

Computational Methods in Chemical Engineering
with Maple

Ralph E. White and Venkat R. Subramanian

Computational Methods in
Chemical Engineering with
Maple

ABC

Prof. Dr. Ralph E. White
University of South Carolina
Dept. Chemical Engineering
Columbia SC 29208
3 C 15 Swearingen Eng. Bldg.
USA
E-mail: white@cec.sc.edu

Dr. Venkat R. Subramanian
Associate Professor
Department of Energy Environmental &
Chemical Engineering
Washington University in Saint Louis
One Brookings Drive, Box 1180
Saint Louis, MO 63130
USA
E-mail: vsubramanian@seas.wustl.edu

ISBN 978-3-642-04310-9 e-ISBN 978-3-642-04311-6

DOI 10.1007/978-3-642-04311-6

Library of Congress Control Number: 2009940124

c© 2010 Springer-Verlag Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the mate-
rial is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Dupli-
cation of this publication or parts thereof is permitted only under the provisions of the German
Copyright Law of September 9, 1965, in its current version, and permission for use must always
be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does
not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Typesetting: Scientific Publishing Services Pvt. Ltd., Chennai, India

Cover Design: WMX Design, Heidelberg, Germany

Printed in acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

 ''Additional material to this book can be downloaded from http://extra.springer.com ''

Preface

This book presents Maple solutions to a wide range of problems relevant to
chemical engineers and others. Many of these solutions use Maple’s symbolic
capability to help bridge the gap between analytical and numerical solutions. The
readers are strongly encouraged to refer to the references included in the book for
a better understanding of the physics involved, and for the mathematical analysis.

This book was written for a senior undergraduate or a first year graduate
student course in chemical engineering. Most of the examples in this book were
done in Maple 10. However, the codes should run in the most recent version of
Maple. We strongly encourage the readers to use the classic worksheet (*.mws)
option in Maple as we believe it is more user-friendly and robust.

In chapter one you will find an introduction to Maple which includes simple
basics as a convenience for the reader such as plotting, solving linear and
nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and
‘while loop.’ Chapter two presents linear ordinary differential equations in section
1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs
using the matrix exponential and Laplace transform method. In section two of
chapter two, nonlinear ordinary differential equations are presented and include
simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’
command, stop conditions, differential algebraic equations, and steady state
solutions. Chapter three addresses boundary value problems. Section one of
chapter three discusses the matrix exponential method in solving linear and
nonlinear boundary value problems, semi-infinite domains, the matrizant method,
and has examples of heat transfer in a fin, cylindrical and spherical catalyst pellet.
Chapter three’s section two discusses nonlinear boundary value problems and
includes series solutions for diffusion of a second order reaction, multiple steady
states, finite difference solutions for nonlinear boundary value problems, shooting
technique for nonlinear boundary problem, and eigenvalue problems, and includes
examples of nonlinear heat transfer, multiple steady states in a catalyst pellet,
Blasius equation in an infinite domain, diffusion with a second order reaction, the
Graetz problem using the finite difference method and the shooting technique. In
chapter four you will find solution techniques for partial differential equations in
semi-infinite domains in semi-infinite domains, Laplace transform, similarity
solution techniques for Parabolic and elliptical PDEs as well as nonlinear partial
differential equations. Some examples found in chapter four are for heat

VI Preface

conduction in a rectangular slab, heat conduction with transient boundary
conditions, heat conduction with radiation at the surface and plane flow past a flat
plate, the Blasius equation. Chapter five presents the method of lines for parabolic
partial differential equations and has two sections. Section one discusses the
semianalytical method for parabolic partial differential equations and section two
discusses the numerical method of lines for parabolic partial differential equations.
Section one has some examples which include a semianalytical method for heat
conduction in a rectangular slab, nonhomogeneous, partial differential equations,
the Graetz problem, composite domains, and the calculation of an exponential
matrix. Section two includes examples for diffusion with second order reaction,
variable diffusivity, nonlinear radiation at the surface, stiff nonlinear partial
differential equations, exothermal reaction in a sphere, etc. Chapter six contains
semianalytical and numerical methods of lines for elliptical partial differential
equations and includes several examples. Some of the examples are heat transfer
in a rectangle, the Graetz problem with a fixed wall temperature, nonlinear
radiation boundary condition, numerical solution for heat transfer for nonlinear
elliptic partial differential equations. In chapter seven, you find a discussion of
partial differential equations in finite domains. Some of the examples include
separation of variables for heat conduction in a rectangle, heat conduction with an
insulator boundary condition, separation of variables for heat conduction in a
rectangle with an initial profile, diffusion with a reaction, and numerical
separation of variable for diffusion in a cylinder. Chapter nine discusses
parameter estimation and includes the least squares method, confidence intervals,
nonlinear least squares, a one parameter model and a two parameter model.
Chapter ten contains miscellaneous topics on numerical methods some of the
examples include a finite difference solution for boundary values problems, and
elliptical partial differential equations, etc.

Acknowledgements

The authors would like to thank Sandra Knotts and Long Cai for their editorial
assistance.

This book is dedicated to my wife, Marjorie, and our four children (Robert,
Priscilla, Lillian, and Samuel). Ralph E. White

This book is dedicated to my wife Gomathi, daughter Anupama and parents
Subramanian and Suriaprabha. Venkat R. Subramanian

Contents

Contents

1 Introduction………………………………………………………………………..1
1.1 Introduction to Maple ...1

 1.1.1 Getting Started with Maple..1
 1.1.2 Plotting with Maple ...3
 1.1.3 Solving Linear and Nonlinear Equations5
 1.1.4 Matrix Operations ..6
 1.1.5 Differential Equations..11
 1.1.6 Laplace Transformations ...16
 1.1.7 Do Loop...18
 1.1.8 While Loop ..19
 1.1.9 Write Data Out Example..19
 1.1.10 Reading in Data from a Text File...23
 1.1.11 Summary..24
 1.1.12 Problems ..24
References ...27

2 Initial Value Problems…………………………………………………………29
2.1 Linear Ordinary Differential Equations ..29

 2.1.1 Introduction..29
 2.1.2 Homogeneous Linear ODEs……………………………………29

 2.1.3 First Order Irreversible Series Reactions……………………....31
 Example 2.1. Irreversible Series Reactions
 (see equations (2.8))...32
 2.1.4 First Order Reversible Series Reactions37
 Example 2.2. Reversible Series Reactions
 (see equations (2.10))...38
 2.1.5 Nonhomogeneous Linear ODEs ..47
 Example 2.3. Heating of Fluid in a Series of Tanks49
 Example 2.4. Time Varying Input to a CSTR with a Series
 Reaction ...56
 2.1.6 Higher Order Linear Ordinary Differential Equations63

VIII Contents

 Example 2.5 A Second Order ODE ...65
 2.1.7 Solving Systems of ODEs Using the Laplace Transform
 Method...72
 Example 2.6. Laplace Solution of Example 2.1 Equations73
 Example 2.7. Laplace Solution for Second Order System with
 Dirac forcing Function...76
 2.1.8 Solving Linear ODEs Using Maple’s ‘dsolve’ Command…….80
 Example 2.8. Solving Linear ODEs Using Maple80
 Example 2.9. Heat Transfer in a Series of Tanks, 'dsolve'81
 2.1.9 Summary..83
 2.1.10 Problems ..84

2.2 Nonlinear Ordinary Differential Equations...87
 2.2.1 Introduction..87
 Example 2.2.1. Simultaneous Series Reactions88
 2.2.2 Solving Nonlinear ODEs Using Maple’s ‘dsolve’
 Command...94
 2.2.3 Series Solutions for Nonlinear ODEs ..98
 Example 2.2.2. Fermentation Kinetics.......................................99
 Example 2.2.3 ..101
 2.2.4 Stop Conditions ...103
 Example 2.2.4. Stop Conditions ..103
 2.2.5 Stiff ODEs ...107
 Example 2.2.5. Stiff Ordinary Differential Equations107
 2.2.6 Differential Algebraic Equations ...112
 Example 2.2.6. Differential Algebraic Equations112
 2.2.7 Multiple Steady States ...116
 Example 2.2.7. Multiple Steady States117
 2.2.8 Steady State Solutions ...124
 Example 2.2.8. Steady State Solutions124
 Example 2.2.9. Phase Plane Analysis139
 2.2.9 Summary..148
 2.2.10 Problems ..149
 Appendix A: Matrix Exponential Method ..155
 Appendix B: Matrix Exponential by the Laplace Transform
 Method…………………………………………………161
References ...167

3 Boundary Value Problems……………………………………………...........169
 3.1 Linear Boundary Value Problems…………………………………...169
 3.1.1 Introduction..169
 3.1.2 Exponential Matrix Method for Linear Boundary Value
 Problems ..169
 Example 3.1 ...171
 Example 3.2 ...175
 3.1.3 Exponential Matrix Method for Linear BVPs with
 Semi-infinite Domains ...180

Contents IX

 Example 3.3 ...181
 3.1.4 Use of Matrizant in Solving Boundary Value Problems..........184
 Example 3.4 ...185
 Example 3.5 ...187
 Example 3.6 ...189
 3.1.5 Symbolic Finite Difference Solutions for Linear Boundary
 Value Problems..195
 Example 3.7 ...196
 Example 3.8. Cylindrical Catalyst Pellet203
 3.1.6 Solving Linear Boundary Value Problems Using Maple’s
 'dsolve' Command..208
 Example 3.9. Heat Transfer in a Fin ..208
 Example 3.10. Cylindrical Catalyst Pellet209
 Example 3.11. Spherical Catalyst Pellet210
 3.1.7 Summary..212
 3.1.8 Exercise Problems..213

3.2 Nonlinear Boundary Value Problems ...217
 3.2.1 Introduction..217
 3.2.2 Series Solutions for Nonlinear Boundary Value Problems218
 Example 3.2.1. Series Solutions for Diffusion with a
 Second Order Reaction218
 Example 3.2.2. Series Solutions for Non-isothermal Catalyst
 Pellet – Multiple Steady States223
 3.2.3 Finite Difference Solutions for Nonlinear Boundary Value
 Problems ..229
 Example 3.2.3. Diffusion with a Second Order Reaction229
 3.2.4 Shooting Technique for Boundary Value Problem..................233
 Example 3.2.4. Nonlinear Heat Transfer233
 Example 3.2.5. Multiple Steady States in a Catalyst Pellet238
 3.2.5 Numerical Solution for Boundary Value Problems Using
 Maple’s 'dsolve' Command..244
 Example 3.2.6. Diffusion with Second Order Reaction...........245
 Example 3.2.7. Heat Transfer with Nonlinear Radiation
 Boundary Conditions247
 Example 3.2.8. Diffusion of a Substrate in an Enzyme
 Catalyzed Reaction – BVPs with Removable
 Singularity...250
 Example 3.2.9. Multiple Steady States in a Catalyst Pellet253
 Example 3.2.10. Blasius Equation – Infinite Domains256
 3.2.6 Numerical Solution for Coupled BVPs Using Maple’s 'dsolve'
 Command...259
 Example 3.2.11. Axial Conduction and Diffusion in a
 Tubular Reactor ..259
 3.2.7 Solving Boundary Value Problems and Initial Value
 Problems ..262
 Example 3.2.12. Diffusion with a Second Order Reaction262

X Contents

 3.2.8 Multiple Steady States ...266
 Example 3.2.13. Multiple Steady States in a Catalyst
 Pellet - η vs. Φ ..266
 3.2.9 Eigenvalue Problems ...272
 Example 3.2.14. Graetz Problem–Finite Difference
 Solution...272
 Example 3.2.15. Graetz Problem–Shooting Technique278
 3.2.10 Summary..286
 3.2.11 Exercise Problems..288
References ...293

4 Partial Differential Equations in Semi-infinite Domains………………...295
4.1 Partial Differential Equations (PDEs) in Semi-infinite Domains295
4.2 Laplace Transform Technique for Parabolic PDEs295

 Example 4.1. Heat Conduction in a Rectangular Slab296
 Example 4.2. Heat Conduction with Transient Boundary
 Conditions...301
 Example 4.3. Heat Conduction with Flux Boundary Conditions........305
 Example 4.4. Heat Conduction with an Initial Profile308
 Example 4.5. Heat Conduction with a Source Term...........................311

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced
 Problems ...314
 Example 4.6. Heat Conduction with Radiation at the Surface............314
 Example 4.7. Unsteady State Diffusion with a First-Order
 Reaction ..318

4.4 Similarity Solution Technique for Parabolic PDEs324
 Example 4.8. Heat Conduction in a Rectangular Slab325
 Example 4.9. Laminar Flow in a CVD Reactor328

4.5 Similarity Solution Technique for Elliptic Partial Differential
 Equations ..333
 Example 4.10. Steady State Heat Conduction in a Plate.....................333
 Example 4.11. Current Distribution in an Electrochemical Cell.........336

4.6 Similarity Solution Technique for Nonlinear Partial Differential
 Equations ..339
 Example 4.12. Variable Diffusivity ..340
 Example 4.13. Plane Flow Past a Flat Plate – Blassius Equation342

4.7 Summary...348
4.8 Exercise Problems ...348
References ...352

5 Method of Lines for Parabolic Partial Differential Equations...………353
5.1 Semianalytical Method for Parabolic Partial Differential Equations

 (PDEs) ..353
 5.1.1 Introduction..353
 5.1.2 Semianalytical Method for Homogeneous PDEs.....................353
 Example 5.1. Heat Conduction in a Rectangular Slab356

Contents XI

 5.1.3 Semianalytical Method for Nonhomogeneous PDEs...............365
 Example 5.2 ...366
 Example 5.3 ...374
 Example 5.4 ...382
 Example 5.5 ...390
 Example 5.6. Semianalytical Method for the Graetz
 Problem………………………...………………401
 Example 5.7. Semianalytical Method for PDEs with Known
 Initial Profiles...414
 5.1.4 Semianalytical Method for PDEs in Composite Domains425
 Example 5.8 ...425
 5.1.5 Expediting the Calculation of Exponential Matrix437
 Example 5.9 ...438
 Example 5.10 ...442
 Example 5.11 ...448
 5.1.6 Summary..451
 5.1.7 Exercise Problems..452

5.2 Numerical Method of Lines for Parabolic Partial Differential
 Equations (PDEs)..456
 5.2.1 Introduction..456
 5.2.2 Numerical Method of Lines for Parabolic PDEs with
 Linear...456
 Example 5.2.1. Diffusion with Second Order Reaction...........458
 Example 5.2.2. Variable Diffusivity ..464
 5.2.3 Numerical Method of Lines for Parabolic PDEs with
 Nonlinear Boundary...469
 Example 5.2.3. Nonlinear Radiation at the Surface470
 5.2.4 Numerical Method of Lines for Stiff Nonlinear PDEs474
 Example 5.2.4. Exothermal Reaction in a Sphere....................474
 5.2.5 Numerical Method of Lines for Nonlinear Coupled PDEs480
 Example 5.2.5. Two Coupled PDEs ..480
 5.2.6 Numerical Method of Lines for Moving Boundary
 Problems ...491
 Example 5.2.6. The Shrinking Core Model for Catalyst
 Regeneration ..491
 5.2.7 Summary..501
 5.2.8 Exercise Problems..502
References ...505

6 Method of Lines for Elliptic Partial Differential Equations………….507
6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs507

 6.1.1 Introduction..507
 6.1.2 Semianalytical Method for Elliptic PDEs in Rectangular
 Coordinates ..507
 Example 6.1. Heat Transfer in a Rectangle508
 Example 6.2 ...520

XII Contents

 6.1.3 Semianalytical Method for Elliptic PDEs in Cylindrical
 Coordinates – Graetz Problem...536
 Example 6.3. Graetz Problem with a Fixed Wall
 Temperature ..536
 6.1.4 Semianalytical Method for Elliptic PDEs with Nonlinear
 Boundary Conditions ...547
 Example 6.4. Nonlinear Radiation Boundary Condition547
 6.1.5 Semianalytical Method for Elliptic PDEs with Irregular
 Shapes ..556
 Example 6.5. Potential Distribution in a Hull Cell556
 6.1.6 Numerical Method of Lines for Elliptic PDEs in
 Rectangular Coordinates..564
 Example 6.6. Numerical Solution for Heat Transfer in a
 Rectangle ...565
 Example 6.7. Numerical Solution for Heat Transfer for
 Nonlinear Elliptic PDEs.....................................573
 6.1.7 Summary..581
References ...585

7 Partial Differential Equations in Finite Domains...……………...…………587
7.1 Separation of Variables Method for Partial Differential Equations

 (PDEs) in Finite Domains...587
 7.1.1 Introduction..587
 7.1.2 Separation of Variables for Parabolic PDEs with
 Homogeneous Boundary Conditions587
 Example 7.1. Heat Conduction in a Rectangle587
 Example 7.2. Heat Conduction with an Insulator Boundary
 Condition ...599
 Example 7.3. Mass Transfer in a Spherical Pellet604
 7.1.3 Separation of Variables for Parabolic PDEs with an Initial
 Profile ..609
 Example 7.4. Heat Conduction in a rectangle with an Initial
 Profile...609
 Example 7.5. Heat Conduction in a Slab with a Linear Initial
 Profile...613
 7.1.4 Separation of Variables for Parabolic PDEs with Eigenvalues
 Governed by Transcendental Equations618
 Example 7.6. Heat Conduction in a Slab with Radiation
 Boundary Conditions ...618
 7.1.5 Separation of Variables for Parabolic PDEs with
 Nonhomogeneous Boundary Conditions623
 Example 7.7. Heat Conduction in a slab with
 Nonhomogeneous Boundary Conditions623
 Example 7.8. Diffusion with Reaction.....................................629
 7.1.6 Separation of Variables for Parabolic PDEs with Two
 Flux Boundary Conditions...635

Contents XIII

 Example 7.9. Diffusion in a Slab with Nonhomogeneous
 Flux Boundary Conditions635
 7.1.7 Numerical Separation of Variables for Parabolic PDEs643
 Example 7.10. Heat Transfer in a Rectangle............................643
 7.1.8 Separation of Variables for Elliptic PDEs649
 Example 7.11. Heat Transfer in a Rectangle............................649
 Example 7.12. Diffusion in a Cylinder655
 Example 7.13. Heat Transfer with Nonhomogeneous
 Boundary Conditions660
 Example 7.14. Heat Transfer with a Nonhomogeneous
 Governing Equation ...667
 7.1.9 Summary..672
 7.1.10 Exercise Problems..672
References..………………..678

8 Laplace Transform Technique for Partial Differential Equations……679
8.1 Laplace Transform Technique for Partial Differential Equations

 (PDEs) in Finite Domains..679
 8.1.1 Introduction..679
 8.1.2 Laplace Transform Technique for Hyperbolic PDEs...............679
 Example 8.1. Wave Propagation in a Rectangle679
 Example 8.2. Wave Propagation in a Rectangle682
 8.1.3 Laplace Transform Technique for Parabolic Partial
 Differential Equations – Simple Solutions...............................685
 Example 8.3. Heat Transfer in a Rectangle685
 Example 8.4. Transient Heat Transfer in a Rectangle..............688
 8.1.4 Laplace Transform Technique for Parabolic Partial
 Differential Equations – Short Time Solution690
 Example 8.5. Heat Transfer in a Rectangle691
 Example 8.6. Mass Transfer in a Spherical Pellet696
 8.1.5 Laplace Transform Technique for Parabolic Partial
 Differential Equations – Long Time Solution..........................701
 Example 8.7. Heat Conduction with an Insulator Boundary
 Condition ...703
 Example 8.8. Diffusion with Reaction.....................................709
 Example 8.9. Heat Conduction with Time Dependent
 Boundary Conditions ...714
 8.1.6 Laplace Transform Technique for Parabolic Partial
 Differential Equations – Heaviside Expansion Theorem for
 Multiple Roots ...719
 Example 8.10. Heat Transfer in a Rectangle............................720
 Example 8.11. Diffusion in a Slab with Nonhomogeneous
 Flux Boundary Conditions during Charging
 of a Battery...725
 Example 8.12. Distribution of Overpotential in a Porous
 Electrode ..729

XIV Contents

 Example 8.13. Heat Conduction in a Slab with Radiation
 Boundary Conditions736
 8.1.7 Laplace Transform Technique for Parabolic Partial
 Differential Equations in Cylindrical Coordinates...................742
 Example 8.14. Heat Conduction in a Cylinder742
 8.1.8 Laplace Transform Technique for Parabolic Partial
 Differential Equations for Time Dependent Boundary
 Conditions – Use of Convolution Theorem747
 Example 8.15. Heat Conduction in a Rectangle with a
 Time Dependent Boundary Condition748
 8.1.9 Summary..755
 8.1.10 Exercise Problems..755
References ...760

9 Parameter Estimation……………………...……………………………761
 9.1 Introduction ..761
 9.2 Least Squares Method...762

 9.2.1 Summation Form or Classical Form ..769
 9.2.2 Confidence Intervals: Classical Approach775
 9.2.3 Prediction of New Observations ..776
 9.2.4 A One Parameter through the Origin Model777

 9.3 Nonlinear Least Squares ...778
 Example 9.1. Parameter Estimation ..783

 9.4 Hessian Matrix Approach ...789
 9.5 Confidence Intervals ...795
 9.6 Sensitivity Coefficient Equations ...797
 9.7 One Parameter Model ...807
 9.8 Two Parameter Model ..812
 9.9 Exercise Problems ..819
References ...819

10 Miscellaneous Topics …………………………………………………...821
 10.1 Miscellaneous Topics on Numerical Methods..................................821
 10.1.1 Introduction..821
 10.1.2 Iterative Finite Difference Solution for Boundary
 Value Problems..821

 Example 10.1. Diffusion with a Second Order Reaction…..821
 Example 10.2. Nonisothermal Reaction in a
 Catalyst Pellet – Multiple Steady States825
 10.1.3 Finite Difference Solution for Elliptic PDEs827
 Example 10.3. Heat Transfer in a Rectangle........................827
 Example 10.4. Heat Transfer in a Cylinder..........................832
 10.1.4 Iterative Finite Difference Solution for Elliptic PDEs833
 Example 10.5. Heat Transfer in a Rectangle – Nonlinear
 Elliptic PDE ...833

Contents XV

 10.1.5 Numerical Method of Lines for First Order Hyperbolic
 PDEs ..838
 Example 10.6. Wave Propagation in a Rectangle with
 Consistent Initial/Boundary Conditions.839
 Example 10.7. Wave Propagation in a Rectangle with
 inconsistent Initial/Boundary Conditions....844
 10.1.6 Numerical Method of Lines for Second Order
 Hyperbolic PDEs ...848
 Example 10.8. Wave Equation with Consistent
 Initial/Boundary Conditions........................848
 Example 10.9. Wave Equation with Inconsistent
 Initial/Boundary Conditions........................852
 10.1.7 Summary..855
 10.1.8 Exercise Problems..855
References ...856

Subject Index………………………………………………………………………….857

Chapter 1

Introduction

1.1 Introduction to Maple

1.1.1 Getting Started with Maple

Some Maple basics are presented in this chapter as a convenience for the reader.
Two Maple books[1, 2] that have proven to be useful are given as references 1 and
2 at the end of this chapter. Maple can be started either from the shortcut on the
desktop or from Start → Programs → Maple 12. This opens a new Maple
worksheet in the Maple environment. You should usually type ‘restart’ as the first
command in your Maple worksheets.

> restart;

This restart command clears all the stored variables and restarts the worksheet
every time it is executed.

Numerical values can be assigned to variables in Maple by using the characters
‘:= after x, for example. That is, to assign the value 2 to the variable x, the colon
and equal sign ‘:=’ characters are used together. You can use the # sign to add
comments

> x:=2; # an assignment statement.
:= x 2

Note that ‘:=’ is the assignment operator which assigns an expression or number
(2) to a variable named x. If the colon is not used, the value is not assigned. For
example, 2 is not assigned to y by using ‘=’ only. For example, type

> y=2;
= y 2

Now type both x and y to see their values.

> x;
2

> y;
y

2 1 Introduction

This shows that ‘:=’ assigned the value 2 to x whereas ‘=’ did not assign 2 to y.
One can use Maple to do numerical and symbolic calculations. A few examples

are shown next.

> x^2;
4

> x^2.;
4.

> sqrt(x);

2
> x^0.5;

1.414213562
> abs(x);

2
> -x;

-2
> x+y;

− +2 y
> abs(-2);

2

The imaginary number −1 is designated as I in Maple:

> (-1)^(1/2);

I
The Maple command ‘evalf’ provides numeric evaluation and the ‘eval’ command
yields a symbolic evaluation:

> evalf(sqrt(2));
1.414213562

> eval(sqrt(2));

2
Symbolic variables can also be assigned to names as follows:

> z:=y;
:= z y

> z;
y

1.1 Introduction to Maple 3

Differentiation can be done by using the ‘diff’ command:

> diff(y,y);
1

> diff(y^2,y);
2 y

Integration can be done by using the ‘int’ command:

> int(y,y);

y2

2
Maple can also do definite integration:

> int(y,y=0..1);

1
2

1.1.2 Plotting with Maple

Plots can be made in Maple using the ‘plot’ command:

> plot(y,y=0..1);

y

Fig. 1.1 Maple plot of y = y

4 1 Introduction

> plot(y^2,y=0..1);

y2

Fig. 1.2 Maple plot of y2 = y

To plot both curves on the same graph in a box use the following command.

> plot([y,y^2],y=0..1,axes=boxed);

y and y2

Fig. 1.3 Maple plot of y and y2 vs y

1.1 Introduction to Maple 5

1.1.3 Solving Linear and Nonlinear Equations

One can solve equations in Maple using the ‘solve’ and ‘fsolve’ commands. The
‘solve’ command is used to solve linear equations in symbolic form and the
‘fsolve’ command is used to solve linear and nonlinear equations numerically.
For example,

> restart:

> eq:=x+2;
:= eq + x 2

> solve(eq);
-2

Maple can solve equations in symbolic form also:

> eq:=x-a;

:= eq − x a
> solve(eq);

{ },= a x = x x
This solution says that either x = x or a = x. To solve specifically for x

> solve(eq,x);

a
Note that a has not been assigned to x which can by seen by typing x:

> x;

x
One can assign the value of a to x by solving the above equation for x:

> eq:=x-a;

= −eq : x a
> x:=solve(eq,x);

=x : a
One can use the ‘fsolve’ command in Maple to solve equations numerically:

> eq1:=y+1;
:= eq1 + y 1

> fsolve(eq1,y);
-1.

Note that ‘fsolve’ returns a floating point number with a decimal point.

6 1 Introduction

Two or more nonlinear equations can be solved by using ‘fsolve’. For example,
consider finding the solutions (x and y) for the following two equations.

> restart:

> eq1:=x+tan(y)=1;
:= eq1 = + x ()tan y 1

> eq2:=y^2+tan(x)=1;

 := eq2 = + y2 ()tan x 1
> fsolve({eq1,eq2},{x,y});

{ }, = x -3.858064894 = y 1.367788596
One can find other solutions to these equations by restricting the ranges of x and y:

> fsolve(f#,{x=1..3,y=1..3});

{ }, = x 1.760535729 = y 2.491382707

1.1.4 Matrix Operations

Maple has a package for solving linear algebra problems which can be called by
using the ‘with(linalg)’ command.

> restart:

> with(linalg):

Warning, the protected names norm and trace have been redefined and unprotected.
Maple is capable of doing a variety of matrix operations. For example, let A

and B be 2 x 2 matrices which can be entered as follows:

> A:=matrix(2,2,[1,2,3,4]);

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 2
3 4

> B:=matrix(2,2,[1,1,3,2]);

 := B ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 1
3 2

Use the ‘evalm’ command to perform matrix operations. For example, matrix
addition and subtraction can be done:

> evalm(A+B);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

2 3
6 6

1.1 Introduction to Maple 7

> evalm(A-B);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 1
0 2

Multiplication of matrices requires using evalm and ‘&*’:

> evalm(A&*B);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

7 5
15 11

The determinant of a matrix can be found by using ‘det’:

> det(A);
-2

and

> det(B);

-1
Matrices can be inverted by using the ‘inverse command’:

> inverse(A);

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

-2 1

3
2

-1
2

> inverse(inverse(A));

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 2
3 4

The transpose of a matrix can be obtained also

> transpose(A);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 3
2 4

A particular element of a matrix can be printed easily:

> A[1,1];

1

8 1 Introduction

A matrix can be raised to a power by using the ‘evalm’ command:

> evalm(A^2);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

7 10
15 22

The characteristic polynomial, eigenvalues, and eigenvectors of a matrix can be
obtained as follows:

> charpoly(A,lambda);

− − λ2 5 λ 2
> eigenvalues(A);

, +
5
2

33
2

 −
5
2

33
2

> eigenvectors(A);

,⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , +

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1 +

3
4

33
4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , −

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1 −

3
4

33
4

or

> eigenvects(A);

,⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , +

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1 +

3
4

33
4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , −

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1 −

3
4

33
4

Matrices can be raised to various powers and added. For example, let

> eq:=A+A^2+A^3;

 := eq + + A A2 A3

> evalm(eq);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

45 66
99 144

Maple’s ‘Id’ command can be used to generate an identity matrix:

> Id:=band([1],2);

 := Id ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 0
0 1

1.1 Introduction to Maple 9

Elements of a matrix can be in symbolic form and a variety of matrix operations
can be performed:

> A:=matrix(2,2,[a,b,c,d]);

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a b

c d
> transpose(A);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a c

b d
> inverse(A);

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

d
 − a d b c

−
b

 − a d b c

−
c

 − a d b c
a

 − a d b c
> evalm(A&*B);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

+ a 3 b + a 2 b

 + c 3 d + c 2 d

A matrix can be multiplied with a scalar:

> evalm(2*A);

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

2 a 2 b

2 c 2 d
Eigenvalues can be obtained:

> eigenvalues(A);

, + +
a
2

d
2

 − + + a2 2 a d d2 4 b c
2

 + −
a
2

d
2

 − + + a2 2 a d d2 4 b c
2

Eigenvectors can be obtained:

> eigenvects(A);

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥, , + +
a
2

d
2

 − + + a2 2 a d d2 4 b c
2

1

⎧

⎩

⎪⎪⎪⎪⎪
⎨

⎫

⎭

⎪⎪⎪⎪⎪
⎬

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥,−
− + −

a
2

d
2

 − + + a2 2 a d d2 4 b c
2

c
1

⎡

⎣

⎢⎢⎢⎢⎢,

, , + −
a
2

d
2

 − + + a2 2 a d d2 4 b c
2

1

⎧

⎩

⎪⎪⎪⎪⎪
⎨

⎫

⎭

⎪⎪⎪⎪⎪
⎬

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥,−
− + +

a
2

d
2

 − + + a2 2 a d d2 4 b c
2

c
1

⎤

⎦

⎥⎥⎥⎥⎥

10 1 Introduction

The exponential matrix of a matrix can be obtained as follows:

> exponential(B,t);

 + − +
1
2

e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t () + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ()+ 3 13
2 1

2
e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2

⎡

⎣
⎢⎢⎢⎢ ,

− +
1

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2 1

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t () + 3 13
2

⎤

⎦
⎥⎥⎥⎥

− +
3
13

13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2 3

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ()+ 3 13
2

⎡

⎣
⎢⎢⎢⎢ ,

 − + +
1
2

e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t () + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t () + 3 13
2 1

2
e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ()− + 3 13
2

⎤

⎦
⎥⎥⎥⎥

The ‘map’ command can be used to differentiate and integrate each element in a
matrix:

> A:=matrix(2,2,[x,a*x,1/x,c]);

 := A
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

x a x

1
x

c

> map(diff,A,x);

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1 a

−
1

x2
0

> map(int,A,x);

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

x2

2
a x2

2
()ln x c x

> map(int,A,x=0..1);

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1
2

a
2

∞ c

1.1 Introduction to Maple 11

1.1.5 Differential Equations

Maple’s ‘dsolve’ command can be used to obtain analytical and series solutions
for differential equations. Differential equations are discussed in more detail in
chapters 2 and 3. In this section, some Maple commands are introduced to solve
relatively simple differential equations.

> restart:

You have to use y(x) if you are trying to solve y as a function of x (y is the
dependent variable and x is the independent variable)

> eq:=diff(y(x),x)=x;

 := eq =
d
d
x

()y x x

> dsolve(eq,y(x));

 = ()y x +
x2

2
_C1

Note that the constant _C1 is returned as part of the solution. If you specify the
initial condition, Maple can be used to obtain the complete solution:

> dsolve({eq,y(0)=1},y(x));

 = ()y x +
x2

2
1

Second order equations can also be solved with ‘dsolve’:

> eq:=y(x)+diff(y(x),x$2)=x^3;

 := eq = + ()y x
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2
()y x x3

> dsolve(eq,y(x));

 = ()y x + + ()sin x _C2 ()cos x _C1 x ()− + 6 x2

Note that there are two constants, _C2 and _C1, in this case. The D(y)(x) command

can be used to set the derivate of y as an initial condition at x=0 0, e.g.
dy

dx
⎛ ⎞=⎜ ⎟
⎝ ⎠

,

and the other initial condition ()()0 1y = can be set easily also:

> dsolve({eq,y(0)=1,D(y)(0)=0},y(x));

 = ()y x + + 6 ()sin x ()cos x x ()− + 6 x2

12 1 Introduction

Next, store the right hand side (rhs) in ya and then plot ya:

> ya:=rhs(dsolve({eq,y(0)=1,D(y)(0)=0},y(x)));

 := ya + + 6 ()sin x ()cos x x ()− + 6 x2

> plot(ya,x=0..1);

ya

Fig. 1.4 Maple plot of ya vs x

Maple’s ‘dsolve’ can be used to solve nonlinear equations. For example, consider
the following equation:

> eq:=diff(y(x),x$2)=y(x)^2;

 := eq =
d

d2

x2
()y x ()y x 2

Solve this equation by using ‘dsolve’:

> dsolve(eq,y(x));

, = − − d
⌠

⌡

⎮⎮⎮⎮⎮

()y x

3

 − 6 _a3 3 _C1
_a x _C2 0 = − − d

⌠

⌡

⎮⎮⎮⎮⎮

()y x

−
3

 − 6 _a3 3 _C1
_a x _C2 0

1.1 Introduction to Maple 13

Maple gives the solution as an integral. Instead one can get a series solution by
specifying ‘type = series’ in ‘dsolve’ as follows:

> dsolve(eq,y(x),type =series);

()y x ()y 0 ()()D y 0 x
1
2

()y 0 2 x2 1
3

()y 0 ()()D y 0 x3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + 1

12
()y 0 3 1

12
()()D y 0 2 + + + + =

x4 1
12

()y 0 2 ()()D y 0 x5 ()O x6 + +

Consider another nonlinear differential equation.

> eq:=diff(y(x),x)=-tan(x)+exp(-y(x));

 := eq =
d
d
x

()y x − + ()tan x e
()− ()y x

> dsolve(eq,y(x));

 = ()y x − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

1
()cos x () + _C1 ()ln + ()sec x ()tan x

Use the type = series option to obtain a series solution.

> ya:=rhs(dsolve({eq,y(0)=1},y(x),type=series));

ya 1 e
()-1

x
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟− − 1

2
()e

()-1
2 1

2
x2 1

3
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ()e

()-1
2 1

2
e

()-1
x3 + + + + :=

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟− − −

1
12

1
4

()e
()-1

4 1
6

()e
()-1

2

x4 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + +

1
24

e
()-1 1

5
()e

()-1
5 1

6
()e

()-1
3

x5 ()O x6 + +

> ya:=evalf(ya);

ya 1. 0.3678794412 x 0.5676676416 x2 0.07790892966 x3 0.1104681236 x4 + − + − + :=

0.02497374418 x5 ()O x6 +

One can remove the order term ()()60 x in the series by using the ‘convert’

command:

> ya:=convert(ya,polynom);

ya 1. 0.3678794412 x 0.5676676416 x2 0.07790892966 x3 0.1104681236 x4 + − + − :=

0.02497374418 x5 +

14 1 Introduction

> plot(ya,x=0..1);

 ya

Fig. 1.5 Maple plot of ya vs x

One can also use ‘dsolve’ to solve boundary value problems. Consider heat
transfer in a fin:[3]

> eq:=diff(y(x),x$2)=H^2*y(x);

 := eq =
d

d2

x2
()y x H2 ()y x

where H is a parameter. The governing equation can be solved without specifying
the boundary conditions as:

> dsolve(eq,y(x));

 = ()y x + _C1 e
()H x

_C2 e
()−H x

Suppose the boundary conditions are at x=0, y=1, and at x=1, 0
dy

dx
= . If one of

the boundary conditions is specified, Maple gives a solution with one constant.

> ya:=rhs(dsolve({eq,y(0)=1},y(x)));

 := ya + ()− + _C2 1 e
()H x

_C2 e
()−H x

1.1 Introduction to Maple 15

The constant _C2 can be obtained by using the boundary condition at x = 1:

> diff(ya,x);

 − ()− + _C2 1 H e
()H x

_C2 H e
()−H x

> bc:=subs(x=1,diff(ya,x));

 := bc − ()− + _C2 1 H e H _C2 H e
()−H

> _C2:=solve(bc,_C2);

 := _C2
eH

 + e H e
()−H

The complete solution is obtained by using Maple’s ‘simplify’ command as
follows:

> ya:=simplify(ya);

 := ya
 + e

()− + H H x
e

()−H ()− + 1 x

 + eH e
()−H

Plot the solution ya with H=1:

> plot(subs(H=1,ya),x=0..1);

 ya

H=1

Fig. 1.6 Maple plot of ya vs x for H=1

16 1 Introduction

Next, plot the solution ya with H=3 and use points instead of a line.

> plot(subs(H=3,ya),x=0..1,style=point);

ya

H=3

Fig. 1.7 Maple point plot of ya vs x for H=3

1.1.6 Laplace Transformations

Maple can be used to obtain Laplace transforms and inverse Laplace transforms of
functions symbolically. For this purpose, the package ‘with(inttrans)’ is used:

> restart:

> with(inttrans):

Suppose we want to find the Laplace transform of t, we use

> f(t):=t;
:= ()f t t

> laplace(f(t),t,s);
1

s2

Laplace transforms for different functions can be obtained easily:

> laplace(f(t)*t,t,s);
2

s3

1.1 Introduction to Maple 17

> f(t):=exp(-t);

 := ()f t e
()−t

> laplace(f(t),t,s);

1
 + 1 s

Both Laplace and inverse Laplace transforms can be obtained with Maple.

> f(t):=sin(t);
:= ()f t ()sin t

> f(s):=laplace(f(t),t,s);

 := ()f s
1

 + s2 1
> invlaplace(f(s),s,t);

()sin t
Inverse Laplace transforms for different functions can be also obtained:

> f(s):=1/sqrt(s);

 := ()f s
1

s
> invlaplace(f(s),s,t);

1

π t
> f(s):=1/(s)^(3/2);

 := ()f s
1

s
()/3 2

> invlaplace(f(s),s,t);

2 t

π
> f(s):=exp(-sqrt(s));

 := ()f s e
()− s

> invlaplace(f(s),s,t);

1
2

e
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

1
4 t

π t
()/3 2

18 1 Introduction

Unfortunately, Maple cannot find the inverse Laplace transform for complicated
functions:

> f(s):=1/sinh(sqrt(s));

 := ()f s
1

()sinh s
> invlaplace(f(s),s,t);

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟invlaplace , ,

1

()sinh s
s t

This does not mean that the inverse Laplace transform does not exist; instead, one
has to use advanced techniques for finding the desired inverse Laplace transform
(see chapter 8 for details).

1.1.7 Do Loop

It is possible to carry out a sequence of steps using a ‘do loop.’ The syntax is

 >

We can prepare a set of differential equations by using a ‘do loop’. Use the shift
enter keys to add the extra line after the “do” as shown in the following worksheet.

> restart:

> N:=3;

> for i from 1 to N do #Use the shift enter keys to add each new line in a
do loop.

diff(y[i](t),t)=(y[i+1](t),-y[i-1](t));

od;

1.1 Introduction to Maple 19

1.1.8 While Loop

It is possible to carry out a sequence of statements or commands until a prescribed
condition is satisfied. The ‘while’ command can be used to do this. The general
statement is of the form:

>

For example, one could use the following worksheet to determine the square of a
number.

>

>

>

>

1.1.9 Write Data Out Example

Data can be generated and written out to a text file (i.e., a . txt file). For example,
we can use Maple to solve the second order ordinary differential equation

2

2

d u
u

dx
= (1.1)

with the following boundary conditions:

()0 0.21u = (1.2)

and

1

0
x

du

dx =

= (1.3)

The result is

() ()
()

cosh 1
0.21

cosh 1

x
u x

−
= (1.4)

20 1 Introduction

Values for this analytical solution at various values of x can be generated and
exported to a text file as shown in the worksheet below.

> restart:with(plots):with(linalg):

Specify the values for x at which the analytical solution will be calculated and
later exported. Make sure you have the whole range (i.e., 0 to 1) of x included.

>

Input the Governing Equation and Boundary Conditions:

>

>

Solve the differential equation and rearrange the results to the desired form:

>

>

1.1 Introduction to Maple 21

>

>

Make sure the solution satisfies the boundary conditions:

>

>

Plot the results:

>

Fig. 1.8

Save the analytical solution at the x values specified at the beginning of this
worksheet as uana[i].

22 1 Introduction

> for i to rowdim(xdata) do `:=`
(uana[i], evalf(subs(x = xdata[i, 1], u)))
end do; 1

Export the Analytical Solution from Maple into the Text File:

>

Note: To export to a text file, the formats compatible with Maple are Arrays,
Matrices, etc. For additional help please type ? writedata

1.1 Introduction to Maple 23

>

Now, the output from the analytical solution is stored into a file called
"maple_output.txt" in the folder where you saved this original Maple file.

1.1.10 Reading in Data from a Text File

Data can be read into Maple from a text file as shown below.
This worksheet is entitled ReadDataInExp.mws.

> restart:

Read in data from a text file named "maple_output.txt" located on the D drive
under the folder named "ECHE700Sp09".

> fd := fopen("D:\\ECHE700Sp09\\maple_output.txt",READ);

data:=readdata(fd,2);

fclose(fd);

Print the data.

> data:=evalm(data);

24 1 Introduction

1.1.11 Summary

In this chapter, some useful Maple commands were introduced. In section 1.1.1,
basic Maple commands for assignment, evaluation, differentiation and integration
were introduced. In section 1.1.2, commands for plotting were introduced. In
section 1.1.3, linear and nonlinear equations were solved using Maple. Linear
equations were solved symbolically (exactly) and nonlinear equations were solved
numerically. In section 1.1.4, Maple’s matrix operations such as addition,
subtraction, finding the inverse, eigenvalues, etc. were introduced. In section
1.1.5, simple linear differential equations were solved using Maple’s ‘dsolve’
command to obtain a closed form analytical solution. In addition, series solutions
were obtained for certain nonlinear differential equations. In section 1.1.6,
Laplace and inverse Laplace transforms for simple functions were obtained using
Maple. In section 1.1.7, using a ‘do loop’ to carry out a sequence of steps using
Maple was explained. In section 1.1.8, using a ‘while loop’ to carry out a
sequence of statements or commands was explained using Maple. In section
1.1.9, steps for writing out data from Maple into a text file was discussed. In
section 1.1.10, reading data into Maple from a text file was explained.

1.1.12 Problems

Create a different Maple worksheet for each of the following problems. Start each
worksheet with the restart command.

1. Assign x = 4 and obtain the following results using Maple:

2. (1) x2 (2) 1 + y/x (3) x (4)
1 y

x

+

(5) 1.2x + x2 – x1.2

3. Assign x = 2 and y = 3 and obtain results for the following using Maple:

(1) sin(x) (b) arcsin(x) (i.e., sin-1(x)) (3) log(x) (4) log(y/x)

(5) exp(x) (6) exp(x) + exp(y) – exp(xy) (7) log(y-x) + log(x-y)

4. Use Maple to find the derivatives of the following functions:

(1) x2 – x sin(x) (2)
2

1
log()

1
x

x x
⎛ ⎞
⎜ ⎟+ +⎝ ⎠

5. Plot exp(– x2) from x = 0 to 5. Use Maple to find the definite integral

L
2

0

exp(-x)dx∫

for L = 0.1, 0.5, 1, and 2.

1.1 Introduction to Maple 25

6. Use Maple to plot the following functions for x varying from 0 to 1:

(1) exp(x) (2) exp(-x) (3) 1 - x + x2 (4) x (1-x) (5) x2 – log(x)

7. Use Maple to plot the following functions for x varying from 0 to 1:

(1) sin(πx) (2) cos(πx) (3) arcsin(x) (4)
π

sin x exp(-x)
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

8. Use Maple to solve the following equations symbolically (use the ‘solve’
command).

(1) ax2 + bx + c = 0

(2) x3 – 1 = 0

(3) x4 – x2 = 0

(4) x + y = 3; x – y = 2

(5) x + y = a; x – y = a – b

(6) x + y + z = a; 2x + 3y + 4z = a + b + c; x – y - z = b

(7) x + y + z = 6; xyz = 6; xy + yz + zx = 11

9. Use Maple to solve the following equations numerically by using ‘fsolve’.
Find all the possible roots.

(1) x3 – tan(y) = xy; y3 – tan(x) = 1

(2) x2 + y2 = 1; x2 – y2 = ¼

(3) 3 1
x 2x = 0

x
− −

10. Define the following matrices

1 2 3 1 2 0

A = 2 3 4 ; B = 0 1 2

3 4 6 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 in

Maple.

(1) Find A+B, A-B, AB and BA.

(2) Find the determinant of A, B and AB.

(3) Find A-1, B-1, A/B and B/A.

(4) Find the eigenvalues and eigenvectors of A, B, AB and BA.

(5) Find A3, A + B + AB-BA.

26 1 Introduction

11. Consider the matrix

α 1 0

A = 0 1 1

0 -1 α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

.

(1) Substitute α = 4 in A and find the determinant, characteristic
polynomial, eigenvalues, eigenvectors and inverse of A using Maple.

(2) Substitute α = 2 in A and find the determinant, characteristic
polynomial, eigenvalues, eigenvectors and inverse of A using Maple.

(3) Substitute α = 1 in A and find the determinant, characteristic
polynomial, eigenvalues, eigenvectors and inverse of A using Maple.

(4) Substitute α = 3 in A and find the determinant, characteristic
polynomial, eigenvalues, eigenvectors and inverse of A using Maple.

12. Consider the differential equation
dy

yx ; y(0) 1
dx

= − = . Use Maple to

solve this differential equation by using the ‘dsolve’ command to obtain a
closed-form solution. Obtain a series solution for the same. Plot the profiles.

13. Consider diffusion with a first order reaction in a rectangular catalyst
pellet.[4] The governing equation in dimensionless form is

() ()
2

2
2

d y dy
y ; 0 0; y 1 1

dx dx
= Φ = = . Solve this differential equation

using the ‘dsolve’ command to obtain a closed-form solution. Plot the
profile.

14. Use Maple to find the Laplace transforms of the following functions.

(1) sinh(at) + cosh(at)

(2) exp(at) sinh(at)

(3)
1

1 t+

15. Use Maple to find the inverse Laplace transforms of the following
functions.

(1) () 2

1 1

s s 1 1 s
−

+ +

(2) ()
1

1 s exp s+

(3)
1

1 s+

1.1 Introduction to Maple 27

References

1. Garvan, F.: The Maple Book, p. 479. Chapman & Hall/CRC, Boca Raton (2002)
2. Abel, M.L., Braselton, J.P.: Differential Equations with Maple V, 3rd edn. Academic

Press, London (2001)
3. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley &

Sons, Chichester (1984)
4. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.

John Wiley & Sons, Inc., Chichester (1995)

Chapter 2

Initial Value Problems

Engineers develop mathematical models to describe processes of interest to them.
For example, the process of converting a reactant A to a product B in a batch
chemical reactor can be described by a first order, ordinary differential equation
with a known initial condition. This type of model is often referred to as an initial
value problem (IVP), because the initial conditions of the dependent variables
must be known to determine how the dependent variables change with time. In
this chapter, we will describe how one can obtain analytical and numerical
solutions for linear IVPs and numerical solutions for nonlinear IVPs.

2.1 Linear Ordinary Differential Equations

2.1.1 Introduction

First order series/parallel chemical reactions and process control models are
usually represented by a linear system of coupled ordinary differential equations
(ODEs). Single first order equations can be integrated by classical methods (Rice
and Do, 1995). However, solving more than two coupled ODEs by hand is
difficult and often involves tedious algebra. In this chapter, we describe how one
can arrive at the analytical solution for linear first order ODEs using Maple, the
matrix exponential, and Laplace transformations.

2.1.2 Homogeneous Linear ODEs

Consider two linear ordinary differential equations:

1
1 1 2 2

2
3 1 4 2

dy
a y a y

dt
dy

a y a y
dt

= +

= +
 (2.1)

with the following initial conditions

1 10 2 20(0) and (0) y y y y= = (2.2)

30 2 Initial Value Problems

where y1 and y2 are the dependent variables; a1, a2, a3, and a4 are constants. This
system of linear differential equations (equation94H(2.1)) can be written in matrix
form as

d

dt

Y
= AY (2.3)

where the dependent variables are expressed as a 2 x 1 matrix:

1

2

y

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y (2.4)

The 2 x 2 coefficient matrix A is written in this case as

1 2

3 4

a a

a a

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A (2.5)

and Y0 is the vector (2 x 1 matrix) of initial conditions:

10

20

y

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0Y (2.6)

The solution of equation 95H(2.3) is given by:[2, 3]

=exp(t) 0Y A Y (2.7)

where ()exp tA is a n x n matrix and is called the matrix exponential or the

exponential matrix of A (see Appendix A for a detailed derivation of equation
96H(2.7)). It is of interest to note that Professor Amundson introduced the exponential
matrix to chemical engineers in 1966 on page 166 of his book.[2] At that time it

was very difficult to obtain symbolically ()exp tA . We believe that the need to

find the exponential matrix ()()exp tA has discouraged chemical engineers

from using the exponential matrix to solve coupled systems of ODEs. Maple
provides a command to find the exponential matrix as a function of t, the
independent variable. Maple can also find the exponential matrix as a function of
parameters such as a1, a2, a3, and a4 which we will illustrate by solving some
classical problems in chemical engineering. In general, for a linear system of n

simultaneous coupled first order differential equations, Y is a n x 1 matrix, A

is a n x n matrix and, again, ()exp tA is a n x n matrix.

2.1 Linear Ordinary Differential Equations 31

2.1.3 First Order Irreversible Series Reactions

Consider the first order series reactions[4] ()1 2k kA B C⎯⎯→ ⎯⎯→ . The governing

equations for this reaction scheme can be written as

A
1 A

B
1 A 2 B

dC
 = k C

dt
dC

= k C k C
dt

−

−
 (2.8)

where 1 2k and k are rate constants and the initial conditions are CA(0) = 1 mol/l,

CB(0) = 0, and CC(0) = 0. The concentration of species C (CC(t)) at any time is
given by the material balance:

C A CC (t) =1 mol/l C (t) C (t)− − (2.9)

A Maple procedure for solving equations 97H(2.8) subject to the initial conditions is
presented below. This procedure is useful for developing the correct coefficient
matrix A to avoid “by hand” errors.

Procedure

1. Start the Maple program with a ‘restart’ command to clear all variables.
2. Call Maple’s linear algebra package by using the ‘with(linalg)’ command.
3. Call Maple’s plotting package by using the ‘with(plots)’ command.
4. Use Maple to enter the governing equations (equation 98H(2.8)).
5. Name the variables vars.
6. Name the right hand side of the equations eqs.
7. Next, use Maple to generate the coefficient matrix (A) using Maple’s

‘genmatrix’ command.
8. Store the initial conditions for the dependent variables in the vector Y0. The

first row of Y0 corresponds to the initial condition for the first dependent
variable (ca). The second row of Y0 corresponds to the initial condition for
the second variable (cb).

9. Find the matrix exponential of A (i.e., exp(At)) as a function of the parameters
(rate constants) and the independent variable (t) using the Maple command
‘exponential(A,t)’. Call this matrix mat.

10. Next, find the solution (sol) by multiplying mat by Y0 using Maple’s ‘evalm’
command.

11. The first row of the sol vector corresponds to ca(t), and the second row
corresponds to cb(t).

12. Note that the analytical solutions for ca and cb are obtained as functions of the
parameters (rate constants) and the independent variable, t. Lower case letters

are used for these variables with 1 2k and k as parameters.

13. For a given set of rate constants, plot the concentration profiles.

32 2 Initial Value Problems

This procedure is illustrated in Example 2.1.

Example 2.1. Irreversible Series Reactions (see equations (2.8))

> restart:

> with(linalg):

> with(plots):

Enter the governing equations as follows:

> eq[1]:=diff(C[A](t),t)=-k1*C[A](t);

> eq[2]:=diff(C[B](t),t)=k1*C[A](t)-k2*C[B](t);

Store the variables in 'vars':

> vars:=[C[A](t),C[B](t)];

Next, store the right hand sides of equations 1 and 2 in 'eqs.'

> eqs:=[rhs(eq[1]),rhs(eq[2])];

Now use the 'genmatrix' Maple command to produce the coefficient matrix A.

> A:=genmatrix(eqs,vars);

Specify the initial conditions.

> Y0:=matrix(2,1,[1,0]);

Use Maple's 'exponential(A,t)' command to produce the exponential (At) matrix.

> mat:=exponential(A,t);

2.1 Linear Ordinary Differential Equations 33

Obtain the solution vector using Maple's 'evalm' command and matrix
multiplication (&*).

> sol:=evalm(mat&*Y0);

The first row of 'sol' is the solution for the concentration of species A (CA) and the
second row is for the concentration of species B (CB).

> ca:=sol[1,1];

> cb:=sol[2,1];

The concentration of species C is obtained from the material balance equation.

> cc:=1-ca-cb;

Note that the concentrations of the species are obtained as functions of the rate
constants (k1 and k2) and the independent variable t. To illustrate the results, enter
values for the rate constants (pars).

> pars:={k1=1.,k2=0.,k3=2.,k4=3.};

Next, substitute these values for the rate constants into the concentrations store as
CA, BB, and CC.

> Ca:=subs(pars,ca);

> Cb:=subs(pars,cb);

> Cc:=subs(pars,cc);

Plot the concentration profiles for these values of the rate constants as shown in
Figure 2.1.

>p1:=plot(Ca,t=0..10,thickness=3,color=blue,labels=["t(min)","Concentratio
n(mols/I)”],

34 2 Initial Value Problems

labeldirections=[horizontal, vertical],legend='C[A]'):

>p2:=plot(Cb,t=0..10,linestyle=1,thickness=3,labels=["t(min)","Concentratio
n(mols/I)”], labeldirections=[horizontal, vertical],legend='C[B]'):

>3:=plot(Cc,t=0..10,linestyle=1,thickness=3,color=green,labels=["t(min)","C
oncentration (mols/l)"],labeldirections=[horizontal, vertical],legend='C[C]'):

> p4:=textplot([6,.9,k1=2.0*Unit(min^(-1))]):

> p5:=textplot([6,.7,k2=1.0*Unit(min^(-1))]):

> display([p1,p2,p3,p4,p5],title="Figure 2.1 Concentrations of A, B, and C
as functions of time.");

Fig. 2.1 Concentrations of A, B, and C as functions of time

Suppose 1
1 2k k 1min−= = . We can obtain an expression for Ca with these

values for the parameters:

> pars:={k1=1,k2=2};

> Ca:=subs(pars,ca);

2.1 Linear Ordinary Differential Equations 35

We get division by zero because we have 1 2k and k in the denominator of the

expression for Cb. To handle this problem, we can apply Maple’s ‘limit’ command

when both the rate constants approach 1(i.e., as 1 2k 1 and as k 1→ →). First,

the ‘limit’ command is applied with respect to the first parameter, 1k 1→ .

> Cb:=subs(pars,cb);

Next, the 'limit' command is applied with respect to the second parameter, for
 also:

> Cc:=subs(pars,cc);

> Cb:=limit(cb,k1=1);

> Cb:=limit(Cb,k2=1);

Similarly, limits can be applied for Cc also:

> Cc:=limit(Cc,k1=1);

> Cc:=limit(Cc,k2=1);

We can use these results to plot the concentration profiles for the case when

1 2k k= as shown in Figure 2.2.

>p1:=plot(Ca,t=0..10,thickness=3,color=blue,labels=["t(min)","Concentratio
n(mol/l)"],labeldirections=[horizontal, vertical],legend='C[B]'):

>p2:=plot(Cb,t=0..10,linestyle=1,thickness=3,color=red,labels=["t(min)","Co
ncentration(mol/l)"],labeldirections=[horizontal, vertical],legend='C[B]'):

>p3:=plot(Cc,t=0..10,linestyle=1,thickness=3,color=green,labels=["t(min)","
Concentration (mol/l)"],labeldirections=[horizontal, vertical],legend='C[C]'):

> p4:=textplot([6,.8,(k1=1.0*Unit(min^(-1)))]):

> p5:=textplot([6,.6,(k2=1.0*Unit(min^(-1)))]):

> display([p1,p2,p3,p4,p5],title="Figure 2.2 Concentrations of A, B, and C
as functions of time.");

36 2 Initial Value Problems

Fig. 2.2 Concentrations of A, B, and C as functions of time

We can solve for the time at which B is at its maximum by differentiating Cb with
respect to t:

> Eqmax:=diff(cb,t);

Next, solve 'eqmax' to find the time at which Cb is at a maximum in terms of the

rate constants 1 2k and k :

> tmax:=solve(Eqmax,t);

Substitute this value for time into the concentration equation for B(cb(t)) to find

the maximum value of Cb as a function of the rate constants 1 2k and k .

2.1 Linear Ordinary Differential Equations 37

> cbmax:=subs(t=tmax,cb);

The equation for 'cbmax' can be simplified further by using Maple's 'simplify'
command.

> cbmax:=simplify(cbmax);

A maximum for the concentration of B(cbmax) for the special case of 1 2k k=

can be found as:

>limit(cbmax,k2=k1);

The time needed for the concentration of B to reach a maximum, for the case
when k = k can be found as

> limit(tmax,k2=k1);

Note that when k1 =k2, 'cbmax' is independent of the rate constants, the time taken
to reach this maximum value e-1 is inversely proportional to the rate constant k1.

2.1.4 First Order Reversible Series Reactions

In Example 2.1, Maple was used to solve two simultaneous first order ODEs. The
same methodology can be used to solve more than two simultaneous ODEs. For
example, the material balance equations for the time dependent concentration of
each species (A, B, and C) in an isothermal batch reactor with reversible series

reactions (
31

2 4

kk

k k
A B C⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯) can be written as follows:[5]

a
1 a 2 b

b
1 a 2 b 3 b 4 c

c
3 b 4 c

dC
 = k C + k C

dt
dC

 = k C k C k C + k C
dt

dC
 = k C k C

dt

−

− −

−

 (2.10)

38 2 Initial Value Problems

In this case, the initial conditions are Ca(0) = 1 mol/l; Cb(0) = 0 and Cc(0) = 0.
One might ask “What are the values of parameters (k1… k4), if any, that would
produce a maximum in concentration of species B?” This question can be
answered by using Maple to obtain a solution to the equations in 99H(2.10) given
initial conditions for the concentrations.

Constantinides and Mostoufi[6] solved this system of ODEs (eq. 100H(2.10)) for a
given set of values for the parameters (k1 = 1 min-1, k2 = 0 min-1, k3 = 2 min-1, k4 =
0 min-1). They did this by two different methods. They found the exponential
matrix using MATLAB’s command ‘expm’ and used MATLAB to predict the
concentration profiles from t = 0 to 5 minutes. The disadvantage of this approach
is that one has to solve the problem for every set of parameters (k1… k4). In
addition, special care is needed for rate constant values that yield a coefficient
matrix that has eigenvectors that are repeated or are very small. We illustrate
below how Maple can be used to find the exponential matrix and solve this
problem symbolically and efficiently. In addition, we demonstrate how the
symbolic solution can be used to analyze the effect of the parameters in
determining the maximum concentration of the intermediate species, B. It should
be noted that, similar symbolic solutions could be obtained using MATLAB or
other symbolic software also by applying the same methodology presented here.

This reaction scheme (equation 101H(2.10) is simulated below by following the
procedure described for the previous example (see Example 2.1).

Example 2.2. Reversible Series Reactions (see equations (2.10))

> restart:

> with(linalg):

> with(plots):

Specify the equations.

> eq[1]:=diff(Ca(t),t)=-k1*Ca(t)+k2*Cb(t);

> eq[2]:=diff(Cb(t),t)=k1*Ca(t)-k2*Cb(t)-k3*Cb(t)+k4*Cc(t);

> eq[3]:=diff(Cc(t),t)=k3*Cb(t)-k4*Cc(t);

Specify the variables.

> vars:=[Ca(t),Cb(t),Cc(t)];

2.1 Linear Ordinary Differential Equations 39

Specify the right hand side of the equations.

> eqs:=[seq(rhs(eq[i]),i=1..3)];

Generate the coefficient matrix A.

> A:=genmatrix(eqs,vars,A);

Generate the exponential matrix of A.

> mat:=exponential(A,t):

Set the initial conditions vector:

> Y0:=matrix(3,1,[1,0,0]);

Obtain the solution.

> sol:=evalm(mat&*Y0):

Pull out the components of the solution.

> ca:=sol[1,1]:

> cb:=sol[2,1]:

> cc:=sol[3,1]:

The solution vector 'sol' and its elements (sol [1,1], e.g.) are too long to present
here. They are functions of the rate constants (k1, k2, k3, and k4) and the
independent variable t. One can obtain the solution from the CD with this book by
changing the colons to semicolons at the end of the command line in the
worksheet. As in Example 2.1, the solution obtained can be plotted for a particular
set of values for the rate constants. Let’s set these to be the same as those used on
page 282 of Constantinides and Mostoufi. [6]

> pars:={k1=1.,K2=0.,k3=2.,k4=3.};

Obtain the concentrations as functions of time by substituting these values for the
rate constants into the components of the solution vector:

40 2 Initial Value Problems

> Ca:=subs(pars,ca);

> Cb:=subs(pars,cb);

> Cc:=subs(pars,cc);

Plot the results.

>p[1]:=plot(Ca,t=0..10,thickness=3,linestyle=1,color=blue,labels=["t(min)","
Concentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[A]'):

>p[2]:=plot(Cb,t=0..10,thickness=3,linestyle=1,labels=["t(min)","Concentrati
ons(mol/1)"], labeldirections=[horizontal, vertical],legend='C[B]'):

>p[3]:=plot(Cc,t=0..10,thickness=3,linestyle=1,color=green,labels=["t(min)",
"Concentration (mol/1)"],labeldirections=[horizontal,vertical],legend='C[C]'):

> p[4]:=textplot([4,.9,k1=1.0*Unit(min^(-1))]),textplot([6,.9,k2=0]):

> p[5]:=textplot([4,.7,k3=2.0*Unit(min^(-1))]),textplot([7,.7,k4=3.0*
Unit(min^(-1))]):

> display(f, title="Figure 2.3 Concentrations of A, B, and C as functions of
time.", axes=boxed);

Fig. 2.3 Concentrations of A, B, and C as functions of time

2.1 Linear Ordinary Differential Equations 41

This figure matches Figure Exp. 5.2 on page 282 of Constantinides and Mostoufi,
1999.[6] For a different set of values for the parameters, the solution can be
obtained by just substituting the numerical values of the rate constants into the
solution vector components. We did not observe a maximum for Cb for this
particular set of values of the rate constants. However, we can use different values
of the rate constants to illustrate that a maximum can exist in the concentration of
species B:

> pars:={k1=10.,k2=0.5,k3=2.,k4=3.};

> Ca:=subs(pars,ca);

> Cb:=subs(pars,cb);

> Cc:=subs(pars,cc);

>p[1]:=plot(Ca,t=0..5,thickness=3,color=blue,linestyle=1,labels=["t(min)","C
oncentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[A]'):

>p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentratio
n (mol/1)"],labeldirections=[horizontal, vertical],legend='C[B]'):

>p[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","
Concentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[C]'):

> p[4]:=textplot([2,.9,k1=10.0*Unit(min^(-1))]),textplot([3.5,.9,k2=0.5*
Unit(min^(-1))]):

> p[5]:=textplot([2,.7,k3=2.0*Unit(min^(-1))]),textplot([3.5,.7,k4=3.0*
Unit(min^(-1))]):

> display({seq(p[i],i=1..5)},title="Figure 2.4 Concentrations of A, B, and C
as functions of time.",axes=boxed);

42 2 Initial Value Problems

Fig. 2.4 Concentrations of A, B, and C as functions of time

We can find an equation in terms of the rate constants that will provide a means of
finding the time at which the maximum in Cb occurs. We do this by using
Maple's 'simplify' command and by finding ∂cb/∂t by using Maple's 'diff'
command.

> eq:=simplify(diff(cb,t)):

Next, we use Maple's 'solve' command to set the equation (eq) equal to zero and
solve for 'tmax':

> tmax:=solve(eq,t);

The concentration of B at 'tmax' can be obtained by substitution of the 'tmax'
expression into the solution for the concentration of B as a function of time.

2.1 Linear Ordinary Differential Equations 43

> cbmax:=simplify(subs(t=tmax,cb)):

The solution 'cbmax' is not printed to conserve space. We can find if a maximum
exists or not by substituting numerical values for the rate constants. If Cb has a
maximum, 'tmax' should be real and positive. A value for 'tmax' can be obtained
by substituting the same rate constants into the derived equations.

> simplify(subs(k1=1.,k2=0.,k3=2.,k4=3.0,tmax));

> simplify(subs(k1=2.,k2=0.,k3=2.,k4=3.0,tmax));

> simplify(subs(k1=10.,k2=1.,k3=1.,k4=1.0,tmax));

An interesting case is when k1 =k3 and k2 = k4.

> pars:={k1=2,k2=1/2,k3=2,k4=1/2};

> A1:=evalm(subs(pars,evalm(A)));

> eigenvalues(A1);

One of the eigenvalues is zero in this case.

> Ca:=evalf(subs(pars,ca));

> Cb:=evalf(subs(pars,cb));

> Cc:=evalf(subs(pars,cc)

44 2 Initial Value Problems

>p[1]:=plot(Ca,t=0..5,thickness=3,color=blue,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[A]'):

>p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentratio
n (mols/1)"],labeldirections=[horizontal, vertical],legend='C[B]'):

>p[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[C]'):

>p[4]:=textplot([1.5,.9,k1=1.0*Unit(min^(-1))]);

>p[5]:=textplot([3.5,.9,k2=0.5*Unit(min^(-1))]);

>p[6]:=textplot([3.5,.6,k3=1.0*Unit(min^(-1))]);

>p[7]:=textplot([3.5,.4,k4=0.5*Unit(min^(-1))]);

>display({seq(p[i],i=1..7)},title="Figure 2.5 Concentrations of A, B, and C
as functions of time.",axes=boxed);

Fig. 2.5 Concentrations of A, B, and C as functions of time

2.1 Linear Ordinary Differential Equations 45

Another interesting case is when k2=k4=0.

> pars:={k1=1,k2=0,k3=1,k4=0};

> A1:=evalm(subs(pars,evalm(A)));

> eigenvalues(A1);

One of the eigenvalues is zero and the other two eigenvalues are repeated in this
case.

> Ca:=evalf(subs(pars,ca));

Error, numeric exception: division by zero

We get division by zero again as we did in Example 2.1. The solution can be
obtained by using Maple's 'limit' command.

> Ca:=limit(ca,k1=1):

> Ca:=limit(Ca,k2=0):

> Ca:=limit(Ca,k3=1):

> Ca:=limit(Ca,k4=0);

Alternatively, the four lines can be successively applied in the same statement as

> Cb:=limit(limit(limit(limit(cb,k1=1),k2=0),k3=1),k4=0);

> Cc:=limit(limit(limit(limit(cc,k1=1),k2=0),k3=1),k4=0);

>p[1]:=plot(Ca,t=0..5,thickness=3,linestyle=1,color=blue,labels=["t(min)","C
oncentration(mols/1)"],labeldirections=[horizontal, vertical],legend='C[A]'):

> p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentration
(mols/1)"],

46 2 Initial Value Problems

labeldirections=[horizontal, vertical],legend='C[B]'):

>[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[C]'):

> p[4]:=textplot([1.5,.9,k1=1.0*Unit(min^(-1))]);

> p[5]:=textplot([1.5,.7,k2=0*Unit(min^(-1))]);

> p[6]:=textplot([4,.6,k3=1.0*Unit(min^(-1))]);

> p[7]:=textplot([4,.4,k4=0*Unit(min^(-1))]);

> display({seq(p[i],i=1..7)},title="Figure 2.6 Concentrations of A, B, and C
as functions of time.",axes=boxed);

Fig. 2.6 Concentrations of A, B, and C as functions of time

2.1 Linear Ordinary Differential Equations 47

As can be seen by comparison, Figure 2.6 is the same as Figure 2.2 as expected.

2.1.5 Nonhomogeneous Linear ODEs

A system of n nonhomogeneous first order linear ODEs can be written in matrix
forms as follows:

 ()
d

t
dt

= +Y
AY b (2.11)

where b(t) is an n x1 forcing function matrix, which makes the equation

nonhomogeneous. The solution to this matrix differential equation is given by[2],
[3], [6], [7]

0

0

exp() exp[()] ()
t

t t dτ τ τ= + − −∫Y A Y A b (2.12)

(see Appendix A for a detailed derivation of equation 102H(2.12)).
When b is a constant the vector equation 103H(2.12) can be simplified by removing

b from under the integral:

0

0

 exp() exp[()]
t

t t dτ τ
⎡ ⎤

= + − −⎢ ⎥
⎣ ⎦
∫Y A Y A b (2.13)

Equation 104H(2.13) can be integrated to obtain

[] -1
0 0

 exp() exp[()]
t

t tτ= + − − −Y A Y A A b (2.14)

Equation 105H(2.14) can be expanded to read:

-1 -1
0 exp()() t= + −Y A Y A b A b (2.15)

Equations 106H(2.12) and 107H(2.15) simplify to equation 108H(2.7) (the homogeneous
equations solution) when the forcing function b vector is the zero vector. The
procedure for solving nonhomogeneous linear ODEs is presented next.

Calculation Procedure for Nonhomogeneous, Linear ODEs

1. Start Maple with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.

48 2 Initial Value Problems

3. Enter the governing equations and store them in eq[1], eq[2], etc.
4. Store the variables are stored as an array in vars.
5. Store he right hand sides of eq[1], eq[2], etc. in eqs.
6. Use Maple’s ‘genmatrix’ command to generate the A and b matrices from eqs

and vars.
7. Note that Maple generates A as needed and the B vector that satisfies Ax = B,

so one has to add a minus sign to find the b vector that is needed for equation
109H(2.11) (. ., =).i e −b B

8. When b is a constant vector, equation 110H(2.15) can be used to obtain the solution.
9. When b(t) is a function of time, equation 111H(2.12) is used to obtain the solution.

10. Store the initial conditions for the dependent variables in the vector Y0.
11. Use Maple to obtain the exponential matrix (exp(At)) as a function of the

parameters and the independent variable (t), store as mat.
12. Find the solution vector (sol) by multiplying mat by Y0 and adding the

nonhomogeneous solution according to equation 112H(2.12) or 113H(2.15) depending
on whether or not b is a constant vector.

13. The first row of sol corresponds to the first dependent variable; the second
row corresponds to the second dependent variable, etc.

14. Note that analytical solutions are obtained as functions of the parameters and
the independent variable (t).

15. For a given set of parameters, one can plot the profiles by using Maple’s ‘plot’
command.

This procedure is illustrated in Examples 2.3 and 2.4.

Heated Tanks in a Series
The exponential matrix method can be used to determine the temperatures in a
series of three heated tanks used to preheat a multi-component oil solution. The
energy balance equations for the tanks are as follows:[8]

() ()

() ()

() ()

1
0 1 1

2
1 2 2

3
2 3 3

steam
p

steam
p

steam
p

dT W UA
T T T T

dt M MC

dT W UA
T T T T

dt M MC

dT W UA
T T T T

dt M MC

= − + −

= − + −

= − + −

 (2.16)

where T1, T2 and T3 are the temperatures in °C in Tanks 1, 2, and 3; Tsteam is the
temperature of the saturated steam (250°C) used to heat the tanks and T0 (20ºC) is

2.1 Linear Ordinary Differential Equations 49

the temperature of the oil fed to the first tank; W is the mass flow rate; M is the
mass of the fluid in the tank; Cp is the specific heat capacity of the oil; U is the
overall heat transfer coefficient; and A is the heat transfer area in each tank. We

introduce two parameters
p

W UA
 and

M MC
α β= = and values for Tsteam and

T0 into equations 114H(2.16) to obtain the following equations.

() ()

() ()

() ()

1
1 1

2
1 2 2

3
2 3 3

 = 20 T + 250

 = T + 250

 = T + 250

dT
T

dt

dT
T T

dt

dT
T T

dt

α β

α β

α β

− −

− −

− −

 (2.17)

All the tanks are at an initial temperature of 20°C. Find the time it will take for
the third tank to reach 99% of its steady state value. The values of the constants
are W = 100 kg/min, M = 1000 kg, Cp = 2kJ/kg°C, and UA = 10kJ/min°C.
Determine how this time varies with the parameters α and β. Equations (equation
115H(2.17)) can be solved using Maple and the procedure described above for
nonhomogeneous simultaneous linear ODEs follows.

Example 2.3. Heating of Fluid in a Series of Tanks

> restart:

> with(linalg):with(plots):

Enter the number of differential equations.

> N:=3;

Since all the equations are in the same form, a 'for' loop can be used to generate
the equations.
> for i to N do eq[i]:=diff(T[i](t),t)=eval(alpha*(T[i-1](t)-T[i](t))+beta*(T[steam]-
T[i](t)));od;

50 2 Initial Value Problems

Next, enter the temperature of the inlet steam to the first tank T0 and the temperature
of the steam 'Tsteam' as parameters (pars).

> pars:={T[0](t)=20,T[steam]=250};

Specify the dependent variables.

> vars:=[seq(T[i](t),i=1..N)];

Specify the right hand sides of the governing equations.

> eqs:=[seq(rhs(eq[i]),i=1..N)];

Update these right hand sides by substituting the parameters:

> eqs:=subs(pars,eqs);

Generate the coefficient matrix A and the vector B (recall that = −b B):

> A:=genmatrix(eqs,vars,'B');

> evalm(B);

The forcing function vector b is the negative of the B vector.

2.1 Linear Ordinary Differential Equations 51

> b:=matrix(N,1);for i to N do b[i,1]:=-B[i];od:evalm(b);

Next, find the exponential matrix for the coefficient matrix A :

> mat:=exponential(A,t);

Specify the initial tank temperatures.

> Y0:=matrix(3,1,[20,20,20]);

Since the b vector is the constant vector, find the intermediate vector s1.

> s1:=evalm(Y0+inverse(A)&*b);

52 2 Initial Value Problems

Next, find the solution vector:

> sol:=evalm(mat&*s1-inverse(A)&*b);

The elements of the solution vector 'sol' are the desired temperatures of the three
tanks. Store these in T1, T2, and T3:

> T1:=sol[1,1];

> T2:=sol[2,1];

2.1 Linear Ordinary Differential Equations 53

> T3:=sol[3,1];

Next, determine values for and β and then substitute them into the expression
for T1, T2, and T3.

> pars:={alpha=(100./1000.),beta=10./(1000*2)};

> TT1:=subs(pars,T1);

> TT2:=subs(pars,T2);

> TT3:=subs(pars,T3);

Finally, plot the temperature profiles:

> p[1]:=plot(TT1,t=0..60,thickness=2,linestyle=1,color=blue,legend="T1"):

> p[2]:=plot(TT2,t=0..60,thickness=2,linestyle=1,legend="T2"):

> p[3]:=plot(TT3,t=0..60,thickness=2,linestyle=1,color=green,legend="T3"):

>display({seq(p[i],i=1..3)},title="Figure 2.7 Temperatures for three
tanks.",axes=boxed,

labels=["t(min)","Temperature(degreesC)"],labeldirections=[HORIZONTAL,
VERTICAL]);

54 2 Initial Value Problems

Fig. 2.7 Temperatures for three tanks

The time taken for the third tank to reach 99% of the steady state value can be
obtained from the TT3 equation by first finding its value for infinity by using
Maple's 'limit' command:

> T3steadystate:=limit(TT3,t=infinity);

Next, the time taken to reach 99% of this steady state value is determined by using
'fsolve' to find the time T when TT3 is 99% of it steady state value. First, define eq3:

> eq3:=0.99*T3steadystate=TT3;

Next, solve eq3 for t and call that Timereqd.

> Timereqd:=fsolve(eq3,t);

2.1 Linear Ordinary Differential Equations 55

Alternatively, one can find the steady state value of the temperature analytically
by applying the 'limit' command on T3 instead of TT3.

> T3steadystate:=limit(T3,t=infinity);

Maple is unable to find the limit, as it does not know the sign of alpha and beta.
We can specify that alpha and beta are greater than zero by using Maple's 'assume'
command:

> assume(alpha>0,beta>0);

> T3steadystate:=eval(T3steadystate);

Note that the trailing tildes (tildes symbol) indicate that the α and β must be
greater than zero.

Time Varying Input to a CSTR with a Series Reaction

Consider a continuously stirred tank reactor (CSTRs) sustaining the series reaction

(1 2k kA B C⎯⎯→ ⎯⎯→).[1], [9] The material balance equations are as follows:

(), 1

1 2

2

1

1

1

A
A in A A

B
B A B

C
C B

dC
C C k C

dt

dC
C k C k C

dt

dC
C k C

dt

τ

τ

τ

= − −

= − + −

= − +

 (2.18)

56 2 Initial Value Problems

with the initial conditions CA(0) = CB(0) = CC(0) = 0 mol/l. Let the input to the

tank be A,inC = 1 + sin(2t) in mol/l − min). The values of the parameters

are = 1 min;τ -1 -1
1 2k = 1 min and k = 1/4 min . The concentrations as a

function of time in this CSTR reactor can be obtained by following the procedure
described earlier for non-homogeneous linear ODEs.

Example 2.4. Time Varying Input to a CSTR with a Series Reaction

> restart:

> with(linalg):with(plots):with(Units):

Specify the number of ordinary differential equations (ODEs).

> N:=3;

Use Maple commands to generate the three governing equations.

> eq[1]:=diff(C[A](t),t)=1/tau*(C[Ain]-C[A](t))-k[1]*C[A](t);

> eq[2]:=diff(C[B](t),t)=-1/tau*(C[B](t))+k[1]*C[A](t)-k[2]*C[B](t);

> eq[3]:=diff(C[C](t),t)=-1/tau*(C[C](t))+k[2]*C[B](t);

Specify the input to the reactor as pars here.

> pars:={C[Ain]=1+sin(2*t)};

Name the dependent variables.

> vars:=[C[A](t),C[B](t),C[C](t)];

Specify the right hand sides of the governing equations.

2.1 Linear Ordinary Differential Equations 57

> eqs:=[seq(rhs(eq[i]),i=1..3)];

Form the set of right hand sides of the equations with the time dependent input to
the tank.

> eqs:=subs(pars,eqs);

Use 'eqs' and 'vars' to find the coefficient matrix A and the forcing function
vector b . In this case, we find 1b and then b since = −b b . The A matrix

and 1b vector are generated as described in the procedure for nonlinear
homogeneous ODEs:

> A:=genmatrix(eqs,vars,'b1');

Use 1b to find b .

> b:=matrix(N,1);for i to N do b[i,1]:=-b1[i];od:evalm(b);

In this case the forcing function vector b depends on time, which means we will
need to use

58 2 Initial Value Problems

0

0

exp() exp[()] ()
t

t t dτ τ τ= + − −∫Y A Y A b

to find the solution vector. Next, find the matrix exponential of A .

> mat:=exponential(A,t);

Specify the initial conditions.

> Y0:=matrix(3,1,[0,0,0]);

Since τ is a parameter in the system of governing equations, we use t1 as the
dummy integration variable in

0

0

exp() exp[()] ()
t

t t dτ τ τ= + − −∫Y A Y A b

We will need to generate a b vector that depends on time. Call this vector b2.

> b2:=subs(t=t1,evalm(b));

2.1 Linear Ordinary Differential Equations 59

The matrix exponential under the integral sign the above equation is obtained next
and named mat2.

> mat2:=subs(t=t-t1,evalm(mat)):

> mat3:=evalm(mat2&*b2):

> mat4:=map(int,mat3,t1=0..t):

> sol:=evalm(mat&*Y0+mat4):

The solution is not printed for brevity. Store the concentration expressions Ca,
Cb, and Cc.

> ca:=sol[1,1];

> cb:=sol[2,1]:

> cc:=sol[3,1]:

60 2 Initial Value Problems

> cb:=sol[2,1]:

> cc:=sol[3,1]:

Again cb and cc are not printed for brevity. Next, numerical values for the rate
constants (k1 and k2) and the time constant τ are specified and substituted in the
expressions for Ca, Cb, and Cc:

> pars:={tau=1,k[1]=1,k[2]=1/4};

> Ca:=simplify(subs(pars,ca));

> Cb:=simplify(subs(pars,cb));

> Cc:=simplify(subs(pars,cc));

Next, plot the concentration profiles. Specify the time you want to use to plot the
results.

> tf:=20;

2.1 Linear Ordinary Differential Equations 61

> p1:=plot(Ca,t=0..tf,thickness=3,color=blue,linestyle=1,labels=["t(min)","
Ca(mol/1)"],labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.8
Concentraiton of species A as a function of time.",axes=boxed);

> pt1:=textplot([10,0.1,{tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]=0.25*
Unit(min^(-1))}]);

> display([p1,pt1]);

Fig. 2.8 Concentration of species A as a function of time

62 2 Initial Value Problems

> p2:=plot(Cb,t=0..tf,thickness=3,color=red,linestyle=1,labels=["t(min)","
Cb(mol/1)"],
labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.9 Concentration
of species B as a function of time.",axes=boxed);

> pt1:=textplot([10,0.1,[tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]=
0.25*Unit(min^(-1))]]);

> display([p2,pt1]);

Fig. 2.9 Concentration of species B as a function of time

2.1 Linear Ordinary Differential Equations 63

> p3:=plot(Cc,t=0..tf,thickness=3,color=green,linestyle=1,labels=["t(min)","
Cc(mol/1)"],
labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.10
Concentration of species C as a function of time.",axes=boxed);

> pt3:=textplot([10,0.02,[tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]=
0.25*Unit(min^(-1))]]);

> display([p3,pt3]);

Fig. 2.10 Concentration of species C as a function of time

We observe that all the concentrations start from zero and after about six minutes
oscillate at.

2.1.6 Higher Order Linear Ordinary Differential Equations

Higher order linear ODEs can also be solved by changing them into a system of
first order ODEs and using the exponential matrix approach discussed earlier. The
most general form of a linear ODE of nth order is[1]

64 2 Initial Value Problems

1

1 1 01
 ... ()

n n

nn n

d y d y dy
a a a y f t

dt dt dt

−

− −+ + + =

(2.19)

Introducing the variable transformations,

1
11

1 2 1
, ,...,

n
n

n n

dYdY dy d y
Y y Y Y

dt dt dt dt

−
−

−= = = = =

(2.20)

yields the following n first order ODEs

1
2

2
3

1

0 1 1 2 2 1 1

.....

 ()

n
n

n
n n n n

dY
Y

dt
dY

Y
dt

dY
Y

dt
and

dY
a Y a Y a Y a Y f t

dt

−

− − −

=

=

=

= − − − − +

(2.21)

differential equations where the dependent variables are

[]1 2 3 -1

2 2 1

2 2 1

 , , ,.... ,

 , , ,.... ,

T

n n

Tn n

n n

Y Y Y Y Y

dy d y d y d y
y

dt dt dt dt

− −

− −

=

⎡ ⎤
= ⎢ ⎥

⎣ ⎦

Y

 (2.22)

the coefficient matrix is

0 1 2 3 1

0 1 0 0 ... 0

0 0 1 0 ... 0

.

.

0 0 0 ... 0 1

... na a a a a −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − − −⎢ ⎥⎣ ⎦

A (2.23)

2.1 Linear Ordinary Differential Equations 65

and the forcing function matrix is

[] 0,0,0,...0,0, ()
T

f t=b (2.24)

Again, the solution is obtained by finding the exponential matrix and the non-
homogeneous part (see equation 2.12). The procedure used to solve higher order
linear ODEs can be summarized as follows:

1. Start the Maple program with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equations.
4. Enter the coefficient matrix (A) based on equation 117H(2.23).
5. Enter the forcing function matrix (b) based on equation 118H(2.24).
6. Store the initial conditions for the dependent variables in the vector Y0.
7. The first row of Y0 corresponds to the initial condition for y, the second row

corresponds to the initial condition for the first derivative of y, etc.
8. Find the matrix exponential (exp(At)) as a function of the parameters and the

independent variable (t) using the ‘exponential(A,t)’ command in Maple.
9. Store the matrix exponential in mat. Next, find the solution (sol) by multiplying

mat with Y0 and adding the non-homogenous solution according to equation
119H(2.14) or 120H(2.15) depending on the b vector.

10. The first row of sol corresponds to the dependent variable y; the second row
corresponds to the first derivative of y, etc. The nth row of sol corresponds to
(n−l)th derivative of y.

Note that this procedure yields analytical solutions as functions of the parameters
and the independent variable (t).

Second Order Ordinary Differential Equation (ODE)

Consider a second order system subject to a k step input,[10]

2

2 2 2

2 1 k
+ + y =

d y dy

dt dt

ς
τ τ τ

 (2.25)

with the initial conditions y(0) = 0 and
dy

(0) 0, and , , and k
dt

τ δ= are

constant parameters. Equation 121H(2.25) can be solved by following the procedure
described for higher order linear ODEs.

Example 2.5 A Second Order ODE

> restart:

> with(linalg):with(plots):

Enter the order of the differential equation.

> N:=2;

66 2 Initial Value Problems

> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+1/tau^2*y(t)=k/tau^2;

Enter the corresponding A matrix and b vector.

> A:=matrix(N,N,[0,1,-1/tau^2,-2*zeta/tau]);

Enter the forcing function (i.e., the b matrix).

> b:=matrix(N,1,[0,k/tau^2]);

Find the matrix exponential of the coefficient matrix.

> mat:=exponential(A,t);

2.1 Linear Ordinary Differential Equations 67

Specify the initial conditions.

> Y0:=matrix(N,1,[0,0]);

In this case, b is a constant vector, but we can use an equation that will work even
when the b vector is a function of time. Recall that τ is a parameter (equation
(2.12)). We will use b2 with the dummy integration variable t1 (even though it is
not needed) to illustrate the procedure.

> b2:=subs(t=t1,evalm(b));

The next step is to generate the matrix exponential under the integral sign (see
equation (2.12)) and name this matrix mat2.

> mat2:=subs(t=t-t1,evalm(mat)):

Next, multiply the vector b2 by mat2 to obtain the vector to be integrated. Call
this vector mat3.

> mat3:=evalm(mat2&*b2):

68 2 Initial Value Problems

The next step is to use Maple's 'map' command to integrate the elements in mat3.
Call the result mat4.

> mat4:=map(int,mat3,t1=0..t):

Obtain the solution vector.

> sol:=evalm(mat&*Y0+mat4):

> sol:=map(simplify,sol);

The first row of sol corresponds to the dependent variable y.

> y:=sol[1,1];

2.1 Linear Ordinary Differential Equations 69

Next, y is made dimensionless by dividing by k.
> theta:=y/k;

Next, the dimensionless time T=t/τ is introduced.

> theta:=subs(t=tau*T,theta);

Now one can plot θ for values of ζ greater than 1:

> pars:=[1.5,2,2.5,3];

> for i from 1 to 4 do

 p[i]:=plot(subs(zeta=pars[i],theta),T=0..15):

od:

> pt[1]:=textplot([3.2,evalf(subs({T=4.0,zeta=pars[1]},theta)),'zeta=pars[1]']):

pt[2]:=textplot([5.4,evalf(subs({T=5.0,zeta=pars[2]},theta)),pars[2]]):

pt[3]:=textplot([6.0,evalf(subs({T=5.5,zeta=pars[3]},theta)),pars[3]]):

pt[4]:=textplot([6.5,evalf(subs({T=6.0,zeta=pars[4]},theta)),pars[4]]):

>display([seq(p[i],i=1..4),seq(pt[i],i=1..4)],thickness=3,axes=boxed,labels=
["T(t/tau)","theta (y/k)"],title="Figure 2.11 Dimensionless variables theta
(y/k) as a function of dimensionless time T(t/tau) for zeta>1.");

70 2 Initial Value Problems

Fig. 2.11 Dimensionless variables theta (y/k) as a function of dimensionless time T(t/tau)
for zeta > 1

Figure 2.11 shows that the system is over damped for the values of ζ>1. Next,
specify values for ζ<1.

> spars:=[0.2,0.3,0.4,0.5,0.6,0.75];

> for i from 1 to 6 do p2[i]:=plot(evalf(Re(subs(zeta=spars[i],theta))),T=0..15):od:

> pt[1]:=textplot([1.3,Re(subs({T=2.8,zeta=spars[1]},theta)),'zeta=spars[1]']):

pt[2]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[2]},theta)),spars[2]]):

pt[3]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[3]},theta)),spars[3]]):

pt[4]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[4]},theta)),spars[4]]):

pt[5]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[5]},theta)),spars[5]]):

pt[6]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[6]},theta)),spars[6]]):

>display([seq(p2[i],i=1..6),seq(pt[i],i=1..6)],thickness=3,axes=boxed,labels=
["T(t/tau)","theta (y/k)"],title="Figure 2.12 Dimensionless variable theta (y/k)
as a function of dimensionless time T(t/tau) for zeta<1.");

2.1 Linear Ordinary Differential Equations 71

Fig. 2.12 Dimensionless variable theta (y/k) as a function of dimensionless time T(t/tau) for
zeta < 1

We observe that the system is under damped for the values of ζ<1. Now let us
consider the special case of ζ=1.

> subs(zeta=1,theta);

Error, numeric exception: division by zero

We get division by zero and hence we apply the limit T=1.

> theta1:=limit(theta,zeta=1);

> pt[1]:=textplot([10,0.8,(zeta=1.0)]):

>pt[2]:=plot(theta1,T=0..15,thickness=3,axes=boxed,labels=["T (t/tau)","theta
(y/k)"],title="Figure 2.13 Dimensionless variables theta (y/k) as a function
of dimensionless time T(t/tau) for zeta=1.0."):

display(pt[1],pt[2]);

72 2 Initial Value Problems

Fig. 2.13 Dimensionless variables theta (y/k) as a function of dimensionless time T(t/tau)
for zeta = 1.0

Figure 2.13 shows that the system is critically damped for ζ=1.

2.1.7 Solving Systems of ODEs Using the Laplace Transform
Method

ODEs can be solved by applying Laplace transform technique. Consider a set of
linear ODEs:

,
1

 () 1 ..
n

i
i j j i

j

dy
a y b t i n

dt =

= + =∑ (2.26)

This set of linear ODEs can be converted to the Laplace domain by using Maple.
The resulting set of linear algebraic equations can be written in matrix form as
follows:

PY = b (2.27)

where Y , P and b are functions of s, the Laplace variable. Y , is the solution in
the Laplace domain and can be found by inverting P:

−1Y = P b (2.28)

2.1 Linear Ordinary Differential Equations 73

Then the solution in the time domain Y(t) can be obtained by inverting the

solution obtained in the Laplace domain Y (s). The procedure to solve linear
ODEs using the Laplace transform technique and Maple is as follows:

1. Start the Maple program with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Call Maple’s Laplace transformation package by using the ‘with(inttrans)’

command.
4. Enter the governing equations and number of equations (n).
5. Enter the initial conditions.
6. Apply the Laplace transformation to the equations using the command

laplace(“equations”,t,s) which converts the equations from time domain to the
Laplace (s) domain.

7. Store all the Laplace domain in eqs.
8. Use dummy variables in the Laplace domain (ua, ub, etc) for brevity of notation.
9. Store the dummy variable in vars.

10. Substitute these dummy variables in eqs.
11. Generate the P and b matrices.
12. Find the solution in Laplace domain by inverting the P matrix.
13. Convert the solution in the Laplace domain to the time domain using

invlaplace(“equations,”s,t) which converts the equations from the s domain to
the time domain.

The first row of sol corresponds to the first dependent variable; the second row
corresponds to the second dependent variable, etc. Note that analytical solutions
are obtained as functions of the parameters and the independent variable (t).

Laplace Solution of Example 2.1 Equations

The IVP solved in example 2.1 is solved below using the Laplace transform
technique following the procedure described above.

Example 2.6. Laplace Solution of Example 2.1 Equations

> restart:

> with(linalg):with(plots):

Warning, the protected names norm and trace have been redefined and
unprotected
Warning, the name changecoords has been redefined

> with(inttrans):

Warning, the name hilbert has been redefined

> eq[1]:=diff(ca(t),t)=-k1*ca(t);

74 2 Initial Value Problems

> eq[2]:=diff(cb(t),t)=k1*ca(t)-k2*cb(t);

> N:=2;

> ca(0):=1;cb(0):=0;

> eq[1]:=laplace(eq[1],t,s);

> eq[2]:=laplace(eq[2],t,s);

> eqs:=[eq[1],eq[2]];

Dummy variables are introduced for convenience.

> dummyvar:={laplace(ca(t),t,s)=ua,laplace(cb(t),t,s)=ub};

> eqs:=subs(dummyvar,eqs);

> vars:=[ua,ub];

> P:=genmatrix(eqs,vars,'B');

2.1 Linear Ordinary Differential Equations 75

> b:=matrix(N,1):for i to N do b[i,1]:=B[i]:od:evalm(b);

> sol:=evalm(inverse(P)&*b);

The vector 'sol' is the solution in the Laplace domain. This is converted to the time
domain by using Maple's 'map' command with the 'invlaplace' command.

> solt:=map(invlaplace,sol,s,t);

> ca:=solt[1,1];

> cb:=solt[2,1];

> cc:=1-ca-cb;

These results are consistent with those presented in Example 2.1.

Laplace Solution for Second Order System with Dirac forcing Function

Solve the IVP discussed in Example 2.5 with a Dirac(t) function as the forcing
function.

2

2 2 2

2 1 Dirac(t)
 + + y =

d y dy

dt dt

ς
τ τ τ

 (2.29)

This IVP can be solved easily using the Laplace transform technique. The
procedure presented above for the Laplace transformation technique can be used
for solving this example. When solving a second order differential equation, the

initial conditions for both y and
dy

dt
must be provided.

76 2 Initial Value Problems

Example 2.7. Laplace Solution for Second Order System with Dirac forcing
Function

> restart:

> with(linalg):with(plots):

> with(inttrans):

> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+1/tau^2*y(t)=Dirac(t)/tau^2;

Even though the equation is second order there is only one equation to be solved.

> N:=1;

The initial conditions are entered here.

