Nonlinear Discrete-time Systems

The material of this section is taken mainly from [90]. The following class of
systems is considered:

w(k+1) = f(z(k)) + g(z(k))u(k)

y(k) = h(z(k)) + j(x(k))u(k)

where z(k) € R", u(k) € R™, y(k) € IR™, and the functions f(-), g(-), k(")
and j(-) are smooth mappings. It is assumed that f(0) =0 and h(0) = 0.

(4.160)

Definition 4.106. The dynamical system in (4.160) is said dissipative with
respect to the supply rate w(u,y) if there exists a nonnegative function V :
R" — IR with V(0) = 0 called a storage function, such that for alll u € R™
and all k € IN one has

Viz(k+1)) = V(x(k) < wlu(k),y(k)), (4.161)
or equivalently
k
V((k+1)) = V(@(0) < w(u(i), y(i)) (4.162)
i=0

for all k, u(k) and x(0). The inequality (4.162) is called the dissipation in-
equality in the discrete-time setting. ]

Similarly to the continuous-time case we have

Definition 4.107. The dynamical system in (4.160) is said passive if it is
dissipative with respect to the supply rate w(u,y) = uly. It is said strictly
passive if V(z(k + 1)) — V(z(k)) < uT'(k)y(k) for all u(k) unless x(k) is
identically zero. Equivalently the system is strictly passive if there exists a
positive definite function S : IR" — IR such that V(x(k + 1)) — V(z(k)) <
uT (k)y(k) — S(z(k)) for all u(k) and all k. It is said lossless if V(x(k +
1)) — V(x(k)) = uT (k)y(k) for all u(k) and all k, equivalently V (x(k 4+ 1)) —
V(z(0)) = Zf:o uT (i)y(i) for all u(k) and all k. [

It is of interest to present the extension of the KYP Lemma for such
nonlinear discrete-time systems, that is the nonlinear counterpart to Lemma
3.100.

Lemma 4.108 (KYP Lemma). [90] The system (4.160) is lossless with a
C? storage function if and only if
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V(f(z)) =V(x)

%_‘Z/(Z”z:f(z)g(x) = hT(x)
(4.163)

9T (@) 5% (2) o myg(x) = §7(x) + j(x)

V(f(z)) + g(x)u) is quadratic in u
||

Proof: Necessity: If the system is lossless there exists a nonnegative storage
function V(x) such that

V(f (k) + g(z(k)u(k)) = V(x(k))

(4.164)
for all u(k) € IR™ and all k € IN. Setting u(k) = 0 one gets the first equality
in (4.108). Now one may calculate that (from now on we drop the k argument
in the functions)

aV(f(m)a;L'— g - %'Z:f(m)+g(z)u = hT(x) + UT[]T(:E) +j(z)] (4.165)

and

AV (f(x T)u 2
% = gT (Z‘) %;2/ |z:f(w)+g(a:)ug(x)

(4.166)
=j(z) + 5" (z)
Equations (4.165) and (4.166) imply the second and third equations in
(4.108). The last condition in (4.108) follows easily from (4.164).

Sufficiency: Suppose that the last condition in (4.108) is satisfied. One deduces
that

V(f(x))+ g(z)u) = A(z) + B(z)u +uT C(z)u (4.167)

for all uw € IR™ and some functions A(z), B(z), C(z). From the Taylor expan-
sion of V(f(z)) + g(x)u) at u =0 we obtain

o T x)u
B(z) = 2U@ba@u)| = V| L g(2) (4.168)

2
O(z) = o) V(f(gi;rg(m)u) luo = %QT(x)%b:f(m)g(x)
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From the first three equations of (4.108) it follows that

V(f(z)+g(x)u) — V(z) = yTu (4.169)

for all u € IR™, which concludes the proof. [ ]
Further results on nonlinear dissipative discrete-time systems may be
found in [185,371,373,374].

4.8 PR tangent system and dissipativity

The topic of this section is the following: consider a nonlinear system with suf-

ficiently regular vector field, and its tangent linearization about some point

(z*,u*). Suppose that the tangent linearization is positive real, or strictly pos-

itive real. Then, is the nonlinear system locally dissipative? Or the converse?
Let us consider the following nonlinear system:

#(t) = f(2(t)) + g(x(t))u(t)
(2) q y(t) = h(xz(t)) (4.170)

z(0) = zo
where f(-), g(-), h(-) are continuously differentiable functions of z, f(0) = 0,
h(0) = 0. Let us denote A = %(0), B = %(x = 0,u = 0) = ¢(0),
C = %(0). The tangent linearization of the system in (4.170) is the linear
time-invariant system
2(t) = Az(t) + Bu(t)
(Zr) { <) =C=(1) (4.171)

2(0) = xo

The problem is as follows: under which conditions are the following equiv-
alences true?

o
(X)) € PR <= (X)) is locally passive

o
(X)) € SPR < (X)) is locally strictly dissipative

It also has to be said whether dissipativity is understood in Willems’ sense
(existence of a storage function), or in Hill and Moylan’s sense. Clearly one will
also be interested in knowing whether or not the quadratic storage functions
for (X}) are local st