
S P R I N G E R  B R I E F S  I N  S TAT I S T I C S
J S S  R E S E A R C H  S E R I E S  I N  S TAT I S T I C S

Gareth William Peters
Tomoko Matsui
Editors

Theoretical 
Aspects of 
Spatial-Temporal 
Modeling



SpringerBriefs in Statistics

JSS Research Series in Statistics

Editors-in-Chief

Naoto Kunitomo
Akimichi Takemura

Series editors

Genshiro Kitagawa
Tomoyuki Higuchi
Nakahiro Yoshida
Yutaka Kano
Toshimitsu Hamasaki
Shigeyuki Matsui
Manabu Iwasaki



The current research of statistics in Japan has expanded in several directions in line
with recent trends in academic activities in the area of statistics and statistical
sciences over the globe. The core of these research activities in statistics in Japan
has been the Japan Statistical Society (JSS). This society, the oldest and largest
academic organization for statistics in Japan, was founded in 1931 by a handful of
pioneer statisticians and economists and now has a history of about 80 years. Many
distinguished scholars have been members, including the influential statistician
Hirotugu Akaike, who was a past president of JSS, and the notable mathematician
Kiyosi Itô, who was an earlier member of the Institute of Statistical Mathematics
(ISM), which has been a closely related organization since the establishment of
ISM. The society has two academic journals: the Journal of the Japan Statistical
Society (English Series) and the Journal of the Japan Statistical Society (Japanese
Series). The membership of JSS consists of researchers, teachers, and professional
statisticians in many different fields including mathematics, statistics, engineering,
medical sciences, government statistics, economics, business, psychology, educa-
tion, and many other natural, biological, and social sciences.

The JSS Series of Statistics aims to publish recent results of current research
activities in the areas of statistics and statistical sciences in Japan that otherwise
would not be available in English; they are complementary to the two JSS academic
journals, both English and Japanese. Because the scope of a research paper in
academic journals inevitably has become narrowly focused and condensed in recent
years, this series is intended to fill the gap between academic research activities and
the form of a single academic paper.

The series will be of great interest to a wide audience of researchers, teachers,
professional statisticians, and graduate students in many countries who are
interested in statistics and statistical sciences, in statistical theory, and in various
areas of statistical applications.

More information about this series at http://www.springer.com/series/13497

http://www.springer.com/series/13497


Gareth William Peters • Tomoko Matsui
Editors

Theoretical Aspects
of Spatial-Temporal
Modeling

123



Editors
Gareth William Peters
Department of Statistical Science
University College London
London
UK

Tomoko Matsui
The Institute of Statistical Mathematics
Tachikawa, Tokyo
Japan

ISSN 2191-544X ISSN 2191-5458 (electronic)
SpringerBriefs in Statistics
ISSN 2364-0057 ISSN 2364-0065 (electronic)
JSS Research Series in Statistics
ISBN 978-4-431-55335-9 ISBN 978-4-431-55336-6 (eBook)
DOI 10.1007/978-4-431-55336-6

Library of Congress Control Number: 2015954809

Springer Tokyo Heidelberg New York Dordrecht London
© The Author(s) 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer Japan KK is part of Springer Science+Business Media (www.springer.com)



Preface

The idea to create this book arose as a response to the discussions and presentations
that took place in the first and second annual international workshops on spatial and
temporal modeling (STM2013 and STM2014), both of which were held in the
Institute of Statistical Mathematics (ISM), Tokyo, Japan. These workshops were
cohosted by Prof. Tomoko Matsui (ISM) and Dr. Gareth W. Peters (UCL). It was
apparent after these workshops were completed that the wide range of participants
from various backgrounds including probability, statistics, applied mathematics,
physics, engineering, and signal processing as well as speech and audio processing
had been recently developing a range of new theory, models, and methods for
dealing with spatial and temporal problems that would be beneficial to document
for a wider scientific audience.

Therefore, this book is intended to bring together a range of new innovations in
the area of spatial and temporal modeling in the form of self-contained tutorial
chapters on recent areas of research innovations. Since it is based on contributions
from a range of world experts in spatial and temporal modeling who participated in
the workshop, it reflects a cross section of specialist information on a range of
important related topics. It is the aim of such a text to provide a means to motivate
further research, discussion, and cross-fertilization of research ideas and directions
among the different research fields representative of the authors who contributed.

While this book covers more of the theoretical aspects of spatial–temporal
modeling, its companion book, also in the Springer Briefs series, titled Modern
Methodology and Applications in Spatial-Temporal Modeling, complements this
book for practitioners as it covers a range of new innovations in methodology for
modeling and applications. This book aims to provide a modern introductory
tutorial on specialized theoretical aspects of spatial and temporal modeling. The
areas covered involve a range of topics which reflect the diversity of this domain of
research across a number of quantitative disciplines. For instance, Chap. 1 provides
modern coverage of particle association measures that underpin the theoretical
properties of recently developed random set methods in space and time otherwise
known as the class of probability hypothesis density framework (Ph.D. filters).
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Chapter 2 deals with an overview of recent advances in Monte Carlo methods for
Bayesian filtering in high-dimensional spaces. In particular it explains how one may
extend classical sequential Monte Carlo methods for filtering and static inference
problems to high dimensions and big-data applications. Chapter 3 deals with an
overview of generalized families of processes that extend the class of Gaussian
process models to heavy-tailed families known as alpha-stable processes. In par-
ticular it covers aspects of characterization via the spectral measure of heavy-tailed
distributions, and it then provides an overview of their applications in wireless
communications channel modeling. Chapter 4 concludes with an overview of
analysis for probabilistic spatial percolation methods as would be relevant in the
modeling of graphical networks and connectivity applications in sensor networks
which also incorporate stochastic geometry features.

We first note that each chapter of this book is intended to be a self-contained
research-level tutorial on modern approaches to the theoretical study of some aspect
of spatial and temporal statistical modeling. However, to guide the reader in con-
sidering the sections of this book we note the following relationships between
chapters. Chapters 1 and 2 cover recent advances in spatial tracking and state space
modeling settings in high-dimensional contexts. The first arises in multiple target
tracking settings and is based on extensions of sequential Monte Carlo methods for
such contexts which have become known as probability hypothesis density filters.
Chapter 2 deals with the class of high-dimensional state space models and intro-
duces different approaches one can adopt to tackle the curse of dimensionality that
the standard SMC method suffers from when the state space is high dimensional. In
particular it introduces ideas of blocked particle filters, discusses recent space–time
particle filters and studies, and compares these to the recently developed class of
methods known as sequential Markov chain Monte Carlo (SMCMC) methods.

Chapters 3 and 4 are not so much focused on the estimation of latent process
models in spatial–temporal settings, but instead focus on the study of phenomena
that have been developed recently to characterize extremes in spatial–temporal
settings. In this regard the fourth chapter discusses new approaches to the char-
acterization of heavy-tailed stochastic processes, focusing specifically on the
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α-stable family. The final chapter constructs characterizations of spatial processes
from a geometrical perspective, focusing on spatial network structures, random
graphs and the study of certain connectivity phenomena for such graphical struc-
tures. The chapter introduces ideas that can be used to characterize and understand
random graphical models that are growing in popularity in tracking multiple objects
and populations, finance, ecology, and social network analysis.

Tokyo, Japan Gareth William Peters
August 2015 Tomoko Matsui
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Chapter 1
Particle Association Measures and Multiple
Target Tracking

Pierre Del Moral and Jeremie Houssineau

Abstract In the last decade, the area of multiple target tracking has witnessed the
introduction of important concepts and methods, aiming at establishing principled
approaches for dealing with the estimation of multiple objects in an efficient way.
One of the most successful classes of multi-object filters that have been derived
out of these new grounds includes all the variants of the Probability Hypothesis
Density (phd) filter. In spite of the attention that these methods have attracted, their
theoretical performances are still not fully understood. In this chapter, we first focus
on the different ways of establishing the equations of the phd filter, using a consistent
set of notations. The objective is then to introduce the idea of observation path, upon
which association measures are defined. We will see how these concepts highlight
the structure of the first moment of the multi-object distributions in time, and how
they allow for devising solutions to practical estimation problems.

1.1 Introduction

Multiple target tracking refers to the estimation of the state of an unknown and
time-varying number of objects, given a sequence of noisy, incomplete and corrupted
collections of observations. These collections of observations are incomplete since
some objects might not be consistently detected, and may be corrupted by spurious
observations that are not generated by objects in the system of interest. The variation
in the number of objects is due to the random appearance/disappearance of objects
from the surveillance zone, and the processes associated to these aspects of the
population dynamics are referred to as birth and death.

P. Del Moral (B)
School of Mathematics and Statistics, University of New South Wales, Sydney, Australia
e-mail: p.del-moral@unsw.edu.au

J. Houssineau
School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK
e-mail: j.houssineau@hw.ac.uk
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2 P. Del Moral and J. Houssineau

The first solutions [1, 7] to multiple target tracking were built from single-object
filters such as the Kalman filter, and were handling birth, death and data association,
i.e. the search for the right correspondence between objects and observations, in a
heuristic way. These methods have been and still are widely used because they are
intuitively appealing and can be easily modified to suit different practical require-
ments. However, they also show some limitations in terms of responsiveness and
robustness in complicated situations.

In order to overcome the limitations of traditional multiple target tracking
algorithms,more principledways ofmodellingmulti-object systemswere introduced
[8, 11, 14], from which several multi-object estimation algorithms were derived,
including the Probability Hypothesis Density (phd) filter [12] and the cardinalized
phd filter [13, 23]. The algorithms derived from this approach show an improved
responsiveness to changes in the probability of detection or in the number of spurious
observations, and as far as the phd filter is concerned, have a low computational cost
compared to the usual methods. Yet, because the focus is on the system of objects
rather than on the objects themselves, the phd filter does not naturally provide tracks,
i.e. specific information about identified objects, and post-processing algorithms are
required to obtain track estimates [17]. Even though the phd filter was originally
designed to track a possibly high number of indistinguishable objects, it is most
often used in contexts where the final objective is to obtain individual tracks. The
limitation induced by this absence of track estimates is not severe in the Gaussian
mixture implementation of the phd filter [21] since the terms in the mixture can
often be interpreted as potential tracks. However, this limitation leads to a noticeable
degradation of performance in the sequential Monte Carlo (smc) implementation
[22]. Indeed, the so-called smc-phd filter is based on the update and prediction of a
single set of particles representing the whole multi-object system and thus requires
the use of clustering algorithms to compute track estimates, inducing additional
computational costs and inaccuracies.

In this work, the phd filter is expressed in different ways but with a consistent
set of notations drawn from probability theory. The purpose of such an approach
is to present different viewpoints including: (a) an update prediction scheme that is
standard in filtering, (b) a one-step filtering scheme that leads to a measure-valued-
process formulation, and (c) an expression based on the concept of association mea-
sure, differing significantly from the previous ones, which is based on [16] and [6]
and which has been used in a similar context in [9]. These different approaches are
detailed in Sect. 1.3, after the introduction of a point-process-based modelling of
multi-object systems in Sect. 1.2. We show how the association measure allows for
some operations to be performed at the object level, including the extraction of track
estimates in a way that does not depend on the considered implementation. Some of
the results presented in [6] and dealing with the analysis of the stability of the phd
filter equations are recalled in Sect. 1.4. Finally, two different proofs of the phd filter
are detailed in Sect. 1.5, including the original generating functional-based deriva-
tion proposed in [12] and a ‘direct proof’ subsequently presented in [2]. These two
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different approaches were based on different frameworks in their respective publi-
cations, and the motivation in this work is to present them in a unified way.

The formalism of probability theory is used in this article to facilitate the statement
of the results, even though this choice is not the most usual in the area of multi-target
tracking. Henceforth, M(E) (resp. P(E)) will stand for the set of finite positive mea-
sures (resp. probability measures) on a given measurable space (E,E ). Additionally,
the Banach space of all bounded and measurable functions equipped with the uni-
form norm ‖ · ‖ will be denoted as B(E), and we write γ ( f ) = ∫

f (x)γ (dx) for
any measure γ ∈ M(E) and any measurable function f ∈ B(E). In particular, the
measurable functions equal everywhere to zero and one are, respectively, denoted 0
and 1 and the indicator function of a given measurable set B ∈ E is denoted 1B .

A bounded positive integral operator Q from a measurable space E into a measur-
able space E′ is an operator f �→ Q( f ) from B(E′) to B(E) such that the functions

x �→ Q( f )(x) =
∫

E′

Q(x, dy) f (y)

are bounded and measurable for some measure Q(x, ·) ∈ M(E′). If it holds that
Q(1)(x) = 1 for any x ∈ E, then Q is referred to as a Markov kernel or Markov
transition from E to E′.

Let G : E → (0,∞) be a bounded positive potential function. The following
change of probability measure is referred to as Boltzmann–Gibbs transformation:

�G : M(E) → P(E)

γ �→ �G(γ ) (1.1)

where assuming γ (G) > 0,

�G(γ )(dx) = 1

γ (G)
G(x)γ (dx).

Additionally, if E is a topological space, then we can consider its Borel σ -algebra,
denoted as B(E). The set of integer-valued measures on E is denoted as N(E) and
is a subset of M(E). In particular, if E is a Polish space, then a point process on E is
a random variable in the set N(E) equipped with an appropriate σ -algebra [4].

1.2 Modelling Multi-object Systems

The objective is to provide a statistical description of a multi-object system partially
observed through time. Without loss of generality, the set T of time steps is assumed
to be equal to the setN of non-negative integers. The objects of interest are described,
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at time t ∈ T, by their state in the state space Xt which is assumed to be Polish and
which is equipped with its Borel σ -algebra B(Xt ). The multi-object system is then
described in the state space Xt by a (finite) point process Xt on Xt that can be
represented as

Xt =
Nt∑

i=1

δXi ,

where Nt is aN-valued random variable and X1, . . . , X Nt is a collection ofXt -valued
random variables. In order to model that some phenomena might affect the evolution
and the observation of the systemwithout being described inXt , we augment the state
space Xt by two empty states ψb and ψc and define the corresponding extended state
space X̄t = Xt ∪ {ψb, ψc}. The empty state ψb is used to model that some objects
that are expected to appear at time t + 1 do not have a state in Xt . The state ψc is
used to model the clutter generators, i.e. the objects/phenomena that are not part of
the multi-object system of interest and that will generate a spurious observation at
time t . In order to integrate these additional variables in the modelling of the system,
an extended version of the point process Xt can be defined on X̄t as

X̄t (dx) = 1Xt (x)Xt (dx) + Nb,tδψb(dx) + Nc,tδψc(dx),

where Nb,t is a N-valued random variable with expected value nb,t
.= E[Nb,t ] which

describes the number of objects that will appear at time t + 1, and Nc,t is the random
number of clutter generators at time t .

Apart from the birth and the clutter generators that are not modelled in this way in
[12], a slight difference between the point-process-based modelling introduced here
and the one originally proposed for the phd filter is that the point process Xt is not
assumed to be simple, i.e. with a maximum of one point per state in Xt . Indeed, the
framework used in [12] is based on the concept of random finite set which requires
all the objects to have a different state. We will see in Sect. 1.5 that relaxing this
assumption does not affect the derivation of the filter. Yet, notice that the way of
including the birth and the clutter generators that is considered here could not be
used with random finite sets because of the assumption of simplicity.

1.2.1 Observation

At any time t ∈ T, the extendedpoint process X̄t is partially observed and a collection
of observations z1, . . . , zn′

t
in the observation space Zt is made available. The space

Zt is also assumed to be Polish. In order to model the stochasticity underlying the
generation of this collection of observations, we introduce another point processZt

on Zt , assumed to be simple, of the form
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Zt =
N ′

t∑

i=1

δZi ,

where N ′
t is a N-valued random variable giving the number of points in the point

process, and Z1, . . . , Z N ′
t
is a collection of Zt -valued random variables correspond-

ing to random observations in the observation space Zt . Some of the observations
do not correspond to objects of interest and are consequences of background or
sensor noise. These spurious observations are often referred to as clutter points in
the target tracking literature. Also, some objects might not be detected and do not
have any corresponding observation in Zt , for this reason, we introduce the empty
observation φ and we consider the extended observation space Z̄t = Zt ∪ {φ}. We
also introduce an extended version of the observation point process Zt defined as
Z̄t = Zt + Nφδφ , where Nφ is aN-valued random variable representing the number
of undetected objects. A Markov kernel Lt from X̄t to Z̄t , called the likelihood, can
then be introduced in order to model the observation in Z̄t of objects with states
in Xt , as well as the distribution of the spurious observations. The likelihood Lt is
defined as follows: for any x ∈ Xt and any B ∈ B(Zt ),

(a) Lt (x, B) gives the probability for an object that has state x to be detected in the
Borel set B,

(b) Lt (x, {φ}) gives the probability for the detection of an object that has state x to
fail,

(c) Lt (ψc, B) is the probability for a spurious observation that has been triggered
to be in B, and

(d) Lt (ψb, {φ}) = 1.

As a consequence of (c), it holds that Lt
(
ψc, Zt

) = 1 since a spurious observation
that has been triggered must be in Zt , and we find that Lt

(
ψc, {φ}) = 0. We assume

that there exists a reference measure λ on Zt such that Lt (x, ·) is absolutely contin-
uous with respect to (w.r.t.) λ for any x ∈ X̄t and we define the measurable function
	t : X̄t × Z̄t → [0,∞) as the Radon–Nikodym derivative of Lt on Z̄t , i.e.

	t (x, z) = dLt (x, ·)
d(λ + δφ)

(z), ∀(x, z) ∈ X̄t × Z̄t .

The structure and the interpretation of Lt are given in Fig. 1.1, and an alternative
formulation of this Markov kernel is detailed in the following remark.

Remark 1 It is possible to consider the point ψc separately by introducing a prob-
ability measure νt ∈ P(Zt ) such that νt (A) = Lt (ψc, A) for any A ∈ B(Zt ). The
measure νt is interpreted as the spatial distribution of the spurious observations.
Also, since Lt (x, ·) is a probability measure on Z̄t for any x ∈ Xt , it holds that

Lt (x, Z̄t ) = Lt (x, {φ}) + Lt (x, Zt ) = 1, ∀x ∈ Xt ,
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To time t +1

Xt
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Fig. 1.1 Representation of the possible transitions in the Markov kernels Lt and Mt

so that, denoting dt (x) the probability Lt (x, Zt ) for an object at point x ∈ Xt to
generate a non-empty observation, we find that Lt (x, {φ}) = 1 − dt (x) and that Lt

can be factorised on Zt as

Lt (x, A) = dt (x)L ′
t (x, A), ∀A ∈ B(Zt ),

where L ′
t (x, ·) is a Markov kernel from Xt to Zt that is uniquely defined whenever

dt (x) 
= 0. We also introduce vt and 	′
t (x, ·) as the Radon–Nikodym derivatives of

νt and L ′
t (x, ·) w.r.t. a reference measure λ ∈ M(Zt ).

Example 1 The Markov kernel L ′
t introduced in Remark1 can be interpreted as a

state measurement model for an observation equation of the form

zt = ht (xt , w′
t ),

where xt ∈ Xt is the state of a given object in the system of interest and zt ∈ Zt is
the observation it generates under the observation function ht and the observation
noise w′

t . If Zt is a subset of Rd ′
for a given d ′ > 0, if the observation function takes

the special form
ht (xt , w′

t ) = h′
t (xt ) + w′

t ,

and if w′
t is Gaussian with zero mean and with covariance Rt , then 	′

t can be defined
as the Radon–Nikodym derivative of L ′

t w.r.t. the Lebesgue measure onRd ′
, and can

be expressed as

	′
t (x, z) = 1

√
(2π)d ′ |Rt |

exp
(

− 1

2

(
z − h′

t (x)
)T

R−1
t

(
z − h′

t (x)
))

.
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1.2.2 Motion

When the system evolves from time t to time t + 1, some objects disappear from
the scene. In order to model this behaviour, we consider the cemetery state ψd,
with ‘d’ for disappearance, on which these objects are represented at time t + 1. We
describe how the system evolves in time by introducing, for any time t ∈ T, aMarkov
kernel Mt from X̄t to Xt+1 ∪ {ψd} which characterises the motion at the object level.
Because of the composite nature of these source and target spaces, the kernel Mt can
be parted and defined as follows: for any x ∈ Xt and any Borel set B ∈ B(Xt+1),

(a) Mt (x, B) gives the probability for an object that had state x at time t to persist
to time t + 1 and to be in B,

(b) Mt (x, {ψd}) gives the probability for an object that had state x at time t to
disappear from the scene,

(c) Mt (ψb, B) is the probability for an object that appeared at time t + 1 to be in B,
and

(d) Mt (ψc, {ψd}) = 1.

As a consequence of (c), Mt (ψb, Xt+1) is interpreted as the probability for an
object that appeared at time t + 1 to be in Xt+1, which is equal to 1 by definition,
so that the Markov kernel Mt must verify Mt (ψb, {ψd}) = 0. Note that defining the
distribution of appearing objects as a kernel can be useful whenever this distribution
varies according to the duration of the time steps. The reason behind the constraint
(d) on Mt is that clutter generators are not assumed to have a predictable behaviour in
time so that the ones that were considered at time t are assumed to all disappear and
will be replaced by new ones at time t + 1. The structure of Mt is detailed in Fig. 1.1,
and an alternative formulation of this Markov kernel is proposed in the following
remark.

Remark 2 First, the component related to the birth of new objects can be singled out
by setting ηb,t (B) = Mt (ψb, B) for any B ∈ B(Xt+1). The Markov kernel Mt (x, ·)
can then be factorised for any x ∈ Xt as

Mt (x, B) = st (x)M ′
t (x, B), ∀B ∈ B(Xt+1),

where st (x) = Mt (x, Xt+1) is the probability of survival for an object with state
x ∈ Xt and where M ′

t (x, ·) is a Markov kernel from Xt to Xt+1, defined uniquely
when st (x) 
= 0.

Example 2 As in Example1 with the observation kernel L ′
t , the Markov kernel M ′

t
can be interpreted as a state transition model corresponding to the state equation

xt+1 = ft (xt , wt ),
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where xt+1 ∈ Xt+1 and xt ∈ Xt are the states of a given object at times t + 1 and t
and where ft is the state transition function which additionally depends on the state
noise wt . If we assume that the state transition function ft takes the form

ft (xt ) = Ft xt + wt ,

and that wt is Gaussian with zero mean and with covariance Qt , and if the prior
uncertainty on xt is also Gaussian with mean xt |t and covariance Pt |t , then the state
can be predicted with the Kalman filter prediction as

xt+1|t = Ft xt |t ,

Pt |t = Ft Pt |t F T
t + Qt .

Equipped with suitable ways of describing the motion and the observation of
multi-object systems, we tackle the question of the estimation of these systems in
the next section.

1.3 The Probability Hypothesis Density Filter

In this section, the objective is to show how the modelling introduced in Sect. 1.2 can
lead, under assumptions, to a simple estimation algorithm for multi-object systems,
or multi-target tracker, called the Probability Hypothesis Density filter. It is usual
in the target tracking literature to express estimation algorithms via two equations,
one for propagating the state of the system to the next time step, usually called
prediction, and one for updating our representation of the system with a realisation
of the observation process, often referred to as update. After considering these two-
step filtering equations, we will see that other formulations can be convenient for
establishing connections with different existing approaches.

1.3.1 Two-Step Filtering Equations

The motivation behind the Probability Hypothesis Density filter, or phd filter, is to
bypass the complexity of the posterior distribution ofXt |Z0:t by only computing its
first-moment measure. For the first-moment measure ofXt |Z0:t to be expressed as a
function of the first-moment measure of Xt |Z0:t−1 only, we consider the following
assumptions:

• the observation occurs independently for each object and no more than one obser-
vation is generated for each,

• Xt |Z0:t−1 is a Poisson point process, and
• Nc,t is a Poisson random variable with parameter nc,t and is independent of the
point process Xt .



1 Particle Association Measures and Multiple Target Tracking 9

In order to integrate spurious observations and the objects to be born between
times t and t + 1 in this statistical picture, an extended version of the first-moment
measure γt |t−1 ofXt |Z0:t−1 on X̄t , denoted γ̄t |t−1, is defined by additionally setting
γ̄t |t−1({ψc}) = nc,t and γ̄t |t−1({ψb}) = nb,t . The action of augmenting a given mea-
sure γ ∈ M(Xt ) by two additional atoms at ψb and ψc with respective mass nb,t and
nc,t , is encoded into the change of measure t : M(Xt ) → M(X̄t ).

Theorem 1 The first-moment measure γ̄t of the updated point process X̄t |Z0:t on
X̄t can be expressed as a function of γ̄t |t−1 as follows:

γ̄t (B) =
∫

B

gt,γ̄t |t−1(x)γ̄t |t−1(dx), ∀B ∈ B(X̄t ), (1.2)

where gt,γ is a bounded and measurable potential function on X̄t , defined for any
measure γ ∈ M(X̄t ) such that γ (	t (·, Zi )) > 0 for every 1 ≤ i ≤ N ′

t as

gt,γ (x) = 	t (x, φ) +
∫

Zt (dz)
	t (x, z)

γ
(
	t (·, z)

) , ∀x ∈ X̄t . (1.3)

In order to highlight the structure of the update Eq. (1.2), Theorem1will be proved
in two different ways in Sect. 1.5.

Remark 3 Following the notations ofRemark1,we can rewrite the potential function
gt,γ defined in (1.3) as follows:

gt,γ (x) = 1 − dt (x) +
N ′

t∑

i=1

dt (x)	′
t (x, Zi )

ncvt (Zi ) + γ
(
dt	

′
t (·, Zi )

) , ∀x ∈ Xt ,

for any given γ ∈ M(Xt ) such that ncvt (Zi ) + γ (dt	
′
t (·, Zi )) > 0 for any 1 ≤ i ≤

N ′
t , which is closer to the standard formulation of the phd filter than (1.3). However,

(1.2) also holds for x = ψc, in which case we find that

γ̄t ({ψc}) =
N ′

t∑

i=1

ncvt (Zi )

ncvt (Zi ) + γ̄t |t−1
(
dt	

′
t (·, Zi )

) ,

which is the mean number of clutter generators a posteriori. This result is not usually
part of the phd filter equations, and is obtained here because the clutter generators
have been included in the state space via ψc.

As far as time prediction is concerned, considering the first-moment measure γ̄t

of the point process X̄t |Z0:t together with the assumption that all the objects in the
system evolve independently allows for expressing the first-moment measure γt+1|t
of Xt+1|Z0:t as a function of γ̄t .
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Proposition 1 The first-moment measure γt+1|t of Xt+1|Z0:t is found to be

γt+1|t (B) = γ̄t
(
Mt (·, B)

)
, ∀B ∈ B(Xt+1). (1.4)

In its original formulation [12], the prediction of the phd filter contains a term
related to spawning, which describes the cases where one object at time t generates
several objects at time t + 1. However, spawning is not very often considered in
practical applications and is not taken into account here for the sake of simplicity. As
with Theorem1, the Markov kernel Mt can be split up in order to make Proposition1
more explicit.

Remark 4 Using the notations introduced in Remark2, (1.4) becomes

γt+1|t (B) = γb,t (B) + γt
(
st M ′

t (·, B)
)
,

where γb,t = nb,tηb,t is the first-moment measure of the birth point process. As in
Remark3, this is a more usual way to state the prediction equation of the phd filter.

Remark 5 A slightly different way of reformulating the Markov kernel Mt can be
found when proceeding as in Remark2, but with a kernel M ′′

t from X̄t to Xt defined
for any x ∈ X̄t as

Mt (x, B) = st (x)M ′′
t (x, B), ∀B ∈ B(Xt+1),

where st is also defined onψb andψc as st (ψb) = 1 and st (ψc) = 0. This formulation
will be useful in the next section when expressing the recursion as a Boltzmann–
Gibbs transformation joined with a Markov kernel with Xt+1 as a target space.

Equation (1.2) together with (1.4) describe a recursive algorithm that can be used
at any time t ∈ T, provided that some prior information is available. These two
equations thus form a filter, namely, the phd filter. However, when used recursively,
the assumption thatXt |Z0:t−1 is a Poisson point process becomes an approximation.
Indeed, the updated point processXt−1|Z0:t−1 is not Poisson in general and neither
is the predicted point process Xt |Z0:t−1. In spite of this approximation, it can be
shown that the output of the phd filter is the best Poisson approximation of the actual
updated point process in terms of Kullback–Leibler divergence [12, 20].

Standard implementations of the phd filter include (a) a Gaussian mixture-based
technique suitable whenever the underlying models are all linear and Gaussian, and
(b) the sequential Monte Carlo approximation called the smc-phd filter. When the
objective is to obtain an individual track for each object in the scene, the later imple-
mentation suffers from some accuracy-impairing limitations such as the need for
applying clustering techniques to the output of the filter in order to obtain these track
estimates. The objective is now to reformulate these equations in different ways, in
order to highlight their structure and to enable the use of other known approximation
schemes.
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1.3.2 One-Step Filtering Equation

Under the same assumptions as in the previous section, the update and prediction
Eqs. (1.2) and (1.4) can be joined together in order to form a one-step filtering algo-
rithm. We still consider the extended version γ̄t |t−1

.= t (γt |t−1) of the first-moment
measure of the predicted point processXt |Z0:t−1 and now express the first-moment
measure γt+1|t of Xt+1|Z0:t directly as a function of γ̄t |t−1 as follows:

γt+1|t (B) = γ̄t |t−1
(
Qt,γ̄t |t−1(·, B)

)
, ∀B ∈ B(Xt+1), (1.5)

where Qt,γ (x, B)
.= gt,γ (x)Mt (x, B) is a bounded integral operator from X̄t toXt+1,

indexed by t ∈ T and by a measure γ ∈ M(X̄t ). Equation (1.5) can be further refor-
mulated as a Markov transport equation representing the distribution of the point
processXt+1|Z0:t , together with a mass process which is associated to the expected
number of objects in the scene:

(mt+1|t , ηt+1|t ) = Λt (mt |t−1, ηt |t−1),

where, for any t ′ ∈ T, the non-negative real number mt ′+1|t ′
.= γt ′+1|t ′(1) is the total

mass in γt ′+1|t ′ which is interpreted as the expected number of objects, where the
probability measure ηt ′+1|t ′ in P(Xt ′+1) defined as

ηt ′+1|t ′(B)
.= γt ′+1|t ′(B)

mt ′+1|t ′
, ∀B ∈ B(Xt ′+1),

is the common law of the point process Xt ′+1|Z0:t ′ , and where the mapping

Λt : R+ × P(X̄t ) → R
+ × P(Xt+1)

(m, η) �→ (
Λ(1)

t (m, η),Λ(2)
t (m, η)

)
,

can be characterised via its two components Λ
(1)
t and Λ

(2)
t by

Λ(1)
t (m, η) = m̄η̄(Gt,m̄η̄)

Λ(2)
t (m, η)(B) = �Gt,m̄η̄

(η̄)(M̂t,m̄η̄(·, B)), ∀B ∈ B(Xt+1),

where m̄ and η̄ are characterised by the relation m̄η̄ = t (mη) and where for any
γ ∈ M(X̄t ) and any x ∈ X̄t ,

Gt,γ (x)
.= Qt,γ (1)(x), and M̂t,γ (x, B)

.= Qt,γ (x, B)

Qt,γ (1)(x)
.

This way of expressing the phd filter will be helpful when proceeding to the analy-
sis of the long-time behaviour of this filter in Sect. 1.4. Also, mean-field-related
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approximation techniques can then be used for these distributions and mass, but this
type of approach would not allow for bypassing the limitations already encountered
with the standard smc-phd filter.

1.3.3 Association Measure

The smc-phdfilter is very commonly used as ameans of obtaining track estimates for
the objects in the system of interest. In this situation, the main source of inaccuracy
comes from the inability to extract track estimates directly from the particles, which
makes the approach dependent on error-prone clustering algorithms. However, it is
possible to use observation histories in order to find a natural partition of the set
of particles in a given smc implementation of the phd filter. This can be seen as a
generalisation of the idea presented in [19] where the smc-phd is reformulated in
order to distinguish persisting and appearing objects by associating a different label
to each of these parts of the considered multi-object system.