> y(0):=1;D(y)(0):=0;

> eq:=laplace(eq,t,s);

> eqs:=[eq];

> dummyvar:={laplace(y(t),t,s)=u};

> eqs:=subs(dummyvar,eqs);

2.1 Linear Ordinary Differential Equations 77

> vars:=[u];

> PP:=genmatrix(eqs,vars,'b1');

> b:=matrix(N,1):for i to N do b[i,1]:=b1[i]:od:evalm(b);

> sol:=evalm(inverse(PP)&*b);

> solt:=map(invlaplace,sol,s,t);

> y:=solt[1,1];

78 2 Initial Value Problems

The value for τ is entered here for plotting purposes.

> tau:=1;

> y:=eval(simplify(y));

> pars:=[1.5,2,2.5,3];

> for i from 1 to 4 do p[i]:=plot(subs(zeta=pars[i],y),t=0..15):od:
> display(seq(p[i],i=1..4),thickness=3,axes=boxed,labels=["t","y"],title=
"Figure 2.14");

Fig. 2.14

> pars:=[0.2,0.3,0.4,0.5,0.6,0.75];

2.1 Linear Ordinary Differential Equations 79

> for i from 1 to 6 do p2[i]:=plot(evalf(Re(subs(zeta=pars[i],y))),t=0..15):od:

> display(seq(p2[i],i=1..6),thickness=3,axes=boxed,labels=["t","y"],title=
"Figure 2.15");

Fig. 2.15

> subs(zeta=1,y);

Error, numeric exception: division by zero

> y1:=limit(y,zeta=1);

> plot(y1,t=0..15,thickness=3,axes=boxed,labels=["t","y"],title="Figure 2.16");

80 2 Initial Value Problems

Fig. 2.16

We observe that the system oscillates for ζ<1 and does not oscillate for ζ≥1.

2.1.8 Solving Linear ODEs Using Maple’s ‘dsolve’ Command

In the previous sections we solved linear ODEs using exponential matrix (section
2.1.2 – 2.1.4) and the Laplace transform technique (section 2.1.5). Alternatively,
Maple’s dsolve command can be used to solve linear ODEs. However, the
analytical solution obtained from the dsolve command may not be in a simplified
form.

The reaction scheme described in example 2.1 is solved below using the
‘dsolve’ command.

Example 2.8. Solving Linear ODEs Using Maple

The reaction scheme described in example 2.1 is solved below using the 'dsolve'
command.

> restart:

> with(plots):

Warning, the name changecoords has been redefined

> eq[1]:=diff(ca(t),t)=-k1*ca(t);

2.1 Linear Ordinary Differential Equations 81

> eq[2]:=diff(cb(t),t)=k1*ca(t)-k2*cb(t);

> vars:=(ca(t),cb(t));

> eqs:=(eq[1],eq[2]);

> ICs:=(ca(0)=1,cb(0)=0);

> sol:=dsolve({eqs,ICs},{vars});

> assign(sol):

> ca(t);

> cb(t);

Higher order linear ODEs can also be solved using the dsolve command. It should
be noted that Maple solves equations in symbolic form. Therefore, even if the
constants are numerical, the output is in symbolic form. Sometimes, this output can
be messy. It should be noted that when more than two equations are solved the
‘dsolve’ command may not be able to give an elegant solution. For illustration, the
heat transfer problem solved in example 2.3 is solved below using Maple’s ‘dsolve’
command.

Example 2.9. Heat Transfer in a Series of Tanks, 'dsolve'

> restart:

> with(linalg):with(plots):

Warning, the protected names norm and trace have been redefined and
unprotected
Warning, the name changecoords has been redefined

> N:=3;

82 2 Initial Value Problems

> for i to N do eq[i]:=diff(T[i](t),t)=eval(alpha*(T[i-1](t)-T[i](t))+
beta*(T[steam]-T[i](t)));od;

> pars:={T[0](t)=20,T[steam]=250};

> vars:=[seq(T[i](t),i=1..N)];

> for i to 3 do eq[i]:=subs(pars,eq[i]);od;

>dsolve({eq[1],eq[2],eq[3],T[1](0)=20,T[2](0)=20,T[3](0)=20});

2.1 Linear Ordinary Differential Equations 83

We observe that solutions obtained for T2(t) and T3(t) using the 'dsolve' command
are long and messy compared to the solution obtained using the exponential
matrix approach (Example 2.3). When more than three differential equations are
to be solved it is recommended that the exponential matrix method be used. As an
exercise, readers can verify that the solution obtained using the 'dsolve' command
is equivalent to the solution obtained in example 2.3.

2.1.9 Summary

In this chapter analytical solutions were derived for linear ODEs using three
methods: the matrix exponential, Laplace transform, and dsolve. In section 2.1.2,

84 2 Initial Value Problems

the given linear coupled system of homogenous ODEs was converted to matrix
form. The analytical solution for this matrix differential equation was then found
using the matrix exponential. Maple provides the exponential matrix as a function
of the independent variable and the parameters in the governing equations. This
approach yields an elegant solution for a given system of linear coupled
homogeneous ODEs. This methodology was then extended to non-homogenous
coupled linear ODEs in section 2.1.3. This approach yields analytical solutions
for linear coupled ODEs with time-dependent forcing functions.

Higher order ODEs (of order n) were converted to a system of n coupled linear
first order ODEs in section 2.1.4. This system was then solved using the
exponential matrix developed earlier. This approach yields analytical solutions for
linear ODEs of any order. In section 2.1.5, the given system of coupled linear
ODEs was converted to Laplace domain. The resulting linear system of algebraic
equations was then solved for the solution in the Laplace domain. The solution
obtained in the Laplace domain was then converted to the time domain.

Maple’s ‘dsolve’ command was used to solve linear ODEs in section 2.1.6. In
our opinion, exponential matrix method is the best method to arrive at an elegant
analytical solution. The Laplace transform technique illustrated in section 2.1.5
could be used for integro-differential equations. Maple’s ‘dsolve’ command has to
be used if the exponential matrix method fails.

2.1.10 Problems

1. Consider two tanks in a series (Pushpavanam, 1998), [11] in which the
height of each tank is governed by

2.

1 1 2

1 1 1

2 1 2 2

1 2 2 2

dh h hF

dt A R A

dh h h h

dt R A R A

−= −

−= −

where, h is the height of liquid in the tank, R1 and R2 are the resistances of
the values, A is the cross sectional area, and F is the flow rate. The
subscripts 1 and 2 are the subscripts for tank 1 and tank 2 respectively.
Obtain an analytical solution for the height of liquid in each tank as a
function of the parameters. Plot your profiles for the set of parameters
F = 1, A1 = 1, R1 = ½, A2 = 2 and R2 = ¼.

3. Consider the series reaction scheme modeled in example 2.2 (equation
2.10), eliminate the concentration of species C, CC in the first two
equations using material balance. This will yield a system of two non-
homogeneous ODEs. Solve this system to get an analytical solution for the
individual species as a function of rate constants and time.

4. A steel ball initially at a uniform temperature of 100oC is dropped into
an insulated vessel containing water at 20oC (Pushpavanam, 1998)[11].
Determine the steady state temperature of water and steel ball. The energy

2.1 Linear Ordinary Differential Equations 85

balance gives the governing equations for the temperature of steel ball (Tb)
and the temperature of water (Tw) as:

 - (-)

 (-)

b
b b b w

w
w w b w

dT
m C UA T T

dt
dT

m C UA T T
dt

=

=

where m is the mass, C is the specific heat capacity and UA is the heat
transfer rate. And b and w are the subscripts for the steel ball and water
respectively. Find transient and steady state analytical solutions for the
temperature of water and steel ball as a function of the parameters. What
do you observe? Plot your profiles for the set of parameters mb = 1.25 kg,
mw = 5 kg, Cb = 3360 J/g/oC, Cw = 4200 J/kg/oC and UA = 4200 J/s/oC.

5. Consider the series-parallel reaction scheme in a batch reactor

31 kk

2

A B C

k

C

⎯⎯→ ⎯⎯→
↓

Assuming that all the reactions are first order, write down the governing
equations for this reaction. Assuming 1, 0, and 0 mol/cm3 as the initial
conditions for A, B, and C develop analytical expressions for the
concentration of A, B and C. Do you observe a maximum for B? Plot the
concentration profiles for the parameters k1 = 2 min-1; k2 = 1 min-1; and k3
= 2 min-1.

6. Consider the series reaction scheme in a constant batch reactor (Bequette,
1998)[12]

31 2 kk kA B C D⎯⎯→ ⎯⎯→ ⎯⎯→

Assuming that all the reactions are first order, write down the governing
equations for the concentration of A, B and C. Assuming 1, 0, and 0
mol/cm3 as the initial conditions for A, B, and C develop analytical
expressions for the concentration of A, B and C. Plot the concentration
profiles for the parameters k1 = 2 min-1; k2 = 1 min-1; and k3 = 2 min-1. Do
you observe a maximum for B? Explain how you would obtain the
concentration of D.

7. Consider the second order system solved in example 2.5

2

2 2 2

2 1
 ()

(0) 0; (0) 0

d y dy k
y u t

dt dt
dy

y
dt

ς
τ τ τ

+ + =

= =

86 2 Initial Value Problems

subject to a sinusoidal input u(t) = sin(ω t). Obtain an analytical solution
for y(t) and analyze this problem for different values of ς for τ = 1 and
ω = 1. Solve this problem using the exponential matrix and by using the
Laplace transform technique.

8. Consider the second order system in problem 6, redo the problem if the
input is u(t) = sin(ω t)e-t.

9. Consider the CSTR problem discussed in the chapter (example 2.4). Solve
the governing equations if the reaction scheme is given by

21

3

kk

k
A B C⎯⎯→⎯⎯→ ←⎯⎯

Plot your concentration profiles for k2 = 1/8 and k3 = 1/2. All other
parameters are same as that of example 2.4. What do you observe?

10. Consider heating of a fluid stream by steam coils in a series of tanks (see
example 2.3). Write down the differential equations describing the
evolution of temperature in a system of four such tanks in series. Find the
evolution of temperature with time in each tank using the exponential
matrix method. Plot your temperature profiles for the parameter values [α,
β] = [0.1, 0.005] and [0.1, 0.01]. Find the time taken by the last tank to
reach 99% of its steady state value. How does this time compare with the
time for a 3-tank system and a 2-tank system when the total weight of all
the tanks remains the same? All other parameters are same as that of
example 2.3.

11. Consider the first order series reaction taking place in a plug flow reactor.
Optimize the length of the reactor to maximize the concentration of B in
the outlet stream. Take initial conditions from problem 5.

12. Consider the pharmacokinetics problem (Bequette, 1998)[12]

1
1 1 2 2

2
3 1 4 2

1 2

(0) (0) 0

dc
k c k c u

dt

dc
k c k c

dt

c c

= − + +

= −

= =

where c1 and c2 are the concentration of the drug in compartment 1 and 2
respectively, u is the injection rate, 5.2 ppm/min. Obtain an analytical
solution for this problem as a function of the rate constants. Plot your
profiles for the following set of parameters [k1, k2, k3, k4] = [0.26, 0.1, 0.1,
0.094] min-1.

13. Consider a typical gas absorption column (Bequette, 1998; Varma and
Morbidelli, 1997)[3, 12] solute balance gives the governing equations

2.2 Nonlinear Ordinary Differential Equations 87

1
1 2

1 1

1

 1

 2.. 1

f

i
i i i

N
N N f

dx L Va Va L
x x x stage

dt M M M

dx L L Va Va
x x x stage i N

dt M M M

dx L L Va V
x x y stage N

dt M M M

− +

−

+= − + +

+= − + = −

+= − +

where N is the number of stages in the absorption column, L is the liquid
feed flow rate, V is the vapor feed flow rate, M is the mass of liquid molar
hold up per stage, a is the equilibrium constant, xf and yf are the feed mole
fraction of the liquid stream and the vapor stream respectively. Values of
the parameters are L = 4/3 kgmol inert oil/min, V = 5/3 kgmol air/min, M =
20/3 kgmol, xf = 0, yf = 0.1 and a = 0.5. At time t = 0, the mole fraction x
in all the stages is zero. Plot transient profiles for the mole fraction (x) of
all the stages for N = 3. What is the steady state mole fraction of the liquid
stream (xN) leaving the absorption column? What is the minimum number
of stages N to be used to make sure that the steady state mole fraction of
the liquid stream leaving the absorption column (xN) is greater than 0.12?
Also plot x vs. the stage number (from 0 to N) for different values of time
(0, 10, 20, .. till steadystate).

14. Redo problem 12 for N = 9 and xf = 0.1. What do you observe?
15. Consider the irreversible series reaction A→B taking place in N CSTRs in

series. The governing equation for the concentration of A in a particular
tank is given by:

-1 1

1
 () i

i i i

dca
ca ca k ca

dt τ
= − −

where τ is the time constant and k1 is the rate constant. The feed
concentration to the first tank (ca0) is 1 and the parameters are k1 = τ = 1
and N = 3. Solve this problem to obtain a transient analytical solution for
the concentration of A in each tank. Increase N to 10 and obtain the
transient plots. In addition plot the concentration as a function of the
tank number for different times.

2.2 Nonlinear Ordinary Differential Equations

2.2.1 Introduction

Chemical reactions with reaction orders other than one and many practical
systems are typically represented by nonlinear ordinary differential equations

88 2 Initial Value Problems

(ODEs). In this section analytical, series and numerical solutions are developed
for nonlinear IVPs using Maple.

Example 2.2.1. Simultaneous Series Reactions

Consider a second order reaction

1 2k k2A B C⎯⎯→ ⎯⎯→ (2.30)

governed by the nonlinear ODEs:

2a
1 a

2b
1 b 2 b

dc
= 2k c

dt
dc

= k c k c
dt

−

− −
 (2.31)

with the initial conditions ca(0) = 1; cb(0) = 0 and cc(0) = 0; and, k1 and k2 are the
rate constants. The concentration of species C(cc) at any time is given by the
material balance

 (0) 1a b c ac c c c+ + = = (2.32)

The equation above is solved below in Maple:

> restart:

> with(plots):

The governing equations are entered here:

> eq[1]:=diff(ca(t),t)=-k1*ca(t)^2;

> eq[2]:=diff(cb(t),t)=k1*ca(t)^2-k2*cb(t);

The variables are entered here:

> vars:=(ca(t),cb(t));

2.2 Nonlinear Ordinary Differential Equations 89

The equations are stored in eqs.

> eqs:=(eq[1],eq[2]);

The initial conditions are stored in ICs:

> ICs:=(ca(0)=1,cb(0)=0);

> sol:=dsolve({eqs,ICs},{vars});

> assign(sol):

> ca(t);

> cb(t);

90 2 Initial Value Problems

The ‘help’ command in Maple is invoked to describe Ei. The following description
for Ei is given in Maple's help file.

> ?Ei
Ei - The Exponential Integral
Calling Sequence
 Ei(z)
 Ei(a, z)
Parameters
 z - algebraic expression
 a - algebraic expression
Description
• The exponential integrals, Ei(a, z), are defined for Re(z) > 0 by
> Ei(a, z) = convert(Ei(a, z), Int) assuming Re(z) > 0;
 This classical definition is extended by analytic continuation to the entire
complex plane using
> Ei(a, z) = z^(a-1)*GAMMA(1-a, z);
 with the exception of the point 0 in the case of Ei(1, z).
• For all of these functions, 0 is a branch point and the negative real axis is the
branch cut. The values on the branch cut are assigned such that the functions
are continuous in the direction of increasing argument (equivalently, from
above).
• The classical definition for the 1-argument exponential integral is a Cauchy
Principal Value integral, defined for real arguments x, as the following
> convert(Ei(x),Int) assuming x::real;
> value(%);
 for x < 0, Ei(x) = -Ei(1, -x). This classical definition is extended to the entire
complex plane using

Ei(z) = -Ei(1, -z) + (ln(z) - ln(1/z))/2 - ln(-z)

Note that this extension has its branch cut on the negative real axis, but unlike
for the 2-argument Ei functions this extension is not continuous onto the
branch cut from either above or below. That is, this extension provides an
analytic continuation of Ei(z) from the positive real axis, but not in any
direction from the negative real axis. If you want a continuation from the
negative real axis, use -Ei(1, -z) in place of Ei(z).

Reference:
Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. New
York: Dover Publications Inc., 1965.

An additional reference for the function of Ei is F. B. Hildebrand, Advanced

Calculus for Applications, 2d Ed, 1976, Prentice-Hall, page 50.[13]

2.2 Nonlinear Ordinary Differential Equations 91

The concentration of species C is found using the material balance.

> cc(t):=1-ca(t)-cb(t);

Plots can be made for different values of rate constants.

> pars:={k1=1,k2=1};

> Ca:=subs(pars,ca(t));

> Cb:=subs(pars,cb(t));

> Cc:=subs(pars,cc(t));

> p1:=plot(eval(Ca),t=0..10,thickness=3,color=green):

> p2:=plot(eval(Re(Cb)),t=0..10,linestyle=1,thickness=3,axes=boxed):

> p3:=plot(eval(Re(Cc)),t=0..10,linestyle=2,thickness=3,color=magenta):

To get rid of the residual errors while calculating the Ei functions only the real
part is plotted.

> display({p1,p2,p3},labels=[t,C],title=" Figure 2.17");

92 2 Initial Value Problems

Fig. 2.17

> pars:={k1=2,k2=1};

> Ca:=subs(pars,ca(t));

> Cb:=subs(pars,cb(t));

2.2 Nonlinear Ordinary Differential Equations 93

> Cc:=subs(pars,cc(t));

> p1:=plot(Ca,t=0..10,thickness=3,color=green):

> p2:=plot(Re(Cb),t=0..10,linestyle=1,thickness=3,axes=boxed):

> p3:=plot(Re(Cc),t=0..10,linestyle=2,thickness=3,color=magenta):

> display({p1,p2,p3},labels=[t,C],title="Figure 2.18");

Fig. 2.18

We observe that a maximum exists for the concentration of species B. Sometimes,
Maple gives implicit solutions, i.e., independent variable (t), as a function of the
dependent variable (y).

94 2 Initial Value Problems

2.2.2 Solving Nonlinear ODEs Using Maple’s ‘dsolve’ Command

Consider an nth order reaction

kA Pr oducts⎯⎯→ (2.33)

governed by the ODE:

ndc
kc

dt
= − (2.34)

with the initial conditions c(0)=1; k is the rate constant , and n is the order of the
reaction. Series solutions are obtained in Maple below:

> restart:

> with(plots):

Enter the governing equation:

> eq:=diff(c(t),t)=-k*c(t)^n;

The analytical solution is found as:

> ca:=rhs(dsolve({eq,c(0)=1},c(t)));

Next, the series solution can be obtained as:

> sol:=dsolve({eq,c(0)=1},{c(t)},type=series);

By default, Maple returns series solutions accurate to the order of t6 . The order
can be increased as:

> Order:=8;

2.2 Nonlinear Ordinary Differential Equations 95

> sol:=dsolve({eq,c(0)=1},{c(t)},type=series);

The order obtained is converted to polynomial form for plotting purposes.

> assign(sol):

> c(t):=convert(c(t),polynom);

Next, the series solution obtained is plotted for different values of parameters and
compared with the analytical solution.

> pars:={k=1,n=1};

> C:=subs(pars,c(t));

> Ca:=subs(pars,ca);

Error, numeric exception: division by zero

96 2 Initial Value Problems

Since division by zero occurs, the limit is obtained.

> Ca:=limit(ca,n=1);

> Ca:=subs(k=1,Ca);

> tf:=3;

> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.19",labels=[t,"C"]);

Fig. 2.19

We observe that the series solution diverges for values of t greater than 2. Next,
plots are made for different values of the parameters:

> pars:={k=1,n=1/3};

2.2 Nonlinear Ordinary Differential Equations 97

> C:=subs(pars,c(t));

> Ca:=subs(pars,ca);

> tf:=1.5;

> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.20",labels=[t,"C"]);

Fig. 2.20

For these values, both the exact analytical solution and the series solution match
exactly until t=1.4. Next, a second order reaction is considered.

> pars:={k=1,n=2};

98 2 Initial Value Problems

> C:=subs(pars,c(t));

> Ca:=subs(pars,ca);

> tf:=1;

> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.21",labels=[t,"C"]);

Fig. 2.21

For this case, the series solution starts to diverge after t is greater than 0.4. Hence,
one has to be careful while using series solutions. The divergence of the series
solution obtained depends upon the problem and values of the parameters.
Nevertheless, Maple can give series solutions to the order t100 also.

2.2.3 Series Solutions for Nonlinear ODEs

Series solutions for nonlinear ODEs can be obtained using Maple’s ‘dsolve’
command. The syntax is:

dsolve({“differential equations, initial conditions”},{“dependent variable”},
type=series).

2.2 Nonlinear Ordinary Differential Equations 99

The series solution obtained may be convergent or divergent depending on the
problem.

Example 2.2.2. Fermentation Kinetics

> restart:

> with(plots):

Enter the governing equations.

> eq[1]:=diff(y[1](t),t)=k[1]*y[1](t)*(1-y[1](t)/k[2]);

> eq[2]:=diff(y[2](t),t)=k[3]*y[1](t)-k[4]*y[2](t);

Enter the dependent variables:

> vars:=(y[1](t),y[2](t));

Enter the values for the parameters:

> pars:={k[1]=0.04,k[2]=3.92,k[3]=.018,k[4]=0.022};

> eqs:=(subs(pars,eq[1]),subs(pars,eq[2]));

Enter the initial conditions:

> ICs:=(y[1](0)=0.29,y[2](0)=0);

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

Next, the plots are made.

> odeplot(sol,[t,y[1](t)],0..400,title="Figure 2.22",axes=boxed,thickness=3);

100 2 Initial Value Problems

Fig. 2.22

> odeplot(sol,[t,y[2](t)],0..400,title="Figure 2.23",axes=boxed,thickness=3);

Fig. 2.23

2.2 Nonlinear Ordinary Differential Equations 101

Next, the solution at a particular time can be obtained as:

> sol(0);

> sol(100.);

[t = 100., y1(t) = 3.18890696007849872, y2(t) = 1.54409378497148175]

> sol(200);

[t = 200., y1(t) = 3.90360922790476028, y2(t) = 2.94610336316537502]

Similarly higher order ODEs can be solved using Maple's 'dsolve' command as
shown in the next example.

Example 2.2.3

> restart:

> with(plots):

Enter the governing equation:

> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+y(t)=1/tau^2;

Enter the parameters:

> pars:={tau=1,zeta=1/2};

> eq:=subs(pars,eq);

> ICs:=(y(0)=0,D(y)(0)=0);

> sol:=dsolve({eq,ICs},{y(t)},type=numeric,method=gear);

Note that Gear's method is used for this example. The following methods are
available in Maple:

rkf45, rosenbrock, dverk78, 1sode, gear, taylorseries, or classical.

Next, the dependent variable is plotted:

> odeplot(sol,[t,y(t)],0..50,axes=boxed,title="Figure 2.24",thickness=3,
labels=[t,"y(t)"]);

102 2 Initial Value Problems

Fig. 2.24

Next, the derivative is plotted:

> odeplot(sol,[t,diff(y(t),t)],0..20,title="Figure 2.25",axes=boxed,thickness=3);

Fig. 2.25

2.2 Nonlinear Ordinary Differential Equations 103

2.2.4 Stop Conditions

Maple can be asked to stop the numerical calculation based on a criterion on the
dependent variable. The syntax is:

dsolve({“differential equations, initial conditions”},{“dependent variables”},
type=numeric, stop_cond=[“function to be satisfied”]). This is best illustrated by the
next example.

Example 2.2.4. Stop Conditions

> restart:

> with(plots):

Enter the governing equations:

> eq[1]:=diff(y[1](t),t)=-10*y[1](t)^2+y[2](t);

> eq[2]:=diff(y[2](t),t)=10*y[1](t)^2-2*y[2](t);

Enter the variables:

> vars:=(y[1](t),y[2](t));

> eqs:=(eq[1],eq[2]);

> ICs:=(y[1](0)=1.,y[2](0)=0);

The governing equations are numerically solved as:

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

The concentration profiles are plotted:

> odeplot(sol,[t,y[1](t)],0..2,title="Figure 2.26",axes=boxed,thickness=3);

104 2 Initial Value Problems

Fig. 2.26

> odeplot(sol,[t,y[2](t)],0..2,title="Figure 2.27",axes=boxed,thickness=3);

Fig. 2.27

2.2 Nonlinear Ordinary Differential Equations 105

The objective is to find the time at which the maximum occurs. When y2 attains

the maximum value, 2dy

dt
 becomes zero and hence the right hand side of the

equation becomes zero.

> sol:=dsolve({eqs,ICs},{vars},type=numeric,stop_cond=[-2*y[2](t)+
10*y[1](t)^2]);

If we try to evealute the solution at t=1, we get:

> ssol:=sol(1);

Warning, cannot evaluate the solution further right of .26421692, stop
condition #1 violated

The numerical calculation stops when the residual is satisfied. The time at which
the maximum occures is given by:

> ssol[1];

The maximum value of y2 is given by:

> ssol[3];

When we plot the solution, the profiles stop when the maximum value of y2 is
reached:

> odeplot(sol,[t,y[1](t)],0..2,title="Figure 2.28",axes=boxed,thickness=3);

Warning, cannot evaluate the solution further right of .26421692, stop
condition #1 violated

106 2 Initial Value Problems

Fig. 2.28

> odeplot(sol,[t,y[2](t)],0..2,title="Figure 2.29",axes=boxed,thickness=3);

Warning, cannot evaluate the solution further right of .26421692, stop
condition #1 violated

Fig. 2.29

2.2 Nonlinear Ordinary Differential Equations 107

2.2.5 Stiff ODEs

The standard Euler methods and Runge-Kutta methods do not converge for stiff
ODE’s. A still system can be defined as one in which the stability of the numerical
methods used becomes an issue. Maple has an inbuilt stiff solver.

Example 2.2.5. Stiff Ordinary Differential Equations

> restart:

> with(plots):
The governing equations are entered here:

> eq[1]:=diff(B(t),t)=k*B(t)*S(t)/(K+S(t));

> eq[2]:=diff(S(t),t)=-0.75*k*B(t)*S(t)/(K+S(t));;

The dependent variables are entered here:

> vars:=(B(t),S(t));

The parameters are entered here:

> pars:={k=0.3,K=1e-6};

> eqs:=(subs(pars,eq[1]),subs(pars,eq[2]));

The initial conditions are entered here:

> ICs:=(B(0)=0.05,S(0)=5);

Next, the numerical solution is found and plotted until t=20:

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

> tf:=20;

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.30",color=blue,axes=
boxed,thickness=3);

108 2 Initial Value Problems

Fig. 2.30

> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.31",color=blue,axes=
boxed,thickness=3);

Fig. 2.31

2.2 Nonlinear Ordinary Differential Equations 109

We observe that Maple predicts negative concentration. This is because the
default absolute error in 'dsolve' numeric is only 1d-6, which can be decreased to
predict more accurate solutions:

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10);

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.32",axes=boxed,thickness=3);

Warning, cannot evaluate the solution further right of 16.734694, maxfun
limit exceeded (see ?dsolve,maxfun for details)

Fig. 2.32

> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.33",axes=boxed,thickness=3);

Warning, cannot evaluate the solution further right of 16.734694, maxfun
limit exceeded (see ?dsolve,maxfun for details)

110 2 Initial Value Problems

Fig. 2.33

Maple's default Runge-Kutta method cannot predict the profiles after T=16.3. In
addition, the program takes too long to run. This is a still problem and can be
conveniently solved by using Maple's still solver.

> sol:=dsolve({eqs,ICs},{vars},type=numeric,stiff=true,abserr=1e-10);

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.34", color=green,axes=
boxed,thickness=3);

2.2 Nonlinear Ordinary Differential Equations 111

Fig. 2.34

> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.35",color=green,axes=
boxed,thickness=3);

Fig. 2.35

112 2 Initial Value Problems

The stiff solver takes only few seconds to run compared to the default solver,
which takes around a minute to predict the profiles.

2.2.6 Differential Algebraic Equations

Often times modeling of chemical systems involves solving differential equations
coupled with algebraic equations. This system is usually referred as differential
algebraic systems (DAEs). DAEs can be solved by converting the algebraic equations
to differential equations. The initial condition for the converted differential equation
is found using the algebraic equation. This is best illustrated using the next example.

Example 2.2.6. Differential Algebraic Equations

There are two dependent variables L and T. Here x2 is the independent variable as
x1 can be replaced using the relation x1 + x2 = 1. The algebraic equation k1x1 +
k2x2 = 1 governs the temperature. The differential equation is obtained using the
differentiating equation k1x1 + k2x2 = 1. The initial condition is found by
substituting values for constants and x2 into equation k1x1 + k2x2 = 1.

> restart:

> with(plots):

The differential equation is entered here:

> eq[1]:=diff(L(x2),x2)=L(x2)/x2/(k[2]-1);

The algebraic equation is entered here:

> eq[2]:=k[1]*x1+k[2]*x2-1;

Relations for the equilibrium rations and the mole fraction are entered:

> k[1]:=P1/P;k[2]:=P2/P;x1:=1-x2;

The Antoine equation is entered here.

> P1:=10^(A[1]+B[1]/(T(x2)+C[1]));P2:=10^(A[2]+B[2]/(T(x2)+C[2]));

2.2 Nonlinear Ordinary Differential Equations 113

Numerical values for the constants are entered:

> P:=760*1.2;A[1]:=6.90565;B[1]:=-1211.033;C[1]:=220.79;A[2]:
=6.95464;B[2]:=-1344.8;C[2]:=219.482;

The algebraic equation simplifies as:

> eq[2];

The initial condition for the temperature is found as:

> Ti:=fsolve(subs(T(x2)=Ti,x2=0.4,eq[2]),Ti);

> eq[1];

The differential equation for T is obtained by differentiating the algebraic
equation:

> eq[3]:=diff(eq[2],x2);

114 2 Initial Value Problems

The dependent variables are entered here:

> vars:=(L(x2),T(x2));

The governing equations are entered here:

> eqs:=(eq[1],eq[3]);

2.2 Nonlinear Ordinary Differential Equations 115

The initial conditions are entered here.

> ICs:=(L(0.4)=100,T(0.4)=Ti);

The numerical solution is obtained as:

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

The solution obtained is plotted here:

> odeplot(sol,[x2,L(x2)],0.4..0.9,title="Figure 2.36",axes=boxed,thickness=3);

Fig. 2.36

116 2 Initial Value Problems

> odeplot(sol,[x2,T(x2)],0.4..0.9,title="Figure 2.37",axes=boxed,thickness=3);

Fig. 2.37

The moles of liquid remaining are found as:

> sol(0.9);

> sol(0.9)[2];

At the end of distillation, 6.83 moles of liquid remain.

2.2.7 Multiple Steady States

A certain class of initial value problems exhibits multiple steady states. Depending
on the initial condition, the problems converge to different steady state values.

2.2 Nonlinear Ordinary Differential Equations 117

Multiplicity of steady states is a separate science by itself and different systems
have been analyzed for multiple states in the literature (Aris, 1999).[14] The
theory of bifurcation analysis is commonly used in the literature and is beyond the
scope of this book. In this book, we restrict ourselves to finding and plotting the
multiple states numerically.

Example 2.2.7. Multiple Steady States

> restart:

> with(plots):

The governing equation is entered here:

> eq:=diff(theta(t),t)=P*(1-theta(t))-theta(t)*exp(-alpha*theta(t));

The steady states are found by equating the right hand side to zero:

> Eq:=subs(theta(t)=theta,rhs(eq));

Even though P is the parameter and theta is the dependent variable, the steady
state equation cannot be solved using theta as a function of P. However, P can be
solved as a function of theta as follows:

> Ps:=solve(Eq,P);

Next, P can be plotted as a function of theta (steady state solution):

> p1:=plot(subs(alpha=6,Ps),theta=0..1,view=[0..1,0..0.1],labels=[theta,P],
thickness=3,title="Figure 2.38",axes=boxed):

> p2:=plot(0.05,theta=0..1):

> p3:=textplot([0.2,.055,(0.05)]):

> p4:=textplot([0.58,.055,(0.05)]):

> p5:=textplot([0.9,.055,(0.05)]):

> display({p1,p2,p3,p4,p5});

118 2 Initial Value Problems

Fig. 2.38

In the above plot we observe that the line P=0.05 cuts the curve at three different
points. Theta vs P can be made by using the 'implicitplot' command in Maple.

> implicitplot(P-subs(alpha=6,Ps),P=0..0.1,theta=0..0.97,thickness=3,
color=green,title="Figure 2.39",axes=boxed);

Fig. 2.39

2.2 Nonlinear Ordinary Differential Equations 119

Hence, there are three different steady states. These three different states can be
obtained by equating the pressure to 0.5.

> Eqtheta:=subs(alpha=6,Ps)=0.05;

There are three different roots for the above equation. They can be obtained by
providing different initial guesses:

> st1:=fsolve(Eqtheta,theta=0.);

> st2:=fsolve(Eqtheta,theta=0.5);

> st3:=fsolve(Eqtheta,theta=0.8);

Next, the transient equation is solved for different initial conditions:

> eqtheta:=subs(alpha=6,P=0.05,eq);

> sol:=dsolve({eqtheta,theta(0)=0},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..20,axes=boxed,color=blue,title="Figure 2.40",
thickness=3);

Fig. 2.40

120 2 Initial Value Problems

> sol:=dsolve({eqtheta,theta(0)=1},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..500,axes=boxed,color=magenta,title=
"Figure 2.41",thickness=3);

Fig. 2.41

> sol:=dsolve({eqtheta,theta(0)=0.5},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..500,axes=boxed,title="Figure 2.42",thickness=3);

2.2 Nonlinear Ordinary Differential Equations 121

Fig. 2.42

> sol:=dsolve({eqtheta,theta(0)=0.4},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..50,axes=boxed,color=green,title="Figure 2.43",
thickness=3);

Fig. 2.43

122 2 Initial Value Problems

We obtained three different steady states. The stability of these states can be
verified by assigning these values as the initial conditions. If we start with a stable
steady state solution as the initial condition, the process remains at the stable
steady state solution. If we start with an unstable steady state solution, the process
moves to one of the steady state solutions.

> sol:=dsolve({eqtheta,theta(0)=st1},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0..1000,axes=boxed,color=blue,title="Figure 2.44",
thickness=3,

view=[0..1000,0..1]);

Fig. 2.44

> sol:=dsolve({eqtheta,theta(0)=st3},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..1000,axes=boxed,color=magenta,title=
"Figure 2.45",thickness=3,view=[0..1000,0..1]);

2.2 Nonlinear Ordinary Differential Equations 123

Fig. 2.45

> sol:=dsolve({eqtheta,theta(0)=st2},theta(t),type=numeric);

> odeplot(sol,[t,theta(t)],0.0..1000,axes=boxed,title=
"Figure 2.46",thickness=3);

Fig. 2.46

124 2 Initial Value Problems

We observe that both st1=0.071 and st3=0.93 are stable steady states. However,
st2=0.498 is an unstable steady state. The dependent variable stays at st2 only
until t=400 and then the process approaches the stable steady state st3.

2.2.8 Steady State Solutions

When there are two dependent variables (as in example 2.2.8), the independent
variable (t) can be eliminated. One of the dependent variable can be solved as
function of another dependent variable. This analysis is possible only if the
independent variable, t is not present explicitly in the governing equations.

Example 2.2.8. Steady State Solutions

> with(plots):

Enter the governing equations for concentration and temperature:

> eq[1]:=diff(C(t),t)=F/V*(Cf-C(t))-k*exp(-E/R/T(t))*C(t);

> eq[2]:=diff(T(t),t)=F/V*(Tf-T(t))+(-H/rho/cp)*k*exp(-E/R/T(t))*C(t)-UA/V/rho/
cp*(T(t)-Tj);

The steady state equations are stored in Eq[1] and Eq[2]:

> vars:={C(t)=Cs,T(t)=Ts};

> Eq[1]:=subs(vars,rhs(eq[1]));

2.2 Nonlinear Ordinary Differential Equations 125

> Eq[2]:=subs(vars,rhs(eq[2]));

The steady state concentration can be solved as a function of the steady state
temperature Ts as:

> Cs:=solve(Eq[1],Cs);

Warning, solving for expressions other than names or functions is not
recommended.

The equation for steady state temperature simplifies as:

> Eq[2];

Values for the parameters are substituted:

> pars:={F=V,k=9703*3600,H=-5960,E=11843,rho=500/cp,Cf=10,R=1.987,
UA=V*150};

The equation for Ts becomes:

> steq:=subs(pars,Eq[2]);

V is taken as 1:

> steq:=subs(V=1,steq);

126 2 Initial Value Problems

The values for Tf and Tj are substituted to solve for Ts:

> neq:=subs(Tf=298,Tj=298,steq);

The nonlinear equation is plotted as a function of Ts, and we observe that the
function crosses the x axis at 3 distinct points:

> plot(neq,Ts=298..400,thickness=3,title="Figure 2.47",labels=[Ts,"neq"]);

Fig. 2.47

The steady state values are solved as:

> st1:=fsolve(neq,Ts=300);

> st2:=fsolve(neq,Ts=350);

> st3:=fsolve(neq,Ts=400);

The corresponding steady state values for the concentration are stored as:

> cst1:=evalf(subs(pars,V=1,Ts=st1,Cs));

> cst2:=evalf(subs(pars,V=1,Ts=st2,Cs));

2.2 Nonlinear Ordinary Differential Equations 127

> cst3:=evalf(subs(pars,V=1,Ts=st3,Cs));

> steq;

The feed temperature Tf can be solved as a function of Ts shown below:

> Tfs:=solve(steq,Tf);

Tf can be plotted as a function of Ts as shown below:

> plot(subs(Tj=298,Tfs),Ts=298..400,thickness=3,color=green,title=
"Figure 2.48",axes=boxed,labels=[Ts,Tf]);

Fig. 2.48

128 2 Initial Value Problems

> implicitplot(Tf-subs(Tj=298,Tfs),Tf=290..306,Ts=290..400,thickness=3,
color=blue,title="Figure 2.49",axes=boxed);

Fig. 2.49

Similarly Ts can be plotted as a function of Tj for the constant value of Tf.

> Tjs:=solve(steq,Tj);

> implicitplot(Tj-subs(Tf=298,Tjs),Tj=275..320,Ts=290..400,thickness=3,
color=magenta,title="Figure 2.50",axes=boxed);

2.2 Nonlinear Ordinary Differential Equations 129

Fig. 2.50

From the above two plots we observe that there multiple steady states exist. For a
particular value of Tj or Tf there can be three distinct values for Ts. Next, the
dynamic equations are solved for different initial conditions.

> for i to 2 do eq[i]:=subs(Tf=298,Tj=298,subs(pars,eq[i]));od;

> vars:=(C(t),T(t));

> eqs:=(eq[1],eq[2]);

> Ics:=(C(0)=0,T(0)=298);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

130 2 Initial Value Problems

> odeplot(sol,[t,C(t)],0..10,thickness=3,color=red,title="Figure. 2.51",
axes=boxed);

Fig. 2.51

> odeplot(sol,[t,T(t)],0..20,thickness=3,color=green,title="Figure 2.52",
axes=boxed);

Fig. 2.52

For this case, the process reaches the lower steady state condition st1.

> Ics:=(C(0)=5,T(0)=330);

2.2 Nonlinear Ordinary Differential Equations 131

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..10,thickness=3,color=blue,title="Figure 2.53",
axes=boxed);

Fig. 2.53

> odeplot(sol,[t,T(t)],0..20,thickness=3,color=magenta,title="Figure 2.54",
axes=boxed);

Fig. 2.54

132 2 Initial Value Problems

For this case, also, the process reaches the lower steady state condition st1.

> Ics:=(C(0)=9,T(0)=340);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..10,thickness=3,color=red,title="Figure 2.55",
axes=boxed);

Fig. 2.55

> odeplot(sol,[t,T(t)],0..20,thickness=3,color=green,title="Figure 2.56",
axes=boxed);

Fig. 2.56

2.2 Nonlinear Ordinary Differential Equations 133

For this case, the process reaches the lower steady state condition st3. Next, the
differential equations are solved taking the steady state values as the initial
conditions:

> Ics:=(C(0)=cst1,T(0)=st1);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=magenta,title="Figure 2.57",
axes=boxed,view=[0..50,0..10]);

Fig. 2.57

> odeplot(sol,[t,T(t)],0..50,thickness=3,color=red,title="Figure 2.58",
axes=boxed,view=[0..50,298..400]);

134 2 Initial Value Problems

Fig. 2.58

Hence, the lower steady state condition st1 is stable.

> Ics:=(C(0)=cst2,T(0)=st2);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=green,title="Figure 2.59",
axes=boxed,view=[0..50,0..10]);

Fig. 2.59

2.2 Nonlinear Ordinary Differential Equations 135

Hence, the middle steady state condition st2 is unstable.

> odeplot(sol,[t,T(t)],0..50,thickness=3,color=blue,title="Figure 2.60",
axes=boxed,view=[0..50,298..400]);

Fig. 2.60

> Ics:=(C(0)=cst3,T(0)=st3);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=magenta,title="Figure 2.61",
axes=boxed,view=[0..50,0..10]);

136 2 Initial Value Problems

Fig. 2.61

> odeplot(sol,[t,T(t)],0..50,thickness=3,title="Figure 2.62",axes=boxed,
view=[0..50,298..400]);

Fig. 2.62

2.2 Nonlinear Ordinary Differential Equations 137

Hence, the higher steady state condition st3 is stable. Next, initial conditions that
are very close to the second steady states are taken:

> Ics:=(C(0)=cst2*1.001,T(0)=st2*1.001);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..20,thickness=3,color=green,title="Figure 2.63",
axes=boxed,view=[0..20,0..10]);

Fig. 2.63

> odeplot(sol,[t,T(t)],0..20,thickness=3,color=blue,title="Figure 2.64",
axes=boxed,view=[0..20,298..400]);

138 2 Initial Value Problems

Fig. 2.64

> Ics:=(C(0)=cst2*0.999,T(0)=st2*0.999);

> sol:=dsolve({eqs,Ics},{vars},type=numeric);

> odeplot(sol,[t,C(t)],0..20,thickness=3,color=magenta,title="Figure 2.65",
axes=boxed,view=[0..20,0..10]);

Fig. 2.65

2.2 Nonlinear Ordinary Differential Equations 139

> odeplot(sol,[t,T(t)],0..20,thickness=3,color=red,title="Figure 2.66",
axes=boxed,view=[0..20,298..400]);

Fig. 2.66

For the values closer to the middle steady state st2, the process reaches st1 or st3
at the end. Hence, we conclude that st2 is unstable.

Example 2.2.9. Phase Plane Analysis

Example 2.2.8 is reviewed here using the phase plane analysis. For this purpose
the independent variable is eliminated and temperature T is solved as a function of
C, the concentration.

> restart:

> with(plots):

> eq[1]:=diff(C(t),t)=F/V*(Cf-C(t))-k*exp(-E/R/T(t))*C(t);

140 2 Initial Value Problems

> eq[2]:=diff(T(t),t)=F/V*(Tf-T(t))+(-H/rho/cp)*k*exp(-E/R/T(t))*C(t)-UA/V/rho/
cp*(T(t)-Tj);

The governing equation for T(C) is derived here:

> eq:=diff(T(C),C)=subs(C(t)=C,T(t)=T(C),rhs(eq[2])/rhs(eq[1]));

> pars:={F=V,k=9703*3600,H=-5960,E=11843,rho=500/cp,Cf=10,R=1.987,
UA=V*150};

Values for parameters are entered here:

> Eq:=subs(pars,eq);

2.2 Nonlinear Ordinary Differential Equations 141

Both the jacket temperature and the feed stream temperature are taken to be 298 K.

> Deq:=subs(Tj=298,Tf=298,Eq);

The differential equation is solved below and the numerical simulation is stopped
when the denominator becomes zero. The simulation is performed for different
initial conditions:

> sol:=dsolve({Deq,T(0)=298},T(C),type=numeric,stop_cond=
[10-C-34930800*exp(-5960.241570*1/T(C))*C]);

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=red,title="Figure 2.67",
axes=boxed);

Warning, cannot evaluate the solution further right of 8.7992960, stop
condition #1 violated

Fig. 2.67

142 2 Initial Value Problems

> sol:=dsolve({Deq,T(5)=350},T(C),type=numeric,stop_cond=
[10-C-34930800*exp(-5960.241570*1/T(C))*C]);

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=green,title="Figure 2.68",
axes=boxed);

Warning, cannot evaluate the solution further left of 1.7682405, stop
condition #1 violated

Fig. 2.68

> sol:=dsolve({Deq,T(9)=400},T(C),type=numeric,stop_cond=
[10-C-34930800*exp(-5960.241570*1/T(C))*C]);

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=blue,title="Figure 2.69",
axes=boxed);

Warning, cannot evaluate the solution further left of .46053734e-1, stop
condition #1 violated

2.2 Nonlinear Ordinary Differential Equations 143

Fig. 2.69

> sol:=dsolve({Deq,T(5.5179)=339.0971},T(C),type=numeric,stop_cond=
[10-C-34930800*exp(-5960.241570*1/T(C))*C]);

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=magenta,title="Figure 2.70",
axes=boxed);

Warning, cannot evaluate the solution further right of 8.5634663, stop
condition #1 violated

Fig. 2.70

144 2 Initial Value Problems

> sol:=dsolve({Deq,T(5.5234)=339.44},T(C),type=numeric,stop_cond=
[10-C-34930800*exp(-5960.241570*1/T(C))*C]);

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=brown,title="Figure 2.71",
axes=boxed);

Warning, cannot evaluate the solution further left of .23729690e-1, stop
condition #1 violated

Fig. 2.71

Temperature can increase or decrease with the concentration C, depending on the
initial conditions. The slope of the curve and the maximum for T depend on the
initial conditions. A sequence of runs is performed for three different initial
concentrations of 0.5, 5, and 9.5. The initial condition for T is varied in the range
of 300 K - 420 K.

> MM:=20;

2.2 Nonlinear Ordinary Differential Equations 145

> TT:=seq(300+i/MM*120,i=0..MM);

> for i from 0 to MM do sol:=dsolve({Deq,T(0.5)=TT[i+1]},T(C),
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]);
p[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=red,title="Figure 2.72",
axes=boxed);od:

> for i from 0 to MM do sol:=dsolve({Deq,T(0.5)=TT[i+1]},T(C),
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]);
p1[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=green,title="Figure 2.72",
axes=boxed);od:

> for i from 0 to MM do sol:=dsolve({Deq,T(9.5)=TT[i+1]},T(C),
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]);
p2[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=blue,title="Figure 2.72",
axes=boxed);od:

> display({seq(p[i],i=0..MM),seq(p1[i],i=0..MM),seq(p2[i],i=0..MM)},view=[0..10,

> 295...420]);

Warning, cannot evaluate the solution further right of 8.7899223, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.7599625, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.7278642, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6943952, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6576248, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6197738, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5875974, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5656287, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5634928, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5634834, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5635784, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5635741, stop
condition #1 violated

146 2 Initial Value Problems

Warning, cannot evaluate the solution further right of 5.3754375, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 3.6509855, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.8295708, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4573345, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4078413, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4048821, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4070544, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .49764692, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .43228936, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.7899223, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.7599625, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.7278642, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6943952, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6576248, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.6197738, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5875974, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5656287, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5634928, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5634834, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5635784, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 8.5635741, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 5.3754375, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 3.6509855, stop
condition #1 violated

2.2 Nonlinear Ordinary Differential Equations 147

Warning, cannot evaluate the solution further right of 2.8295708, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4573345, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4078413, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4048821, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 2.4070544, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .49764692, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .43228936, stop
condition #1 violated
Warning, cannot evaluate the solution further right of 9.7410116, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 8.5635577, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 8.5638089, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 8.4876502, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 8.0713076, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 6.9575718, stop
condition #1 violated
Warning, cannot evaluate the solution further left of 1.3218078, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .70000766, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .43175821, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .29193900, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .20969420, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .15713260, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .12152136, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .96245238e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .77677669e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .63659244e-1, stop
condition #1 violated

148 2 Initial Value Problems

Warning, cannot evaluate the solution further left of .52827584e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .44303373e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .37491839e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .31979299e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .27462576e-1, stop
condition #1 violated
Warning, cannot evaluate the solution further left of .23729690e-1, stop
condition #1 violated

Fig. 2.72

2.2.9 Summary

In this chapter, nonlinear IVPs were solved numerically. In section 2.2.2 a
nonlinear IVP was solved analytically using Maple’s ‘dsolve’ command. This
approach is limited to very few nonlinear ODEs. In section 2.2.3, series solutions
were obtained using Maple’s ‘dsolve’ command. This approach is valid for all

2.2 Nonlinear Ordinary Differential Equations 149

nonlinear ODEs. However, the solution obtained may not always converge. One
has to use these solutions cautiously and check the convergence of the series
solution obtained.

In section 2.2.4 nonlinear IVPS were solved numerically using Maple’s
‘dsolve’ command. Maple provides different options for the numerical solution,
Runge-Kutta, Gear, backsode, etc. Maple’s default Runge-Kutta method accurate
to the order (Δt)4 is good enough for a variety of problems. Maple’ ‘dsolve’
command is very convenient to use and the solution obtained can be plotted easily.
There are different ways to control the error. The default absolute error set in
Maple is 1e-6. For complex problems, this can be reduced by setting abserr = 1e-
10, etc. Similarly, the relative error can be set as relerr = 1e-6.

In section 2.2.4, stop condition was used to predict the maximum yield in a
chemical reaction. In section 2.2.5, a stiff problem was solved using Maple’s
default numerical solver. We concluded that the conventional numerical methods
fail for this stiff problem. Maple’s stiff solver was found to be superior for this
stiff problem. Generally, one has to use a stiff solver only if the conventional
methods fail, as stiff solvers take more time to solve ordinary IVPs than the
conventional solvers.

In section 2.2.6, DAEs were solved by converting the algebraic equations to
differential equations. This methodology should be valid for any system of DAEs
as long as one can find the initial conditions for the variables governed by the
algebraic differential equations.

In section 2.2.7, multiple steady states in a heterogeneous chemical reaction
(one dependent variable) and a jacketed stirred tank reactor (two dependent
variables) were analyzed. Both stable and unstable steady states were obtained.
The transient behavior of the system was found to depend on the initial conditions.
The methodology and Maple programs presented in this chapter should be valid
for any system of IVPs with multiple steady states. In section 2.2.8, phase plane
behavior of a jacketed stirred tank reactor was analyzed. The program provided
should be of use for analyzing phase plane behavior of different chemical systems.
A total of ten different examples were presented in this chapter.

2.2.10 Problems

1. The dissolution rate of a salt is governed by

()sat

0

dy
= ky c c

dt
y(0) = y = 10

−

where, y is the amount of salt dissolved (kg), k is a proportionality constant,
V is the volume of water used for dissolving the salt (90 liters), c is the

concentration of the salt (kg/liter) at any instant given by 0y y
c =

V

−
 and

csat is the concentration of the saturated salt, 1/3 kg/liter. Solve this problem

150 2 Initial Value Problems

to get a closed form solution for the amount of salt dissolved (see example
2.2.1). If it takes one hour to dissolve 50% of the initial salt, what is the rate
constant k? Once k is obtained plot the transient profile for the dissolved
salt. How much of the salt can be dissolved in one hour if the volume of the
water used is doubled?

2. Consider the series reaction scheme modeled in example 2.2.1. Redo this
problem if the first reaction is first order and the second reaction is second
order (Rice and Do, 1995).[1] Obtain a closed form solution and plot the
concentration profiles for typical values of rate constants.

3. Redo example 2.2.1 if both the reactions are second order. Obtain a closed
form solution if possible and plot the concentration profiles for typical
values of rate constants.

4. Consider a CSTR experiencing slow catalyst decay (Rice and Do, 1995).[1]
The governing equation for the reactant concentration (x) and catalyst
activity (y) are given by:

dx
= 1 x xy

dt
dy

 = εxy
dt
x(0) = 0 and y(0) = 1

− −

−

where ε is a proportionality constant (0.5). Solve this problem numerically
and plot the profiles (see example 2.2.2).

5. Consider parallel deactivation in a well-stirred reactor (Rice and Do,
1995).[1] The governing equation for the reactant concentration (x) and
catalyst activity (y) are given by:

2dx
 = α(1 x) x y

dt
dy

 = εxy
dt
x(0) = 0 and y(0) = 1

− −

−

where ε is the ratio of deactivation rate constant to kinetic rate constant
(0.1) and α = F/(kVC0). F is the flow rate, k is the rate constant, V is the
volume and C0 is the feed concentration. Solve this problem numerically
and plot the concentration profiles for α = 1.

6. Consider catalytic cracking of a gas oil (A) to gasoline (B). Gas oil (A)
cracks catalytically to gasoline (B) according to second order kinetics. In a
parallel reaction A also forms Coke (C) according to second order kinetics.
Gasoline (B) once formed also cracks according to a first order reaction to
form Coke (C). The governing equations for A, B and C is given by (Rice
and Do, 1995):[1]

2.2 Nonlinear Ordinary Differential Equations 151

2 2A
1 A 2 A

2B
1 A 3 B

A B C

A B C

dC
 = k C k C

dt
dC

 = k C k C
dt

C + C + C = 1

C (0) =1 and C (0) = C (0) = 0

− −

−

Solve this problem to obtain a closed form solution for the concentration of
gasoline as a function of rate constants and time. When will you stop the
experiment to obtain maximum concentration of gasoline (B)?

7. Also, solve this problem numerically for typical values of rate constants
(k1 = 1, k2 = 0.1 and k3 = 0.5). Plot the concentration profiles using both
analytical and numerical solution.

8. Consider the Van der Pol equation (Rice and Do, 1995)[1]

()
2

2
2

 μ 1 y + y = 0

(0) = 1; (0) = 0

d y dy

dt dt
dy

y
dt

− −

Solve this problem numerically for μ = 0.1, 1, and 10. Plot the transient
profiles.

9. Consider an adiabatic tubular reactor (Davis, 1984)[15] with the following
data: length L = 2 m, radius Rp = 0.1 m, inlet reactant concentration c0 =
30 moles/m3, inlet temperature T0 = 700K, enthalpy ΔH = -10000 J/mole,
specific heat capacity Cp = 1000 J/kg/K, activation energy Ea = 100
J/mole, ρ = 1200 kg/m3, velocity u0 = 3 m/s, and rate constant k0 = 5 s-1.
Dimensionless concentration (y) and dimensionless temperature (θ) are
governed by material and energy balances as:

0 0 a

0 0 g 0

dy 1
 = Da y exp δ 1

dz θ

dθ 1
 = βDa y exp δ 1

dz θ
θ(0) = 1 and y(0) = 1

where

Lk c (-ΔH) E
Da = ; β = ; δ =

u ρCpT R T

⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

152 2 Initial Value Problems

where Rg is the gas constant, 8.314 J/mole/K. Solve this system of equations
numerically and plot dimensionless concentration and temperature profiles
across the length of the reactor.

10. Consider the reaction scheme (Davis, 1984)[15]

1 2

2
1 2 3

2
3

4 7
1 2 3

 = k + k

 = k k k

 = k

(0) = 1, (0) = (0) = 0

k = 0.08, k = 2x10 , and k = 6x10

A
A B C

B
A B C B

C
B

A B C

dC
C C C

dt
dC

C C C C
dt

dC
C

dt
C C C

−

− −

Solve this stiff system of equations and plot the concentration profiles.
11. Material and energy balance in a reactor gives the following dimensionless

equations (Finlayson, 1980):[16]

2

2

2

dc 1
 = 10.5(c -1) - cexp γ 1

dt T

dT 1
 = 10.5(T 1) + β cexp γ 1

dt T

c(0) = 0.73 and T(0) = 1

 = 1.21; β = 0.15; γ = 30

φ

φ

φ

⎛ ⎞⎡ ⎤− −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤− − −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

Solve this system of equations numerically and plot the concentration and
temperature profiles.

12. Consider the dynamics of a catalytic fluidized bed in which an irreversible
gas phase reaction takes place (Aiken and Lapidus, 1974;[17] Cutlip and
Shacham, 1999).[9] Partial pressure of reactant in fluid (P), temperature of
reactant in fluid (T), partial pressure of reactant at the catalyst surface (Pp)
and partial pressure of reactant at the catalyst surface (Tp) are governed by
the following equations:

2.2 Nonlinear Ordinary Differential Equations 153

()

()

p

p

p
p

p
p p

p

dP
 = 0.1 + 320P 321P

dt
dT

 = 1752 269T + 267T
dt
dP

 = 1880 P P (1+K)
dt

dT
 = 1.3 T T + 10400KP

dt

15000
K = 0.0006 exp 20.7

T

−

−

−

−

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

This problem exhibits multiple steady states. Obtain all the steady states by
equating the transient term to zero in all the equations. For mathematical
convenience, express steady state P, T, and Pp in terms of steady state Tp
using the first three equations. Use the steady state equation for Tp (after
eliminating all other dependent variables) to obtain the multiple steady states.

13. Solve the dynamic problem using the initial conditions P(0) = 0.1, T(0) =
600, Pp(0) = 0 and Tp(0) = 761 and plot the dynamic profiles for t = 0..15.
Can you change the initial conditions to obtain a different steady state? (see
examples 2.2.6 and 2.2.7)

14. Consider radiation to a thin copper plate in a furnace (Cutlip and Shacham,
1999),[9] the temperature (T) of the thin plate is governed by:

()4 4
F

p

σA T -TdT

dt VρC

T(0) 293K

=

=

where σ is the Stefan-Boltzman constant (= 5.678x10-8 W/(m2K4)), A =
0.5 m2, V = 3.75x10-4 m3, ρ = 8950 kg/m3, Cp = 383 J/kg/K and TF =
1273K. Solve this problem numerically and plot the temperature profile.

15. Design of a chemical flow reactor involves the following nonlinear
differential equation (Hanna and Sandall, 1995)[18]

dC C

d 1+ C

C(0) 1

φ β
=

=

Solve this problem analytically and plot C vs. φ for β = 0.1 and 1.
16. The following nonlinear equation governs the concentration in an isothermal

batch reactor (Hanna and Sandall, 1995):[18]

154 2 Initial Value Problems

2dC C
 = 0.3C

dt (1+C)

C(0) = 0.6

⎛ ⎞
− −⎜ ⎟⎜ ⎟
⎝ ⎠

where t is the time in hours. Solve this problem analytically if possible. If
analytical solution is not possible, obtain a series solution. Plot the
transient concentration using ‘dsolve numeric’ command and calculate the
time taken for the concentration to become 0.1. How does the series
solution compare with the exact solution (numerical) for this problem?

17. Consider a CSTR with a second order kinetics (Bequette, 1998),[12] the
governing equation is:

() 2
in

dC 1
= C C kC

dt τ
C(0) = 0

− −

Obtain an analytical solution for this problem if possible. Plot the
concentration profiles if Cin = 1, τ = 1 and k = 1. Can you obtain a closed
form solution for C if Cin = sin(t)? If an analytical solution is not possible,
solve the equation numerically to obtain the concentration profile.

18. Consider a surge tank with an outlet flow rate that depends on the square
root of the height of liquid in the tank (Bequette, 1998).[12] When there is
no inlet flow, the governing equation is:

dh
= a h

dt
h(0) = 4

−

Solve this equation to obtain the height of liquid as a function of time. Plot
the transient behavior for a = 0.8.

19. Consider two interacting tanks in series (Bequette, 1998).[12] The
governing equations for height in the tanks are:

1 1
1 2

1 1

2 1 2
1 2 2

1 2

1 2

3 2.5 2.5
2 2

1 2 1 2

dh βF
 = h h

dt A A

dh β β
 = h h h

dt A A

h (0) = 12; h (0) = 7

ft ft 5 ft
F = 5 β = 2.5 ; β = ; A = 5 ft ; A = 10 ft

min min min6

− −

− −

Plot the transient profiles for t = 0..100 minutes.

References 155

20. Consider the predator-prey problem (Bequette, 1998):[12]

()

()

1
2 1

2
1 2

1 2

dy
 = α 1 y y

dt
dy

 = β 1 y y
dt

y (0) = 1.5; y (0) = 0.75

α = β = 1

−

− −

where t is in days. Plot the dynamic profiles for t = 0..100 days. Do phase
plane analysis for this problem and plot y1 vs. y2 (see example 2.2.8).

21. A series parallel reaction takes place in a CSTR (Bequette, 1998).[12] The
governing equations are:

()

()

2A
A, in A 1 A 3 A

B
B 1 A 3 B

A B

-1 -1
1 2 3 A, in

dC 1
 = C C k C k C

dt τ
dC 1

 = C + k C k C
dt τ

C (0) = C (0) = 0

5 5 1 liter mol
k = min ; k = min ; k = ; C = 10

6 3 6 mol min liter

− − −

− −

Find the time constant, τ if the steady state concentration of A is 3 mol/liter
(Hint: Use the steady state version of the first equation to find the
steady state concentration of A). Once τ is obtained, plot the transient
profile.

References

1. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.
John Wiley & Sons, Inc., Chichester (1995)

2. Amundson, N.R.: Mathematical Methods in Chemical Engineering: Matrices and Their
Applications. Prentice Hall, Inc., Englewood Cliffs (1966)

3. Fogler, H.S.: Elements of Chemical Reaction Engineering, 3rd edn. Prentice-Hall,
Englewood Cliffs (1998)

4. Abell, M.L., Braselton, J.P.: Differential Equations with Maple V, 3rd edn. Academic
Press, London (2001)

5. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with
MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)

6. Taylor, R., Krishna, R.: Multicomponent Mass Transfer, 579 pages. John Wiley &
Sons, Inc., New York (1993)

7. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford
University Press, Inc., Oxford (1997)

156 2 Initial Value Problems

8. Subramanian, V.R., White, R.E.: Solving Differential Equations with Maple. Chemical
Engineering Education, 328–336 (Fall 2000)

9. Cutlip, M.B., Shacham, M.: Problem Solving in Chemical Engineering with Numerical
Methods. Prentice Hall PTR, Englewood Cliffs (1999)

10. Jain, M.C.: Vector Spaces and Matrices in Physics. CRC Press, Boca Raton (2001)
11. Pushpavanam, S.: Mathematical Methods in Chemical Engineering. Prentice-Hall of

India Private Limited, Englewood Cliffs (2001)
12. Bequette, B.W.: Process Dynamics: Modeling, Analysis, and Simulation. Prentice-Hall

PTR, Englewood Cliffs (1998)
13. Hildebrand, F.B.: Advanced Calculus for Applications, 2nd edn. Prentice-Hall,

Englewood Cliffs (1976)
14. Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic

Press, London (1999)
15. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley

& Sons, Chichester (1984)
16. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New

York (1980)
17. Aiken, R.C., Lapidus, L.: Effective Numerical Integration Method for Typical Stiff

Systems. AIChE Journal 20(2), 368–375 (1974)
18. Hanna, O.T., Sandall, O.C.: Computational Methods in Chemical Engineering.

Prentice Hall, Inc., Englewood Cliffs (1995)

Appendix A: Matrix Exponential Method

This appendix presents two methods of obtaining an analytical solution to a
system of first order ordinary differential equations. Both methods (power series
and the Laplace transform) yield a solution in terms of the matrix exponential.
That is, we seek a solution to

()d
t

dt
= +Y

AY b (A.1)

where
d

dt

Y
 is a n x 1 vector and is the derivative of Y which is a n x 1 vector

of dependent variables, A is a n x n matrix of constants, and b is n x 1
vector which may depend on time. Equation (A.1) can be solved by assuming a
power series solution of the form

2
0 1 2(t) t t= + + +Y e e e L (A.2)

where je represents the jth n x 1 vector which is to be determined. Substitution of

t 0= into equation (A.2) yields

0(0) =Y e (A.3)

Substitution of equation (A.2) into equation (A.1) with b = 0 yields

Appendix A: Matrix Exponential Method 157

2
1 2 0 1 22 t t t)e e A(e e e+ + = + + +L L (A.4)

By equating coefficients of like powers of t in equation (A.4) we obtain

1 0

2 1 0

3
3 2 0

k
k 0

1 1

2 2
1 1

3 (3)(2)

1

k!

2

e Ae

e Ae A e

e Ae A e

e A e

=

= =

= =

=

M

 (A.5)

Substituting equations (A.3) and (A.5) into equation (A.2) yields

 2 2 k k1 1
(t) (t t t) (0)

2! k!
= + + + + +Y I A A A YL L (A.6)

Since

 () 2 21
exp t t t

2!
A I A A= + + +L (A.7)

equation (A.6) can be written as

(t) exp(t) (0)=Y A Y (A.8)

To handle the case where b is not equal to 0 , rewrite equation (A.1) as follows:

′ − =Y AY b (A.9)

Next, premultiply both sides of equation (A.9) by ()exp tA− to obtain

t te (Y) e− −′ − =A AY A b (A.10)

Now, rewrite equation (A.10) with the left hand side shown as a complete
differential:

()t td
e () e

dt
− −=A AY t b (A.11)

Integration of equation (A.11) with τ as a dummy integration variable yields

158 2 Initial Value Problems

0
0

t
t A

t
t

e () e ()d
τ=

τ=− τ − τ

τ=
τ=

= τ τ∫A Y bτ (A.12)

Evaluation of the left hand side of equation (A.12) yields

0

0

t
AtAt A

0

t

e () e () e ()d
τ=

−− − τ

τ=

− = τ τ∫Y t Y t b (A.13)

Premultiplying both sides of equation (A.13) by teA followed by rearrangement
yields:

0

0

t
Att t

0

t

e e () e e ()d
τ=

− − τ

τ=

= + τ τ∫A A AY Y t b (A.14)

or

0

0

t
t t) t

0

t

e () e e ()d
τ=

− − τ

τ=

= + τ τ∫A(A AY Y t b (A.15)

Equation (A.15) can also be written as follows:

()0

0

t
tt t)

0

t

e () e ()d
τ=

− τ−−

τ=

= + τ τ∫ AA(Y Y t b (A.16)

Note that for one dependent variable equation (A.1) becomes

dy
y b(t)

dt
= +a (A.17)

and equation (A.16) becomes

()0

0

()
0y y(t) b()dτt

t
aa t t

t

e e τ
τ

τ
τ−

=
−−

=

= + ∫ (A.18)

Equation (A.18) was obtained by using the so-called integrating factor (IF) where
for equation (A.17)

()IF exp t= −a (A.19)

Note that the integrating factor ()exp t−A was used to solve equation (A.9).

To illustrate the use of equation (A.15), let

Appendix A: Matrix Exponential Method 159

0 1

2 3

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

A (A.20)

and

0

1

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

b (A.21)

Also, let 0 0t = and

() 0
0

0

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Y (A.22)

Thus, equation (A.15) becomes

t
t

0

(t) e e d− τ= τ∫A AY b (A.23)

Equation (A.7) yields the matrix exponential of tA

t 2t t 2t
t

t 2t t 2t

2e e e e
e

2e 2e e 2e

− − − −

− − − −

⎛ ⎞− −
= ⎜ ⎟− + − +⎝ ⎠

A (A.24)

and the matrix exponential of − τA as

2 2

2 2

2e e e e
e

2e 2e e 2e

τ τ τ τ
− τ

τ τ τ τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −=
− + − +

A (A.25)

Thus, equation (A.23) becomes

t (t) 2(t) (t) 2(t)

(t) 2(t) (t) 2(t)
0

02e e e e
(t) d

12e 2e e 2e

− −τ − −τ − −τ − −τ

− −τ − −τ − −τ − −τ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− −= τ
− + − +∫Y

(A.26)

which yields

(t) 2(t)t

(t) 2(t)
0

e e
(t) d

e 2e

− −τ − −τ

− −τ − −τ

⎛ ⎞−
= τ⎜ ⎟⎜ ⎟− +⎝ ⎠
∫Y (A.27)

Next, integrate each element in the vector in equation (A.27); the first element is

()
t

(t) 2(t)

0

e e d− −τ − −τ− τ∫ (A.28)

160 2 Initial Value Problems

or

t t
t 2t 2

0 0

e e d e e d− τ − ττ − τ∫ ∫ (A.29)

or

()
t2t

t 2t

0
0

e
e e e

2

τ
− τ −− (A.30)

Equation (A.30) becomes

2t
t t t 0 2t 0e

e e e e (e e)
2

−
− −− − − (A.31)

or

2t
t 1 e

1 e
2 2

−
−− − + (A.32)

which can be written as

2t
t1 e

e
2 2

−
−− + (A.33)

The second element in equation (A.27) can be written as

t t
t 2t 2

0 0

e e d 2e e d− τ − + τ− τ + τ∫ ∫ (A.34)

or

t
tt 2t 2

0
0

1
e (e) 2e e

2
− τ − τ⎛ ⎞− + ⎜ ⎟

⎝ ⎠
 (A.35)

or

()t t 2t 2t1 1
e e 1 2e e

2 2
− − ⎛ ⎞− − + −⎜ ⎟

⎝ ⎠
 (A.36)

Equation (A.36) becomes

t 2t 2t 2t2
1 e e e

2
− − + −− + + − (A.37)

or

Appendix A: Matrix Exponential Method 161

t 2t1 e 1 e− −− + + − (A.38)

which simplifies to

t 2te e− −− (A.39)

Thus, equation (A.27) becomes

()
t 2t

1

t 2t2

1 1
y (t) e e

t 2 2
y (t)

e e

− −

− −

⎛ ⎞− +⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟−⎝ ⎠

Y (A.40)

It is easy to solve this problem with (0) =Y 0 by using Maple. First write the

solution (see equation (A.15)):

t
t

0

e e d− τ= τ∫A AY b (A.41)

and solve by using Maple:

> restart:with(linalg):

Warning, the protected names norm and trace have been redefined and
unprotected

> A:=matrix(2,2,[0,1,-2,-3]);

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 1

-2 -3

> mat:=exponential(A*t);

 := mat
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

− + e
()−2 t

2 e
()−t

 − e
()−t

e
()−2 t

− + 2 e
()−t

2 e
()−2 t

 − 2 e
()−2 t

e
()−t

> mattau:=exponential(A*(-tau));

 := mattau
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

 − 2 eτ e
()2 τ

− + e
()2 τ

eτ

 − 2 e
()2 τ

2 eτ − + eτ 2 e
()2 τ

> b:=matrix(2,1,[0,1]);

 := b ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0

1

> mattaub:=evalm(mattau&*b);

162 2 Initial Value Problems

 := mattaub
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

− + e
()2 τ

eτ

− + eτ 2 e
()2 τ

> mati:=map(int,evalm(mattaub),tau=0..t);

 := mati
⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

− − +
1
2

1
2

e
()2 t

e t

− + e t e
()2 t

> sol:=evalm(mat&*mati);

 := sol

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

 + ()− + e
()−2 t

2 e
()−t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟− − +

1
2

1
2

e
()2 t

e t () − e
()−t

e
()−2 t

()− + e t e
()2 t

 + ()− + 2 e
()−t

2 e
()−2 t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟− − +

1
2

1
2

e
()2 t

e t () − 2 e
()−2 t

e
()−t

()− + e t e
()2 t

> simplify(sol);

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

 + −
1
2

e
()−2 t 1

2
e

()−t

 − e
()−t

e
()−2 t

Comparison of equation (A.40) to the solution above (sol) shows that Maple
yields the same result for Y that we obtained by hand.

Appendix B: Matrix Exponential by the Laplace Transform
Method

The matrix exponential can also be obtained by using the Laplace transform
technique. Taking the Laplace transform of the governing equations now written
in lower case x (see Ogata page 725).[1]

d

dt
=Y

AY (B.1)

yields

() (0) ()s s t s− = =Y y AY (B.2)

or

() () (0)s s− =I A Y y (B.3)

Thus,

Appendix B: Matrix Exponential by the Laplace Transform Method 163

1() () (0)s s −= −Y I A y (B.4)

and

()1 1()) (0)t s− −⎡ ⎤= −⎣ ⎦y I A y (B.5)

Recall that (see Example 3 (with 0a =) on page 809 of Kreyszig)[2]

2
2

2 3

1 1 b b
z z

c bz c c c
= + + +

−
L (B.6)

Equation (B.6) can be used as a scaler example of how to expand the inverse of a
matrix. That is, by analogy with z = 1 we can write

()
2

1

2 3
s

s s s

−− = + + + L
I A A

I A (B.7)

This can be shown to be correct by premultiplying both sides of equation (B.7)
by s −I A to get

()() ()
2

1

2 3
s s s

s s s

− ⎛ ⎞
− − = − + + +⎜ ⎟

⎝ ⎠
L

I A A
I A I A I A (B.8)

or

2 2
2

2 3 2
 = s s s

s s s s s
+ + + − − − = =L L

I A A I A
I I I I A I I

(B.9)

Thus,

{ }
2 2 3

1 1 3()
2! 3!

t t
s t− −− = + + + + L

A
I A I A A

(B.10)

Comparison of the right hand side of equation (B.10) to the series definition of

()exp tA reveals that

{ } ()1 1() exp s t− −− =I A A (B.11)

For our example

0 1

1 2

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

A (B.12)

So that

164 2 Initial Value Problems

() 0 0 1

0 1 2

s
s

s

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

I A (B.13)

or

() 1

1 2

s
s

s

−⎛ ⎞
− = ⎜ ⎟+⎝ ⎠

I A (B.14)

The inverse of equation (B.14) can be obtained by using the adjoint and determinant

of ()s −I A :

() ()
()

1 adj s
s

Det s

− −
− =

−
I A

I A
I A

 (B.15)

or

() ()()
1

2 1

1

2 1

s

s
s

s s

−

+⎛ ⎞
⎜ ⎟−⎝ ⎠− =

+ +
I A (46a)

or

()
2 2

1

2 2

2 1

2 1 2 1
1

2 1 2 1

s

s s s ss
s

s s s s

−

+⎛ ⎞
⎜ ⎟+ + + +− = ⎜ ⎟

−⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

I A (46b)

The inverse Laplace transform of the matrix elements in equation (46b) can be
found from Laplace transform tables or by using the Heaveside expansion

theorem. For example, consider the entry in the 12a position of equation (46b).

We find from Table 8.1 of Varma and Morbidelli[3] that

1
2

1

(1)
tte

s
− −⎧ ⎫

=⎨ ⎬+⎩ ⎭
 (B.16)

This result can also be obtained from equation 8.3.20 in Varma and Morbidelli:

1

1

() ()
(1)!

m
j j bt

j

B
f t t e r t

j
−

=

= +
−∑ (B.17)

Where jB is given by equation 8.3.16 of Varma and Morbidelli[3] and ()r t is

zero for our case. For this case, 2 (1m s= = − is a root of 2(1)s + and is

repeated twice, thus 1)b = − . Expanding equation (B.17) yields

Appendix B: Matrix Exponential by the Laplace Transform Method 165

1 2()
0! 1!

t tB B
f t e te− −= + (B.18)

where

1
1

1

1! s

dW
B

ds =−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (B.19)

()2 1

1

0! s
B W =−= (B.20)

with

2

2

(1)
1

(1)

s
W

s

+= =
+

 (B.21)

Thus

1 0B = (B.22)

since 0dW
ds = and

2 1B = (B.23)

Thus, equation (B.18) becomes

() (0) t t tf t e te te− − −= + = (B.24)

Now determine the inverse Laplace transform of the element in the 11a position

in equation (46b):

1
2

2
?

2 1

s

s s
− +⎧ ⎫ =⎨ ⎬+ +⎩ ⎭
 (B.25)

Equation (B.17) applies in this case also where now (see equation 8.3.12 of Varma
and Morbidelli)[3]

2

2

(1)
(2) (2)

(1)

s
W s s

s

+= + = +
+

 (B.26)

Thus, in this case

1
1 1

(2)
1

s s

dW d s
B

ds ds=− =−

+= = = (B.27)

or

166 2 Initial Value Problems

1 1B = (B.28)

and

2 1
(2) 1

s
B s =−= + = (B.29)

So that

() t tf t e te− −= + (B.30)

Thus, after determining the inverse Laplace transform of the elements in the 21a

and 22a positions in equation (46b) we find that

{ }1 1()
t t t

t t t

e te te
s

te e te

− − −
− −

− − −

⎛ ⎞+
− = ⎜ ⎟− −⎝ ⎠

I A (B.31)

which is the same expression we obtained before (see equation (B.31))
for exp().tA

The solution to equation (B.1) with A given by using equation (B.12) is

() ()exp 0At=y y (B.32)

For example, if

() []0 1 0
T=y (B.33)

then

t t

t

e te

te

− −

−

⎛ ⎞+⎛ ⎞
= = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

1

2

y
y

y
 (B.34)

As an additional observation, note that the equation used to determine the
characteristic polynomial for determining the eigenvalues of a coefficient matrix

()Det 0λ − =I A (B.35)

is the same equation as

()Det 0s − =I A (B.36)

with λ replaced by s which is the denominator in equation (B.15). This tells us
that the eigenvalues of a matrix A have the same values as the node or pole
values (i.e., the s values). For example, in the characteristic polynomial for the
eigenvalues for the coefficient A given in equation (B.2) is

()Det 0λ − =I A (B.37)

References 167

which becomes

1 0 1 0
Det 0

0 1 1 2
λ
⎛ ⎞⎛ ⎞ ⎛ ⎞

− =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
 (B.38)

1 0
Det 0

1 2

λ
λ

−⎛ ⎞
=⎜ ⎟+ +⎝ ⎠

 (B.39)

or

()2 1 0λ λ + + = (B.40)

or

2 2 1 0λ λ+ + = (B.41)

or

()2
1 0λ + = (B.42)

and finally we have

1 21 and 1λ λ= − = − (B.43)

Clearly, one can replace λ with s in equation (B.37) to find that we have
repeated poles or nodes:

1 21 and 1s s= − = − (B.44)

These poles are the roots of the denominator of all the elements in equation (46b).
It is important to note that both the eigenvalue characteristic polynomial and the
characteristic polynomial of the denominator in a Laplace transform function are
both based on the coefficient matrix A . The two procedures (matrix exponential
and Laplace transform) yield the same time dependent solutions to the original
system of differential equations, as expected. The matrix exponential approach
requires finding the eigenvalues and eigenvectors, and the Laplace transform
technique requires finding the inverse of the Laplace transform. This handout
demonstrates that the methods are related.

References

1. Ogata, K.: Modern Control Engineering. Prentice-Hall, Englewood Cliffs (1997)
2. Kreyszig, E.: Advanced Engineering Mathematics. John Wiley & Sons, Inc., Chichester

(1993)
3. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford

University Press, Inc., Oxford (1997)

Chapter 3

Boundary Value Problems

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the
steady state distribution of heat or concentration across the slab or the material in
which the experiment is performed. This steady state process involves solving
second order ordinary differential equations subject to boundary conditions at two
ends. Whenever the problem requires the specification of boundary conditions at
two points, it is often called a two point boundary value problem. Both linear and
nonlinear boundary value problems will be discussed in this chapter. We will
present analytical solutions for linear boundary value problems and numerical
solutions for nonlinear boundary value problems.

3.1 Linear Boundary Value Problems

3.1.1 Introduction

Fick’s law of diffusion and Fourier’s law of conduction are usually represented by
second order ordinary differential equations (ODEs). In this chapter, we describe
how one can obtain analytical solutions for linear boundary value problems using
Maple and the matrix exponential.

3.1.2 Exponential Matrix Method for Linear Boundary Value
Problems

Consider a general boundary value problem

2

1 22

d y dy
a a y f(x)

dx dx
+ + = (3.1)

with the boundary conditions

y(0) = 1 (3.2)

170 3 Boundary Value Problems

and

dy
(1) 0

dx
= (3.3)

Equation (3.1) can be converted into two first order differential equations (see
section 2.1.4) and can be cast into matrix form as follows:

d
+ (x)

dx
=Y

AY b (3.4)

where the dependent variable vector is

y
 dy

dx

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

Y (3.5)

the coefficient matrix is

2 1

0 1

a a

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

A (3.6)

and the forcing function matrix is

0

f(x)

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b (3.7)

Equation (3.4) is a nonhomogeneous vector differential equation (see section 2.1.3).
The solution for equation (3.4) is given by (see Appendix A)[1] [2] [3] [4] [5]

x

0

exp (x) exp[(x)] () d= + − ζ − ζ ζ∫0Y A Y A b (3.8a)

or when b is a constant vector

1 1exp(x)()− −= + −0Y A Y A b A b (3.8b)

or when b is zero

 exp (x) = 0Y A Y (3.8c)

where ζ is a dummy variable of integration. The procedure involved for solving

boundary value problems using the matrix exponential (exp(Ax) is as follows:

3.1 Linear Boundary Value Problems 171

1. Start the Maple program with a 'restart' command to clear all variables.
2. Call 'with(linalg)' and 'with(lplots)' commands.
3. Enter the governing equation (equation (3.1)).
4. Enter the coefficient matrix (A) based on equation (3.6).
5. Enter the forcing function matrix (b) based on equation (3.7).
6. Store the initial conditions for the dependent variables in the vector Y0.

6a. The first row of Y0 corresponds to the initial condition for y, the

second row corresponds to the initial condition for the derivative,
dy

dx
.

6b. Usually either y or
dy

dx
 at x = 0 is known. The unknown initial

condition at x = 0 is taken as an unknown constant c1.
7. The matrix exponential (exp(Ax)) is found as a function of the parameters

and the independent variable (x) using the 'exponential(A,x)' command in
Maple.

8. The matrix exponential found is stored in mat. Now the solution (sol) is
found by multiplying mat times Y0 and adding the non-homogenous
solution according to equation (3.8) depending on the b matrix.

9. The first row of sol corresponds to the dependent variable y; the second
row corresponds to the first derivative of y, etc.

10. Next, the boundary condition at x =1 is used to solve for the unknown
constant c1.

11. Then c1 is substituted into the solution.

Once the analytical solution is obtained, plots can be made for a particular value
of the parameters.

Example 3.1

Consider the conduction of heat in a rectangular cooling fin. The governing
differential equation[6] in dimensionless form is

2
2

2

d
H

dx
d

(0) 1 and (1) 0
dx

θ = θ

θθ = =
 (3.9)

This boundary value problem is solved below by following the procedure
described earlier.

> restart:
> with(linalg):with(plots):
> N:=2;

172 3 Boundary Value Problems

> eq:=diff(theta(x),x$2)-H^2*theta(x);

> A:=matrix(N,N,[0,1,H^2,0]);

> mat:=exponential(A,x);

The exponentials are converted to trigonometric form for convenience.

> mat:=map(convert,mat,trig);

> Y0:=matrix(N,1,[1,c[1]]);

> sol:=evalm(mat&*Y0);

The solution is obtained as a function of x, H, and the unknown initial condition 1c .

The first row of sol corresponds to θ and the second row corresponds to
θ

dx
.

3.1 Linear Boundary Value Problems 173

> theta:=sol[1,1];

> dthetadx:=sol[2,1];

The boundary condition at x = 1 is applied to solve for 1c .

> bc2:=subs(x=1,dthetadx)=0;

> c[1]:=solve(bc2,c[1]);

The value of the constant 1c is substituted into the expression for θ .

> theta:=eval(theta);

The expression for θ can be simplified further by using Maple's 'combine'
command:

> theta:=combine(theta);

You can make plots for different values of the heat transfer coefficient, H, by
using a 'pars' array and a ‘do loop.’

> pars:=[1,2,5,10];

> clr:=[red,green,gold,blue];

> for i from 1 to 4 do p[i]:=plot(subs(H=pars[i],theta),x=0..1,color=clr[i]):od:
> display(seq(p[i],i=1..4),thickness=4,title="Figure 3.1",axes=boxed,labels
=["X","theta"],labeldirections=[HORIZONTAL,VERTICAL]);

174 3 Boundary Value Problems

Fig. 3.1

A three dimensional plot for θ can be made for different values of H as x varies
between zero and one.

> plot3d(theta,x=0..1,H=0..10,axes=boxed,title="Figure 3.2",
orientation=[45,45]);

Fig. 3.2

3.1 Linear Boundary Value Problems 175

The above picture shows that as H increases the temperature distribution becomes
nonuniform.

Example 3.2

Diffusion with a convection and simultaneous first order reaction in a rectangular
plate can be simulated using the program described above by using minor
modifications. Consider the composition profile in a packed tube reactor undergoing
isothermal linear kinetics with axial diffusion. The governing equation is

()

2

2

x 0

d C dC
Pe HaC 0

dx dx

dC
Pe 1 C(0) 0

dx

dC
(1) 0

dx

=

− − =

+ − =

=

 (3.10)

Solving this boundary value problem by hand is difficult and the solution for this
problem is very long. This boundary value problem is solved below easily by
following the procedure described earlier.

> restart:
> with(linalg):with(plots):
> N:=2;

> eq:=diff(C(x),x$2)-Pe*diff(C(x),x)-Ha*C(x);

> A:=matrix(N,N,[0,1,Ha,Pe]);

> mat:=exponential(A,x);

176 3 Boundary Value Problems

Note that for this boundary value problem both C and
dC

dx
at x 0= are not

known. However, using the boundary condition at x 0= ,
dC

dx
 can be written in

terms of the unknown constant c1, which is the concentration at x 0= .

> Y0:=matrix(N,1,[c[1],-Pe*(1-c[1])]);

> sol:=evalm(mat&*Y0):
> C:=sol[1,1];

> dCdx:=sol[2,1];

3.1 Linear Boundary Value Problems 177

To find 1c , we can use the known boundary condition at x 0= .

> bc2:=subs(x=1,dCdx)=0;

The equation for 1c can be solved easily by using Maple's 'solve' command.

> c[1]:=solve(bc2,c[1]);

Now that we have 1c , the complete solution can be determined for C by using

Maple's 'eval' command:

> C:=eval(C);

178 3 Boundary Value Problems

Next, one can plot the concentration profile by substituting values for the
parameters Ha and Pe:

> pars:={Ha=1,Pe=10};

> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"],
title="Figure 3.3");

Fig. 3.3

3.1 Linear Boundary Value Problems 179

New plots can be made for different sets of parameters such as:

> pars:={Ha=1,Pe=50};
> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"],
color=green,title="Figure 3.4");

Fig. 3.4

When we get weird plots, we can solve this problem by increasing the number of
digits as:

> Digits:=30;

> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"],color=gold,
title="Figure 3.5");

180 3 Boundary Value Problems

Fig. 3.5

3.1.3 Exponential Matrix Method for Linear BVPs with
Semi-infinite Domains

The methodology developed in section 3.1.2 can be used for semi-infinite
boundary conditions, also. The procedure for solving boundary value problems in
semi-infinite domain is as follows:

1. Start the Maple program with a 'restart' command to clear all variables.
2. Call 'with(linalg)' and 'with(lplots)' commands.
3. Enter the governing equation.
4. Enter the coefficient matrix (A) based on equation (3.6).
5. Enter the forcing function matrix (b) based on equation (3.8).
6. Store the initial conditions for the dependent variables in the matrix Y0.
7. The first row of Y0 corresponds to the initial condition for y, the second

row corresponds to the initial condition for the derivative,
dy

dx
.

8. Usually either y or
dy

dx
 at x = 0 is known. The unknown initial condition

at x = 0 is taken as an unknown constant c1.

3.1 Linear Boundary Value Problems 181

9. The matrix exponential (exp(Ax)) is found as a function of the parameters
and the independent variable (x) using the ‘exponential(A,x)’ command in
Maple.

10. The matrix exponential found is stored in mat. Now the solution (sol) is
found by multiplying mat with Y0 and adding the non-homogenous
solution according to equation (3.8) or (3.9) depending on the b matrix.

11. The first row of sol corresponds to the dependent variable y; the second
row corresponds to the first derivative of y, etc.

12. Next, the unknown constant c1 is found by using the fact that the solution
obtained is finite when x tends to infinity.

13. Then, c1 is substituted into the solution.

Once the analytical solution is obtained, plots can be made for particular values of
the parameters.

Example 3.3

Consider diffusion with a first order reaction in a semi-infinite plane:

2

2

d C
D1 kC

dx

C(0) 1 and C() is defined

−

= ∞
 (3.11)

where C is the dimensionless concentration, 1D , is the diffusion coefficient and k

is the rate constant. This equation is solved below using the procedure described
above.

> restart:
> with(linalg):with(plots):
> N:=2;

> eq:=diff(C(x),x$2)-k/D1*C(x);

> A:=matrix(N,N,[0,1,k/D1,0]);

182 3 Boundary Value Problems

> mat:=exponential(A,x);

> Y0:=matrix(N,1,[1,c[1]]);

> sol:=evalm(mat&*Y0);

> C:=sol[1,1];

This can be rewritten as

> C:=collect(C,exp(1/D1*(D1*k)^(1/2)*x));

> C:=collect(C,exp(-1/D1*(D1*k)^(1/2)*x));

Since C is finite as x tends to infinity, the second parenthesis must go to zero
because exp(x) goes to infinity as x goes to infinity. Consequently, the equation

for 1c can be found by setting the coefficient of the second term equal to zero:

3.1 Linear Boundary Value Problems 183

> eqbc:=coeff(C,exp(1/D1*(D1*k)^(1/2)*x));

> c[1]:=solve(eqbc,c[1]);

Thus, the desired solution for C is simply:

> C:=eval(C);

Plots can be made by substituting values for the parameters 1D and k:

> pars:={D1=1e-5,k=1};

> plot(subs(pars,C),x=0..1e-2,labels=[x,"C"],thickness=4,axes=boxed,
title="Figure 3.6");

Fig. 3.6

184 3 Boundary Value Problems

New plots can be made by substituting different values for the parameters.

> pars:={D1=1e-7,k=1};

> plot(subs(pars,C),x=0..1e-2,labels=[x,"C"],thickness=4,axes=boxed,
color=black,title="Figure 3.7");

Fig. 3.7

We observe that as the diffusion coefficient decreases mass transfer limitations
increase the length of the diffusion layer (distance required for C to drop to
approximately 0) which decreases as expected.

3.1.4 Use of Matrizant in Solving Boundary Value Problems

Consider the matrix differential equation

d
(t)

dt
=Y

A Y (3.12)

with a known initial condition of Y0. Note that in equation (3.12) the coefficient
matrix depends on t. The solution for this matrix equation is given by[1] [7] [4]

()= Ω 0Y A Y (3.13)

3.1 Linear Boundary Value Problems 185

where the matrizant Ω(A) is given by

[] [] []
1tt

t

1 1 1 2 2 10
0 0

() (t)dt (t) (t)dt dt
⎡ ⎤⎡ ⎤

Ω = + + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∫ ∫ ∫A I A A A

(3.14)

where I is the identity matrix. This matrizant Ω(A) reduces to the exponential
matrix exp(At) when A is a constant matrix. This method is also referred as
Picard’s method or the successive substitution method.

The procedure for solving linear initial value problems using the matrizant is
the same as that in section 2.1.2 except that instead of finding the exponential
matrix, the matrizant is found.

Example 3.4

To illustrate the process of using the matrizant, consider the initial value problem

dc
tc

dt

c(0) 1

= −

=
 (3.15)

This equation is solved in Maple by finding the matrizant below.

> restart:
> with(linalg):with(plots):
Warning, the protected names norm and trace have been redefined and
unprotected

Warning, the name changecoords has been redefined

> N:=1;

Enter the number of terms used in calculating the matrizant. (Usually six terms
are sufficient).

> nvars:=6;

> Eq:=diff(c(t),t)=-t*c(t);

> A:=matrix(1,1,[-t]);

186 3 Boundary Value Problems

> Y0:=matrix(1,1,[1]);

> id:=Matrix(N,N,shape=identity);

Define the two dummy variables
1 2X and X .

> X1:=matrix(N,N);X2:=matrix(N,N);

A dummy variable 1t is used in the integration. For matrix integration, Maple's

'map' command should be used.

> X1:=map(int,subs(t=t1,evalm(A)),t1=0..t);

> mat := evalm(id + X1) ;

We now have the first two terms of the matrizant. The next step is to find the next
five terms. A 'do loop' can be written to find the matrizant:

> for i from 2 to nvars do S:=evalm(subs(t=t1,evalm(A))&*subs(t=t1,
evalm(X1))):X2:=map(int,S,t1=0..t):mat := evalm(mat +X2) :
X1:=evalm(X2):od : evalm(mat) ;

> sol:=evalm(mat&*Y0);

> C:=sol[1,1];

Thus, the process yields a series solution in t for C. This solution can be compared
to the series solution given by Maple's 'dsolve' command:

3.1 Linear Boundary Value Problems 187

> 'dsolve'({Eq,c(0)=1},c(t),type=series);

By default, Maple gives a series solution accurate to the order of 6t . The order of
the series solution can be increased by using Maple's order specification as:

> Order:=14;

> 'dsolve'({Eq,c(0)=1},c(t),type=series);

We observe that the series solution obtained using the matrizant method matches
exactly with the series solution given by Maple's 'dsolve' command.

Example 3.5

The method described for example 3.4 can be used to solve boundary value
problems. Consider the boundary value problem given by the Airy differential
equation:

2

2

d y
xy

dx

dy
y(0) 1 and (1) 0

dx

=

= =

 (3.16)

The procedure for solving this boundary value problem is the same as that of
section 3.1.2 but instead of the exponential matrix, the matrizant must be used.

> restart:
> with(linalg):with(plots):
Warning, the protected names norm and trace have been redefined and

unprotected

Warning, the name changecoords has been redefined

> N:=2;

> nvars:=6;

188 3 Boundary Value Problems

> Eq:=diff(y(x),x$2)=x*y(x);

> A:=matrix(2,2,[0,1,x,0]);

> Y0:=matrix(N,1,[1,c[1]]);

> id:=Matrix(N,N,shape=identity);

> X1:=matrix(N,N);X2:=matrix(N,N);

> X1:=map(int,subs(x=x1,evalm(A)),x1=0..x);

> mat := evalm(id + X1) ;

> for i from 2 to nvars do
S:=evalm(subs(x=x1,evalm(A))&*subs(x=x1,evalm(X1))):X2:=
map(int,S,x1=0..x):mat := evalm(mat +X2) :
X1:=evalm(X2):od :
> evalm(mat) ;

3.1 Linear Boundary Value Problems 189

> sol:=evalm(mat&*Y0);

> y:=sol[1,1];

> dydx:=sol[2,1];

Now the unknown constant c1 is solved by using the boundary condition at x = 1.

> bc2:=subs(x=1,dydx)=0;

> c[1]:=solve(bc2,c[1]);

> y:=eval(y);

Readers can verify this series solution with the series solution obtained by using
Maple's 'dsolve' command.

Example 3.6

Next, the classical problem of diffusion with reaction in a cylindrical catalyst
pellet is considered:[8] [4]

21 d dc
x c 0

x dx dx

dc
(0) 0 and c(1) 1

dx

⎛ ⎞ − φ =⎜ ⎟
⎝ ⎠

= =

 (3.17)

where c is the dimensionless concentration and φ is the Thiele modulus. When this
boundary value problem is cast into the matrix form (equation (3.6)), the matrizant

190 3 Boundary Value Problems

involves integration of
1

x
 from 0 to 1. This problem can be treated by using a

logarithm variable transform as shown by Subramanian, Haran, and White[4] or
this can be handled by integrating from x0 to x and applying the limit command
for x0. We introduce the following variables for convenience:

1

2

c y

dc
x y

dx

=

=
 (3.18)

This transformation converts equation (3.17) to the following system of first order
ODEs:

1
2

2 22
1

dy dc 1 dc 1
x y

dx dx x dx x

dy d dc
x xc xy

dx dx dx

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

⎛ ⎞= = φ = φ⎜ ⎟
⎝ ⎠

 (3.19)

Next, equation (3.19) can be converted to the matrix form as

d
(x)

dx
=Y

A Y (3.20)

where the dependent variables are

1

2

c
y

 dc
y x

dx

⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Y (3.21)

and the coefficient matrix A is given by

2

1
0

x
x 0

⎡ ⎤
⎢ ⎥=
⎢ ⎥
φ⎣ ⎦

A (3.22)

The initial condition vector is

1c

0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0Y (3.23)

Equation (3.19) can be solved below by finding the matrizant in the manner
described above.

