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Preface

This book presents Maple solutions to a wide range of problems relevant to 
chemical engineers and others. Many of these solutions use Maple’s symbolic 
capability to help bridge the gap between analytical and numerical solutions.  The 
readers are strongly encouraged to refer to the references included in the book for 
a better understanding of the physics involved, and for the mathematical analysis.   

This book was written for a senior undergraduate or a first year graduate 
student course in chemical engineering. Most of the examples in this book were 
done in Maple 10.  However, the codes should run in the most recent version of 
Maple. We strongly encourage the readers to use the classic worksheet (*.mws) 
option in Maple as we believe it is more user-friendly and robust. 

In chapter one you will find an introduction to Maple which includes simple 
basics as a convenience for the reader such as plotting, solving linear and 
nonlinear equations, Laplace transformations, matrix operations, ‘do loop,’ and 
‘while loop.’  Chapter two presents linear ordinary differential equations in section 
1 to include homogeneous and nonhomogeneous ODEs, solving systems of ODEs 
using the matrix exponential and Laplace transform method.  In section two of 
chapter two, nonlinear ordinary differential equations are presented and include 
simultaneous series reactions, solving nonlinear ODEs with Maple’s ‘dsolve’ 
command, stop conditions, differential algebraic equations, and steady state 
solutions.   Chapter three addresses boundary value problems.  Section one of 
chapter three discusses the matrix exponential method in solving linear and 
nonlinear boundary value problems, semi-infinite domains, the matrizant method, 
and has examples of heat transfer in a fin, cylindrical and spherical catalyst pellet.  
Chapter three’s section two discusses nonlinear boundary value problems and 
includes series solutions for diffusion of a second order reaction, multiple steady 
states, finite difference solutions for nonlinear boundary value problems, shooting 
technique for nonlinear boundary problem, and eigenvalue problems, and includes 
examples of nonlinear heat transfer, multiple steady states in a catalyst pellet, 
Blasius equation in an infinite domain, diffusion with a second order reaction, the 
Graetz problem using the finite difference method and the shooting technique.  In 
chapter four you will find solution techniques for partial differential equations in 
semi-infinite domains in semi-infinite domains, Laplace transform, similarity 
solution techniques for Parabolic and elliptical PDEs as well as nonlinear partial 
differential equations.  Some examples found in chapter four are for heat 
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conduction in a rectangular slab, heat conduction with transient boundary 
conditions, heat conduction with radiation at the surface and plane flow past a flat 
plate, the Blasius equation.  Chapter five presents the method of lines for parabolic 
partial differential equations and has two sections.  Section one discusses the 
semianalytical method for parabolic partial differential equations and section two 
discusses the numerical method of lines for parabolic partial differential equations.  
Section one has some examples which include a semianalytical method for heat 
conduction in a rectangular slab, nonhomogeneous, partial differential equations, 
the Graetz problem, composite domains, and the calculation of an exponential 
matrix.  Section two includes examples for diffusion with second order reaction, 
variable diffusivity, nonlinear radiation at the surface, stiff nonlinear partial 
differential equations, exothermal reaction in a sphere, etc.  Chapter six contains 
semianalytical and numerical methods of lines for elliptical partial differential 
equations and includes several examples.  Some of the examples are heat transfer 
in a rectangle, the Graetz problem with a fixed wall temperature, nonlinear 
radiation boundary condition, numerical solution for heat transfer for nonlinear 
elliptic partial differential equations.  In chapter seven, you find a discussion of 
partial differential equations in finite domains.  Some of the examples include 
separation of variables for heat conduction in a rectangle, heat conduction with an 
insulator boundary condition, separation of variables for heat conduction in a 
rectangle with an initial profile, diffusion with a reaction, and numerical 
separation of variable for diffusion in a cylinder.  Chapter nine discusses 
parameter estimation and includes the least squares method, confidence intervals, 
nonlinear least squares, a one parameter model and a two parameter model.  
Chapter ten contains miscellaneous topics on numerical methods some of the 
examples include a finite difference solution for boundary values problems, and 
elliptical partial differential equations, etc. 
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Chapter 1 

Introduction 

1.1   Introduction to Maple 

1.1.1   Getting Started with Maple 

Some Maple basics are presented in this chapter as a convenience for the reader.  
Two Maple books[1, 2] that have proven to be useful are given as references 1 and 
2 at the end of this chapter. Maple can be started either from the shortcut on the 
desktop or from Start → Programs → Maple 12.  This opens a new Maple 
worksheet in the Maple environment.  You should usually type ‘restart’ as the first 
command in your Maple worksheets. 

> restart; 

This restart command clears all the stored variables and restarts the worksheet 
every time it is executed.   

Numerical values can be assigned to variables in Maple by using the characters 
‘:=  after x, for example.  That is, to assign the value 2 to the variable x, the colon 
and equal sign ‘:=’ characters are used together.  You can use the # sign to add 
comments 

>  x:=2; # an assignment statement. 
:= x 2  

Note that ‘:=’ is the assignment operator which assigns an expression or number 
(2) to a variable named x.  If the colon is not used, the value is not assigned.  For 
example, 2 is not assigned to y by using ‘=’ only.  For example, type  

>  y=2; 
= y 2  

Now type both x and y to see their values. 

>  x; 
2  

>  y; 
y  
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This shows that ‘:=’ assigned the value 2 to x whereas ‘=’ did not assign 2 to y. 
One can use Maple to do numerical and symbolic calculations. A few examples 

are shown next. 

>  x^2; 
4  

>  x^2.; 
4.  

>  sqrt(x); 

2  
>  x^0.5; 

1.414213562  
>  abs(x); 

2  
>  -x; 

-2  
>  x+y; 

− +2 y  
>  abs(-2); 

2  

The imaginary number −1  is designated as I in Maple: 

>  (-1)^(1/2); 

I  
The Maple command ‘evalf’ provides numeric evaluation and the ‘eval’ command 
yields a symbolic evaluation: 

> evalf(sqrt(2)); 
1.414213562  

> eval(sqrt(2)); 

2  
Symbolic variables can also be assigned to names as follows: 

> z:=y; 
:= z y  

> z; 
y  
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Differentiation can be done by using the ‘diff’ command: 

>  diff(y,y); 
1  

>  diff(y^2,y); 
2 y  

Integration can be done by using the ‘int’ command: 

>  int(y,y); 

y2

2  
Maple can also do definite integration: 

> int(y,y=0..1); 

1
2  

1.1.2   Plotting with Maple 

Plots can be made in Maple using the ‘plot’ command: 

>  plot(y,y=0..1); 
 

y

 
 

Fig. 1.1 Maple plot of y = y 
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>  plot(y^2,y=0..1); 

y2

 
 

Fig. 1.2 Maple plot of y2 = y 
 

To plot both curves on the same graph in a box use the following command. 

>  plot([y,y^2],y=0..1,axes=boxed); 

 

y and y2

 
Fig. 1.3 Maple plot of y and y2 vs y 
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1.1.3   Solving Linear and Nonlinear Equations  

One can solve equations in Maple using the ‘solve’ and ‘fsolve’ commands.  The 
‘solve’ command is used to solve linear equations in symbolic form and the 
‘fsolve’ command is used to solve linear and nonlinear equations numerically.  
For example, 

> restart: 
 

> eq:=x+2; 
:= eq + x 2  

> solve(eq); 
-2  

Maple can solve equations in symbolic form also: 

> eq:=x-a; 

:= eq − x a  
> solve(eq); 

{ },= a x = x x  
This solution says that either x = x or a = x.  To solve specifically for x 

> solve(eq,x); 

a  
Note that a has not been assigned to x which can by seen by typing x: 

> x; 

x  
One can assign the value of a to x by solving the above equation for x: 

> eq:=x-a; 

= −eq : x a  
> x:=solve(eq,x); 

=x : a  
One can use the ‘fsolve’ command in Maple to solve equations numerically: 

> eq1:=y+1; 
:= eq1 + y 1  

> fsolve(eq1,y); 
-1.  

Note that ‘fsolve’ returns a floating point number with a decimal point.   
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Two or more nonlinear equations can be solved by using ‘fsolve’. For example, 
consider finding the solutions (x and y) for the following two equations. 

>  restart: 
 

> eq1:=x+tan(y)=1; 
:= eq1 = + x ( )tan y 1  

> eq2:=y^2+tan(x)=1; 

 := eq2 = + y2 ( )tan x 1  
>  fsolve({eq1,eq2},{x,y}); 

{ }, = x -3.858064894 = y 1.367788596  
One can find other solutions to these equations by restricting the ranges of x and y: 

>  fsolve(f#,{x=1..3,y=1..3}); 

{ }, = x 1.760535729 = y 2.491382707      

1.1.4   Matrix Operations 

Maple has a package for solving linear algebra problems which can be called by 
using the ‘with(linalg)’ command. 
 

>  restart: 

>  with(linalg): 

Warning, the protected names norm and trace have been redefined and unprotected. 
Maple is capable of doing a variety of matrix operations.  For example, let A 

and B be 2 x 2 matrices which can be entered as follows: 
 

>  A:=matrix(2,2,[1,2,3,4]); 

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 2
3 4  

>  B:=matrix(2,2,[1,1,3,2]); 

 := B ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 1
3 2  

Use the ‘evalm’ command to perform matrix operations. For example, matrix 
addition and subtraction can be done: 

 

>  evalm(A+B); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

2 3
6 6  



1.1   Introduction to Maple 7 
 

>  evalm(A-B); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 1
0 2  

 

Multiplication of matrices requires using evalm and ‘&*’: 

>  evalm(A&*B); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

7 5
15 11  

 

The determinant of a matrix can be found by using ‘det’: 

>  det(A); 
-2  

and  
 
>  det(B); 

-1  
Matrices can be inverted by using the ‘inverse command’: 

>  inverse(A); 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

-2 1

3
2

-1
2  

>  inverse(inverse(A)); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 2
3 4  

The transpose of a matrix can be obtained also 
 

>  transpose(A); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 3
2 4  

 

A particular element of a matrix can be printed easily: 

>  A[1,1]; 

1  
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A matrix can be raised to a power by using the ‘evalm’ command: 

>  evalm(A^2); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

7 10
15 22  

The characteristic polynomial, eigenvalues, and eigenvectors of a matrix can be 
obtained as follows: 

>  charpoly(A,lambda); 

− − λ2 5 λ 2  
>  eigenvalues(A); 

, + 
5
2

33
2

 − 
5
2

33
2  

>  eigenvectors(A); 

,⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , + 

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1  + 

3
4

33
4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , − 

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1  − 

3
4

33
4  

 

or 
 

>  eigenvects(A); 

,⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , + 

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1  + 

3
4

33
4

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥, , − 

5
2

33
2

1 { }⎡
⎣
⎢⎢

⎤
⎦
⎥⎥,1  − 

3
4

33
4  

 

Matrices can be raised to various powers and added.  For example, let 

>  eq:=A+A^2+A^3; 

 := eq + + A A2 A3
 

>  evalm(eq); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

45 66
99 144  

 

Maple’s ‘Id’ command can be used to generate an identity matrix: 
 

>  Id:=band([1],2); 

 := Id ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

1 0
0 1  
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Elements of a matrix can be in symbolic form and a variety of matrix operations 
can be performed: 
 

>  A:=matrix(2,2,[a,b,c,d]); 

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a b

c d  
>  transpose(A); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

a c

b d  
>  inverse(A); 

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

d
 − a d b c

−
b

 − a d b c

−
c

 − a d b c
a

 − a d b c  
>  evalm(A&*B); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

+ a 3 b + a 2 b

 + c 3 d  + c 2 d  
 

A matrix can be multiplied with a scalar: 

>  evalm(2*A); 

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

2 a 2 b

2 c 2 d  
Eigenvalues can be obtained: 

>  eigenvalues(A); 

, +  + 
a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2

 +  − 
a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2  

Eigenvectors can be obtained:  

>  eigenvects(A); 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥, , +  + 
a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2

1

⎧

⎩

⎪⎪⎪⎪⎪
⎨

⎫

⎭

⎪⎪⎪⎪⎪
⎬

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥,−
−  +  − 

a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2

c
1

⎡

⎣

⎢⎢⎢⎢⎢,

, , +  − 
a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2

1

⎧

⎩

⎪⎪⎪⎪⎪
⎨

⎫

⎭

⎪⎪⎪⎪⎪
⎬

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥,−
−  +  + 

a
2

d
2

 −  +  + a2 2 a d d2 4 b c
2

c
1

⎤

⎦

⎥⎥⎥⎥⎥
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The exponential matrix of a matrix can be obtained as follows: 

> exponential(B,t); 
 

 +  −  + 
1
2

e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( ) + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )− + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( )+ 3 13
2 1

2
e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )−  + 3 13
2

⎡

⎣
⎢⎢⎢⎢ ,

−  + 
1

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )−  + 3 13
2 1

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( ) + 3 13
2

⎤

⎦
⎥⎥⎥⎥

 

−  + 
3
13

13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )−  + 3 13
2 3

13
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( )+ 3 13
2

⎡

⎣
⎢⎢⎢⎢ ,

 −  +  + 
1
2

e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( ) + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )−  + 3 13
2 1

26
13 e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

t ( ) + 3 13
2 1

2
e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

t ( )−  + 3 13
2

⎤

⎦
⎥⎥⎥⎥

 
 

The ‘map’ command can be used to differentiate and integrate each element in a 
matrix: 
 

> A:=matrix(2,2,[x,a*x,1/x,c]); 

 := A
⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

x a x

1
x

c
 

>  map(diff,A,x); 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1 a

−
1

x2
0

 
>  map(int,A,x); 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

x2

2
a x2

2
( )ln x c x  

>  map(int,A,x=0..1); 

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

1
2

a
2

∞ c  
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1.1.5   Differential Equations 

Maple’s ‘dsolve’ command can be used to obtain analytical and series solutions 
for differential equations.  Differential equations are discussed in more detail in 
chapters 2 and 3.  In this section, some Maple commands are introduced to solve 
relatively simple differential equations. 
 

> restart: 

You have to use y(x) if you are trying to solve y as a function of x (y is the 
dependent variable and x is the independent variable) 
 

> eq:=diff(y(x),x)=x; 

 := eq  = 
d
d
x

( )y x x
 

> dsolve(eq,y(x)); 

 = ( )y x  + 
x2

2
_C1

 
Note that the constant _C1 is returned as part of the solution.  If you specify the 
initial condition, Maple can be used to obtain the complete solution: 
 

> dsolve({eq,y(0)=1},y(x)); 

 = ( )y x  + 
x2

2
1

 
Second order equations can also be solved with ‘dsolve’: 

> eq:=y(x)+diff(y(x),x$2)=x^3; 

 := eq  =  + ( )y x
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2
( )y x x3

 
> dsolve(eq,y(x)); 

 = ( )y x + + ( )sin x _C2 ( )cos x _C1 x ( )− + 6 x2
 

Note that there are two constants, _C2 and _C1, in this case. The D(y)(x) command 

can be used to set the derivate of y as an initial condition at x=0 0, e.g.
dy

dx
⎛ ⎞=⎜ ⎟
⎝ ⎠

, 

and the other initial condition ( )( )0 1y = can be set easily also: 
 

> dsolve({eq,y(0)=1,D(y)(0)=0},y(x)); 
 

 = ( )y x + + 6 ( )sin x ( )cos x x ( )− + 6 x2
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Next, store the right hand side (rhs) in ya and then plot ya: 

> ya:=rhs(dsolve({eq,y(0)=1,D(y)(0)=0},y(x))); 

 := ya + + 6 ( )sin x ( )cos x x ( )− + 6 x2
 

> plot(ya,x=0..1); 

 

ya

 
 

Fig. 1.4 Maple plot of ya vs x 

 

Maple’s ‘dsolve’ can be used to solve nonlinear equations. For example, consider 
the following equation: 

 

> eq:=diff(y(x),x$2)=y(x)^2; 

 := eq  = 
d

d2

x2
( )y x ( )y x 2

 
 

Solve this equation by using ‘dsolve’: 

> dsolve(eq,y(x)); 
 

, =  −  − d
⌠

⌡

⎮⎮⎮⎮⎮
 

( )y x

3

 − 6 _a3 3 _C1
_a x _C2 0  =  −  − d

⌠

⌡

⎮⎮⎮⎮⎮
 

( )y x

−
3

 − 6 _a3 3 _C1
_a x _C2 0
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Maple gives the solution as an integral.  Instead one can get a series solution by 
specifying ‘type = series’ in ‘dsolve’ as follows: 
 

> dsolve(eq,y(x),type =series); 

( )y x ( )y 0 ( )( )D y 0 x
1
2

( )y 0 2 x2 1
3

( )y 0 ( )( )D y 0 x3 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + 1

12
( )y 0 3 1

12
( )( )D y 0 2 +  +  +  +  = 

x4 1
12

( )y 0 2 ( )( )D y 0 x5 ( )O x6 +  + 
 

 

Consider another nonlinear differential equation. 

> eq:=diff(y(x),x)=-tan(x)+exp(-y(x)); 

 := eq  = 
d
d
x

( )y x −  + ( )tan x e
( )− ( )y x

 

> dsolve(eq,y(x)); 

 = ( )y x − ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ln

1
( )cos x ( ) + _C1 ( )ln  + ( )sec x ( )tan x  

 

Use the type = series option to obtain a series solution. 
 

> ya:=rhs(dsolve({eq,y(0)=1},y(x),type=series)); 
 

ya 1 e
( )-1

x
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−  − 1

2
( )e

( )-1
2 1

2
x2 1

3
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + ( )e

( )-1
2 1

2
e

( )-1
x3 +  +  +  +  := 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−  −  − 

1
12

1
4

( )e
( )-1

4 1
6

( )e
( )-1

2

x4 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ +  + 

1
24

e
( )-1 1

5
( )e

( )-1
5 1

6
( )e

( )-1
3

x5 ( )O x6 +  + 
 

 

> ya:=evalf(ya); 

ya 1. 0.3678794412 x 0.5676676416 x2 0.07790892966 x3 0.1104681236 x4 +  − + −  +  := 

0.02497374418 x5 ( )O x6 +  

One can remove the order term ( )( )60 x in the series by using the ‘convert’ 

command: 
 

> ya:=convert(ya,polynom); 

ya 1. 0.3678794412 x 0.5676676416 x2 0.07790892966 x3 0.1104681236 x4 +  − + −  := 

0.02497374418 x5 +  
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> plot(ya,x=0..1); 

 

 ya

 
 

Fig. 1.5 Maple plot of ya vs x 

 

One can also use ‘dsolve’ to solve boundary value problems. Consider heat 
transfer in a fin:[3] 

 
> eq:=diff(y(x),x$2)=H^2*y(x); 

 := eq  = 
d

d2

x2
( )y x H2 ( )y x

 
where H is a parameter.  The governing equation can be solved without specifying 
the boundary conditions as: 
 
> dsolve(eq,y(x)); 

 = ( )y x  + _C1 e
( )H x

_C2 e
( )−H x

 

Suppose the boundary conditions are at x=0, y=1, and at x=1, 0
dy

dx
= .  If one of 

the boundary conditions is specified, Maple gives a solution with one constant. 
 
> ya:=rhs(dsolve({eq,y(0)=1},y(x))); 

 := ya  + ( )−  + _C2 1 e
( )H x

_C2 e
( )−H x
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The constant _C2 can be obtained by using the boundary condition at x = 1: 

> diff(ya,x); 

 − ( )−  + _C2 1 H e
( )H x

_C2 H e
( )−H x

 
> bc:=subs(x=1,diff(ya,x)); 

 := bc  − ( )−  + _C2 1 H e H _C2 H e
( )−H

 
 

> _C2:=solve(bc,_C2); 

 := _C2
eH

 + e H e
( )−H

 
The complete solution is obtained by using Maple’s ‘simplify’ command as 
follows: 
 

> ya:=simplify(ya); 

 := ya
 + e

( )− + H H x
e

( )−H ( )− + 1 x

 + eH e
( )−H

 
Plot the solution ya with H=1: 

 

> plot(subs(H=1,ya),x=0..1); 
 

 ya

H=1 

 
 

Fig. 1.6 Maple plot of ya vs x for H=1 
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Next, plot the solution ya with H=3 and use points instead of a line. 

> plot(subs(H=3,ya),x=0..1,style=point); 
 

ya

H=3 

 
 

Fig. 1.7 Maple point plot of ya vs x for H=3 

1.1.6   Laplace Transformations 

Maple can be used to obtain Laplace transforms and inverse Laplace transforms of 
functions symbolically.  For this purpose, the package ‘with(inttrans)’ is used: 
 

> restart: 

> with(inttrans):  

Suppose we want to find the Laplace transform of t, we use 

> f(t):=t; 
:= ( )f t t  

> laplace(f(t),t,s); 
1

s2
 

Laplace transforms for different functions can be obtained easily: 

> laplace(f(t)*t,t,s); 
2

s3
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> f(t):=exp(-t); 

 := ( )f t e
( )−t

 
> laplace(f(t),t,s); 

1
 + 1 s  

Both Laplace and inverse Laplace transforms can be obtained with Maple. 

> f(t):=sin(t); 
:= ( )f t ( )sin t  

> f(s):=laplace(f(t),t,s); 

 := ( )f s
1

 + s2 1  
> invlaplace(f(s),s,t); 

( )sin t  
Inverse Laplace transforms for different functions can be also obtained: 

> f(s):=1/sqrt(s); 

 := ( )f s
1

s  
> invlaplace(f(s),s,t); 

1

π t  
> f(s):=1/(s)^(3/2); 

 := ( )f s
1

s
( )/3 2

 
> invlaplace(f(s),s,t); 

2 t

π  
> f(s):=exp(-sqrt(s)); 

 := ( )f s e
( )− s

 
> invlaplace(f(s),s,t); 

1
2

e
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟−

1
4 t

π t
( )/3 2
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Unfortunately, Maple cannot find the inverse Laplace transform for complicated 
functions: 
 

> f(s):=1/sinh(sqrt(s)); 

 := ( )f s
1

( )sinh s  
> invlaplace(f(s),s,t); 

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟invlaplace , ,

1

( )sinh s
s t

 
 

This does not mean that the inverse Laplace transform does not exist; instead, one 
has to use advanced techniques for finding the desired inverse Laplace transform 
(see chapter 8 for details). 

1.1.7   Do Loop 

It is possible to carry out a sequence of steps using a ‘do loop.’  The syntax is 
 

 >  

  

We can prepare a set of differential equations by using a ‘do loop’.  Use the shift 
enter keys to add the extra line after the “do” as shown in the following worksheet. 
 

> restart: 

> N:=3; 

 
 

> for i from 1 to N do  #Use the shift enter keys to add each new line in a 
do loop. 

diff(y[i](t),t)=(y[i+1](t),-y[i-1](t)); 

od; 
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1.1.8   While Loop 

It is possible to carry out a sequence of statements or commands until a prescribed 
condition is satisfied.  The ‘while’ command can be used to do this.  The general 
statement is of the form: 
 

>  

For example, one could use the following worksheet to determine the square of a 
number.   
 

>  

>  
 

>  

 

 

 

 

>  

1.1.9   Write Data Out Example 

Data can be generated and written out to a text file (i.e., a . txt file).  For example, 
we can use Maple to solve the second order ordinary differential equation  

2

2

d u
u

dx
=                                     (1.1) 

 

with the following boundary conditions: 

( )0 0.21u =                                (1.2) 

and 

1

0
x

du

dx =

=                                  (1.3) 

The result is 

( ) ( )
( )

cosh 1
0.21

cosh 1

x
u x

−
=     (1.4) 
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Values for this analytical solution at various values of x can be generated and 
exported to a text file as shown in the worksheet below.   
 

> restart:with(plots):with(linalg): 
 

Specify the values for x at which the analytical solution will be calculated and 
later exported.  Make sure you have the whole range (i.e., 0 to 1) of x included. 

>  

 
 

Input the Governing Equation and Boundary Conditions: 

>  

 

>  

 
Solve the differential equation and rearrange the results to the desired form: 
 

>  

 

>  
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>  

 

>  

 

Make sure the solution satisfies the boundary conditions: 

>  

 

>  

 

Plot the results: 
 

>  
 

 
 

Fig. 1.8 

 

Save the analytical solution at the x values specified at the beginning of this 
worksheet as uana[i]. 
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> for i to rowdim(xdata) do `:=` 
(uana[i], evalf(subs(x = xdata[i, 1], u)))  
end do; 1 

 
 
 
 
 
 
 
 
 
 

  

 

Export the Analytical Solution from Maple into the Text File: 

>  

 

Note: To export to a text file, the formats compatible with Maple are Arrays, 
Matrices, etc.  For additional help please type ? writedata 
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>  

Now, the output from the analytical solution is stored into a file called 
"maple_output.txt" in the folder where you saved this original Maple file. 

1.1.10   Reading in Data from a Text File 

Data can be read into Maple from a text file as shown below. 
This worksheet is entitled ReadDataInExp.mws. 
 

> restart: 

Read in data from a text file named "maple_output.txt" located on the D drive 
under the folder named "ECHE700Sp09". 
 

> fd := fopen("D:\\ECHE700Sp09\\maple_output.txt",READ); 

data:=readdata(fd,2); 

fclose(fd); 
 

 
 

Print the data.  

> data:=evalm(data); 
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1.1.11   Summary 

In this chapter, some useful Maple commands were introduced.  In section 1.1.1, 
basic Maple commands for assignment, evaluation, differentiation and integration 
were introduced.  In section 1.1.2, commands for plotting were introduced. In 
section 1.1.3, linear and nonlinear equations were solved using Maple.  Linear 
equations were solved symbolically (exactly) and nonlinear equations were solved 
numerically.  In section 1.1.4, Maple’s matrix operations such as addition, 
subtraction, finding the inverse, eigenvalues, etc. were introduced.  In section 
1.1.5, simple linear differential equations were solved using Maple’s ‘dsolve’ 
command to obtain a closed form analytical solution.  In addition, series solutions 
were obtained for certain nonlinear differential equations.  In section 1.1.6, 
Laplace and inverse Laplace transforms for simple functions were obtained using 
Maple.  In section 1.1.7, using a ‘do loop’ to carry out a sequence of steps using 
Maple was explained.  In section 1.1.8, using a ‘while loop’ to carry out a 
sequence of statements or commands was explained using Maple.  In section 
1.1.9, steps for writing out data from Maple into a text file was discussed.  In 
section 1.1.10, reading data into Maple from a text file was explained. 

1.1.12   Problems 

Create a different Maple worksheet for each of the following problems.  Start each 
worksheet with the restart command. 
 

1. Assign x = 4 and obtain the following results using Maple: 

2. (1) x2  (2) 1 + y/x         (3) x         (4)
1 y

x

+
  

(5) 1.2x + x2 – x1.2 

3. Assign x = 2 and y = 3 and obtain results for the following using Maple: 

(1) sin(x) (b) arcsin(x)  (i.e., sin-1(x)) (3) log(x) (4) log(y/x)  

(5) exp(x) (6) exp(x) + exp(y) – exp(xy) (7) log(y-x) + log(x-y) 

4. Use Maple to find the derivatives of the following functions: 

(1)    x2 – x sin(x) (2)  
2

1
log( )

1
x

x x
⎛ ⎞
⎜ ⎟+ +⎝ ⎠

  

5. Plot exp(– x2) from x = 0 to 5.  Use Maple to find the definite integral 

L
2

0

exp(-x )dx∫  

for L = 0.1, 0.5, 1, and 2.  
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6. Use Maple to plot the following functions for x varying from 0 to 1: 

(1) exp(x) (2) exp(-x)     (3) 1 - x + x2      (4) x (1-x) (5) x2 – log(x) 

7. Use Maple to plot the following functions for x varying from 0 to 1: 

(1) sin(πx) (2) cos(πx) (3) arcsin(x) (4) 
π

sin x exp(-x)
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

8. Use Maple to solve the following equations symbolically (use the ‘solve’ 
command). 

 

(1) ax2 + bx + c = 0 

(2) x3 – 1 = 0 

(3) x4 – x2 = 0 

(4) x + y = 3;  x – y = 2 

(5) x + y = a;  x – y = a – b 

(6) x + y + z = a; 2x + 3y + 4z = a + b + c; x – y - z  = b 

(7) x + y + z = 6; xyz = 6; xy + yz + zx = 11 

9. Use Maple to solve the following equations numerically by using ‘fsolve’.  
Find all the possible roots. 

 

(1) x3 – tan(y) = xy; y3 – tan(x) = 1 

(2) x2 + y2 = 1; x2 – y2 = ¼ 

(3)     3 1
x  2x   = 0

x
− −  

10. Define the following matrices 

1 2 3 1 2 0

A = 2 3 4 ; B = 0 1 2

3 4 6 0 0 1

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 in 

Maple. 

(1) Find A+B, A-B, AB and BA. 

(2) Find the determinant of A, B and AB. 

(3) Find A-1, B-1, A/B and B/A. 

(4) Find the eigenvalues and eigenvectors of A, B, AB and BA. 

(5) Find A3, A + B + AB-BA. 
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11. Consider the matrix 

α 1 0

A = 0 1 1

0 -1 α

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

(1) Substitute α = 4 in A and find the determinant, characteristic 
polynomial, eigenvalues, eigenvectors and inverse of A using Maple. 

(2) Substitute α = 2 in A and find the determinant, characteristic 
polynomial, eigenvalues, eigenvectors and inverse of A using Maple. 

(3) Substitute α = 1 in A and find the determinant, characteristic 
polynomial, eigenvalues, eigenvectors and inverse of A using Maple. 

(4) Substitute α = 3 in A and find the determinant, characteristic 
polynomial, eigenvalues, eigenvectors and inverse of A using Maple. 

 

12. Consider the differential equation 
dy

yx ; y(0) 1
dx

= − = .  Use Maple to 

solve this differential equation by using the ‘dsolve’ command to obtain a 
closed-form solution. Obtain a series solution for the same. Plot the profiles. 

13. Consider diffusion with a first order reaction in a rectangular catalyst 
pellet.[4] The governing equation in dimensionless form is 

( ) ( )
2

2
2

d y dy
y ; 0 0; y 1 1

dx dx
= Φ = = .  Solve this differential equation 

using the ‘dsolve’ command to obtain a closed-form solution.  Plot the 
profile.   

14. Use Maple to find the Laplace transforms of the following functions. 

(1) sinh(at) + cosh(at) 

(2) exp(at) sinh(at) 

(3) 
1

1 t+
 

15. Use Maple to find the inverse Laplace transforms of the following 
functions. 

(1) ( ) 2

1 1

s s 1 1 s
−

+ +
  

(2) ( )
1

1 s exp s+
 

(3) 
1

 
1 s+
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Chapter 2 

Initial Value Problems 

Engineers develop mathematical models to describe processes of interest to them.  
For example, the process of converting a reactant A  to a product B  in a batch 
chemical reactor can be described by a first order, ordinary differential equation 
with a known initial condition.  This type of model is often referred to as an initial 
value problem (IVP), because the initial conditions of the dependent variables 
must be known to determine how the dependent variables change with time.  In 
this chapter, we will describe how one can obtain analytical and numerical 
solutions for linear IVPs and numerical solutions for nonlinear IVPs. 

2.1   Linear Ordinary Differential Equations 

2.1.1   Introduction 

First order series/parallel chemical reactions and process control models are 
usually represented by a linear system of coupled ordinary differential equations 
(ODEs).  Single first order equations can be integrated by classical methods (Rice 
and Do, 1995).  However, solving more than two coupled ODEs by hand is 
difficult and often involves tedious algebra.  In this chapter, we describe how one 
can arrive at the analytical solution for linear first order ODEs using Maple, the 
matrix exponential, and Laplace transformations. 

2.1.2   Homogeneous Linear ODEs 

Consider two linear ordinary differential equations: 

1
1 1 2 2

2
3 1 4 2

    

    

dy
a y a y

dt
dy

a y a y
dt

= +

= +
 (2.1) 

with the following initial conditions 

1 10 2 20(0)  and (0)  y y y y= =  (2.2) 
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where y1 and y2 are the dependent variables; a1, a2, a3, and a4 are constants.  This 
system of linear differential equations (equation94H(2.1)) can be written in matrix 
form as 

d

dt

Y
= AY                                             (2.3) 

where the dependent variables are expressed  as a 2 x 1 matrix: 

1

2

y

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

Y                                               (2.4) 

The 2 x 2 coefficient matrix A is written in this case as 

1 2

3 4

a a

a a

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

A                                           (2.5) 

and Y0 is the vector (2 x 1 matrix) of initial conditions: 

10

20

y

y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0Y                                                (2.6) 

The solution of  equation 95H(2.3) is given by:[2, 3]  

=exp( t) 0Y A Y                                         (2.7) 

where ( )exp tA  is a n x n matrix and is called the matrix exponential or the 

exponential matrix of A (see Appendix A for a detailed derivation of equation 
96H(2.7)).  It is of interest to note that Professor Amundson introduced the exponential 
matrix to chemical engineers in 1966 on page 166 of his book.[2] At that time it 

was very difficult to obtain symbolically ( )exp tA .  We believe that the need to 

find the exponential matrix ( )( )exp tA  has discouraged chemical engineers 

from using the exponential matrix to solve coupled systems of ODEs.  Maple 
provides a command to find the exponential matrix as a function of t, the 
independent variable.  Maple can also find the exponential matrix as a function of 
parameters such as a1, a2, a3, and a4 which we will illustrate by solving some 
classical problems in chemical engineering.  In general, for a linear system of n  

simultaneous coupled first order differential equations, Y  is a n x 1  matrix, A  

is a n x n matrix and, again, ( )exp tA is a n x n matrix. 
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2.1.3   First Order Irreversible Series Reactions 

Consider the first order series reactions[4] ( )1 2k kA B C⎯⎯→ ⎯⎯→ . The governing 

equations for this reaction scheme can be written as 

A
1 A

B
1 A 2 B

dC
 = k C

dt
dC

= k C   k C
dt

−

−
 (2.8) 

where 1 2k and k are rate constants and the initial conditions are CA(0) = 1 mol/l, 

CB(0) = 0, and  CC(0) = 0.  The concentration of species C (CC(t)) at any time is 
given by the material balance: 

C A CC (t) =1 mol/l  C (t)  C (t)− −            (2.9) 

A Maple procedure for solving equations 97H(2.8) subject to the initial conditions is 
presented below.  This procedure is useful for developing the correct coefficient 
matrix A to avoid “by hand” errors. 

Procedure 

1. Start the Maple program with a ‘restart’ command to clear all variables. 
2. Call Maple’s linear algebra package by using the ‘with(linalg)’ command. 
3. Call Maple’s plotting package by using the ‘with(plots)’ command. 
4. Use Maple to enter the governing equations (equation 98H(2.8)). 
5. Name the variables vars. 
6. Name the right hand side of the equations eqs. 
7. Next, use Maple to generate the coefficient matrix (A) using Maple’s 

‘genmatrix’ command.   
8. Store the initial conditions for the dependent variables in the vector Y0.  The 

first row of Y0 corresponds to the initial condition for the first dependent 
variable (ca).  The second row of Y0 corresponds to the initial condition for 
the second variable (cb). 

9. Find the matrix exponential of A (i.e., exp(At)) as a function of the parameters 
(rate constants) and the independent variable (t) using the Maple command 
‘exponential(A,t)’.  Call this matrix mat. 

10. Next, find the solution (sol) by multiplying mat by Y0 using Maple’s ‘evalm’ 
command. 

11. The first row of the sol vector corresponds to ca(t), and the second row 
corresponds to cb(t).   

12. Note that the analytical solutions for ca and cb are obtained as functions of the 
parameters (rate constants) and the independent variable, t.  Lower case letters 

are used for these variables with 1 2k and k as parameters. 

13. For a given set of rate constants, plot the concentration profiles.        
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This procedure is illustrated in Example 2.1. 

Example 2.1. Irreversible Series Reactions (see equations (2.8)) 

> restart: 

> with(linalg): 

> with(plots): 

Enter the governing equations as follows: 

> eq[1]:=diff(C[A](t),t)=-k1*C[A](t); 

 

> eq[2]:=diff(C[B](t),t)=k1*C[A](t)-k2*C[B](t); 

Store the variables in 'vars': 

 

> vars:=[C[A](t),C[B](t)]; 

 

Next, store the right hand sides of equations 1 and 2 in 'eqs.' 

> eqs:=[rhs(eq[1]),rhs(eq[2])]; 

 

Now use the 'genmatrix' Maple command to produce the coefficient matrix A. 

> A:=genmatrix(eqs,vars); 

 

Specify the initial conditions. 

> Y0:=matrix(2,1,[1,0]); 

 

Use Maple's 'exponential(A,t)' command to produce the exponential (At) matrix. 

> mat:=exponential(A,t); 
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Obtain the solution vector using Maple's 'evalm' command and matrix 
multiplication (&*). 

> sol:=evalm(mat&*Y0); 

 

The first row of 'sol' is the solution for the concentration of species A (CA) and the 
second row is for the concentration of species B (CB). 

> ca:=sol[1,1]; 
 

> cb:=sol[2,1]; 

 

The concentration of species C is obtained from the material balance equation. 

> cc:=1-ca-cb; 

 

Note that the concentrations of the species are obtained as functions of the rate 
constants (k1 and k2) and the independent variable t.  To illustrate the results, enter 
values for the rate constants (pars). 

> pars:={k1=1.,k2=0.,k3=2.,k4=3.}; 

 

Next, substitute these values for the rate constants into the concentrations store as 
CA, BB, and CC. 

> Ca:=subs(pars,ca); 
 

> Cb:=subs(pars,cb); 
 

> Cc:=subs(pars,cc); 

 
Plot the concentration profiles for these values of the rate constants as shown in 
Figure 2.1. 

>p1:=plot(Ca,t=0..10,thickness=3,color=blue,labels=["t(min)","Concentratio
n(mols/I)”], 
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labeldirections=[horizontal, vertical],legend='C[A]'): 

>p2:=plot(Cb,t=0..10,linestyle=1,thickness=3,labels=["t(min)","Concentratio
n(mols/I)”], labeldirections=[horizontal, vertical],legend='C[B]'): 

>3:=plot(Cc,t=0..10,linestyle=1,thickness=3,color=green,labels=["t(min)","C
oncentration (mols/l)"],labeldirections=[horizontal, vertical],legend='C[C]'): 

> p4:=textplot([6,.9,k1=2.0*Unit(min^(-1))]): 

> p5:=textplot([6,.7,k2=1.0*Unit(min^(-1))]): 

> display([p1,p2,p3,p4,p5],title="Figure 2.1 Concentrations of A, B, and C 
as functions of time."); 

 

 
 

Fig. 2.1 Concentrations of A, B, and C as functions of time 
 

 

Suppose 1
1 2k k 1min−= = . We can obtain an expression for Ca with these 

values for the parameters: 

> pars:={k1=1,k2=2}; 
 

> Ca:=subs(pars,ca); 
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We get division by zero because we have 1 2k and k  in the denominator of the 

expression for Cb.  To handle this problem, we can apply Maple’s ‘limit’ command 

when both the rate constants approach 1(i.e., as 1 2k 1 and as k 1→ → ). First, 

the ‘limit’ command is applied with respect to the first parameter, 1k 1→ . 

> Cb:=subs(pars,cb); 
 

Next, the 'limit' command is applied with respect to the second parameter, for 
 also:               

> Cc:=subs(pars,cc); 
 

> Cb:=limit(cb,k1=1); 

 

> Cb:=limit(Cb,k2=1); 

 

Similarly, limits can be applied for Cc also: 

> Cc:=limit(Cc,k1=1); 
 

> Cc:=limit(Cc,k2=1); 
 

We can use these results to plot the concentration profiles for the case when  

1 2k k= as shown in Figure 2.2. 

>p1:=plot(Ca,t=0..10,thickness=3,color=blue,labels=["t(min)","Concentratio
n(mol/l)"],labeldirections=[horizontal, vertical],legend='C[B]'): 

>p2:=plot(Cb,t=0..10,linestyle=1,thickness=3,color=red,labels=["t(min)","Co
ncentration(mol/l)"],labeldirections=[horizontal, vertical],legend='C[B]'): 

>p3:=plot(Cc,t=0..10,linestyle=1,thickness=3,color=green,labels=["t(min)","
Concentration (mol/l)"],labeldirections=[horizontal, vertical],legend='C[C]'): 

> p4:=textplot([6,.8,(k1=1.0*Unit(min^(-1)))]): 

> p5:=textplot([6,.6,(k2=1.0*Unit(min^(-1)))]): 

> display([p1,p2,p3,p4,p5],title="Figure 2.2 Concentrations of A, B, and C 
as functions of time."); 
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Fig. 2.2 Concentrations of A, B, and C as functions of time 

 

 
We can solve for the time at which B is at its maximum by differentiating Cb with 
respect to t: 

> Eqmax:=diff(cb,t); 

 

Next, solve 'eqmax' to find the time at which Cb is at a maximum in terms of the 

rate constants  1 2k and k : 

> tmax:=solve(Eqmax,t); 

 

Substitute this value for time into the concentration equation for B(cb(t)) to find 

the maximum value of Cb as a function of the rate constants 1 2k and k . 
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> cbmax:=subs(t=tmax,cb); 

 

The equation for 'cbmax' can be simplified further by using Maple's 'simplify' 
command. 

> cbmax:=simplify(cbmax); 

 
A maximum for the concentration of B(cbmax) for the special case of 1 2k k=  

can be found as: 

>limit(cbmax,k2=k1); 
 

The time needed for the concentration of B to reach a maximum, for the case 
when k = k  can be found as 

> limit(tmax,k2=k1); 

 

Note that when k1 =k2, 'cbmax' is independent of the rate constants, the time taken 
to reach this maximum value e-1 is inversely proportional to the rate constant k1. 

2.1.4   First Order Reversible Series Reactions 

In Example 2.1, Maple was used to solve two simultaneous first order ODEs. The 
same methodology can be used to solve more than two simultaneous ODEs. For 
example, the material balance equations for the time dependent concentration of 
each species (A, B, and C) in an isothermal batch reactor with reversible series 

reactions  (
31

2 4

kk

k k
A  B   C⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯ ) can be written as follows:[5]  

a
1 a 2 b

b
1 a 2 b 3 b 4 c

c
3 b 4 c

dC
 = k C  + k C

dt
dC

 = k C   k C   k C  + k C
dt

dC
 = k C   k C

dt

−

− −

−

                    (2.10) 
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In this case, the initial conditions are Ca(0) = 1 mol/l; Cb(0) = 0 and  Cc(0) = 0.  
One might ask “What are the values of parameters (k1… k4), if any, that would 
produce a maximum in concentration of species B?”  This question can be 
answered by using Maple to obtain a solution to the equations in 99H(2.10) given 
initial conditions for the concentrations.  

Constantinides and Mostoufi[6] solved this system of ODEs (eq. 100H(2.10)) for a 
given set of values for the parameters (k1 = 1 min-1, k2 = 0 min-1, k3 = 2 min-1, k4 = 
0 min-1).  They did this by two different methods.  They found the exponential 
matrix using MATLAB’s command ‘expm’ and used MATLAB to predict the 
concentration profiles from t = 0 to 5 minutes.  The disadvantage of this approach 
is that one has to solve the problem for every set of parameters (k1… k4).  In 
addition, special care is needed for rate constant values that yield a coefficient 
matrix that has eigenvectors that are repeated or are very small.  We illustrate 
below how Maple can be used to find the exponential matrix and solve this 
problem symbolically and efficiently.  In addition, we demonstrate how the 
symbolic solution can be used to analyze the effect of the parameters in 
determining the maximum concentration of the intermediate species, B.  It should 
be noted that, similar symbolic solutions could be obtained using MATLAB or 
other symbolic software also by applying the same methodology presented here. 

This reaction scheme (equation 101H(2.10) is simulated below by following the 
procedure described for the previous example (see Example 2.1). 

Example 2.2. Reversible Series Reactions (see equations (2.10)) 

> restart: 

> with(linalg): 

> with(plots): 

Specify the equations. 

> eq[1]:=diff(Ca(t),t)=-k1*Ca(t)+k2*Cb(t); 

 

> eq[2]:=diff(Cb(t),t)=k1*Ca(t)-k2*Cb(t)-k3*Cb(t)+k4*Cc(t); 

 

> eq[3]:=diff(Cc(t),t)=k3*Cb(t)-k4*Cc(t); 

 

Specify the variables. 

> vars:=[Ca(t),Cb(t),Cc(t)]; 

 



2.1   Linear Ordinary Differential Equations 39
 

Specify the right hand side of the equations. 

> eqs:=[seq(rhs(eq[i]),i=1..3)]; 

 

Generate the coefficient matrix A. 

> A:=genmatrix(eqs,vars,A); 

 

Generate the exponential matrix of A. 

> mat:=exponential(A,t): 

Set the initial conditions vector: 

> Y0:=matrix(3,1,[1,0,0]); 

 

Obtain the solution. 

> sol:=evalm(mat&*Y0): 

Pull out the components of the solution. 

> ca:=sol[1,1]: 

> cb:=sol[2,1]: 

> cc:=sol[3,1]: 

The solution vector 'sol' and its elements (sol [1,1], e.g.) are too long to present 
here. They are functions of the rate constants (k1, k2, k3, and k4) and the 
independent variable t. One can obtain the solution from the CD with this book by 
changing the colons to semicolons at the end of the command line in the 
worksheet. As in Example 2.1, the solution obtained can be plotted for a particular 
set of values for the rate constants.  Let’s set these to be the same as those used on 
page 282 of Constantinides and Mostoufi. [6] 

> pars:={k1=1.,K2=0.,k3=2.,k4=3.}; 

 

Obtain the concentrations as functions of time by substituting these values for the 
rate constants into the components of the solution vector: 
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> Ca:=subs(pars,ca); 

 

> Cb:=subs(pars,cb); 

 
> Cc:=subs(pars,cc);  

Plot the results. 