Formulation

First, define the random finite set Zt and its extension Z̄t as the respective supports
of the point processes Zt and Z̄t . In this way, the random set Ȳt of observation
histories, or observation paths, can be defined as the set containing all the sequences
of observations from time 0 to t , i.e. as

Ȳt
.= {

(z0, . . . , zt ) : zt ′ ∈ Z̄t ′ , 0 ≤ t ′ ≤ t
}
.

The set Ȳt is a random finite subset of the space Ȳt
.= Z̄0 × . . . × Z̄t . We consider in

particular the element φt referred to as the empty observation path and defined as the
sequence in Ȳt such that zt ′ = φ, for all 0 ≤ t ′ ≤ t . We also define the random set of
non-empty observation paths Yt

.= Ȳt \ φt , which is in the space Yt
.= Ȳt \ φt of

observation paths with at least one non-empty observation. Examples of observation
paths are given in Fig. 1.2.

Note that for each randomobservation path y inYt−1,we can define the probability
measure p( y)

t |t−1 ∈ P(Xt ) as the predicted law on the random state of a single object

given the observation history y. Also, a measure αt−1 on Ȳt−1 with support Ȳt−1

is introduced and is assumed to give, for any y in Yt−1, the probability for the
corresponding law p( y)

t |t−1 to represent an object of the system of interest. Themeasure
αt−1 is referred to as the association measure at time t − 1.

The empty observation path possibly describes several objects (all the unde-
tected ones), and this part of the system is characterised by the expected number
of objects in this situation given by αt−1({φt−1}) and by their common distribution
p( y)

t |t−1 with y = φt−1. As before, we need to extend the predicted first-moment mea-
sure with objects to be born at time t + 1 and clutter generators. This extension can
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Fig. 1.2 Examples of observation paths at time t = 3: y1 represents a case where the corresponding
object would be detected at all times, y2 is a variation of y1 where the two last observations differ,
y3 shows a case where a missed detection occurred at time t = 2, y4 represents a case where the
associated object might have been missed detected at the first time step or might not have existed
at all at this time, and finally φ3 is the empty observation path at time t = 3

be jointly performed on the association measure αt−1 and on the predicted laws
p( y)

t |t−1, y ∈ Yt−1, as follows:

ᾱt−1
(

p̄(·)
t |t−1

) = t

(
αt−1

(
p(·)

t |t−1

))
.

Since the objects that are to be born at time t + 1 and the clutter generators have
never been detected (recalling that clutter generators are renewed at every time step),
only the law p( y)

t |t−1 with y = φt−1 and the association measure αt−1 at point φt−1
need to be modified, and we consider that

ᾱt−1|Yt−1 = αt−1|Yt−1 , and p̄( y)

t |t−1 = p( y)

t |t−1, ∀ y ∈ Yt−1.

The next theoremmakes use of the notations introduced inRemark5. In particular,
the function st describing the probability of survival at any point of the state space X̄t

and the Markov kernel M ′′
t from X̄t to Xt+1 will be required to express the predicted

first-moment measure γt+1|t in a concise way.

Theorem 2 The first-moment measure γt+1|t of the conditional point process
Xt+1|Z0:t can be expressed, for any B ∈ B(Xt+1), as

γt+1|t (B) =
∫

Ȳt

αt (d y)p( y)

t+1|t (B),
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where the measure p(·)
t+1|t ∈ M(X̄t+1) is found to be

p( y,z)

t+1|t (B) = �st 	t (·,z)( p̄( y)

t−1|t )
(
M ′′

t (·, B)
)
, ∀ y ∈ Ȳt−1,∀z ∈ Z̄t ,

and where the association measure αt on the space Ȳt = Ȳt−1 × Z̄t can be expressed
as a function of ᾱt−1 as

αt (d( y, z)) = ᾱt−1(d y)
[

δφ(dz) p̄( y)

t |t−1

(
st	t (·, φ)

)

+ Zt (dz)
p̄( y)

t |t−1

(
st	t (·, z)

)

ᾱt−1
(

p̄(·)
t |t−1(	t (·, z))

)
]

. (1.6)

The identification of observation paths in the expression of the phd filter provides
a natural way of clustering the first-moment measure γ̄t+1|t . The advantage in such
an identification is twofold: (a) in terms of interpretation, since the output of the
filter can now be understood as being made of interacting single-object filters, and
(b) in terms of implementation, since the induced clustering makes unnecessary the
use of an additional clustering algorithm for the extraction of track estimates with
smc-phd filters.

Remark 6 (Forward–backward) Without additional derivations, the fact that the
single-object posterior laws p( y)

t+1|t appear explicitly in the expression of the first-
moment measure γt+1|t allows for considering objectwise forward–backward
algorithms. More general forward–backward filters based on the equations of the
phd filter have been studied in [15] and [3].

Remark 7 (Parameter estimation) For similar reasons as in Remark6, a ‘local’ para-
meter estimation can be performed for each observation path, e.g. if the variance of
the noise of the observation process is unknown and varies from object to object.
A global parameter estimation is also possible but requires a reformulation of the
filtering equations in order to integrate system-wide uncertainties, as in [18] and [10].

In order to devise approximations for the filtering equation described in
Theorem2, the different terms involved need to be rewritten in a suitable way. First,
the recursive expression (1.6) of αt can be expressed in a more concise way as

αt (d( y, z)) = (
ᾱt−1 ⊗ Z̄t

)(
d( y, z)

)
p̄( y)

t |t−1

(
G (z)

t,γ̄t |t−1

)
,

where ᾱt−1 ⊗ Z̄t refers to the productmeasure of ᾱt−1 and Z̄t , andwhere the potential
functionG (z)

t,γ is defined, for any observation z ∈ Z̄t and anymeasure γ ∈ M(X̄t ) such
that γ (	t (·, z)) > 0, as

G (z)

t,γ (x)
.=

⎧
⎨

⎩

st (x)	t (x, z)

γ (	t (·, z))
if z ∈ Zt

st (x)	t (x, φ) if z = φ.
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Defining, for any t ∈ T, the probability measure βt ∈ P(Ȳt ) as the normalised
association measure at time t and at ∈ R+ as the total mass in αt , i.e.

at
.= αt (1), and βt

.= 1

at
αt ,

the recursion (1.6) for the association measure αt ∈ M(Ȳt ) can be translated into a
recursion for the normalised association measure βt ∈ P(Ȳt ) as

βt = Πt−1(at−1, βt−1),

where Πt−1 describes concisely the update of the measure βt−1, and is defined as

Πt−1 : R+ × P(Ȳt−1) → P(Ȳt )

(a, β) �→ �G ′
ā,β̄

(β̄ ⊗ Z̄t )

where ā and β̄ are characterised by

āβ̄( p̄(·)
t |t−1) = t

(
aβ(p(·)

t |t−1)
)
,

and where the potential function G ′
a,β is defined, for any y ∈ Ȳt−1 and any z ∈ Z̄t ,

as

G ′
ā,β̄

( y, z)
.= p̄( y)

t |t−1

(

G (z)

t,āβ̄( p̄(·)
t |t−1)

)

.

Describing the recursion of the association measure through the transformation of
a probability measure allows for considering approximations as in the following
section.

Approximation

If we assume that the single-object posterior laws p( y)

t+1|t can be computed explicitly

for any y ∈ Ȳt , as in the linear Gaussian case with the Kalman filter, then the main
source of complexity lies in the fast augmentation of the number of observation paths
that form the support of αt when t increases. Indeed, the recursive expression of αt

could be reformulated as a product measure of αt−1 and Z̄t , thus indicating that the
number of observation paths is multiplied by the number of observations at each time
step. In order to control the number of considered observation paths, one can resort
to a mean-field-type approximation consisting in the introduction of an empirical
measure in place of the exact association measure αt . Formally, define

βN
0

.= 1

N

N∑

i=1

δ yi
0
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as the empirical measure associated with the collection of N independent and iden-
tically distributed (i.i.d.) random variables y10, . . . , yN

0 with the initial normalised
association measure β0 as common distribution. The normalised first-moment mea-
sure η1|0 ∈ P(X1) can then be approximated by

ηN
1|0(B) =

∫
βN
0 (d y)p( y)

1|0(B), ∀B ∈ B(X1).

This approach allows for limiting the number of observation paths at time t = 1
but, when applying the filtering step at time t = 2, the number of observation paths
will be multiplied again. The normalised first-moment measure η2|1 ∈ P(X2) is then
approximated by

ηN
2|1(B) =

∫
βN
1 (d y)p( y)

2|1(B), ∀B ∈ B(X2),

where βN
1 is an empirical measure based on N i.i.d. random variables with common

lawΠ0(a0, β
N
0 ). This approach can then be used recursively, so that the approximated

normalised first-moment measure at time t + 1 can be expressed using an empirical
measure βN

t , which is itself based on the update via Πt−1 of another empirical
measure βN

t−1 at time t − 1.
When the single-object posterior laws cannot be computed via the Kalman filter,

other approximations need to be considered at the object level and two-level particle
models can be introduced.

Remark 8 (mcmc exploration) In order to improve the exploration of the space
of observation paths by the empirical association measure, Markov chain Monte
Carlo (mcmc) algorithms can be used on a suitable time window. This window will
depend on the time of stability of the filtering equations since any modification of
an association prior to this time will have almost no effect on the current state of
the system. Practically, these mcmc steps could be used when the computations for
the sequential estimation have been performed and some computational power is
available before the acquisition of the next set of observations. This differs from
approaches where the full multi-target problem is solved using mcmc algorithms as
in [24] and [10].

Similar Association Paths

Very often, several observation paths will have in common many of the observations
composing them. This is mainly due to detection uncertainty, to objects being close
to each other with respect to the accuracy of the sensor, or to spurious observations
being close to an actual object. In consequence, the posterior laws corresponding
to these observation paths might be close statistically. Although it does not cause
any issues in the usual implementations of the phd filter—because of the mixture
reduction techniques used in Gaussian mixture implementations and because of the
absence of natural clustering in the standard smc implementation—this aspect has to



1 Particle Association Measures and Multiple Target Tracking 17

be dealt with when considering observation paths for two reasons: (a) it might reduce
the efficiency of the approximate filter detailed above by accumulating redundant
information, and (b) it makes the extraction of track estimates more difficult since
one object might be represented by multiple observation paths.

Even though there exist statistical distances between Gaussian distributions that
can be computed explicitly, such as theMahalanobis or theHellinger distance, there is
no counterpart for empirical measures and alternative ways have to be found in order
to obtain a consistent treatment of both cases. One solution lies in the identification
of the causes of the statistical similarity between two posterior laws: (a) the stability
of the considered single-object filter, which reduces the effect of past observations
on the current state of the object, and (b) the robustness, which relates to the fact that
a small change in the recent observations only induces small modifications of the
posterior distribution. For instance, if a (possibly statistical) distance dZ̄′

t
is available

for observations in Z̄t ′ at any time t ′ ∈ T, then an example of a distance on observation
paths up to time t ∈ T would take the form

dȲt
( y, y′) ∝

∑

t ′≤t

exp
( − c(t − t ′)

)
dZ̄t ′

(
yt ′ , y′

t ′
)
,

where c ∈ R+ is a coefficient that controls the duration required for large deviations
of observations to become negligible in the overall distance between observation
paths. The fact that dȲt

is a distance follows directly.

1.4 Analysis

The objective in this section is to recall a result of [6] about the long-time behaviour
of the measure-valued-process form of the phd filter introduced in Sect. 1.3.2. Not-
ing that this measure-valued process was factorised into a total mass mt+1|t ∈ R+
and a probability measure ηt+1|t ∈ P(X̄t+1), one approach for studying the stability
properties of this process is to proceed as follows: (a) find properties related to the
behaviour of the mass for a given flow of probability measure, (b) find properties
related to the behaviour of the probability measure for a given flow of mass, and (c)
find sufficient conditions for the two previous results to be combined into a global
analysis of the process.In order to state the results, we consider, for any measurable
space (E,E ), the set Osc1(E) made of the measurable functions on (E,E ) with
oscillations less than one, i.e. the functions f ∈ B(E) such that

sup
x,y∈E

| f (x) − f (y)| ≤ 1.

We first assume that there exists a collection I0, I1, . . . of compact subsets of R+
such that the mass process verifies mt+1|t ∈ It+1 for any t ∈ T as long as it holds
that m0 ∈ I0. Then, for any t ∈ T, for any collection m0, m1, . . . of non-negative
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real numbers verifying mt ∈ It , for all t ∈ T, and for any collection η0, η1, . . . of
probabilitymeasures such that ηt ∈ P(X̄t ), for all t ∈ T, we introduce the semigroups

Φ
(1)

t ′,t,η
.= Φ(1)

t,ηt
◦ · · · ◦ Φ

(1)

t ′,ηt ′ and Φ
(2)

t ′,t,m
.= Φ(2)

t,mt
◦ · · · ◦ Φ

(2)

t ′,mt ′ ,

where the transformations Φ
(1)
t,ηt

: It → It+1 and Φ
(2)
t,mt

: P(X̄t ) → P(X̄t+1) are
defined as

Φ(1)
t,ηt

(n) = Λ(1)
t (n, ηt ) and Φ(1)

t,mt
(μ) = Λ(2)

t (mt , μ).

Details about these models can also be found in [5].
Two properties of the semigroup transformations Φ

(1)

t ′,t,η and Φ
(2)

t ′,t,m will prove
to be of importance in the analysis of the long-time behaviour of the underlying
measure-valued process:

(L) For any time step t ′ ≤ t , anymasses n, n′ ∈ It ′ , any probabilitymeasuresμ,μ′ ∈
P(X̄t ′) and any f ∈ Osc1(X̄t+1), the following Lipschitz inequalities hold:

∣
∣Φ(1)

t ′,t,η(n) − Φ
(1)

t ′,t,η(n
′)
∣
∣ ≤ c(1)

t ′,t |n − n′|
∣
∣[Φ(2)

t ′,t,m(μ) − Φ
(2)

t ′,t,m(μ′)
]
( f )

∣
∣ ≤ c(2)

t ′,t

∫
|[μ − μ′](ϕ)|Kt ′,t,μ′( f, dϕ),

for some

• finite constants c(1)

t ′,t and c(2)

t ′,t that only depend on t ′ and t ,
• collection of Markov kernels Kt ′,t,μ′ from Osc1(X̄t+1) to Osc1(X̄t ′) that only
depend on t ′, t and μ′.

(C) For any time step t ∈ T, anymasses n, n′ ∈ It , any probabilitymeasuresμ,μ′ ∈
P(X̄t ) and any f ∈ Osc1(X̄t+1), the following continuity inequalities hold:

∣
∣Φ(1)

t,μ(n) − Φ
(1)

t,μ′(n)
∣
∣ ≤ c′(1)

t

∫
|[μ − μ′](ϕ)|Pt,μ′(dϕ)

∣
∣[Φ(2)

t,n(μ) − Φ
(2)

t,n′(μ)
]
( f )

∣
∣ ≤ c′(2)

t |n − n′|,

for some

• finite constants c′(1)
t and c′(2)

t that only depend on t ,
• collection of probability measures Pt,μ′ on Osc1(X̄t ) that only depend on t and μ′.

Property (L) is related to the regularity ofΦ(1)

t ′,t,η andΦ
(2)

t ′,t,m when their argument is
modified, whereas Property (C) refers to the stability of the one-step transformations
Φ

(1)
t,· andΦ

(2)
t,· when their parameter is changed. These two properties can be combined

in order to analyse the long-time behaviour of the evolution semigroup

Λt ′,t
.= Λt−1 ◦ · · · ◦ Λt ′ ,
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for any t, t ′ ∈ T such that t ′ ≤ t , where we consider that Λt,t = Id by convention. In
the following theorem, the binary relations ∧ and ∨ are used to, respectively, denote
the minimum and the maximum of two real numbers.

Theorem 3 (From [6], Theorem13.3.3) Assume that the properties (L) and (C) are
verified for the semigroup transformations Φ

(1)

t ′,t,η and Φ
(2)

t ′,t,m with constants c(i )

t ′,t and

c′(i )

t , i = 1, 2, such that, for any t, t ′ ∈ T with t ′ ≤ t , it holds that

c(i )

t ′,t ≤ ai e
−bi (t−t ′) and c′

i = sup
t∈T

c′(i )

t < ∞,

where ai and bi > 0 are some finite constants, i = 1, 2, which are assumed to verify
b1 
= b2 and

a1a2c′
1c′

2 ≤ (
1 − e−(b1∧b2)

)(
e−(b1∧b2) − e−(b1∨b2)

)
.

Then, for any time step t ′ ≤ t , any masses n, n′ ∈ It ′ , and any probability measures
μ,μ′ ∈ P(X̄t ′), the following Lipschitz inequalities hold:

∣
∣Λ(1)

t ′,t (n, μ) − Λ
(1)
t ′,t (n

′, μ′)
∣
∣

≤ e−b(t−t ′)
(

a1,1|n − n′| + a1,2

∫ ∣
∣[μ − μ′](ϕ)

∣
∣P ′

t ′,t,n′,μ′(dϕ)

)

and, for any f ∈ Osc1(X̄t+1),

∣
∣Λ(2)

t ′,t (n, μ)( f ) − Λ
(2)
t ′,t (n

′, μ′)( f )
∣
∣

≤ e−b(t−t ′)
(

a2,1|n − n′| + a2,2

∫ ∣
∣[μ − μ′](ϕ)

∣
∣K ′

t ′,t,n′,μ′( f, dϕ)

)

,

where P ′
t ′,t,n′,μ′ is a collection of probability measures on Osc1(X̄t ′), where K ′

t ′,t,n′,μ′

is a collection of Markov kernels from Osc1(X̄t+1) to Osc1(X̄t ′), where

b = (b1 ∧ b2) − log

(

1 + a1a2c′
1c′

2
eb1∧b2

e−(b1∧b2) − e−(b1∨b2)

)

and where the constants ai, j , i, j = 1, 2, are such that

a1,1 = a1
(
1 + a2,1c′

1/(e
−b − e−b1)

)

a1,2 = a1a2c′
1/(e

−b − e−b1)

a2,1 = a1a2c′
2/

(
e−(b1∧b2) − e−(b1∨b2)

)

a2,2 = a2.
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This important theorem provides conditions for the semigroup transformations
Φ

(1)

t ′,t,η andΦ
(2)

t ′,t,m to satisfy (exponential) stability properties. The objective is now to
understand under which practical situations these conditions are satisfied for the phd
filter. In order to simplify the presentation, we consider the following assumptions:

• the probability of detection dt , the probability of survival st as well as the distri-
bution νt and the expected number nc,t of spurious observations, are constant in
time and space and are thus, respectively, denoted as d, s, ν and nc,

• the spaces Xt and Zt , the Markov transition Mt , the likelihood 	t as well as the
distribution ηb,t and the expected number nb,t of appearing objects, are constant
in time and are, respectively, denoted as X, Z, M , 	, ηb and nb.

We additionally assume that

• it holds that nb > 0 and s > 0,
• for any z ∈ Z, it holds that

	(−)(z)
.= inf

x∈X
	(x, z) ≥ 0 and 	(+)(z)

.= sup
x∈X

	(x, z) < ∞.

We are now in position to specify the practical situations under which the phd
filter is stable.

Theorem 4 (From [6], Theorem13.4.1) If the quantity supt∈T Zt ( f ) is finite for f
equal to 	(+)/	(−) and 	(+)/(	(−))2, then there exist constants

0 < rd ≤ 1, rb < ∞, and rc > 0,

such that Φ
(1)

t ′,t,η and Φ
(2)

t ′,t,m satisfy the conditions of Theorem3 whenever

d ≥ rd , nb ≥ rb, and nc ≤ rc.

The result of Theorem4 can be informally stated as: the phd filter is exponen-
tially stable when the probability of detection is sufficiently high, when the expected
number of appearing objects is large enough, andwhen the number of spurious obser-
vations is limited. Although the claims related to the detection and to the spurious
observations are natural, it is useful to note that reducing the expected number of
appearing objects can have a negative impact on the stability. This is due to the fact
that in case of failure, a high birth rate will allow for the filter to recover quickly by
reinitialising lost tracks.

1.5 Derivation

Two different proofs of Theorem1 are first detailed using the notations introduced
so far, establishing a link between (a) the proof originally proposed in [12], which
relies on the concept of probability generating functionals, and (b) a ‘direct’ proof
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subsequently proposed in [2], for which only standard probabilistic concepts are
used. The association-measure formulation of the phd filter is demonstrated in the
last part of this section.

In the derivation of the update equations, the empty state ψb is ignored since all
objects with such a state will almost surely not be detected, so that this point state is
not affected during the update.

1.5.1 With Probability Generating Functionals

This approach is the one that has been originally used in [12] and is here adapted to
the measure theoretic notations introduced in the previous section.

Definition and Properties

We follow [4] for the definition of the concept of probability generating functional,
and we first introduce V(X) as the set of measurable functions h on (X,B(X)), for
any Polish space X, such that 1 − h vanishes outside some bounded set and such
that 0 ≤ h(x) ≤ 1 for any x ∈ X. The probability generating functional (p.g.fl.) of a
given point process X on X is defined as

G(h)
.= E

(

exp

(∫
log h(x)X (dx)

))

, ∀h ∈ V(X).

The p.g.fl. G characterises the point process X . If the point process X is written
as a sum

∑N
i=1 δXi , then the p.g.fl. can be equivalently expressed as

G(h) = E

( N∏

i=1

h(Xi )

)

, ∀h ∈ V(X).

The property of p.g.fl.s that will be of particular interest in this proof is that the first-
moment measure γ ∈ M(X) of X can be recovered from them through functional
differentiation as follows:

γ ( f ) = δG(1; f ), ∀ f ∈ B(X),

where, for any h, v ∈ V(X), the term δG(h; u) denotes the functional derivative
of the functional G at point h and in the direction u. Higher order derivatives are
accordingly denoted as δG(h; u1, . . . , un) for any h, u1, . . . , un in V(X).

In the case whereX is a Poisson point process, the p.g.fl. G can be expressed as
a function of the first-moment measure γ ofX as

G(h) = exp
( − γ (1 − h)

)
, ∀h ∈ V(X).
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Indeed, a Poisson point process is characterised by both its p.g.fl. and its first-moment
measure.

Finally, it is worth noting that ifX1, . . . ,Xn is a collection of independent point
processes on X, then the p.g.fl. of the superposition X = ∑n

i=1 Xi is found to be

G(h) =
n∏

i=1

Gi (h), ∀h ∈ V(X), (1.7)

where Gi denotes the p.g.fl. of the point process Xi , 1 ≤ i ≤ n.

p.g.fl. Representation of Multi-object Systems

Now considering the notations introduced in the previous sections, we start by jointly
expressing the point processes X̄t |t−1

.= X̄t |Z0:t−1 and Z̄t .

Proposition 2 The point processes X̄t |t−1 and Z̄t are jointly characterised by the
p.g.fl. H on X̄t × Z̄t expressed as

H(g, h) = Gt |t−1(hLt (g)), ∀g ∈ V(Z̄t ),∀h ∈ V(X̄t ),

where Gt |t−1 is the p.g.fl. of X̄t |t−1, which is found to be

Gt |t−1(h) = Gc(h) exp
( − γt |t−1(1 − h)

)
,

where Gc(h) = exp(−nc,tδψc(1 − h)) is the p.g.fl. associated to the clutter genera-
tors.

Proof First, since both the point processXt |t−1
.= Xt |Z0:t−1 and the randomnumber

of clutter generators are Poisson, the corresponding p.g.fl.s can be easily deduced.
The p.g.fl. Gt |t−1 is then found to be characterising the superposition of the point
processXt |t−1 with the random numbers of clutter generators, i.e. according to (1.7),

Gt |t−1(h) = Gc(h) exp
( − γt |t−1(1 − h)

)
.

In order to derive the expression of the p.g.fl. H , we first notice that all the objects in
the extended population described by X̄t |t−1 generate one (possibly empty) obser-
vation through Lt . In consequence, the p.g.fl. describing the generation of an obser-
vation for a single object is found to be

G ′
t (g)(x) = Lt (g)(x), ∀g ∈ V(Z̄t ),∀x ∈ X̄t .

Then, since the observation of each object and the generation of clutter are assumed
to happen independently, the p.g.fl. of the observation process Z̄t is found to be

GZ̄t
(g)(X) =

n∏

i=1

G ′
t (g)(xi ) =

n∏

i=1

Lt (g)(xi ), ∀X
.=

n∑

i=1

δxi ∈ N(X̄t ).
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Finally, the p.g.fl. H that jointly characterises X̄t |t−1 and Z̄t is expressed, for any
h ∈ V(X̄t ), as

H(g, h) = p(0) +
∑

n≥1

p(n)

∫
h(x1) . . . h(xn)GZ̄t

(g)

( n∑

i=1

δxi

)

η(dx1) . . . η(dxn)

= p(0) +
∑

n≥1

p(n)

∫ [ n∏

i=1

h(xi )Lt (g)(xi )

]

η(dx1) . . . η(dxn),

where p and η ∈ P(X̄t ) are, respectively, the cardinality distribution and the common
distribution of X̄t |t−1. The p.g.fl. of the point process X̄t |t−1 with the function hLt(g)

as an argument can then be recognised, i.e.

H(g, h) = Gt |t−1(hLt (g)),

which ends the proof of the proposition.

We assume that expectations and functional differentiation can always be
exchanged, see [20]. The following lemma is related to [12], but adapted to the
approach considered here.

Lemma 1 The p.g.fl. Gt of the updated point process X̄t |t
.= X̄t |Z0:t can be

expressed as a function of the joint p.g.fl. H of X̄t |t−1 and Z̄t as

Gt (h) =
δH

(
g, h; 1Z1 , . . . , 1Z N ′

t

)∣∣
g=1φ

δH
(
g, 1; 1Z1 , . . . , 1Z N ′

t

)∣∣
g=1φ

, ∀h ∈ V(X̄t ). (1.8)

Proof Since the observation point process is only given on the subset Zt of Z̄t ,
it follows that the point g ∈ V(Z̄t ) at which the derivatives in (1.8) are considered
should verify g|Zt = 0 and g(φ) = 1, that is g = 1φ . Now let X

.= ∑n
i=1 δxi ∈ N(X̄t )

be a counting measure on X̄t , let A1, . . . , An′
t
be a given collection of disjoint Borel

subsets of Zt , and A be a measurable subset of N(Z̄t ) defined as

A
.= {

Z ∈ N(Z̄t ) : ∀1 ≤ i ≤ n′
t

(
Z(Ai ) = 1

)
, Z(Zt \ (∪i Ai )) = 0

}
.

The measurable subset A contains the counting measures with exactly 1 point in
each Ai , no point elsewhere inZt , and any number of points on φ. Using the notations
introduced in the proof of Proposition2, we first compute the n′

t th-order functional
derivative of GZ̄t

(g)(X) as follows:

δGZ̄t

(
g; 1A1 , . . . , 1An′

t

)
(X)|g=1φ

= n′
t !
[ n′

t∏

i=1

Lt (Xi , Ai )

][ n∏

j=n′
t +1

Lt (X j , {φ})
]

,
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whenever n′
t ≤ n and 0 otherwise. This last result can be rewritten as

δGZ̄t

(
g; 1A1 , . . . , 1An′

t

)
(X)|g=1φ

= n′
t ! P

(
Z̄t ∈ A |X̄t |t−1 = X

)
.

Using Bayes’ theorem, we obtain

E
(
F(X̄t |t−1)

∣
∣Z̄t ∈ A

) = E
(
F(X̄t |t−1)P(Z̄t ∈ A

∣
∣X̄t |t−1)

)

E
(
P(Z̄t ∈ A

∣
∣X̄t |t−1)

) ,

which can be translated into a p.g.fl. form by setting F(X) = ∏n
i=1 h(xi ). Finally,

considering the Radon–Nikodym derivative of the Markov kernel Lt and a general
conditioning on Z̄t proves the desired result.

We are now in position to provide a first proof for Theorem1.

Proof of Theorem1

We first need to find a more detailed expression of the p.g.fl. Gt by performing the
functional differentiations in (1.8). The p.g.fl. H is rewritten more explicitly as

H(g, h) = exp
(

− γ̄t |t−1
(
1 − hLt (g)

))
.

By differentiating H in the directions u1, . . . , uN ′
t
, we find that the numerator of Gt

can be expressed as

δH
(
g, h; u1, . . . , uN ′

t

)∣∣
g=1φ

= H(1φ, h)

N ′
t∏

i=1

γ̄t |t−1(hLt(ui )).

An expression of Gt can be deduced as follows by considering that ui = 1Zi , for all
1 ≤ i ≤ N ′

t ,

Gt (h) = exp
(

− γ̄t |t−1
(
(1 − h)	t (·, φ)

))
N ′

t∏

i=1

γ̄t |t−1(h	t (·, Zi ))

γ̄t |t−1
(
	t (·, Zi )

) .

The first-moment measure γ̄t of the updated point process X̄t |Z0:t can then be found
by differentiating Gt at point 1 in the direction f ∈ B(X̄t ),

γ̄t ( f ) = δGt (1; f )

= γ̄t |t−1
(

f 	t (·, φ)
) +

∫
Zt (dz)

γ̄t |t−1( f 	t (·, z))

γ̄t |t−1
(
	t

(·, z)
) ,

which terminates the proof of the theorem.
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Asmentioned above, this p.g.fl.-based approach is the one that was originally used
in [12], where the phd filter was first introduced. However, it might prove challenging
to understand the structure of the result via this p.g.fl. transform domain. A direct
proof, which only relies on the standard operations of probability theory, is presented
in the next section.

1.5.2 Direct Proof

In order to shed light on the structure of the phd filter, we study a direct proof of
it, mostly based on [2]. The underlying idea is to find the conditional distribution of
the predicted point process X̄t |t−1 given the extended observation point process Z̄t ,
denoted as E(F(X̄t |t−1)|Z̄t ) for any F ∈ B(M(X̄t )). However, since only the obser-
vation point process Zt is given, the objective is to find the conditional distribution
E(F(X̄t |t−1)|Zt ) which can be recovered from the former one through

E
(
F(X̄t |t−1)|Zt

) = E

(
E

(
F(X̄t |t−1)|Z̄t

)|Zt

)
.

The first-moment measure γ̄t of the updated point process X̄t |t can then be directly
found through the following relation

γ̄t ( f ) = E
(
X̄t |t−1( f )|Zt

)
, ∀ f ∈ B(X̄t ).

In the remainder of this section the first-moment measure and the common distribu-
tion of the points in the predicted point process X̄t |t−1 will be, respectively, denoted
as γ̄ ∈ M(X̄t ) and η̄ ∈ P(X̄t ) for the sake of compactness.

Lemma 2 A version of the conditional distribution of the predicted point process
X̄t |t−1 given the extended observation point process Z̄t is expressed for any F ∈
B(M(X̄t )) as

E(F(X̄t |t−1)|Z̄t ) =
∫

F

( M ′
t∑

i=1

δxi

) M ′
t∏

i=1

�	t (·,Zi )(η̄)(dxi ),

where the N-valued random variable M ′
t is defined as M ′

t
.= N ′

t + Nφ .

Proof We first observe that X̄t |t−1 and Z̄t have almost surely the same total mass
because of the one-to-one correspondence between objects and clutter generators on
the one hand and (possibly empty) observations on the other hand. Then, we consider
the point process Wt on the space X̄t × Z̄t that is characterised by

Wt
.=

M ′
t∑

i=1

δ(Xi ,Zi ),
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where the N-valued random variable M ′
t is defined by the almost sure relation M ′

t
.=

N ′
t + Nφ = Nt + Nc. The point process Wt is Poisson and its underlying spatial

distribution η̂ ∈ M(X̄t × Z̄t ) can be expressed as

η̂(d(x, z)) = η̄(dx)Lt (x, dz).