3.1 Linear Boundary Value Problems 191

> restart:
> with(linalg):with(plots):
> N:=2;

For brevity, only four terms are used for calculating the matrizant in this example.

> nvars:=4;

> Eq:=1/x*diff(x*diff(c(x),x),x)=phi^2*c(x);

Enter the A matrix (equation (3.22)).

> A:=matrix(2,2,[0,1/x,phi^2*x,0]);

> Y0:=matrix(2,1,[c[1],0]);

> id:=Matrix(N,N,shape=identity);

> X1:=matrix(N,N);X2:=matrix(N,N);

> X1:=map(int,subs(x=x1,evalm(A)),x1=0..x);

To avoid the singularity in 1X , integrate from 0x to x and later find the limit as

0x goes to zero.

192 3 Boundary Value Problems

> X1:=map(int,subs(x=x1,evalm(A)),x1=x0..x)assuming x>0,x0>=0,x>=x0;

> mat := evalm(id + X1) ;

> for i from 2 to nvars do
S:=evalm(subs(x=x1,evalm(A))&*subs(x=x1,evalm(X1))):X2:=
map(int,S,x1=x0..x):mat := evalm(mat +X2) :
X1:=evalm(X2):od :
> evalm(mat)assuming x>0,x0>=0,x>=x0;

> sol:=evalm(mat&*Y0);

> C:=sol[1,1];

3.1 Linear Boundary Value Problems 193

> dCdx:=1/x*sol[2,1];

To find 1c apply the boundary condition at x 1= :

> bc2:=eval(subs(x=1,C))=1 assuming x>0,x0>=0,x>=x0;

Warning, unable to determine if 0 is between x0 and x1; try to use assumptions or

set _EnvAllSolutions to true

> c[1]:=solve(bc2,c[1]);

> C:=eval(C);

Warning, unable to determine if 0 is between x0 and x; try to use assumptions or

set _EnvAllSolutions to true

Warning, unable to determine if 0 is between x0 and x1; try to use assumptions or

set _EnvAllSolutions to true

Now apply the limit command for x0.

> Warning, premature end of input, use <Shift> + <Enter> to avoid this
message.

> C:=limit(C,x0=0);

Divide both numerator and denominator by 64. (Note when different values of
'nvars' are used, this number has to be changed accordingly.)

194 3 Boundary Value Problems

> n1:=numer(C)/64;

> d1:=denom(C)/64;

> C:=n1/d1;

One can verify that both the numerator and the denominator of C are modified
Bessel functions of the order zero by using Maple.

> series(BesselI(0,phi*x),x);

> series(BesselI(0,phi),phi);

Next, plots can be obtained by substituting the parameters for the Thiele modulus φ .

> pars:=[0.1,1,2,10];

> clr:=[red,green,blue,brown];

> for i to 4 do p[i]:=plot(subs(phi=pars[i],C),x=0..1,color=clr[i]):od:
> pt[1]:=textplot([0.1,evalf(subs({x=0.1,phi=pars[1]},C)),'phi=pars[1]'],
align=below):
pt[2]:=textplot([0.4,evalf(subs({x=.4,phi=pars[2]},C)),'phi=pars[2]'],
align=below):
pt[3]:=textplot([0.5,evalf(subs({x=.5,phi=pars[3]},C)),'phi=pars[3]'],
align=below):
pt[4]:=textplot([0.8,evalf(subs({x=0.8,phi=pars[4]},C)),'phi=pars[4]'],
align=below):
> display({seq(p[i],i=1..4),seq(pt[i],i=1..4)},axes=boxed,thickness=3,
title="Figure 3.8",labels=[x,"C"]);

3.1 Linear Boundary Value Problems 195

Fig. 3.8

For higher values of φ, more terms (nvars) in the matrizant series solution are

needed for higher accuracy.

3.1.5 Symbolic Finite Difference Solutions for Linear Boundary
Value Problems

Consider a second order differential equation (equation (3.1)). This equation can
be converted to finite difference form (accurate to the order h2) as follows:

i 1 i i 1 i 1 i 1
1 2 i2

y 2y y y y
a a y f(x ih), i 1..N

h 2h
+ − + −− + −+ + = = = (3.24)

where i is the index of the node points, N is the number of interior node points,
and h is the node spacing defined by

L
h

N 1
=

+
 (3.25)

where L is the length of the domain. Thus, x = 0 corresponds to the node point i =
0 and x = L corresponds to the node point i = N+1. The variable yi corresponds to
the dependent variable at node point i. Equation (3.24) is a system of N linear
algebraic equations for N dependent variables (yi, i = 1..N). The boundary values
y0 and yN+1 are eliminated using the boundary conditions. Equation (3.24) can be
cast into matrix form as[5]

196 3 Boundary Value Problems

=AX B (3.26)

The solution to equation (3.26) can be obtained by inverting the A matrix (X = A-1B).
The procedure for solving linear boundary value problems using finite difference is as
follows:

1. Start the Maple program with a 'restart' command to clear all variables.
2. Call 'with(linalg)' and 'with(lplots)' commands.
3. Enter the governing equation.
4. Enter the number of interior node points, N.
5. Enter the length of the domain, L.
6. Convert the governing equations and boundary conditions to finite

difference form.
7. Eliminate the boundary values (y0 and yN+1) using the boundary conditions.
8. Store the finite difference equations in eqs.
9. Store the dependent variables, yi, i = 1..N in vars.
10. Generate A matrix and B vector using Maple’s 'genmatrix' command.
11. Find the solution by inverting the A matrix.
12. Note that Maple can invert A when it is a function of parameters in the

system (heat transfer coefficient, rate constants, etc.).

Once the symbolic finite difference solution is obtained, plots can be made for
particular values of the parameters.

Example 3.7

Consider the convective diffusion problem (Finlayson, 1980)[11]
2

2

d c dc
Pe 0

dx dx
c(0) 1

c(1) 0

− =

=
=

 (3.27)

An analytical solution can be obtained using the exponential matrix method
described in section 3.1.2:

Pe Pex

Pe

e e
c =

e 1

−
−

 (3.28)

This particular problem was chosen as the finite difference solution for this
equation and shows oscillations for high Peclet numbers when the central
difference expression is used for the first derivative. This equation is solved below
using the procedure described above.

> restart:
> with(linalg):with(plots):
> N:=4;

3.1 Linear Boundary Value Problems 197

> L:=1;

> eq:=diff(y(x),x$2)-Pe*diff(y(x),x);

> bc1:=y(x)-1;

> bc2:=y(x);

Central difference expressions for the second and first derivatives are

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2;

> dydx:=(y[m+1]-y[m-1])/2/h;

The governing equation in finite difference form is:

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq);

A 'for loop' can be written for the interior node points as

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od;

> Eq[0]:=y[0]=1;

198 3 Boundary Value Problems

> Eq[N+1]:=y[N+1]=0;

> y[0]:=solve(Eq[0],y[0]);

> y[N+1]:=solve(Eq[N+1],y[N+1]);

> h:=L/(N+1);

> for i to N do Eq[i]:=eval(Eq[i]);od;

> eqs:=[seq(Eq[i],i=1..N)];

> vars:=[seq(y[i],i=1..N)];

> A:=genmatrix(eqs,vars,'B1');

3.1 Linear Boundary Value Problems 199

> evalm(B1);

Maple generates a row vector, which can be converted to a column vector as:

> B:=matrix(N,1):for i to N do B[i,1]:=B1[i]:od:evalm(B);

The solution is obtained as:

> X:=evalm(inverse(A)&*B);

> for i to N do y[i]:=X[i,1];od;

200 3 Boundary Value Problems

> y[0]:=eval(y[0]);y[N+1]:=eval(y[N+1]);

Next, the result obtained is compared with the exact analytical solution:
> ya:=(exp(Pe)-exp(Pe*x))/(exp(Pe)-1);

> p1:=plot([seq([i*h,subs(Pe=1,y[i])],i=0..N+1)],thickness=4,color=blue,
axes=boxed):
> p2:=plot(subs(Pe=1,ya),x=0..1,thickness=8,color=brown,axes=boxed,
linestyle=2):
> display({p1,p2},title="Figure 3.9",labels=[x,"y"]);

Fig. 3.9

3.1 Linear Boundary Value Problems 201

We observe that both the finite difference solution and the analytical solution
match exactly when the Peclet number is 1. New plots can be obtained for
different values of the Peclet number as follows:

> p1:=plot([seq([i*h,subs(Pe=50,y[i])],i=0..N+1)],color=blue,thickness=4,
axes=boxed):
> p2:=plot(subs(Pe=50,ya),x=0..1,thickness=5,color=brown,axes=boxed,
linestyle=2):
> display({p1,p2},title="Figure 3.10",labels=[x,"y"]);

Fig. 3.10

This shows that for Pe 50= , 4 interior node points are not enough and we
observe oscillations.[11] [12] This happens usually when central difference

approximations are used for the convective term
dc

dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

. Use a forward difference

approximation for the first derivative to solve this problem. Only dydx in the
Maple program needs to be changed:

> dydx:=(y[m]-y[m-1])/h;

 := dydx
− y

m
y − m 1

h

202 3 Boundary Value Problems

The results obtained using this approximation is given below:

Fig. 3.11

Fig. 3.12

We observe that when the forward difference accurate to the order h2 is used,
even when the Peclet number is 1, there is a slight discrepancy between the finite
difference solution and the analytical solution. However, when the Peclet number

is high (Pe 50=) the forward difference scheme does not five an unrealistic

3.1 Linear Boundary Value Problems 203

oscillation like the central difference scheme. Note that for three digit accuracy

with the analytical solution, N 40= and 110 interior node points are required for
central difference and forward difference approximations, respectively.

>

Example 3.8. Cylindrical Catalyst Pellet

In the example discussed above, both the boundary conditions are of the Neumann
type. However, many problems involve derivative boundary conditions. These
problems can be handled by using the three point forward and backward
differences at x = 0 and x = 1, respectively. This is illustrated by solving the
cylindrical pellet problem solved in example 3.6 with a different boundary
condition at the surface (x 1=):

dc
(1) 1 c(1)

dx
= − (3.29)

The Maple program developed for the previous example can be modified to
handle the derivative boundary conditions:

> restart:
> with(linalg):with(plots):
> N:=4;

> L:=1;

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)-phi^2*y(x);

> bc1:=diff(y(x),x);

> bc2:=diff(y(x),x)-1+y(x);

The central difference expression for the second and first derivatives are

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2;

204 3 Boundary Value Problems

> dydx:=(y[m+1]-y[m-1])/2/h;

The three point forward and backward difference expressions for the derivative are:

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h);

> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h);

The governing equation in finite difference form is:

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq);

The boundary conditions in finite difference form are:

> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1);

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2);

A 'for loop' can be written for the interior node points as

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od;

> y[0]:=solve(Eq[0],y[0]);

3.1 Linear Boundary Value Problems 205

> y[N+1]:=solve(Eq[N+1],y[N+1]);

> h:=L/(N+1);

> for i to N do Eq[i]:=eval(Eq[i]);od;

> eqs:=[seq(Eq[i],i=1..N)];

> vars:=[seq(y[i],i=1..N)];

> A:=genmatrix(eqs,vars,'B1');

> evalm(B1);

206 3 Boundary Value Problems

Maple generates a row vector, which can be converted to a column vector as:

> B:=matrix(N,1):for i to N do B[i,1]:=B1[i]:od:evalm(B);

The solution is obtained as

> X:=evalm(inverse(A)&*B);

> for i to N do y[i]:=X[i,1];od;

> y[0]:=eval(y[0]);y[N+1]:=eval(y[N+1]);

3.1 Linear Boundary Value Problems 207

Now the result obtained is plotted for different values of the Thiele modulus Φ:

> pars:=[0.1,0.5,1,2,5];

> clr:=[black,red,green,gold,blue];

> for j from 1 to 5 do
p[j]:=plot([seq([i*h,subs(phi=pars[j],y[i])],i=0..N+1)],
thickness=3,color=clr[j]):od:

> pt:=textplot([seq([3*h,evalf(subs(phi=pars[j],y[3])-0.02),phi=pars[j]],j=1..5)]):
> display({seq(p[i],i=1..5),pt},title="Figure 3.13",axes=boxed,labels=[x,y]);

Fig. 3.13

Now the result obtained is plotted for different values of Thiele modulus Φ. The

results obtained for N 10= interior node points are given below.

208 3 Boundary Value Problems

Fig. 3.14

Note that when the problem is stiff (Pe>1000, or Φ > 20), N > 20 node points
might be needed for accurate solutions. Consequently, inverting the A matrix
symbolically involves lot of computational effort as the order of the matrix
increases with N. It is recommended that you specify the values for the
parameters and convert the entries of the A matrix to decimal points using the
following Maple command before the matrix inversion:

> A:=map(evalf,A);

3.1.6 Solving Linear Boundary Value Problems Using Maple’s
'dsolve' Command

Maple’s 'dsolve' command can be used to solve linear boundary value problems.
One of the advantages of using Maple’s 'dsolve' command is Maple can give Bessel
and other special function solutions to linear boundary value problems. However,
the analytical solution obtained from the 'dsolve' command may not be in simplified
or elegant form. The syntax for using the 'dsolve' command is follows.

'dsolve'({“differential equations, boundary conditions”},{“dependent variable”})

Example 3.9. Heat Transfer in a Fin

The heat transfer problem solved in example 3.1 can be solved using Maple’s
'dsolve' command as follows:

3.1 Linear Boundary Value Problems 209

> restart:
> with(plots):
> eq:=diff(y(x),x$2)-H^2*y(x);

> BCs:=y(0)=1,D(y)(1)=0;

> sol:='dsolve'({eq,BCs},y(x));

The solution obtained can be stored in ya as:

> ya:=rhs(sol);

The solution can be converted to trigonometric form and simplified further as

> ya:=convert(ya,trig);

> ya:=combine(ya);

We observe that 'dsolve' gives a long solution compared to the matrix exponential
method (example 3.1). As an exercise readers can verify that the solution
obtained by the matrix exponential method and the solution obtained here using
Maple’s 'dsolve' command are equivalent.

Example 3.10. Cylindrical Catalyst Pellet

The catalyst pellet problem solved in example 3.6 can be solved using Maple’s
'dsolve' command as follows:

> restart:
> with(plots):
> eq:=diff(c(x),x$2)+1/x*diff(c(x),x)-phi^2*c(x);

210 3 Boundary Value Problems

> BCs:=D(c)(0)=0,c(1)=1;

> sol:='dsolve'({eq,BCs},c(x));

The solution obtained can be assigned as

> Ca:=rhs(sol);

Example 3.11. Spherical Catalyst Pellet

Concentration distribution inside a spherical catalyst pellet is governed by the
following equation:

2
2

2

d c 2 dc
+ c 0

dx x dx

dc
(0) 0 and c(1) 1

dx

− Φ =

= =

 (3.30)

This equation is solved below using Maple’s 'dsolve' command:

> restart:
> with(plots):
> eq:=diff(c(x),x$2)+2/x*diff(c(x),x)-phi^2*c(x);

> BCs:=D(c)(0)=0,c(1)=1;

3.1 Linear Boundary Value Problems 211

> sol:=dsolve({eq,BCs},c(x));

Maple is not able to solve this problem directly. We can solve this problem
without specifying the boundary conditions:

> sol:=dsolve({eq},c(x));

The solution obtained can be assigned as:

> Ca:=rhs(sol[1]);

Now if ya has to be finite at x = 0, _C2 should be zero.

> _C2:=0;

> Ca:=eval(Ca);

Next, the boundary condition at x = 1 is used to solve for _C1.

> bc2:=subs(x=1,Ca)-1;

> _C1:=solve(bc2,_C1);

> Ca:=eval(Ca);

A three dimensional plot can be made as:

> plot3d(Ca,x=0..1,phi=0..10,axes=boxed,orientation=[120,60],
title="Figure 3.15",labels=[x,phi,"Ca"]);

212 3 Boundary Value Problems

Fig. 3.15

3.1.7 Summary

In this chapter, analytical solutions were obtained for linear boundary value
problems. In section 3.1.2, the given linear boundary value problem is converted
to matrix form. The analytical solution for this matrix differential equation was
found by using the matrix exponential. Maple provides the exponential matrix as
a function of the independent variable and the parameters in the governing
equations. The unknown initial condition at x = 0 was taken as an unknown
constant and found later using the boundary condition at x = 1. This approach
yields an elegant solution for linear boundary value problems. This methodology
is valid only if the coefficient matrix is constant. This methodology was then
extended for linear boundary value problems with semi-infinite domain in section
3.1.3. This is a powerful technique for solving linear boundary value problems in
semi-infinite domains.

In section 3.1.4, an analytical series solution using the matrizant was developed
for the case where the coefficient matrix is a function of the independent variable.
This methodology provides series solutions for Boundary value problems without
resorting to any conventional series solution technique. In section 3.1.5, finite
difference solutions were obtained for linear Boundary value problems as a
function of parameters in the system. The solution obtained is equivalent to the
analytical solution because the parameters are explicitly seen in the solution. One
has to be careful when solving convective diffusion equations, since the central
difference scheme for the first derivative produces numerical oscillations.

In section 3.1.6, linear Boundary value problems were solved using Maple’s
'dsolve' command. The solution obtained may not be in the simplified form.
Maple gives the Bessel function and other special function solutions for linear

3.1 Linear Boundary Value Problems 213

boundary value problems. In our opinion, the exponential matrix method is the
best method for linear boundary value problems. Maple’s 'dsolve' command
should be used only if the coefficient matrix is a function of the independent
variable. While using the 'dsolve' command, it is better to find the constants
separately instead of specifying the boundary conditions in the 'dsolve' command.
Eleven examples were presented in this chapter.

3.1.8 Exercise Problems

1. Consider diffusion with a first order isothermal reaction in a rectangular
pellet.[11] [8]. The governing equation and boundary conditions for
concentration in dimensionless form are:

2
2

2

d c
c

dx
dc

(0) 0 and c(1) 1
dx

= Φ

= =

where Φ is the Thiele modulus. Solve this equation using exponential
matrix method and plot the profiles for Φ = 0.1, 1, 2 and 10.

2. Consider the diffusion reaction problem (problem 1) with a mass transfer
resistance at the surface.[6] [11] The governing equation and boundary
conditions for dimensionless concentration are:

[]

2
2

2

d c
c

dx
dc dc

(0) 0 and (1) Bi 1 c(1)
dx dx

= Φ

= = −

where Bi is the Biot number. Solve this equation using matrix exponential
matrix method and plot the profiles for Φ = 0.1, 1, 2 and 10 for two
different values for the Biot number (Bi = 1, 100). Compare the results
obtained with problem 1.

3. Consider gas absorption with chemical reaction in an agitated tank.[13] The
governing equation and boundary conditions for dimensionless concentration
are given by:

2
2

2

d c
c

dx
c(0) 1 and c(1) 0

= Φ

= =

where Φ is the Thiele modulus. Solve this equation using exponential
matrix method and plot the profiles for Φ = 0 and 1.

214 3 Boundary Value Problems

4. Consider steady state plug flow in a tubular reactor.[14] The governing
equation and boundary conditions for dimensionless concentration are:

()

()

2

2

d c dc
Pe PeDa c

dx dx
dc dc

(0) Pe c(0) 1 and (1) 0
dx dx

− =

= − =

where Pe is the Peclet number and Da is the Damkohler number. Solve
this equation using exponential matrix method. Plot the concentration
profiles for Pe = 5 and Da = 1. In addition plot the exit concentration
(c(1)) as a function of Da for different values of Pe.

5. Redo problem 4 if the boundary condition at x = 0 is c(0) = 1. Plot the
concentration profiles for Pe = 5 and Da = 1. How does the exit
concentration compare with problem 4 for low and high values of Peclet
number (for Da = 1)?

6. Consider a linear electrochemical reaction inside a porous electrode.[15] [16]
The dimensionless solid phase potential (Φ1) and electrolyte potential (Φ2)
are governed by the macroscopic porous electrode theory:

()

()

2
21

1 22

2
22

1 22

d β ν
dx 1 + β

d 1 ν
dx 1 + β

Φ = Φ − Φ

Φ = − Φ − Φ

where ν is the dimensionless current density and β is ratio of electrolyte
conductivity to solid phase conductivity. The boundary conditions are:

1 1

2 2

dΦ dΦ
(0) 0; (1) δβ

dx dx
dΦ dΦ

(0) δ; (1) = 0
dx dx

= = −

= −

where δ is the dimensionless current density. The voltage difference across
the porous electrode is given by V = Φ1(1) - Φ2(0). Solve this coupled
system of equations using matrix exponential method and prove that two

unknown initial condition constants at x 0= cannot be solved using the
above set of boundary conditions. Alternatively, use the following set of
boundary conditions:

1 1

2 2
2

dΦ dΦ
(0) 0; (1) δβ

dx dx
dΦ dΦ

(0) 0; (0) δ; (1) 0
dx dx

= = −

Φ = = − =

3.1 Linear Boundary Value Problems 215

7. Solve the governing equations using the modified boundary conditions and
obtain an analytical solution using the matrix exponential method. Show
that one of the two boundary conditions at x = 1 becomes redundant (i.e.,
automatically satisfied). Plot the potential profiles inside the electrode for
ν = δ = 1 and β = 0.1.

8. Subtract the two equations in problem 6 to obtain a single equation for η =
Φ1 - Φ2. Obtain the boundary conditions for η and arrive at an analytical
solution for η using the matrix exponential method.

9. Consider steady state diffusion in a long a cylindrical annulus.[17] The
governing equation and boundary conditions are:

2

2

d c 1 dc
 0

dx x dx
c(1) 0 and c(2) 1

+ =

= =

10. To solve this equation using Maple’s 'dsolve' command, convert this

equation to two first order equations for c and x
dc

dx
. Integrate this system

of equations by finding the matrizant (see examples 3.4, 3.5 and 3.6. Note:
integrate the equations from 1 to x instead of 0 to x). Show that you get the
same solution as Maple’s 'dsolve' command.

11. Solve the same problem by writing down two first order equations for c and

dc

dx
. Obtain the matrizant solution for 2,4, and 6 terms. Show by plotting

the profiles that the solution obtained approaches with the analytical solution
as the number of terms in the matrizant increases. This problem shows that
we get more efficient solution for problems in cylindrical coordinates by

solving for c and x
dc

dx
 instead of solving for c and

dc

dx
.

12. Consider heat transfer in a thin metallic circular fin.[18] The dimensionless
temperature is governed by:

2
2

2

d y 1 dy
 H y

dx x dx
y(1) 1 and y() 0

+ =

= λ =

where H is the dimensionless heat transfer coefficient and λ is the ratio of
outer radius to inner radius. Obtain an analytical solution for this problem
using Maple’s 'dsolve' command.

13. Obtain the series solutions for problem 9 by using the matrizant method

and writing down two first order equations for c and
dc

dx
.

216 3 Boundary Value Problems

14. Consider diffusion with reaction in a cylinder pellet.[18] The governing
equation for dimensionless concentration is:

()

2
2

2

d c 1 dc
 y

dx x dx
dc dc

(0) and (1) Bi 1 c(1)
dx dx

+ = φ

= = −

where φ is the Thiele modulus and Bi is the Biot number. Obtain an
analytical solution for this problem using Maple’s 'dsolve' command.

15. Redo problem 12 and find series solutions using matrizant method.
16. Consider diffusion with reaction in a spherical pellet.[18] The governing

equation for dimensionless concentration is:

()

2
2

2

d c 2 dc
 y

dx x dx
dc dc

(0) 0 and (1) Bi 1 c(1)
dx dx

+ = φ

= = −

where φ is the Thiele modulus. Obtain an analytical solution for this
problem using Maple’s 'dsolve' command.

17. Consider the diffusion-reaction problem in a spherical particle discussed in
example 3. Obtain the series solutions for this problem using the matrizant

method. Write down first order equations for c and x2 dc

dx
. Plot dimensionless

concentration profiles for different values of Thiele modulus φ.

18. Redo problem 14 by writing down first order equations for c and
dc

dx
.

How does the series solution obtained compare with that of problem 14?
Which method is more efficient?

19. Consider limiting current conditions in a rotating disk electrode.[15] The
governing equation and boundary conditions for concentration are:

2

2

bulk

d c dc
D v 0

dz dz
c(0) 0 and c() c

− =

= ∞ =

where the velocity v is given by:

1 3
22 2 v 0.51023 ν Ω z

−= −

3.2 Nonlinear Boundary Value Problems 217

Define

1 3
2 2

D

0.51023 ν Ωα
−

= and
bulk

c
u =

c
 to obtain:

2
2

2

d u du
z 0

dz dz
u(0) 0 and u() 1

+ α =

= ∞ =

Replace ∝ by z = L. Solve this problem by finding the matrizant. Obtain
your profiles for α = 0.1 and L = 5. (Note that you might have to include
more than 30 terms in the matrizant depending on the values of α and L).

20. Solve problem 16 by using Maple’s 'dsolve' command (without specifying
the boundary conditions). Plot the two fundamental solutions obtained (f1,
f2) from z = 0 to z = 1. One of the two functions will be undefined at z = 0
and the other function will be well-defined at z = 0 (one can verify this by
plotting the fundamental solution). Hence, the analytical solution is an
arbitrary constant multiplied by the well-defined fundamental solution.
Find this constant using the boundary condition at z = L. Plot the solution
obtained for α = 0.1 and L = 5.

21. Consider a multi-component diffusion-reaction problem.[19] [4] [20] The
governing equations for molar fractions of gas and liquid reactants inside a
gas-fed porous electrode of a fuel cell are:

2

12

2

22

d C1
k C1

dx

d C2
k C1

dx
C1(0) 0.21;D(C1)(1) 0

D(C2)(0) 0;C2(1) 0.127

=

=

= =
= =

Obtain an analytical solution for this boundary value problem using matrix
exponential method and plot the mole fraction profiles for k1 = 1, k2 = 0.1.

3.2 Nonlinear Boundary Value Problems

3.2.1 Introduction

Heat, mass or momentum transfer in solids is typically represented by boundary value
problems (boundary value problems). Variable diffusivity or thermal conductivity,
nonlinear source terms or nonlinear boundary conditions make the boundary value

218 3 Boundary Value Problems

problems nonlinear. In this chapter, series and numerical solutions are presented for
nonlinear Boundary value problems using Maple.

3.2.2 Series Solutions for Nonlinear Boundary Value Problems

Series solutions for nonlinear boundary value problems can be obtained using
Maple’s 'dsolve' command. The syntax is

'dsolve'({“differential equations, initial conditions”},{“dependent variable”},
type=series);

Note that, the initial condition at x = 0 is provided for both the dependent variable
and its derivative. The unknown initial conditions are taken as constants. These
constants are then found using the boundary condition at x = 1. The series solution
obtained may be convergent or divergent depending on the problem.

Example 3.2.1. Series Solutions for Diffusion with a Second Order Reaction

Consider diffusion with a second order reaction in a rectangular pellet.[18] The
dimensionless concentration is governed by:

2
2 2

2

d c
c

dx
= Φ (3.31)

with the boundary conditions:

dc
(0) 0

dx
= (3.32)

and

c(1) 1= (3.33)

where Φ is the Thiele modulus. This boundary problem is solved in Maple below
for different values of Φ. The unknown initial condition c(0) is taken as an

unknown constant 1c .

> restart:
> with(plots):

Enter the governing equation:

> eq:=diff(c(x),x$2)=Phi^2*c(x)^2;

3.2 Nonlinear Boundary Value Problems 219

Enter the boundary condition at x = 1:

> bc:=c(x)-1;

The series solutions are obtained assuming that 1c(0) c= :

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series);

The order of the series is increased to get more accurate solutions:

> Order:=8;

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series);

The solution obtained is converted to polynomial form and stored in ca:

> ca:=convert(rhs(sol),polynom);

We observe that the series solution obtained is a function of Φ and 1c . Now the

boundary condition is evaluated using the solution obtained and substituting
x 1= :

> eqc:=subs(c(x)=ca,bc);

> eqc:=subs(x=1,eqc);

This is a nonlinear equation and cannot be solved explicitly:

> solve(eqc,c1);

220 3 Boundary Value Problems

However, the solution can be obtained for a particular value of Φ:

> solve(subs(Phi=0.1,eqc));

The 'solve' command takes too long to solve and gives complex roots. Hence, the
'fsolve' command is used to solve for the real values.

> fsolve(subs(Phi=0.1,eqc),c1=1);

Next, the constant 1c is solved for different values of Φ:

> cc[1]:=fsolve(subs(Phi=0.1,eqc),c1=1)[2];

> cc[2]:=fsolve(subs(Phi=1,eqc),c1=1)[2];

> cc[3]:=fsolve(subs(Phi=2,eqc),c1=1)[2];

> cc[4]:=fsolve(subs(Phi=5,eqc),c1=1)[2];

Next, plots are made by substituting the values for 1c and Φ:

p1:=plot(subs(c1=cc[1],Phi=0.1,ca),x=0..1,thickness=3,color=red,
axes=boxed):
> p2:=plot(subs(c1=cc[2],Phi=1,ca),x=0..1,thickness=3,color=green,
axes=boxed):
> p3:=plot(subs(c1=cc[3],Phi=2,ca),x=0..1,thickness=3,color=gold,
axes=boxed):
> p4:=plot(subs(c1=cc[4],Phi=5,ca),x=0..1,thickness=3,color=blue,
axes=boxed):
> pt:=textplot([[0.5,subs(x=0.5,c1=cc[1],Phi=0.1,ca)-
0.05,[c1=cc[1],Phi=0.1]],[0.5,subs(x=0.5,c1=cc[2],Phi=1,ca)-
0.08,[c1=cc[2],Phi=1]],[0.5,subs(x=0.5,c1=cc[3],Phi=2,ca)-
0.1,[c1=cc[3],Phi=2]],[0.5,subs(x=0.5,c1=cc[4],Phi=5,ca)-
0.1,[c1=cc[4],Phi=5]]]):
> display({p1,p2,p3,p4,pt},labels=[x,c],title="Figure 3.16");

3.2 Nonlinear Boundary Value Problems 221

Fig. 3.16

We observe that as Φ increases, the concentration profiles become steeper. We
have obtained the series solution for the given nonlinear boundary value problem.
There is no guarantee that the solution has converged. Accuracy of the solution
can be analyzed by increasing the number of terms in the series solution and

checking the values for 1c :

> Order:=10;

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series);

> ca:=convert(rhs(sol),polynom);

> eqc:=subs(c(x)=ca,bc);

222 3 Boundary Value Problems

> eqc:=subs(x=1,eqc);

> fsolve(subs(Phi=0.1,eqc),c1=1);

We observe that there are three different solutions of which only the last one
makes sense:

> cc2[1]:=fsolve(subs(Phi=0.1,eqc),c1=1)[3];

cc2
1
 := 0.9950412410

> fsolve(subs(Phi=1,eqc),c1=1);

For higher values of Φ, 'fsolve' produces only the correct solution:

> cc2[2]:=fsolve(subs(Phi=1,eqc),c1=1);

> cc2[3]:=fsolve(subs(Phi=2,eqc),c1=1);

> cc2[4]:=fsolve(subs(Phi=5,eqc),c1=1);

The constants 1c obtained using eight terms and ten terms in the series are

compared:

> for i to 4 do print(cc[i],cc2[i]);od;

For 0.1Φ = and 1, we observe that the solution has converged to the third digit.

For 2Φ = , the solution has converged to the first two digits. For 5Φ = , we
observe that the solution has not converged. Hence, more terms are required in
the series for higher values of Φ. The series solution obtained using Maple may or
may not converge. The convergence of the solution depends on the parameters (as
illustrated in this example), and the nonlinearity of the problem. In the next
example the non-isothermal reaction in a rectangular pellet is analyzed.
>

3.2 Nonlinear Boundary Value Problems 223

Example 3.2.2. Series Solutions for Non-isothermal Catalyst Pellet – Multiple
Steady States

The dimensionless concentration in a non-isothermal catalyst pellet[8] is governed
by:

2
2

2

d c γβ(1 c)
c exp

dx 1 β(1 c)

⎛ ⎞−= Φ ⎜ ⎟+ −⎝ ⎠
 (3.34)

with the boundary conditions:

dc
(0) 0

dx
= (3.35)

and

c(1) 1= (3.36)

This boundary value problem has multiple solutions for Φ = 0.2, β = 0.8 and γ =
20. The series solutions are obtained for this problem in Maple below:

> restart:
> with(plots):

The governing equation is entered here:

> eq:=diff(c(x),x$2)=Phi^2*c(x)*exp(gamma*beta*(1-c(x))/(1+beta*(1-c(x))));

The values for the parameters are entered here:

> eq:=subs(gamma=20,beta=0.8,eq);

The boundary condition at x 1= is entered here:

> bc:=c(x)-1;

The order of the series solution is specified and the governing equation is solved

as a function of 1c the concentration at the center, and Φ:

> Order:=8;

224 3 Boundary Value Problems

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series);

The series solution obtained is stored in ca:

> ca:=convert(rhs(sol),polynom);

The boundary condition at x 1= is evaluated using the series solution obtained:

> eqc:=subs(c(x)=ca,bc);

> eqc:=subs(x=1,eqc);

The equation for 1c is plotted as a function of 1c . We observe that there are four

solutions:

> plot(subs(Phi=0.2,eqc),c1=0..1,view=[0..1,-1..1],title="Figure 3.17",
thickness=4);

3.2 Nonlinear Boundary Value Problems 225

Fig. 3.17

The values for the constant 1c are obtained using the 'fsolve' command.

> cc[1]:=fsolve(subs(Phi=0.2,eqc),c1=1);

> cc[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8);

> cc[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0);

> cc[4]:=fsolve(subs(Phi=0.2,eqc),c1=0.03);

226 3 Boundary Value Problems

We obtain four different solutions for 1c . These values for 1c and Φ are substituted

in the series solution obtained and plots are made:

p1:=plot(subs(c1=cc[1],Phi=0.2,ca),x=0..1,thickness=4,color=black,
axes=boxed):
> p2:=plot(subs(c1=cc[2],Phi=0.2,ca),x=0..1,thickness=4,color=blue,
axes=boxed):
> p3:=plot(subs(c1=cc[3],Phi=0.2,ca),x=0..1,thickness=4,color=brown,
axes=boxed):
> p4:=plot(subs(c1=cc[4],Phi=0.2,ca),x=0..1,thickness=4,color=red,
axes=boxed):
>
pt:=textplot([[0.3,evalf(subs(x=0.3,c1=cc[1],Phi=0.2,ca)+0.04),[c1=cc[1],Phi=
0.2]],[0.3,evalf(subs(x=0.3,c1=cc[2],Phi=0.2,ca)+0.04),[c1=cc[2],Phi=0.2]],
[0.3,evalf(subs(x=0.3,c1=cc[3],Phi=0.2,ca)+0.04),[c1=cc[3],Phi=0.2]]]):
> display({p1,p2,p3,pt},title="Figure 3.18",labels=[x,c],
view=[0..1,-0.01..1.05]);

Fig. 3.18

3.2 Nonlinear Boundary Value Problems 227

> display(p4,labels=[x,c],title="Figure 3.19");

Fig. 3.19

We observe that the first three values of 1c make sense and we discard the fourth

value. There is no guarantee that the solution obtained is the converged one. The
accuracy and convergence of the series solution are analyzed below by increasing
the number of terms in the series.

> Order:=16;

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series):
> ca:=convert(rhs(sol),polynom):
> eqc:=subs(c(x)=ca,bc):
> eqc:=subs(x=1,eqc):
> cc2[1]:=fsolve(subs(Phi=0.2,eqc),c1=1);

> cc2[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8);

> cc2[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0);

228 3 Boundary Value Problems

> for i to 3 do print(cc[i],cc2[i]);od;

We observe that the first value for 1c has converged and the next two values have

not converged. Next, the order is increased to 20.

> Order:=20;

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series):
> ca:=convert(rhs(sol),polynom):
> eqc:=subs(c(x)=ca,bc):
> eqc:=subs(x=1,eqc):
> cc3[1]:=fsolve(subs(Phi=0.2,eqc),c1=1);

> cc3[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8);

> cc3[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0);

> for i to 3 do print(cc[i],cc2[i],cc3[i]);od;

We observe that the first value for 1c has converged (three digit accuracy). The
second value of 1c has converged to two digit accuracy. The third value has not
converged yet. But, the order of magnitude for the third value of 1c has
converged. Next, plots are made for three different values of 1c .

p1:=plot(subs(c1=cc3[1],Phi=0.2,ca),x=0..1,thickness=4,color=black,
axes=boxed):
> p2:=plot(subs(c1=cc3[2],Phi=0.2,ca),x=0..1,thickness=4,color=blue,
axes=boxed):
> p3:=plot(subs(c1=cc3[3],Phi=0.2,ca),x=0..1,thickness=4,color=brown,
axes=boxed):

3.2 Nonlinear Boundary Value Problems 229

>
pt:=textplot([[0.3,evalf(subs(x=0.3,c1=cc3[1],Phi=0.2,ca)+0.04),[c1=cc3[1],
Phi=0.2]],[0.3,evalf(subs(x=0.3,c1=cc3[2],Phi=0.2,ca)+0.04),[c1=cc3[2],
Phi=0.2]],[0.3,evalf(subs(x=0.3,c1=cc3[3],Phi=0.2,ca)+0.04),[c1=cc3[3],
Phi=0.2]]]):
> display({p1,p2,p3,pt},labels=[x,c],title="Figure 3.20",view=[0..1,-0.01..1.05]);

Fig. 3.20

Multiple steady states in a rectangular catalyst pellet were analyzed in this example.
This problem will be revisited later in this chapter.

3.2.3 Finite Difference Solutions for Nonlinear Boundary Value
Problems

The theory of finite difference solution for Boundary value problems was developed
in section 3.1.5. When finite difference approximations are used, the given nonlinear
boundary value problem is converted to a system of nonlinear algebraic equations.
This resulting system is solved in this section using Maple’s 'fsolve' command.

Example 3.2.3. Diffusion with a Second Order Reaction

Example 3.2.1 is solved using finite differences in Maple below. The program
developed for example 3.8 is modified to solve this example. (Note that y is used
as the dependent variable instead of c).

230 3 Boundary Value Problems

> restart:

> with(plots):

The number of node points is entered here:

> N:=4;

The length of the domain is entered here:

> L:=1;

The governing equation is entered below:

> eq:=diff(y(x),x$2)-Phi^2*y(x)^2;

The boundary conditions are entered here:

> bc1:=diff(y(x),x);

> bc2:=y(x)-1;

Next, a general program is written to convert the governing equation and the
boundary conditions to finite difference form. The central difference expression
for the second and first derivatives are:

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2;

> dydx:=(y[m+1]-y[m-1])/2/h;

Three point forward and backward difference expressions for the derivative are:

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h);

3.2 Nonlinear Boundary Value Problems 231

> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h);

The governing equation in finite difference form is:

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq);

The boundary conditions in finite difference form are:

> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1);

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2);

A 'for loop' can be written for the interior node points as

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od;

The node spacing is given by:

> h:=L/(N+1);

The value for Φ is sustained in the governing equations. The governing equations
are stored in eqs:

> eqs:=seq(eval(subs(Phi=1,Eq[i])),i=0..N+1);

232 3 Boundary Value Problems

The variables are stored in vars:

> vars:=seq(y[i],i=0..N+1);

The 'fsolve' command sometimes gives negative values when guess values for the
dependent variables are not provided. To avoid this, an initial guess of 1 is provided:

> fsolve({eqs},{vars});

> vars:=seq(y[i]=1,i=0..N+1);

> sol:=fsolve({eqs},{vars});

The solution obtained is assigned and plotted:

> assign(sol):
> plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,title="Figure 3.21",
labels=[x,y]);

Fig. 3.21

3.2 Nonlinear Boundary Value Problems 233

> y[0];

The accuracy of the solution obtained can be checked by following the
concentration at the center y[0] and increasing the number of node points:

> y[0];

The value for y[0] obtained with N = 10 interior node points is:

> y[0];

.7123656510

Hence, we conclude that the solution obtained has converged. The finite difference
solution is an easy technique to apply. However, the number of node points required
might increase drastically for stiff boundary value problems.

3.2.4 Shooting Technique for Boundary Value Problem

The shooting technique involves converting the given boundary value problem to
a system of initial value problems. The unknown initial conditions are guessed.
These unknown conditions are then updated using the known boundary condition

at x 1= . In this technique, the unknown initial condition at x 0= is estimated
using an optimization procedure. This is best illustrated using the next example.

Example 3.2.4. Nonlinear Heat Transfer

Consider a modification of the heat transfer discussed in example 3.1.1 with a
nonlinear source term. The governing equation is

2

2

d y
(1 0.1y)y

dx
= + (3.37)

with the boundary conditions:

dy
(0) 0

dx
= (3.38)

and

y(1) 1= (3.39)

The initial condition, y(0) is taken as

y(0) α= (3.40)

An initial value for α is guessed and the governing equation (3.37) is solved as an
initial value problem. Then, a new value of α is obtained using the following
relation.[6] [21]

234 3 Boundary Value Problems

()
expected predicted,old

new old

predicted,old

old x 1
old

old
x 1

old

Boundary Condition at x 1 Boundary Condition at x 1
α α

d Boundary Condition at x 1

dα

y y(α)
 α

dy(α)
0

dα

 α

x =

=

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥= +

=⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥−= + ⎢ ⎥
⎢ ⎥
⎣ ⎦

= old x 1

old

x 1

1 y(α)
dy(α)

dα

=

=

⎡ ⎤
⎢ ⎥−+ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(3.41)

In equation (3.41), the Jacobian olddy(α)
dα

 is often calculated numerically.

However, the Jacobian can be predicted exactly by differentiating the governing
equation (3.37) with respect to alpha as

2

2

d dy dy dy
(1 0.1)y (1 0.1y)

dx dα dα dα
⎛ ⎞ = + + +⎜ ⎟
⎝ ⎠

 (3.42)

Next, the Jacobian is treated as a variable 2y .

2

2

d y2
(1 0.1y2)y (1 0.1y)y2

dx
= + + + (3.43)

The initial conditions for 2y are obtained by differentiating equations (3.40) and

(3.38) with respect to α:

y2(0) 1= (3.44)

and

()dy2
0 0

dx
= (3.45)

This boundary value problem is solved in Maple below:

> restart:
> with(plots):

Enter the governing equation:

> eq:=diff(y(x),x$2)-(1+0.1*y(x))*y(x);

3.2 Nonlinear Boundary Value Problems 235

The sensitivity equation is developed by treating y as a function of x and α:

> eqalpha:=subs(y(x)=Y(x,alpha),eq);

The governing equation for the Jacobian is obtained by differentiating the

governing equation with respect to α:

> eqalpha:=diff(eqalpha,alpha);

A new variable, y2(x) is used to present the Jacobian

> eqalpha:=subs(diff(Y(x,alpha),alpha)=y2(x),eqalpha);

> eqalpha:=subs(Y(x,alpha)=y(x),eqalpha);

The variables are stored in vars:

> vars:=(y(x),y2(x));

The original governing equation and the sensitivity equation are stored in eqs:

> eqs:=(eq,eqalpha);

The initial value for α is given here:

> alpha0:=0.5;

The initial conditions are stored in ICs:

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);

236 3 Boundary Value Problems

Next the numerical solution is obtained and stored in sol:

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

The solution is evaluated at x 1= :

> sol(1);

The predicted value of y is stored in ypred:

> ypred:=rhs(sol(1)[2]);

The predicted value for the Jacobian is stored in y2pred:

> y2pred:=rhs(sol(1)[4]);

The new value for α is obtained as:

> alpha1:=alpha0+(1-ypred)/y2pred;

The error is calculated based on the value of α:

> err:=alpha1-alpha0;

The new value of α is then assigned to α0 for the next iteration.

> alpha0:=alpha1;

A program is written to update the values of α until the error is > 1e - 6. One can
set stricter tolerance limits for higher accuracy.

> k:=1;

> while err>1e-6 do
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);

3.2 Nonlinear Boundary Value Problems 237

> alpha1:=alpha0+(1-ypred)/y2pred;
> err:=abs(alpha1-alpha0);
> alpha0:=alpha1;k:=k+1;
> end;

> k;

Three iterations were required for this problem. The error in α is found to be:

> err;

The solution obtained is then plotted:

> odeplot(sol,[x,y(x)],0..1,axes=boxed,color=brown,title="Figure 3.22",
thickness=4);

238 3 Boundary Value Problems

Fig. 3.22

For this boundary value problem it takes only three iterations for the solution to
converge. Depending on the problem, and the initial guess provided, the program
might take any number of iterations to converge. In addition, for updating α
(equation (3.41)) the Jacobian in the denominator might approach zero for certain
problems. Sometimes, it is necessary to scale the update of α using the following
relation

old x 1
new old

old

x = 1

1 y(α)α α
dy(α)

dα

ρ =

⎡ ⎤
⎢ ⎥−= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.46)

where ρ is the number between 0 and 1. The lower the value of ρ the higher is the
number of iterations required for convergence. The value of ρ depends on the
problem. This is illustrated in the next example.

Example 3.2.5. Multiple Steady States in a Catalyst Pellet

The catalyst pellet problem solved in example 3.2.2 is solved here using the
shooting technique. The Maple program is given below:

> restart:
> with(plots):

The governing equation is entered here (after substituting the parameter values):

> eq:=diff(y(x),x$2)-0.04*y(x)*exp(16*(1-y(x))/(1+0.8*(1-y(x))));

3.2 Nonlinear Boundary Value Problems 239

> eqalpha:=subs(y(x)=Y(x,alpha),eq):
> eqalpha:=diff(eqalpha,alpha):
> eqalpha:=subs(diff(Y(x,alpha),alpha)=y2(x),eqalpha):

The sensitivity equation is:

> eqalpha:=subs(Y(x,alpha)=y(x),eqalpha);

The variables are stored in vars:

> vars:=(y(x),y2(x));

The governing equations are stored in eqs:

> eqs:=(eq,eqalpha);

The boundary value problem has multiple solutions. The solution obtained
depends on the initial guess provided for α. An initial guess of 0.9 is given:

> alpha0:=0.9;

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10);

> sol(1);

240 3 Boundary Value Problems

> ypred:=rhs(sol(1)[2]);

> y2pred:=rhs(sol(1)[4]);

The new value of α is obtained as:

> alpha1:=alpha0+(1-ypred)/y2pred;

For this example, the error is calculated based on the boundary condition at x = 1.

> err:=abs(1-ypred);

> alpha0:=alpha1;

> k:=1;

The iteration is performed until the error becomes less than the tolerance limit 1e - 10.

> tol:=1e-10;

> while err> tol do
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);
> alpha1:=alpha0+(1-ypred)/y2pred;
> err:=abs(1-ypred);
> alpha0:=alpha1;k:=k+1;
> end:
> k;

The problem has converged after six iterations. The concentration at the center of

the particle ()x 0= (x = 0) is given by:

> alpha1;

3.2 Nonlinear Boundary Value Problems 241

The error obtained is:

> err;

Next, the solution obtained is plotted and stored in p1.

> p1:=odeplot(sol,[x,y(x)],0..1,axes=boxed,thickness=3,color=blue):

The same steps are performed for a different initial guess of 0.5. The solution
obtained is stored in p2.

> alpha0:=0.5;

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10);

> sol(1);

> ypred:=rhs(sol(1)[2]);

> y2pred:=rhs(sol(1)[4]);

> alpha1:=alpha0+(1-ypred)/y2pred;

> err:=abs(1-ypred);

> alpha0:=alpha1;

> k:=1;

242 3 Boundary Value Problems

> while err> tol do
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);
> alpha1:=alpha0+(1-ypred)/y2pred;
> err:=abs(1-ypred);
> alpha0:=alpha1;k:=k+1;
> end:
> k;

The problem has converged after eight iterations. The concentration at the center
of the particle (x = 0) is given by:

> alpha1;

> err;

> p2:=odeplot(sol,[x,y(x)],0..1,axes=boxed,thickness=3,color=green):

Next, an initial guess of 1e - 4 is used. For this case the updated α becomes a
negative. Hence, a scaling factor of ρ=0.2 is used:

> alpha0:=1e-4;

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10);

> sol(1);

> ypred:=rhs(sol(1)[2]);

> y2pred:=rhs(sol(1)[4]);

3.2 Nonlinear Boundary Value Problems 243

> alpha1:=alpha0+(1-ypred)/y2pred;

> rho:=0.2;

> alpha1:=alpha0+rho*(1-ypred)/y2pred;

> err:=abs(1-ypred);

> alpha0:=alpha1;

> k:=1;

> while err> tol do
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);
> alpha1:=alpha0+rho*(1-ypred)/y2pred;
> err:=abs(1-ypred);
> alpha0:=alpha1;k:=k+1;
> end:

The problem has converged after 93 iterations. The concentration at the center
particle (x = 0) is given by:

> k;

> alpha1;

> err;

> p3:=odeplot(sol,[x,y(x)],0..1,title="Figure 3.23",axes=boxed,thickness=4,
color=brown):
> pt:=textplot([[0.2,0.95,"Steady State 1"],[0.2,0.75,"Steady State 2"],
[0.2,0.02,"Steady State 3"]]);

> display({p1,p2,p3,pt});

244 3 Boundary Value Problems

Fig. 3.23

Hence, we observe that the shooting technique can predict three multiple states in
a catalyst pellet. The number of iterations required to obtain a converged solution
depends on the initial guess and the scaling factor ρ.

3.2.5 Numerical Solution for Boundary Value Problems Using
Maple’s 'dsolve' Command

The series solution technique in section 3.2.2 may not produce converging series
solutions for all of the boundary value problems. The finite difference technique
discussed earlier in section 3.2.3 might be computationally intensive as the
number of node points increase and an approximate initial guess has to be
provided. The shooting technique described in section 3.2.4 is very robust, but
involves more computational effort. In addition, one has to solve an additional
number of differential equation and the solution might take large number of
iterations to converge. Conveniently, boundary value problems can be solved
numerically using Maple’s 'dsolve' command. By default Maple uses the finite
difference technique coupled with the Richardson interpolation technique. The
syntax is:

'dsolve'({“differential equations, boundary conditions”},{“dependent variables”},
type=numeric).

3.2 Nonlinear Boundary Value Problems 245

The differential equation entered can be of any order. For a differential equation
of order N, N boundary conditions have to be specified. The numerical solution
can be stored in a variable and can be used later for plotting purposes as shown in
the following examples.

Example 3.2.6. Diffusion with Second Order Reaction

Example 3.2.1 is solved here using Maple’s 'dsolve' command. The boundary

condition at the surface, x =1 is taken as:

()dc
(1) 100 1 c(1)

dx
= − (3.47)

Example 3.2.1 is solved below in Maple below with the modified boundary
condition:

> restart:
> with(plots):

Enter the governing equation:

> Eq:=diff(c(x),x$2)=Phi^2*c(x)^2;

The value of the parameter is substituted here:

> eq:=subs(Phi=1,Eq);

The boundary conditions are entered here:

> BCs:=(D(c)(0),D(c)(1)=100*(1-c(1)));

The numerical solution is obtained here:

> sol:=dsolve({eq,BCs},{c(x)},numeric);

The concentration profile obtained is plotted here:

>odeplot(sol,[x,c(x)],0..1,thickness=4,title="Figure 3.24",axes=boxed,
color=gold);

246 3 Boundary Value Problems

Fig. 3.24

Next, the problem is solved for a higher value of Φ:

> eq:=subs(Phi=10,Eq);

> BCs:=(D(c)(0),D(c)(1)=100*(1-c(1)));

> sol:=dsolve({eq,BCs},{c(x)},numeric);

>odeplot(sol,[x,c(x)],0..1,thickness=4,title="Figure 3.25",axes=boxed,
color=brown);

3.2 Nonlinear Boundary Value Problems 247

Fig. 3.25

We observe that as Φ increases, the profile becomes steeper and the time taken to
solve the problem also increases.

Example 3.2.7. Heat Transfer with Nonlinear Radiation Boundary
Conditions

Example 3.2.4 is solved here using Maple’s 'dsolve' command. The boundary
condition at the surface, x 1= is taken as:

()4dy
(1) 100 1 y(1)

dx
= − (3.48)

This example is solved in Maple below:

> restart:
> with(plots):
> eq:=diff(y(x),x$2)-(1+0.1*y(x))*y(x);

> BCs:=(D(y)(0),D(y)(1)=1-y(1)^4);

248 3 Boundary Value Problems

> sol:=dsolve({eq,BCs},{y(x)},type=numeric);

Error, (in dsolve/numeric/bvp) unable to store 'Limit(0.+1.0000000000000*I,
x = 0., left)' when datatype=float[8]

Maple is not able to solve this problem directly. An approximate solution can be
provided to arrive at the exact solution. The approximate solution can be found
using the linear boundary condition at x 1= . Note that the approximate solution
has to be evaluated for at least eight node points.

> sola:=dsolve({eq,D(y)(0),D(y)(1)=1-y(1)},{y(x)},type=numeric,
output=array([seq(i/7.,i=0..7)]));

The numerical solution of the original boundary value problem is found as:

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola);

The derivative of the dependent variable can be plotted as:

> odeplot(sol,[x,y(x)],0..1,thickness=4,color=red,title="Figure 3.26",
axes=boxed);

3.2 Nonlinear Boundary Value Problems 249

Fig. 3.26

> odeplot(sol,[x,diff(y(x),x)],0..1,color=blue,title="Figure 3.27",thickness=4,
axes=boxed);

Fig. 3.27

250 3 Boundary Value Problems

The functions of the dependent variables can be plotted as:

>odeplot(sol,[x,1-y(x)^4],0..1,thickness=4,color=brown,title="Figure 3.28",
axes=boxed);

Fig. 3.28

Example 3.2.8. Diffusion of a Substrate in an Enzyme Catalyzed
Reaction – BVPs with Removable Singularity

Boundary value problems in cylindrical and spherical coordinates have an inherent
singularity at x = 0. These problems can be tackled using Maple’s inbuilt midpoint
methods. For example, diffusion of a substrate in an enzyme catalyzed reaction.[6]
The governing equation for the dimensionless concentration is

2
2

1 d dy y
x f(y) 10

x dx dx y 0.1
⎛ ⎞ =⎜ ⎟ +⎝ ⎠

 (3.49)

where f(y) is a dimensionless function which describes the change of diffusion
coefficient as a function of concentration:

2

λ
f(y) 1

(y 0.01)
= +

+
 (3.50)

3.2 Nonlinear Boundary Value Problems 251

The boundary conditions are

dy
(0) 0

dx
= (3.51)

and

y(1) 1= (3.52)

This boundary value problem is solved in Maple below for different values of λ:

> restart:
> with(plots):
> f(y):=1+lambda/(y(x)+0.01)^2;

> Eq:=1/x^2*diff((x^2*f(y)*diff(y(x),x)),x)=10*y(x)/(y(x)+0.1);

> eq:=expand(subs(lambda=0,Eq));

> BCs:=(D(y)(0),y(1)-1);

> sol:=dsolve({eq,BCs},{y(x)},type=numeric);

Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use

midpoint method instead

Maple identifies the singularity at x = 0 and suggests the midpoint method:

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,method=bvp[midrich]);

252 3 Boundary Value Problems

> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.29",axes=boxed);

Fig. 3.29

> sol(0);

> L:=[0,1e-2,1e-1,1,10];

> MM:=nops(L);

> clr:=[red,green,gold,blue,magenta];

> for i to MM do
> eq:=expand(subs(lambda=L[i],Eq));
> sol[i]:=dsolve({eq,BCs},{y(x)},type=numeric,method=bvp[midrich]);
> p[i]:=odeplot(sol[i],[x,y(x)],0..1,thickness=4,color=clr[i]);
> od:
> pt:=textplot([seq([0.2,rhs(sol[i](0.2)[2])+0.02,lambda=L[i]],i=1..MM)]):
> display({seq(p[i],i=1..MM),pt},title="Figure 3.30",axes=boxed);

3.2 Nonlinear Boundary Value Problems 253

Fig. 3.30

Example 3.2.9. Multiple Steady States in a Catalyst Pellet

The catalyst pellet (example 3.2.2) is solved below using Maple’s 'dsolve'
command. The reaction order is taken to be second order. The governing equation
becomes

2
2 2

2

d y 1 y
 = y exp γβ

dx 1+β(1 y)

⎛ ⎞−Φ ⎜ ⎟−⎝ ⎠
 (3.53)

The boundary conditions are the same as that of example 3.2.2. This problem is
solved in Maple below:

> restart:
> with(plots):
> Eq:=diff(y(x),x$2)=Phi^2*y(x)^2*exp(gamma*beta*(1-y(x))/(1+beta*(1-y(x))));

> eq:=subs(Phi=0.2,gamma=20,beta=0.8,Eq);

254 3 Boundary Value Problems

> BCs:=(D(y)(0),y(1)-1);

> sol:=dsolve({eq,BCs},{y(x)},type=numeric);

The solution at x = 0 and 1 are found as:

> sol(0);

> sol(1);

> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.31",axes=boxed);

Fig. 3.31

By default Maple picks up the higher solution. The other two solutions are found
by giving an initial guess. For this problem, the approximation values for y(0) are
provided.

3.2 Nonlinear Boundary Value Problems 255

> p[1]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=red,axes=boxed):
> sola:=dsolve({eq,y(0)-0.7,y(1)-1},{y(x)},type=numeric,
output=array([seq(i/7.,i=0..7)]));

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola);

> sol(0);

> sol(1);

> p[2]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=blue,axes=boxed):
> sola:=dsolve({eq,y(0)-0.1,y(1)-1},{y(x)},type=numeric,
output=array([seq(i/7.,i=0..7)]));

256 3 Boundary Value Problems

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola);

> sol(0);

> sol(1);

p[3]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=brown,title="Figure 3.32",
axes=boxed):
> pt:=textplot([0.5,0.5,[Phi=0.2,gamma=20,beta=0.8]]):
> display({seq(p[i],i=1..3),pt});

Fig. 3.32

Hence, all of the multiple states can be predicted using Maple. The solution differs
slightly from the first order reaction discussed earlier.

Example 3.2.10. Blasius Equation – Infinite Domains

The Blasius problem is defined by:[22] [12]

3.2 Nonlinear Boundary Value Problems 257

2 3

2 3

d f d f
f 2 0

dη dη
+ = (3.54)

with the boundary conditions

f(0) 0 = (3.55)

df
(0) 0

dη
= (3.56)

and

df
() 1

dη
∞ = (3.57)

This boundary is different from other boundary value problems discussed in this
chapter because equation (3.54) is a third order ordinary differential equation with
three boundary conditions. In addition, the domain is semi-infinite. This boundary
value problem is solved in Maple below by replacing ∞ in equation (3.57) by 10.

> restart:
> with(plots):
> eq:=f(eta)*diff(f(eta),eta$2)+2*diff(f(eta),eta$3);

> BCs:=(f(0),D(f)(0),D(f)(10)-1);

> sol:=dsolve({eq,BCs},{f(eta)},type=numeric);

The solution for η = 0 and η = 10 are obtained as:

> sol(0);

> sol(10);

The solution obtained is plotted below:

> odeplot(sol,[eta,f(eta)],0..10,thickness=4,color=red,title="Figure 3.33",
axes=boxed);

258 3 Boundary Value Problems

Fig. 3.33

> odeplot(sol,[eta,diff(f(eta),eta)],0..10,thickness=4,color=green,
title="Figure 3.34",axes=boxed);

Fig. 3.34

3.2 Nonlinear Boundary Value Problems 259

3.2.6 Numerical Solution for Coupled BVPs Using Maple’s
'dsolve' Command

Simultaneous reactions, mass/momentum transfer, heat/mass/momentum transfer
are often represented by coupled boundary value problems. Coupled boundary
value problems can be conveniently solved numerically using Maple’s 'dsolve'
command. The syntax is:

'dsolve'({"differential equations, boundary conditions"},{"dependent variables"},
type=numeric).

Example 3.2.11. Axial Conduction and Diffusion in a Tubular Reactor

Axial diffusion and conduction in an adiabatic tubular reactor can be described

by: [6]

2

2

1 d y dy 1
4y exp E 1

Pe dx dx θ
⎛ ⎞⎛ ⎞− = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.58)

2

2

1 d θ dθ 1
4βy exp E 1

Bo dx dx θ
⎛ ⎞⎛ ⎞− = − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.59)

with the boundary conditions

1 dy
(0) y(0) 1

Pe dx
= − (3.60)

()dy
1 0

dx
=

(3.61)

1 dθ
(0) θ(0) 1

Bo dx
= − (3.62)

and

dθ
(1) 0

dx
= (3.63)

This coupled boundary value problem is solved in Maple below for the following
value of parameters Pe = 10, B0 = 10, E= 18 and β = 0.05.

> with(plots):
> Eq[1]:=1/Pe*diff(y(x),x$2)-diff(y(x),x)=4*y(x)*exp(E*(1-1/theta(x)));

260 3 Boundary Value Problems

> Eq[2]:=1/Bo*diff(theta(x),x$2)-diff(theta(x),x)=-4*beta*
y(x)*exp(E*(1-1/theta(x)));

> BCs:=[1/Pe*D(y)(0)-y(0)+1,D(y)(1),1/Bo*D(theta)(0)-theta(0)+1,D(theta)(1)];

> pars:={Pe=10,Bo=10,E=18,beta=0.05};

> for i to 2 do eq[i]:=subs(pars,Eq[i]);od;

> eqs:=(eq[1],eq[2]);

> vars:=(y(x),theta(x));

> bcs:=op(subs(pars,BCs));

> sol:=dsolve({eqs,bcs},{vars},type=numeric);

> sol(0);

> sol(1);

3.2 Nonlinear Boundary Value Problems 261

> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.35",axes=boxed);

Fig. 3.35

> odeplot(sol,[x,theta(x)],0..1,thickness=4,color=green,title="Figure 3.36",
axes=boxed);

Fig. 3.36

262 3 Boundary Value Problems

3.2.7 Solving Boundary Value Problems and Initial Value
Problems

Often boundary value problems can be cast into initial value problems for
obtaining performance curves. This is best illustrated by the next example.

Example 3.2.12. Diffusion with a Second Order Reaction

Diffusion with a second order reaction (example 3.2.1) is considered here again.
The dimensionless concentration is governed by:

2
2 2

2

d y
y

dx
= Φ (3.64)

with the boundary conditions:

dy
(0) 0

dx
= (3.65)

and

y(1) 1= (3.66)

The effectiveness factor of the pellet is given by

2

1 dyη (1)
dx

=
Φ

 (3.67)

For a given value of Φ, equation (3.64) can be solved for the boundary conditions
((3.65) and (3.66)). Once the numerical solution is obtained the effectiveness
factor can be calculated using equation (3.67). It is of interest to plot the
effectiveness factor as a function of Φ. For this purpose, one can solve the
boundary value problem for different values of Φ and predict the effectiveness
factor. Alternatively, this problem can be solved as an initial value problem. For
convenience, the transformation X = Φx is introduced. The BVP changes as:

2
2

2

d y
y

dX
= (3.68)

with the boundary conditions:

dy
(0) 0

dX
= (3.69)

and

y() 1Φ = (3.70)

3.2 Nonlinear Boundary Value Problems 263

The effectiveness factor of the pellet is given by

X Φ

1 dyη
dX =

=
Φ

 (3.71)

We know that for low values of Φ, the concentration at the center y(0) is close to
1. For high values of Φ, y(0) approaches zero. We take the concentration at the
center as

y(0) y0 = (3.72)

where y0 varies between 0 and 1. Next equation (3.68) is solved with two initial
conditions given by equations (3.69) and (3.72). This is solved as an initial value
problem. The stop condition illustrated in chapter 2.2.4 is used to find the value of
X for which equation (3.70) is satisfied. That is, equation (3.68) is integrated with
the initial conditions given by equation (3.69) and (3.70) until y(X) becomes 1.
The corresponding value of X gives the value for Φ. Once Φ is found, the
effectiveness factor is found using equation (3.71). This procedure is illustrated in
the following Maple program.

> restart:
> with(plots):
> eq:=diff(y(X),X$2)=y(X)^2;

The initial conditions for y and its derivative are provided:

> IC:=D(y)(0)=0,y(0)=0.1;

> sol:=dsolve({eq,D(y)(0)=0,IC},{y(X)},type=numeric,abserr=1e-10,stiff=true,
stop_cond=[y(X)-1]);

The solution is evaluated for large values of X. The solution stops at 6.95.

> g1:=sol(1000);

Warning, cannot evaluate the solution further right of 6.9564589, stop

condition #1 violated

The value for Φ is obtained as:

> Phi1:=rhs(g1[1]);

264 3 Boundary Value Problems

The derivative at X = Φ is given by:

> dydX1:=rhs(g1[3]);

The effectiveness factor is calculated as:

> eta1:=dydX1/Phi1;

The solution obtained is plotted as:

> odeplot(sol,[X,y(X)],0..10000,thickness=4,axes=boxed,title="Figure 3.37");
Warning, cannot evaluate the solution further right of 6.9564590, stop
condition #1 violated

Fig. 3.37

We can ask Maple to not print the warning about the violation of stop conditions
using the following command:

> _Env_dsolve_nowarnstop := true;

3.2 Nonlinear Boundary Value Problems 265

Different initial guesses for y0 ranging from 1e - 4 to 0.999 are chosen.

> Y0:=[1e-4,1e-3,1e-2,seq(i/40.,i=1..39),0.999];

> M:=nops(Y0);

A 'for loop' is written to find the corresponding values of Φ and effectiveness factors.

> for i from 1 to M do
Sol[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y0[i]},{y(X)},
type=numeric,stiff=true,abserr=1e-12,stop_cond=[y(X)-1]);;od:
> for i to M do g[i]:=Sol[i](100000):od:
> for i to M do Phi[i]:=rhs(g[i][1]);od:
> for i to M do dydX[i]:=rhs(g[i][3]);od:
> for i to M do eta[i]:=dydX[i]/Phi[i];od:

A loglogplot is made:

> loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,title="Figure 3.38",
thickness=4,labels=[Phi,eta],color=red);

Fig. 3.38

266 3 Boundary Value Problems

We observe that the effectiveness factor remains close to 1 until Φ = 1 and then
decreases with Φ.

3.2.8 Multiple Steady States

Problems with multiple steady states are interesting to solve numerically.
Computational effort required for solving these problems can be highly
demanding. Multiple steady states in a rectangular catalyst pellet were analyzed
in example 3.2.2, 3.2.5 and 3.2.9. One has to provide an approximate solution or a
guess value to predict the three multiple solutions. It is difficult to predict the
effectiveness factor of the pellet as a function of Φ or γ using the numerical
approaches described earlier in this chapter. In the next example, this boundary
value problem will be solved as an initial value problem.

Example 3.2.13. Multiple Steady States in a Catalyst Pellet - η vs. Φ

The non-isothermal reaction in a rectangular pellet (example 3.2.2) is again
considered. The dimensionless concentration is governed by:

2
2

2

d y 1 yΦ y exp γβ
dx 1 β(1 y)

⎛ ⎞−= ⎜ ⎟+ −⎝ ⎠
 (3.73)

with the boundary conditions:

dy
(0) 0

dx
= (3.74)

and

()y 1 1= (3.75)

The effectiveness factor of the pellet is given by

()2

1 dyη 1
dx

=
Φ

 (3.76)

For a given value of Φ, equation (3.63) can be solved for the boundary conditions
((3.65) and (3.66)). Once the numerical solution is obtained the effectiveness
factor can be calculated using equation (3.67). It is of interest to plot the
effectiveness factor as a function of Φ. For this purpose, one can solve the
boundary value problem for different values of Φ and predict the effectiveness
factor. However, since multiple steady states occur different initial guesses have
to be used to capture all of the steady states. This boundary value problem is
difficult to solve because for every value of Φ, there can 3 different ηs and, hence,

3 different values for the derivative (
dy

dx
) at x = 1. On the contrary, for every

3.2 Nonlinear Boundary Value Problems 267

value of
dy

dx
 (1), there is a unique value for Φ. Hence,

dy

dx
 (1) can be specified

and Φ can be treated as an unknown, which can be solved as we know 3 boundary

conditions (
dy

dx
 (0) = 0, y(1) = 1,

dy

dx
 (1) is known). The difficulty with this

approach is that
dy

dx
(1) can take any value between 0 and ∞. Based on the

previous argument, for every value of Φ, they correspond to three different values

dy

dx
 (1) and, hence, three different values for y(0). On the contrary, for every

value of y(0), there is a unique value for Φ. The advantage of setting y(0) is that

y(0) can practically vary only between 0 and 1. Now both y(0) and
dy

dx
 (0) are

known and equation (3.73) can be solved as an initial value problem and the
unknown Φ can be found be using the boundary condition y(1) = 1. Since the

problem is well defined with known initial conditions for y(0) and
dy

dx
 (0), stiff

solvers can be used to solve equation 3.73. By defining X = Φx, this boundary
value problem can be transformed as:

2

2

d y 1 y
y exp γβ

dX 1 β(1 y)

⎛ ⎞−= ⎜ ⎟+ −⎝ ⎠
 (3.77)

with the boundary conditions:

dy
(0) 0

dX
= (3.78)

and

y() 1Φ = (3.79)

The effectiveness factor of the pellet is given by

y 1

1 dyη
dX =

=
Φ

 (3.80)

We know that for low values of Φ, the concentration at the center y(0) is close to
1. For high values of Φ, y(0) approaches zero. We take the concentration at the
center as

y(0) y0 = (3.81)

268 3 Boundary Value Problems

where y0 varies between 0 and 1. This system of equations is similar to example
3.2.12. The program used for example 3.2.12 is modified below to solve this
example.

> restart:
> with(plots):

The values of the parameters are substituted here:

> Eq:=diff(y(X),X$2)=y(X)*exp(gamma*beta*(1-y(X))/(1+beta*(1-y(X))));

> eq:=subs(beta=0.8,gamma=20,Eq);

> IC:=D(y)(0)=0,y(0)=1e-6;

> sol:=dsolve({eq,IC},{y(X)},type=numeric,abserr=1e-10,stiff=true,
stop_cond=[y(X)-1]);

> g1:=sol(1000);
Warning, cannot evaluate the solution further right of .20038679, stop
condition #1 violated

> Phi1:=rhs(g1[1]);

> dydX1:=rhs(g1[3]);

> eta1:=dydX1/Phi1;

> odeplot(sol,[X,y(X)],0..2,thickness=4,title="Figure 3.39",axes=boxed);
Warning, cannot evaluate the solution further right of .20038680, stop
condition #1 violated

3.2 Nonlinear Boundary Value Problems 269

Fig. 3.39

> _Env_dsolve_nowarnstop := true;

Initial guesses ranging from 1e - 10 to 0.9996 are provided for y(0):

> Y0:=[1e-10,1e-9,1e-8,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2,5e-2,0.1,0.15,0.2,
0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.825,0.85,0.875,0.9,
0.91,0.92,0.93,0.94,0.95,0.955,0.96,0.965,0.968,0.97,0.975,0.98,0.99,
0.995,0.996,0.997,0.998,0.999,0.9995,0.9996];

> M:=nops(Y0);

> for i from 1 to M do
Sol[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y0[i]},{y(X)},
type=numeric,stiff=true,abserr=1e-12,stop_cond=[y(X)-1]);;od:
> for i to M do g[i]:=Sol[i](100000):od:
> for i to M do Phi[i]:=rhs(g[i][1]);od:
> for i to M do dydX[i]:=rhs(g[i][3]);od:

270 3 Boundary Value Problems

> for i to M do eta[i]:=dydX[i]/Phi[i];od:
> loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,title="Figure 3.40",
thickness=4,labels=[phi,eta],color=green);

Fig. 3.40

This plot captures the multiple steady state part. However, to predict the
effectiveness factor at higher values of Φ , we choose initial values ranging from
1e - 40 to 1e - 10. For these low values, one has to perform highly accurate
simulations. For this purpose, absolute error (abserr) is set to 1e - 41 and the
relative error (relerr) is set to 1e - 12.

> p1:=loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,thickness=4,
labels=[phi,eta],color=red):
> Y00:=[1e-40,1e-35,1e-30,1e-25,1e-20,1e-15,1e-10];

> MM:=nops(Y00);

> for i from 1 to MM do
Sol0[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y00[i]},{y(X)},
type=numeric,stiff=true,maxfun=1000000,abserr=1e-41,
relerr=1e-12,stop_cond=[y(X)-1]);od:
> for i to MM do g[i]:=Sol0[i](100000):od:
> for i to MM do Phi1[i]:=rhs(g[i][1]);od:

3.2 Nonlinear Boundary Value Problems 271

> for i to MM do dydX1[i]:=rhs(g[i][3]);od:
> for i to MM do eta1[i]:=dydX1[i]/Phi1[i];od:
> p2:=loglogplot([seq([Phi1[i],eta1[i]],i=1..MM)],axes=boxed,title="Figure 3.41",
thickness=4,labels=[phi,eta]):
> display({p1,p2});

Fig. 3.41

This plot captures the multiple steady state part. However, to predict the
effectiveness factor at higher values of Φ, we choose initial values ranging from
1e - 40 to 1e - 10. For these low values, one has to perform highly accurate
simulations. For this purpose, absolute error (abserr) is set to 1e - 41 and the
relative error (relerr) is set to 1e - 12.

> Eq:=diff(y(X),X$2)=y(X)*exp(gamma*beta*(1-y(X))/(1+beta*(1-y(X))));

 := Eq =
∂
∂2

X2
()y X ()y X e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

γ β ()− 1 ()y X
 + 1 β () − 1 ()y X

> eq:=subs(beta=0.8,gamma=20,Eq);

 := eq =
∂
∂2

X2
()y X ()y X e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟16.0

− 1 ()y X
 − 1.8 .8 ()y X

272 3 Boundary Value Problems

The following profile is obtained:

Fig. 3.42

3.2.9 Eigenvalue Problems

The separation of variables is a common technique used to solve linear PDEs.
This technique will be discussed in detail in chapter 7. This technique yields
ordinary differential equations for the eigenfunctions. In this section, we will
present two numerical techniques for the Graetz problem.

Example 3.2.14. Graetz Problem–Finite Difference Solution

The Graetz problem (heat or mass transfer) in cylindrical coordinates with parabolic
velocity profile is solved here. The governing equation for the eigenfunction is[15] [8]

()
2

2 2
2

d y 1 dy λ 1 x y
dx x dx

+ + − (3.82)

with the boundary conditions:

()dy
0 0

dx
= (3.83)

and

()y 1 0= (3.84)

Equation (3.82) is a second order equation with two boundary conditions
(equations (3.83) and (3.84). In equation (3.82), λ is the eigenvalue. To solve for

3.2 Nonlinear Boundary Value Problems 273

the eigenvalue an additional boundary condition has to be used. For this purpose,
y at x = 0 is arbitrarily set to 1:

()y 0 1= (3.85)

Next, equation (3.82) is discretized using finite differences as in section 3.2.3.
This yields N equations for the interior node points. The boundary conditions
(equations (3.83) and (3.84) are converted to finite difference form. This yields
two equations. There are a total of N+2 node points including the boundaries.
There are N+2 dependent variables (yi,i = 0..N+1). There is an additional variable λ.
The additional equation is (3.85). Hence, there are N+3 variables (yi,i = 0..N+1 and
λ) to be solved from N+3 equations. There are infinite solutions for the
differential equation (3.82). Hence, there are multiple solutions for the system of
finite difference equations. This example is solved in Maple below:

> restart:
> with(plots):
> N:=6;

> L:=1;

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)+lambda^2*(1-x^2)*y(x);

> bc1:=diff(y(x),x);

> bc2:=y(x)-0;

The additional boundary condition is entered here:

> bc3:=y(x)-1;

The central difference expressions for the second and first derivatives are

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2;

274 3 Boundary Value Problems

> dydx:=(y[m+1]-y[m-1])/2/h;

Three point forward and backward difference expressions for the derivative are:

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h);

> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h);

The governing equation in finite difference form is:

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq);

The boundary conditions in finite difference form are:
> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1);

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2);

A 'for loop' can be written for the interior node points as

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od;

3.2 Nonlinear Boundary Value Problems 275

The additional equation for the eigenvalue is:

> Eqeig:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc3);

> h:=L/(N+1);

The finite difference equations are stored in eqs:

> eqs:=seq(eval(subs(Phi=1,Eq[i])),i=0..N+1),Eqeig;

The dependent variables are stored in vars:

> vars:=seq(y[i],i=0..N+1),lambda;

These variables are solved as:

> fsolve({eqs},{vars});

Since there are multiple solutions, one has to provide the range for the dependent
variables. The dependent variable y varies between 0 and 1 and the eigenvalue is
solved in the range of 0.4.

276 3 Boundary Value Problems

> vars:=seq(y[i]=-1..1,i=0..N+1),lambda=0..4;

The solution obtained in stored in sol[1] and plotted:

> sol[1]:=fsolve({eqs},{vars});

> assign(sol[1]):

The first eigenvalue is given by:

> l[1]:=lambda;

The first eigenfunction is plotted here:

> plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,title="Figure 3.43",
labels=[x,y]);

Fig. 3.43

3.2 Nonlinear Boundary Value Problems 277

>p[1]:=plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,labels=[x,y],
color=colorlist[1]):
> pt[1]:=textplot([0.4,0.9,'lambda=l[1]']):
> for i from 0 to N+1 do unassign('y[i]'):od:
> unassign('lambda'):
> M:=4;

The next three eigenvalues are found by changing the range in increments of four:

> for j from 2 to M do
> vars:=seq(y[i]=-1..1,i=0..N+1),lambda=l[j-1]+1..l[j-1]+4;
> sol[j]:=fsolve({eqs},{vars});
> assign(sol[j]):
> l[j]:=lambda;
> p[j]:=plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,title="Figure 3.44",
axes=boxed,labels=[x,y],color=colorlist[j]):
> for i from 0 to N+1 do unassign('y[i]'):od:
> unassign('lambda'):
> od:

The first four eigenvalues are:

> print(seq(l[i],i=1..M));

> pt[2]:=textplot([0.38,0.5,lambda=l[2]]):
pt[3]:=textplot([0.87,0.4,lambda=l[3]]):
pt[4]:=textplot([0.8,-0.08,lambda=l[4]]):

Even after using N = 30 interior node points we get only two digit accuracy with
the exact solution. In addition, we observe more errors for higher eigenvalues
than for the lower eigenvalues.

> display({seq(p[i],i=1..M),seq(pt[i],i=1..M)});

278 3 Boundary Value Problems

Fig. 3.44

We observe that first eigenfunction reaches zero at x 1= . The second eigenfunction
crosses the x-axis once before reaching zero at x 1= . The third eigenfunction
crosses the x-axis twice before reaching zero. In general, nth eigenfunction crosses
the x-axis n-1 times. We observe that the eigenvalues match with the literature.
However, accuracy is very poor. For accurate predictions of the eigenvalues, the
shooting technique is adopted in the next example.

Example 3.2.15. Graetz Problem–Shooting Technique

The governing equation is:

2
2 2

2

d y 1 dy
 λ (1 x)y

dx x dx
+ + − (3.86)

with the initial conditions:

()dy
0 0

dx
= (3.87)

and

y(0) 1= (3.88)

3.2 Nonlinear Boundary Value Problems 279

A guess value for λ is chosen:

oldλ λ= (3.89)

Equation (3.86) is solved with the initial conditions (equations (3.87) and (3.89)
using this assumed value of λ. Then a new value of λ is obtained using the
following relationship:

expected, x 1 old x = 1
new old

old

x 1

old x 1
old

old

x = 1

y y(λ)
λ λ ρ

dy(λ)
dλ

0- y(λ)
 λ ρ

dy(λ)
dλ

=

=

=

⎡ ⎤
⎢ ⎥−

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3.90)

In equation (3.90), the Jacobian olddy(λ)

dλ
 is predicted as illustrated in 3.2.4 for

the shooting technique. This Jacobian is predicted exactly by differentiating the

governing equation (3.86) with respect to λ as

2
2 2 2

2

d dy 1 d dy dyλ (1 x) 2λ(1 x)y
dx dλ x dx dλ dλ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.91)

Next, the Jacobian is treated as the variable y2.

2
2 2 2

2

d y2 1 dy2
 λ (1 x)y2 2λ(1 x)y

dx x dx
+ + − + − (3.92)

The initial conditions for y2 are obtained by using the differentiating equations
(3.86) and (3.88) with respect to λ.

()dy2
0 0

dx
= (3.93)

and

()y2 0 0= (3.94)

This example is solved in Maple below:

> restart:
> with(plots):

280 3 Boundary Value Problems

The governing equation is entered here:

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)+lambda^2*(1-x^2)*y(x);

The sensitivity equation is developed by differentiating the governing equation

with respect to λ :

> eqlambda:=subs(y(x)=Y(x,lambda),eq);

> eqlambda:=diff(eqlambda,lambda);

> eqlambda:=subs(diff(Y(x,lambda),lambda)=y2(x),eqlambda);

> eqlambda:=subs(Y(x,lambda)=y(x),eqlambda);

The variables are stored in 'vars:'

> vars:=(y(x),y2(x));

An initial guess for lambda is given here:

> lambda0:=1;

The governing equations are stored in 'eqs:'

> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda);

3.2 Nonlinear Boundary Value Problems 281

> e:=1e-6;

The initial conditions for y and y2 are stored in ICs:

> ICs:=(D(y)(0)=0,y(0)=1,y2(0)=0,D(y2)(0)=0);

The numerical solution is obtained as:

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

The solution is evaluated at x 1= :

> sol(1);

There is a removable singularity at x 0= . This is handled by replacing 0 with
6e 10−= .

> e:=1e-6;

> ICs:=(D(y)(e)=0,y(e)=1,y2(e)=0,D(y2)(e)=0);

> sol:=dsolve({eqs,ICs},{vars},type=numeric);

The solution at x 1= is:
> sol(1);

The expected value of y at x 0= is y 0= . The predicted value is:

> ypred:=rhs(sol(1)[2]);

The Jacobian, y2 at x 1= is:

> y2pred:=rhs(sol(1)[4]);

282 3 Boundary Value Problems

The value of λ is updated as:

> lambda1:=lambda0+(0-ypred)/y2pred;

The error in λ is:

> err:=lambda1-lambda0;

> lambda0:=lambda1;

> k:=1;

The iteration is performed until the error in λ becomes less than 1e-6:

> while err>1e-6 do
> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);
> lambda1:=lambda0+(0-ypred)/y2pred;
> err:=abs(lambda1-lambda0);
> lambda0:=lambda1;k:=k+1;
> end;

3.2 Nonlinear Boundary Value Problems 283

284 3 Boundary Value Problems

Finally, the eigenvalue obtained is:

> lambda0;

The number of iterations is:

> k;

The error in the value of λ is:

> err;

The first eigenfunction is plotted as:

> odeplot(sol,[x,y(x)],e..1,axes=boxed,thickness=3,title="Figure 3.45");

Fig. 3.45

Next, a tolerance of 1e - 10 is set. This BVP has infinite solutions. The first five
eigenvalues are found by using five different initial guesses for λ. A scaling factor
of ρ = 1/3 is introduced to ensure stability.

3.2 Nonlinear Boundary Value Problems 285

> tol:=1e-10;rho:=1/3;

> lambdaguess:=[1,5,9,13,17];

> MM:=nops(lambdaguess);

> colorlist:=[black,red,blue,yellow,green];

> for i from 1 to MM do
> lambda0:=lambdaguess[i];
> k:=1;err:=1;
> while err>tol do
> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda);
> sol:=dsolve({eqs,ICs},{vars},type=numeric);
> ypred:=rhs(sol(1)[2]);
> y2pred:=rhs(sol(1)[4]);
> lambda1:=lambda0+rho*(0-ypred)/y2pred;
> err:=abs(lambda1-lambda0);
> lambda0:=lambda1;k:=k+1;
> end:
> l[i]:=lambda0;
> kk[i]:=k;
> Err[i]:=err;
> p[i]:=odeplot(sol,[x,y(x)],e..1,axes=boxed,thickness=3,color=colorlist[i]);
> end:

The first five eigenvalues are:

> seq(l[i],i=1..MM);

These values match exactly with the literature and the analytical solution discussed
in chapter 7 (up to six significant digits). The number of iterations required for the
eigenvalue is:

> seq(kk[i],i=1..MM);

The error in λ is:

> seq(Err[i],i=1..MM);

286 3 Boundary Value Problems

The first five eigenfunctions are plotted as:

> arw:=arrow(<0.5,0.8>,<-0.45,-0.6>,width=[1/250, relative], head_length=
[0.05, relative]):
pt:=textplot([[0.8,0.95,"Follow the arrow"],seq([0.8,0.85-(i-1)*0.09,
lambda=l[i]],i=1..MM)]);

> display({seq(p[i],i=1..MM),arw,pt},title="Figure 3.46");

Fig. 3.46

Note that with the shooting technique we obtain exact results. The finite difference
solution is not as smooth as the shooting technique solution.

3.2.10 Summary

In this chapter, nonlinear boundary value problems were solved numerically. In
section 3.2.2, series solutions were derived for nonlinear boundary value
problems. This is a powerful technique and is even capable of predicting multiple
steady states in a catalyst pellet. However, these series solutions should be used
cautiously. The convergence of the solution is not guaranteed and should be
verified. This can be done by increasing the number of terms in the series and
plotting the profiles.

3.2 Nonlinear Boundary Value Problems 287

In section 3.2.3, finite difference solutions were obtained for nonlinear
boundary value problems. This is a straightforward and easy technique and can be
used to obtain an initial guess for other sophisticated techniques. This technique is
important because it forms the basis for the method of lines technique for solving
linear and nonlinear partial differential equations (chapter 5 and 6). However, for
stiff boundary value problems, this technique may not work and might demand
prohibitively large number of node points. In addition, approximate initial guess
should be provided for all the node points for stiff boundary value problems.

In section 3.2.4, nonlinear boundary value problems were solved using shooting
technique. The given boundary value problem was converted to a system of initial
value problems. The unknown initial condition was obtained using an iteration and
optimization procedure. This is a very robust technique and can be used to solve
stiff boundary value problems. This technique is capable of predicting multiple
steady states in a catalyst pellet. However, the number of iterations required for
convergence can be prohibitively large for certain boundary value problems.

In section 3.2.5, nonlinear boundary value problems were solved using Maple’s
'dsolve' command. Maple’s 'dsolve' command is based on finite difference
coupled with Richardson interpolation. This can be used to solve a variety of B
boundary value problems conveniently. For nonlinear or stiff boundary value
problems, one should provide an approximate solution. This approximate solution
can be arrived by providing initial conditions and solving the boundary value
problem as an initial value problem. In addition, special methods must be
specified for boundary value problems in cylindrical and spherical coordinates to
avoid the removable singularity at the origin. If this method fails, one might resort
to shooting technique. This methodology was then extended for coupled boundary
value problems in section 3.2.6.

In section 3.2.7, boundary value problems were solved as initial value
problems. This methodology is especially useful for predicting the performances
in chemical reactors. Maple’s stop condition was used in this section to obtain η
vs. Φ curves. This is very useful because, it is generally easier to solve an initial
value problem than a boundary value problem. This technique was then used in
section 3.2.8 to predict multiple steady states in a catalyst pellet in section 3.2.8.
This methodology is extremely useful for predicting the hysteresis curves in
multiple steady state problems.

In section 3.2.9, eigenvalue problems were solved numerically. Two different
methods were used. First, a finite difference technique was used to predict the
unknown eigenvalues for the Graetz problem in cylindrical coordinates. By
specifying different ranges, first five eigenvalues and eigenfunctions were obtained
numerically. This technique is not robust and requires a large number of node points
as the magnitude of the eigenvalue increases. Next, a sensitivity approach was used
to predict the eigenvalue. The given boundary value problem was first converted to
an initial value problem. This initial value problem was then solved with a guessed
value of the eigenvalue. The eigenvalue was the updated based on an optimization
procedure. This is a very robust technique. This technique predicts the eigenvalues
accurately and the eigenfunctions obtained are very smooth.

Fifteen examples were presented in this chapter.

288 3 Boundary Value Problems

3.2.11 Exercise Problems

1. Consider the diffusion reaction problem discussed in example 3.2.9.
Obtain the series solutions for this problem. Plot the concentration profiles
for Φ = 0.1, 1, 2 and 10.

2. Consider diffusion with reaction in a cylindrical pellet.[8, 18] The governing
equation and boundary conditions are:

2
2 2

2

d c 1 dc
c

dx x dx
dc

(0) 0 and c(1) 1
dx

+ = Φ

= =

Obtain the series solutions for this problem using Maple’s 'dsolve'
command. (Since there is a removable singularity at x = 0, use c(1)=1 and
D(c)(1) = c1 to obtain series solutions and obtain the constant c1 using the
boundary condition at x = 0).

3. Consider diffusion with a reaction in a cylindrical pellet[8, 18] The governing
equation and boundary conditions are:

2
2 2

2

d c 2 dc
c

dx x dx
dc

(0) 0 and c(1) 1
dx

+ = Φ

= =

4. Obtain series solutions for this problem using Maple’s 'dsolve' command.
(Since there is a removable singularity at x = 0, use c(1)=1 and D(c)(1) =
c1 to obtain series solutions and obtain the constant c1 using the boundary
condition at x = 0).

5. Consider the nonlinear heat transfer problem solved in example 3.2.4.
Obtain series solutions for this problem and plot the profiles.

6. Consider the Blasius problem discussed in example 3.2.10. Obtain series
solutions for this problem. Can you obtain physically meaningful series
solutions for this problem using Maple’s 'dsolve' command?

7. Consider diffusion in a slab catalyst with a highly nonlinear Hinshelwood
kinetics.[18] The governing equation and boundary conditions are:

2
2

2 2

d c c

dx 1 δc γc
dc

(0) 0 and c(1) 1
dx

= Φ
+ +

= =

Obtain series solutions for this problem and plot the concentration profiles
for 1δ γΦ = = = .

3.2 Nonlinear Boundary Value Problems 289

8. Redo example 3.2.2 for a second order reaction (take the governing
equation from example 3.2.9).

9. Redo problem 2 using Maple’s 'dsolve' numeric command.
10. Redo problem 3 using Maple’s 'dsolve' numeric command.
11. Redo problem 6 using Maple’s 'dsolve' numeric command and shooting

technique.
12. Solve example 3.2.2 using Maple’s 'dsolve' numeric command and obtain

the three steady states.
13. Consider problem 7 and solve it as an initial value problem to obtain the

effectiveness factor as a function of Φ. (See examples 3.2.12 and 3.2.13).
14. Solve problem 6 as an initial value problem (see examples 3.2.12 and

3.2.13) and obtain the effectiveness factor as a function of Φ.
15. Redo example 3.2.2 using the finite difference technique illustrated in

example 3.2.3. Can you obtain all the three steady states?
16. Solve the Blasius equation (example 3.2.10) using the shooting technique.
17. Consider an isothermal chemical flow reactor with dispersion.[22] The

governing equation and boundary conditions are:

2
n

2

1 d c dc 1
Dac

Pe dx dx Pe
1 dc dc

(0) c(0) 1 and (1) 0
Pe dx dx

− =

= − =

where Pe is the Peclet number, Da is the Damkohler number and n is the
reaction order. Obtain an analytical solution for this problem for n = 1. Solve
this problem using 'dsolve' numeric command, shooting technique, and finite
difference methods for the set of parameters Pe = 1, Da = 1 and n = 2.
Repeat the calculations for Pe = 50, Da = 1 and n = 2. Discuss your results.

18. Consider heat transfer associated with a boundary layer in a flat plate.[22]
Velocity profile is governed by the Blasius equation and the temperature
(θ) is governed by the Pohlhausen equation. The governing equations and
boundary conditions are:

3 2

3 2

2

2

d f d f
f 0

dx dx

d d
Prf 0

dx dx
df df

f (0) 0; (0) 0 and (5) 1
dx dx

θ(0) 0 and θ(5) 0

+ =

θ θ+ =

= = =

= =

where Pr is the Prandtl number. For mass transfer, a similar equation
arises with the Prandtl number replaced by the Schmidt number. Solve this

290 3 Boundary Value Problems

system using Maple’s 'dsolve' numeric command for Pr = 2. Plot velocity
and temperature profiles. Plot (0) as a function of Pr for Pr = 1..20.

19. Consider diffusion reaction problem with Langmuir-Hinshelwood kinetics
(Finlayson, 1980). The governing equations and boundary conditions are:

2
2

2 2

d c c

dx (1 c)

dc
(0) 0 and c(1) 1

dx

= Φ
+ α

= =

where α = 20. Solve this problem as an initial value problem (see examples
3.2.12 and 3.2.13) and predict effectiveness factor as a function of Φ.

20. From problem 18, choose a value of Φ for which there are multiple steady
states. For the chosen value of Φ, predict the multiple steady state
concentration profiles using Maple’s 'dsolve' numeric command and
shooting technique.

21. Redo example 3.2.11 using finite difference technique.
22. Redo example 3.2.11 for Pe = Bo = 100.
23. Analyze problem 21 for multiple steady states. To do this, solve this

problem using the shooting technique for the given set of parameters.
24. Consider the behavior of a thin sheet of viscous liquid emerging from a

thin slot at the base of a converging channel in connection with a method
of lacquer application known as “curtain coating.”[6] The dimensionless
governing equations and boundary conditions for the velocity are:

22

2

d y 1 dy dy
 - - y + 1= 0

dx y dx dx

dy 1
y(0) 0.325 and (L) for large values of L

dx 2L

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =

25. Solve this problem using Maple’s 'dsolve' numeric command, shooting
technique and finite difference technique. Initially choose L = 5 and
increase L to make sure that the solution has converged (i.e., change L = 6

and calculate
dy

dx
(0)). Compare the efficiency of the three methods for

this problem.

26. Consider diffusion with a reversible reaction (2A B⇔) in a porous
catalyst layer.[23] The total mass flux is given by:

()A A
A A B

T

dC C
N D N N

dx C
= − + +

where D is the effective diffusion coefficient, CT is the total concentration, NB
is the total mass flux of B and is given by NB = -NA/2. Shell balance gives:

3.2 Nonlinear Boundary Value Problems 291

2A T A
A

dN C C
 = k C

dx K

−⎛ ⎞− −⎜ ⎟
⎝ ⎠

where k is the rate constant and K is the equilibrium constant. The
boundary conditions are:

-5 3 A
A

dC
C (0) 1x10 mol/cm and (L) 0

dx
= =

Use the first equation to eliminate NA and obtain a governing equation for
CA. The values of parameters are D = 1x10-2 cm2/s, CT = 4x10-5 mol/cm3,
L = 0.2 cm, k = 8x104 cm3/s/mol and K = 6x105 cm3/mol. Solve this
problem numerically (choose any appropriate numerical method) to obtain
the concentration profile.