>p[1]:=plot(Ca,t=0..10,thickness=3,linestyle=1,color=blue,labels=["t(min)","
Concentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[A]'):  

>p[2]:=plot(Cb,t=0..10,thickness=3,linestyle=1,labels=["t(min)","Concentrati
ons(mol/1)"], labeldirections=[horizontal, vertical],legend='C[B]'): 

>p[3]:=plot(Cc,t=0..10,thickness=3,linestyle=1,color=green,labels=["t(min)",
"Concentration (mol/1)"],labeldirections=[horizontal,vertical],legend='C[C]'): 

> p[4]:=textplot([4,.9,k1=1.0*Unit(min^(-1))]),textplot([6,.9,k2=0]): 

> p[5]:=textplot([4,.7,k3=2.0*Unit(min^(-1))]),textplot([7,.7,k4=3.0* 
Unit(min^(-1))]): 

> display(f, title="Figure 2.3 Concentrations of A, B, and C as functions of 
time.", axes=boxed); 

 

 
 

Fig. 2.3 Concentrations of A, B, and C as functions of time 
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This figure matches Figure Exp. 5.2 on page 282 of Constantinides and Mostoufi, 
1999.[6] For a different set of values for the parameters, the solution can be 
obtained by just substituting the numerical values of the rate constants into the 
solution vector components.  We did not observe a maximum for Cb for this 
particular set of values of the rate constants.  However, we can use different values 
of the rate constants to illustrate that a maximum can exist in the concentration of 
species B: 

> pars:={k1=10.,k2=0.5,k3=2.,k4=3.}; 

 

> Ca:=subs(pars,ca); 
 

> Cb:=subs(pars,cb); 
 

> Cc:=subs(pars,cc); 

 

>p[1]:=plot(Ca,t=0..5,thickness=3,color=blue,linestyle=1,labels=["t(min)","C
oncentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[A]'): 

>p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentratio
n (mol/1)"],labeldirections=[horizontal, vertical],legend='C[B]'): 

>p[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","
Concentration (mol/1)"],labeldirections=[horizontal, vertical],legend='C[C]'): 

> p[4]:=textplot([2,.9,k1=10.0*Unit(min^(-1))]),textplot([3.5,.9,k2=0.5* 
Unit(min^(-1))]): 

> p[5]:=textplot([2,.7,k3=2.0*Unit(min^(-1))]),textplot([3.5,.7,k4=3.0* 
Unit(min^(-1))]): 

> display({seq(p[i],i=1..5)},title="Figure 2.4 Concentrations of A, B, and C 
as functions of time.",axes=boxed); 
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Fig. 2.4 Concentrations of A, B, and C as functions of time 

 

 
We can find an equation in terms of the rate constants that will provide a means of 
finding the time at which the maximum in Cb occurs.  We do this by using 
Maple's 'simplify' command and by finding ∂cb/∂t by using Maple's 'diff' 
command. 

> eq:=simplify(diff(cb,t)): 

Next, we use Maple's 'solve' command to set the equation (eq) equal to zero and 
solve for 'tmax': 

> tmax:=solve(eq,t); 

 

The concentration of B at 'tmax' can be obtained by substitution of the 'tmax' 
expression into the solution for the concentration of B as a function of time. 
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> cbmax:=simplify(subs(t=tmax,cb)): 
 

The solution 'cbmax' is not printed to conserve space.  We can find if a maximum 
exists or not by substituting  numerical values for the rate constants.  If Cb has a 
maximum, 'tmax' should be real and positive.  A value for 'tmax' can be obtained 
by substituting the same rate constants into the derived equations. 

> simplify(subs(k1=1.,k2=0.,k3=2.,k4=3.0,tmax)); 

 

> simplify(subs(k1=2.,k2=0.,k3=2.,k4=3.0,tmax)); 

 

> simplify(subs(k1=10.,k2=1.,k3=1.,k4=1.0,tmax)); 

 

An interesting case is when k1 =k3 and k2 = k4. 

> pars:={k1=2,k2=1/2,k3=2,k4=1/2}; 

 

> A1:=evalm(subs(pars,evalm(A))); 

 

> eigenvalues(A1); 

 

One of the eigenvalues is zero in this case. 

> Ca:=evalf(subs(pars,ca));  

> Cb:=evalf(subs(pars,cb));  

> Cc:=evalf(subs(pars,cc) 
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>p[1]:=plot(Ca,t=0..5,thickness=3,color=blue,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[A]'): 

>p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentratio
n (mols/1)"],labeldirections=[horizontal, vertical],legend='C[B]'): 

>p[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[C]'): 

>p[4]:=textplot([1.5,.9,k1=1.0*Unit(min^(-1))]); 

 

>p[5]:=textplot([3.5,.9,k2=0.5*Unit(min^(-1))]); 

 

>p[6]:=textplot([3.5,.6,k3=1.0*Unit(min^(-1))]); 

 

>p[7]:=textplot([3.5,.4,k4=0.5*Unit(min^(-1))]); 

 

>display({seq(p[i],i=1..7)},title="Figure 2.5 Concentrations of A, B, and C 
as functions of time.",axes=boxed); 

 

 
 

Fig. 2.5 Concentrations of A, B, and C as functions of time 
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Another interesting case is when k2=k4=0. 

> pars:={k1=1,k2=0,k3=1,k4=0}; 

 

> A1:=evalm(subs(pars,evalm(A))); 

 

> eigenvalues(A1); 

 

One of the eigenvalues is zero and the other two eigenvalues are repeated in this 
case. 

> Ca:=evalf(subs(pars,ca)); 

Error, numeric exception: division by zero 

We get division by zero again as we did in Example 2.1. The solution can be 
obtained by using Maple's 'limit' command. 

> Ca:=limit(ca,k1=1): 

> Ca:=limit(Ca,k2=0): 

> Ca:=limit(Ca,k3=1): 

> Ca:=limit(Ca,k4=0); 

 

Alternatively, the four lines can be successively applied in the same statement as 

> Cb:=limit(limit(limit(limit(cb,k1=1),k2=0),k3=1),k4=0); 

 

> Cc:=limit(limit(limit(limit(cc,k1=1),k2=0),k3=1),k4=0); 

 

>p[1]:=plot(Ca,t=0..5,thickness=3,linestyle=1,color=blue,labels=["t(min)","C
oncentration(mols/1)"],labeldirections=[horizontal, vertical],legend='C[A]'): 

> p[2]:=plot(Cb,t=0..5,thickness=3,linestyle=1,labels=["t(min)","Concentration 
(mols/1)"], 
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labeldirections=[horizontal, vertical],legend='C[B]'): 

>[3]:=plot(Cc,t=0..5,thickness=3,color=green,linestyle=1,labels=["t(min)","C
oncentration (mols/1)"],labeldirections=[horizontal, vertical],legend='C[C]'): 

> p[4]:=textplot([1.5,.9,k1=1.0*Unit(min^(-1))]); 

 

> p[5]:=textplot([1.5,.7,k2=0*Unit(min^(-1))]); 

 

> p[6]:=textplot([4,.6,k3=1.0*Unit(min^(-1))]); 

 

> p[7]:=textplot([4,.4,k4=0*Unit(min^(-1))]); 

 

> display({seq(p[i],i=1..7)},title="Figure 2.6 Concentrations of A, B, and C 
as functions of time.",axes=boxed); 

 

 
 

Fig. 2.6 Concentrations of A, B, and C as functions of time 
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As can be seen by comparison, Figure 2.6 is the same as Figure 2.2 as expected. 

2.1.5   Nonhomogeneous Linear ODEs 

A system of n nonhomogeneous first order linear ODEs can be written in matrix 
forms as follows: 

   ( )
d

t
dt

= +Y
AY b  (2.11) 

where b(t) is an n x1 forcing function matrix, which makes the equation 

nonhomogeneous.  The solution to this matrix differential equation is given by[2], 
[3], [6], [7] 

0

0

exp( )   exp[ ( )] ( ) 
t

t t dτ τ τ= + − −∫Y A Y A b                 (2.12) 

(see Appendix A for a detailed derivation of equation 102H(2.12)). 
When b is a constant the vector equation 103H(2.12) can be simplified by removing 

b from under the integral: 

 
0

0

  exp( )   exp[ ( )]  
t

t t dτ τ
⎡ ⎤

= + − −⎢ ⎥
⎣ ⎦
∫Y A Y A b                 (2.13) 

Equation 104H(2.13) can be integrated to obtain 

[ ] -1
0 0

  exp( )   exp[ ( )]
t

t tτ= + − − −Y  A Y A A b                       (2.14) 

Equation 105H(2.14) can be expanded to read: 

-1 -1
0   exp( )(   )  t= + −Y A Y A b A b               (2.15) 

Equations 106H(2.12) and 107H(2.15) simplify to equation 108H(2.7) (the homogeneous 
equations solution) when the forcing function b vector is the zero vector. The 
procedure for solving nonhomogeneous linear ODEs is presented next. 

Calculation Procedure for Nonhomogeneous, Linear ODEs 

1. Start Maple with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
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3. Enter the governing equations and store them in eq[1], eq[2], etc. 
4. Store the variables are stored as an array in vars.   
5. Store he right hand sides of eq[1], eq[2], etc. in eqs. 
6. Use Maple’s ‘genmatrix’ command to generate the A and b matrices from eqs 

and vars. 
7. Note that Maple generates A as needed and the B vector that satisfies Ax = B, 

so one has to add a minus sign to find the b vector that is needed for equation 
109H(2.11) ( . ., = ).i e −b B  

8. When b is a constant vector, equation 110H(2.15) can be used to obtain the solution. 
9. When b(t) is a function of time, equation 111H(2.12) is used to obtain the solution. 

10. Store the initial conditions for the dependent variables in the vector Y0.  
11. Use Maple to obtain the exponential matrix (exp(At)) as a function of the 

parameters and the independent variable (t), store as mat. 
12. Find the solution vector (sol) by multiplying mat by Y0 and adding the 

nonhomogeneous solution according to equation 112H(2.12) or 113H(2.15) depending 
on whether or not b is a constant vector. 

13. The first row of sol corresponds to the first dependent variable; the second 
row corresponds to the second dependent variable, etc.   

14. Note that analytical solutions are obtained as functions of the parameters and 
the independent variable (t).  

15. For a given set of parameters, one can plot the profiles by using Maple’s ‘plot’ 
command. 

This procedure is illustrated in Examples 2.3 and 2.4.  

Heated Tanks in a Series 
The exponential matrix method can be used to determine the temperatures in a 
series of three heated tanks used to preheat a multi-component oil solution.  The 
energy balance equations for the tanks are as follows:[8] 

( ) ( )

( ) ( )

( ) ( )

1
0 1 1

2
1 2 2

3
2 3 3

    

    

    

steam
p

steam
p

steam
p

dT W UA
T T T T

dt M MC

dT W UA
T T T T

dt M MC

dT W UA
T T T T

dt M MC

= − + −

= − + −

= − + −

               (2.16) 

where T1, T2 and T3 are the temperatures in  °C in Tanks 1, 2, and 3; Tsteam is the 
temperature of the saturated steam (250°C) used to heat the tanks and T0 (20ºC) is 
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the temperature of the oil fed to the first tank; W is the mass flow rate; M is the 
mass of the fluid in the tank; Cp is the specific heat capacity of the oil; U is the 
overall heat transfer coefficient; and A is the heat transfer area in each tank.  We 

introduce two parameters 
p

W UA
  and   

M MC
α β= =  and values for Tsteam and 

T0 into equations 114H(2.16) to obtain the following equations. 

( ) ( )

( ) ( )

( ) ( )

1
1 1

2
1 2 2

3
2 3 3

 = 20  T  + 250

 = T  + 250

 = T  + 250

dT
T

dt

dT
T T

dt

dT
T T

dt

α β

α β

α β

− −

− −

− −

         (2.17) 

All the tanks are at an initial temperature of 20°C.  Find the time it will take for 
the third tank to reach 99% of its steady state value.  The values of the constants 
are W = 100 kg/min, M = 1000 kg, Cp = 2kJ/kg°C, and UA = 10kJ/min°C.  
Determine how this time varies with the parameters α and β.  Equations (equation 
115H(2.17)) can be solved using  Maple and the procedure described above for 
nonhomogeneous simultaneous linear ODEs follows. 

Example 2.3. Heating of Fluid in a Series of Tanks 

> restart: 

> with(linalg):with(plots): 

Enter the number of differential equations. 

> N:=3; 
 

Since all the equations are in the same form, a 'for' loop can be used to generate 
the equations. 
> for i to N do eq[i]:=diff(T[i](t),t)=eval(alpha*(T[i-1](t)-T[i](t))+beta*(T[steam]-
T[i](t)));od; 
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Next, enter the temperature of the inlet steam to the first tank T0 and the temperature 
of the steam 'Tsteam' as parameters (pars). 

> pars:={T[0](t)=20,T[steam]=250}; 

 

Specify the dependent variables. 

> vars:=[seq(T[i](t),i=1..N)]; 

 

Specify the right hand sides of the governing equations. 

> eqs:=[seq(rhs(eq[i]),i=1..N)]; 

 

Update these right hand sides by substituting the parameters: 

> eqs:=subs(pars,eqs); 

 

Generate the coefficient matrix A  and the vector B  (recall that = −b B ): 

> A:=genmatrix(eqs,vars,'B'); 

 

> evalm(B); 

 

The forcing function vector b  is the negative of the B  vector. 
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> b:=matrix(N,1);for i to N do b[i,1]:=-B[i];od:evalm(b); 

 

 

Next, find the exponential matrix for the coefficient matrix A : 

> mat:=exponential(A,t); 

 

Specify the initial tank temperatures. 

> Y0:=matrix(3,1,[20,20,20]); 

 

Since the b vector is the constant vector, find the intermediate vector s1. 

> s1:=evalm(Y0+inverse(A)&*b); 
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Next, find the solution vector: 

> sol:=evalm(mat&*s1-inverse(A)&*b);  

The elements of the solution vector 'sol' are the desired temperatures of the three 
tanks.  Store these in T1, T2, and T3: 

> T1:=sol[1,1]; 

 

> T2:=sol[2,1]; 
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> T3:=sol[3,1]; 

 

Next, determine values for  and β and then substitute them into the expression 
for T1, T2, and T3. 

> pars:={alpha=(100./1000.),beta=10./(1000*2)}; 

 

> TT1:=subs(pars,T1); 

 

> TT2:=subs(pars,T2); 

 

> TT3:=subs(pars,T3); 
 

Finally, plot the temperature profiles: 

> p[1]:=plot(TT1,t=0..60,thickness=2,linestyle=1,color=blue,legend="T1"): 

> p[2]:=plot(TT2,t=0..60,thickness=2,linestyle=1,legend="T2"): 

> p[3]:=plot(TT3,t=0..60,thickness=2,linestyle=1,color=green,legend="T3"): 

>display({seq(p[i],i=1..3)},title="Figure 2.7 Temperatures for three 
tanks.",axes=boxed,  

labels=["t(min)","Temperature(degreesC)"],labeldirections=[HORIZONTAL,
VERTICAL]); 
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Fig. 2.7 Temperatures for three tanks 

 
The time taken for the third tank to reach 99% of the steady state value can be 
obtained from the TT3 equation by first finding its value for infinity by using 
Maple's 'limit' command: 

> T3steadystate:=limit(TT3,t=infinity); 

 

Next, the time taken to reach 99% of this steady state value is determined by using 
'fsolve' to find the time T when TT3 is 99% of it steady state value. First, define eq3: 

> eq3:=0.99*T3steadystate=TT3; 
 

Next, solve eq3 for t and call that Timereqd. 

> Timereqd:=fsolve(eq3,t); 
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Alternatively, one can find the steady state value of the temperature analytically 
by applying the 'limit' command on T3 instead of TT3. 

> T3steadystate:=limit(T3,t=infinity); 

 

Maple is unable to find the limit, as it does not know the sign of alpha and beta.  
We can specify that alpha and beta are greater than zero by using Maple's 'assume' 
command: 

> assume(alpha>0,beta>0); 

> T3steadystate:=eval(T3steadystate); 

 

Note that the trailing tildes (tildes symbol) indicate that the α and β must be 
greater than zero. 

Time Varying Input to a CSTR with a Series Reaction  

Consider a continuously stirred tank reactor (CSTRs) sustaining the series reaction 

( 1 2k kA B C⎯⎯→ ⎯⎯→ ).[1], [9]  The material balance equations are as follows: 

( ), 1

1 2

2

1
    

1
    

1
   

A
A in A A

B
B A B

C
C B

dC
C C k C

dt

dC
C k C k C

dt

dC
C k C

dt

τ

τ

τ

= − −

= − + −

= − +

 (2.18) 
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with  the  initial  conditions  CA(0) =  CB(0) = CC(0) = 0 mol/l.    Let the input to the 

tank be A,inC  = 1 + sin(2t)  in mol/l − min). The values of the parameters 

are  = 1 min;τ  -1 -1
1 2k  = 1 min  and k  = 1/4 min . The concentrations as a 

function of time in this CSTR reactor can be obtained by following the procedure 
described earlier for non-homogeneous linear ODEs. 

Example 2.4. Time Varying Input to a CSTR with a Series Reaction 

> restart: 

> with(linalg):with(plots):with(Units): 

Specify the number of ordinary differential equations (ODEs). 

> N:=3; 

 

Use Maple commands to generate the three governing equations. 

> eq[1]:=diff(C[A](t),t)=1/tau*(C[Ain]-C[A](t))-k[1]*C[A](t); 

 

> eq[2]:=diff(C[B](t),t)=-1/tau*(C[B](t))+k[1]*C[A](t)-k[2]*C[B](t); 

 

> eq[3]:=diff(C[C](t),t)=-1/tau*(C[C](t))+k[2]*C[B](t); 

 

Specify the input to the reactor as pars here. 

> pars:={C[Ain]=1+sin(2*t)}; 

 

Name the dependent variables. 

> vars:=[C[A](t),C[B](t),C[C](t)]; 

 

Specify the right hand sides of the governing equations. 



2.1   Linear Ordinary Differential Equations 57
 

> eqs:=[seq(rhs(eq[i]),i=1..3)]; 

 

Form the set of right hand sides of the equations with the time dependent input to 
the tank. 

> eqs:=subs(pars,eqs); 

 

Use 'eqs' and 'vars' to find the coefficient matrix A  and the forcing function 
vector b .  In this case, we find 1b  and then b  since = −b b .  The A  matrix 

and 1b  vector are generated as described in the procedure for nonlinear 
homogeneous ODEs: 

> A:=genmatrix(eqs,vars,'b1'); 

 

Use 1b  to find b . 

> b:=matrix(N,1);for i to N do b[i,1]:=-b1[i];od:evalm(b); 

 

 

In this case the forcing function vector b  depends on time, which means we will 
need to use 
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0

0

exp( )   exp[ ( )] ( ) 
t

t t dτ τ τ= + − −∫Y A Y A b  

to find the solution vector.  Next, find the matrix exponential of A . 

> mat:=exponential(A,t);  

Specify the initial conditions. 

> Y0:=matrix(3,1,[0,0,0]); 

 

Since τ is a parameter in the system of governing equations, we use t1 as the 
dummy integration variable in  

0

0

exp( )   exp[ ( )] ( ) 
t

t t dτ τ τ= + − −∫Y A Y A b  

We will need to generate a b vector that depends on time.  Call this vector b2. 

> b2:=subs(t=t1,evalm(b)); 
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The matrix exponential under the integral sign the above equation is obtained next 
and named mat2. 

> mat2:=subs(t=t-t1,evalm(mat)): 

> mat3:=evalm(mat2&*b2): 

> mat4:=map(int,mat3,t1=0..t): 

> sol:=evalm(mat&*Y0+mat4): 

The solution is not printed for brevity.  Store the concentration expressions Ca, 
Cb, and Cc. 

> ca:=sol[1,1];  

> cb:=sol[2,1]: 

> cc:=sol[3,1]: 
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> cb:=sol[2,1]: 

> cc:=sol[3,1]: 

Again cb and cc are not printed for brevity.  Next, numerical values for the rate 
constants (k1 and k2) and the time constant τ are specified and substituted in the 
expressions for Ca, Cb, and Cc: 

> pars:={tau=1,k[1]=1,k[2]=1/4}; 

 

> Ca:=simplify(subs(pars,ca)); 

 

> Cb:=simplify(subs(pars,cb)); 

 

> Cc:=simplify(subs(pars,cc)); 

 

Next, plot the concentration profiles.  Specify the time you want to use to plot the 
results. 

> tf:=20; 
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> p1:=plot(Ca,t=0..tf,thickness=3,color=blue,linestyle=1,labels=["t(min)"," 
Ca(mol/1)"],labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.8 
Concentraiton of species A as a function of time.",axes=boxed); 

 

> pt1:=textplot([10,0.1,{tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]=0.25* 
Unit(min^(-1))}]); 

 

> display([p1,pt1]); 

 

Fig. 2.8 Concentration of species A as a function of time 
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> p2:=plot(Cb,t=0..tf,thickness=3,color=red,linestyle=1,labels=["t(min)"," 
Cb(mol/1)"], 
labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.9 Concentration 
of species B as a function of time.",axes=boxed); 

 

> pt1:=textplot([10,0.1,[tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]= 
0.25*Unit(min^(-1))]]); 

 

> display([p2,pt1]); 

 

Fig. 2.9 Concentration of species B as a function of time 
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> p3:=plot(Cc,t=0..tf,thickness=3,color=green,linestyle=1,labels=["t(min)"," 
Cc(mol/1)"], 
labeldirections=[HORIZONTAL,VERTICAL],title="Figure 2.10 
Concentration of species C as a function of time.",axes=boxed); 

 

> pt3:=textplot([10,0.02,[tau=1.0*Unit(min),k[1]=1.0*Unit(min^(-1)),k[2]= 
0.25*Unit(min^(-1))]]); 

 

> display([p3,pt3]); 

 

Fig. 2.10 Concentration of species C as a function of time 

 
We observe that all the concentrations start from zero and after about six minutes 
oscillate at. 

2.1.6   Higher Order Linear Ordinary Differential Equations 

Higher order linear ODEs can also be solved by changing them into a system of 
first order ODEs and using the exponential matrix approach discussed earlier.  The 
most general form of a linear ODE of nth order is[1] 
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1
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Introducing the variable transformations, 
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yields the following n first order ODEs 

1
2

2
3

1

0 1 1 2 2 1 1

  

  

.....

  

  ........      ( )

n
n

n
n n n n

dY
Y

dt
dY

Y
dt

dY
Y

dt
and

dY
a Y a Y a Y a Y f t

dt

−

− − −

=

=

=

= − − − − +
     

(2.21) 

differential equations where the dependent variables are 

[ ]1 2 3 -1
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                    (2.22) 

the coefficient matrix is 

0 1 2 3 1

0 1 0 0 ... 0

0 0 1 0 ... 0

. . . . ... .
  

. . . . ... .

0 0 0 ... 0 1

... na a a a a −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
− − − − −⎢ ⎥⎣ ⎦

A                     (2.23) 
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and the forcing function matrix is 

[ ]  0,0,0,...0,0, ( )
T

f t=b  (2.24) 

Again, the solution is obtained by finding the exponential matrix and the non-
homogeneous part (see equation 2.12).  The procedure used to solve higher order 
linear ODEs can be summarized as follows: 

1. Start the Maple program with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equations. 
4. Enter the coefficient matrix (A) based on equation 117H(2.23). 
5. Enter the forcing function matrix (b) based on equation 118H(2.24). 
6. Store the initial conditions for the dependent variables in the vector Y0.   
7. The first row of Y0 corresponds to the initial condition for y, the second row 

corresponds to the initial condition for the first derivative of y, etc.   
8. Find the matrix exponential (exp(At)) as a function of the parameters and the 

independent variable (t) using the ‘exponential(A,t)’ command in Maple. 
9. Store the matrix exponential in mat. Next, find the solution (sol) by multiplying 

mat with Y0 and adding the non-homogenous solution according to equation 
119H(2.14) or 120H(2.15) depending on the b vector. 

10. The first row of sol corresponds to the dependent variable y; the second row 
corresponds to the first derivative of y, etc.  The nth row of sol corresponds to 
(n−l)th derivative of y. 

Note that this procedure yields analytical solutions as functions of the parameters 
and the independent variable (t).   

Second Order Ordinary Differential Equation (ODE) 

Consider a second order system subject to a k step input,[10] 

2

2 2 2

2 1 k
+  + y = 

d y dy

dt dt

ς
τ τ τ

 (2.25) 

with the initial conditions y(0) = 0 and 
dy

(0) 0, and , , and k
dt

τ δ= are 

constant parameters.  Equation 121H(2.25) can be solved by following the procedure 
described for higher order linear ODEs. 

Example 2.5 A Second Order ODE 

> restart: 

> with(linalg):with(plots): 

Enter the order of the differential equation. 

> N:=2; 
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> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+1/tau^2*y(t)=k/tau^2; 

 

Enter the corresponding A matrix and b vector. 

> A:=matrix(N,N,[0,1,-1/tau^2,-2*zeta/tau]); 

 

Enter the forcing function (i.e., the b matrix). 

> b:=matrix(N,1,[0,k/tau^2]); 

 

Find the matrix exponential of the coefficient matrix. 

> mat:=exponential(A,t); 
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Specify the initial conditions. 

> Y0:=matrix(N,1,[0,0]); 

 

In this case, b is a constant vector, but we can use an equation that will work even 
when the b vector is a function of time.  Recall that τ is a parameter (equation 
(2.12)).  We will use b2 with the dummy integration variable t1 (even though it is 
not needed) to illustrate the procedure. 

> b2:=subs(t=t1,evalm(b)); 

 

The next step is to generate the matrix exponential under the integral sign (see 
equation (2.12)) and name this matrix mat2. 

> mat2:=subs(t=t-t1,evalm(mat)): 

Next, multiply the vector b2 by mat2 to obtain the vector to be integrated.  Call 
this vector mat3. 

> mat3:=evalm(mat2&*b2): 
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The next step is to use Maple's 'map' command to integrate the elements in mat3.  
Call the result mat4. 

> mat4:=map(int,mat3,t1=0..t): 

Obtain the solution vector. 

> sol:=evalm(mat&*Y0+mat4): 

> sol:=map(simplify,sol); 

 

The first row of sol corresponds to the dependent variable y. 

> y:=sol[1,1]; 
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Next, y is made dimensionless by dividing by k. 
> theta:=y/k; 

 

Next, the dimensionless time T=t/τ is introduced. 

> theta:=subs(t=tau*T,theta); 

 

Now one can plot θ for values of ζ greater than 1: 

> pars:=[1.5,2,2.5,3]; 

 

> for i from 1 to 4 do 

  p[i]:=plot(subs(zeta=pars[i],theta),T=0..15): 

od: 

> pt[1]:=textplot([3.2,evalf(subs({T=4.0,zeta=pars[1]},theta)),'zeta=pars[1]']): 

pt[2]:=textplot([5.4,evalf(subs({T=5.0,zeta=pars[2]},theta)),pars[2]]): 

pt[3]:=textplot([6.0,evalf(subs({T=5.5,zeta=pars[3]},theta)),pars[3]]): 

pt[4]:=textplot([6.5,evalf(subs({T=6.0,zeta=pars[4]},theta)),pars[4]]): 

>display([seq(p[i],i=1..4),seq(pt[i],i=1..4)],thickness=3,axes=boxed,labels= 
["T(t/tau)","theta (y/k)"],title="Figure 2.11 Dimensionless variables theta 
(y/k) as a function of dimensionless time T(t/tau) for zeta>1."); 
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Fig. 2.11 Dimensionless variables theta (y/k) as a function of dimensionless time T(t/tau) 
for zeta > 1 

 
Figure 2.11 shows that the system is over damped for the values of ζ>1.  Next, 
specify values for ζ<1. 

> spars:=[0.2,0.3,0.4,0.5,0.6,0.75]; 

 

> for i from 1 to 6 do p2[i]:=plot(evalf(Re(subs(zeta=spars[i],theta))),T=0..15):od: 

> pt[1]:=textplot([1.3,Re(subs({T=2.8,zeta=spars[1]},theta)),'zeta=spars[1]']): 

pt[2]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[2]},theta)),spars[2]]): 

pt[3]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[3]},theta)),spars[3]]): 

pt[4]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[4]},theta)),spars[4]]): 

pt[5]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[5]},theta)),spars[5]]): 

pt[6]:=textplot([3.5,Re(subs({T=2.8,zeta=spars[6]},theta)),spars[6]]): 

>display([seq(p2[i],i=1..6),seq(pt[i],i=1..6)],thickness=3,axes=boxed,labels= 
["T(t/tau)","theta (y/k)"],title="Figure 2.12 Dimensionless variable theta (y/k) 
as a function of dimensionless time T(t/tau) for zeta<1."); 
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Fig. 2.12 Dimensionless variable theta (y/k) as a function of dimensionless time T(t/tau) for 
zeta < 1 

 
We observe that the system is under damped for the values of ζ<1.  Now let us 
consider the special case of ζ=1. 

> subs(zeta=1,theta); 

Error, numeric exception: division by zero 

We get division by zero and hence we apply the limit T=1. 

> theta1:=limit(theta,zeta=1); 

 

> pt[1]:=textplot([10,0.8,(zeta=1.0)]): 

>pt[2]:=plot(theta1,T=0..15,thickness=3,axes=boxed,labels=["T (t/tau)","theta  
(y/k)"],title="Figure 2.13 Dimensionless variables theta (y/k) as a function 
of dimensionless time T(t/tau) for zeta=1.0."): 

display(pt[1],pt[2]); 
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Fig. 2.13 Dimensionless variables theta (y/k) as a function of dimensionless time T(t/tau) 
for zeta = 1.0 

 

 
Figure 2.13 shows that the system is critically damped for ζ=1. 

2.1.7   Solving Systems of ODEs Using the Laplace Transform 
Method 

ODEs can be solved by applying Laplace transform technique.  Consider a set of 
linear ODEs: 

,
1

    ( )             1 ..  
n

i
i j j i

j

dy
a y b t i n

dt =

= + =∑             (2.26) 

This set of linear ODEs can be converted to the Laplace domain by using Maple.  
The resulting set of linear algebraic equations can be written in matrix form as 
follows: 

PY = b                                          (2.27) 

where Y , P and b are functions of s, the Laplace variable.  Y , is the solution in 
the Laplace domain and can be found by inverting P: 

−1Y = P b                                             (2.28) 
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Then the solution in the time domain Y(t) can be obtained by inverting the 

solution obtained in the Laplace domain Y (s).  The procedure to solve linear 
ODEs using the Laplace transform technique and Maple is as follows: 
 

1. Start the Maple program with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Call Maple’s Laplace transformation package by using the ‘with(inttrans)’ 

command. 
4. Enter the governing equations and number of equations (n). 
5. Enter the initial conditions. 
6. Apply the Laplace transformation to the equations using the command 

laplace(“equations”,t,s) which converts the equations from time domain to the 
Laplace (s) domain. 

7. Store all the Laplace domain in eqs. 
8. Use dummy variables in the Laplace domain (ua, ub, etc) for brevity of notation. 
9. Store the dummy variable in vars. 

10. Substitute these dummy variables in eqs. 
11. Generate the P and b matrices. 
12. Find the solution in Laplace domain by inverting the P matrix. 
13. Convert the solution in the Laplace domain to the time domain using 

invlaplace(“equations,”s,t) which converts the equations from the s domain to 
the time domain. 

The first row of sol corresponds to the first dependent variable; the second row 
corresponds to the second dependent variable, etc.  Note that analytical solutions 
are obtained as functions of the parameters and the independent variable (t).   

Laplace Solution of Example 2.1 Equations 

The IVP solved in example 2.1 is solved below using the Laplace transform 
technique following the procedure described above. 

Example 2.6. Laplace Solution of Example 2.1 Equations 

> restart: 

> with(linalg):with(plots): 

Warning, the protected names norm and trace have been redefined and 
unprotected 
Warning, the name changecoords has been redefined 

> with(inttrans): 

Warning, the name hilbert has been redefined 

> eq[1]:=diff(ca(t),t)=-k1*ca(t); 
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> eq[2]:=diff(cb(t),t)=k1*ca(t)-k2*cb(t); 

 

> N:=2; 

 

> ca(0):=1;cb(0):=0; 

 

 

> eq[1]:=laplace(eq[1],t,s); 

 

> eq[2]:=laplace(eq[2],t,s); 

 

> eqs:=[eq[1],eq[2]]; 

 

Dummy variables are introduced for convenience. 

> dummyvar:={laplace(ca(t),t,s)=ua,laplace(cb(t),t,s)=ub}; 

 

> eqs:=subs(dummyvar,eqs); 

 

> vars:=[ua,ub]; 

 

> P:=genmatrix(eqs,vars,'B'); 
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> b:=matrix(N,1):for i to N do b[i,1]:=B[i]:od:evalm(b); 

 

> sol:=evalm(inverse(P)&*b); 

 

The vector 'sol' is the solution in the Laplace domain. This is converted to the time 
domain by using Maple's 'map' command with the 'invlaplace' command. 

> solt:=map(invlaplace,sol,s,t); 

 

> ca:=solt[1,1]; 

 

> cb:=solt[2,1]; 

 

> cc:=1-ca-cb; 

 

These results are consistent with those presented in Example 2.1. 

Laplace Solution for Second Order System with Dirac forcing Function 

Solve the IVP discussed in Example 2.5 with a Dirac(t) function as the forcing 
function. 

2

2 2 2

2 1 Dirac(t)
 +  + y = 

d y dy

dt dt

ς
τ τ τ

            (2.29) 

This IVP can be solved easily using the Laplace transform technique.  The 
procedure presented above for the Laplace transformation technique can be used 
for solving this example.  When solving a second order differential equation, the 

initial conditions for both y and 
dy

dt
must be provided. 
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Example 2.7. Laplace Solution for Second Order System with Dirac forcing 
Function 

> restart: 

> with(linalg):with(plots): 

> with(inttrans): 

> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+1/tau^2*y(t)=Dirac(t)/tau^2; 

 

Even though the equation is second order there is only one equation to be solved. 

> N:=1; 
 

The initial conditions are entered here. 

> y(0):=1;D(y)(0):=0; 
 

 

> eq:=laplace(eq,t,s); 

 

> eqs:=[eq]; 

 

> dummyvar:={laplace(y(t),t,s)=u}; 

 

> eqs:=subs(dummyvar,eqs); 
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> vars:=[u]; 
 

> PP:=genmatrix(eqs,vars,'b1'); 

 

> b:=matrix(N,1):for i to N do b[i,1]:=b1[i]:od:evalm(b); 

 

> sol:=evalm(inverse(PP)&*b); 

 

> solt:=map(invlaplace,sol,s,t); 

 

> y:=solt[1,1]; 
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The value for τ is entered here for plotting purposes. 

> tau:=1; 

 

> y:=eval(simplify(y)); 

 

> pars:=[1.5,2,2.5,3]; 

 

> for i from 1 to 4 do p[i]:=plot(subs(zeta=pars[i],y),t=0..15):od: 
> display(seq(p[i],i=1..4),thickness=3,axes=boxed,labels=["t","y"],title= 
"Figure 2.14"); 

 
Fig. 2.14 

 
 

> pars:=[0.2,0.3,0.4,0.5,0.6,0.75]; 
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> for i from 1 to 6 do p2[i]:=plot(evalf(Re(subs(zeta=pars[i],y))),t=0..15):od: 

> display(seq(p2[i],i=1..6),thickness=3,axes=boxed,labels=["t","y"],title= 
"Figure 2.15"); 

 
 
Fig. 2.15 

 
> subs(zeta=1,y); 

Error, numeric exception: division by zero 

> y1:=limit(y,zeta=1); 

 

> plot(y1,t=0..15,thickness=3,axes=boxed,labels=["t","y"],title="Figure 2.16"); 
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Fig. 2.16 

 
We observe that the system oscillates for ζ<1 and does not oscillate for ζ≥1. 

2.1.8   Solving Linear ODEs Using Maple’s ‘dsolve’ Command 

In the previous sections we solved linear ODEs using exponential matrix (section 
2.1.2 – 2.1.4) and the Laplace transform technique (section 2.1.5).  Alternatively, 
Maple’s dsolve command can be used to solve linear ODEs.  However, the 
analytical solution obtained from the dsolve command may not be in a simplified 
form.   

The reaction scheme described in example 2.1 is solved below using the 
‘dsolve’ command.  

Example 2.8. Solving Linear ODEs Using Maple 

The reaction scheme described in example 2.1 is solved below using the 'dsolve' 
command. 

> restart: 

> with(plots): 

Warning, the name changecoords has been redefined 
 

> eq[1]:=diff(ca(t),t)=-k1*ca(t); 

 



2.1   Linear Ordinary Differential Equations 81
 

> eq[2]:=diff(cb(t),t)=k1*ca(t)-k2*cb(t); 

 

> vars:=(ca(t),cb(t)); 

 

> eqs:=(eq[1],eq[2]); 

 

> ICs:=(ca(0)=1,cb(0)=0); 

 

> sol:=dsolve({eqs,ICs},{vars}); 

 

> assign(sol): 

> ca(t); 

 

> cb(t); 

 

Higher order linear ODEs can also be solved using the dsolve command.  It should 
be noted that Maple solves equations in symbolic form.  Therefore, even if the 
constants are numerical, the output is in symbolic form.  Sometimes, this output can 
be messy.  It should be noted that when more than two equations are solved the 
‘dsolve’ command may not be able to give an elegant solution.  For illustration, the 
heat transfer problem solved in example 2.3 is solved below using Maple’s ‘dsolve’ 
command. 

Example 2.9. Heat Transfer in a Series of Tanks, 'dsolve' 

> restart: 

> with(linalg):with(plots): 

Warning, the protected names norm and trace have been redefined and 
unprotected 
Warning, the name changecoords has been redefined 
 
> N:=3; 
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> for i to N do eq[i]:=diff(T[i](t),t)=eval(alpha*(T[i-1](t)-T[i](t))+ 
beta*(T[steam]-T[i](t)));od; 

 

 

 

> pars:={T[0](t)=20,T[steam]=250}; 

 

> vars:=[seq(T[i](t),i=1..N)]; 

 

> for i to 3 do eq[i]:=subs(pars,eq[i]);od; 

 

 

 

>dsolve({eq[1],eq[2],eq[3],T[1](0)=20,T[2](0)=20,T[3](0)=20}); 
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We observe that solutions obtained for T2(t) and T3(t) using the 'dsolve' command 
are long and messy compared to the solution obtained using the exponential 
matrix approach (Example 2.3).  When more than three differential equations are 
to be solved it is recommended that the exponential matrix method be used.  As an 
exercise, readers can verify that the solution obtained using the 'dsolve' command 
is equivalent to the solution obtained in example 2.3. 

2.1.9   Summary  

In this chapter analytical solutions were derived for linear ODEs using three 
methods: the matrix exponential, Laplace transform, and dsolve.  In section 2.1.2, 
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the given linear coupled system of homogenous ODEs was converted to matrix 
form.  The analytical solution for this matrix differential equation was then found 
using the matrix exponential.  Maple provides the exponential matrix as a function 
of the independent variable and the parameters in the governing equations.  This 
approach yields an elegant solution for a given system of linear coupled 
homogeneous ODEs.  This methodology was then extended to non-homogenous 
coupled linear ODEs in section 2.1.3.  This approach yields analytical solutions 
for linear coupled ODEs with time-dependent forcing functions.   

Higher order ODEs (of order n) were converted to a system of n coupled linear 
first order ODEs in section 2.1.4. This system was then solved using the 
exponential matrix developed earlier. This approach yields analytical solutions for 
linear ODEs of any order.  In section 2.1.5, the given system of coupled linear 
ODEs was converted to Laplace domain.  The resulting linear system of algebraic 
equations was then solved for the solution in the Laplace domain.  The solution 
obtained in the Laplace domain was then converted to the time domain.  

Maple’s ‘dsolve’ command was used to solve linear ODEs in section 2.1.6. In 
our opinion, exponential matrix method is the best method to arrive at an elegant 
analytical solution. The Laplace transform technique illustrated in section 2.1.5 
could be used for integro-differential equations. Maple’s ‘dsolve’ command has to 
be used if the exponential matrix method fails.   

2.1.10   Problems  

1. Consider two tanks in a series (Pushpavanam, 1998), [11] in which the 
height of each tank is governed by 

2. 

1 1 2

1 1 1

2 1 2 2

1 2 2 2

 
    

    
    

dh h hF

dt A R A

dh h h h

dt R A R A

−= −

−= −
 

where, h is the height of liquid in the tank, R1 and R2 are the resistances of 
the values, A is the cross sectional area, and F is the flow rate.  The 
subscripts 1 and 2 are the subscripts for tank 1 and tank 2 respectively.  
Obtain an analytical solution for the height of liquid in each tank as a 
function of the parameters.  Plot your profiles for the set of parameters  
F = 1, A1 = 1, R1 = ½, A2 = 2 and R2 = ¼.   

3. Consider the series reaction scheme modeled in example 2.2 (equation 
2.10), eliminate the concentration of species C, CC in the first two 
equations using material balance.  This will yield a system of two non-
homogeneous ODEs.  Solve this system to get an analytical solution for the 
individual species as a function of rate constants and time. 

4. A steel ball initially at a uniform temperature of 100oC is dropped into  
an insulated vessel containing water at 20oC (Pushpavanam, 1998)[11].  
Determine the steady state temperature of water and steel ball.  The energy 
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balance gives the governing equations for the temperature of steel ball (Tb) 
and the temperature of water (Tw) as: 

 - ( - )

 ( - )

b
b b b w

w
w w b w

dT
m C UA T T

dt
dT

m C UA T T
dt

=

=
 

where m is the mass, C is the specific heat capacity and UA is the heat 
transfer rate. And b and w are the subscripts for the steel ball and water 
respectively.  Find transient and steady state analytical solutions for the 
temperature of water and steel ball as a function of the parameters.  What 
do you observe?  Plot your profiles for the set of parameters mb = 1.25 kg, 
mw = 5 kg, Cb = 3360 J/g/oC, Cw = 4200 J/kg/oC and UA = 4200 J/s/oC. 

5. Consider the series-parallel reaction scheme in a batch reactor 

31 kk

2

A B C

k

C

⎯⎯→ ⎯⎯→
↓  

Assuming that all the reactions are first order, write down the governing 
equations for this reaction.  Assuming 1, 0, and 0 mol/cm3 as the initial 
conditions for A, B, and C develop analytical expressions for the 
concentration of A, B and C.  Do you observe a maximum for B?  Plot the 
concentration profiles for the parameters k1 = 2 min-1; k2 = 1 min-1; and k3 
= 2 min-1. 

6. Consider the series reaction scheme in a constant batch reactor (Bequette, 
1998)[12] 

31 2 kk kA B C D⎯⎯→ ⎯⎯→ ⎯⎯→  

Assuming that all the reactions are first order, write down the governing 
equations for the concentration of A, B and C.  Assuming 1, 0, and 0 
mol/cm3 as the initial conditions for A, B, and C develop analytical 
expressions for the concentration of A, B and C.  Plot the concentration 
profiles for the parameters k1 = 2 min-1; k2 = 1 min-1; and k3 = 2 min-1.  Do 
you observe a maximum for B?  Explain how you would obtain the 
concentration of D. 

7. Consider the second order system solved in example 2.5  

2

2 2 2

2 1
      ( )

(0)  0;  (0)  0

d y dy k
y u t

dt dt
dy

y
dt
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τ τ τ

+ + =
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subject to a sinusoidal input u(t) = sin(ω t).  Obtain an analytical solution 
for y(t) and analyze this problem for different values of ς for τ = 1 and  
ω = 1.  Solve this problem using the exponential matrix and by using the 
Laplace transform technique.   

8. Consider the second order system in problem 6, redo the problem if the 
input is u(t) = sin(ω t)e-t.  

9. Consider the CSTR problem discussed in the chapter (example 2.4).  Solve 
the governing equations if the reaction scheme is given by 

21

3

kk

k
A B C⎯⎯→⎯⎯→ ←⎯⎯  

Plot your concentration profiles for k2 = 1/8 and k3 = 1/2. All other 
parameters are same as that of example 2.4.  What do you observe? 

10. Consider heating of a fluid stream by steam coils in a series of tanks (see 
example 2.3).  Write down the differential equations describing the 
evolution of temperature in a system of four such tanks in series.  Find the 
evolution of temperature with time in each tank using the exponential 
matrix method.  Plot your temperature profiles for the parameter values [α, 
β] = [0.1, 0.005] and [0.1, 0.01].  Find the time taken by the last tank to 
reach 99% of its steady state value.  How does this time compare with the 
time for a 3-tank system and a 2-tank system when the total weight of all 
the tanks remains the same?  All other parameters are same as that of 
example 2.3. 

11. Consider the first order series reaction taking place in a plug flow reactor.  
Optimize the length of the reactor to maximize the concentration of B in 
the outlet stream.  Take initial conditions from problem 5. 

12. Consider the pharmacokinetics problem (Bequette, 1998)[12] 

1
1 1 2 2

2
3 1 4 2

1 2

     

    

(0)  (0)  0

dc
k c k c u

dt

dc
k c k c

dt

c c

= − + +

= −

= =

 

where c1 and c2 are the concentration of the drug in compartment 1 and 2 
respectively, u is the injection rate, 5.2 ppm/min.  Obtain an analytical 
solution for this problem as a function of the rate constants.  Plot your 
profiles for the following set of parameters [k1, k2, k3, k4] = [0.26, 0.1, 0.1, 
0.094] min-1. 