In order to express the common conditional distribution L ′
t of the points in X̄t |t−1

given a realisation of Z̄t , we consider the following reversal formula:

η̄(dx)Lt (x, dz) = η̄
(
Lt (·, dz)

)
L ′

t (z, dx),

which can be expressed as Bayes’ theorem using the Radon–Nikodym derivative
	t (x, ·) of Lt (x, ·) as

L ′
t (z, dx) = η̄(dx)	t (x, z)

η̄
(
	t (·, z)

) = �	t (·,z)(η̄)(dx), ∀z ∈ Z̄t .

Noting that any realisation of Z̄t gives away the total mass of the point process
X̄t |t−1, the result of the lemma is obtained easily.

Recalling that the extended point process Z̄t can be divided into the point process
Zt on Zt and the atom Nφδφ , we obtain the following corollary from Lemma2.

Corollary 1 The conditional distribution E(F(X̄t |t−1)|Z̄t ) can be expressed for
any F ∈ B(M(X̄t )) as

E
(
F(X̄t |t−1)|Z̄t

) =
∫

F

( N ′
t∑

i=1

δxi +
Nφ∑

j=1

δx ′
j

)[ N ′
t∏

i=1

�	t (·,Zi )(η̄)(dxi )

][ Nφ∏

j=1

�	t (·,φ)(η̄)(dx ′
j )

]

.

Themore detailed expression of Corollary2 allows for integrating in amore direct
way the fact that the component Nφδφ of the point process Z̄t is not actually observed.

Lemma 3 A version of the conditional distribution of the predicted point process
X̄t |t−1 given the observation point process Zt is expressed, for any measurable
function F ∈ B(M(X̄t )), as

E(F(X̄t |t−1)|Zt ) = exp
(

− γ̄
(
	t (·, φ)

))∑

k≥0

γ̄ (	t (·, φ))k

k!

×
∫

F

( N ′
t∑

i=1

δxi +
k∑

j=1

δx ′
j

)[ N ′
t∏

i=1

�	t (·,Zi )(η̄)(dxi )

][ k∏

j=1

�	t (·,φ)(η̄)(dx ′
j )

]

.
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Proof To prove the lemma, it is sufficient to note that a version of the conditional
distribution of Z̄t given the observation point process Zt can be expressed, for any
measurable function F ′ ∈ B(M(Z̄t )), as

E
(
F ′(Z̄t )|Zt

) = exp
(

− γ̄
(
	t (·, φ)

)) ∑

k≥0

γ̄ (	t (·, φ))k

k! F ′(Zt + kδφ),

and then consider F ′(Z̄t ) = E(F(X̄t |t−1)|Z̄t ).

We are now in position to propose a second proof for Theorem1.

Proof (Theorem1) As mentioned above, we compute the first-moment measure γ̄t

of the updated point process X̄t |t from the conditional distribution E(F(X̄t |t−1)|Zt )

via equation
γ̄t ( f ) = E

(
X̄t |t−1( f )|Zt

)
, ∀ f ∈ B(X̄t ).

Considering the expression of the conditional distribution of X̄t |t−1 given inLemma3
and the fact that measures transformed via �	t (·,z) are probability measures, we find
that

E
(
X̄t |t−1( f )|Zt

) = exp
(

− γ̄
(
	t (·, φ)

)) ∑

k≥0

γ̄ (	t (·, φ))k

k!

×
[ N ′

t∑

i=1

�	t (·,Zi )(η̄)( f ) + k�	t (·,φ)(η̄)( f )

]

.

Then, noting that the Boltzmann–Gibbs transformation is left invariant under rescal-
ing of the input measure, i.e. that �	t (·,z)(η̄) = �	t (·,z)(γ̄ ) for any z ∈ Z̄t , and that

exp
(

− γ̄
(
	t (·, φ)

)) ∑

k≥0

γ̄ (	t (·, φ))k

k! = 1,

we obtain

E
(
X̄t |t−1( f )|Zt

) = γ̄
(
	t (·, φ)

)
( f ) +

N ′
t∑

i=1

�	t (·,Zi )(γ̄ )( f ),

which terminates the proof.
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1.5.3 Proof of Theorem 2

One way of proving Theorem2 is to use an induction approach together with the
filtering equations already demonstrated in the previous sections. To that purpose,
we assume that the first-moment measure γt |t−1 of the point process Xt |Z0:t−1 can
be expressed as

γt |t−1(B) =
∫

αt−1(d y)p( y)

t |t−1(B), ∀B ∈ B(Xt ),

where p( y)

t |t−1 ∈ P(Xt ) for any y ∈ Yt and where p( y)

t |t−1 ∈ M(Xt ) when y = φt . In
order to show the result, we need to prove that after augmenting γt |t−1 through t

as well as updating and predicting, the obtained first-moment measure can still be
expressed in a similar form.

First we observe, for any B ∈ B(X̄t ), that

γ̄t |t−1(B) = t
(
γt |t−1

)
(B)

= ᾱt−1({φt }) p̄(φt )

t |t−1(B) +
∫

Yt

αt−1(d y)p( y)

t |t−1(B)

=
∫

ᾱt−1(d y) p̄( y)

t |t−1(B).

Then, using the update Eq. (1.2), we find that

γ̄t (B) =
∫

B

gt,γ̄t |t−1(x)γ̄t |t−1(dx)

=
∫

ᾱt−1(d y)
[

p̄( y)

t |t−1(1B	t (·, φ)) +
∫

Zt (dz)
p̄( y)

t |t−1(1B	t (·, z))

ᾱt−1
(

p̄(·)
t |t−1(	t (·, z))

)
]

.

Finally, using the prediction Eq. (1.4), we can conclude that

γ̄t+1|t (B) =
∫

ᾱt−1(d y)ζ(dz)p( y,z)

t+1|t (B), ∀B ∈ B(Xt+1),

with

p( y,z)

t+1|t (B) = p̄( y)

t |t−1

(
Mt (·, B)	t (·, z)

)

p̄( y)

t |t−1

(
Mt (·, Xt+1)	t (·, z)

) ∈ P(Xt+1),

and

ζ(dz) = δφ(dz) p̄( y)

t |t−1

(
Mt (·, Xt+1)	t (·, φ)

) + Zt (dz)
p̄( y)

t |t−1

(
Mt (·, Xt+1)	t (·, z)

)

ᾱt−1
(

p̄(·)
t |t−1(	t (·, z))

) .
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The expression obtained in Theorem2 can be directly deduced from this result by
recalling that st (x) = Mt (x, Xt ) ∈ 0, 1 is the probability of survival at point x ∈ X̄t .

1.6 Conclusion

The introduction of the concept of association measure in the formulation of the
phd filter enabled the expression of the first-moment measure of the distribution
related to a multi-object system as a mixture of single-object posterior laws, thus
highlighting the structure of the corresponding updating-prediction equation. This
approach shows the phd filter from another point of view, that is, as single-object
filters in interaction or, in the linear Gaussian case, as interacting Kalman filters. This
formulation enabled the derivation of amean field approximation of the first-moment
measure that does not depend on the resolution of the single-object filtering problem,
hence showing a certain versatility when compared to the usual Gaussian mixture
and sequential Monte Carlo implementations of the phd filter. This approach also
makes different techniques available at the object level, such as objectwise forward–
backward algorithms or parameter estimation.
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Chapter 2
An Overview of Recent Advances
in Monte-Carlo Methods for Bayesian
Filtering in High-Dimensional Spaces

François Septier and Gareth W. Peters

Abstract Nonlinear non-Gaussian state-space models arise in numerous applica-
tions in statistics and signal processing. In this context, one of the most success-
ful and popular approximation techniques is the sequential Monte-Carlo (SMC)
algorithm, also known as the particle filter. Nevertheless, this method tends to be
inefficient when applied to high-dimensional problems. In this chapter, we present,
an overview of recent contributions related to Monte-Carlo methods for sequential
simulation from ultra high-dimensional distributions, often arising for instance in
Bayesian applications.

2.1 Introduction

Inmany applications,we are interested in estimating a signal froma sequence of noisy
observations. Optimal filtering techniques for general nonlinear and non-Gaussian
state-space models are consequently of great interest. Except in a few special cases,
including linear and Gaussian state-space models (Kalman filter [26]) and hidden
finite-state space Markov chains [7], it is impossible to evaluate this filtering distri-
bution analytically. However, linear systems with Gaussian dynamics are generally
inappropriate for the accurate modeling of a dynamical system, since they fail to
account for the local nonlinearities in the state space or the dynamic changing nature
of the system which is under study. It is therefore increasingly common to consider
nonlinear or non-Gaussiandynamical systems. In the case of additiveGaussian errors,
one could adopt an Extended Kalman filter (EKF) or in the case of non-Gaussian
additive errors, an Unscented Kalman filter (UKF) [25].
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Since the 1990s, sequentialMonteCarlo (SMC) approaches have become a power-
ful methodology to cope with nonlinear and non-Gaussian problems [16]. In compar-
ison with standard approximation methods, such as the EKF, the principal advantage
of SMC methods is that they do not rely on any local linearization technique or any
crude functional approximation. These particle filtering (PF) methods [23], exploit
numerical representation techniques for approximating the filtering probability den-
sity function of inherently nonlinear non-Gaussian systems. Using these methods
for the empirical characterization of sequences of distributions and the resulting esti-
mators formed based on these empirical estimates can be set arbitrarily close to the
optimal solution at the expense of computational complexity.

However, due to their importance sampling-based design, classical SMC meth-
ods tend to be inefficient when applied to high-dimensional problems [36, 42].
This issue, known as the curse of dimensionality, has rendered traditional SMC
algorithms largely useless in high-dimensional applications such as multiple target
tracking, weather prediction, and oceanography. In this chapter, we aim at reviewing
recent developments in Monte-Carlo-based techniques that have been specifically
designed to deal with high-dimensional systems. The chapter is organized as fol-
lows. In Sect. 2.2, we describe the model and the different quantities of interest
in dynamic settings. Then, Sect. 2.3 discusses the general principle of SMC meth-
ods and their limitations in high-dimensional systems. Several recent developments
to improve their performance in this specific setting are then presented. Section2.4
describes another class of sequential inference algorithms based on the use ofMarkov
chainMonte-Carlomethods (SMCMC) as an alternative to SMCmethods.Numerical
results are shown in Sect. 2.6. Conclusions are given in Sect. 2.7.

2.2 Problem Formulation

A hidden Markov model (HMM) corresponds to a R
d -valued discrete-time Markov

process, {Xn}n≥1 that is not directly observable but we have only access to another
R

dy -valued discrete-time stochastic process, {Yn}n≥1, which is linked to the hidden
Markov process of interest. Owing to the Markovian property of the process, the
joint distribution of the process {Xn}n≥1,

p(x1:n) = μ(x1)
n∏

k=1

fk(xk |xk−1) (2.1)

is completely defined by an initial probability density function (pdf) μ(x1) and the
transition density function at any time k, denoted by fk(xk |xk−1).

In a HMM, the observed process {Yn}n≥1 is such that the conditional joint density
of Y1:n = y1:n given X1:n = x1:n has the following conditional independence (prod-
uct) form
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· · · Xn− 1 Xn Xn+ 1 · · ·

Yn− 1 Yn Yn+ 1

fn(·) fn+ 1(·)

gn− 1(·) gn(·) gn+ 1(·)

Fig. 2.1 Graphical representation of a hidden Markov model

p(y1:n|x1:n) =
n∏

k=1

gk(yk |xk). (2.2)

The dependence structure of an HMM can be represented by a graphical model
shown in Fig. 2.1.

Equations (2.1)–(2.2) define a Bayesian model where (2.1) defines the prior dis-
tribution of the “state” process of interest {Xn}n≥1 and (2.2) defines the likelihood
function of the conditional observations. One of the most common inference prob-
lems, known as optimal filtering, which occurs with HMMs is the estimation of the
current state value based upon the sequence of observations observed so far. Such
inference about Xn given a sequence of the observations Y1:n = y1:n relies upon the
posterior distribution,

p(x1:n|y1:n) = p(x1:n, y1:n)
p(y1:n)

= p(x1:n)p(y1:n|x1:n)
p(y1:n)

. (2.3)

This posterior distribution, known also as the smoothing distribution, satisfies the
following recursion

p(x1:n|y1:n) = gn(yn|xn) fn(xn|xn−1)

p(yn|y1:n−1)
p(x1:n−1|y1:n−1), (2.4)

where

p(yn|y1:n−1) =
∫

gn(yn|xn) fn(xn|xn−1)p(xn−1|y1:n−1)dxn−1:n . (2.5)

In the literature, this recursion is sometimes presented directly in terms of the
marginal posterior distribution, p(xn|y1:n), known as the filtering distribution:

p(xn|y1:n) = gn(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
, (2.6)
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with

p(xn|y1:n−1) =
∫

fn(xn|xn−1)p(xn−1|y1:n−1)dxn−1. (2.7)

However, most sequential Monte-Carlo-based algorithms rely on a numerical
approximation of recursion (2.4) instead of (2.6).

2.3 Sequential Monte-Carlo Methods

2.3.1 General Methodology

SMC methods have several variants sometimes appearing under the names of par-
ticle filtering or interacting particle systems, e.g. [10, 15, 37], and their theoretical
properties have been extensively studied in [8–10, 29].

The general context of a standard SMC method is that one wants to approximate
a (often naturally occurring) sequence of target probability density functions (pdf){
πn(x1:n)

}
n≥1 of increasing dimension, i.e. the support of every function in this

sequence is defined as supp
(
πn

) = R
dn and therefore the dimension of its support

forms an increasing sequence with n. We may also assume that πn is only known
up to a normalizing constant,

πn(x1:n) = γn(x1:n)
Zn

. (2.8)

SMC methods firstly provide an approximation of π1(x1) and an unbiased estimate
of Z1, then at the second iteration (“time step” 2) once a new observation is received,
an approximation of π2(x1:2) is formed as well as an unbiased estimate of Z2 and
this repeats with each distribution in the sequence.

Let us remark at this stage that SMC methods can be used for any sequence of
target distributions and therefore the application of SMC to optimal filtering, known
as particle filtering, is just a special case of this general methodology by choosing
γn(x1:n) = p(x1:n, y1:n) and Zn = p(y1:n).

Procedurally, we initialize the algorithm by sampling a set of N particles,
{

X j
1

}N

j=1
, from the distribution π1 and set the normalized weights as W j

1 = 1/N ,

for all j = 1, . . . , N . If it is not possible to sample directly from π1, one should
sample from an importance distribution q1 and calculate its weights according to the
importance sampling principle, i.e. W j

1 ∝ π1(X j
1)/q1(X j

1). Then, the particles are
sequentially propagated thorough each distribution πt in the sequence via two main
processes: mutation and correction (incremental importance weighting). In the first
step (mutation), we propagate particles from time t − 1 to time t and in the second
one (correction) we calculate the new importance weights of the particles.
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This method can be seen as a sequence of importance sampling steps, where the
target distribution at each step n is πn(x1:n) and the importance distribution is given
by

qn(x1:n) = q1(x1)
n∏

k=2

qk(xk |x1:k−1), (2.9)

where qk(xk |x1:k−1) is the proposal distribution used to propagate particles from time
k − 1 to k. As a consequence, the unnormalized importance weights are computed
recursively by:

W (x1:n) = γn(x1:n)
qn(x1:n)

= γn−1(x1:n−1)

qn−1(x1:n−1)

γn(x1:n)
γn−1(x1:n−1)qn(xn|x1:n−1)

(2.10)

= W (x1:n−1)w̃(x1:n),

where w̃(x1:n) is known as the incremental importance weight. When SMC is applied
for the optimal filtering problem with γn(x1:n) = p(x1:n, y1:n), it is straightforward
to show by using the recursion of the smoothing distribution in Eq. (2.4) that the
incremental importance weight is given by:

w̃(x1:n) = γn(x1:n)
γn−1(x1:n−1)qn(xn|x1:n−1)

= gn(yn|xn) fn(xn|xn−1)

qn(xn|x1:n−1)
. (2.11)

At any time n, we obtain an approximation of the target distribution via the
empirical measure obtained by the collection of weighted samples, i.e.

π̂n(x1:n) =
N∑

j=1

W j
n δX j

1:n
(dx1:n), (2.12)

where W j
n is the normalized importance weights such that

∑N
j=1 W j

n = 1. Moreover,
an unbiased estimate of the ratio of two successive normalizing constants is also
provided as follows:

Ẑn

Zn−1
=

N∑

j=1

W j
n−1w̃(X j

1:n). (2.13)

The algorithm described above is known as the Sequential Importance Sampling
(SIS) algorithm. However, direct importance sampling on a very large space is rarely
efficient as the importance weights exhibit very high variance. As a consequence, SIS
will provide estimates whose variance increases exponentially with time n. Indeed,
after only a few iterations, all but a few particles will have negligible weights thus
leading to the phenomena known as weight degeneracy. A well-known criterion to
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quantify in an online manner this degeneracy is the effective sample size defined as
follows:

ESSn = 1
∑N

j=1

(
W i

n

)2 (2.14)

with 1 ≤ ESSn ≤ N . In order to overcome this degeneracy problem, a resampling
step is thus added in the basic algorithm when the effective sample size drops below
some threshold, which as a rough guide is typically in the range of 30–60% of the
total number of particles. The purpose of resampling is to reduce this degeneracy by
eliminating samples which have low importance weights and duplicating samples
with large importance weights [15]. It is quite obvious that when one is interested
in the filtering distribution p(xn|y1:n), performing a resampling step at the previous
time step will lead to a better level of sample diversity as those particles which
were already extremely improbable at time n − 1 are likely to have been eliminated
and those which remain have a better chance of representing the situation at time
n accurately. Unfortunately, when the smoothing distribution is really the quantity
of interest, it is more problematic since the resampling mechanism eliminates some
trajectories with every iteration, thus leading to problem known as path or sample
degeneracy. Indeed, resampling will reduce at every iteration the number of distinct
samples representing the first time instant of the hidden Markov process. Since in
filtering applications, one is generally only interested in the final filtering posterior
distribution, this resampling step is widely used in practice at the expense of further
diminishing the quality of the path samples. Some strategy that will be discussed in
Sect. 2.3.3.1 is generally employed in practice to increase the diversity of the samples.

This SMC algorithm which incorporates a resampling step is often referred to
as Sequential Importance Resampling (SIR) or Sequential Importance Sampling
and Resampling (SIS-R). This approach applied for filtering is summarized in
Algorithm1. By assuming that the cost of computing the product of the prior and the
likelihood distribution isO(d) (i.e., a function of the dimension of the hidden state),
the cost of the general SMC algorithm is O(nNd).

2.3.2 Limitations of SMC Methods

In this section, wewill discuss the limitations of SMCmethods when applied to high-
dimensional problems. The main reason why the SIR algorithm performs poorly
when the model dimension is high is essentially the same reason why the SIS algo-
rithm behaves badly when the time-horizon is large, and it has to do with the fact that
the importance sampling paradigm is typically very inefficient in high-dimensional
models. As discussed previously, the SIS algorithm is designed to approximate the
smoothing distribution p(x1:n|y1:n), weight degeneracy occurs as n increases since
the dimension of this target distribution increases with time. Now, if the hidden
Markov process is high-dimensional, weight degeneracy will occur as the dimension
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Algorithm 1 SMC algorithm for optimal filtering
1: if time n = 1 then
2: Sample X j

1 ∼ q1(x1), ∀ j = 1, . . . , N

3: Calculate the weights W j
1 ∝ g1(Y1|X j

1 )μ(X j
1 )

q1(X ( j)
1 )

, ∀ j = 1, . . . , N

4: else if time n ≥ 2 then
5: Sample X j

n ∼ qn(xn |X j
1:n−1) and set X j

1:n := (X j
1:n−1, X j

n ), ∀ j = 1, . . . , N

6: Calculate the weights W j
n ∝ W j

n−1

gn(Yn |X j
n ) fn(X j

n |X j
n−1)

qn(X j
n |X j

1:n−1)
, ∀ j = 1, . . . , N

7: end if
8: if E SSn < � then
9: Resample

{
W j

n , X j
1:n

}
to obtain N equally weighted particles

{
W j

n = 1/N , X j
1:n

}

10: end if
11: Output: Approximation of the smoothing distribution via the following empirical measure:

π(x1:n) ≈
N∑

j=1

W j
n δ

X j
1:n

(dx1:n)

of this process increases. As a consequence, this degeneracy is seen even in a single
iteration of the algorithm. In [4, 42], a careful analysis shows that the collapse phe-
nomenon occurs unless the sample size N is taken to be exponential in the dimension,
which provides a rigorous statement of the curse of dimensionality. Let us remark
that a similar weight degeneracy phenomena could be observed in SMC, even in low
dimensional models, when for example the noise driving both the dynamics and the
observation has very small variance.

The performance of the SMC strongly depends on the choice of the importance
distribution. In the literature, the “optimal” proposal distribution in the sense of
minimizing the variance of the importance weights is defined as:

qn(xn|xn−1) = πn(xn|x1:n−1)

= p(xn|yn, xn−1) (in HMM filtering problems) (2.15)

which leads to the following incremental weight w̃(x1:n) = p(yn|xn−1) whose vari-
ance conditional upon x1:n−1 is zero since it is independent of xn . Unfortunately,
in many scenarios, it is impossible to sample from this “optimal” distribution.
Many techniques have been proposed to design “efficient” importance distributions
qn(xn|xn−1) which approximate p(xn|yn, xn−1). In particular, approximations based
on the Extended Kalman Filter or the Unscented Kalman Filter to obtain importance
distributions are very popular in the literature [6].

While the practical performance of the SIR algorithm can be largely improved by
working with importance distributions that are tailored to the specific model being
investigated, the benefit is limited to reducing the constants sitting in front of the error
bounds, and this technique does not provide a fundamental solution to the curse of
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dimensionality [35, 41]. When the optimal importance distribution is used, the curse
of dimensionality would indeed still arise due to the recursive nature of the filtering
problem.

In the next section, we will describe several strategies that have been proposed
in order to improve the performance of standard particle filter in high-dimensional
systems.

2.3.3 SMC Strategies for High-Dimensional Systems

2.3.3.1 MCMC Moves and the Use of Bridging Densities

The use of Markov Chain Monte-Carlo (MCMC) algorithms within SMC methods
is a well-known strategy to improve the filter performance. As discussed previously,
repeated resampling stages progressively impoverish the set of particles, by decreas-
ing the number of distinct values represented in that set. This degeneracy problem
has historically been addressed using the resample-move algorithm [20] which con-
sists in applying one or more times after the resampling stage an MCMC transition
kernel,Kn(x1:n, x ′

1:n), such as a Gibbs sampler or Metropolis–Hastings scheme [38],
having π(x1:n) as its stationary distribution which means that the following property
holds: ∫

π(x1:n)Kn(x1:n, x ′
1:n)dx1:n = π(x ′

1:n). (2.16)

As a consequence, if the particles X j
1:n are truly drawn from π(x1:n), then theMarkov

kernel applied to any of the particles will simply generate new state sequences which
are also drawn from the desired distribution. Moreover, even if the particles are not
accurately drawn from π(x1:n), the use of such Markov transition kernel will move
the particles so that their distribution is closer to the target one (in total variation
norm). The use of such MCMC moves can therefore be very effective in reducing
the path degeneracy as well as in improving the accuracy of the empirical measure of
the posterior distribution. In practice for filtering problems, in order to keep a truly
online algorithm with a computational cost linear in time, the Markov transition
kernels will not operate on the entire state history, but rather on some fixed time lag
L by only updating the variables Xn−L+1:n .

An interesting generalization of the combination of SMC and MCMC has been
proposed in [21] in which the authors propose to introduce a sequence of bridging
densities between the initial sampling distribution (generally, the predictive posterior
distribution, i.e., p(x0:n|y0:n−1)) and the posterior at time n. By introducing gradu-
ally the effect of the likelihood function, the MCMC sampler is thus expected to
converge faster, especially when the likelihood for the new data point is centered far
from the points sampled from the importance distribution. As a consequence, such
strategy could be more effective than standard SMC techniques in high-dimensional
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problems. More specifically, the following sequence of M ≥ 1 bridging densities is
introduced at time n:

πm(x1:n) ∝ p(x1:n−1|y1:n−1) fn(xn|xn−1)gn(yn|xn)
αm (2.17)

with 0 ≤ α1 < · · · < αM = 1. In order to move the particles through this sequence
of bridging densities, the authors propose to use the framework of the annealed
importance sampling [33] (or its generalization the sequential Monte-Carlo sampler
[11, 34]). At time n, the particles are first propagated like in the standard SMC
methods using an importance distribution, qn(xn|x1:n−1), and let us denote them by
X j
0:n,0 and set W j

n,0 = W j
n−1 and π0(x1:n) = qn(xn|x1:n−1)π(x1:n−1). Then, at step

m = 1, . . . , M , the importance weights are computed as follows:

W j
n,m ∝ W j

n,m−1

πm(X j
1:n,m−1)

πm−1(x j
1:n,m−1)

. (2.18)

Then, a resampling step can be performed if the weights are too degenerate. Finally,
each particle is moved independently to obtain X j

1:n,m using a Markov transition

kernel, Km(x j
1:n,m−1, ·) having πm(x1:n) as stationary distribution. After the M

steps, a set of weighted samples from the posterior distribution π(x0:n) is therefore
obtained by setting

{
W j

n , X j
0:n

}
=

{
W j

n,M , X j
0:n,M

}
. The algorithm is summarized in

Algorithm2 and its cost is O(nN Md) by assuming that the cost of computing the
product of the prior and the likelihood distribution is O(d) as well as the MCMC
kernel used. Let us notice that the resample-move algorithm [20] is a special case
when M = 1 and also that this scheme is similar to some strategies known as annealed
particle filtering [12, 17].

2.3.3.2 Local SMC Methods or Block Particle Filter

The underlying idea of these local SMC methods is to partition the state space
into separate subspaces of small dimensions and run one SMC algorithm on each
subspace. Such strategies have been developed in [13, 14, 32, 36]. Generally, the
common assumption used in these approaches is that there exists an ensemble of
disjoint sets

{
Dn, j

}Bn

j=1 with ∪Bn
j=1Dn, j = {1 : d} and Dn, j ∩ Dn,i = ∅ for i �= j , for

some integer 0 < Bn ≤ d, such that we can factorize:

gn(yn|xn) fn(xn|xn−1) =
Bn∏

j=1

αn, j (yn, xn−1, xn(Dn, j )), (2.19)

for appropriate functions αn, j (·), where xn(D) = {xn( j) : j ∈ D} ∈ R
|D| (Fig. 2.2).

By running an SMC algorithm on each nonoverlapping subset, the filtering dis-
tribution of interest is therefore approximated at the end of each iteration as follows:
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Algorithm 2 SMC algorithm with Bridging densities for optimal filtering
Ensure: n ≥ 2
1: Sample X j

n,0 ∼ qn(xn |X j
1:n−1) and set X j

1:n,0 := (X j
1:n−1, X j

n,0), ∀ j = 1, . . . , N

2: Set W j
n,0 = W j

n−1, ∀ j = 1, . . . , N and define π0(x1:n) = qn(xn |x1:n−1)π(x1:n−1)

3: for m = 1, . . . , M do

4: Calculate the weights W j
n,m ∝ W j

n,m−1

πm(X j
1:n,m−1)

πm−1(x j
1:n,m−1)

, ∀ j = 1, . . . , N

5: if E SSn < � then
6: Resample

{
W j

n,m , X j
1:n,m−1

}
to obtain N equally weighted particles

{
W j

n,m = 1/N , X j
1:n,m−1

}

7: end if
8: Sample X j

1:n,m ∼ Km(X j
1:n,m−1, x1:n), ∀ j = 1, . . . , N using Km(·) a Markov kernel having

πm(·) as its stationary distribution.
9: end for
10: Set

{
W j

n , X j
1:n

}
=

{
W j

n,M , X j
1:n,M

}
, ∀ j = 1, . . . , N

11: Output: Approximation of the smoothing distribution via the following empirical measure:

π(x1:n) ≈
N∑

j=1

W j
n δ

X j
1:n

(dx1:n)

Yn− 1(i+ 1) Yn(i+ 1) Yn+ 1(i+ 1)

Yn− 1(i) Yn(i) Yn+ 1(i)

Yn− 1(i− 1) Yn(i− 1) Yn+ 1(i− 1)

· · · Xn− 1(i+ 1) Xn(i+ 1) Xn+ 1(i+ 1) · · ·

· · · Xn− 1(i) Xn(i) Xn+ 1(i) · · ·

· · · Xn− 1(i− 1) Xn(i− 1) Xn+ 1(i− 1) · · ·dimension

time

Fig. 2.2 Graphical representation of a hidden Markov model that satisfies an example of a factor-
ization in Eq. (2.19)

π(xn) ≈
Bn⊗

j=1

π(xn(Dn, j )). (2.20)

The local SMC method, summarized in Algorithm3, is well suited to distributed
computation as the particles weights are computed locally due to the factorization
described in Eq. (2.19). However, this strategy introduces some bias in the algorithm,
so that the estimates given by the local SMC method do not converge to the exact
filter distributions as the number of particles N goes to infinity. However, the hope
is that by introducing a small amount of bias in the algorithm, its variance can be
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reduced significantly since the Bn SMC algorithms are running on smaller dimen-
sion, i.e., |Dn, j | ≤ d for j = 1, . . . , Bn . Moreover, the local error induced by the
approximation of the target distribution as the product of marginals of the nonover-
lapping subset is spatially inhomogeneous, i.e., the error will be larger for elements
in xn closer to subset boundaries. The computational cost of the local particle filter
is O(nNd) by assuming that the cost of computing the product of the prior and
likelihood distribution is O(d) (or equivalently that the cost of computing αn, j is
O(|Dn, j |) for each n and j).

Algorithm 3 Local SMC algorithm
1: if time n = 1 then
2: Sample X j

1 (D1,i ) ∼ q1(x1(D1,i )), ∀ j = 1, . . . , N and ∀i = 1, . . . , B1

3: Calculate the weights W j
1,i ∝ α1,i (Y1, X j

1 (D1,i ))

q1(X j
1 (D1,i ))

, ∀ j = 1, . . . , N and ∀i = 1, . . . , B1

4: else if time n ≥ 2 then
5: Sample X j

n−1 from π̂(xn−1) for j = 1, . . . , N

6: Sample X j
n (Dn,i ) ∼ qn(xn(Dn,i )|X j

n−1) ∀ j = 1, . . . , N and ∀i = 1, . . . , Bn

7: Calculate theweightsW j
n,i ∝ αn,i (Yn, X j

n−1, X j
n (Dn,i ))

qn(X j
n (Dn,i )|X j

n−1)
,∀ j = 1, . . . , N and∀i = 1, . . . , Bn

8: end if
9: Output: Approximation of the filtering distribution via the following empirical measure:

π̂(xn) =
Bn⊗

i=1

N∑

j=1

W j
n,i δX j

n (Dn,i )
(dxn(Dn,i ))

2.3.3.3 Space-Time Particle Filter

The space–time Particle filter (STPF) has been recently proposed in [3]. As in both
previous approaches described in Sects. 2.3.3.1 and2.3.3.2, the idea is to have a
gradual introduction of the likelihood gn(yn|xn) into the successive steps of the
algorithm in order to decrease the variance of the importance weights which is the
main reason of the collapse of the SMC methods in high-dimensional systems. In
this work, the authors assume there exists an increasing sequence of sets

{
An, j

}Bn

j=1
with An,1 ⊂ An,2 ⊂ . . . ⊂ An,Bn = {1 : d}, for some integer 0 < Bn ≤ d, such that
we can factorize:

gn(yn|xn) fn(xn|xn−1) =
Bn∏

j=1

αn, j (yn, xn−1, xn(An, j )) (2.21)

for appropriate functions αn, j (·), where xn(A) = {xn( j) : j ∈ A} ∈ R
|A|. Let us

remark that the assumption required for this factorization is weaker than the one
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described in Eq. (2.19) for the local SMCmethods since some dependencies between
elements of xn from different subsets given xn−1 are allowed. As discussed by the
authors in their paper, this factorization is not a requirement but in such cases the
performance of the filter will be degraded as additional sampling and reweighting
steps are necessary.