27. Consider multi-component diffusion of gases A and B through stagnant gas
C (Gianakopulos, 1972; Cutlip and Shacham, 1999).[23] The governing
equations for concentration of A and B are:

A C C AA A B B A

T A B A C

B C C BB B A A B

T A B B C

(C N C N)d C (C N C N)1

d z C D D

(C N C N)d C (C N C N)1

d z C D D

⎛ ⎞−−= +⎜ ⎟
⎝ ⎠
⎛ ⎞−−= +⎜ ⎟
⎝ ⎠

Concentration of C is given by the material balance CA + CB + CC = CT.
Since C is stagnant NC is zero. The boundary conditions are:

CA(0) = 2.229x10-4 kg-mol/m3, CB(0) = 0, CA(L) = 0 and CB(L) =
2.701x10-3 kg-mol/m3.

Values of the parameters are L = 0.001m, DAB = 1.47x10-4 m2/s, DAC =
1.075x10-4 m2/s, DBC = 1.245x10-4 m2/s, and CT = 7.4309x10-5 kg-mol/m3.
The governing equations are first order in z and can be solved just by using
the initial conditions at z = 0. However the values for NA and NB are not
known. These should be found using the boundary conditions at z = L.
Solve this problem using Maple’s 'dsolve' numeric command, and finite
difference technique. Plot the concentration profiles.

28. Gas A reacts with B to produce C in a finite liquid film.[23] The governing
equations and boundary conditions are:

2
2A

A B2

2
2B

A B2

A A

B
B

d C
 C C

dx

d C
 β C C

dx
C (0) 1; C (1) 0

dC
(0) 0; C (1) 1

dx

= Φ

= Φ

= =

= =

292 3 Boundary Value Problems

where Φ is the Thiele modulus and β is the ratio of diffusion coefficient of
B to A. Obtain the series solutions for this problem using Maple’s 'dsolve'
command if possible. Solve this problem using a suitable numerical
method for Φ2 = 3.2 and β = 0.5.

29. Consider hydrodynamics in a rotating disk electrode.[15] [24] The governing
equations for velocity distributions are:

2
2 2

2

2

2

dH
2F 0

dx

dF d F
F G H

dx dx

dG d G
2FG H

dx dx
H(0) F(0) 0 and G(0) 1

F(5) G(5) 0

+ =

− + =

+ =

= = =
= =

Solve this problem using Maple’s 'dsolve' numeric command plot for the
velocity profiles. Obtain the series solutions for this problem by using
unknown initial conditions calculated from the numerical solution. Is the
series solution obtained convergent? For what values of x can these series
solutions be safely used? Can accuracy be increased by adding more terms
in the series?

30. Redo problem 27 by applying finite differences in x. How many node
points are needed to obtain the converged solution?\

31. Consider a variant of Graetz problem discussed in examples 3.2.14 and
3.2.15 (Villadsen and Michelsen, 1978). The governing equation and
boundary conditions are:

2
2 2

2

d y
 λ (1 x)y 0

dx
dy dy

y(0) 0; (0) 1 and (1) 0
dx dx

+ − =

= = − =

Obtain the first five eigenvalues and eigenfunctions using the shooting
technique described in example 3.2.15.

32. Consider diffusion with reaction in a pore with pore-mouth poisoning.[8]
The governing equation and boundary conditions are:

[]
2

2 2
62

1 x 0.7d y
y

exp(10 x 0.7)dx

dy
(0) 0 and y(1) 1

dx

≤⎛ ⎞
= Φ ⎜ ⎟⎜ ⎟− −⎝ ⎠

= =

References 293

Solve this equation using a suitable numerical method for Φ = 2 and plot y

and
dy

dx
 as a function of x. Note that Maple’s piecewise function can be

used to enter the right hand side of the governing equation.
33. Consider heat transfer in a fin with variable conductivity and nonlinear

heat transfer coefficient.[25] The governing equations and boundary
conditions are:

[]

2

0 2

0 0 a

w

x
h 1

Ld dT
k 1 α(T T) (T T)

dx dx B

dT
T(0) T and (L) 0

dx

⎛ ⎞
−⎜ ⎟

⎛ ⎞ ⎝ ⎠− + − = − −⎜ ⎟
⎝ ⎠

= =

The values of the parameters are h0 = 40 Btu/hr-ft2-oF, k0 = 60 Btu/hr-ft2-oF,
α = 0.02 (of)-1, Two = 450oF, T0 = 77oF, Ta = 90oF, L = 1.5 in and B = 0.02 in.
Obtain series solutions for this problem using Maple’s 'dsolve' command if
possible. In addition, solve this problem using a suitable numerical
technique.

34. Consider potential distribution in porous electrode (Newman, 1991;[15]
exercise problem 7 of chapter 3.1). For nonlinear Butler-Volmer kinetics
dimensionless overpotential η is governed by:

()
2

2 0.5η 0.5η
2

d η ν e e
dx
dη dη

(0) δ; (1) δβ
dx dx

−= −

= = −

Obtain the series solutions for this problem using Maple’s 'dsolve'
command if possible. Plot overpotential profiles for ν = δ = 1 and β = -
0.1. In addition, solve this problem using a suitable numerical method.

References

1. Amundson, N.R.: Mathematical Methods in Chemical Engineering: Matrices and Their
Applications. Prentice Hall, Inc., Englewood Cliffs (1966)

2. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley & Sons, Chichester
(1993)

3. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford
University Press, Inc., Oxford (1997)

4. Subramanian, V.R., Haran, B.S., White, R.E.: Series solutions for boundary value
problems using a symbolic successive substitution method. Computers & Chemical
Engineering 23(3), 287–296 (1999)

294 3 Boundary Value Problems

5. Subramanian, V.R., White, R.E.: Symbolic solutions for boundary value problems
using Maple. Computers & Chemical Engineering 24(11), 2405–2416 (2000)

6. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley
& Sons, Chichester (1984)

7. Taylor, R.: Engineering Computing with Maple: Solution of PDEs via the Method of
Lines. CACHE News 49 (Fall 1999)

8. Villadsen, J., Michelsen, M.L.: Solution of Differential Equation Models by
Polynomial Approximation. Prentice Hall, Inc., Englewood Cliffs (1978)

9. Crassidis, J.L., John, L.: Optimal Estimation of Dynamic Systems. Chapman &
Hall/CRC Press, Boca Raton (2004)

10. DeCarlo, R.A.: Linear Systems: A State Variable Approach with Numerical
Implementation. Prentice Hall, Inc., Englewood Cliffs (1989)

11. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New
York (1980)

12. Schiesser, W.E., Silebi, C.A.: Dynamic Modeling of Transport Process Systems (1997)
13. Bird, R.B., Stewart, W.E., Lightfoot, E.N.: Transport Phenomena. John Wiley & Sons,

Inc., Chichester (1960)
14. Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic

Press, London (1999)
15. Newman, J.: Electrochemical Systems. Prentice Hall, New York (1991)
16. Newman, J., Tiedemann, W.: Porous-electrode Theory with Battery Applications.

AIChE Journal 21(1), 25–41 (1975)
17. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford

(1979)
18. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.

John Wiley & Sons, Inc., Chichester (1995)
19. Ramakrishna, D., Amundson, N.R.: Linear Operator Methods in Chemical

Engineering: with Applications to Transport and Chemical Reaction Systems. Prentice
Hall, Inc., New York (1985)

20. White, R.E., et al.: Extension of Darby’s Model of a Hydrophilic Gas Fed Porous
Electrode. Journal of the Electrochemical Society 131, 268–274 (1984)

21. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with
MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)

22. Hanna, O.T., Sandall, O.C.: Computational Methods in Chemical Engineering.
Prentice Hall, Inc., Englewood Cliffs (1995)

23. Cutlip, M.B., Shacham, M.: Problem Solving in Chemical Engineering with Numerical
Methods. Prentice Hall PTR, Englewood Cliffs (1999)

24. Levich, B.G.: Physiochemical Hydrodynamics. Prentice Hall, Inc., Englewood Cliffs
(1962)

25. Riggs, J.B.: An Introduction to Numerical Methods for Chemical Engineers. Texas
Tech. University Press (1988)

Chapter 4

Partial Differential Equations in Semi-infinite
Domains

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the
distribution of heat or concentration across the slab, or the material in which the
experiment is performed. This process is represented by parabolic partial
differential equations (unsteady state) or elliptic partial differential equations.
When the length of the domain is large, it is reasonable to consider the domain as
semi-infinite which simplifies the problem and helps in obtaining analytical
solutions. These partial differential equations are governed by the initial condition
and the boundary condition at x 0= . The dependent variable has to be finite at
distances far (x = ∞) from the origin. Both parabolic and elliptic partial
differential equations will be discussed in this chapter. The Laplace transform
technique will be used for parabolic partial differential equations. A similarity
solution technique will be used for parabolic, elliptic and nonlinear partial
differential equations.

4.1 Partial Differential Equations (PDEs) in Semi-infinite
Domains

Transient heat conduction or mass transfer in solids with constant physical
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is
usually represented by a parabolic partial differential equation. For steady state
heat or mass transfer in solids, potential distribution in electrochemical cells is
usually represented by elliptic partial differential equations. In this chapter, we
describe how one can arrive at the analytical solutions for linear parabolic partial
differential equations and elliptic partial differential equations in semi-infinite
domains using the Laplace transform technique, a similarity solution technique
and Maple. In addition, we describe how numerical similarity solutions can be
obtained for nonlinear partial differential equations in semi-infinite domains.

4.2 Laplace Transform Technique for Parabolic PDEs

Parabolic partial differential equations are solved using the Laplace transform
technique in this section. Diffusion like partial differential equations are first order

296 4 Partial Differential Equations in Semi-infinite Domains

in the time variable and second order in the spatial variable. This method involves
applying the Laplace transform in the time variable to convert the partial
differential equation to an ordinary differential equation in the Laplace domain,
which becomes a boundary value problem (ordinary differential equation, ODE)
in the spatial direction with s, the Laplace variable, as a parameter. The boundary
conditions are converted to the Laplace domain and the differential equation in the
Laplace domain is solved by using the techniques illustrated in chapter 3.1 for
solving linear boundary value problems. The methodology is very similar to the
technique illustrated in chapter 3.1 for solving boundary value problems (BVPs) in
the semi-infinite domain. Once an analytical solution is obtained in the Laplace
domain, the solution is inverted to a time domain to obtain the final analytical
solution (in time and spatial coordinates), which is shown in the following
examples.

Example 4.1. Heat Conduction in a rectangular slab

Consider the following transient heat conduction problem in a slab.[1-3] The
governing equation is:

2

2
 =

(,0) = 1

u(0,) = 0 and u(,) is defined

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

 (4.1)

where α is the thermal diffusivity ()2m s . Equation (4.1) is solved below using

Maple:

> restart:with(linalg):with(inttrans):with(plots):

The governing equation is stored in the equation:

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2);

Enter the initial condition here:

> u(x,0):=1;

The boundary condition at x 0= is entered here:

4.2 Laplace Transform Technique for Parabolic PDEs 297

> bc1:=u(0,t)=0;

Enter the second boundary condition here:

> bc2:=u(infinity,t)=defined;

The governing equation and the boundary condition at x 0= are converted to the
Laplace domain:

> eqs:=laplace(eq,t,s);

The given partial differential equation is transformed to an ordinary differential
equation in the Laplace domain since

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

where U(x) is the dependent variable in the Laplace domain:

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

Next, the dependent variable in the Laplace domain is solved using the 'dsolve'
command since (see chapter 3.1.6):

> U(x):=rhs(dsolve(g,U(x)));

The constant _C2 is found using the boundary condition at x = ∞ . The

dependent variable U(x) is defined at x = ∞ . In the above expression

298 4 Partial Differential Equations in Semi-infinite Domains

becomes ∞ as x tends to ∞ . Hence, in the above expression, the coefficient of

 is equated to zero:

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> _C2:=solve(eqc,_C2);

This simplifies the solution since:

> U(x):=eval(U(x));

The solution obtained in the Laplace domain is converted to the time domain since:

> u:=invlaplace(U(x),s,t);

This solution can be further simplified since:

> u:=convert(u,erf);

The solution obtained can be plotted for a particular value of the parameter α
since:

> plot3d(subs(alpha=0.001,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.1",
labels =[x,t,"u"],orientation=[120,60]);

4.2 Laplace Transform Technique for Parabolic PDEs 299

Fig. 4.1

The same plot is made for a different value of α here:

> plot3d(subs(alpha=0.1,u),x=1..0,t=50..0,axes=boxed,title="Figure 4.2",
labels =[x,t,"u"],orientation=[120,60]);

Fig. 4.2

300 4 Partial Differential Equations in Semi-infinite Domains

Next, the dimensionless temperature u is plotted versus x for different values of
time as shown below:

>pfs:=plot([subs(alpha=0.001,t=1,u),subs(alpha=0.001,t=10,u),
subs(alpha=0.001,t=100,u),subs(alpha=0.001,t=200,u)],x=0..1,
axes=boxed,title="Figure 4.3",thickness=4,labels=[x,"u"]);

> pts:=textplot([[0.12,evalf(subs(alpha=0.001,t=1,x=0.08,u)),"t=1"],
[0.25,evalf(subs(alpha=0.001,t=10,x=0.2,u)),"t=10"],
[0.58,evalf(subs(alpha=0.001,t=100,x=0.5,u)),"t=100"],
[0.69,evalf(subs(alpha=0.001,t=200,x=0.6,u)),"t=200"]]);

> display({});

Fig. 4.3

An animation in time can be made since:

> animate(subs(alpha=0.001,u),x=0..1,t=1..500,thickness=4,title="Figure 4.4",
axes =boxed,labels=[x,"u"]);

4.2 Laplace Transform Technique for Parabolic PDEs 301

Fig. 4.4

Example 4.2. Heat Conduction with Transient Boundary Conditions

Heat conduction with a constant boundary condition at x =0 was considered in
example 4.1. The same technique can be applied for time dependent boundary
conditions. Consider the transient heat conduction problem in a slab.[4] The
governing equation is:

2

2
 =

(,0) = 0

k
u(0,) = and u(,) is defined

t

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

 (4.2)

Equation (4.2) is solved in Maple below:

> restart:with(linalg):with(inttrans):with(plots):
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2);

302 4 Partial Differential Equations in Semi-infinite Domains

> u(x,0):=0;

> bc1:=u(0,t)=k/t^(1/2);

> bc2:=u(infinity,t)=defined;

> eqs:=laplace(eq,t,s):

The governing equation in the Laplace domain is:

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

The boundary condition in the Laplace domain is:

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> _C2:=solve(eqc,_C2);

4.2 Laplace Transform Technique for Parabolic PDEs 303

The dimensionless temperature in the Laplace domain is:

> U(x):=eval(U(x));

Next, the solution is inverted to the time domain:

> u:=invlaplace(U(x),s,t);

Maple is not able to invert the solution in the Laplace domain. This can be solved
by using dummy variables for x and α and defining them to be positive:

> U(x):=subs(x=x1,alpha=alpha1,U(x));

> assume(x1>0,alpha1>0);
> u:=invlaplace(U(x),s,t);

> u:=subs(x1=x,alpha1=alpha,u);

Hence, the final solution is:

> pars:={alpha=0.001,k=1};

> plot3d(subs(pars,u),x=1..0,t=300..0,axes=boxed,title="Figure 4.5",
labels =[x,t,"u"],orientation=[45,45]);

304 4 Partial Differential Equations in Semi-infinite Domains

Fig. 4.5

> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u),
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.6",thickness=5,
labels=[x,"u"],legend=["t=1","t=10","t=100","t=200"]);

Fig. 4.6

You can make an animation using the command illustrated in example 4.1.

4.2 Laplace Transform Technique for Parabolic PDEs 305

Example 4.3. Heat Conduction with Flux Boundary Conditions

In the previous two examples, the temperature (dependent variable) at x = 0 was
specified. The same technique can be applied for the case where the derivative of
the dependent variable is known at the boundary x = 0 (flux boundary conditions).
Consider the transient heat conduction problem in a slab.[4] The governing
equation in dimensionless form is

2

2
 =

(,0) = 0

(0,) = -k and u(,) is defined

u u

t x

u x

u
t t

x

α∂ ∂
∂ ∂

∂ ∞
∂

 (4.3)

The flux boundary condition has to be considered while taking the Laplace transform.
Equation (4.3) is solved in Maple below:

> restart:with(linalg):with(inttrans):with(plots):
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2);

> u(x,0):=0;

> bc1:=diff(u(x,t),x)=-k;

> bc2:=u(infinity,t)=defined;

> eqs:=laplace(eq,t,s):
> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

306 4 Partial Differential Equations in Semi-infinite Domains

> bc1:=laplace(bc1,t,s);

The boundary condition in the Laplace domain is:

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc1:=subs(x=0,convert(bc1,D));

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> _C2:=solve(eqc,_C2);

> U(x):=eval(U(x));

> u:=invlaplace(U(x),s,t);

4.2 Laplace Transform Technique for Parabolic PDEs 307

The dimensionless temperature profile is given by:

> u:=convert(u,erfc);

> pars:={alpha=0.001,k=1};

Plots are made for particular values of parameters:

> plot3d(subs(pars,u),x=1..0,t=300..0,axes=boxed,title="Figure 4.7",
labels=[x,t,"u"],orientation=[-60,60]);

Fig. 4.7

> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u),
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.8",
thickness=5,labels=[x,"u"],legend=["t=1","t=10","t=100","t=200"]);

308 4 Partial Differential Equations in Semi-infinite Domains

Fig. 4.8

Example 4.4. Heat Conduction with an Initial Profile

In the previous examples, the initial condition was a constant and independent of
x. The same technique can be applied for the case where there is an initial
temperature profile. Consider the transient heat conduction problem in a slab

2

2
 =

(,0) = sin(x)

(0,) = 0 and u(,) is defined

u u

t x

u x

u t t

α

π

∂ ∂
∂ ∂

∞

 (4.4)

Equation (4.4) is solved in Maple below. The programs given for the previous
examples have to be modified to solve equation (4.4) by only changing the initial
condition:

> restart:with(linalg):with(inttrans):with(plots):
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2);

4.2 Laplace Transform Technique for Parabolic PDEs 309

> u(x,0):=sin(Pi*x);

> bc1:=u(0,t)=0;

> bc2:=u(infinity,t)=defined;

The following solution and plots are obtained:

> eqs:=laplace(eq,t,s);

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> _C2:=solve(eqc,_C2);

> U(x):=eval(U(x));

> u:=invlaplace(U(x),s,t);

> pars:={alpha=0.001};

310 4 Partial Differential Equations in Semi-infinite Domains

> plot3d(subs(pars,u),x=10..0,t=100..0,axes=boxed,title="Figure 4.9",
labels=[x,t,"u"],orientation=[-60,60]);

Fig. 4.9

> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u),
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.10",
thickness=5,labels=[x,"u"]);

Fig. 4.10

4.2 Laplace Transform Technique for Parabolic PDEs 311

Example 4.5. Heat Conduction with a Source Term

The technique illustrated in the previous examples can be applied for the case
where there is a source term (this source term can be a function of x and t).
Consider the transient heat conduction problem in a slab[5]

2
-t

2
 = + sin(x)e

(,0) = 0

(0,) = 0 and u(,) is defined

u u

t x

u x

u t t

α∂ ∂
∂ ∂

∞

 (4.5)

Equation (4.5) is solved in Maple below. The programs given for the previous
example can be modified to solve equation (4.5). Only the governing equation has
to be changed since:

> restart:with(linalg):with(inttrans):with(plots):

Only the governing equation has to be changed since:

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2)+sin(x)*exp(-t);

> u(x,0):=0;

> bc1:=u(0,t)=0;

> bc2:=u(infinity,t)=defined;

The following solution and plots are obtained:

> eqs:=laplace(eq,t,s);

312 4 Partial Differential Equations in Semi-infinite Domains

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> _C2:=solve(eqc,_C2);

> U(x):=eval(U(x));

> u:=invlaplace(U(x),s,t);

> pars:={alpha=1/5};

> plot3d(subs(pars,u),t=5..0,x=10..0,axes=boxed,title="Figure 4.11",
labels=[x,t,"u"]);

4.2 Laplace Transform Technique for Parabolic PDEs 313

Fig. 4.11

> plot([subs(pars,t=0,u),subs(pars,t=0.5,u),subs(pars,t=1,u),
subs(pars,t=2,u)],x=0..10,axes=boxed,title="Figure 4.12",
thickness=5,labels=[x,"u"]);

Fig. 4.12

314 4 Partial Differential Equations in Semi-infinite Domains

4.3 Laplace Transform Technique for Parabolic PDEs –
Advanced Problems

For some complicated problems, Maple cannot find the inverse Laplace transform.
In these cases, one can split use standard Laplace transform formulae to simplify
the expressions. By manipulating the expressions, Maple can be used to find the
inverse Laplace transform. This is best illustrated with the following examples.

Example 4.6. Heat Conduction with Radiation at the Surface

Consider the transient heat conduction problem in a slab.[4] The governing
equation in dimensionless form is

2

2
 =

(,0) = 1

(0,t) = hu(0,) and u(,) is defined

u u

t x

u x

u
t t

x

α∂ ∂
∂ ∂

∂ ∞
∂

 (4.6)

where α is the thermal diffusivity ()2m s and h is the heat transfer coefficient

()m 1− . Carslaw and Jaeger[4] presented solutions for this problem after

transforming the governing equation and boundary conditions to a form
convenient for similarity transformation. Equation (4.6) is solved in Maple below
using the Laplace transform technique (note that the transformation is not
necessary with this approach):

> restart:with(linalg):with(inttrans):with(plots):

The governing equation is entered here:

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2);

> u(x,0):=1;

Enter the boundary condition here:

> bc1:=diff(u(x,t),x)-h*u(x,t)=0;

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced Problems 315

> bc2:=u(infinity,t)=defined;

> eqs:=laplace(eq,t,s);

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc1:=convert(bc1,D);

The boundary condition in the Laplace domain is:

> bc1:=subs(x=0,bc1);

U is solved as:

> U(x):=rhs(dsolve({eqs,bc1}));

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x));

> coef:=solve(eqc,{_C1});

316 4 Partial Differential Equations in Semi-infinite Domains

The temperature profile in the Laplace domain is:

> U(x):=evala(subs(coef,U(x)));

Maple cannot find the inverse of the Laplace transform:

> invlaplace(U(x),s,t);

The above expression is split into two terms U1 and U2 as shown below:

> U1:=1/(s);

> u1:=invlaplace(U1,s,t);

> U2:=U(x)-U1;

The inverse of U2 is:

> U2:=subs({x=x1,alpha=alpha1},U2);

> assume(x1>0,alpha1>0);
> u2:=invlaplace(U2,s,t);

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced Problems 317

> u2:=subs({x1=x,alpha1=alpha},u2);

Finally, the temperature distribution is given by:

> u:=u1+u2;

> pars:={alpha=1e-3,h=0.01};

> plot3d(subs(pars,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.13",
labels=[x,t,"u"],orientation=[110,60]);

Fig. 4.13

> plot([subs(pars,t=10,u),subs(pars,t=100,u),subs(pars,t=200,u),
subs(pars,t=500,u)],x=0..1,axes=boxed,title="Figure 4.14",
thickness=5,labels=[x,"u"]);

318 4 Partial Differential Equations in Semi-infinite Domains

Fig. 4.14

> us:=eval(subs(x=0,u));

Example 4.7. Unsteady State Diffusion with a First-Order Reaction

Consider the transient diffusion problem.[6] The governing equation is

2

2
 =

(,0) = 0

u(0,) = 1 and u(,) is defined

u u
D ku

t x

u x

t t

∂ ∂ −
∂ ∂

∞

 (4.7)

where D is the diffusivity (m2/s) and k is the rate constant ()1s− . Equation (4.7)

is solved in Maple below using the Laplace transform technique:

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced Problems 319

> restart:with(linalg):with(inttrans):with(plots):
> eq:=diff(u(x,t),t)=D*diff(u(x,t),x$2)-k*u(x,t);

> u(x,0):=0;

> bc1:=u(0,t)=1;

> bc2:=u(infinity,t)=defined;

> eqs:=laplace(eq,t,s);

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

> U(x):=rhs(dsolve({eqs,bc1}));

> eqc:=coeff(U(x),exp(1/D^(1/2)*(s+k)^(1/2)*x));

> _C2:=solve(eqc,_C2);

320 4 Partial Differential Equations in Semi-infinite Domains

> U(x):=eval(U(x));

Here again Maple cannot find the inverse Laplace transform:

> invlaplace(U(x),s,t);

From the property of the Laplace transform,[7] we know that

-1

t
-1

0

if L F(s) = f(t)

F(s)
then L = f(t)

s
⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫

 (4.8)

> U1:=U(x)*s;

Again, Maple cannot invert U1 directly:

> invlaplace(U1,s,t);

Another formula[7] is used:

1 atL F(s a) = e f(t)− −+ (4.9)

> U2:=subs(s=s-k,U1);

The inverse transform for U2 is:

> U2:=subs({D=D1,x=x1},U2);

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced Problems 321

> assume(D1>0,x1>0);
> u2:=invlaplace(U2,s,t);

> u2:=subs({D1=D,x1=x},u2);

The inverse transform for U1 is:

> u1:=exp(-k*t)*u2;

> I1:=int(u1,t);

> with(student):
> I1:=simplify(changevar(t=x^2/4/D/T^2,I1,T));

> I1:=subs(T=T1,x=x1,D=D1,I1);

322 4 Partial Differential Equations in Semi-infinite Domains

> assume(T1>0);
> I1:=simplify(I1);

> I1:=subs({x1=x,T1=T,D1=D},I1);

> I1:=expand(I1);

> I2:=eval(subs(T=infinity,I1));

> u:=I1-I2;

> u:=collect(u,exp(x/D^(1/2)*k^(1/2)));

> u:=convert(u,erfc);

4.3 Laplace Transform Technique for Parabolic PDEs – Advanced Problems 323

> u:=subs(T=x/2/(D*t)^(1/2),u);

> convert(expand(simplify(eval(subs(k=0,u)))),erfc);

> expand(D*(expand(-eval(subs(x=0,diff(u,x))))));

> pars:={D=1e-6,k=0.1};

> plot3d(subs(pars,u),x=1e-3..0,t=10..0,axes=boxed,labels=[x,t,"u"],
orientation=[-60,60]);

Fig. 4.15

324 4 Partial Differential Equations in Semi-infinite Domains

> pfs:=plot([subs(pars,t=0.01,u),subs(pars,t=0.1,u),subs(pars,t=1,u),
subs(pars,t=2,u)],x=0..1e-3,axes=boxed,thickness=5,labels=[x,"u"]);

> pts:=textplot([[0.00016,evalf(subs(pars,t=0.01,x=0.0001,u)),"t=0.01"],
[0.00036,evalf(subs(pars,t=0.1,x=0.0003,u)),"t=0.1"],[0.00053,
evalf(subs(pars,t=1,x=0.0006,u)),"t=1"],[0.00069,
evalf(subs(pars,t=2,x=0.0006,u)),"t=2"]]);

> display({pfs,pts});

Fig. 4.16

4.4 Similarity Solution Technique for Parabolic PDEs

Parabolic partial differential equations are solved using the similarity solution
technique in this section. This method involves combining the two independent
variables (x and t) as one (η). For this purpose, the original initial and boundary
conditions should become two boundary conditions in the new combined variable
(η). The methodology involves converting the governing equation (PDE) to an
ordinary differential equation (ODE) in the combined variable (η). This variable
transformation is very difficult to do by hand. In this chapter, we will show how

4.4 Similarity Solution Technique for Parabolic PDEs 325

this variable transformation can be done using Maple. The original problem
becomes a boundary value problem (ODE) in the new combined variable (η). The
original initial and boundary conditions are converted to boundary conditions in
the combined variable. This boundary value problem can then be solved using the
techniques illustrated in chapter 3.1 for solving boundary value problems. Unlike
the Laplace transform technique, there is no need for inversion.

Example 4.8. Heat Conduction in a Rectangular Slab

Example 4.1 is solved here with the boundary and initial conditions switched.[4]
The governing equation is

2

2
 =

(,0) = 0

u(0,) = 1 and u(,) is defined

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

 (4.10)

The following transformation is used to combine the variable:[7]

x
 =

2 t
η

α
 (4.11)

The variable u in the new coordinate η is represented by U. The governing
equation (ODE) for U is obtained by converting the time and spatial derivative in
equation (4.10) (PDE) to derivatives in the η coordinate. The boundary conditions
for U are:

U(0) = 1

U() = 0∞
 (4.12)

The governing equation for U is then solved with the above boundary conditions
to obtain the final solution. Example 4.8 is solved in Maple below:

> restart:

The with(student) package is called to facilitate variable transformations:

> with(student):

The governing equation is entered here:

> eq:=diff(u(x,t),t)-alpha*diff(u(x,t),x$2);

326 4 Partial Differential Equations in Semi-infinite Domains

First, u(x,t) is transformed to U(η(x,t)):

> eq1:=changevar(u(x,t)=U(eta(x,t)),eq);

The transformation for η is substituted here:

> eq2:=expand(simplify(subs(eta(x,t)=x/2/(alpha*t)^(1/2),eq1)));

The governing equation is further simplified here:

> eq2:=expand(eq2*t);

> eq2:=subs(x=eta*2*(alpha*t)^(1/2),eq2);

> eq2:=convert(eq2,diff);

The final form for the governing equation is:

> eq2:=expand(-2*eq2);

Enter the boundary condition here:

> bc1:=U(0)=1;

4.4 Similarity Solution Technique for Parabolic PDEs 327

> bc2:=U(infinity)=0;

U is solved as:

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta)));

> U:=convert(U,erfc);

Next, u as a function of x and 1 is obtained as:

> u:=subs(eta=x/2/(alpha*t)^(1/2),U);

The solution obtained can be plotted:

> plot3d(subs(alpha=0.001,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.17",
labels =[x,t,"u"],orientation=[-60,60]);

Fig. 4.17

328 4 Partial Differential Equations in Semi-infinite Domains

Example 4.9. Laminar Flow in a CVD Reactor

Consider the laminar flow in a CVD reactor. The governing equation is

2

max 2
2 =

(,0) = 1

u(0,) = 0 and u(,) = 1

x u u
v D

B z x

u x

z z

∂ ∂
∂ ∂

∞

 (4.13)

where vmax is the average velocity (cm/s), B is the half-width of the reactor (cm)

and D is the diffusion coefficient (cm2/s). Next, the transformation max2v
V =

BD

is used to simplify the governing equation as:

2

2
 =

u u
Vx

z x

∂ ∂
∂ ∂

 (4.14)

The following transformation is used to combine the variable:[7]

1

3

x
 =

9z
V

η
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (4.15)

The variable u in the new coordinate η is represented by U. The boundary
conditions for U are:

U(0) = 0

U() = 1∞
 (4.16)

The governing equation for U is then solved with the above boundary conditions
to obtain the final solution. Example 4.9 is solved in Maple below:

> restart:
> with(student):
> with(plots):
> eq:=V*x*diff(u(x,z),z)-diff(u(x,z),x$2);

4.4 Similarity Solution Technique for Parabolic PDEs 329

> eq1:=changevar(u(x,z)=U(eta(x,z)),eq):
> eq2:=expand(simplify(subs(eta(x,z)=x/(9*z/V)^(1/3),eq1))):
> eq2:=subs(x=eta*(9*z/V)^(1/3),eq2):
> eq2:=expand(eq2*z):
> eq2:=simplify(eq2/(z/V)^(1/3)):
> eq2:=eq2*9/3^(2/3)/V:
> eq2:=convert(eq2,diff):

The governing equation in the combined variable is:

> eq2:=-eq2;

The boundary conditions for U are entered here:

> bc1:=U(0)=0;

> bc2:=U(infinity)=1;

> rhs(dsolve({eq2,bc1,bc2},U(eta)));

Maple cannot find the limit as η→∞. Alternatively, the governing equation is
solved using the first boundary condition (bc1) only:

> U:=rhs(dsolve({eq2,bc1},U(eta)));

The solution is a combination of exponential and Whittaker functions. In the
literature this problem is usually left in terms of integrals (Gamma functions).
However, Maple is able to solve the differential equation explicitly. Next, the
constant _C2 is found using the boundary condition bc2.

> eval(limit(U,eta=infinity));

330 4 Partial Differential Equations in Semi-infinite Domains

Since the limit does not exit, U/_C2 is plotted until η=10.

> plot(U/_C2,eta=0..10,axes=boxed,thickness=4,title="Figure 4.18");

Fig. 4.18

An initial guess L = 1 is used to replace x = ∞.

> evalf(subs(eta=1.,U/_C2));

> L:=1;

> err:=1;

The value of U/C2 is found at x = L:

> c0:=evalf(subs(eta=1.,U/_C2));

4.4 Similarity Solution Technique for Parabolic PDEs 331

Next, the length L is increased until the U/_C2(x =) becomes a constant:

> while err>1e-6 do L:=L+1; c1:=evalf(subs(eta=L,U/_C2));err:=abs(c1-c0);
c0:=c1;od;\

The length and the constant have converged to 10 digit accuracy. The final length is

> L;

The constant _C2 is found using the boundary condition U(L) = 1.

> _C2:=1/c0;

The solution to the transformed coordinate is:

> U;

> plot(U,eta=0..10.,thickness=4,axes=boxed,title="Figure 4.19",
labels=[eta,'u']);

332 4 Partial Differential Equations in Semi-infinite Domains

Fig. 4.19

The solution in the original coordinates is obtained as:

> u:=subs(eta=x/(9*z/V)^(1/3),U);

> pars:={V=0.001};

A plot was made by specifying a value for V.

> plot3d(subs(pars,u),x=0..10,z=0..10,axes=boxed,title="Figure 4.20",
orientation=[120,60],labels=[x,y,"u"]);

4.5 Similarity Solution Technique for Elliptic Partial Differential Equations 333

Fig. 4.20

> u;

>

4.5 Similarity Solution Technique for Elliptic Partial
Differential Equations

Elliptic partial differential equations are solved using the similarity solution
technique in this section. The method described in section 4.4 is also valid for
elliptic partial differential equations. The methodology involves converting the
governing equation (PDE) to an ordinary differential equation (ODE) in the
combined variable (η). This variable transformation is very difficult to do by
hand. In this section, we show how this variable transformation can be done using
Maple. The original problem becomes a boundary value problem (ODE) in the
new combined variable (η). This is best illustrated with the following examples.

Example 4.10. Steady State Heat Conduction in a Plate

Consider steady state conduction in a semi-infinite rectangular strip. The governing
equation in dimensionless form is

334 4 Partial Differential Equations in Semi-infinite Domains

2 2

2 2
 + = 0

(,0) = (,) = 1

u(0,) = u(x,) = 0

u u

x y

u x u y

y

∂ ∂
∂ ∂

∞

∞

 (4.17)

The following transformation is used to combine the variable:

y
=

x
η (4.18)

The variable u in the new coordinate η is represented by U. The governing
equation (ODE) for U is obtained by converting the spatial derivatives (x and y) in
equation (4.17) (PDE) to derivatives in the η coordinate. The boundary conditions
for U are:

U(0) = 1

U() = 0∞
 (4.19)

Example 4.10 is solved in Maple below:

> restart:
> with(student):
> with(plots):

The governing equation is entered here:

> eq:=diff(u(x,y),x$2)+diff(u(x,y),y$2);

> eq:=changevar(u(x,y)=U(eta(x,y)),eq):
> eq1:=(simplify(subs(eta(x,y)=y/x,eq))):
> eq1:=subs(y=eta*x,eq1):
> eq1:=simplify(eq1*x^2):

The governing equation in the combined variable is:

> eq2:=convert(eq1,diff);

4.5 Similarity Solution Technique for Elliptic Partial Differential Equations 335

> bc1:=U(0)=1;

> bc2:=U(infinity)=0;

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta)));

The dimensionless temperature U is given by:

> U:=expand(U);

> plot(U,eta=0..10,thickness=5,title="Figure 4.21",axes=boxed);

Fig. 4.21

336 4 Partial Differential Equations in Semi-infinite Domains

The dimensionless temperature in the original coordinate is:

> u:=expand(subs(eta=y/x,U));

The solution obtained is plotted:

> plot3d(u,x=0..50,y=0..50,axes=boxed,title="Figure 4.22",
orientation=[120,60],labels=[x,y,"u"]);

Fig. 4.22

The dimensionless heat flux at y 0= is given by:

> flux:=subs(y=0,-diff(u,y));

Example 4.11. Current Distribution in an Electrochemical Cell

Primary and secondary current distributions in electrochemical cells are governed
by the Laplace equation.[8] Consider a rectangular geometry governed by the
following equation[9]

4.5 Similarity Solution Technique for Elliptic Partial Differential Equations 337

2 2

2 2
 + = 0

(,0) = 1

u(L,) = u(x,) = 0

u u

x y

u x

y

∂ ∂
∂ ∂

∞

 (4.20)

Note that this geometry is of finite dimension in x (L) and semi-infinite in y. The
following transformation is used to combine the variable:

y
 =

L x
η

−
 (4.21)

The variable u in the new coordinate η is represented by U. The boundary
conditions for U are:

U(0) = 1

U() = 0∞
 (4.22)

Example 4.11 is solved in Maple below. The program used for example 4.10 can be
modified to solve this example. Only the variable transformation (equation (4.21))
has to be modified. The following results are obtained:

> restart:
> with(student):
> with(plots):
> eq:=diff(u(x,y),x$2)+diff(u(x,y),y$2);

> eq:=changevar(u(x,y)=U(eta(x,y)),eq):
> eq1:=(simplify(subs(eta(x,y)=y/(L-x),eq))):
> eq1:=subs(y=eta*(L-x),eq1):
> eq1:=simplify(eq1*(L-x)^2):
> eq2:=convert(eq1,diff);

> bc1:=U(0)=1;

338 4 Partial Differential Equations in Semi-infinite Domains

> bc2:=U(infinity)=0;

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta)));

> U:=expand(U);

> plot(U,eta=0..10,thickness=4,title="Figure 4.23",axes=boxed);

Fig. 4.23

> u:=expand(subs(eta=y/(L-x),U));

> plot3d(subs(L=1,u),x=0..1,y=0..2,axes=boxed,title="Figure 4.24",
orientation=[30,60],labels=[x,y,"u"]);

4.6 Similarity Solution Technique for Nonlinear Partial Differential Equations 339

Fig. 4.24

The current distribution at the electrode ()y 0= is given by:

> curr:=subs(y=0,-diff(u,y));

>

4.6 Similarity Solution Technique for Nonlinear Partial
Differential Equations

Nonlinear parabolic and elliptic partial differential equations are solved using the
similarity solution technique in this section. The methods described in section 4.4
and sections 4.5 are valid for nonlinear partial differential equations, also. The
methodology involves converting the governing equation (PDE) to an ordinary
differential equation in the combined variable (η). This variable transformation is
very difficult to do by hand. In this section, we will show how this variable
transformation can be done using Maple. The original problem becomes a nonlinear
boundary value problem (ODE) in the new combined variable (η). This is best
illustrated with the following examples.

340 4 Partial Differential Equations in Semi-infinite Domains

Example 4.12. Variable Diffusivity

Consider the transient diffusion in a rectangle in which the diffusivity varies
linearly as a function of concentration.[10] The governing equation is:

 = (1)

(,0) = 0

u(0,) = 1 and u(,) is defined

u u
u

t x x

u x

t t

∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

 (4.23)

The following transformation is used to combine the variable:[7]

x
 =

2 t
η (4.24)

The variable u in the new coordinate η is represented by U. The governing
equation (ODE) for U is obtained by converting the time and spatial derivative in
equation(4.23) (PDE) to derivatives in the η coordinate. The boundary conditions
for U are:

U(0) = 1

U() = 0∞
 (4.25)

The governing equation for U is then solved with the above boundary conditions
to obtain the final solution. Example 4.12 is solved in Maple below:

> restart:
> with(student):
> with(plots):

The governing equation is entered here:

> eq:=diff(u(x,t),t)-diff(((1+u(x,t))*diff(u(x,t),x),x));

> eq1:=changevar(u(x,t)=U(eta(x,t)),eq):
> eq2:=expand(simplify(subs(eta(x,t)=x/2/(t)^(1/2),eq1))):
> eq2:=expand(eq2*t):
> eq2:=subs(x=eta*2*(t)^(1/2),eq2):
> eq2:=convert(eq2,diff):

4.6 Similarity Solution Technique for Nonlinear Partial Differential Equations 341

The governing equation in the combined variable is:

> eq2:=expand(-2*eq2);

> bc1:=U(0)=1;

The length of the domain is taken to be 5:

> bc2:=U(5)=0;

The nonlinear equation is solved numerically and plotted:

> sol:=dsolve({eq2,bc1,bc2},U(eta),type=numeric);

> odeplot(sol,[eta,U(eta)],0..5,axes=boxed,title="Figure 4.25",thickness=4);

Fig. 4.25

>

342 4 Partial Differential Equations in Semi-infinite Domains

Example 4.13. Plane Flow Past a Flat Plate – Blassius Equation

The velocity distribution in the boundary layer is given by:[6]

2

2

 + = 0

 + v =

u(0,y) = 1

u(x,0) = 0 and u(x,) = 1

v(x,0) = 0

u v

x y

u u u
u

x y y

∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∞
 (4.26)

where u and v are the x and y components of the velocity. Next, the stream
function is introduced:

 = and v = -u
y x

ψ ψ∂ ∂
∂ ∂

 (4.27)

By definition (4.27), the stream function ψ satisfies the first equation in
equation (4.26). The boundary conditions for ψ are

(0,y) = 1

(x,0) = 0 and (x,) = 1

(x,0) = 0

y

y y

x

ψ

ψ ψ

ψ

∂
∂
∂ ∂ ∞
∂ ∂
∂−
∂

 (4.28)

The following transformation is used to combine the independent variables:

y
 =

x
η (4.29)

Next, the following transformation is introduced:

= x f()ψ η (4.30)

The boundary conditions for f(η) are:

df
(0) = 0 and (0) = 0

d

df
() = 1

d

f
η

η
∞

 (4.31)

4.6 Similarity Solution Technique for Nonlinear Partial Differential Equations 343

Using Maple the transformation involved in the governing equation and boundary
conditions in example 4.13 is solved below:

> restart:
> with(student):
> with(plots):

Enter the governing equation:

> eq:=u(x,y)*diff(u(x,y),x)+v(x,y)*diff(u(x,y),y)-diff(u(x,y),y$2);

The stream function is introduced:

> vars:={u(x,y)=diff(psi(x,y),y),v(x,y)=-diff(psi(x,y),x)};

The governing equation for the stream function is:

> eq:=subs(vars,eq);

Next, the transformation defined in equation (4.30) is introduced:

> eq:=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),eq);

The independent variables are combined using the transformation defined in
equation (4.29):

> eq1:=(simplify(subs(eta(x,y)=y/x^(1/2),eq))):
> eq1:=subs(y=eta*x^(1/2),eq1):
> eq1:=simplify(eq1*x):

The governing equation for f in the combined variable is:

> eq2:=convert(-eq1,diff);

344 4 Partial Differential Equations in Semi-infinite Domains

Next, the velocity variables u and v (i.e., derivatives of the stream function) are
expressed in terms of the combined variable and f:

> v(eta):=-diff(psi(x,y),x);

> v(eta):=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),v(eta)):
> v(eta):=expand(subs(eta(x,y)=y/x^(1/2),v(eta))):
> v(eta):=subs(y=eta*x^(1/2),v(eta)):
> v(eta):=factor(v(eta));

> u(eta):=diff(psi(x,y),y);

> u(eta):=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),u(eta)):
> u(eta):=expand(subs(eta(x,y)=y/x^(1/2),u(eta))):
> u(eta):=subs(y=eta*x^(1/2),u(eta));

Next, the boundary conditions are expressed in terms of f:

> bc1:=subs(eta=0,v(eta))=0;

> bc1:=-bc1*2*x^(1/2);

> bc2:=subs(eta=0,u(eta))=0;

> bc3:=subs(eta=infinity,u(eta))=1;

The length of the domain is taken to be 5:

> bc3:=subs(infinity=5,bc3);

4.6 Similarity Solution Technique for Nonlinear Partial Differential Equations 345

The numerical solution for the Blassius equation is obtained as:

> sol:=dsolve({eq2,bc1,bc2,bc3},f(eta),type=numeric);

> odeplot(sol,[eta,f(eta)],0..5,thickness=3,title="Figure 4.26",axes=boxed);

Fig. 4.26

Next, the velocity profiles are obtained by converting the corresponding
expression to 'diff' form:

> u(eta):=convert(u(eta),diff);

> v(eta):=convert(v(eta),diff);

Since v is a function of 1/2x, v x∗ is plotted:

> odeplot(sol,[eta,u(eta)],0..5,thickness=4,color=blue,title="Figure 4.27",
axes=boxed,labels=[eta,u]);

346 4 Partial Differential Equations in Semi-infinite Domains

Fig. 4.27

> odeplot(sol,[eta,v(eta)*x^(1/2)],0..5,thickness=4,color=brown,
title="Figure 4.28",axes=boxed,labels=[eta,"v*x^(1/2)"]);

Fig. 4.28

4.6 Similarity Solution Technique for Nonlinear Partial Differential Equations 347

The solution at η = 0 is obtained as:

> sol(0);

Stress is related to the Reynolds number (re) and the flux at y 0= :

> S:=re*diff(u(x,y),y);

The velocity gradient is terms of the stream function is:

> subs(u(x,y)=diff(psi(x,y),y),S);

The second derivative of the stream function is expressed in terms of f and η.

> d:=diff(psi(x,y),y$2);

> d:=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),d):
> d:=expand(subs(eta(x,y)=y/x^(1/2),d)):
> d:=subs(y=eta*x^(1/2),d):
> d:=convert(d,diff);

> S:=re*d;

The second derivative of f is found from the numerical solution.

> eqd3:=sol(0)[4];

348 4 Partial Differential Equations in Semi-infinite Domains

Hence, the stress Reynolds number relationship becomes:

> S:=subs(diff(f(eta),`$`(eta,2))=rhs(eqd3),S);

4.7 Summary

In this chapter, analytical solutions were obtained for parabolic and elliptic partial
differential equations in semi-infinite domains. In section 4.2, the given linear
parabolic partial differential equations were converted to an ordinary differential
equation boundary value problem in the Laplace domain. The dependent variable
was then solved in the Laplace domain using Maple’s 'dsolve' command. The
solution obtained in the Laplace domain was then converted to the time domain
using Maple’s inverse Laplace transform technique. Maple is not capable of
inverting complicated functions. Two such examples were illustrated in section 4.3.
As shown in section 4.3, even when Maple fails, one can arrive at the transient
solution by simplifying the integrals using standard Laplace transform formulae.

In section 4.4, the given linear parabolic partial differential equation in semi-
infinite domain was solved by combining the independent variables (similarity
solution). This technique is capable of providing special function solutions as
shown in example 4.9. In section 4.5, elliptic partial differential equations were
solved using the similarity solution technique. In section 4.6, similarity solution
was extended for nonlinear parabolic and elliptic partial differential equations.

Both the Laplace transform and the similarity solution techniques are powerful
techniques for partial differential equations in semi-infinite domains. The Laplace
transform technique can be used for all linear partial differential equations with all
possible boundary conditions. The similarity solution can be used only if the
independent variables can be combined and if the boundary conditions in x and t
can be converted to boundary conditions in the combined variable. In addition,
unlike the Laplace transform technique, the similarity solution technique cannot
handle partial differential equations in which the dependent variable appears
explicitly. The Laplace transform cannot handle elliptic or nonlinear partial
differential equations. The similarity solution can be used for elliptic and for a
few nonlinear partial differential equations as shown in section 4.6. There are
thirteen examples in this chapter.

4.8 Exercise Problems

1. Redo example 4.2 if the boundary condition at x = 0 is replaced by

k
u(0,) =

t
t

t
.

4.8 Exercise Problems 349

2. Redo example 4.3 if the boundary condition at x = 0 is replaced by

(0,) = -kexp(-t)
u

t
x

∂
∂

.

3. Complete the details missing in example 4.4 (i.e., complete the Maple
program).

4. Complete the details missing in example 4.11.
5. Consider heat transfer in a semi-infinite solid with heat generated within

it.[4] The governing equations and the boundary/initial conditions are:
2

2

A
 = -

(,0) = 1

u(0,) = 0 and u(,) is defined

u u

t x

u x

t t

αα
κ

∂ ∂
∂ ∂

∞

where α is the thermal diffusivity, κ is the thermal conductivity, and A is
the heat produced per second per unit volume. Obtain an analytical solution
for this problem using the Laplace transform technique.

6. Obtain an analytical solution for problem 5 using the similarity solution

technique. Hint: define
2Ax

 = +
2

w u
κ

 and solve for w instead of u.

7. Consider heat or mass transfer in a region internally bounded by a sphere of
radius R initially at zero temperature/concentration. The governing
equations and boundary conditions are:

2

2

2
 = + R x <

x

(,0) = 0

u(R,) = 1 and u(,) is defined

u u u

t x x

u x

t t

α ⎛ ⎞∂ ∂ ∂ ≤ ∞⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

Obtain an analytical solution for this problem using the Laplace transform
technique.

8. Obtain an analytical solution for problem 7 using a similarity solution
technique. Hint: define w = u/x and derive an equation for w. Define X = x
– R and solve for w as a function of X ant t.

9. Consider a region internally bounded by a sphere of radius R initially at
zero temperature/concentration with a specified flux at x = R. The
governing equations and boundary conditions are:

350 4 Partial Differential Equations in Semi-infinite Domains

2

2

2
 = + R x <

x

(,0) = 0

(R,) = F and u(,) is defined

u u u

t x x

u x

u
t t

x

α ⎛ ⎞∂ ∂ ∂ ≤ ∞⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∞
∂

Obtain an analytical solution for this problem using the Laplace transform
technique.

10. Obtain an analytical solution for problem 9 using a similarity solution
technique. (See problem 8 for a hint).

11. Consider a variant of example 4.12:

2 = (1 0.1)

(,0) = 0

u(0,) = 1 and u(,) is defined

u u
u

t x x

u x

t t

∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

Obtain a similarity solution for this problem.
12. Example 4.9 is sometimes solved in terms of dimensionless independent

variables for temperature distribution in a boundary layer (see Slattery,
1999) as:

2

2
2 =

(,0) = 0

u(0,Z) = 1 and u(, Z) = 0

u u
X

Z X

u X

∂ ∂
∂ ∂

∞

Define 1

3

Xη =
9Z
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and obtain a similarity solution for this problem.

13. Consider problem 12 with a flux boundary condition at the surface.[6] The
governing equations and boundary conditions are:

4.8 Exercise Problems 351

2

2
2 =

(,0) = 0

u
(0,Z) = -1 and u(, Z) = 0

u u
X

Z X

u X

X

∂ ∂
∂ ∂

∂ ∞
∂

Obtain a similarity solution for this problem. Hint: define
u

w
X

∂=
∂

 and

solve for w and then obtain u.
14. Consider plane flow past a flat plate discussed in example 4.13. In the

example discussed, a numerical solution was obtained for f as a function of
η. Obtain a series solutions for f as a function of η. Hint: see chapter 3 for
more information on obtaining series solutions for nonlinear boundary value
problems. How many terms will be required in the series for convergence?

15. Consider steady state flow in a convergent channel.[6] The governing
equations are:

2

2

 + = 0

du
 + v = u

dx

1
u(x,0) = 0 and u(x,) =

x

u v

x y

u u u
u

x y y

∂ ∂
∂ ∂

∂ ∂ ∂+
∂ ∂ ∂

∞ −

v(x,0) = 0 and (x,) = 0

1
u =

x

v

y

∂ ∞
∂

−

Convert u and v to stream functions and rewrite the governing equations and

boundary conditions as in example 4.13. Next define
y

= -f(); =
x

ψ η η

and rewrite the governing equations and boundary conditions in terms of f and

352 4 Partial Differential Equations in Semi-infinite Domains

η. Define
df

p =
dη

 and solve for p. Obtain analytical, series, and numerical

solutions for this problem and plot
u

u
as a function of η.

16. Consider natural convection in flow past a flat plate.[6] The velocity
distribution is governed as in example 4.13. In addition, the temperature T
is governed by:

22

2

1 Br
 + v = +

Pr Pr

T(x,0) = 1 and T(x,) = 0

T(0,y) = 0

T T T u
u

x y y y

⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∞

where Pr is the Prandtl number and Br is the Brinkman number. Obtain a
similarity solution for the velocity and temperature distribution. Plot the
temperature profiles for Pr = 0.7 with different values of Br ranging from –3
to 3.

17. Redo problem 16 if Br = 0.
18. In problem 17 what happens when Pr is 1? How is the temperature

distribution different from the velocity distribution?

References

1. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,
Oxford (1973)

2. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford
(1979)

3. Schiesser, W.E., Silebi, C.A.: Dynamic Modeling of Transport Process Systems (1997)
4. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,

Oxford (1972)
5. Articolo, G.A.: Partial Differential Equations and Boundary Value Problems with

Maple V. Harcourt Brace/Academic Press (1999)
6. Slattery, J.: Advanced Transport Phenomena. Cambride University Press, NY (1999)
7. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.

John Wiley & Sons, Inc., Chichester (1995)
8. Newman, J.: Electrochemical Systems. Prentice Hall, New York (1991)
9. West, A.C., Newman, J.: Modern Aspects of Electrochemistry. In: Conway, B.E.,

Bockris, J.O’M., White, R.E. (eds.) Determination of Current Distribtuions Governed
by Laplace’s Equation, vol. 23. Plenum Press (1992)

10. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New
York (1980)

Chapter 5

Method of Lines for Parabolic Partial
Differential Equations

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the
distribution of heat or concentration across the slab or the material in which the
experiment is performed. This process is usually time varying and eventually reaches
a steady state. This process is represented by parabolic partial differential equations
with known initial conditions and boundary conditions at two ends. Both linear and
nonlinear parabolic partial differential equations will be discussed in this chapter. We
will present semianalytical solutions for linear parabolic partial differential equations
and numerical solutions for nonlinear parabolic partial differential equations based on
the numerical method of lines.

5.1 Semianalytical Method for Parabolic Partial Differential
Equations (PDEs)

5.1.1 Introduction

Transient heat conduction or mass transfer in solids with constant physical
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is
usually represented by a linear parabolic partial differential equation. In this
chapter, we describe how one can arrive at the semianalytical solutions (solutions
are analytical in the time variable and numerical in the spatial dimension) for
linear parabolic partial differential equations using Maple, the method of lines and
the matrix exponential.

5.1.2 Semianalytical Method for Homogeneous PDEs

Consider a general linear homogeneous parabolic partial differential equation in
dimensionless form

2

0 1 22

u u u
 = a (x) + a (x) + a (x)u

t x x

∂ ∂ ∂
∂ ∂ ∂

 (5.1)

354 5 Method of Lines for Parabolic Partial Differential Equations

with a known initial condition

u(x,0) = 1 (5.2)

and linear homogeneous boundary conditions at both of the boundaries

1 1

u
u(0, t) (0, t) = 0

x

∂α + β
∂

 (5.3)

and

2 2

u
u(1, t) (1, t) = 0

x

∂α + β
∂

 (5.4)

where α1, β1, α2, and β2 are constants.
The method of lines involves converting the governing equation (equation (5.1))

to a system of coupled ordinary differential equations in time by applying finite
difference approximations for the spatial derivatives. The governing equation
(equation (5.1)) can be converted to its finite difference form as follows:

i i 1 i i 1 i 1 i 1
0 i 1 i 2 i i2

du u 2u u u u
= a (x) + a (x) + a (x)u

dt h 2h
+ − + −− + −

 (5.5)

where i is the node number, N is the number of interior node points, and h is the
node spacing defined as

L
h =

N+1
 (5.6)

where L = 1 is the length of the domain of interest. Thus, x = 0 corresponds to the
node point i = 0; x = 1 corresponds to the node point i = N+1 and x = xi = ih is the

value of x at the node point i. The variable 1u corresponds to the dependent

variable at node point i. Equation (5.6) is a system of N linear coupled ODEs for

N dependent variables (iu , i 1..N=). The boundary values 0 N 1u and u + are

eliminated using the boundary conditions. The boundary conditions (equations
(5.3) and (5.4)) can be written in finite difference form as

0 1 2
1 0 1

3u + 4u u
u + = 0

2h

− −α β (5.7)

and

N+1 N N 1
2 N 1 2

3u 4u + u
u + = 0

2h
−

+
−α β (5.8)

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 355

Using the boundary conditions (equations (5.7) and (5.8)) the boundary values u0
and uN+1 can be eliminated. Hence, the method of lines technique reduces the linear
parabolic 0DE partial differential equation (equation (5.1)) to a linear system of N
coupled first order ordinary differential equations (equation (5.5)). Traditionally this
linear system of ordinary differential equations is integrated numerically in time.[1]
[2] [3] [4] However, since the governing equation (equation (5.5)) is linear, it can be
written as a matrix differential equation (see section 2.1.2):

d
=

dt

Y
AY (5.9)

where the dependent variable vector is

[]T

1 2 N 1 N= u u ... u u−Y (5.10)

the coefficient matrix A depends on both the governing equation (equation (5.5)) and
the boundary conditions (equations (5.7) and (5.8)). The solution for equation (5.9)
is obtained by finding the exponential matrix:

exp(t) 0Y = A Y (5.11)

where Y0 is the initial condition vector. Hence, the dependent variables at all the
node points are obtained as an analytical solution of time t. We call this a
semianalytical solution since the solution is analytical in time and numerical
in x.[5] A procedure for using Maple to solve linear parabolic partial differential
equations with homogeneous boundary conditions can be summarized as follows:

1. Start the Maple worksheet with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equation.
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1).
5. Store the initial condition in Y0.
6. Enter the number of interior node points, N.
7. Enter the length of the domain, L.
8. Convert the governing equations to a finite difference form by using central

difference expression accurate to the order h2 for first and second derivatives.
9. Convert the boundary conditions to a finite difference form by using the 3-

point forward and backward differences (accurate to the order h2),
respectively, for bc1 and bc2.

10. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary conditions.
11. Store the right hand side of the finite difference equations in eqs.
12. Store the dependent variables, ui, i = 1..N in Y.
13. Generate A matrix using Maple’s ‘genmatrix’ command.
14. Find the exponential matrix (exp(At)) by using Maple’s ‘exponential(A,t)’

command and store it in mat.
15. Store the initial conditions in Y0 vector.
16. Find the solution Y by multiplying mat times Y0.
17. Once the semianalytical solution is obtained plots can be made.

356 5 Method of Lines for Parabolic Partial Differential Equations

Example 5.1. Heat Conduction in a Rectangular Slab

Consider the heat conduction problem in a slab.[6] The governing equation in
dimensionless form is

2

2

u u
 =

t x

u(x,0) = 1

u(0,t) = 0 and u(1,t) = 0

∂ ∂
∂ ∂

 (5.12)

This equation is solved in Maple below using the procedure described above.

> restart;

> with(linalg):with(plots):

Enter the governing equation here:

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2);

Enter the boundary condition at x = 0:

> bc1:=u(x,t);

Enter the boundary condition at x = L:

> bc2:=u(x,t);

Enter the initial condition:

> IC:=u(x,0)=1;

Enter the number of interior node points:

> N:=4;

Enter the length of the domain:

> L:=1;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 357

Enter the three point backward difference expression (accurate to the order h2) for
the first derivative at x = L:

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

Enter the three point central difference expression (accurate to the order h2) for the
second derivative at x = L:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

Convert the boundary conditions to the finite difference form:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

The boundary conditions are stored in eq[0] and eq[N+1].

> eq[0]:=bc1;

> eq[N+1]:=bc2;

The governing equations are converted to the finite difference form:

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od;

358 5 Method of Lines for Parabolic Partial Differential Equations

The boundary values u[0](t) and u[N+0](t) are eliminated:

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

The governing equations are simplified as:

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

The coefficient matrix (A) is generated using Maple's 'genmatrix' command.

> eqs:=[seq(rhs(eq[j]),j=1..N)];

> Y:=[seq(u[i](t),i=1..N)];

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 359

> A:=genmatrix(eqs,Y);

The node spacing, h, is evaluated here:

> h:=eval(1/(N+1));

The A matrix is simplified as:
> A:=map(eval,A);

When more than four node points are used, the entries of the A matrix should be
decimals. This problem can be handled by using the 'map(A,evalf)' command as
given below:

> if N > 4 then A:=map(evalf,A);end:
> evalm(A);

The solution is found using the exponential matrix:

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

360 5 Method of Lines for Parabolic Partial Differential Equations

The initial condition is stored in the Y0 vector.

> Y0:=matrix(N,1):for i from 1 to N do Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));
od:evalm(Y0);

> Y:=evalm(mat&*Y0):

> Y:=map(simplify,Y);

Next, the dependent variables can be stored in ui(t),i = 0..N+1.

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:
> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

Hence, an analytical solution in time is obtained for the dependent variables at all
of the node points. One can plot the concentration profiles by using 'seq' to assign
color automatically for every curve.

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4);

> pt:=textplot([[0.05,0.05,typeset(u[0],"(t), ",u[5],"(t)")],[0.1,0.2,
typeset(u[1],"(t), ",u[4],"(t",u”, u[4],"(t)")],[0.15,0.4,
typeset(u[2],"(t), ",u[3],"(t)")]]);

> display({pp,pt},axes=boxed,thickness=4,title="Figure 5.1",labels=[t,"u"]);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 361

Fig. 5.1

A three dimensional plot can be made by storing the solution in a matrix (PP).
Enter the time that you want to use to plot your profiles (this time can be changed
depending on the problem):

> tf:=0.1;

Enter the number of time steps (excluding 0):

> M:=30;

The time intervals are stored in T1:

> T1:=[seq(tf*i/M,i=0..M)];

362 5 Method of Lines for Parabolic Partial Differential Equations

> PP:=matrix(N+2,M+1);

The first column of PP is filled by using the initial condition:

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

The remaining columns are filled in by using the solution obtained:

> for i from 1 to N+2 do for j from 2 to M+1 do PP[i,j]:=
evalf(subs(t=T1[j],u[i-1](t)));od;od:

Next, data points are stored in plotdata for obtaining a 3D plot using Maple's
'surfdata' command.

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, title="Figure 5.2",
labels=[x,t,u],orientation=[45,60]);

Fig. 5.2

>

Accuracy can be increased by increasing the number of interior node points.
Using the program above by increasing N = 10, the following plots are obtained.

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=4);

> arw:=arrow(<0.10,0.8>,<-0.09,-0.6>,width=[1/500,relative],
head_length=[1/20,relative]):

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 363

pt:=textplot([[0.2,0.9,"Follow the arrow:"],seq([0.18,0.9-i*0.06,
typeset(u[5-i+1],"(t), ",u[6+i-1],"(t)")],i=1..6)]):

> display({pp,arw,pt},axes=boxed,title="Figure 5.3",labels=[t,"u"]);

Fig. 5.3

A three dimensional plot can be made by storing the solution in a matrix (PP).
Enter the time that you want to use to plot your profiles (this time can be changed
depending on the problem):

> tf:=0.1;

Enter the number of time steps (excluding 0):

> M:=30;

The time intervals are stored in T1:

> T1:=[seq(tf*i/M,i=0..M)];

364 5 Method of Lines for Parabolic Partial Differential Equations

> PP:=matrix(N+2,M+1);

The first column of PP is filled by using the initial condition:

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

The remaining columns are filled in by using the solution obtained:

> for i from 1 to N+2 do for j from 2 to M+1 do PP[i,j]:=
evalf(subs(t=T1[j],u[i-1](t)));od;od:

Next, data points are stored in plotdata for obtaining a 3D plot using Maple's
'surfdata' command.

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, title="Figure 5.4",
labels=[x,t,u],orientation=[45,60]);

Fig. 5.4

>

We observe that the process slowly approaches the steady state. We note that
the profiles are symmetrical about x = 0.5 and, hence, we obtain u[0] = u[N+1],
u[1] = u[N], etc.

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 365

5.1.3 Semianalytical Method for Nonhomogeneous PDEs

Consider a general parabolic PDE with a source term where γ is the source term

2

0 1 22

u u u
 = a (x) + a (x) + a (x)u +

t x x

∂ ∂ ∂ γ
∂ ∂ ∂

 (5.13)

independent of u. In equation (5.13) γ can be functions of both t and x or just a
constant. The following nonhomogeneous boundary conditions are considered:

1 1 1

u
u(0, t) (0, t) =

x

∂α + β γ
∂

 (5.14)

2 2 2

u
u(1, t) (1, t) =

x

∂α + β γ
∂

 (5.15)

where γ1, and γ2 can either be functions of time or constants. When the governing
equation (5.13) and the boundary conditions (5.14) and (5.15) are converted to the
finite difference form, N coupled ODEs arise which can be written in the matrix
form

d
= + (t)

dt
Y

AY b (5.16)

The solution for equation (5.16) is obtained by adding the nonhomogeneous
solution to the matrix exponential (Amundson, 1966;[7] Taylor and Krishna,
1993;[8] Subramanian and White, 2000;[5] see section 2.1.3):

t

0

exp(t) + exp[- (t)] () d= τ − τ τ∫0Y A Y A b (5.17)

where τ is a dummy variable of integration. When b is a constant vector
equation (5.17) reduces to

1 1 = exp(t)(+)− −−0Y A Y A b A b (5.18)

Hence, we obtain a semianalytical solution, i.e., the dependent variables at all the
node points are obtained as an analytical solution of time t. The procedure for
solving linear parabolic partial differential equations with nonhomogeneous
boundary conditions can be summarized as follows:

1. Start the Maple program with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)' and ‘with(plots)’ commands.
3. Enter the governing equation.
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1).
5. Store the initial condition in Y0.
6. Enter the number of interior node points, N.

366 5 Method of Lines for Parabolic Partial Differential Equations

7. Enter the length of the domain, L.
8. Convert the governing equations to the finite difference form by a using central

difference expression accurate to the order h2 for first and second derivatives.
9. Convert the boundary conditions to the finite difference form by using the

3-point forward and backward differences (accurate to the order h2),
respectively, for bc1 and bc2.

10. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary
conditions.

11. Store the right hand side of the finite difference equations in eqs.
12. Store the dependent variables, ui, i = 1..N in vars.
13. Generate A matrix and b vector using Maple’s ‘genmatrix’ command.
14. Find the exponential matrix (exp(At)) by using Maple’s ‘exponential(A,t)’

command and store it in mat.
15. Store the initial conditions in the Y0 vector.
16. Find the solution Y by multiplying mat times Y0 and adding the

nonhomogeneous part according to equation (5.17).
17. Once the semianalytical solution is obtained, plots can be made.

Example 5.2

Consider the heat conduction/mass transfer problem in a cylinder.[6] [9] [10] The
governing equation in dimensionless form is

2

2

u u 1 u
 = +

t x x x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1

x

∂ ∂ ∂
∂ ∂ ∂

∂
∂

 (5.19)

The nonhomogeneous boundary condition at x = 1 contributes to the forcing
function vector b. However, in this case the b vector is a constant and, hence,
equation (5.18) can be used. (Note that equation (5.17) is valid even when the b
vector is a constant). When the governing equation is applied at x = 0 in
cylindrical or spherical coordinates, we have singularity at x = 0.[11] [12] This
singularity is avoided in our semianalytical technique as we use the boundary
condition at x = 0 (symmetry boundary condition) to eliminate the dependent
variable. Equation (5.19) is solved in Maple below using the procedure described
above.

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+1/x*diff(u(x,t),x);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 367

> bc1:=diff(u(x,t),x);

> bc2:=u(x,t)-1;

> IC:=u(x,0)=0;

> N:=10;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) =
subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

368 5 Method of Lines for Parabolic Partial Differential Equations

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 369

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)];

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b);

> h:=eval(L/(N+1));

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

370 5 Method of Lines for Parabolic Partial Differential Equations

> det(A);

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> Y0:=matrix(N,1):for i from 1 to N do Y0[i,1]:=
evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

The nonhomogeneous solution (equation(5.17)) is found and added to the
homogeneous solution.

> s1:=evalm(Y0+inverse(A)&*b):

> Y:=evalm(mat&*s1-inverse(A)&*b):

> Y:=map(simplify,Y):

The number of digits is decreased to five for brevity. However, for accuracy, one
has to use a minimum of 10 digits, which is the default in Maple.

> Digits:=5;

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 371

Hence, we have obtained a semianalytical solution (analytical in time and
numerical in x). Next, plots are made:

> for i from 0 to N+1 do p[i]:=plot(u[i](t),t=0..0.4,
color=COLOR(HUE,i/(N+2)), thickness=3):end do:

> arw:=arrow(<0.26,0.6>,<-0.2,0.3>,width=[1/300,relative],
head_width=[5,relative],head_length=[1/20,relative]):

pt:=textplot([[0.3,0.55,"Follow the arrow:"],seq([0.26,0.5-i*0.05,
typeset(u[i],"(t)")],i=0..2),[0.26,0.35,"..."],[0.265,0.3,typeset(u[11],"(t)")]]):

> display([seq(p[i],i=0..11),arw,pt],axes=boxed,labels=[t,"u"],title="Figure 5.5");

372 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.5

> tf:=0.2;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od:

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 373

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, title="Figure 5.6",labels=[x,t,u],
orientation=[-145,45]);

Fig. 5.6

Sometimes it is important to know how the temperature or concentration at the
center of the cylinder changes with time. Analytical solutions for cylinders involve
Bessel functions and an infinite series. With our semianalytical method, we can
find how the temperature varies analytically with time. The time dependent
variable at the center of the cylinder varies with time as:

> u[0](t);

We can find the time taken for the center of the cylinder to reach 0.5 (i.e., 50% of
the steady state):

> fsolve(u[0](t)-0.5,t=0..2);

In this example temperature (or concentration) at the surface is fixed (u(1,t) = 1).
With our semianalytical solution we can find how the flux at the surface varies as
a function of time. This flux is given by a three point backward difference at
x 1= x = 1.

374 5 Method of Lines for Parabolic Partial Differential Equations

> flux:=dydxb;

Example 5.3

Consider the electrochemical discharge of a planar electrode.[5]

2

2

u u
 =

t x

u(x,0) = 1

u u
(0,t) = 0 and (1,t) =

x x

∂ ∂
∂ ∂

∂ ∂ − δ
∂ ∂

 (5.20)

where u is the dimensionless concentration and δ is the dimensionless applied
current density at the surface. The electrochemical performance of the electrode
depends on the concentration (u) at the surface. When this problem is cast into
finite differences we arrive at the matrix differential equation (equation (5.16)
with a constant b vector. Hence, we can use equation (5.18) to arrive at the
semianalytical solution. However, because of flux boundary conditions at both
the ends, the A matrix becomes singular. Hence, A cannot be inverted and
equation (5.18) cannot be used. It should be noted that if A is singular that does
not mean that equation (5.16) does not have a solution. One can prove that the
solution (equation (5.18)) is independent of A-1 by using the series expansion for
the exponential matrix[7] [8]

1 1

1 1

 = exp(t)(+)

exp(t) + exp(t)

− −

− −

−

−
0

0

Y A Y A b A b

 = A Y A A b A b
 (5.21)

Now the exponential matrix in the second term is represented as an infinite series:

2 2 3 3 n n
1 1t t t

 = exp(t) + t + + + ... + ... ()
2! 3! n!

− −⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I A A b A b

(5.22)

where I is the identity matrix of order N x N. Equation (5.22) can be further
simplified by factoring out A-1b from the second and third terms.

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 375

2 2 3 3 n n
1t t t

= exp(t) + t + + + ... + ... ()
2! 3! n!

−⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I A I A b

(5.23)

The identity matrices inside the parenthesis get cancelled. Next, A-1 outside the
parenthesis is taken inside the parenthesis to obtain:

2 2 3 n 1 nt t t
= exp(t) t + + + ... + ...

2! 3! n!

−⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I b

(5.24)

We observe that equation (5.24) is independent of A-1 and, hence, we can obtain a
solution for equation (5.16) even when A is singular. The infinite series in
equation (5.23) is difficult to calculate. Alternatively, we use equation (5.17),
which is valid even when A is singular to obtain the semianalytical solutions.
Equation (5.19) is solved below in Maple using the procedure described above
with equation (5.17) as the nonhomogeneous part.

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2);

> bc1:=diff(u(x,t),x);

> bc2:=diff(u(x,t),x)+delta;

> #Digits:=50;

> IC:=u(x,0)=1;

> N:=4;

> L:=1;

376 5 Method of Lines for Parabolic Partial Differential Equations

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 377

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)];

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b);

> h:=eval(L/(N+1));

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> det(A);

We observe that the A matrix is singular.

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> mat:=map(simplify,mat):

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

378 5 Method of Lines for Parabolic Partial Differential Equations

> b2:=subs(t=tau,evalm(b));

> mat2:=subs(t=tau,evalm(mat)):

> mat3:=evalm(mat2&*b2):

> mat4:=map(int,mat3,tau=0..t):

> Y:=evalm(mat&*Y0+mat4):

> #Y:=map(simplify,Y):

> #Digits:=20;

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 379

We obtain the semianalytical solution for the concentration profile as a function of
dimensionless current density, δ. Concentration profiles can be plotted specifying
values for δ.

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1)],t=0..0.4);

> pt:=textplot([[0.25,evalf(subs(t=0.25,delta=1,u[0](t))),typeset(u[0],"(t)"),
align=above],seq([0.25,evalf(subs(t=0.25,delta=1,u[i](t))),typeset(u[i],"(t)"),
align=below],i=1..N+1)]);

> display([pp,pt],thickness=4,title="Figure 5.7",axes=boxed,labels=[t,"u"]);

Fig. 5.7

> pp:=plot([seq(subs(delta=0.1,u[i](t)),i=0..N+1)],t=0..0.4);

380 5 Method of Lines for Parabolic Partial Differential Equations

> pt:=textplot([[0.25,evalf(subs(t=0.25,delta=0.1,u[0](t))),typeset(u[0],"(t)"),
align=above],seq([0.25,evalf(subs(t=0.25,delta=0.1,u[i](t))),typeset(u[i],"(t)"),
align=below],i=1..N+1)]);

> display([pp,pt],thickness=4,title="Figure 5.8",axes=boxed,labels=[t,"u"]);

Fig. 5.8

> tf:=0.4;

We observe that as δ decreases, the time taken for discharge (the concentration to
decrease from 1 to 0) increases. A three dimensional plot for the concentration
profile can be made as follows:

> M:=30;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 381

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, title="Figure 5.9",
labels=[x,t,u],orientation=[45,45]);

Fig. 5.9

Electrochemical behavior of the electrode depends on the surface concentration
given by:

> u[N+1](t);

382 5 Method of Lines for Parabolic Partial Differential Equations

> plot3d(u[N+1](t),delta=0..1,t=0..1,axes=boxed,title="Figure 5.10",
view=[0..5,0..1,0..1],orientation=[0,90],labels=[delta,t,"us"]);

Fig. 5.10

For low values of δ, the surface concentration remains close to 1, and as δ
increases, the surface concentration depletes faster. Accuracy can be increased by
increasing the number of node points.

Example 5.4

Consider the following heat/mass transfer problem with a time dependent boundary
condition,

2

2

-t

u u
 =

t x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1- e

x

∂ ∂
∂ ∂

∂
∂

 (5.25)

This BVP is solved below in Maple by following the procedure described earlier.
In this case, the forcing function vector, b(t) is a function of time and hence
equation (5.17)a is used to obtain the semianalytical solution. The program used

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 383

for example 5.3 can be used to solve this example by just modifying the boundary
conditions:

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2);

> bc1:=diff(u(x,t),x);

> bc2:=u(x,t)-1+exp(-t);

> IC:=u(x,0)=0;

> N:=10;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

384 5 Method of Lines for Parabolic Partial Differential Equations

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od;

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)];

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 385

> h:=eval(L/(N+1));

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> det(A);

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> mat:=map(simplify,mat):

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

386 5 Method of Lines for Parabolic Partial Differential Equations

> b2:=subs(t=tau,evalm(b));

> mat2:=subs(t=t-tau,evalm(mat)):

> mat3:=evalm(mat2&*b2):

> mat4:=map(int,mat3,tau=0..t):

> Y:=evalm(mat&*Y0+mat4):

> Y:=map(simplify,Y):

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 387

388 5 Method of Lines for Parabolic Partial Differential Equations

The following plots are obtained:

> for i from 0 to N+1 do p[i]:=plot(subs(delta=1,u[i](t)),t=0..0.4,
thickness=4,color=COLOR(HUE,i/(N+2)));end do:

> arw:=arrow(<0.3,0.02>,<- 0.15,0.11>,width=[1/1000,relative=false],
head_width=[1/200,relative=false],head_length=[1/20,relative]):

pt:=textplot([[0.12,0.17,typeset("Follow the arrow: ",u[0],"(t), ..., ",
u[N+1],"(t).")]]):

> display([seq(p[i],i=1..N),p[0],pt,arw],title="Figure 5.11",
axes=boxed,labels=[t,"u"]);

Fig. 5.11

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 389

> for i from 0 to N+1 do
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od:

> tf:=0.4;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> for i from 0 to N+1 do
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od:

> tf:=0.4;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed,title="Figure 5.12",
labels=[x,t,u],orientation=[-145,45]);

390 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.12

Example 5.5

Consider the diffusion of a gas (A) through a stagnant liquid (B) in a container.[2]

A reacts with B according to the irreversible reaction kA + B C⎯⎯→ . The
governing equation for this problem is,

2
A A

AB A2
1

A

A
A 1 A0 1

c c
 = D kc

t z

c (z,0) = 0

c
c (0,t) = c and (L,t) = 0

z

∂ ∂ −
∂ ∂

∂
∂

 (5.26)

where cA is the concentration of A (mol/m3), z is the distance (m), t1 is the time
variable (s), DAB is the diffusion coefficient of A in B (2x10-9 m2/s), L is the
height of the container (10 cm). The concentration of A at z = 0 is cA0 =
0.01mol/m3 and k is the first order rate constant (2x10-7 s-1). The following
dimensionless variables are introduced for convenience,

A AB 1
2

A0

c z D t
u = ; x = ; and t =

c L L
 (5.27)

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 391

Substituting equation (5.26) into equation (5.25) we get:

2
2

2

u u
 = u

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0

x

∂ ∂ − Φ
∂ ∂

∂
∂

 (5.28)

where
2

AB

kL
 =

D
Φ is the Thiele modulus. Once the solution is obtained, one

can find the mass transfer flux at x = 0 and find the time taken for the flux to reach
a steady state. This BVP is solved below in Maple by following the procedure
described earlier for example 5.2 as we have a constant b vector. Both dimensionless
and dimensional plots are obtained.

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+Phi^2*u(x,t);

> k:=2e-7;Dab:=2e-9;ca0:=0.01;Lc:=10e-2;

> Phi:=sqrt(k*Lc^2/Dab);

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),x);

392 5 Method of Lines for Parabolic Partial Differential Equations

> IC:=u(x,0)=0;

> N:=10;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od:

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)];

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 393

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b);

> h:=eval(L/(N+1));

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

394 5 Method of Lines for Parabolic Partial Differential Equations

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

> s1:=evalm(Y0+inverse(A)&*b):

> Y:=evalm(mat&*s1-inverse(A)&*b):

> Y:=map(simplify,Y):

> Digits:=5;

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 395

Semianalytical solutions are obtained in dimensionless form. The dimensionless
concentration profiles are plotted as:

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]);

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=4);

> arw:=arrow(<0.1,1.01>,<0.1,-0.8>,width=[1/600,relative=false],
head_width=[1/200,relative=false],head_length=[1/30,relative=false]):

396 5 Method of Lines for Parabolic Partial Differential Equations

pt:=textplot([[0.28,0.15,typeset("Follow the arrow: ",u[0],"(t), ..., ",
u[N+1],"(t).")]]):

> display([pp,pt,arw],title="Figure 5.13",axes=boxed,labels=[t,"u"]);

Fig. 5.13

> tf:=0.5;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 397

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, title="Figure 5.14",
labels=[x,t,u],orientation=[-75,75]);

Fig. 5.14

The mass transafer flux at x = 0 in dimensionless form is given by:

> flux:=-dydxf;

> plot(flux,t=0..0.5,thickness=4,title="Figure 5.15",
axes=boxed,labels=[t,"flux"]);

398 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.15

Next, the concentration profiles are converted to dimensionless form as:

> for i from 0 to N+1 do ca[i](t):=u[i](t)*ca0;od:

> for i from 0 to N+1 do ca[i](t1):=subs(t=t1*Dab/Lc^2,ca[i](t));od:

> for i from 0 to N+1 do p[i]:=plot(ca[i](t1),t1=0..2e6,thickness=3);od:

> pp:=plot([seq(ca[i](t1),i=0..N+1)],t1=0..2e6,thickness=4);

> arw:=arrow(<0.1e6,0.0105>,<1.0e6,-0.0085>,width=[1/1.0e5,relative=false],
head_width=[1/5.0e3,relative=false],head_length=[1/30,relative=true]):

> pt:=textplot([[1.4e6,0.0015,typeset("Follow the arrow: ",ca[0],"(t), ..., ",
ca[N+1],"(t).")]]):

> display([pp,pt,arw],title="Figure 5.16.",axes=boxed,labels=[t1,"ca"]);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 399

Fig. 5.16

> tf:=2e6;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h*Lc,0));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t1=T1[j],ca[i-1](t1)));od;od:

> plotdata := [seq([seq([(i-1)*h*Lc,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,title="Figure 5.17",axes=boxed,
labels=[z,t1,"ca"],orientation=[-75,75]);

400 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.17

Next, the mass transfer flux is converted to dimensionless form as:

> Flux:=Dab*ca0/Lc*flux:

> Flux:=subs(t=t1*Dab/Lc^2,Flux);

> plot(Flux,t1=0..2e6,thickness=4,title="Figure 5.18",
axes=boxed,labels=[t,"Flux"]);

Fig. 5.18

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 401

Example 5.6. Semianalytical Method for the Graetz Problem

Consider the classical Graetz problem,[1]

2
2

2

u u 1 u
2Pe(1 x) = +

z x x x

u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂ ∂−
∂ ∂ ∂

∂
∂

 (5.29)

This PDE is first order in z. The z variable can be treated as a time variable. The
temperature profiles depend on the Peclet number Pe. For convenience we
introduce the variable transformation z = 2Pet, which converts equation (5.29) to

2

2 2 2

u 1 u 1 1 u
 = +

t 1 x x 1 x x x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1

x

∂ ∂ ∂
∂ − ∂ − ∂

∂
∂

 (5.30)

Equation (5.30) is solved below in Maple using the Maple program developed for
example 5.2 by making very few changes as:

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=1/(1-x^2)*diff(u(x,t),x$2)+1/(1-x^2)/x*diff(u(x,t),x);

> bc1:=diff(u(x,t),x);

> bc2:=u(x,t)-1;

402 5 Method of Lines for Parabolic Partial Differential Equations

> IC:=u(x,0)=0;

> N:=10;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 403

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

404 5 Method of Lines for Parabolic Partial Differential Equations

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)];

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b);

> h:=eval(L/(N+1));

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 405

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

> s1:=evalm(Y0+inverse(A)&*b):

> Y:=evalm(mat&*s1-inverse(A)&*b):

> Y:=map(simplify,Y):

> Digits:=10;

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

406 5 Method of Lines for Parabolic Partial Differential Equations

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 407

Set the colors for the curves:

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]);

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=3);

408 5 Method of Lines for Parabolic Partial Differential Equations

Plot the texts for the corresponding curves:

> arw:=arrow(<0.15,0.4>,<-0.05,0.63>,width=[1/700,relative=true],
head_width= head_length=[1/30,relative=false]):pt:=textplot([[0.25,0.35,
typeset("Follow the arrow: ",u[0],"(t), ..., ",u[N+1”, u[N+1],"(t).")]]):

> display([pp,pt,arw],axes=boxed,title="Figure 5.19",labels=[t,"u"]);

Fig. 5.19

> tf:=0.2;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 409

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.20",
labels=[x,t,u],orientation=[-135,45]);

Fig. 5.20

> for i from 0 to N+1 do u[i](z):=subs(t=z/2/Pe,u[i](t));od:

> pp:=plot([seq(subs(Pe=1,u[i](z)),i=0..N+1)],z=0..1,thickness=3;

Plot the texts for the corresponding curves:

> arw:=arrow(<0.3,0.4>,<-0.15,0.63>,width=[1/700,relative=true,
head_width=[1/150,relative=false,head_length=[1/30,relative=false]):

> pt:=textplot([[0.55,0.35,typeset("Follow the arrow:",u[0], "(z), ..., ",
u[N+1],"(z).")]]):

> display([pp,pt,arw],axes=boxed,title="Figure 5.21",labels=[z,"u"]);

410 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.21

> tf:=1.;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(z=T1[j],Pe=1.,u[i-1](z)));od;od:

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 411

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.22",
labels=[x,z,u],orientation=[-135,45]);

Fig. 5.22

We observe that as the Peclet number increases, we observe the penetration depth
(the distance required in the z direction to reach the steady state value 1) increases.
The analytical solution for this problem involves transcendental equations and infinite
series. (Jacob, 1949)[1] According to the analytical solution, the dimensionless
temperature (u) at x = 0 varies as:

z z z
ua(0,z) = 1-1.477exp 3.658 0.810exp 22.178 exp 53.05 ...

Pe Pe Pe
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(5.31)

We observe that at z = 0, equation (5.31) needs infinite terms for convergence.
However, equation (5.31) converges rapidly for high values of the ratio z/Pe.
Hence, our semianalytical solution is compared with the exact solution for
different values of the ratio z/Pe.

> pp:=plot([seq(subs(Pe=10,u[i](z)),i=0..N+1)],z=0..1,thickness=3);

> display([pp],axes=boxed,title="Figure 5.23", labels=[z,"u"],
caption=typeset("From the bottom to the top of the figure: ",u[0],"(z), ..., ",
u[N+1],"(z)"));

412 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.23

> tf:=1.;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(z=T1[j],Pe=10.,u[i-1](z)));od;od:

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 413

> plotdata:= [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.24",
labels=[x,z,u],orientation=[-135,45]);

Fig. 5.24

> ua0:=1-1.477*exp(-3.658*z/Pe)+0.81*exp(-22.178*z/Pe)-0.385*exp
(-53.05*z/Pe);

> u[0](z);

Note that with our semianalytical technique the temperature at x = 0 is obtained as
an analytical function of z and Pe.

414 5 Method of Lines for Parabolic Partial Differential Equations

> pars:=[0.1,0.2,0.25,0.5,1,2];

> M:=nops(pars);

> seq(evalf(subs(z=Pe*pars[i],ua0)),i=1..M);

> seq(evalf(subs(z=Pe*pars[i],z=10,u[0](z))),i=1..M);

>

We obtain reasonable accuracy with the semianalytical solution. Accuracy can be
increased by increasing the number of node points.

Example 5.7. Semianalytical Method for PDEs with Known Initial Profiles

In all the previous examples, initial conditions were constants. The initial condition
can be a function of x. For example, consider the heat transfer problem:[6]

2

s 2

u u
 = D

t x

x
u(x,0) = cos

2L

u
(0,t) = 0 and u(L,t) = 0

x

∂ ∂
∂ ∂

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
∂

 (5.32)

This BVP is solved for a given value of Ds = 1e-5 cm2/s and L = 0.02 cm below.
Note that this BVP is solved directly in dimensionless form. The program used
above for example 5.1 is used here, as the boundary conditions are homogeneous.
Only the following statements need to be changed.

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=Ds*diff(u(x,t),x$2);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 415

> bc1:=diff(u(x,t),x);

> bc2:=u(x,t);

> IC:=u(x,0)=cos(Pi*x/2/L);

> L:=0.02;

> Ds:=2e-5;

Note that since the problem is solved in dimensionless form, we plot the profiles
until tf 20= seconds. The following plots are obtained.

> N:=10;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

416 5 Method of Lines for Parabolic Partial Differential Equations

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),
u(x,t)=u[i](t),x=i*h,rhs(ge));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 417

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

418 5 Method of Lines for Parabolic Partial Differential Equations

> eqs:=[seq(rhs(eq[j]),j=1..N)];

> Y:=[seq(u[i](t),i=1..N)];

> A:=genmatrix(eqs,Y);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 419

> h:=eval(L/(N+1));

> A:=map(eval,A);

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0);

420 5 Method of Lines for Parabolic Partial Differential Equations

> Y:=evalm(mat&*Y0):

> Y:=map(simplify,Y);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 421

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od;

422 5 Method of Lines for Parabolic Partial Differential Equations

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 423

> tf:=20;

Set the color list:

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]);

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..tf,thickness=3);

Plot the texts:

> arw:=arrow(<6.0,0.55>,<-5.0,-0.57>,width=[1/1000,relative=true],
head_width=[1/50,relative=false],head_length=[1/5,relative=false]):

 pt:=textplot([[11,0.6,typeset("Follow the arrow: ",u[0],"(t), ..., ",
u[N+1],"(t).")]]):

> display([pp,pt,arw],title="Figure 5.25",axes=boxed,labels=[t,"u"]);

424 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.25

> tf:=20;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od:

> plotdata:=[seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.26",
labels=[x,t,u],orientation=[45,60]);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 425

Fig. 5.26

5.1.4 Semianalytical Method for PDEs in Composite Domains

The semianalytical method developed earlier can be used to solve partial
differential equations in composite domains also. Mass or heat transfer in
composite domains involves two different diffusion coefficients or thermal
conductivities in the two layers of the composite material.[6] In addition, even in
case of solids with a single domain and constant physical properties, the reaction
may take place mainly near the surface. This leads to the formation of boundary
layer near one of the boundaries. In this section, the semianalytical method
developed earlier is extended to composite domains.

Example 5.8

For example, in the diffusion reaction problem solved in example 5.5 for higher
values of Thiele modulus (Φ>10), concentration depletes very close to the surface
(x = 0). Since we are interested in the flux at x = 0 it makes more sense to choose
more node points near x = 0. Equation (5.28) can be rewritten as

2
21 1

12

2
22 2

22

1 2

u u
 = u 0 < x < (Region 1)

t x

u u
 = u x 1 (Region 2)

t x

u (x,0) = u (x,0) = 0

∂ ∂ − Φ α
∂ ∂

∂ ∂ − Φ α < <
∂ ∂

 (5.33)

426 5 Method of Lines for Parabolic Partial Differential Equations

where u1 and u2 are the dependent variables in region 1(0 < x < α) and region 2
(α < x < 1), respectively. The boundary conditions at x = 0 and x = 1 are:

1u (0, t) = 1 (5.34)

2u
(1, t) = 0

x

∂
∂

 (5.35)

Both the dependent variable and its derivative are continuous at x = α:

1 2u (,t) = u (,t)α α (5.36)

1 2u u
(,x) = (,x)

x x

∂ ∂α α
∂ ∂

 (5.37)

When mass or heat transfer in composite domains are modeled, different thermal
diffusivities or diffusion coefficients enter in the governing equation for each
region and the mass/heat flux is continuous at x = α. Equation (5.33) can be
converted to the finite difference form as:

2i i 1 i i 1
i2

1

2i i 1 i i 1
i2

2

u u 2u u
 = u i = 1..N [Region 1]

t h

u u 2u u
 = - u i = N+2..N+M+1 [Region 2]

t h

+ −

+ −

∂ − + − Φ
∂

∂ − + Φ
∂

(5.38)

where N and M are the number of interior node points used in region 1 and 2,
respectively, and the node spacing in each region are defined by:

1 2

1
h = ; and h =

N+1 M+1

α − α
 (5.39)

We are using the same dependent variable ui at interior node points, for both u1and
u2 in equation (5.38) for convenience. This satisfies the continuity of dependent
variable at x = α (equation (5.36)) by default. The initial conditions are

iu (0) = 0 i = 1..N, i = N+2..N+M+1 (5.40)

Equation (5.36) can be written in finite difference form as:

N+1 N N 1 N+1 N+2 N+3

1 2

1 3u 4u + u 1 3u + 4u u
 =

2 h 2 h
−− − −

 (5.41)

The procedure involved in solving PDEs in a composite domain can be
summarized as follows:

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 427

1. Start the Maple program with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equations in two regions.
4. Enter the value for α.
5. Enter the initial conditions for the both the regions.
6. Enter the boundary conditions at x = 0 and x = 1.
7. Enter the number of interior node points N, M for region 1 and region 2,

respectively.
8. Enter the boundary condition at x = α (equation (5.36)).
9. Convert the governing equations in both the regions to the finite difference

form.
10. Convert all the boundary conditions to the finite difference form.
11. Eliminate the boundary values (u0(t) and uN+M+2(t)) using the boundary

conditions at x = 0 and x = 1, respectively.
12. Eliminate uN+1(t) i.e., the dependent variable at x = α using the boundary

condition at x = α (equation 5.36 and 5.40).
13. Store the dependent variables, ui, i = 1..N, N+2..N+M+2 in vars.
14. Generate A matrix and b vector using Maple’s ‘genmatrix’ .
15. Find the semianalytical solution and plot your results.
16. Equation 5.37 is solved below in Maple for Φ = 5 using α = 0.5:

> restart;

> with(linalg):with(plots):

> ge1:=diff(u1(x,t),t)=diff(u1(x,t),x$2)-Phi^2*u1(x,t);

> ge2:=diff(u2(x,t),t)=diff(u2(x,t),x$2)-Phi^2*u2(x,t);

> bc1:=u1(x,t)-1;

> bcalpha:=diff(u1(x,t),x)=diff(u2(x,t),x);

> bc2:=diff(u2(x,t),x);

428 5 Method of Lines for Parabolic Partial Differential Equations

> IC1:=u1(x,0)=0;

> IC2:=u2(x,0)=0;

The boundary condition u1(alpha,t) = u2(alpha,t) is satisfied by default. Let N
and M be the number of node points in region 1 and region 2, respectively.

> N:=5;

> M:=5;

> alpha:=0.25;

> Phi:=5;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h1;

> dydxb:=1/2*(u[N+M](t)+3*u[N+M+2](t)-4*u[N+M+1](t))/h2;

> dydxb2:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h1;

> dydxf2:=1/2*(-u[N+3](t)-3*u[N+1](t)+4*u[N+2](t))/h2;

The first and second derivatives in the governing equation are converted to finite
difference form using the following finite difference approximations:

> dydx:=piecewise(i<N+1,1/2/h1*(u[m+1](t)-u[m-1](t)),i>N+1,
1/2/h2*(u[m+1](t)-u[m-1](t)));

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 429

Maple’s ‘piecewise’ command is useful in defining the first derivative and
derivatives in different regions:

> d2ydx2:=piecewise(i<N+1,1/h1^2*(u[m-1](t)-2*u[m](t)+
u[m+1](t)),i>N+1,1/h2^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)));

> bc1:=subs(diff(u1(x,t),x)=dydxf,u1(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u2(x,t),x)=dydxb,u2(x,t)=u[N+M+2](t),bc2);

The boundary condition at the interface, x α= is:
> bcalpha:=subs(diff(u1(x,t),x)=dydxb2,diff(u2(x,t),x)=dydxf2,u1(x,t)=
u[N+1](t),u2(x,t)=u[N+1](t),bcalpha);

> eq[0]:=bc1;

> eq[N+1]:=bcalpha;

> eq[N+M+2]:=bc2;

For the example given, the governing equation does not depend on x explicitly.
However, for a general case (example 5.6), x appears in the governing equation

430 5 Method of Lines for Parabolic Partial Differential Equations

explicitly. Hence, when the governing equation is converted to finite difference
form the independent variable, x, has to be expressed in the finite difference form
appropriately.