13. Consider a typical gas absorption column (Bequette, 1998; Varma and 
Morbidelli, 1997)[3, 12] solute balance gives the governing equations 
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1
1 2

1 1

1

  
           1

  
            2.. 1

  
          

f

i
i i i

N
N N f

dx L Va Va L
x x x stage

dt M M M

dx L L Va Va
x x x stage i N

dt M M M

dx L L Va V
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where N is the number of stages in the absorption column, L is the liquid 
feed flow rate, V is the vapor feed flow rate, M is the mass of liquid molar 
hold up per stage, a is the equilibrium constant, xf and yf are the feed mole 
fraction of the liquid stream and the vapor stream respectively.  Values of 
the parameters are L = 4/3 kgmol inert oil/min, V = 5/3 kgmol air/min, M = 
20/3 kgmol, xf = 0, yf = 0.1 and a = 0.5.  At time t = 0, the mole fraction x 
in all the stages is zero.  Plot transient profiles for the mole fraction (x) of 
all the stages for N = 3.  What is the steady state mole fraction of the liquid 
stream (xN) leaving the absorption column?  What is the minimum number 
of stages N to be used to make sure that the steady state mole fraction of 
the liquid stream leaving the absorption column (xN) is greater than 0.12?  
Also plot x vs. the stage number (from 0 to N) for different values of time 
(0, 10, 20, .. till steadystate). 

14. Redo problem 12 for N = 9 and xf = 0.1.  What do you observe? 
15. Consider the irreversible series reaction A→B taking place in N CSTRs in 

series.  The governing equation for the concentration of A in a particular 
tank is given by: 

-1 1

1
  (   )  i

i i i

dca
ca ca k ca

dt τ
= − −  

where τ is the time constant and k1 is the rate constant.  The feed 
concentration to the first tank (ca0) is 1 and the parameters are k1 = τ = 1 
and N = 3.  Solve this problem to obtain a transient analytical solution for 
the concentration of A in each tank.  Increase N to 10 and obtain the 
transient plots.  In addition plot the concentration as a function of the 
tank number for different times. 

2.2   Nonlinear Ordinary Differential Equations 

2.2.1   Introduction 

Chemical reactions with reaction orders other than one and many practical 
systems are typically represented by nonlinear ordinary differential equations 
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(ODEs).  In this section analytical, series and numerical solutions are developed 
for nonlinear IVPs using Maple.   

Example 2.2.1. Simultaneous Series Reactions 

Consider a second order reaction  

1 2k k2A B C⎯⎯→ ⎯⎯→  (2.30) 

governed by the nonlinear ODEs: 

2a
1 a

2b
1 b 2 b

dc
= 2k c

dt
dc

= k c k c
dt

−

− −
 (2.31) 

with the initial conditions ca(0) = 1; cb(0) = 0 and  cc(0) = 0; and, k1 and k2  are the 
rate constants. The concentration of species C(cc) at any time is given by the 
material balance 

      (0)  1a b c ac c c c+ + = =  (2.32) 

The equation above is solved below in Maple: 

> restart: 

> with(plots): 

The governing equations are entered here: 

> eq[1]:=diff(ca(t),t)=-k1*ca(t)^2; 

 

> eq[2]:=diff(cb(t),t)=k1*ca(t)^2-k2*cb(t); 

 

The variables are entered here: 

> vars:=(ca(t),cb(t)); 
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The equations are stored in eqs. 

> eqs:=(eq[1],eq[2]); 

 

 

The initial conditions are stored in ICs: 

> ICs:=(ca(0)=1,cb(0)=0); 

 

> sol:=dsolve({eqs,ICs},{vars}); 

 

> assign(sol): 

> ca(t); 

 

> cb(t); 
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The ‘help’ command in Maple is invoked to describe Ei. The following description 
for Ei is given in Maple's help file. 

 
> ?Ei 
Ei - The Exponential Integral 
Calling Sequence 
     Ei(z) 
     Ei(a, z) 
Parameters 
     z - algebraic expression 
     a - algebraic expression 
Description 
•  The exponential integrals, Ei(a, z), are defined for Re(z) > 0 by  
> Ei(a, z) = convert(Ei(a, z), Int) assuming Re(z) > 0; 
 This classical definition is extended by analytic continuation to the entire 
complex plane using  
> Ei(a, z) = z^(a-1)*GAMMA(1-a, z); 
 with the exception of the point 0 in the case of Ei(1, z).  
•  For all of these functions, 0 is a branch point and the negative real axis is the 
branch cut. The values on the branch cut are assigned such that the functions 
are continuous in the direction of increasing argument (equivalently, from 
above).  
•  The classical definition for the 1-argument exponential integral is a Cauchy 
Principal Value integral, defined for real arguments x, as the following  
> convert(Ei(x),Int) assuming x::real; 
> value(%); 
 for x < 0, Ei(x) = -Ei(1, -x). This classical definition is extended to the entire 
complex plane using  

Ei(z) = -Ei(1, -z) + (ln(z) - ln(1/z))/2 - ln(-z) 
 

Note that this extension has its branch cut on the negative real axis, but unlike 
for the 2-argument Ei functions this extension is not continuous onto the 
branch cut from either above or below. That is, this extension provides an 
analytic continuation of Ei(z) from the positive real axis, but not in any 
direction from the negative real axis. If you want a continuation from the 
negative real axis, use -Ei(1, -z) in place of Ei(z).  
 
Reference: 
Abramowitz, M. and Stegun, I. Handbook of Mathematical Functions. New 
York: Dover Publications Inc., 1965. 

 
An additional reference for the function of Ei is F. B. Hildebrand, Advanced 

Calculus for Applications, 2d Ed, 1976, Prentice-Hall, page 50.[13]  
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The concentration of species C is found using the material balance. 

> cc(t):=1-ca(t)-cb(t); 
 

Plots can be made for different values of rate constants. 

> pars:={k1=1,k2=1}; 

 

> Ca:=subs(pars,ca(t)); 

 

> Cb:=subs(pars,cb(t)); 

 

> Cc:=subs(pars,cc(t)); 

 

> p1:=plot(eval(Ca),t=0..10,thickness=3,color=green): 

> p2:=plot(eval(Re(Cb)),t=0..10,linestyle=1,thickness=3,axes=boxed): 

> p3:=plot(eval(Re(Cc)),t=0..10,linestyle=2,thickness=3,color=magenta): 

To get rid of the residual errors while calculating the Ei functions only the real 
part is plotted. 

> display({p1,p2,p3},labels=[t,C],title=" Figure 2.17"); 
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Fig. 2.17 

 
> pars:={k1=2,k2=1}; 

 

> Ca:=subs(pars,ca(t)); 

 

> Cb:=subs(pars,cb(t)); 
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> Cc:=subs(pars,cc(t)); 

 

> p1:=plot(Ca,t=0..10,thickness=3,color=green): 

> p2:=plot(Re(Cb),t=0..10,linestyle=1,thickness=3,axes=boxed): 

> p3:=plot(Re(Cc),t=0..10,linestyle=2,thickness=3,color=magenta): 

> display({p1,p2,p3},labels=[t,C],title="Figure 2.18"); 

 
 
Fig. 2.18 

 
We observe that a maximum exists for the concentration of species B.  Sometimes, 
Maple gives implicit solutions, i.e., independent variable (t), as a function of the 
dependent variable (y). 
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2.2.2   Solving Nonlinear ODEs Using Maple’s ‘dsolve’ Command  

Consider an nth order reaction 

kA Pr oducts⎯⎯→                                 (2.33) 

governed by the ODE: 

ndc
kc

dt
= −                                        (2.34) 

with the initial conditions c(0)=1; k is the rate constant , and n is the order of the 
reaction.  Series solutions are obtained in Maple below: 

> restart: 

> with(plots): 

Enter the governing equation: 

> eq:=diff(c(t),t)=-k*c(t)^n; 

 

The analytical solution is found as: 

> ca:=rhs(dsolve({eq,c(0)=1},c(t))); 

 

Next, the series solution can be obtained as: 

> sol:=dsolve({eq,c(0)=1},{c(t)},type=series); 

 

By default, Maple returns series solutions accurate to the order of t6 .  The order 
can be increased as: 

> Order:=8; 
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> sol:=dsolve({eq,c(0)=1},{c(t)},type=series); 
 

The order obtained is converted to polynomial form for plotting purposes. 

> assign(sol): 

> c(t):=convert(c(t),polynom); 
 

Next, the series solution obtained is plotted for different values of parameters and 
compared with the analytical solution. 

> pars:={k=1,n=1}; 

 

> C:=subs(pars,c(t)); 

 

> Ca:=subs(pars,ca); 

Error, numeric exception: division by zero 
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Since division by zero occurs, the limit is obtained. 

> Ca:=limit(ca,n=1); 

 

> Ca:=subs(k=1,Ca); 

 

> tf:=3; 
 

> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.19",labels=[t,"C"]); 

 
 

Fig. 2.19 

 
We observe that the series solution diverges for values of t greater than 2. Next, 
plots are made for different values of the parameters: 

 
> pars:={k=1,n=1/3}; 
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> C:=subs(pars,c(t)); 

 

> Ca:=subs(pars,ca); 

 

> tf:=1.5; 

 
> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.20",labels=[t,"C"]); 

 

 
 

Fig. 2.20 

 
For these values, both the exact analytical solution and the series solution match 
exactly until t=1.4.  Next, a second order reaction is considered. 

> pars:={k=1,n=2}; 
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> C:=subs(pars,c(t)); 

 

> Ca:=subs(pars,ca); 

 

> tf:=1; 

 
> plot([C,Ca],t=0..tf,thickness=3,axes=boxed,title="Figure 2.21",labels=[t,"C"]); 

 
 

Fig. 2.21 
 

For this case, the series solution starts to diverge after t is greater than 0.4. Hence, 
one has to be careful while using series solutions.  The divergence of the series 
solution obtained depends upon the problem and values of the parameters.  
Nevertheless, Maple can give series solutions to the order t100 also. 

2.2.3   Series Solutions for Nonlinear ODEs  

Series solutions for nonlinear ODEs can be obtained using Maple’s ‘dsolve’ 
command.  The syntax is:  

dsolve({“differential equations, initial conditions”},{“dependent variable”}, 
type=series). 
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The series solution obtained may be convergent or divergent depending on the 
problem. 

Example 2.2.2. Fermentation Kinetics 

> restart: 

> with(plots): 

Enter the governing equations. 

> eq[1]:=diff(y[1](t),t)=k[1]*y[1](t)*(1-y[1](t)/k[2]); 

 

> eq[2]:=diff(y[2](t),t)=k[3]*y[1](t)-k[4]*y[2](t); 

 

Enter the dependent variables: 

> vars:=(y[1](t),y[2](t)); 

 

Enter the values for the parameters: 

> pars:={k[1]=0.04,k[2]=3.92,k[3]=.018,k[4]=0.022}; 

 

> eqs:=(subs(pars,eq[1]),subs(pars,eq[2])); 

 

Enter the initial conditions: 

> ICs:=(y[1](0)=0.29,y[2](0)=0); 

 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

Next, the plots are made. 

> odeplot(sol,[t,y[1](t)],0..400,title="Figure 2.22",axes=boxed,thickness=3); 
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Fig. 2.22 

 
> odeplot(sol,[t,y[2](t)],0..400,title="Figure 2.23",axes=boxed,thickness=3); 

 
Fig. 2.23 
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Next, the solution at a particular time can be obtained as: 

> sol(0); 
 

> sol(100.); 

[t = 100., y1(t) = 3.18890696007849872, y2(t) = 1.54409378497148175] 

> sol(200); 

[t = 200., y1(t) = 3.90360922790476028, y2(t) = 2.94610336316537502] 

Similarly higher order ODEs can be solved using Maple's 'dsolve' command as 
shown in the next example. 

Example 2.2.3  

> restart: 

> with(plots): 

Enter the governing equation: 

> eq:=diff(y(t),t$2)+2*zeta/tau*diff(y(t),t)+y(t)=1/tau^2; 

 

Enter the parameters: 

> pars:={tau=1,zeta=1/2}; 

 

> eq:=subs(pars,eq); 

 

> ICs:=(y(0)=0,D(y)(0)=0); 

 
> sol:=dsolve({eq,ICs},{y(t)},type=numeric,method=gear); 

 

Note that Gear's method is used for this example. The following methods are 
available in Maple:   

rkf45, rosenbrock, dverk78, 1sode, gear, taylorseries, or classical. 

Next, the dependent variable is plotted: 

> odeplot(sol,[t,y(t)],0..50,axes=boxed,title="Figure 2.24",thickness=3, 
labels=[t,"y(t)"]); 
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Fig. 2.24 

 
Next, the derivative is plotted: 

> odeplot(sol,[t,diff(y(t),t)],0..20,title="Figure 2.25",axes=boxed,thickness=3); 
 

 
Fig. 2.25 
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2.2.4   Stop Conditions   

Maple can be asked to stop the numerical calculation based on a criterion on the 
dependent variable. The syntax is: 

dsolve({“differential equations, initial conditions”},{“dependent variables”}, 
type=numeric, stop_cond=[“function to be satisfied”]).  This is best illustrated by the 
next example.   

Example 2.2.4. Stop Conditions 

> restart: 

> with(plots): 

Enter the governing equations: 

> eq[1]:=diff(y[1](t),t)=-10*y[1](t)^2+y[2](t); 

 

> eq[2]:=diff(y[2](t),t)=10*y[1](t)^2-2*y[2](t); 

 

Enter the variables: 

> vars:=(y[1](t),y[2](t)); 

 

> eqs:=(eq[1],eq[2]); 

 

> ICs:=(y[1](0)=1.,y[2](0)=0); 

 

The governing equations are numerically solved as: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

The concentration profiles are plotted: 

> odeplot(sol,[t,y[1](t)],0..2,title="Figure 2.26",axes=boxed,thickness=3); 



104 2   Initial Value Problems
 

 
 

Fig. 2.26 
 

> odeplot(sol,[t,y[2](t)],0..2,title="Figure 2.27",axes=boxed,thickness=3); 

 
Fig. 2.27 
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The objective is to find the time at which the maximum occurs.  When y2 attains 

the maximum value, 2dy

dt
 becomes zero and hence the right hand side of the 

equation becomes zero. 

> sol:=dsolve({eqs,ICs},{vars},type=numeric,stop_cond=[-2*y[2](t)+ 
10*y[1](t)^2]); 

 

If we try to evealute the solution at t=1, we get: 

> ssol:=sol(1); 

Warning, cannot evaluate the solution further right of .26421692, stop 
condition #1 violated 

 

The numerical calculation stops when the residual is satisfied.  The time at which 
the maximum occures is given by: 

> ssol[1]; 

 

The maximum value of y2 is given by: 

> ssol[3]; 

 

When we plot the solution, the profiles stop when the maximum value of y2 is 
reached: 

> odeplot(sol,[t,y[1](t)],0..2,title="Figure 2.28",axes=boxed,thickness=3); 

Warning, cannot evaluate the solution further right of .26421692, stop 
condition #1 violated 
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Fig. 2.28 

> odeplot(sol,[t,y[2](t)],0..2,title="Figure 2.29",axes=boxed,thickness=3); 

Warning, cannot evaluate the solution further right of .26421692, stop 
condition #1 violated 

 
Fig. 2.29 
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2.2.5   Stiff ODEs 

The standard Euler methods and Runge-Kutta methods do not converge for stiff 
ODE’s. A still system can be defined as one in which the stability of the numerical 
methods used becomes an issue.  Maple has an inbuilt stiff solver.  

Example 2.2.5. Stiff Ordinary Differential Equations 

> restart: 

> with(plots): 
The governing equations are entered here: 

> eq[1]:=diff(B(t),t)=k*B(t)*S(t)/(K+S(t)); 

 

> eq[2]:=diff(S(t),t)=-0.75*k*B(t)*S(t)/(K+S(t));; 

 

The dependent variables are entered here: 

> vars:=(B(t),S(t)); 

 

The parameters are entered here: 

> pars:={k=0.3,K=1e-6}; 

 

> eqs:=(subs(pars,eq[1]),subs(pars,eq[2])); 

 

The initial conditions are entered here: 

> ICs:=(B(0)=0.05,S(0)=5); 

 

Next, the numerical solution is found and plotted until t=20: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

> tf:=20; 
 

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.30",color=blue,axes= 
boxed,thickness=3); 
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Fig. 2.30 

> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.31",color=blue,axes= 
boxed,thickness=3); 

 
Fig. 2.31 
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We observe that Maple predicts negative concentration.  This is because the 
default absolute error in 'dsolve' numeric is only 1d-6, which can be decreased to 
predict more accurate solutions: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10); 

 

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.32",axes=boxed,thickness=3); 

Warning, cannot evaluate the solution further right of 16.734694, maxfun 
limit exceeded (see ?dsolve,maxfun for details) 

 

Fig. 2.32 

 
> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.33",axes=boxed,thickness=3); 

Warning, cannot evaluate the solution further right of 16.734694, maxfun 
limit exceeded (see ?dsolve,maxfun for details) 
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Fig. 2.33 

 
Maple's default Runge-Kutta method cannot predict the profiles after T=16.3.  In 
addition, the program takes too long to run.  This is a still problem and can be 
conveniently solved by using Maple's still solver. 

> sol:=dsolve({eqs,ICs},{vars},type=numeric,stiff=true,abserr=1e-10); 

 

> odeplot(sol,[t,B(t)],0..tf,title="Figure 2.34", color=green,axes= 
boxed,thickness=3); 
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Fig. 2.34 

 
> odeplot(sol,[t,S(t)],0..tf,title="Figure 2.35",color=green,axes= 
boxed,thickness=3); 

 
Fig. 2.35 
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The stiff solver takes only few seconds to run compared to the default solver, 
which takes around a minute to predict the profiles. 

2.2.6   Differential Algebraic Equations   

Often times modeling of chemical systems involves solving differential equations 
coupled with algebraic equations.  This system is usually referred as differential 
algebraic systems (DAEs). DAEs can be solved by converting the algebraic equations 
to differential equations. The initial condition for the converted differential equation 
is found using the algebraic equation.  This is best illustrated using the next example. 

Example 2.2.6. Differential Algebraic Equations 

There are two dependent variables L and T.  Here x2 is the independent variable as 
x1 can be replaced using the relation x1 + x2 = 1. The algebraic equation k1x1 + 
k2x2 = 1 governs the temperature.  The differential equation is obtained using the 
differentiating equation k1x1 + k2x2 = 1. The initial condition is found by 
substituting values for constants and x2 into equation k1x1 + k2x2 = 1. 

> restart: 

> with(plots): 

The differential equation is entered here: 

> eq[1]:=diff(L(x2),x2)=L(x2)/x2/(k[2]-1); 

 

The algebraic equation is entered here: 

> eq[2]:=k[1]*x1+k[2]*x2-1; 

 

Relations for the equilibrium rations and the mole fraction are entered: 

> k[1]:=P1/P;k[2]:=P2/P;x1:=1-x2; 

 

 

 
 

The Antoine equation is entered here. 

> P1:=10^(A[1]+B[1]/(T(x2)+C[1]));P2:=10^(A[2]+B[2]/(T(x2)+C[2])); 
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Numerical values for the constants are entered: 

> P:=760*1.2;A[1]:=6.90565;B[1]:=-1211.033;C[1]:=220.79;A[2]: 
=6.95464;B[2]:=-1344.8;C[2]:=219.482; 

 

 

 

 

 

 

 

The algebraic equation simplifies as: 

> eq[2]; 

 

The initial condition for the temperature is found as: 

> Ti:=fsolve(subs(T(x2)=Ti,x2=0.4,eq[2]),Ti); 

 

> eq[1]; 

 

The differential equation for T is obtained by differentiating the algebraic 
equation: 

> eq[3]:=diff(eq[2],x2); 
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The dependent variables are entered here: 

> vars:=(L(x2),T(x2)); 
 

The governing equations are entered here: 

> eqs:=(eq[1],eq[3]); 
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The initial conditions are entered here. 

> ICs:=(L(0.4)=100,T(0.4)=Ti); 

 

The numerical solution is obtained as: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

The solution obtained is plotted here: 

> odeplot(sol,[x2,L(x2)],0.4..0.9,title="Figure 2.36",axes=boxed,thickness=3); 

 
 

Fig. 2.36 
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> odeplot(sol,[x2,T(x2)],0.4..0.9,title="Figure 2.37",axes=boxed,thickness=3); 

 
 
Fig. 2.37 

 
The moles of liquid remaining are found as: 

> sol(0.9); 
 

> sol(0.9)[2]; 

 

At the end of distillation, 6.83 moles of liquid remain. 

2.2.7   Multiple Steady States   

A certain class of initial value problems exhibits multiple steady states. Depending 
on the initial condition, the problems converge to different steady state values.  
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Multiplicity of steady states is a separate science by itself and different systems 
have been analyzed for multiple states in the literature (Aris, 1999).[14] The 
theory of bifurcation analysis is commonly used in the literature and is beyond the 
scope of this book.  In this book, we restrict ourselves to finding and plotting the 
multiple states numerically. 

Example 2.2.7. Multiple Steady States 

> restart: 

> with(plots): 

The governing equation is entered here: 

> eq:=diff(theta(t),t)=P*(1-theta(t))-theta(t)*exp(-alpha*theta(t)); 

 

The steady states are found by equating the right hand side to zero: 

> Eq:=subs(theta(t)=theta,rhs(eq)); 

 

Even though P is the parameter and theta is the dependent variable, the steady 
state equation cannot be solved using theta as a function of P.  However, P can be 
solved as a function of theta as follows: 

> Ps:=solve(Eq,P); 

 

Next, P can be plotted as a function of theta (steady state solution): 

> p1:=plot(subs(alpha=6,Ps),theta=0..1,view=[0..1,0..0.1],labels=[theta,P], 
thickness=3,title="Figure 2.38",axes=boxed): 

> p2:=plot(0.05,theta=0..1): 

> p3:=textplot([0.2,.055,(0.05)]): 

> p4:=textplot([0.58,.055,(0.05)]): 

> p5:=textplot([0.9,.055,(0.05)]): 

> display({p1,p2,p3,p4,p5}); 
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Fig. 2.38 
 
In the above plot we observe that the line P=0.05 cuts the curve at three different 
points.  Theta vs P can be made by using the 'implicitplot' command in Maple. 

> implicitplot(P-subs(alpha=6,Ps),P=0..0.1,theta=0..0.97,thickness=3, 
color=green,title="Figure 2.39",axes=boxed); 

 
Fig. 2.39 
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Hence, there are three different steady states.  These three different states can be 
obtained by equating the pressure to 0.5. 

> Eqtheta:=subs(alpha=6,Ps)=0.05; 

 

There are three different roots for the above equation.  They can be obtained by 
providing different initial guesses: 

> st1:=fsolve(Eqtheta,theta=0.); 
 

> st2:=fsolve(Eqtheta,theta=0.5); 
 

> st3:=fsolve(Eqtheta,theta=0.8); 
 

Next, the transient equation is solved for different initial conditions: 

> eqtheta:=subs(alpha=6,P=0.05,eq); 

 

> sol:=dsolve({eqtheta,theta(0)=0},theta(t),type=numeric); 
 

> odeplot(sol,[t,theta(t)],0.0..20,axes=boxed,color=blue,title="Figure 2.40", 
thickness=3); 

 
Fig. 2.40 
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> sol:=dsolve({eqtheta,theta(0)=1},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0.0..500,axes=boxed,color=magenta,title= 
"Figure 2.41",thickness=3); 

 

Fig. 2.41 

 
> sol:=dsolve({eqtheta,theta(0)=0.5},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0.0..500,axes=boxed,title="Figure 2.42",thickness=3); 
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Fig. 2.42 

 
> sol:=dsolve({eqtheta,theta(0)=0.4},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0.0..50,axes=boxed,color=green,title="Figure 2.43", 
thickness=3); 

 
Fig. 2.43 
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We obtained three different steady states. The stability of these states can be 
verified by assigning these values as the initial conditions.  If we start with a stable 
steady state solution as the initial condition, the process remains at the stable 
steady state solution.  If we start with an unstable steady state solution, the process 
moves to one of the steady state solutions. 

> sol:=dsolve({eqtheta,theta(0)=st1},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0..1000,axes=boxed,color=blue,title="Figure 2.44", 
thickness=3, 

view=[0..1000,0..1]); 

 
 

Fig. 2.44 

 
> sol:=dsolve({eqtheta,theta(0)=st3},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0.0..1000,axes=boxed,color=magenta,title= 
"Figure 2.45",thickness=3,view=[0..1000,0..1]); 
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Fig. 2.45 
 

> sol:=dsolve({eqtheta,theta(0)=st2},theta(t),type=numeric); 

 

> odeplot(sol,[t,theta(t)],0.0..1000,axes=boxed,title= 
"Figure 2.46",thickness=3); 

 
Fig. 2.46 
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We observe that both st1=0.071 and st3=0.93 are stable steady states. However, 
st2=0.498 is an unstable steady state.  The dependent variable stays at st2 only 
until t=400 and then the process approaches the stable steady state st3. 

2.2.8   Steady State Solutions   

When there are two dependent variables (as in example 2.2.8), the independent 
variable (t) can be eliminated.  One of the dependent variable can be solved as 
function of another dependent variable. This analysis is possible only if the 
independent variable, t is not present explicitly in the governing equations. 

Example 2.2.8. Steady State Solutions 

> with(plots): 

Enter the governing equations for concentration and temperature: 

> eq[1]:=diff(C(t),t)=F/V*(Cf-C(t))-k*exp(-E/R/T(t))*C(t); 

 

> eq[2]:=diff(T(t),t)=F/V*(Tf-T(t))+(-H/rho/cp)*k*exp(-E/R/T(t))*C(t)-UA/V/rho/ 
cp*(T(t)-Tj); 

 

The steady state equations are stored in Eq[1] and Eq[2]: 

> vars:={C(t)=Cs,T(t)=Ts}; 

 

> Eq[1]:=subs(vars,rhs(eq[1])); 
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> Eq[2]:=subs(vars,rhs(eq[2])); 

 

The steady state concentration can be solved as a function of the steady state 
temperature Ts as: 

> Cs:=solve(Eq[1],Cs); 

Warning, solving for expressions other than names or functions is not 
recommended. 

 

The equation for steady state temperature simplifies as: 

> Eq[2]; 

 

Values for the parameters are substituted: 

> pars:={F=V,k=9703*3600,H=-5960,E=11843,rho=500/cp,Cf=10,R=1.987, 
UA=V*150}; 

 

The equation for Ts becomes: 

> steq:=subs(pars,Eq[2]); 

 

V is taken as 1: 

> steq:=subs(V=1,steq); 
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The values for Tf and Tj are substituted to solve for Ts: 

> neq:=subs(Tf=298,Tj=298,steq); 

 

The nonlinear equation is plotted as a function of Ts, and we observe that the 
function crosses the x axis at 3 distinct points: 

> plot(neq,Ts=298..400,thickness=3,title="Figure 2.47",labels=[Ts,"neq"]); 

 
 

Fig. 2.47 
 

The steady state values are solved as: 

> st1:=fsolve(neq,Ts=300); 
 

> st2:=fsolve(neq,Ts=350); 
 

> st3:=fsolve(neq,Ts=400); 
 

The corresponding steady state values for the concentration are stored as: 

> cst1:=evalf(subs(pars,V=1,Ts=st1,Cs)); 
 

> cst2:=evalf(subs(pars,V=1,Ts=st2,Cs)); 
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> cst3:=evalf(subs(pars,V=1,Ts=st3,Cs)); 

 

> steq; 

 

The feed temperature Tf can be solved as a function of Ts shown below: 

> Tfs:=solve(steq,Tf); 

 

Tf can be plotted as a function of Ts as shown below: 

> plot(subs(Tj=298,Tfs),Ts=298..400,thickness=3,color=green,title= 
"Figure 2.48",axes=boxed,labels=[Ts,Tf]); 

 
Fig. 2.48 
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> implicitplot(Tf-subs(Tj=298,Tfs),Tf=290..306,Ts=290..400,thickness=3, 
color=blue,title="Figure 2.49",axes=boxed); 

 
Fig. 2.49 

 
Similarly Ts can be plotted as a function of Tj for the constant value of Tf. 

> Tjs:=solve(steq,Tj); 

 

> implicitplot(Tj-subs(Tf=298,Tjs),Tj=275..320,Ts=290..400,thickness=3, 
color=magenta,title="Figure 2.50",axes=boxed); 
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Fig. 2.50 

 
From the above two plots we observe that there multiple steady states exist.  For a 
particular value of Tj or Tf there can be three distinct values for Ts.  Next, the 
dynamic equations are solved for different initial conditions. 

> for i to 2 do eq[i]:=subs(Tf=298,Tj=298,subs(pars,eq[i]));od; 

 

 

> vars:=(C(t),T(t)); 
 

> eqs:=(eq[1],eq[2]); 

 

> Ics:=(C(0)=0,T(0)=298); 

 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 
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> odeplot(sol,[t,C(t)],0..10,thickness=3,color=red,title="Figure. 2.51", 
axes=boxed); 

 
Fig. 2.51 

 
> odeplot(sol,[t,T(t)],0..20,thickness=3,color=green,title="Figure 2.52", 
axes=boxed); 

 
Fig. 2.52 
 
For this case, the process reaches the lower steady state condition st1. 

> Ics:=(C(0)=5,T(0)=330); 
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> sol:=dsolve({eqs,Ics},{vars},type=numeric); 

 

> odeplot(sol,[t,C(t)],0..10,thickness=3,color=blue,title="Figure 2.53", 
axes=boxed); 

 
Fig. 2.53 

 
> odeplot(sol,[t,T(t)],0..20,thickness=3,color=magenta,title="Figure 2.54", 
axes=boxed); 

 
Fig. 2.54 
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For this case, also, the process reaches the lower steady state condition st1. 

> Ics:=(C(0)=9,T(0)=340); 
 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 
 

> odeplot(sol,[t,C(t)],0..10,thickness=3,color=red,title="Figure 2.55", 
axes=boxed); 

 
Fig. 2.55 

 
> odeplot(sol,[t,T(t)],0..20,thickness=3,color=green,title="Figure 2.56", 
axes=boxed); 

 
Fig. 2.56 
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For this case, the process reaches the lower steady state condition st3.  Next, the 
differential equations are solved taking the steady state values as the initial 
conditions: 

> Ics:=(C(0)=cst1,T(0)=st1); 

 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 

 

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=magenta,title="Figure 2.57", 
axes=boxed,view=[0..50,0..10]); 

 
 
Fig. 2.57 

 
 

> odeplot(sol,[t,T(t)],0..50,thickness=3,color=red,title="Figure 2.58", 
axes=boxed,view=[0..50,298..400]); 
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Fig. 2.58 

 
Hence, the lower steady state condition st1 is stable. 

> Ics:=(C(0)=cst2,T(0)=st2); 
 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 
 

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=green,title="Figure 2.59", 
axes=boxed,view=[0..50,0..10]); 

 

Fig. 2.59 
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Hence, the middle steady state condition st2 is unstable. 

> odeplot(sol,[t,T(t)],0..50,thickness=3,color=blue,title="Figure 2.60", 
axes=boxed,view=[0..50,298..400]); 

 

 
 
Fig. 2.60 

 
> Ics:=(C(0)=cst3,T(0)=st3); 

 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 

 

> odeplot(sol,[t,C(t)],0..50,thickness=3,color=magenta,title="Figure 2.61", 
axes=boxed,view=[0..50,0..10]); 
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Fig. 2.61 
 

> odeplot(sol,[t,T(t)],0..50,thickness=3,title="Figure 2.62",axes=boxed, 
view=[0..50,298..400]); 

 
Fig. 2.62 
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Hence, the higher steady state condition st3 is stable.  Next, initial conditions that 
are very close to the second steady states are taken: 

> Ics:=(C(0)=cst2*1.001,T(0)=st2*1.001); 

 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 

 

> odeplot(sol,[t,C(t)],0..20,thickness=3,color=green,title="Figure 2.63", 
axes=boxed,view=[0..20,0..10]); 

 

Fig. 2.63 

 
> odeplot(sol,[t,T(t)],0..20,thickness=3,color=blue,title="Figure 2.64", 
axes=boxed,view=[0..20,298..400]); 
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Fig. 2.64 
 

 
 

> Ics:=(C(0)=cst2*0.999,T(0)=st2*0.999); 

 

> sol:=dsolve({eqs,Ics},{vars},type=numeric); 

 

> odeplot(sol,[t,C(t)],0..20,thickness=3,color=magenta,title="Figure 2.65", 
axes=boxed,view=[0..20,0..10]); 

 

 
Fig. 2.65 
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> odeplot(sol,[t,T(t)],0..20,thickness=3,color=red,title="Figure 2.66", 
axes=boxed,view=[0..20,298..400]); 

 

Fig. 2.66 

 
For the values closer to the middle steady state st2, the process reaches st1 or st3 
at the end.  Hence, we conclude that st2 is unstable. 

Example 2.2.9. Phase Plane Analysis 

Example 2.2.8 is reviewed here using the phase plane analysis.  For this purpose 
the independent variable is eliminated and temperature T is solved as a function of 
C, the concentration. 

> restart: 

> with(plots): 

> eq[1]:=diff(C(t),t)=F/V*(Cf-C(t))-k*exp(-E/R/T(t))*C(t); 
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> eq[2]:=diff(T(t),t)=F/V*(Tf-T(t))+(-H/rho/cp)*k*exp(-E/R/T(t))*C(t)-UA/V/rho/ 
cp*(T(t)-Tj); 

 

The governing equation for T(C) is derived here: 

> eq:=diff(T(C),C)=subs(C(t)=C,T(t)=T(C),rhs(eq[2])/rhs(eq[1])); 

 

> pars:={F=V,k=9703*3600,H=-5960,E=11843,rho=500/cp,Cf=10,R=1.987, 
UA=V*150}; 

 

Values for parameters are entered here: 

> Eq:=subs(pars,eq); 
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Both the jacket temperature and the feed stream temperature are taken to be 298 K. 

> Deq:=subs(Tj=298,Tf=298,Eq); 

 

The differential equation is solved below and the numerical simulation is stopped 
when the denominator becomes zero.  The simulation is performed for different 
initial conditions: 

> sol:=dsolve({Deq,T(0)=298},T(C),type=numeric,stop_cond= 
[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 

 

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=red,title="Figure 2.67", 
axes=boxed); 

Warning, cannot evaluate the solution further right of 8.7992960, stop 
condition #1 violated 

 
Fig. 2.67 
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> sol:=dsolve({Deq,T(5)=350},T(C),type=numeric,stop_cond= 
[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 

 

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=green,title="Figure 2.68", 
axes=boxed); 

Warning, cannot evaluate the solution further left of 1.7682405, stop 
condition #1 violated 

 

 
 

Fig. 2.68 
 

 
> sol:=dsolve({Deq,T(9)=400},T(C),type=numeric,stop_cond= 
[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 

 

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=blue,title="Figure 2.69", 
axes=boxed); 

Warning, cannot evaluate the solution further left of .46053734e-1, stop 
condition #1 violated 
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Fig. 2.69 
 

> sol:=dsolve({Deq,T(5.5179)=339.0971},T(C),type=numeric,stop_cond= 
[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 

 

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=magenta,title="Figure 2.70", 
axes=boxed); 

Warning, cannot evaluate the solution further right of 8.5634663, stop 
condition #1 violated 

 
Fig. 2.70 
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> sol:=dsolve({Deq,T(5.5234)=339.44},T(C),type=numeric,stop_cond= 
[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 

 

> odeplot(sol,[C,T(C)],0..10,thickness=3,color=brown,title="Figure 2.71", 
axes=boxed); 

Warning, cannot evaluate the solution further left of .23729690e-1, stop 
condition #1 violated 

 
 
Fig. 2.71 

 

 
Temperature can increase or decrease with the concentration C, depending on the 
initial conditions.  The slope of the curve and the maximum for T depend on the 
initial conditions.  A sequence of runs is performed for three different initial 
concentrations of 0.5, 5, and 9.5.  The initial condition for T is varied in the range 
of 300 K - 420 K. 

> MM:=20; 
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> TT:=seq(300+i/MM*120,i=0..MM); 

 

> for i from 0 to MM do sol:=dsolve({Deq,T(0.5)=TT[i+1]},T(C), 
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 
p[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=red,title="Figure 2.72", 
axes=boxed);od: 

> for i from 0 to MM do sol:=dsolve({Deq,T(0.5)=TT[i+1]},T(C), 
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 
p1[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=green,title="Figure 2.72", 
axes=boxed);od: 

> for i from 0 to MM do sol:=dsolve({Deq,T(9.5)=TT[i+1]},T(C), 
type=numeric,stop_cond=[10-C-34930800*exp(-5960.241570*1/T(C))*C]); 
p2[i]:=odeplot(sol,[C,T(C)],0..10,thickness=3,color=blue,title="Figure 2.72", 
axes=boxed);od: 

> display({seq(p[i],i=0..MM),seq(p1[i],i=0..MM),seq(p2[i],i=0..MM)},view=[0..10, 

> 295...420]); 

Warning, cannot evaluate the solution further right of 8.7899223, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.7599625, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.7278642, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6943952, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6576248, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6197738, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5875974, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5656287, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5634928, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5634834, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5635784, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5635741, stop 
condition #1 violated 
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Warning, cannot evaluate the solution further right of 5.3754375, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 3.6509855, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.8295708, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4573345, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4078413, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4048821, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4070544, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .49764692, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .43228936, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.7899223, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.7599625, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.7278642, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6943952, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6576248, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.6197738, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5875974, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5656287, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5634928, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5634834, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5635784, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 8.5635741, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 5.3754375, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 3.6509855, stop 
condition #1 violated 
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Warning, cannot evaluate the solution further right of 2.8295708, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4573345, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4078413, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4048821, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 2.4070544, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .49764692, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .43228936, stop 
condition #1 violated 
Warning, cannot evaluate the solution further right of 9.7410116, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 8.5635577, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 8.5638089, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 8.4876502, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 8.0713076, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 6.9575718, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of 1.3218078, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .70000766, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .43175821, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .29193900, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .20969420, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .15713260, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .12152136, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .96245238e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .77677669e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .63659244e-1, stop 
condition #1 violated 
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Warning, cannot evaluate the solution further left of .52827584e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .44303373e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .37491839e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .31979299e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .27462576e-1, stop 
condition #1 violated 
Warning, cannot evaluate the solution further left of .23729690e-1, stop 
condition #1 violated 

 
Fig. 2.72 

 

2.2.9   Summary 

In this chapter, nonlinear IVPs were solved numerically.  In section 2.2.2 a 
nonlinear IVP was solved analytically using Maple’s ‘dsolve’ command.  This 
approach is limited to very few nonlinear ODEs.  In section 2.2.3, series solutions 
were obtained using Maple’s ‘dsolve’ command.  This approach is valid for all 
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nonlinear ODEs.  However, the solution obtained may not always converge.  One 
has to use these solutions cautiously and check the convergence of the series 
solution obtained. 

In section 2.2.4 nonlinear IVPS were solved numerically using Maple’s 
‘dsolve’ command.  Maple provides different options for the numerical solution, 
Runge-Kutta, Gear, backsode, etc.  Maple’s default Runge-Kutta method accurate 
to the order (Δt)4 is good enough for a variety of problems.  Maple’ ‘dsolve’ 
command is very convenient to use and the solution obtained can be plotted easily.  
There are different ways to control the error.  The default absolute error set in 
Maple is 1e-6.  For complex problems, this can be reduced by setting abserr = 1e- 
10, etc.  Similarly, the relative error can be set as relerr = 1e-6. 

In section 2.2.4, stop condition was used to predict the maximum yield in a 
chemical reaction.  In section 2.2.5, a stiff problem was solved using Maple’s 
default numerical solver.  We concluded that the conventional numerical methods 
fail for this stiff problem.  Maple’s stiff solver was found to be superior for this 
stiff problem.  Generally, one has to use a stiff solver only if the conventional 
methods fail, as stiff solvers take more time to solve ordinary IVPs than the 
conventional solvers.   

In section 2.2.6, DAEs were solved by converting the algebraic equations to 
differential equations.  This methodology should be valid for any system of DAEs 
as long as one can find the initial conditions for the variables governed by the 
algebraic differential equations.   

In section 2.2.7, multiple steady states in a heterogeneous chemical reaction 
(one dependent variable) and a jacketed stirred tank reactor (two dependent 
variables) were analyzed.  Both stable and unstable steady states were obtained.  
The transient behavior of the system was found to depend on the initial conditions.  
The methodology and Maple programs presented in this chapter should be valid 
for any system of IVPs with multiple steady states. In section 2.2.8, phase plane 
behavior of a jacketed stirred tank reactor was analyzed.  The program provided 
should be of use for analyzing phase plane behavior of different chemical systems.  
A total of ten different examples were presented in this chapter. 

2.2.10   Problems 

1. The dissolution rate of a salt is governed by 

( )sat

0

dy
= ky c  c

dt
y(0) = y  = 10

−
 

where, y is the amount of salt dissolved (kg), k is a proportionality constant, 
V is the volume of water used for dissolving the salt (90 liters), c is the 

concentration of the salt (kg/liter) at any instant given by 0y   y
c = 

V

−
 and 

csat is the concentration of the saturated salt, 1/3 kg/liter.  Solve this problem 
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to get a closed form solution for the amount of salt dissolved (see example 
2.2.1).  If it takes one hour to dissolve 50% of the initial salt, what is the rate 
constant k?  Once k is obtained plot the transient profile for the dissolved 
salt.  How much of the salt can be dissolved in one hour if the volume of the 
water used is doubled?   

2. Consider the series reaction scheme modeled in example 2.2.1.  Redo this 
problem if the first reaction is first order and the second reaction is second 
order (Rice and Do, 1995).[1]  Obtain a closed form solution and plot the 
concentration profiles for typical values of rate constants. 

3. Redo example 2.2.1 if both the reactions are second order.  Obtain a closed 
form solution if possible and plot the concentration profiles for typical 
values of rate constants. 

4. Consider a CSTR experiencing slow catalyst decay (Rice and Do, 1995).[1] 
The governing equation for the reactant concentration (x) and catalyst 
activity (y) are given by: 

dx
= 1 x  xy

dt
dy

 = εxy
dt
x(0) = 0 and y(0) = 1

− −

−  

where ε is a proportionality constant (0.5).  Solve this problem numerically 
and plot the profiles  (see example 2.2.2).   

5. Consider parallel deactivation in a well-stirred reactor (Rice and Do, 
1995).[1] The governing equation for the reactant concentration (x) and 
catalyst activity (y) are given by: 

2dx
 = α(1  x)  x y

dt
dy

 = εxy
dt
x(0) = 0 and y(0) = 1

− −

−  

where ε is the ratio of deactivation rate constant to kinetic rate constant 
(0.1) and α = F/(kVC0).  F is the flow rate, k is the rate constant, V is the 
volume and C0 is the feed concentration.  Solve this problem numerically 
and plot the concentration profiles for α = 1. 

6. Consider catalytic cracking of a gas oil (A) to gasoline (B).  Gas oil (A) 
cracks catalytically to gasoline (B) according to second order kinetics.  In a 
parallel reaction A also forms Coke (C) according to second order kinetics.  
Gasoline (B) once formed also cracks according to a first order reaction to 
form Coke (C).  The governing equations for A, B and C is given by (Rice 
and Do, 1995):[1] 
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2 2A
1 A 2 A

2B
1 A 3 B

A B C

A B C

dC
 = k C  k C

dt
dC

 = k C   k C
dt

C  + C  + C  = 1

C (0) =1 and C (0) = C (0) = 0

− −

−  

Solve this problem to obtain a closed form solution for the concentration of 
gasoline as a function of rate constants and time.  When will you stop the 
experiment to obtain maximum concentration of gasoline (B)? 

7. Also, solve this problem numerically for typical values of rate constants 
(k1 = 1, k2 = 0.1 and k3 = 0.5).  Plot the concentration profiles using both 
analytical and numerical solution. 

8. Consider the Van der Pol equation (Rice and Do, 1995)[1] 

( )
2

2
2

  μ 1  y  + y = 0

(0) = 1; (0) = 0

d y dy

dt dt
dy

y
dt

− −
 

Solve this problem numerically for μ = 0.1, 1, and 10.  Plot the transient 
profiles. 

9. Consider an adiabatic tubular reactor (Davis, 1984)[15] with the following 
data: length L = 2 m, radius Rp = 0.1 m, inlet reactant concentration c0 = 
30 moles/m3, inlet temperature T0 = 700K, enthalpy ΔH = -10000 J/mole, 
specific heat capacity Cp = 1000 J/kg/K, activation energy Ea = 100 
J/mole, ρ = 1200 kg/m3, velocity u0 = 3 m/s, and rate constant k0 = 5 s-1.  
Dimensionless concentration (y) and dimensionless temperature (θ) are 
governed by material and energy balances as: 

0 0 a

0 0 g 0

dy 1
 = Da y exp δ 1

dz θ

dθ 1
 = βDa y exp δ 1

dz θ
θ(0) = 1 and y(0) = 1

where

Lk c (-ΔH) E
Da = ;  β = ;  δ = 

u ρCpT R T

⎡ ⎤⎛ ⎞− −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞−⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
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where Rg is the gas constant, 8.314 J/mole/K. Solve this system of equations 
numerically and plot dimensionless concentration and temperature profiles 
across the length of the reactor.   