The underlying idea of the STPF is to exploit the structure in Eq. (2.21) to design a
particle filter moving along both the space and time index (as opposed to traditional
particle filter that moves only along the time index). This approach can also be
viewed as a generalization of the particle island particle filter proposed in [43] since
the STPF combines a local filter running Bn space-step using M particles with a
global particle filter making time steps using N particles. The authors show that
this algorithm is asymptotically consistent and has a subexponential cost in d. Since
the local particle filters are running along the space dimension, a patch degeneracy
(on the space dimension) effect can be expected as the dimension of the system
increases. The authors describe different strategies based on MCMC rejuvenation
that could be employed to improve the performance of the algorithm at the expense
of additional cost. The algorithm is summarized in Algorithm4 and its computational
cost isO(nN Md) by assuming that the cost of computing αn, j isO(|An, j |) for each
n and j . More specifically, the authors present results that, in 1) an i.i.d. scenario
both in time and space and 2) aMarkovian model along space, the algorithm is stable
by setting the number of particles in the local systems equal to the dimension of the
system (i.e., M = d), thus leading in that case to a cost of O(nNd2).

2.4 Sequential Markov Chain Monte Carlo

In this section, another class of sequential Bayesian algorithm based onMCMC sam-
pling (unlike importance sampling as in the previous section) is described. MCMC
methods are generally more effective than importance sampling techniques in high-
dimensional spaces. Their traditional formulation, however, allows sampling from
probability distributions in a nonsequential fashion. Recently, advanced sequential
MCMC schemes were proposed in [2, 5, 22, 27, 40] for solving online filtering
inference problems. These approaches are distinct from the technique described
previously in Sect. 2.3.3.1 where the MCMC algorithm is used to move samples fol-
lowing importance sampling resampling since these sequential MCMC use neither
resampling nor importance sampling.

2.4.1 General Principle

Several sequential MCMC (SMCMC) methods have been proposed in the litera-
ture recently. In this section, we will describe a general framework that include
all of them. The underlying idea of all these SMCMC approaches is to perform a
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Algorithm 4 Space-Time Particle Filter
1: Define the subset Ωi = A1,i \ A1,i−1
2: if time n = 1 then
3: for j = 1, . . . , N do
4: for i = 1, . . . , B1 do
5: Sample X j,l

1 (Ωi ) ∼ q1(x1(Ωi )|X j,l
1 (A1,i−1)), ∀l = 1, . . . , M

6: Set X j,l
1 (Ai ) =

[
X j,l
1 (A1,i−1) X j,l

1 (Ωi )
]

7: Calculate the weights w j,l
i = α1,i (y1, ·, X j,l

1 (A1,i ))

q1(X j,l
1 (Ωi )|X j,l

1 (A1,i−1))
, ∀l = 1, . . . , M

8: Resample local particles
{

X j,l
1 (A1,i )

}M

l=1
according to their normalized weights

{

w j,l
i

[∑M
k=1 w j,k

i

]−1
}M

l=1
9: end for
10: end for

11: Resample the N -particle systems, i.e.,
{

X j,1:M
1

}N

j=1
, according to their weights defined as:

W j
1 ∝

B1∏

i=1

1

M

M∑

l=1

w j,l
i

12: else if time n ≥ 2 then
13: for j = 1, . . . , N do
14: for i = 1, . . . , Bn do
15: Sample X j,l

n (Ωi ) ∼ q1(xn(Ωi )|X j,l
n (An,i−1), X j,l

n−1), ∀l = 1, . . . , M

16: Set X j,l
n (An,i ) =

[
X j,l

n (An,i−1) X j,l
n (Ωi )

]

17: Calculate the weights w j,l
i = αn,i (yn, X j,l

n−1, X j,l
n (An,i ))

qn(X j,l
n (Ωi )|X j,l

n (An,i−1), X j,l
n−1)

, ∀l = 1, . . . , M

18: Resample local particles
{

X j,l
n−1, X j,l

n (An,i )
}M

l=1
according to their normalized weights

{

w j,l
i

[∑M
k=1 w j,k

i

]−1
}M

l=1
19: end for
20: end for

21: Resample the N -particle systems, i.e.,
{

X j,1:M
1:n

}N

j=1
, according to their weights defined as:

W j
n ∝

Bn∏

i=1

1

M

M∑

l=1

w j,l
i

22: end if
23: Output: Approximation of the filtering distribution via the following empirical measure:

π(xn) ≈ 1

N M

N∑

j=1

M∑

l=1

δ
X j,l

n
(dxn)
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Metropolis–Hastings (MH) accept-rejection step as a correction for having used a
proposal distribution to sample the current state in order to approximate the poste-
rior target distribution as opposed to SMC methods that use a correction based on
Importance sampling.

At time step n, the target distribution of interest to be sampled from is

p(x1:n|y1:n)︸ ︷︷ ︸
πn(x1:n)

∝ gn(yn|xn) fn(xn|xn−1) p(x1:n−1|y1:n−1)︸ ︷︷ ︸
πn−1(x1:n−1)

. (2.22)

Unfortunately, it is impossible to sample from p(x1:n−1|y1:n−1) since this distribution
is analytically intractable. The key idea of all existing SMCMCmethods is therefore
to replace p(x1:n−1|y1:n−1) by an empirical approximation obtained from previous
iterations of the algorithm. The target distribution of interest at time step n is therefore
defined as:

πn(x1:n) ∝ gn(yn|xn) fn(xn|xn−1)π̂
i
n−1(x1:n−1), (2.23)

with

π̂ i
n−1(x1:n−1) = 1

i − Nb

i∑

m=Nb+1

δXm
n−1,1:n−1

(dx1:n−1), (2.24)

where
{

Xm
n−1,1:n−1

}i

m=1
corresponds to the i samples of the (n − 1)th Markov chain,

whose distribution is πn−1(x1:n−1) as defined in Eq. (2.23) that has been generated
until the current iteration of the MCMC at time step n (Nb represents the length
of the burn-in period). By using this empirical approximation of the previous tar-
get distribution, an MCMC kernel can be employed in order to obtain a Markov
chain, denoted by

(
X1

n,1:n, X2
n,1:n, . . .

)
, with stationary distributionπn(x1:n) as defined

Eq. (2.23).
As summarized in Algorithm5, the SMCMC proceeds as follows. At time step

n = 1, an MCMC kernel K1 of invariant distribution π1(x1) ∝ g1(y1|x1)μ(x1) is

employed to generate a Markov chain denoted by
(

X1
1,1, . . . , X N+Nb

1,1

)
. At time step

n, the N + Nb iterations of the SMCMC aims at producing a Markov chain, denoted

by
(

X1
n,1:n, . . . , X N+Nb

n,1:n
)
, by using an MCMC kernel Kn of invariant distribution

πn(x1:n) as defined in Eq. (2.23). Moreover, samples can be added to the previous
L Markov chains, i.e., Xn−L ,1:n−L with L > 1, in order to improve the empirical
approximation π̂n−1(x1:n−1) required in the posterior distribution of interest at time
step n. Once the nth Markov chain has been generated, the last N are extracted to
obtain the empirical approximation of the filtering distribution:

p(xn|y1:n) ≈ 1

N

N+Nb∑

m=Nb+1

δXm
n,n

(dxn). (2.25)



2 An Overview of Recent Advances in Monte-Carlo Methods … 45

By assuming that the computation of the product of likelihood and prior as well
as the MCMC kernel used is O(d), the cost of this algorithm is O(nL Nd) since the
length of the burn-in period is generally considered to be a percentage of the useful
samples, i.e., Nb = βN with 0 ≤ β ≤ 1.

Algorithm 5 Generic Sequential MCMC algorithm for optimal filtering
1: Initialization {in}n≥0 = 0
2: if time n = 1 then
3: for j = 1, . . . , N + Nb do
4: Set i1 = i1 + 1
5: Sample Xi1

1,1 ∼ K1(xi1−1
1 , ·) with K1 an MCMC kernel of invariant distribution π1(x1) ∝

g1(y1|x1)μ(x1).
6: end for
7: else if time n ≥ 2 then
8: for j = 1, . . . , N + Nb do
9: for k = max(1, n − L + 1), . . . , n do
10: Set ik = ik + 1
11: Sample Xik

k,1:k ∼ K
(ik−1)

k (Xik−1
k,1:k , ·) with K

(ik−1)

k an MCMC kernel of invariant distrib-

ution π
(ik−1)

k given by:

π
(ik−1)

k (x1:k) ∝ gk(yk |xk) fk(xk |xk−1)π̂
(ik−1)

k−1 (x1:k−1)

with π̂
ik−1
k−1 being the empirical measure obtained using previous samples, i.e.

π̂
(ik−1)

k−1 (x1:k−1) = 1

ik−1 − Nb

ik−1∑

m=Nb+1

δXm
k−1,1:k−1

(dx1:k−1)

12: end for
13: end for
14: end if
15: Output: Approximation of the smoothing distribution with the following empirical measure:

π(xn) ≈ 1

N

N+Nb∑

j=Nb+1

δ
X j

n,1:n
(dx1:n)

2.4.2 Algorithm Settings

The overall performance of the SMCMC algorithm applied to optimal filtering
depends heavily upon the choice of the MCMC kernel. One of the attractive fea-
tures of this SMCMC is to be able to employ all the different MCMC methods
that have been proposed in the scientific literature. In practical implementation of
the SMCMC and more especially for high-dimensional systems, composite kernel
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based on joint and conditional draws are generally very efficient [40]. Summarized
in Algorithm6, such a composite kernel is based on the following two main steps:

1. A joint draw in which a Metropolis–Hastings sampler is used to update all the
path of states corresponding to x1:n

2. A refinement step inwhich previous history x1:n−1 and current state xn are updated
successively. Moreover, if xn is high-dimensional, an efficient way to update it
consists in firstly dividing its space into P disjoint subsets and update them
successively either via a random scan or a deterministic scan using a series of
block MH-within—Gibbs steps.

The cost of this MCMC kernel is O(d) if a factorization such as the one defined in
Eq. (2.21) is valid.

As a comparison, Berzuini et al. [2] made only use of the individual refinement
step described above (with L = 1 in Algorithm5). This can potentially lead to poor
mixing in high-dimensional problems due to the highly disjoint predictive density of
the particle representation. On the other hand, Golightly and Wilkinson [22] made
use of only the joint draw to move the MCMC chain. This can potentially reduce
the effectiveness of the MCMC as refinement moves are not employed to explore
the structured probabilistic space which is very challenging in high-dimensional
systems. Indeed, it could be difficult to design a proposal distribution for the joint
draw that does not lead to low acceptance rate. In [5], the authors propose a general
framework of SMCMCwith the possibility of updating previousMarkov chains (i.e.,
L > 1 in Algorithm5). An independent Metropolis–Hastings sampler as MCMC
kernel is employed. By doing so, the ratio of the normalizing constant Zn/Zn−1

can be easily estimated but it could be difficult to design the independent proposal
distribution leading to satisfactory performance. Finally, in [39], the authors proposed
to incorporate several attractive features of population-based MCMC methods [19,
31] such as genetic moves and simulated annealing in order to improve the mixing
of the Markov chain in complex scenarios.

2.5 Assessing Local and Global Sample Effective Sample
Size and SMCMC Convergence Diagnostics

Each of the discussed algorithms: SMC with MCMC moves; local SMC; Space–
Time SMC; and sequential MCMC will have different features with regard to the
effective sample size produced and even how one may consider the effective sample
size under each class of algorithm requires further consideration. In this section,
we provide a brief overview of two aspects, firstly how to determine the number of
independent samples present in the resulting set of samples or particles. Then, we
also discuss some convergence diagnostics in standard MCMC that may be adapted
for the setting of SMCMC to adaptively modify the past “population”MCMC chains
in the sequence.
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Algorithm 6 Example of an MCMC Kernel (in−1)
n (Xin−1

n,1:n , ·) for the SMCMC

1: Joint Draw
2: Propose {X∗

n,1:n} ∼ q1(x1:n|Xin−1
n,1:n )

3: Compute the MH acceptance probability ρ1 =min

⎛
⎝1,

π(in−1)
n (X∗

n,1:n)

q1(X∗
n,1:n|Xin−1

n,1:n )

q1(X
in−1
n,1:n |X∗

n,1:n)

π(in−1)
n (Xin−1

n,1:n )

⎞
⎠

4: Accept Xin
n,1:n = X∗

n,1:n with probability ρ1 otherwise set Xin
n,1:n = Xin−1

n,1:n
5: Refinement

6: Propose {X∗
n,1:n−1} ∼ qR,1(x1:n−1|Xin

n,1:n)
7: Compute the MH acceptance probability ρR,1 =

min

⎛
⎝1,

π(in−1)
n (X∗

n,1:n−1,X
in
n,n)

qR,1(X∗
n,1:n−1|Xin

n,1:n)

qR,1(X
in
n,1:n−1|X∗

n,1:n−1,X
in
n )

π(in−1)
n (Xin

n,1:n)

⎞
⎠

8: Accept Xin
n,1:n−1 = X∗

,1:n−1 with probability ρR,1.

9: Randomly divide xn into P disjoint blocks {Ωp}Pp=1 such that p Ωp = {1 : d}
10: for p = 1, . . . ,P do
11: Propose {X∗

n,n(Ωp)} ∼ qR,p(xn(Ωp)|Xin
n,1:n)

12: Compute the MH acceptance probability ρR,p =

min

⎛
⎝1,

π(in−1)
n (X∗

n,n(Ωp),Xin
n,n(Rd \Ωp),X

in
n,1:n−1)

qR,p(X∗
n,n(Ωp)|Xin

n,1:n)

qR,p(Xin
n,n(Ωp)|X∗

n,n(Ωp),Xin
n,n(Rd \Ωp),X

in
n,1:n−1)

π(in−1)
n (Xin

n,1:n)

⎞
⎠

13: Accept Xin
n,n(Ωp) = X∗

n,n(Ωp) with probability ρR,p

14: end for

2.5.1 Assessing Local and Global Sample Effective Sample
Size for SMCMC

We start by briefly recalling the properties of effective sample size in the standard
markov chain setting before talking about these in the context of the three classes of
algorithms we consider in the high-dimensional state space models discussed in this
chapter.

In general for a correlated time series one may define the effective sample size
which goes back to early studies such as those by [30] who studies the time between
effectively independent samples or the reciprocal effective number of independent
samples in a time span which is often referred to as the effective sample size (ESS). A
simple definition of such a quantity is to equate the ensemble mean square of a time-
averaged mean denoted by σ 2

X
which is based on the autocovariance function (acf)

to the standard formula for the variance of the mean of independent samples. The
solution to the number of independent samples is one measure of ESS. To proceed
consider the N values from a time series X1, . . . , X N of a stationary stochastic
process with variance σ 2, then one can write the ensemble mean as follows (see [1])
with respect to the mean μ and symmetric covariance between observations lagged
by a time interval τ denoted C(τ ) and corresponding lag-correlation function ρ(τ)

according to:
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σ 2
X

= 1

N

N∑

i, j

〈
(Xi − μ)(X j − μ)

〉 = 1

N 2

N∑

i, j

C(i − j)

= 1

N 2

(N−1)∑

τ=−(N−1)

[N − |τ |]C(τ ) (2.26)

= σ2

N

(N−1)∑

τ=−(N−1)

[

1 − |τ |
N

]

ρ(τ).

If one then considers the independence case with N ′ samples then one would have
had the variance of the sample mean given instead by σ 2/N ′, by equating these one
obtains the effective sample size

N ′ = σ 2

σ 2
X

= N

⎡

⎣
(N−1)∑

τ=−(N−1)

[

1 − |τ |
N

]

ρ(τ)

⎤

⎦

−1

. (2.27)

Therefore, such an estimator is typically used for standard MCMC settings where
the ESS is defined for a MCMC sample of size N by

ESSMCMC = N

1 + 2
∑∞

k=1 ρk
. (2.28)

In the context of Markov chain Monte-Carlo methods, this framework can be
adopted to study the asymptotic variance of the mean of a Markov chain, with
respect to a bounded and integrable test function generically denoted by ϕ, under
the central limit theorem. In this case, one can state the following results. Let
X = {Xi : i = 0, 1, 2, . . .} be a Harris ergodic Markov chain on a general space χ

with invariant probability distribution π having support χ . Let ϕ be a Borel function
and define ϕT := 1

T

∑T
i=1 ϕ (Xi ) andEπ [ϕ] := ∫

χ
ϕ(x)π(dx). WhenEπ [|ϕ|] < ∞

the ergodic theorem guarantees that ϕT → Eπ [ϕ] with probability 1 as T → ∞. The
conditions on the Markov chain for this convergence result to hold are stated for a
range of MCMCmethods in [24] and the following general CLT result applies under
these different conditions:

√
T (ϕT − Eπ [ϕ])

d→ N (0, σ 2
ϕ ). (2.29)

Here, the asymptotic variance of the estimated mean of a test function ϕ is given by
the finite variance given by

σ 2
ϕ := Varπ [ϕ(X0)] + 2

∞∑

i=1

Covπ [ϕ(X0), ϕ(Xi )] . (2.30)
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Fig. 2.3 SMCMC sampler construction

If one selects ϕ(X) = X and applies a truncation to the number of Markov chain
samples to N , then after renormalization, this is exactly the expression obtained in
Eq. (2.26). This is the typical framework used to understand effective sample size
and also it acts as a core ingredient in the derivation of the convergence diagnostics
for MCMC samplers. In the following, we will explain how to adapt this classical
MCMC ESS framework to the case of the SMCMC setting.

In the SMCMC setting, we are sampling sequentially the target distribution
sequence {πn}n∈N via a sequenceofMarkov chains constructed through aMetropolis–
Hastings accept reject framework, however, the sequence of chains are constructed
based on the previous sequence path-space genealogies. To understand this we refer
to Fig. 2.3 where the blue “particle” trajectories correspond to the previously sam-
pled path-space genealogies for the SMCMC algorithm that comprise the empirical
measure π̂n−1 (x1:n−1) for the construction of the sampler at targetπn . The blue trajec-
tories are the previously accepted sequences ofMarkov chain samples that have been
accepted, so that at iteration n we would randomly (with replacement) draw a trajec-
tory path, then construct conditionally on this path a new state sample denoted in red
which would be accepted or rejected based on a Metropolis–Hastings accept reject
mechanism. We will refer to the previous genealogical paths used in the proposal at
time n by the set of path-space branches χn (in blue).

We can see from this representation that one needs to develop an effective sample
size criterion for the SMCMC algorithm that would adequately reflect the effect of
the geneological path-space behaviour used to construct the sequence of distributions
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sampled. To achieve this we consider propose the forward and backward SMCMC
effective sample size criterions.

Definition 1 (Forward Efficiency of SMCMC)Consider the path-space genealogyχn

at distribution sequence iteration n, the conditional forward efficiency ηn ∈ [0.1] of
the algorithm having sampled N MCMC iterations is given, for a bounded integrable
test function ϕ by

ηn(ϕ;χn) := Var
(
ϕi.i.d.

N ′ |χn
)

Var
(
ϕN |χn

)

= 1

1 + 2
∑∞

k=1 ρk(χn)
(2.31)

where ρk(χn) denotes the autocorrelation which is implicitly dependent on the gene-
ological path-space χn , ϕN is the mean estimated from N correlatedMCMC samples
from πn(dx1:n|χn) = πn(dxn|χn)π̂

N (dx1:n−1) and ϕi.i.d.
N ′ is the estimator for the opti-

mal case of i.i.d. samples from πn(dx1:n|χn) with N ′ ≤ N .

For this forward measure of efficiency of the SMCMC algorithm, which can be
computed online for each target distribution πn one can approximate this efficiency
measure by the estimator given by first constructing from the N correlated MCMC
samples ϕi := ϕ(Xi

n,1:n) the autocoviariance function

γ̂ϕ(k;χn) = 1

N

N−|k|∑

i=1

(
ϕi+|k| − ϕN

) (
ϕi − ϕN

)
, −N < k < N . (2.32)

This would then lead to the estimator for the autocorrelations given by

ρ̂ϕ(k;χn) = γ̂ϕ(k;χn)

γ̂ϕ(0;χn)
, (2.33)

giving the estimator for the efficiency at stage n in Eq.2.31 by substitution. However,
it may also be of interest to consider the efficiency in another sense, to capture the
path-space implicit effect on the SMCMC. To achieve this, we consider also the
backward efficiency at stage n conditional on the SMCMC samples at stage n, this
is given in the following definition.

Definition 2 (Backward Efficiency of SMCMC) Consider, the path-space genealogy
χn at distribution sequence iteration n decomposed as χn = χn−1 ∪ {

Xi
n−1,n−1

}N

i=1
such thatχn−1 ⊆ χn , then the conditional one-stage backward efficiency viewed from

iteration n is given by
←
η n∈ [0, 1], for a bounded integrable test function ϕ according

to
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←
η n (ϕ;χn−1) :=

∫
ηn(ϕ; {Xi

n−1,n−1

}N

i=1
∪ χn−1)πn−1(dxn−1,1:n−1|χn−1). (2.34)

This can then be defined recursively for any number of backward looking steps from
distribution sequence iteration n.

One can approximate this using the path-space samples obtained in each iteration
according to the following estimator

←̂
η n(ϕ;χn−1) = 1

J

J∑

j=1

η( j)
n (ϕ; {Xi

n−1,n−1

}N

i=1
∪ χn−1). (2.35)

where η
( j)
n

(

ϕ;
{

X (i, j)
n−1,n−1

}N ,J

i=1, j=1
∪ χn−1

)

is obtained using the estimator at time n

of efficiency in Eq.2.31 for the j th population sample of
{

X (i, j)
n−1,n−1

}N

i=1
conditional

on previous genealogical paths in χn−1, a visual representation of how this estimator
is obtained based on resampling of the previous generation at time n − 1 is provided
in Fig. 2.4. This illustration shows in red the resampled path genealogies for iteration
n looking back in this case one time step to iteration n’s n − 1 parents and regener-
ating these j ∈ {1, . . . , J } times, with the j th regeneration producing the backward

Fig. 2.4 SMCMC sampler backward efficiency measure estimator
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looking effective sample size one step back approximation obtained by the estimated
autocorrelations.

In addition to these twomeasure of efficiency, one can also monitor at iteration n a
related quantity that can be estimated at each MCMC iteration of the SMCMC algo-
rithm at distribution sequence iteration n to decide if one should perform more local
or more global moves. This involves adapting the following well-known Geweke
[18] convergence diagnostic for MCMC methods can be adopted in the SMCMC
sampler setting at each iteration as follows. If the total chain has length N + Nb, the
initial burn-in stage will correspond to the first Nb samples.We denote by {X (t)

n,i }t=1:N
the Markov chain of the i th parameter after burn-in. The diagnostics we consider are
given by:

• For state Xn,i it is calculated as follows:

1. Split the Markov chain samples into two sequences, {X (t)
n,i }t=1:N1 and

{X (t)
n,i }t=N ∗:N , such that N ∗ = N − N2 + 1, andwith ratios N1/N and N2/N fixed

such that (N1 + N2)/N < 1 for all N .

2. Evaluate μ̂
(

X N1
n,i

)
and μ̂

(
X N2

n,i

)
corresponding to the sample means on each

subsequence.
3. Evaluate consistent spectral density estimates for each subsequence, at frequency

0, denoted ŜD(0; N1, Xn,i ) and ŜD(0; N2, Xn,i ). The spectral density estimator
considered in this paper is the classical nonparametric periodogram or power
spectral density estimator. We use Welch’s method with a Hanning window.

4. Evaluate convergence diagnostic given by

Z N = μ̂
(

X
N1
n,i

)
−μ̂

(
X

N2
n,i

)

N−1
1 ŜD(0;N1,Xn,i )+N−1

2 ŜD(0;N2,Xn,i )
.

According to the central limit theorem, as N → ∞ one has that Z N → N (0, 1)
if the sequence {X (t)

n,i }t=1:N is stationary.

Note, this can be monitored and tested online for each stage and each parameter
subspace of the SMCMC algorithm at iteration n in the distribution sequence to
decide if one should sample more local moves or more global moves.

2.5.2 Effective Sample Size for SMC Methods

In the SMC literature, the notion of ESS that is typically adopted is based on the
approach discussed for standard SMC algorithms of [28]. In this framework, an
approximation to the effective sample size of the filtering distribution is obtained at
time t . To understand this approximation we first define:

• the estimated sample mean from the filtering distribution weighted particle popu-
lation given by samples drawn from mutation kernel q(·),
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Ê
N
q = 1

N

N∑

i=1

W
(
X (i)

)
ϕ
(
X (i)

) ; (2.36)

• the estimated sample mean from the filtering distribution given by samples drawn
from the true filtering target distribution π(·),

Ê
N
π = 1

N

N∑

i=1

ϕ
(
X (i)

)
. (2.37)

Then in the standard SMC setting one typically starts by considering the ratio of
the following two sample mean variances and applies a Taylor series expansion and
applies the Delta method to obtain

ηSMC = Varπ
[
Ê

N
π

]

Varq
[
ÊN

q

] ≈ (
1 + Varq [W (X)]

)−1

= (
Eq

[
W (X)2

])−1
. (2.38)

2.6 Numerical Simulations

In this section, we study the empirical performance of the different algorithms that
have been previously described, namely: (a) SMC inAlgorithm1—(b) SMC-MCMC
in Algorithm2—(c) Local SMC in Algorithm3— (d) STPF in Algorithm4, and
(e) SMCMC in Algorithm5 and 6. For all the different SMC-based algorithms, the
resampling step is performed when the effective sample size, ESS, is below N/2.
All the proposal distributions required in these algorithms are based on the prior
distributions. The MCMC kernel used in the SMC-MCMC defined in Algorithm2
correspond to series of P Metropolis–Hastings within Gibbs samplers used in the
SMCMC and described in lines 9–13 of Algorithm6. The parametric function used
for the cooling schedule strategy used to design the sequence of bridging densities
within the SMC-MCMC in this section is defined as, for m = 1, . . . , M by the
sequence:

αm = exp(γ m/M) − 1

exp(γ ) − 1
(2.39)

with γ = 5. In results presented for the SMCMCalgorithm, only the current posterior
distribution is updated, i.e., L = 1.
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2.6.1 Linear and Gaussian Dynamical Model

As a first example, a simple linear and Gaussian state space model is considered, i.e.,
for n = 1, . . . , T :

fn(xn|xn−1) = N (xn; H xn−1, �x ) ,

gn(yn|xn) = N
(
yn; Gxn, �y

)
. (2.40)

Such a model is interesting for the understanding and the study of approximation
methods since the posterior distribution can be derived analytically via the use of the
Kalman filter [26]. In our simulation results, the matrix H of size d × d has been
obtained by randomly and independently selecting for each row two column indexes
for which the value is set to 0.495. The covariance matrices are defined as �x = Id

and �y = Idy . For a fair comparison between the different algorithms, we decide to
set their parameter as shown in Table2.1 in order to have an equivalent computational
cost for all algorithms.

The performances are studied with a scenario in which all the d-dimensions of
the hidden state are observed at each time step, i.e., dy = d and G = Id . From this
model, owing to the diagonality of G and the covariance matrix both in the prior
and the likelihood distribution, it is obvious that their product can be factorized as
in Eq. (2.19) with |Dn, j | = 1, ∀n, j . As a consequence, we define the partitioning
of the subset in the STPF such that ∀n, j : |An, j \ An,i−1| = 1. In Fig. 2.5, the ESS
scaled by the number of particles obtained for the different SMC-based algorithms is
depicted. The standard SMCalgorithmperforms very badly evenwhen the dimension
is 10 and completely collapses when d = 50. The same remarks hold when the
SMC-MCMC is used with only M = 1 which corresponds to the resample-move
algorithm. However, we can observe that the use of a sequence of bridging densities
that gradually introduces the effect of the likelihood distribution (SMC-MCMCwith
M = 10), improves the effective sample size remarkably. The effective sample size
of the local SMC filter corresponds to the average of the ESS obtained from the
d/Bn SMC filters used in each Bn subsets. As a consequence, the ESS depends
quite obviously on the cardinality of each subset. Finally, the performance of the
STPF in terms of ESS is deteriorating when the dimension increases due to the path
degeneracy effect that we have discussed previously. However, this ESS is obtained

Table 2.1 Value of the different parameters of Monte-Carlo algorithms used in the simulation

SMC SMC-MCMC Local
SMC

STPF SMCMC

Complexity O(nNd) O(nN Md) O(nNd) O(nN Md) O(nL Nd)

Parameter N N M N N M L N

Value 1000 100 10 1000 10 100 1 1000
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(a)

(b)

Fig. 2.5 Effective sample size, scaled by the number of particles, obtained with the different
algorithms for the linear and Gaussian state-space model at the different time steps using 100 runs.
a d = 10. b d = 50

using the global weights (line 21 of Algorithm4) which thus corresponds to the
number of local particle systems that contributes to the final estimator.

Figure2.6 shows the variance for the estimators of the d-dimensional latent states,
X (1), . . . , X (d) (with d = 100), averaged over time and obtained using 100 runs.



56 F. Septier and G.W. Peters

Fig. 2.6 Variance for estimators of X (1), . . . , X (d) (with d = 100) averaged over time and
obtained using 100 runs. The MCMC kernel used in both SMC-MCMC and SMCMC partition
the space with subsets of dimension 5. The dimension of each subset in the local SMC is also 5

We can clearly see the path degeneracy problem in the STPF which leads to an
higher variance for X̂(1) compared to X̂(d). The variance of both SMC-MCMC and
SMCMC are quite stable across dimension of the state. The local SMC outperforms,
in terms of variance, the other techniques but suffers from a spatially inhomogeneous
approximation of the posterior distribution as we can see from unstable variance over
space.

Table2.2 summarizes the bias and the variance for the estimator of the posterior
mean for all the algorithms with different parameter configuration. As expected, the
performances of the classical SMC algorithm deteriorates quite significantly as d
increases. The introduction of the sequence of bridging densities (SMC-MCMC)
clearly improves the performances of the algorithm. Moreover, the use of smaller
dimension on each subset (P = d vs. P = d/5) for the Metropolis–Hastings within
Gibbs sampler used within the SMC-MCMC leads in that example to better perfor-
mance. The STPF performs quite well compared to both SMC and SMC-MCMC, but
as previously illustrated, could be subject to path degeneracy effects as d increases.
The Local SMC filter with block of dimension 1 (i.e., Bn = d) gives the smallest
variance, but at the expense of a nonnegligible bias, due to the approximation of the
posterior as a product of marginals on each block—Eq. (2.20). As an example, the
bias obtained with this technique is higher than the one from the classical SMCwhen
d = 10. Finally, the SMCMCalgorithm that uses anMCMCkernel with P = d gives
the smallest bias and reasonable variance. Let us remark that both the bias and the
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Table 2.2 Statistical properties of the estimator of the posterior mean—time and space average of
the absolute value of the bias and the variance across 100 MC runs

Algorithm d = 10 d = 50 d = 100

Bias Var Bias Var Bias Var

SMC 0.0481 0.0657 0.4460 0.7689 0.5536 1.0430

SMC-MCMC M = 1 P = d/5 0.0426 0.0507 0.3362 0.3703 0.4062 0.4369

P = d 0.0267 0.0206 0.2324 0.1885 0.2841 0.2366

M = 10 P = d/5 0.0282 0.0368 0.1225 0.1452 0.1660 0.2110

P = d 0.0141 0.0139 0.0602 0.0610 0.0929 0.1009

Local SMC Bn = d/5 0.0541 0.0101 0.0594 0.0133 0.0620 0.0129

Bn = d 0.0759 0.0009 0.0584 0.0012 0.0603 0.0012

STPF 0.0095 0.0114 0.0502 0.1017 0.0730 0.1778

SMCMC P = d/5 0.0074 0.0087 0.0211 0.0235 0.0416 0.0419

P = d 0.0038 0.0026 0.0162 0.0169 0.0388 0.0366

variance tends theoretically to zero asymptotically with the number of particles for
all the methods, except for the local SMC filter.