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u1(x,t),x$2) =
subs(m=i,d2ydx2),diff(u1(x,t),x) = subs(m=i,dydx),u1(x,t)=u[i](t),
x=i*h1,rhs(ge1));od;

Eq[N+1] is given the boundary condition at the interface between region 1 and
region 2. The finite difference equations for region 2 are:

> for i from N+2 to N+M+1 do eq[i]:=diff(u[i](t),t)= subs(diff(u2(x,t),x$2) =
subs(m=i,d2ydx2),diff(u2(x,t),x) = subs(m=i,dydx),u2(x,t)=u[i](t),
x=alpha+(i-N-1)*h2,rhs(ge2));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 431

The dependent variable at the boundary x 0= is eliminated as:

> u[0](t):=(solve(eq[0],u[0](t)));

The dependent variable at the boundary x α= is eliminated as:

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

The dependent variable at the boundary x 1= is eliminated as:

> u[N+M+2](t):=solve(eq[N+M+2],u[N+M+2](t));

> for i from 1 to N do eq[i]:=eval(eq[i]):od:for i from N+2 to N+M+1 do
eq[i]:=eval(eq[i]);od:

> eqs:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..M)]:

> Y:=[seq(u[i](t),i=1..N),seq(u[N+1+i](t),i=1..M)];

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N+M,1):for i to N+M do b[i,1]:=-eval(b1[i]);od:evalm(b);

> h1:=eval(alpha/(N+1));h2:=eval((1-alpha)/(M+1));

432 5 Method of Lines for Parabolic Partial Differential Equations

> A:=map(eval,A):

> if N+M >4 then A:=map(evalf,A);end:

> mat:=exponential(A,t):

> mat:=map(evalf,mat):

> Y0:=matrix(N+M,1):for i from 1 to N+M do Y0[i,1]:=0;od:evalm(Y0):

> s1:=evalm(Y0+inverse(A)&*b):

> Y:=evalm(mat&*s1-inverse(A)&*b):

> Y:=map(simplify,Y):

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from N+2 to N+M+1 do u[i](t):=evalf((Y[i-1,1]));od:

> for i from 0 to N+M+2 do u[i](t):=eval(u[i](t));od;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 433

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]);

434 5 Method of Lines for Parabolic Partial Differential Equations

> pp:=plot([seq(u[i](t),i=0..N+M+2)],t=0..0.1);

> pt:=textplot([[0.015,1.0,typeset(u[0],"(t)"),align=below],seq([0.02+i*0.005,
evalf(subs(t=0.02+i*0.005,u[i](t))),typeset(u[i],"(t)"),align=above],
i=1..N+M-2)]);

> display([pp,pt],title="Figure 5.27",thickness=3,axes=boxed,labels=[t,"u"]);

Fig. 5.27

> tf:=0.1;

> MM:=30;

> T1:=[seq(tf*i/MM,i=0..MM)];

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 435

> PP:=matrix(N+M+3,MM+1);

> for i from 1 to N+M+3 do PP[i,1]:=0;od:

> for i from 1 to N+M+3 do for j from 2 to MM+1 do
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od:

> evalm(PP):

> i:='i';

For making 3-D plots the x coordinate has to be defined appropriately.

> X:=piecewise(i<N+3,(i-1)*h1,i>N+2,alpha+(i-N-2)*h2);

> plot(X,i=1..N+M+3,thickness=4,title="Figure 5.28",
axes=boxed,labels=['i',"X"]);

Fig. 5.28

436 5 Method of Lines for Parabolic Partial Differential Equations

> plotdata:=[seq([seq([eval(X),T1[j],PP[i,j]], i=1..N+M+3)], j=1..MM+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.29",
labels=[x,t,u],orientation=[-75,60]);

Fig. 5.29

We observe that most of the reaction takes place near the surface, x 0= . An
analytical solution for the steady state distribution can be obtained as:

> eq:=diff(U(x),x$2)-Phi^2*U(x);

> Ua:=rhs(dsolve({eq,U(0)=1,D(U)(1)=0},U(x)));

A more compact analytical solution can be obtained by using the matrix
exponential method described in section 2.1.2. The dimensionless mass flux at
x 0= is given by:

> Flux:=-evalf(subs(x=0.,diff(Ua,x)));

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 437

> flux:=-dydxf;

Steady state flux is obtained as:

> flux:=limit(flux,t=infinity);Flux;

We obtain almost a 5% error with our semianalytical solution. The computation
time taken for the semianalytical method depends on the total number of interior
node points (N+M). By using α = 0.25 without changing N and M, we obtain the
following results:

> Err:=abs(flux-Flux)/Flux*100;

>

The error has reduced significantly from 5% to 2%. Hence, we conclude that stiff
PDEs with boundary layers can be solved efficiently by dividing the region as two
composite domains.

5.1.5 Expediting the Calculation of Exponential Matrix

We have used Maple to calculate the exponential matrix in all of the above
examples. When N increases, the time taken by Maple for calculating the
exponential matrix increases drastically. For N = 10, the matrix order is 10 x 10.
For this matrix, Maple takes around 1 minute to calculate the exponential matrix
in a 2.6 GHz processor with 2GB RAM. For a particular problem, one can derive
an analytical expression for the exponential matrix by calculating the eigenvalues
and eigenvectors analytically.[13] However, these expressions are valid for a
particular problem only. If the governing equation or the boundary conditions
change, one has to redo all the steps. This involves tedious algebra. To avoid this,
when all the eigenvalues of the coefficient matrix A are distinct, A matrix is
converted to canonical form as

A = PDP 1− (5.42)

Where D is the diagonal matrix of order NxN with the N distinct eigenvalues
(λk, i = 1..N) as its diagonal elements. P is the eigenvector matrix defined as

[]1 2 N = X ,X ,..XP (5.43)

438 5 Method of Lines for Parabolic Partial Differential Equations

where Pk is the eigenvector corresponding to the eigenvalue λk. One of the main
advantages of equation (5.42) is that, it simplifies the calculation of exponential
matrix as:

1exp(t) = exp(t) −A P D P (5.44)

Since D is a diagonal matrix, the exponential matrix of D is easily obtained as:

1

2

N 1

N

t

t

t

t

e 0 ... 0 0

0 e ... 0 0

exp() =

0 0 ... e 0

0 0 ... 0 e

−

λ

λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Dt (5.45)

Maple can be used to obtain the eigenvalues and eigenvector matrix (P). Maple
takes only a few seconds to calculate the eigenvalues (for a 20 x 20 matrix it takes
less than a second). However, Maple takes a long time to calculate the eigenvector
matrix. To overcome this problem, we can obtain the particular eigenvector Xk
using the equation

k k = ()X = λ−G A U 0 (5.46)

where U is the diagonal matrix of order NxN. We define Xk as

[]T

k 1 2 NX = , ,..β β β (5.47)

On substituting equation (5.47) into equation (5.46), we obtain equations for
βi, i = 1..N. Next by arbitrarily choosing β1 = 1, and by using rows 1 to N-1 of
equation (5.46) we can solve βi, 1 = 2..N and obtain Xk.

The following procedure in Maple can be used to obtain exponential matrix for
any matrix with distinct eigenvalues.

Example 5.9

> restart;

> with(linalg):with(plots):

> UseHardwareFloats := true;

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 439

> bc1:=u(x,t);

> bc2:=u(x,t);

> IC:=u(x,0)=1;

> N:=40;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1:

> eq[N+1]:=bc2:

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N do eq[i]:=eval(eq[i]);od:

> eqs:=[seq(rhs(eq[j]),j=1..N)]:

> Y:=[seq(u[i](t),i=1..N)]:

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b):

> h:=eval(L/(N+1)):

> A:=map(eval,A):

440 5 Method of Lines for Parabolic Partial Differential Equations

> if N > 4 then A:=map(evalf,A);end:

> #evalm(A);

> Nrow:=rowdim(A):

> l:=evalf(eigenvalues(A)):

> for i to Nrow do lambda[i]:=l[i];od:

> Id:=Matrix(Nrow,Nrow,shape=identity):

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]):

> for k to Nrow do:

> G:=evalm((A-lambda[k]*Id)&*X):

> eqx[1]:=beta[1]=1:for i from 2 to Nrow do eqx[i]:=G[i-1,1]:od:

> for i to Nrow do beta[i]:=fsolve(eqx[i],beta[i]);od:

> XX[k]:=map(eval,evalm(X)):

> for i to Nrow do unassign('beta[i]'):od:od:

> P:=Matrix([seq(evalm(XX[i]),i=1..Nrow)]):

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal):

> for i to Nrow do expD1[i,i]:=exp(lambda[i]*t):od:

> mat:=evalm(P&*expD1&*inverse(P)):

When the above procedure was used to calculate the exponential matrix for
example 7.1, the time taken for N=40 interior node points was less than 30
seconds. For the same number of node points, Maple takes more than 5 minutes
to calculate the exponential matrix in a 2.6Ghz processor with 2 GB RAM. The
3-D plot obtained for example 7.1 with N=40 node points is given below:

> Y0:=matrix(N,1):for i from 1 to N do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0):

> b2:=subs(t=tau,evalm(b)):

> mat2:=subs(t=t-tau,evalm(mat)):

> mat3:=evalm(mat2&*b2):

> mat4:=map(int,mat3,tau=0..t):

> Y:=evalm(mat&*Y0+mat4):

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od:

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 441

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]):

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1,5)],t=0..0.4,thickness=3);

> pt:=textplot([seq([0.05+i*0.002,evalf(subs(delta=1,t=0.05+i*0.002,u[i](t))),
typeset(u[i]),align=right],i=0..N+1,5)]);

> display([pp,pt],title="Figure 5.30",axes=boxed,labels=[t,"u"]);

Fig. 5.30

> for i from 0 to N+1 do
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od:

> tf:=0.1;

442 5 Method of Lines for Parabolic Partial Differential Equations

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od:

> plotdata:= [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.31",
labels=[x,t,u],orientation=[45,45]);

Fig. 5.31

Example 5.10

> restart;

> with(linalg):with(plots):

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 443

> ge:=diff(u(x,t),t)=-diff(u(x,t),x);

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),t)=-diff(u(x,t),x);

> IC:=u(x,0)=0;

> N:=2;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydxb:=(u[N+1](t)-u[N](t))/h:

> dydx:=1/h*(u[m](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),
u(x,t)=u[i](t),x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

444 5 Method of Lines for Parabolic Partial Differential Equations

> #u[N+1](t):=solve(eq[N+1],u[N+1](t));

> for i from 1 to N+1 do eq[i]:=eval(eq[i]);od;

> eqs:=[seq(rhs(eq[j]),j=1..N+1)]:

> Y:=[seq(u[i](t),i=1..N+1)]:

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N+1,1):for i to N+1 do b[i,1]:=-eval(b1[i]);od:evalm(b):

> h:=eval(L/(N+1)):

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> evalm(A);

> J:=jordan(A,S);

> evalm(S);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 445

> mat:=evalm(S&*exponential(J,t)&*inverse(S));

> Nrow:=rowdim(A):

> l:=evalf(eigenvalues(A));

> for i to Nrow do lambda[i]:=l[i];od:

> Id:=Matrix(Nrow,Nrow,shape=identity):

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]):

> for k to Nrow do:

> G:=evalm((A-lambda[k]*Id)&*X):

> eqx[1]:=beta[1]=1:for i from 2 to Nrow do eqx[i]:=G[i-1,1]:od:

> for i to Nrow do beta[i]:=solve(eqx[i],beta[i]);od:

> XX[k]:=map(eval,evalm(X)):

> for i to Nrow do unassign('beta[i]'):od:od:

> P:=Matrix([seq(evalm(XX[i]),i=1..Nrow)]);

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal):

> for i to Nrow do expD1[i,i]:=exp(lambda[i]*t):od:

> expD1:=map(convert,expD1,trig):

> mat:=evalm(P&*expD1&*inverse(P)):

Error, (in evalm) unnamed vector or array with undefined entries.

> mat:=map(expand,mat):

> mat:=map(simplify,mat):

> Y0:=matrix(N+1,1):for i from 1 to N+1 do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0):

446 5 Method of Lines for Parabolic Partial Differential Equations

> Y:=evalm(mat&*(Y0+inverse(A)&*b)-inverse(A)&*b):

> #b2:=subs(t=tau,evalm(b)):

> #mat2:=subs(t=t-tau,evalm(mat)):

> #mat3:=evalm(mat2&*b2):

> #mat4:=map(int,mat3,tau=0..t):

> #Y:=evalm(mat&*Y0+mat4):

> for i from 1 to N+1 do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od:

> for i from 0 to N+1 do u[i](t):=subs(I=0,u[i](t));od:

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]):

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1)],t=0..1,thickness=4);

> pt:=textplot([seq([0.4,evalf(subs(delta=1,t=0.4,u[i](t))),typeset(u[i],"(t)"),
align={below,right}],i=0..N+1)]);

> display([pp,pt],title="Figure 5.32",axes=boxed,labels=[t,"u"]);

Fig. 5.32

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 447

> for i from 0 to N+1 do p[i]:=plot(subs(delta=0.1,u[i](t)),
t=0..0.4,thickness=3);od:

> tf:=1;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, title="Figure 5.33",axes=boxed,
labels=[x,t,u],orientation=[45,45]);

Fig. 5.33

>

448 5 Method of Lines for Parabolic Partial Differential Equations

Example 5.11

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=-diff(u(x,t),x);

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),t)=-diff(u(x,t),x);

> IC:=u(x,0)=0;N:=200;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> #dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydxb:=(u[N+1](t)-u[N](t))/h:

> dydx:=1/h*(u[m](t)-u[m-1](t)):

> #dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1):

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2):

> eq[0]:=bc1;

> eq[N+1]:=bc2;

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 449

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

> for i from 1 to N+1 do eq[i]:=eval(eq[i]);od:

> eqs:=[seq(rhs(eq[j]),j=1..N+1)]:

> Y:=[seq(u[i](t),i=1..N+1)]:

> A:=genmatrix(eqs,Y,'b1'):

> b:=matrix(N+1,1):for i to N+1 do b[i,1]:=-eval(b1[i]);od:evalm(b):

> h:=eval(L/(N+1)):

> A:=map(eval,A):

> if N > 4 then A:=map(evalf,A);end:

> Nrow:=rowdim(A);

> #exponential(A,t);

> #seq([seq(exp(-Nrow*t)*(Nrow*t)^(i-j),j=1..i)],i=1..Nrow);

> mat:=Matrix(Nrow,[seq([seq(exp(-Nrow*t)*(Nrow*t)^(i-j)/factorial(i-j),
j=1..i)],i=1..Nrow)],shape=triangular[lower]):

> Y0:=matrix(N+1,1):for i from 1 to N+1 do
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0):

> Y:=evalm(mat&*(Y0+inverse(A)&*b)-inverse(A)&*b):

> #b2:=subs(t=tau,evalm(b)):

> #mat2:=subs(t=t-tau,evalm(mat)):

> #mat3:=evalm(mat2&*b2):

> #mat4:=map(int,mat3,tau=0..t):

> #Y:=evalm(mat&*Y0+mat4):

> for i from 1 to N+1 do u[i](t):=evalf((Y[i,1]));od:

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od:

> for i from 0 to N+1 do u[i](t):=subs(I=0,u[i](t));od:

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon",
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki", "sienna",
"orange", "yellow", "gray"]):

450 5 Method of Lines for Parabolic Partial Differential Equations

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1,20)],t=0..1,thickness=3);

> pt:=textplot([seq([0.05+i/20*0.09,evalf(subs(delta=1,t=0.05+i/20*0.09,
u[i](t))),typeset(u[i]),align={below,right}],i=0..N+1,20)]);

> display([pp,pt],title="Figure 5.34",axes=boxed,labels=[t,"u"]);

Fig. 5.34

> for i from 0 to N+1 do
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od:

> tf:=1;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)]:

> PP:=matrix(N+2,M+1);

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 451

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,title="Figure 5.35",axes=boxed,
labels=[x,t,u],orientation=[-45,45]);

Fig. 5.35

>

It is recommended that one check the exponential matrix obtained using this
expedited procedure with the exponential matrix obtained using Maple’s
exponential matrix command for at least two values of interior node points (for
e.g., N = 2, 4 etc). Once it is verified that the above procedure works for a
particular problem, one can use the procedure for obtaining the exponential matrix
efficiently for high values of N.

5.1.6 Summary

In this chapter semianalytical solutions (solutions analytical in t and numerical in
x) were obtained for parabolic PDEs. In section 5.1.2, the given homogeneous
parabolic PDE was converted to matrix form by applying finite differences in the
spatial direction. The resulting matrix differential equation was then integrated
analytically in time using Maple’s matrix exponential. This methodology helps us
solve the dependent variables at different node points as an analytical function of
time. This is a powerful technique and is valid for all linear parabolic PDEs. This

452 5 Method of Lines for Parabolic Partial Differential Equations

technique was then extended to nonhomogeneous parabolic PDEs in section 5.1.3
by adding the nonhomogeneous part to the homogeneous solution.

In section 5.1.4, the Graetz problem was solved using the semianalytical
technique. The solution obtained is numerical in x and analytical in z. The solution
is obtained as a function of the Peclet number. The solution obtained compares
well with the analytical solution reported in the literature. Our technique avoids
calculation of special functions and at the same time provides solutions explicit in
the Peclet number. In section 5.1.5, the semianalytical technique developed earlier
was extended to the case when the initial condition is a function of x.

In section 5.1.6, semianalytical technique was extended to composite domains.
Many chemical problems with mass transfer or kinetics limitations form a
boundary layer near the surface. These problems can be handled conveniently by
splitting the domain to composite domain as illustrated in this section. In addition,
composite solids (composite electrodes) with different physical properties can be
handled by this technique. Eight examples were given in this chapter.

In section 5.1.7, a procedure to expedite the calculation of exponential matrix
was developed. This procedure is valid as long as all the eigenvalues are distinct.

5.1.7 Exercise Problems

1. Consider diffusion with convection in a coated wall reactor, where the
reaction takes place at the wall.[9] The governing equation and boundary
conditions for concentration are:

2.

2

0 2

0

c c 1 c
v = D +

z r r r

c c
(0,z) = 0 and -D (R, z) = k c(R,z)

r r
c(r,0) = c

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂
∂ ∂

where v0 is the velocity, D is the diffusion coefficient, R is the radius, c0
is the inlet concentration and k is the rate constant. Use the dimensionless

variables
2

0 0

c r zD
u = ; x = ; Z =

c R v R
 to obtain the dimensionless

governing equation and boundary/initial conditions:

3.

2

2

u u 1 u
 = +

Z x x x
u u

(0,Z) = 0 and (1, Z) + Ha u(1,Z) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

where
kR

Ha=
D

 is the Hatta number. Obtain semianalytical solutions

for this problem and plot the profiles for Ha = 0.1, 1, 2 and 10. (Hint: for

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 453

convenience, use t instead of Z so that the program given in the chapter
can be used directly). Solve this problem using Maple’s exponential
matrix and also using the code given for expediting the calculation of
exponential matrix. How much computation time is saved for N = 20
node points?Redo example 5.2 with the expedited code for the
exponential matrix. How much computation time is saved?

4. Redo example 5.4 with the expedited code for the exponential matrix.
How much computation time is saved?

5. Redo example 5.5 with the expedited code for the exponential matrix.
How much computation time is saved?

6. Redo example 5.6 with the expedited code for the exponential matrix.
How much computation time is saved?

7. Redo example 5.7 with the expedited code for the exponential matrix.
How much computation time is saved?

8. Consider cooling of spherical nuclear pellets.[9] The dimensionless
temperature distribution is governed by:

9.

2

2

u u 2 u
 = + + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

where Q is the ratio of heat generation to heat conduction and Bi is the
Biot number. Solve this problem for the set of parameters Q = 1, Bi =
0.2 and Q = 1, Bi = 10.

10. Consider the electrochemical discharge of a planar electrode (example 5.3)
again. After applying the finite differences, and eliminating the boundary
values, the coefficient matrix for the node points i = 1..N, A is singular
because of flux-boundary conditions at both the ends. One cannot use the
code given in the chapter for expediting the calculation of exponential
matrix because A is singular. The governing equations at the interior node
points are:

11.

1 2 1
2

1 2 32
2

N 1 N 2 N 1 N
2

N N 1 N
2

du 2 u u
 =

dt 3 h
u 2u udu

 =
dt h

.....

du u 2u u
 =

dt h
du u u2 2

 = -
dt 3 h 3 h

− − −

−

−

− +

− +

− δ

454 5 Method of Lines for Parabolic Partial Differential Equations

Multiplying the first and the last equation by 3/2 and adding up all the
equations we get:

[]
N-1

1 N i
i = 2

3
d u + u + u

2
= -

dt h

⎛ ⎞
⎜ ⎟ δ⎝ ⎠

∑

12. This differential equation can be integrated using the initial condition as:

13. []
N-1

1 N i
i = 2

3 t
u + u + u (N + 1) =

2 h

δ− −∑

This equation can be used to eliminate uN completely and we need to
solve only the following N –1 ODEs:

1 2 1
2

1 2 32
2

N-1

N 2 N 1 1 i
N 1 i = 2

2 2

du u u2
 =

dt 3 h
u 2u udu

 =
dt h

.....

t2
N 1 u 2u u u

du 2 h3
 = +

dt h 3 h

− −
−

−

− +

δ⎛ ⎞+ −− − − ⎜ ⎟
⎝ ⎠

∑

This is a system of N-1 first-order nonhomogeneous ODEs, which can be
solved as illustrated in section 5.1.3 (example 5.4). The resulting
coefficient matrix is non-singular and has distinct N-1 eigenvalues. The
exponential matrix can be obtained efficiently using the expedition-
procedure given in the section 5.1.7. Modify the program given in the
chapter to obtain semianalytical solutions. Plot the dimensionless
concentration profiles for δ = 1.

14. Consider dispersion of a linear kinematic wave in dimensionless
form.[14] The governing equation and boundary/initial conditions are:

15.

2

2

u u u
 = -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂

Obtain a semianalytical solution for this problem for Pe = 1, 10 and 50.
What is the computation time saved for Pe = 10 and 50? Hint: Maple’s
exponential matrix command may not work for this problem for all

5.1 Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 455

values of Pe and N. In addition, different finite difference approximations
might have to be used (see section 3.1.3).

16. Consider the fluid-flow problem:[12]

17.

2

2

u u 1 u
= + + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

Obtain the semianalytical solution and plot the dimensionless velocity
profiles.

18. Consider the Graetz problem discussed in example 5.6. The same
problem in planar geometry is:

2
2

2

u u
2Pe(1 x) =

z x

u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

Solve this problem and plot the profiles for different values of Peclet
number.

19. Consider heat conduction in a slab with radiation at both ends.[6] The
dimensionless governing equations and boundary/initial conditions are:

2

2

u u
 =

t x
u u

(0,t) + Hu(0,t) = 0 and (1, t) + Hu(1,t) = 0
x x

u(x,0) = 1

∂ ∂
∂ ∂

∂ ∂−
∂ ∂

where H is the dimensionless heat transfer coefficient. Obtain the
semianalytical solutions for H = 1 and plot the profiles.

20. Solve problem 20, chapter 7 using the semianalytical method.
21. Solve problem 18, chapter 8 using the semianalytical method.
22. Solve problem 19, chapter 8 using the semianalytical method.
23. Solve example 7.4 using the semianalytical method.

456 5 Method of Lines for Parabolic Partial Differential Equations

5.2 Numerical Method of Lines for Parabolic Partial
Differential Equations (PDEs)

5.2.1 Introduction

Transient heat conduction or mass transfer in solids with varying physical properties
(diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) with nonlinear
chemical reaction or heat source term is usually represented by a nonlinear parabolic
partial differential equation. The semianalytical or analytical method of lines
developed in chapter 5.1 cannot be used for nonlinear parabolic PDEs. In this
chapter, we describe how one can arrive at the numerical solution by applying
numerical method of lines for nonlinear parabolic PDEs by discretizing the spatial
derivatives using finite differences and integrating numerically using Maple’s
numerical IVP solver (Runge-Kutta, Gear and Rosenbrock solver).

5.2.2 Numerical Method of Lines for Parabolic PDEs with Linear
Boundary

Conditions

Consider a general nonlinear parabolic partial differential equation in dimensionless
form

2

0 1 22

u u u
 = a (x) + a (x) + a (x)u + f(u)

t x x

∂ ∂ ∂
∂ ∂ ∂

 (5.48)

with a known initial condition

u (x,0) = 1 (5.49)

and linear boundary conditions at both the boundaries:

1 1 1

u
u(0, t) (0, t) =

x

∂α + β γ
∂

 (5.50)

and

2 2 2

u
u(1, t) (1, t) =

x

∂α + β γ
∂

 (5.51)

where α1, β1, α2, and β2 are constants and γ1, and γ2 can be functions of time.
The numerical method of lines[1] [3] [4] [2] (Schiesser and Silebi, 1997; Cutlip

and Shacham, 1999; Taylor; 1999; Constantinides and Mostoufi, 1999) involves
converting the governing equation (equation (5.48)) to a system of coupled ODEs
in time by applying finite difference approximations for the spatial derivatives

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 457

(see chapter 5.1). The governing equation (equation (5.48)) can be converted to
finite difference form as follows:

 i i 1 i i 1 i 1 i 1
0 i 1 i 2 i i i2

du u 2u u u u
 = a (x) + a (x) + a (x)u + f(u)

dt h 2h
+ − + −− + −

 (5.52)

where i is the node number, N is the number of interior node points, and h is the
node spacing defined as

L
h =

N+1
 (5.53)

where L is the length of the domain of interest. Thus, x = 0 corresponds to the node
point i = 0, x = 1 corresponds to the node point i = N+1 and x = xi = ih is the value
of x at the node point i. The variable ui corresponds to the dependent variable at
node point i. Equation (5.53) is a system of N nonlinear coupled ODEs for N

dependent variables ()iu ,i=1..N . The boundary values 0 N+1u and u are

eliminated using the boundary conditions. The boundary conditions (equations
(5.50) and (5.51)) can be written in finite difference form as

0 1 2
1 0 1

3u + 4u + u
u + = 0

2h

−α β (5.54)

and

N+1 N N 1
2 N 1 2

3u 4u + u
u + = 0

2h
−

+
−α β (5.55)

Using the boundary conditions (equations (5.54) and (5.55)) the boundary values
u0 and uN+1 can be eliminated. Hence, the method of lines technique reduces the
nonlinear parabolic PDE (equation (5.48)) to a nonlinear system of N coupled first
order ODEs (equation (5.52)). This nonlinear system of ODEs is integrated
numerically in time using Maple’s numerical ODE solver (Runge-Kutta, Gear, and
Rosenbrock for stiff ODEs; see chapter 2.2.5). The procedure for using Maple to
solve nonlinear parabolic partial differential equations with linear boundary
conditions can be summarized as follows:

1. Start the Maple worksheet with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equation.
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1).
5. Enter the number of interior node points, N.
6. Enter the length of the domain, L.
7. Convert the governing equations to the finite difference form by using central

the difference expression accurate to the order h2 for the first and second
derivatives.

458 5 Method of Lines for Parabolic Partial Differential Equations

8. Convert the boundary conditions to the finite difference form by using the
3-point forward and backward differences (accurate to the order h2),
respectively, for bc1 and bc2.

9. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary conditions.
10. Store the finite difference equations in eqs.
11. Store the dependent variables, ui, i = 1..N in Y.
12. Store the initial conditions for the dependent variables in ICs.

Find the numerical solution using Maple’s ‘dsolve’ command. The syntax is:

1. “dsolve({eqs,ICs},{Y},type=numeric)”. Maple’s default numerical ODE
solver, Runge-Kutta method accurate to the order Δt6, is used in this chapter.

2. Once the numerical solution is obtained, plots can be made.

Example 5.2.1. Diffusion with Second Order Reaction

Consider diffusion in a slab with a second order reaction. The governing equation
in dimensionless form is (see example 5.1.5)

2
2 2

2

u u
 = u

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0

x

∂ ∂ − Φ
∂ ∂

∂
∂

 (5.56)

where Φ is the Thiele modulus. This equation is solved in Maple below using the
procedure described above.

> restart;

> with(linalg):with(plots):

Enter the governing equation:

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t)^2;

Enter the boundary conditions:

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),x);

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 459

Enter the initial condition:

> IC:=u(x,0)=0;

Enter the number of interior node points:

> N:=10;

> L:=1;

Enter the value of the parameters:

> Phi:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

Convert the boundary conditions to the finite difference form:

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

> eq[0]:=bc1;

460 5 Method of Lines for Parabolic Partial Differential Equations

> eq[N+1]:=bc2;

Convert the governing equations to the finite difference form:

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od;

The boundary values are eliminated using the boundary conditions:

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 461

> h:=L/(N+1);

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

> eqs:=seq((eq[j]),j=1..N);

> Y:=seq(u[i](t),i=1..N);

> ICs:=seq(u[i](0)=rhs(IC),i=1..N);

462 5 Method of Lines for Parabolic Partial Differential Equations

Solve the equations numerically and store the numerical solutions in U[i].

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure);

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t));

Plot the numerical solutions:

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..0.4,thickness=3);od:

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..0.4);

> display(pp,title="Figure 5.36",axes=boxed,thickness=4,labels=[t,"u"]);

Fig. 5.36

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 463

> tf:=0.4;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.37",
labels=[x,t,u],orientation=[-45,60]);

Fig. 5.37

>

464 5 Method of Lines for Parabolic Partial Differential Equations

Example 5.2.2. Variable Diffusivity

Consider diffusion in a slab in which the diffusion coefficient varies as a function
of concentration.[15] The governing equation in dimensionless form is

u u
 = (1+ u)

t x x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0

x

∂ ∂ ∂⎛ ⎞α⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
∂

 (5.57)

This equation (for α = 1) is solved below using the Maple program given for
example 5.2.1 by just modifying the governing equation:

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff((1+alpha*u(x,t))*diff(u(x,t),x),x);

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),x);

> IC:=u(x,0)=0;

> N:=10;

> L:=1;

> alpha:=1;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 465

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od;

466 5 Method of Lines for Parabolic Partial Differential Equations

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> h:=L/(N+1);

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 467

> eqs:=seq((eq[j]),j=1..N);

> Y:=seq(u[i](t),i=1..N);

> ICs:=seq(u[i](0)=rhs(IC),i=1..N);

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure);

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t));

468 5 Method of Lines for Parabolic Partial Differential Equations

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..1,thickness=3);od:

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..0.4);

> display(pp,axes=boxed,title="Figure 5.38",thickness=3,labels=[t,"u"]);

Fig. 5.38

> tf:=1.;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 469

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.39",
labels=[x,t,u],orientation=[-45,60]);

Fig. 5.39

5.2.3 Numerical Method of Lines for Parabolic PDEs with
Nonlinear Boundary

Conditions

When the boundary conditions are nonlinear, the procedure described in section 5.2.2
cannot be used because the boundary values cannot be eliminated because of the
nonlinear boundary conditions. This is handled by differentiating the finite
difference form of the boundary condition with respect to t. This yields two
additional nonlinear ODEs in time (see section 2.2.6 on DAEs), which are then
solved simultaneously with N nonlinear ODEs arising from the discretization of

470 5 Method of Lines for Parabolic Partial Differential Equations

the governing equation at N interior node points. This methodology is illustrated
in the next example.

Example 5.2.3. Nonlinear Radiation at the Surface

Consider heat transfer in a slab with a nonlinear fourth order radiation boundary
condition at the surface.[16] (Schiesser, 1991). The governing equation in
dimensionless form is

2

2

4

u u
 =

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 1-u(1,t)

x

∂ ∂
∂ ∂

∂
∂

 (5.58)

This equation is solved below using the Maple program given for example 5.2.1
by differentiating the boundary conditions:

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2);

> bc1:=u(x,t)-1;

> bc2:=diff(u(x,t),x)-1+(u(x,t))^4;

> IC:=u(x,0)=0;

> N:=4;

> L:=1;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 471

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

Differentiate the boundary conditions:
> eq[0]:=diff(bc1,t);

> eq[N+1]:=diff(bc2,t);

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),
u(x,t)=u[i](t),x=i*h,rhs(ge));od;

472 5 Method of Lines for Parabolic Partial Differential Equations

> h:=L/(N+1);

> for i from 0 to N+1 do eq[i]:=eval(eq[i]);od;

> eqs:=seq((eq[j]),j=0..N+1);

Enter the initial conditions separately for the boundary values consistent with the
boundary conditions:

> Y:=seq(u[i](t),i=0..N+1);

> ICs:=u0=1,seq(u[i](0)=rhs(IC),i=1..N),u[N+1](0)=0;

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure);

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 473

> for i from 0 to N+1 do U[i]:=subs(sol,u[i](t));od:

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..1);

> display(pp,axes=boxed,title="Figure 5.40",thickness=4,labels=[t,"u"]);

Fig. 5.40

> tf:=.2;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

474 5 Method of Lines for Parabolic Partial Differential Equations

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.41",
labels=[x,t,u],orientation=[-90,90]);

Fig. 5.41

Accuracy can be increased by increasing the number of node points.

5.2.4 Numerical Method of Lines for Stiff Nonlinear PDEs

Stiff nonlinear PDEs cannot be solved using the Runge-Kutta subroutine (see
chapter 2.2.5). Maple’s stiff solver can be used to solve stiff nonlinear PDEs
efficiently.

Example 5.2.4. Exothermal Reaction in a Sphere

Consider heat transfer in a slab with a nonlinear fourth order radiation boundary
condition at the surface.[16] (Schiesser, 1991) The governing equation in
dimensionless form is

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 475

2

2

u u 2 u E
 = + exp

t x x x R(u+273.16)

u(x,0) = 25

u
(0,t) = 0 and u(1,t) = 158

x

⎛ ⎞∂ ∂ ∂+ β −⎜ ⎟∂ ∂ ∂ ⎝ ⎠

∂
∂

 (5.59)

where E = 30800, R = 1.987 and β the ratio of reaction rate to diffusion rate is
6.699x1017. This equation is solved below using the Maple program given for
example 5.2.1 and by calling the stiff solver:

> restart;

> with(linalg):with(plots):

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x)+
beta*exp(-E/R/(u(x,t)+273.16));;

> bc1:=diff(u(x,t),x);;

> bc2:=u(x,t)-158;

> IC:=u(x,0)=25;

> N:=10;

> L:=1;

476 5 Method of Lines for Parabolic Partial Differential Equations

> beta:=6.699e17;E:=30800;R:=1.987;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=i*h,rhs(ge));od:

> u[0](t):=(solve(eq[0],u[0](t)));

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 477

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

> h:=L/(N+1);

> for i from 1 to N do eq[i]:=eval(eq[i]);od:

> eqs:=seq((eq[j]),j=1..N):

> Y:=seq(u[i](t),i=1..N);

> ICs:=seq(u[i](0)=rhs(IC),i=1..N);

Maple's stiff solver (Rosenbrock algorithm) is used by setting the option stiff =
true:

> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,output=listprocedure);

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t));

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..0.4,thickness=3);od:

> display({seq(p[i],i=0..N+1)},axes=boxed,title="Figure 5.42",labels=[t,"u"]);

478 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.42

> tf:=0.3784;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.43",
labels=[x,t,u],orientation=[-45,60]);

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 479

Fig. 5.43

The center of the sphere explodes after t = 0.3784 and the numerical calculations
stop:

> plot(U[0](t),t=0..1,thickness=3,title="Figure 5.44",axes=boxed,
labels=[t,"u[0]"]);

Fig. 5.44

480 5 Method of Lines for Parabolic Partial Differential Equations

A plot of u versus x is made. The temperature inside the sphere is less than the
surface temperature of 158 0C. Because of the exothermal reaction, the temperature
inside the sphere increases after t=0.36 and the process becomes unstable.

> px[0]:=plot([seq([i*h,subs(x=i*h,rhs(IC))],i=0..N+1)],thickness=3):

> for j from 2 to M+1 do
px[j]:=plot([seq([i*h,U[i](T1[j])],i=0..N+1)],thickness=3):od:;

> display({seq(px[j*2],j=0..(M+1)/2)},title="Figure 5.45",axes=boxed,
labels=[x,u]);

Fig. 5.45

5.2.5 Numerical Method of Lines for Nonlinear Coupled PDEs

The procedure developed for a single nonlinear PDE can be extended to solve
coupled PDEs. Numerical method of lines provides an efficient way to solve
nonlinear coupled PDEs.

Example 5.2.5. Two Coupled PDEs

Consider the following highly coupled nonlinear PDEs[16]

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 481

()

()

2
2

2

u u
 = (v 1) + 16xt -2t -16(v-1) (u 1) +10xexp(-4x)

t x x

v v u
 = + + 4(u-1) + x - 2t -10texp(-4x)

t x x

u(x,0) = v(x,0) = 1

u(0,t) = v(0,t) = 1

u
(1, t) + 3 u(1,t)-1 = 0

x

v
5 (1, t) - exp(4) u(1

x

∂ ∂ ∂⎛ ⎞− −⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂ ∂
∂ ∂ ∂

∂
∂

∂
∂

(),t)-1 0=

(5.60)

Equation (5.59) is chosen for illustration, because these equations are highly
nonlinear, coupled, and also have an analytical solution:

u = 1 + 10xt exp(-4x) and v = 1 + x2t (5.61)

Equation (5.59) is solved using the general procedure for nonlinear-coupled PDEs
given below:

1. Start the Maple worksheet with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equations (ge[1] and ge[2]).
4. Store the boundary conditions in bc1[1]; bc1[2] (x = 0) and bc2[1]; bc2[2] (x = 1).
5. Enter the number of interior node points, N.
6. Enter the length of the domain, L.
7. Convert the governing equations to the finite difference form by using a

central difference expression accurate to the order h2 for the first and second
derivatives.

8. u[i,1], i = 0..N+1 corresponds to the first dependent variable u and u[i,2]
corresponds to the a, second dependent variable, v.

9. Convert the boundary conditions to the finite difference form by using the
3-point forward and backward differences (accurate to the order h2).

10. If the boundary conditions are linear, eliminate the boundary values using the
boundary conditions and solve the equations as in section 5.2.2.

482 5 Method of Lines for Parabolic Partial Differential Equations

11. If the boundary conditions are nonlinear, differentiate the finite difference
form of the boundary conditions and solve the equations as in section 5.2.3.

12. Once the numerical solution is obtained, plots can be made.

Equation (5.59) is solved in Maple below using this procedure:

> restart;

> with(linalg):with(plots):

Enter the governing equations:

> ge[1]:=diff(u[1](x,t),t)=diff((u[2](x,t)-1)*diff(u[1](x,t),x),x)+
(16*x*t-2*t-16*(u[2](x,t)-1))*(u[1](x,t)-1)+10*x*exp(-4*x);

> ge[2]:=diff(u[2](x,t),t)=diff(u[2](x,t),x$2)+diff(u[1](x,t),x)+
4*(u[1](x,t)-1)+x^2-2*t-10*t*exp(-4*x);

Enter the boundary conditions at x = 0:

> bc1[1]:=u[1](x,t)-1;

> bc1[2]:=u[2](x,t)-1;

Enter the boundary conditions at x = 1:

> bc2[1]:=3*u[1](x,t)+diff(u[1](x,t),x)-3;

> bc2[2]:=5*diff(u[2](x,t),x)-evalf(exp(4))*(u[1](x,t)-1);

Enter the initial conditions:
> IC[1]:=u[1](x,0)=1;

> IC[2]:=u[2](x,0)=1;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 483

Enter the number of governing equations:

> NN:=2;

> N:=2;

> L:=1;

Develop finite difference expressions for the first and second derivatives for the
given two dependent dependent variables:

> for i to NN do

> dydxf[i]:=1/2*(-u[2,i](t)-3*u[0,i](t)+4*u[1,i](t))/h;

> dydxb[i]:=1/2*(u[N-1,i](t)+3*u[N+1,i](t)-4*u[N,i](t))/h;

> dydx[i]:=1/2/h*(u[m+1,i](t)-u[m-1,i](t));

> d2ydx2[i]:=1/h^2*(u[m-1,i](t)-2*u[m,i](t)+u[m+1,i](t));od;

484 5 Method of Lines for Parabolic Partial Differential Equations

Convert the boundary conditions to the finite difference form:

> for i to NN do bc1[i]:=subs(diff(u[1](x,t),x)=dydxf[1],
diff(u[2](x,t),x)=dydxf[2],u[1](x,t)

=u[0,1](t),u[2](x,t)=u[0,2](t),x=0,bc1[i]);od;

> for i to NN do bc2[i]:=subs(diff(u[1](x,t),x)=dydxb[1],
diff(u[2](x,t),x)=dydxb[2],u[1](x,t)

=u[N+1,1](t),u[2](x,t)=u[N+1,2](t),x=L,bc2[i]);od;

> for i to NN do eq[0,i]:=bc1[i];eq[N+1,i]:=bc2[i];od;

Convert the first governing equation to the finite difference form:

> for i from 1 to N do eq[i,1]:=diff(u[i,1](t),t)= subs(diff(u[1](x,t),x$2) =
subs(m=i,d2ydx2[1]),

diff(u[2](x,t),x$2) = subs(m=i,d2ydx2[2]),diff(u[1](x,t),x) =
subs(m=i,dydx[1]),diff(u[2](x,t),x) = subs(m=i,dydx[2]),u[1](x,t)=u[i,1](t),
u[2](x,t)=u[i,2](t),x=i*h,rhs(ge[1]));od;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 485

Convert the second governing equation to the finite difference form:

> for i from 1 to N do eq[i,2]:=diff(u[i,2](t),t)= subs(diff(u[1](x,t),x$2) =
subs(m=i,d2ydx2[1]),

diff(u[2](x,t),x$2) = subs(m=i,d2ydx2[2]),diff(u[1](x,t),x) =
subs(m=i,dydx[1]),diff(u[2](x,t),x) = subs(m=i,dydx[2]),u[1](x,t)=u[i,1](t),
u[2](x,t)=u[i,2](t),x=i*h,rhs(ge[2]));od;

> for i to NN do u[0,i](t):=(solve(eq[0,i],u[0,i](t)));od;

Eliminate the boundary values:

> for i to NN do u[N+1,i](t):=(solve(eq[N+1,i],u[N+1,i](t)));od;

> h:=L/(N+1);

> for i from 1 to N do eq[i,1]:=eval(eq[i,1]);od;

486 5 Method of Lines for Parabolic Partial Differential Equations

> for i from 1 to N do eq[i,2]:=eval(eq[i,2]);od;

Store the governing equations in eqs:

> eqs:=seq(seq((eq[i,j]),i=1..N),j=1..NN);

Store the dependent variables in Y:

> Y:=seq(seq(u[i,j](t),i=1..N),j=1..NN);

Store the initial conditions in ICs:

> ICs:=seq(u[i,1](0)=rhs(IC[1]),i=1..N),seq(u[i,2](0)=rhs(IC[2]),i=1..N);

> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,maxfun=1000000,
abserr=1e-6,relerr=1e-5,output=listprocedure);

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 487

> for j to NN do for i to N do U[i,j]:=subs(sol,u[i,j](t));od:od;

> for i to NN do U[0,i]:=subs(u[1,1](t)=U[1,1],u[1,2](t)=U[1,2],
u[2,1](t)=U[2,1],u[2,2](t)=U[2,2],u[0,i](t));od;

> for i to NN do U[N+1,i]:=eval(subs(u[N,1](t)=U[N,1],u[N,2](t)=U[N,2],
u[N-1,1](t)=U[N-1,1],u[N-1,2](t)=U[N-1,2],u[N+1,i](t)));od;

The numerical solution obtained is compared with the exact analytical solution at
x = 1:

> ua:=1+10*x*t*exp(-4*x);

> va:=1+x^2*t;

> U[N+1,1](1);evalf(subs(x=1.,t=1.,ua));

1.169488249
1.183156389

> evalf(U[N+1,2](1));evalf(subs(x=1.,t=1.,va));

1.961089198

> U[N+1,1](2);evalf(subs(x=1.,t=2.,ua));

1.341573468
1.366312778

> evalf(U[N+1,2](2));evalf(subs(x=1.,t=2.,va));

2.920892289

488 5 Method of Lines for Parabolic Partial Differential Equations

We obtain reasonable results even with N=2 node points.

> tf:=1.;

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC[1])));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1,1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.46",
labels=[x,t,"u"],orientation=[-45,60]);

Fig. 5.46

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 489

> plot3d(ua,x=0..1,t=0..1,axes=boxed,title="Figure 5.47",
labels=[x,t,"ua"],orientation=[-45,60]);

Fig. 5.47

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC[2])));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1,2](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.48",
labels=[x,t,"v"],orientation=[-45,60]);

490 5 Method of Lines for Parabolic Partial Differential Equations

Fig. 5.48

> plot3d(va,x=0..1,t=0..1,labels=[x,t,"va"],axes=boxed,title="Figure 5.49",
orientation=[-45,60]);

Fig. 5.49

>

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 491

The accuracy can be increased by increasing the number of interior node points.
The results obtained with N = 10 are:

> U[N+1,1](1);evalf(subs(x=1.,t=1.,ua));

1.180862704
1.183156389

> evalf(U[N+1,2](1));evalf(subs(x=1.,t=1.,va));

1.989643591
2.

> U[N+1,1](2);evalf(subs(x=1.,t=2.,ua));

1.362175566
1.366312778

> evalf(U[N+1,2](2));evalf(subs(x=1.,t=2.,va));

2.978132652

 3.

5.2.6 Numerical Method of Lines for Moving Boundary Problems

The procedure developed for nonlinear PDEs can be extended to solve PDEs with
moving boundaries. Analytical solutions for moving problems are restricted to
linear models and pseudo-steady state solutions. The numerical method of lines
provides an efficient way to solve nonlinear PDEs with moving boundaries.

Example 5.2.6. The Shrinking Core Model for Catalyst Regeneration

Catalyst regeneration in a spherical particle (burning coal particle) can be represented
by the following dimensionless equations[17]

2

2

c

u u 2 u
 = +

t x x x

u(x,0) = 0

u(x ,t) = 0

u(1,t) = 1

∂ ∂ ∂
∂ ∂ ∂

 (5.62)

492 5 Method of Lines for Parabolic Partial Differential Equations

where xc, the dimensionless shrinking core is governed by the flux at the shrinking
interface:

c

c

x = x

c

A0

dx u
 = -k

dt x

x (0) = 1

c
 k =

∂
∂

ρφ

 (5.63)

where cA0 is the dimensional concentration at the surface of the particle
(moles/m3), ρ is the molar density (moles/m3) and φ is the volume fraction
(dimensionless). In equation (5.61) t is the dimensionless time, x is the
dimensionless distance and at any particular time t, varies from xc to 1. Even
though equation (5.61) is linear, the finite difference form of the equation (5.61)
involves node space h, which varies as a function of time as:

c1 - x
h =

N 1+
 (5.64)

Since h changes as a function of time (t), the finite difference form of equation
(5.18) (5.61) becomes nonlinear. Equation (5.61) is solved in Maple below using
the program developed for example 5.2.1 by solving the finite difference form of
the moving boundary equation (equation (5.62) simultaneously with the governing
equations for the concentration profiles:

> restart;

> with(linalg):with(plots):

Enter the governing equation for the dimensionless concentration with the
boundary and initial conditions:

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x);

> bc1:=u(x,t)-0;

> bc2:=u(x,t)-1;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 493

> IC:=u(x,0)=0;

Enter the governing equation for the shrinking interface:

> ge2:=diff(xc[1](t),t)=-k*diff(u(x,t),x);

Note that xc(t) is entered as xc[1](t) as Maple cannot handle a nonindexed variable
xc with an indexed entrey u[i](t). Enter the parameter values:

> k:=0.1;

> N:=10;

> L:=1;

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h;

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t));

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),bc1);

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),bc2);

494 5 Method of Lines for Parabolic Partial Differential Equations

Convert the moving boundary equation to the finite difference form:

> eqX:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),ge2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),
x=xc[1](t)+i*h,rhs(ge));od;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 495

> u[0](t):=(solve(eq[0],u[0](t)));

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

The node spacing varies as a function time as:

> h:=(1-xc[1](t))/(N+1);

> for i from 1 to N do eq[i]:=eval(eq[i]);od;

496 5 Method of Lines for Parabolic Partial Differential Equations

Now eqX is solved simultaneously with the finite difference governing equations
(eq[i], i = 1.N)

> eqX:=eval(eqX);

> eqs:=seq((eq[j]),j=1..N),eqX;

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 497

> Y:=seq(u[i](t),i=1..N),xc[1](t);

The initial condition for xc[1](T) is taken to be 0.999999 instead of 1 to avoid
singularity in the governeing equations:

> ICs:=seq(u[i](0)=rhs(IC),i=1..N),xc[1](0)=0.999999;

> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,abserr=1e-20,
stop_cond=[u[2](t)-1,xc[1](t)],output=listprocedure);

Maple’s stop condition is used to halt the computation when u[2](t) becomes 1 or
xc[1](t) becomes zero.

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t));

> Xc:=subs(sol,xc[1](t));

498 5 Method of Lines for Parabolic Partial Differential Equations

> sol(2.);

Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated
Warning, cannot evaluate the solution further right of 1.8213372, stop
condition #2 violated

Stop condition 2 has been violated which means that the shrinking interface xc has
shrunk to zero.

> tf:=1.8213373*0.99;

The shrinking interace is plotted as a function of time as:

> plot(Xc(t),t=0..tf,axes=boxed,title="Figure 5.50",
thickness=3,labels=[t,"xc"]);

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 499

Fig. 5.50

Concentration profiles are plotted below:

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..tf);

> display(pp,axes=boxed,title="Figure 5.51",thickness=3,labels=[t,"u"]);

Fig. 5.51

500 5 Method of Lines for Parabolic Partial Differential Equations

> h:=subs(xc[1]=Xc,h);

> for j from 0 to 20 do
p[j]:=plot([seq([evalf(subs(t=tf*j/20,Xc(t)+i*h)),evalf(subs(t=tf*j/20,

U[i](t)))],i=0..N+1)]):od:

> display({seq(p[j],j=0..20)},thickness=4,axes=boxed,title="Figure 5.52",
labels=[x,"u"]);

Fig. 5.52

> M:=30;

> T1:=[seq(tf*i/M,i=0..M)];

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 501

> PP:=matrix(N+2,M+1);

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*L/(N+1),rhs(IC)));od:

> for i from 1 to N+2 do for j from 1 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([eval(subs(t=T1[j],Xc(t)+(i-1)*h)),T1[j],PP[i,j]],
i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Figure 5.53",
labels=[x,t,u],orientation=[-90,0]);

Fig. 5.53

The preceding figure shows how the radius of the particles shrinks with time.

5.2.7 Summary

In this chapter nonlinear parabolic PDEs were solved numerically using numerical
method of lines. In section 5.2.2, the given nonlinear parabolic PDE with linear
boundary conditions was converted to a system of nonlinear ODEs in time by
applying finite differences in the spatial direction. The resulting system of
nonlinear ODEs was then integrated numerically in time using Maple’s ‘dsolve’
command. This methodology solves the dependent variables at different node
points numerically in time. This is a powerful technique and is valid for all
parabolic PDEs. This technique was then extended to parabolic PDEs with
nonlinear boundary conditions in section 5.2.3 by differentiating the finite
difference form of the boundary conditions. The numerical method of lines

502 5 Method of Lines for Parabolic Partial Differential Equations

developed in this chapter is a powerful technique capable of handling most of the
parabolic PDEs in the literature.

In section 5.2.4, a stiff nonlinear PDE was solved using numerical method of
lines. This stiff problem was handled by calling Maple’s stiff solver. The
temperature explodes after a certain time. The numerical method of lines (NMOL)
technique was then extended to coupled nonlinear parabolic PDEs in section 5.2.5.
By comparing with the analytical solution, we observed that NMOL predicts the
behavior accurately.

In section 5.2.6, NMOL was extended to moving boundary problems. For
moving boundary problems, the length of the domain changes with time. The
finite difference equations for the PDEs were solved simultaneously with the
governing equation for the moving boundary. For this purpose, the moving
boundary equation is converted to finite difference form. NMOL can be used
solve the moving boundary problem accurately and efficiently. A total of six
examples were solved in this chapter.

5.2.8 Exercise Problems
1. Complete the details missing in example 5.2.2.
2. Consider chapter 5.1, exercise problem 9.

2

2

u u u
 = -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂

Solve this linear problem using numerical method of lines for Pe = 1, 10.
How many node points are needed for obtaining three digits accuracy if
average concentration at t = 1 is used to verify convergence?

3. Consider the Graetz problem discussed in example 5.6. Solve this
problem using numerical method of lines for Pe = 1, 10 and 20.

4. Consider the Graetz problem discussed in problem 11 of chapter 5.1.
Solve this problem using numerical method of lines for Pe = 1, 10 and 20.

Material and energy balances for a spherical catalyst can be written
as:[12] (Davis, 1984)

2
2

2

2
2

2

u u 2 u 1
 = - u exp 1

t x x x

2 1
Le = u exp 1

t x x x

u(x,0) = 0; (x,0) = 1

u
(0,t) = (0,t) = 0

x x
u(1,t) = (1,t) = 1

⎛ ⎞∂ ∂ ∂ ⎡ ⎤⎛ ⎞+ Φ γ −⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ θ⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞∂θ ∂ θ ∂θ ⎡ ⎤⎛ ⎞+ + βΦ γ −⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ θ⎝ ⎠⎣ ⎦⎝ ⎠

θ
∂ ∂θ
∂ ∂

θ

5.2 Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 503

where u is the dimensionless concentration and θ is the dimensionless
temperature. Values of the parameters are Φ = 1, γ = 18, β = 0.04. Le is
the ratio of molecular diffusivity to thermal diffusivity. Solve these
equations and plot the profiles using numerical method of lines for Le= 1
and Le = 10.

5. Consider adsorption in a pore[12]. (Davis, 1984) The dimensionless
concentration u and the fraction of coverage, f are governed by:

()

()

2

a d2

a d

u u
 = - k 1 f u - k f

t x
f

 = k 1 f u - k f
t

u(x,0) = 0; f (x,0) = 1

u(0,t) = 1

u
(1,t) =0

x

∂ ∂ −⎡ ⎤⎣ ⎦∂ ∂
∂ −⎡ ⎤⎣ ⎦∂

∂
∂

Equation for f as the boundary conditions for f at x = 0 and x = 1.
6. Consider Burger’s equation in one-dimension: [18] [1]

2

2

u u u
 = -u

t x x
1 1

u(0,t) = ; u(1,t) =
t 1 t

1 + exp 1 + exp
4 2 4

1
u(x,0) =

x
1 + exp

2

∂ ∂ ∂μ
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟μ μ μ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟μ⎝ ⎠

Solve this problem using numerical method of lines and compare with

the exact solution
1

ua =
x t

1 + exp
2 4

⎛ ⎞−⎜ ⎟μ μ⎝ ⎠

 [18](Byrne and

Hinmarsh, 1987) for μ = 1 and μ = 0.1.
7. Redo problem 7 for the boundary and initial conditions given in problem 2.
8. Solve problem 20, chapter 7 using numerical method of lines.
9. Solve problem 18, chapter 8 using numerical method of lines.
10. Solve problem 19, chapter 8 using numerical method of lines.
11. Consider the transient version of multiple steady state problem discussed

in example 3.2.2:

504 5 Method of Lines for Parabolic Partial Differential Equations

2
2

2

u u γβ(1-u)
 = - u exp

t x 1+β(1 u)

u
(0,t) = 0 and u(1,t) = 1

x

⎛ ⎞∂ ∂ Φ ⎜ ⎟∂ ∂ −⎝ ⎠
∂
∂

In chapter 3.2 we obtained multiple steady states (three states) for this
problem for the values of the parameters Φ = 0.2, β = 0.8 and γ = 20. Solve
this transient problem using numerical method of lines for two different
initial conditions u(x,0) = 1 and u(x,0) = 0? What do you observe? Can you
obtain all the three steady states discussed in example 3.2.2

12. Consider the shrinking core problem discussed in example 5.2.6. Redo
this problem if the particle is rectangular instead of spherical. The
governing equations are:

c

2

2

c

c

x = x

c

A0

u u
 =

t x
u(x,0) = 0; u(x ,t) = 0

u(1,t) = 1

dx u
 = -k

dt x

x (0) = 1

c
 k =

∂ ∂
∂ ∂

∂
∂

ρφ

13. Redo problem 13, if the particle is cylindrical instead of rectangular.

14. Metal hydride electrodes involve change or shrinking of phases during
discharge. Diffusion of hydrogen atoms inside a metal hydride particle
can be modeled in dimensionless form:[19]

c

2

2

0 c

c

x = x0

c

u u 2 u
 = +

t x x x
u(x,0) = u ; u(x ,t) = 1

u
(1,t) = -

x
dx 1 u

 =
dt u - 1 x

x (0) = 1

∂ ∂ ∂
∂ ∂ ∂

∂ δ
∂

∂
∂

References 505

where δ is the dimensionless current density and u0 is the dimensionless
initial concentration. Solve this problem for the parameters δ = 0.1 and
u0 = 9.

References

1. Schiesser, W.E., Silebi, C.A.: Dynamic Modeling of Transport Process Systems (1997)
2. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with

MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)
3. Cutlip, M.B., Shacham, M.: Problem Solving in Chemical Engineering with Numerical

Methods. Prentice Hall PTR, Englewood Cliffs (1999)
4. Taylor, R.: Engineering Computing with Maple: Solution of PDEs via the Method of

Lines. CACHE News, 49 (Fall 1999)
5. Subramanian, V.R., White, R.E.: Solving Differential Equations with Maple. Chemical

Engineering Education, 328–336 (Fall 2000)
6. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,

Oxford (1972)
7. Amundson, N.R.: Mathematical Methods in Chemical Engineering: Matrices and Their

Applications. Prentice Hall, Inc., Englewood Cliffs (1966)
8. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley & Sons, Chichester

(1993)
9. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.

John Wiley & Sons, Inc., Chichester (1995)
10. Crank, J.: The Mathematics of Diffusion, 2nd edn. Oxford University Press, Oxford

(1979)
11. Riggs, J.B.: An Introduction to Numerical Methods for Chemical Engineers. Texas

Tech University Press (1988)
12. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley

& Sons, Chichester (1984)
13. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford

University Press, Inc., Oxford (1997)
14. Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic

Press, London (1999)
15. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New

York (1980)
16. Schiesser, W.E.: The Numerical Methods of Lines. Academic Press, Inc., New York

(1991)
17. Fogler, H.S.: Elements of Chemical Reaction Engineering, 3rd edn. Prentice Hall,

Englewood Cliffs (1998)
18. Byrne, G.D., Hindmarsh, A.C.: Stiff ODE Solvers: A Review of Current and Coming

Attractions. Journal of Computational Physics 70(1), 1–62 (1987)
19. Subramanian, V.R., Ploehn, H.J., White, R.E.: Shrinking Core Model for the

Discharge of a Metal Hydride Electrode. Journal of the Electrochemical Society 147,
2868–2873 (2000)

Chapter 6

Method of Lines for Elliptic Partial Differential
Equations

6.1 Semianalytical and Numerical Method of Lines for Elliptic
PDEs

6.1.1 Introduction

Steady state mass or heat transfer in solids and current distribution in
electrochemical systems involve solving elliptic partial differential equations. The
method of lines has not been used for elliptic partial differential equations to our
knowledge. Schiesser and Silebi (1997)[1] added a time derivative to the steady
state elliptic partial differential equation and applied finite differences in both x
and y directions and then arrived at the steady state solution by waiting for the
process to reach steady state.[2] When finite differences are applied only in the x
direction, we arrive at a system of second order ordinary differential equations in
y. Unfortunately, this is a coupled system of boundary value problems in y
(boundary conditions defined at y = 0 and y = 1) and, hence, initial value problem
solvers cannot be used to solve these boundary value problems directly. In this
chapter, we introduce two methods to solve this system of boundary value
problems. Both linear and nonlinear elliptic partial differential equations will be
discussed in this chapter. We will present semianalytical solutions for linear
elliptic partial differential equations and numerical solutions for nonlinear elliptic
partial differential equations based on method of lines.

6.1.2 Semianalytical Method for Elliptic PDEs in Rectangular
Coordinates

Steady state heat conduction or mass transfer in solids with constant physical
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is
usually represented by a linear elliptic partial differential equation. For linear
parabolic partial differential equations, finite differences can be used to convert to
any given partial differential equation to system of linear first order ordinary
differential equations in time. In chapter 5.1, we showed how an exponential
matrix method [3] [4] [5] could be used to integrate these simultaneous equations

508 6 Method of Lines for Elliptic Partial Differential Equations

analytically in time. This exponential matrix method is extended to solve elliptic
equations in this chapter (Subramanian & White, 2000).[6] This method involves
applying finite differences in the x direction and analytically integrating in y. The
dependent variable and its derivative are solved simultaneously. The unknown
initial condition for either the variable or its derivative is found by using the
boundary condition at the second boundary (e.g., y = 1). An important aspect of
our technique is that the solution obtained is semianalytical (analytical in y, finite
differences in x). A useful aspect of our technique is that the solution obtained is
valid for both nonlinear and linear boundary conditions at y = 0 and y = 1.

In this chapter, we describe how one can arrive at the semianalytical solutions
(solutions are analytical in the y variable and numerical in the spatial dimension)
for linear elliptic partial differential equations using Maple and the matrix
exponential method.

Example 6.1. Heat Transfer in a Rectangle

The methodology is illustrated using a Laplace equation for heat transfer in a
rectangle[7] [8] using length L and height H. The governing equation for the
temperature in dimensionless form can be written as[8]

2 2
2

2 2

u u
+ = 0

x y

∂ ∂ε
∂ ∂

 (6.1)

where ε = H/L is the aspect ratio. For simplicity, the following boundary
conditions are considered

u(0,y) = 0 for 0 y 1 ≤ ≤ (6.2)

u(1,y) = 0 for 0 y 1≤ ≤ (6.3)

u(x,0) = 0 for 0 x 1≤ ≤ (6.4)

and

u(x,1) = 1 for 0 x 1≤ ≤ (6.5)

Now finite differences are used to replace
2

2

x

∂
∂

in equation 6.1 to give

2
2i i 1 i i-1

2 2

d u u - 2u + u
 = i = 1..N

dy h
+− ε (6.6)

where N is the number of interior node points used in discretization and h =
1/(N+1) is the node spacing. Note that a central difference accurate to the order of
h2 is used in equation 6.1. Note that ui denotes the temperature at point i on the
line at x = ih. The boundary conditions at x = 0 and x = 1 (equations (6.2) and
(6.3) are transformed as

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 509

0u = 0 (6.7)

N+1u = 0 (6.8)

The boundary conditions in y are transformed as

iu (y 0) = 0 i = 1..N= (6.9)

iu (y 1) = 1 i = 1..N= (6.10)

For convenience, let
y

 =
h

εζ . This converts the governing equation (equation 6.6)

and boundary conditions (equations (6.7) − (6.10)) to

2
i

i 1 i i-12

0

N+1

i

i

d u
= -u + 2u -u i = 1..N

d

u = 0

u = 0

u (0) = 0 i = 1.. N

u () = 1 i = 1..N
h

+ζ

ζ =
εζ =

 (6.11)

In equation (6.11), there are N second order equations. These are converted to 2N
first order equations as follows (Subramanian & White, 2000b;[9] Rice and Do,
1995;[10] see chapter 2.1.2):

i
N+1+i

N 1 i
i 1 i i-1

du
 = u i = 1..N

d

du
= -u + 2u - u i = 1..N

d
+ +

+

ζ

ζ

 (6.12)

with u0 = 0 and uN+1 = 0. The initial conditions for these 2N differential equations
are

iu (0) = 0 i = 1..Nζ = (6.13)

and

N+1+i iu (0) = c i = 1..Nζ = (6.14)

In equation (6.14), the unknown constants ci, i = 1..N are found after integrating
the equations in (6.12) and by using the boundary conditions at y = 1.

510 6 Method of Lines for Elliptic Partial Differential Equations

iu () = 1
h

εζ = (6.15)

Equation (6.12) is a system of 2N linear first order differential equations and can
be written in matrix form as

d
= + (x)

dζ
Y

AY b (6.16)

where

[]T

1 2 N N+2 N 3 2N 1 = u ,u ,..u ,u ,u ,..u+ +Y (6.17)

and A is the 2N x 2N coefficient matrix defined by

 =
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I
A

a 0
 (6.18)

where 0 is the zero matrix of order N x N, I is the identity matrix of order N x N
and a is a N x N matrix given by

2 -1 0 0 0 ... 0

-1 2 -1 0 0 ... 0

0 -1 2 -1 0 ... 0

 =

0 ... 0 -1 2 -1 0

0 ... 0 0 -1 2 -1

0 ... 0 0 0 -1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a (6.19)

The constant vector b(ζ) is a column vector of order 2N x 1. Equation (6.16) can be
integrated analytically by finding the exponential matrix [3] [4] [5] (Subramanian &
White, 2000a; Varma & Morbidelli, 1997; Taylor & Krishna, 1993; Amundson,
1966)

0

0

exp() + exp[()] () d
ζ

= ζ ζ − λ λ λ∫Y A Y A b (6.20)

where λ is a dummy variable. For the example chosen, both u0 and uN+1 are zero
and, hence, the forcing function b (ζ) is a 2N x 1 zero vector. However, if the
boundary conditions are functions of y in equations 6.2 and 6.3, then b(ζ) is a
function of ζ and the integral in equation (6.20) has to be evaluated. We call this a
semianalytical solution since the solution obtained is analytical in ζ (or y). In our
previous publication, the exponential matrix was found as a function of y.

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 511

However, since the a matrix has the elements –2/h2 and 1/h2 compared to the
identity matrix I in equation 6.18, the resultant A matrix becomes unstable and the
ratio of the largest eigenvalue to the smallest eigenvalue becomes very large for
some cases.

The procedure involved in solving a linear steady state elliptic PDE is
summarized as follows:

1. Start the Maple worksheet with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equation.
4. Store the ‘x’ boundary conditions in bc1 (x = 0) and bc2 (x = 1).
5. Store the ‘y’ boundary conditions in bc3 (y = 0) and bc4 (y = 1).
6. Enter the number of interior node points, N.
7. Enter the length of the domain, L.
8. Transform the elliptic PDE from ‘y’ coordinate to ‘ζ’ coordinate using the

variable transformation ζ = yε/h.
9. Convert the boundary conditions in x (bc1, and bc2) to finite difference form

by using 3-point forward and backward differences (accurate to the order
h2), respectively, for bc1 and bc2.

10. Convert the governing equation to finite difference form by using central
difference expression accurate to the order h2 for the first and second
derivatives in the spatial variable, x (equation (6.11)). This gives raise to N
second order linear ODEs in ζ. This system of second order equations is
converted to 2N first order linear ODEs in ζ as described in equation (6.12).

11. The variable ui(ζ), i = 0..N+1 corresponds to the dependent variable, ui at
node point i.

12. The variable uN+1+i(ζ), i = 1..N corresponds to the derivative of the

dependent variable, idu

dζ
at node point i.

13. Eliminate the boundary values (u0(ζ) and uN+1(ζ)) using the boundary
conditions.

14. Store the right hand side of the finite difference equations in eqs.
15. Store the dependent variables, ui, i = 1..N, I = N+2..2N+1 in Y.
16. Generate A matrix using Maple’s ‘genmatrix’ command. Find the

exponential matrix using the expedited matrix procedure given in chapter 5.
(Note that this can be done only if the eigenvalues are distinct and nonzero).

17. Find the solution by adding the non-homogeneous part according to
equation 6.20. The first N rows of Y vector correspond to the dependent
variable ui(ζ) and the second N rows of Y vector correspond to the

derivative idu

dζ
 at node point i.

18. Take initial condition as Y0 = g21

512 6 Method of Lines for Elliptic Partial Differential Equations

19. gT. There are 2N dependent variables and hence 2N unknown constants
(initial conditions). These constants are found out using the boundary
conditions in y (bc3 and bc4). Note that in example 6.1 the dependent
variable is known at y = ζ = 0 is known and hence the constants p1,p2,..pN
are known before hand. However, the boundary condition at y = 0 may be
of mixed type.

20. Once the constants are solved, the solution obtained is converted to ‘y’
variable and the plots are made.

Example 6.1 is solved below in Maple using this procedure. For illustration,
N = 2 node points are used.

>restart;with(plottools):with(linalg):with(plots):

Enter the governing equation:

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2);

Enter the boundary conditions:

> bc1:=u(x,y)-0;

> bc2:=u(x,y)-0;

> bc3:=u(x,y)-0;

> bc4:=u(x,y)-1;

> epsilon:=1;

Enter the finite difference approximations for the derivatives:

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta));

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta));

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 513

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta));

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta));

Convert the boundary conditions to finite difference form:

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),x=0,bc1);

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),x=1,bc2);

Enter the number of interior node points:

> N:=2;

> eq[0]:=bc1;

> eq[N+1]:=bc2;

Convert the governing equation to finite difference from (equation 6.12):

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)=
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) =
subs(m=i,dydx),u(x,y)=u[i](zeta),

x=i*h,rhs(h^2/epsilon^2*ge));od;

Enter the boundary values:

> u[0](zeta):=(solve(eq[0],u[0](zeta)));

514 6 Method of Lines for Elliptic Partial Differential Equations

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta));

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)=u[N+1+i](zeta);od;

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do eq[N+1+i]:

=eval(eq[N+1+i]);od;

Generate the A matrix using the governing equations and the dependent variables.

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)];

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)];

> A:=genmatrix(eqns,Y,'b1');

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 515

Convert the entries of the A matrix as decimals if N is greater than two (as

shown in chapter 5.1):

> if N>2 then A:=map(evalf,A):end;

A Maple procedure is written to expedite the calculation for the exponential
matrix (see chapter 5.1). First the eigenvalues are found:

>NRow:=rowdim(A);

> L:=evalf(eigenvalues(A));

Note that this procedure can be used only if all the eigenvalues are real and distinct.
Also, for obtaining the eigenvectors (equation 5.26) since sβ are coupled, all of the

equations are solved simultaneously. In chapter 5.1, the equations for sβ were

solved individually one by one.

> evalm(A);

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b);

Note that for the example given the b vector is zero. However, depending on the

boundary conditions, bc3 and bc3, the b vector can be a function of ζ or a
constant vector.

> h:=eval(1/(N+1));

516 6 Method of Lines for Elliptic Partial Differential Equations

> J:=jordan(A,S);

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)):

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))):

> b2:=evalm(subs(zeta=zeta1,evalm(b))):

> mat2:=evalm(mat1&*b2):

> mat2:=map(expand,mat2):

> mat3:=map(int,mat2,zeta1=0..zeta):

The initial condition vector is defined here.

> Y0:=matrix(2*N,1);

> for i to N do Y0[i,1]:=p[i];od:

> for i to N do Y0[N+i,1]:=c[i]:od:

> evalm(Y0);

The solution is found by adding the nonhomogeneous part to the homogeneous
part.

> Y:=evalm(mat&*Y0+mat3):

The solution at y = 0 and y = 1 is stored in sol0 and sol1 to calculate the unknown
constants.

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))):

> sol1:=map(eval,evalm(subs(zeta=epsilon/h,evalm(Y)))):

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 517

Now the boundary conditions bc3 and bc4 are applied.

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od;

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],u(x,y)

=sol1[i,1],bc4));od;

The unknown constants are solved as:

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)});

> assign(csol);

> Y:=map(eval,Y):

> for i from 1 to N do u[i](zeta):=eval((Y[i,1]));od:

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od:

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon

*y/h,u[i](zeta)));od;

Hence, the semianalytical solution is obtained for temperature distribution. The
plots obtained for N=10 node points are given below:

518 6 Method of Lines for Elliptic Partial Differential Equations

> for i from 0 to N+1 do pl[i]:=line([0.3,0.98-abs(i-5.25)*0.14],
[0.6,evalf(subs(y=0.6,u[i](y)))],thickness=1,linestyle=dot);
pt[i]:=textplot([0.3,0.98-abs(i-5.25)*0.14,typeset(u[i],"(y)")],
align=left):end do:

> pp:=plot([seq(u[i](y),i=0..N+1)],y=0..1);

> display([pp,seq(pl[i],i=0..N+1),seq(pt[i],i=0..N+1)],axes=boxed,thickness=3,
title="Figure 6.1",labels=[y,"u"]);

Fig. 6.1

> M:=10;

> T1:=[seq(evalf(i/M),i=0..M)];

> for j from 1 to M do
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)],

style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od:

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],style=line,
thickness=3,title="Figure 6.2",axes=boxed):

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 519

> for j from 1 to M+1 do

pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[1](y))),typeset(y,sprintf("=%4.2f",
T1[j]))],align=above);od:

> display({seq(P[i],i=1..M+1),seq(pt[j],j=1..M+1)},labels=[x,u]);

Fig. 6.2

> Ny:=30;

> PP:=matrix(N+2,Ny);

> for i to Ny do PP[1,i]:=0;PP[N+2,i]:=0;od:

> for i to N+2 do PP[i,1]:=0;PP[i,Ny]:=1;od:

> for i from 2 to N+1 do for j from 2 to Ny-1 do
PP[i,j]:=evalf(subs(y=(j-1)/(Ny-1),u[i-1](y)));od;od:

> plotdata := [seq([seq([(i-1)/(N+1),(j-1)/(Ny-1),PP[i,j]], i=1..N+2)],
j=1..Ny)]:

> surfdata(plotdata,axes=boxed,title="Figure 6.3",
labels=[x,y,u],orientation=[-120,60]);

520 6 Method of Lines for Elliptic Partial Differential Equations

Fig. 6.3

Because of symmetry, we get u1 = uN, u2 = uN-1, etc. Note that A matrix depends
only on the governing equation and the boundary conditions at x = 0 and x = 1.
Once the exponential matrix (exp(Aζ)) is found, the exponential matrix can be
used for a different set of boundary conditions at y = 0 and y = 1. This is true
because the solution obtained is analytical in the y direction and valid for any
boundary conditions in y as illustrated in the next example.

Example 6.2

For example, consider the following boundary value problem

2 2

2 2

u u
 + = 0

x y

u(0, y) 0 0 y 1

u(1, y) 0 0 y 1

u
(x,0) - u(x,0) 0 x 1

y

u(x,1) = 1 0 x 1

∂ ∂
∂ ∂

= ≤ ≤
= ≤ ≤

∂ ≤ ≤
∂

< <

 (6.21)

For solving equation (6.21) there is no need to find the exponential matrix again.
Since the boundary conditions at x = 0 and x = 1 do not change, the complete
solution can be obtained using the exponential matrix obtained for the previous
example by just recalculating the constants as described below:

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 521

> restart;with(plottools):with(linalg):with(plots):

> Digits:=12;

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2);

> bc1:=u(x,y)-0;

> bc2:=u(x,y)-0;

Now, the boundary condition at y = 0 is redefined.

> bc3:=diff(u(x,y),y)-u(x,y);

> bc4:=u(x,y)-1;

> epsilon:=1;

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta));

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta));

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta));

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta));

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1);

522 6 Method of Lines for Elliptic Partial Differential Equations

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2);

> N:=10;

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)=
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) =
subs(m=i,dydx),u(x,y)=u[i](zeta),

x=i*h,rhs(h^2/epsilon^2*ge));od;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 523

> u[0](zeta):=(solve(eq[0],u[0](zeta)));

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta));

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od;

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do
eq[N+1+i]:=eval(eq[N+1+i]);od;

524 6 Method of Lines for Elliptic Partial Differential Equations

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 525

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)];

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)];

> A:=genmatrix(eqns,Y,'b1');

526 6 Method of Lines for Elliptic Partial Differential Equations

> if N>2 then A:=map(evalf,A):end;

> evalm(A);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 527

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b);

> h:=eval(1/(N+1));

> J:=jordan(A,S);

528 6 Method of Lines for Elliptic Partial Differential Equations

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)):

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))):

> b2:=evalm(subs(zeta=zeta1,evalm(b))):

> mat2:=evalm(mat1&*b2):

> mat2:=map(expand,mat2):

> mat3:=map(int,mat2,zeta1=0..zeta):

> Y0:=matrix(2*N,1);

> for i to N do Y0[i,1]:=p[i];od:

> for i to N do Y0[N+i,1]:=c[i]:od:

> evalm(Y0);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 529

> Y:=evalm(mat&*Y0+mat3):

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))):

> sol1:=map(eval,evalm(subs(zeta=epsilon/h,evalm(Y)))):

>

> bc3:=diff(u(x,y),y)-u(x,y);

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],
x=i*h,bc3);od;

530 6 Method of Lines for Elliptic Partial Differential Equations

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],
u(x,y)=sol1[i,1],bc4));od:

The new sets of constants are:

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)});

> assign(csol);

> YY:=map(eval,Y):

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od:

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od:

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 531

532 6 Method of Lines for Elliptic Partial Differential Equations

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 533

Using the new values for constants the semianalytical solution is recalculated, the
following plots are obtained, and the constants are unassigned.

> for i to N do unassign('c[i]'):unassign('p[i]'):od:

> for i from 0 to N+1 do

pl[i]:=line([0.3,0.98-abs(i-5.25)*0.14],[0.6,evalf(subs(y=0.6,u[i](y)))],
thickness=1,linestyle=dot);

pt[i]:=textplot([0.3,0.98-abs(i-5.25)*0.14,typeset(u[i],"(y)")],align=left):

end do:

534 6 Method of Lines for Elliptic Partial Differential Equations

> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..1,thickness=3);od:

> pp:=plot([seq(u[i](y),i=0..N+1)],y=0..1,thickness=3):

> display([pp,seq(pl[i],i=0..N+1),seq(pt[i],i=0..N+1)],title="Figure 6.4",
axes=boxed,labels=[y,"u"]);

Fig. 6.4

> M:=5;

> T1:=[seq(evalf(i/M),i=0..M)];

> for j from 1 to M do
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)],style=line,
thickness=3,axes=boxed,view=[0..1,0..1.1]):od:

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],
style=line,thickness=3,title="Figure 6.5",axes=boxed):

> for j from 1 to M+1 do
pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),typeset(y,sprintf("=%4.2f",
T1[j]))],align=above);od:

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 535

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},labels=[x,u]);

Fig. 6.5

> Ny:=20;

> PP:=matrix(N+2,Ny);

For the three dimensional plot, first the boundaries, x = 0, x = 1, and y = 1 are
defined.

> for i to Ny do PP[1,i]:=0;PP[N+2,i]:=0;od:

> for i to N+2 do PP[i,Ny]:=1;od:

The temperature inside the rectangle is obtained using the semianalytical solution.

> for i from 2 to N+1 do for j from 1 to Ny-1 do PP[i,j]:=evalf(subs(y=
(j-1)/(Ny-1),u[i-1](y)));od;od:

> plotdata := [seq([seq([(i-1)/(N+1),(j-1)/(Ny-1),PP[i,j]], i=1..N+2)],
j=1..Ny)]:

> surfdata(plotdata,axes=boxed,title="Figure 6.6",
labels=[x,y,u],orientation=[-120,60]);

536 6 Method of Lines for Elliptic Partial Differential Equations

Fig. 6.6

Note that a semianalytical solution in x can be obtained instead of y in the
previous two examples by discretizing the spatial derivatives in the y derivatives.

6.1.3 Semianalytical Method for Elliptic PDEs in Cylindrical
Coordinates – Graetz Problem

Example 6.3. Graetz Problem with a Fixed Wall Temperature

As an aside, it is worth mentioning, that the technique described earlier can also be
used for solving partial differential equations in cylindrical coordinates. For example,
consider the Graetz problem,[1]

2 2
2

2 2

u u 1 u u
2Pe(1 x) = + +

y x x x y

u
(0,y) = 0 for 0 y H

x
u(1,y) = 1 for 0 < y H

u(x,0) = 0 for 0 x 1

u
(x,H) for 0 x 1

x

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

∂ ≤ ≤
∂

≤
≤ ≤

∂ ≤ ≤
∂

 (6.22)

Schiesser and Silebi (1997)[1] solved this problem using the numerical method of
lines by adding a time derivative for u and waiting for the steady state. However,

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 537

our method directly yields the steady state solution (semianalytical in y and
numerical in x) for the temperature profiles. Note that the semianalytical solution
can be obtained only in the y direction and not in the x direction for cylindrical
coordinate problems because the coefficient matrix, A, in equation (6.16) becomes
a function of x and the solution should be found using the matrizant instead of
exponential matrix. The calculation of the matrizant is time consuming. See
chapter 3.1.4 for additional information. Note that a low value of the Peclet
number, Pe = 1, is chosen so that the effect of the axial conduction can be seen.
The Maple program developed for example 6.1 can be used for this example by
making minor changes as follows:

> restart;with(linalg):with(plots):

The governing equation is entered in the following form:

> ge:=diff(u(x,y),y$2)=2*Pe*(1-x^2)*diff(u(x,y),y)-diff(u(x,y),x$2)-
1/x*diff(u(x,y),x);

> Digits:=30;

For this example, ‘Digits’ has to be set to 30 for accurate predictions. The
boundary conditions are entered as:

> bc1:=diff(u(x,y),x);

> bc2:=u(x,y)-1;

> bc3:=u(x,y)-0;

> bc4:=diff(u(x,y),y);

Parameters are entered here:

> Pe:=1.0;

> epsilon:=1;

538 6 Method of Lines for Elliptic Partial Differential Equations

Note that epsilon is given as 1 for this example since L and H are taken care of
separately.

> L:=1;

> H:=2;

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)):

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)):

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)):

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)):

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),x=0,bc1):

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),x=1,bc2):

> N:=10;

> eq[0]:=bc1;

> eq[N+1]:=bc2;

The governing equation is converted to finite difference form here. Note that the
first derivative with respect to 'y' is replaced by u[N+1+i], i= 1..N.

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)=
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) =
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta),
x=i*h,-rhs(h^2/epsilon^2*ge));od;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 539

> u[0](zeta):=(solve(eq[0],u[0](zeta)));

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta));

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= -u[N+1+i](zeta);od;

540 6 Method of Lines for Elliptic Partial Differential Equations

> h:=L/(N+1);

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do
eq[N+1+i]:=eval(eq[N+1+i]);od;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 541

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]:

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)];

> A:=genmatrix(eqns,Y,'b1'):

> Nrow:=rowdim(A);

> II:=eigenvalues(A):

> for i to Nrow do

 lambda[i]:=II[i];

end do:

> Id:=Matrix(Nrow,Nrow,shape=identity):

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]):

> for k to Nrow do

 G:=evalm((A-lambda[k]*Id)&*X);

 eqx[1]:=beta[1]=1:

 for i from 2 to Nrow do

 eqx[i]:=G[i-1,1]:

 end do:

542 6 Method of Lines for Elliptic Partial Differential Equations

 cons:=fsolve({seq(eqx[i],i=1..Nrow)},{seq(beta[i],i=1..Nrow)}):

 assign(cons):

 XX[k]:=map(eval,evalm(X)):

 for i to Nrow do

 unassign('beta[i]'):

 end do:

end do:

> PV:=Matrix(Nrow,Nrow,[seq(evalm(XX[i]),i=1..Nrow)]):

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal):

> for i to Nrow do

 expD1[i,i]:=exp(lambda[i]*zeta):

end do:

> mat:=evalm(PV&*expD1&*inverse(PV)):

> if N>2 then A:=map(evalf,A):end:

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b):

> h:=eval(1/(N+1));

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))):

> b2:=evalm(subs(zeta=zeta1,evalm(b))):

> mat2:=evalm(mat1&*b2):

> mat2:=map(expand,mat2):

> mat3:=map(int,mat2,zeta1=0..zeta):

> Y0:=matrix(2*N,1);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 543

> for i to N do Y0[i,1]:=p[i];od:

> for i to N do Y0[N+i,1]:=c[i]:od:

> evalm(Y0);

> Y:=evalm(mat&*Y0+mat3):

The solution should be evaluated at y = H to find the constants.

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))):

> sol1:=map(eval,evalm(subs(zeta=epsilon*H/h,evalm(Y)))):

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],
u(x,y)=p[i],x=i*h,bc3);od;

544 6 Method of Lines for Elliptic Partial Differential Equations

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],
u(x,y)=sol1[i,1],bc4));od:

Constants are found as:

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)});

> assign(csol);

> Y:=map(eval,Y):

> for i from 1 to N do u[i](zeta):=eval((Y[i,1]));od:

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od:

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od:

The following plots are obtained using N = 10 interior node points. Digits = 30 is
required for N = 10 interior node points. For N = 3 node points, the default
number of Digits =10 is enough.

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 545

> for i from 0 to N+1 by 2 do p[i]:=plot(u[i](y),y=0..H,thickness=3);od:

> pp:=plot([seq(u[i](y),i=0..N+1,2)],y=0..H,thickness=3,
legend=[seq(typeset(u[i],"(y)"),i=0..N+1,2)]);

> display(pp,axes=boxed,title="Figure 6.7",labels=[y,"u"]);

Fig. 6.7

> M:=5;

> T1:=[seq(evalf(i*H/M),i=0..M)]:

> P[1]:=plot([seq([h*i,0.],i=0..N+1)],style=line,thickness=3,axes=boxed):

> for j from 2 to M+1 do
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)],

style=line,thickness=3,title="Figure 6.8",axes=boxed):od:

> for j from 1 to M+1 do
pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),typeset(y,sprint

546 6 Method of Lines for Elliptic Partial Differential Equations

("=%4.2f",T1[j]))],align={above,left});od:

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},labels=[x,u]);

Fig. 6.8

> a:=convert(T1[2],string);

> a1:=sprintf("%4.2f",T1[2]);

> Ny:=30;

> PP:=matrix(N+2,Ny);

> for i from 1 to N+2 do for j from 1 to Ny do
PP[i,j]:=evalf(subs(y=(j-1)*H/(Ny-1),u[i-1](y)));od;od:

> PP[N+2,1]:=0;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 547

> plotdata := [seq([seq([(i-1)/(N+1),(j-1)*H/(Ny-1),PP[i,j]], i=1..N+2)],
j=1..Ny)]:

> surfdata(plotdata,axes=boxed,title="Figure 6.9",
labels=[x,y,u],orientation=[-150,45]);

Fig. 6.9

The program developed for example 6.3 is very general and can be used for any
linear elliptic partial differential equation with linear boundary conditions.

6.1.4 Semianalytical Method for Elliptic PDEs with Nonlinear
Boundary Conditions

Example 6.4. Nonlinear Radiation Boundary Condition

Consider the following boundary value problem with a nonlinear radiation
boundary condition at y = 0.

2 2

2 2

4

u u
 + = 0

x y

u(0, y) 0 0 y < 1

u
(1, y) 0 0 y 1

x
u

(x,0) - u(x,0) 0 x 1
y

u(x,H) = 1 0 x 1

∂ ∂
∂ ∂

= ≤
∂ = ≤ ≤
∂
∂ ≤ ≤
∂

≤ ≤

 (6.23)

548 6 Method of Lines for Elliptic Partial Differential Equations

This equation is solved below in Maple using the program developed for example
6.3. The semianalytical method developed earlier is valid for nonlinear boundary
conditions also. This is true because the vector equation (6.6) is linear as both the
governing equation and the boundary conditions in x are linear. The nonlinear
boundary condition comes into the picture only for solving the constants. This is
illustrated in the following program.

> restart;with(linalg):with(plots):

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2);

> bc1:=u(x,y)-0;

> bc2:=diff(u(x,y),x);

The nonlinear boundary condition at y = 0 is entered:

> bc3:=diff(u(x,y),y)-u(x,y)^4;

> bc4:=u(x,y)-1;

> H:=0.5;

> epsilon:=1;

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)):

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)):

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)):

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)):

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 549

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2);

> N:=10;

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)=
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) =
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta),
x=i*h,rhs(h^2/epsilon^2*ge));od:

> u[0](zeta):=(solve(eq[0],u[0](zeta)));

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta));

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od:

> for i from 1 to N do eq[i]:=eval(eq[i]);od:for i from 1 to N do eq[N+1+i]:=

eval(eq[N+1+i]);od:

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]:

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]:

> A:=genmatrix(eqns,Y,'b1'):

> if N>2 then A:=map(evalf,A):end:

> evalm(A):

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b):

> h:=eval(1/(N+1));

550 6 Method of Lines for Elliptic Partial Differential Equations

> J:=jordan(A,S):

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)):

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))):

> b2:=evalm(subs(zeta=zeta1,evalm(b))):

> mat2:=evalm(mat1&*b2):

> mat2:=map(expand,mat2):

> mat3:=map(int,mat2,zeta1=0..zeta):

> Y0:=matrix(2*N,1);

> for i to N do Y0[i,1]:=p[i];od:

> for i to N do Y0[N+i,1]:=c[i]:od:

> evalm(Y0):

> Y:=evalm(mat&*Y0+mat3):

For calculating the constants, the solution is evaluated at y = 0 and y = H.

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))):

> sol1:=map(eval,evalm(subs(zeta=epsilon*H/h,evalm(Y)))):

The boundary condition at y = 0 (bc3) yields N nonlinear algebraic equations.

> for i to N do
Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 551

The boundary condition at y = H yields N linear algebraic equations.

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],
u(x,y)=sol1[i,1],bc4));od;

552 6 Method of Lines for Elliptic Partial Differential Equations

Since the equations are nonlinear Maple's 'fsolve' is used to solve for the
constants:

> csol:=fsolve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)});

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 553

When 'fsolve' is used Maple returns values that do not make physical sense. The
dependent variable at y = 0 (pi, i=1..N) cannot be negative. Since the equations
are nonlinear there can be more than one solution. To get the correct solution
that makes physical sense the range should be provided for the constants (see
chapter 1).

> csol:=fsolve({seq(Eq[i],i=1..2*N)},{seq(c[i]=0..1,i=1..N),seq(p[i]=0..1,i=1..N)});

> assign(csol);

> YY:=map(eval,Y):

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od:

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od:

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od:

> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..H,thickness=3);od:

> pp:=plot([seq(u[i](y),i=0..N+1,2)],y=0..H,thickness=3,
legend=[seq(typeset(u[i],"(y)"),i=0..N+1,2)]);

> display({pp},axes=boxed,title="Figure 6.10",labels=[y,"u"]);

554 6 Method of Lines for Elliptic Partial Differential Equations

Fig. 6.10

> M:=5;

> T1:=[seq(evalf(i*H/M),i=0..M)];

> for j from 1 to M do
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)],

style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od:

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],style= line,
thickness=3,axes=boxed):

> for j from 1 to M+1 do pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),
typeset(y,sprintf("=%4.2f",T1[j]))],align={above});od:

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},title="Figure 6.11",
labels=[x,u]);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 555

Fig. 6.11

> Ny:=30;

> PP:=matrix(N+2,Ny);

First, the boundaries x = 0 and y = 1 are defined.

> for i to Ny do PP[1,i]:=0;od:

> for i to N+2 do PP[i,Ny]:=1;od:

The temperature inside the rectangle is obtained using the semianalytical solution:

> for i from 2 to N+2 do for j from 1 to Ny-1 do
PP[i,j]:=evalf(subs(y=(j-1)*H/(Ny-1),u[i-1](y)));od;od:

> plotdata := [seq([seq([(i-1)/(N+1),(j-1)*H/(Ny-1),PP[i,j]], i=1..N+2)],
j=1..Ny)]:

> surfdata(plotdata,axes=boxed,title="Figure 6.12",
labels=[x,y,u],orientation=[-120,60]);

556 6 Method of Lines for Elliptic Partial Differential Equations

Fig. 6.12

>

6.1.5 Semianalytical Method for Elliptic PDEs with Irregular
Shapes

Example 6.5. Potential Distribution in a Hull Cell

Current density distributions in electrochemical systems are governed by Laplace
equation (Newman, 1991) with linear/nonlinear boundary condition at the
boundaries (electrodes). Consider a Hull cell (see Fig. 6.13) in which a metal is
deposited at the cathode (Subramanian and White, 1999).

Fig. 6.13

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 557

The governing equation can be written as

2 2

2 2

u u
 + = 0

x y

u
(0, y) 0 0 y < 1

x
u

(1, y) 0 0 y 1.5
x

u(x,0) = 1 0 x 1

u(x,1+0.5x) = 0 0 x 1

∂ ∂
∂ ∂
∂ = ≤
∂
∂ = ≤ ≤
∂

≤ ≤
≤ ≤

 (6.24)

The cathode surface is defined by the equation y = 1+0.5x. The semianalytical
technique developed earlier can be used for equation (6.24). The only change is
the calculation of constants because of the fourth boundary condition (cathode).
This is taken care of by using the equation for the cathode surface for calculating
the constants.