10. Consider the reaction scheme (Davis, 1984)[15] 

1 2

2
1 2 3

2
3

4 7
1 2 3

 = k  + k

 = k  k   k

 = k

(0) = 1, (0) = (0) = 0

k  = 0.08, k  = 2x10 , and k  = 6x10

A
A B C

B
A B C B

C
B

A B C

dC
C C C

dt
dC

C C C C
dt

dC
C

dt
C C C

−

− −

 

Solve this stiff system of equations and plot the concentration profiles. 
11. Material and energy balance in a reactor gives the following dimensionless 

equations (Finlayson, 1980):[16] 

2

2

2

dc 1
 = 10.5(c -1) - cexp γ 1  

dt T

dT 1
 = 10.5(T 1) + β cexp γ 1 

dt T

c(0) = 0.73 and T(0) = 1

 = 1.21;  β = 0.15;  γ = 30

φ

φ

φ

⎛ ⎞⎡ ⎤− −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠
⎛ ⎞⎡ ⎤− − −⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

Solve this system of equations numerically and plot the concentration and 
temperature profiles. 

12. Consider the dynamics of a catalytic fluidized bed in which an irreversible 
gas phase reaction takes place (Aiken and Lapidus, 1974;[17] Cutlip and 
Shacham, 1999).[9] Partial pressure of reactant in fluid (P), temperature of 
reactant in fluid (T), partial pressure of reactant at the catalyst surface (Pp) 
and partial pressure of reactant at the catalyst surface (Tp) are governed by 
the following equations: 
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( )

( )

p

p

p
p

p
p p

p

dP
 = 0.1 + 320P 321P

dt
dT

 = 1752 269T + 267T
dt
dP

 = 1880 P  P (1+K)
dt

dT
 = 1.3 T T  + 10400KP

dt

15000
K = 0.0006 exp 20.7  

T

−

−

−

−

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

 

This problem exhibits multiple steady states.  Obtain all the steady states by 
equating the transient term to zero in all the equations. For mathematical 
convenience, express steady state P, T, and Pp in terms of steady state Tp 
using the first three equations. Use the steady state equation for Tp (after 
eliminating all other dependent variables) to obtain the multiple steady states. 

13. Solve the dynamic problem using the initial conditions P(0) = 0.1, T(0) = 
600, Pp(0) = 0 and Tp(0) = 761 and plot the dynamic profiles for t = 0..15.  
Can you change the initial conditions to obtain a different steady state? (see 
examples 2.2.6 and 2.2.7) 

14. Consider radiation to a thin copper plate in a furnace (Cutlip and Shacham, 
1999),[9]  the temperature (T) of the thin plate is governed by: 

( )4 4
F

p

σA T -TdT

dt VρC

T(0) 293K

=

=

 

where σ is the Stefan-Boltzman constant (= 5.678x10-8 W/(m2K4) ), A = 
0.5 m2, V = 3.75x10-4 m3, ρ = 8950 kg/m3, Cp = 383 J/kg/K and TF = 
1273K.  Solve this problem numerically and plot the temperature profile. 

15. Design of a chemical flow reactor involves the following nonlinear 
differential equation (Hanna and Sandall, 1995)[18] 

dC C

d 1+ C

C(0) 1

φ β
=

=
 

Solve this problem analytically and plot C vs. φ for β = 0.1 and 1. 
16. The following nonlinear equation governs the concentration in an isothermal 

batch reactor (Hanna and Sandall, 1995):[18] 
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2dC C
 =  0.3C

dt (1+C)

C(0) = 0.6

⎛ ⎞
− −⎜ ⎟⎜ ⎟
⎝ ⎠  

where t is the time in hours.  Solve this problem analytically if possible. If 
analytical solution is not possible, obtain a series solution. Plot the 
transient concentration using ‘dsolve numeric’ command and calculate the 
time taken for the concentration to become 0.1. How does the series 
solution compare with the exact solution (numerical) for this problem? 

17. Consider a CSTR with a second order kinetics (Bequette, 1998),[12] the 
governing equation is: 

( ) 2
in

dC 1
= C C kC

dt τ
C(0) = 0

− −
 

Obtain an analytical solution for this problem if possible. Plot the 
concentration profiles if Cin = 1, τ = 1 and k = 1.  Can you obtain a closed 
form solution for C if Cin = sin(t)?  If an analytical solution is not possible, 
solve the equation numerically to obtain the concentration profile. 

18. Consider a surge tank with an outlet flow rate that depends on the square 
root of the height of liquid in the tank (Bequette, 1998).[12] When there is 
no inlet flow, the governing equation is: 

dh
= a h

dt
h(0) = 4

−
 

Solve this equation to obtain the height of liquid as a function of time.  Plot 
the transient behavior for a = 0.8. 

19. Consider two interacting tanks in series (Bequette, 1998).[12] The 
governing equations for height in the tanks are: 

1 1
1 2

1 1

2 1 2
1 2 2

1 2

1 2

3 2.5 2.5
2 2

1 2 1 2

dh βF
 =  h  h

dt A A

dh β β
 = h  h  h

dt A A

h (0) = 12; h (0) = 7

ft ft 5 ft
F = 5  β  = 2.5 ;  β  =  ;  A  = 5 ft ;  A  = 10 ft

min min min6

− −

− −  

Plot the transient profiles for t = 0..100 minutes. 
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20. Consider the predator-prey problem (Bequette, 1998):[12] 

( )

( )

1
2 1

2
1 2

1 2

dy
 = α 1 y y

dt
dy

 = β 1 y y
dt

y (0) = 1.5; y (0) = 0.75

α = β = 1

−

− −  

where t is in days.  Plot the dynamic profiles for t = 0..100 days.  Do phase 
plane analysis for this problem and plot y1 vs. y2 (see example 2.2.8). 

21. A series parallel reaction takes place in a CSTR (Bequette, 1998).[12] The 
governing equations are: 

( )

( )

2A
A, in A 1 A 3 A

B
B 1 A 3 B

A B

-1 -1
1 2 3 A, in

dC 1
 = C  C k C k C

dt τ
dC 1

 =  C  + k C  k C
dt τ

C (0) = C (0) = 0

5 5 1 liter mol
k  =  min  ; k  =  min ; k  =  ;  C  = 10 

6 3 6 mol min liter

− − −

− −  

Find the time constant, τ if the steady state concentration of A is 3 mol/liter 
(Hint: Use the steady state version of the first equation to find the  
steady state concentration of A). Once τ is obtained, plot the transient 
profile. 
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Appendix A: Matrix Exponential Method 

This appendix presents two methods of obtaining an analytical solution to a 
system of first order ordinary differential equations.  Both methods (power series 
and the Laplace transform) yield a solution in terms of the matrix exponential.  
That is, we seek a solution to 

( )d
t

dt
= +Y

AY b  (A.1) 

where 
d

dt

Y
 is a n x 1   vector and is the derivative of Y which is a n x 1 vector 

of dependent variables, A  is a n x n  matrix of constants, and b is n x 1    
vector which may depend on time.  Equation (A.1) can be solved by assuming a 
power series solution of the form 

2
0 1 2(t) t t= + + +Y e  e e L  (A.2) 

where je  represents the jth n x 1 vector which is to be determined.  Substitution of 

t 0= into equation (A.2) yields 

0(0) =Y e                                         (A.3) 

Substitution of equation (A.2) into equation (A.1) with b = 0 yields 
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2
1 2 0 1 22 t t t )e e   A(e e e+ + = + + +L L                   (A.4) 

By equating coefficients of like powers of t in equation (A.4) we obtain 

1 0

2 1 0

3
3 2 0

k
k 0

1 1

2 2
1 1

3 (3)(2)

1

k!

2

e Ae

e Ae A e

e Ae A e

e A e

=

= =

= =

=

M

 (A.5) 

Substituting equations (A.3) and (A.5) into equation (A.2) yields 

 2 2 k k1 1
(t) ( t t t ) (0)

2! k!
= + + + + +Y I A A A YL L           (A.6) 

Since 

 ( ) 2 21
exp t t t

2!
A I A A= + + +L                         (A.7) 

equation (A.6) can be written as 

(t) exp( t) (0)=Y A Y                                    (A.8) 

To handle the case where b is not equal to 0 , rewrite equation (A.1) as follows: 

′ − =Y AY b                                          (A.9) 

Next, premultiply both sides of equation (A.9) by ( )exp tA−  to obtain 

t te ( Y) e− −′ − =A AY A b  (A.10) 

Now, rewrite equation (A.10) with the left hand side shown as a complete 
differential: 

( )t td
e ( ) e

dt
− −=A AY t b  (A.11) 

Integration of equation (A.11) with τ as a dummy integration variable yields 
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0
0

t
t A

t
t

e ( ) e ( )d
τ=

τ=− τ − τ

τ=
τ=

= τ τ∫A Y  bτ  (A.12) 

Evaluation of the left hand side of equation (A.12) yields 

0

0

t
AtAt A

0

t

e ( ) e ( ) e ( )d
τ=

−− − τ

τ=

− = τ τ∫Y t Y t b                     (A.13) 

Premultiplying both sides of equation (A.13) by teA  followed by rearrangement 
yields: 

0

0

t
Att t

0

t

e e ( ) e e ( )d
τ=

− − τ

τ=

= + τ τ∫A A AY Y t b                      (A.14) 

or 

0

0

t
t t ) t

0

t

e ( ) e e ( )d
τ=

− − τ

τ=

= + τ τ∫A( A AY Y t b                          (A.15) 

Equation (A.15) can also be written as follows: 

( )0

0

t
tt t )

0

t

e ( ) e ( )d
τ=

− τ−−

τ=

= + τ τ∫ AA(Y Y t b                      (A.16) 

Note that for one dependent variable equation (A.1) becomes 

dy
y b(t)

dt
= +a                                      (A.17) 

and equation (A.16) becomes 

( )0

0

( )
0y y(t ) b( )dτt

t
aa t t

t

e e τ
τ

τ
τ−

=
−−

=

= + ∫                    (A.18) 

Equation (A.18) was obtained by using the so-called integrating factor (IF) where 
for equation (A.17) 

( )IF exp t= −a                                          (A.19) 

Note that the integrating factor ( )exp t−A  was used to solve equation (A.9). 

To illustrate the use of equation (A.15), let 
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0 1

2 3

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

A                                       (A.20) 

and 

0

1

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

b                                              (A.21) 

Also, let 0 0t = and 

( ) 0
0

0

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

Y               (A.22) 

Thus, equation (A.15) becomes  

t
t

0

(t) e e d− τ= τ∫A AY b                                (A.23) 

Equation (A.7) yields the matrix exponential  of tA  

t 2t t 2t
t

t 2t t 2t

2e e e e
e

2e 2e e 2e

− − − −

− − − −

⎛ ⎞− −
= ⎜ ⎟− + − +⎝ ⎠

A                     (A.24) 

and the matrix exponential of − τA  as 

2 2

2 2

2e e e e
e

2e 2e e 2e

τ τ τ τ
− τ

τ τ τ τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

− −=
− + − +

A                         (A.25) 

Thus, equation (A.23) becomes  

t (t ) 2(t ) (t ) 2(t )

(t ) 2(t ) (t ) 2(t )
0

02e e e e
(t) d

12e 2e e 2e

− −τ − −τ − −τ − −τ

− −τ − −τ − −τ − −τ

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

− −= τ
− + − +∫Y  

    

(A.26) 

which yields 

(t ) 2( t )t

( t ) 2( t )
0

e e
(t) d

e 2e

− −τ − −τ

− −τ − −τ

⎛ ⎞−
= τ⎜ ⎟⎜ ⎟− +⎝ ⎠
∫Y                   (A.27) 

Next, integrate each element in the vector in equation (A.27); the first element is 

( )
t

( t ) 2( t )

0

e e d− −τ − −τ− τ∫                                   (A.28) 
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or 

t t
t 2t 2

0 0

e e d e e d− τ − ττ − τ∫ ∫  (A.29) 

or 

( )
t2t

t 2t

0
0

e
e e e

2

τ
− τ −−  (A.30) 

Equation (A.30) becomes 

2t
t t t 0 2t 0e

e e e e (e e )
2

−
− −− − −  (A.31) 

or 

2t
t 1 e

1 e
2 2

−
−− − +                                       (A.32) 

which can be written as 

2t
t1 e

e
2 2

−
−− +                                       (A.33) 

The second element in equation (A.27) can be written as 

t t
t 2t 2

0 0

e e d 2e e d− τ − + τ− τ + τ∫ ∫  (A.34) 

or 

t
tt 2t 2

0
0

1
e (e ) 2e e

2
− τ − τ⎛ ⎞− + ⎜ ⎟

⎝ ⎠
 (A.35) 

or 

( )t t 2t 2t1 1
e e 1 2e e

2 2
− − ⎛ ⎞− − + −⎜ ⎟

⎝ ⎠
 (A.36) 

Equation (A.36) becomes 

t 2t 2t 2t2
1 e e e

2
− − + −− + + −  (A.37) 

or 
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t 2t1 e 1 e− −− + + −                                       (A.38) 

which simplifies to  

t 2te e− −−                                         (A.39) 

Thus, equation (A.27) becomes 

( )
t 2t

1

t 2t2

1 1
y (t) e e

t 2 2
y (t)

e e

− −

− −

⎛ ⎞− +⎛ ⎞ ⎜ ⎟= =⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎜ ⎟−⎝ ⎠

Y                           (A.40) 

It is easy to solve this problem with (0) =Y 0  by using Maple.  First write the 

solution (see equation (A.15)): 

t
t

0

e e d− τ= τ∫A AY b                                 (A.41) 

and solve by using Maple: 

> restart:with(linalg): 

Warning, the protected names norm and trace have been redefined and 
unprotected 
 
> A:=matrix(2,2,[0,1,-2,-3]); 

 := A ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0 1

-2 -3  

> mat:=exponential(A*t); 

 := mat
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

−  + e
( )−2 t

2 e
( )−t

 − e
( )−t

e
( )−2 t

−  + 2 e
( )−t

2 e
( )−2 t

 − 2 e
( )−2 t

e
( )−t  

> mattau:=exponential(A*(-tau)); 

 := mattau
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

 − 2 eτ e
( )2 τ

−  + e
( )2 τ

eτ

 − 2 e
( )2 τ

2 eτ −  + eτ 2 e
( )2 τ  

> b:=matrix(2,1,[0,1]); 

 := b ⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

0

1  

> mattaub:=evalm(mattau&*b); 
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 := mattaub
⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

−  + e
( )2 τ

eτ

−  + eτ 2 e
( )2 τ  

> mati:=map(int,evalm(mattaub),tau=0..t); 

 := mati
⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

−  −  + 
1
2

1
2

e
( )2 t

e t

−  + e t e
( )2 t

 

> sol:=evalm(mat&*mati); 

 := sol

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥

 + ( )−  + e
( )−2 t

2 e
( )−t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟−  −  + 

1
2

1
2

e
( )2 t

e t ( ) − e
( )−t

e
( )−2 t

( )−  + e t e
( )2 t

 + ( )−  + 2 e
( )−t

2 e
( )−2 t ⎛

⎝
⎜⎜

⎞
⎠
⎟⎟−  −  + 

1
2

1
2

e
( )2 t

e t ( ) − 2 e
( )−2 t

e
( )−t

( )−  + e t e
( )2 t

 

> simplify(sol); 

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

 +  − 
1
2

e
( )−2 t 1

2
e

( )−t

 − e
( )−t

e
( )−2 t

 

Comparison of equation (A.40) to the solution above (sol) shows that Maple 
yields the same result for Y that we obtained by hand. 

Appendix B: Matrix Exponential by the Laplace Transform 
Method 

The matrix exponential can also be obtained by using the Laplace transform 
technique.  Taking the Laplace transform of the governing equations now written 
in lower case x  (see Ogata page 725).[1] 

 
d

dt
=Y

AY              (B.1) 

yields 

( ) ( 0) ( )s s t s− = =Y y AY  (B.2) 

or 

( ) ( ) (0)s s− =I A Y y  (B.3) 

Thus,  
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1( ) ( ) (0)s s −= −Y I A y  (B.4) 

and 

( )1 1( ) ) (0)t s− −⎡ ⎤= −⎣ ⎦y I A y    (B.5) 

Recall that (see Example 3 (with 0a = ) on page 809 of Kreyszig)[2] 

2
2

2 3

1 1 b b
z z

c bz c c c
= + + +

−
L    (B.6) 

Equation (B.6) can be used as a scaler example of how to expand the inverse of a 
matrix.  That is, by analogy with z = 1  we can write 

( )
2

1

2 3
s

s s s

−− = + + + L
I A A

I A    (B.7) 

This can be shown to be correct by premultiplying both sides of equation (B.7)  
by s −I A to get 

( )( ) ( )
2

1

2 3
s s s

s s s

− ⎛ ⎞
− − = − + + +⎜ ⎟

⎝ ⎠
L

I A A
I A I A I A               (B.8) 

or 

2 2
2

2 3 2
 =      s s s

s s s s s
+ + + − − − = =L L

I A A I A
I I I I A I I

      
(B.9) 

Thus, 

{ }
2 2 3

1 1 3( )  
2! 3!

t t
s t− −− = + + + + L

A
I A I A A

                 
(B.10) 

Comparison of the right hand side of equation (B.10) to the series definition of 

( )exp tA  reveals that 

{ } ( )1 1( ) exp  s t− −− =I A A  (B.11) 

For our example 

0 1

1 2

⎛ ⎞
= ⎜ ⎟− −⎝ ⎠

A                                      (B.12) 

So that 
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( ) 0 0 1

0 1 2

s
s

s

⎛ ⎞ ⎛ ⎞
− = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

I A      (B.13) 

or 

( ) 1

1 2

s
s

s

−⎛ ⎞
− = ⎜ ⎟+⎝ ⎠

I A                                (B.14) 

The inverse of equation (B.14) can be obtained by using the adjoint and determinant 

of ( )s −I A : 

( ) ( )
( )

1  adj s
s

Det s

− −
− =

−
I A

I A
I A

                           (B.15) 

or 

( ) ( )( )
1

2 1

1

2 1

s

s
s

s s

−

+⎛ ⎞
⎜ ⎟−⎝ ⎠− =

+ +
I A                                     (46a) 

or 

( )
2 2

1

2 2

2 1

2 1 2 1
1

2 1 2 1

s

s s s ss
s

s s s s

−

+⎛ ⎞
⎜ ⎟+ + + +− = ⎜ ⎟

−⎜ ⎟⎜ ⎟+ + + +⎝ ⎠

I A                              (46b)  

The inverse Laplace transform of the matrix elements in equation (46b) can be 
found from Laplace transform tables or by using the Heaveside expansion 

theorem.  For example, consider the entry in the 12a  position of equation (46b).  

We find from Table 8.1 of Varma and Morbidelli[3] that 

1
2

1

( 1)
tte

s
− −⎧ ⎫

=⎨ ⎬+⎩ ⎭
                                  (B.16) 

This result can also be obtained from equation 8.3.20 in Varma and Morbidelli: 

1

1

( )   ( )
( 1)!

m
j j bt

j

B
f t t e r t

j
−

=

= +
−∑         (B.17) 

Where jB  is given by equation 8.3.16 of Varma and Morbidelli[3] and ( )r t is 

zero for our case.  For this case, 2 ( 1m s= = −  is a root of 2( 1)s +  and is 

repeated twice, thus 1)b = − .  Expanding equation (B.17) yields 
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1 2( )    
0! 1!

t tB B
f t e te− −= +  (B.18) 

where 

1
1

1

1! s

dW
B

ds =−

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                                    (B.19) 

( )2 1

1

0! s
B W =−=                                  (B.20) 

with 

2

2

( 1)
1

( 1)

s
W

s

+= =
+

                               (B.21) 

Thus 

1 0B =                                            (B.22) 

since 0dW
ds =  and 

2 1B =                                                 (B.23) 

Thus, equation (B.18) becomes 

( ) (0) t t tf t e te te− − −= + =                             (B.24) 

Now determine the inverse Laplace transform of the element in the 11a  position 

in equation (46b): 

1
2

2
?

2 1

s

s s
− +⎧ ⎫ =⎨ ⎬+ +⎩ ⎭
  (B.25) 

Equation (B.17) applies in this case also where now (see equation 8.3.12 of Varma 
and Morbidelli)[3] 

2

2

( 1)
( 2) ( 2)

( 1)

s
W s s

s

+= + = +
+

 (B.26) 

Thus, in this case 

1
1 1

( 2)
1

s s

dW d s
B

ds ds=− =−

+= = =  (B.27) 

or 
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1 1B =                                               (B.28) 

and 

2 1
( 2) 1

s
B s =−= + =                                (B.29) 

So that 

( ) t tf t e te− −= +                               (B.30) 

Thus, after determining the inverse Laplace transform of the elements in the 21a  

and 22a  positions in equation (46b) we find that 

{ }1 1( )
t t t

t t t

e te te
s

te e te

− − −
− −

− − −

⎛ ⎞+
− = ⎜ ⎟− −⎝ ⎠

I A                       (B.31) 

which is the same expression we obtained before (see equation (B.31)) 
for exp( ).tA  

The solution to equation (B.1) with A given by using equation (B.12) is 

( ) ( )exp 0At=y y                                (B.32) 

For example, if 

( ) [ ]0 1 0
T=y                                       (B.33) 

then 

t t

t

e te

te

− −

−

⎛ ⎞+⎛ ⎞
= = ⎜ ⎟⎜ ⎟ −⎝ ⎠ ⎝ ⎠

1

2

y
y

y
 (B.34) 

As an additional observation, note that the equation used to determine the 
characteristic polynomial for determining the eigenvalues of a coefficient matrix 

( )Det 0λ − =I A                                     (B.35) 

is the same equation as 

( )Det 0s − =I A                                       (B.36) 

with λ  replaced by s  which is the denominator in equation (B.15).  This tells us 
that the eigenvalues of a matrix A  have the same values as the node or pole 
values (i.e., the s  values).  For example, in the characteristic polynomial for the 
eigenvalues for the coefficient A  given in equation (B.2) is 

( )Det 0λ − =I A                                   (B.37) 
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which becomes  

1 0 1 0
Det 0

0 1 1 2
λ
⎛ ⎞⎛ ⎞ ⎛ ⎞

− =⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠⎝ ⎠
                (B.38) 

1 0
Det 0

1 2

λ
λ

−⎛ ⎞
=⎜ ⎟+ +⎝ ⎠

 (B.39) 

or 

( )2 1 0λ λ + + =                                   (B.40) 

or 

2 2 1 0λ λ+ + =                                 (B.41) 

or 

( )2
1 0λ + =                                       (B.42) 

and finally we have  

1 21 and 1λ λ= − = −                              (B.43) 

Clearly, one can replace λ  with s  in equation (B.37) to find that we have 
repeated poles or nodes: 

1 21 and 1s s= − = −                                (B.44) 

These poles are the roots of the denominator of all the elements in equation (46b).  
It is important to note that both the eigenvalue characteristic polynomial and the 
characteristic polynomial of the denominator in a Laplace transform function are 
both based on the coefficient matrix A . The two procedures (matrix exponential 
and Laplace transform) yield the same time dependent solutions to the original 
system of differential equations, as expected.  The matrix exponential approach 
requires finding the eigenvalues and eigenvectors, and the Laplace transform 
technique requires finding the inverse of the Laplace transform.  This handout 
demonstrates that the methods are related. 
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Chapter 3 

Boundary Value Problems 

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of 
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the 
steady state distribution of heat or concentration across the slab or the material in 
which the experiment is performed.  This steady state process involves solving 
second order ordinary differential equations subject to boundary conditions at two 
ends.  Whenever the problem requires the specification of boundary conditions at 
two points, it is often called a two point boundary value problem.  Both linear and 
nonlinear boundary value problems will be discussed in this chapter.  We will 
present analytical solutions for linear boundary value problems and numerical 
solutions for nonlinear boundary value problems. 

3.1   Linear Boundary Value Problems 

3.1.1   Introduction 

Fick’s law of diffusion and Fourier’s law of conduction are usually represented by 
second order ordinary differential equations (ODEs).  In this chapter, we describe 
how one can obtain analytical solutions for linear boundary value problems using 
Maple and the matrix exponential. 

3.1.2   Exponential Matrix Method for Linear Boundary Value 
Problems 

Consider a general boundary value problem 

2

1 22

d y dy
a a y f(x)

dx dx
+ + =  (3.1) 

with the boundary conditions  

y(0) = 1                                             (3.2) 
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and  

dy
(1) 0

dx
=                                             (3.3) 

Equation (3.1) can be converted into two first order differential equations (see 
section 2.1.4) and can be cast into matrix form as follows: 

d
+ (x)

dx
=Y

AY b                               (3.4) 

where the dependent variable vector is  

y
 dy

dx

⎡ ⎤
⎢ ⎥=
⎢ ⎥
⎣ ⎦

Y                                            (3.5) 

the coefficient matrix is 

2 1

0 1

a a

⎡ ⎤
= ⎢ ⎥− −⎣ ⎦

A                                       (3.6) 

and the forcing function matrix is 

0

f(x)

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

b                                            (3.7) 

Equation (3.4) is a nonhomogeneous vector differential equation (see section 2.1.3).  
The solution for equation (3.4) is given by  (see Appendix A)[1] [2] [3] [4] [5] 

x

0

exp ( x) exp[ ( x)] ( ) d= + − ζ − ζ ζ∫0Y A Y A b                 (3.8a) 

or when b is a constant vector 

1 1exp( x)( )− −= + −0Y A Y A b A b  (3.8b) 

or when b is zero 

 exp ( x)  = 0Y A Y                                    (3.8c) 

where ζ  is a dummy variable of integration.  The procedure involved for solving 

boundary value problems using the matrix exponential (exp(Ax) is as follows: 
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1. Start the Maple program with a 'restart' command to clear all variables. 
2. Call 'with(linalg)' and 'with(lplots)' commands. 
3. Enter the governing equation (equation (3.1)). 
4. Enter the coefficient matrix (A) based on equation (3.6). 
5. Enter the forcing function matrix (b) based on equation (3.7). 
6. Store the initial conditions for the dependent variables in the vector Y0.   

6a. The first row of Y0 corresponds to the initial condition for y, the 

second row corresponds to the initial condition for the derivative,
dy

dx
.   

6b. Usually either y or 
dy

dx
 at x = 0 is known.  The unknown initial 

condition at x = 0 is taken as an unknown constant c1. 
7. The matrix exponential (exp(Ax)) is found as a function of the parameters 

and the independent variable (x) using the 'exponential(A,x)' command in 
Maple. 

8. The matrix exponential found is stored in mat.  Now the solution (sol) is 
found by multiplying mat times Y0 and adding the non-homogenous 
solution according to equation (3.8) depending on the b matrix. 

9. The first row of sol corresponds to the dependent variable y; the second 
row corresponds to the first derivative of y, etc. 

10. Next, the boundary condition at x =1 is used to solve for the unknown 
constant c1. 

11. Then c1 is substituted into the solution. 

Once the analytical solution is obtained, plots can be made for a particular value 
of the parameters. 

Example 3.1 

Consider the conduction of heat in a rectangular cooling fin.  The governing 
differential equation[6] in dimensionless form is  

2
2

2

d
H

dx
d

(0) 1 and (1) 0
dx

θ = θ

θθ = =
 (3.9) 

This boundary value problem is solved below by following the procedure 
described earlier. 
 

> restart: 
> with(linalg):with(plots): 
> N:=2; 
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> eq:=diff(theta(x),x$2)-H^2*theta(x); 

 

> A:=matrix(N,N,[0,1,H^2,0]); 

 

> mat:=exponential(A,x); 

 

The exponentials are converted to trigonometric form for convenience. 

> mat:=map(convert,mat,trig); 

 

> Y0:=matrix(N,1,[1,c[1]]); 

 
> sol:=evalm(mat&*Y0); 

 

The solution is obtained as a function of x, H, and the unknown initial condition 1c .  

The first row of sol corresponds to θ  and the second row corresponds to 
θ

dx
.  
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> theta:=sol[1,1]; 

 

> dthetadx:=sol[2,1]; 

 

The boundary condition at x = 1 is applied to solve for 1c . 

> bc2:=subs(x=1,dthetadx)=0; 

 
> c[1]:=solve(bc2,c[1]); 

 

The value of the constant 1c is substituted into the expression for θ . 

> theta:=eval(theta); 

 

The expression for θ  can be simplified further by using Maple's 'combine' 
command: 

> theta:=combine(theta); 

 

You can make plots for different values of the heat transfer coefficient, H, by 
using a 'pars' array and a ‘do loop.’ 

> pars:=[1,2,5,10]; 
 

> clr:=[red,green,gold,blue];  

> for i from 1 to 4 do p[i]:=plot(subs(H=pars[i],theta),x=0..1,color=clr[i]):od: 
> display(seq(p[i],i=1..4),thickness=4,title="Figure 3.1",axes=boxed,labels 
=["X","theta"],labeldirections=[HORIZONTAL,VERTICAL]); 
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Fig. 3.1 

 

A three dimensional plot for θ  can be made for different values of H as x varies 
between zero and one. 

> plot3d(theta,x=0..1,H=0..10,axes=boxed,title="Figure 3.2", 
orientation=[45,45]); 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.2 
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The above picture shows that as H increases the temperature distribution becomes 
nonuniform. 

Example 3.2 

Diffusion with a convection and simultaneous first order reaction in a rectangular 
plate can be simulated using the program described above by using minor 
modifications. Consider the composition profile in a packed tube reactor undergoing 
isothermal linear kinetics with axial diffusion. The governing equation is 

( )

2

2

x  0

d C dC
Pe HaC 0

dx dx

dC
Pe 1 C(0) 0

dx

dC
(1) 0

dx

=

− − =

+ − =

=

 (3.10) 

Solving this boundary value problem by hand is difficult and the solution for this 
problem is very long.  This boundary value problem is solved below easily by 
following the procedure described earlier. 

> restart: 
> with(linalg):with(plots): 
> N:=2; 

 

> eq:=diff(C(x),x$2)-Pe*diff(C(x),x)-Ha*C(x); 

 

> A:=matrix(N,N,[0,1,Ha,Pe]); 

> mat:=exponential(A,x); 
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Note that for this boundary value problem both C and 
dC

dx
at x 0=  are not 

known.  However, using the boundary condition at x 0= , 
dC

dx
  can be written in 

terms of the unknown constant c1, which is the concentration at x 0= . 
 

> Y0:=matrix(N,1,[c[1],-Pe*(1-c[1])]); 

 

> sol:=evalm(mat&*Y0): 
> C:=sol[1,1]; 

 

 

 

 
 

> dCdx:=sol[2,1]; 
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To find 1c , we can use the known boundary condition at x 0= . 

> bc2:=subs(x=1,dCdx)=0; 
 

 

 

 

The equation for 1c can be solved easily by using Maple's 'solve' command. 

> c[1]:=solve(bc2,c[1]); 

 

 

 

Now that we have 1c ,  the complete solution can be determined for C by using 

Maple's 'eval' command: 
 

> C:=eval(C); 
 

 

 

 

 

 

 



178 3   Boundary Value Problems
 

 

 

 

 

 
 

Next, one can plot the concentration profile by substituting values for the 
parameters Ha and Pe: 

> pars:={Ha=1,Pe=10}; 

 

> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"], 
title="Figure 3.3"); 

 
Fig. 3.3 
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New plots can be made for different sets of parameters such as: 

> pars:={Ha=1,Pe=50}; 
> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"], 
color=green,title="Figure 3.4"); 

 

 

Fig. 3.4 

 
When we get weird plots, we can solve this problem by increasing the number of 
digits as: 

> Digits:=30; 

 

> plot(subs(pars,C),x=0..1,thickness=4,axes=boxed,labels=[x,"C"],color=gold, 
title="Figure 3.5"); 
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Fig. 3.5 
 

3.1.3   Exponential Matrix Method for Linear BVPs with  
Semi-infinite Domains 

The methodology developed in section 3.1.2 can be used for semi-infinite 
boundary conditions, also.  The procedure for solving boundary value problems in 
semi-infinite domain is as follows: 

1. Start the Maple program with a 'restart' command to clear all variables. 
2. Call 'with(linalg)' and 'with(lplots)' commands. 
3. Enter the governing equation. 
4. Enter the coefficient matrix (A) based on equation (3.6). 
5. Enter the forcing function matrix (b) based on equation (3.8). 
6. Store the initial conditions for the dependent variables in the matrix Y0.   
7. The first row of Y0 corresponds to the initial condition for y, the second 

row corresponds to the initial condition for the derivative,
dy

dx
.   

8. Usually either y or 
dy

dx
 at x = 0 is known.  The unknown initial condition 

at x = 0 is taken as an unknown constant c1. 
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9. The matrix exponential (exp(Ax)) is found as a function of the parameters 
and the independent variable (x) using the ‘exponential(A,x)’ command in 
Maple. 

10. The matrix exponential found is stored in mat.  Now the solution (sol) is 
found by multiplying mat with Y0 and adding the non-homogenous 
solution according to equation (3.8) or (3.9) depending on the b matrix. 

11. The first row of sol corresponds to the dependent variable y; the second 
row corresponds to the first derivative of y, etc.   

12. Next, the unknown constant c1 is found by using the fact that the solution 
obtained is finite when x tends to infinity. 

13. Then, c1 is substituted into the solution. 
 

Once the analytical solution is obtained, plots can be made for particular values of 
the parameters. 

Example 3.3 

Consider diffusion with a first order reaction in a semi-infinite plane: 

2

2

d C
D1   kC

dx

C(0) 1 and C( ) is defined 

−

= ∞
 (3.11) 

where C is the dimensionless concentration, 1D , is the diffusion coefficient and k 

is the rate constant.  This equation is solved below using the procedure described 
above. 
 
> restart: 
> with(linalg):with(plots): 
> N:=2; 

 

> eq:=diff(C(x),x$2)-k/D1*C(x); 

 

> A:=matrix(N,N,[0,1,k/D1,0]); 
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> mat:=exponential(A,x); 

 
> Y0:=matrix(N,1,[1,c[1]]); 

 

> sol:=evalm(mat&*Y0); 

 

> C:=sol[1,1]; 

 
This can be rewritten as 

> C:=collect(C,exp(1/D1*(D1*k)^(1/2)*x)); 

 
> C:=collect(C,exp(-1/D1*(D1*k)^(1/2)*x)); 

 
Since C is finite as x tends to infinity, the second parenthesis must go to zero 
because exp(x) goes to infinity as x goes to infinity.  Consequently, the equation 

for 1c  can be found by setting the coefficient of the second term equal to zero: 
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> eqbc:=coeff(C,exp(1/D1*(D1*k)^(1/2)*x)); 

 

> c[1]:=solve(eqbc,c[1]); 

 

Thus, the desired solution for C is simply: 

> C:=eval(C); 

 

Plots can be made by substituting values for the parameters 1D  and k: 

> pars:={D1=1e-5,k=1}; 

 

> plot(subs(pars,C),x=0..1e-2,labels=[x,"C"],thickness=4,axes=boxed, 
title="Figure 3.6"); 

 

Fig. 3.6 
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New plots can be made by substituting different values for the parameters. 

> pars:={D1=1e-7,k=1}; 

  

> plot(subs(pars,C),x=0..1e-2,labels=[x,"C"],thickness=4,axes=boxed, 
color=black,title="Figure 3.7"); 

 

 
Fig. 3.7 

 
We observe that as the diffusion coefficient decreases mass transfer limitations 
increase the length of the diffusion layer (distance required for C to drop to 
approximately 0) which decreases as expected. 

3.1.4   Use of Matrizant in Solving Boundary Value Problems 

Consider the matrix differential equation  

d
(t)

dt
=Y

A Y                                      (3.12) 

with a known initial condition of Y0.  Note that in equation (3.12) the coefficient 
matrix depends on t.  The solution for this matrix equation is given by[1] [7] [4]  

( )= Ω 0Y A Y                                           (3.13) 
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where the matrizant Ω(A) is given by 

[ ] [ ] [ ]
1tt

t

1 1 1 2 2 10
0 0

( ) (t )dt (t ) (t )dt   dt   ......
⎡ ⎤⎡ ⎤

Ω = + + +⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

∫ ∫ ∫A I A A A 

  

(3.14) 

where I is the identity matrix.  This matrizant Ω(A) reduces to the exponential 
matrix exp(At) when A is a constant matrix. This method is also referred as 
Picard’s method or the successive substitution method. 

The procedure for solving linear initial value problems using the matrizant is 
the same as that in section 2.1.2 except that instead of finding the exponential 
matrix, the matrizant is found. 

Example 3.4 

To illustrate the process of using the matrizant, consider the initial value problem 

dc
tc

dt

c(0) 1

= −

=
                                         (3.15) 

This equation is solved in Maple by finding the matrizant below. 

> restart: 
> with(linalg):with(plots): 
Warning, the protected names norm and trace have been redefined and 
unprotected 
 
Warning, the name changecoords has been redefined 
 
> N:=1; 

 

Enter the number of terms used in calculating the matrizant.  (Usually six terms 
are sufficient). 

> nvars:=6; 

 

> Eq:=diff(c(t),t)=-t*c(t); 

 

> A:=matrix(1,1,[-t]); 
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> Y0:=matrix(1,1,[1]); 

 

> id:=Matrix(N,N,shape=identity); 

 

Define the two dummy variables 
1 2X and X . 

> X1:=matrix(N,N);X2:=matrix(N,N); 

 

 

A dummy variable 1t  is used in the integration.  For matrix integration, Maple's 

'map' command should be used. 

> X1:=map(int,subs(t=t1,evalm(A)),t1=0..t); 

 

> mat := evalm(id + X1) ; 

 

We now have the first two terms of the matrizant.  The next step is to find the next 
five terms.  A 'do loop' can be written to find the matrizant: 

> for i from 2 to nvars do S:=evalm( subs(t=t1,evalm(A))&*subs(t=t1, 
evalm(X1)) ):X2:=map(int,S,t1=0..t):mat := evalm(mat +X2) : 
X1:=evalm(X2):od : evalm(mat) ; 

 
> sol:=evalm(mat&*Y0); 

 
> C:=sol[1,1]; 

 
Thus, the process yields a series solution in t for C. This solution can be compared 
to the series solution given by Maple's 'dsolve' command: 
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> 'dsolve'({Eq,c(0)=1},c(t),type=series); 

 

By default, Maple gives a series solution accurate to the order of 6t .  The order of 
the series solution can be increased by using Maple's order specification as: 

> Order:=14; 

 

> 'dsolve'({Eq,c(0)=1},c(t),type=series); 

 
We observe that the series solution obtained using the matrizant method matches 
exactly with the series solution given by Maple's 'dsolve' command. 

Example 3.5 

The method described for example 3.4 can be used to solve boundary value 
problems.  Consider the boundary value problem given by the Airy differential 
equation: 

2

2

d y
xy

dx

dy
y(0) 1 and (1) 0

dx

=

= =

 (3.16) 

The procedure for solving this boundary value problem is the same as that of 
section 3.1.2 but instead of the exponential matrix, the matrizant must be used. 
 

> restart: 
> with(linalg):with(plots): 
Warning, the protected names norm and trace have been redefined and 

unprotected 

Warning, the name changecoords has been redefined 

> N:=2; 

 

> nvars:=6; 
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> Eq:=diff(y(x),x$2)=x*y(x); 

 

> A:=matrix(2,2,[0,1,x,0]); 

 

> Y0:=matrix(N,1,[1,c[1]]); 

 

> id:=Matrix(N,N,shape=identity); 

 

> X1:=matrix(N,N);X2:=matrix(N,N); 

 

 

> X1:=map(int,subs(x=x1,evalm(A)),x1=0..x); 

 

> mat := evalm(id + X1) ; 

 

> for i from 2 to nvars do 
S:=evalm( subs(x=x1,evalm(A))&*subs(x=x1,evalm(X1)) ):X2:= 
map(int,S,x1=0..x):mat := evalm(mat +X2) : 
X1:=evalm(X2):od :  
> evalm(mat) ; 
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> sol:=evalm(mat&*Y0); 

 
> y:=sol[1,1]; 

 
> dydx:=sol[2,1]; 

 
Now the unknown constant c1 is solved by using the boundary condition at x = 1. 

> bc2:=subs(x=1,dydx)=0; 

 

> c[1]:=solve(bc2,c[1]); 

 

> y:=eval(y); 

 
Readers can verify this series solution with the series solution obtained by using 
Maple's 'dsolve' command. 

Example 3.6 

Next, the classical problem of diffusion with reaction in a cylindrical catalyst 
pellet is considered:[8] [4]  

21 d dc
x c 0

x dx dx

dc
(0) 0 and c(1) 1

dx

⎛ ⎞ − φ =⎜ ⎟
⎝ ⎠

= =

 (3.17) 

where c is the dimensionless concentration and φ is the Thiele modulus. When this 
boundary value problem is cast into the matrix form (equation (3.6)), the matrizant 
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involves integration of 
1

x
 from 0 to 1.  This problem can be treated by using a 

logarithm variable transform as shown by Subramanian, Haran, and White[4] or 
this can be handled by integrating from x0 to x and applying the limit command 
for x0.  We introduce the following variables for convenience: 

1

2

c y

dc
x y

dx

=

=
                                         (3.18) 

This transformation converts equation (3.17) to the following system of first order 
ODEs: 

1
2

2 22
1

dy dc 1 dc 1
x y

dx dx x dx x

dy d dc
x xc xy

dx dx dx

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

⎛ ⎞= = φ = φ⎜ ⎟
⎝ ⎠

 (3.19) 

Next, equation (3.19) can be converted to the matrix form as 

d
(x)

dx
=Y

A Y                                    (3.20) 

where the dependent variables are 

1

2

c
y

 dc
y x

dx

⎡ ⎤⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Y                                   (3.21) 

and the coefficient matrix A is given by 

2

1
0

x
x 0

⎡ ⎤
⎢ ⎥=
⎢ ⎥
φ⎣ ⎦

A                                       (3.22) 

The initial condition vector is 

1c
 

0

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0Y                                          (3.23) 

Equation (3.19) can be solved below by finding the matrizant in the manner 
described above. 
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> restart: 
> with(linalg):with(plots): 
> N:=2; 

For brevity, only four terms are used for calculating the matrizant in this example.   

> nvars:=4; 

> Eq:=1/x*diff(x*diff(c(x),x),x)=phi^2*c(x); 

 

Enter the A matrix (equation (3.22)). 

> A:=matrix(2,2,[0,1/x,phi^2*x,0]); 

 

> Y0:=matrix(2,1,[c[1],0]); 

 

> id:=Matrix(N,N,shape=identity); 

 
> X1:=matrix(N,N);X2:=matrix(N,N); 

 

 

> X1:=map(int,subs(x=x1,evalm(A)),x1=0..x); 

 

To avoid the singularity in 1X ,  integrate from 0x  to x and later find the limit as 

0x  goes to zero. 

 
 



192 3   Boundary Value Problems
 

> X1:=map(int,subs(x=x1,evalm(A)),x1=x0..x)assuming x>0,x0>=0,x>=x0; 

 

> mat := evalm(id + X1) ; 

 

> for i from 2 to nvars do 
S:=evalm( subs(x=x1,evalm(A))&*subs(x=x1,evalm(X1)) ):X2:= 
map(int,S,x1=x0..x):mat := evalm(mat +X2) : 
X1:=evalm(X2):od :  
> evalm(mat)assuming x>0,x0>=0,x>=x0; 

 

 

 

 

 

 

 

> sol:=evalm(mat&*Y0); 

 

> C:=sol[1,1]; 
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> dCdx:=1/x*sol[2,1]; 

 

To find 1c  apply the boundary condition at x 1= : 

> bc2:=eval(subs(x=1,C))=1 assuming x>0,x0>=0,x>=x0; 

Warning, unable to determine if 0 is between x0 and x1; try to use assumptions or 

set _EnvAllSolutions to true 

 

 

> c[1]:=solve(bc2,c[1]); 

 

> C:=eval(C); 

Warning, unable to determine if 0 is between x0 and x; try to use assumptions or 

set _EnvAllSolutions to true 

Warning, unable to determine if 0 is between x0 and x1; try to use assumptions or 

set _EnvAllSolutions to true 

 
Now apply the limit command for x0. 

> Warning, premature end of input, use <Shift> + <Enter> to avoid this 
message. 

> C:=limit(C,x0=0); 

 

Divide both numerator and denominator by 64.  (Note when different values of 
'nvars' are used, this number has to be changed accordingly.) 
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> n1:=numer(C)/64; 

 

> d1:=denom(C)/64; 

 

> C:=n1/d1; 

 

One can verify that both the numerator and the denominator of C are modified 
Bessel functions of the order zero by using Maple. 

> series(BesselI(0,phi*x),x); 

 

> series(BesselI(0,phi),phi); 

 

Next, plots can be obtained by substituting the parameters for the Thiele modulus φ . 

> pars:=[0.1,1,2,10]; 

 
> clr:=[red,green,blue,brown]; 

 
> for i to 4 do p[i]:=plot(subs(phi=pars[i],C),x=0..1,color=clr[i]):od: 
> pt[1]:=textplot([0.1,evalf(subs({x=0.1,phi=pars[1]},C)),'phi=pars[1]'], 
align=below): 
pt[2]:=textplot([0.4,evalf(subs({x=.4,phi=pars[2]},C)),'phi=pars[2]'], 
align=below): 
pt[3]:=textplot([0.5,evalf(subs({x=.5,phi=pars[3]},C)),'phi=pars[3]'], 
align=below): 
pt[4]:=textplot([0.8,evalf(subs({x=0.8,phi=pars[4]},C)),'phi=pars[4]'], 
align=below): 
> display({seq(p[i],i=1..4),seq(pt[i],i=1..4)},axes=boxed,thickness=3, 
title="Figure 3.8",labels=[x,"C"]); 
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Fig. 3.8 
 

For higher values of φ, more terms (nvars) in the matrizant series solution are 

needed for higher accuracy. 