2.6.2 Two-Dimensional Graph Model

In this section, we consider a two-dimensional graph that has been used in both
[3, 36] to assess the performances of the different algorithms. Let the components
of state xn be indexed by vertices v ∈ V , where V = {1, . . . ,√d}2. The dimension
of the model is thus d. At time step n, the prior distribution at vertex v follows the
following mixture distribution:

f (xn(v)|xn−1) =
∑

u∈N (v)

wu(v) fu(xn(v)|xn−1(u)), (2.41)

where N (v) = {u : D(u, v) ≤ r} corresponds to the neighborhood of vertex v with
r ≥ 1 and D(u, v) = √

(a − c)2 + (b − d)2 the Euclidean distance between the two
vertices v = (a, b) and u = (c, d). The observations are

Yn(v) = Xn(v) + ηn(v), (2.42)

for v ∈ V where ηn(v) are i.i.d. t-distributed random variables with degree of free-
dom ν. In the simulation experiments, a Gaussian mixture is used with component
mean Xn−1(u) and unity variance. The mixture weights are set to be wu(v) ∝
1/(D(u, v) + δ) such that

∑
u∈N (v) wu(v) = 1. Finally, the data has been generated

by using r = 1, δ = 1 and ν = 10.
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Fig. 2.7 Illustration of the
block partitioning of the state
for the local SMC in the
two-dimensional graph
example

Xn(1, 1)

Xn(1, 2)

Xn(1, 3)

Xn(1, 4)

Xn(2, 1)

Xn(2, 2)

Xn(2, 3)

Xn(2, 4)

Xn(3, 1)

Xn(3, 2)

Xn(3, 3)

Xn(3, 4)

Xn(4, 1)

Xn(4, 2)

Xn(4, 3)

Xn(4, 4)

Table 2.3 Mean squared error of the posterior mean averaged over time, space and 100 runs with
d = 144

SMC-MCMC Local SMC SMCMC

SMC M = 1 M = 10 Bn = d/9 Bn = d STPF P = d/9 P = d

P =
d/9

P = d P =
d/9

P = d

3154 2266 1392 1154 261 617 152 174 344 151

From this model description, it is straightforward to see that the product of the
likelihood and the prior can be factorized as in Eq. (2.19) with |Dn, j | = 1, ∀n, j . As
a consequence, we define the partitioning of the subset in the STPF such that ∀n, j :
|An, j | = 1. For the local SMC filter, the space is partitioned such that each block is
itself a square as illustrated inFig. 2.7. The sameconfiguration concerning the number
of particles shown in Table2.1 is used in this example. Table2.3 shows the mean
squared error for the posterior mean obtained using all the Monte-Carlo algorithms
under different settings. The SMCMC (P = d) and the local SMC (Bn = d) give
similar performance and outperform slightly the STPF and more significantly the
other algorithms. Once again, the introduction of the sequence of bridging densities
within the SMC-MCMC clearly improves the performance of the estimators.
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2.7 Conclusion

In this chapter, after describing the generic framework of traditional SMC methods
for the optimal filtering problem in a general HMM, we discuss their limitation when
applied to high-dimensional systems. We thus provide an overview of recent Monte-
Carlo-based approaches that have been proposed in order to improve the performance
of such approaches in high-dimensional systems. Through two examples, we have
shown empirically that the use of these recent developments could lead to a significant
improvement. It is however difficult to state that in general case one technique would
be better than another. Indeed, the choice will be clearly dependent on the model
which is under study and on possible constraints like computing resources available,
storage capacity, or desired level of accuracy. A more detailed analysis of all these
algorithms with a finite number of samples will be clearly interesting for comparison
purpose and could be used to design some automatic strategy to select the “optimal”
algorithm and its parameters given the model and the constraints.
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Chapter 3
Spectral Measures of α-Stable Distributions:
An Overview and Natural Applications
in Wireless Communications

Nourddine Azzaoui, Laurent Clavier, Arnaud Guillin
and Gareth W. Peters

Abstract Currently, we are witnessing the proliferation of wireless sensor networks
and the superposition of several communicating objects which have a heterogeneous
nature. Those are merely the beginnings of an evolution toward the so-called Inter-
net of Things. The advent of these networks as well as the increasing demand for
improved quality and services will increase the complexity of communications and
put a strain on current techniques and models. Indeed, they must first adapt to the
temporal and spatial evolutions and second, they must take into account the rare and
unpredictable events that can have disastrous consequences for decision-making.
This chapter provides an overview of the various spectral techniques used in sig-
nal processing and statistics literature to describe a communication channel having
an impulsive behavior. This project is mainly motivated by the historical success
of the interaction between probability, statistics and the world of communications,
information theory and signal processing. The second motivation is the scarcity of
references and literature summarizing mathematical developments on the applica-
tion of alpha-stable process for channel modeling. This chapter will be divided into
two parts: the first is devoted to the synthesis of various developments on alpha-
stable variables and processes in a purely mathematical mind. The second part will
be devoted to applications in the context of communications. The two sides will
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combine two fundamentally linked aspects: first, a theoretical approach, necessary
for a good formalization of problems and identifying the best solutions. Second, the
use of these models in real work of channel modeling.

3.1 Short Review and Introduction

One of the problems addressed by researchers in probability and statistics during the
eighteenth and nineteenth centuries, was to find the best fit of a set of observed data to
a given equation (modeling problems). After several failures, this was accomplished
through least squares methods; works of Laplace and Legendre were the most influ-
ential in this area. For the error distribution, Gauss highlighted the importance of the
normal distribution, also subsequently named in his honor the Gaussian distribution.
After the development of Fourier theory at the end of 1800, Poisson applied Fourier
series and integrals to probability distributions as a new natural tool in analysis. At
the end of 1850, Cauchy, who was still a student supervised by Laplace, was inter-
ested in the theory of errors and generalized the density of the Gaussian distribution
by the following function:

fα(x) =
∫ ∞

0
e−ctα

cos(t x)dt; α ∈ R
+

where t2 is replaced by tα . He was able to calculate this integral for α = 1:
f1(x) = c

π(c2+x2)
, density of the famous Cauchy law. Then, after a long silence until

1919, Bernstein showed that fα is a probability density only when 0 < α ≤ 2.
Later, in 1924, Lévy [50] updated this research area by introducing the theory

of α-stable distributions. He looked for more general conditions on central limit
theorem validity. He showed that an α-stable distribution can substitute a Gaussian
distribution for modeling infinite variance phenomena. Multivariate α-stable laws
were then studied and developed by Lévy and Khinchine [43] and Gnedenko [34],
who explored the properties of multivariate α-stable distribution, with particular
emphasis on stability properties by product of convolution and the central limit the-
orem. Another convenient characterisation of multivariate α-stable vectors is given
by their characteristic function. With contrast to the probability density, this charac-
teristic function was given under an analytical form involving a spectral density on
the R

d sphere, see for instance Feldheim [29], Lévy [51], Feller [30].
Spectral analysis of stationary processes has a long history with interest in both

theory and applications. Wide-ranging applications in various practical problems
in engineering, economics, science, and medicine are well documented. In general,
spectral analysis is considered as a powerful tool when undertaking a statistical
treatment of stochastic processes. Its strengths lie in the fact that it focuses on the
repetitive components or frequencies of these processes: this means that, by contrast
to temporal processing, it allows to reveal the mixture of repeated information hidden
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in the process realizations. The basic theory of this technique dates back to the work
of Fourier who, in his famous decomposition (so-called Fourier series), expresses
each deterministic function as a linear combination of trigonometric functions. At the
beginning of the twentieth century, this technique has been exported for processing
of random functions or stochastic processes; that is to say a measurable mapping
defined by:

X : R × Ω −→ C

(t, ω) �−→ X (t, ω) = Xt (ω)

where (Ω,B,P) is a probability space in σ -algebra B. Early works about this exten-
sion were not possible without the pioneering work of Kolmogorov [44, 45]; who
gave the foundation of modern probability theory and his famous construction of
stochastic processes known as the Kolmogorov theorem. The main idea of spec-
tral representation of some classes of random variables, is to find a correspondence
between this class and a functional space. This idea was also introduced by Kol-
mogorov. The latter found an isometric correspondence between the vector space
generated by Gaussian stationary processes and the vector space of real square inte-
grable functions.

Wiener [84] was at the origin of modern spectral analysis theory when he published
in the thirties, his paper Generalized Harmonic Analysis. Among his contributions
he had given the precise statistical definition of the autocovariance function and
the spectral density of second-order stationary random processes (stationary in the
strong sense). In 1934, Khinchine [42] was the first to define the concept of weak
stationarity through the covariance or correlation function. Thus, a continuous time
stochastic process X is weakly stationary if its covariance function defined by:

r : R × R −→ C

(s, t) �−→ r(s, t) = cov(Xs, Xt )
(3.1)

is continuous and depends only on the time difference |s − t |. In this case, the function
r is reduced to a single variable function and is continuous and positive definite. By
applying Bochner’s theorem [13], this function r can be represented as the Fourier
transform of a bounded positive measure F :

r(t) =
∫

R

eıtλF(dλ). (3.2)

The measure F is called the spectral measure of X . From this last representation (3.2),
several results concerning the structure of second-order processes were established.
Note, for example, the Cramer–Kolmogorov theorem which states that a station-
ary stochastic process with covariance function satisfying (3.2) has the following
stochastic integral representation:

Xt =
∫

R

eıtλdξ, (3.3)
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where dξ is a random measure having orthogonal increments1 defined on the Borel set
B(R), see for example Rao [68]. These weakly stationary processes found important
applications in several fields; between others, meteorology, communication, electri-
cal engineering. . ., etc. These applications are cited in several literature references,
as examples see [1, 4, 8, 15, 24, 25, 30].

To make the spectral theory accessible to researchers in applied fields, it has been
necessary to introduce statistical tools that address the spectral estimation. Tukey
[80, 81] is the founder of modern empirical spectral analysis: in 1949 he gave the
fundamentals of spectral estimation by developing methods to estimate the autocor-
relation function from a sample taken from the observations of a stationary process.
It should be noted that most of the terms and spectral estimation techniques such as
aliasing, smoothing, tapering …etc. are attributed to Tuckey. Among the most com-
monly used spectral estimation techniques, the periodogram is the most important
feature for the estimation of the spectral density: this is a spectral estimation of the
Fourier coefficients from observations of a process. The periodogram was introduced
at the end of the nineteenth century and was used to detect hidden periodicities of
famous sunspots observations. Among the most influential work on spectral estima-
tion of second-order stationary process, we find Parzen [64, 65], Rosenblatt [69],
Anderson [4], Masry [55–57], Priestley [66]. For the nonstationary process, we cite
among others: Priestley [66, 67], Dahlhaus [25].

This large amount of works on second-order processes, whether stationary or
not, was conceivable to thank the Hilbertian structure of the covariance which
exhibits several nice algebraic properties. In several practical and theoretical sit-
uations, researchers were requested to deal with stochastic processes which are not
necessarily the second order. This necessarily implies that the results obtained cannot
be used in this case. To try to solve this problem even partially, several probabilistic
and statisticians have studied the class of stochastic process α-stable.

An important notion in the analysis of random vectors is the concept of inde-
pendence or the existence of a statistical link between their elements. For example,
the covariance matrix of a Gaussian vector is an inevitable tool used to describe the
dependency structure through this matrix. Besides, covariance determines entirely
the distribution of a Gaussian centered vector. For this reason, it plays an essen-
tial role in several research areas covering both theoretical and applied problems,
notably in most theories of the statistical treatment of processes and time series. Of
course, covariance is not defined for stable random variables because their second-
order moments are infinite. To remedy this problem and to introduce a dependency
measure compatible with the α-stable random vectors, Miller [59] was the first to
introduce the term covariation2 as a generalized concept of the covariance. He had
shown that in spite of its asymmetry and its non-bilinearity it can play, in some cases,
the same role as covariance, see also [58].

When considering α-stable random vectors of infinite dimension, one speaks
about α-stable stochastic processes. This concept was widely studied in literature

1This is to say that ξ is a σ -additive application verifying cov(ξ(A), ξ(B)) = F(A ∩ B).
2This measure of dependency had been used by Kanter [41] but not under the name of covariation.
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and used in several application domains, notably when it is about the study of the
random phenomena which occur in time and that are characterized by a significant
variability [1, 2, 5, 9, 40, 54, 76]. Their utility was proven in several domains of
application, especially in signal processing [62], in finance [2, 12]. . . Definition and
development of the stochastic integral allowed several authors to extend most proper-
ties of Gaussian processes to the class of α-stable processes. The stochastic integral
with respect to α-stable motions (sometimes said Lévy processes) or more generally
with respect to an α-stable stochastic measure, was studied by Hardin [36], Hosoya
[38], Cambanis and Miamee [17], Makagon and Manderkar [53], Samorodnitsky
and Taqqu [76]. The utility of the stochastic integral is that it allows to link up these
processes with a functional space: this notion is known under the name of the spec-
tral analysis of processes. In the α-stable case first works in this sense were those of
Bretagnolle et al. [14] then Miller and Cambanis [16, 18].

3.2 α-Stable Random Variables, Vectors, and Processes

3.2.1 Univariate α-Stable Random Variables and Vectors

In this part we recall the classical definitions of a stable distribution and we give the
practical interpretation of its parameters to clarify the statistical properties of vari-
ables generated from this distribution. First two definitions concern the convolution
stability property, which means that the family of stable distribution is preserved
by convolution. The third definition explains the role of stable distribution in the
context of the central limit theorem, that is a stable distribution can be approached
by a normalized sum of independent and identically distributed random variables;
this is also known as stable domain of attraction. This property is important for the
use of α-stable distributions in modeling. Finally the fourth definition specifies the
characteristic function of an α-stable random variable. This characteristic function
is explained in an analytical precise manner.

Definitions and preliminary results

Definition 3.2.1 A random variable X is stable (or has a stable distribution) if and
only if for any positive reals A and B, there exists a positive real C and a real D such
that the distribution of the random variable AX1 + B X2 is equal to that of C X + D;
whenever X1 and X2 are independent random copies of X .

In order to understand the meaning of the word emphstability in this context, let us
recall that the distribution of the sum of two independent random variables is the
convolution of respective distributions of these two variables. In fact the word stable
in the last Definition 3.2.1 comes from the fact that the set of probability distribution
is stable under convolution. It is also shown in Feller [30] that for any stable random
variable X , there exists a unique real α ∈]0, 2], such as the positive real numbers A,
B, and C fulfill the equality,
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Aα + Bα = Cα. (3.4)

The number α is unique and depends only on the probability distribution of the
random variable X . This result justifies the use of the prefix α in the denomination α-
stable. Property (3.4) can be generalized to the sum of a finite number of independent
copies of an α-stable variable.

Definition 3.2.2 A random variable X is stable if and only if for any integer n ≥ 2
there exists a positive real Cn and a real Dn such as the probability distribution of the
sum X1 + X2 + · · · · · · + Xn is the same as that of Cn X + Dn . Whenever X1, X2, Xn

are independent random copies of X .

Using property (3.4) and proceeding by induction, it is easy to see that the constant,
Cn = n

1
α , where α is defined in relation (3.4). Particularly in the Gaussian case where

α = 2, we have Cn = √
n; this quantity is directly linked to the rate of convergence

in the classical central limit theorem. One of the remarkable properties of stable
variables is the possibility to explain them as a limit of independent and identically
distributed (i.i.d) random variables. This is known as the generalized central limit
theorem.

Definition 3.2.3 A random variable X has a stable distribution if and only if it
has an attraction domain. This means the existence of i.i.d series of random vari-
ables (Yi )i , a set of positive numbers Dn , and a set of real numbers An , such as:
Y1 + Y2 + · · · · · · + Yn

Dn
+ An converges in law toward X .

It is classically known that the Definitions 3.2.1–3.2.3, are equivalents. For more
details see for instance Feller [30] or [76]. The last definition gives a stable random
variable as a normalized sum of (i.i.d.) variables. Let us point out that this result is
very useful in practice because it allows to approach a normalized sum i.i.d sequence
by a stable random variable. It generalizes the classical central limit theorem that
requires a finite variance (Gaussian limit). These three last definitions introduce α-
stable variables in an abstract way and give no precision about the likelihood or the
probability density function of these variables. The most used characterisation of
stable variables, especially in practice, is based on the definition of the characteristic
function which is nothing but the Fourier transform of its probability density function.

Definition 3.2.4 A random variable X has a stable distribution if and only if there
exist four unique parameters: 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, and a real μ such that
the characteristic function of X has the form:

Eeıθ X =

⎧
⎪⎪⎨

⎪⎪⎩

exp{−σα|θ |α(1 − ıβ(sign(θ)) tan
πα

2
) + ıμθ}, if α 
= 1,

exp{−σ |θ |(1 + ıβ
2

π
(sign(θ)) ln |θ |) + ıμθ}, if α = 1,

(3.5)
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with

sign(θ) =
⎧
⎨

⎩

1, i f θ > 0,

0, i f θ = 0,

−1, i f θ < 0.

(3.6)

We follow the notations of Samorodnitsky and Taqqu [76], where the distribution
will be noted Sα(σ, β, μ).

One of the strengths of this characterisation is that the four parameters α, σ, β, and
μ are sufficient to characterize a stable distribution in a unique way, meaning that
the stable laws admit a parametric representation. For practitioners, it is important to
know the statistical meaning of each parameter as well as its influence on the shape
of the density or the distribution.

• The parameter α is called the stability index; it measures the way the tail of
distribution function will go to zero when x goes to infinity (i.e., like x−α). This
implies that, when α is smaller, the realizations of an α-stable random variable
become more impulsive and more variable.

• The parameter σ is called the scale or dispersion parameter; its role is similar to
the standard deviation of a normal variable.

• The skewness parameter β takes values in the interval [−1, 1] and it measures
how asymmetric the density of a stable random variable will be. For example, a
positive value of β results in gap on the right of the density curve.

• The parameter μ is the position parameter; it is the central points around which
most realizations lie. For example, for 1 < α ≤ 2 it is the mean while for 0 < α < 1
it represents the median.

Probability density function and Likelihood of stable samples

For α-stable random variables, there is no explicit expression for the probability
density function in a general case. However, it is possible to get an expression via
the inverse Fourier transform of the characteristic function,

f (x, α, σ, β, μ) = 1

2π

∫ ∞

−∞
exp(−ı t x)ΦX (t)dt

= 1

2π

∫ ∞

−∞
exp{−ı t (x − μ) − |σ t |αψ(t)}dt

(3.7)

where ψ(t) = 1 − ıβsign(t) tan πα
2 . The distribution is called symmetric if (β = 0)

and (μ = 0); the characteristic function is therefore real and even. These properties
are used to simplify the expression of the probability density function in (3.7) that
can be written as:

f (x, α, σ ) = 1

π

∫ ∞

0
exp(−σα|t |α) cos(t x)dt . (3.8)
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The exact evaluation of the integral (3.50) is only possible in three special cases:
The Lévy distribution corresponding α = 1

2 , Cauchy distribution when α = 1, and
Gaussian distribution when α = 2. Except for these three particular laws, the prob-
ability density function of an α-stable random variable has no exact analytical
expression. However, using the integral representation (3.50) with σ = 1 (without
loss of generality), a series expansion has been introduced into the literature by
Bergström [11],

f (x, α) = 1

πα

∞∑

k=0

(−1)k

2k! Γ (
2k + 1

α
)x2k, (3.9)

where Γ is the common Gamma function defined, for x > 0, by

Γ (x) =
∫ ∞

0
t x−1e−t dt . (3.10)

The series expansion (3.9) is discussed in several books and works about α-stable
laws, we cite among others Feller [30] or [76]. The problem with the infinite sum
(3.9) is that it contains increasing gamma terms with alternating signs; this makes it
difficult to use in practice or to give an approximation for every x . The first attempt
to solve this problem was introduced by, Bergström [11] for SαS random variables
with α > 1. He gave an asymptotic approximation of (3.9), for x = 0 given by

f (x, α) = 1

πα

n∑

k=0

(−1)k

2k! Γ (
2k + 1

α
)x2k + O(|x2n+1|), (3.11)

and when x goes to infinity, we have the approximation:

f (x, α) = −1

π

n∑

k=0

(−1)k

k! Γ (αk + 1)
sin(kαπ/2)

|x |αk+1
+ O

(|x |−α(n+1)−1)
)
. (3.12)

Calculating these asymptotic series for large values of n is tricky due to the
evaluation of the gamma function. These difficulties can be overcome by following
the procedure proposed in [[62], p. 17]. As one can see easily from the asymptotic
decomposition (3.12), the distribution function F(x)of anα-stable variable decreases
to 0 at rate x−α when x goes to infinity. The distribution is slowly decreasing heavy-
tailed distribution. In the next definition, we recall some relevant notions of heavy-
tailed functions.

Definition 3.2.5 The probability distribution of a real random variable is said to be
Heavy-tailed, of index α if there exist a slowly varying function h, that is to say

lim
x→∞

h(bx)

h(x)
= 1 for any b ≥ 0, such that:

P(X ≥ x) = x−αh(x). (3.13)
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As mentioned before, α-stable variables are heavy-tailed distributions. In fact, this
result is summed up in the following proposition:

Proposition 3.2.1 Let X be an Sα(σ, β, μ) random variable with 0 < α < 2, then
we have the following results:

lim
t−→∞ tα

P(X > t) = σα.Cα.
1 + β

2
and lim

t−→∞ tα
P(X < −t) = σα.Cα.

1 − β

2

where Cα is a constant depending only on α and is given by, 1−α
Γ (2−α) cos( πα

2 )
when

α 
= 1 and C1 = 2
π

For the proof of these results, see for instance [76, p. 16].

Algebraic properties and moments of stable distributions

Proposition 3.2.2 Let X1 and X2 be two independent α-stable random variables
having, respectively, the distributions Sα(σ1, β1, μ1) and Sα(σ2, β2, μ2), then we
have following properties:

• The random variable Y = X1 + X2 is also α-stable Sα(σ, β, μ) with:

σα = σα
1 + σα

2 , β = β1σ
α
1 + β2σ

α
2

σα
1 + σα

2

, μ = μ1 + μ2. (3.14)

• For any real numbers a and b, the random variable aX1 + b is also α-stable and
have the distribution Sα(|a|.σ1, sign(a).β1, μ1 + b).

• If X is an α-stable variable then its moments of order greater than α are infinite,
that is to say:

E|Xr | < ∞ if r < α (3.15)

E|X |r = ∞ if r ≥ α. (3.16)

• If X is an α-stable random variable Sα(σ, β, μ) with α > 1 then we have
E(X) = μ.

The proofs of these results are detailed in most books on α-stable laws, see for
example [40, 76]. As we have seen in (3.16), moments of order α are infinite but
one can see the way these moments go to infinity when the order of the moments
increases to α, we summarize this in the following.

Proposition 3.2.3 Let X an Sα(σ, β, μ) random variable, then we have the following
limits:

lim
R↗α

(α − r)E|X |r = αCασα, (3.17)

lim
R↗α

(α − r)EX<r> = αβCασ α, (3.18)

where Cα is defined in Proposition (3.2.1) and x<α> = |x |α sign(x).
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Lepage series representation of an α-stable random variable

In general the series representation of a random variable that is infinitely divisi-
ble3 without Gaussian component was established by Ferguson and Klass [31], then
further developed by Lepage [49]. The extension of this representation in more gen-
eral situations has been studied by Rosinski [71]. The idea of this representation
consists in writing an α-stable random variable as an infinite sum involving indepen-
dent random variables and arrival times of a Poisson process. The usefulness of this
decomposition is that it allows the proof of several theoretical results, for example
[76]. It can also be used to generate an α-stable variable; but due to its slow con-
vergence many authors advice to instead use direct simulation methods introduced
in [20]. In this chapter, we discuss only the particular case of SαS random variables
for their practical use and similarity to Gaussian variables. To state the main result
of Lepage, let (εi )i∈N, (Wi )i∈N and (Γi )i∈N denote three independent sequences of
random variables defined as follows:

• The random variables ε1, ε2, εn . . . are independent and identically distributed
having a Rademacher distribution: they are concentrated on 1 and −1, such that
P(ε1 = 1) = P(ε1 = −1) = 1

2 .
• The variables Γ1, Γ2, Γn.... are arrival times of a Poisson process with intensity 1.

They follow a gamma distribution parameter i and they are dependent:

Γi = E1 + · · · + Ei .

The random variables (Ek)k are independent and identically distributed of an
exponential distribution of parameter 1.

• W1, W2, Wn, · · · are independent and identically distributed random variables.

Proposition 3.2.4 If the random variable W has a finite moment of order α, that is

to say E|W |α < ∞ then for any 0 ≤ α < 2, the series
∑∞

I=1
εiΓ

− 1
α

i Wi converges

almost surely to an SαS random variable of parameters σ = C−1
α [E |W1|α] 1

α , with
Cα given in Proposition (3.2.1).

For the proof see [76] or [40]. Conversely, each symmetric α-stable random variable
(SαS) admits a series decomposition given in Proposition (3.2.4).

3The family of distribution or infinitely divisible random variables is a more general class of distri-
bution generalizing α-stable distribution. This distribution is characterized between others due to
the fact that they prove limit central theorem and due to the fact that they have attraction domains.
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Proposition 3.2.5 Let X be an SαS random variable such as X ∼ Sα(σ, 0, 0) then

X
d= (Cα)

1
α

∞∑

I=1

εiΓ
− 1

α

i Wi , (3.19)

with σ = (E|W |α)
1
α .

The proof of this result is detailed in [76]. One can notice that representation (3.19)
is not unique because the arbitrary choice of W having a moment order α is equal to
σα = E|W |α < ∞.

3.2.2 Multivariate α-Stable Random Variables

The definition of a multivariate stable distribution is the extension of the definition the
univariate case which is naturally the invariance with respect to convolution product.
In this section we will focus only on the main result concerning components of the
vector, for instance, that the linear combinations of the elements of a stable vector is
also stable. We highlight that this result is not true in general; but only when α > 1
or if the vector is strictly stable.

Definition 3.2.6 A random vector X = (X1, . . . , Xd ) is said to be α-stable distributed
in R

d if for any positive numbers A and B, there is a positive number C and a vector
D in R

d such as

AX (1) + B X (2) d= C X + D, (3.20)

where X (1) and X (2) are independent copies of the vector X. When D = 0 we talk
about strictly stable law.

Definition 3.2.6 imposes conditions on the joint distribution of the random vector X .
To highlight stability of the components of this vector, that the elements of X are
also stable and more generally any combination of elements is also a stable random
variable.

Theorem 3.2.6 Let X = (X1, . . . , Xd) be a stable random vector, then we have:

• Any linear combination of the components of X of form Y =
∑d

K=1
bk Xk is an

α-stable variable.
• There is a unique α ∈]0, 2] such that constants A, B, and C of Definition3.2.6

satisfy: Aα + Bα = Cα .
• A random vector X = (X1, . . . , Xd) is α-stable in R

d with 0 < α < 2 if and only
if for any n ≥ 2 there is a vector Dn of Rd such as:

X (1) + · · · + X (n) d= n
1
α X + Dn, (3.21)
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where X (1), . . . , X (n) are independent copies of X.

Theorem 3.2.6 shows that any linear combination of the components of a stable
vector is also stable. It is known that the inverse is true in the case of Gaussian vectors
but not for the general α-stable case.

Proposition 3.2.7 Let X be a random vector in R
d then we have the following:

• If any linear combination Y =
∑d

k=1
bk Xk is strictly stable then the random

vector X is also strictly stable.
• If any linear combination Y is symmetric stable, then X is also symmetric stable.
• If any linear combination Y is α-stable with a stability index greater or equal to

1 then the vector X is also α-stable.
• If X is infinitely divisible and if any linear combination of Y is stable then the

vector X is also stable.

Proof of these results are detailed in [76]. These last properties are difficult to use
because they give no precision on the analytical expression of the probability distri-
bution of an α-stable vector. Similarly to the univariate case, it is difficult to give an
analytical expression of their probability density. But we can give the expression of
their characteristic function, defined for all θ = (θ1, . . . , θd) ∈ R

d , by:

ΦX (θ) = E (exp(ı(θ, X))) = E

(

exp(ı
d∑

k=1

θk Xk)

)

(3.22)

The following result was first shown by Feldheim [29]. For more details, see Kuelbs
[47].

Theorem 3.2.8 A random vector X = (X1, . . . , Xd) is α-stable if and only if there
exists unique measure Γ defined on the unit sphere

Sd = {
s ∈ R

d , ‖s‖ = s2
1 + · · · + s2

d = 1
}
,

and a real vector μ of Rd such that

• if α 
= 1 then,

ΦX (θ) = exp

{

−
∫

Sd

|(θ, s)|α(1 − ısign((θ, s)) tan(
πα

2
))Γ (ds) + ı(θ, μ)

}

,

(3.23)
• if α = 1 then,

ΦX (θ) = exp

{

−
∫

Sd

|(θ, s)|(1 − ı
2

π
sign((θ, s)) ln(|(θ, s)|))Γ (ds) + ı(θ, μ)

}

.

(3.24)

Measure Γ is called the spectral measure.
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Unlike the univariate α-stable case, random vectors are not parametric but the couple
(Γ, μ) is unique and characterizes the probability distribution of the vector X . We
give some examples of characteristic functions of some common α-stable vectors.

Example 1

• Link with univariate stable variables.
For d = 1 and α > 1, the measure Γ is concentrated on the unit sphere of R which
is formed by two points {1,−1}. On the one hand, using the characteristic function,
given in (3.23), we have:

ΦX (θ) = exp
{
Γ ({1})|θ.1|α(1 − ı.sign(θ) tan(

πα

2
))

+Γ ({−1})| − θ |α(1 + ı.sign(θ) tan(
πα

2
))
}

= exp {|θ.1|α(Γ ({1}) + Γ ({−1}) − ı.sign(Γ ({1}) − Γ ({−1})))} ,

on the other hand, by comparing this equality to (3.49), the characteristic function
ΦX of an α-stable random variable Sα(σ, β, μ) verifies:

σ = Γ ({1}) + Γ ({−1}), β = Γ ({1}) − Γ ({−1})
Γ ({1}) + Γ ({−1}) .

For instance, when the random variable X is symmetric (β = 0) then the spectral
measure Γ is symmetric and we have Γ ({1}) = Γ ({−1}).

• Symmetric α-stable vectors.
An α-stable random vector X is symmetric if X and −X have the same probability
distribution. This means that, for any borelian set A of Rd we have: P(X ∈ A) =
P(−X ∈ A). From this definition, we can give a characterisation of symmetric
α-stable vectors from the structure of their spectral measure Γ . A vector X is
then symmetric α-stable if and only if there exists a unique symmetric measure Γ

defined on the unit sphere Sd such that

ΦX (θ) = exp

{

−
∫

Sd

|(θ, s)|αΓ (ds)

}

, for every θ ∈ R
d . (3.25)

The support structure of the spectral measure Γ , allows to differentiate sev-
eral kinds of α-stable vectors. A class of spectral measures which is often used
in practice is the family of measures concentrated on countable sets of points
on the unit sphere. For example, the independence of components of a stable
vector means that its spectral measure is concentrated on special set of points.
Indeed this spectral measure Γ is concentrated on the points (±1, 0, . . . , 0), . . . ,

(0, . . . ,±1, 0, . . . , 0), . . . , (0, 0, . . . ,±1).
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• Sub-Gaussian random vectors.
A random vector X is said to be sub-Gaussian if it can be expressed as, X =
A.(G1, . . . , Gn) where G = (G1, . . . , Gn) is a random Gaussian vector and A
is an α

2 -stable random variable independent of the vector G. This type of stable
variable plays an important role because they make a link between Gaussian and
α-stable variables. Another suitable property is that their characteristic function is
given by the following simple formula:

ΦX (θ) = exp
{−(θ tΣθ)

α
2
}
, (3.26)

where Σ is the covariance matrix of the Gaussian vector G = (G1, . . . , Gn).