Example 6.5 is solved in Maple below as:

> restart;with(plottools):with(linalg):with(plots):

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2);

> Digits:=20;

> bc1:=diff(u(x,y),x);

> bc2:=diff(u(x,y),x);

> bc3:=u(x,y)-1;

> bc4:=u(x,y);

558 6 Method of Lines for Elliptic Partial Differential Equations

Enter the equation for the cathode surface:

> eq_cathode:=y=1+0.5*x;

> epsilon:=1;

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)):

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)):

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)):

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)):

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1);

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2);

> N:=10;

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)=
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) =
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta),
x=i*h,rhs(h^2/epsilon^2*ge));od:

> u[0](zeta):=(solve(eq[0],u[0](zeta)));

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 559

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta));

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od:

> for i from 1 to N do eq[i]:=eval(eq[i]);od:for i from 1 to N do
eq[N+1+i]:=eval(eq[N+1+i]);od:

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]:

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]:

> A:=genmatrix(eqns,Y,'b1'):

> if N>2 then A:=map(evalf,A):end:

> evalm(A):

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b):

> h:=eval(1/(N+1));

> J:=jordan(A,S):

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)):

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))):

> b2:=evalm(subs(zeta=zeta1,evalm(b))):

> mat2:=evalm(mat1&*b2):

> mat2:=map(expand,mat2):

> mat3:=map(int,mat2,zeta1=0..zeta):

> Y0:=matrix(2*N,1);

> for i to N do Y0[i,1]:=p[i];od:

> for i to N do Y0[N+i,1]:=c[i]:od:

> evalm(Y0):

> Y:=evalm(mat&*Y0+mat3):

The boundary condition at y = 0 is applied as:

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))):

> for i to N do
Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od;

560 6 Method of Lines for Elliptic Partial Differential Equations

The boundary condition at the cathode surface is defined as:

> for i to N do
Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*Y[N+i,1],u(x,y)=Y[i,1],bc4));od:

> for i to N do Eq[N+i]:=evalf(subs(zeta=epsilon/h*(1+0.5*i*h),Eq[N+i]));od:

The constants are solved as:

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)});

> assign(csol);

> YY:=map(eval,Y):

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od:

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od:

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od:

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 561

> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..(1+0.5*i*h),thickness=2);od:

> for i from 0 to N+1 do

 pl[i]:=line([1.2,0.3+i*0.05],[0.9,evalf(subs(y=0.9,u[i](y)))],thickness=1,
linestyle=solid);

 pt[i]:=textplot([1.2,0.3+i*0.05,typeset(u[i],"(y)")],align=right):

end do:

> display([seq(p[i],i=0..N+1,2),seq(pl[i],i=0..N+1,2),seq(pt[i],i=0..N+1,2)],
axes=boxed,title="Fig. 6.14",labels=[y,"u"]);

Fig. 6.14

> M:=10;

> T1:=[seq(evalf(i/M),i=0..M)];

562 6 Method of Lines for Elliptic Partial Differential Equations

> for j from 1 to M+1 do
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j]*(1+0.5*i*h),evalf(u[i](y))))],i=0..N+1)],
style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od:

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,0))],i=0..N+1)],style=line,
thickness=3,axes=boxed):

> for j from 1 to M+1 do pt[j]:=textplot([0.5,evalf(subs(y=T1[j]*(1+0.5*5*h),
u[5](y))),typeset(y,sprintf("=%4.2f",T1[j]))],align=above);od:

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},title="Fig. 6.15",
labels=[x,u]);

Fig. 6.15

> Ny:=30;

> PP:=matrix(N+2,Ny);

> for i to N+2 do PP[i,1]:=1;PP[i,Ny]:=0;od:

> for i from 1 to N+2 do for j from 2 to Ny-1 do
PP[i,j]:=evalf(subs(y=(j-1)*(1+0.5*(i-1)*h)/(Ny-1),u[i-1](y)));od;od:

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 563

> plotdata := [seq([seq([(i-1)/(N+1),(j-1)*(1+0.5*(i-1)*h)/(Ny-1),PP[i,j]],
i=1..N+2)], j=1..Ny)]:

> surfdata(plotdata,axes=boxed,title="Fig. 6.16",
labels=[x,y,u],orientation=[45,45]);

Fig. 6.16

> surfdata(plotdata,axes=boxed,title="Fig. 6.17",
labels=[x,y,u],orientation=[120,0] ,style=patchnogrid);

Fig. 6.17

564 6 Method of Lines for Elliptic Partial Differential Equations

> for i from 1 to N do curr[i]:=evalf(subs(y=1+0.5*i*h,diff(u[i](y),y)));od:

> curr[0]:=4/3*curr[1]-1/3*curr[2];

> curr[N+1]:=4/3*curr[N]-1/3*curr[N-1];

> avecurr:=sum(curr[k],k=0..N+1)/(N+2);

> plot([seq([i*h,curr[i]/avecurr],i=0..N+1)],thickness=4,axes=boxed,
title="Fig. 6.18",style=point,labels=[x,'i/iavg']);

Fig. 6.18

6.1.6 Numerical Method of Lines for Elliptic PDEs in
Rectangular Coordinates

For nonlinear elliptic partial differential equations, successive relaxation or finite
difference approximations can be used in both the coordinates.[7] [12] [13]
(Constantinides & Mostoufi, 1999; Davis, 1984, Finlayson, 1980) As illustrated
by Schiesser (1991),[2] a method of lines was used for 2D and 3D steady state
problems by adding a pseudo time derivative, applying finite differences in all the

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 565

spatial coordinates and integrating numerically in time. In this chapter, we apply
finite differences in one of the directions (x), convert the governing equation and
boundary conditions in x to finite difference form. The resulting system of
coupled nonlinear boundary values problems (second order ordinary differential
equations in y) are then solved using Maple’s ‘dsolve’ numeric command for
boundary value problems (see chapter 3.2.8).

Example 6.6. Numerical Solution for Heat Transfer in a Rectangle

Example 6.1 (heat transfer in a rectangle) is solved again using the numerical
method of lines. The procedure involved in solving a linear or nonlinear steady
state elliptic PDE numerically is summarized as follows:

1. Start the Maple worksheet with a ‘restart’ command to clear all variables.
2. Call ‘with(linalg)’ and ‘with(plots)’ commands.
3. Enter the governing equation.
4. Store the ‘x’ boundary conditions in bc1 (x = 0) and bc2 (x = 1).
5. Store the ‘y’ boundary conditions in bc3 (y = 0) and bc4 (y = 1). Note that a

right hand side should be included so that Maple’s ‘dsolve’ command can be
used.

6. Enter the number of interior node points, N.
7. Enter the length of the domain, L and height of the domain.
8. Convert the boundary conditions in x (bc1, and bc2) to finite difference form

by using 3-point forward and backward differences (accurate to the order
h2), respectively, for bc1 and bc2.

9. Convert the governing equation to finite difference form by using central
difference expression accurate to the order h2 for the first and second
derivatives in the spatial variable, x. This gives raise to N second order
ODEs in y.

10. The variable ui(y), i = 0..N+1 corresponds to the dependent variable, ui at
node point i.

11. Eliminate the boundary values (u0(y) and uN+1(y)) using the boundary
conditions. Note that this can be done only for linear boundary conditions
at x = 0 and x = 1. If boundary conditions are nonlinear, differentiate
boundary conditions to obtain differential equations in y (see chapter 5.2 and
example 5.2.3).

12. Find the numerical solution using the ‘dsolve’ numeric command and
boundary conditions bc3 and bc4.

Example 6.6 is solved below in Maple using this procedure.

> restart: with(linalg): with(plots):

The governing equation and boundary conditions are entered. Boundary
conditions in y are entered with a right hand side.

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2);

566 6 Method of Lines for Elliptic Partial Differential Equations

> bc1:=u(x,y);

> bc2:=u(x,y);

> bc3:=u(x,y)=0;

> bc4:=u(x,y)-1=0;

The dimensions of the domain and the number of interior node points are entered:

> L:=1;H:=1;

> N:=10;

Boundary conditions in x and the governing equation are converted to finite
difference form:

> fd1:=(1/2)*(-u[m+2](y)-3*u[m](y)+4*u[m+1](y))/h;

> bd1:=(1/2)*(u[m-2](y)+3*u[m](y)-4*u[m-1](y))/h;

> cd1:=(u[m+1](y)-u[m-1](y))/h^2;

> cd2:=(u[m-1](y)-2*u[m](y)+u[m+1](y))/h^2;

> bc1:=subs(diff(u(x,y),x)=subs(m =0,fd1),u(x,y)=u[0](y),x=0,bc1);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 567

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,bd1),u(x,y)=u[N+1](y),x=1,bc2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

> for i from 1 to N do

eq[i]:=diff(u[i](y),y$2)=expand(subs(diff(u(x,y),x$2)=subs(m=i,cd2),
diff(u(x,y),x)=subs(m=i,cd1),diff(u(x,y),y)=u[N+1+i](y),u(x,y)=u[i](y),
x=i*h,rhs(ge)));

end do;

568 6 Method of Lines for Elliptic Partial Differential Equations

> u[0](y):=(solve(eq[0],u[0](y)));

> u[N+1](y):=solve(eq[N+1],u[N+1](y));

> h:=1/(N+1);

> for i from 1 to N do

 eq[i]:=eval(eq[i]);

end do;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 569

Boundary conditions in y are converted to index form and used with the governing
equation in the interior node points to obtain a numerical solution.

> BC3:=seq(subs(diff(u(x,y),y)=(D(u[i]))(0),u(x,y)=u[i](0),x=i*h,bc3),i=1..N);

> BC4:=seq(subs(diff(u(x,y),y)=(D(u[i]))(H),u(x,y)=u[i](H),x = i*h,bc4),
i=1..N);

> BCS:=BC3,BC4;

> sol:=dsolve({BCS,seq(eq[i],i=1..N)},type=numeric,output=listprocedure,
abserr = 0.1e-8);

570 6 Method of Lines for Elliptic Partial Differential Equations

The solution obtained is used to make the following plots.

> for i from 1 to N do

 U[i]:=subs(sol,u[i](y));

 od:

> U[0]:=subs(u[1](y)=U[1],u[2](y)=U[2],u[0](y));

> U[N+1]:=subs(u[N](y)=U[N],u[N-1](y)=U[N-1],u[N+1](y));

> for i from 0 to N+1 do

 py[i]:=plot(U[i](y),y=0..H,thickness=4):

 end do:

> display({seq(py[i],i=0..N+1)},labels=[y,"u"],axes=boxed,title="Fig. 6.19");

Fig. 6.19

> M:=20;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 571

> for i from 1 to N do

 fy[i]:=subs(sol,u[i](y)):

 end do:

> T1:=[seq(evalf(i*H/M),i=0..M)];

> for j from 1 to M+1 do

 P[j]:=plot([seq([h*i,U[i](T1[j])],i=0..N+1)],style=line,thickness=3,
axes=boxed,title="Fig. 6.20"):

end do:

> display({seq(P[i],i=1..M+1)},labels=[x,u]);

Fig. 6.20

> Ny:=30;

572 6 Method of Lines for Elliptic Partial Differential Equations

> PP:=matrix(N+2,Ny);

> for i from 1 to N+2 do

 for j from 1 to M+1 do

 PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t))):

 end do:

end do:

> plotdata:=[seq([seq([(i-1)*h,T1[j],PP[i,j]],i=1..N+2)],j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Fig. 6.21",
labels=[x,y,u],orientation=[-145,60]);

Fig. 6.21

Note that finite differences accurate to the order h2 were applied in the x-direction
and the resulting system of second order boundary value problems (ordinary
differential equations) was solved numerically using Maple’s ‘dsolve’ numeric
command in the y-direction. This is equivalent to applying finite differences in
both x and y directions. The only difference is that in the y-direction Maple’s
interpolation technique is used to expedite convergence. In addition, one gets both
the dependent variable and its derivative in y directly. The method described may
not work for stiff problems and Maple’s ‘dsolve’ command might take a long time
to predict a numerical solution. In addition, one might have to use advanced
commands to get a converged solution (see chapter 3.2).

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 573

Example 6.7. Numerical Solution for Heat Transfer for Nonlinear Elliptic
PDEs

The numerical method of lines described in the previous example can be used for
nonlinear elliptic partial differential equations, also. For example, consider the
following nonlinear boundary value problem (diffusion with a second order
reaction):

2 2
2

2 2

u u
 + = u

x y

u
(0, y) 0 0 y 1

x
u(1, y) 1 0 y 1

u(x,0) = 0 0 x 1

u
(x,1) = 0 0 x 1

y

∂ ∂
∂ ∂
∂ = ≤ ≤
∂

= ≤ ≤
≤ ≤

∂ < <
∂

 (6.25)

The Maple program used for example 6.6 is used to solve this boundary value
problem as shown in the worksheet that follows.

> restart:with(linalg):with(plots):

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)+u(x,y)^2;

> Digits:=50;

> bc1:=diff(u(x,y),x);

> bc2:=u(x,y)-1;

> bc3:=u(x,y)-0;

> bc4:=diff(u(x,y),y);

574 6 Method of Lines for Elliptic Partial Differential Equations

> L:=1;

> H:=1;

> N:=10;

> fd1:=(1/2)*(-u[m+2](y)-3*u[m](y)+4*u[m+1](y))/h;

> bd1:=(1/2)*(u[m-2](y)+3*u[m](y)-4*u[m-1](y))/h;

> cd1:=(u[m+1](y)-u[m-1](y))/h^2;

> cd2:=(u[m-1](y)-2*u[m](y)+u[m+1](y))/h^2;

> bc1:=subs(diff(u(x,y),x)=subs(m =0,fd1),u(x,y)=u[0](y),x=0,bc1);

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,bd1),u(x,y)=u[N+1](y),x=1,bc2);

> eq[0]:=bc1;

> eq[N+1]:=bc2;

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 575

> for i from 1 to N do

eq[i]:=diff(u[i](y),y$2)=expand(subs(diff(u(x,y),x$2)=subs(m=i,cd2),
diff(u(x,y),x)=subs(m=i,cd1),diff(u(x,y),y)=u[N+1+i](y),u(x,y)=u[i](y),
x=i*h,rhs(ge)));

end do;

> u[0](y):=(solve(eq[0],u[0](y)));

> u[N+1](y):=solve(eq[N+1],u[N+1](y));

576 6 Method of Lines for Elliptic Partial Differential Equations

> h:=1/(N+1);

> for i from 1 to N do

 eq[i]:=eval(eq[i]);

end do;

> BC3:=seq(subs(diff(u(x,y),y)=(D(u[i]))(0),u(x,y)=u[i](0),x=i*h,bc3),i=1..N);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 577

> BC4:=seq(subs(diff(u(x,y),y)=(D(u[i]))(H),u(x,y)=u[i](H),
x = i*h,bc4),i=1..N);

> BCS:=BC3,BC4;

> sol:=dsolve({BCS,seq(eq[i],i=1..N)},type=numeric,output=listprocedure,
abserr = 0.1e-8);

> for i from 1 to N do

 U[i]:=subs(sol,u[i](y));

od:

> U[0]:=subs(u[1](y)=U[1],u[2](y)=U[2],u[0](y));

> U[N+1]:=subs(u[N](y)=U[N],u[N-1](y)=U[N-1],u[N+1](y));

578 6 Method of Lines for Elliptic Partial Differential Equations

> for i from 0 to N+1 do

 py[i]:=plot(U[i](y),y=0..H,thickness=4):

end do:

> display({seq(py[i],i=0..N+1)},labels=[y,"u"],axes=boxed,title="Fig. 6.22");

Fig. 6.22

> M:=20;

> for i from 1 to N do

 fy[i]:=subs(sol,u[i](y)):

end do:

> T1:=[seq(evalf(i*H/M),i=0..M)];

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 579

> for j from 1 to M+1 do

 P[j]:=plot([seq([h*i,U[i](T1[j])],i=0..N+1)],style=line,thickness=3,
axes=boxed,title="Fig. 6.23"):

end do:

> display({seq(P[i],i=1..M+1)},labels=[x,u]);

580 6 Method of Lines for Elliptic Partial Differential Equations

Fig. 6.23

> Ny:=30;

> PP:=matrix(N+2,Ny);

> for i from 1 to N+2 do

 for j from 1 to M+1 do

 PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t))):

 end do:

end do:

> plotdata:=[seq([seq([(i-1)*h,T1[j],PP[i,j]],i=1..N+2)],j=1..M+1)]:

> surfdata(plotdata,axes=boxed,title="Fig. 6.24",labels=[x,y,u],
orientation=[-145,60]);

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 581

Fig. 6.24

6.1.7 Summary

In this chapter, linear elliptic partial differential equations were solved using the
analytical method of lines. This method involves applying finite differences in the
x-direction and integrating the resulting system of coupled ordinary differential
equations in the y-direction using the exponential method described in chapters 2,
3 and 5. In section 6.1.2, the given linear elliptic partial differential equation in
rectangular boundary conditions was solved using a semianalytical method. In
section 6.1.3, a semianalytical method was extended for problems in cylindrical
coordinates. In section 6.1.4, this method was extended to elliptic partial
differential equations with nonlinear boundary conditions. In section 6.1.5, a Hull
cell (irregular shape in y) was solved using the semianalytical method. Note that
the semianalytical method can be used for certain nonlinear elliptic partial
differential equations (Subramanian and White, 2004).[14]

The numerical method of lines was used to solve linear and nonlinear elliptic
partial differential equations in section 6.1.7. This method involves using finite
differences in one direction and solving the resulting system of boundary value
problems in y using Maple’s ‘dsolve’ numeric command. This method provides a
numerical solution for both the dependent variables and its derivative in the
y-direction.

Both analytical and numerical methods of lines are presented in this chapter for
elliptic partial differential equations. Semianalytical method, presented in this
chapter is very powerful technique, and is valid for elliptic Partial differential
equations with mixed boundaries also (Subramanian and White, 1999). Numerical
method of lines presented in this chapter should be used with precaution, as it may
not work for stiff problems. A total of seven examples were presented in this
chapter.

582 6 Method of Lines for Elliptic Partial Differential Equations

Exercise Problems

1. Solve the following Poison’s equation using analytical method of lines
(semianalytical method):

2 2

2 2

u u
 + = -1

x y

u(0,y) = 0; u(1,y) = 0

u(x,0) = 0; u(x,1) = 0

∂ ∂
∂ ∂

2. Solve the following Laplace equation with non-homogeneous two-flux
boundary conditions and plot the profiles:

2 2

2 2

u u
 + = 0

y x

u u
(0,y) = 0 and (0,y) = 1

x x
u

u(x,0) = 0 and (x,1) = 0
y

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂
∂

3. Redo problem 2 after switching x and y.
4. Consider the steady state diffusion in a cylinder

2 2

2 2

u u 1 u
 + = 0

y x x x

u
(0,y) = 0 and u(1,y) = 0

x
u

u(x,0) = 1 and (x,1) = 0
y

∂ ∂ ∂+
∂ ∂ ∂
∂
∂

∂
∂

Solve this problem using semianalytical method.
5. Consider a rectangle catalyst of two dimensions in which a first order

chemical reaction is taking place. The governing equations and boundary
conditions in dimensionless form are (Rice and Do, 1995):[10]

6.1 Semianalytical and Numerical Method of Lines for Elliptic PDEs 583

2 2
2

2 2

u u
 + - u = 0

y x

u
(0,y) = 0 and u(1,y) = 1

x
u

(x,0) = 0 and u(x,1) = 1
y

∂ ∂ Φ
∂ ∂
∂
∂
∂
∂

Solve this problem using the semianalytical method.
6. Consider current-potential distribution in a curvilinear Hull cell (Subramanian

and White, 1999; Chapman, 1997 ?). The governing equations and boundary
conditions are:

2 2
2

2 2

u u u
 +x x = 0

x x

u u
(1,) = 0 and (2,) = 0

x x

u(x,0) = 1 and u(x,) = 0
2

∂ ∂ ∂+
∂θ ∂ ∂

∂ ∂θ θ
∂ ∂

π

Solve this problem using semianalytical method. Hint: note that x varies
from 1 to 2 and finite difference form of the governing equation should be
programmed to take care of this.

7. Consider diffusion with reaction in a non-isothermal cylindrical pellet
(Finlayson, 1980). The governing equations and boundary conditions are:

2 2
2

2 2

u u 1 u (1-u)
 + = uexp

y x x x 1 (1-u)

u
(0,y) = 0 and u(1,y) = 1

x

u
(x,0) = 0 and u(x,1) = 1

y

⎛ ⎞∂ ∂ ∂ γβ+ Φ ⎜ ⎟∂ ∂ ∂ + β⎝ ⎠

∂
∂

∂
∂

Solve this problem using numerical method of lines for Φ = 2, γ = 30 and
β = 0.1. Which method is more efficient - using the ‘dsolve’ command in x

584 6 Method of Lines for Elliptic Partial Differential Equations

(with finite differences in x) or ‘dsolve’ command in y (with finite
differences in x) direction?

8. Complete the details missing in example 6.7.
9. Redo example 6.3 using numerical method of lines described in example

6.6. (Apply finite differences in x and integrate using dsolve in y).
10. Redo problem 2 by applying finite differences in y and using dsolve in x.

Hint: for programming purposes rewrite equation (6.22) by switching x
and y and use program given in example 6.6. Compare problem 2 and
problem 3. Which method do you recommend and why? Does the value of
Peclet number make have an impact in the decision?

11. Redo example 6.5 using numerical method of lines.
12. Redo example 6.5 if cathode shape is given by y = 1 + 0.5x2.
13. (Note that this is an advanced problem involving an advanced matrix

method.) Consider example 6.1 again (with ε = 1). If finite differences are
applied only in the x-direction, the governing equation can be written in
finite difference form as:

2
i i 1 i i-1

2 2

d u u + 2u - u
= , i = 1..N

dy h
+−

 (6.26)

After eliminating the boundary values (u0 and uN+1), the system of
equations can be written in matrix form as:

2

2

d
=

dy

Y
aY (6.27)

How is this a matrix related to the a matrix defined in equation (6.19)?
Find the eigenvalues of a matrix. Since all the eigenvalues are distinct, a
matrix can be diagonalized (a = PDP-1) and equation (6.27) is modified as:

2

2

d
=

dy
-1Y

PDP Y (6.28)

Pre-multiplying equation (6.28) by P-1 and defining Z = P-1Y we get:

2

2

d
=

dy

Z
DZ (6.29)

Equation (6.29) is an easy equation to solve because D is a diagonal matrix
and equation (6.29) yields the following decoupled equation for zi, the ith
row of Z matrix (dii is the diagonal element of D matrix)

2

i,i i2

d z
= d z , i = 1..N

dy
i (6.30)

References 585

Equation (6.30) can be easily solved using the methods described in
chapter 3.1 or using the ‘dsolve’ command to get a closed form solution
for zi. What are the boundary conditions for zi? How is the final solution
obtained for u? What are the advantages and disadvantages of this method
compared to the method described in example 6.1?

14. Apply the methodology described in problem 13 for the Graetz problem
(example 6.3).

15. Apply the procedure described in problem 13 for problem 4. Hint: apply
finite differences in x and integrate analytically in y.

16. Redo problem 15 by applying finite differences in y and integrating
analytically in x. Once the equations are decoupled get analytical solutions
in y using Maple’s ‘dsolve’ command.

References

1. Schiesser, W.E., Silebi, C.A.: Dynamic Modeling of Transport Process Systems (1997)
2. Schiesser, W.E.: The Numerical Methods of Lines. Academic Press, Inc., New York

(1991)
3. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford

University Press, Inc., Oxford (1997)
4. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. Wiley & Sons, Chichester

(1993)
5. Amundson, N.R.: Mathematical Methods in Chemical Engineering: Matrices and Their

Applications. Prentice Hall, Inc., Englewood Cliffs (1966)
6. Subramanian, V.R., White, R.E.: Solving Differential Equations with Maple. Chemical

Engineering Education, 328–336 (Fall 2000)
7. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with

MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)
8. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,

Oxford (1972)
9. Subramanian, V.R., White, R.E.: A Semianlytical Method for Predicting Primary and

Secondary Curent Density Distributions: Linear and Nonlinear Boundary Conditions.
Journal of the Electrochemical Society 147(5), 1636–1644 (2000)

10. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.
John Wiley & Sons, Inc., Chichester (1995)

11. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford
University Press, New York (1997)

12. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley
& Sons, Chichester (1984)

13. Finlayson, B.A.: Nonlinear Analysis in Chemical Engineering. McGraw-Hill, New
York (1980)

14. Subramanian, V.R., White, R.E.: Semianalytical method of lines for solving elliptic
partial differential equations. Chemical Engineering Science 59(4), 781–788 (2004)

Chapter 7

Partial Differential Equations in Finite Domains

7.1 Separation of Variables Method for Partial Differential
Equations (PDEs) in Finite Domains

7.1.1 Introduction

Transient heat conduction or mass transfer in solids with constant physical
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is
usually represented by a linear parabolic partial differential equation. Steady state
heat or mass transfer in solids, potential distribution in electrochemical cells is
usually represented by elliptic partial differential equations. In this chapter, we
describe how one can arrive at the analytical solutions for linear parabolic partial
differential equations and elliptic partial differential equations in finite domains
using a separation of variables method. The methodology is illustrated using a
transient one dimensional heat conduction in a rectangle.

7.1.2 Separation of Variables for Parabolic PDEs with
Homogeneous Boundary Conditions

Parabolic partial differential equations with homogenous boundary conditions are
solved in this section. The dependent variable u is assumed to take the form u =
XT, where X is a function of x alone and T is a function of t alone. This leads to
separate differential equations for X and T. This methodology is best illustrated
using an example.

Example 7.1. Heat Conduction in a rectangle

Consider heat transfer in a finite slab.[1] The dimensionless temperature profile is
governed by:

2

2

u u

t x

∂ ∂=
∂ ∂

 (7.1)

with the initial condition

u(x,0) 1 = (7.2)

588 7 Partial Differential Equations in Finite Domains

The boundary conditions are

u(0,t) 0= (7.3)

and

u(1,t) 0= (7.4)

Next, the following transformation is used

u XT= (7.5)

where X is a function of x alone and T is a function of t alone. Equation (7.5) is
substituted into equation (7.1) to obtain:

2

2

dT d X
X T

dt dx
= (7.6)

Dividing both sides of equation (7.6) by XT we obtain:

2

2

1 dT 1 d X

T dt X dx
= (7.7)

We observe that in equation (7.7) the left hand side is a function of t only and the
right hand side is a function of x only. Hence, both sides of equation (7.7) should
be equal to a constant:

2
2

2

1 dT 1 d X

T dt X dx
= = −λ (7.8)

We have used, -λ2, a negative constant in equation (7.8). It can be shown that if
the constant is positive the solution for T becomes infinite as t approaches infinity
(steady state profile). Equation (7.8) can be separated into two equations for T
and X as:

2dT
+ T 0

dt
λ = (7.9)

and

2
2

2

d X
+ X 0

dx
λ = (7.10)

Equation (7.9) can be solved as:

T T0 exp(2t)= − (7.11)

7.1 Separation of Variables Method for PDEs in Finite Domains 589

where T0 is an unknown constant. Equation (7.10) can be solved as:

1 2X c sin(x) + c cos(x)= (7.12)

where c1 and c2 are unknown constants. The function X should satisfy the
boundary conditions in x (equations (7.13) and (7.14):

X(0) 0 = (7.13)

and

X(1) 0 = (7.14)

Applying the boundary conditions for X we get

2c 0= (7.15)

and

1c sin() 0λ = (7.16)

Since c2 = 0 in equation (7.15), c1 in equation (7.16) cannot be zero. Equation (7.16)
can be simplified as

sin() = 0λ (7.17)

Equation (7.17) has an infinite number of solutions as given by:

 n , n 1, 2, 3, λ π= = ∞… (7.18)

Note that n = 0 corresponds to a trivial solution X = 0 and is hence neglected. The
solution for u is obtained by combining X and T (equation (7.5))

1 0 2 2u c T sin(n x)exp(n t)π π= − (7.19)

The constants c1 and T0 can be combined as a single constant An. Since there is an
infinite number of eigenvalues, there are an infinite number of fundamental
solutions that satisfy the given partial differential equations. The total solution can
be expressed as the superposition of the individual solutions as:

()2 2
n

n =1

u A sin(n x)exp n t
∞

= π − π∑ (7.20)

590 7 Partial Differential Equations in Finite Domains

We have not used the initial condition from equation (7.2) until now. The initial
condition is applied to equation (7.20) as

n
n =1

1 A sin(n x)
∞

= π∑ (7.21)

Equation (7.21) is multiplied on both sides by sin(mπx) and integrated from 0 to 1:

() () ()
1 1

n
n =10 0

sin m x dx A sin m x sin n x dx
∞

π = π π∑∫ ∫ (7.22)

The integral in the right hand side simplifies as:

() ()
1

0

sin m x sin n x dx 0 if m n

1
 if m n

2

π π = ≠

= =

∫
 (7.23)

Hence, all the terms in the infinite series in equation (7.22) vanish except when
n = m:

() ()

()

1 1
2

m

0 0

1

m

0

sin m x dx A sin m x dx

A 2 sin m x dx

π = π

⇒

= π

∫ ∫

∫

 (7.24)

The dummy variable m can be changed to n in equation (7.24) to give

()

()

1

n

0

A 2 sin n x dx

1 cos n
 2

n

= π

− π⎛ ⎞
= ⎜ ⎟π⎝ ⎠

∫
 (7.25)

Once the coefficient An is obtained, the solution is completed as:

() () ()2 2

n =1

1 cos n2
u sin n x exp n t

n

∞ − π⎛ ⎞
= π − π⎜ ⎟π ⎝ ⎠

∑ (7.26)

7.1 Separation of Variables Method for PDEs in Finite Domains 591

The Maple program used to solve Example 7.1 is given below:

> restart:

> with(plots):

The governing equation is entered here:

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

The initial condition is entered here:

> IC:=u(x,0)=1;

The boundary conditions are entered here:

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=0;

Next, u is separated as u = XT (equation (7.5)):

> Eq:=subs(u(x,t)=X(x)*T(t),eq);

> Eq:=Eq/X(x)/T(t);

The governing equation for T is:

> Eq_T:=lhs(Eq)=-lambda^2;

T can be solved as;

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

592 7 Partial Differential Equations in Finite Domains

The governing equation for X is:

> Eq_X:=rhs(Eq)=-lambda^2;

X can be solved as:

> dsolve({Eq_X},X(x));

Maple sometimes attaches _C1 with the sine function and sometimes with the
cosine function. To avoid this, we can specify the initial conditions for X and its
derivative:

> X(x):=rhs(dsolve({Eq_X,D(X)(0)=c[1]*lambda,X(0)=c[2]},X(x)));

The boundary conditions for X are:

> Bc1:=X(x)=0;

> Bc2:=X(x)=0;

The constant c2 is solved using the boundary condition at X = 0:

> Eq_Bc1:=eval(subs(x=0,Bc1));

> c[2]:=solve(Eq_Bc1,c[2]);

The second boundary condition at x = 1 gives:

> Eq_Bc2:=eval(subs(x=1,Bc2));

If c1 is zero, then we get the trivial solution X = 0. Hence, sin(λ) should be zero:

> Eq_Eig:=sin(lambda)=0;

7.1 Separation of Variables Method for PDEs in Finite Domains 593

The eigenvalue equation can be solved to get the eigenvalue, λ:

> solve(Eq_Eig,lambda);

By default, Maple picks only one eigenvalue. We can ask Maple to find all the
eigenvalues using the following command:

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

_Z1 means the integer plane. Hence, the eigenvalues can be taken as λ = nπ, n =
1, 2, 3,...∞. The solution for u can be written as:

> U:=eval(X(x)*T(t));

The constants c1 and T0 can be combined as a single constant An:

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U);

Hence, the solution can be written as an infinite series:

> u(x,t):=Sum(Un,n=1..infinity);

The values of the eigenvalues can be substituted as:

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t));

The constant An is obtained by applying the initial condition and by using the
orthogonal property of the eigenfunction:

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

594 7 Partial Differential Equations in Finite Domains

> I1:=int((sin(n*Pi*x))^2,x=0..1);

> I2:=int(sin(n*Pi*x),x=0..1);

The integrals can be simplified by substituting sin(nπ) = 0:

> vars:={sin(n*Pi)=0};

> I1:=subs(vars,I1);

> A[n]:=I2/I1;

The dimensionless temperature profile is given by:

> u(x,t):=eval(u(x,t));

7.1 Separation of Variables Method for PDEs in Finite Domains 595

For plotting purposes, we replace ∞ by, N, an integer:

> u(x,t):=subs(infinity=N,u(x,t));

N = 20 is enough for this problem:

> ua:=subs(N=20,u(x,t));

The solution obtained is plotted at t = 0. We observe oscillations about initial
condition 1. This is called Gibb's phenomenon. Theoretically it will take N = ∞
for this profile to become u = 1 at t = 0.

596 7 Partial Differential Equations in Finite Domains

> plot(eval(subs(t=0,ua)),x=0..1,axes=boxed,title="Figure 7.1",

thickness=3,labels=[x,"u(x,0)"]);

Fig. 7.1

Next, the initial condition is predicted using N = 100 terms in the series:

> ua2:=subs(N=100,u(x,t));

> plot(eval(subs(t=0,ua2)),x=0..1,axes=boxed,title="Figure 7.2",

thickness=3,labels=[x,"u(x,0)"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 597

Fig. 7.2

We observe better predictions as the number of terms increase. However, we need
more terms at t = 0. For values of t > 0, N = 20 is enough. Hence, a piecewise
polynomial can be used to define the initial condition at t = 0 and the separation of
variables solution obtained can be used for values of t > 0.

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

598 7 Partial Differential Equations in Finite Domains

A three dimensional plot can be made as:

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.3",

labels=[x,t,"u"],orientation=[60,60]);

Fig. 7.3

The profiles across the slab at different times can be plotted as:

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu),

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.4",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 599

Fig. 7.4

Example 7.2. Heat Conduction with an Insulator Boundary Condition

In the previous example, temperature was specified at both boundaries. In this
example, the temperature flux is taken to be zero because of symmetry.[1] The
governing equation is

2

2

u u

t x

u(x,0) 1

u
(0,t) 0 and u(1,t) 0

x

∂ ∂=
∂ ∂

=

∂ = =
∂

 (7.27)

Equation (7.27) is solved in Maple below by making few modifications in the
program used for Example 7.1.

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

600 7 Partial Differential Equations in Finite Domains

> IC:=u(x,0)=1;

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=0;

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=Eq/X(x)/T(t):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

> Eq_X:=rhs(Eq)=-lambda^2:

> X(x):=rhs(dsolve({Eq_X,D(X)(0)=c[1]*lambda,X(0)=c[2]},X(x))):

> Bc1:=diff(X(x),x)=0:

> Bc2:=X(x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[1]:=solve(Eq_Bc1,c[1]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=cos(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> U:=eval(X(x)*T(t)):

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U):

> u(x,t):=Sum(Un,n=0..infinity):

> u(x,t):=subs(lambda[n]=(2*n+1)/2*Pi,u(x,t));

7.1 Separation of Variables Method for PDEs in Finite Domains 601

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> I1:=int((cos(1/2*(2*n+1)*Pi*x))^2,x=0..1):

> I2:=int(cos(1/2*(2*n+1)*Pi*x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> A[n]:=I2/I1;

> u(x,t):=eval(u(x,t));

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

602 7 Partial Differential Equations in Finite Domains

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.5",

labels=[x,t,"u"],orientation=[60,60]);

Fig. 7.5

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu),

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.6",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 603

Fig. 7.6

In the previous two examples, we obtained the coefficient An in the infinite series
by using the orthogonal property of the eigenfunction. For certain cases it is not
trivial to choose the eigenfunctions for obtaining the integrals. A general criterion
for obtaining the coefficient An is given by the Sturm-Liouville equation.[2] If the
governing equation for X is given by:

() () ()()d dX
p x q x + r x X 0

dx dx
⎛ ⎞+ β =⎜ ⎟
⎝ ⎠

 (7.28)

where, β is a constant. The coefficient An is given by:

()

()

1

n

0
n 1

2
n

0

IC r x dx

A

r x dx

φ
=

φ

∫

∫
 (7.29)

where IC is the initial condition, φn is the eigenfunction that satisfies equation (7.28).
In Example 7.1, sin(λx) was the eigenfunction and in Example 7.2 cos(λx) was

604 7 Partial Differential Equations in Finite Domains

the eigenfunction. In both the examples, the weighting function r(x) was 1. For
problems in cylindrical coordinates and spherical coordinates, r(x) is x and x2,
respectively.

Example 7.3. Mass Transfer in a Spherical Pellet

Consider mass transfer in a spherical pellet.[1] The governing equation in
dimensionless form is

() ()

2

2

u u 2 u

t x x x

u(x,0) 1

u
0,t 0 and u 1,t 0

x

∂ ∂ ∂= +
∂ ∂ ∂

=

∂ = =
∂

 (7.30)

Equation (7.30) is solved in Maple below:

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x);

> IC:=u(x,0)=1;

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=0;

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2;

7.1 Separation of Variables Method for PDEs in Finite Domains 605

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x));

> dsolve({Eq_X},X(x));

The solution for X(x) can be taken as:

> X(x):=c[1]*sin(lambda*x)/x+c[2]*cos(lambda*x)/x;

>Bc1:=diff(X(x),x)=0;

> Bc2:=X(x)=0;

x = 0 cannot be substituted. Hence, the limit at x = 0 is obtained:

> Eq_Bc1:=eval(subs(x=0,Bc1));

Error, numeric exception: division by zero

> limit(Bc1,x=0);

606 7 Partial Differential Equations in Finite Domains

So the constant c2 should be zero.

> c[2]:=0;

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=sin(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> U:=eval(X(x)*T(t)):

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U):

> u(x,t):=Sum(Un,n=1..infinity):

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t));

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

The eigenfunction is:

> phi[n]:=sin(n*Pi*x)/x;

The weighting function is:

> r(x):=x^2;

Next, the integrals are calculated to obtain An:

> I1:=int(phi[n]^2*r(x),x=0..1):

> IC;

7.1 Separation of Variables Method for PDEs in Finite Domains 607

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1;

The dimensionless concentration profile is given by:

> u(x,t):=eval(u(x,t)):

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.7",

labels=[x,t,"u"],orientation=[60,60]);

608 7 Partial Differential Equations in Finite Domains

Fig. 7.7

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu),

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.8",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]);

Fig. 7.8

7.1 Separation of Variables Method for PDEs in Finite Domains 609

7.1.3 Separation of Variables for Parabolic PDEs with an Initial
Profile

In the previous three examples, the initial condition was uniform (= 1). In this
section, partial differential equations with an initial profile in x are considered.

Example 7.4. Heat Conduction in a rectangle with an Initial Profile

Example 7.1 is solved again with a sinusoidal profile in x as the initial condition.[1]

The dimensionless temperature profile is governed by:

() ()

() ()

2

2

u u

t x

u x,0 sin x

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

= π

= =

 (7.31)

Equation (7.31) is solved in Maple below:

> restart:

> with(plots):

The governing equation is entered here:

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

The initial condition is entered here:

> IC:=u(x,0)=sin(Pi*x);

The boundary conditions are entered here:

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=0;

610 7 Partial Differential Equations in Finite Domains

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))):

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=X(x)=0:

> Bc2:=X(x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[2]:=solve(Eq_Bc1,c[2]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=sin(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda):

> U:=eval(X(x)*T(t)):

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U):

> u(x,t):=Sum(Un,n=1..infinity):

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t));

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> phi[n]:=sin(n*Pi*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> IC;

7.1 Separation of Variables Method for PDEs in Finite Domains 611

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1);

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1);

The coefficient of An is obtained as:

> A[n]:=I2/I1;

For n = any integer value other than 1, An is zero:

> eval(subs(n=2,A[n]));

> eval(subs(n=3,A[n]));

> eval(subs(n=100,A[n]));

612 7 Partial Differential Equations in Finite Domains

> eval(subs(n=1,A[n]));

Error, numeric exception: division by zero

The limit command is applied to n = 1:

> A[1]:=limit(A[n],n=1);

There is only one nonzero term in the infinite series:

> u(x,t):=A[1]*sin(1*Pi*x)*exp(-Pi^2*t);

> plot3d(u(x,t),x=1..0,t=0.3..0,axes=boxed,title="Figure 7.9",

labels=[x,t,"u"],orientation=[60,60]);

Fig. 7.9

> plot([subs(t=0,u(x,t)),subs(t=0.05,u(x,t)),subs(t=0.1,u(x,t)),

subs(t=0.2,u(x,t)),subs(t=.3,u(x,t))],x=0..1,title="Figure 7.10",

axes=boxed,thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1",

"t=0.2","t=0.3"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 613

Fig. 7.10

Example 7.5. Heat Conduction in a Slab with a Linear Initial Profile

Example 7.2 is solved again with a linear profile in x as the initial condition.[1]
The dimensionless temperature profile is governed by:

()

() ()

2

2

u u

t x

u x,0 1 x

u
0,t 0 and u 1,t 0

x

∂ ∂=
∂ ∂

= −

∂ = =
∂

 (7.32)

Equation (7.32) is solved in Maple below by changing a few commands as:

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

614 7 Partial Differential Equations in Finite Domains

> IC:=u(x,0)=1-x;

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=0;

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=diff(X(x),x)=0:

> Bc2:=X(x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[1]:=solve(Eq_Bc1,c[1]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=cos(lambda)=0:

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> U:=eval(X(x)*T(t)):

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U):

> u(x,t):=Sum(Un,n=0..infinity):

> u(x,t):=subs(lambda[n]=(2*n+1)/2*Pi,u(x,t));

7.1 Separation of Variables Method for PDEs in Finite Domains 615

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> phi[n]:=cos((2*n+1)/2*Pi*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> IC;

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1);

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1:

> A[n]:=simplify(A[n]);

> u(x,t):=eval(u(x,t));

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

616 7 Partial Differential Equations in Finite Domains

The dimensionless temperature distribution is given by:

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.11",

labels=[x,t,"u"],orientation=[45,60]);

Fig. 7.11

> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu),

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.12",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 617

Fig. 7.12

Temperature at the surface, x = 0, can be found and plotted:

> us:=eval(subs(x=0,uu));

> plot(us,t=0..1,axes=boxed,title="Figure 7.13",thickness=3,labels=[t,"u"]);

618 7 Partial Differential Equations in Finite Domains

Fig. 7.13

7.1.4 Separation of Variables for Parabolic PDEs with
Eigenvalues Governed by Transcendental Equations

In the previous five examples, eigenvalues were explicitly solvable (nπ or

2n 1

2

+ π). For some problems, the eigenvalues cannot be solved explicitly. In

this section, we solve problems in which eigenvalues are obtained numerically.

Example 7.6. Heat Conduction in a Slab with Radiation Boundary Conditions

Consider heat conduction in a rectangle with radiation at the surface.[1] The
dimensionless temperature profile is governed by:

2

2

u u
 =

t x

u(x,0) = 1

u u
(0,t) 0 and (1,t) u(1,t) 0

x x

∂ ∂
∂ ∂

∂ ∂= + =
∂ ∂

 (7.33)

7.1 Separation of Variables Method for PDEs in Finite Domains 619

Equation (7.33) is solved in Maple below:

> restart:

> with(plots):

The governing equation, initial and boundary conditions are entered here:

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> IC:=u(x,0)=1;

> bc1:=diff(u(x,t),x)=0;

> bc2:=diff(u(x,t),x)+u(x,t)=0;

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))):

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=diff(X(x),x)=0:

> Bc2:=diff(X(x),x)+X(x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[1]:=solve(Eq_Bc1,c[1]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

The eigenvalue equation is:

> Eq_Eig:=cos(lambda)-lambda*sin(lambda);

620 7 Partial Differential Equations in Finite Domains

> solve(Eq_Eig,lambda);

Maple predicts negative eigenvalues:

> fsolve(Eq_Eig,lambda);

0.8603335890.

Positive eigenvalues can be obtained by specifying a positive range in the 'fsolve'
command.

> fsolve(Eq_Eig,lambda=0..3);

0.8603335890

The eigenvalue equation can be plotted as a function of the eigenvalue as:

> plot(Eq_Eig,lambda=0..20,thickness=3,title="Figure 7.14");

Fig. 7.14

The first 20 eigenvalues are obtained as:

> N:=20;

7.1 Separation of Variables Method for PDEs in Finite Domains 621

> l[1]:=fsolve(Eq_Eig,lambda=0..3);

l1 := 0.8603335890

> for i from 2 to N do l[i]:=fsolve(Eq_Eig,lambda=l[i-1]..l[i-1]+4);od:

> seq(l[i],i=1..N);

> U:=eval(X(x)*T(t)):

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U):

> u(x,t):=Sum(Un,n=1..infinity);

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> phi[n]:=cos(lambda[n]*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> IC;

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1):

> A[n]:=I2/I1;

> u(x,t):=eval(u(x,t));

622 7 Partial Differential Equations in Finite Domains

> u(x,t):=subs(infinity=N,u(x,t)):

> for i to N do lambda[i]:=l[i];od:

The transient analytical solution is:

> Digits:=5:u(x,t):=evalf(u(x,t));

> uu:=piecewise(t=0,rhs(IC),t>0,u(x,t)):

The plots are obtained as:

> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.15",

labels=[x,t,"u"],orientation=[45,60]);

Fig. 7.15

7.1 Separation of Variables Method for PDEs in Finite Domains 623

> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu),

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.16",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]);

Fig. 7.16

7.1.5 Separation of Variables for Parabolic PDEs with
Nonhomogeneous Boundary Conditions

In the previous examples, both of the boundary conditions were homogeneous.
For non-homogeneous boundary conditions, the separation of variables method
cannot be applied directly. Alternatively, functionality in x (w(x)) is introduced to
take care of the non-homogeneity of the boundary conditions and separation of
variables method is applied for the original partial differential equation with the
homogeneous boundary conditions.

Example 7.7. Heat Conduction in a slab with Nonhomogeneous Boundary
Conditions

Consider heat conduction in a rectangle with a nonhomogeneous boundary
condition at x = 1.[1]

624 7 Partial Differential Equations in Finite Domains

()

() ()

2

2

u u

t x

u x,0 0

u 0,t 0 and u 1,t 1

∂ ∂=
∂ ∂

=

= =

 (7.34)

The separation of variables method cannot be directly applied because of the
nonhomogeneous boundary condition at x 1= . To take care of this non-
homogeneity the following transformation is introduced

() () ()u x, t g x, t w x= + (7.35)

where w(x) satisfies the nonhomogeneous boundary conditions

() ()w 0 0 and w 1 1= = (7.36)

and g(x,t) satisfies the homogeneous boundary conditions

() ()g 0,t 0 and g 1,t 0= = (7.37)

Substituting the transformation equation (7.35) into the governing equation (7.34)
we get

2 2

2 2

g g d w

t x dx

∂ ∂= +
∂ ∂

 (7.38)

Equation (7.38) can be separated for g and w as:

2

2

g g

t x

∂ ∂=
∂ ∂

 (7.39)

2

2

d w
0

dx
= (7.40)

Equation (7.40) can be solved for the boundary conditions (equation (7.36)) as:

w x = (7.41)

Next, equation (7.39) can be solved using separation of variables method with the
homogeneous boundary conditions (equation (7.37)) as in Example 7.1 as:

() ()2 2
n

n =1

g A sin n x exp n t
∞

= π − π∑ (7.42)

7.1 Separation of Variables Method for PDEs in Finite Domains 625

The final solution is:

() ()2 2
n

n =1

u g w

 A sin n x exp n t x
∞

= +

= π − π +∑ (7.43)

Initial condition is applied to equation (7.42) as

()n
n =1

0 A sin n x x
∞

= π +∑ (7.44)

By applying the Sturm-Liouville theorem, the coefficient An for partial differential
equations with nonhomogeneous boundary conditions is obtained as:

() ()

()

1

n

0
n 1

2
n

0

IC w r x dx

A

r x dx

− φ
=

φ

∫

∫
 (7.45)

For this example, () ()nr x 1, IC 0, w x, and f sin npx= = = = .

The Maple program used to solve Example 7.7 is given below:

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> IC:=u(x,0)=0;

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=1;

> eq1:=eval(subs(u(x,t)=g(x,t)+w(x),eq));

626 7 Partial Differential Equations in Finite Domains

> eqw:=diff(w(x),x$2);

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2);

> bc1w:=w(x)=0;

> bc2w:=w(x)=1;

> w(x):=rhs(dsolve({eqw,w(0)=0,w(1)=1},w(x)));

> Eq:=subs(g(x,t)=X(x)*T(t),eqg):

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))):

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x);

> Bc1:=X(x)=0;

> Bc2:=X(x)=0;

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[2]:=solve(Eq_Bc1,c[2]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

7.1 Separation of Variables Method for PDEs in Finite Domains 627

> Eq_Eig:=sin(lambda)=0:

> solve(Eq_Eig,lambda):

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda):

> G1:=eval(X(x)*T(t)):

> Gn:=subs(c[1]=A[n]/T0,lambda=lambda[n],G1):

> g(x,t):=Sum(Gn,n=1..infinity):

> g(x,t):=subs(lambda[n]=n*Pi,g(x,t));

> u(x,t):=g(x,t)+w(x);

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> phi[n]:=sin(n*Pi*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1:

> A[n]:=simplify(A[n]):

628 7 Partial Differential Equations in Finite Domains

> u(x,t):=eval(u(x,t)):

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.17",

labels=[x,t,"u"],orientation=[-135,60]);

Fig. 7.17

> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu),

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.18",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 629

Fig. 7.18

In this example, w is just a linear function of x. However, for some complicated
problems, w can be complicated functions of x as shown in the next example.

Example 7.8. Diffusion with Reaction

Consider the diffusion of a gas (A) through a stagnant liquid (B) in a container.[3]

A reacts with B according to the irreversible reaction kA + B C⎯⎯→ (see
Example 5.5). The governing equation for this problem in dimensionless form is,

()

() ()

2
2

2

u u
u

t x

u x,0 0

u
u 0,t 1 and 1,t 0

x

∂ ∂= − Φ
∂ ∂

=

∂= =
∂

 (7.46)

where
2

AB

kL
 =

D
Φ is the Thiele modulus. This problem is solved in Maple

below.

630 7 Partial Differential Equations in Finite Domains

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t);

> IC:=u(x,0)=0;

> bc1:=u(x,t)=1;

> bc2:=diff(u(x,t),x)=0;

> eq1:=expand(eval(subs(u(x,t)=g(x,t)+w(x),eq)));

> eqw:=diff(w(x),x$2)-Phi^2*w(x);

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2)-Phi^2*g(x,t);

> bc1w:=w(x)=1;

> bc2w:=diff(w(x),x)=0;

> dsolve({eqw},w(x));

w(x) can be written as:

> w(x):=w1*cosh(Phi*x)+w2*sinh(Phi*x);

7.1 Separation of Variables Method for PDEs in Finite Domains 631

> eq_bc1w:=eval(subs(x=0,bc1w)):

> eq_bc2w:=eval(subs(x=1,bc2w)):

> w1:=solve(eq_bc1w,w1):

> w2:=solve(eq_bc2w,w2):

> w(x):=eval(w(x)):

> w(x):=combine(w(x)):

> w(x):=cosh(Phi*(1-x))/cosh(Phi);

> Eq:=subs(g(x,t)=X(x)*T(t),eqg);

> Eq:=expand(Eq/X(x)/T(t));

For convenience, Φ2 is written to the left hand side.

> Eq:=lhs(Eq)+Phi^2=rhs(Eq)+Phi^2;;

> Eq_T:=lhs(Eq)=-lambda^2;

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

T(t) can be written as:

> T(t):=T0*exp(-lambda^2*t)*exp(-Phi^2*t);

632 7 Partial Differential Equations in Finite Domains

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=X(x)=0:

> Bc2:=diff(X(x),x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[2]:=solve(Eq_Bc1,c[2]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=cos(lambda)=0:

> solve(Eq_Eig,lambda):

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda):

> G1:=eval(X(x)*T(t)):

> Gn:=subs(c[1]=A[n]/T0,lambda=lambda[n],G1):

> g(x,t):=Sum(Gn,n=1..infinity):

> g(x,t):=subs(lambda[n]=(2*n-1)/2*Pi,g(x,t));

> u(x,t):=g(x,t)+w(x);

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> phi[n]:=sin((2*n-1)/2*Pi*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

7.1 Separation of Variables Method for PDEs in Finite Domains 633

> I1:=subs(vars,I1):

> I1:=simplify(I1);

> I2:=subs(vars,I2):

> I2:=simplify(I2);

I2 is simplified further:

> I2n:=numer(I2):

> I2d:=denom(I2):

> I2d:=expand(I2d):

> I2:=I2n/I2d;

> A[n]:=I2/I1:

> A[n]:=simplify(A[n]):

> u(x,t):=eval(u(x,t));

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

> uu:=piecewise(t=0,rhs(IC),t>0,ua):

> plot3d(subs(Phi=1,uu),x=1..0,t=0.5..0,axes=boxed,title="Figure 7.19",

labels=[x,t,"u"],orientation=[-45,60]);

634 7 Partial Differential Equations in Finite Domains

Fig. 7.19

> plot([subs(t=0,Phi=1,uu),subs(t=0.05,Phi=1,uu),subs(t=0.1,Phi=1,uu),

subs(t=0.2,Phi=1,uu),subs(t=0.5,Phi=1,uu)],x=0..1,axes=boxed,

title="Figure 7.20.",thickness=5,labels=[x,"u"],

legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]);

Fig. 7.20

7.1 Separation of Variables Method for PDEs in Finite Domains 635

7.1.6 Separation of Variables for Parabolic PDEs with Two Flux
Boundary Conditions

In section 7.1.5, non-homogeneity in the boundary conditions was removed by
adding w(x) to the solution. However, for partial differential equations with two
nonhomogeneous flux boundary conditions, this method does not work.[4] For
this case two separate functions (w(x) v(t)) are introduced to take care of the non-
homogeneity of the boundary conditions and the separation of variables method is
applied for the partial differential equation with the homogeneous boundary
conditions.

Example 7.9. Diffusion in a Slab with Nonhomogeneous Flux Boundary
Conditions

Consider diffusion in a rectangle with a nonhomogeneous boundary condition
at x 1= x[4]

()

() ()

2

2

u u

t x
u x,0 0

u u
0,t 0 and 1,t

x x

∂ ∂=
∂ ∂

=
∂ ∂= = δ
∂ ∂

 (7.47)

The technique illustrated in section 7.1.5 cannot be directly applied for this
problem because w(x) cannot be solved to satisfy the two flux boundary
conditions at x = 0 and x = 1. To take care of the non-homogeneity the following
transformation is introduced

() () () ()u x, t g x, t w x v t= + + (7.48)

where w(x) satisfies the boundary conditions

() ()dw dw
0 0 and 1

dx dx
= = δ (7.49)

and g(x,t) satisfies the homogeneous boundary conditions

() ()g g
0,t 0 and 1,t 0

x x

∂ ∂= =
∂ ∂

 (7.50)

The variable v(t) satisfies the initial condition:

()v 0 0 = (7.51)

Substituting the transformation (equation (7.48)) into the governing equation (7.47)
we get

636 7 Partial Differential Equations in Finite Domains

2 2

2 2

g dv g d w

t dt x dx

∂ ∂+ = +
∂ ∂

 (7.52)

Equation(7.52) can be separated as:

2

2

g g

t x

∂ ∂=
∂ ∂

 (7.53)

2

2

dv d w

dt dx
= (7.54)

The left hand side of equation (7.54) is a function of time alone and the right hand
side is a function of x alone. Hence, both sides should be equal to a constant k,

2

2

dv d w
k

dt dx
= = (7.55)

The second half of equation (7.55) can be solved with the boundary conditions to
give,

k d= (7.56)

and

() 2 w x x B
2

δ= + (7.57)

where B is an arbitrary constant. The left hand side of equation (7.55) can be
solved with the initial condition for v(t) (equation(7.51)) to give

()v t dt= (7.58)

Hence, the solution is given by

2

u(x,t) g(x,t) w(x) v(t)

 g(x,t) x t B
2

= + +
δ= + + δ +

 (7.59)

Now g(x,t) is obtained by solving equation (7.53) with the homogeneous boundary
conditions (equation (7.50)) to give,

2 2
n

n 1

g(x,t) A exp(-n π t)cos(nπx)
∞

=
= ∑ (7.60)

where An , n = 1,2,…, are constants. Hence, the final solution is given by,

2 2 2
n

n 1

u(x,t) x t B A exp(-n t)cos(n x)
2

∞

=

δ= + δ + + π π∑ (7.61)

7.1 Separation of Variables Method for PDEs in Finite Domains 637

The constants An and B are obtained by imposing the initial condition,

2
n

n 1

u(x,0) 0 x B A cos (n x)
2

∞

=

δ= = + + π∑ (7.62)

Next, An is obtained as in section 7.1.5 as:

1

n n
0

n 1 2 2
2
n

0

(0 w) r(x)dx
2(-1)

A = -
n

r(x)dx

− φ
= δ

π
φ

∫

∫
 (7.63)

For this example r(x) = 1, IC = 0, w = 2x B
2

δ + x and φn = cos(nπx). Next B

is obtained by multiplying both sides of equation (7.63) by r(x) and integrating
from 0 to 1:

1 1 1 1
2

n n
n 10 0 0 0

ICr(x)dx r(x)x dx B r(x)dx A r(x) dx
2

∞

=

δ= + + φ∑∫ ∫ ∫ ∫

(7.64)

Note that the last integral in equation (7.64) goes to zero. For this example
IC = 0, r(x) = 1, and φn = cos(nπx). Substituting these values in equation (7.64)
we get,

B
6

−δ= (7.65)

Substituting equations (7.63) and (7.65) into equation (7.62) we get the complete
solution:

() () () ()
n

2 2 2
2 2

n 1

11 2
u t 3x 1 exp n t cos n x

6 n

∞

=

⎡ ⎤−
= δ + − − − π π⎢ ⎥

π⎢ ⎥⎣ ⎦
∑ (7.66)

The Maple program used to solve Example 7.9 is given below:

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

638 7 Partial Differential Equations in Finite Domains

> IC:=u(x,0)=0;

> bc1:=diff(u(x,t),x)=0;

> bc2:=diff(u(x,t),x)=delta;

> eq1:=eval(subs(u(x,t)=g(x,t)+w(x)+v(t),eq));

The governing equations for v(t), w(x) and g(x, t) are:

> eqv:=diff(v(t),t)=k;

> eqw:=diff(w(x),x$2)=k;

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2);

The boundary conditions for w(x) are:

> bc1w:=diff(w(x),x)=0;

> bc2w:=diff(w(x),x)=delta;

7.1 Separation of Variables Method for PDEs in Finite Domains 639

w(x) can be solved with the boundary condition at x = 0 as:

> w(x):=rhs(dsolve({eqw,D(w)(0)=0},w(x)));

The value of constant k is found using the boundary condtion at x = 1:

> bc2w:=subs(x=1,diff(w(x),x))=delta;

> k:=solve(bc2w,k);

> w(x):=1/2*delta*x^2+B;

v(t) is solved as:

> v(t):=rhs(dsolve({eqv,v(0)=0},v(t)));

> Eq:=subs(g(x,t)=X(x)*T(t),eqg):

g(x, t) is obtained as:

> Eq:=expand(Eq/X(x)/T(t)):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))):

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=diff(X(x),x)=0:

> Bc2:=diff(X(x),x)=0:

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[1]:=solve(Eq_Bc1,c[1]):

> Eq_Bc2:=eval(subs(x=1,Bc2)):

> Eq_Eig:=sin(lambda)=0:

> solve(Eq_Eig,lambda):

640 7 Partial Differential Equations in Finite Domains

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda):

> G1:=eval(X(x)*T(t)):

> Gn:=subs(c[2]=A[n]/T0,lambda=lambda[n],G1):

> g(x,t):=Sum(Gn,n=1..infinity):

> g(x,t):=subs(lambda[n]=n*Pi,g(x,t));

> u(x,t):=g(x,t)+w(x)+v(t);

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

The constant An is found as:

> phi[n]:=cos(n*Pi*x):

> r(x):=1:

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1;

7.1 Separation of Variables Method for PDEs in Finite Domains 641

Next, constant B is found as:

> eqB:=int(lhs(eq_An*r(x)),x=0..1)=int(rhs(eq_An*r(x)),x=0..1);

Error, (in simpl/Im) too many levels of recursion

> eqB:=subs(vars,eqB);

> B:=-delta/6;

> u(x,t):=eval(u(x,t));

> u(x,t):=subs(infinity=N,u(x,t)):

> ua:=subs(N=20,u(x,t)):

> uu:=piecewise(t=0,rhs(IC),t>0,ua);

> plot3d(subs(delta=1,uu),x=1..0,t=0.5..0,axes=boxed,title="Figure 7.21",

labels=[x,t,"u"],orientation=[-135,60]);

642 7 Partial Differential Equations in Finite Domains

Fig. 7.21

> plot([subs(t=0,delta=1,uu),subs(t=0.2,delta=1,uu),subs(t=0.5,delta=1,uu),

subs(t=0.7,delta=1,uu),subs(t=1,delta=1,uu)],x=0..1,title="Figure 7.22",

axes=boxed,thickness=5,labels=[x,"u"],legend=["t=0","t=0.2","t=0.5",

"t=0.7","t=1.0"]);

Fig. 7.22

7.1 Separation of Variables Method for PDEs in Finite Domains 643

7.1.7 Numerical Separation of Variables for Parabolic PDEs

In the previous sections, analytical expressions were derived for the eigenfunction
(X(x)) and eigenvalues were obtained analytically or numerically from a trans-
cendental equation. Alternatively, one can numerically obtain the eigenfunctions and
eigenvalues. The advantage with the numerical approach is that the method is very
general and one does not need to use Bessel or other special functions for the
eigenfunctions. Also, there is no need to solve the transcendental equation. The
methodology is illustrated by solving Example 7.1 numerically.

Example 7.10. Heat Transfer in a Rectangle

Consider the heat transfer problem

2

2

u u
 =

t x

u(x,0) = 1

u(0,t) = 0 and u(1,t) = 0

∂ ∂
∂ ∂

 (7.67)

The steps involved are the same as those in Example 7.1. The only difference is
that the eigenfunction X(x) and the eigenvalues λ’s are obtained numerically. An

additional boundary condition at x = 0
dX

(0) = 0
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is taken to obtain the

eigenvalue. Read Example 3.2.15 for additional details. The Maple program used
to solve this example using numerical separation of variables is given below:

> restart:

> with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> IC:=u(x,0)=1;

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=0;

644 7 Partial Differential Equations in Finite Domains

> Eq:=subs(u(x,t)=X(x)*T(t),eq):

> Eq:=Eq/X(x)/T(t):

> Eq_T:=lhs(Eq)=-lambda^2:

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t)));

> Eq_X:=rhs(Eq)=-lambda^2:

> Eq_X:=expand(Eq_X*X(x));

The eigenvalue λ is obtained using the shooting technique. The third condition at

x = 0 is assumed for
dX

dλ
. The sensitivity equation is developed for the sensitivity

variable X2 =

> eqlambda:=subs(X(x)=X(x,lambda),Eq_X):

> eqlambda:=diff(eqlambda,lambda):

> eqlambda:=subs(diff(X(x,lambda),lambda)=X2(x),eqlambda):

> eqlambda:=subs(X(x,lambda)=X(x),eqlambda);

The dependent variables are:

> vars:=(X(x),X2(x));

The initial conditions for X and X2 are:

> ICs:=(X(0)=0,D(X)(0)=1,X2(0)=0,D(X2)(0)=0);

A tolerance 1e - 9 is set. A scaling factor of 1/2 is used for obtaining eigenvalues.

> tol:=1e-9;rho:=1/2;

7.1 Separation of Variables Method for PDEs in Finite Domains 645

Different initial guesses are used to predict the first ten eigenvalues:

> lambdaguess:=[3,6,9,12,15,18,21,24,27,30];

> MM:=nops(lambdaguess);

> Xexp:=0:

> for i from 1 to MM do

> lambda0:=lambdaguess[i];

> k:=1;err:=1;

> while err>tol do

> eqs:=subs(lambda=lambda0,Eq_X),subs(lambda=lambda0,eqlambda);

> Sol[i]:=dsolve({eqs,ICs},{vars},type=numeric,output=listprocedure);

> Xpred:=rhs(Sol[i](1)[2]);

> X2pred:=rhs(Sol[i](1)[4]);

> lambda1:=lambda0+rho*(Xexp-Xpred)/X2pred;

> err:=abs(lambda1-lambda0);

> lambda0:=lambda1;k:=k+1;

> end;

> l[i]:=lambda0;

> kk[i]:=k;

> Err[i]:=err;

> od:

The first ten eigenvalues are:

> seq(l[i],i=1..MM);

646 7 Partial Differential Equations in Finite Domains

The number of iterations required to get the eigenvalues are:

> seq(kk[i],i=1..MM);

The error associated with the eigenvalues is:

> seq(Err[i],i=1..MM);

The first ten eigenfunctions are plotted as:

> for i to MM do XX[i]:=subs(Sol[i],X(x)):od:

> for i to MM do p[i]:=plot(XX[i](x),x=0..1,thickness=3,title="Figure 7.23",

axes=boxed):od:

> display({seq(p[i],i=1..MM)},labels=[x,"X"]);

Fig. 7.23

The first eigenfunction becomes negative. The second eigenfunction becomes
negative one then returns to zero. Similarly, the nth eigenfunction crosses the x
axis n - 1 times.

> U:=eval(X(x)*T(t)):

The solution can be taken as:

> Un:=A[n]*XX[n](x)*exp(-lambda[n]^2*t);

7.1 Separation of Variables Method for PDEs in Finite Domains 647

> for i to MM do lambda[i]:=l[i];od:

> u(x,t):=Sum(Un,n=1..MM);

The constant An is obtained as:

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC);

> I1:=int(X(x)^2,x=0..1):

> I2:=int(X(x),x=0..1):

> An:=I2/I1;

The coefficient An , n = 1.. .10 are numerically obtained as:

> for j to MM do

> N:=200:I1:=0:I2:=0:

> for i from 1 to N-1 do I1:=I1+XX[j](i/N)^2*2/(2*N);I2:=I2+XX[j](i/N)*2/(2*N)od:

> I1:=I1+(XX[j](0)^2+XX[j](1)^2)/(2*N):

> I2:=I2+(XX[j](0)+XX[j](1))/(2*N):

> A[j]:=I2/I1;od:

> seq(A[j],j=1..MM);

> u(x,t):=eval(u(x,t)):

> ua:=evalf(u(x,t));

648 7 Partial Differential Equations in Finite Domains

> uu:=piecewise(t=0,rhs(IC),t>0,ua):

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.24",

labels=[x,t,"u"],orientation=[60,60]);

Fig. 7.24

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu),

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.25",

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 649

Fig. 7.25

7.1.8 Separation of Variables for Elliptic PDEs

The separation of variables method can be used for steady state elliptic PDEs also.
In this case, the dependent variable is separated in the x and y coordinates. In
order to apply separation of variables method, only one boundary condition can be
nonhomogeneous. If more than one boundary condition is nonhomogeneous, then
the problem has to be reduced to the case where only one boundary condition is
nonhomogeneous. One has to separate the original boundary value problem into
two boundary value problems, each of which will have only one nonhomogeneous
boundary condition. The methodology is illustrated using steady state heat transfer
in a rectangle.

Example 7.11. Heat Transfer in a Rectangle

Consider the steady state heat transfer problem.[1] The boundary condition at
y = 1 (the nonhomogeneous boundary condition) is used to find the coefficient An
in the infinite series after separating the variables.

2 2

2 2

u u
 + = 0

y x

u(0,y) = 0 and u(1,y) = 0

u(x,0) = 0 and u(x,1) = 1

∂ ∂
∂ ∂

 (7.68)

650 7 Partial Differential Equations in Finite Domains

The Maple program used to solve this example is given below:

> restart:

> with(plots):

Derivatives in y are entered on the left hand side and derivatives in x are entered
on the right hand side.

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2);

The boundary conditions at x = 0 and x = 1 are entered:

> bc1:=u(x,y)=0;

> bc2:=u(x,y)=0;

The boundary conditions at y = 0 and y = 1 are entered:

> bc3:=u(x,y)=0;

> bc4:=u(x,y)=1;

The dependent variable is separated as:

> Eq:=subs(u(x,y)=X(x)*Y(y),eq);

> Eq:=expand(Eq/X(x)/Y(y));

> Eq_Y:=lhs(Eq)=lambda^2:

> Eq_Y:=eval(Eq_Y*Y(y));

7.1 Separation of Variables Method for PDEs in Finite Domains 651

> dsolve(Eq_Y,Y(y));

Y(y) can be written as:

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y);

The homogeneous boundary condition in y (at y = 0) is used to eliminate one of
the constants.

> Bc3:=Y(y)=0;

> Eq_Bc3:=eval(subs(y=0,Bc3));

> C[2]:=solve(Eq_Bc3);

> Y(y):=eval(Y(y));

X(x) is obtained as in Example 7.1:

> Eq_X:=rhs(Eq)=lambda^2:

> Eq_X:=expand(Eq_X*X(x));

> dsolve({Eq_X},X(x));

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x);

> Bc1:=X(x)=0;

> Bc2:=X(x)=0;

652 7 Partial Differential Equations in Finite Domains

> Eq_Bc1:=eval(subs(x=0,Bc1));

> c[2]:=solve(Eq_Bc1,c[2]);

> Eq_Bc2:=eval(subs(x=1,Bc2));

> Eq_Eig:=sin(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> U:=eval(X(x)*Y(y));

> Un:=subs(c[1]=A[n]/C[1],lambda=lambda[n],U):

> u(x,y):=Sum(Un,n=1..infinity):

The dimensionless temperature is:

> u(x,y):=subs(lambda[n]=n*Pi,u(x,y));

The constant An is obtained using the nonhomogeneous boundary condition at y = 1:

> eq_An:=eval(subs(y=1,u(x,y)))=rhs(bc4);

> phi[n]:=sin(n*Pi*x);

> r(x):=1;

7.1 Separation of Variables Method for PDEs in Finite Domains 653

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int(1*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1/sinh(n*Pi);

> u(x,y):=eval(u(x,y));

> u(x,y):=subs(infinity=N,u(x,y)):

> ua:=subs(N=20,u(x,y)):

> uu:=piecewise(y<0.99,ua,y>0.99,1);

> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.26",

labels=[x,y,"u"],orientation=[-120,60]);

654 7 Partial Differential Equations in Finite Domains

Fig. 7.26

> plot([subs(y=0,uu),subs(y=0.4,uu),subs(y=0.6,uu),subs(y=0.8,uu),

subs(y=0.9,uu),subs(y=1,uu)],x=0..1,title="Figure 7.27",

axes=boxed,thickness=5,labels=[x,"u"],legend=["y=0","y=0.4","y=0.6",

"y=0.8","y=0.9","y=1.0"]);

Fig. 7.27

7.1 Separation of Variables Method for PDEs in Finite Domains 655

Example 7.12. Diffusion in a Cylinder

Consider the steady state diffusion in a cylinder

2 2

2 2

u u 1 u
+ = 0

y x x x

u
(0,y) = 0 and u(1,y) = 0

x

u
u(x,0) = 1 and (x,1) = 0

x

∂ ∂ ∂+
∂ ∂ ∂

∂
∂

∂
∂

 (7.69)

The boundary condition at y = 0 (the nonhomogeneous boundary condition) is
used to find the coefficient An in for this example. Also, this example involves
calculating the eigenvalues from the transcendental equation as illustrated in
Example 7.14. The Maple output for this problem is given below:

> restart:

> with(plots):

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)-1/x*diff(u(x,y),x);

> bc1:=diff(u(x,y),x)=0;

> bc2:=u(x,y)=0;

> bc3:=u(x,y)=1;

> bc4:=diff(u(x,y),x)=0;

656 7 Partial Differential Equations in Finite Domains

> Eq:=subs(u(x,y)=X(x)*Y(y),eq);

> Eq:=expand(Eq/X(x)/Y(y));

> Eq_Y:=lhs(Eq)=lambda^2:

> Eq_Y:=eval(Eq_Y*Y(y));

> dsolve(Eq_Y,Y(y));

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y);

> Bc4:=diff(Y(y),y)=0;

> Eq_Bc4:=eval(subs(y=1,Bc4));

> C[2]:=solve(Eq_Bc4,C[2]);

> Y(y):=eval(Y(y));

> combine(Y(y));

7.1 Separation of Variables Method for PDEs in Finite Domains 657

> Y(y):=C[1]*cosh(lambda*(1-y))/sinh(lambda);

> Eq_X:=rhs(Eq)=lambda^2:

> Eq_X:=expand(Eq_X*X(x));

> dsolve({Eq_X},X(x));

> X(x):=c[1]*BesselJ(0,lambda*x)+c[2]*BesselY(0,lambda*x);

> Bc1:=diff(X(x),x)=0;

> Bc2:=X(x)=0;

> BesselJ(0,0);

> BesselY(0,0);

Error, (in BesselY) numeric exception: division by zero

> c[2]:=0;

> Eq_Bc2:=eval(subs(x=1,Bc2));

> Eq_Eig:=BesselJ(0,lambda)=0;

658 7 Partial Differential Equations in Finite Domains

> l[1]:=fsolve(Eq_Eig,lambda=0..3);

> N:=20;

> for i from 2 to N do l[i]:=fsolve(Eq_Eig,lambda=l[i-1]..l[i-1]+4);od:

> seq(l[i],i=1..N);

> U:=eval(X(x)*Y(y)):

> Un:=subs(c[1]=A[n]/C[1],lambda=lambda[n],U);

> u(x,y):=Sum(Un,n=1..N):

> eq_An:=eval(subs(y=0,u(x,y)))=rhs(bc3);

> phi[n]:=BesselJ(0,lambda[n]*x);

> r(x):=x;

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int(1*phi[n]*r(x),x=0..1):

> A[n]:=I2/I1/cosh(lambda[n])*sinh(lambda[n]);

7.1 Separation of Variables Method for PDEs in Finite Domains 659

> u(x,y):=eval(u(x,y));

> for i to N do lambda[i]:=l[i];od:

> ua:=evalf(u(x,y)):

> uu:=piecewise(y=0,1,y>0,ua):

> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.28",

labels=[x,y,"u"],orientation=[30,60]);

Fig. 7.28

> plot([subs(y=0,uu),subs(y=0.1,uu),subs(y=0.2,uu),subs(y=0.3,uu),

subs(y=0.4,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 7.29",

thickness=5,labels=[x,"u"],legend=["y=0","y=0.1","y=0.2","y=0.3","y=0.4",

"y=1.0"]);

660 7 Partial Differential Equations in Finite Domains

Fig. 7.29

Example 7.13. Heat Transfer with Nonhomogeneous Boundary Conditions

Consider the steady state heat transfer problem with nonhomogeneous boundary
conditions in both x and y

2 2

2 2

u u
 + 0

y x

u(0,y) = 0 and u(1,y) = 1

u(x,0) = 0 and u(x,1) = 1

∂ ∂ =
∂ ∂

 (7.70)

If we define u = v(x,y) + w(x,y) then both v and w satisfy the Laplace equation

2 2 2 2

2 2 2 2

v v w w
 + = 0 and + = 0

y x y x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 (7.71)

where v(x,y) has to satisfy only one nonhomogeneous boundary condition (at y = 1):

v(0,y) = 0 and v(1,y) = 1

v(x,0) = 0 and v(x,1) = 0

 (7.72)

7.1 Separation of Variables Method for PDEs in Finite Domains 661

and w(x,y) has to satisfy only one nonhomogeneous boundary condition (at x = 1):

w(0,y) = 0 and w(1,y) = 0

w(x,0) = 0 and w(x,1) = 1

 (7.73)

The final solution u = v + w satisfies nonhomogeneous boundary conditions at
both y = 1 and x = 1. The solution for v was derived in Example 7.11. The
solution for w can be obtained by interchanging x and y in the solution for w. The
Maple output for this example is given below:

> restart:

> with(plots):

> eq:=diff(v(x,y),y$2)=-diff(v(x,y),x$2);

> bc1:=v(x,y)=0;

> bc2:=v(x,y)=0;

> bc3:=v(x,y)=0;

> bc4:=u(x,y)=1;

> Eq:=subs(v(x,y)=X(x)*Y(y),eq);

> Eq:=expand(Eq/X(x)/Y(y));

> Eq_Y:=lhs(Eq)=lambda^2:

> Eq_Y:=eval(Eq_Y*Y(y));

662 7 Partial Differential Equations in Finite Domains

> dsolve(Eq_Y,Y(y));

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y);

> Bc3:=Y(y)=0;

> Eq_Bc3:=eval(subs(y=0,Bc3));

> C[2]:=solve(Eq_Bc3);

> Y(y):=eval(Y(y));

> Eq_X:=rhs(Eq)=lambda^2:

> Eq_X:=expand(Eq_X*X(x));

> dsolve({Eq_X},X(x));

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x);

> Bc1:=X(x)=0;

> Bc2:=X(x)=0;

> Eq_Bc1:=eval(subs(x=0,Bc1));

7.1 Separation of Variables Method for PDEs in Finite Domains 663

> c[2]:=solve(Eq_Bc1,c[2]);

> Eq_Bc2:=eval(subs(x=1,Bc2));

> Eq_Eig:=sin(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> V:=eval(X(x)*Y(y));

> Vn:=subs(c[1]=A[n]/C[1],lambda=lambda[n],V):

> v(x,y):=Sum(Vn,n=1..infinity):

> v(x,y):=subs(lambda[n]=n*Pi,v(x,y));

> eq_An:=eval(subs(y=1,v(x,y)))=rhs(bc4);

> phi[n]:=sin(n*Pi*x);

> r(x):=1;

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int(1*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

664 7 Partial Differential Equations in Finite Domains

> I2:=subs(vars,I2):

> A[n]:=I2/I1/sinh(n*Pi);

> v(x,y):=eval(v(x,y));

> v(x,y):=subs(infinity=N,v(x,y)):

> va:=subs(N=20,v(x,y));

> wa:=subs(x=Y,y=X,va):wa:=subs(X=x,Y=y,wa);

7.1 Separation of Variables Method for PDEs in Finite Domains 665

> ua:=va+wa;

> plot(subs(x=1,ua),y=0..1,thickness=3,title=”Figure 7.30”,axes=boxed);

Fig. 7.30

666 7 Partial Differential Equations in Finite Domains

> uu:=piecewise(x=1,1,y=1,1,ua);

> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.31",

labels=[x,y,"u"],orientation=[-120,60],view=[0..1,0..1,0..1]);

Fig. 7.31

> plot([subs(y=0,uu),subs(y=0.4,uu),subs(y=0.6,uu),subs(y=0.8,uu),subs

(y=0.9,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 32",

thickness=5,labels=[x,"u"],legend=["y=0","y=0.4","y=0.6","y=0.8","y=0.9",

"y=1.0"]);

7.1 Separation of Variables Method for PDEs in Finite Domains 667

Fig. 7.32

Example 7.14. Heat Transfer with a Nonhomogeneous Governing Equation

> restart:

> with(plots):

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)-1;

> bc1:=u(x,y)=0;

> bc2:=u(x,y)=0;

> bc3:=u(x,y)=0;

> bc4:=u(x,y)=0;

668 7 Partial Differential Equations in Finite Domains

> eq:=expand(subs(u(x,y)=g(x,y)+w(x),eq));

> eq_w:=diff(w(x),`$`(x,2))+1=0;

> w(x):=rhs(dsolve({eq_w,w(0)=0,w(1)=0},w(x)));

> eqg:=diff(g(x,y),`$`(y,2)) = -diff(g(x,y),`$`(x,2));

> Eq:=subs(g(x,y)=X(x)*Y(y),eqg):

> Eq:=expand(Eq/X(x)/Y(y)):

> Eq_Y:=lhs(Eq)=lambda^2:

> Eq_Y:=eval(Eq_Y*Y(y)):

> dsolve(Eq_Y,Y(y)):

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y):

> Bc3:=Y(y)=0;

> Eq_Bc3:=eval(subs(y=0,Bc3)):

> C[2]:=solve(Eq_Bc3):

> Y(y):=eval(Y(y));

> Eq_X:=rhs(Eq)=lambda^2:

> Eq_X:=expand(Eq_X*X(x)):

> dsolve({Eq_X},X(x)):

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x):

> Bc1:=X(x)=0;

7.1 Separation of Variables Method for PDEs in Finite Domains 669

> Bc2:=X(x)=0;

> Eq_Bc1:=eval(subs(x=0,Bc1)):

> c[2]:=solve(Eq_Bc1,c[2]);

> Eq_Bc2:=eval(subs(x=1,Bc2));

> Eq_Eig:=sin(lambda)=0;

> _EnvAllSolutions := true:

> solve(Eq_Eig,lambda);

> G:=eval(X(x)*Y(y));

> Gn:=subs(c[1]=A[n]/C[1],lambda=lambda[n],G):

> u(x,y):=Sum(Gn,n=1..infinity)+w(x):

> u(x,y):=subs(lambda[n]=n*Pi,u(x,y));

> eq_An:=eval(subs(y=1,u(x,y)))=rhs(bc4);

> phi[n]:=sin(n*Pi*x);

> r(x):=1;

670 7 Partial Differential Equations in Finite Domains

> I1:=int(phi[n]^2*r(x),x=0..1):

> I2:=int((0-w(x))*phi[n]*r(x),x=0..1):

> vars:={sin(n*Pi)=0}:

> I1:=subs(vars,I1):

> I2:=subs(vars,I2):

> A[n]:=I2/I1/sinh(n*Pi);

> u(x,y):=eval(u(x,y));

> u(x,y):=subs(infinity=N,u(x,y)):

> ua:=subs(N=20,u(x,y)):

> uu:=piecewise(y<0.9999,ua,y>0.9999,0);

> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.33",

labels=[x,y,"u"],orientation=[-120,60]);

7.1 Separation of Variables Method for PDEs in Finite Domains 671

Fig. 7.33

> plot([subs(y=0,uu),subs(y=0.6,uu),subs(y=0.8,uu),subs(y=0.9,uu),

subs(y=0.95,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 7.34",

thickness=5,labels=[x,"u"],legend=["y=0","y=0.6","y=0.8","y=0.9","y=0.95",

"y=1.0"]);

Fig. 7.34

672 7 Partial Differential Equations in Finite Domains

7.1.9 Summary

In this chapter, analytical solutions were obtained for parabolic and elliptic partial
differential equations in finite domains using separation of variables method. In
section 7.1.2, a linear parabolic partial differential equation with homogeneous
boundary conditions was solved using the separation of variables method. The
dependent variable was assumed to be a product of two separate functions of x
and t. These functions were then solved using the corresponding boundary and
initial conditions. The final solution was obtained by superposition of individual
solutions. In section 7.1.3 this method was then extended to problems with an
initial profile in x. In sections 7.1.2 and 7.1.3 analytical explicit relations were
obtained for the eigenvalues. In section 7.1.4 eigenvalues were obtained from a
nonlinear implicit transcendental equation. In section 7.1.5, the method was
extended to parabolic partial differential equations with nonhomogeneous
boundary conditions. In section 7.1.6, the method was extended to parabolic
partial differential equations with nonhomogeneous flux boundary conditions (at
both of the boundaries).

In section 7.1.7, eigenfunctions and eigenvalues were obtained numerically.
This method is very general and can be used to avoid the use of complicated
special function solutions. In section 7.1.8, the separation of variables method
which was illustrated earlier for parabolic partial differential equations was
extended to elliptic partial differential equations. A total of fourteen examples
were presented in this chapter.

7.1.10 Exercise Problems

1. Complete the details missing in Example 7.5.
2. Obtain an analytical solution for Example 7.5 if the initial condition is

replaced by u(x,0) = 1-xm, where m is an integer.
3. Redo Example 7.4 if the initial condition is given by the piecewise function

u(x,0) = x 0 x 0.5

 = 1 - x 0.5 < x 1

≤ ≤
≤

4. Solve the following parabolic PDE using the separation of variables
method:

2

2

u u
 =

t x
x

u(x,0) = cos
2

u
(0,t) = 0 and u(1,t) = 0

x

∂ ∂
∂ ∂

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
∂

7.1 Separation of Variables Method for PDEs in Finite Domains 673

5. Obtain an analytical solution for Example 5.2 using the separation of
variables method and plot the profiles.

6. Obtain an analytical solution for the Graetz problem described in Example
5.6. If you are not able to find the eigenfunction and eigenvalues analytically,
find them numerically.

7. Consider diffusion with convection in a coated wall reactor where the reaction
takes place at the wall (Rice and Do, 1995;[2] chapter 5.1, exercise problem 1).
The governing equation and boundary conditions for concentration in
dimensionless form are:

2

2

u u 1 u
 = +

Z x x x
u u

(0,Z) = 0 and (1, Z) + Ha u(1,Z) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

where Ha is the Hatta number. Obtain an analytical solution for this
problem using the separation of variables method.

8. Consider the cooling of spherical nuclear pellets (Rice and Do, 1995;[2]
chapter 5.1, exercise problem 7). The dimensionless temperature
distribution is governed by:

2

2

u u 2 u
 = + + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

where Q is the ratio of heat generation to heat conduction and Bi is the Biot
number. Obtain an analytical solution for this problem using the separation
of variables method. Plot the profiles for Q = 1, Bi = 0.2 and Q = 1, Bi = 10.

9. Consider dispersion of a linear kinematic wave in dimensionless form
(Aris, 1999;[5] chapter 5.1, exercise problem 9). The governing equation
and boundary/initial conditions are:

2

2

u u u
 = -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂

674 7 Partial Differential Equations in Finite Domains

Obtain an analytical solution for this problem using the separation of
variables method. Plot the profiles for Pe = 1, 10 and 50.

10. Consider the fluid-flow problem (Davis, 1984;[6] chapter 5.1, exercise
problem 10):

2

2

u u 1 u
 = + + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

Obtain an analytical solution using separation of variables method and plot
the dimensionless velocity profiles.

11. Consider the Graetz problem in planar geometry (chapter 5.1, exercise
problem 11). The governing equations and boundary/initial conditions are:

2
2

2

u u
2Pe(1 x) =

z x
u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

Solve this problem analytically and plot the profiles for different values of
Peclet number. Hint: if you can’t find the eigenfunction and eigenvalues
analytically, find them numerically.

12. Consider heat conduction in a slab with radiation at both ends (Carslaw and
Jaeger, 1959[1]; chapter 5.1, exercise problem 12). The dimensionless
governing equations and boundary/initial conditions are:

2

2

u u
 =

t x
u u

(0,t) + Hu(0,t) = 0 and (1, t) + Hu(1,t) = 0
x x

u(x,0) = 1

∂ ∂
∂ ∂

∂ ∂−
∂ ∂

where H is the dimensionless heat transfer coefficient. Obtain an analytical
solution and plot the profiles for H = 1, 10.

13. Consider the particle electrode problem discussed in Example 7.6. Example
7.6 describes the charging of a particle. The governing equations for
electrochemical discharge of a particle electrode are:

7.1 Separation of Variables Method for PDEs in Finite Domains 675

2

2

u u
 =

t x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂
∂ ∂

∂ ∂ δ
∂ ∂

Explain how one can find an analytical solution for this problem using the
solution obtained in Example 7.9. Plot the profiles for δ = 0.1, 1, 2 and 5.

14. The electrochemical discharge of spherical particles is very similar to
problem 13 (Subramanian and White, 2001[4]). Governing equations and
boundary/initial conditions for this problem are:

2

2

u u 2 u
 = +

t x x x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ δ
∂ ∂

Obtain an analytical solution for this problem using the separation of
variables method. Plot the profiles for δ = 0.1, 1, 2 and 5.

15. Consider problem 13 and 14. How does the governing equation change for
cylindrical coordinates? Obtain an analytical solution for the cylindrical
geometry with the same boundary/initial conditions in problem 14 and 15
using the separation of variables method and plot the profiles for δ = 0.1, 1,
2 and 5.

16. Consider the diffusion reaction discussed in Example 7.8. A similar equation
governs the overpotential during galvanostatic charge/discharge of porous
electrodes in the absence of concentration gradients:[7]

2
2

2

u u
 = - u

t x
u(x,0) = 0

u u
(0,t) = and (1,t) = -

x x

∂ ∂ ν
∂ ∂

∂ ∂δ δβ
∂ ∂

where ν is the modified exchange current density, δ is the applied current
density and β is the ratio of solution phase conductivity to solid phase
conductivity (usually < 1). Obtain an analytical solution for this problem
using the separation of variables method and plot the profiles.

17. Solve the following Poison’s equation using the separation of variables
method and plot the profiles:

676 7 Partial Differential Equations in Finite Domains

2 2

2 2

u u
 + = -1

x y

u(0,y) = 0; u(1,y) = 0

u(x,0) = 0; u(x,1) = 0

∂ ∂
∂ ∂

18. Solve the following Laplace equation with nonhomogeneous two flux
boundary conditions and plot the profiles:

2 2

2 2

u u
 + = 0

y x

u u
(0,y) = 0 and (0,y) = 1

x x

u
u(x,0) = 0 and (x,1) = 0

x

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂
∂

19. Consider the Graetz problem with axial conduction.[8] [7] The governing
equation is:

2 2
2

2 2

T T 1 T T
2Pe(1 r) = + +

z r r r z

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

with the following boundary conditions

T
(0,z) = 0

r

∂
∂

for L0 z z≤ ≤

T(1,z) = 1 for L0 z z≤ ≤

T(r,0) = 0 for 0 r < 1≤

and

L

T
(r,z) = 0

z

∂
∂

 for 0 r 1≤ ≤

Obtain an analytical solution for this problem and plot the temperature
distribution for Pe = 10 and zL = 2. Hint: if you can’t find the
eigenfunction and eigenvalues analytically, find them numerically.

20. Consider the transient diffusion problem in a composite plate consisting of
two regions of different conductivities. The governing equations for

7.1 Separation of Variables Method for PDEs in Finite Domains 677

dimensional concentration in region I (0 ≤ x ≤ α), u1 and region II (α ≤ x
≤ 1), u2 are:

2
1 1

2 2

2
2 2

2

1 2

1

2

1 2

1 2
2

u 1 u
 = 0 x

t x

u u
 = x 1

t x
u (x,0) = u (x,0) = 1

u
(0,t) = 0

x
u (1,t) = 0

u (,t) = u (,t)

1 u u
(,t) = (,t)

x x

∂ ∂ ≤ ≤ α
∂ β ∂

∂ ∂ α ≤ ≤
∂ ∂

∂
∂

α α
∂ ∂α α

β ∂ ∂

where, β2 is the ratio of diffusion coefficients in region II to region I.
Using the governing equations and boundary conditions at x = 0 and 1,
show that eigenfunctions for regions I and II are:

()
[]()

1 n n

2 n n

X = A cos x

X = B sin 1 x

βλ

λ −

where, λn is the eigenvalue. Using the third boundary condition
(concentrations are continuous at x = α), show that the eigenfunctions can
be rewritten as:

() []()
() []()

1 n n n

2 n n n

X = C cos x sin 1

X = C cos sin 1 x

βλ λ − α

βλ α λ −

Next, use the fourth boundary condition to obtain the eigenvalue λn. Thus,
the transient solutions can be obtained as:

() []() ()

() []() ()

2
1 n n n n

n 1

2
2 n n n n

n 1

u = C cos x sin 1 exp t

u = C cos sin 1 x exp t

∞

=
∞

=

βλ λ − α −λ

βλ α λ − −λ

∑

∑

678 7 Partial Differential Equations in Finite Domains

Next, use the initial condition to find the coefficient Cn:

() []()

() []()

n n n
n 1

n n n
n 1

1 = C cos x sin 1

1 = C cos sin 1 x

∞

=
∞

=

βλ λ − α

βλ α λ −

∑

∑

Multiply both sides of each equation by the corresponding eigenfunction
and integrate over the domain of interest:

[]() () []() []() () ()

[]() () () () []() []()

n m n n m n m
n 10 0

1 1

m m n n m n m
n 1

sin 1 cos x dx = C sin 1 sin 1 cos x cos x dx

sin 1 x cos dx = C cos cos sin 1 x sin 1 x dx

α α∞

=

∞

=α α

λ − α βλ λ − α λ − α βλ βλ

λ − βλ α βλ α βλ α λ − λ −

∑∫ ∫

∑∫ ∫

Simplify the integrals in both the equations and add both the equations to
obtain the constant Cn (you might have to use the eigenvalue equation to
simplify the integrals). Once an analytical solution is obtained, plot the
profiles for α = 0.4 and β = 0.5.

21. Consider electrochemical discharge composite planar electrodes.[4] The
governing equations are same as problem 20 with the only difference being
the boundary condition at x = 1:

2u
(1,t) = -

x

∂ δ
∂

where, δ is the dimensionless applied current density. Obtain an analytical
solution for this problem and plot the profiles for α = 0.4, β = 0.5 and δ = -1.

References

1. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,
Oxford (1972)

2. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.
John Wiley & Sons, Inc., Chichester (1995)

3. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with
MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)

4. Subramanian, V.R., White, R.E.: New separation of variables method for composite
electrodes with galvanostatic boundary conditions. Journal of Power Sources 96(2),
385–395 (2001)

5. Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic Press,
London (1999)

6. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley &
Sons, Chichester (1984)

7. Subramanian, V.R., Devan, S., White, R.E.: An approximate solution for a
pseudocapacitor. Journal of Power Sources 135(1-2), 361–367 (2004)

8. Schiesser, W.E., Silebi, C.A.: Dynamic Modeling of Transport Process Systems (1997)

Chapter 8

Laplace Transform Technique for Partial
Differential Equations

8.1 Laplace Transform Technique for Partial Differential
Equations (PDEs) in Finite Domains

8.1.1 Introduction

Transient heat conduction or mass transfer in solids with constant physical
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is
usually represented by a linear parabolic partial differential equation. In this
chapter, we describe how one can arrive at the analytical solutions for linear first
order hyperbolic partial differential equations and parabolic partial differential
equations in finite domains using the Laplace transform technique.

8.1.2 Laplace Transform Technique for Hyperbolic PDEs

Linear first order hyperbolic partial differential equations are solved using Laplace
transform techniques in this section. Hyperbolic partial differential equations are
first order in the time variable and first order in the spatial variable. The method
involves applying Laplace transform in the time variable to convert the partial
differential equation to an ordinary differential equation in the Laplace domain.
This becomes an initial value problem (IVP) in the spatial direction with s, the
Laplace variable, as a parameter. The boundary conditions in x are converted to
the Laplace domain and the differential equation in the Laplace domain is solved
by using the techniques illustrated in chapter 2.1 for solving linear initial value
problems. Once an analytical solution is obtained in the Laplace domain, the
solution is inverted to the time domain to obtain the final analytical solution (in
time and spatial coordinates). This is best illustrated with the following example.

Example 8.1. Wave Propagation in a Rectangle

Consider the propagation of a wave in a rectangle.[1] The dimensionless concentration
profile is governed by:

680 8 Laplace Transform Technique for Partial Differential Equations

()
()

u u
v 0

t x
u x,0 1

u 0,t 0

∂ ∂+ =
∂ ∂

=

=

 (8.1)

Equation (8.1) is solved in Maple below:

> restart:with(inttrans):with(plots):

The governing equation is entered here:

> eq:=diff(u(x,t),t)+v*diff(u(x,t),x);

The initial and boundary conditions are entered here.

> u(x,0):=1;

> bc1:=u(0,t)=0;

The governing equation and the boundary condition are converted to the Laplace
domain:

> eqs:=laplace(eq,t,s);

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s);

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

8.1 Laplace Transform Technique for PDEs in Finite Domains 681

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

The solution obtained in the Laplace domain is converted to the time domain here:

> u:=invlaplace(U(x),s,t);

The following plots can be obtained:

> plot3d(subs(v=1.,u),x=0..1,t=1e-6..1,axes=boxed,title="Figure 8.1",
labels=[x,t,"u"],orientation=[-137,50]);

Fig. 8.1

> plot([subs(v=1,t=0.1,u),subs(v=1,t=0.25,u),subs(v=1,t=0.5,u),
subs(v=1,t=1,u)],x=0..1,axes=boxed,title="Figure 8.2",
thickness=5,labels=[x,"u"]);

682 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.2

Example 8.2. Wave Propagation in a Rectangle

Consider the propagation of a wave in a rectangle with a known initial profile.
The dimensionless concentration profile is governed by:

() ()
()

u u
 0

t x
u x,0 1 exp x

u 0,t 0

∂ ∂+ =
∂ ∂

= − −

=

 (8.2)

Equation (8.2) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)+diff(u(x,t),x);

8.1 Laplace Transform Technique for PDEs in Finite Domains 683

> u(x,0):=1-exp(-x);

> bc1:=u(0,t)=0;

The solution obtained in the Laplace domain is:

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1);

> U(x):=rhs(dsolve({eqs,bc1},U(x)));

The solution obtained in the time domain is obtained as:

> u:=invlaplace(U(x),s,t);

> plot3d(u,x=1e-6..1,t=0..1,axes=boxed,title="Figure 8.3",
labels=[x,t,"u"],orientation=[120,60]);

684 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.3

> plot([subs(t=0.1,u),subs(t=0.25,u),subs(t=0.5,u),subs(t=1,u)],x=0..1,
axes=boxed,title="Figure 8.4",thickness=5,labels=[x,"u"]);

Fig. 8.4

8.1 Laplace Transform Technique for PDEs in Finite Domains 685

8.1.3 Laplace Transform Technique for Parabolic Partial
Differential Equations – Simple Solutions

Linear first order parabolic partial differential equations in finite domains are
solved using the Laplace transform technique in this section. Parabolic PDEs are
first order in the time variable and second order in the spatial variable. The
method involves applying the Laplace transform in the time variable to convert the
partial differential equation to an ordinary differential equation in the Laplace
domain. This becomes a boundary value problem (BVP) in the spatial direction
with s, the Laplace variable as a parameter. The boundary conditions in x are
converted to the Laplace domain and the differential equation in the Laplace
domain is solved by using the techniques illustrated in chapter 3.1 for solving
linear boundary value problems. Once an analytical solution is obtained in the
Laplace domain, the solution is inverted to the time domain to obtain the final
analytical solution (in time and spatial coordinates). Certain simple problems can
be inverted to the time domain using Maple. This is best illustrated with the
following examples.