3.1.5   Symbolic Finite Difference Solutions for Linear Boundary 
Value Problems 

Consider a second order differential equation (equation (3.1)).  This equation can 
be converted to finite difference form (accurate to the order h2) as follows: 

i 1 i i 1 i 1 i 1
1 2 i2

y  2y y y y
a a y f(x ih), i 1..N

h 2h
+ − + −− + −+ + = = =          (3.24) 

where i is the index of the node points, N is the number of interior node points, 
and h is the node spacing defined by  

L
h

N 1
=

+
                                          (3.25) 

where L is the length of the domain.  Thus, x = 0 corresponds to the node point i = 
0 and x = L corresponds to the node point i = N+1.  The variable yi corresponds to 
the dependent variable at node point i.  Equation (3.24) is a system of N linear 
algebraic equations for N dependent variables (yi, i = 1..N).  The boundary values 
y0 and yN+1 are eliminated using the boundary conditions.  Equation (3.24) can be 
cast into matrix form as[5] 
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=AX B                                              (3.26) 

The solution to equation (3.26) can be obtained by inverting the A matrix (X = A-1B). 
The procedure for solving linear boundary value problems using finite difference is as 
follows: 

1. Start the Maple program with a 'restart' command to clear all variables. 
2. Call 'with(linalg)' and 'with(lplots)' commands. 
3. Enter the governing equation. 
4. Enter the number of interior node points, N. 
5. Enter the length of the domain, L. 
6. Convert the governing equations and boundary conditions to finite 

difference form. 
7. Eliminate the boundary values (y0 and yN+1) using the boundary conditions. 
8. Store the finite difference equations in eqs. 
9. Store the dependent variables, yi, i = 1..N in vars. 
10. Generate A matrix and B vector using Maple’s 'genmatrix' command. 
11. Find the solution by inverting the A matrix. 
12. Note that Maple can invert A when it is a function of parameters in the 

system (heat transfer coefficient, rate constants, etc.). 

Once the symbolic finite difference solution is obtained, plots can be made for 
particular values of the parameters. 

Example 3.7 

Consider the convective diffusion problem (Finlayson, 1980)[11] 
2

2

d c dc
Pe 0

dx dx
c(0) 1

c(1) 0

− =

=
=

                             (3.27) 

An analytical solution can be obtained using the exponential matrix method 
described in section 3.1.2:   

Pe Pex

Pe

e e  
c = 

e 1

−
−

                                         (3.28) 

This particular problem was chosen as the finite difference solution for this 
equation and shows oscillations for high Peclet numbers when the central 
difference expression is used for the first derivative. This equation is solved below 
using the procedure described above. 
 

> restart: 
> with(linalg):with(plots): 
> N:=4; 
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> L:=1; 

 

> eq:=diff(y(x),x$2)-Pe*diff(y(x),x); 

 

> bc1:=y(x)-1; 

 

> bc2:=y(x); 
 

Central difference expressions for the second and first derivatives are 

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2; 

 

> dydx:=(y[m+1]-y[m-1])/2/h; 

 

The governing equation in finite difference form is: 

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq); 

 

A 'for loop' can be written for the interior node points as 

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od; 

 

 

 

 

> Eq[0]:=y[0]=1; 
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> Eq[N+1]:=y[N+1]=0; 

 

> y[0]:=solve(Eq[0],y[0]); 

 

> y[N+1]:=solve(Eq[N+1],y[N+1]); 

 

> h:=L/(N+1); 

 

> for i to N do Eq[i]:=eval(Eq[i]);od; 

 

 

 

 

> eqs:=[seq(Eq[i],i=1..N)]; 

 

 

> vars:=[seq(y[i],i=1..N)]; 

 

> A:=genmatrix(eqs,vars,'B1'); 

 



3.1   Linear Boundary Value Problems 199
 

> evalm(B1); 

 

Maple generates a row vector, which can be converted to a column vector as: 

> B:=matrix(N,1):for i to N do B[i,1]:=B1[i]:od:evalm(B); 

 

The solution is obtained as: 

> X:=evalm(inverse(A)&*B); 

 

> for i to N do y[i]:=X[i,1];od; 
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> y[0]:=eval(y[0]);y[N+1]:=eval(y[N+1]); 

 

 
Next, the result obtained is compared with the exact analytical solution: 
> ya:=(exp(Pe)-exp(Pe*x))/(exp(Pe)-1); 

 

> p1:=plot([seq([i*h,subs(Pe=1,y[i])],i=0..N+1)],thickness=4,color=blue, 
axes=boxed): 
> p2:=plot(subs(Pe=1,ya),x=0..1,thickness=8,color=brown,axes=boxed, 
linestyle=2): 
> display({p1,p2},title="Figure 3.9",labels=[x,"y"]); 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3.9 
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We observe that both the finite difference solution and the analytical solution 
match exactly when the Peclet number is 1. New plots can be obtained for 
different values of the Peclet number as follows: 

 
> p1:=plot([seq([i*h,subs(Pe=50,y[i])],i=0..N+1)],color=blue,thickness=4, 
axes=boxed): 
> p2:=plot(subs(Pe=50,ya),x=0..1,thickness=5,color=brown,axes=boxed, 
linestyle=2): 
> display({p1,p2},title="Figure 3.10",labels=[x,"y"]); 

 

Fig. 3.10 

 
This shows that for Pe 50= , 4 interior node points are not enough and we 
observe oscillations.[11] [12] This happens usually when central difference 

approximations are used for the convective term 
dc

dx
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  Use a forward difference 

approximation for the first derivative to solve this problem.  Only dydx in the 
Maple program needs to be changed: 

 
> dydx:=(y[m]-y[m-1])/h; 

 := dydx
− y

m
y  − m 1

h
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The results obtained using this approximation is given below:  

 
Fig. 3.11 
 

 

 

 
Fig. 3.12 

 
We observe that when the forward difference accurate to the order h2 is used, 
even when the  Peclet number is 1, there is a slight discrepancy between the finite 
difference solution and the analytical solution.  However, when the Peclet number 

is high ( Pe 50= ) the forward difference scheme does not five an unrealistic 
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oscillation like the central difference scheme.  Note that for three digit accuracy 

with the analytical solution, N 40=  and 110 interior node points are required for 
central difference and forward difference approximations, respectively. 

>  

Example 3.8. Cylindrical Catalyst Pellet 

In the example discussed above, both the boundary conditions are of the Neumann 
type.  However, many problems involve derivative boundary conditions.  These 
problems can be handled by using the three point forward and backward 
differences at x = 0 and x = 1, respectively.  This is illustrated by solving the 
cylindrical pellet problem solved in example 3.6 with a different boundary 
condition at the surface ( x 1= ): 

dc
(1) 1 c(1) 

dx
= −                               (3.29) 

The Maple program developed for the previous example can be modified to 
handle the derivative boundary conditions: 
 
> restart: 
> with(linalg):with(plots): 
> N:=4; 

 

> L:=1; 

 

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)-phi^2*y(x); 

 

> bc1:=diff(y(x),x); 

 

> bc2:=diff(y(x),x)-1+y(x); 

 

The central difference expression for the second and first derivatives are 

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2; 
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> dydx:=(y[m+1]-y[m-1])/2/h; 

 

The three point forward and backward difference expressions for the derivative are: 

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h); 

 

> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h); 

 

The governing equation in finite difference form is: 

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq); 

 

The boundary conditions in finite difference form are: 

> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1); 

 

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2); 

 

A 'for loop' can be written for the interior node points as 

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od; 

 

 

 

 

> y[0]:=solve(Eq[0],y[0]); 
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> y[N+1]:=solve(Eq[N+1],y[N+1]); 

 

> h:=L/(N+1); 

 

> for i to N do Eq[i]:=eval(Eq[i]);od; 

 

 

 

 

> eqs:=[seq(Eq[i],i=1..N)]; 

 

     
> vars:=[seq(y[i],i=1..N)]; 

 

> A:=genmatrix(eqs,vars,'B1'); 

 

> evalm(B1); 
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Maple generates a row vector, which can be converted to a column vector as: 

> B:=matrix(N,1):for i to N do B[i,1]:=B1[i]:od:evalm(B); 

 

The solution is obtained as 

> X:=evalm(inverse(A)&*B); 

 
> for i to N do y[i]:=X[i,1];od; 

 

 

 

 

 

> y[0]:=eval(y[0]);y[N+1]:=eval(y[N+1]); 
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Now the result obtained is plotted for different values of the Thiele modulus Φ: 

> pars:=[0.1,0.5,1,2,5]; 

 

> clr:=[black,red,green,gold,blue]; 

 

> for j from 1 to 5 do  
p[j]:=plot([seq([i*h,subs(phi=pars[j],y[i])],i=0..N+1)], 
thickness=3,color=clr[j]):od: 
 

> pt:=textplot([seq([3*h,evalf(subs(phi=pars[j],y[3])-0.02),phi=pars[j]],j=1..5)]): 
> display({seq(p[i],i=1..5),pt},title="Figure 3.13",axes=boxed,labels=[x,y]); 

 
Fig. 3.13 
 
Now the result obtained is plotted for different values of Thiele modulus Φ.  The 

results obtained for N 10=  interior node points are given below. 
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Fig. 3.14 
 

Note that when the problem is stiff (Pe>1000, or Φ > 20), N > 20 node points 
might be needed for accurate solutions.  Consequently, inverting the A matrix 
symbolically involves lot of computational effort as the order of the matrix 
increases with N.  It is recommended that you specify the values for the 
parameters and convert the entries of the A matrix to decimal points using the 
following Maple command before the matrix inversion: 

> A:=map(evalf,A); 

3.1.6   Solving  Linear Boundary Value Problems Using Maple’s 
'dsolve' Command 

Maple’s 'dsolve' command can be used to solve linear boundary value problems. 
One of the advantages of using Maple’s 'dsolve' command is Maple can give Bessel 
and other special function solutions to linear boundary value problems. However, 
the analytical solution obtained from the 'dsolve' command may not be in simplified 
or elegant form. The syntax for using the 'dsolve' command is follows. 

'dsolve'({“differential equations, boundary conditions”},{“dependent variable”}) 

Example 3.9. Heat Transfer in a Fin 

The heat transfer problem solved in example 3.1 can be solved using Maple’s 
'dsolve' command as follows: 
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> restart: 
> with(plots): 
> eq:=diff(y(x),x$2)-H^2*y(x); 

 
> BCs:=y(0)=1,D(y)(1)=0; 

 

> sol:='dsolve'({eq,BCs},y(x)); 

 

The solution obtained can be stored in ya as: 

> ya:=rhs(sol); 

 

The solution can be converted to trigonometric form and simplified further as 

> ya:=convert(ya,trig); 

 

> ya:=combine(ya); 

 

We observe that 'dsolve' gives a long solution compared to the matrix exponential 
method (example 3.1).  As an exercise readers can verify that the solution 
obtained by the matrix exponential method and the solution obtained here using 
Maple’s 'dsolve' command are equivalent. 

Example 3.10. Cylindrical Catalyst Pellet 

The catalyst pellet problem solved in example 3.6 can be solved using Maple’s 
'dsolve' command as follows: 
 
> restart: 
> with(plots): 
> eq:=diff(c(x),x$2)+1/x*diff(c(x),x)-phi^2*c(x); 
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> BCs:=D(c)(0)=0,c(1)=1; 

 

> sol:='dsolve'({eq,BCs},c(x)); 

 

The solution obtained can be assigned as 

> Ca:=rhs(sol); 

 

Example 3.11. Spherical Catalyst Pellet 

Concentration distribution inside a spherical catalyst pellet is governed by the 
following equation: 

2
2

2

d c 2 dc
+ c 0

dx x dx

dc
(0) 0 and c(1) 1

dx

− Φ =

= =

 (3.30) 

This equation is solved below using Maple’s 'dsolve' command: 

> restart: 
> with(plots): 
> eq:=diff(c(x),x$2)+2/x*diff(c(x),x)-phi^2*c(x); 

 

> BCs:=D(c)(0)=0,c(1)=1; 
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> sol:=dsolve({eq,BCs},c(x)); 

 

Maple is not able to solve this problem directly.  We can solve this problem 
without specifying the boundary conditions: 

> sol:=dsolve({eq},c(x)); 

 

The solution obtained can be assigned as: 

> Ca:=rhs(sol[1]); 

 

Now if ya has to be finite at x = 0, _C2 should be zero. 

> _C2:=0; 

 

> Ca:=eval(Ca); 

 

Next, the boundary condition at x = 1 is used to solve for _C1. 

> bc2:=subs(x=1,Ca)-1; 

 

> _C1:=solve(bc2,_C1); 

 

> Ca:=eval(Ca); 

 

A three dimensional plot can be made as: 

> plot3d(Ca,x=0..1,phi=0..10,axes=boxed,orientation=[120,60], 
title="Figure 3.15",labels=[x,phi,"Ca"]); 
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Fig. 3.15 

3.1.7   Summary 

In this chapter, analytical solutions were obtained for linear boundary value 
problems.  In section 3.1.2, the given linear boundary value problem is converted 
to matrix form.  The analytical solution for this matrix differential equation was 
found by using the matrix exponential.  Maple provides the exponential matrix as 
a function of the independent variable and the parameters in the governing 
equations.  The unknown initial condition at x = 0 was taken as an unknown 
constant and found later using the boundary condition at x = 1.  This approach 
yields an elegant solution for linear boundary value problems.  This methodology 
is valid only if the coefficient matrix is constant.  This methodology was then 
extended for linear boundary value problems with semi-infinite domain in section 
3.1.3.  This is a powerful technique for solving linear boundary value problems in 
semi-infinite domains.   

In section 3.1.4, an analytical series solution using the matrizant was developed 
for the case where the coefficient matrix is a function of the independent variable.  
This methodology provides series solutions for Boundary value problems without 
resorting to any conventional series solution technique.  In section 3.1.5, finite 
difference solutions were obtained for linear Boundary value problems as a 
function of parameters in the system.  The solution obtained is equivalent to the 
analytical solution because the parameters are explicitly seen in the solution.  One 
has to be careful when solving convective diffusion equations, since the central 
difference scheme for the first derivative produces numerical oscillations.   

In section 3.1.6, linear Boundary value problems were solved using Maple’s 
'dsolve' command.  The solution obtained may not be in the simplified form.  
Maple gives the Bessel function and other special function solutions for linear 
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boundary value problems.  In our opinion, the exponential matrix method is the 
best method for linear boundary value problems. Maple’s 'dsolve' command 
should be used only if the coefficient matrix is a function of the independent 
variable.  While using the 'dsolve' command, it is better to find the constants 
separately instead of specifying the boundary conditions in the 'dsolve' command.  
Eleven examples were presented in this chapter. 

3.1.8   Exercise Problems 

1. Consider diffusion with a first order isothermal reaction in a rectangular 
pellet.[11] [8]. The governing equation and boundary conditions for 
concentration in dimensionless form are: 

2
2

2

d c
c

dx
dc

(0) 0 and c(1) 1
dx

= Φ

= =
 

where Φ is the Thiele modulus.  Solve this equation using exponential 
matrix method and plot the profiles for Φ = 0.1, 1, 2 and 10. 

2. Consider the diffusion reaction problem (problem 1) with a mass transfer 
resistance at the  surface.[6] [11] The governing equation and boundary 
conditions for dimensionless concentration are: 

[ ]

2
2

2

d c
c

dx
dc dc

(0) 0 and (1) Bi 1 c(1)
dx dx

= Φ

= = −
 

where Bi is the Biot number. Solve this equation using matrix exponential 
matrix method and plot the profiles for Φ = 0.1, 1, 2 and 10 for two 
different values for the Biot number (Bi = 1, 100).  Compare the results 
obtained with problem 1.  

3. Consider gas absorption with chemical reaction in an agitated tank.[13] The 
governing equation and boundary conditions for dimensionless concentration 
are given by: 

2
2

2

d c
c

dx
c(0) 1 and c(1) 0

= Φ

= =
 

where Φ is the Thiele modulus.  Solve this equation using exponential 
matrix method and plot the profiles for Φ = 0 and 1. 
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4. Consider steady state plug flow in a tubular reactor.[14] The governing 
equation and boundary conditions for dimensionless concentration are: 

( )

( )

2

2

d c dc
Pe PeDa c

dx dx
dc dc

(0) Pe c(0) 1  and (1) 0
dx dx

− =

= − =
 

where Pe is the Peclet number and Da is the Damkohler number.  Solve 
this equation using exponential matrix method. Plot the concentration 
profiles for Pe = 5 and Da = 1.  In addition plot the exit concentration 
(c(1)) as a function of Da for different values of Pe. 

5. Redo problem 4 if the boundary condition at x = 0 is c(0) = 1.  Plot the 
concentration profiles for Pe = 5 and Da = 1. How does the exit 
concentration compare with problem 4 for low and high values of Peclet 
number (for Da = 1)? 

6. Consider a linear electrochemical reaction inside a porous electrode.[15] [16]  
The dimensionless solid phase potential (Φ1) and electrolyte potential (Φ2) 
are governed by the macroscopic porous electrode theory: 

( )

( )

2
21

1 22

2
22

1 22

d β ν
dx 1 + β

d 1 ν
dx 1 + β

Φ = Φ − Φ

Φ = − Φ − Φ
 

where ν is the dimensionless current density and β is ratio of electrolyte 
conductivity to solid phase conductivity.  The boundary conditions are: 

1 1

2 2

dΦ dΦ
(0) 0; (1) δβ

dx dx
dΦ dΦ

(0) δ; (1) = 0
dx dx

= = −

= −
 

where δ is the dimensionless current density.  The voltage difference across 
the porous electrode is given by V = Φ1(1) - Φ2(0).  Solve this coupled 
system of equations using matrix exponential method and prove that two 

unknown initial condition constants at x 0=  cannot be solved using the 
above set of boundary conditions.  Alternatively, use the following set of 
boundary conditions: 

1 1

2 2
2

dΦ dΦ
(0) 0; (1) δβ

dx dx
dΦ dΦ

(0) 0; (0) δ; (1) 0
dx dx

= = −

Φ = = − =
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7. Solve the governing equations using the modified boundary conditions and 
obtain an analytical solution using the matrix exponential method.  Show 
that one of the two boundary conditions at x = 1 becomes redundant (i.e., 
automatically satisfied).  Plot the potential profiles inside the electrode for 
ν = δ = 1 and β = 0.1.   

8. Subtract the two equations in problem 6 to obtain a single equation for η = 
Φ1 - Φ2.  Obtain the boundary conditions for η and arrive at an analytical 
solution for η using the matrix exponential method. 

9. Consider steady state diffusion in a long a cylindrical annulus.[17] The 
governing equation and boundary conditions are: 

2

2

d c 1 dc
 0

dx x dx
c(1) 0 and c(2) 1

+ =

= =
 

10. To solve this equation using Maple’s 'dsolve' command, convert this 

equation to two first order equations for c and x
dc

dx
.  Integrate this system 

of equations by finding the matrizant (see examples 3.4, 3.5 and 3.6.  Note: 
integrate the equations from 1 to x instead of 0 to x).  Show that you get the 
same solution as Maple’s 'dsolve' command. 

11. Solve the same problem by writing down two first order equations for c and 

dc

dx
. Obtain the matrizant solution for 2,4, and 6 terms.  Show by plotting 

the profiles that the solution obtained approaches with the analytical solution 
as the number of terms in the matrizant increases.  This problem shows that 
we get more efficient solution for problems in cylindrical coordinates by 

solving for c and x
dc

dx
 instead of solving for c and 

dc

dx
.   

12. Consider heat transfer in a thin metallic circular fin.[18] The dimensionless 
temperature is governed by: 

2
2

2

d y 1 dy
 H y

dx x dx
y(1) 1 and y( ) 0

+ =

= λ =
 

where H is the dimensionless heat transfer coefficient and λ is the ratio of 
outer radius to inner radius.  Obtain an analytical solution for this problem 
using Maple’s 'dsolve' command.  

13. Obtain the series solutions for problem 9 by using the matrizant method 

and writing down two first order equations for c and 
dc

dx
.   
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14. Consider diffusion with reaction in a cylinder pellet.[18] The governing 
equation for dimensionless concentration is: 

( )

2
2

2

d c 1 dc
  y

dx x dx
dc dc

(0) and (1) Bi 1 c(1)
dx dx

+ = φ

= = −
 

where φ is the Thiele modulus and Bi is the Biot number.  Obtain an 
analytical solution for this problem using Maple’s 'dsolve' command. 

15. Redo problem 12 and find series solutions using matrizant method. 
16. Consider diffusion with reaction in a spherical pellet.[18] The governing 

equation for dimensionless concentration is: 

( )

2
2

2

d c 2 dc
 y

dx x dx
dc dc

(0) 0 and (1) Bi 1 c(1)
dx dx

+ = φ

= = −
 

where φ is the Thiele modulus.  Obtain an analytical solution for this 
problem using Maple’s 'dsolve' command. 

17. Consider the diffusion-reaction problem in a spherical particle discussed in 
example 3.  Obtain the series solutions for this problem using the matrizant 

method. Write down first order equations for c and x2 dc

dx
. Plot dimensionless 

concentration profiles for different values of Thiele modulus φ. 

18. Redo problem 14 by writing down first order equations for c and 
dc

dx
. 

How does the series solution obtained compare with that of problem 14?  
Which method is more efficient? 

19. Consider limiting current conditions in a rotating disk electrode.[15] The 
governing equation and boundary conditions for concentration are: 

2

2

bulk

d c dc
D  v 0

dz dz
c(0) 0 and c( ) c

− =

= ∞ =
 

where the velocity v is given by: 

1 3
22 2 v 0.51023 ν  Ω  z

−= −  
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Define 

1 3
2 2

D

0.51023 ν  Ωα
−

=  and 
bulk

c
u = 

c
 to obtain: 

2
2

2

d u du
z 0

dz dz
u(0) 0 and u( ) 1

+ α =

= ∞ =  

Replace ∝ by z = L.  Solve this problem by finding the matrizant.  Obtain 
your profiles for α = 0.1 and L = 5.  (Note that you might have to include 
more than 30 terms in the matrizant depending on the values of α and L). 

20. Solve problem 16 by using Maple’s 'dsolve' command (without specifying 
the boundary conditions).  Plot the two fundamental solutions obtained (f1, 
f2) from z = 0 to z = 1.  One of the two functions will be undefined at z = 0 
and the other function will be well-defined at z = 0 (one can verify this by 
plotting the fundamental solution).  Hence, the analytical solution is an 
arbitrary constant multiplied by the well-defined fundamental solution.  
Find this constant using the boundary condition at z = L.  Plot the solution 
obtained for α = 0.1 and L = 5. 

21. Consider a multi-component diffusion-reaction problem.[19] [4] [20] The 
governing equations for molar fractions of gas and liquid reactants inside a 
gas-fed porous electrode of a fuel cell are: 

2

12

2

22

d C1
k C1

dx

d C2
k C1

dx
C1(0) 0.21;D(C1)(1) 0

D(C2)(0) 0;C2(1) 0.127

=

=

= =
= =  

Obtain an analytical solution for this boundary value problem using matrix 
exponential method and plot the mole fraction profiles for k1 = 1, k2 = 0.1. 

3.2   Nonlinear Boundary Value Problems 

3.2.1   Introduction 

Heat, mass or momentum transfer in solids is typically represented by boundary value 
problems (boundary value problems). Variable diffusivity or thermal conductivity, 
nonlinear source terms or nonlinear boundary conditions make the boundary value  
 



218 3   Boundary Value Problems
 

problems nonlinear. In this chapter, series and numerical solutions are presented for 
nonlinear Boundary value problems using Maple.   

3.2.2   Series Solutions for Nonlinear Boundary Value Problems 

Series solutions for nonlinear boundary value problems can be obtained using 
Maple’s 'dsolve' command.  The syntax is  

'dsolve'({“differential equations, initial conditions”},{“dependent variable”}, 
type=series); 

Note that, the initial condition at x = 0 is provided for both the dependent variable 
and its derivative.  The unknown initial conditions are taken as constants.  These 
constants are then found using the boundary condition at x = 1. The series solution 
obtained may be convergent or divergent depending on the problem. 

Example 3.2.1. Series Solutions for Diffusion with a Second Order Reaction 

Consider diffusion with a second order reaction in a rectangular pellet.[18] The 
dimensionless concentration is governed by: 

2
2 2

2

d c
c

dx
= Φ                                         (3.31) 

with the boundary conditions: 

dc
(0) 0

dx
=                                        (3.32) 

and  

c(1) 1=                                             (3.33) 

where Φ is the Thiele modulus.  This boundary problem is solved in Maple below 
for different values of Φ.  The unknown initial condition c(0)  is taken as an 

unknown constant 1c . 
 

> restart: 
> with(plots): 

Enter the governing equation: 

> eq:=diff(c(x),x$2)=Phi^2*c(x)^2; 
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Enter the boundary condition at x = 1: 

>   bc:=c(x)-1; 

 

The series solutions are obtained assuming that 1c(0) c= : 

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series); 

 

The order of the series is increased to get more accurate solutions: 

> Order:=8; 

 

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series); 

 
The solution obtained is converted to polynomial form and stored in ca: 

> ca:=convert(rhs(sol),polynom); 

 

We observe that the series solution obtained is a function of Φ and 1c .  Now the 

boundary condition is evaluated using the solution obtained and substituting 
x 1= : 

> eqc:=subs(c(x)=ca,bc); 

 

> eqc:=subs(x=1,eqc); 

 

This is a nonlinear equation and cannot be solved explicitly: 

> solve(eqc,c1); 
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However, the solution can be obtained for a particular value of Φ: 

> solve(subs(Phi=0.1,eqc)); 

 
The 'solve' command takes too long to solve and gives complex roots.  Hence, the 
'fsolve' command is used to solve for the real values. 

> fsolve(subs(Phi=0.1,eqc),c1=1); 

 

Next, the constant 1c is solved for different values of Φ: 

> cc[1]:=fsolve(subs(Phi=0.1,eqc),c1=1)[2]; 

 

> cc[2]:=fsolve(subs(Phi=1,eqc),c1=1)[2]; 

 

> cc[3]:=fsolve(subs(Phi=2,eqc),c1=1)[2]; 

 

> cc[4]:=fsolve(subs(Phi=5,eqc),c1=1)[2]; 

 

Next, plots are made by substituting the values for 1c  and Φ: 

p1:=plot(subs(c1=cc[1],Phi=0.1,ca),x=0..1,thickness=3,color=red, 
axes=boxed): 
> p2:=plot(subs(c1=cc[2],Phi=1,ca),x=0..1,thickness=3,color=green, 
axes=boxed): 
> p3:=plot(subs(c1=cc[3],Phi=2,ca),x=0..1,thickness=3,color=gold, 
axes=boxed): 
> p4:=plot(subs(c1=cc[4],Phi=5,ca),x=0..1,thickness=3,color=blue, 
axes=boxed): 
> pt:=textplot([[0.5,subs(x=0.5,c1=cc[1],Phi=0.1,ca)-
0.05,[c1=cc[1],Phi=0.1]],[0.5,subs(x=0.5,c1=cc[2],Phi=1,ca)-
0.08,[c1=cc[2],Phi=1]],[0.5,subs(x=0.5,c1=cc[3],Phi=2,ca)-
0.1,[c1=cc[3],Phi=2]],[0.5,subs(x=0.5,c1=cc[4],Phi=5,ca)-
0.1,[c1=cc[4],Phi=5]]]): 
> display({p1,p2,p3,p4,pt},labels=[x,c],title="Figure 3.16"); 
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Fig. 3.16 
 

We observe that as Φ increases, the concentration profiles become steeper.  We 
have obtained the series solution for the given nonlinear boundary value problem.  
There is no guarantee that the solution has converged.  Accuracy of the solution 
can be analyzed by increasing the number of terms in the series solution and 

checking the values for 1c : 

> Order:=10; 

 

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series); 

 
> ca:=convert(rhs(sol),polynom); 

 
> eqc:=subs(c(x)=ca,bc); 
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> eqc:=subs(x=1,eqc); 

 
> fsolve(subs(Phi=0.1,eqc),c1=1); 

 

We observe that there are three different solutions of which only the last one 
makes sense: 

> cc2[1]:=fsolve(subs(Phi=0.1,eqc),c1=1)[3]; 

cc2
1
 := 0.9950412410 

> fsolve(subs(Phi=1,eqc),c1=1); 

 
For higher values of Φ, 'fsolve' produces only the correct solution: 

> cc2[2]:=fsolve(subs(Phi=1,eqc),c1=1); 

 
> cc2[3]:=fsolve(subs(Phi=2,eqc),c1=1); 

 
> cc2[4]:=fsolve(subs(Phi=5,eqc),c1=1); 

 

The constants 1c  obtained using eight terms and ten terms in the series are 

compared: 

> for i to 4 do print(cc[i],cc2[i]);od; 

 

 

 

 

For 0.1Φ =  and 1, we observe that the solution has converged to the third digit.  

For 2Φ = , the solution has converged to the first two digits.  For 5Φ = , we 
observe that the solution has not converged.  Hence, more terms are required in 
the series for higher values of Φ.  The series solution obtained using Maple may or 
may not converge.  The convergence of the solution depends on the parameters (as 
illustrated in this example), and the nonlinearity of the problem.  In the next 
example the non-isothermal reaction in a rectangular pellet is analyzed. 
>  
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Example 3.2.2. Series Solutions for Non-isothermal Catalyst Pellet – Multiple 
Steady States 

The dimensionless concentration in a non-isothermal catalyst pellet[8] is governed 
by: 

2
2

2

d c γβ(1 c)
c exp

dx 1 β(1 c)

⎛ ⎞−= Φ ⎜ ⎟+ −⎝ ⎠
 (3.34) 

with the boundary conditions: 

dc
(0) 0

dx
=  (3.35) 

and  

c(1) 1=  (3.36) 

This boundary value problem has multiple solutions for Φ = 0.2, β = 0.8 and γ = 
20.  The series solutions are obtained for this problem in Maple below: 
 

> restart: 
> with(plots): 

The governing equation is entered here: 

> eq:=diff(c(x),x$2)=Phi^2*c(x)*exp(gamma*beta*(1-c(x))/(1+beta*(1-c(x)))); 

 
The values for the parameters are entered here: 

> eq:=subs(gamma=20,beta=0.8,eq); 

 

The boundary condition at x 1=  is entered here: 

> bc:=c(x)-1; 

 

The order of the series solution is specified and the governing equation is solved 

as a function of 1c  the concentration at the center, and Φ: 

> Order:=8; 
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> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series); 

 
 

 

The series solution obtained is stored in ca: 

> ca:=convert(rhs(sol),polynom); 
 

 

 

The boundary condition at x 1=  is evaluated using the series solution obtained: 

> eqc:=subs(c(x)=ca,bc); 

 

 

> eqc:=subs(x=1,eqc); 

 

 

The equation for 1c  is plotted as a function of 1c .  We observe that there are four 

solutions: 

> plot(subs(Phi=0.2,eqc),c1=0..1,view=[0..1,-1..1],title="Figure 3.17", 
thickness=4); 
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Fig. 3.17 

 
The values for the constant 1c  are obtained using the 'fsolve' command. 

> cc[1]:=fsolve(subs(Phi=0.2,eqc),c1=1); 

 

> cc[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8); 

 

> cc[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0); 

 

> cc[4]:=fsolve(subs(Phi=0.2,eqc),c1=0.03); 
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We obtain four different solutions for 1c . These values for 1c  and Φ are substituted 

in the series solution obtained and plots are made: 

p1:=plot(subs(c1=cc[1],Phi=0.2,ca),x=0..1,thickness=4,color=black, 
axes=boxed): 
> p2:=plot(subs(c1=cc[2],Phi=0.2,ca),x=0..1,thickness=4,color=blue, 
axes=boxed): 
> p3:=plot(subs(c1=cc[3],Phi=0.2,ca),x=0..1,thickness=4,color=brown, 
axes=boxed): 
> p4:=plot(subs(c1=cc[4],Phi=0.2,ca),x=0..1,thickness=4,color=red, 
axes=boxed): 
> 
pt:=textplot([[0.3,evalf(subs(x=0.3,c1=cc[1],Phi=0.2,ca)+0.04),[c1=cc[1],Phi= 
0.2]],[0.3,evalf(subs(x=0.3,c1=cc[2],Phi=0.2,ca)+0.04),[c1=cc[2],Phi=0.2]], 
[0.3,evalf(subs(x=0.3,c1=cc[3],Phi=0.2,ca)+0.04),[c1=cc[3],Phi=0.2]]]): 
> display({p1,p2,p3,pt},title="Figure 3.18",labels=[x,c], 
view=[0..1,-0.01..1.05]); 

 

 
 
Fig. 3.18 
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> display(p4,labels=[x,c],title="Figure 3.19"); 

 
Fig. 3.19 
 
We observe that the first three values of 1c  make sense and we discard the fourth 

value.  There is no guarantee that the solution obtained is the converged one.  The 
accuracy and convergence of the series solution are analyzed below by increasing 
the number of terms in the series. 

> Order:=16; 

 

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series): 
> ca:=convert(rhs(sol),polynom): 
> eqc:=subs(c(x)=ca,bc): 
> eqc:=subs(x=1,eqc): 
> cc2[1]:=fsolve(subs(Phi=0.2,eqc),c1=1); 

 
> cc2[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8); 

 
> cc2[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0); 
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> for i to 3 do print(cc[i],cc2[i]);od; 

 

 

 

We observe that the first value for 1c  has converged and the next two values have 

not converged.  Next, the order is increased to 20. 
 

> Order:=20; 

 

> sol:='dsolve'({eq,c(0)=c1,D(c)(0)=0},{c(x)},type=series): 
> ca:=convert(rhs(sol),polynom): 
> eqc:=subs(c(x)=ca,bc): 
> eqc:=subs(x=1,eqc): 
> cc3[1]:=fsolve(subs(Phi=0.2,eqc),c1=1); 

 
> cc3[2]:=fsolve(subs(Phi=0.2,eqc),c1=0.8); 

 
> cc3[3]:=fsolve(subs(Phi=0.2,eqc),c1=0.0); 

 
> for i to 3 do print(cc[i],cc2[i],cc3[i]);od; 

 

 

 
We observe that the first value for 1c  has converged (three digit accuracy).  The 
second value of 1c  has converged to two digit accuracy.  The third value has not 
converged yet.  But, the order of magnitude for the third value of 1c  has 
converged.  Next, plots are made for three different values of 1c . 

p1:=plot(subs(c1=cc3[1],Phi=0.2,ca),x=0..1,thickness=4,color=black, 
axes=boxed): 
> p2:=plot(subs(c1=cc3[2],Phi=0.2,ca),x=0..1,thickness=4,color=blue, 
axes=boxed): 
> p3:=plot(subs(c1=cc3[3],Phi=0.2,ca),x=0..1,thickness=4,color=brown, 
axes=boxed): 
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> 
pt:=textplot([[0.3,evalf(subs(x=0.3,c1=cc3[1],Phi=0.2,ca)+0.04),[c1=cc3[1],
Phi=0.2]],[0.3,evalf(subs(x=0.3,c1=cc3[2],Phi=0.2,ca)+0.04),[c1=cc3[2], 
Phi=0.2]],[0.3,evalf(subs(x=0.3,c1=cc3[3],Phi=0.2,ca)+0.04),[c1=cc3[3], 
Phi=0.2]]]): 
> display({p1,p2,p3,pt},labels=[x,c],title="Figure 3.20",view=[0..1,-0.01..1.05]); 

  

 
 

Fig. 3.20 
 
Multiple steady states in a rectangular catalyst pellet were analyzed in this example.  
This problem will be revisited later in this chapter. 

3.2.3   Finite Difference Solutions for Nonlinear Boundary Value 
Problems  

The theory of finite difference solution for Boundary value problems was developed 
in section 3.1.5.  When finite difference approximations are used, the given nonlinear 
boundary value problem is converted to a system of nonlinear algebraic equations. 
This resulting system is solved in this section using Maple’s 'fsolve' command. 

Example 3.2.3. Diffusion with a Second Order Reaction 

Example 3.2.1 is solved using finite differences in Maple below.  The program 
developed for example 3.8 is modified to solve this example. (Note that y is used 
as the dependent variable instead of c).   
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> restart: 

> with(plots): 

The number of node points is entered here: 

> N:=4; 

 

The length of the domain is entered here: 

> L:=1; 
 

The governing equation is entered below: 

> eq:=diff(y(x),x$2)-Phi^2*y(x)^2; 

 

The boundary conditions are entered here: 

> bc1:=diff(y(x),x); 

 

> bc2:=y(x)-1; 

 

Next, a general program is written to convert the governing equation and the 
boundary conditions to finite difference form.  The central difference expression 
for the second and first derivatives are: 

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2; 

 

> dydx:=(y[m+1]-y[m-1])/2/h; 

 

Three point forward and backward difference expressions for the derivative are: 

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h); 
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> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h); 

 

The governing equation in finite difference form is: 

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq); 

 

The boundary conditions in finite difference form are: 

> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1); 

 

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2); 
 

A 'for loop' can be written for the interior node points as 

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od; 

 

 

 

 

The node spacing is given by: 

> h:=L/(N+1); 

 

The value for Φ is sustained in the governing equations.  The governing equations 
are stored in eqs: 

> eqs:=seq(eval(subs(Phi=1,Eq[i])),i=0..N+1); 
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The variables are stored in vars: 

> vars:=seq(y[i],i=0..N+1); 

 
The 'fsolve' command sometimes gives negative values when guess values for the 
dependent variables are not provided.  To avoid this, an initial guess of 1 is provided: 

> fsolve({eqs},{vars}); 

 
> vars:=seq(y[i]=1,i=0..N+1); 

 
> sol:=fsolve({eqs},{vars}); 

 
The solution obtained is assigned and plotted: 

> assign(sol): 
> plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,title="Figure 3.21", 
labels=[x,y]); 

 
Fig. 3.21 
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> y[0]; 

The accuracy of the solution obtained can be checked by following the 
concentration at the center y[0] and increasing the number of node points: 

> y[0]; 

 
The value for y[0] obtained with N = 10 interior node points is: 

> y[0]; 

.7123656510  

Hence, we conclude that the solution obtained has converged. The finite difference 
solution is an easy technique to apply. However, the number of node points required 
might increase drastically for stiff boundary value problems. 

3.2.4   Shooting Technique for Boundary Value Problem  

The shooting technique involves converting the given boundary value problem to 
a system of initial value problems.  The unknown initial conditions are guessed.  
These unknown conditions are then updated using the known boundary condition 

at x 1= .  In this technique, the unknown initial condition at x 0=  is estimated 
using an optimization procedure.  This is best illustrated using the next example.  

Example 3.2.4. Nonlinear Heat Transfer 

Consider a modification of the heat transfer discussed in example 3.1.1 with a 
nonlinear source term.  The governing equation is  

2

2

d y
(1 0.1y)y

dx
= +  (3.37) 

with the boundary conditions: 

dy
(0) 0

dx
=  (3.38) 

and  

y(1) 1=  (3.39) 

The initial condition, y(0) is taken as 

y(0) α=  (3.40) 

An initial value for α is guessed and the governing equation (3.37) is solved as an 
initial value problem. Then, a new value of α is obtained using the following 
relation.[6] [21] 
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( )
expected predicted,old

new old

predicted,old

old x 1
old

old
x 1

old

Boundary Condition at x 1 Boundary Condition at x 1
α α

d Boundary Condition at x  1

dα

y y(α )
        α

dy(α )
0

dα

        α

x =

=

⎡ ⎤
⎢ ⎥= − =
⎢ ⎥= +

=⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥−= + ⎢ ⎥
⎢ ⎥
⎣ ⎦

= old x 1

old

x 1

1 y(α )
dy(α )

dα

=

=

⎡ ⎤
⎢ ⎥−+ ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                                  

(3.41) 

In equation (3.41), the Jacobian olddy(α )
dα

 is often calculated numerically.  

However, the Jacobian can be predicted exactly by differentiating the governing 
equation (3.37) with respect to alpha as 

2

2

d dy dy dy
(1 0.1 )y (1 0.1y)

dx dα dα dα
⎛ ⎞ = + + +⎜ ⎟
⎝ ⎠

                   (3.42) 

Next, the Jacobian is treated as a variable 2y . 

2

2

d y2
(1 0.1y2)y (1 0.1y)y2

dx
= + + +         (3.43) 

The initial conditions for 2y  are obtained by differentiating equations (3.40) and 

(3.38) with respect to α: 

y2(0) 1=                                           (3.44) 

and 

( )dy2
0 0

dx
=                                       (3.45) 

This boundary value problem is solved in Maple below: 
 

> restart: 
> with(plots): 

Enter the governing equation: 

> eq:=diff(y(x),x$2)-(1+0.1*y(x))*y(x); 
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The sensitivity equation is developed by treating y as a function of x and α: 

> eqalpha:=subs(y(x)=Y(x,alpha),eq); 

 

The governing equation for the Jacobian is obtained by differentiating the 

governing equation with respect to α: 

> eqalpha:=diff(eqalpha,alpha); 

 

A new variable, y2(x) is used to present the Jacobian  

> eqalpha:=subs(diff(Y(x,alpha),alpha)=y2(x),eqalpha); 

 
> eqalpha:=subs(Y(x,alpha)=y(x),eqalpha); 

 
The variables are stored in vars: 

> vars:=(y(x),y2(x)); 

 

The original governing equation and the sensitivity equation are stored in eqs: 

> eqs:=(eq,eqalpha); 

 
The initial value for α is given here: 

> alpha0:=0.5; 

 

The initial conditions are stored in ICs: 

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 
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Next the numerical solution is obtained and stored in sol: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

The solution is evaluated at x 1= : 

> sol(1); 

 

 

The predicted value of y is stored in ypred: 

> ypred:=rhs(sol(1)[2]); 

 
The predicted value for the Jacobian is stored in y2pred: 

> y2pred:=rhs(sol(1)[4]); 

 
The new value for α is obtained as: 

> alpha1:=alpha0+(1-ypred)/y2pred; 

 
The error is calculated based on the value of α: 

> err:=alpha1-alpha0; 

 
The new value of α is then assigned to α0 for the next iteration. 

> alpha0:=alpha1;  

 
A program is written to update the values of α until the error is > 1e - 6.  One can 
set stricter tolerance limits for higher accuracy. 

> k:=1; 

 

> while err>1e-6 do 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
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> alpha1:=alpha0+(1-ypred)/y2pred; 
> err:=abs(alpha1-alpha0); 
> alpha0:=alpha1;k:=k+1; 
> end; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> k; 

 

Three iterations were required for this problem.  The error in α is found to be: 

> err; 

 

The solution obtained is then plotted: 

> odeplot(sol,[x,y(x)],0..1,axes=boxed,color=brown,title="Figure 3.22", 
thickness=4); 
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Fig. 3.22 

 
 

For this boundary value problem it takes only three iterations for the solution to 
converge.  Depending on the problem, and the initial guess provided, the program 
might take any number of iterations to converge.  In addition, for updating α 
(equation (3.41)) the Jacobian in the denominator might approach zero for certain 
problems.  Sometimes, it is necessary to scale the update of α using the following 
relation  

old x 1
new old

old

x = 1

1 y(α )α α  
dy(α )

dα

ρ =

⎡ ⎤
⎢ ⎥−= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

          (3.46) 

where ρ is the number between 0 and 1.  The lower the value of ρ the higher is the 
number of iterations required for convergence.  The value of ρ depends on the 
problem.  This is illustrated in the next example. 

Example 3.2.5. Multiple Steady States in a Catalyst Pellet 

The catalyst pellet problem solved in example 3.2.2 is solved here using the 
shooting technique.  The Maple program is given below: 
 

> restart: 
> with(plots): 

The governing equation is entered here (after substituting the parameter values): 

> eq:=diff(y(x),x$2)-0.04*y(x)*exp(16*(1-y(x))/(1+0.8*(1-y(x)))); 
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> eqalpha:=subs(y(x)=Y(x,alpha),eq): 
> eqalpha:=diff(eqalpha,alpha): 
> eqalpha:=subs(diff(Y(x,alpha),alpha)=y2(x),eqalpha): 

The sensitivity equation is: 

> eqalpha:=subs(Y(x,alpha)=y(x),eqalpha); 

 

 
The variables are stored in vars: 

> vars:=(y(x),y2(x)); 

 
The governing equations are stored in eqs: 

> eqs:=(eq,eqalpha); 

 

 

The boundary value problem has multiple solutions.  The solution obtained 
depends on the initial guess provided for α.  An initial guess of 0.9 is given: 

> alpha0:=0.9; 

 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 

 
> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10); 

 
> sol(1); 

 

 

 



240 3   Boundary Value Problems
 

> ypred:=rhs(sol(1)[2]); 

 
> y2pred:=rhs(sol(1)[4]); 

 
The new value of α is obtained as: 

> alpha1:=alpha0+(1-ypred)/y2pred; 

 
For this example, the error is calculated based on the boundary condition at x = 1. 

> err:=abs(1-ypred); 

 
> alpha0:=alpha1; 

 
> k:=1; 

 
The iteration is performed until the error becomes less than the tolerance limit 1e - 10. 