Complex random variables and vectors

Complex random variables have applications in various fields, including signal
processing. The study of complex variables was favored by the importance of har-
monizable processes that are expressed as a Fourier transform of a random measure
or a process (3.3).

Definition 3.2.7 A complex random variable X = X1 + ı.X2 is α-stable if and only
if the couple of real random variables (X1, X2) is an α-stable vector in R

2. More
generally, a complex random vector (X1, . . . , Xd) with X j = X1

j + ı X2
j for j =

1, . . . , d, is α-stable if and only if the vector (X1
1, X2

1, . . . , X1
d , X2

d) is an α-stable
random vector in R

2d .

Definition 3.2.8 A complex random variable SαS, X = X1 + ı.X2, is said isotropic
(rotationally invariant) if and only if for any φ ∈ [0, 2π [ the random variables X and
eıφ.X have the same probability distribution.

Isotropic random variables are frequently encountered in wireless communications
where directions or more generally phases do not influence the received signal, that
is why they are sometimes called rotationally invariant, see for example [82]. These
variables have several properties that we summarize in the following proposition:

Proposition 3.2.9 Let X = X1 + ı.X2 be an isotropic complex random variable
then:

• The real and imaginary parts X1 and X2 are dependent real α-stable variables.
• The spectral measure Γ of the vector SαS, (X1, X2) is given by uniform law on

the unit circle.
• The real random vector (X1, X2) is sub-Gaussian.
• The characteristic function of X is given by:

ΦX (θ) = E
[
exp{ı.Re(θ.X)}] = exp{−c0.Γ(X1 ,X2)

(S2), |θ |α} (3.27)

where c0 is given by, c0 = 1

2π

∫ 2π

0
| cos(φ)|αdφ.
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This last property shows that the characteristic function of isotropic α-stable complex
variable is parametric and depends only on |θ |α and on the parameter Γ

(X1 ,X2)
(S2).

The proof of these results are detailed in [58].

Dependence and association measure of SαS random variables

For Gaussian random variables, the covariance matrix characterizes the distribution
of a Gaussian vector. Its flexible algebraic properties, such as its bilinearity and the
fact that it is positive definite, make the study of the covariance function simpler.
This important tool which is naturally associated with Gaussian variables is based on
second-order moments. According to (3.16), the latter are infinite in case of α-stable
variables with 0 < α < 2. Miller [59] introduced an equivalent concept for α-stable
vectors under the name covariation, as a new dependency measure to replace the
covariance in the case of symmetric α-stable random variables with 1 < α < 2.

Covariation

In the following we assume that 1 < α < 2 unless stated otherwise.

Definition 3.2.9 Let X = (X1, X2) be a symmetric α-stable real vector with a char-
acterizing spectral measure Γ defined on the unit circle S2. The covariation of X1

on X2 denoted [X1, X2]α is defined by:

[X1, X2]α =
∫

S2

s1.s
<α−1>
2 dΓ (s1, s2) (3.28)

with s<β> = sign(s).|s|β when s is a real number. In the same way, if X1 = X1
1 + ı X1

2
and X2 = X2

1 + ı X2
2 are two complex jointly symmetric α-stable random variables,

then covariation of X1 on X2 is given by

[X1, X2]α =
∫

S4

(s1
1 + ıs1

2).(s
2
1 + ıs2

2 )<α−1>dΓX1
1 ,X1

2 ,X2
1 ,X2

2
(s1

1 , s1
2 , s2

1 , s2
2 ), (3.29)

where ΓX1
1 ,X1

2 ,X2
1 ,X2

2
is the unique spectral measure corresponding to the SαS vector

(X1
1, X1

2, X2
1, X2

2). The notation z<β> = |z|β−1z where z is the complex conjugate
of z.

Unlike the covariance, we see in this definition that, the covariation is not naturally
symmetric. This asymmetry comes from the signed power < α − 1 > which appears
in (3.28) and (3.29). There is another definition equivalent to Definition 3.2.9 which
involves the exponent of the characteristic function given in (3.23). This simple result
is easy to handle in practice and is given by the following proposition:

Proposition 3.2.10 Let (X1, X2) jointly SαS random vector, then the covariation of
X1 on X2 can be expressed as,

[X1, X2]α = 1

α
.
∂σα(θ1, θ2)

∂θ1
|
θ1=0,θ2=1 (3.30)

where σ(θ1, θ2) is the scale parameter of the real SαS random variable, θ1 X1 + θ2 X2.
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The equivalence between (3.28) and (3.30) is detailed in [76].
As mentioned at the beginning, the covariation was designed to replace the covari-

ance but unfortunately it does not have some of its suitable properties. The following
proposition gives the different characteristics and properties of covariation.

Proposition 3.2.11 The covariation has the following properties:

1. Covariation is linear to the left (with respect to its first component) that is to say,
for any jointly SαS vector, (X1, X2, Y ) we have,

[X1 + X2, Y ]α = [X1, Y ]α + [X2, Y ]α.

2. If X and Y are two real or complex independent SαS random variables, then
[X, Y ]α = 0. The converse is not always true.

3. Covariation is additive with respect to its second component in the case of inde-
pendence that is to say, [X, Y1 + Y2]α = [X, Y1]α + [X, Y2]α if Y1 and Y2 are
independent.

4. For any real or complex scalars a and b, we have,

[a.X, b.Y ]α = ab<α−1>[X, Y ]α.

The proof of these results is detailed in most works dealing with α-stable variables.
For example, in Cambanis [16] we find the proof of these properties in the general
case of complex variables.

3.2.3 α-Stable Stochastic Processes

At the beginning research on α-stable stochastic processes and models were devel-
oped, first, to find results similar to those established for Gaussian processes and in a
second step to explore the novel characteristics. Recently, many remarkable results
have been introduced in the literature. For more details, see for example [40, 70, 76].
Let us recall the definition of α-stable stochastic processes and give some of their
elementary properties:

Definition 3.2.10 Let T be any ordered set and 0 < α ≤ 2. A real or (complex)
stochastic process (Xt , t ∈ T ) is α-stable if for any finite subset {t1, . . . , tn} of T ,
the real or (complex) random vector, (Xt1 , . . . , Xtn ) is α-stable random vector.

Theorem 3.2.12 A stochastic process (Xt , t ∈ T ) is symmetric α-stable if and only
if for all linear combinations,

d∑

k=1

bk Xtk where, d ≥ 1, t1, . . . , tn ∈ T and b1, . . . , bn ∈ R, (3.31)

is also a symmetric α-stable variable.
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This theorem shows that the set of all finite linear combinations (3.31) is a vector space
that will be denoted l(X). In following paragraph, we will show that the covariation
generates a norm for which l(X) is a Banach space.

The covariation Norm

It is known that the vector space generated by a subfamily of second-order random
variables is a Hilbert space. This Hilbertian structure is not conceivable for α-stable
random variables because of their infinite variance. However, using the covariation
we can substitute the Hilbert structure by a Banach one. Indeed, if a α-stable process
(X (t), t ∈ T ), then the vector space l(X) is composed of α-stable random variables
having the same stability index α, see for instance [19]. The following theorem
specifies the Banach structure of l(X) = l(X (t), t ∈ T ).

Proposition 3.2.13 Let 1 < α < 2 then the application,

‖.‖α : l(X) −→ R
+

Y �−→ ‖Y‖α � ([Y, Y ]α)
1
α ,

(3.32)

defines a norm called covariation norm.
In that case (l(X), ‖.‖α) is a Banach space and its topology is equivalent to

the topology of convergence in probability. Besides, for any fixed Z in l(X), the
application,

l(X) −→ C

Z �−→ [., Z ]α,

is a continuous linear form of norm ‖Z‖α−1
α . In (l(X), ‖.‖α) the covariation function

is also continuous with respect to its second component and for any complex SαS
vector (Z1, Z2, Z3) we have:

|[Z1, Z2]α − [Z1, Z3]α| ≤ 2‖Z1‖α.‖Z2 − Z3‖α−1
α . (3.33)

Proof The proof of the first assumption is detailed in [16]. To show inequality (3.33),
let us denote Z1 = Z1

1 + ı.Z2
1 , Z2 = Z1

2 + ı.Z2
2 , Z3 = Z1

3 + ı.Z2
3 andΓ = Γ(Z1,Z2,Z3)

the unique measure defined on the unit sphere S6 of R6 corresponds to the vector
SαS (Z1

1, Z2
1, Z1

2, Z2
2, Z1

3, Z2
3), then by definition of covariation we have:

|[X, Y ]α − [X, Z ]α| ≤
∫

S6

|z1||z<α−1>
2 − z<α−1>

3 |dΓ (w1, . . . , w6),

where zi = z1
i + ı z2

i . Using inequality |z<α−1>
1 − z<α−1>

2 | ≤ 4|z1 − z2|α−1 and accord-
ing to Hölder inequality we have:
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|[X, Y ]α − [X, Z ]α | ≤ 4
∫

S6

|z1||z2 − z3|<α−1>dΓ (z1
1, z2

1, z1
3, z2

3)

≤ 4

[∫

S6

|z1|αdΓ (z1
1, z2

1, z1
3, z2

3)

] 1
α

·
[∫

S6

|z2 − z3|αdΓ (z1
1, z2

1, z1
3, z2

3)

] α−1
α

≤ 4‖X‖α · ‖Y − Z‖α−1
α

(3.34)

We give some results concerning moments of isotropic complex SαS random
variables as well as their relation with covariation.

Proposition 3.2.14 Let Y be a symmetric α-stable random variable, then if Y is real
the moment of order p, with 1 < p < α, of X is given by:

E|Y |p = Sα(p) · ‖Y‖p
α and Sα(p) = 2p Γ (

1+p
2 ) · Γ (1 − p

α
)

Γ (1 − p
2 )Γ ( 1

2 )
, (3.35)

where Γ is the common gamma function defined in (3.10). If Y is isotropic complex
then the moment of order p, with 1 < p < α is given by

E|Y |p = S̃α(p) · ‖Y‖p
α and S̃α(p) = 2p Γ (

2+p
2 ) · Γ (1 − p

α
)

Γ (1 − p
2 )

. (3.36)

The proof of these results is detailed for example in Feller [30] for the real case
and Cambanis and Miamee [17] for the isotropic complex case. In Definition 3.2.9,
covariation is given in terms of the spectral measure which is not given in an explicit
way and is difficult to manipulate in practice. The following proposition gives the link
between the covariation and the fractional moments E(XY <p−1>) where 1 < p < α.
The proof of this result is in Cambanis and Miamee [17].

Proposition 3.2.15 Let X and Y be two jointly SαS real or complex isotropic random
variables. Then for every 1 < p < α, we have:

[X, Y ]α
‖Y‖α

α

= E(X · Y <p−1>)

E|Y |p
. (3.37)

3.2.4 Stochastic Integration and Spectral Representation
of Stable Processes

The history of stochastic integration started in 1900 with Bachelier [7] where it
was first used in financial modeling. Then Einstein [28] used stochastic integrals in
the field of physics when he tried to integrate with respect to a Wiener Process. It
was only after the pioneering work of Kolmogorov [44, 45] on probability theory
that K. Itô [39], said to be the father of the stochastic integration, developed the
foundation of this concept as it is known today. The stochastic integral with respect
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to an independent increment α-stable process has been studied by several authors in
the 1970s. We cite among others, Schilder [77], Hosoya [38], Hardin [36], Miller
[59], Cambanis [16, 18, 19], etc. In Smorodnitsky and Taqqu [76], we find a detailed
overview on building as well as the properties of stochastic integration with respect
to an indepentally scattered α-stable random measure.

Lebesgue-Stieltjes stochastic integral

In this section we address Lebesgue-Stieltjes integration with respect to an indepen-
dent increments SαS process. We follow the works detailed in Cambanis [16]. Let
us consider a symmetric α-stable process ξ = (ξt , t ∈ R) with 1 < α < 2 and let us
denote Δ(ξ) the Banach space generated by the increments of ξ that is to say the
completion, with respect to the covariation norm ‖.‖α , of all finite linear combina-
tions of the increments of ξ . According to Cambanis [16], for the Lebesgue-Stieltjes
integral to exist, the process ξ must verify the conditions:

• The process ξ is right continuous with respect the covariation norm.
• For any fixed linear combination ζ of increments of ξ , the application, v : t �−→

[ξt , ζ ]α must have bounded variation.

In this case the Lebesgue-Stieltjes stochastic integral is constructed in the following
way:

For a step function defined on a bounded interval [a, b[ that one can write as,
f = ∑n

k=1 fk1l]tk−1,tk ] with a = t0 < t1 < · · · < tn = b, Cambanis [16] defined the
stochastic integral of the function f by:

∫
f dξ =

n∑

k=1

fk(ξtk − ξtk−1). (3.38)

Since the function v is of bounded variation and right continuous, we can define a

norm by ‖ f ‖1,α
�
(∫

f (t)dv(t)

) 1
α

with v(t) = [ξt ,
∫

f dξ ]α . A simple calculation

shows that

‖ f ‖α

1,α
=
∫

f (t)dv(t) =
n∑

k=1

fk .(v(tk) − v(tk−1))

=
n∑

k=1

fk .

[

ξtk − ξtk−1 ,

∫
f dξ

]

α

=
[

n∑

k=1

fk(ξtk − ξtk−1),

∫
f dξ

]

α

=
[∫

f dξ,

∫
f dξ

]

α

=
∥
∥
∥
∥

∫
f dξ

∥
∥
∥
∥

α

α

(3.39)
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First, using the fact that the convergence with respect to the covariation norm is
equivalent to convergence in probability, see Cambanis, for example [16] or Samorod-
nitsky and Taqqu [76], we deduce that stochastic integrals

∫
fndξ converge in prob-

ability if and only if it converges in the norm ‖.‖α . Therefore, according to (3.39), if
and only if the function sequence fn is a Cauchy sequence with respect to ‖.‖1,α

. As
in [16], we denote by Λα(Δξ) the completion with respect to the norm ‖.‖1,α

of step
functions having compact support on R. For any function f of Λα(Δξ) there exists
a sequence fn of step functions with compact support such that, ‖ fn − f ‖1,α

→ 0.
The Lebesgue-Stieltjes stochastic integral of f is therefore the limit in probability of∫

fndξ , given in (3.38). We then get an isomorphism between Λα(Δξ) and l(Δξ).

Case where ξ have independent increments

We present some results about stochastic integration with respect to a process with
independent increments, for more details see [16]. The interest of this case lies in
the fact that these processes are right continuous with respect to the topology of
convergence in probability. On the other hand, for any finite reals t0 < t1 < · · · < tn ,
using the ξ independence of increments we can decompose as follows:

‖ξtn − ξt0‖α
α =

n∑

k=1

‖ξtk − ξtk−1‖α
α. (3.40)

This additivity property, in the case of independence, allows to construct a Lebesgue-
Stieltjes positive measure μ defined by:

μ(]s, t]) = ‖ξt − ξs‖α
α for all, s < t. (3.41)

Consider two step functions f and g with compact support that we write as, f =∑n
k=1 fk1l]tk−1,tk ] and g = ∑n

k=1 gk1l]tk−1,tk ], and we denote by Xk = ξtk − ξtk−1 the
increments of ξ . Using the definition of the integral given in (3.38), we have:

[∫
f dξ,

∫
gdξ

]

α

=
[

n∑

k=1

fk Xk,

n∑

k=1

gk Xk

]

α

. (3.42)

As the process ξ has independent increments, one can see easily that random vari-
ables X0, X1, . . . , Xn are independents. Thanks to the additivity of the covariation
Proposition 3.2.11, we have:

[∫
f dξ,

∫
gdξ

]

α

=
[

n∑

k=1

fk Xk,

n∑

k=1

gk Xk

]

α

=
n∑

k=1

n∑

k ′=1

fk .g
<α−1>
k ′ [Xk, Xk ′ ]α
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=
n∑

k=1

fk .g
<α−1>
k [Xk, Xk]α, for k 
= k ′, [Xk, Xk ′ ]α = 0.

=
n∑

k=1

fk .g
<α−1>
k ‖ξtk − ξtk−1‖α

α

=
n∑

k=1

fk .g
<α−1>
k μ((tk−1, tk])

=
∫

f.g<α−1>dμ. (3.43)

This result can be generalized to all functions of Λα(Δξ). The Lebesgue-Stieltjes
positive measure μ is called the spectral measure (sometimes control measure) of the
process ξ . Cambanis [16] showed, in the following proposition, that any Lebesgue-
Stieltjes measure is a spectral measure of some symmetric α-stable process having
independent increments.

Proposition 3.2.16 For any finite measure defined onR, there exist a real or complex
stochastic process ξ with independent increments for which, Λα(Δξ) = Lα(μ) and
satisfying relation (3.43).

3.2.5 Harmonisable Processes and Spectral Density
in Masry-Cambanis’s Sense

The main motivation of Masry and Cambanis’s work [58] was to investigate SαS

harmonisable stochastic processes Xt =
∫

eıtλdξ(λ) where ξ is a symmetric α-

stable process with isotropic independent increments. In that case, relation (3.43) is
rewritten as:

[Xs, Xt ]α =
∫ ∞

−∞
ei(s−t)λdμ(λ). (3.44)

Representation (3.44) is similar to the spectral representation of the covariance func-
tion for harmonisable second-order processes (3.2). By analogy with the power spec-
tral density, Masry and Cambanis called μ defined in (3.41) the spectral measure of
the process X . When this measure accepts a radon derivative with respect to the
Lebesgue measure, this density is called the spectral density of the process X .

Although (3.44) does not have the power and energy signification as the spectral
density of second-order processes, Masry and Cambanis pointed out that it can play
a similar role in several practical situations. Statistical analysis and estimations of
this spectral density were given in [58] for continuous time processes. An estimate
of the spectral density from discrete observations was studied in [73, 74].
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3.2.6 Estimation of the Spectral Density Using
the Characteristic Function

We present in this section the estimation procedure using works of [73] or generally
[26] that are based on Masry and Cambanis’s work [58] in the case of continuous
time harmonisable SαS processes. We will recall some notation used in these papers.
Let us first recall the definition of Jackson polynomials:

J (N )(l) = 1

qk,n

(
sin( nl

2 )

sin( l
2 )

)2k

where qk,n = 1

2π

∫ π

−π

(
sin( nl

2 )

sin( l
2 )

)2k

dl,

with N a fixed real number such that, N = 2k(n − 1) + 1, where n ∈ N and k ∈
N ∪ { 1

2

}
; and if k = 1

2 then N is an odd integer.
It is known that their exists a function jk satisfying:

J (N ) (λ) =
k(n−1)∑

m ′=−k(n−1)

jk(m
′/n) cos(λm ′).

It is shown in [72] that:

jk(u) =

⎧
⎪⎨

⎪⎩

Q(k)
N (nu + k(n − 1))

Q(k)
N (k(n − 1))

, if nu ∈ Z,

0 , if nu /∈ Z,

where Q(k)
N (τ ) is the number of integer combinations (t1, t2, . . . , t2k) that satisfy:

∀ j ∈ {1, 2, . . . , 2k}, 0 ≤ t j ≤ n − 1 and t1 + t2 + · · · + t2k = τ .
From this Jackson polynomial function, we then define the following kernel which

is used in the construction of the periodogram,

|JN (λ)|α = ∣
∣ANJ (N )(λ)

∣
∣α where AN =

(∫ π

−π

∣
∣J (N )(λ)

∣
∣α dλ

)− 1
α

.

Let ÎN be the periodogram defined on ] − �,�[ as follows:

ÎN (λ) = C p,α|IN (λ) |p, 0 < p <
α

2

where,

IN (λ) = [τ ] 1
α ANRe

⎡

⎣
n′=k(n−1)∑

n′=−k(n−1)

hk

(
n′
n

)

exp

{

−i(n′τλ)

}

X

(

n′τ + k(n − 1)τ

)
⎤

⎦ .
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The normalization constant C p,α is given by C p,α = Dp

Fp,α[Cα]p/α
, with:

Dp =
∫ ∞

−∞
1 − cos(u)

|u|1+p
du, (3.45)

Fp,α =
∫ ∞

−∞
1 − e−|u|a

|u|1+p
du, (3.46)

Cα = 1

πα

∫ π

0
|cos(u)|α du. (3.47)

In order to obtain a consistent estimate of [φ(λ)] p
α , the periodogram is smoothed

via a spectral window WN defined by: WN (u) = MN W (MN u), where MN satisfies
MN → +∞ and MN

N → 0 as N → +∞, W is a nonnegative, even, continuous func-

tion vanishing for |λ| > 1 such that
∫ 1

−1
W (u)du = 1. The bandwidth of the spectral

window is then proportional to 1/MN . We consider then the smoothed periodogram
fN defined by:

fN (λ) =
∫

R

WN (λ − u)) ÎN (u)du, −Ω < λ < Ω.

It is shown in [72] or generally in [26], that fN (λ) is an asymptotically unbiased
consistent estimator of [φ(λ)] p

α for −Ω < λ < Ω.

We deduce from this that,

φ̂(λ) = ( fN (λ))α/p.

It is commonly known that the spectral density of a second-order processes gives
the energy distribution according to frequencies. In the case of α-stable processes,
where this energy is theoretically infinite, the spectral density loses the notion of the
power distribution. However, it can still be seen as a fractional relative fractional
power distribution.

3.3 Application of Stable Processes to Communication
Channel Modeling

Radio transmission is permanently looking for new solutions to increase the data
rates. One solution is to find free frequency bands but this is difficult because it
is already highly occupied. However, some possibilities exist and one of them is
an available spectrum around 60 GHz where a very wide band (several GHz) is
available. Developing systems in this band necessitates to characterize and model
the radio channel. Many references can be found on channel characterization (see
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for example [23, 33, 78, 85]) and models have been developed. Some are based
on deterministic modeling and ray tracing [52, 61, 78] with satisfying results or
geometric approaches. We are interested in statistical models. Early works, in other
frequency bands, rely on the framework proposed by Bello [10]. It relies mainly on
two assumptions: the channel is wide sense stationary and has uncorrelated scatterers.
This means stationary in the time domain and in the frequency domain.

The channel can then be represented by a linear filter characterized by its impulse
response and four random variables:

h(t) =
N∑

k=1

akδ (t − τk) ejθk , (3.48)

where ak , τk , θk , and N are, respectively, the amplitude, the delay, the phase of path
k and the paths’ number. Phases are usually considered as uniformly distributed over
[0, 2π ] because the path length is much larger than the wavelength [27].

As long as the bandwidth is not too big, a regularly spaced taps delay line can
be used instead of (3.48), meaning τk = kTe where Te is the sampling time. In [35],
models for a 6 GHz large channel centered at 5 GHz are compared and regularly
spaced taps and arbitrary delays give both good results. However, the regularly spaced
taps are problematic for ultra wide bandwidth (meaning a very small Te). The main
reason is the sparsity of the impulse response [60]: paths are not present in each
time interval and the distributions of the tap coefficients cannot be based on complex
Gaussian random variables. As a consequence, we are interested in models with
arbitrary path times of arrival.

The distribution of this variable is a difficult problem [6, 22, 78, 79, 83]. The most
widely used solution was proposed by Saleh and Valuenzela [75]. It relies on a doubly
stochastic Poisson approach : paths arrive in clusters; the arrival times of clusters
and the arrival time of paths in clusters are exponential random variables. It has been
used for the 60 GHz indoor channel [32, 48, 63] and adopted by the standardization
groups IEEE 802.15.3a for ultra wide band channels, 802.15.4a for sensor networks
and IEEE 802.15.3c for the 60 GHz band [86]. However, it remains a complicated
model, difficult to handle analytically and necessitating many parameters (delays,
amplitudes).

Classical assumptions

To have a statistical representation of the channel, based on second-order statistics,
classical works [3, 21, 33, 48, 78], assume the channel is Wide Sense Stationary
and with Uncorrelated Scatterers. It appears however that those assumptions are not
valid:

• In the context of millimeter waves, one single office room will show various
behaviors and characteristics. The local areas where the WSS assumption holds
are reduced to a few cm2 due to the small wavelength.
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• Due to the increase in the bandwidth, more paths can be resolved. Consequently,
correlation between multipath can appear and the uncorrelated scatterers property
does not hold.

One solution is to increase the number of parameters in the model to account for the
correlation and the high number of detected paths. Then, the parameters themselves
should vary or even be considered as random variables.

New approach

We propose a model that is not based on second-order statistics. Let us consider
the channel transfer function H(ω) which is the Fourier transform of the impulse
response h(τ ):

H(ω) =
∫

ejωτ h(τ )dτ . (3.49)

We model the transfer function as a stochastic process represented by the stochastic
integral:

H(ω, .) =
∫

R

ejωτ dξ(τ ). (3.50)

The term dξ(τ ) = h(τ, .)dτ is the Lebesgue-Stieltjes random measure constructed
from the stochastic process h(τ, .).

Here, (3.50) shows that the probabilistic properties of dξ(τ ) are linked to those
of H(ω, .) by an inverse Fourier transform. This means that the knowledge of the
random measure dξ characterizes the transfer function and, consequently, the radio
channel. Figure 3.1 represents realizations of the random variables H(ω, .) (details
on the measurement setup can be found in [33]) and the test of infinite variance [62,
p. 62–63] on these realizations that confirm the impulsive nature of the channel.

Consequently, we assume that dξ is an α-stable random measure with independent
increments. This assumption [16] allows to characterize H(ω, .) by a unique measure
μ defined on R as described in Sect. 3.2.3. Then, in contrast with the IEEE 802.15
approach, we are brought back to find a deterministic function in the place of random
parameters.

Estimation of the Spectral Density

We first estimate the stability index α based on real and imaginary parts of measured
H(ω, .) for different ω and average the obtained estimates. We then estimate the
density φ̂ of the measure μ; one transfer function allows to calculate the periodogram
and we average the periodograms obtained from the different observations.

We summarize in the Algorithm 1 the estimation procedure, following the frame-
work described in Sect. 3.2.6, where all detailed expressions can be found.
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Fig. 3.1 Test of infinite variance for |H(ω)|

Algorithm 1: Nonparametric estimation of the spectral density φ̂(λ) from
observed transfer functions.

Input: Measured transfer functions Hl (ωi )i=1...N at positions � = 1, . . . , L .
Pretreatment: ;

Estimate index exponent α from {Hl (ω)}l=1,...,L using [46];
Take p = α

2.5 and calculate, cα, Dp and Fp,α given in (3.45), (3.46) and (3.47) ;
Calculate, C p,α ;

Calculate jk(
n′
n ) ;

foreach � = 1 . . . K do
Calculate IN ,�(λ) ;
Calculate ÎN ,�(λ) ;

Calculate ¯̂IN , the mean of ÎN ,�(λ) over � = 1 . . . L ;

Smooth ¯̂IN (λ) to obtain fN (λ) ;

Output: The spectral density is φ̂(λ) = ( fN (λ))
α
p .

Generation of the impulse responses

The transfer function H(ω, .) may be decomposed in Lepage type series (see Propo-
sition 3.2.5) as:

H(ω, .)
d= (μ(R)Cα)

1
α

∞∑

i=1

γiΓ
− 1

α

i ejωϑi (Si,1 + j Si,2). (3.51)
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• Equality “
d=” means equality in distribution, and Cα is a constant depending only

on α:

Cα = 1 − α

Γ (2 − α) cos( πα
2 )

for α 
= 1 and C1 = 2

π
(3.52)

• (γi ) are independent copies of Rademacher random variable γ , this means that,
P(γ = −1) = P(γ = 1) = 1/2,

• (Γi ) are the arrival times of a Poisson process, they are gamma distributed of
rate i ,

• (ϑi )i are independent copies of the random variable ϑ ,
• (Si,1, Si,2) are independent copies of a continuous random variable uniformly dis-

tributed on the unit circle. For convenience, we represent it in complex notation:
Si,1 + j Si,2 = ejθi .

From the estimated density φ̂, we generate independent copies of the random
variable ϑ . We use the Ahrens algorithm described in [37, Algorithm 5.1, p. 115].

The infinite representation has to be truncated to a positive integer N chosen large
enough to have a practically reasonable approximation. We propose a measure of
the approximation accuracy by calculating the risk probability to generate a transfer
function HN (ω) not close to the true trajectory H(ω). In order to have accuracy η

with risk ε, we take N such that

RN (α) ≤ η2ε

K
. (3.53)

In a last step we adjust our model to the limited time resolution of the experimental
setup. We observe the impulse response at discrete times with a step Δt . Let IΔt be
the total duration of the impulse response. We finally generate:

h(t) =
I−1∑

i=0

aiδ(iΔt), (3.54)

where

ai =
N∑

j=1

γ jΓ
− 1

α

j ejθ j 1lϑ j ∈[iΔt,(i+1)Δt[. (3.55)

We detail the impulse response generation technique in Algorithm 2.

3.3.1 Illustration

In order to show that our model is appropriate in the case of the 60 GHz channel, we
have confronted it to the observed impulse responses.
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Algorithm 2: The channel impulse response generation.

Input: Estimated spectral density φ̂(λ) and α from Algorithm 1.
Pretreatment: ;

Calculate Cα from (3.52).;
Approximate the total mass μ(R) = ∫

φ(λ)dλ.;
Find the threshold N as in (3.53).;

do: ;
Generate Γi = e1 + · · · + ei where (ei ) are i.i.d. random variables exponential of

mean 1.;
Generate γi i.i.d. copies of γ .;
Generate ϑi from μ̂, for instance with Ahrens algorithm (see [37, Chap. 5]).;
Calculate ai from (3.55) .;

end do: ;
Output: An impulse response h(t) from (3.54).

In Fig. 3.2, we present simulated impulse responses. Thirty thousand samples
were generated per impulse response for a risk η = 0.05 and an accuracy ε = 0.01.

Figure 3.2 shows the ability of our model to represent very different situations.
In contrast, classical approaches based on power delay profile cannot adapt to such
a variability. One single measurement is indeed sufficient to represent the channel
behavior in the whole room. This results from the fact that the wide sense stationary
property is not required for our model. Another important fact is that the model is
able to represent the path time of arrival with a great accuracy. This is an important
feature when ultra wide band channels are considered.
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Fig. 3.2 Example of simulated impulse responses
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Chapter 4
Networks, Random Graphs and Percolation

Philippe Deprez and Mario V. Wüthrich

Abstract The theory of random graphs goes back to the late 1950s when Paul Erdős
andAlfrédRényi introduced theErdős-Rényi randomgraph. Since thenmanymodels
have been developed, and the study of random graph models has become popular
for real-life network modelling such as social networks and financial networks. The
aim of this overview is to review relevant random graph models for real-life network
modelling. Therefore, we analyse their properties in terms of stylised facts of real-life
networks.

4.1 Stylised Facts of Real-Life Networks

Anetwork is a set of particles that may be linked to each other. The particles represent
individual network participants and the links illustrate how they interact among each
other, for an example see Fig. 4.1. Such networks appear in many real-life situations,
for instance, there are virtual social networks with different users that communicate
with (are linked to) each other, see Newman et al. [35], or there are financial networks
such as the banking systemwhere banks exchange lines of credits with each other, see
Amini et al. [3] and Cont et al. [15]. These two examples represent rather recently
established real-life networks that originate from new technologies and industries
but, of course, the study of network models is much older motivated by studies in
sociology or questions about interacting particle systems in physics.

Such real-life networks, in particular social networks, have been studied on many
different empirical data sets. These studies have raised several stylised facts about
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Fig. 4.1 lhs ER random graph; rhs NSW random graph

large real-life networks that we would briefly like to enumerate, for more details see
Newman et al. [35] and Sect. 1.3 in Durrett [19] and the references therein.