Example 8.3. Heat Transfer in a Rectangle

Example 7.4, heat transfer in a rectangle with a sinusoidal initial profile,[2] is
solved here again using the Laplace transform technique. The dimensionless
temperature profile is governed by:

() ()
() ()

2

2

u u

t x
u x,0 sin x

u 0,t = 0 and u 1,t = 0

∂ ∂=
∂ ∂

= π (8.3)

Equation (8.3) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=sin(Pi*x);

> bc1:=u(x,t)=0;

686 8 Laplace Transform Technique for Partial Differential Equations

> bc2:=u(x,t)=0;

The governing equation and the boundary conditions are converted to the Laplace
domain:

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(0),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(1),bc2);

The governing equation in the Laplace domain is solved as:

> dsolve(eqs,U(x));

The governing equation is solved with the boundary conditions as:

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x)));

The solution obtained is converted to the time domain as:

> u:=invlaplace(U(x),s,t);

> plot3d(u,x=1..0,t=0..0.2,axes=boxed,title="Figure 8.5",
labels=[x,t,"u"],orientation=[120,60]);

8.1 Laplace Transform Technique for PDEs in Finite Domains 687

Fig. 8.5

> plot([subs(t=0,u),subs(t=0.05,u),subs(t=0.1,u),subs(t=0.2,u)],x=0..1,
title="Figure 8.6",axes=boxed,thickness=5,labels=[x,"u"]);

Fig. 8.6

688 8 Laplace Transform Technique for Partial Differential Equations

In all the examples previously discussed, the boundary conditions did not involve
derivatives until now. When there is a derivative in the boundary condition it has
to be taken care of while applying the Laplace transform as shown in the next
example.

Example 8.4. Transient Heat Transfer in a Rectangle

Consider heat transfer in a rectangle with a derivative boundary condition. The
dimensionless temperature profile is governed by:

()

() ()

2

2

u u

t x
x

u x,0 sin
2

u
u 0,t 0 and 1,t 0

x

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

∂= =
∂

 (8.4)

Equation (8.4) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=sin(Pi*x/2);

> bc1:=u(x,t)=0;

> bc2:=diff(u(x,t),x)=0;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

8.1 Laplace Transform Technique for PDEs in Finite Domains 689

> bc1:=laplace(bc1,t,s):

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2);

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x)));

> u:=invlaplace(U(x),s,t);

> plot3d(u,x=1..0,t=0..0.2,axes=boxed,title="Figure 8.7",
labels=[x,t,"u"],orientation=[120,60]);

Fig. 8.7

690 8 Laplace Transform Technique for Partial Differential Equations

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1,
axes=boxed,title="Figure 8.8.",thickness=5,labels=[x,"u"]);

Fig. 8.8

In examples 8.3 and 8.4 Maple was used to invert from the Laplace domain to the
time domain. Unfortunately, these two examples are very simple and, hence, we
could invert to the time domain using Maple. For practical problems, inversion is
not straightforward. The inversion to the time domain can be done in two different
ways. In section 8.1.4, short time solutions will be obtained by converting the
solution in Laplace domain to an infinite series. In section 8.1.5, a long time
solution will be obtained by using the Heaviside expansion theorem.

8.1.4 Laplace Transform Technique for Parabolic Partial
Differential Equations – Short Time Solution

The methodology is the same as that used in section 8.1.3. When Maple fails to
invert the Laplace domain solution to the time domain, a short time solution can
be obtained by converting the Laplace domain solution to an infinite series in
which each term can be easily inverted to time domain. The solution obtained for
heat transfer in a rectangle in example 7.1 using the separation of variables
method cannot be used at short times. At time t = 0, one would need infinite
number of terms in the separation of variables solution. Fortunately, the Laplace
transform technique helps us obtain a solution, which can be used efficiently at
short times also. This is best illustrated with the following examples.

8.1 Laplace Transform Technique for PDEs in Finite Domains 691

Example 8.5. Heat Transfer in a Rectangle

Consider Example 7.1 heat transfer in a rectangle[2] which is solved here again
using the Laplace transform technique. The dimensionless temperature profile is
governed by:

()
() ()

2

2

u u

t x
u x,0 1

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

=

= =

 (8.5)

Equation (8.5) is solved in Maple below:

> restart:with(inttrans):with(plots):

The governing equation and boundary conditions are entered and converted to the
Laplace domain.

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=1;

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=0;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1);

692 8 Laplace Transform Technique for Partial Differential Equations

> bc2:=laplace(bc2,t,s):

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2);

The solution obtained in the Laplace domain is:

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x)));

Maple fails to invert the solution obtained:

> invlaplace(U(x),s,t);

The first two terms of U(x) are expressed as an infinite series below:

> U1s:=-exp(s^(1/2)*x)/s/(exp(s^(1/2))+1);

> U2s:=-exp(-s^(1/2)*x)*exp(s^(1/2))/s/(exp(s^(1/2))+1);

We want to write a series in terms of S=exp(-s^(1/2)) so that the series will
converge:

> U1S:=series(subs(exp(s^(1/2))=1/S,U1s),S);

> U1S:=subs(S=exp(-s^(1/2)),U1S);

> simplify(U1S);

8.1 Laplace Transform Technique for PDEs in Finite Domains 693

Hence, U1S can be written as the infinite series:

> U1S:=Sum((-1)^n*exp(s^(1/2)*(x-n))/s,n=1..infinity);

The general term in the above series is:

> u1s:=(-1)^n*exp(s^(1/2)*(x-n))/s;

The time domain solution for this expression is:

> u1t:=invlaplace(u1s,s,t);

Hence, the inverse of U1S is the infinite series given by:

> U1t:=Sum(u1t,n=1..infinity);

Similarly, U2S is inverted below:

> U2S:=series(subs(exp(s^(1/2))=1/S,U2s),S);

> U2S:=subs(S=exp(-s^(1/2)),U2S);

694 8 Laplace Transform Technique for Partial Differential Equations

> simplify(U2S);

> U2S:=Sum((-1)^n*exp(-s^(1/2)*(x+n-1))/s,n=1..infinity);

> u2s:=(-1)^n*exp(-s^(1/2)*(x+n-1))/s;

> u2t:=invlaplace(u2s,s,t);

> U2t:=Sum(u2t,n=1..infinity);

The final solution for u in the time domain is:

> Ut:=U1t+U2t+1;

For plotting purposes, infinity is replaced by N = 20:

> u:=subs(infinity=N,Ut);

8.1 Laplace Transform Technique for PDEs in Finite Domains 695

> u:=subs(N=20,u);

The following plots can be obtained:

> plot3d(u,x=0..1,t=1e-6..0.1,axes=boxed,title="Figure 8.9",
labels=[x,t,"u"],orientation=[60,60]);

Fig. 8.9

> plot([subs(t=1e-6,u),subs(t=1e-3,u),subs(t=0.01,u),subs(t=0.05,u)],
x=0..1,axes=boxed,title="Figure 8.10",thickness=5,labels=[x,"u"]);

696 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.10

Note that for plotting purposes t = 0 is replaced by t = to avoid singularity at
t = 0.

Example 8.6. Mass Transfer in a Spherical Pellet

Consider Example 7.3, mass transfer in a spherical pellet,[2] which is solved again
here. The governing equation in dimensionless form is

()

() ()

2

2

u u 2 u

t x x x
u x,0 1

u
0,t 0 and u 1,t 0

x

∂ ∂ ∂= +
∂ ∂ ∂

=
∂ = =
∂

 (8.6)

Equation (8.6) is solved in Maple and the results obtained are given below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x);

> u(x,0):=0;

8.1 Laplace Transform Technique for PDEs in Finite Domains 697

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=1;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2);

> U(x):=rhs(dsolve({eqs,bc2},U(x)));

> U(x):=subs(_C2=0,U(x));

698 8 Laplace Transform Technique for Partial Differential Equations

> convert(U(x),exp);

> U1s:=exp(s^(1/2))/s/(exp(s^(1/2))^2-1)*exp(s^(1/2)*x)/x;

> U2s:=-exp(s^(1/2))/s/(exp(s^(1/2))^2-1)*exp(-s^(1/2)*x)/x;

> U1S:=series(subs(exp(s^(1/2))=1/S,U1s),S):

> U1S:=subs(S=exp(-s^(1/2)),U1S):

> simplify(U1S);

> U1S:=1/x*Sum(exp(s^(1/2)*(x-2*n+1))/s,n=1..infinity);

> u1s:=exp(s^(1/2)*(x-2*n+1))/s;

> u1t:=invlaplace(u1s,s,t);

8.1 Laplace Transform Technique for PDEs in Finite Domains 699

> U1t:=1/x*Sum(u1t,n=1..infinity);

> U2S:=series(subs(exp(s^(1/2))=1/S,U2s),S):

> U2S:=subs(S=exp(-s^(1/2)),U2S):

> simplify(U2S);

> U2S:=-1/x*Sum(exp(-s^(1/2)*(x+2*n-1))/s,n=1..infinity);

> u2s:=exp(-s^(1/2)*(x+2*n-1))/s:

> u2t:=invlaplace(u2s,s,t);

> U2t:=-1/x*Sum(u2t,n=1..infinity);

> Ut:=U1t+U2t;

700 8 Laplace Transform Technique for Partial Differential Equations

> u:=subs(infinity=N,Ut):

> u:=subs(N=20,u);

> plot3d(u,x=1e-6..1,t=1e-6..0.1,axes=boxed,title="Figure 8.11",
labels=[x,t,"u"],orientation=[-150,60]);

Fig. 8.11

> plot([subs(t=1e-6,u),subs(t=1e-2,u),subs(t=0.05,u),subs(t=0.1,u)],x=0..1,
axes=boxed,title="Figure 8.12",thickness=5,labels=[x,"u"]);

8.1 Laplace Transform Technique for PDEs in Finite Domains 701

Fig. 8.12

8.1.5 Laplace Transform Technique for Parabolic Partial
Differential Equations – Long Time Solution

The short time solutions obtained in section 8.1.4 (examples 8.1.5 and 8.1.6) require
only a few terms in the infinite series at short times to converge. However, at long
times the series requires a large number of terms and cannot be used efficiently. The
long time solution can be obtained using Heaviside expansion theorem.[1] If we
denote the solution obtained in the Laplace domain as F(s):

() ()
()

p s
F s =

q s
 (8.7)

Typically when linear partial differential equations are solved using the Laplace
transform method the solution obtained in the Laplace domain can be represented as
in equation (8.7) and q(s) usually has an infinite number of roots. If s = µn,
n = 1..∞ are the distinct roots of q(s), q(s) can be factorized as

() ()() () ()1 2 nq s = s s ... s ... s ∞− μ − μ − μ − μ (8.8)

Using equation (8.8), equation (8.7) (if the order of q(s) is greater than the order of
p(s)) can be converted to partial fractions as:

702 8 Laplace Transform Technique for Partial Differential Equations

() ()
()

1 2 n n 1

1 2 n n 1

p s A A A A
F s

q s s s s s
+

+

= = + + + +
− μ − μ − μ − μ

(8.9)

From equation (8.9) the coefficient An can be obtained by multiplying both sides
by s - µn.

()()
()

() () ()n 1 n 2 n n 1 n
n

1 2 n 1

p s s A s A s A s
... A ...

q s s s s
+

+

− μ − μ − μ − μ
= + + + +

− μ − μ − μ
(8.10)

Next, the limit s → µn is obtained from equation (8.10):

() ()
()n

n
n

s

p s s
A

q slim
→μ

⎛ ⎞− μ
=⎜ ⎟⎜ ⎟

⎝ ⎠
 (8.11)

Since s = nμ is a root of q(s) both the numerator and the denominator become

zero when the limit is applied. Consequently, L’Hopital’s rule is applied to find
the limit of equation (8.11).

()()
()

()() ()
()

()
()

n n

n n n
n

s s n

p s s p' s s p s p
A =

q s q' s q'lim lim
→μ →μ

− μ − μ + μ
= =

μ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(8.12)

Once the coefficients are obtained, the inverse Laplace transform can be obtained
from equation (8.9) as:

()

() ()() ()

n

n = 1 n

1 1 n
n n

n = 1 n = 1n

A
F s

s

A
f t L F s L = A exp t

s

∞

∞ ∞
− −

=
− μ

⇒

= = μ
− μ

∑

∑ ∑

 (8.13)

Equation (8.13) gives the solution in the time domain. Often s = 0 happens to be
an additional root of q(s). In this case F(s) can be written as:

0 n

n = 1 n

A Ap(s)
F(s) = = +

q(s) s s

∞

− μ∑ (8.14)

A0 is obtained by multiplying both sides of equation (8.14) and applying the limit s
→ 0. A0 is obtained by applying L’Hopital’s rule as before as:

8.1 Laplace Transform Technique for PDEs in Finite Domains 703

()()
()

()() ()
()

()
()s 0 s 0

n n
0

p s s p' s s p s p 0
A

q s q' s q' 0lim lim
→ →

⎛ ⎞ ⎛ ⎞− μ − μ +
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

 (8.15)

The solution in time domain is obtained as:

() ()1 1 10 n
0 n n

n = 1 n = 1n

A A
f (t) L F(s) L L A A exp t

s s -

∞ ∞
− − −⎛ ⎞= = + = + μ⎜ ⎟ μ⎝ ⎠

∑ ∑

(8.16)
Equation (8.16) can be used to invert the solution obtained in the Laplace
domain as long as all the roots of q(s) are distinct and the order of q(s) is greater
than p(s).

Example 8.7. Heat Conduction with an Insulator Boundary Condition

Consider heat transfer in a rectangle with an insulator boundary condition at one
end.[2] The dimensionless temperature profile is governed by:

()

() ()

2

2

u u

t x

u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂=
∂ ∂

=

∂ = =
∂

 (8.17)

Equation (8.17) is solved in Maple below:

> restart:with(inttrans):with(plots):

First, the governing equations and boundary conditions are converted to the
Laplace domain and solved in the Laplace domain:

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=0;

704 8 Laplace Transform Technique for Partial Differential Equations

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=1;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x);

> eq0:=eval(subs(x=0,bc1));

> eq1:=eval(subs(x=1,bc2));

> con:=solve({eq0,eq1},{c[1],c[2]});

8.1 Laplace Transform Technique for PDEs in Finite Domains 705

The solution obtained in the Laplace domain is:

> U(x):=subs(con,U(x));

The polynomials are:

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

Note that the order of q(s) is greater than the order of p(s).

> A(s):=P(s)/diff(Q(s),s);

The roots of Q(s) are found as:

> solve(Q(s),s);

> _EnvAllSolutions := true;

> solve(Q(s),s);

The roots can be taken as:

> 0,-((2*n-1)*Pi/2)^2;

706 8 Laplace Transform Technique for Partial Differential Equations

Next, the coefficients are found:

> A[n]:=simplify(subs(s=mu,A(s)));

First A0 is found:

> A[0]:=subs(mu=0,A[n]);

The coefficient An for values n = 1..∞ can be found as:

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,A[n]));

An is simplified as:

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)};

> A[n]:=simplify(subs(vars,A[n]));

The general terms in the Laplace domain solution are (see equation (8.16)):

> u0s:=A[0]*1/s;

The inverse Laplace transform is:

> u0t:=invlaplace(u0s,s,t);

The term in the infinite series is

> uns:=A[n]/(s-mu);

8.1 Laplace Transform Technique for PDEs in Finite Domains 707

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt);

The final solution is obtained as:

> U:=u0t+Sum(unt,n=1..infinity);

As in chapter 7, the initial condition is used at time, t = 0, to avoid Gibb’s
phenomenon:

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U));

The following plots are obtained:

> plot3d(u,x=0..1,t=0..1,axes=boxed,title="Figure 8.13",
labels=[x,t,"u"],orientation=[-150,60]);

708 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.13

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.3,u)],x=0..1,
axes=boxed,title="Figure 8.14",thickness=5,labels=[x,"u"]);

Fig. 8.14

8.1 Laplace Transform Technique for PDEs in Finite Domains 709

The short time solution for the same problem can be obtained using the
methodology described in section 8.1.4 (examples 8.5 and 8.6) as:

> Ut:=U1t+U2t;

Example 8.8. Diffusion with Reaction

Consider Example 7.8, diffusion with reaction in a rectangle, which is solved here
using the Laplace transform technique. The dimensionless concentration profile is
governed by:

()

() ()

2
2

2

u u
u

t x

u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂= − Φ
∂ ∂

=

∂ = =
∂

 (8.18)

Equation (8.18) is solved in Maple below:

>restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t);

> u(x,0):=0;

> bc1:=u(x,t)=1;

> bc2:=diff(u(x,t),x)=0;

710 8 Laplace Transform Technique for Partial Differential Equations

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

[1]> U(x):=c[1]*cosh((s+Phi^2)^(1/2)*x)+c[2]*sinh((s+Phi^2)^(1/2)*x);

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> U(x):=combine(simplify(U(x))):

The shifting theorem is used to find the inverse Laplace transform[1] as:
L-1F(s)=exp(-Φ2t)L=1F(s-Φ2).

8.1 Laplace Transform Technique for PDEs in Finite Domains 711

> U(x):=factor(U(x));

> U1(x):=subs(s=s-Phi^2,U(x));

> P(s):=numer(U1(x));

> Q(s):=denom(U1(x));

> A(s):=P(s)/diff(Q(s),s);

> solve(Q(s),s);

> _EnvAllSolutions := true:

> solve(Q(s),s):

The roots are:

> Phi^2,-((2*n-1)*Pi/2)^2;

> A[n]:=simplify(subs(s=mu,A(s)));

712 8 Laplace Transform Technique for Partial Differential Equations

> A[0]:=subs(mu^(1/2)=Phi,mu=Phi^2,A[n]):

> A[0]:=simplify(A[0]);

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,mu=-((2*n-1)*Pi/2)^2,A[n])):

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)}:

> A[n]:=simplify(subs(vars,A[n]));

> u0s:=A[0]*subs(mu=Phi^2,1/(s-mu));

> u0t:=invlaplace(u0s,s,t);

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt);

8.1 Laplace Transform Technique for PDEs in Finite Domains 713

The time domain solution is obtained by multiplying the inverse Laplace
transform of U1(x) by exp(-Φ2t):

> U:=simplify(u0t*exp(-Phi^2*t))+Sum(unt,n=1..infinity)*exp(-Phi^2*t);

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

The following plots are obtained:

> plot3d(subs(Phi=1,u),x=1..0,t=0.5..0,axes=boxed,title="Figure 8.15",
labels=[x,t,"u"],orientation=[-45,60]);

Fig. 8.15

714 8 Laplace Transform Technique for Partial Differential Equations

The solution obtained matches the separation of variables solution obtained in
example 7.8.

Example 8.9. Heat Conduction with Time Dependent Boundary Conditions

Consider that one of the main advantages of the Laplace transform technique is that it
can be used for time dependent boundary conditions, also. The separation of variables
technique cannot be directly used and one has to use Duhamel’s superposition
theorem[1] for this purpose. Consider the modification of example 8.7:

()

() () ()

2

2

u u

t x
u x,0 0

u
0,t 0 and u 1,t exp t

x

∂ ∂=
∂ ∂

=
∂ = = −
∂

 (8.19)

Equation (8.19) is solved by slightly modifying the Maple program used for
example 8.7 as:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=0;

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=exp(-t);

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

8.1 Laplace Transform Technique for PDEs in Finite Domains 715

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x);

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

> A(s):=P(s)/diff(Q(s),s);

716 8 Laplace Transform Technique for Partial Differential Equations

> solve(Q(s),s);

> _EnvAllSolutions := true:

> solve(Q(s),s):

The roots are:

> -1,-((2*n-1)*Pi/2)^2;

> A[n]:=simplify(subs(s=mu,A(s)));

> A[0]:=subs(mu^(1/2)=I,mu=-1,A[n]):

> A[0]:=simplify(A[0]);

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,mu=-((2*n-1)*Pi/2)^2,A[n])):

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)}:

> A[n]:=simplify(subs(vars,A[n]));

> u0s:=A[0]*subs(mu=-1,1/(s-mu));

> u0t:=invlaplace(u0s,s,t);

8.1 Laplace Transform Technique for PDEs in Finite Domains 717

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt);

> U:=u0t+Sum(unt,n=1..infinity);

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

The following plots are obtained:

> plot3d(u,x=0..1,t=0..1,axes=boxed,title="Figure 8.16",
labels=[x,t,"u"],orientation=[-150,50]);

718 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.16

The dimensionless temperature at the surface x =0 reaches a maximum and then
decreases as a function of time:

> plot(subs(x=0,u),t=0..2,thickness=3,axes=boxed,title="Figure 8.17",
labels=[t,"u(0,t)"]);

Fig. 8.17

8.1 Laplace Transform Technique for PDEs in Finite Domains 719

8.1.6 Laplace Transform Technique for Parabolic Partial
Differential Equations – Heaviside Expansion Theorem
for Multiple Roots

In section 8.1.5, q(s) had only distinct roots. Some times when partial differential
equations are solved using the Laplace transform technique, the polynomial q(s)
has multiple roots in addition to the infinite number of distinct roots. In this
section, we consider q(s) as having an infinite number of distinct roots and a
different root s = μ0 repeated twice. Even though one can invert when q(s) has any
number of roots repeated any number of times, for most of the practical problems
we will encounter roots being repeated only twice. In this case, the solution
obtained in the Laplace domain can be expressed as:

()
1 2 n

2
n = 10 n0

B B Ap(s)
F(s)

q(s) s ss

∞

= = + +
− μ − μ− μ

∑ (8.20)

First, B2 is obtained by multiplying both sides by (s - μ0)
2 and applying the limit

s → μ0:

()()
() () ()

2
20 n

1 0 2 0
n = 1 n

p s s A
B s B s

q s s

∞− μ
= − μ + + − μ

− μ∑ (8.21)

B2 is obtained by applying the limit s → μ0:

()()
()0

2

0
2

s

p s s
B

q slim
→μ

⎛ ⎞− μ
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

 (8.22)

Maple’s ‘limit’ command can be used to find the limit. Next, B1 is obtained by
differentiating both sides of equation (8.21) with respect to s:

() ()
() ()

2

0 n
1 0

n = 1 n

p s s Ad
B 2 s

ds q s s

∞⎛ ⎞− μ
= + − μ⎜ ⎟

⎜ ⎟ − μ⎝ ⎠
∑ (8.23)

B2 is obtained by applying the limit s → μ0 in equation (8.23):

() ()
()0

2

0
1

s

p s sd
B

ds q slim
→μ

⎛ ⎞⎛ ⎞− μ
⎜ ⎟= ⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (8.24)

720 8 Laplace Transform Technique for Partial Differential Equations

Once the constants B1 and B2 are obtained equation (8.20) can be inverted as:

() ()()
()

() () ()

1 1 1 11 2 n
2

n 1n nn

1 0 2 0 n n
n 1

B B A
f t L F s L + L L

s ss

 B exp t B t exp t A exp t

∞
− − − −

=

∞

=

⎛ ⎞⎛ ⎞
= = +⎜ ⎟⎜ ⎟ ⎜ ⎟− μ − μ− μ⎝ ⎠ ⎝ ⎠

= μ + μ + μ

∑

∑

(8.25)

Example 8.10. Heat Transfer in a Rectangle

Consider Example 7.1 heat transfer in a rectangle[2] which is solved here again
using the Laplace transform technique. The dimensionless temperature profile is
governed by:

()
() ()

2

2

u u

t x
u x,0 1

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

=

= =

 (8.26)

Equation (8.26) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=1;

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=0;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

8.1 Laplace Transform Technique for PDEs in Finite Domains 721

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x)+1/s;

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> U(x):=factor(combine(simplify(U(x))));

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

> solve(Q(s),s);

722 8 Laplace Transform Technique for Partial Differential Equations

> _EnvAllSolutions := true;

> solve(Q(s),s);

s = 0 is repeated twice (one root coming from 2 and the other coming from the
sine term in q(s)). The roots are (where n goes from 1 to infinity):

> 0,0,-n^2*Pi^2;

> mu0:=0;

The coefficients B2 and B1 are found as (equations (8.22) and (8.24)):

> b[2]:=(s-mu0)^2*P(s)/Q(s);

> B[2]:=limit(b[2],s=0);

> b[1]:=diff(b[2],s):

> B[1]:=limit(b[1],s=0);

For this problem the contribution from the repeated root s = 0 is zero. This is not
always true as shown in the next example.

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu=-n^2*Pi^2,A[n])):

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0};

8.1 Laplace Transform Technique for PDEs in Finite Domains 723

> A[n]:=simplify(subs(vars,A[n])):

> A[n]:=simplify(subs(vars,expand(A[n])));

> b1s:=B[1]*subs(mu0=0,1/(s-mu0));

> b1t:=invlaplace(b1s,s,t);

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2);

> b2t:=invlaplace(b2s,s,t);

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-n^2*Pi^2,unt);

The solution is obtained and plotted as:

> U:=b1t+b2t+Sum(unt,n=1..infinity);

724 8 Laplace Transform Technique for Partial Differential Equations

> u:=piecewise(t=0,1,t>0,subs(infinity=20,U)):

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.18",
labels=[x,t,"u"],orientation=[45,60]);

Fig. 8.18

> plot([subs(t=0,u),subs(t=0.01,u),subs(t=0.05,u),subs(t=0.1,u)],x=0..1,
axes=boxed,title="Figure 8.19",thickness=5,labels=[x,"u"]);

Fig. 8.19

8.1 Laplace Transform Technique for PDEs in Finite Domains 725

Example 8.11. Diffusion in a Slab with Nonhomogeneous Flux Boundary
Conditions during Charging of a Battery

Consider Example 7.9, charging of a planar battery electrode, which is solved here
using the Laplace transform technique. The dimensionless concentration profile is
governed by:

()

() ()

2

2

u u

t x

u x,0 0

u u
0,t 0 and 1,t

x x

∂ ∂=
∂ ∂

=

∂ ∂= = δ
∂ ∂

 (8.27)

Equation (8.27) is solved in Maple and the results obtained are given below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=0;

> bc1:=diff(u(x,t),x)=0;

> bc2:=diff(u(x,t),x)=delta;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

726 8 Laplace Transform Technique for Partial Differential Equations

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x);

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> U(x):=factor(combine(simplify(U(x))));

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

> solve(Q(s),s);

8.1 Laplace Transform Technique for PDEs in Finite Domains 727

> _EnvAllSolutions := true;

> solve(Q(s),s);

> 0,0,-n^2*Pi^2;

> mu0:=0;

> b[2]:=(s-mu0)^2*P(s)/Q(s);

> B[2]:=limit(b[2],s=0);

> b[1]:=diff(b[2],s):

> B[1]:=limit(b[1],s=0);

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu=-n^2*Pi^2,A[n])):

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0};

> A[n]:=simplify(subs(vars,A[n])):

> A[n]:=simplify(subs(vars,expand(A[n])));

728 8 Laplace Transform Technique for Partial Differential Equations

> b1s:=B[1]*subs(mu0=0,1/(s-mu0));

> b1t:=invlaplace(b1s,s,t);

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2);

> b2t:=invlaplace(b2s,s,t);

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-n^2*Pi^2,unt);

> U:=b1t+b2t+Sum(unt,n=1..infinity);

8.1 Laplace Transform Technique for PDEs in Finite Domains 729

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

> plot3d(subs(delta=1,u),x=0..1,t=0..0.5,axes=boxed,title="Figure 8.20",
labels=[x,t,"u"],orientation=[-135,60]);

Fig. 8.20

Example 8.12. Distribution of Overpotential in a Porous Electrode

During the galvanostatic discharge of porous electrodes in the absence of
concentration gradients, overpotential is governed by the following equation:

()

() ()

2
2

2

u u
u

t x

u x,0 0

u u
0,t and 1,t

x x

∂ ∂= − ν
∂ ∂

=

∂ ∂= −δ = δβ
∂ ∂

 (8.28)

where ν is the modified exchange current density, δ is the applied current density
and β is the ratio of solution phase conductivity to solid phase conductivity
(usually < 1). Equation (8.28)is solved in Maple and the results obtained are given
below:

730 8 Laplace Transform Technique for Partial Differential Equations

Example 8.12

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-nu^2*u(x,t);

> u(x,0):=0;

> bc1:=diff(u(x,t),x)=-delta;

> bc2:=diff(u(x,t),x)=delta*beta;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

8.1 Laplace Transform Technique for PDEs in Finite Domains 731

> U(x):=c[1]*cosh((s+nu^2)^(1/2)*x)+c[2]*sinh((s+nu^2)^(1/2)*x);

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> U(x):=factor(combine(simplify(U(x))));

> U1(x):=subs(s=s-nu^2,U(x));

> P(s):=numer(U1(x));

> Q(s):=denom(U1(x));

> solve(Q(s),s);

732 8 Laplace Transform Technique for Partial Differential Equations

> _EnvAllSolutions := true;

> solve(Q(s),s);

The roots are:

> 0,0,nu^2,-n^2*Pi^2;

> mu0:=0;

> b[2]:=(s-mu0)^2*P(s)/Q(s);

> B[2]:=limit(b[2],s=0);

> b[1]:=diff(b[2],s):

> B[1]:=limit(b[1],s=0);

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

8.1 Laplace Transform Technique for PDEs in Finite Domains 733

> A[0]:=subs(mu^(1/2)=nu,mu^(3/2)=nu^3,mu=nu^2,A[n]):

> A[0]:=simplify(A[0]);

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu^(3/2)=-I*n^3*Pi^3,
mu=-n^2*Pi^2,A[n])):

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0};

> A[n]:=simplify(subs(vars,A[n])):

> A[n]:=simplify(subs(vars,expand(A[n])));

> b1s:=B[1]*subs(mu0=0,1/(s-mu0));

> b1t:=invlaplace(b1s,s,t);

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2);

> b2t:=invlaplace(b2s,s,t);

> u0s:=subs(mu=nu^2,A[0]/(s-mu));

734 8 Laplace Transform Technique for Partial Differential Equations

> u0t:=invlaplace(u0s,s,t);

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-n^2*Pi^2,unt);

> U:=b1t*exp(-nu^2*t)+b2t*exp(-nu^2*t)+simplify(u0t*exp(-nu^2*t))+
exp(-nu^2*t)*Sum(unt,n=1..infinity);

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

> pars:={nu=1,delta=1,beta=0.1};

> plot3d(subs(pars,u),x=0..1,t=0..0.5,axes=boxed,title="Figure 8.21",
labels=[x,t,"u"],orientation=[-60,60]);

8.1 Laplace Transform Technique for PDEs in Finite Domains 735

Fig. 8.21

> plot([subs(t=0,pars,u),subs(t=0.05,pars,u),subs(t=0.1,pars,u),
subs(t=0.2,pars,u)],x=0..1,axes=boxed,title="Figure 8.22",
thickness=5,labels=[x,"u"]);

Fig. 8.22

736 8 Laplace Transform Technique for Partial Differential Equations

In all the examples discussed in this chapter until now, the roots of q(s) were
obtained analytically. This is not always possible. Often the roots should be
obtained numerically as in section 7.1.4. This is illustrated in the next example.

Example 8.13. Heat Conduction in a Slab with Radiation Boundary
Conditions

Consider Example 7.6, heat conduction in a rectangle with radiation at the
surface,[2] which is solved here using the Laplace transform technique. The
dimensionless temperature profile is governed by:

 ()

() () ()

2

2

u u

t x
u x,0 1

u u
0,t 0 and 1,t u 1,t 0

x x

∂ ∂=
∂ ∂

=
∂ ∂= + =
∂ ∂

(8.29)

Equation (8.29) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=1;

> bc1:=diff(u(x,t),x)=0;

> bc2:=diff(u(x,t),x)+u(x,t)=0;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

8.1 Laplace Transform Technique for PDEs in Finite Domains 737

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x)+1/s;

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x)):

> U(x):=factor(simplify(U(x)));

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

Maple cannot find the eigenvalues directly.

> solve(Q(s),s);

738 8 Laplace Transform Technique for Partial Differential Equations

> eig:=sinh(s^(1/2))*s^(1/2)+cosh(s^(1/2));

For convenience s=-λ2 is substituted to find the eigenvalues.

> eiglambda:=simplify(subs(s^(1/2)=I*lambda,s=-lambda^2,eig));

> plot(eiglambda,lambda=0..20,thickness=3,title="Figure 8.23",
axes=boxed);

Fig. 8.23

The roots are:

> 0,0,-lambda^2;

> fsolve(eiglambda,lambda=1);

0.8603335890

8.1 Laplace Transform Technique for PDEs in Finite Domains 739

The first 20 eigenvalues are obtained numerically.

> N:=20;

> l[1]:=fsolve(eiglambda,lambda=0..2);

l1 := 0.860333589

> for i from 2 to N do l[i]:=fsolve(eiglambda,lambda=l[i-1]..l[i-1]+4);od:

> seq(l[i],i=1..N);

> mu0:=0;

> b[2]:=(s-mu0)^2*P(s)/Q(s);

> B[2]:=limit(b[2],s=0);

> b[1]:=diff(b[2],s):

> B[1]:=limit(b[1],s=0);

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

740 8 Laplace Transform Technique for Partial Differential Equations

> A[n]:=simplify(subs(mu^(1/2)=I*lambda,mu^(3/2)=-I*lambda^3,
mu=-lambda^2,A[n]));

> vars:={cos(lambda)=lambda*sin(lambda)};

> A[n]:=simplify(subs(vars,expand(A[n])));

> b1s:=B[1]*subs(mu0=0,1/(s-mu0));

> b1t:=invlaplace(b1s,s,t);

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2);

> b2t:=invlaplace(b2s,s,t);

> uns:=A[n]/(s-mu);

> unt:=invlaplace(uns,s,t);

8.1 Laplace Transform Technique for PDEs in Finite Domains 741

> unt:=subs(mu=-l[n]^2,lambda=l[n],unt);

The solution obtained can then be plotted.

> U:=b1t+b2t+Sum(unt,n=1..infinity);

> u:=piecewise(t=0,1,t>0,subs(infinity=20,U)):

> u:=evalf(u):

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.24",
labels=[x,t,"u"],orientation=[45,60]);

Fig. 8.24

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1,
title="Figure 8.25",axes=boxed,thickness=5,labels=[x,"u"]);

742 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.25

8.1.7 Laplace Transform Technique for Parabolic Partial
Differential Equations in Cylindrical Coordinates

The Laplace transform technique can be used for problems in cylindrical
coordinates also. Problems in cylindrical coordinates involve Bessel functions.
Maple’s inbuilt Bessel functions can be used for modeling these problems. This is
illustrated in the following example.

Example 8.14. Heat Conduction in a Cylinder

Consider heat conduction in a cylinder.[2] The dimensionless temperature profile
is governed by

()

() ()

2

2

u u 1 u

t x x x
u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂ ∂= +
∂ ∂ ∂

=
∂ = =
∂

 (8.30)

Equation (8.30) is solved in Maple below:

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+1/x*diff(u(x,t),x);

8.1 Laplace Transform Technique for PDEs in Finite Domains 743

> u(x,0):=0;

> bc1:=diff(u(x,t),x)=0;

> bc2:=u(x,t)=1;

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2);

> dsolve(eqs,U(x));

Since BesselY becomes infinite x = 0_C2 should be zero and the solution is taken
as:

> U(x):=c[1]*BesselJ(0,(-s)^(1/2)*x);

744 8 Laplace Transform Technique for Partial Differential Equations

> eq0:=eval(subs(x=0,bc1));

> eq1:=eval(subs(x=1,bc2));

> con:=solve({eq1},{c[1]}):

> U(x):=subs(con,U(x)):

> U(x):=factor(simplify(U(x)));

> P(s):=numer(U(x));

> Q(s):=denom(U(x));

> solve(Q(s),s);

> eig:=BesselJ(0,(-s)^(1/2));

> convert(eig,BesselI);

> eiglambda:=simplify(subs(s^(1/2)=I*lambda,(-s)^(1/2)=lambda,
s=-lambda^2,eig));

> plot(eiglambda,lambda=0..20,thickness=3,axes=boxed):

The roots are:

> 0,-lambda^2;

8.1 Laplace Transform Technique for PDEs in Finite Domains 745

> N:=20;

> l[1]:=fsolve(eiglambda,lambda=0..3);

l1 := 2.404825558

> for i from 2 to N do l[i]:=fsolve(eiglambda,lambda=l[i-1]..l[i-1]+4);od:

> seq(l[i],i=1..N);

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

> A[0]:=limit(A[n],mu=0);

> A[n]:=simplify(subs(mu^(1/2)=I*lambda,(-mu)^(1/2)=lambda,
mu^(3/2)=-I*lambda^3,mu=-lambda^2,A[n]));

> u0s:=A[0]*subs(mu=0,1/(s-mu));

> u0t:=invlaplace(u0s,s,t);

> uns:=A[n]/(s-mu);

746 8 Laplace Transform Technique for Partial Differential Equations

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-l[n]^2,lambda=l[n],unt);

The following solution and plots are obtained:

> U:=u0t+Sum(unt,n=1..infinity);

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

> u:=evalf(u):

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.26",
labels=[x,t,"u"],orientation=[-145,60]);

Fig. 8.26

8.1 Laplace Transform Technique for PDEs in Finite Domains 747

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1,
title="Figure 8.27",axes=boxed,thickness=5,labels=[x,"u"]);

Fig. 8.27

8.1.8 Laplace Transform Technique for Parabolic Partial
Differential Equations for Time Dependent Boundary
Conditions – Use of Convolution Theorem

In example 8.9 the Laplace transform technique was used to solve a time
dependent problem. Inversing the Laplace transform is not straightforward. For
complicated time dependent boundary conditions the convolution theorem can be
used to find the inverse Laplace transform efficiently. If H(s) is the solution
obtained in the Laplace domain, H(s) is represented as a product of two functions:

() () ()H s F s G s= (8.31)

where F(s) is chosen such that it can be represented as:

() ()
()

p s
F s

q s
= (8.32)

F(s) is chosen so that the order of q(s) is greater than the order of p(s). F(s) is then
inverted using the methodology illustrated in section 8.1.5 and 8.1.6. If F(s) and

748 8 Laplace Transform Technique for Partial Differential Equations

G(s) are inverted to time domain individually, H(s) is then found using the
convolution theorem[1] (Varma and Morbidelli, 1997):

() () ()

() ()() () ()()

t

0

1 1

h t f t g d

where

f t L F s and g t L G s− −

= − τ τ τ

= =

∫
 (8.33)

In equation (8.33), τ is a dummy variable. An alternate form of equation (8.34)
can also be used:

() () ()
t

0

h t f g t d= τ − τ τ∫ (8.34)

The methodology is illustrated using the following example.

Example 8.15. Heat Conduction in a Rectangle with a Time Dependent
Boundary Condition

Consider heat conduction in a rectangle with a time dependent boundary
condition.[2] The dimensionless temperature profile is governed by:

()

() () ()

2

2

u u

t x

u x,0 0

u 0,t 0 and u 1,t w t

∂ ∂=
∂ ∂

=

= =

 (8.35)

Equation (8.35) is solved in Maple below for a general time dependent function,
w(t), and plots are obtained for a particular step function.

> restart:with(inttrans):with(plots):

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2);

> u(x,0):=0;

8.1 Laplace Transform Technique for PDEs in Finite Domains 749

> bc1:=u(x,t)=0;

> bc2:=u(x,t)=w(t);

> eqs:=laplace(eq,t,s):

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs);

> bc1:=laplace(bc1,t,s):

> bc1:=subs(laplace(u(x,t),t,s)=U(x),laplace(w(t),t,s)=W(s),bc1);

> bc2:=laplace(bc2,t,s):

> bc2:=subs(laplace(u(x,t),t,s)=U(x),laplace(w(t),t,s)=W(s),bc2);

> dsolve(eqs,U(x));

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x);

> eq0:=eval(subs(x=0,bc1)):

> eq1:=eval(subs(x=1,bc2)):

> con:=solve({eq0,eq1},{c[1],c[2]}):

> U(x):=subs(con,U(x));

> U(x):=factor(combine(simplify(U(x))));

750 8 Laplace Transform Technique for Partial Differential Equations

Next U1(x) is written as a product of two functions (see equations (8.31) and
(8.33)):

> U1(x):=simplify(U(x)/W(s)/s);

U1(x) is chosen so that q(s) is a higher order than p(s) (see equation (8.32)):

> G(s):=W(s)*s;

where W(s) is the Laplace transform of the time dependent boundary condition
w(t) in equation (8.11.35.). Next, U1(X) is inverted to the time domain as
illustrated in section 8.1.7 to obtain f(t) as:

> P(s):=numer(U1(x));

> Q(s):=denom(U1(x));

> solve(Q(s),s);

> _EnvAllSolutions := true;

> solve(Q(s),s);

> 0,0,-n^2*Pi^2;

> mu0:=0;

> b[2]:=(s-mu0)^2*P(s)/Q(s);

8.1 Laplace Transform Technique for PDEs in Finite Domains 751

> B[2]:=limit(b[2],s=0);

> b[1]:=diff(b[2],s):

> B[1]:=limit(b[1],s=0);

> A(s):=P(s)/diff(Q(s),s):

> A[n]:=simplify(subs(s=mu,A(s)));

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu^(3/2)=-I*n^3*Pi^3,
mu=-n^2*Pi^2,A[n])):

> vars:={sin(n*Pi)=0};

> A[n]:=simplify(subs(vars,A[n])):

> A[n]:=simplify(subs(vars,expand(A[n])));

> b1s:=B[1]*subs(mu0=0,1/(s-mu0));

> b1t:=invlaplace(b1s,s,t);

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2);

> b2t:=invlaplace(b2s,s,t);

> uns:=A[n]/(s-mu);

752 8 Laplace Transform Technique for Partial Differential Equations

> unt:=invlaplace(uns,s,t);

> unt:=subs(mu=-n^2*Pi^2,unt);

> f(t):=b1t+b2t+Sum(unt,n=1..infinity);

Next, a step function is chosen for w(t) and plotted:

> w(t):=Heaviside(t-1)-1/2*Heaviside(t-2);

> plot(w(t),t=0..5,thickness=3,title="Figure 8.28",axes=boxed);

Fig. 8.28

8.1 Laplace Transform Technique for PDEs in Finite Domains 753

The Laplace transform of w(t) is:

> W(s):=laplace(w(t),t,s);

The function g(t) is obtained by inverting G(s):

> G(s):=s*W(s);

> g(t):=invlaplace(G(s),s,t);

Next, the convolution integral is carried out to obtain the final time domain
solution as:

> gtau:=subs(t=tau,g(t));

> ftau:=subs(t=t-tau,f(t));

> U:=int(ftau*gtau,tau=0..t);

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)):

> plot3d(simplify(u),x=0..1,t=0..5,axes=boxed,title="Figure 8.29",
labels=[x,t,"u"],orientation=[135,45]);

754 8 Laplace Transform Technique for Partial Differential Equations

Fig. 8.29

The dimensionless temperature at different points inside the rectangle are plotted as:

> plot([simplify(subs(x=1,u)),simplify(subs(x=0.75,u)),simplify(subs(x=0.5,u)),
simplify(subs(x=0.25,u)),simplify(subs(x=0.0,u))],t=0..5.,thickness=3,
axes=boxed,title="Figure 8.30",labels=[t,"u"]);

Fig. 8.30

8.1 Laplace Transform Technique for PDEs in Finite Domains 755

8.1.9 Summary

In this chapter, analytical solutions were obtained for linear hyperbolic and
parabolic partial differential equations in finite domains using Laplace transform
technique. In section 8.1.2, a linear hyperbolic partial differential equations was
solved using the Laplace transform technique. First, the partial differential
equation was converted to an ordinary differential equation by converting the PDE
from the time domain to the Laplace domain. For hyperbolic partial differential
equations this results in an initial value problem (IVP), which is solved
analytically in the Laplace domain as illustrated in chapter 2.1. The analytical
solution obtained in the Laplace domain was converted easily to the time domain
using Maple’s inbuilt Laplace transform package. For parabolic partial differential
equations, the governing equation in the Laplace domain is a boundary value
problem (BVP), which is solved analytically as in chapter 3.1. For certain simple
parabolic partial differential equations, the Laplace domain solution can be
inverted to time domain easily using Maple as illustrated in section 8.1.3.

Often inversion to time domain solution is not trivial and the time domain
involves an infinite series. In section 8.1.4 short time solution for parabolic partial
differential equations was obtained by converting the solution obtained in the
Laplace domain to an infinite series, in which each term can easily inverted to
time domain. This short time solution is very useful for predicting the behavior at
short time and medium times. For long times, a long term solution was obtained
in section 8.1.5 using Heaviside expansion theorem. This solution is analogous to
the separation of variables solution obtained in chapter 7. In section 8.1.6, the
Heaviside expansion theorem was used for parabolic partial differential equations
in which the solution obtained has multiple roots. In section 8.1.7, the Laplace
transform technique was extended to parabolic partial differential equations in
cylindrical coordinates. In section 8.1.8, the convolution theorem was used to
solve the linear parabolic partial differential equations with complicated time
dependent boundary conditions. For time dependent boundary conditions the
Laplace transform technique was shown to be advantageous compared to the
separation of variables technique. A total of fifteen examples were presented in
this chapter.

8.1.10 Exercise Problems

1. Complete the details missing in example 8.2 (i.e., complete the Maple
program). Can you obtain an analytical solution if the initial condition is
replaced by u(x,0) = x?

2. Complete the details missing in example 8.6.
3. Obtain the short time solution reported in example 8.7.
4. Consider charging a battery as discussed in example 8.11. Complete the

details missing in this example. Obtain the short time solution for the same
problem.

5. Solve the following parabolic PDE using the Laplace transform technique
(see examples 8.3 and 8.4):

756 8 Laplace Transform Technique for Partial Differential Equations

()

() ()

2

2

u u

t x
x

u x,0 cos
2

u
0,t 0 and u 1,t 0

x

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

∂ = =
∂

6. Solve the following simple parabolic PDE using the Laplace transform
technique:

()

() ()

2

2

2

u u

t x
x

u x,0 sin
2

u 0,t 0 and u 1,t exp t
4

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞π= = −⎜ ⎟
⎝ ⎠

7. Solve the following steady state heat transfer problem by applying the
Laplace transformation in y coordinate:

() ()

() () ()

2 2

2 2

u u
0

x y

u 0,y 0; u 1,y 0

u
u x,0 sin(πx); x,0 πsin πx

y

∂ ∂+ =
∂ ∂

= =
∂= = −
∂

8. Solve the following wave equation using the Laplace transformation
technique:

() ()

() () ()

2 2

2 2

u u
0

t x
u 0,t 0; u(1,t) = 0

u
u x,0 = sin πx ; x,0 0

t

∂ ∂− =
∂ ∂

=
∂ =
∂

9. Obtain an analytical solution for the Graetz problem described in example
5.6 and exercise problem 6 in chapter 7.

8.1 Laplace Transform Technique for PDEs in Finite Domains 757

10. Consider diffusion with convection in a coated wall reactor, where the
reaction takes place at the wall (Rice and Do, 1995;[3] chapter 5.1, exercise
problem 1; chapter 7, exercise problem 7). The governing equation and
boundary conditions for concentration in dimensionless form are:

() () ()
()

2

2

u u 1 u

Z x x x
u u

0,Z 0 and 1, Z Ha u 1,Z 0
x x

u x,0 1

∂ ∂ ∂= +
∂ ∂ ∂
∂ ∂= + =
∂ ∂

=

where Ha is the Hatta number. Obtain an analytical solution for this
problem using the Laplace transform technique.

11. Consider cooling of spherical nuclear pellets (Rice and Do, 1995;[3] chapter
5.1, exercise problem 7; chapter 7, exercise problem 8). The dimensionless
temperature distribution is governed by:

2

2

u u 2 u
 = + + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

where Q is the ratio of heat generation to heat conduction and Bi is the Biot
number. Obtain an analytical solution for this problem using the Laplace
transform technique. Plot the profiles for Q = 1, Bi = 0.2 and Q = 1, Bi = 10.

12. Consider dispersion of a linear kinematic wave in a dimensionless form
(Aris, 1999;[4] chapter 5.1, exercise problem 9; chapter 7, exercise problem
9). The governing equation and boundary/initial conditions are:

() ()
()

2

2

u u u
Pe

t x x
u 0,t 1; u 1,t 0

u x,0 0

∂ ∂ ∂= −
∂ ∂ ∂

= =

=

Obtain an analytical solution for this problem using the Laplace transform
technique. Plot the profiles for Pe = 1, 10 and 50.

13. Consider the fluid flow problem (Davis, 1984;[5] chapter 5.1, exercise
problem 10; chapter 7, exercise problem 10):

758 8 Laplace Transform Technique for Partial Differential Equations

2

2

u u 1 u
= + + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

Obtain an analytical solution using the Laplace transform technique and
plot the dimensionless velocity profiles.

14. Consider the Graetz problem in planar geometry[5] (chapter 5.1, exercise
problem 11, chapter 7, exercise problem 11). The governing equations and
boundary/initial conditions are:

2
2

2

u u
2Pe(1 x) =

z x
u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

Solve this problem analytically and plot the profiles for different values of
the Peclet number.

15. Consider heat conduction in a slab with radiation at both ends (Carslaw and
Jaeger, 1959;[2] chapter 5.1, exercise problem 12; chapter 7, exercise
problem 12). The dimensionless governing equations, and the boundary
and initial conditions are:

() () () ()
()

2

2

u u

t x
u u

0,t Hu 0,t 0 and 1, t Hu 1,t 0
x x

u x,0 = 1

∂ ∂=
∂ ∂

∂ ∂− + = + =
∂ ∂

where H is the dimensionless heat transfer coefficient. Obtain an analytical
solution and plot the profiles for H = 1, 10.

16. Consider the electrochemical discharge of spherical particles[6] (Subramanian
and White, 2001; chapter 7, exercise problem 14). Governing equations, and
boundary and initial conditions for this problem are:

2

2

u u 2 u
 = +

t x x x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ δ
∂ ∂

8.1 Laplace Transform Technique for PDEs in Finite Domains 759

Obtain the short time and the long time solution for this problem using the
Laplace transform technique. Plot the profiles for δ = 0.1, 1, 2 and 5.

17. Redo exercise problem 13, chapter 7 using the Laplace transform technique
if the flux at the surface is a function of time.

() ()u
1,t f t

x

∂ =
∂

Solve this problem for the following functions:

()
() ()
() ()

tf t e

f t sin t

f t Delta t (delta function)

−= −

= −

= −

18. Consider a stirred pot in which pure solvent is used to extract oil from
spherically shaped seeds.[3] Dimensionless concentrations of oil in the
seeds (u) and in the solvent (C) are governed by the following equations.

2

2

x 1

u u 2 u
 = +

t x x x
dC u

 = -3
dt x
u

(0,t) = 0 and u(1, t) = C(t)
x

u(x,0) = C(0) = 1

=

∂ ∂ ∂
∂ ∂ ∂

∂α
∂

∂
∂

where α is the capacity ratio of seed to the solvent. Obtain an analytical
solution for this problem using the Laplace transform technique and plot
the profiles for α = 0.2 and α = 1.

19. Consider a porous electrode in contact with a separator (at x = 0) and a
current collector (at x = r).[7] Dimensionless electrolyte concentrations in
the porous electrode (u) and in the separator (C) are governed by the
following equations:

()

() () ()

() ()

2

2

1.5

u u
 J

t x
dC 3rJε

 3u 0,t 3C
dt 2

u rJε u
0,t 3u 0,t 3C and r,t 0

x 2 x
u x,0 C 0 1

∂ ∂= ε +
∂ ∂

= − + −

∂ ∂ε = − + − =
∂ ∂

= =

760 8 Laplace Transform Technique for Partial Differential Equations

where ε is the porosity and r is the ratio of electrode thickness to separator
thickness. Note that separator concentration (C) cannot be eliminated from
the governing equation for electrode concentration (u) in the time domain.
However, the separator concentration C can be eliminated in the Laplace
domain. Obtain an analytical solution for this problem using the Laplace
transform technique and plot the profiles for ε = 0.4 and r = 4.

20. Does problem 18 have a steady state solution? If so, explain how you
would obtain it.

21. Does problem 19 have a steady state solution? If so, explain how you
would obtain it.

References

1. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford
University Press, Inc., Oxford (1997)

2. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,
Oxford (1972)

3. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.
John Wiley & Sons, Inc., Chichester (1995)

4. Aris, R.: Mathematical Modeling: A Chemical Engineer’s Perspective. Academic Press,
London (1999)

5. Davis, M.E.: Numerical Methods and Modeling for Chemical Engineers. John Wiley &
Sons, Chichester (1984)

6. Subramanian, V.R., White, R.E.: Separation of Variables for Diffusion in Composite
Electrodes with Flux Boundary Conditions. In: Electrochemical Society Proceedings,
vol. 99-14 (1999)

7. Subramanian, V.R., Tapriyal, D., White, R.E.: A Boundary Condition for Porous
Electrodes. Electrochemical and Solid-State Letters 7(9), A259-A263 (2004)

Chapter 9
Parameter Estimation

9.1 Introduction

Chemical engineers develop mathematical models of systems of interest that usu-
ally include parameters. This chapter describes methodology that can be used to
determine these parameters, which usually appear in a nonlinear manner. For
example, the material balance equation for the reaction

1A Bk⎯⎯→
(9.1)

in a constant volume isothermal batch reactor is

1
A

A

dC
k C

dt
= −

(9.2)

Equation (9.2) can be integrated easily to obtain,

1() (0) k t
A AC t C e−= (9.3)

Equation (9.3) shows that the model equation for ()AC t depends on 1k in a

nonlinear manner (i.e., 1k appears in the exponential term in equation (9.3)). Be-

quette [1] (p. 458) shows how to use experimental data to determine both 1k and

(0)AC by using the least squares method for a linearized form of equation (9.3).

That is, taking the natural logarithm of both sides of equation (9.3) yields

1ln () ln (0)A AC t C k t= − (9.4)

In equation (9.4), the dependent variable ln ()AC t depends linearly on the

parameter 1k and the parameter ln (0)AC . Bequette rewrites equation (9.4) as

1 2 y tθ θ= + (9.5)

where

762 9 Parameter Estimation

ln ()Ay C t= (9.6)

1 1kθ = − (9.7)

and

2 ln (0)ACθ = (9.8)

Bequette then uses the least squares method to determine 1 2and θ θ (Bequette

calls these (1 2and p p)) since equation (9.5) is in the form of a straight line

y mx b= + (9.9)

Unfortunately, this method is of limited value because chemical engineers often
want to determine simultaneously more than two parameter values. For example,
we would like to develop a procedure for determining the rate contents

1 2 3 4, , , and k k k k for the reversible reactions

1 3

2 4

A B C
k k

k k
⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯ (9.10)

In this case (see equation 2.10), for a constant volume, isothermal batch reactor

1 2 A
A B

dC
k C k C

dt
= − +

(9.11)

1 2 3 4 B
A B B C

dC
k C k C k C k C

dt
= − − +

(9.12)

3 4 C
B C

dC
k C k C

dt
= −

(9.13)

Unfortunately, it is not possible to recast equations (9.10)-(9.13) into a simple
equation like equation (9.9).

9.2 Least Squares Method

The determination of parameters such as rate constants in mathematical models of
interest to chemical engineers is often done by using the least squares method.
This method is based on some assumptions about the independent and the depend-
ent variables. Typically we begin by assuming that the independent variables such
as time are known exactly and the dependent variables are random or stochastic
variables (i.e., they are not known precisely). These variables are measured and

9.2 Least Squares Method 763

have measurement noise associated with them. We define the true values of these
variables that would be obtained when measured if there were no randomness as-
sociated with the measurement. This true value is an hypothetical value which is
postulated to exist. Consequently, a measured value will differ from the true value
by a measurement error. We call this error a random error because it represents the
difference between a random variable and its true value.

To develop the linear least squares equations for a model that is linear in the

parameters θ let the objective function ()θΦ be defined as

() () ()* *- -
T

Y Y Y YθΦ = (9.14)

where
*Y is a vector of measured values and Y is a vector of predicted values,

which are obtained by multiplying the independent variables matrix X by the

vector of parameters θ :

Y Xθ= (9.15)

Equation (9.15) can be written for a straight line model (see equation (9.9) with 1x as the

independent variable (t , e.g., see equation (9.5)) specified for the first data point, 2x

specified as the second data point, etc.:

1

2

1

1

1n

x

x
X

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.16)

where n is the number of data points. The column of 1’s in equation (9.16) is for

the intercept ;b that is, θ is the vector of parameters and for a straight line model

and is given by

1

2

θ
θ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.17)

where for equation (9.9) the parameter vector is

m

b
θ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.18)

It should be mentioned that X could be written as

764 9 Parameter Estimation

1

2

1

1

1 n

x

x
X

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.19)

where in this case

b

m
θ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.20)

since the constant b would come first in the model equation

1 2y xθ θ= + (9.21)

This way of writing andX θ provides a convenient way of writing models with two or

more independent variables ()2 and , e.g.t t such as

2
1 2 3y x xθ θ θ= + + (9.22)

In this case, the independent variable matrix for equation (9.21) is:

2
1 1

2
2 2

2

1

1

1 n n

x x

x x
X

x x

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

(9.23)

An equation for θ based on the experimental data and model predictions can be

obtained from the objective function ().θΦ Equation (9.14) becomes by using

equation (9.15)

() () ()* *T
Y X Y Xθ θ θΦ = − −

(9.24)

Equation (9.24) can be expanded by recalling that the matrix transpose process is
additive [2]

() () ()* *T T T
Y X Y Xθ θ− = −

(9.25)

Substitution of equation (9.25) into equation (9.24) yields

9.2 Least Squares Method 765

() () () () ()* * *T T
Y Y X X Y Xθ θ θ θΦ = − − − (9.26)

Equation (9.26) can be expanded to obtain

() () () () ()* * * *-
T T T T

Y Y Y X X Y X Xθ θ θ θ θΦ = − + (9.27)

Equation (9.27) can be simplified by recognizing that [2]

() () ()* * TT
X Y Y Xθ θ= (9.28)

and that

()T T TX Xθ θ= (9.29)

Thus, by substituting equations (9.28) and (9.29) into equation (9.27) we
obtain

() () ()* * *2
T T T TY Y Y X X Xθ θ θ θΦ = − + (9.30)

The next step is to take the derivative of equation (9.30) with respect to θ and set the re-

sulting vector equal to the zero vector 0 :

() ()*0 2 0
T T TY X X Xθ θ θ

θ θ θ
∂Φ ∂ ∂⎡ ⎤= − + =⎢ ⎥⎣ ⎦∂ ∂ ∂

 (9.31)

The first non zero term on the right hand side of equation (9.31) can be written as

()* *T TY X X Yθ
θ
∂ ⎡ ⎤ =⎢ ⎥⎣ ⎦∂

 (9.32)

where care has been taken to insure that the derivative has been taken properly. That is,
according to equation A.75a in Crassidis and Junkins, [2]

() () () ()T T T TAx b C Dx e A C Dx e D C Ax b
x

∂ ⎡ ⎤+ + = + + +⎢ ⎥⎣ ⎦∂
 (9.33)

Comparison of equation (9.33) to equation (9.32) shows that in
our case, the symbols in equation (9.33) are defined as follows:

*, 0, , , , and 0x A b Y C I D X eθ= = = = = = . Substitution of these sym-

bols into equation (9.33) yields the results given in equation (9.32). Note that the
quantity in the square bracket on the left side of equation (9.32) is a scalar.
Equation A.71 of Crassidis and Junkins[2] shows that the derivative of a scalar

766 9 Parameter Estimation

with respect to a vector yields a vector. That is, if f is a scalar and x is a x 1n

vector

1 2

T

n

f f f f

x x x x

⎡ ⎤∂ ∂ ∂ ∂= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
… (9.34)

In our case,

()* T
f Y X θ= (9.35)

Consider the case where we have two parameters and three data points

[]1 2

Tθ θ θ= (9.36)

* * * *
1 2 3

T
Y Y Y Y⎡ ⎤= ⎣ ⎦ (9.37)

and

1

2

3

1

1

1

x

X x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (9.38)

Substitution of equations (9.36) - (9.38) into equation (9.35) yields

() () ()* * *
1 1 2 1 2 1 2 2 3 1 3 3f Y x Y x Y xθ θ θ θ θ θ= + + + + + (9.39)

Application of equation (9.34) to equation (9.39) yields

* * *
1 2 3

* * *
1 1 2 2 3 3

Y Y Yf

Y x Y x Y xθ
⎡ ⎤+ +∂ = ⎢ ⎥∂ + +⎣ ⎦

 (9.40)

The right hand side of equation (9.32) becomes

*
1

* *
2

1 2 3 *
3

1 1 1T

Y

X Y Y
x x x

Y

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9.41)

* * *
* 1 2 3

* * *
1 1 2 2 3 3

T Y Y Y
X Y

Y x Y x Y x

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

 (9.42)

Comparison of equations (9.40) and (9.42) reveals that equation (9.32) is correct.

9.2 Least Squares Method 767

The last term in equation (9.31) can be evaluated by letting

TC X X= (9.43)

and recalling that (see equation A.75b in Crassidis and Junkins [2])

() ()T TC C Cθ θ θ
θ
∂ = +

∂
 (9.44)

Since the matrix
TX X is symmetrical, the matrix

TX X is equal to its

transpose:

()TT TX X X X= (9.45)

Thus, equation (9.44) and (9.45) yield

() ()() 2
TT T T T TX X X X X X X Xθ θ θ θ

θ
∂ = + =

∂
 (9.46)

Note equation (9.46) also requires taking the derivative of a scalar with respect to
a vector which yields a vector. That is, in this case,

T Tf X Xθ θ= (9.47)

which for our example case becomes

[]
1

1
1 2 2

1 2 3 2
3

1
1 1 1

1

1

x

f x
x x x

x

θ
θ θ

θ

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9.48)

or

[]

3

1 1
1 2 3 3

22

1 1

3 i
i

i i
i i

x

f

x x

θ
θ θ

θ
=

= =

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.49)

or

[]

3

1 2
1

1 2 3 3
2

1 2
1 1

3 i
i

i i
i i

x

f

x x

θ θ
θ θ

θ θ

=

= =

⎡ ⎤+⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.50)

768 9 Parameter Estimation

or

3 3 3
2 2 2

1 1 2 1 2 2
1 1 1

3 i i i
i i i

f x x xθ θ θ θ θ θ
= = =

⎡ ⎤= + + +⎢ ⎥
⎣ ⎦

∑ ∑ ∑ (9.51)

Applying equation (9.34) to equation (9.51) yields

3

1 2
11

3 3
1 2

1 2
1 122

3

2
i

i

i i
i i

f
x

f

f
x x

θ θ
θ

θ
θ θ

θθ

=

= =

∂⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥ ⎢ ⎥= =
∂⎢ ⎥ ⎢ ⎥⎡ ⎤

+∂ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ⎣ ⎦⎣ ⎦⎣ ⎦

∑

∑ ∑
 (9.52)

The right hand side of equation (9.46) becomes for our example case

3

1 1

3 3
22

1 1

3

2 2
i

T i

i i
i i

x

X X

x x

θ
θ

θ
=

= =

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.53)

3

1 2
1

3 3
2

1 2
1 1

3

2 2
i

T i

i i
i i

x

X X

x x

θ θ
θ

θ θ

=

= =

⎡ ⎤+⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.54)

Comparison of equation (9.52) to equation (9.54) reveals that equation (9.46) is
correct. Substitution of equations (9.32) and (9.46) into equation (9.31) yields

*2 2 0T TX Y X Xθ
θ

∂Φ = − + =
∂

 (9.55)

Equation (9.55) can be solved for θ :

() 1 *T TX X X Yθ
−

= (9.56)

which is the least squares equation for models that are linear in the parameters θ .

Equation (9.56) can also be derived by considering the least squares problem as

an over-determined system of equations. That is, we would like to find θ such

that

9.2 Least Squares Method 769

*X Yθ = (9.57)

but we have an over-determined system since θ is typically a much smaller vec-

tor than
*Y . Consequently, if we multiply equation (9.57) from the left by the

transpose of ()TX X we obtain

*T TX X X Yθ = (9.58)

and we realize that
TX X is a n x n square matrix that is the same size ()1n x as

the vector θ and the vector
*TX Y . Usually, () 1TX X

−
 exists; consequently, the least

squares or normal equation for θ can be obtained:

() 1
*T TX X X Yθ

−
= (9.59)

Additional discussion about this approach can be found in Lopez (page 772) [3]
and Ogunnaike and Ray (Example D.8, page 1230). [4]

9.2.1 Summation Form or Classical Form

The normal least squares equation (9.59) can be determined in summation or clas-
sical form [5, 6] by writing the objective function as

() ()2

1 2 1 2
1

,
n

i i
i

y xθ θ θ θ
=

Φ = − −∑ (9.60)

where iy represents the measured experimental value at the independent variable

ix . The derivative of Φ in equation (9.60) with respect to 1θ is

()1 1
11

2 0
n

i i
i

y xθ θ
θ =

∂Φ = − − − =
∂ ∑ (9.61)

Equation (9.61) can be written out for three data points ()3n = for illustration

purposes:

() () ()1 1 2 1 2 1 1 2 3 1 1 3 0y x y x y xθ θ θ θ θ θ− − + − − + − − = (9.62)

Inspection reveals that equation (9.62) can be simplified to

770 9 Parameter Estimation

1 2
1 1

n n

i i
i i

y n xθ θ
= =

= +∑ ∑ (9.63)

The derivative of Φ with respect to 2θ is

()1 2
12

2 0
n

i i i
i

y x xθ θ
θ =

∂Φ = − − − =
∂ ∑ (9.64)

which can be rewritten as

2
1 2

1 1 1

n n n

i i i i
i i i

x x y xθ θ
= = =

+ =∑ ∑ ∑ (9.65)

Next, let y be the average or mean value of the experimentally measured values

of the dependent variable be defined as follows

1

1 n

i
i

y y
n =

= ∑ (9.66)

and the average value of the independent variable values be defined in a similar
manner

1

1 n

i
i

x x
n =

= ∑ (9.67)

Equation (9.63) can be rewritten by using andy x (equations (9.66) and (9.67),

respectively) to yield an expression for 1θ in terms of andy x for convenience.

If we can find an equation for 2θ in terms of the measured values of andi iy x ,

we can substitute it into equation (9.65) and have expressions for the parameters

1 2andθ θ in terms of the measured values. Equation (9.63) can be rewritten as

1 2y xθ θ= − (9.68)

Substitution of equation (9.68) into (9.65) yields

() 2
2 2

1 1 1

n n n

i i i i
i i i

y yx x x y xθ θ
= = =

⎛ ⎞− + =⎜ ⎟
⎝ ⎠
∑ ∑ ∑ (9.69)

or

22
2

1 1 1 1 1

1 n n n n n

i i i i i i
i i i i i

y x x x y x
n n

θ θ
= = = = =

⎛ ⎞⎛ ⎞− + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ (9.70)

Equation (9.70) can be rewritten as

9.2 Least Squares Method 771

22

1 1 1 1 1 1

1n n n n n n

i i i i i i i
i i i i i i

x x n x y x y x
n n

θ
= = = = = =

⎛ ⎞⎛ ⎞⎛ ⎞− − = −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑ (9.71)

or

2

1 2
2

1 1 1 1

1

n

i n n n n
i

i i i i i
i i i i

x

x y x y x
n n

θ =

= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− + = −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ ∑ ∑ ∑ (9.72)

Thus, equation for 2θ becomes

1 1 1
2 2

2 1

1

1n n n

i i i i
i i i

n

in
i

i
i

y x y x
n

x

x
n

θ = = =

=

=

⎛ ⎞− ⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠−

∑ ∑ ∑

∑
∑

 (9.73)

Next, let

()

2

212

1 1

n

in n
i

xx i i
i i

x

S x x x
n

=

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠= − = −
∑

∑ ∑ (9.74)

and

1 1

1

n n

i in
i i

xy i i
i

y x

S y x
n

= =

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= −
∑ ∑

∑ (9.75)

Thus, equation (9.73) becomes

2
xy

xx

S

S
θ = (9.76)

Next, write equation (9.60), the objective function, as a sum of the residuals

()()2

1 2
1

n

E i i
i

SS y xθ θ
=

= − +∑

(9.77)

which can be expanded and rewritten as

772 9 Parameter Estimation

2 2
2

1

n

E i xy
i

SS y ny Sθ
=

= − −∑ (9.78)

Next, let’s define

2 2

1

n

yy i
i

S y ny
=

= −∑ (9.79)

so that equation (9.78) becomes

2E yy xySS S Sθ= − (9.80)

Note that yyS can also be written as

()2

1

n

yy i
i

S y y
=

= −∑ (9.81)

which can be seen by letting 2n = and expanding equation (9.81) to

() ()2 2

1 2yyS y y y y= − + − (9.82)

which becomes

2 2 2 2
1 1 2 22 2yyS y y y y y y y y= − + + − + (9.83)

or

2 2 2
1 2 1 22 2 2yyS y y y y y y y= + − − + (9.84)

or

2 2

1 1

2
n n

yy i i
i i

S y y y ny
= =

= − +∑ ∑ (9.85)

or

2 2

1

2
n

yy i
i

S y n y y ny
=

= − +∑ (9.86)

Thus,

2 2

1

n

yy i
i

S y ny
=

= −∑ (9.87)

9.2 Least Squares Method 773

Note that ESS has 2n − degrees of freedom since two degrees of freedom were

used to determine 1 2andθ θ . Thus, let the mean square ()EMS be defined as 2s

2

2
E

E

SS
MS s

n
= =

−
 (9.88)

which can be used to estimate the variance ()2σ . We will call s the standard

deviation. Next, let the predicted value of the dependent variable be written with a

caret, ˆ :iy

1 2ˆi iy xθ θ= + (9.89)

Now, let’s develop an equation for the sum of the difference between the meas-

ured value of the dependent variable iy and the average value of the observed

values y in terms of ˆiy . Start by writing the identity

() ()ˆ ˆi i i iy y y y y y− = − + − (9.90)

Next, square both sides of equation (9.90) and sum over all n observations

() () () ()()2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ2
n n n n

i i i i i i i
i i i i

y y y y y y y y y y
= = = =

− = − + − + − −∑ ∑ ∑ ∑ (9.91)

The third term on the right hand side of equation (9.91) can be expanded to
obtain

()() () ()
1 1 1

ˆ ˆ ˆ ˆ ˆ2 2 2
n n n

i i i i i i i i
i i i

y y y y y y y y y y
= = =

− − = − − −∑ ∑ ∑ (9.92)

Now let ir be the residual:

ˆi i ir y y= − (9.93)

so that equation (9.92) becomes

()()
1 1 1

ˆ ˆ ˆ2 2 2
n n n

i i i i i i
i i i

y y y y y r y r
= = =

− − = −∑ ∑ ∑ (9.94)

Note that both terms on the right hand side of equation (9.94) are zero since the
sum of the residuals is always equal to zero,

1

0
n

i
i

r
=

=∑ (9.95)

and the sum of the residuals weighted by the predicted values ()ˆiy is also zero:

774 9 Parameter Estimation

1

ˆ 0
n

i i
i

y r
=

=∑ (9.96)

Thus, equation (9.91) simplifies to

() () ()2 2 2

1 1 1

ˆ ˆ
n n n

i i i i
i i i

y y y y y y
= = =

− = − + −∑ ∑ ∑ (9.97)

Equation (9.97) can be rewritten as

()2

1

n

i R E
i

y y SS SS
=

− = +∑ (9.98)

where ESS is given by equation (9.80) and RSS is called the regression sum of

squares and is defined as

()2

1

ˆ
n

R i
i

SS y y
=

= −∑ (9.99)

The left hand side of equation (9.97) can be written as (see equation (9.81))

()2

1

n

yy i
i

S y y
=

= −∑ (9.100)

so that equation (9.98) becomes

yy R ES SS SS= + (9.101)

Substitution of equation (9.80) into equation (9.101) yields an equation for RSS

in terms of 2θ :

2R xySS Sθ= (9.102)

Finally, the coefficient of determination is called 2R and can be written in terms

of ESS and yyS by using equation (9.102) as follows:

2 1R E

yy yy

SS SS
R

S S
= = − (9.103)

or in terms of 2θ :

2 2
2

xy

yy

S
R

S
θ= (9.104)

9.2 Least Squares Method 775

Values of 2R close to 1 imply that the variability in y as defined by yyS can be

explained by the regression model; however, it is important to note that 2R has no
meaning for cases when x is a controlled variable because the magnitude of

2R depends on the spacing of through xyx S (see equation(9.104)).

The least squares estimates 1 2andθ θ have several important statistical

properties. For example,

2

1

n
xy

i i
ixx

S
c y

S
θ

=

= =∑ (9.105)

where

1,..,i
i

xx

x x
c i n

S

−= = (9.106)

This means that 2θ is a linear combination of the observations ()iy . Now since

the observations ()iy are assumed to be random variables that are normally and

independently distributed, 2θ is also a normally and independently distributed
random variable.

9.2.2 Confidence Intervals: Classical Approach

The confidence intervals for 1 2, , andθ θ the variance 2σ can be determined by

assuming that the errors in measuring iy are normally and independently

distributed so that the distribution of the variable 1v which is defined as

1 1
1

21
E

xx

v
x

MS
n S

θ θ−=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (9.107)

follows a student’s t distribution with 2n − degrees of freedom. Therefore, a

()100 1 α− percent confidence interval on the intercept 1θ is given by

2 2

1 1/2, 2 1 /2, 2

1 1
n E n E

xx xx

x x
t MS t MS

n S n Sα αθ θ θ− −

⎛ ⎞ ⎛ ⎞
− + ≤ ≤ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.108)

In a similar manner the distribution of the variable 2v

776 9 Parameter Estimation

2 2
2

E

xx

v
MS

S

θ θ−=
(9.109)

follows a student’s t distribution with 2n − degrees of freedom, and

2 2/ 2, 2 2 / 2, 2
E E

n n
xx xx

MS MS
t t

S Sα αθ θ θ− −− ≤ ≤ + (9.110)

Also, if the errors are normally and independently distributed, the sampling

distribution of the variable 3v

()
3 2

2 En MS
v

σ
−

= (9.111)

is chi-square with 2n − degrees of freedom. Thus, for 100 ()1 α− confidence

interval in percent

() ()2
2 2

/ 2 1 / 2, 2

2 2E E

n

n MS n MS

α α

σ
χ χ − −

− −
≤ ≤ (9.112)

The standard error ()se of the slope 2θ is defined as

()2
E

xx

MS
se

S
θ = (9.113)

and the standard error of the intercept 1θ is

()
2

1

1
E

xx

x
se MS

n S
θ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (9.114)

9.2.3 Prediction of New Observations

A new measurement 0x can be used to predict a new observation, 0ŷ :

1 20 0ŷ xθ θ= + (9.115)

where 0ŷ is the point estimate of the new observation. Let the difference between

value 0y and the predicted value 0ŷ be the random variable, ϕ , where

0 0ˆy yϕ = − (9.116)

9.2 Least Squares Method 777

and ϕ is normally distributed with mean zero and variance. That is,

() ()0 0ˆV V y yϕ = − (9.117)

The variance ()V ϕ in this case includes the variance of the fitted regression line

and the variance of the error term:

() ()2

02 1
1

xx

x x
V

n S
ϕ σ

⎡ ⎤−
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.118)

because 0y is independent of 0ŷ . Thus, the ()100 1 α− percent prediction

interval on a future observation at 0x is

() ()2 2

0 0
0 / 2, 2 0 0 / 2, 2

1 1
ˆ ˆ1 1n E n E

xx xx

x x x x
y t MS y y t MS

n S n Sα α− −

⎛ ⎞ ⎛ ⎞− −
− + + ≤ ≤ + + +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

(9.119)

9.2.4 A One Parameter through the Origin Model

A single parameter model that forces the data to go through the origin can be written as

1y xβ ε= + (9.120)

In this case, the objective function can be written as

() ()2

1 1
1

n

i i
i

S y xβ β
=

= −∑ (9.121)

The normal equation in this case is

2
1

1 1

ˆ
n n

i i i
i i

x y xβ
= =

=∑ ∑ (9.122)

so that

1
1

2

1

ˆ

n

i i
i

n

i
i

y x

x
β =

=

=
∑

∑
 (9.123)

The mean square error in this case is

()2

1

ˆ

1

n

i i
i

E

y y
MS

n
=

−
=

−

∑

(9.124)

or

778 9 Parameter Estimation

2
1

1 1

ˆ

1

n n

i i i
i i

E

y y x
MS

n

β
= =

−
=

−

∑ ∑
 (9.125)

For this one parameter case, the ()100 1 α− percent confidence interval becomes

1 / 2, 1 1 1 / 2, 1
2 2

1 1

ˆ ˆE E
n nn n

i i
i i

MS MS
t t

x x
α αβ β β− −

= =

− ≤ ≤ +
∑ ∑

 (9.126)

A ()100 1 α− percent confidence interval for the expected value of the mean

response at ()()0 1 0x x E y x= is

()
2 2
0 0

0 / 2, 1 1 0 0 / 2, 11
2 2

1 1

ˆ ˆE E
n nn n

i i
i i

x MS x MS
y t E y x y t

x x
α α− −

= =

− ≤ ≤ +
∑ ∑

 (9.127)

The ()100 1 α− percent prediction interval on a future observation a 0x x= for 0y is

2 2
0 0

0 / 2, 1 0 0 / 2, 1
2 2

1 1

ˆ ˆ1 1n E n En n

i i
i i

x x
y t MS y y t MS

x x
α α− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− + ≤ ≤ + +
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
 (9.128)

9.3 Nonlinear Least Squares

The nonlinear least squares method can be used to determine parameter values that
appear in model equations such as those given by equations (9.11) – (9.13). How-
ever, before doing that let’s consider a simpler problem. Bard [7] shows how to
determine the pre-exponential factor or Arrhenius constant and the activation
energy for reaction (9.1) at different temperatures. In this case, let’s assume that

we know ()0AC and form the fraction of reactant remaining, y :

() 0A Ay C C= (9.129)

And set the initial condition to

1 at 0y t= = (9.130)

In this case

9.3 Nonlinear Least Squares 779

1 1exp()y k x= − (9.131)

where

1 time in hoursx = (9.132)

and

1 1 2 2k =θ exp (θ x)− (9.133)

where 1θ is the Arrhenius constant in 1hr− and 2θ is the activation energy divided by the

gas constant R so that the unit of 2θ is K . Here 2x is the second

independent variable T in units of K .
In this case, we have one dependent variable y , two independent vari-

ables 1 2 and x x , and two parameter values ()1 2and θ θ . The model equation is

()()1 2 2 1exp exp y x xθ θ⎡ ⎤= − −⎣ ⎦ (9.134)

The experimental data from Bard [7] are presented in Table 9.1.

Table 9.1

780 9 Parameter Estimation

The next step in the process is to define the scalar objective function Φ that
depends on the vector of parameters θ

() () ()* *T
Y Y Y YθΦ = − − (9.135)

where
* vector of experimental values for the depdendent variable Y y= (9.136)

() vector of predicted values of from equation 9.19Y y= (9.137)

The minimum of Φ with respect to the parameters θ can be found by setting the

derivative of Φ with respect to the θ equal to zero:

0
θ

∂Φ =
∂

 (9.138)

Equation (9.134) is nonlinear in the parameter valuesθ . Consequently, let’s ex-

pand Y in a Taylor series about guessed values for the parameter ()kθ where the

superscript k indicates iteration number k . Thus,

() ()()
()

, ,
k

k Y
Y x Y x

θ

θ θ θ
θ

∂≈ + Δ
∂

 (9.139)

or

() ()
(),

k

kY Y x J
θ θ

θ θ
=

= + Δ (9.140)

where
(1) ()k kθ θ θ+Δ = − (9.141)

and for two parameters ()1 2 and θ θ

1 1

1 2

1 2

n n

Y Y

J

Y Y

θ θ

θ θ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (9.142)

where 1 1Y θ∂ ∂ is referred to as the sensitivity coefficient of the dependent vari-

able Y with respect to parameter number one 1θ evaluated at the first experimen-

tal condition as indicated by the subscript 1 on ()1i.e., Y Y . Again, the subscript

n is the total number of data points which can include different independent

9.3 Nonlinear Least Squares 781

variable values. For example, 15n = for the data in Table 9.1 where y was

measured at three different temperatures for five different times. Substitution of
equation (9.140) into equation (9.135) yields

() () ()* *T
Y Y J Y Y Jθ θ θΦ Δ = − − Δ − − Δ (9.143)

The minimum of ()θΦ Δ given by equation (9.143) can be found by taking its

derivative with respect to θΔ and setting that vector equal to the zero vector.

This can be done by using equation (9.33) above where in this case

, ,x A Jθ= Δ = − * *, , ,b Y Y e Y Y C I= − = − = and D J= − . Thus,

() ()* * 0T TJ J Y Y J J Y Yθ θ
θ

∂Φ = − − Δ + − − − Δ + − =
∂Δ

 (9.144)

or

()()*2 0TJ J Y Yθ
θ

∂Φ = Δ − − =
∂Δ

 (9.145)

or

()*2 0TJ Y Y J θ
θ

∂Φ = − − − Δ =
∂Δ

 (9.146)

Equation (9.146) can be divided by 2 and then expanded to yield

()* 0T TJ J J Y YθΔ = − + (9.147)

which can be solved to obtain an expression for the change in the parameter vector θΔ :

() ()-1 *T TJ J J Y YθΔ = − (9.148)

This is an equation that can be used in an iterative process to find θ when the

model is nonlinear in one or more of the parametersθ .

The procedure to determine the values for the elements of

()1 2 and in this caseθ θ θ consists of the following steps when it is possible to

obtain the elements of J analytically.

1. Guess values for ()kθ .

2. Use ()kθ to determine J according to equation (9.142).

3. Use ()kθ to determine Y according to equation (9.134). (Y is the vector

of values of y obtained from the model equation (equation (9.134) in this

case) evaluated at the independent variables 1 through 15 with ()kθ and the

experimental data point values for
1, 2,and j jx x with 1, 15j = .)

782 9 Parameter Estimation

4. Solve equation (9.148) for θΔ .

5. Solve equation (9.141) for (1)kθ + .

6. Replace ()kθ with (1)kθ + .

7. Repeat steps 2 through 6 until each i

i

θ
θ

Δ becomes small (e.g.,

4 41 2
1 2

1 2

10 , and 10
θ θθ θ

θ θ
− −Δ ΔΔ ≤ Δ ≤).

Figure 9.1 shows a flow diagram for this procedure.

Fig. 9.1 Nonlinear Parameter Estimation Algorithm for k Independent Variable Values,
One Dependent Variable (Y) and n Parameters (θ)

9.3 Nonlinear Least Squares 783

A Maple worksheet for this procedure is presented below.

Example 9.1 Parameter Estimation

> restart:

> with (linalg):

Enter experimental data for fraction of reactant remaining for all fifteen data
points(yexp, j=1,15).

> yexp:=matrix(15,1,[0.980,0.983,0.955,0.979,0.993,0.626,0.544,0.455,
0.225,0.167,0.566,0.317,0.034,0.016,0.066]):

Enter values for the independent variables (time in hours and temperature in K)
for all 15 data points in pairs (tj,tempj, j=1,15).

> x:=matrix(15,2,[0.1,100,0.2,100,0.3,100,0.4,100,0.5,100,0.05,200,0.1,200,
0.15,200,.2,200,0.25,200,0.02,300,0.04,300,0.06,300,0.08,300,0.1,300]):

The first row in the x matrix is:

> x [1,1],x[1,2];

,0.1 100

Enter the model equation (ymodel) for the fraction of reactant remaining as a
function of time, temperature and parameter values theta1(Arrhenius constant, in
hr-1) and theta2 (Activation energy divided by R, in K) .

> ymodel:=exp(-theta1*t*exp(-theta2/T));

Use the ymodel equation to predict the values of the dependent variable in ypred.

> ypred:=matrix(15,1,[seq(eval(ymodel,{t=x[j,1],T=x[j,2]}),j=1..15)]):

Note that ypred is a 15 x 1 matrix or vector, the first element of which is:

> ypred[1,1];

Use Maple's Jacobian command in ‘linalg’ to find the elements of J (the sensitivity
coefficients of the dependent variable to the parameters, theta1 and theta2). These
are the derivates of the dependent variable y with respect to the parameters
evaluated at the experimental conditions.

784 9 Parameter Estimation

> J:=jacobian([seq(ypred[j,1],j=1..15)],[theta1,theta2]):

Note that J is a 15 x 2 matrix. The rows of J consist of two elements. The first
element in the first row is the derivative of the model equation (ymodel) with re-
spect to theta1 evaluated at the experimental conditions associated with the first
data point (x[1,1] and x[1,2]). We use ypred to obtain and evaluate this element.
The second element in the first row of J is the derivate of ymodel with respect to
theta2 evaluated at the first data point. The elements in the first row of J are shown
next.

9.3 Nonlinear Least Squares 785

> J[15,1];J[15,2];

Next, determine the error between the measured value of y (yexp) and the pre-
dicted value of y (ypred). This is needed in the iteration process programmed be-
low for determining the parameter values, theta1 and theta2, via the least squares
equation.

> err:=evalm(yexp-ypred):

The variable named err is a 15 x 1 matrix the first element of which is:

> err[1,1];

Initialize an iteration counter, n_iters.

> n_iters:=0;

n_iters := 0

Initialize the parameter vector theta. Initial guesses can often be determined by
considering only one of the data points. Another method is to try different initial
guesses until the method yields the same converged values for theta1 and theta2.

> theta:=matrix(2,1,[500,1e3]);

Initialize the delta theta vector.

> dtheta:=evalm(theta);

Write a ‘do’ loop that solves for delta theta, updates the parameter values, and
uses a while statement to check for convergence or exceeding 100 iterations.

> while max(abs(dtheta[1,1]/theta[1,1]),abs(dtheta[2,1]/theta[2,1]))> 1.0e-7
and
 n_iters <100 do

Jeval:=eval(J,{theta1=theta[1,1],theta2=theta[2,1]}):

786 9 Parameter Estimation

JevalT:=transpose(Jeval):
dthea:=evalm(inverse(JevalT&*Jeval)&*JevalT&*eval(err,{theta1=theta[
1,1],theta2=theta[2,1]})):
 theta:=evalm(theta+dtheta);
 n_iters:=n_iters+1;
end do:

Enter the number of iterations needed to obtain convergence.

> n_iters;

Print the converged values for theta1 and theta2.

> evalm(theta);

Use the converged values of theta1 and theta2 to determine predicted values of y
for plotting, call this plotypred:

> plotypred:=eval(ymodel,{theta1=theta[1,1],theta2=theta[2,1]});

Prepare the experimental data points for plotting.

> plotdata:=[seq([x[j,1],x[j,2],yexp[j,1]],j=1..15)];

Specify the data (yexp) plot, P1, and the predicted values (ypred), P2.

 > P1:=plot3d(plotdata,t=0..0.5,T=100..300,axes=boxed,style=point,
symbol=box,symbolize=14,color=black):

> P2:=plot3d(plotypred,t=0..0.5,T=100..300,axes=boxed,style=wireframe):

Display the plots for the data and the predicted values of y on the same plot as
functions of time, t, and temperature, T.

> display({P1,P2},title="Example 9.1",labels=["t","T","y"],
labeldirections=[horizontal,horizontal,vertical]);

9.3 Nonlinear Least Squares 787

Example 9.1

Inspection of this figure reveals that more experimental data would be helpful par-
ticularly for shorter times at higher temperatures. The low temperature (100 K)
data are not very useful since y changes so little over the 0.5 hour experiment.

Extension of Example 9.1

Example 9.1 above presents the methodology needed to obtain values for the pa-
rameters in an algebraic model that is nonlinear in the parameters. Usually, we
will not be able to find an analytical solution to the differential equation model,
and we will be forced to solve a differential equation model by numerical meth-
ods. This extension is intended to help you learn how to solve a model in differen-
tial equation form that is nonlinear in the parameters. That is, we will solve
numerically the differential equation model (equation(9.2)) written in dimen-

sionless form where 1k is given by equation (9.133) to obtain the parameter

values by using the data in Example 9.1 above. Again, solve numerically the fol-

lowing differential equation model (where we have used 1 2andb b instead of

1 2andθ θ as the parameters):

()exp1 2

dy
b b T y

dt
= − − (9.149)

and

788 9 Parameter Estimation

() .y 0 1 0= (9.150)

Determine the parameter values and1 2b b by using the data given in Example 9.1

and the nonlinear least squares method. Recall that in Example 9.1 we needed the

elements of the Jacobian matrix J (see equation (9.142)). In this case, integrate

simultaneously the time dependent sensitivity coefficients (i.e., the Jacobi matrix

elements 1 andy b∂ ∂ 2y b∂ ∂) and the differential equations. The needed

three differential equations can be developed by taking the total derivative (as
shown below) of the right hand side of equation (9.149) which we call h :

()exp1 2h b b T y= − − (9.151)

Inspection of equation (9.151) shows that h depends on and 1 2b b y, at a fixed

T . However, we know that the dependent variable y also depends on

and1 2b b . Thus, sensitivity equations (Jacobian matrix elements

1 2and y b y b∂ ∂ ∂ ∂) can be obtained by differentiating both sides of equation

(9.151) with respect to b by using the chain rule:

dy Dh h h y

b dt Db b y b

∂ ∂ ∂ ∂⎛ ⎞ = = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.152)

Equation (9.152) becomes (after we exchange the order of differentiation on the
left hand side of equation (9.152))

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.153)

Next, write equation (9.153) for our case where []1 2

T
b b b= as follows:

11 1

2 2 2

h yy h
y bb bd

h ydt y h
y bb b

∂ ∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +
⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.154)

Next, extract from equation (9.154) the differential equations for

1 2and y b y b∂ ∂ ∂ ∂ :

1 1 1

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.155)

9.4 Hessian Matrix Approach 789

2 2 2

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.156)

By taking the derivatives, equations (9.155) and (9.156) yield

() ()2 1 2
1 1

exp exp
d y y

b T y b b T
dt b b

⎛ ⎞ ⎛ ⎞∂ ∂= − − + − −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠
 (9.157)

and

() 2 2
1 1

2 2

1
exp exp

d y b b y
b y b

dt b T T T b

⎛ ⎞ ⎛ ⎞∂ − − ⎡ − ⎤ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠
 (9.158)

Thus, we now have three dependent variables, ()1 2, , and y y b y b∂ ∂ ∂ ∂ and

two independent variables ()andt T . These three dependent variables have the

following initial conditions:

()0 1.0y = (9.159)

1 0

0.0
t

y

b
=

∂ =
∂

 (9.160)

2 0

0.0
t

y

b
=

∂ =
∂

 (9.161)

Fix T and integrate numerically in time the equations for the dependent vari-

ables 1(, ,y y b∂ ∂ 2and)y b∂ ∂ to find their dependence on time. We need to

do this for the three different temperatures. We need to use the values obtained
numerically for the model predictions and the elements of the Jacobian. Also,

note that you will need to use guessed values for 1 2andb b to obtain the needed

values for the dependent variable y and the Jacobian elements

1 2and y b y b∂ ∂ ∂ ∂ . Compare the values of and1 2b b obtained in this man-

ner to the ones obtained in Example 9.1.