> tol:=1e-10; 

 
> while err> tol do 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
> alpha1:=alpha0+(1-ypred)/y2pred; 
> err:=abs(1-ypred); 
> alpha0:=alpha1;k:=k+1; 
> end: 
> k; 

 
The problem has converged after six iterations.  The concentration at the center of 

the particle ( )x 0= (x = 0) is given by: 

> alpha1; 
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The error obtained is: 

> err; 

 
Next, the solution obtained is plotted and stored in p1. 

> p1:=odeplot(sol,[x,y(x)],0..1,axes=boxed,thickness=3,color=blue): 

The same steps are performed for a different initial guess of 0.5.  The solution 
obtained is stored in p2. 

> alpha0:=0.5; 

 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 

 
> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10); 

 
> sol(1); 

 

 
> ypred:=rhs(sol(1)[2]); 

 
> y2pred:=rhs(sol(1)[4]); 

 
> alpha1:=alpha0+(1-ypred)/y2pred; 

 
> err:=abs(1-ypred); 

 
> alpha0:=alpha1; 

 
> k:=1; 
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> while err> tol do 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
> alpha1:=alpha0+(1-ypred)/y2pred; 
> err:=abs(1-ypred); 
> alpha0:=alpha1;k:=k+1; 
> end: 
> k; 

 

The problem has converged after eight iterations.  The concentration at the center 
of the particle (x = 0) is given by: 

> alpha1; 

 
> err; 

 

> p2:=odeplot(sol,[x,y(x)],0..1,axes=boxed,thickness=3,color=green): 

Next, an initial guess of 1e - 4 is used.  For this case the updated α becomes a 
negative.  Hence, a scaling factor of ρ=0.2 is used:  

> alpha0:=1e-4; 

 

> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 

 

> sol:=dsolve({eqs,ICs},{vars},type=numeric,abserr=1e-10); 

 

> sol(1); 

 

 
> ypred:=rhs(sol(1)[2]); 

 
> y2pred:=rhs(sol(1)[4]); 
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> alpha1:=alpha0+(1-ypred)/y2pred; 

 
> rho:=0.2; 

 
> alpha1:=alpha0+rho*(1-ypred)/y2pred; 

 
> err:=abs(1-ypred); 

 
> alpha0:=alpha1; 

 
> k:=1; 

 
> while err> tol do 
> ICs:=(y(0)=alpha0,D(y)(0)=0,y2(0)=1,D(y2)(0)=0); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
> alpha1:=alpha0+rho*(1-ypred)/y2pred; 
> err:=abs(1-ypred); 
> alpha0:=alpha1;k:=k+1; 
> end: 

 

The problem has converged after 93 iterations.  The concentration at the center 
particle (x = 0) is given by: 

> k; 

 
> alpha1; 

 
> err; 

 

> p3:=odeplot(sol,[x,y(x)],0..1,title="Figure 3.23",axes=boxed,thickness=4, 
color=brown): 
> pt:=textplot([[0.2,0.95,"Steady State 1"],[0.2,0.75,"Steady State 2"], 
[0.2,0.02,"Steady State 3"]]); 

 

> display({p1,p2,p3,pt}); 
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Fig. 3.23 
 

Hence, we observe that the shooting technique can predict three multiple states in 
a catalyst pellet.  The number of iterations required to obtain a converged solution 
depends on the initial guess and the scaling factor ρ. 

3.2.5   Numerical Solution for Boundary Value Problems Using 
Maple’s 'dsolve' Command  

The series solution technique in section 3.2.2 may not produce converging series 
solutions for all of the boundary value problems.  The finite difference technique 
discussed earlier in section 3.2.3 might be computationally intensive as the 
number of node points increase and an approximate initial guess has to be 
provided.  The shooting technique described in section 3.2.4 is very robust, but 
involves more computational effort.  In addition, one has to solve an additional 
number of differential equation and the solution might take large number of 
iterations to converge.  Conveniently, boundary value problems can be solved 
numerically using Maple’s 'dsolve' command.  By default Maple uses the finite 
difference technique coupled with the Richardson interpolation technique.  The 
syntax is: 

'dsolve'({“differential equations, boundary conditions”},{“dependent variables”}, 
type=numeric).  
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The differential equation entered can be of any order.  For a differential equation 
of order N, N boundary conditions have to be specified.  The numerical solution 
can be stored in a variable and can be used later for plotting purposes as shown in 
the following examples. 

Example 3.2.6. Diffusion with Second Order Reaction 

Example 3.2.1 is solved here using Maple’s 'dsolve' command.  The boundary 

condition at the surface, x =1 is taken as:  

( )dc
(1) 100 1 c(1)

dx
= −     (3.47) 

Example 3.2.1 is solved below in Maple below with the modified boundary 
condition: 
 

> restart: 
> with(plots): 

Enter the governing equation: 

> Eq:=diff(c(x),x$2)=Phi^2*c(x)^2; 

 

The value of the parameter is substituted here: 

> eq:=subs(Phi=1,Eq); 

 

The boundary conditions are entered here: 

> BCs:=(D(c)(0),D(c)(1)=100*(1-c(1))); 

 

The numerical solution is obtained here: 

> sol:=dsolve({eq,BCs},{c(x)},numeric); 

 

The concentration profile obtained is plotted here: 

>odeplot(sol,[x,c(x)],0..1,thickness=4,title="Figure 3.24",axes=boxed, 
color=gold); 
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Fig. 3.24 

 
Next, the problem is solved for a higher value of Φ: 

> eq:=subs(Phi=10,Eq); 

 

> BCs:=(D(c)(0),D(c)(1)=100*(1-c(1))); 

 

> sol:=dsolve({eq,BCs},{c(x)},numeric); 

 

>odeplot(sol,[x,c(x)],0..1,thickness=4,title="Figure 3.25",axes=boxed, 
color=brown); 
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Fig. 3.25 

 
We observe that as Φ increases, the profile becomes steeper and the time taken to 
solve the problem also increases. 

Example 3.2.7. Heat Transfer with Nonlinear Radiation Boundary 
Conditions 

Example 3.2.4 is solved here using Maple’s 'dsolve' command.  The boundary 
condition at the surface, x 1=  is taken as:  

( )4dy
(1) 100 1 y(1)

dx
= −     (3.48) 

This example is solved in Maple below: 
 
> restart: 
> with(plots): 
> eq:=diff(y(x),x$2)-(1+0.1*y(x))*y(x); 

 

> BCs:=(D(y)(0),D(y)(1)=1-y(1)^4); 
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> sol:=dsolve({eq,BCs},{y(x)},type=numeric); 

Error, (in dsolve/numeric/bvp) unable to store 'Limit(0.+1.0000000000000*I, 
x = 0., left)' when datatype=float[8] 

Maple is not able to solve this problem directly.  An approximate solution can be 
provided to arrive at the exact solution.  The approximate solution can be found 
using the linear boundary condition at x 1= .  Note that the approximate solution 
has to be evaluated for at least eight node points. 

> sola:=dsolve({eq,D(y)(0),D(y)(1)=1-y(1)},{y(x)},type=numeric, 
output=array([seq(i/7.,i=0..7)])); 

 

The numerical solution of the original boundary value problem is found as: 

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola); 

 

The derivative of the dependent variable can be plotted as: 

> odeplot(sol,[x,y(x)],0..1,thickness=4,color=red,title="Figure 3.26", 
axes=boxed); 

 
 



3.2   Nonlinear Boundary Value Problems 249
 

 
Fig. 3.26 

 
> odeplot(sol,[x,diff(y(x),x)],0..1,color=blue,title="Figure 3.27",thickness=4, 
axes=boxed); 

 
Fig. 3.27 
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The functions of the dependent variables can be plotted as: 

>odeplot(sol,[x,1-y(x)^4],0..1,thickness=4,color=brown,title="Figure 3.28", 
axes=boxed); 

 
Fig. 3.28 

 

Example 3.2.8. Diffusion of a Substrate in an Enzyme Catalyzed  
Reaction – BVPs with Removable Singularity 

Boundary value problems in cylindrical and spherical coordinates have an inherent 
singularity at x = 0. These problems can be tackled using Maple’s inbuilt midpoint 
methods. For example, diffusion of a substrate in an enzyme catalyzed reaction.[6] 
The governing equation for the dimensionless concentration is  

2
2

1 d dy y
x f(y) 10

x dx dx y 0.1
⎛ ⎞ =⎜ ⎟ +⎝ ⎠

    (3.49) 

where f(y) is a dimensionless function which describes the change of diffusion 
coefficient as a function of concentration: 

2

λ
f(y) 1

(y 0.01)
= +

+
 (3.50) 
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The boundary conditions are  

dy
(0) 0

dx
=      (3.51) 

and  

y(1) 1=                                            (3.52) 

This boundary value problem is solved in Maple below for different values of λ: 

> restart: 
> with(plots): 
> f(y):=1+lambda/(y(x)+0.01)^2; 

 
> Eq:=1/x^2*diff((x^2*f(y)*diff(y(x),x)),x)=10*y(x)/(y(x)+0.1); 

 

 

 

> eq:=expand(subs(lambda=0,Eq)); 

 

> BCs:=(D(y)(0),y(1)-1); 

 

> sol:=dsolve({eq,BCs},{y(x)},type=numeric); 

Error, (in dsolve/numeric/bvp) system is singular at left endpoint, use 

midpoint method instead 

Maple identifies the singularity at x = 0 and suggests the midpoint method: 

> sol:=dsolve({eq,BCs},{y(x)},type=numeric,method=bvp[midrich]); 
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> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.29",axes=boxed); 

 

 
Fig. 3.29 

 
> sol(0); 

 

> L:=[0,1e-2,1e-1,1,10]; 

 

> MM:=nops(L); 

 

> clr:=[red,green,gold,blue,magenta]; 

 

> for i to MM do  
> eq:=expand(subs(lambda=L[i],Eq)); 
> sol[i]:=dsolve({eq,BCs},{y(x)},type=numeric,method=bvp[midrich]); 
> p[i]:=odeplot(sol[i],[x,y(x)],0..1,thickness=4,color=clr[i]); 
> od: 
> pt:=textplot([seq([0.2,rhs(sol[i](0.2)[2])+0.02,lambda=L[i]],i=1..MM)]): 
> display({seq(p[i],i=1..MM),pt},title="Figure 3.30",axes=boxed); 
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Fig. 3.30 
 

Example 3.2.9. Multiple Steady States in a Catalyst Pellet 

The catalyst pellet (example 3.2.2) is solved below using Maple’s 'dsolve' 
command. The reaction order is taken to be second order.  The governing equation 
becomes 

2
2 2

2

d y 1 y
 = y  exp γβ

dx 1+β(1 y)

⎛ ⎞−Φ ⎜ ⎟−⎝ ⎠
              (3.53) 

The boundary conditions are the same as that of example 3.2.2.  This problem is 
solved in Maple below: 
 

> restart: 
> with(plots): 
> Eq:=diff(y(x),x$2)=Phi^2*y(x)^2*exp(gamma*beta*(1-y(x))/(1+beta*(1-y(x)))); 

 

> eq:=subs(Phi=0.2,gamma=20,beta=0.8,Eq); 
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> BCs:=(D(y)(0),y(1)-1); 

 

> sol:=dsolve({eq,BCs},{y(x)},type=numeric); 

 

The solution at x = 0 and 1 are found as: 

> sol(0); 

 

> sol(1); 

 
> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.31",axes=boxed); 

 

 
 

Fig. 3.31 

 
By default Maple picks up the higher solution.  The other two solutions are found 
by giving an initial guess.  For this problem, the approximation values for y(0) are 
provided. 
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> p[1]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=red,axes=boxed): 
> sola:=dsolve({eq,y(0)-0.7,y(1)-1},{y(x)},type=numeric, 
output=array([seq(i/7.,i=0..7)])); 

 
> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola); 

 

> sol(0); 

 

> sol(1); 

 
> p[2]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=blue,axes=boxed): 
> sola:=dsolve({eq,y(0)-0.1,y(1)-1},{y(x)},type=numeric, 
output=array([seq(i/7.,i=0..7)])); 
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> sol:=dsolve({eq,BCs},{y(x)},type=numeric,approxsoln=sola); 

 

> sol(0); 

 

> sol(1); 

 
p[3]:=odeplot(sol,[x,y(x)],0..1,thickness=4,color=brown,title="Figure 3.32", 
axes=boxed): 
> pt:=textplot([0.5,0.5,[Phi=0.2,gamma=20,beta=0.8]]): 
> display({seq(p[i],i=1..3),pt}); 

 
 

Fig. 3.32 

 
Hence, all of the multiple states can be predicted using Maple. The solution differs 
slightly from the first order reaction discussed earlier. 

Example 3.2.10. Blasius Equation – Infinite Domains 

The Blasius problem is defined by:[22] [12] 
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2 3

2 3

d f d f
f 2 0

dη dη
+ =                                    (3.54) 

with the boundary conditions 

f(0) 0 =                                            (3.55) 

df
(0) 0

dη
=                                        (3.56) 

and 

df
( ) 1

dη
∞ =                                       (3.57) 

This boundary is different from other boundary value problems discussed in this 
chapter because equation (3.54) is a third order ordinary differential equation with 
three boundary conditions.  In addition, the domain is semi-infinite.  This boundary 
value problem is solved in Maple below by replacing ∞  in equation (3.57) by 10. 
 

> restart: 
> with(plots): 
> eq:=f(eta)*diff(f(eta),eta$2)+2*diff(f(eta),eta$3); 

 

> BCs:=(f(0),D(f)(0),D(f)(10)-1); 

 

> sol:=dsolve({eq,BCs},{f(eta)},type=numeric); 

 

The solution for η = 0 and η = 10 are obtained as: 

> sol(0); 

 
> sol(10); 

 
The solution obtained is plotted below: 

> odeplot(sol,[eta,f(eta)],0..10,thickness=4,color=red,title="Figure 3.33", 
axes=boxed); 
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Fig. 3.33 

 
> odeplot(sol,[eta,diff(f(eta),eta)],0..10,thickness=4,color=green, 
title="Figure 3.34",axes=boxed); 

 
Fig. 3.34 
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3.2.6   Numerical Solution for Coupled BVPs Using Maple’s 
'dsolve' Command 

Simultaneous reactions, mass/momentum transfer, heat/mass/momentum transfer 
are often represented by coupled boundary value problems. Coupled boundary 
value problems can be conveniently solved numerically using Maple’s 'dsolve' 
command.  The syntax is: 

'dsolve'({"differential equations, boundary conditions"},{"dependent variables"}, 
type=numeric).   

Example 3.2.11. Axial Conduction and Diffusion in a Tubular Reactor 

Axial diffusion and conduction in an adiabatic tubular reactor can be described  

by: [6] 

2

2

1 d y dy 1
4y exp E 1  

Pe dx dx θ
⎛ ⎞⎛ ⎞− = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

            (3.58) 

2

2

1 d θ dθ 1
4βy exp E 1  

Bo dx dx θ
⎛ ⎞⎛ ⎞− = − −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

            (3.59) 

with the boundary conditions 

1 dy
(0) y(0) 1

Pe dx
= −                                 (3.60) 

( )dy
1 0

dx
=

                                          
(3.61) 

1 dθ
(0) θ(0) 1

Bo dx
= −                                (3.62) 

and 

dθ
(1) 0

dx
=                                         (3.63) 

This coupled boundary value problem is solved in Maple below for the following 
value of parameters Pe = 10, B0 = 10, E= 18 and β = 0.05. 
 

> with(plots): 
> Eq[1]:=1/Pe*diff(y(x),x$2)-diff(y(x),x)=4*y(x)*exp(E*(1-1/theta(x))); 
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> Eq[2]:=1/Bo*diff(theta(x),x$2)-diff(theta(x),x)=-4*beta* 
y(x)*exp(E*(1-1/theta(x))); 

 

> BCs:=[1/Pe*D(y)(0)-y(0)+1,D(y)(1),1/Bo*D(theta)(0)-theta(0)+1,D(theta)(1)]; 

 
> pars:={Pe=10,Bo=10,E=18,beta=0.05}; 

 

> for i to 2 do eq[i]:=subs(pars,Eq[i]);od; 

 

 

> eqs:=(eq[1],eq[2]); 

 
> vars:=(y(x),theta(x)); 

 

> bcs:=op(subs(pars,BCs)); 

 
> sol:=dsolve({eqs,bcs},{vars},type=numeric); 

 

> sol(0); 

 

 

> sol(1); 
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> odeplot(sol,[x,y(x)],0..1,thickness=4,title="Figure 3.35",axes=boxed); 

 
Fig. 3.35 

 

> odeplot(sol,[x,theta(x)],0..1,thickness=4,color=green,title="Figure 3.36", 
axes=boxed); 

 
Fig. 3.36 
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3.2.7   Solving Boundary Value Problems and Initial Value 
Problems  

Often boundary value problems can be cast into initial value problems for 
obtaining performance curves.  This is best illustrated by the next example.   

Example 3.2.12. Diffusion with a Second Order Reaction 

Diffusion with a second order reaction (example 3.2.1) is considered here again.  
The dimensionless concentration is governed by: 

2
2 2

2

d y
y

dx
= Φ                                     (3.64) 

with the boundary conditions: 

dy
(0) 0

dx
=                                      (3.65) 

and  

y(1) 1=                                          (3.66) 

The effectiveness factor of the pellet is given by 

2

1 dyη (1) 
dx

=
Φ

                                      (3.67) 

For a given value of Φ, equation (3.64) can be solved for the boundary conditions 
((3.65) and (3.66)).  Once the numerical solution is obtained the effectiveness 
factor can be calculated using equation (3.67). It is of interest to plot the 
effectiveness factor as a function of Φ.  For this purpose, one can solve the 
boundary value problem for different values of Φ and predict the effectiveness 
factor.  Alternatively, this problem can be solved as an initial value problem.  For 
convenience, the transformation X = Φx is introduced.  The BVP changes as: 

2
2

2

d y
y

dX
=                                            (3.68) 

with the boundary conditions: 

dy
(0) 0

dX
=                                      (3.69) 

and  

y( ) 1Φ =                                          (3.70) 
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The effectiveness factor of the pellet is given by 

X Φ

1 dyη
dX =

=
Φ

                                         (3.71) 

We know that for low values of Φ, the concentration at the center y(0) is close to 
1.  For high values of Φ, y(0) approaches zero.  We take the concentration at the 
center as  

y(0) y0 =                                            (3.72) 

where y0 varies between 0 and 1. Next equation (3.68) is solved with two initial 
conditions given by equations (3.69) and (3.72). This is solved as an initial value 
problem.  The stop condition illustrated in chapter 2.2.4 is used to find the value of 
X for which equation (3.70) is satisfied.  That is, equation (3.68) is integrated with 
the initial conditions given by equation (3.69) and (3.70) until y(X) becomes 1.  
The corresponding value of X gives the value for Φ.  Once Φ is found, the 
effectiveness factor is found using equation (3.71).  This procedure is illustrated in 
the following Maple program. 

> restart: 
> with(plots): 
> eq:=diff(y(X),X$2)=y(X)^2; 

 
The initial conditions for y and its derivative are provided: 

> IC:=D(y)(0)=0,y(0)=0.1; 

 

> sol:=dsolve({eq,D(y)(0)=0,IC},{y(X)},type=numeric,abserr=1e-10,stiff=true, 
stop_cond=[y(X)-1]); 

 

The solution is evaluated for large values of X.  The solution stops at 6.95. 

> g1:=sol(1000); 

Warning, cannot evaluate the solution further right of 6.9564589, stop 

condition #1 violated 

 
The value for Φ is obtained as: 

> Phi1:=rhs(g1[1]); 
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The derivative at X = Φ is given by: 

> dydX1:=rhs(g1[3]); 

 
The effectiveness factor is calculated as: 

> eta1:=dydX1/Phi1; 

 
The solution obtained is plotted as: 

> odeplot(sol,[X,y(X)],0..10000,thickness=4,axes=boxed,title="Figure 3.37"); 
Warning, cannot evaluate the solution further right of 6.9564590, stop 
condition #1 violated 

 
Fig. 3.37 

 
We can ask Maple to not print the warning about the violation of stop conditions 
using the following command: 

> _Env_dsolve_nowarnstop := true; 
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Different initial guesses for y0 ranging from 1e - 4 to 0.999 are chosen. 

> Y0:=[1e-4,1e-3,1e-2,seq(i/40.,i=1..39),0.999]; 

 
 
 
 
 

 

> M:=nops(Y0); 

 

A 'for loop' is written to find the corresponding values of Φ and effectiveness factors. 

> for i from 1 to M do  
Sol[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y0[i]},{y(X)}, 
type=numeric,stiff=true,abserr=1e-12,stop_cond=[y(X)-1]);;od: 
> for i to M do g[i]:=Sol[i](100000):od: 
> for i to M do Phi[i]:=rhs(g[i][1]);od: 
> for i to M do dydX[i]:=rhs(g[i][3]);od: 
> for i to M do eta[i]:=dydX[i]/Phi[i];od: 

A loglogplot is made: 

> loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,title="Figure 3.38", 
thickness=4,labels=[Phi,eta],color=red); 

 
Fig. 3.38 
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We observe that the effectiveness factor remains close to 1 until Φ = 1 and then 
decreases with Φ. 

3.2.8   Multiple Steady States  

Problems with multiple steady states are interesting to solve numerically.  
Computational effort required for solving these problems can be highly 
demanding.  Multiple steady states in a rectangular catalyst pellet were analyzed 
in example 3.2.2, 3.2.5 and 3.2.9. One has to provide an approximate solution or a 
guess value to predict the three multiple solutions.  It is difficult to predict the 
effectiveness factor of the pellet as a function of Φ or γ using the numerical 
approaches described earlier in this chapter.  In the next example, this boundary 
value problem will be solved as an initial value problem. 

Example 3.2.13. Multiple Steady States in a Catalyst Pellet - η vs. Φ 

The non-isothermal reaction in a rectangular pellet (example 3.2.2) is again 
considered.  The dimensionless concentration is governed by: 

2
2

2

d y 1 yΦ y exp γβ
dx 1 β(1 y) 

⎛ ⎞−= ⎜ ⎟+ −⎝ ⎠
             (3.73) 

with the boundary conditions: 

dy
(0) 0

dx
=                                       (3.74) 

and  

( )y 1 1=                                           (3.75) 

The effectiveness factor of the pellet is given by 

( )2

1 dyη 1
dx

=
Φ

                                     (3.76) 

For a given value of Φ, equation (3.63) can be solved for the boundary conditions 
((3.65) and (3.66)). Once the numerical solution is obtained the effectiveness 
factor can be calculated using equation (3.67). It is of interest to plot the 
effectiveness factor as a function of Φ.  For this purpose, one can solve the 
boundary value problem for different values of Φ and predict the effectiveness 
factor.  However, since multiple steady states occur different initial guesses have 
to be used to capture all of the steady states.  This boundary value problem is 
difficult to solve because for every value of Φ, there can 3 different ηs and, hence, 

3 different values for the derivative (
dy

dx
) at x = 1.  On the contrary, for every 
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value of 
dy

dx
 (1), there is a unique value for Φ.  Hence, 

dy

dx
 (1) can be specified 

and Φ can be treated as an unknown, which can be solved as we know 3 boundary 

conditions (
dy

dx
 (0) = 0, y(1) = 1, 

dy

dx
 (1) is known).  The difficulty with this 

approach is that 
dy

dx
(1) can take any value between 0 and ∞.  Based on the 

previous argument, for every value of Φ, they correspond to three different values 

dy

dx
 (1) and, hence, three different values for y(0).  On the contrary, for every 

value of y(0), there is a unique value for Φ.  The advantage of setting y(0) is that 

y(0) can practically vary only between 0 and 1.  Now both y(0) and 
dy

dx
 (0) are 

known and equation (3.73) can be solved as an initial value problem and the 
unknown Φ can be found be using the boundary condition y(1) = 1.  Since the 

problem is well defined with known initial conditions for y(0) and 
dy

dx
 (0), stiff 

solvers can be used to solve equation 3.73. By defining X = Φx, this boundary 
value problem can be transformed as: 

2

2

d y 1 y
y exp γβ

dX 1 β(1 y) 

⎛ ⎞−= ⎜ ⎟+ −⎝ ⎠
   (3.77) 

with the boundary conditions: 

dy
(0) 0

dX
=                                      (3.78) 

and  

y( ) 1Φ =                                          (3.79) 

The effectiveness factor of the pellet is given by 

y 1

1 dyη 
dX =

=
Φ

                                          (3.80) 

We know that for low values of Φ, the concentration at the center y(0) is close to 
1.  For high values of Φ, y(0) approaches zero.  We take the concentration at the 
center as  

y(0) y0 =                                          (3.81) 
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where y0 varies between 0 and 1.  This system of equations is similar to example 
3.2.12.  The program used for example 3.2.12 is modified below to solve this 
example. 
 
> restart: 
> with(plots): 

The values of the parameters are substituted here: 

> Eq:=diff(y(X),X$2)=y(X)*exp(gamma*beta*(1-y(X))/(1+beta*(1-y(X)))); 

 

> eq:=subs(beta=0.8,gamma=20,Eq); 

 

> IC:=D(y)(0)=0,y(0)=1e-6; 

 

> sol:=dsolve({eq,IC},{y(X)},type=numeric,abserr=1e-10,stiff=true, 
stop_cond=[y(X)-1]); 

 

> g1:=sol(1000); 
Warning, cannot evaluate the solution further right of .20038679, stop 
condition #1 violated 

 
> Phi1:=rhs(g1[1]); 

 
> dydX1:=rhs(g1[3]); 

 
> eta1:=dydX1/Phi1; 

 
> odeplot(sol,[X,y(X)],0..2,thickness=4,title="Figure 3.39",axes=boxed); 
Warning, cannot evaluate the solution further right of .20038680, stop 
condition #1 violated 
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Fig. 3.39 

 
> _Env_dsolve_nowarnstop := true; 

 

Initial guesses ranging from 1e - 10 to 0.9996 are provided for y(0): 

> Y0:=[1e-10,1e-9,1e-8,1e-7,1e-6,1e-5,1e-4,1e-3,1e-2,5e-2,0.1,0.15,0.2, 
0.25,0.3,0.35,0.4,0.45,0.5,0.55,0.6,0.65,0.7,0.75,0.8,0.825,0.85,0.875,0.9,
0.91,0.92,0.93,0.94,0.95,0.955,0.96,0.965,0.968,0.97,0.975,0.98,0.99, 
0.995,0.996,0.997,0.998,0.999,0.9995,0.9996]; 

 

 

 

> M:=nops(Y0); 

 

> for i from 1 to M do  
Sol[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y0[i]},{y(X)}, 
type=numeric,stiff=true,abserr=1e-12,stop_cond=[y(X)-1]);;od: 
> for i to M do g[i]:=Sol[i](100000):od: 
> for i to M do Phi[i]:=rhs(g[i][1]);od: 
> for i to M do dydX[i]:=rhs(g[i][3]);od: 
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> for i to M do eta[i]:=dydX[i]/Phi[i];od: 
> loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,title="Figure 3.40", 
thickness=4,labels=[phi,eta],color=green); 

 
Fig. 3.40 

 
This plot captures the multiple steady state part. However, to predict the 
effectiveness factor at higher values of Φ , we choose initial values ranging from 
1e - 40 to 1e - 10.  For these low values, one has to perform highly accurate 
simulations.  For this purpose, absolute error (abserr) is set to 1e - 41 and the 
relative error (relerr) is set to 1e - 12. 
 

> p1:=loglogplot([seq([Phi[i],eta[i]],i=1..M)],axes=boxed,thickness=4, 
labels=[phi,eta],color=red): 
> Y00:=[1e-40,1e-35,1e-30,1e-25,1e-20,1e-15,1e-10]; 

 

> MM:=nops(Y00); 
 

> for i from 1 to MM do  
Sol0[i]:=dsolve({eq,D(y)(0)=0,y(0)=Y00[i]},{y(X)}, 
type=numeric,stiff=true,maxfun=1000000,abserr=1e-41, 
relerr=1e-12,stop_cond=[y(X)-1]);od: 
> for i to MM do g[i]:=Sol0[i](100000):od: 
> for i to MM do Phi1[i]:=rhs(g[i][1]);od: 
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> for i to MM do dydX1[i]:=rhs(g[i][3]);od: 
> for i to MM do eta1[i]:=dydX1[i]/Phi1[i];od: 
> p2:=loglogplot([seq([Phi1[i],eta1[i]],i=1..MM)],axes=boxed,title="Figure 3.41", 
thickness=4,labels=[phi,eta]): 
> display({p1,p2}); 

 
Fig. 3.41 

 

This plot captures the multiple steady state part. However, to predict the 
effectiveness factor at higher values of Φ, we choose initial values ranging from 
1e - 40 to 1e - 10.  For these low values, one has to perform highly accurate 
simulations.  For this purpose, absolute error (abserr) is set to 1e - 41 and the 
relative error (relerr) is set to 1e - 12. 

> Eq:=diff(y(X),X$2)=y(X)*exp(gamma*beta*(1-y(X))/(1+beta*(1-y(X)))); 

 := Eq  = 
∂
∂2

X2
( )y X ( )y X e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

γ β ( )− 1 ( )y X
 + 1 β ( ) − 1 ( )y X

 

> eq:=subs(beta=0.8,gamma=20,Eq); 

 := eq  = 
∂
∂2

X2
( )y X ( )y X e

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟16.0

− 1 ( )y X
 − 1.8 .8 ( )y X
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The following profile is obtained: 

 

Fig. 3.42 

3.2.9   Eigenvalue Problems  

The separation of variables is a common technique used to solve linear PDEs.   
This technique will be discussed in detail in chapter 7.  This technique yields 
ordinary differential equations for the eigenfunctions.  In this section, we will 
present two numerical techniques for the Graetz problem. 

Example 3.2.14. Graetz Problem–Finite Difference Solution 

The Graetz problem (heat or mass transfer) in cylindrical coordinates with parabolic 
velocity profile is solved here. The governing equation for the eigenfunction is[15] [8]  

( )
2

2 2
2

d y 1 dy λ 1 x y
dx x dx

+ + −    (3.82) 

with the boundary conditions: 

( )dy
0 0

dx
=                                      (3.83) 

and  

( )y 1 0=                                           (3.84) 

Equation (3.82) is a second order equation with two boundary conditions 
(equations (3.83) and (3.84). In equation (3.82), λ is the eigenvalue. To solve for 
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the eigenvalue an additional boundary condition has to be used.  For this purpose, 
y at x = 0 is arbitrarily set to 1: 

( )y 0 1=                                           (3.85) 

Next, equation (3.82) is discretized using finite differences as in section 3.2.3.  
This yields N equations for the interior node points.  The boundary conditions 
(equations (3.83) and (3.84) are converted to finite difference form.  This yields 
two equations.  There are a total of N+2 node points including the boundaries.  
There are N+2 dependent variables (yi,i = 0..N+1).  There is an additional variable λ.  
The additional equation is (3.85).  Hence, there are N+3 variables (yi,i = 0..N+1 and 
λ) to be solved from N+3 equations.  There are infinite solutions for the 
differential equation (3.82).  Hence, there are multiple solutions for the system of 
finite difference equations.  This example is solved in Maple below: 
 

> restart: 
> with(plots): 
> N:=6; 

 

> L:=1; 

 

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)+lambda^2*(1-x^2)*y(x); 

 

> bc1:=diff(y(x),x); 

 

> bc2:=y(x)-0; 

  

The additional boundary condition is entered here: 

> bc3:=y(x)-1; 

 

The central difference expressions for the second and first derivatives are 

> d2ydx2:=(y[m+1]-2*y[m]+y[m-1])/h^2; 
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> dydx:=(y[m+1]-y[m-1])/2/h; 

 

Three point forward and backward difference expressions for the derivative are: 

> dydxf:=(-y[2]+4*y[1]-3*y[0])/(2*h); 

 

> dydxb:=(y[N-1]-4*y[N]+3*y[N+1])/(2*h); 

 

The governing equation in finite difference form is: 

> Eq[m]:=subs(diff(y(x),x$2)=d2ydx2,diff(y(x),x)=dydx,y(x)=y[m],x=m*h,eq); 

 
The boundary conditions in finite difference form are: 
> Eq[0]:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc1); 

 

> Eq[N+1]:=subs(diff(y(x),x)=dydxb,y(x)=y[N+1],bc2); 

 

A 'for loop' can be written for the interior node points as 

> for i to N do Eq[i]:=subs(m=i,Eq[m]);od; 
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The additional equation for the eigenvalue is: 

> Eqeig:=subs(diff(y(x),x)=dydxf,y(x)=y[0],bc3); 

 

> h:=L/(N+1); 

 

The finite difference equations are stored in eqs: 

> eqs:=seq(eval(subs(Phi=1,Eq[i])),i=0..N+1),Eqeig; 
 

The dependent variables are stored in vars: 

> vars:=seq(y[i],i=0..N+1),lambda; 

 
These variables are solved as: 

> fsolve({eqs},{vars}); 

 
Since there are multiple solutions, one has to provide the range for the dependent 
variables.  The dependent variable y varies between 0 and 1 and the eigenvalue is 
solved in the range of 0.4. 
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> vars:=seq(y[i]=-1..1,i=0..N+1),lambda=0..4; 

 

The solution obtained in stored in sol[1] and plotted: 

> sol[1]:=fsolve({eqs},{vars}); 

 

 

> assign(sol[1]): 

The first eigenvalue is given by: 

> l[1]:=lambda; 

 
The first eigenfunction is plotted here: 

> plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,title="Figure 3.43", 
labels=[x,y]); 

 

 
Fig. 3.43 
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>p[1]:=plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,axes=boxed,labels=[x,y], 
color=colorlist[1]): 
> pt[1]:=textplot([0.4,0.9,'lambda=l[1]']): 
> for i from 0 to N+1 do unassign('y[i]'):od: 
> unassign('lambda'): 
> M:=4; 

 

The next three eigenvalues are found by changing the range in increments of four: 

> for j from 2 to M do  
> vars:=seq(y[i]=-1..1,i=0..N+1),lambda=l[j-1]+1..l[j-1]+4; 
> sol[j]:=fsolve({eqs},{vars}); 
> assign(sol[j]): 
> l[j]:=lambda; 
> p[j]:=plot([seq([i*h,y[i]],i=0..N+1)],thickness=4,title="Figure 3.44", 
axes=boxed,labels=[x,y],color=colorlist[j]): 
> for i from 0 to N+1 do unassign('y[i]'):od: 
> unassign('lambda'): 
> od: 

The first four eigenvalues are: 

> print(seq(l[i],i=1..M)); 

 

> pt[2]:=textplot([0.38,0.5,lambda=l[2]]): 
pt[3]:=textplot([0.87,0.4,lambda=l[3]]): 
pt[4]:=textplot([0.8,-0.08,lambda=l[4]]): 

Even after using N = 30 interior node points we get only two digit accuracy with 
the exact solution.  In addition, we observe more errors for higher eigenvalues 
than for the lower eigenvalues. 

> display({seq(p[i],i=1..M),seq(pt[i],i=1..M)}); 
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Fig. 3.44 
 

We observe that first eigenfunction reaches zero at x 1= . The second eigenfunction 
crosses the x-axis once before reaching zero at x 1= .  The third eigenfunction 
crosses the x-axis twice before reaching zero.  In general, nth eigenfunction crosses 
the x-axis n-1 times.  We observe that the eigenvalues match with the literature.  
However, accuracy is very poor.  For accurate predictions of the eigenvalues, the 
shooting technique is adopted in the next example. 

Example 3.2.15. Graetz Problem–Shooting Technique 

The governing equation is: 

2
2 2

2

d y 1 dy
 λ (1 x )y

dx x dx
+ + −                          (3.86) 

with the initial conditions: 

( )dy
0 0

dx
=                                      (3.87) 

and  

y(0) 1=                                       (3.88) 
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A guess value for λ is chosen: 

oldλ λ=                                           (3.89) 

Equation (3.86) is solved with the initial conditions (equations (3.87) and (3.89) 
using this assumed value of  λ.  Then a new value of λ is obtained using the 
following relationship: 

expected, x 1 old x = 1
new old

old

x 1

old x 1
old

old

x = 1

y y(λ )
λ λ ρ 

dy(λ )
dλ

0- y(λ )
        λ ρ

dy(λ )
dλ

=

=

=

⎡ ⎤
⎢ ⎥−

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥

= + ⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

                   (3.90)  

In equation (3.90), the Jacobian olddy(λ )

dλ
 is predicted as illustrated in 3.2.4 for 

the shooting technique. This Jacobian is predicted exactly by differentiating the 

governing equation (3.86) with respect to λ  as 

2
2 2 2

2

d dy 1 d dy dyλ (1 x ) 2λ(1 x )y
dx dλ x dx dλ dλ

⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + − + −⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

       (3.91) 

Next, the Jacobian is treated as the variable y2. 

2
2 2 2

2

d y2 1 dy2
 λ (1 x )y2 2λ(1 x )y

dx x dx
+ + − + −                   (3.92) 

The initial conditions for y2 are obtained by using the differentiating equations 
(3.86) and (3.88) with respect to λ. 

( )dy2
0 0

dx
=                                        (3.93) 

and 

( )y2 0 0=                                            (3.94) 

This example is solved in Maple below: 
 
> restart: 
> with(plots): 
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The governing equation is entered here: 

> eq:=diff(y(x),x$2)+1/x*diff(y(x),x)+lambda^2*(1-x^2)*y(x); 

 

The sensitivity equation is developed by differentiating the governing equation 

with respect to λ : 

> eqlambda:=subs(y(x)=Y(x,lambda),eq); 

 

> eqlambda:=diff(eqlambda,lambda); 

 
> eqlambda:=subs(diff(Y(x,lambda),lambda)=y2(x),eqlambda); 

 
> eqlambda:=subs(Y(x,lambda)=y(x),eqlambda); 

 
The variables are stored in 'vars:' 

> vars:=(y(x),y2(x)); 

 

An initial guess for lambda is given here: 

> lambda0:=1; 

 

The governing equations are stored in 'eqs:' 

> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda); 
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> e:=1e-6; 

 

The initial conditions for y and y2 are stored in ICs: 

> ICs:=(D(y)(0)=0,y(0)=1,y2(0)=0,D(y2)(0)=0); 

 

The numerical solution is obtained as: 

> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

The solution is evaluated at x 1= : 

> sol(1); 

 

There is a removable singularity at x 0= .  This is handled by replacing 0 with 
6e 10−= . 

> e:=1e-6; 

 

> ICs:=(D(y)(e)=0,y(e)=1,y2(e)=0,D(y2)(e)=0); 

 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 

 

The solution at x 1=  is: 
> sol(1); 

 

The expected value of y at x 0=  is  y 0= .  The predicted value is: 

> ypred:=rhs(sol(1)[2]); 

 

The Jacobian, y2 at x 1=  is: 

> y2pred:=rhs(sol(1)[4]); 
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The value of λ  is updated as: 

> lambda1:=lambda0+(0-ypred)/y2pred; 

 

The error in λ  is: 

> err:=lambda1-lambda0; 

 
> lambda0:=lambda1; 

 
> k:=1; 

 

The iteration is performed until the error in λ  becomes less than 1e-6: 

> while err>1e-6 do 
> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
> lambda1:=lambda0+(0-ypred)/y2pred; 
> err:=abs(lambda1-lambda0); 
> lambda0:=lambda1;k:=k+1; 
> end; 
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Finally, the eigenvalue obtained is: 

> lambda0; 

 
The number of iterations is: 

> k; 

 

The error in the value of λ  is: 

> err; 

 

The first eigenfunction is plotted as: 

> odeplot(sol,[x,y(x)],e..1,axes=boxed,thickness=3,title="Figure 3.45"); 

 
Fig. 3.45 

 
Next, a tolerance of 1e - 10 is set.  This BVP has infinite solutions. The first five 
eigenvalues are found by using five different initial guesses for λ. A scaling factor 
of ρ = 1/3 is introduced to ensure stability. 
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> tol:=1e-10;rho:=1/3; 

 

 

> lambdaguess:=[1,5,9,13,17]; 

 
> MM:=nops(lambdaguess); 

 
> colorlist:=[black,red,blue,yellow,green]; 

 

> for i from 1 to MM do  
> lambda0:=lambdaguess[i]; 
> k:=1;err:=1; 
> while err>tol do 
> eqs:=subs(lambda=lambda0,eq),subs(lambda=lambda0,eqlambda); 
> sol:=dsolve({eqs,ICs},{vars},type=numeric); 
> ypred:=rhs(sol(1)[2]); 
> y2pred:=rhs(sol(1)[4]); 
> lambda1:=lambda0+rho*(0-ypred)/y2pred; 
> err:=abs(lambda1-lambda0); 
> lambda0:=lambda1;k:=k+1; 
> end: 
> l[i]:=lambda0; 
> kk[i]:=k; 
> Err[i]:=err; 
> p[i]:=odeplot(sol,[x,y(x)],e..1,axes=boxed,thickness=3,color=colorlist[i]); 
> end: 

The first five eigenvalues are: 

> seq(l[i],i=1..MM); 

 
These values match exactly with the literature and the analytical solution discussed 
in chapter 7 (up to six significant digits). The number of iterations required for the 
eigenvalue is: 

> seq(kk[i],i=1..MM); 

 

The error in λ is: 

> seq(Err[i],i=1..MM); 
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The first five eigenfunctions are plotted as: 

> arw:=arrow(<0.5,0.8>,<-0.45,-0.6>,width=[1/250, relative], head_length= 
[0.05, relative]): 
pt:=textplot([[0.8,0.95,"Follow the arrow"],seq([0.8,0.85-(i-1)*0.09, 
lambda=l[i]],i=1..MM)]); 

 

> display({seq(p[i],i=1..MM),arw,pt},title="Figure 3.46"); 

 
Fig. 3.46 

 
Note that with the shooting technique we obtain exact results. The finite difference 
solution is not as smooth as the shooting technique solution. 

3.2.10   Summary  

In this chapter, nonlinear boundary value problems were solved numerically.  In 
section 3.2.2, series solutions were derived for nonlinear boundary value 
problems.  This is a powerful technique and is even capable of predicting multiple 
steady states in a catalyst pellet.  However, these series solutions should be used 
cautiously.  The convergence of the solution is not guaranteed and should be 
verified.  This can be done by increasing the number of terms in the series and 
plotting the profiles.   
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In section 3.2.3, finite difference solutions were obtained for nonlinear 
boundary value problems.  This is a straightforward and easy technique and can be 
used to obtain an initial guess for other sophisticated techniques.  This technique is 
important because it forms the basis for the method of lines technique for solving 
linear and nonlinear partial differential equations (chapter 5 and 6).  However, for 
stiff boundary value problems, this technique may not work and might demand 
prohibitively large number of node points.  In addition, approximate initial guess 
should be provided for all the node points for stiff boundary value problems. 

In section 3.2.4, nonlinear boundary value problems were solved using shooting 
technique.  The given boundary value problem was converted to a system of initial 
value problems. The unknown initial condition was obtained using an iteration and 
optimization procedure.  This is a very robust technique and can be used to solve 
stiff boundary value problems.  This technique is capable of predicting multiple 
steady states in a catalyst pellet.  However, the number of iterations required for 
convergence can be prohibitively large for certain boundary value problems.   

In section 3.2.5, nonlinear boundary value problems were solved using Maple’s 
'dsolve' command.  Maple’s 'dsolve' command is based on finite difference 
coupled with Richardson interpolation.  This can be used to solve a variety of B 
boundary value problems conveniently.  For nonlinear or stiff boundary value 
problems, one should provide an approximate solution.  This approximate solution 
can be arrived by providing initial conditions and solving the boundary value 
problem as an initial value problem.  In addition, special methods must be 
specified for boundary value problems in cylindrical and spherical coordinates to 
avoid the removable singularity at the origin. If this method fails, one might resort 
to shooting technique.  This methodology was then extended for coupled boundary 
value problems in section 3.2.6. 

In section 3.2.7, boundary value problems were solved as initial value 
problems.  This methodology is especially useful for predicting the performances 
in chemical reactors.  Maple’s stop condition was used in this section to obtain η 
vs. Φ curves.  This is very useful because, it is generally easier to solve an initial 
value problem than a boundary value problem.  This technique was then used in 
section 3.2.8 to predict multiple steady states in a catalyst pellet in section 3.2.8.  
This methodology is extremely useful for predicting the hysteresis curves in 
multiple steady state problems. 

In section 3.2.9, eigenvalue problems were solved numerically.  Two different 
methods were used. First, a finite difference technique was used to predict the 
unknown eigenvalues for the Graetz problem in cylindrical coordinates. By 
specifying different ranges, first five eigenvalues and eigenfunctions were obtained 
numerically.  This technique is not robust and requires a large number of node points 
as the magnitude of the eigenvalue increases. Next, a sensitivity approach was used 
to predict the eigenvalue.  The given boundary value problem was first converted to 
an initial value problem. This initial value problem was then solved with a guessed 
value of the eigenvalue. The eigenvalue was the updated based on an optimization 
procedure. This is a very robust technique. This technique predicts the eigenvalues 
accurately and the eigenfunctions obtained are very smooth.   

Fifteen examples were presented in this chapter. 
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3.2.11   Exercise Problems 

1. Consider the diffusion reaction problem discussed in example 3.2.9.  
Obtain the series solutions for this problem.  Plot the concentration profiles 
for Φ = 0.1, 1, 2 and 10. 

2. Consider diffusion with reaction in a cylindrical pellet.[8, 18] The governing 
equation and boundary conditions are: 

2
2 2

2

d c 1 dc
c

dx x dx
dc

(0) 0 and c(1) 1
dx

+ = Φ

= =
 

Obtain the series solutions for this problem using Maple’s 'dsolve' 
command.  (Since there is a removable singularity at x = 0, use c(1)=1 and 
D(c)(1) = c1 to obtain series solutions and obtain the constant c1 using the 
boundary condition at x = 0). 