1. Many pairs of distant particles are connected by a very short chain of links. This
is sometimes called the “small-world” effect. Another interpretation of the small-
world effect is the observation that the typical distance of any two particles in
real-life networks is at most six links, see Watts [40] and Sect. 1.3 in Durrett [19].
The work ofWatts [40] was inspired by the statement of his father saying that “he
is only six handshakes away from the president of the United States”. For other
interpretations of the small-world effect we refer to Newman et al. [35].

2. The clustering property of real-life networks is often observed which means that
linked particles tend to have common friends.

3. The distribution of the number of links of a single particle is heavy-tailed, i.e. its
survival probability has a power law decay. In many real-life networks the power
law constant (tail parameter) τ is estimated between 1 and 2 (finite mean and
infinite variance, see also (4.3) below). Section1.4 in Durrett [19] presents the
following examples:

• number of oriented links on web pages: τ ≈ 1.5,
• routers for e-mails and files: τ ≈ 1.2,
• movie actor network: τ ≈ 1.3,
• citation network Physical Review D: τ ≈ 1.9.

Typical real-life networks are heavy-tailed in particular if maintaining links is
free of costs.

Since real-life networks are too complex to be modelled particle by particle and link
by link, researchers have developed many models in random graph theory that help
to understand the geometry of such real-life networks. The aim of this overview
paper is to review relevant models in random graph theory, in particular, we would
like to analyse whether these models fulfil the stylised facts mentioned above. The
models we consider in Sects. 4.2 and 4.3 are the Erdős-Rényi random graph and the
Newman-Strogatz-Watts random graph, respectively. We then look at random graph
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models where particles are embedded in Euclidean space. This leads to nearest-
neighbour bond percolation treated in Sect. 4.4. In the subsequent two sections, we
consider extensions of the nearest-neighbour bond percolation model, the homoge-
neous and the heterogeneous long-range percolation model. In Sect. 4.7 we consider
heterogeneous long-range percolation in continuum space. In the last section, we
explain renormalisation techniques which are crucial tools used in various proofs of
statements about the clustering property and the small-world effect.

Standard literature on random graph and percolation theory is Bollobás [10],
Durrett [19], Franceschetti-Meester [21], Grimmett [24, 25], van der Hofstad [26]
and Meester-Roy [31].

4.2 Erdős-Rényi Random Graph

We choose a set of particles Vn = {1, . . . , n} for fixed n ∈ N. Thus, Vn contains n
particles. The Erdős-Rényi (ER) random graph introduced in the late 1950s, see [20],
attaches to every pair of particles x, y ∈ Vn , x �= y, independently an edge with fixed
probability p ∈ (0, 1), i.e.

ηx,y = ηy,x =
{
1 with probability p,

0 with probability 1 − p,
(4.1)

where ηx,y = 1 means that there is an edge between x and y, and ηx,y = 0 means
that there is no edge between x and y. Identity ηx,y = ηy,x illustrates that we have
an undirected random graph. We denote this random graph model by ER(n, p). In
Fig. 4.1(lhs), we provide an example for n = 12, observe that this realisation of the
ER random graph has one isolated particle and the remaining ones lie in the same
connected component.

We say that x and y are adjacent if ηx,y = 1. We say that x and y are connected
if there exists a path of adjacent particles from x to y. We define the degree D(x) of
particle x to be the number of adjacent particles of x in Vn . Among others, general
random graph theory is concerned with the limiting behaviour of the ER random
graph ER(n, pn) for pn = ϑ/n, ϑ > 0, as n → ∞. Observe that for k ∈ {0, . . . ,
n − 1} we have, see for instance Lemma2.9 in [41],

gk = g(n)
k = P [D(x) = k] =

(
n − 1

k

)

pk
n (1 − pn)

n−1−k → e−ϑ ϑk

k! , (4.2)

as n → ∞. We see that the degree distribution of a fixed particle x ∈ Vn with edge
probability pn converges for n → ∞ to a Poisson distribution with parameter ϑ > 0.
In particular, this limiting distribution is light-tailed and, therefore, the ER graph does
not fulfil the stylised fact of having a power law decay of the degree distribution.

The ER random graph has a phase transition at ϑ = 1, reflecting different regimes
for the size of the largest connected component in the ER random graph. For ϑ < 1,
all connected components are small, the largest being of orderO(log n), as n → ∞.
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For ϑ > 1, there is a constant χ(ϑ) > 0 and the largest connected component of the
ER random graph is of order χ(ϑ)n, as n → ∞, and all other connected compo-
nents are small, see Bollobás [10] and Chap.2 in Durrett [19]. At criticality (ϑ = 1)
the largest connected component is of order n2/3, however, this analysis is rather
sophisticated, see Sect. 2.7 in Durrett [19].

Moreover, the ER random graph has only very few complex connected com-
ponents such as cycles (see Sect. 2.6 in Durrett [19]): for ϑ �= 1 most connected
components are trees, only a few connected components have triangles and cycles,
and only the largest connected component (for ϑ > 1) is more complicated. At criti-
cality the situation is more complex; a few large connected components emerge and
finally merge to the largest connected component as n → ∞.

4.3 Newman-Strogatz-Watts Random Graph

The approach of Newman-Strogatz-Watts (NSW) [34, 35] aims at directly describing
the degree distribution (gk)k≥0 of D(x) for a given particle x ∈ Vn (n ∈ N being
large). The aim is to modify the degree distribution in (4.2) so that we obtain a power
law distribution. Assume that any particle x ∈ Vn has a degree distribution of the
form g0 = 0 and

gk = P [D(x) = k] ∼ ck−(τ+1), as k → ∞, (4.3)

for given tail parameter τ > 0 and c > 0. Note that
∑

k≥1 k−(τ+1) < 1 + 1/τ which
implies that c > 0 is admissible. By definition the survival probability of this degree
distribution has a power law with tail parameter τ > 0. However, this choice (4.3)
does not explain how one obtains an explicit graph from the degrees D(x), x ∈ Vn .
The graph construction is done by the Molloy-Reed [32] algorithm: attach to each
particle x ∈ Vn exactly D(x) ends of edges and then choose these ends randomly in
pairs (with a small modification if the total number of ends is odd). This will provide
a random graph with the desired degree distribution. In Fig. 4.1(rhs) we provide an
example for n = 12, observe that this realisation of the NSW random graph has two
connected components. The Molloy-Reed construction may provide multiple edges
and self-loops, but if D(x) has finite second moment (τ > 2) then, there are only
a few multiple edges and self-loops, as n → ∞, see Theorem3.1.2 in Durrett [19].
However, in view of real-life networks we are rather interested into tail parameters
τ ∈ (1, 2), for which we so far have no control on multiple edges and self-loops.

Newman et al. [34, 35] have analysed this random graph by basically considering
cluster growth in a two-step branching process. Define the probability generating
function of the first generation by

G0(z) = E
[
zD(x)

] =
∑

k≥1

gk zk, for z ∈ R.
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Note that we have G0(1) = 1 and μ = E[D(x)] = G ′
0(1) (supposed that the latter

exists). The second generation has then probability generating function given by

G1(z) =
∑

k≥0

(k + 1)gk+1

μ
zk =

∑

k≥1

kgk

μ
zk−1, for z ∈ R,

where the probability weights are specified by g̃k = (k + 1)gk+1/μ for k ≥ 0. For
τ > 2 the second generation has finite mean given by

ϑ =
∑

k≥0

kg̃k =
∑

k≥0

k
(k + 1)gk+1

μ
= 1

μ

∑

k≥1

(k − 1)kgk .

Note that the probability generating functions are related to each other by G ′
0(z) =

μG1(z) = G ′
0(1)G1(z). Similar to the ER random graph there is a phase transition

in this model. It is determined by the mean ϑ of the second generation, see (5)–
(6) in Newman et al. [35] and Theorems3.1.3 and 3.2.2 in Durrett [19]: for ϑ > 1
the largest connected component has size of order χ(ϑ)n, as n → ∞. The fraction
χ(ϑ) = 1 − G0(z0) is found by choosing z0 to be the smallest fixed point of G1

in [0, 1]. Moreover, no other connected component has size of order larger than
O(log n). Note that we require finite variance τ > 2 for ϑ to exist.

If ϑ < 1 the distribution of the size of the connected component of a fixed par-
ticle converges in distribution to a limit with mean 1 + μ/(1 − ϑ), as n → ∞, see
Theorem3.2.1 in Durrett [19]. The size of the largest connected component in this
case (τ > 2 and ϑ < 1) is conjectured to be of order n1/τ : the survival probability
of the degree distribution has asymptotic behaviour of order k−τ , and therefore, the
largest degree of n independent degrees has size of order n1/τ , which leads to the
same conjecture for the largest connected component, see also Conjecture3.3.1 in
Durrett [19].

From a practical point of view the interesting regime is 1 < τ < 2 because many
real-life networks have such a tail behaviour, see Sect. 1.4 in Durrett [19]. In this case,
we have ϑ = ∞ and an easy consequence is that the largest connected component
grows proportionally to n (because this model dominates a model with finite second
moment and mean of the second generation being bigger than 1). In this regime 1 <

τ < 2we can study the graph distance of two randomly chosen particles (counting the
number of edges connecting them) in the largest connected component, see Sect. 4.5
in Durrett [19]. In the Chung-Lu model [13, 14], which uses a variant to the Molley-
Reed [32] algorithm, it is proved that this graph distance behaves asO(log log n), see
Theorem4.5.2 inDurrett [19]. Van derHofstadt et al. [27] obtain the same asymptotic
behaviourO(log log n) for the NSW random graph in the case 1 < τ < 2.Moreover,
in their Theorem1.2 [27] they also state that this graph distance behaves asO(log n)

for τ > 2. These results on the graph distances can be interpreted as the small-world
effect because two randomly chosen particles in Vn are connected by very few edges.
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We conclude that NSW random graphs have heavy tails for the degree distribution
choices according to (4.3). Moreover, the graph distances have a behaviour that can
be interpreted as small-world effect.

Less desirable features of NSW random graphs are that they may have self-loops
andmultiple edges.Moreover, theNSWrandomgraph is expected to be locally rather
sparse leading to locally tree-like structures, see also Hurd-Gleeson [28]. That is, we
do not expect to get reasonable local graph geometry and the required clustering
property. Variations considered allowing for statistical interpretations in terms of
likelihoods include the works of Chung-Lu [13, 14] and Olhede-Wolfe [36].

4.4 Nearest-Neighbour Bond Percolation

In a next step, we would like to embed the previously introduced random graphs and
the corresponding particles into Euclidean space. This will have the advantage of
obtaining a natural distance function between particles, and it will allow to compare
Euclidean distance to graph distance between particles (counting the number of edges
connecting two distinct particles). Before giving the general random graph model
we restrict ourselves to the nearest-neighbour bond percolation model on the lattice
Z

d because this model is the basis for many derivations. More general and flexible
random graph models are provided in the subsequent sections.

Percolation theory was first presented by Broadbent-Hammersley [11]. It was
mainly motivated by questions from physics, but these days percolation models are
recognised to be very useful in several fields. Key monographs on nearest-neighbour
bond percolation theory are Kesten [30] and Grimmett [24, 25].

Choose a fixed dimension d ∈ N and consider the square latticeZd . The vertices of
this square lattice are the particles andwe say that two particles x, y ∈ Z

d are nearest-
neighbour particles if ‖x − y‖ = 1 (where ‖ · ‖ denotes the Euclidean norm). We
attach at random edges to nearest-neighbour particles x, y ∈ Z

d , independently of
all other edges, with a fixed edge probability p ∈ [0, 1], that is,

ηx,y = ηy,x =
{
1{‖x−y‖=1} with probability p,

0 with probability 1 − p,
(4.4)

where ηx,y = 1means that there is an edge between x and y, and ηx,y = 0 means that
there is no edge between x and y. The resulting graph is called nearest-neighbour
(bond) random graph in Zd , see Fig. 4.2 (lhs) for an illustration. Two particles x, y ∈
Z

d are connected if there exists a path of nearest-neighbour edges connecting x and
y. It is immediately clear that this random graph does not fulfil the small-world effect
because one needs at least ‖x − y‖ edges to connect x and y, i.e. the number of edges
grows at least linearly in the Euclidean distance between particles x, y ∈ Z

d . The
degree distribution is finite because there are at most 2d nearest-neighbour edges,
more precisely, the degree has a binomial distribution with parameters 2d and p. We
present this square lattice model because it is an interesting basis for the development
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Fig. 4.2 lhs nearest-neighbour percolation; rhs homogeneous long-range percolation

of more complex models. Moreover, this model is at the heart of many proofs in
percolation problems which are based on so-called renormalisation techniques, see
Sect. 4.8 below for a concrete example.

In percolation theory, the object of main interest is the connected component of a
given particle x ∈ Z

d which we denote by

C (x) = {
y ∈ Z

d : x and y are connected by a path of nearest-neighbour edges
}
.

By translation invariance it suffices to define the percolation probability at the origin

θ(p) = Pp [|C (0)| = ∞] ,

where |C (0)| denotes the size of the connected component of the origin and Pp is
the product measure on the possible nearest-neighbour edges with edge probability
p ∈ [0, 1], see Grimmett [24], Sect. 2.2. The critical probability pc = pc(Z

d) is then
defined by

pc = inf {p ∈ (0, 1] : θ(p) > 0} .

Since the percolation probability θ(p) is non-decreasing, the critical probability is
well defined. We have the following result, see Theorem3.2 in Grimmett [24].

Theorem 1 For nearest-neighbour bond percolation in Z
d we have

(a) for d = 1: pc(Z) = 1; and
(b) for d ≥ 2: pc(Z

d) ∈ (0, 1).

This theorem says that there is a non-trivial phase transition in Zd , d ≥ 2. This needs
to be considered together with the following result which goes back to Aizenman
et al. [1], Gandolfi et al. [22] andBurton-Keane [12]. Denote byI the number of infi-
nite connected components. Then, we have the following statement, see Theorem7.1
in Grimmett [24].
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Theorem 2 For any p ∈ (0, 1) either Pp[I = 0] = 1 or Pp[I = 1] = 1.

Theorems1 and 2 imply that there is a unique infinite connected component for
p > pc(Z

d), a.s. This motivates the notation C∞ for the unique infinite connected
component for the given edge configuration (ηx,y)x,y in the case p > pc(Z

d). C∞
may be considered as an infinite (nearest-neighbour) network on the particle system
Z

d and we can study its geometrical and topological properties. Using a duality
argument, Kesten [29] proved that pc(Z

2) = 1/2 and monotonicity then provides
pc(Z

d+1) ≤ pc(Z
d) ≤ pc(Z

2) = 1/2 for d ≥ 2.
One object of interest is the so-called graph distance (chemical distance) between

x, y ∈ Z
d , which is for a given edge configuration defined by

d(x, y) = minimal length of path connecting x and y by

nearest-neighbour edges ηz1,z2 = 1,

where this is defined to be infinite if there is no nearest-neighbour path connecting x
and y for the given edge configuration. We have already mentioned that d(x, y) ≥
‖x − y‖ because this is the minimal number of nearest-neighbour edges we need to
cross from x to y. Antal-Pisztora [4] have proved the following upper bound.

Theorem 3 Choose p > pc(Z
d). There exists a positive constant c = c(p, d) such

that, a.s.,

lim sup
‖x‖→∞

1

‖x‖d(0, x)1{0 and x are connected} ≤ c.

4.5 Homogeneous Long-Range Percolation

Long-range percolation is the first extension of nearest-neighbour bond percolation.
It allows for edges between any pair of particles x, y ∈ Z

d . Long-range percolation
was originally introduced by Schulman [37] in one dimension. Existence and unique-
ness of the infinite connected component in long-range percolation was proved by
Schulman [37] and Newman-Schulman [33] for d = 1 and by Gandolfi et al. [23]
for d ≥ 2.

Consider again the percolation model on the lattice Zd , but we now choose the
edges differently. Choose p ∈ [0, 1], λ > 0 and α > 0 fixed and define the edge
probabilities for x, y ∈ Z

d by

px,y =
{

p if ‖x − y‖ = 1,
1 − exp(−λ‖x − y‖−α) if ‖x − y‖ > 1.

(4.5)

Between any pair x, y ∈ Z
d we attach an edge, independently of all other edges, as

follows

ηx,y = ηy,x =
{
1 with probability px,y,

0 with probability 1 − px,y .
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We denote the resulting product measure on the edge configurations by Pp,λ,α .
Figure4.2 (rhs) shows part of a realised configuration. We say that the particles
x and y are adjacent if there is an edge ηx,y = 1 between x and y. We say that x and
y are connected if there exists a path of adjacent particles in Zd that connects x and
y. The connected component of x is given by

C (x) = {
y ∈ Z

d : x and y are connected
}
.

We remark that the edge probabilities px,y used in the literature have a more general
form. Since for many results only the asymptotic behaviour of px,y as ‖x − y‖ → ∞
is relevant, we have decided to choose the explicit (simpler) form (4.5) because this
also fits to our next models. Asymptotically, we have the following power law

px,y ∼ λ‖x − y‖−α, as ‖x − y‖ → ∞.

Theorem1 (b) immediately implies that we have percolation in Z
d , d ≥ 2, for p

sufficiently close to 1.We have the following theorem, see Theorem1.2 in Berger [6].

Theorem 4 For long-range percolation in Z
d we have, in an a.s. sense,

(a) for α ≤ d: there is an infinite connected component;
(b) for d ≥ 2 and α > d: for p sufficiently close to 1 there is an infinite connected

component;
(c) for d = 1:

(1) α > 2: there is no infinite connected component;
(2) 1 < α < 2: for p sufficiently close to 1 there is an infinite connected com-

ponent;
(3) α = 2 and λ > 1: for p sufficiently close to 1 there is an infinite connected

component;
(4) α = 2 and λ ≤ 1: there is no infinite connected component.

The case α ≤ d follows from an infinite degree distribution for a given particle,
i.e. for α ≤ d we have, a.s.,

D(0) = ∣
∣{x ∈ Z

d : 0 and x are adjacent
}∣∣ = ∞, (4.6)

and for α > d the degree distribution is light-tailed (we give a proof in the contin-
uum space model in Sect. 4.7, because the proof turns out to be straightforward in
continuum space). Interestingly, we now also obtain a non-trivial phase transition in
the one dimensional case d = 1 once long-range edges are sufficiently likely, i.e. α is
sufficiently small. At criticality α = 2 also the decay scaling constant λ > 0 matters.
The case d ≥ 2 is less interesting because it is in line with nearest-neighbour bond
percolation. Themain interest of adding long-range edges is the study of the resulting
geometric properties of connected components C (x). We will state below that there
are three different regimes:
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• α ≤ d results in an infinite degree distribution, a.s., see (4.6);
• d < α < 2d has finite degrees but is still in the regime of small-world behaviour;
• α > 2d behaves as nearest-neighbour bond percolation.

The critical case α = 2d is not well understood at present. We again focus on the
graph distance

d(x, y) = minimal number of edges that connect x and y, (4.7)

where this is defined to be infinite if x and y do not belong to the same connected
component, i.e. y /∈ C (x). For α < d we have infinite degrees and the infinite con-
nected componentC∞ contains all particles ofZd , a.s. Moreover, Benjamini et al. [5]
prove in Example6.1 that the graph distance is bounded, a.s., by

⌈
d

d − α

⌉

.

The case α ∈ (d, 2d) is considered in Biskup [9], Theorem1.1, and in Trapman [39].
They have proved the following result:

Theorem 5 Choose α ∈ (d, 2d) and assume, a.s., that there exists a unique infinite
connected component C∞. Then for all ε > 0 we have

lim‖x‖→∞Pp,λ,α

[

Δ − ε ≤ log d(0, x)

log log ‖x‖ ≤ Δ + ε

∣
∣
∣
∣ 0, x ∈ C∞

]

= 1,

where Δ−1 = log2(2d/α).

This result says that the graph distance d(0, x) is roughly of order (log ‖x‖)Δ with
Δ = Δ(α, d) > 1. Unfortunately, the known bounds are not sufficiently sharp to give
more precise asymptotic statements. Theorem5 can be interpreted as small-world
effect since it tells us that long Euclidean distances can be crossed by a few edges.
For instance, d = 2 and α = 2.5 provide Δ = 1.47 and we get (log ‖x‖)Δ = 26.43
for ‖x‖ = 10,000, i.e. a Euclidean distance of 10,000 is crossed in roughly 26 edges.

The case α > 2d is considered in Berger [7].

Theorem 6 If α > 2d we have, a.s.,

lim inf‖x‖→∞
d(0, x)

‖x‖ > 0.

This result proves that for α > 2d the graph distance behaves as in nearest-neighbour
bond percolation, because it grows linearly in ‖x‖. The proof of an upper bound is
still open, but we expect a result similar to Theorem3 in nearest-neighbour bond
percolation, see Conjecture 1 of Berger [7].

We conclude that this model has a small-world effect for α < 2d. It also has
some kind of clustering property because particles that are close share an edge more
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commonly, which gives a structure that is locally more dense, see Corollary 3.4 in
Biskup [9]. But the degree distribution is light-tailed which motivates to extend the
model by an additional ingredient. This is done in the next section.

4.6 Heterogeneous Long-Range Percolation

Heterogeneous long-range percolation extends the previously introduced long-range
percolation models on the lattice Zd . Deijfen et al. [16] have introduced this model
under the name of scale-free percolation. The idea is to place additional weights Wx

to the particles x ∈ Z
d which determine how likely a particle may play the role of a

hub in the resulting network.
Consider again the percolation model on the latticeZd . Assume that (Wx )x∈Zd are

i.i.d. Pareto distributed with threshold parameter 1 and tail parameter β > 0, i.e. for
w ≥ 1

P [Wx ≤ w] = 1 − w−β. (4.8)

Choose α > 0 and λ > 0 fixed. Conditionally given (Wx )x∈Zd , we consider the edge
probabilities for x, y ∈ Z

d given by

px,y = 1 − exp(−λWx Wy‖x − y‖−α). (4.9)

Between any pair x, y ∈ Z
d we attach an edge, independently of all other edges, as

follows

ηx,y = ηy,x =
{
1 with probability px,y,

0 with probability 1 − px,y .

We denote the resulting probability measure on the edge configurations by Pλ,α,β . In
contrast to (4.5) we have additional weights Wx and Wy in (4.9). The bigger these
weights the more likely is an edge between x and y. Thus, particles x ∈ Z

d with a big
weight Wx will have many adjacent particles y (i.e. particles y ∈ Z

d with ηx,y = 1).
Such particles x will play the role of hubs in the network system. Figure4.3 (lhs)
shows part of a realised edge configuration.

The first interesting result is that this model provides a heavy-tailed degree dis-
tribution, see Theorems2.1 and 2.2 in Deijfen et al. [16]. Denote again by D(0) the
number of particles of Zd that are adjacent to 0, then we have the following result.

Theorem 7 Fix d ≥ 1. We have the following two cases for the degree distribution:

• for min{α, βα} ≤ d, a.s., D(0) = ∞;
• for min{α, βα} > d set τ = βα/d, then

Pλ,α,β [D(0) > k] = k−τ �(k),

for some function �(·) that is slowly varying at infinity.
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Fig. 4.3 lhs heterogeneous long-range percolation; rhs continuum space long-range percolation;
the size of the particles illustrates the different weights Wx ≥ 1

We observe that the heavy-tailedness of the weights Wx induces heavy-tailedness in
the degree distribution which is similar to choice (4.3) in the NSW random graph
model of Sect. 4.3. For α > d there are three different regimes: (i) βα ≤ d implies
infinite degree, a.s.; (ii) for d < βα < 2d the degree distribution has finite mean but
infinite variance because 1 < τ < 2; (iii) for βα > 2d the degree distribution has
finite variance because τ > 2. We will see that the distinction of the latter two cases
has also implications on the behaviour of the percolation properties and the graph
distances similar to the considerations in NSW random graphs. Note that from a
practical point of view the interesting regime is (ii).

We again consider the connected component of a given particle x ∈ Z
d denoted

by C (x) and we define the percolation probability (for given α and β)

θ(λ) = Pλ,α,β [|C (0)| = ∞] .

The critical percolation value λc is then defined by

λc = inf {λ > 0 : θ(λ) > 0} .

We have the following result, see Theorem3.1 in Deijfen et al. [16].

Theorem 8 Fix d ≥ 1. Assume min{α, βα} > d.

(a) If d ≥ 2, then λc < ∞.
(b) If d = 1 and α ∈ (1, 2], then λc < ∞.
(c) If d = 1 and min{α, βα} > 2, then λc = ∞.

This result is in line with Theorem4. Since Wx ≥ 1, a.s., an edge configuration from
edge probabilities px,y defined in (4.9) stochastically dominates an edge configu-
ration with edge probabilities 1 − exp(−λ‖x − y‖−α). The latter is similar to the
homogeneous long-range percolation model on Z

d and the results of the above the-
orem directly follow from Theorem4. For part (c) of the theorem we also refer to
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Theorem3.1 of Deijfen et al. [16]. The next theorem follows from Theorems 4.2 and
4.4 of Deijfen et al. [16].

Theorem 9 Fix d ≥ 1. Assume min{α, βα} > d.

(a) If βα < 2d, then λc = 0.
(b) If βα > 2d, then λc > 0.

Theorems8 and 9 give the phase transition pictures for d ≥ 1, see Fig. 4.4 for an
illustration. They differ for d = 1 and d ≥ 2 in that the former has a region where
λc = ∞ and the latter does not, see also the distinction in Theorem4. The case
βα = 2d is not yet well understood. The most interesting case from a practical point
of view is the infinite variance case, 1 < τ < 2 and d < βα < 2d, respectively,
which provides percolation for any λ > 0. It follows from Gandolfi et al. [23] that
there is only one infinite connected component C∞ whenever λ > λc, a.s. A difficult
question to answer is what happens at criticality for λc > 0. There is the following
partial result, see Theorem3 in Deprez et al. [17]: for α ∈ (d, 2d) and βα > 2d,
there does not exist an infinite connected component at criticality λc > 0. The case
min{α, βα} > 2d is still open.

Next, we consider the graph distance d(x, y), see also (4.7).We have the following
result, see Deijfen et al. [16] and Theorem8 in Deprez et al. [17].

Theorem 10 Assume min{α, βα} > d.

(a) (infinite variance of degree distribution 1 < τ < 2). Assume d < βα < 2d.
For any λ > λc = 0 there exists η1 > 0 such that for all ε > 0

lim‖x‖→∞Pλ,α,β

[

η1 ≤ d(0, x)

log log ‖x‖ ≤ 2

| log(βα/d − 1)| + ε

∣
∣
∣
∣ 0, x ∈ C∞

]

= 1.

Fig. 4.4 Phase transition picture for d ≥ 1
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(b1) (finite variance of degree distribution τ > 2 case 1). Assume that βα > 2d and
α ∈ (d, 2d). For any λ > λc and any ε > 0

lim‖x‖→∞Pλ,α,β

[

1 − ε ≤ log d(0, x)

log log ‖x‖ ≤ Δ + ε

∣
∣
∣
∣ 0, x ∈ C∞

]

= 1,

where Δ was defined in Theorem5.
(b2) (finite variance of degree distribution τ > 2 case 2). Assumemin{α, βα} > 2d.

There exists η2 > 0 such that

lim‖x‖→∞Pλ,α,β

[

η2 <
d(0, x)

‖x‖
]

= 1.

Compare Theorem10 (heterogeneous case) to Theorems5 and 6 (homogeneous
case). We observe that in the finite variance cases (b1)–(b2), i.e. for τ = βα/d > 2,
we obtain the same behaviour for heterogeneous and homogeneous long-range perco-
lation models. The infinite variance case (a) of the degree distribution, i.e. 1 < τ < 2
and d < βα < 2d, respectively, is new. This infinite variance case provides a much
slower decayof the graphdistance, that isd(0, x) is of order log log ‖x‖ as‖x‖ → ∞.
This is a pronounced version of the small-world effect, and this behaviour is similar
to the NSW random graph model. Recall that empirical studies often suggest a tail
parameter τ between 1 and 2 which corresponds to the infinite variance regime of the
degree distribution. In Fig. 4.5 we illustrate Theorem10 and we complete the picture
about the chemical distances with the corresponding conjectures.

We conclude that this model fulfils all three stylised facts of small-world effect,
the clustering property (which is induced by the Euclidean distance in the probability
weights (4.9)) and the heavy-tailedness of the degree distribution.

Fig. 4.5 Chemical distances according to Theorem10 and corresponding conjectures
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We end this section by giving an application of the heterogeneous long-range
percolation model on Z

2. Namely, we consider the network studied in Soramaki
et al. [38] which analyzes the interbank payments transferred between 7,584 banks
over the Fedwire Funds Service in the United States. We consider the graph whose
particles represent these banks and there is a link between two banks if there is
a transaction between them within a given day. We use heterogeneous long-range
percolation tomodel such a daily graphwhere the observations of Soramaki et al. [38]
allow to calibrate model parameters and to verify the stylised facts. The observations
of Soramaki et al. [38] show that the stylised fact of having heavy-tailed degree
distributions with tail parameter τ between 1 and 2 is fulfiled, note that τ can be
directly estimated from the data. Moreover, Soramaki et al. [38] observe that the total
number of payments sent from a given bank to its trading partners is heavy-tailedwith
estimated tail parameter β̂ = 0.8.We interpret this quantity as the size (orweight) of a
bank and use β̂ = 0.8 as a calibration ofβ. To calibrateα we assume that all banks are
located within a box of side-length 88 ≈ √

7, 584. Then, for α = 3.25 and β = 0.8,
Theorem10 (a) states that graph distances are bounded by roughly 2.6which is in line
with the observations of Soramaki et al. [38]. In particular, we have a small-world
effect. We conclude that the heterogeneous long-range percolation model onZ2 with
parameters α = 3.25 and β = 0.8 fit to the observations in Soramaki et al. [38]. Note
that these parameters provide tail parameter τ = βα/2 = 1.3 and we get percolation
for any choice of λ > 0.

4.7 Continuum Space Long-Range Percolation Model

Themodel of last section is restricted to the latticeZd . A straightforwardmodification
is to replace the lattice Z

d by a homogeneous Poisson point process X in R
d . In

comparison to the lattice model, some of the proofs simplify because we can apply
classical integration inRd , other proofs becomemore complicated because one needs
to make sure that the realisation of the Poisson point process is sufficiently regular
in space. As in Deprez-Wüthrich [18] we consider a homogeneous marked Poisson
point process in Rd , where

• X denotes the spatially homogeneous Poisson point process in R
d with constant

intensity ν > 0. The individual particles of X are denoted by x ∈ X ⊂ R
d ;

• Wx , x ∈ X , are i.i.d. marks having a Pareto distribution with threshold parameter
1 and tail parameter β > 0, see (4.8).

Choose α > 0 and λ > 0 fixed. Conditionally given X and (Wx )x∈X , we consider
the edge probabilities for x, y ∈ X given by

px,y = 1 − exp(−λWx Wy‖x − y‖−α). (4.10)
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Between any pair x, y ∈ X we attach an edge, independently of all other edges, as
follows

ηx,y = ηy,x =
{
1 with probability px,y,

0 with probability 1 − px,y .

We denote the resulting probability measure on the edge configuration by Pν,λ,α,β .
Figure4.3 (rhs) shows part of a realised configuration. We have the following result
for the degree distribution, see Proposition3.2 and Theorem3.3 in Deprez-Wüthrich
[18].

Theorem 11 Fix d ≥ 1. We have the following two cases for the degree distribution:

• for min{α, βα} ≤ d, a.s., P0[D(0) = ∞|W0] = 1;
• for min{α, βα} > d set τ = βα/d, then

P0 [D(0) > k] = k−τ �(k),

for some function �(·) that is slowly varying at infinity.

Remarks.