9.4 Hessian Matrix Approach

An equation which is essentially the same as equation (9.148) for θΔ can be ob-

tained by using a different approach from that used above where we expanded the

790 9 Parameter Estimation

dependent variable vector Y in a Taylor series about an initial vector of the pa-

rameter values
()kθ (see equation (9.139)). In this case, instead of expanding the

model equations Y as shown in equation (9.139), expand the objective

function ()θΦ in a Taylor series about the kth guess of the parameter vector of

()kθ :

()() ()()
()

()
()

1 1

2 kk

T

Tk k H
θ θθ θ

θ θ θ θ θ
θ ⎛ ⎞=⎜ ⎟

⎝ ⎠

+

=

⎛ ⎞∂Φ⎜ ⎟Φ = Φ + Δ + Δ Δ
⎜ ⎟∂⎝ ⎠

 (9.162)

where the parameter vector
()1kθ +

 is unknown and

() ()1k kθ θ θ+Δ = − (9.163)

as before. The Hessian matrix H is defined as

2

T
H

θ θ
∂ Φ=

∂ ∂
 (9.164)

We want to find the parameters θ that make the derivative of ()θΦ with respect

to θ equal to the zero vector. Let’s do this by taking the derivative of
()()1kθ +Φ

given by equation (9.162) with respect to θΔ by replacing
()1kθ +

 with θΔ as

the unknown vector and setting the resulting equation equal to the zero vector to
obtain

()()
()

()1
0

2

k

k

T

k

T
H

θ θ

θ θ

θ θ
θ θ θ θ

θ θ
θ

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥∂Φ ∂ ∂ ∂Φ⎜ ⎟= Φ + Δ⎢ ⎥⎜ ⎟∂Δ ∂Δ ∂Δ ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤∂ ⎢ ⎥+ Δ Δ =
⎢ ⎥∂Δ
⎣ ⎦

 (9.165)

Since
()() ()k kθ is a constant and θΦ is a vector of known constants, the first

term in equation (9.165) is the zero vector and the second term in equation (9.165)
becomes

9.4 Hessian Matrix Approach 791

() ()k k

T

θ θ θ θ

θ
θ θ θ

= =

⎡ ⎤⎛ ⎞
⎢ ⎥∂Φ ∂Φ ∂Φ⎜ ⎟= Δ =⎢ ⎥⎜ ⎟∂Δ ∂ ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (9.166)

where care has been taken to evaluate the derivative carefully (note that the result-
ing derivative is a column vector, as required). The third term in equation (9.165)
becomes by using equation (9.44)

()

1 1

2 2 k k
k

T TH H H
θ θ θ θ

θ θ

θ θ θ
θ = =

=

⎛ ⎞ ⎛ ⎞∂Φ ⎜ ⎟Δ Δ = + Δ⎜ ⎟
⎜ ⎟⎜ ⎟∂Δ ⎝ ⎠⎝ ⎠

 (9.167)

Equation (9.165) becomes by using equations (9.166) and (9.167)

()
()

1
0 0

2 k k

k

T
H H

θ θ θ θ
θ θ

θ
θ θ = =

=

⎛ ⎞∂Φ ∂Φ= + + + Δ =⎜ ⎟⎜ ⎟∂Δ ∂ ⎝ ⎠
 (9.168)

Since H is a symmetric matrix (see equation (9.164)) and therefore ,TH H=

equation (9.168) becomes

()

1
2 0

2 k

k

H
θ θ

θ θ

θ
θ θ =

=

⎛ ⎞∂Φ ∂Φ= + Δ =⎜ ⎟∂Δ ∂ ⎝ ⎠
 (9.169)

Equation (9.169) can be solved for θΔ :

()
()

1
k

k

H
θ θ

θ θ

θ
θ

−

=
=

∂ΦΔ = −
∂

 (9.170)

or by using equation (9.163) we have

() ()
()

()

1 1
k

k

k k H
θ θ

θ θ

θ θ
θ

+ −

=
=

∂Φ= −
∂

 (9.171)

The next step is to determine expressions for

()kθ θ

θ
=

∂Φ
∂

and ()
1

k
H

θ θ

−

=
 in terms

of the sensitivity coefficients and the experimental data that can be used in
equation (9.171). First, expand equation (9.114) to

792 9 Parameter Estimation

() () ()* * * *T T T TY Y Y Y Y Y Y YθΦ = − − + (9.172)

Next, recall that [2]

()* *
T

TY Y Y Y= (9.173)

so that equation (9.172) becomes

() () ()* * *2
T T TY Y Y Y Y YθΦ = − − (9.174)

Next, take the derivative of ()θΦ in equation (9.174) with respect to θ

()()*0 2
T TY Y Y Y

θ θ θ
∂Φ ∂ ∂= − +
∂ ∂ ∂

 (9.175)

Next, take the derivative of the second term in equation (9.175) as indicated to
obtain

()()* *2 2
T

T Y
Y Y Y

θ θ
⎛ ⎞∂ ∂− = − ⎜ ⎟∂ ∂⎝ ⎠

 (9.176)

The third term in equation (9.175) becomes

()
T

T TY Y
Y Y Y Y

θ θ θ
⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (9.177)

Equation (9.177) can be simplified by recognizing that

T
T Y Y

Y Y
θ θ

⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠
 (9.178)

Thus, by using equation (9.178), equation (9.177) becomes

() 2
T

T Y
Y Y Y

θ θ
⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠

 (9.179)

Substitution of equation (9.176) and (9.179) into equation (9.175) yields

*2 2
T T

Y Y
Y Y

θ θ θ
⎛ ⎞ ⎛ ⎞∂Φ ∂ ∂= − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (9.180)

or

9.4 Hessian Matrix Approach 793

()*2
T

Y
Y Y

θ θ
⎛ ⎞∂Φ ∂= − −⎜ ⎟∂ ∂⎝ ⎠

 (9.181)

Equation (9.181) can be written as

() ()*2
T

J Y Y
θ

∂Φ = − −
∂

 (9.182)

Substitution of equation (9.182) into equation (9.171) yields

() ()
() () ()()1 1 *2 kkk

k k H J Y Y θ θθ θθ θ
θ θ+ −

===
= + − (9.183)

To obtain H first write the objective function in summation form:

() ()2*

1

n

i i
i

Y Yθ
=

Φ = −∑ (9.184)

where *
iY is element i of

*Y and iY is element i of Y and n is the number of

data points. The derivative of the objective function Φ in equation (9.184) with

respect to parameter ()jj θ yields

()*

1

2
n

i
i i

ij j

Y
Y Y

θ θ=

∂Φ ∂= − −
∂ ∂∑ (9.185)

Equation (9.185) can be written for each parameter, so for two parameters

()1, 2j = equation (9.185) yields

()

()

*

11 1

*

12 2

2

2

n
i

i i
i

n
i

i i
i

Y
Y Y

Y
Y Y

θ θ

θ θ

=

=

∂Φ ∂⎛ ⎞⎛ ⎞ − −⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟∂Φ ∂− −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑

∑
 (9.186)

Equation (9.186) can be written in matrix notation as

() ()*2
T

J Y Y
θ

∂Φ = − −
∂

 (9.187)

where J is given by equation (9.142) for two parameters. Note that equation

(9.187) is the same as equation (9.182), as expected.

794 9 Parameter Estimation

Next, the Hessian matrix H (see equation (9.164)) can be written in terms of

the sensitivity coefficients. First, in our case we have

TH
θ θ
∂Φ=

∂ ∂
 (9.188)

Equation (9.188) can be written for two parameters:

2 2

1 1 1 2

2 2

2 1 2 2

H
θ θ θ θ

θ θ θ θ

⎛ ⎞∂ Φ ∂ Φ
⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟= ⎜ ⎟∂ Φ ∂ Φ
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.189)

Next, find the elements of 1,1H in equation (9.189) by writing equation (9.185)

for 1j = then taking the derivative of the resulting equation with respect to 1θ :

()
2 2

*
1,1

11 1 1 1 1 1

2
n

i i i
i i

i

Y Y Y
H Y Y

θ θ θ θ θ θ=

∂ Φ ∂ ∂ ∂= = − −
∂ ∂ ∂ ∂ ∂ ∂∑ (9.190)

Next, write equation (9.185) with 1j = and then take the derivative with respect to

2θ to obtain 2,1H :

()
2 2

*
2,1

12 1 2 1 2 1

2
n

i i i
i i

i

Y Y Y
H Y Y

θ θ θ θ θ θ=

∂ Φ ∂ ∂ ∂= = − −
∂ ∂ ∂ ∂ ∂ ∂∑ (9.191)

For simplicity, workers in the past [7] [8] have neglected the second terms on the
right hand sides of equations (9.190) and (9.191), and similar terms for the other

elements of H . The resulting approximation to H is often called N after New-

ton. [7] Note that by making this assumption we obtain elements of N that can be

written as products of the sensitivity coefficients. That is, for two parameters and
three data points

1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1 1 1 1 2 1 2 1 2

1 1 2 2 3 3 1 1 2 2 3 3

2 1 2 1 2 1 2 2 2 2 2 2

2

Y Y Y Y Y Y Y Y Y Y Y Y

H N
Y Y Y Y Y Y Y Y Y Y Y Y

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟≈ =
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

(9.192)

or in general

2 TH N J J≈ = (9.193)

9.5 Confidence Intervals 795

Finally, by using equations (9.187) and (9.193) equation (9.171) becomes

() () () () () ()()
1

1 *4 kkk

k k T TJ J J Y Y θ θθ θθ θ
θ θ

−
+

===

⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (9.194)

Comparison of equation (9.194) to (9.148) shows that the approximate Hessian

matrix approach (since we are using and notN H) leads to the same equation

except for the factor of 4. This factor of 4 accelerates the convergence when the
parameter values are near their converged values, but can cause additional itera-
tions to be needed for poor initial guesses. Another iterative method that could be
used is the Marquardt method (see reference [9] for a discussion).

9.5 Confidence Intervals

The parameters that we have obtained for models that are linear in the parameters
(see equation (9.56)) or by iteration for the models that are nonlinear in the pa-
rameters are known as point estimates. We would like to determine confidence
intervals for these point estimates of the parameters so that we can use these con-
fidence intervals to help us understand better the models we are developing for the
systems we are studying. We want to use our parameter estimates to design sys-
tems and the more confidence we have in the models we use and the values of the
parameters in those models, the more confidence we will have in the system that
we design carrying out the objective of the system. For example, if we can de-
velop a model with small confidence intervals for the point estimates of the
parameters we will have less uncertainty and more confidence in the design. Es-
sentially, we would like to continue our model development until we have small
confidence intervals for the parameters. This may require changing the model or
more often the kinetic reaction mechanism for the process of interest. These steps
are illustrated in Example 9.5 of Rawlings and Ekerdt.[8]

The procedure that we use to develop confidence intervals is based on making
some assumptions about the variables we measure (concentration of A as a func-

tion of time, (),AC t e.g.) and the parameters in the model equation. One assump-

tion is that the measured independent variable (time, ,t e.g.) is known exactly.

Another assumption is the measured dependent variable values ()(), e.g.AC t are

normally distributed random variables at each value of time. However, we typi-
cally have sufficient resources to carry out only two or three replicate experi-
ments; consequently, we alter our assumption to be that the measured dependent
variables are random variables whose values are distributed according to the stu-
dent’s t distribution (see Figure 7.7 of Constantinides and Mostoufi [9]). For a
large number of replicate experiments the student’s t distribution becomes the
normal distribution (see Figure 9.4 of Rawlings and Ekerdt [8] and Figure 7.5(a)
of Constantinides and Mostoufi [9]). The term used to determine whether or not
the student’s t distribution and the normal distribution are the same is “degrees of

796 9 Parameter Estimation

freedom.” This term is often defined as the number of observations made in excess
of the minimum number needed to estimate an unknown quantity. For example,

the sample mean or arithmetic average of the concentration of AC measured at

time 1 mint = (e.g.) is

()
(),

1
,

1 min
1 min

n

A i
i

A avg

C t
C t

n
=

=
= =

∑

(9.195)

where n is the number of times we made the measurement. If we were only able
to make one measurement, n would equal 1; and, consequently, we would have
only one degree of freedom, and we would not be able to determine the sample

variance ()2σ , which is defined as

() (), ,
2 1

1 min 1 min

1

n

A Ai avg
i

C t C t

n
σ =

= − =
=

−

∑

(9.196)

because n would be equal 1 for only one measurement. The denominator of equa-

tion (9.196) is ()1n − because one degree of freedom (i.e., one observation) was

used to calculate the average in equation (9.195). The variance for one measure-
ment, of course, makes no sense. Consequently, we would have to make at least

two measurements ()2n = to obtain a value for 2σ .

The measured dependent variable is equal to its true value plus measurement
error and is also equal to an estimated value plus a residual error, which is often
referred to simply as a residual. That is, the measured value of the dependent vari-

able, *
iY , is equal to its true value, iY , which we will never know for sure, plus a

measurement error, iυ , which we also do not know:

*

measured value true value of measurement error

of dependent variable dependent variable at th condition

at th condition at th con

i i iY Y

i

i i

υ= +

dition

 (9.197)

Also, the measured dependent variable *
iY is equal to its estimated value, iY , plus

a residual, iε , at condition, i :

*
i i iY Y ε= + (9.198)

9.6 Sensitivity Coefficient Equations 797

The measurement error, iυ , is often assumed to be a normalized, normally dis-

tributed random variable with a zero mean and a known variance. The normal
probability density function for the measurement error at condition i is

() ()2

2

1
exp

22
i

ip
υ μ

υ
σσ π

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.199)

where the mean ()μ of the n measurement errors at the thi experimental condi-

tion is

()
1

n
i j

j n

υ
μ

=
=∑ (9.200)

and the variance is

()()2

2

1 1

n i j

j n

υ μ
σ

=

−
=

−∑ (9.201)

We can write equation (9.199) in compact form as

()2,i Nυ μ σ∼ (9.202)

If we set 0μ = and 2 1.0σ = , for example, equation (9.202) becomes

()0,1.0i Nυ ∼ (9.203)

Which is plotted in Figure 9.4 of Rawlings and Ekerdt [8] for iυ instead of x .

9.6 Sensitivity Coefficient Equations

Maple can be used to determine the sensitivity equations (see Example A.2 of
Rawlings and Ekerdt) for a first order, isothermal constant volume reactor model
where

A
A

dC
kC

dt
= − (9.204)

and

() 00A AC t C= = (9.205)

798 9 Parameter Estimation

We have two parameters 0 andAC k (1 0 2andAC kθ θ= =) so we will have

two sensitivity coefficients and two sensitivity coefficient equations. The first sen-

sitivity coefficient is defined as the rate of change of ()AC t with respect to the

parameter 0AC , That is, define

() ()
1

0

A

A

C t
S t

C

∂
=

∂
 (9.206)

or since 1 0ACθ =

1
1

AC
S

θ
∂=
∂

 (9.207)

The second sensitivity coefficient is the rate of change of ()AC t with respect to

the parameter k :

() ()
2

AC t
S t

k

∂
=

∂
 (9.208)

or since 2 kθ =

2
2

AC
S

θ
∂=
∂

 (9.209)

These sensitivity coefficients were determined by the Maple Jacobian command
for this model and evaluated at the experimental times in the Maple worksheet for

Example 9.1 (see the J matrix). The sensitivity coefficient equations for

() ()1 2andS t S t can be obtained by taking the derivative of the left hand side of

equation (9.204) with respect to the parameters and the total derivative of the right
hand side of equation (9.204). That is, let the right hand side of equation (9.204)
be the function h

Ah kC= − (9.210)

and take the derivative of equation (9.210) with respect to the parameters which
requires that we take the total derivative of h :

A A

A

dC Dh h h C

dt D Cθ θ θ θ
∂ ∂ ∂ ∂⎛ ⎞ = = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.211)

9.6 Sensitivity Coefficient Equations 799

Equation (9.211) can be rewritten by exchanging the order of differentiation on
the left hand side:

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.212)

Equation (9.212) becomes

1 1 1

2 2 2

A A

A

A A

A

C h h C

Cd

C h h Cdt

C

θ θ θ

θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.213)

We can write the elements of equation (9.213) as individual equations:

1 1 1

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.214)

and

2 2 2

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.215)

We can find 1 ,h θ∂ ∂ etc., by inspection in this case (or by using Maple to get

the total derivative). Thus, equation (9.214) becomes

()
1 1

0A Ad C C
k

dt θ θ
⎛ ⎞∂ ∂= + −⎜ ⎟∂ ∂⎝ ⎠

 (9.216)

or in terms of ()1S t

1 1

d
S kS

dt
= − (9.217)

Equation (9.215) becomes

()
2 2

A A
A

d C C
C k

dt θ θ
⎛ ⎞∂ ∂= − + −⎜ ⎟∂ ∂⎝ ⎠

 (9.218)

or in terms of ()2S t

2 2A

d
S C kS

dt
= − − (9.219)

800 9 Parameter Estimation

The initial conditions for the sensitivity coefficients are:

() 0
1

1 00

0 1.0A A

At

C C
S t

Cθ
=

∂ ∂= = = =
∂ ∂

 (9.220)

and

() 0
2

2 0 0

0 0.0A A

t t

C C
S t

kθ
= =

∂ ∂= = = =
∂ ∂

 (9.221)

We now have three dependent variables, () () ()1 2, , andAC t S t S t , which we

can write in matrix form:

1
1

2
2

0 0

0 0

1 0

A

A

dC

dt k C
dS

k S
dt

k S
dS

dt

⎛ ⎞
⎜ ⎟

−⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎜ ⎟ ⎝ ⎠⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠

 (9.222)

The initial conditions are:

()
()
()

0

1

2

0

0 1

0 0

A AC C

S

S

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (9.223)

Maple and the matrix exponential can be used to find that

() ()
() ()
() ()

0

1

2 0

exp

exp

exp

A A

A

C t C kt

S t kt

S t t C kt

= −

= −

= − −

 (9.224)

(Note that we have numbered the parameters differently from Rawlings and

Ekerdt.[8] They set 1 2 0and Ak Cθ θ= =). The elements in the first row of the

Jacobian matrix (see equation (9.142)) in this case are as follows:

() ()1
11 1

1 1 10 0

0 exp 0 1.0A

t t

Y CY
J S t

θ θ θ
= =

∂ ∂∂= = = = = = =
∂ ∂ ∂

 (9.225)

9.6 Sensitivity Coefficient Equations 801

()1
12 2

2 2 20 0

0 0.0A

t t

Y CY
J S t

θ θ θ
= =

∂ ∂∂= = = = = =
∂ ∂ ∂

 (9.226)

The elements in the second row depend on the guessed values for k (e.g.,
10.52mink −=) and 0AC (e.g., 38mol m) as well as the time for the first data

point (e.g., 1mint =). In this case the elements in the second row become

1

1 1

2
021 1
0.52min0 01 1 1

0.52min 0.52min

0.5945A
t
kt t

k k

Y CY
J S

θ θ θ −

− −

=
== =

= =

∂ ∂∂= = = = =
∂ ∂ ∂

 (9.227)

11 1

33 3
00 0

2
22 2 31min1min 1min

2 2 2 0.52min0.52min 0.52min
88 8

min
4.7562

AA A

A
tt t
kk k
C mol mC mol m C mol m

Y CY mol
J S

mθ θ θ −− −
== =
== =

== =

∂ ∂∂= = = = = −
∂ ∂ ∂

(9.228)

These equations show that the sensitivity coefficients are the elements of the Jaco-
bian matrix. For models that are nonlinear in the dependent variables we may not
have analytical expressions for the sensitivity coefficients. In this case, the

Jacobian elements, ijJ , will be determined numerically.

Maple can be used to solve numerically the material balance equation and sen-
sitivity equations for an nth order reaction case. The material balance equation
(model equation) is

nA
A

dC
kC

dt
= − (9.229)

Use Maple and nonlinear parameter estimation to determine the parameters

0, , andAC k n . In this case, the vector of parameters, θ is:

AOC

k

n

θ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.230)

Let ()3
AC

S t
n

∂=
∂

 or ()3
3

AC
S t

θ
∂=
∂

. The system of equations is

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.231)

where

802 9 Parameter Estimation

n
Ah kC= − (9.232)

Equation (9.231) becomes

1 1 1

2 2 2

3 3 3

A A

A

A A

A

A A

A

C h h C

C

C h Chd
Cdt

C h Ch

C

θ θ θ

θ θ θ

θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.233)

or

1 1 1

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.234)

2 2 2

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.235)

3 3 3

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.236)

In this case,

n
Ah kC= − (9.237)

so that

1n
A

A

h
nkC

C
−∂ = −

∂
 (9.238)

and

()n
A A

h
kC ln C

n

∂ = −
∂

 (9.239)

Thus, equation (9.234) becomes by using equation (9.238)

()1

1 1

0 nA A
A

d C C
nkC

dt θ θ
−⎛ ⎞ ⎛ ⎞∂ ∂= + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.240)

9.6 Sensitivity Coefficient Equations 803

or

11
1

n
A

dS
nkC S

dt
−= − (9.241)

Equation (9.235) becomes by using equation (9.237) for 2h θ∂ ∂ and equation

(9.238)

()1

2 2

n nA A
A A

d C C
C nkC

dt θ θ
−⎛ ⎞ ⎛ ⎞∂ ∂= − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.242)

or

12
2

n n
A A

dS
C nkC S

dt
−= − − (9.243)

and equation (9.236) becomes by using equation (9.239)

() 13
3

n n
A A A

dS
kC ln C nkC S

dt
−= − − (9.244)

The initial conditions are as follows

()
()
()
()

0

1

2

3

0

0 1

0 0

0 0

A AC C

S

S

S

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (9.245)

Maple’s ‘dsolve’ (numeric) can be used to solve the following four differential
equations (equations (9.246), (9.247), (9.248) and (9.249))

nA
A

dC
kC

dt
= − (9.246)

11
1

n
A

dS
nkC S

dt
−= − (9.247)

12
2

n n
A A

dS
C nkC S

dt
−= − − (9.248)

() 13
3

n n
A A A

dS
kC ln C nkC S

dt
−= − − (9.249)

subject to the initial condition given by equation (9.245).

804 9 Parameter Estimation

The above process can be used to find () ()1 2 1 2 3 4, , , , , and y t y t b b b b in

Example 7.1 of Constantinides and Mostoufi[9] by using Maple and the Gauss-

Newton Method with 1 2 1.0w w= = in equations 7.177 and 7.178 in Constanti-

nides and Mostoufi and the data from Run 2 only. The objective function Ф to be
minimized in this case is:

() () () ()* * * *

1 1 1 1 2 2 2 21 1 2 2

T T

Ф Y Y J b Y Y J b Y Y J b Y Y J b= − − Δ − − Δ + − − Δ − − Δ (9.250)

where

1,1 1,1 1,1 1,1

1 2 3 4

1,2 1,2 1,2 1,2

1 2 3 41

1,17 1,17 1,17 1,17

1 2 3 4

Y Y Y Y

b b b b

Y Y Y Y

J b b b b

Y Y Y Y

b b b b

∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂
⎜ ⎟

= ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.251)

and 1,1 1,1 1,1 1,1

1 2 3 4

, , , and
Y Y Y Y

b b b b

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 are the sensitivity coefficients for depend-

ent variable number 1 ()1y to the parameter values 1 2 3 4, , , and b b b b evalu-

ated at experimental data point number 1, etc. The matrix
2

J has elements that

are the sensitivity coefficients for dependent variable number 2 ()2y . One can use

the values given as results for 1 2 3 4, , , and b b b b on page 522 of Constantinides

and Mostoufi as the initial guesses for a Maple program. In this case, bΔ is ob-

tained from

() ()1 * *
1 1 2 21 1 2 2 1 2

T T T Tb J J J J J Y Y J Y Y
− ⎡ ⎤⎡ ⎤Δ = + − + −⎣ ⎦ ⎣ ⎦ (9.252)

In this case, the sensitivity equations can be written as

y yd h h

dt b b y b

∂ ∂⎛ ⎞ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.253)

where

9.6 Sensitivity Coefficient Equations 805

[]
[]

1 2

1 2

,

,

T

T

y y y

h h h

=

=

(9.254)

and

[]1 2 3 4

T
b b b b b= (9.255)

Here

1
1 1 1

2

1
y

h b y
b

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (9.256)

and

2 3 1 4 2h b y b y= − (9.257)

Equation (9.253) can be written in expanded form:

1 1 1 1 1 1 1 1 1 1 1 11 1

1 2 3 4 1 2 3 4 1 2 3 41 2

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4 1 2 1 2

y y y y h h h h y y y yh h

b b b b b b b b b b b by yd

y y y y h h h h h h y y ydt

b b b b b b b b y y b b

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

2

3 4

y

b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂
⎜ ⎟∂ ∂⎝ ⎠

(9.258)

Each of the derivatives ()1 1 2 2, , etc.y b y b∂ ∂ ∂ ∂ is a sensitivity coefficient,

each of which depends on time. Equation (9.258) can be used to write the
following eight equations for the time dependence of the sensitivity coefficients:

1 1 1 1 1 2

1 1 1 1 2 1

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.259)

1 1 1 1 1 2

2 2 1 2 2 2

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.260)

1 1 1 1 1 2

3 3 1 3 2 3

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.261)

1 1 1 1 1 2

4 4 1 4 2 4

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.262)

2 2 2 1 2 2

1 1 1 1 2 1

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.263)

806 9 Parameter Estimation

2 2 2 1 2 2

2 2 1 2 2 2

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.264)

2 2 2 1 2 2

3 3 1 3 2 3

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.265)

and

2 2 2 1 2 2

4 4 1 4 2 4

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.266)

To simplify the notation, let s be the vector of dependent variables.

In this case the vector s will have 10 elements

(1 2 2 3 1 1 4 1 2 5 1 3 6 1 41
, , , , , ,s y s y s y b s y b s y b s y b= = = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂

7 2 1 8 2 2 9 2 3, , ,s y b s y b s y b= ∂ ∂ = ∂ ∂ = ∂ ∂)10 2 4and s y b= ∂ ∂ . Also, in

this case since 2y does not appear in 1
1

2

,
h

h
y

∂
∂

is equal to zero and the last term in

each of the equations (9.259) through (9.262) drops out. Also, since 2h does not

depend explicitly on 1b or 2b the terms 2 1 2 2andh b h b∂ ∂ ∂ ∂ in equations

(9.263) and (9.264) are zero. The final system of equations is

1 1
1 1

2

1
ds s

b s
dt b

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (9.267)

2
3 1 4 2

ds
b s b s

dt
= − (9.268)

3 1 1
1 1 1 3

2 2

2
1

ds s b
s b s s

dt b b

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.269)

2
4 1 1 1 1

1 42
2 2

2ds b s b s
b s

dt b b

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (9.270)

5 1 1
1 5

2

2ds b s
b s

dt b

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (9.271)

9.7 One Parameter Model 807

6 1 1
1 6

2

2ds b s
b s

dt b

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (9.272)

7
3 3 4 7

ds
b s b s

dt
= − (9.273)

8
3 4 4 8

ds
b s b s

dt
= − (9.274)

9
1 3 5 4 9

ds
s b s b s

dt
= + − (9.275)

10
2 3 6 4 10

ds
s b s b s

dt
= − + − (9.276)

The initial conditions for the dependent variables are as follows:

1 2 3 4 5 6 7 8 9 100.18, 0, and 0s s s s s s s s s s= = = = = = = = = = (9.277)

Note that the predicted values for 1y at each time are in the vector 1Y . That is,

() () () ()1 1 1 1 10 , 10 , 20 , , 190
T

Y y t y t y t y t= = = = =⎡ ⎤⎣ ⎦… (9.278)

and 2Y stores the predicted values of 2y . Note that the elements of
1 2

and J J are

evaluated at each time also. In this case, the elements of
1

J are obtained from solu-

tions of the set of equations ()1 1 3 1 2 4, , etc.y b s y b s∂ ∂ = ∂ ∂ = . In this case, A

is () 1

1 1 2 2

T TA J J J J
−

= + and the correlation coefficient matrix is R where the

elements of R are obtained from the elements of A :

ij

ij

ii jj

a
r

a a
= for 1 to 4i = and 1 to 4j = (9.279)

9.7 One Parameter Model

To illustrate the derivation of a confidence interval, let’s first determine the pa-
rameter value for a one parameter model. That is, for an isothermal, constant

808 9 Parameter Estimation

volume batch reactor in which the reactant A disappears due to a chemical
reaction we can write the reaction rate expression as

A products→ (9.280)

and the material balance as

A
A

dC
kC

dt
= − (9.281)

where we have assumed that the reaction is first order in species A . The solution
to equation (9.281) is

()0 expA AC C kt= − (9.282)

Assume we know 0AC . Define
0

A

A

C
f

C
= and let

()expf kt= − (9.283)

Next, take the natural logarithm of each side of equation (9.283) to obtain

ln f kt= − (9.284)

Next, let

y mx= (9.285)

so that

m k= − (9.286)

or

kθ = − (9.287)

Next, use the following measured values of AC to find f , then find k using least

squares.
3 *(min) (/) ln

0 8.47 1.0 0

1 5.0 0.5903 0.527

2 2.95 0.3483 1.055

3 1.82 0.2149 1.538

4 1.05 0.1240 2.088

5 0.71 0.08383 2.479

At C mol m f Y f=

−
−
−
−
−

9.7 One Parameter Model 809

For a one parameter model the independent variable matrix becomes a vector.
That is, for the five data points we have

1

2

3

4

5

x

x

X x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(9.288)

and for this one parameter model 1 1,x t= 2 2 ,x t= etc. so equation (9.288) is the

following vector

1

2

3

4

5

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

(9.289)

For the one parameter model, equation (9.56) simplifies to a scalar equation

() 1 *T TX X X Yθ
−

= (9.290)

where the carte on theta specifies that θ is a point estimate of θ . In this case

[] 11 2 3 4 5
2

3

4

5

TX X ⎡ ⎤=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

(9.291)

or

1 4 9 16 25 55.0TX X = + + + + = (9.292)

Thus, equation (9.290) becomes

810 9 Parameter Estimation

()1
1 2 3 4 5 0.527

55
1.055

1.538

2.088

2.479

θ ⎛ ⎞= −⎡ ⎤⎜ ⎟
⎝ ⎠ ⎢ ⎥−⎢ ⎥

⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (9.293)

Equation (9.293) yields

() () () ()()1
0.524 2.110 4.614 8.352 12.393

55
θ ⎛ ⎞= − + − + − + − + −⎜ ⎟

⎝ ⎠

(9.294)

or

0.509θ = − (9.295)

Thus,

() 1 10.509 min 0.509 mink − −= − − = (9.296)

A confidence interval for θ can be found by using equation (9.126). In this case,
equation (9.126) becomes for 0.05 and 5nα = =

0.025,4 0.025,4
2 2

1 1

ˆ ˆE E
n n

i i
i i

MS MS
t t

x x
θ θ θ

= =

− ≤ ≤ +
∑ ∑

(9.297)

Equation (9.124) can be used to determine EMS

()2*

1

ˆ

1

n

i i
i

E

Y y
MS

n
=

−
=

−

∑

(9.298)

where

ˆˆi iy xθ= (9.299)

Thus,

9.7 One Parameter Model 811

()()()
() ()()
() ()()
() ()()
()()()

2

2

2

2

2

0.527 0.509 1

1.055 0.509 2

1.538 0.509 3

2.088 0.509 4

2.479 0.509 5

5 1

EMS = − − −

+ − − −

+ − − −

+ − − −

+ − − −
−

(9.300)

0.002218EMS = (9.301)

The student’s t value for 2 0.025 and degrees of freedom 4α = = can be

obtained from a table in many texts (e.g., see Table A.3 of Navidi[10]) or from Maple:

0.025,4 2.776t = (9.302)

Thus, the confidence interval ()ci becomes

0.025,4
2

E

i
i

MS
ci t

x
=

∑

(9.303)

0.002218
2.776

55
ci = (9.304)

0.0176ci = (9.305)

Consequently, the parameter value is the point estimate θ̂ ± the confidence
interval ci :

ˆ 0.509 0.0176ciθ ± = − ± (9.306)

or

0.527 0.491θ− ≤ ≤ − (9.307)

Equation (9.128) can be used to determine the prediction interval for a new obser-

vation at 0 1.5 minx = , for example. In this case, we have

812 9 Parameter Estimation

0 0
ˆŷ xθ= (9.308)

() ()0ˆ 0.509 1.5 0.7636y = − = − (9.309)

and equation (9.128) becomes

() ()

() ()

2

2

0

1.5
0.7366 2.776 0.002218 1

55

1.5
0.7636 2.776 0.002218 1

55
y

⎛ ⎞
− − +⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ ≤ − + +⎜ ⎟

⎜ ⎟
⎝ ⎠

(9.310)

00.7636 0.1333 0.7636 0.1333y− − ≤ ≤ − + (9.311)

00.897 0.630y− ≤ ≤ − (9.312)

For 0 4.5x =

() ()0ˆ 0.509 4.5 2.29y = − = − (9.313)

and equation (9.128) yields

() ()

() ()

2

2

0

4.5
2.29 2.776 0.002218 1

55

4.5
2.29 2.776 0.002218 1

55
y

⎛ ⎞
− − +⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ ≤ − + +⎜ ⎟

⎜ ⎟
⎝ ⎠

(9.314)

0 ˆ2.29 0.153 2.29 0.153y y− − ≤ ≤ − + (9.315)

9.8 Two Parameter Model

In this case, take the natural logarithm of equation (9.282) to obtain

0ln lnA AC C kt= − (9.316)

Now let’s include 0AC (i.e., 0ln AC) as an unknown parameter. Let

ln Ay C= (9.317)

9.8 Two Parameter Model 813

so that equation (9.316) becomes

y mx b= + (9.318)

or

1 2y xθ θ= + (9.319)

where

2m k θ= − = (9.320)

and

x t= (9.321)

Also, let

1 0ln Ab Cθ = = (9.322)

The data become

() ()3min / ln

0 8.47 2.1365

1 5.0 1.6094

2 2.95 1.0818

3 1.82 0.5988

4 1.05 0.0488

5 0.71 0.3425

A Ax t C mol m C=

−

(9.323)

and the matrix X becomes

1 0

1 1

1 2

1 3

1 4

1 5

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9.324)

and its transpose is

1 1 1 1 1 1

0 1 2 3 4 5
TX

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (9.325)

Let

814 9 Parameter Estimation

6 15

15 55
TC X X

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (9.326)

which yields

1

11 1

21 7
1 2

7 35

C−

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 (9.327)

The experimental data are as follows:

*

2.1365

1.6094

1.0818

0.5988

0.0488

0.3425

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 (9.328)

Equation (9.56) becomes

1 1 *

2

TC X Y
θ

θ
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.329)

or

1

2

2.1365

1.609411 1
1 1 1 1 1 1 1.081821 7

1 2 0 1 2 3 4 5 0.5988

7 35 0.0488

0.3425

θ

θ

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥−⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
−⎣ ⎦

 (9.330)

Thus

1

2

11 1
5.132821 7

1 2 4.0521

7 35

θ

θ

⎡ ⎤−⎡ ⎤ ⎢ ⎥ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

 (9.331)

and

9.8 Two Parameter Model 815

1

2

2.1097

0.5017

θ

θ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

 (9.332)

Thus

1 1
2 min 0.5017 mink θ − −= − = (9.333)

and

10ln 2.1097AC θ= = (9.334)

so that the estimate for the initial concentration is

3
0 8.246AC mol m= (9.335)

Note that the estimated value for 0AC is different from the measured value.

The confidence intervals for 1 2andθ θ can be determined by using equations

(9.108) and (9.110), respectively. In this case the mean squared error ()EMS is

(see equation (9.88))

2

2
E

E

SS
MS s

n
= =

−
 (9.336)

which in our case becomes

()()
6 2*

1 2
1

6 2

n

i i
i

E

Y x
MS

θ θ
=

=

− +
=

−

∑

(9.337)

or

)())((
()()
()()
()()
()()

()())

2

2

2

2

2

2

2.1365 2.1097 0.5017 0

1.6094 2.1097 0.5017 1

1.0818 2.1097 0.5017 2

0.5988 2.1097 0.5017 3

0.0488 2.1097 0.5017 4

0.3425 2.1097 0.5017 5
0.00186265

4

EMS ⎛ ⎡ ⎤= − −⎜ ⎣ ⎦⎝

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − − ⎦⎣
=

(9.338)

816 9 Parameter Estimation

In this case the student’s t value for 95% confidence level requires that

0.05α = so that 2 0.025α = and with 4 degrees of freedom is

0.025,4 2.776t = (9.339)

Recall that equation (9.108) is

2 2

1 1/2, 2 1 /2, 2

1 1
n E n E

xx xx

x x
t MS t MS

n S n Sα αθ θ θ− −

⎛ ⎞ ⎛ ⎞
− + ≤ ≤ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

(9.340)

which in this case becomes

() ()

() ()

2

2

1

2.51
2.1097 2.776 0.00186265

6 17.5

2.51
2.1097 2.776 0.00186265

6 17.5
θ

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
≤ ≤ + +⎢ ⎥

⎢ ⎥⎣ ⎦

(9.341)

or

12.023 2.194θ≤ ≤ (9.342)

or according to equation (9.322)

3
07.561 8.993AC mol m≤ ≤

(9.343)

The confidence interval for 2θ is (see equation (9.110)

2 2/2, 2 2 /2, 2
E E

n n
xx xx

MS MS
t t

S Sα αθ θ θ− −− ≤ ≤ + (9.344)

or in this case

2 2

2

0.00186265 0.00186265
0.5017 2.776 0.5017 2.776

17.5 17.5
θ⎛ ⎞ ⎛ ⎞− − ≤ ≤ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.345)

or

20.5303 0.4731θ− ≤ ≤ − (9.346)

9.8 Two Parameter Model 817

or according to equation (9.320)

0.5303 0.4731k≤ ≤ (9.347)

Knowing the confidence intervals on 1 2and θ θ is useful because when they are

small the point estimates of the parameters, 1 2and θ θ , are reasonable and the
two parameter model may be a good fit to the experimental data. However, we

cannot arbitrarily pick values for 1 2and θ θ that are within their confidence in-

tervals and be assured that the chosen pair have the probability of a 100 ()1 α−

confidence level because we applied a 95% confidence level for each parameter

()1 2 and θ θ one at a time when we found their individual confidence intervals.

Consequently, we need to construct a joint confidence region [5] for the two
parameters that will yield a 95% confidence level for both parameters
simultaneously as described next.

The joint confidence region for 1 2and θ θ can be constructed (see page 389 of

reference 5, page 484 of reference 9, and page 520 reference 8) by using the F
factor:

() ()
, ,

T
T

p n p
E

X X
F

pMS α

θ θ θ θ
−

− −
≤

(9.348)

where in our case the number of parameters is p and

2, 0.05, and 6p nα= = = . From Table A.4 of reference 5 we find that

0.05,2,4 6.94F = (9.349)

Equation (9.348) becomes

[]

()()

1
1 2

2

2.10976 15
2.1097 0.5017

0.501715 55
6.94

2 0.00186265

θ
θ θ

θ
−⎡ ⎤⎡ ⎤− + ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦ =

(9.350)

or

2 2
1 1 2 1 2 26 10.2654 8.7956 30 8.104 55 0.025854θ θ θ θ θ θ− + + − + = (9.351)

Equation (9.351) is an equation for an ellipse which yields the joint confidence

interval for 1 2and θ θ . That is, the parameter values that exist within this ellipse

have a joint probability of being accurate at a 95% confidence level. The Maple
worksheet below presents a plot of equation (9.351).

818 9 Parameter Estimation

>
>

>

>

>

>

>

>

>

9.9 Exercise Problems 819

The values inside the ellipse shown in this figure represent the acceptable parame-

ter values for this case.

9.9 Exercise Problems

1. Use the two parameter, three data points case (see equations (9.136), (9.137),
and (9.138)) to confirm that equation (9.44) is correct.

2. Confirm by hand that the elements of the Jacobian matrix given in
Example 9.1 are correct.

3. Use the matrix exponential method to solve equations (9.149), (9.153), and
(9.158) with equations (9.159), (9.160), and (9.161) as the initial conditions.
Compare your results to the elements of the Jacobian matrix in Example 9.1.

References

1. Bequette, B.W.: Process Dynamics: Modeling, Analysis, and Simulation. Prentice-Hall
PTR, Englewood Cliffs (1998)

2. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems. Chapman &
Hall/CRC Press, Boca Raton (2004)

3. Lopez, R.J.: Advanced Engineering Mathematics, p. 1158. Addison Wesley, Reading
(2001)

4. Ogunnaike, B.A., Harmon Ray, W.: Process Dynamics, Modeling and Control. Oxford
University Press, Oxford (1994)

820 9 Parameter Estimation

5. Montgomery, D.C., Peck, E.A.: Introduction to Regression Analysis. John Wiley &
Sons, Inc., New York (1982)

6. Rafter, J.A., Abell, M.L., Braselton, J.P.: Statistics wtih Maple. Elsevier Science, USA
(2003)

7. Bard, Y.: Nonlinear Parameter Estimation. Academic Press, Inc., London (1974)
8. Rawlings, J.B., Ekerdt, J.G.: Chemical Reactor Analysis and Design Fundamentals.

Nob Hill Publishing, LLC, Madison (2002)
9. Constantinides, A., Mostoufi, N.: Numerical Methods for Chemical Engineers with

MATLAB Applications. Prentice-Hall PTR, Englewood Cliffs (1999)
10. Navidi, W.C.: Statistics for Engineers and Scientists. McGraw-Hill, New York (2006)

Chapter 10

Miscellaneous Topics

10.1 Miscellaneous Topics on Numerical Methods

10.1.1 Introduction

In the previous chapters analytical, symbolic, and semianalytical methods for
solving problems in chemical engineering were programmed in Maple. In
addition, Maple can be used just as any other programming language like
FORTRAN. In this chapter, numerical schemes for solving problems in chemical
engineering are programmed in Maple.

10.1.2 Iterative Finite Difference Solution for Boundary Value
Problems

Linear Boundary Value Problems were converted to finite difference form and the
resulting system of coupled linear algebraic equations was solved symbolically in
section 3.1.5. Nonlinear Boundary Value Problems were converted to finite
difference form and the resulting system of coupled nonlinear algebraic equations
was solved numerically in section 3.2.3 using Maple’s fsolve command.
Alternatively a recurrence relationship can be obtained for the resulting system of
coupled nonlinear algebraic equations. This recurrence relationship can then be
used to iterate for finding the solution at the node points. This is best illustrated
with the following examples.

Example 10.1. Diffusion with a Second Order Reaction

Examples 3.2.1 and 3.2.3, diffusion with a second order reaction is solved here
again. Consider diffusion with a second order reaction in a rectangular pellet
(Rice and Do, 1995). The dimensionless concentration is governed by:

2
2 2

2

d u
= u

dx
du

(0) = 0
dx
u(1) = 1

Φ

 (10.1)

822 10 Miscellaneous Topics

where Φ is the Thiele modulus. Equation 10.1 can be converted to finite difference
form as:

2i - 1 i i + 1
i2

0 1 2

N+1

u - 2u + u
= u , i = 1.. N

h
-3u + 4u - u

 = 0
2h

u = 1

Φ

 (10.2)

Equation 10.2 can be used to obtain the recurrence relation as:

1 2
0

2 2 2
i - 1 i + 1 i

i

N+1

4uold - uold
unew

3

unew + uold - h uold
unew = , i = 1.. N

2
unew = 1

=

Φ
 (10.3)

Note that in equation 10.3, updated solution at node point i – 1 is used for node
point i. An initial guess of ui = 0.5, i = 0..N is taken. uN+1 is taken as 1. Equation 10.3
is programmed for Φ = 1 in Maple below:

> restart:

> with(plots):

Warning, the name changecoords has been redefined

The number of node points and length of the domain are entered here:

> N:=10;

:= N 10

> L:=1;

:= L 1

The governing equation is entered here. The nonlinear term in the governing
equation is entered as f for convenience:

> ge:=diff(u(x),x$2)-Phi^2*f;

 := ge − ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2
()u x Φ2 f

10.1 Miscellaneous Topics on Numerical Methods 823

The boundary conditions are entered here:

> bc1:=diff(u(x),x);

 := bc1
d
d
x

()u x

> bc2:=u(x)-1;

:= bc2 − ()u x 1

The governing equation and the boundary conditions are converted to finite
difference form here. Note that for finite difference expressions updated values of
u, unew are used whenever possible.

> d2ydx2:=(u[m+1]-2*u[m]+unew[m-1])/h^2;

 := d2ydx2
− + u + m 1

2 u
m

unew − m 1

h2

> dydx:=(u[m+1]-unew[m-1])/2/h;

 := dydx
1
2

− u + m 1
unew − m 1

h

> dydxf:=(-u[2]+4*u[1]-3*u[0])/(2*h);

 := dydxf
1
2

− + − u
2

4 u
1

3 u
0

h

> dydxb:=(unew[N-1]-4*unew[N]+3*u[N+1])/(2*h);

 := dydxb
1
2

− + unew
9

4 unew
10

3 u
11

h

> eq[0]:=subs(diff(u(x),x)=dydxf,u(x)=u[0],bc1):

> eq[N+1]:=subs(diff(u(x),x)=dydxb,u(x)=u[N+1],bc2):

> for i from 1 to N do
eq[i]:=subs(diff(u(x),x$2)=d2ydx2,diff(u(x),x)=dydx,u(x)=u[i],x=i*h,m=i,ge);od:

Node spacing and the nonlinear function are defined here:

> h:=evalf(L/(N+1));

:= h 0.09090909091

> F(x):=u(x)^2;

 := ()F x ()u x 2

824 10 Miscellaneous Topics

The parameters are entered here.

> pars:={Phi=1};

:= pars { }= Φ 1
The recurrence relations are derived here:

> for i from 0 to N+1 do
Unew[i]:=subs(pars,u=uold,f=subs(u(x)=uold[i],pars,F(x)),solve(eq[i],u[i]));od;

 := Unew
0

− + 0.3333333333 uold
2

1.333333333 uold
1

 := Unew
1

 + − 0.5000000000 uold
2

0.5000000000 unew
0

0.004132231405 uold
1

2

 := Unew
2

 + − 0.5000000000 uold
3

0.5000000000 unew
1

0.004132231405 uold
2

2

 := Unew
3

 + − 0.5000000000 uold
4

0.5000000000 unew
2

0.004132231405 uold
3

2

 := Unew
4

 + − 0.5000000000 uold
5

0.5000000000 unew
3

0.004132231405 uold
4

2

 := Unew
5

 + − 0.5000000000 uold
6

0.5000000000 unew
4

0.004132231405 uold
5

2

 := Unew
6

 + − 0.5000000000 uold
7

0.5000000000 unew
5

0.004132231405 uold
6

2

 := Unew
7

 + − 0.5000000000 uold
8

0.5000000000 unew
6

0.004132231405 uold
7

2

 := Unew
8

 + − 0.5000000000 uold
9

0.5000000000 unew
7

0.004132231405 uold
8

2

 := Unew
9

 + − 0.5000000000 uold
10

0.5000000000 unew
8

0.004132231405 uold
9

2

 := Unew
10

 + − 0.5000000000 uold
11

0.5000000000 unew
9

0.004132231405 uold
10

2

:= Unew
11

1

An initial guess of 0.7 is used. Error is initialized to 1.

> for i from 0 to N+1 do uold[i]:=0.7;od:

> iter:=0;err:=1;

:= iter 0

:= err 1

A for loop can be written for the iteration as:

> while err>1e-6 do

> for i from 0 to N+1 do unew[i]:=eval(Unew[i]);od:

> kk:='kk':err:=sqrt(sum((unew[kk]-uold[kk])^2,kk=0..N+1)/(N+2));

> iter:=iter+1:

> for i from 0 to N+1 do uold[i]:=unew[i];od:end:

10.1 Miscellaneous Topics on Numerical Methods 825

A total of 272 iterations were required and the calculated error is:

> iter;err;

272

0.9953728481 10-6

The following plot is obtained:

>plot([seq([i*h,unew[i]],i=0..N+1)],thickness=3,axes=boxed,labels=[x,u]);

Fig. 10.1

Example 10.2. Nonisothermal Reaction in a Catalyst Pellet – Multiple Steady
States

The dimensionless concentration in a non-isothermal catalyst pellet (Villedsen and
Michelsen, 1978, example 3.2.2) is governed by:

2
2

2

d u γβ(1-u)
 = u exp

dx 1+β(1 u)

du
(0) = 0

dx
u(1) = 1

⎛ ⎞
Φ ⎜ ⎟−⎝ ⎠

 (10.4)

826 10 Miscellaneous Topics

This boundary value problem has multiple solutions for Φ = 0.2, β = 0.8 and
γ = 20. Equation 10.4 is solved in Maple by modifying the program given for
example 10.1 as given below. For this problem, 20 node points are chosen to
improve the accuracy.

> N:=20;

:= N 20

> F(x):=u(x)*exp(gamma*beta*(1-u(x))/(1+beta*(1-u(x))));

 := ()F x ()u x e
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

γ β ()− 1 ()u x
 + 1 β () − 1 ()u x

> pars:={Phi=0.2,gamma=20,beta=0.8};

 := pars { }, ,= Φ 0.2 = γ 20 = β 0.8

When an initial guess of 0.95 is used the following plot is obtained:

Fig. 10.2

10.1 Miscellaneous Topics on Numerical Methods 827

When an initial guess of 0.01 is used, the lower steady state is predicted:

Fig. 10.3

Since this problem is stiff, an error tolerance of 10-6 was used. It has to be noted
that iterative finite difference method does not predict the middle steady state
predicted in example 3.2.2.

10.1.3 Finite Difference Solution for Elliptic PDEs

Steady state linear elliptic PDEs in finite domains are solved by applying finite
difference technique in both x and y coordinates in this section. When finite
differences are applied, a linear elliptic PDE is converted to a system of linear
algebraic equations. This resulting system of linear equations can be directly
solved using Maple’s solve or fsolve command. This is best illustrated with the
following examples.

Example 10.3. Heat Transfer in a Rectangle

Consider the steady state heat transfer problem (Carslaw and Jaeger, 1973) solved
in example 7.11. The governing equation for temperature is:

828 10 Miscellaneous Topics

2 2

2 2

u u
 + = 0

x y

u(0,y) = 0 and u(L,y) = 0

u(x,0) = 0 and u(x,H) = 1

∂ ∂
∂ ∂

 (10.5)

where L is the length and H is the height of the rectangle. If N interior node points
in the x-axis and M interior node points are used in the y-axis equation 10.5 can be
converted to finite difference form as:

i - 1,j i,j i + 1,j i ,j - 1 i,j i,j + 1

2 2

0,j

N + 1,j

i,0

i,M+1

u - 2u + u u - 2u + u
 + = 0, i = 1.. N, j = 1..M

h k
u = 0, j = 1..M

u = 0, j = 1..M

u = 0, i = 0..N + 1

u = 1, i = 0..N + 1

 (10.6)

Equation 10.6 is a system of (N+2)x(M+2) linear equations and solved using
Maple’s fsolve command below.

> restart;with(plots):

Warning, the name changecoords has been redefined

The governing equation is entered here:

> ge:=diff(u(x,y),x$2)+diff(u(x,y),y$2);

 := ge + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
()u ,x y

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
()u ,x y

Length and height of the rectangle are entered here:

> L:=1;H:=1;

:= L 1

:= H 1

10.1 Miscellaneous Topics on Numerical Methods 829

Number of node points in the x-axis (N) and y-axis (M) are entered now:

> N:=10;M:=10;

:= N 10

:= M 10

The boundary conditions at x = 0 and x = L are entered as bc1 and bc2
respectively:

> bc1:=u(x,y)-0;

:= bc1 ()u ,x y

> bc2:=u(x,y)-0;

:= bc2 ()u ,x y

The boundary conditions at y = 0 and y = H are entered as bc3 and bc4
respectively:

> bc3:=u(x,y)-0;

:= bc3 ()u ,x y
> bc4:=u(x,y)-1;

:= bc4 − ()u ,x y 1

Next, finite difference expressions are entered for the spatial derivatives in x and y
coordiantes.

> dudxf:=1/2*(-u[2,m]-3*u[0,m]+4*u[1,m])/h;

 := dudxf
1
2

− − + u
,2 m

3 u
,0 m

4 u
,1 m

h

> dudxb:=1/2*(u[N-1,m]+3*u[N+1,m]-4*u[N,m])/h;

 := dudxb
1
2

+ − u
,9 m

3 u
,11 m

4 u
,10 m

h

> dudx:=1/2/h*(u[n+1,m]-u[n-1,m]);

 := dudx
1
2

− u
, + n 1 m

u
, − n 1 m

h

> d2udx2:=1/h^2*(u[n-1,m]-2*u[n,m]+u[n+1,m]);

 := d2udx2
− + u

, − n 1 m
2 u

,n m
u

, + n 1 m

h2

830 10 Miscellaneous Topics

> dudyf:=1/2*(-u[n,2]-3*u[n,0]+4*u[n,1])/k;

 := dudyf
1
2

− − + u
,n 2

3 u
,n 0

4 u
,n 1

k

> dudyb:=1/2*(u[n,M-1]+3*u[n,M+1]-4*u[n,M])/k;

 := dudyb
1
2

+ − u
,n 9

3 u
,n 11

4 u
,n 10

k

> dudy:=1/2/k*(u[n,m+1]-u[n,m-1]);

 := dudy
1
2

− u
,n + m 1

u
,n − m 1

k

> d2udy2:=1/k^2*(u[n,m-1]-2*u[n,m]+u[n,m+1]);

 := d2udy2
− + u

,n − m 1
2 u

,n m
u

,n + m 1

k2

Boundary conditions are converted to finite difference form below:

> bc1:=subs(diff(u(x,y),x)=dudxf,u(x,y)=u[0,m],x=0,bc1);

:= bc1 u
,0 m

> bc2:=subs(diff(u(x,y),x)=dudxb,u(x,y)=u[N+1,m],x=L,bc2);

:= bc2 u
,11 m

> bc3:=subs(diff(u(x,y),y)=dudyf,u(x,y)=u[n,0],y=0,bc3);

:= bc3 u
,n 0

> bc4:=subs(diff(u(x,y),y)=dudyb,u(x,y)=u[n,M+1],y=H,bc4);

:= bc4 − u
,n 11

1

Boundary conditions are stored as equations below. A total of N+M+2 equations
arise from the boundary conditions.

> for i from 1 to M do eq[0,i]:=subs(m=i,y=i*k,bc1);od:

> for i from 1 to M do eq[N+1,i]:=subs(m=i,y=i*k,bc2);od:

> for i from 0 to N+1 do eq[i,0]:=subs(n=i,x=i*h,bc3);od:

> for i from 0 to N+1 do eq[i,M+1]:=subs(n=i,x=i*h,bc4);od:

Next, the governing equation is converted to finite difference form and stored
as algebraic equations. Even though the example chosen does not have first

10.1 Miscellaneous Topics on Numerical Methods 831

derivatives in x and y, this program is written to accommodate first derivatives in
both the governing equation and the boundary conditions.

> for i from 1 to N do for j from 1 to M do eq[i,j]:=subs(diff(u(x,y),x$2) =
subs(n=i,m=j,d2udx2),diff(u(x,y),y$2) = subs(n=i,m=j,d2udy2),
diff(u(x,y),x) = subs(n=i,m=j,dudx),diff(u(x,y),y) =
subs(n=i,m=j,dudy),u(x,y)=u[i,j],x=i*h,y=j*k,ge);od;od;

> h:=evalf(L/(N+1));k:=evalf(H/(M+1));

:= h 0.09090909091

:= k 0.09090909091

> eqs:=seq(seq(eq[i,j],i=0..N+1),j=0..M+1):

An initial guess of 0.5 is used.

> vars:=seq(seq(u[i,j]=0.5,i=0..N+1),j=0..M+1):

The system of algebraic equations are solved using Maple’s fsolve command and
the solution obtained is plotted below:

> soln:=fsolve({eqs},{vars}):

> assign(soln):

> plotdata := [seq([seq([i*h,j*k,u[i,j]], i=0..N+1)], j=0..M+1)]:

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60]);

Fig. 10.4

832 10 Miscellaneous Topics

Example 10.4. Heat Transfer in a Cylinder

Consider the steady state heat transfer problem in a cylinder (Carslaw and Jaeger,

1973). The governing equation for temperature is:

2 2

2 2

u 1 u u
+ = 0

x x x y

u
(0,y) = 0 and u(L,y) = 0

x

u
u(x,0) = 0 and (x,H) = 1

y

∂ ∂ ∂+
∂ ∂ ∂

∂
∂

∂
∂

 (10.7)

Equation 10.7 is solved using the Maple program developed for example 10.3 for
L = 1 and H = 1. The results obtained are given below:

> ge:=diff(u(x,y),x$2)+1/x*diff(u(x,y),x)+diff(u(x,y),y$2);

 := ge + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
()u ,x y

∂
∂
x

()u ,x y

x
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
()u ,x y

> L:=1;H:=1;

:= L 1

:= H 1

> N:=10;M:=10;

:= N 10

:= M 10

> bc1:=diff(u(x,y),x);

 := bc1 ∂
∂
x

()u ,x y

> bc2:=u(x,y)-1;

:= bc2 − ()u ,x y 1

> bc3:=u(x,y);

:= bc3 ()u ,x y

10.1 Miscellaneous Topics on Numerical Methods 833

> bc4:=diff(u(x,y),y);

 := bc4 ∂
∂
y

()u ,x y

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60]);

Fig. 10.5

10.1.4 Iterative Finite Difference Solution for Elliptic PDEs

In section 10.1.4 linear elliptic PDEs were solved by solving finite difference
equations numerically using Maple’s fsolve command. For nonlinear elliptic
PDEs, the resulting finite difference expressions are nonlinear. For solving a large
number of nonlinear equations fsolve command may not be ideal because fsolve
requires a good initial guess and might require a long time. Oftentimes, fsolve
command may not yield a result. For handling nonlinear problems, Maple can be
used as any other programming language like FORTRAN etc. A recursion relation
can be derived for the elliptic PDE using Maple. The resulting recursion can be
programmed in Maple to achieve a desired accuracy. In this section Gauss-Jordan
iteration (Stress et al) is used for nonlinear elliptic PDEs. This is best illustrated
with the following examples.

Example 10.5. Heat Transfer in a Rectangle – Nonlinear Elliptic PDE

Consider a nonlinear steady state heat transfer problem governed by the following
elliptic PDE:

834 10 Miscellaneous Topics

2 2
u

2 2

u u
 + + e = 0

x y

u(0,y) = 0 and u(L,y) = 0

u(x,0) = 0 and u(x,H) = 1

∂ ∂
∂ ∂

 (10.8)

where L is the length and H is the height of the rectangle. If N interior node
points in the x-axis and M interior node points are used in the y-axis equation 10.5
can be converted to finite difference form as:

i - 1,j i,j i + 1,j i ,j - 1 i,j i,j + 1
i,j2 2

0,j

N + 1,j

i,0

i,M+1

u - 2u + u u - 2u + u
 + + exp(u) = 0, i = 1.. N, j = 1..M

h k
u = 0, j = 1..M

u = 0, j = 1..M

u = 0, i = 0..N + 1

u = 1, i = 0..N + 1
 (10.9)

Equation 10.9 is a system of (N+2)x(M+2) nonlinear equations. Equation 10.9 can
be used to obtain the recurrence relation:

i - 1,j i + 1,j i ,j - 1 i,j + 1
i,j2 2

i,j

2 2

0,j

N + 1,j

i,0

i,M+1

unew + uold unew + uold
 + + exp(uold)

h kunew = , i = 1.. N, j = 1..M
1 1

2 +
h k

unew = 0, j = 1..M

unew = 0, j = 1..M

unew = 0, i = 0..N + 1

unew

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 1, i = 0..N + 1

 (10.10)

Equation 10.10 is programmed using the Maple program given below. N = 10 and
M = 10 node points are used for this program. Error is calculated based on the
difference of the dependent variables between two successive iterations. Mean of
the squares of errors at all the node points is found and a set tolerance of 10-12 is
used for verifying the convergence.

10.1 Miscellaneous Topics on Numerical Methods 835

> restart;with(plots):

Warning, the name changecoords has been redefined

The governing equation is entered below. The nonlinear function is stored as f.

> ge:=diff(u(x,y),x$2)+diff(u(x,y),y$2)+f;

 := ge + + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
()u ,x y

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
()u ,x y f

Length and height of the rectangle are entered here:

> L:=1;H:=1;
:= L 1

:= H 1

Number of node points used in x and y coordinates are entered.

> N:=10;M:=10;

:= N 10

:= M 10

Next, the boundary conditions are entered:

> bc1:=u(x,y);

:= bc1 ()u ,x y

> bc2:=u(x,y);

:= bc2 ()u ,x y

> bc3:=u(x,y);

:= bc3 ()u ,x y

> bc4:=u(x,y);

:= bc4 ()u ,x y

Next, finite difference expressions for the governing equation and boundary
conditions are entered:

> dudxf:=1/2*(-u[2,m]-3*u[0,m]+4*u[1,m])/h;

 := dudxf
1
2

− − + u
,2 m

3 u
,0 m

4 u
,1 m

h

836 10 Miscellaneous Topics

> dudxb:=1/2*(unew[N-1,m]+3*u[N+1,m]-4*unew[N,m])/h;

 := dudxb
1
2

+ − unew
,9 m

3 u
,11 m

4 unew
,10 m

h

> dudx:=1/2/h*(u[n+1,m]-unew[n-1,m]);

 := dudx
1
2

− u
, + n 1 m

unew
, − n 1 m

h

> d2udx2:=1/h^2*(unew[n-1,m]-2*u[n,m]+u[n+1,m]);

 := d2udx2
− + unew

, − n 1 m
2 u

,n m
u

, + n 1 m

h2

> dudyf:=1/2*(-u[n,2]-3*u[n,0]+4*u[n,1])/k;

 := dudyf
1
2

− − + u
,n 2

3 u
,n 0

4 u
,n 1

k

> dudyb:=1/2*(unew[n,M-1]+3*u[n,M+1]-4*unew[n,M])/k;

 := dudyb
1
2

+ − unew
,n 9

3 u
,n 11

4 unew
,n 10

k

> dudy:=1/2/k*(u[n,m+1]-unew[n,m-1]);

 := dudy
1
2

− u
,n + m 1

unew
,n − m 1

k

> d2udy2:=1/k^2*(unew[n,m-1]-2*u[n,m]+u[n,m+1]);

 := d2udy2
− + unew

,n − m 1
2 u

,n m
u

,n + m 1

k2

Next, boundary conditions and governing equation are converted to finite difference
form:

> bc1:=subs(diff(u(x,y),x)=dudxf,u(x,y)=u[0,m],x=0,bc1);

:= bc1 u
,0 m

> bc2:=subs(diff(u(x,y),x)=dudxb,u(x,y)=u[N+1,m],x=L,bc2);

:= bc2 u
,11 m

> bc3:=subs(diff(u(x,y),y)=dudyf,u(x,y)=u[n,0],y=0,bc3);

:= bc3 u
,n 0

10.1 Miscellaneous Topics on Numerical Methods 837

> bc4:=subs(diff(u(x,y),y)=dudyb,u(x,y)=u[n,M+1],y=H,bc4);

:= bc4 u
,n 11

> for i from 1 to M do eq[0,i]:=subs(m=i,y=i*k,bc1);od:

> for i from 1 to M do eq[N+1,i]:=subs(m=i,y=i*k,bc2);od:

> for i from 0 to N+1 do eq[i,0]:=subs(n=i,x=i*h,bc3);od:

> for i from 0 to N+1 do eq[i,M+1]:=subs(n=i,x=i*h,bc4);od:

> for i from 1 to N do for j from 1 to M do eq[i,j]:=subs(diff(u(x,y),x$2) =
subs(n=i,m=j,d2udx2),diff(u(x,y),y$2) = subs(n=i,m=j,d2udy2),
diff(u(x,y),x) = subs(n=i,m=j,dudx),diff(u(x,y),y) =
subs(n=i,m=j,dudy),u(x,y)=u[i,j],x=i*h,y=j*k,ge);od;od;

> h:=evalf(L/(N+1));k:=evalf(H/(M+1));

:= h 0.09090909091

:= k 0.09090909091

Next, the nonlinear function is entered and the recurrence relation is derived for
the node points:

> F:=exp(u(x,y));

 := F e
()u ,x y

> for i from 0 to N+1 do for j from 0 to M+1 do
unew[i,j]:=subs(u=uold,f=subs(u(x,y)=uold[i,j],F),solve(eq[i,j],u[i,j]));od;od;

> for i from 0 to N+1 do for j from 0 to M+1 do
unew[i,j]:=subs(u[i,j-1]=unew[i,j-1],unew[i,j]);od;od;

> for i from 0 to N+1 do for j from 0 to M+1 do uold[i,j]:=0.5;od;od;

Initially the error is set to 1 and iteration counter is set to zero.

> err:=1;

:= err 1

> iter:=0;

:= iter 0

> while err>1e-12 do

> for i from 0 to N+1 do for j from 0 to M+1 do
Unew[i,j]:=eval(unew[i,j]);od;od;

> kk:='kk':jj:='jj':err:=sum(sum((Unew[kk,kk]-uold[kk,kk])^2,
kk=0..N+1),jj=0..M+1)/(N+2)/(M+2);

838 10 Miscellaneous Topics

> iter:=iter+1:

> for i from 0 to N+1 do for j from 0 to M+1 do
uold[i,j]:=Unew[i,j];od:od:end:

The program has converged after 136 iterations. The error associated with the
problem is:

> iter;err;

136

0.9202589808 10-12

The result obtained can be plotted as:

> plotdata := [seq([seq([i*h,j*k,unew[i,j]], i=0..N+1)], j=0..M+1)]:

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60]);

Fig. 10.6

10.1.5 Numerical Method of Lines for First Order Hyperbolic
PDEs

Linear first order hyperbolic PDEs were solved analytically in chapter 8 (section
8.1.2). Linear and nonlinear first order hyperbolic PDEs can be solved numerically
using numerical method of lines illustrated in chapter 5.2. First order hyperbolic
PDEs are usually specified with a boundary condition at x = 0 and an initial
condition. In this chapter first order hyperbolic PDEs are solved in the domain

10.1 Miscellaneous Topics on Numerical Methods 839

x = 0..1. First order hyperbolic PDEs are relatively difficult to solve because of the
development of steep gradients at the boundaries and wave propagation. First,
spatial derivatives are converted to finite difference form. The resulting system of
ODEs is then solved numerically in time. The methodology is illustrated with the
following examples.

Example 10.6. Wave Propagation in a Rectangle with Consistent
Initial/Boundary Conditions.

Consider wave propagation in a rectangle (Schiesser, 1991). For simplicity and
illustration purpose, consistent initial/boundary conditions are taken:

u u
+ = 0

t x
u(x,0) = 0

u(0,t) = texp(-t)

∂ ∂
∂ ∂

 (10.11)

If N node points in the x-axis (excluding x = 0) equation 10.11 can be converted to
finite difference form as:

0

i i + 1 i - 1

N N N - 1

u = texp(-t)

du u - u
 = , i = 1.. N-1

dt 2h
du u - u

 =
dt h

1
h =

N

 (10.12)

Note that boundary condition at x = 0 is used at node point i = 0 and governing
equation is used for the node points i = 1..N. Central difference is used for the
first derivative for node points i = 1..N-1 and backward difference is used for
the first derivative for the node point i = N. Equation 10.11 is solved in Maple
below:

> restart;

> with(plots):

Warning, the name changecoords has been redefined

The governing equation is entered here:

> ge:=diff(u(x,t),t)=-diff(u(x,t),x);

 := ge = ∂
∂
t

()u ,x t −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂

∂
x

()u ,x t

840 10 Miscellaneous Topics

The boundary condition at x = 0 and the initial condition are entered here:

> bc1:=u(x,t)-t*exp(-t);

 := bc1 − ()u ,x t t e
()−t

> IC:=u(x,0)=0;

:= IC = ()u ,x 0 0

Number of node points and length of the domain are entered here:

> N:=10;

:= N 10

> L:=1;

:= L 1

Next, boundary condition and governing equation are converted to finite
difference form:

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h;

 := dydxf
1
2

− − + ()u
2

t 3 ()u
0

t 4 ()u
1

t

h

> dydxb:=1/2*(u[N-2](t)+3*u[N](t)-4*u[N-1](t))/h;

 := dydxb
1
2

+ − ()u
8

t 3 ()u
10

t 4 ()u
9

t

h

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t));

 := dydx
1
2

− ()u + m 1
t ()u − m 1

t

h

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

 := bc1 − ()u
0

t t e
()−t

> eq[0]:=bc1;

 := eq
0

 − ()u
0

t t e
()−t

> for i from 1 to N-1 do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x) =
subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,rhs(ge));od:

>eq[N]:=diff(u[N](t),t)=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N](t),x=L,rhs(ge)):

> u[0](t):=solve(eq[0],u[0](t));

10.1 Miscellaneous Topics on Numerical Methods 841

 := ()u
0

t
t

e t

> h:=L/N;

 := h
1

10

> for i from 1 to N do eq[i]:=eval(eq[i]);od:

> eqs:=seq((eq[j]),j=1..N):

> Y:=seq(u[i](t),i=1..N);

 := Y , , , , , , , , ,()u
1

t ()u
2

t ()u
3

t ()u
4

t ()u
5

t ()u
6

t ()u
7

t ()u
8

t ()u
9

t ()u
10

t

> ICs:=seq(u[i](0)=rhs(IC),i=1..N);

ICs = ()u
1

0 0 = ()u
2

0 0 = ()u
3

0 0 = ()u
4

0 0 = ()u
5

0 0 = ()u
6

0 0 = ()u
7

0 0, , , , , , , :=

 = ()u
8

0 0 = ()u
9

0 0 = ()u
10

0 0, ,

>sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure);

sol = t ()proc () ... end proct = ()u
1

t ()proc () ... end proct, ,[:=

 = ()u
2

t ()proc () ... end proct = ()u
3

t ()proc () ... end proct, ,

 = ()u
4

t ()proc () ... end proct = ()u
5

t ()proc () ... end proct, ,

 = ()u
6

t ()proc () ... end proct = ()u
7

t ()proc () ... end proct, ,

= ()u
8

t ()proc () ... end proct = ()u
9

t ()proc () ... end proct, ,

 = ()u
10

t ()proc () ... end proct]

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

 := U
0

t

e t

The following plots are obtained:

> for i from 0 to N do p[i]:=plot(U[i](t),t=0..2,thickness=3);od:

> display({seq(p[i],i=0..N)},axes=boxed,labels=[t,"u"]);

842 10 Miscellaneous Topics

Fig. 10.7

> tf:=2.;

:= tf 2.

> M:=30;

:= M 30

> T1:=[seq(tf*i/M,i=0..M)]:

> PP:=matrix(N+1,M+1);

 := PP ()array , ,.. 1 11 .. 1 31 []

> for i from 1 to N+1 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od:

> for i from 1 to N+1 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+1)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, labels=[x,t,u],orientation=[-45,60]);

10.1 Miscellaneous Topics on Numerical Methods 843

Fig. 10.8

An analytical solution at x = 1 can be obtained as in chapter 8, section 8.1.2 as:

> ua:=Heaviside(t-1)*(t-1)*exp(1-t);

 := ua ()Heaviside − t 1 () − t 1 e
()− 1 t

Analytical solution is compared to the numerical solution as:

> plot([ua,U[N](t)],t=0..5,thickness=3,axes=boxed);

Fig. 10.9

844 10 Miscellaneous Topics

We observe that the numerical solution traces the analytical solution, but steep
gradients are smoothened. In addition, the numerical solution slightly oscillates.
When node points are increased, the accuracy increases. For N = 20 node points
the following plot is obtained:

Fig. 10.10

Example 10.7. Wave Propagation in a Rectangle with inconsistent
Initial/Boundary Conditions

Consider wave propagation in a rectangle (Schiesser, 1991) with inconsistent
initial/boundary conditions:

u u
+ = 0

t x
u(x,0) = 0

u(0,t) = 1

∂ ∂
∂ ∂

 (10.13)

Equation 10.13 is solved using the Maple program developed for example 10.6
and the following plots are obtained:

10.1 Miscellaneous Topics on Numerical Methods 845

Fig. 10.11

Fig. 10.12

> ua:=Heaviside(t-1);

:= ua ()Heaviside − t 1

846 10 Miscellaneous Topics

> plot([ua,U[N](t)],t=0..4,thickness=3,axes=boxed);

Fig. 10.13

When backward finite difference accurate to the order h is used for the first
derivative in the governing equation, the solution does not oscillate, and the
following plots are obtained for N = 10 node points.

Fig. 10.14

10.1 Miscellaneous Topics on Numerical Methods 847

Fig. 10.15

Fig. 10.16

848 10 Miscellaneous Topics

10.1.6 Numerical Method of Lines for Second Order Hyperbolic
PDEs

First order hyperbolic PDEs were solved numerically in section 10.1.5. Second
order hyperbolic PDEs are usually specified with boundary conditions at x = 0 and
x = 1. In addition, initial conditions for both the dependent variable and its time
derivative are specified. The methodology is very similar to numerical method of
lines for parabolic PDEs described in chapter 5.2. The only difference is that
instead of a system of first order ODEs, second order hyperbolic PDEs result in a
system of second order ODEs. The resulting system of second order ODEs is
solved numerically in time. The methodology is illustrated with the following
examples.

Example 10.8. Wave Equation with Consistent Initial/Boundary Conditions

Consider wave equation in a rectangle (Schiesser, 1991). For simplicity and
illustration purpose, consistent initial/boundary conditions are taken:

2 2

2 2

u u
 =

t x
u

u(x,0) = sin(x) ; (x,0) = 0
t

u(0,t) = 0; u(1,t) = 0

∂ ∂
∂ ∂

∂π
∂

 (10.14)

If N interior node points in the x-axis (excluding x = 0 and x = 1 as in chapter 5.2)
equation 10.14 can be converted to finite difference form as:

0

2
i i + 1 i i - 1

2 2

N+1

u = 0

d u u - 2u + u
 = , i = 1.. N

dt h
u = 0

1
h =

N+1

 (10.15)

Note that boundary condition at x = 0 is used at node point i = 0, boundary
condition at x = 1 is used at node point i = N+1 and governing equation is used for
the node points i = 1..N. Equation 10.15 is solved in Maple below:

> restart;

> with(plots):

Warning, the name changecoords has been redefined

10.1 Miscellaneous Topics on Numerical Methods 849

Governing equation, boundary and initial conditions are entered here:

> ge:=diff(u(x,t),t$2)=diff(u(x,t),x$2);

 := ge =
∂
∂2

t2
()u ,x t

∂
∂2

x2
()u ,x t

> bc1:=u(x,t);

:= bc1 ()u ,x t

> bc2:=u(x,t);

:= bc2 ()u ,x t

> IC1:=u(x,0)=sin(Pi*x);

:= IC1 = ()u ,x 0 ()sin π x

> IC2:=diff(u(x,t),t)=0;

 := IC2 = ∂
∂
t

()u ,x t 0

> N:=10;

:= N 10

> L:=1;

:= L 1

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h:

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h:

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)):

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)):

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1);

:= bc1 ()u
0

t

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2);

:= bc2 ()u
11

t

> eq[0]:=bc1:

> eq[N+1]:=bc2:

> for i from 1 to N do eq[i]:=subs(diff(u(x,t),x$2) =
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,ge);od:

850 10 Miscellaneous Topics

Values at the exterior node points (x = 0 and x = 1) are solved as:

> u[0](t):=(solve(eq[0],u[0](t)));

:= ()u
0

t 0

> u[N+1](t):=solve(eq[N+1],u[N+1](t));

:= ()u
11

t 0

> h:=L/(N+1);

 := h
1

11

> for i from 1 to N do eq[i]:=eval(eq[i]);od:

> eqs:=seq((eq[j]),j=1..N):

> Y:=seq(u[i](t),i=1..N);

 := Y , , , , , , , , ,()u
1

t ()u
2

t ()u
3

t ()u
4

t ()u
5

t ()u
6

t ()u
7

t ()u
8

t ()u
9

t ()u
10

t

Initial conditions are entered here:

>ICs:=seq(u[i](0)=rhs(subs(x=i*h,IC1)),i=1..N),
seq(D(u[i])(0)=rhs(subs(x=i*h,IC2)),i=1..N);

ICs = ()u
1

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

π
11

 = ()u
2

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

2 π
11

 = ()u
3

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

3 π
11

 = ()u
4

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

4 π
11

, , , , :=

 = ()u
5

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

5 π
11

 = ()u
6

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

6 π
11

 = ()u
7

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

7 π
11

 = ()u
8

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

8 π
11

, , , ,

 = ()u
9

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

9 π
11

 = ()u
10

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

10 π
11

 = ()()D u
1

0 0 = ()()D u
2

0 0 = ()()D u
3

0 0, , , , ,

 = ()()D u
4

0 0 = ()()D u
5

0 0 = ()()D u
6

0 0 = ()()D u
7

0 0 = ()()D u
8

0 0, , , , ,

 = ()()D u
9

0 0 = ()()D u
10

0 0,
>sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure):

> for i to N do U[i]:=subs(sol,u[i](t));od:

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t));

:= U
0

0

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t));

:= U
11

0

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..1,thickness=3);od:

10.1 Miscellaneous Topics on Numerical Methods 851

The solution obtained is plotted below:

> display({seq(p[i],i=0..N+1)},axes=boxed,labels=[t,"u"]);

Fig. 10.17

> tf:=2.;

:= tf 2.

> M:=30:

> T1:=[seq(tf*i/M,i=0..M)]:

> PP:=matrix(N+2,M+1):

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC1)));od:

> for i from 1 to N+2 do for j from 2 to M+1 do
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od:

> plotdata := [seq([seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]:

> surfdata(plotdata, axes=boxed, labels=[x,t,u],orientation=[15,60]);

852 10 Miscellaneous Topics

Fig. 10.18

Example 10.9. Wave Equation with Inconsistent Initial/Boundary Conditions

Consider wave equation in a rectangle with inconsistent initial/boundary
conditions:

2 2

2 2

u u
 =

t x
u

u(x,0) = 0 ; (x,0) = 0
t

u
u(0,t) = 1; (1,t) = 0

x

∂ ∂
∂ ∂

∂
∂

∂
∂

 (10.16)

Equation 10.16 is solved in Maple and the following plots are obtained:

> ge:=diff(u(x,t),t$2)=diff(u(x,t),x$2);

 := ge =
∂
∂2

t2
()u ,x t

∂
∂2

x2
()u ,x t

10.1 Miscellaneous Topics on Numerical Methods 853

> bc1:=u(x,t)-1;

:= bc1 − ()u ,x t 1

> bc2:=diff(u(x,t),x);

 := bc2 ∂
∂
x

()u ,x t

> IC1:=u(x,0)=0;

:= IC1 = ()u ,x 0 0

> IC2:=diff(u(x,t),t)=0;

 := IC2 = ∂
∂
t

()u ,x t 0

Fig. 10.19

854 10 Miscellaneous Topics

Fig. 10.20

Fig. 10.21

10.1 Miscellaneous Topics on Numerical Methods 855

Compared to example 10.7, we observe oscillations in example 10.8. For hyperbolic
PDEs with inconsistent initial/boundary conditions, method of lines is not a good
choice. Special numerical methods that involve discretization in both x and t are
required for this purpose (Schiesser 1991).

10.1.7 Summary

In this chapter, classical numerical methods for solving BVPs and PDEs were
programmed in Maple. In section 10.1.2, nonlinear Boundary Value Problems
(ODEs) were solved numerically. First, the given nonlinear BVP in x was
converted to a system of nonlinear coupled algebraic equations by applying finite
differences for the spatial derivatives in the governing equation and boundary
conditions. The resulting system of nonlinear algebraic equations was the solved
using iteration by developing recurrence relations. The same methodology was
then extended to elliptic PDEs in sections 10.1.3 and 10.1.4 by applying finite
difference approximations in both x and y coordinates. In section 10.1.3 linear
elliptic PDEs were solved using fsolve command and in section 10.1.4 nonlinear
elliptic PDEs were solved using iteration.

First order hyperbolic PDEs were solved using numerical method of lines in
section 10.1.5. The methodology involves applying finite differences in x and
integrating numerically in time. The same methodology was then extended to
second order hyperbolic PDEs in section 10.1.6. A total of nine examples were
presented in this chapter.

10.1.8 Exercise Problems

1. Consider diffusion with a second-order reaction in a cylindrical catalyst
pellet (exercise problem 2 chapter 3). Solve this problem using recursion
technique described in section 10.1.2.

2. Redo exercise problem 3 of chapter 3 using recursion technique described
in section 10.1.2.

3. Consider the Graetz problem discussed in example 6.3. Solve this problem
by applying finite differences in both directions as described in section
10.1.3.

4. Consider the elliptic PDE with nonlinear boundary condition discussed in
example 6.4. Solve this problem by applying finite differences in both
directions as described in section 10.1.3.

5. Consider current-distribution problem discussed in example 6.5. Redo this
problem using the methodology described in section 10.1.3. Hint: the node
spacing in y changes as a function.

6. Consider diffusion with second-order reaction discussed in example 6.7.
Redo this problem using the methodology described in section 10.1.3.

7. Redo problem 3 using iterative finite difference technique described in
section 10.1.4.

8. Redo problem 4 using iterative finite difference technique described in
section 10.1.4.

856 10 Miscellaneous Topics

9. Redo problem 5 using iterative finite difference technique described in
section 10.1.4.

10. Redo problem 6 using iterative finite difference technique described in
section 10.1.4.

11. Consider diffusion with reaction in a non-isothermal cylindrical pellet
(Finlayson, 1980, exercise problem 7, chapter 6). The governing equations
and boundary conditions are:

2 2
2

2 2

u u 1 u (1-u)
 + = uexp

y x x x 1 (1-u)

u
(0,y) = 0 and u(1,y) = 1

x

u
(x,0) = 0 and u(x,1) = 1

y

⎛ ⎞∂ ∂ ∂ γβ+ Φ ⎜ ⎟∂ ∂ ∂ + β⎝ ⎠

∂
∂

∂
∂

Solve this problem using finite difference technique (either using fsolve
command [section 10.1.3] or iteration [section 10.1.4]) for Φ = 2, γ = 30
and β = 0.1. Which method is more efficient?

12. Complete the details missing in example 10.7.
13. Complete the details missing in example 10.9.
14. Redo example 10.6 if the boundary condition at x = 0 is replaced by

2u(0,t) = t exp(-t) .

15. Redo example 10.8 if the initial condition is replaced by
u(x,0) = xsin(x)π .

16. In problem 16, how can one change the boundary conditions at x = 0
without changing the consistency of boundary/initial conditions? Solve
this new problem.

References

1. Carslaw, H.S., Jaeger, J.C.: Conduction of Heat in Solids. Oxford University Press,
London (1973)

2. Crank, J.: Mathematics of Diffusion. Oxford University Press, New York (1975)
3. Rice, R.G., Do, D.D.: Applied Mathematics and Modeling for Chemical Engineers.

John Wiley & Sons, Inc., New York (1995)
4. Schiesser, W.E.: The Numerical Method of Lines. Academic Press Inc., New York

(1991)
5. Varma, A., Morbidelli, M.: Mathematical Methods in Chemical Engineering. Oxford

University Press, New York (1997)

Subject Index

analytical method of lines 456
axial conduction and diffusion in a tubular

reactor 259
axial conduction 537
axial diffusion 175, 259, 262

Blassius equation, infinite domains
256, 342, 345

boundary value problems 169

classic diffusion problem in a cylindrical
catalyst pellet 189

composite domains 26, 425, 437, 452
conduction of heat in a rectangular cooling

fan 171
confidence intervals 775, 776, 778, 795,

807, 810, 811, 815, 816, 817
convective diffusion equations 212
convective diffusion problem 175, 196
convective term 201
current density 374, 556, 729
current distribution in an electrochemical

cell 336, 339, 507
cylindrical catalyst pellet 203, 209

differential algebraic equations 112
diffusion in a tubular reactor 259
diffusion of a substrate in an enzyme

catalyzed reaction with removable
singularity 250

diffusion with a convection 175, 196
diffusion with a first order reaction in a

semi infinite plane 181
diffusion with a second order

reaction 218, 229, 245, 262
'do loop' 18, 24, 173, 186, 785
'dsolve' 11, 12, 13, 14,

80-84, 89, 94, 95, 98, 99, 101

eigenvalues 8, 9. 24, 43,
45, 166-167

eigenvalue problems 272
eigenvectors 8-9, 38, 167, 437,

438, 515
elliptic partial differential equations

295, 333, 339, 348, 507, 508, 510,
536, 547, 556, 564, 565, 573, 581,
587, 649, 672, 827, 833, 855

exothermal reaction in a sphere 474,
480

exponential matrix 10, 30, 38, 39, 48,
51, 63, 65, 80, 83, 84, 169, 180, 185,
187, 196, 212, 213, 355, 359, 366,
374, 437, 438, 440, 451, 452, 507,
508, 510, 511, 515, 520, 537

exponential matrix method, linear
BVP 170

fermentation kinetics 99
finite difference method 827
finite difference solution for boundary

value problems 821, 827
finite difference solution for elliptic

partial differential equations 827
finite difference solution for nonlinear

BVPs 229
first order differential equations 510,

848
first order hyperbolic partial differential

equations 678, 838, 839, 848, 855,
858

first order isothermal constant volume
ractor model 797

first order linear ordinary differential
equations 511

first order ordinary differential
equations 355, 457, 507

first order parabolic partial differential
equation 685

Subject Index858

first order reaction 318, 390
first order irreversible series reactions 31
first order reversible series reactions 37
flux boundary conditions 305
'fsolve' 5, 6, 25, 54, 113, 119, 126,

220, 222, 225, 228, 229, 232, 275, 276,
277, 373, 440, 542, 552, 553, 620, 621,
658, 738, 739, 745, 821, 827, 828, 831,
833, 855, 856

Gear's method 101, 149
genmatrix' 31, 32, 39, 48, 50, 57, 74, 77,

196, 198, 205, 355, 358, 359, 366, 369,
377, 384, 393, 404, 418, 427, 431, 439,
444, 449, 511, 514, 525, 541, 549, 559

Graetz problem 272, 278, 287, 401,
452, 536

heat conduction in a rectangular slab 356
heat conduction mass transfer problem 366
heat conduction with radiation at the surface

214
heat conduction with transient boundary

conditions 301
heat transfer 49, 81, 169, 196, 208, 233, 247,

295, 353, 414, 425, 426, 470, 474, 507,
565, 573, 587, 643, 649, 660, 667, 685,
688, 703, 720, 827, 832, 833

heat transfer in a fin 208
heat transfer in a rectangle 508
heat transfer with nonlinear radiation

boundary conditions 247
heated tanks in a series 112
heating of fluids in a series of tanks 48
higher order linear ordinary differential

equations 63
homogeneous linear ODEs 29
Hull cell, potential distribution 556, 581

in a rectangular slab 296, 325
infinite domains 256
initial value problems 29
inverse Laplace 163, 164, 165
inverse Laplace transforms 17, 18, 24

kinetics 175, 452

Laplace equation 556, 660
Laplace solution for second order system

with Dirac forcing function 75
Laplace solution for irreversible series

reactions 73

Laplace transform technique for partial
differential equations 679

Laplace transform techniques 72, 73,
75, 79, 84, 161, 167, 295, 314,
318, 325, 348, 679, 690, 691, 701,
709, 714, 719, 720, 725, 736, 742,
747, 755

Laplace transformations 16, 17,
24, 26, 72, 73, 155

least squares method 761, 762, 778, 788
linear boundary value problems 170
linear ordinary differential equations 29

matrix exponential by the Laplace
transform method 161

matrix exponential method 155
matrix operations 6
matrizant example 184
matrizant method 184
method of lines technique 287, 355, 457
method of lines for parabolic partial

differential equations 353, 456
multiple steady states 116, 266
multiple steady states for initial

value problems 117
multiple steady states in a catalyst

pellet 253, 266
multiple steady states in a catalyst pellet

solving BVPs and IVPs 238
multiple steady states in a rectangular

catalyst pellet 266

nonhomogeneous ordinary differential
equations 457

non isothermal catalyst pellet, multiple
steady states 223

nonlinear boundary value problems 218
nonlinear heat transfer 233
nonlinear least squares method 778, 788
nonlinear ordinary differential

equations 87
nonlinear radiation boundary condition

470, 547
numerical nethod of lines 480, 491, 501,

502, 536
numerical method of lines for elliptic

PDEs 507, 564
numerical method of lines for nonlinear

coupled PDEs 480
numericak nethod of lines for moving

boundary problems 491

Subject Index 859

numerical method of lines for parabolic
PDEs 353, 456, 469

numerical method of ines for stiff nonlinear
PDEs 474

numerical solution coupled BVPs using
Maple's 'dsolve' command 259

numerical solution for heat transfer for
nonlinear elliptical PDEs 573

one parameter model 807, 809

parabolic partial differential equations
297, 324, 348, 353, 355, 365, 456, 457,
507, 587, 672, 679, 685, 689, 701, 719,
742, 747, 755

parabolic velocity profile 272
parameter estimation 761, 783, 801
phase plane analysis 149
plane flow past a flat plate 342
plotting with Maple 3

radiation boundary condition at the surface
314, 474, 618, 736

read data into Maple from Text File 23
removable singularity 250, 281, 287
Rosenbrock 101, 456, 457, 477
Runge Kutta methods 107, 110, 149, 456,

457, 458, 474

second order boundary value problems 572
second order differential equations 195
second order equations 11, 272
second order hyperbolic partial

differential equations 848, 855
second order ordinary differential
equations 19, 65, 75, 508, 509, 511, 565, 848
second order reaction 88, 97, 218, 229, 245,

253, 262, 458, 573, 821
semianalytical method for elliptic PDEs

507, 536, 547, 556,
semianalytical method for the Graetz

problem 401
semianalytical method for homogeneous

PDEs 353
semianalytical method for nonhomogeneous

PDEs 365

semianalytical method for parabolic
partial differential equations
353, 456

semianalytcal method for PDEs in
composite domains 425

semianalytical method for PDEs with
known initial profiles 414

semi infinite domains 180, 181, 295
semi infinite plane 250
separation of variables 272, 588, 597,

609, 618, 623, 624, 625, 635, 643,
649, 672, 690, 714, 755

series solutions for nonlinear BVPs 218
series solutions for nonlinear ODEs 98
shooting technique for boundary value

problems 233
simultaneous first order reaction 175
simultaneous series reactions 88
singularity 497, 696
solving linear BVP's using Maple's

 'dsolve' command 208
solving linear ODEs using Maple 81
solving linear ODEs Using Maple's

 'dsolve' command 80
solving nonlinear BPV's using Maple's

'dsolve' command 244
solving nonlinear ODEs using Maple's

'dsolve' command 94
solving systems of ODEs using the

Laplace transform method 72
source term 311
spherical catalyst pellet 210
steady state solutions 124
steady states 266
stiff nonlinear partial differential

equations 107, 457
stop conditions 103
symbolic finite difference solutions for

linear BVP 195
systems of ODEs 72

text files in Maple 19
thermal conductivity 297, 353,

456, 507, 587, 679
thermal diffusivity 295, 296, 314, 353,

426, 456, 507, 587, 679
time varying input to a CSTR with a

series reaction 55
transient boundary conditions 301

Subject Index860

transient heat conduction or mass
transfer 456, 580, 679

two parameter model 812, 817
tubular reactor 259

unsteady state diffusion 318

variable diffusivity 217, 340, 464

wave propagation 679, 682,
848, 852

'while loop' 19, 24

	Title Page
	Preface
	Contents
	Introduction
	Introduction to Maple
	Getting Started with Maple
	Plotting with Maple
	Solving Linear and Nonlinear Equations
	Matrix Operations
	Differential Equations
	Laplace Transformations
	Do Loop
	While Loop
	Write Data Out Example
	Reading in Data from a Text File
	Summary
	Problems

	References

	Initial Value Problems
	Linear Ordinary Differential Equations
	Introduction
	Homogeneous Linear ODEs
	First Order Irreversible Series Reactions
	First Order Reversible Series Reactions
	Nonhomogeneous Linear ODEs
	Higher Order Linear Ordinary Differential Equations
	Solving Systems of ODEs Using the Laplace TransformMethod
	Solving Linear ODEs Using Maple’s ‘dsolve’ Command
	Summary
	Problems

	Nonlinear Ordinary Differential Equations
	Introduction
	Solving Nonlinear ODEs Using Maple’s ‘dsolve’ Command
	Series Solutions for Nonlinear ODEs
	Stop Conditions
	Stiff ODEs
	Differential Algebraic Equations
	Multiple Steady States
	Steady State Solutions
	Summary
	Problems

	References

	Boundary Value Problems
	Linear Boundary Value Problems
	Introduction
	Exponential Matrix Method for Linear Boundary Value Problems
	Exponential Matrix Method for Linear BVPs with Semi-infinite Domains
	Use of Matrizant in Solving Boundary Value Problems
	Symbolic Finite Difference Solutions for Linear Boundary Value Problems
	Solving Linear Boundary Value Problems Using Maple’s 'dsolve' Command
	Summary
	Exercise Problems

	Nonlinear Boundary Value Problems
	Introduction
	Series Solutions for Nonlinear Boundary Value Problems
	Finite Difference Solutions for Nonlinear Boundary Value Problems
	Shooting Technique for Boundary Value Problem
	Numerical Solution for Boundary Value Problems Using Maple’s 'dsolve' Command
	Numerical Solution for Coupled BVPs Using Maple’s 'dsolve' Command
	Solving Boundary Value Problems and Initial Value Problems
	Multiple Steady States
	Eigenvalue Problems
	Summary
	Exercise Problems

	References

	Partial Differential Equations in Semi-infinite Domains
	Partial Differential Equations (PDEs) in Semi-infinite Domains
	Laplace Transform Technique for Parabolic PDEs
	Laplace Transform Technique for Parabolic PDEs – Advanced Problems
	Similarity Solution Technique for Parabolic PDEs
	Similarity Solution Technique for Elliptic Partial Differential Equations
	Similarity Solution Technique for Nonlinear Partial Differential Equations
	Summary
	Exercise Problems
	References

	Method of Lines for Parabolic Partial Differential Equations
	Semianalytical Method for Parabolic Partial Differential Equations (PDEs)
	Introduction
	Semianalytical Method for Homogeneous PDEs
	Semianalytical Method for Nonhomogeneous PDEs
	Semianalytical Method for PDEs in Composite Domains
	Expediting the Calculation of Exponential Matrix
	Summary
	Exercise Problems

	Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs)
	Introduction
	Numerical Method of Lines for Parabolic PDEs with Linear Boundary
	Numerical Method of Lines for Parabolic PDEs with Nonlinear Boundary
	Numerical Method of Lines for Stiff Nonlinear PDEs
	Numerical Method of Lines for Nonlinear Coupled PDEs
	Numerical Method of Lines for Moving Boundary Problems
	Summary
	Exercise Problems

	References

	Method of Lines for Elliptic Partial Differential Equations
	Semianalytical and Numerical Method of Lines for Elliptic PDEs
	Introduction
	Semianalytical Method for Elliptic PDEs in Rectangular Coordinates
	Semianalytical Method for Elliptic PDEs in Cylindrical Coordinates – Graetz Problem
	Semianalytical Method for Elliptic PDEs with Nonlinear Boundary Conditions
	Semianalytical Method for Elliptic PDEs with Irregular Shapes
	Numerical Method of Lines for Elliptic PDEs in Rectangular Coordinates
	Summary

	References

	Partial Differential Equations in Finite Domains
	Separation of Variables Method for Partial Differential Equations (PDEs) in Finite Domains
	Introduction
	Separation of Variables for Parabolic PDEs with Homogeneous Boundary Conditions
	Separation of Variables for Parabolic PDEs with an Initial Profile
	Separation of Variables for Parabolic PDEs with Eigenvalues Governed by Transcendental Equations
	Separation of Variables for Parabolic PDEs with Nonhomogeneous Boundary Conditions
	Separation of Variables for Parabolic PDEs with Two Flux Boundary Conditions
	Numerical Separation of Variables for Parabolic PDEs
	Separation of Variables for Elliptic PDEs
	Summary
	Exercise Problems

	References

	Laplace Transform Technique for Partial Differential Equations
	Laplace Transform Technique for Partial Differential Equations (PDEs) in Finite Domains
	Introduction
	Laplace Transform Technique for Hyperbolic PDEs
	Laplace Transform Technique for Parabolic Partial Differential Equations – Simple Solutions
	Laplace Transform Technique for Parabolic Partial Differential Equations – Short Time Solution
	Laplace Transform Technique for Parabolic Partial Differential Equations – Long Time Solution
	Laplace Transform Technique for Parabolic Partial Differential Equations – Heaviside Expansion Theorem for Multiple Roots
	Laplace Transform Technique for Parabolic Partial Differential Equations in Cylindrical Coordinates
	Laplace Transform Technique for Parabolic Partial Differential Equations for Time Dependent Boundary Conditions – Use of Convolution Theorem
	Summary
	Exercise Problems

	References

	Parameter Estimation
	Introduction
	Least Squares Method
	Summation Form or Classical Form
	Confidence Intervals: Classical Approach
	Prediction of New Observations
	A One Parameter through the Origin Model

	Nonlinear Least Squares
	Hessian Matrix Approach
	Confidence Intervals
	Sensitivity Coefficient Equations
	One Parameter Model
	Two Parameter Model
	Exercise Problems
	References

	Miscellaneous Topics
	Miscellaneous Topics on Numerical Methods
	Introduction
	Iterative Finite Difference Solution for Boundary Value Problems
	Finite Difference Solution for Elliptic PDEs
	Iterative Finite Difference Solution for Elliptic PDEs
	Numerical Method of Lines for First Order Hyperbolic PDEs
	Numerical Method of Lines for Second Order Hyperbolic PDEs
	Summary
	Exercise Problems

	References

	Subject Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