3. Consider diffusion with a reaction in a cylindrical pellet[8, 18] The governing 
equation and boundary conditions are: 

2
2 2

2

d c 2 dc
c

dx x dx
dc

(0) 0 and c(1) 1
dx

+ = Φ

= =
 

4. Obtain series solutions for this problem using Maple’s 'dsolve' command.  
(Since there is a removable singularity at x = 0, use c(1)=1 and D(c)(1) = 
c1 to obtain series solutions and obtain the constant c1 using the boundary 
condition at x = 0). 

5. Consider the nonlinear heat transfer problem solved in example 3.2.4.  
Obtain series solutions for this problem and plot the profiles. 

6. Consider the Blasius problem discussed in example 3.2.10.  Obtain series 
solutions for this problem.  Can you obtain physically meaningful series 
solutions for this problem using Maple’s 'dsolve' command? 

7. Consider diffusion in a slab catalyst with a highly nonlinear Hinshelwood 
kinetics.[18] The governing equation and boundary conditions are: 

2
2

2 2

d c c

dx 1 δc γc
dc

(0) 0 and c(1) 1
dx

= Φ
+ +

= =
 

Obtain series solutions for this problem and plot the concentration profiles 
for 1δ γΦ = = = . 
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8. Redo example 3.2.2 for a second order reaction (take the governing 
equation from example 3.2.9). 

9. Redo problem 2 using Maple’s 'dsolve' numeric command. 
10. Redo problem 3 using Maple’s 'dsolve' numeric command. 
11. Redo problem 6 using Maple’s 'dsolve' numeric command and shooting 

technique. 
12. Solve example 3.2.2 using Maple’s 'dsolve' numeric command and obtain 

the three steady states. 
13. Consider problem 7 and solve it as an initial value problem to obtain the 

effectiveness factor as a function of Φ.  (See examples 3.2.12 and 3.2.13). 
14. Solve problem 6 as an initial value problem (see examples 3.2.12 and 

3.2.13) and obtain the effectiveness factor as a function of Φ. 
15. Redo example 3.2.2 using the finite difference technique illustrated in 

example 3.2.3.  Can you obtain all the three steady states? 
16. Solve the Blasius equation (example 3.2.10) using the shooting technique. 
17. Consider an isothermal chemical flow reactor with dispersion.[22] The 

governing equation and boundary conditions are: 

2
n

2

1 d c dc 1
Dac

Pe dx dx Pe
1 dc dc

(0) c(0) 1 and (1) 0 
Pe dx dx

− =

= − =
 

where Pe is the Peclet number, Da is the Damkohler number and n is the 
reaction order. Obtain an analytical solution for this problem for n = 1.  Solve 
this problem using 'dsolve' numeric command, shooting technique, and finite 
difference methods for the set of parameters Pe = 1, Da = 1 and n = 2.  
Repeat the calculations for Pe = 50, Da = 1 and n = 2.  Discuss your results. 

18.  Consider heat transfer associated with a boundary layer in a flat plate.[22]   
Velocity profile is governed by the Blasius equation and the temperature 
(θ) is governed by the Pohlhausen equation.  The governing equations and 
boundary conditions are: 

3 2

3 2

2

2

d f d f
f 0

dx dx

d d
Prf 0

dx dx
df df

f (0) 0; (0) 0 and (5) 1
dx dx

θ(0) 0 and θ(5) 0

+ =

θ θ+ =

= = =

= =

 

where Pr is the Prandtl number.  For mass transfer, a similar equation 
arises with the Prandtl number replaced by the Schmidt number.  Solve this 
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system using Maple’s 'dsolve' numeric command for Pr  = 2.  Plot velocity 
and temperature profiles.  Plot (0) as a function of Pr for Pr = 1..20. 

19. Consider diffusion reaction problem with Langmuir-Hinshelwood kinetics 
(Finlayson, 1980).  The governing equations and boundary conditions are: 

2
2

2 2

d c c

dx (1 c)

dc
(0) 0 and c(1) 1

dx

= Φ
+ α

= =
 

where α = 20. Solve this problem as an initial value problem (see examples 
3.2.12 and 3.2.13) and predict effectiveness factor as a function of Φ. 

20. From problem 18, choose a value of Φ for which there are multiple steady 
states. For the chosen value of Φ, predict the multiple steady state 
concentration profiles using Maple’s 'dsolve' numeric command and 
shooting technique. 

21. Redo example 3.2.11 using finite difference technique. 
22. Redo example 3.2.11 for Pe = Bo = 100. 
23. Analyze problem 21 for multiple steady states.  To do this, solve this 

problem using the shooting technique for the given set of parameters. 
24. Consider the behavior of a thin sheet of viscous liquid emerging from a 

thin slot at the base of a converging channel in connection with a method 
of lacquer application known as “curtain coating.”[6] The dimensionless 
governing equations and boundary conditions for the velocity are: 

22

2

d y 1 dy dy
 -   - y  + 1= 0

dx y dx dx

dy 1
y(0) 0.325 and (L)  for large values of L

dx 2L

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =
 

25. Solve this problem using Maple’s 'dsolve' numeric command, shooting 
technique and finite difference technique.  Initially choose L = 5 and 
increase L to make sure that the solution has converged (i.e., change L = 6 

and calculate 
dy

dx
(0)).  Compare the efficiency of the three methods for 

this problem. 

26. Consider diffusion with a reversible reaction ( 2A B⇔ ) in a porous 
catalyst layer.[23] The total mass flux is given by: 

( )A A
A A B

T

dC C
N D N N

dx C
= − + +  

where D is the effective diffusion coefficient, CT is the total concentration, NB 
is the total mass flux of B and is given by NB = -NA/2.  Shell balance gives: 
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2A T A
A

dN C C
 = k C

dx K

−⎛ ⎞− −⎜ ⎟
⎝ ⎠

 

where k is the rate constant and K is the equilibrium constant.  The 
boundary conditions are: 

-5 3 A
A

dC
C (0) 1x10  mol/cm  and (L) 0 

dx
= =  

Use the first equation to eliminate NA and obtain a governing equation for 
CA.  The values of parameters are D = 1x10-2 cm2/s, CT = 4x10-5 mol/cm3, 
L = 0.2 cm, k = 8x104 cm3/s/mol and K = 6x105 cm3/mol. Solve this 
problem numerically (choose any appropriate numerical method) to obtain 
the concentration profile. 

27. Consider multi-component diffusion of gases A and B through stagnant gas 
C (Gianakopulos, 1972; Cutlip and Shacham, 1999).[23] The governing 
equations for concentration of A and B are: 

A C C AA A B B A

T A B A C

B C C BB B A A B

T A B B C

(C N C N )d C (C N C N )1

d z C D D

(C N C N )d C (C N C N )1

d z C D D

⎛ ⎞−−= +⎜ ⎟
⎝ ⎠
⎛ ⎞−−= +⎜ ⎟
⎝ ⎠

 

Concentration of C is given by the material balance CA + CB + CC = CT.  
Since C is stagnant NC is zero.  The boundary conditions are: 

CA(0) = 2.229x10-4 kg-mol/m3, CB(0) = 0, CA(L) = 0 and CB(L) = 
2.701x10-3 kg-mol/m3. 

Values of the parameters are L = 0.001m, DAB = 1.47x10-4 m2/s, DAC = 
1.075x10-4 m2/s, DBC = 1.245x10-4 m2/s, and CT = 7.4309x10-5 kg-mol/m3.  
The governing equations are first order in z and can be solved just by using 
the initial conditions at z = 0.  However the values for NA and NB are not 
known. These should be found using the boundary conditions at z = L.  
Solve this problem using Maple’s 'dsolve' numeric command, and finite 
difference technique.  Plot the concentration profiles. 

28. Gas A reacts with B to produce C in a finite liquid film.[23] The governing 
equations and boundary conditions are: 

2
2A

A B2

2
2B

A B2

A A

B
B

d C
 C C

dx

d C
 β C C

dx
C (0) 1; C (1) 0

dC
(0) 0; C (1) 1

dx

= Φ

= Φ

= =

= =
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where Φ is the Thiele modulus and β is the ratio of diffusion coefficient of 
B to A. Obtain the series solutions for this problem using Maple’s 'dsolve' 
command if possible.  Solve this problem using a suitable numerical 
method for Φ2 = 3.2 and β = 0.5. 

29. Consider hydrodynamics in a rotating disk electrode.[15] [24] The governing 
equations for velocity distributions are: 

2
2 2

2

2

2

dH
2F 0

dx

dF d F
F G H

dx dx

dG d G
2FG H

dx dx
H(0) F(0) 0 and G(0) 1

F(5) G(5) 0

+ =

− + =

+ =

= = =
= =

 

Solve this problem using Maple’s 'dsolve' numeric command plot for the 
velocity profiles.  Obtain the series solutions for this problem by using 
unknown initial conditions calculated from the numerical solution.  Is the 
series solution obtained convergent?  For what values of x can these series 
solutions be safely used?  Can accuracy be increased by adding more terms 
in the series? 

30. Redo problem 27 by applying finite differences in x.  How many node 
points are needed to obtain the converged solution?\ 

31. Consider a variant of Graetz problem discussed in examples 3.2.14 and 
3.2.15 (Villadsen and Michelsen, 1978). The governing equation and 
boundary conditions are: 

2
2 2

2

d y
 λ (1 x )y 0

dx
dy dy

y(0) 0; (0) 1 and (1) 0
dx dx

+ − =

= = − =
 

Obtain the first five eigenvalues and eigenfunctions using the shooting 
technique described in example 3.2.15. 

32. Consider diffusion with reaction in a pore with pore-mouth poisoning.[8]  
The governing equation and boundary conditions are: 

[ ]
2

2 2
62

1       x 0.7d y
y

exp( 10 x 0.7 )dx

dy
(0) 0 and y(1) 1

dx

≤⎛ ⎞
= Φ ⎜ ⎟⎜ ⎟− −⎝ ⎠

= =
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Solve this equation using a suitable numerical method for Φ = 2 and plot y 

and 
dy

dx
 as a function of x.  Note that Maple’s piecewise function can be 

used to enter the right hand side of the governing equation. 
33. Consider heat transfer in a fin with variable conductivity and nonlinear 

heat transfer coefficient.[25] The governing equations and boundary 
conditions are: 

[ ]

2

0 2

0 0 a

w

x
h 1

Ld dT
k 1 α(T T ) (T T )

dx dx B

dT
T(0) T  and (L) 0 

dx

⎛ ⎞
−⎜ ⎟

⎛ ⎞ ⎝ ⎠− + − = − −⎜ ⎟
⎝ ⎠

= =

 

The values of the parameters are h0 = 40 Btu/hr-ft2-oF, k0 = 60 Btu/hr-ft2-oF, 
α = 0.02 (of)-1, Two = 450oF, T0 = 77oF, Ta = 90oF, L = 1.5 in and B = 0.02 in.  
Obtain series solutions for this problem using Maple’s 'dsolve' command if 
possible. In addition, solve this problem using a suitable numerical 
technique. 

34. Consider potential distribution in porous electrode (Newman, 1991;[15] 
exercise problem 7 of chapter 3.1). For nonlinear Butler-Volmer kinetics 
dimensionless overpotential η is governed by: 

( )
2

2 0.5η 0.5η
2

d η ν e e
dx
dη dη

(0) δ; (1) δβ
dx dx

−= −

= = −
 

Obtain the series solutions for this problem using Maple’s 'dsolve' 
command if possible.  Plot overpotential profiles for ν = δ = 1 and β = -
0.1.  In addition, solve this problem using a suitable numerical method. 
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Chapter 4 

Partial Differential Equations in Semi-infinite 
Domains 

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of 
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the 
distribution of heat or concentration across the slab, or the material in which the 
experiment is performed. This process is represented by parabolic partial 
differential equations (unsteady state) or elliptic partial differential equations.  
When the length of the domain is large, it is reasonable to consider the domain as 
semi-infinite which simplifies the problem and helps in obtaining analytical 
solutions.  These partial differential equations are governed by the initial condition 
and the boundary condition at x 0= .  The dependent variable has to be finite at 
distances far ( x = ∞ ) from the origin.   Both parabolic and elliptic partial 
differential equations will be discussed in this chapter. The Laplace transform 
technique will be used for parabolic partial differential equations.  A similarity 
solution technique will be used for parabolic, elliptic and nonlinear partial 
differential equations. 

4.1   Partial Differential Equations (PDEs) in Semi-infinite 
Domains 

Transient heat conduction or mass transfer in solids with constant physical 
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is 
usually represented by a parabolic partial differential equation.  For steady state 
heat or mass transfer in solids, potential distribution in electrochemical cells is 
usually represented by elliptic partial differential equations.  In this chapter, we 
describe how one can arrive at the analytical solutions for linear parabolic partial 
differential equations and elliptic partial differential equations in semi-infinite 
domains using the Laplace transform technique, a similarity solution technique 
and Maple.  In addition, we describe how numerical similarity solutions can be 
obtained for nonlinear partial differential equations in semi-infinite domains. 

4.2   Laplace Transform Technique for Parabolic PDEs 

Parabolic partial differential equations are solved using the Laplace transform 
technique in this section. Diffusion like partial differential equations are first order 
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in the time variable and second order in the spatial variable.  This method involves 
applying the Laplace transform in the time variable to convert the partial 
differential equation to an ordinary differential equation in the Laplace domain, 
which becomes a boundary value problem (ordinary differential equation, ODE) 
in the spatial direction with s, the Laplace variable, as a parameter.  The boundary 
conditions are converted to the Laplace domain and the differential equation in the 
Laplace domain is solved by using the techniques illustrated in chapter 3.1 for 
solving linear boundary value problems. The methodology is very similar to the 
technique illustrated in chapter 3.1 for solving boundary value problems (BVPs) in 
the semi-infinite domain.  Once an analytical solution is obtained in the Laplace 
domain, the solution is inverted to a time domain to obtain the final analytical 
solution (in time and spatial coordinates), which is shown in the following 
examples.    

Example 4.1. Heat Conduction in a rectangular slab 

Consider the following transient heat conduction problem in a slab.[1-3] The 
governing equation is: 

2

2
 = 

( ,0) = 1

u(0, ) = 0 and u( , ) is defined

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

 (4.1) 

where α is the thermal diffusivity ( )2m s .  Equation (4.1) is solved below using 

Maple: 

> restart:with(linalg):with(inttrans):with(plots): 

The governing equation is stored in the equation: 

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2); 

 

Enter the initial condition here: 

> u(x,0):=1; 

 

The boundary condition at x 0=  is entered here: 



4.2   Laplace Transform Technique for Parabolic PDEs 297
 

> bc1:=u(0,t)=0; 

 

Enter the second boundary condition here: 

> bc2:=u(infinity,t)=defined; 

 

The governing equation and the boundary condition at x 0=  are converted to the 
Laplace domain: 

> eqs:=laplace(eq,t,s); 

 

The given partial differential equation is transformed to an ordinary differential 
equation in the Laplace domain since 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

where U(x) is the dependent variable in the Laplace domain: 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

Next, the dependent variable in the Laplace domain is solved using the 'dsolve' 
command since (see chapter 3.1.6): 

> U(x):=rhs(dsolve(g,U(x))); 

 

The constant _C2 is found using the boundary condition at x = ∞ .  The 

dependent variable U(x) is defined at x = ∞ .  In the above expression 
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becomes ∞ as x tends to ∞ .  Hence, in the above expression, the coefficient of 

  is equated to zero: 

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 

 
This simplifies the solution since: 

> U(x):=eval(U(x)); 

 

The solution obtained in the Laplace domain is converted to the time domain since: 

> u:=invlaplace(U(x),s,t); 

 

This solution can be further simplified since: 

> u:=convert(u,erf); 

 

The solution obtained can be plotted for a particular value of the parameter α 
since: 
 
> plot3d(subs(alpha=0.001,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.1", 
labels =[x,t,"u"],orientation=[120,60]); 
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Fig. 4.1 
 

The same plot is made for a different value of α here: 

> plot3d(subs(alpha=0.1,u),x=1..0,t=50..0,axes=boxed,title="Figure 4.2", 
labels =[x,t,"u"],orientation=[120,60]); 

 

 
Fig. 4.2 
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Next, the dimensionless temperature u is plotted versus x for different values of 
time as shown below: 
 
>pfs:=plot([subs(alpha=0.001,t=1,u),subs(alpha=0.001,t=10,u), 
subs(alpha=0.001,t=100,u),subs(alpha=0.001,t=200,u)],x=0..1, 
axes=boxed,title="Figure 4.3",thickness=4,labels=[x,"u"]); 

 

> pts:=textplot([[0.12,evalf(subs(alpha=0.001,t=1,x=0.08,u)),"t=1"], 
[0.25,evalf(subs(alpha=0.001,t=10,x=0.2,u)),"t=10"], 
[0.58,evalf(subs(alpha=0.001,t=100,x=0.5,u)),"t=100"], 
[0.69,evalf(subs(alpha=0.001,t=200,x=0.6,u)),"t=200"]]); 

 

> display({}); 

 
Fig. 4.3 

 
An animation in time can be made since: 

> animate(subs(alpha=0.001,u),x=0..1,t=1..500,thickness=4,title="Figure 4.4", 
axes =boxed,labels=[x,"u"]); 
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Fig. 4.4 
 

Example 4.2. Heat Conduction with Transient Boundary Conditions 

Heat conduction with a constant boundary condition at x =0 was considered in 
example 4.1.  The same technique can be applied for time dependent boundary 
conditions. Consider the transient heat conduction problem in a slab.[4] The 
governing equation is: 

2

2
 = 

( ,0) = 0

k
u(0, ) =  and u( , ) is defined

t

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

      (4.2) 

Equation (4.2) is solved in Maple below: 

> restart:with(linalg):with(inttrans):with(plots): 
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2); 
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> u(x,0):=0; 
 

> bc1:=u(0,t)=k/t^(1/2); 

 

> bc2:=u(infinity,t)=defined; 

 

> eqs:=laplace(eq,t,s): 

The governing equation in the Laplace domain is: 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

The boundary condition in the Laplace domain is: 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 
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The dimensionless temperature in the Laplace domain is: 

> U(x):=eval(U(x)); 

 

Next, the solution is inverted to the time domain: 

> u:=invlaplace(U(x),s,t); 

 

Maple is not able to invert the solution in the Laplace domain.  This can be solved 
by using dummy variables for x and α and defining them to be positive: 

> U(x):=subs(x=x1,alpha=alpha1,U(x)); 

 

> assume(x1>0,alpha1>0); 
> u:=invlaplace(U(x),s,t); 

 

> u:=subs(x1=x,alpha1=alpha,u); 

 

Hence, the final solution is: 

> pars:={alpha=0.001,k=1}; 

 

> plot3d(subs(pars,u),x=1..0,t=300..0,axes=boxed,title="Figure 4.5", 
labels =[x,t,"u"],orientation=[45,45]); 
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Fig. 4.5 

 
> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u), 
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.6",thickness=5, 
labels=[x,"u"],legend=["t=1","t=10","t=100","t=200"]); 

 
 

Fig. 4.6 
 
You can make an animation using the command illustrated in example 4.1. 
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Example 4.3. Heat Conduction with Flux Boundary Conditions 

In the previous two examples, the temperature (dependent variable) at x = 0 was 
specified.  The same technique can be applied for the case where the derivative of 
the dependent variable is known at the boundary x = 0 (flux boundary conditions).  
Consider the transient heat conduction problem in a slab.[4] The governing 
equation in dimensionless form is  

2

2
 = 

( ,0) = 0

(0, ) = -k and u( , ) is defined

u u

t x

u x

u
t t

x

α∂ ∂
∂ ∂

∂ ∞
∂

           (4.3) 

The flux boundary condition has to be considered while taking the Laplace transform.  
Equation (4.3) is solved in Maple below: 

> restart:with(linalg):with(inttrans):with(plots): 
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2); 

 

> u(x,0):=0; 

 

> bc1:=diff(u(x,t),x)=-k; 

 

> bc2:=u(infinity,t)=defined; 

 

> eqs:=laplace(eq,t,s): 
> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s); 

 

The boundary condition in the Laplace domain is: 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc1:=subs(x=0,convert(bc1,D)); 

 

> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 

 

> U(x):=eval(U(x)); 

 

> u:=invlaplace(U(x),s,t); 
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The dimensionless temperature profile is given by: 

> u:=convert(u,erfc); 

 

> pars:={alpha=0.001,k=1}; 

 

Plots are made for particular values of parameters: 

> plot3d(subs(pars,u),x=1..0,t=300..0,axes=boxed,title="Figure 4.7", 
labels=[x,t,"u"],orientation=[-60,60]); 

 

 
 
Fig. 4.7 

 
> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u), 
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.8", 
thickness=5,labels=[x,"u"],legend=["t=1","t=10","t=100","t=200"]); 
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Fig. 4.8 
 

Example 4.4. Heat Conduction with an Initial Profile 

In the previous examples, the initial condition was a constant and independent of 
x. The same technique can be applied for the case where there is an initial 
temperature profile.  Consider the transient heat conduction problem in a slab  

2

2
 = 

( ,0) = sin( x)

(0, ) = 0 and u( , ) is defined

u u

t x

u x

u t t

α

π

∂ ∂
∂ ∂

∞

      (4.4) 

Equation (4.4) is solved in Maple below.  The programs given for the previous 
examples have to be modified to solve equation (4.4) by only changing the initial 
condition:  

> restart:with(linalg):with(inttrans):with(plots): 
> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2); 
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> u(x,0):=sin(Pi*x); 
 

> bc1:=u(0,t)=0; 
 

> bc2:=u(infinity,t)=defined; 

 

The following solution and plots are obtained: 

> eqs:=laplace(eq,t,s); 

 
> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 
 

> U(x):=eval(U(x)); 

 

> u:=invlaplace(U(x),s,t); 

 

> pars:={alpha=0.001}; 
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> plot3d(subs(pars,u),x=10..0,t=100..0,axes=boxed,title="Figure 4.9", 
labels=[x,t,"u"],orientation=[-60,60]); 

 

 
Fig. 4.9 

 
> plot([subs(pars,t=1,u),subs(pars,t=10,u),subs(pars,t=100,u), 
subs(pars,t=200,u)],x=0..1,axes=boxed,title="Figure 4.10", 
thickness=5,labels=[x,"u"]); 

 

 
Fig. 4.10 
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Example 4.5. Heat Conduction with a Source Term 

The technique illustrated in the previous examples can be applied for the case 
where there is a source term (this source term can be a function of x and t).  
Consider the transient heat conduction problem in a slab[5] 

2
-t

2
 =  + sin(x)e

( ,0) = 0

(0, ) = 0 and u( , ) is defined

u u

t x

u x

u t t

α∂ ∂
∂ ∂

∞

      (4.5) 

Equation (4.5) is solved in Maple below.  The programs given for the previous 
example can be modified to solve equation (4.5).  Only the governing equation has 
to be changed since: 

> restart:with(linalg):with(inttrans):with(plots): 

Only the governing equation has to be changed since: 

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2)+sin(x)*exp(-t); 

 

> u(x,0):=0; 

 

> bc1:=u(0,t)=0; 

 

> bc2:=u(infinity,t)=defined; 

 

The following solution and plots are obtained: 

> eqs:=laplace(eq,t,s); 
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> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 

 

> U(x):=eval(U(x)); 

 

> u:=invlaplace(U(x),s,t); 

 

> pars:={alpha=1/5}; 

 

> plot3d(subs(pars,u),t=5..0,x=10..0,axes=boxed,title="Figure 4.11", 
labels=[x,t,"u"]); 
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Fig. 4.11 

 
> plot([subs(pars,t=0,u),subs(pars,t=0.5,u),subs(pars,t=1,u), 
subs(pars,t=2,u)],x=0..10,axes=boxed,title="Figure 4.12", 
thickness=5,labels=[x,"u"]); 
 

 
Fig. 4.12 
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4.3   Laplace Transform Technique for Parabolic PDEs – 
Advanced Problems 

For some complicated problems, Maple cannot find the inverse Laplace transform.  
In these cases, one can split use standard Laplace transform formulae to simplify 
the expressions.  By manipulating the expressions, Maple can be used to find the 
inverse Laplace transform.  This is best illustrated with the following examples.   

Example 4.6. Heat Conduction with Radiation at the Surface 

Consider the transient heat conduction problem in a slab.[4] The governing 
equation in dimensionless form is 

2

2
 = 

( ,0) = 1

(0,t) = hu(0, ) and u( , ) is defined

u u

t x

u x

u
t t

x

α∂ ∂
∂ ∂

∂ ∞
∂

                 (4.6) 

where α is the thermal diffusivity ( )2m s and h is the heat transfer coefficient 

( )m 1− . Carslaw and Jaeger[4] presented solutions for this problem after 

transforming the governing equation and boundary conditions to a form 
convenient for similarity transformation.  Equation (4.6) is solved in Maple below 
using the Laplace transform technique (note that the transformation is not 
necessary with this approach): 

> restart:with(linalg):with(inttrans):with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)=alpha*diff(u(x,t),x$2); 

 

> u(x,0):=1; 

 

Enter the boundary condition here: 

> bc1:=diff(u(x,t),x)-h*u(x,t)=0; 
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> bc2:=u(infinity,t)=defined; 

 

> eqs:=laplace(eq,t,s); 

 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc1:=convert(bc1,D); 

 

The boundary condition in the Laplace domain is: 

> bc1:=subs(x=0,bc1); 

 
U is solved as: 

> U(x):=rhs(dsolve({eqs,bc1})); 

 
> eqc:=coeff(U(x),exp(1/alpha^(1/2)*s^(1/2)*x)); 

 

> coef:=solve(eqc,{_C1}); 
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The temperature profile in the Laplace domain is: 

> U(x):=evala(subs(coef,U(x))); 

 

Maple cannot find the inverse of the Laplace transform: 

> invlaplace(U(x),s,t); 

 
The above expression is split into two terms U1 and U2 as shown below: 

> U1:=1/(s); 

 

> u1:=invlaplace(U1,s,t); 

 

> U2:=U(x)-U1; 

 

The inverse of U2 is: 

> U2:=subs({x=x1,alpha=alpha1},U2); 

 

> assume(x1>0,alpha1>0); 
> u2:=invlaplace(U2,s,t); 
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> u2:=subs({x1=x,alpha1=alpha},u2); 

 

Finally, the temperature distribution is given by: 

> u:=u1+u2; 

 

> pars:={alpha=1e-3,h=0.01}; 

 

> plot3d(subs(pars,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.13", 
labels=[x,t,"u"],orientation=[110,60]); 

 
Fig. 4.13 

 

 
 
> plot([subs(pars,t=10,u),subs(pars,t=100,u),subs(pars,t=200,u), 
subs(pars,t=500,u)],x=0..1,axes=boxed,title="Figure 4.14", 
thickness=5,labels=[x,"u"]); 
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Fig. 4.14 

 
> us:=eval(subs(x=0,u)); 

 

Example 4.7. Unsteady State Diffusion with a First-Order Reaction 

Consider the transient diffusion problem.[6] The governing equation is 

2

2
 = 

( ,0) = 0

u(0, ) = 1 and u( , ) is defined

u u
D ku

t x

u x

t t

∂ ∂ −
∂ ∂

∞

              (4.7) 

where D is the diffusivity (m2/s) and k is the rate constant ( )1s− .  Equation (4.7) 

is solved in Maple below using the Laplace transform technique: 
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> restart:with(linalg):with(inttrans):with(plots): 
> eq:=diff(u(x,t),t)=D*diff(u(x,t),x$2)-k*u(x,t); 

 

> u(x,0):=0; 

 

> bc1:=u(0,t)=1; 

 

> bc2:=u(infinity,t)=defined; 

 

> eqs:=laplace(eq,t,s); 

 
> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

> U(x):=rhs(dsolve({eqs,bc1})); 

 

> eqc:=coeff(U(x),exp(1/D^(1/2)*(s+k)^(1/2)*x)); 

 

> _C2:=solve(eqc,_C2); 
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> U(x):=eval(U(x)); 

 

Here again Maple cannot find the inverse Laplace transform: 

> invlaplace(U(x),s,t); 

 

From the property of the Laplace transform,[7] we know that 

-1

t
-1

0

if  L F(s) = f(t)

F(s)
then L  = f(t)

s
⎛ ⎞
⎜ ⎟
⎝ ⎠ ∫

     (4.8) 

> U1:=U(x)*s; 

 

Again, Maple cannot invert U1 directly: 

> invlaplace(U1,s,t); 

 

Another formula[7] is used: 

1 atL F(s a) = e f(t)− −+    (4.9) 

> U2:=subs(s=s-k,U1); 

 

The inverse transform for U2 is: 

> U2:=subs({D=D1,x=x1},U2); 
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> assume(D1>0,x1>0); 
> u2:=invlaplace(U2,s,t); 

 

> u2:=subs({D1=D,x1=x},u2); 

 

The inverse transform for U1 is: 

> u1:=exp(-k*t)*u2; 

 
> I1:=int(u1,t); 

 

> with(student): 
> I1:=simplify(changevar(t=x^2/4/D/T^2,I1,T)); 

 

> I1:=subs(T=T1,x=x1,D=D1,I1); 
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> assume(T1>0); 
> I1:=simplify(I1); 

 

> I1:=subs({x1=x,T1=T,D1=D},I1); 

 
> I1:=expand(I1); 

 
> I2:=eval(subs(T=infinity,I1)); 

 

> u:=I1-I2; 

 
> u:=collect(u,exp(x/D^(1/2)*k^(1/2))); 

 
> u:=convert(u,erfc); 
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> u:=subs(T=x/2/(D*t)^(1/2),u); 

 
> convert(expand(simplify(eval(subs(k=0,u)))),erfc); 

 

> expand(D*(expand(-eval(subs(x=0,diff(u,x)))))); 

 

> pars:={D=1e-6,k=0.1}; 

 

> plot3d(subs(pars,u),x=1e-3..0,t=10..0,axes=boxed,labels=[x,t,"u"], 
orientation=[-60,60]); 

 

 
Fig. 4.15 
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> pfs:=plot([subs(pars,t=0.01,u),subs(pars,t=0.1,u),subs(pars,t=1,u), 
subs(pars,t=2,u)],x=0..1e-3,axes=boxed,thickness=5,labels=[x,"u"]); 

 

> pts:=textplot([[0.00016,evalf(subs(pars,t=0.01,x=0.0001,u)),"t=0.01"], 
[0.00036,evalf(subs(pars,t=0.1,x=0.0003,u)),"t=0.1"],[0.00053, 
evalf(subs(pars,t=1,x=0.0006,u)),"t=1"],[0.00069, 
evalf(subs(pars,t=2,x=0.0006,u)),"t=2"]]); 

 

> display({pfs,pts}); 

 

 
 

Fig. 4.16 
 

4.4   Similarity Solution Technique for Parabolic PDEs 

Parabolic partial differential equations are solved using the similarity solution 
technique in this section.  This method involves combining the two independent 
variables (x and t) as one (η).  For this purpose, the original initial and boundary 
conditions should become two boundary conditions in the new combined variable 
(η).  The methodology involves converting the governing equation (PDE) to an 
ordinary differential equation (ODE) in the combined variable (η).  This variable 
transformation is very difficult to do by hand.  In this chapter, we will show how 
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this variable transformation can be done using Maple.  The original problem 
becomes a boundary value problem (ODE) in the new combined variable (η).  The 
original initial and boundary conditions are converted to boundary conditions in 
the combined variable.  This boundary value problem can then be solved using the 
techniques illustrated in chapter 3.1 for solving boundary value problems.  Unlike 
the Laplace transform technique, there is no need for inversion.   

Example 4.8. Heat Conduction in a Rectangular Slab 

Example 4.1 is solved here with the boundary and initial conditions switched.[4] 
The governing equation is 

2

2
 = 

( ,0) = 0

u(0, ) = 1 and u( , ) is defined

u u

t x

u x

t t

α∂ ∂
∂ ∂

∞

     (4.10) 

The following transformation is used to combine the variable:[7] 

x
 = 

2 t
η

α
                                            (4.11) 

The variable u in the new coordinate η is represented by U. The governing 
equation (ODE) for U is obtained by converting the time and spatial derivative in 
equation (4.10) (PDE) to derivatives in the η coordinate. The boundary conditions 
for U are: 

U(0) = 1

U( ) = 0∞
                                           (4.12) 

The governing equation for U is then solved with the above boundary conditions 
to obtain the final solution.  Example 4.8 is solved in Maple below: 

> restart: 

The with(student) package is called to facilitate variable transformations: 

> with(student): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)-alpha*diff(u(x,t),x$2); 
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First, u(x,t) is transformed to U(η(x,t)): 

> eq1:=changevar(u(x,t)=U(eta(x,t)),eq); 

 

The transformation for η is substituted here: 

> eq2:=expand(simplify(subs(eta(x,t)=x/2/(alpha*t)^(1/2),eq1))); 

 

The governing equation is further simplified here: 

> eq2:=expand(eq2*t); 

 

> eq2:=subs(x=eta*2*(alpha*t)^(1/2),eq2); 

 

> eq2:=convert(eq2,diff); 

 

The final form for the governing equation is: 

> eq2:=expand(-2*eq2); 

 

Enter the boundary condition here: 

> bc1:=U(0)=1; 
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> bc2:=U(infinity)=0; 

 

U is solved as: 

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta))); 

 

> U:=convert(U,erfc); 

 

Next, u as a function of x and 1 is obtained as: 

> u:=subs(eta=x/2/(alpha*t)^(1/2),U); 

 

The solution obtained can be plotted: 

> plot3d(subs(alpha=0.001,u),x=1..0,t=500..0,axes=boxed,title="Figure 4.17", 
labels =[x,t,"u"],orientation=[-60,60]); 

 

 
Fig. 4.17 
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Example 4.9. Laminar Flow in a CVD Reactor 

Consider the laminar flow in a CVD reactor.  The governing equation is 

2

max 2
2  = 

( ,0) = 1

u(0, ) = 0 and u( , ) = 1

x u u
v D

B z x

u x

z z

∂ ∂
∂ ∂

∞

 (4.13) 

where vmax is the average velocity (cm/s), B is the half-width of the reactor (cm) 

and D is the diffusion coefficient (cm2/s).  Next, the transformation max2v
V = 

BD
 

is used to simplify the governing equation as: 

2

2
 = 

u u
Vx

z x

∂ ∂
∂ ∂

                                          (4.14) 

The following transformation is used to combine the variable:[7] 

1

3

x
 = 

9z
V

η
⎛ ⎞
⎜ ⎟
⎝ ⎠

                                             (4.15) 

The variable u in the new coordinate η is represented by U.  The boundary 
conditions for U are: 

U(0) = 0

U( ) = 1∞
                                              (4.16) 

The governing equation for U is then solved with the above boundary conditions 
to obtain the final solution.  Example 4.9 is solved in Maple below: 
 

> restart: 
> with(student): 
> with(plots): 
> eq:=V*x*diff(u(x,z),z)-diff(u(x,z),x$2); 
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> eq1:=changevar(u(x,z)=U(eta(x,z)),eq): 
> eq2:=expand(simplify(subs(eta(x,z)=x/(9*z/V)^(1/3),eq1))): 
> eq2:=subs(x=eta*(9*z/V)^(1/3),eq2): 
> eq2:=expand(eq2*z): 
> eq2:=simplify(eq2/(z/V)^(1/3)): 
> eq2:=eq2*9/3^(2/3)/V: 
> eq2:=convert(eq2,diff): 

The governing equation in the combined variable is: 

> eq2:=-eq2; 

 

The boundary conditions for U are entered here: 

> bc1:=U(0)=0; 

 

> bc2:=U(infinity)=1; 

 

> rhs(dsolve({eq2,bc1,bc2},U(eta))); 

 

Maple cannot find the limit as η→∞.  Alternatively, the governing equation is 
solved using the first boundary condition (bc1) only: 

> U:=rhs(dsolve({eq2,bc1},U(eta))); 

 
The solution is a combination of exponential and Whittaker functions.  In the 
literature this problem is usually left in terms of integrals (Gamma functions).  
However, Maple is able to solve the differential equation explicitly.  Next, the 
constant _C2 is found using the boundary condition bc2. 

> eval(limit(U,eta=infinity)); 
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Since the limit does not exit, U/_C2 is plotted until η=10. 

> plot(U/_C2,eta=0..10,axes=boxed,thickness=4,title="Figure 4.18"); 

 

 
 
Fig. 4.18 
 

An initial guess L = 1 is used to replace x = ∞. 

> evalf(subs(eta=1.,U/_C2)); 

 

> L:=1; 

 

> err:=1; 

 

The value of U/C2 is found at x = L: 

> c0:=evalf(subs(eta=1.,U/_C2)); 
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Next, the length L is increased until the U/_C2(x = ) becomes a constant: 

> while err>1e-6 do L:=L+1; c1:=evalf(subs(eta=L,U/_C2));err:=abs(c1-c0); 
c0:=c1;od;\ 

 

 
 

 

 

 

 

 

 

 

 

 
 
The length and the constant have converged to 10 digit accuracy.  The final length is 

> L; 

 

The constant _C2 is found using the boundary condition U(L) = 1. 

> _C2:=1/c0; 

 

The solution to the transformed coordinate is: 

> U; 

 

> plot(U,eta=0..10.,thickness=4,axes=boxed,title="Figure 4.19", 
labels=[eta,'u']); 
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Fig. 4.19 

 
The solution in the original coordinates is obtained as: 

> u:=subs(eta=x/(9*z/V)^(1/3),U); 

 

 

> pars:={V=0.001}; 

 

A plot was made by specifying a value for V. 

> plot3d(subs(pars,u),x=0..10,z=0..10,axes=boxed,title="Figure 4.20", 
orientation=[120,60],labels=[x,y,"u"]); 
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Fig. 4.20 

 
> u; 

 
>  

4.5   Similarity Solution Technique for Elliptic Partial 
Differential Equations 

Elliptic partial differential equations are solved using the similarity solution 
technique in this section.  The method described in section 4.4 is also valid for 
elliptic partial differential equations.  The methodology involves converting the 
governing equation (PDE) to an ordinary differential equation (ODE) in the 
combined variable (η).  This variable transformation is very difficult to do by 
hand.  In this section, we show how this variable transformation can be done using 
Maple.  The original problem becomes a boundary value problem (ODE) in the 
new combined variable (η).  This is best illustrated with the following examples.   

Example 4.10. Steady State Heat Conduction in a Plate 

Consider steady state conduction in a semi-infinite rectangular strip. The governing 
equation in dimensionless form is 
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2 2

2 2
 +  = 0

( ,0) =  ( , ) = 1

u(0, ) =  u(x, ) = 0

u u

x y

u x u y

y

∂ ∂
∂ ∂

∞

∞

 (4.17) 

The following transformation is used to combine the variable: 

y
= 

x
η                                               (4.18) 

The variable u in the new coordinate η is represented by U. The governing 
equation (ODE) for U is obtained by converting the spatial derivatives (x and y) in 
equation (4.17) (PDE) to derivatives in the η coordinate. The boundary conditions 
for U are: 

U(0) = 1

U( ) = 0∞
                                           (4.19) 

Example 4.10 is solved in Maple below: 
 

> restart: 
> with(student): 
> with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,y),x$2)+diff(u(x,y),y$2); 

 

> eq:=changevar(u(x,y)=U(eta(x,y)),eq): 
> eq1:=(simplify(subs(eta(x,y)=y/x,eq))): 
> eq1:=subs(y=eta*x,eq1): 
> eq1:=simplify(eq1*x^2): 

The governing equation in the combined variable is: 

> eq2:=convert(eq1,diff); 
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> bc1:=U(0)=1; 

 

> bc2:=U(infinity)=0; 

 

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta))); 

 

The dimensionless temperature U is given by: 

> U:=expand(U); 

 

> plot(U,eta=0..10,thickness=5,title="Figure 4.21",axes=boxed); 

 

 
 

Fig. 4.21 
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The dimensionless temperature in the original coordinate is: 

> u:=expand(subs(eta=y/x,U)); 

 

The solution obtained is plotted: 

> plot3d(u,x=0..50,y=0..50,axes=boxed,title="Figure 4.22", 
orientation=[120,60],labels=[x,y,"u"]); 

 

 
 

Fig. 4.22 
 

The dimensionless heat flux at y 0=  is given by: 

> flux:=subs(y=0,-diff(u,y)); 

 

Example 4.11. Current Distribution in an Electrochemical Cell 

Primary and secondary current distributions in electrochemical cells are governed 
by the Laplace equation.[8] Consider a rectangular geometry governed by the 
following equation[9] 
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2 2

2 2
 +  = 0

( ,0) =  1

u(L, ) =  u(x, ) = 0

u u

x y

u x

y

∂ ∂
∂ ∂

∞

                                (4.20) 

Note that this geometry is of finite dimension in x (L) and semi-infinite in y.  The 
following transformation is used to combine the variable: 

y
 = 

L x
η

−
                                             (4.21) 

The variable u in the new coordinate η is represented by U.  The boundary 
conditions for U are: 

U(0) = 1

U( ) = 0∞
                                             (4.22) 

Example 4.11 is solved in Maple below.  The program used for example 4.10 can be 
modified to solve this example.  Only the variable transformation (equation (4.21)) 
has to be modified.  The following results are obtained: 
 

> restart: 
> with(student): 
> with(plots): 
> eq:=diff(u(x,y),x$2)+diff(u(x,y),y$2); 

 

> eq:=changevar(u(x,y)=U(eta(x,y)),eq): 
> eq1:=(simplify(subs(eta(x,y)=y/(L-x),eq))): 
> eq1:=subs(y=eta*(L-x),eq1): 
> eq1:=simplify(eq1*(L-x)^2): 
> eq2:=convert(eq1,diff); 

 

> bc1:=U(0)=1; 
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> bc2:=U(infinity)=0; 

 

> U:=rhs(dsolve({eq2,bc1,bc2},U(eta))); 

 

> U:=expand(U); 

 

> plot(U,eta=0..10,thickness=4,title="Figure 4.23",axes=boxed); 

 

 
 

Fig. 4.23 

 
> u:=expand(subs(eta=y/(L-x),U)); 

 

> plot3d(subs(L=1,u),x=0..1,y=0..2,axes=boxed,title="Figure 4.24", 
orientation=[30,60],labels=[x,y,"u"]); 
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Fig. 4.24 

 
The current distribution at the electrode ( )y 0=  is given by: 

> curr:=subs(y=0,-diff(u,y)); 

 

>  

4.6   Similarity Solution Technique for Nonlinear Partial 
Differential Equations 

Nonlinear parabolic and elliptic partial differential equations are solved using the 
similarity solution technique in this section.  The methods described in section 4.4 
and sections 4.5 are valid for nonlinear partial differential equations, also. The 
methodology involves converting the governing equation (PDE) to an ordinary 
differential equation in the combined variable (η). This variable transformation is 
very difficult to do by hand.  In this section, we will show how this variable 
transformation can be done using Maple. The original problem becomes a nonlinear 
boundary value problem (ODE) in the new combined variable (η).  This is best 
illustrated with the following examples.   
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Example 4.12. Variable Diffusivity 

Consider the transient diffusion in a rectangle in which the diffusivity varies 
linearly as a function of concentration.[10] The governing equation is:    

 = (1 )

( ,0) = 0

u(0, ) = 1 and u( , ) is defined

u u
u

t x x

u x

t t

∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

     (4.23) 

The following transformation is used to combine the variable:[7] 

x
 = 

2 t
η                                              (4.24) 

The variable u in the new coordinate η is represented by U.  The governing 
equation (ODE) for U is obtained by converting the time and spatial derivative in 
equation(4.23) (PDE) to derivatives in the η coordinate.  The boundary conditions 
for U are: 

U(0) = 1

U( ) = 0∞
                                           (4.25) 

The governing equation for U is then solved with the above boundary conditions 
to obtain the final solution.  Example 4.12 is solved in Maple below: 
 

> restart: 
> with(student): 
> with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)-diff(((1+u(x,t))*diff(u(x,t),x),x)); 

 

> eq1:=changevar(u(x,t)=U(eta(x,t)),eq): 
> eq2:=expand(simplify(subs(eta(x,t)=x/2/(t)^(1/2),eq1))): 
> eq2:=expand(eq2*t): 
> eq2:=subs(x=eta*2*(t)^(1/2),eq2): 
> eq2:=convert(eq2,diff): 
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The governing equation in the combined variable is: 

> eq2:=expand(-2*eq2); 

 

> bc1:=U(0)=1; 

 

The length of the domain is taken to be 5: 

> bc2:=U(5)=0; 

 
The nonlinear equation is solved numerically and plotted: 

> sol:=dsolve({eq2,bc1,bc2},U(eta),type=numeric); 

 

> odeplot(sol,[eta,U(eta)],0..5,axes=boxed,title="Figure 4.25",thickness=4); 
 

 
 

Fig. 4.25 

 
>  
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Example 4.13. Plane Flow Past a Flat Plate – Blassius Equation 

The velocity distribution in the boundary layer is given by:[6] 

2

2

 +   = 0

 + v  = 

u(0,y) = 1 

u(x,0) = 0 and u(x, ) = 1

v(x,0) = 0

u v

x y

u u u
u

x y y

∂ ∂
∂ ∂

∂ ∂ ∂
∂ ∂ ∂

∞
    (4.26) 

where u and v are the x and y components of the velocity.  Next, the stream 
function is introduced: 

 =  and v = -u
y x

ψ ψ∂ ∂
∂ ∂

    (4.27) 

By definition (4.27), the stream function ψ satisfies the first equation in  
equation (4.26). The boundary conditions for ψ are 

(0,y) = 1 

(x,0) = 0 and (x, ) = 1

(x,0) = 0

y

y y

x

ψ

ψ ψ

ψ

∂
∂
∂ ∂ ∞
∂ ∂
∂−
∂

   (4.28) 

The following transformation is used to combine the independent variables: 

y
 = 

x
η                                                  (4.29) 

Next, the following transformation is introduced: 

= x  f( )ψ η                                        (4.30) 

The boundary conditions for f(η) are: 

df
(0) = 0 and (0) = 0

d

df
( ) = 1

d

f
η

η
∞

    (4.31) 
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Using Maple the transformation involved in the governing equation and boundary 
conditions in example 4.13 is solved below: 
 

> restart: 
> with(student): 
> with(plots): 

Enter the governing equation: 

> eq:=u(x,y)*diff(u(x,y),x)+v(x,y)*diff(u(x,y),y)-diff(u(x,y),y$2); 

 
The stream function is introduced: 

> vars:={u(x,y)=diff(psi(x,y),y),v(x,y)=-diff(psi(x,y),x)}; 

 

The governing equation for the stream function is: 

> eq:=subs(vars,eq); 

 

Next, the transformation defined in equation (4.30) is introduced: 

> eq:=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),eq); 

 

 

 

 

The independent variables are combined using the transformation defined in 
equation (4.29): 

> eq1:=(simplify(subs(eta(x,y)=y/x^(1/2),eq))): 
> eq1:=subs(y=eta*x^(1/2),eq1): 
> eq1:=simplify(eq1*x): 

The governing equation for f in the combined variable is: 

> eq2:=convert(-eq1,diff); 
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Next, the velocity variables u and v (i.e., derivatives of the stream function) are 
expressed in terms of the combined variable and f: 

> v(eta):=-diff(psi(x,y),x); 

 

> v(eta):=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),v(eta)): 
> v(eta):=expand(subs(eta(x,y)=y/x^(1/2),v(eta))): 
> v(eta):=subs(y=eta*x^(1/2),v(eta)): 
> v(eta):=factor(v(eta)); 

 

> u(eta):=diff(psi(x,y),y); 

 

> u(eta):=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),u(eta)): 
> u(eta):=expand(subs(eta(x,y)=y/x^(1/2),u(eta))): 
> u(eta):=subs(y=eta*x^(1/2),u(eta)); 

 

Next, the boundary conditions are expressed in terms of f: 

> bc1:=subs(eta=0,v(eta))=0; 

 

> bc1:=-bc1*2*x^(1/2); 

 

> bc2:=subs(eta=0,u(eta))=0; 

 

> bc3:=subs(eta=infinity,u(eta))=1; 

 

The length of the domain is taken to be 5: 

> bc3:=subs(infinity=5,bc3); 
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The numerical solution for the Blassius equation is obtained as: 

> sol:=dsolve({eq2,bc1,bc2,bc3},f(eta),type=numeric); 

 

> odeplot(sol,[eta,f(eta)],0..5,thickness=3,title="Figure 4.26",axes=boxed); 

 

 
Fig. 4.26 

 
Next, the velocity profiles are obtained by converting the corresponding 
expression to 'diff' form: 

> u(eta):=convert(u(eta),diff); 

 

> v(eta):=convert(v(eta),diff); 

 

Since v is a function of 1/2x, v x∗  is plotted: 

> odeplot(sol,[eta,u(eta)],0..5,thickness=4,color=blue,title="Figure 4.27", 
axes=boxed,labels=[eta,u]); 
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Fig. 4.27 

 
> odeplot(sol,[eta,v(eta)*x^(1/2)],0..5,thickness=4,color=brown, 
title="Figure 4.28",axes=boxed,labels=[eta,"v*x^(1/2)"]); 

 

 
Fig. 4.28 
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The solution at η = 0 is obtained as: 

> sol(0); 

 

Stress is related to the Reynolds number (re) and the flux at y 0= : 

> S:=re*diff(u(x,y),y); 

 

The velocity gradient is terms of the stream function is: 

> subs(u(x,y)=diff(psi(x,y),y),S); 

 

The second derivative of the stream function is expressed in terms of f and η. 