• Note that the previous statement needs some care because we need to make sure
that there is a particle at the origin. This is not straightforward in the Poisson case
and P0 can be understood as the conditional distribution, conditioned on having
a particle at the origin. The formally precise construction is known as the Palm
distribution, which considers distributions shifted by the particles in the Poisson
cloud X .

• In analogy to the homogeneous long-range percolation model in Z
d we could

also consider continuum space homogeneous long-range percolation in R
d . This

is achieved by setting Wx = Wy = 1, a.s., in (4.10). In this case, the proof of the
statement equivalent to (4.6) becomes rather easy. We briefly give the details in
the next lemma, see also proof of Lemma3.1 in Deprez-Wüthrich [18].

Lemma 1 Choose Wx = Wy = 1, a.s., in (4.10). For α ≤ d we have, a.s., D(0) =
∞; for α > d the degree D(0) has a Poisson distribution.

Proof of Lemma 1 and (4.6) in continuum spaceLet X be a Poisson cloudwith 0 ∈ X
and denote by X (A) the number of particles in X ∩ A for A ⊂ R

d . Every particle
x ∈ X \ {0} is now independently from the others removed from the Poisson cloud
with probability 1 − p0,x . The resulting process X̃ is a thinned Poisson cloud having
intensity function x �→ νp0,x = ν(1 − exp(−λ‖x‖−α)) ∼ νλ‖x‖−α as ‖x‖ → ∞.
Since D(0) = X̃(Rd \ {0}) it follows that D(0) is infinite, a.s., if α ≤ d and that
D(0) has a Poisson distribution otherwise. To see this let μ denote the Lebesgue
measure in R

d and choose a finite Borel set A ⊂ R
d containing the origin. Since A

contains the origin, we have X (A) ≥ X̃(A) ≥ 1. This motivates for k ∈ N0 to study

P0
[
X̃(A) = k + 1

] =
∑

i≥k

P0
[

X̃(A) = k + 1
∣
∣ X (A) = i + 1

]
P0 [X (A) = i + 1] .



4 Networks, Random Graphs and Percolation 111

Since A contains the origin, the case i = 0 is trivial, i.e. P0[X̃(A) = 1|X (A) =
1] = 1. There remains i ≥ 1. Conditionally on {X (A) = i + 1}, the i particles
(excluding the origin) are independent and uniformly distributed in A. The con-
ditional moment generating function for r ∈ R is then given by

E0
[
exp

{
r
(
X̃(A) − 1

)}∣∣ X (A) = i + 1
]

= 1

μ(A)i

∫

A×···×A
E0

[

exp

{

r
i∑

l=1

η0,xl

}]

dx1 . . . dxi

= 1

μ(A)i

∫

A×···×A

i∏

l=1

E0
[
exp

{
rη0,xl

}]
dx1 . . . dxi

=
(

1

μ(A)

∫

A
E0
[
exp

{
rη0,x

}]
dx

)i

.

We calculate the integral for W0 = Wx = 1, a.s., in (4.10)

1

μ(A)

∫

A
E0
[
exp

{
rη0,x

}]
dx = 1

μ(A)

∫

A
er p0,x + (1 − p0,x ) dx

= er p(A) + (1 − p(A)) ,

with p(A) = μ(A)−1
∫

A p0,x dx ∈ (0, 1). Thus, conditionally on {X (A) = i + 1},
X̃(A) − 1 has a binomial distribution with parameters i and p(A). This implies that

P0
[
X̃(A) = k + 1

] =
∑

i≥k

(
i

k

)

p(A)k (1 − p(A))i−k
P0 [X (A) = i + 1]

=
∑

i≥k

p(A)k

k!
(1 − p(A))i−k

(i − k)! exp{−νμ(A)}(νμ(A))i

= (νμ(A)p(A))k

k!
∑

i≥k

(νμ(A)(1 − p(A)))i−k

(i − k)! exp{−νμ(A)}

= exp {−νμ(A)p(A)} (νμ(A)p(A))k

k!
= exp

{

−ν

∫

A
p0,x dx

} (
ν
∫

A p0,x dx
)k

k! .

This implies that X̃ is a non-homogeneous Poisson point process with intensity
function

x �→ νp0,x = ν
(
1 − exp(−λ‖x‖−α)

) ∼ νλ‖x‖−α, as‖x‖ → ∞.
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But this immediately implies that the degree distribution D(0) = X̃(Rd \ {0}) is
infinite, a.s., if α ≤ d, and that it has a Poisson distribution otherwise. This finishes
the proof. �

We now switch back to the heterogeneous long-range percolation model (4.10). We
consider the connected component C (0) of a particle in the origin under the Palm
distribution P0. We define the percolation probability

θ(λ) = P0 [|C (0)| = ∞] .

The critical percolation value λc is then defined by

λc = inf {λ > 0 : θ(λ) > 0} .

We have the following results, see Theorem3.4 in Deprez-Wüthrich [18].

Theorem 12 Fix d ≥ 1. Assume min{α, βα} > d.

(a) If d ≥ 2, then λc < ∞.
(b) If d = 1 and α ∈ (1, 2], then λc < ∞.
(c) If d = 1 and min{α, βα} > 2, then λc = ∞.

Theorem 13 Fix d ≥ 1. Assume min{α, βα} > d.

(a) If βα < 2d, then λc = 0.
(b) If βα > 2d, then λc > 0.

These are the continuum space analogues to Theorems8 and 9, for an illustration see
also Fig. 4.4. The work on the graph distances in the continuum space long-range
percolation model is still work in progress, but we expect similar results to the ones
in Theorem10, see also Fig. 4.5. However, proofs in the continuum space model are
more sophisticated due to the randomness of the positions of the particles.

The advantage of the latter continuum space model (with homogeneous marked
Poisson point process) is that it can be extended to non-homogeneous Poisson point
processes. For instance, if certain areas aremore densely populated than otherswe can
achieve such a non-homogeneous space model by modifying the constant intensity
ν to a space-dependent density function ν(·) : Rd → R+.

4.8 Renormalisation Techniques

In this section, we present a crucial technique that is used in many of the proofs
of the previous statements about existences of infinite connected components and
about graph distances. These proofs are often based on renormalisation techniques.
That is, one collects particles in boxes. These boxes are defined to be either good



4 Networks, Random Graphs and Percolation 113

Fig. 4.6 Example of the renormalisation technique. Define inductively the box lengths mn =
2mn−1, n ∈ N, for some initial m0 ∈ N. Call translates of [0, m0 − 1]d to be 0-stage boxes and
assume that goodness of such boxes is defined. For n ∈ N we call the translates of [0, mn − 1]d

n-stage boxes and we inductively say that an n-stage box is good if it contains at least two good
(n − 1)-stage boxes. Assume that in the illustration good (n − 2)-stage boxes, n ≥ 2, are coloured
in grey. The good (n − 1)-stage boxes are then the Penrose-patterned boxes of side-lengthmn−1 and
the good n-stage boxes are striped. The illustrated (n + 1)-stage box is good, because it contains
two good n-stage boxes

(having a certain property) or bad (not possessing this property). These boxes are
then again merged to bigger good or bad boxes. These scalings and renormalisations
are done over several generations of box sizes, see Fig. 4.6 for an illustration. The
purpose of these rescalings is that one arrives at a certain generation of box sizes
that possesses certain characteristics to which classical site-bond percolation results
apply. We exemplify this with a particular example.

4.8.1 Site-Bond Percolation

Though we will not directly use site-bond percolation, we start with the description
of this model because it is often useful. Site-bond percolation in Z

d is a modifica-
tion of homogeneous long-range percolation introduced in Sect. 4.5. Choose a fixed
dimension d ≥ 1 and consider the square latticeZd . Assume that every site x ∈ Z

d is
occupied independently with probability r∗ ∈ [0, 1] and every bond between x and
y in Zd is occupied independently with probability

p∗
x,y = 1 − exp(−λ∗‖x − y‖−α), (4.11)
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for given parameters λ∗ > 0 and α > 0. The connected component C ∗(x) of a given
site x ∈ Z

d is then defined to be the set of all occupied sites y ∈ Z
d such that x

and y are connected by a path only running through occupied sites and occupied
bonds (if x is not occupied then C ∗(x) is the empty set). We can interpret this as
follows: we place particles at sites x ∈ Z

d at randomwith probability r∗. This defines
a (random) subset ofZd , and then, we consider long-range percolation on this random
subset, i.e. this corresponds to a thinning of homogeneous long-range percolation
in Z

d . We can then study the percolation properties of this site-bond percolation
model, some results are presented in Lemma3.6 of Biskup [9] and in the proof of
Theorem2.5 of Berger [6]. The aim in many proofs in percolation theory is to define
different generations of box sizes using renormalisations, see Fig. 4.6. We perform
these renormalisations until we arrive at a generation of box sizes for which good
boxes occur sufficiently often. If this is the case and if all the necessary dependence
assumptions are fulfilled we can apply classical site-bond percolation results.

In order to simplify our outline we use a modified version of the homogeneous
long-range percolation model (4.5) of Sect. 4.5. We set p = 1 − exp(−λ) and obtain
the following model.

Model 14 (modified homogeneous long-range percolation) Fix d ≥ 2. Choose
α > 0 and λ > 0 fixed and define the edge probabilities for x, y ∈ Z

d by

px,y = 1 − exp(−λ‖x − y‖−α).

Then edges between all pairs of particles x, y ∈ Z
d are attached independently with

edge probability px,y and the probabilitymeasure of the resulting edge configurations
η = (ηx,y)x,y∈Zd is denoted by Pλ,α .

Note that this model is a special case of site-bond percolation with r∗ = 1 and λ∗ = λ

in (4.11).

4.8.2 Largest Semi-clusters

In order to demonstrate the renormalisation technique we repeat the proof of
Lemma2.3 ofBerger [6] in themodified homogeneous long-range percolationModel
14, see Theorem15 below. This proof is rather sophisticated because it needs a careful
treatment of dependence and we revisit the second version of the proof of Lemma2.3
provided in Berger [8].

Fix α ∈ (d, 2d) and choose λ > 0 so large that there exists a unique infinite
connected component, a.s., having density κ > 0 (which exists due to Theorem4).
Choose M ≥ 1 and K ≥ 0 integer valued. For v ∈ Z

d we define box Bv and its
K -enlargement B(K )

v by

Bv = Mv + [0, M − 1]d and B(K )
v = Mv + [−K , M + K − 1]d .
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For every box Bv we define a �-semi-cluster to be a set of at least � sites in Bv

which are connected within B(K )
v . For any ε > 0 there exists M ′ ≥ 1 such that for

all M ≥ M ′ and some K ≥ 0 we have

Pλ,α[at least Mdκ/2 sites of Bv belong to the infinite connected (4.12)

component and these sites are connected within B(K )
v ] ≥ 1 − ε/2.

Existence of M ′ ≥ 1 follows from the ergodic theorem and existence of K from the
fact that the infinite connected component is unique, a.s., and therefore, all sites in Bv

belonging to the infinite connected component need to be connected within a certain
K -enlargement of Bv. Formula (4.12) says that we have a (Mdκ/2)-semi-cluster in
Bv with at least probability 1 − ε/2.We first show uniqueness of large semi-clusters.

Lemma 2 Choose ξ ∈ (α/d, 2) and γ ∈ (0, 1) with 18γ > 16 + ξ . There exist ϕ =
ϕ(ξ, γ ) > 0 and M ′ = M ′(ξ, γ ) ≥ 1 such that for all M ≥ M ′ and all K ≥ 0 we
have

Pλ,α

[
there is at most one Mdγ -semi-cluster in Bv

]
> 1 − M−dϕ,

where by “at most one” we mean that there is no second Mdγ -semi-cluster in Bv

which is not connected to the first one within B(K )
v .

Proof of Lemma 2 The proof uses the notion of inhomogeneous random graphs as
defined in Aldous [2]. An inhomogeneous random graph H(N , ξ) with size N and
parameter ξ is a set of particles {1, . . . , k} and corresponding masses s1, . . . , sk such
that N = ∑k

i=1 si ; and any i �= j are connected independently with probability 1 −
exp

(−si s j N−ξ
)
. FromLemma2.5 of Berger [8] we know that for any 1 < ξ < 2 and

0 < γ < 1 with 18γ > 16 + ξ , there exist ϕ = ϕ(ξ, γ ) > 0 and N ′ = N ′(ξ, γ ) ≥ 1
such that for all N ≥ N ′ and every inhomogeneous random graph with size N and
parameter ξ we have

P

[

H(N , ξ) contains more than one connected component C with
∑

i∈C

si ≥ N γ

]

< N−ϕ. (4.13)

We now show uniqueness of Mdγ -semi-clusters in Bv. Choose ξ ∈ (α/d, 2) and
γ ∈ (0, 1) such that 18γ > 16 + ξ . For any x, y ∈ Bv we have ‖x − y‖ ≤ √

d M .
Choose M so large that λ(

√
d M)−α > M−dξ and choose K ≥ 0 arbitrarily. Particles

x, y ∈ Bv are then attached with probability px,y uniformly bounded by

px,y = 1 − exp(−λ‖x − y‖−α)

≥ 1 − exp

(

−λ
(√

d M
)−α

)

> 1 − exp
(−M−dξ

) = ν > 0,

where the last equality defines ν. This allows to decouple the sampling of edges
η = (ηx,y)x,y∈Zd in Bv. For every x, y ∈ Bv, define p′

x,y ∈ (0, 1) by
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px,y = p′
x,y + ν − νp′

x,y .

We now sample η = (ηx,y)x,y∈Zd in two steps. We first sample η′ according to Model
14 but with edge probabilities p′

x,y if x, y ∈ Bv and with edge probabilities px,y

otherwise. Secondly, we sample η′′ as an independent configuration on Bv where
there is an edge between x and y with edge probability ν for x, y ∈ Bv. By definition

of p′
x,y we get that η′ ∨ η′′ (d)= η. Let S1, S2 ⊂ Bv be two disjoint maximal sets of

sites in Bv that are η′-connected within B(K )
v , i.e. S1 and S2 are two disjoint maximal

semi-clusters in Bv for given edge configuration η′. Note that by maximality

P
[
there is an η-edge between S1 and S2| η′]

= P
[
there is an η′′-edge between S1 and S2

∣
∣ η′]

= 1 − (1 − ν)|S1||S2| = 1 − exp
(−|S1||S2|M−dξ

)
.

If we denote by S1, . . . , Sk all disjoint maximal semi-clusters in Bv for given edge
configuration η′ then we see that these maximal semi-clusters form an inhomoge-
neous random graph of size

∑k
i=1 |Si | = Md and parameter ξ . Therefore, there exist

ϕ > 0 and M ′ ≥ 1 such that for all M ≥ M ′ and all K ≥ 0 we have from (4.13)

P

[

H(Md , ξ) contains more than one connected component C

with
∑

i∈C

|Si | ≥ Mdγ

∣
∣
∣
∣η

′
]

< M−dϕ.

Note that this bound is uniform in η′ and K ≥ 0. Therefore, the probability of having
at least two Mdγ -semi-clusters in Bv which are not connected within B(K )

v is bounded
by M−dϕ . �

We can now combine (4.12) and Lemma2. Choose ε > 0. For all M sufficiently
large and K ≥ 0 such that (4.12) holds we have

Pλ,α

[
there is exactly one (Mdκ/2)-semi-cluster in Bv

] ≥ 1 − ε, (4.14)

where by “exactly one” we mean that there is no other (Mdκ/2)-semi-cluster in
Bv which is not connected to the first one within B(K )

v . This follows because of
γ < 1, which implies that Mdγ ≤ Mdκ/2 for all M sufficiently large, and because
M−dϕ < ε/2 for all M sufficiently large.
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4.8.3 Renormalisation

Choose ε > 0 fixed, and M > 1 and K ≥ 0 such that (4.14) holds. For v ∈ Z
d we

say that box Bv is good if there is exactly one (Mdκ/2)-semi-cluster in Bv (where
exactly one is meant in the sense of above). Therefore, on good boxes there are at
least Mdκ/2 sites in Bv that are connected within B(K )

v and we have

Pλ,α[Bv is good] ≥ 1 − ε. (4.15)

Note that the goodness properties of Bv1 and Bv2 for v1 �= v2 ∈ Z
d are not necessarily

independent because their K -enlargements B(K )
v1 and B(K )

v2 may overlap.
Now, we define renormalisation over different generations n ∈ N0; terminology

n-stage is referred to the nth generation. Choose an integer valued sequence an > 1,
n ∈ N0, with a0 = M and define the box lengths (Mn)n∈N0 as follows: set M0 = a0 =
M and for n ∈ N

Mn = an Mn−1 = M0

n∏

i=1

ai =
n∏

i=0

ai .

Define the n-stage boxes, n ∈ N0, by

Bn,v = Mnv + [0, Mn − 1]d with v ∈ Z
d .

Note that n-stage boxes Bn,v have volume Md
n = ad

n Md
n−1 = ∏n

i=0 ad
i and every n-

stage box Bn,v contains ad
n of (n − 1)-stage boxes Bn−1,x ⊂ Bn,v, and (Mn/a0)

d =∏n
i=1 ad

i of 0-stage boxes Bx = B0,x ⊂ Bn,v, see also Fig. 4.6.

Renormalisation. We define goodness of n-stage boxes Bn,v recursively for a given
sequence κn ∈ (0, 1), n ∈ N0, of densities where we initialise κ0 = κ/2.
(i) Initialisation n = 0. We say that 0-stage box B0,v, v ∈ Z

d , is good if it contains
exactly one (κ0ad

0 )-semi-cluster. Due to our choices of M > 1 and K ≥ 0 we see that
the goodness of 0-stage box B0,v occurs with at least probability 1 − ε, see (4.15).
(ii) Iteration n − 1 → n. Choose n ∈ N and assume that goodness of (n − 1)-stage
boxes Bn−1,v, v ∈ Z

d , has been defined. For v ∈ Z
d we say that n-stage box Bn,v is

good if the event An,v = A(a)
n,v ∩ A(b)

n,v occurs, where

(a) A(a)
n,v = {at least κnad

n of the (n − 1)-stage boxes Bn−1,x ⊂ Bn,v are good; and

(b) A(b)
n,v = {all(∏n−1

i=0 κi ad
i )-semi-clusters of all good (n − 1)-stage boxes

in Bn,v are connected within B(K )
n,v }. �

Observe that on event An,v the n-stage box Bn,v contains at least
∏n

i=0 κi ad
i sites that

are connected within the K -enlargement B(K )
n,v of Bn,v. We set density un = ∏n

i=0 κi

which gives
n∏

i=0

κi a
d
i = Md

n

n∏

i=0

κi = Md
n un.
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Therefore, good n-stage boxes contain (Md
n un)-semi-clusters. Our next aim is to

calculate the probability pn of having a good n-stage box. The case n = 0 follows
from (4.15), i.e. for any ε > 0 and any M sufficiently large there exists K ≥ 0 such
that

p0 = Pλ,α[B0,v is good] = Pλ,α[Bv is good] ≥ 1 − ε.

Theorem 15 Assume α ∈ (d, 2d). Choose λ > 0 so large that we have a unique
infinite connected component, a.s., having density κ > 0. For every ε′ ∈ (0, 1) there
exists N0 ≥ 1 such that for all N ≥ N0

Pλ,α

[|CN | ≥ Nα/2
] ≥ 1 − ε′,

where CN is the largest connected component in [0, N − 1]d .

Note that for density κ > 0 of the infinite connected component we expect roughly
κ N d sites in box [0, N − 1]d belonging to the infinite connected component. The
above lemma however says that at least Nα/2 sites in [0, N − 1]d are connected
within that box. That is, here we do not need any K -enlargements as in (4.12) and,
therefore, this event is independent for different disjoint boxes vN + [0, N − 1]d

and we may apply classical site-bond percolation results.

Proof of Theorem 15 Choose α ∈ (d, 2d) and ε′ ∈ (0, 1) fixed. As in Lemma2.3 of
Berger [8] we now make a choice of parameters and sequences which will provide
the statement of Theorem15. Choose ξ ∈ (α/d, 2) and γ ∈ (0, 1) such that 18γ >

16 + ξ . Choose δ > ϑ > 1 with 2ϑ < δ(2d − α) and dδ − ϑ > dγ δ. Note that this
is possible because it requires that δmin{1, (2d − α)/2, d(1 − γ )} > ϑ > 1. Define
for n ∈ N

κn = (n + 1)−ϑ and an = (n + 1)δ. (4.16)

For simplicity, we assume that δ is an integer which implies that also an > 1 is integer
valued, and κn ∈ (0, 1) will play the role of densities introduced above. Observe that
for ϑ > 1 we have for all n ≥ 1

n∏

l=1

(1 + 3κl) ≤ lim
n→∞

n∏

l=1

(1 + 3κl) = c1 ∈ (1,∞). (4.17)

Choose ε ∈ (0, ε′/c1) ⊂ (0, 1) fixed.
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There still remains the choice of a0 = M ≥ 1 and κ0 ∈ (0, 1). We set κ0 = κ/2.
Note that choices (4.16) imply

(2Md
n−1)

γ = 2γ Mdγ (n!)dγ δ and Md
n−1un−1 = κ

2
Md(n!)dδ−ϑ .

Therefore,
Md

n−1un−1

(2Md
n−1)

γ
= κ

21+γ
Md(1−γ )(n!)dδ−ϑ−dγ δ. (4.18)

Because of dδ − ϑ > dγ δ the right-hand side of (4.18) is uniformly bounded from
below in n ≥ 1 and for M sufficiently large the right-hand side of (4.18) is strictly
bigger than 1 for all n ≥ 1. Therefore, there exists m1 ≥ 1 such that for all M ≥ m1

and all n ≥ 1 we have
(2Md

n−1)
γ < Md

n−1un−1. (4.19)

Next we are going to bound for n ∈ N0 the probabilities

pn = Pλ,α[Bn,v is good] = Pλ,α[An,v].

We have for n ≥ 1

1 − pn = Pλ,α

[
Ac

n,v

]

= Pλ,α

[
(A(a)

n,v ∩ A(b)
n,v)

c
] ≤ Pλ,α

[
(A(a)

n,v)
c
]+ Pλ,α

[
(A(b)

n,v)
c
]
. (4.20)

For the first term in (4.20) we have, usingMarkov’s inequality and translation invari-
ance,

Pλ,α

[
(A(a)

n,v)
c
] = Pλ,α

⎡

⎣
∑

Bn−1,x ⊂Bn,v

1An−1,x < κnad
n

⎤

⎦

= Pλ,α

⎡

⎣
∑

Bn−1,x ⊂Bn,v

1Ac
n−1,x

> (1 − κn)a
d
n

⎤

⎦

≤ 1

(1 − κn)ad
n

∑

Bn−1,x ⊂Bn,v

Pλ,α

[
Ac

n−1,x

]

= 1

1 − κn
Pλ,α

[
Ac

n−1,v

] = 1 − pn−1

1 − κn
.

The second term in (4.20) is more involved due to possible dependence in the K -
enlargements. Choose ϕ = ϕ(ξ, γ ) > 0 and M ′(ξ, γ ) ≥ 1 as in Lemma2. On event
(A(b)

n,v)
c there exist at least two (Md

n−1un−1)-semi-clusters in good (n − 1)-stage boxes
Bn−1,v1 and Bn−1,v2 in Bn,v that are not connected within the K -enlargement B(K )

n,v .
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Define B = Bn−1,v1 ∪ Bn−1,v2 . Note that B has volume 2Md
n−1 and that any x, y ∈

Bn,v have maximal distance
√

d Mn . We analyse the following ratio

λ(
√

d Mn)
−α

(2Md
n−1)

−ξ
= λd−α/22ξ Mdξ−α(n!)(dξ−α)δ (n + 1)−αδ.

Note that dξ > α. This implies that the right-hand side of the previous equality is
uniformly bounded from below in n ≥ 1. Therefore, there exists m2 ≥ m1 such that
for all M ≥ m2 and all n ≥ 1 inequality (4.19) holds and

λ(
√

d Mn)
−α > (2Md

n−1)
−ξ . (4.21)

This choice implies that for any x, y ∈ B we have

px,y = 1 − exp(−λ‖x − y‖−α)

≥ 1 − exp

(

−λ
(√

d Mn

)−α
)

> 1 − exp
(−(2Md

n−1)
−ξ
) = νn > 0,

where the last equality defines νn . We now proceed as in Lemma2. Decouple the
sampling of edges η = (ηx,y)x,y∈Zd in B. For every x, y ∈ B, define p′

x,y ∈ (0, 1) by

px,y = p′
x,y + νn − νn p′

x,y .

We again sample η = (ηx,y)x,y∈Zd in two steps. We first sample η′ according to
Model 14 but with edge probabilities p′

x,y if x, y ∈ B and with edge probabilities
px,y otherwise. Second, we sample η′′ as an independent configuration on B where
there is an edge between x and y with edge probability νn for x, y ∈ B. By definition

of p′
x,y we get that η′ ∨ η′′ (d)= η. Let S1, S2 ⊂ B be two disjoint maximal sets of

sites in B that are η′-connected within B(K )
n,v , i.e. S1 and S2 are two disjoint maximal

semi-clusters in B for given edge configuration η′. Note that by maximality

P
[
there is an η-edge between S1 and S2| η′]

= P
[
there is an η′′-edge between S1 and S2

∣
∣ η′]

= 1 − (1 − νn)
|S1||S2| = 1 − exp

(−|S1||S2|(2Md
n−1)

−ξ
)
.

If we denote by S1, . . . , Sk all disjoint maximal semi-clusters in B for given edge
configuration η′ then we see that these maximal semi-clusters form an inhomo-
geneous random graph of size

∑k
i=1 |Si | = 2Md

n−1 ≥ 2Md and parameter ξ . There-
fore, for choices ϕ = ϕ(ξ, γ ) > 0 andm3 ≥ max{m2, M ′(ξ, γ )} (where ϕ(ξ, γ ) and
M ′(ξ, γ )were given byLemma2)we have that for all M ≥ m3 and all n ≥ 1 inequal-
ity (4.19) holds, and for all K ≥ 0 we have from (4.13)
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P

[

H(2Md
n−1, ξ) contains more than one connected component C

with
∑

i∈C

|Si | ≥ (2Md
n−1)

γ

∣
∣
∣
∣η

′
]

< (2Md
n−1)

−ϕ.

Note that this bound is uniform in η′ and K ≥ 0 and holds for all n ≥ 1. Therefore,
the probability of having at least two (2Md

n−1)
γ -semi-clusters in B which are not

connected within B(K )
n,v is bounded by (2Md

n−1)
−ϕ . Next, we use that for all m ≥ m3

inequality (4.19) holds. Therefore, we get for all M ≥ m3, all n ≥ 1 and all K ≥ 0

Pλ,α

[
there are at least two (Md

n−1un−1)-semi-clusters in B
]

< (2Md
n−1)

−ϕ.

Note that Bn,v contains ad
n disjoint (n − 1)-stage boxes,and therefore, we get for all

M ≥ m3, all n ≥ 1 and all K ≥ 0

Pλ,α

[
(A(b)

n,v)
c
] ≤

(
ad

n

2

)
(
2Md

n−1

)−ϕ ≤ a2d
n M−dϕ

n−1 .

This implies for all M ≥ m3, all n ≥ 1 and all K ≥ 0

1 − pn = Pλ,α[Bn,v is not good]
= Pλ,α[Ac

n,0] ≤ 1 − pn−1

1 − κn
+ a2d

n M−dϕ
n−1 ≤ (1 − pn−1)(1 + 2κn) + a2d

n M−dϕ
n−1 .

Consider

a2d
n M−dϕ

n−1

εκn
= (n + 1)2dδ M−dϕ(n!)−dδϕ

ε(n + 1)−ϑ
= ε−1M−dϕ(n + 1)2dδ+ϑ(n!)−dδϕ.

Note that this is uniformly bounded from above in n. Therefore, there existsm4 ≥ m3

such that for all M ≥ m4, all n ≥ 1 and all K ≥ 0

1 − pn ≤ (1 − pn−1)(1 + 2κn) + εκn ≤ (1 + 3κn)max{1 − pn−1, ε}.

Applying induction we obtain for all M ≥ m4, all n ≥ 1 and all K ≥ 0

1 − pn ≤ max{ε, 1 − p0}
n∏

i=1

(1 + 3κi ).

Choose m5 ≥ m4 such that for all M ≥ m5 there exists K = K (M) ≥ 0 such that
(4.14) and (4.15) hold. These choices imply that p0 ≥ 1 − ε. Therefore, for all M ≥
m5, K (M) such that (4.15) holds, and all n ≥ 1
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1 − pn ≤ ε

n∏

i=1

(1 + 3κi ) ≤ εc1 < ε′,

where c1 ∈ (1,∞) was defined in (4.17). Thus, for all M ≥ m5, K (M) such that
(4.15) holds, and for all n ≥ 0

Pλ,α

[
there are at least Md

n un sites in box Bn,0 connected within B(K )
n,0

]
(4.22)

≥ Pλ,α[An,0] ≥ 1 − ε′,

note that Bn,0 = [0, Mn − 1]d . Note that the explicit choices (4.16) provide

Mn = M((n + 1)!)δ and un = κ0((n + 1)!)−ϑ .

The edge length of B(K )
n,0 is given by Mn + 2K = Mn + 2K (M) = M((n + 1)!)δ +

2K (M). Therefore, for all M ≥ 1 there exists n0 ≥ 1 such that for all n ≥ n0

Mn + 2K ≤ N = N (M, n) = 2M((n + 1)!)δ,

where the last identity is the definition of N = N (M, n). For all n ≥ n0 the number
of connected vertices in B(K )

n,0 under (4.22) is at least

Md
n un = κ0Md((n + 1)!)−ϑ+dδ = 2ϑ/δ−dκ0Mϑ/δ N d−ϑ/δ.

Note that the choices of δ and ϑ are such that d − ϑ/δ > α/2 > 0. Therefore, there
exists n1 ≥ n0 such that for all n ≥ n1 we have

Md
n un ≥ Nα/2.

This implies for all n ≥ n1, see (4.22),

Pλ,α

[|CN | ≥ Nα/2
]

≥ Pλ,α

[
there are at least Nα/2 sites in box Bn,0 connected within B(K )

n,0

]

≥ Pλ,α

[
there are at least Md

n un sites in box Bn,0 connected within B(K )
n,0

]

≥ 1 − ε′,

where N = N (M, n) ≥ N (M, n1) = 2M((n1 + 1)!)δ . This proves the claim on
the grid N (M, n1), N (M, n1 + 1), . . . , with N (M, n + 1) = N (M, n)(n + 2)δ for
n ≥ n1. For n′ ∈ [N (M, n), N (M, n + 1)) we have on the set {|CN (M,n)| ≥ ρ0

N (M, n)d−ϑ/δ} with ρ0 = 2ϑ/δ−dκ0Mϑ/δ
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|Cn′ | ≥ |CN (M,n)| ≥ ρ0N (M, n)d−ϑ/δ

= ρ0N (M, n)d−ϑ/δ−α/2

(
N (M, n)

n′

)α/2

(n′)α/2

≥ ρ0N (M, n)d−ϑ/δ−α/2

(
N (M, n)

N (M, n + 1)

)α/2

(n′)α/2

= ρ0
N (M, n)d−ϑ/δ−α/2

(n + 2)δα/2 (n′)α/2 ≥ (n′)α/2,

for all n sufficiently large. This finishes the proof of Theorem15. �

Conclusion. Theorem15 defines good boxes [0, N − 1]d on a new scale, i.e. these
are boxes that contain sufficiently large connected components CN . The latter occurs
with probability 1 − ε′ ≥ r∗, for small ε′. If we can prove that such large connected
components in disjoint boxes are connected by an occupied edge with probability
bounded below by (4.11), then we are in the set-up of a site-bond percolation model.
This is exactly what is used in Theorem3.2 of Biskup [9] in order to prove that (i)
large connected components are percolating, a.s.; and (ii) |CN | is even of order ρN d

for an appropriate positive constant ρ > 0, which improves Theorem15.
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