> d:=diff(psi(x,y),y$2); 

 

> d:=changevar(psi(x,y)=x^(1/2)*f(eta(x,y)),d): 
> d:=expand(subs(eta(x,y)=y/x^(1/2),d)): 
> d:=subs(y=eta*x^(1/2),d): 
> d:=convert(d,diff); 

 

> S:=re*d; 

 

The second derivative of f is found from the numerical solution. 

> eqd3:=sol(0)[4]; 

 



348 4   Partial Differential Equations in Semi-infinite Domains
 

Hence, the stress Reynolds number relationship becomes: 

> S:=subs(diff(f(eta),`$`(eta,2))=rhs(eqd3),S); 

 

4.7   Summary 

In this chapter, analytical solutions were obtained for parabolic and elliptic partial 
differential equations in semi-infinite domains. In section 4.2, the given linear 
parabolic partial differential equations were converted to an ordinary differential 
equation boundary value problem in the Laplace domain.  The dependent variable 
was then solved in the Laplace domain using Maple’s 'dsolve' command.  The 
solution obtained in the Laplace domain was then converted to the time domain 
using Maple’s inverse Laplace transform technique.  Maple is not capable of 
inverting complicated functions.  Two such examples were illustrated in section 4.3. 
As shown in section 4.3, even when Maple fails, one can arrive at the transient 
solution by simplifying the integrals using standard Laplace transform formulae. 

In section 4.4, the given linear parabolic partial differential equation in semi-
infinite domain was solved by combining the independent variables (similarity 
solution).  This technique is capable of providing special function solutions as 
shown in example 4.9.  In section 4.5, elliptic partial differential equations were 
solved using the similarity solution technique.  In section 4.6, similarity solution 
was extended for nonlinear parabolic and elliptic partial differential equations.   

Both the Laplace transform and the similarity solution techniques are powerful 
techniques for partial differential equations in semi-infinite domains.  The Laplace 
transform technique can be used for all linear partial differential equations with all 
possible boundary conditions.  The similarity solution can be used only if the 
independent variables can be combined and if the boundary conditions in x and t 
can be converted to boundary conditions in the combined variable.  In addition, 
unlike the Laplace transform technique, the similarity solution technique cannot 
handle partial differential equations in which the dependent variable appears 
explicitly.  The Laplace transform cannot handle elliptic or nonlinear partial 
differential equations.  The similarity solution can be used for elliptic and for a 
few nonlinear partial differential equations as shown in section 4.6.  There are 
thirteen examples in this chapter. 

4.8   Exercise Problems  

1. Redo example 4.2 if the boundary condition at x = 0 is replaced by 

k
u(0, ) = 

t
t

t
. 
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2. Redo example 4.3 if the boundary condition at x = 0 is replaced by 

(0, ) = -kexp(-t)
u

t
x

∂
∂

. 

3. Complete the details missing in example 4.4 (i.e., complete the Maple 
program). 

4. Complete the details missing in example 4.11. 
5. Consider heat transfer in a semi-infinite solid with heat generated within 

it.[4] The governing equations and the boundary/initial conditions are: 
2

2

A
 =  - 

( ,0) = 1

u(0, ) = 0 and u( , ) is defined

u u

t x

u x

t t

αα
κ

∂ ∂
∂ ∂

∞

 

where α is the thermal diffusivity, κ is the thermal conductivity, and A is 
the heat produced per second per unit volume.  Obtain an analytical solution 
for this problem using the Laplace transform technique. 

6. Obtain an analytical solution for problem 5 using the similarity solution 

technique.  Hint: define 
2Ax

 =  + 
2

w u
κ

 and solve for w instead of u. 

7. Consider heat or mass transfer in a region internally bounded by a sphere of 
radius R initially at zero temperature/concentration. The governing 
equations and boundary conditions are: 

2

2

2
 =  +                R  x < 

x

( ,0) = 0

u(R, ) = 1 and u( , ) is defined

u u u

t x x

u x

t t

α ⎛ ⎞∂ ∂ ∂ ≤ ∞⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

 

Obtain an analytical solution for this problem using the Laplace transform 
technique. 

8. Obtain an analytical solution for problem 7 using a similarity solution 
technique.  Hint: define w = u/x and derive an equation for w.  Define X = x 
– R and solve for w as a function of X ant t. 

9. Consider a region internally bounded by a sphere of radius R initially at 
zero temperature/concentration with a specified flux at x = R. The 
governing equations and boundary conditions are: 
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2

2

2
 =  +                R  x < 

x

( ,0) = 0

(R, ) = F and u( , ) is defined

u u u

t x x

u x

u
t t

x

α ⎛ ⎞∂ ∂ ∂ ≤ ∞⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∞
∂

 

Obtain an analytical solution for this problem using the Laplace transform 
technique. 

10. Obtain an analytical solution for problem 9 using a similarity solution 
technique. (See problem 8 for a hint). 

11. Consider a variant of example 4.12: 

2 = (1 0.1 )

( ,0) = 0

u(0, ) = 1 and u( , ) is defined

u u
u

t x x

u x

t t

∂ ∂ ∂⎛ ⎞+⎜ ⎟∂ ∂ ∂⎝ ⎠

∞

 

Obtain a similarity solution for this problem. 
12. Example 4.9 is sometimes solved in terms of dimensionless independent 

variables for temperature distribution in a boundary layer (see Slattery, 
1999) as: 

2

2
2  = 

( ,0) = 0

u(0,Z) = 1 and u( , Z) = 0

u u
X

Z X

u X

∂ ∂
∂ ∂

∞

 

Define 1

3

Xη =  
9Z
2

⎛ ⎞
⎜ ⎟
⎝ ⎠

 and obtain a similarity solution for this problem. 

13. Consider problem 12 with a flux boundary condition at the surface.[6]  The 
governing equations and boundary conditions are: 
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2

2
2  = 

( ,0) = 0

u
(0,Z) = -1 and u( , Z) = 0

u u
X

Z X

u X

X

∂ ∂
∂ ∂

∂ ∞
∂

 

Obtain a similarity solution for this problem. Hint: define 
u

w
X

∂=
∂

 and 

solve for w and then obtain u. 
14. Consider plane flow past a flat plate discussed in example 4.13. In the 

example discussed, a numerical solution was obtained for f as a function of 
η.  Obtain a series solutions for f as a function of η.  Hint: see chapter 3 for 
more information on obtaining series solutions for nonlinear boundary value 
problems.  How many terms will be required in the series for convergence? 

15. Consider steady state flow in a convergent channel.[6] The governing 
equations are: 

2

2

 +   = 0

du
 + v  = u

dx

1
u(x,0) = 0 and u(x, ) =

x

u v

x y

u u u
u

x y y

∂ ∂
∂ ∂

∂ ∂ ∂+
∂ ∂ ∂

∞ −

 

v(x,0) = 0 and (x, ) = 0

1
u = 

x

v

y

∂ ∞
∂

−
 

Convert u and v to stream functions and rewrite the governing equations and 

boundary conditions as in example 4.13. Next define 
y

= -f( );   = 
x

ψ η η  

and rewrite the governing equations and boundary conditions in terms of f and 
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η. Define
df

p = 
dη

 and solve for p. Obtain analytical, series, and numerical 

solutions for this problem and plot 
u

u
as a function of η. 

16. Consider natural convection in flow past a flat plate.[6]  The velocity 
distribution is governed as in example 4.13.  In addition, the temperature T 
is governed by: 

22

2

1 Br
 + v  =  + 

Pr Pr

T(x,0) = 1 and T(x, ) = 0

T(0,y) = 0 

T T T u
u

x y y y

⎛ ⎞∂ ∂ ∂ ∂
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

∞  

where Pr is the Prandtl number and Br is the Brinkman number. Obtain a 
similarity solution for the velocity and temperature distribution. Plot the 
temperature profiles for Pr = 0.7 with different values of Br ranging from –3 
to 3. 

17. Redo problem 16 if Br = 0. 
18. In problem 17 what happens when Pr is 1? How is the temperature 

distribution different from the velocity distribution? 
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Chapter 5 

Method of Lines for Parabolic Partial 
Differential Equations 

Mathematical modeling of mass or heat transfer in solids involves Fick’s law of  
mass transfer or Fourier’s law of heat conduction. Engineers are interested in the 
distribution of heat or concentration across the slab or the material in which the 
experiment is performed. This process is usually time varying and eventually reaches 
a steady state. This process is represented by parabolic partial differential equations 
with known initial conditions and boundary conditions at two ends. Both linear and 
nonlinear parabolic partial differential equations will be discussed in this chapter. We 
will present semianalytical solutions for linear parabolic partial differential equations 
and numerical solutions for nonlinear parabolic partial differential equations based on 
the numerical method of lines. 

5.1   Semianalytical Method for Parabolic Partial Differential 
Equations (PDEs) 

5.1.1   Introduction 

Transient heat conduction or mass transfer in solids with constant physical 
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is 
usually represented by a linear parabolic partial differential equation.  In this 
chapter, we describe how one can arrive at the semianalytical solutions (solutions 
are analytical in the time variable and numerical in the spatial dimension) for 
linear parabolic partial differential equations using Maple, the method of lines and 
the matrix exponential. 

5.1.2   Semianalytical Method for Homogeneous PDEs 

Consider a general linear homogeneous parabolic partial differential equation in 
dimensionless form 

2

0 1 22

u u u
 = a (x)  + a (x)  + a (x)u

t x x

∂ ∂ ∂
∂ ∂ ∂

                  (5.1) 
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with a known initial condition 

u(x,0) = 1                                           (5.2) 

and linear homogeneous boundary conditions at both of the boundaries  

1 1

u
u(0, t) (0, t) = 0

x

∂α + β
∂

   (5.3) 

and 

2 2

u
u(1, t) (1, t) = 0

x

∂α + β
∂

   (5.4) 

where α1, β1, α2, and β2 are constants. 
The method of lines involves converting the governing equation (equation (5.1)) 

to a system of coupled ordinary differential equations in time by applying finite 
difference approximations for the spatial derivatives. The governing equation 
(equation (5.1)) can be converted to its finite difference form as follows: 

i i 1 i i 1 i 1 i 1
0 i 1 i 2 i i2

du u 2u u u u
= a (x ) + a (x )  + a (x )u

dt h 2h
+ − + −− + −

    (5.5) 

where i is the node number, N is the number of interior node points, and h is the 
node spacing defined as 

L
h = 

N+1
                                            (5.6) 

where L = 1 is the length of the domain of interest.  Thus, x = 0 corresponds to the 
node point i = 0; x = 1 corresponds to the node point i = N+1 and x = xi = ih is the 

value of x at the node point i.  The variable 1u  corresponds to the dependent 

variable at node point i.  Equation (5.6) is a system of N linear coupled ODEs for 

N dependent variables ( iu , i 1..N= ). The boundary values 0 N 1u and u +  are 

eliminated using the boundary conditions.  The boundary conditions (equations 
(5.3) and (5.4)) can be written in finite difference form as 

0 1 2
1 0 1

3u  + 4u u
u  +  = 0

2h

− −α β             (5.7) 

and 

N+1 N N 1
2 N 1 2

3u 4u  + u
u  +  = 0

2h
−

+
−α β    (5.8) 

 
 



5.1   Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 355
 

Using the boundary conditions (equations (5.7) and (5.8)) the boundary values u0 
and uN+1 can be eliminated.  Hence, the method of lines technique reduces the linear 
parabolic 0DE partial differential equation (equation (5.1)) to a linear system of N 
coupled first order ordinary differential equations (equation (5.5)). Traditionally this 
linear system of ordinary differential equations is integrated numerically in time.[1] 
[2] [3] [4] However, since the governing equation (equation (5.5)) is linear, it can be 
written as a matrix differential equation (see section 2.1.2): 

d
= 

dt

Y
AY                                           (5.9) 

where the dependent variable vector is 

[ ]T

1 2 N 1 N= u u ... u u−Y    (5.10) 

the coefficient matrix A depends on both the governing equation (equation (5.5)) and 
the boundary conditions (equations (5.7) and (5.8)). The solution for equation (5.9)  
is obtained by finding the exponential matrix: 

exp( t) 0Y = A Y                                       (5.11) 

where Y0 is the initial condition vector. Hence, the dependent variables at all the 
node points are obtained as an analytical solution of time t. We call this a 
semianalytical solution since the solution is analytical in time and numerical  
in x.[5] A procedure for using Maple to solve linear parabolic partial differential 
equations with homogeneous boundary conditions can be summarized as follows: 
 

1. Start the Maple worksheet with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equation. 
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1). 
5. Store the initial condition in Y0. 
6. Enter the number of interior node points, N. 
7. Enter the length of the domain, L. 
8. Convert the governing equations to a finite difference form by using central 

difference expression accurate to the order h2 for first and second derivatives. 
9. Convert the boundary conditions to a finite difference form by using the 3-

point forward and backward differences (accurate to the order h2), 
respectively, for bc1 and bc2. 

10. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary conditions. 
11. Store the right hand side of the finite difference equations in eqs. 
12. Store the dependent variables, ui, i = 1..N in Y. 
13. Generate A matrix using Maple’s ‘genmatrix’ command. 
14. Find the exponential matrix (exp(At)) by using Maple’s ‘exponential(A,t)’ 

command and store it in mat. 
15. Store the initial conditions in Y0 vector. 
16. Find the solution Y by multiplying mat times Y0. 
17. Once the semianalytical solution is obtained plots can be made. 
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Example 5.1. Heat Conduction in a Rectangular Slab 

Consider the heat conduction problem in a slab.[6] The governing equation in 
dimensionless form is 

2

2

u u
 = 

t x

u(x,0) = 1

u(0,t) = 0 and u(1,t) = 0

∂ ∂
∂ ∂

 (5.12) 

This equation is solved in Maple below using the procedure described above. 

> restart; 

> with(linalg):with(plots): 

Enter the governing equation here: 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

Enter the boundary condition at x = 0: 

> bc1:=u(x,t); 

 

Enter the boundary condition at x = L: 

> bc2:=u(x,t); 

 

Enter the initial condition: 

> IC:=u(x,0)=1; 

 

Enter the number of interior node points: 

> N:=4; 

 
Enter the length of the domain: 

> L:=1; 
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Enter the three point backward difference expression (accurate to the order h2) for 
the first derivative at x = L: 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

Enter the three point central difference expression (accurate to the order h2) for the 
second derivative at x = L: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

Convert the boundary conditions to the finite difference form: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

The boundary conditions are stored in eq[0] and eq[N+1]. 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

The governing equations are converted to the finite difference form: 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) =  
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od; 
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The boundary values u[0](t) and u[N+0](t) are eliminated: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

The governing equations are simplified as: 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 

 

 

 

 

The coefficient matrix (A) is generated using Maple's 'genmatrix' command. 

> eqs:=[seq(rhs(eq[j]),j=1..N)]; 

 
> Y:=[seq(u[i](t),i=1..N)]; 

 



5.1   Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 359
 

> A:=genmatrix(eqs,Y); 

 

The node spacing, h, is evaluated here: 

> h:=eval(1/(N+1)); 

 

The A matrix is simplified as: 
> A:=map(eval,A); 

 
When more than four node points are used, the entries of the A matrix should be 
decimals.  This problem can be handled by using the 'map(A,evalf)' command as 
given below: 

> if N > 4 then A:=map(evalf,A);end:  
> evalm(A); 

 

The solution is found using the exponential matrix: 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 
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The initial condition is stored in the Y0 vector. 

> Y0:=matrix(N,1):for i from 1 to N do Y0[i,1]:=evalf(subs(x=i*h,rhs(IC))); 
od:evalm(Y0); 

 

> Y:=evalm(mat&*Y0): 

> Y:=map(simplify,Y); 

 

Next, the dependent variables can be stored in ui(t),i = 0..N+1. 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 
> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 

 

 
 

Hence, an analytical solution in time is obtained for the dependent variables at all 
of the node points.  One can plot the concentration profiles by using 'seq' to assign 
color automatically for every curve. 

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4); 

 

> pt:=textplot([[0.05,0.05,typeset(u[0],"(t), ",u[5],"(t)")],[0.1,0.2, 
typeset(u[1],"(t), ",u[4],"(t",u”, u[4],"(t)")],[0.15,0.4, 
typeset(u[2],"(t), ",u[3],"(t)")]]); 

 

> display({pp,pt},axes=boxed,thickness=4,title="Figure 5.1",labels=[t,"u"]); 
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Fig. 5.1 

 
A three dimensional plot can be made by storing the solution in a matrix (PP).  
Enter the time that you want to use to plot your profiles (this time can be changed 
depending on the problem): 

> tf:=0.1; 

 

Enter the number of time steps (excluding 0): 

> M:=30; 

 

The time intervals are stored in T1: 

> T1:=[seq(tf*i/M,i=0..M)]; 
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> PP:=matrix(N+2,M+1); 

 

The first column of PP is filled by using the initial condition: 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

The remaining columns are filled in by using the solution obtained: 

> for i from 1 to N+2 do for j from 2 to M+1 do PP[i,j]:= 
evalf(subs(t=T1[j],u[i-1](t)));od;od: 

Next, data points are stored in plotdata for obtaining a 3D plot using Maple's 
'surfdata' command. 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, title="Figure 5.2", 
labels=[x,t,u],orientation=[45,60]); 

 

 
Fig. 5.2 

 
>  

Accuracy can be increased by increasing the number of interior node points.  
Using the program above by increasing N = 10, the following plots are obtained. 

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=4); 

 

> arw:=arrow(<0.10,0.8>,<-0.09,-0.6>,width=[1/500,relative], 
head_length=[1/20,relative]): 
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pt:=textplot([[0.2,0.9,"Follow the arrow:"],seq([0.18,0.9-i*0.06, 
typeset(u[5-i+1],"(t), ",u[6+i-1],"(t)")],i=1..6)]): 

> display({pp,arw,pt},axes=boxed,title="Figure 5.3",labels=[t,"u"]); 
 

 
 

Fig. 5.3 

 
A three dimensional plot can be made by storing the solution in a matrix (PP).  
Enter the time that you want to use to plot your profiles (this time can be changed 
depending on the problem): 

> tf:=0.1; 

 

Enter the number of time steps (excluding 0): 

> M:=30; 

 

The time intervals are stored in T1: 

> T1:=[seq(tf*i/M,i=0..M)];
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> PP:=matrix(N+2,M+1); 

 

The first column of PP is filled by using the initial condition: 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

The remaining columns are filled in by using the solution obtained: 

> for i from 1 to N+2 do for j from 2 to M+1 do PP[i,j]:= 
evalf(subs(t=T1[j],u[i-1](t)));od;od: 

Next, data points are stored in plotdata for obtaining a 3D plot using Maple's 
'surfdata' command. 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, title="Figure 5.4", 
labels=[x,t,u],orientation=[45,60]); 
 

 
Fig. 5.4 

 
> 

We observe that the process slowly approaches the steady state. We note that  
the profiles are symmetrical about x = 0.5 and, hence, we obtain u[0] = u[N+1], 
u[1] = u[N], etc. 
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5.1.3   Semianalytical Method for Nonhomogeneous PDEs 

Consider a general parabolic PDE with a source term where γ is the source term  

2

0 1 22

u u u
 = a (x)  + a (x)  + a (x)u + 

t x x

∂ ∂ ∂ γ
∂ ∂ ∂

                (5.13) 

independent of u.  In equation (5.13) γ can be functions of both t and x or just a 
constant.  The following nonhomogeneous boundary conditions are considered: 

1 1 1

u
u(0, t) (0, t) = 

x

∂α + β γ
∂

   (5.14) 

2 2 2

u
u(1, t) (1, t) = 

x

∂α + β γ
∂

   (5.15) 

where γ1, and γ2 can either be functions of time or constants.   When the governing 
equation (5.13) and the boundary conditions (5.14) and (5.15) are converted to the 
finite difference form, N coupled ODEs arise which can be written in the matrix 
form 

d
=  + (t)

dt
Y

AY b                                 (5.16) 

The solution for equation (5.16) is obtained by adding the nonhomogeneous 
solution to the matrix exponential (Amundson, 1966;[7]  Taylor and Krishna, 
1993;[8] Subramanian and White, 2000;[5] see section 2.1.3): 

t

0

exp( t)  + exp[- ( t)] ( ) d= τ − τ τ∫0Y A Y A b                 (5.17) 

where τ is a dummy variable of integration.  When b is a constant vector  
equation (5.17) reduces to 

1 1 =  exp( t)(  + )− −−0Y A Y A b A b    (5.18) 

Hence, we obtain a semianalytical solution, i.e., the dependent variables at all the 
node points are obtained as an analytical solution of time t.  The procedure for 
solving linear parabolic partial differential equations with nonhomogeneous 
boundary conditions can be summarized as follows: 

1. Start the Maple program with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)' and ‘with(plots)’ commands. 
3. Enter the governing equation. 
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1). 
5. Store the initial condition in Y0. 
6. Enter the number of interior node points, N. 
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7. Enter the length of the domain, L. 
8. Convert the governing equations to the finite difference form by a using central 

difference expression accurate to the order h2 for first and second derivatives. 
9. Convert the boundary conditions to the finite difference form by using the  

3-point forward and backward differences (accurate to the order h2), 
respectively, for bc1 and bc2. 

10. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary 
conditions. 

11. Store the right hand side of the finite difference equations in eqs. 
12. Store the dependent variables, ui, i = 1..N in vars. 
13. Generate A matrix and b vector using Maple’s ‘genmatrix’ command. 
14. Find the exponential matrix (exp(At)) by using Maple’s ‘exponential(A,t)’ 

command and store it in mat. 
15. Store the initial conditions in the Y0 vector. 
16. Find the solution Y by multiplying mat times Y0 and adding the 

nonhomogeneous part according to equation (5.17). 
17. Once the semianalytical solution is obtained, plots can be made. 

Example 5.2 

Consider the heat conduction/mass transfer problem in a cylinder.[6] [9] [10] The 
governing equation in dimensionless form is 

2

2

u u 1 u
 =  + 

t x x x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1

x

∂ ∂ ∂
∂ ∂ ∂

∂
∂

 (5.19) 

The nonhomogeneous boundary condition at x = 1 contributes to the forcing 
function vector b.  However, in this case the b vector is a constant and, hence, 
equation (5.18) can be used.  (Note that equation (5.17) is valid even when the b 
vector is a constant).  When the governing equation is applied at x = 0 in 
cylindrical or spherical coordinates, we have singularity at x = 0.[11] [12] This 
singularity is avoided in our semianalytical technique as we use the boundary 
condition at x = 0 (symmetry boundary condition) to eliminate the dependent 
variable.  Equation (5.19) is solved in Maple below using the procedure described 
above. 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+1/x*diff(u(x,t),x); 
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> bc1:=diff(u(x,t),x); 

 

> bc2:=u(x,t)-1; 

 

> IC:=u(x,0)=0; 

 
> N:=10; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = 
subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 
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> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 
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> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]; 

 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); 

 

> h:=eval(L/(N+1)); 

 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 
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> det(A); 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> Y0:=matrix(N,1):for i from 1 to N do Y0[i,1]:= 
evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 

 

The nonhomogeneous solution (equation(5.17)) is found and added to the 
homogeneous solution. 

> s1:=evalm(Y0+inverse(A)&*b): 

> Y:=evalm(mat&*s1-inverse(A)&*b): 

> Y:=map(simplify,Y): 

The number of digits is decreased to five for brevity.  However, for accuracy, one 
has to use a minimum of 10 digits, which is the default in Maple. 

> Digits:=5; 

 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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Hence, we have obtained a semianalytical solution (analytical in time and 
numerical in x).  Next, plots are made: 

> for i from 0 to N+1 do p[i]:=plot(u[i](t),t=0..0.4, 
color=COLOR(HUE,i/(N+2)), thickness=3):end do: 

> arw:=arrow(<0.26,0.6>,<-0.2,0.3>,width=[1/300,relative], 
head_width=[5,relative],head_length=[1/20,relative]): 

pt:=textplot([[0.3,0.55,"Follow the arrow:"],seq([0.26,0.5-i*0.05, 
typeset(u[i],"(t)")],i=0..2),[0.26,0.35,"..."],[0.265,0.3,typeset(u[11],"(t)")]]): 

> display([seq(p[i],i=0..11),arw,pt],axes=boxed,labels=[t,"u"],title="Figure 5.5"); 
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Fig. 5.5 
 
> tf:=0.2; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 

 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od: 
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> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, title="Figure 5.6",labels=[x,t,u], 
orientation=[-145,45]); 

 

 
Fig. 5.6 

 
Sometimes it is important to know how the temperature or concentration at the 
center of the cylinder changes with time. Analytical solutions for cylinders involve 
Bessel functions and an infinite series. With our semianalytical method, we can 
find how the temperature varies analytically with time.  The time dependent 
variable at the center of the cylinder varies with time as: 

> u[0](t); 

 

 

We can find the time taken for the center of the cylinder to reach 0.5 (i.e., 50% of 
the steady state): 

> fsolve(u[0](t)-0.5,t=0..2); 

 
In this example temperature (or concentration) at the surface is fixed (u(1,t) = 1).  
With our semianalytical solution we can find how the flux at the surface varies as 
a function of time.  This flux is given by a three point backward difference at 
x 1=  x = 1. 
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> flux:=dydxb; 

 

 

Example 5.3 

Consider the electrochemical discharge of a planar electrode.[5]  

2

2

u u
 = 

t x

u(x,0) = 1

u u
(0,t) = 0 and (1,t) =

x x

∂ ∂
∂ ∂

∂ ∂ − δ
∂ ∂

 (5.20) 

where u is the dimensionless concentration and δ is the dimensionless applied 
current density at the surface.  The electrochemical performance of the electrode 
depends on the concentration (u) at the surface.  When this problem is cast into 
finite differences we arrive at the matrix differential equation (equation (5.16) 
with a constant b vector.  Hence, we can use equation (5.18) to arrive at the 
semianalytical solution.  However, because of flux boundary conditions at both 
the ends, the A matrix becomes singular.  Hence, A cannot be inverted and 
equation (5.18) cannot be used.  It should be noted that if A is singular that does 
not mean that equation (5.16) does not have a solution.  One can prove that the 
solution (equation (5.18)) is independent of A-1 by using the series expansion for 
the exponential matrix[7] [8] 

1 1

1 1

 =  exp( t)(  + )

exp( t)  + exp( t)

− −

− −

−

−
0

0

Y A Y A b A b

    =  A Y A A b A b
                 (5.21) 

Now the exponential matrix in the second term is represented as an infinite series: 

2 2 3 3 n n
1 1t t t

 =  exp( t)    + t +  +  + ...  + ... ( )
2! 3! n!

− −⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I A A b A b

 
(5.22) 

where I is the identity matrix of order N x N.  Equation (5.22) can be further 
simplified by factoring out A-1b from the second and third terms. 
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2 2 3 3 n n
1t t t

=  exp( t)    + t +  +  + ...  + ...  ( ) 
2! 3! n!

−⎛ ⎞
+ −⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I A I A b

 
(5.23) 

The identity matrices inside the parenthesis get cancelled.  Next, A-1 outside the 
parenthesis is taken inside the parenthesis to obtain: 

2 2 3 n 1 nt t t
=  exp( t)   t +  +  + ...  + ...  

2! 3! n!

−⎛ ⎞
+ ⎜ ⎟

⎝ ⎠
0

A A A
Y A Y I b

 

(5.24) 

We observe that equation (5.24) is independent of A-1 and, hence, we can obtain a 
solution for equation (5.16) even when A is singular.  The infinite series in 
equation (5.23) is difficult to calculate.  Alternatively, we use equation (5.17), 
which is valid even when A is singular to obtain the semianalytical solutions.  
Equation (5.19) is solved below in Maple using the procedure described above 
with equation (5.17) as the nonhomogeneous part. 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> bc1:=diff(u(x,t),x); 

 

> bc2:=diff(u(x,t),x)+delta; 

 

> #Digits:=50; 

> IC:=u(x,0)=1; 

 

> N:=4; 

 

> L:=1; 
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> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 
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> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]; 

 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); 

 

> h:=eval(L/(N+1)); 

 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

 

> det(A); 

 

We observe that the A matrix is singular. 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> mat:=map(simplify,mat): 

> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 
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> b2:=subs(t=tau,evalm(b)); 

 

> mat2:=subs(t=tau,evalm(mat)): 

> mat3:=evalm(mat2&*b2): 

> mat4:=map(int,mat3,tau=0..t): 

> Y:=evalm(mat&*Y0+mat4): 

> #Y:=map(simplify,Y): 

> #Digits:=20; 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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We obtain the semianalytical solution for the concentration profile as a function of 
dimensionless current density, δ.  Concentration profiles can be plotted specifying 
values for δ. 

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1)],t=0..0.4); 

 

> pt:=textplot([[0.25,evalf(subs(t=0.25,delta=1,u[0](t))),typeset(u[0],"(t)"), 
align=above],seq([0.25,evalf(subs(t=0.25,delta=1,u[i](t))),typeset(u[i],"(t)"),
align=below],i=1..N+1)]); 

 

> display([pp,pt],thickness=4,title="Figure 5.7",axes=boxed,labels=[t,"u"]); 

 

 
Fig. 5.7 

 
> pp:=plot([seq(subs(delta=0.1,u[i](t)),i=0..N+1)],t=0..0.4); 
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> pt:=textplot([[0.25,evalf(subs(t=0.25,delta=0.1,u[0](t))),typeset(u[0],"(t)"), 
align=above],seq([0.25,evalf(subs(t=0.25,delta=0.1,u[i](t))),typeset(u[i],"(t)"), 
align=below],i=1..N+1)]); 

 

> display([pp,pt],thickness=4,title="Figure 5.8",axes=boxed,labels=[t,"u"]); 

 

 
 
Fig. 5.8 

 
> tf:=0.4; 

 

We observe that as δ decreases, the time taken for discharge (the concentration to 
decrease from 1 to 0) increases.  A three dimensional plot for the concentration 
profile can be made as follows: 

> M:=30; 
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> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

 

 

 
> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, title="Figure 5.9", 
labels=[x,t,u],orientation=[45,45]); 

 
Fig. 5.9 

 

 
 

Electrochemical behavior of the electrode depends on the surface concentration 
given by: 

> u[N+1](t); 
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> plot3d(u[N+1](t),delta=0..1,t=0..1,axes=boxed,title="Figure 5.10", 
view=[0..5,0..1,0..1],orientation=[0,90],labels=[delta,t,"us"]); 

 

 
Fig. 5.10 

 
For low values of δ, the surface concentration remains close to 1, and as δ 
increases, the surface concentration depletes faster.  Accuracy can be increased by 
increasing the number of node points. 

Example 5.4 

Consider the following heat/mass transfer problem with a time dependent boundary 
condition, 

2

2

-t

u u
 = 

t x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1- e

x

∂ ∂
∂ ∂

∂
∂

 (5.25) 

This BVP is solved below in Maple by following the procedure described earlier.  
In this case, the forcing function vector, b(t) is a function of time and hence 
equation (5.17)a is used to obtain the semianalytical solution.  The program used  
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for example 5.3 can be used to solve this example by just modifying the boundary 
conditions: 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> bc1:=diff(u(x,t),x); 

 

> bc2:=u(x,t)-1+exp(-t); 

 

> IC:=u(x,0)=0; 

 

> N:=10; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  
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> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od; 

 

 

 

 

 

 

 

 

 

 

> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]; 

 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); 
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> h:=eval(L/(N+1)); 

 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

 
> det(A); 

 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> mat:=map(simplify,mat): 

> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 
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> b2:=subs(t=tau,evalm(b)); 

 

> mat2:=subs(t=t-tau,evalm(mat)): 

> mat3:=evalm(mat2&*b2): 

> mat4:=map(int,mat3,tau=0..t): 

> Y:=evalm(mat&*Y0+mat4): 

> Y:=map(simplify,Y): 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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388 5   Method of Lines for Parabolic Partial Differential Equations
 

 
 

The following plots are obtained: 

> for i from 0 to N+1 do p[i]:=plot(subs(delta=1,u[i](t)),t=0..0.4, 
thickness=4,color=COLOR(HUE,i/(N+2)));end do: 

> arw:=arrow(<0.3,0.02>,<- 0.15,0.11>,width=[1/1000,relative=false], 
head_width=[1/200,relative=false],head_length=[1/20,relative]): 

pt:=textplot([[0.12,0.17,typeset("Follow the arrow: ",u[0],"(t), ..., ", 
u[N+1],"(t).")]]): 

> display([seq(p[i],i=1..N),p[0],pt,arw],title="Figure 5.11", 
axes=boxed,labels=[t,"u"]); 

 
Fig. 5.11 
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> for i from 0 to N+1 do 
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od: 

> tf:=0.4; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

> for i from 0 to N+1 do 
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od: 

> tf:=0.4; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

 

 

 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed,title="Figure 5.12", 
labels=[x,t,u],orientation=[-145,45]); 
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Fig. 5.12 

 

Example 5.5 

Consider the diffusion of a gas (A) through a stagnant liquid (B) in a container.[2] 

A reacts with B according to the irreversible reaction kA + B C⎯⎯→ .  The 
governing equation for this problem is, 

2
A A

AB A2
1

A

A
A 1 A0 1

c c
 = D kc

t z

c (z,0) = 0

c
c (0,t ) = c  and (L,t ) = 0 

z

∂ ∂ −
∂ ∂

∂
∂

   (5.26) 

where cA is the concentration of A (mol/m3),  z is the distance (m), t1 is the time 
variable (s), DAB is the diffusion coefficient of A in B (2x10-9 m2/s),  L is the 
height of the container (10 cm).  The concentration of A at z = 0 is cA0 = 
0.01mol/m3 and k is the first order rate constant (2x10-7 s-1).  The following 
dimensionless variables are introduced for convenience, 

A AB 1
2

A0

c z D t
u = ;  x = ;  and t = 

c L L
                    (5.27) 
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Substituting equation (5.26) into equation (5.25) we get:  

2
2

2

u u
 = u

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0 

x

∂ ∂ − Φ
∂ ∂

∂
∂

 (5.28) 

where 
2

AB

kL
 =  

D
Φ is the Thiele modulus.  Once the solution is obtained, one 

can find the mass transfer flux at x = 0 and find the time taken for the flux to reach 
a steady state.  This BVP is solved below in Maple by following the procedure 
described earlier for example 5.2 as we have a constant b vector. Both dimensionless 
and dimensional plots are obtained. 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+Phi^2*u(x,t); 

 

> k:=2e-7;Dab:=2e-9;ca0:=0.01;Lc:=10e-2; 

 

 

 

 

> Phi:=sqrt(k*Lc^2/Dab); 

 

> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),x); 
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> IC:=u(x,0)=0; 
 

> N:=10; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od: 

> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]; 

 

 



5.1   Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 393
 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); 

 

> h:=eval(L/(N+1)); 

 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

 

 

 

 

 

 

 

 

 

 

 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 
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> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 

 

> s1:=evalm(Y0+inverse(A)&*b): 

> Y:=evalm(mat&*s1-inverse(A)&*b): 

> Y:=map(simplify,Y): 

> Digits:=5; 

 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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Semianalytical solutions are obtained in dimensionless form.  The dimensionless 
concentration profiles are plotted as: 

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]); 

 

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=4); 

 

> arw:=arrow(<0.1,1.01>,<0.1,-0.8>,width=[1/600,relative=false], 
head_width=[1/200,relative=false],head_length=[1/30,relative=false]): 
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pt:=textplot([[0.28,0.15,typeset("Follow the arrow: ",u[0],"(t), ..., ", 
u[N+1],"(t).")]]): 

> display([pp,pt,arw],title="Figure 5.13",axes=boxed,labels=[t,"u"]); 

 

 
 
Fig. 5.13 

 
> tf:=0.5; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 
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> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, title="Figure 5.14", 
labels=[x,t,u],orientation=[-75,75]); 

 

 
 
Fig. 5.14 

 
The mass transafer flux at x = 0 in dimensionless form is given by: 

> flux:=-dydxf; 

 

 

> plot(flux,t=0..0.5,thickness=4,title="Figure 5.15", 
axes=boxed,labels=[t,"flux"]); 
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Fig. 5.15 

 
Next, the concentration profiles are converted to dimensionless form as: 

> for i from 0 to N+1 do ca[i](t):=u[i](t)*ca0;od: 

> for i from 0 to N+1 do ca[i](t1):=subs(t=t1*Dab/Lc^2,ca[i](t));od: 

> for i from 0 to N+1 do p[i]:=plot(ca[i](t1),t1=0..2e6,thickness=3);od: 

> pp:=plot([seq(ca[i](t1),i=0..N+1)],t1=0..2e6,thickness=4); 

 

> arw:=arrow(<0.1e6,0.0105>,<1.0e6,-0.0085>,width=[1/1.0e5,relative=false], 
head_width=[1/5.0e3,relative=false],head_length=[1/30,relative=true]): 

> pt:=textplot([[1.4e6,0.0015,typeset("Follow the arrow: ",ca[0],"(t), ..., ", 
ca[N+1],"(t).")]]): 

> display([pp,pt,arw],title="Figure 5.16.",axes=boxed,labels=[t1,"ca"]); 
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Fig. 5.16 
 

> tf:=2e6; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 
 

 
> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h*Lc,0));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t1=T1[j],ca[i-1](t1)));od;od: 

> plotdata := [seq([ seq([(i-1)*h*Lc,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,title="Figure 5.17",axes=boxed, 
labels=[z,t1,"ca"],orientation=[-75,75]); 
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Fig. 5.17 
 
Next, the mass transfer flux is converted to dimensionless form as: 

> Flux:=Dab*ca0/Lc*flux: 

> Flux:=subs(t=t1*Dab/Lc^2,Flux); 

 

 

 

 

> plot(Flux,t1=0..2e6,thickness=4,title="Figure 5.18", 
axes=boxed,labels=[t,"Flux"]); 
 

 
Fig. 5.18 
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Example 5.6. Semianalytical Method for the Graetz Problem 

Consider the classical Graetz problem,[1]  

2
2

2

u u 1 u
2Pe(1 x )  =  + 

z x x x

u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂ ∂−
∂ ∂ ∂

∂
∂

 (5.29) 

This PDE is first order in z.  The z variable can be treated as a time variable. The 
temperature profiles depend on the Peclet number Pe. For convenience we 
introduce the variable transformation z = 2Pet, which converts equation (5.29) to 

2

2 2 2

u 1 u 1 1 u
 =  + 

t 1 x x 1 x x x

u(x,0) = 0

u
(0,t) = 0 and u(1,t) = 1

x

∂ ∂ ∂
∂ − ∂ − ∂

∂
∂

   (5.30) 

Equation (5.30) is solved below in Maple using the Maple program developed for 
example 5.2 by making very few changes as: 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=1/(1-x^2)*diff(u(x,t),x$2)+1/(1-x^2)/x*diff(u(x,t),x); 

 

> bc1:=diff(u(x,t),x); 

 

> bc2:=u(x,t)-1; 
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> IC:=u(x,0)=0; 

 

> N:=10; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od; 
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> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 
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> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]; 

 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b); 

 

> h:=eval(L/(N+1)); 
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> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

 
 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 

 

> s1:=evalm(Y0+inverse(A)&*b): 

> Y:=evalm(mat&*s1-inverse(A)&*b): 

> Y:=map(simplify,Y): 

> Digits:=10; 

 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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Set the colors for the curves: 

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]); 

 

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..0.4,thickness=3); 
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Plot the texts for the corresponding curves: 

> arw:=arrow(<0.15,0.4>,<-0.05,0.63>,width=[1/700,relative=true], 
head_width= head_length=[1/30,relative=false]):pt:=textplot([[0.25,0.35, 
typeset("Follow the arrow: ",u[0],"(t), ..., ",u[N+1”, u[N+1],"(t).")]]): 

> display([pp,pt,arw],axes=boxed,title="Figure 5.19",labels=[t,"u"]); 

 

 
Fig. 5.19 

 
> tf:=0.2; 

 

> M:=30; 
 

> T1:=[seq(tf*i/M,i=0..M)]; 
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> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.20", 
labels=[x,t,u],orientation=[-135,45]); 

 

 
 
Fig. 5.20 

 

> for i from 0 to N+1 do u[i](z):=subs(t=z/2/Pe,u[i](t));od: 

> pp:=plot([seq(subs(Pe=1,u[i](z)),i=0..N+1)],z=0..1,thickness=3; 

 

Plot the texts for the corresponding curves: 

> arw:=arrow(<0.3,0.4>,<-0.15,0.63>,width=[1/700,relative=true, 
head_width=[1/150,relative=false,head_length=[1/30,relative=false]): 

> pt:=textplot([[0.55,0.35,typeset("Follow the arrow:",u[0], "(z), ..., ", 
u[N+1],"(z).")]]): 

> display([pp,pt,arw],axes=boxed,title="Figure 5.21",labels=[z,"u"]); 
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Fig. 5.21 

 
> tf:=1.; 

 

> M:=30; 
 

> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

 

 

 
> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(z=T1[j],Pe=1.,u[i-1](z)));od;od: 
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> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.22", 
labels=[x,z,u],orientation=[-135,45]); 

 

 
Fig. 5.22 

 
We observe that as the Peclet number increases, we observe the penetration depth 
(the distance required in the z direction to reach the steady state value 1) increases.  
The analytical solution for this problem involves transcendental equations and infinite 
series. (Jacob, 1949)[1]  According to the analytical solution, the dimensionless 
temperature (u) at x = 0 varies as: 

z z z
ua(0,z) = 1-1.477exp 3.658 0.810exp 22.178 exp 53.05 ...

Pe Pe Pe
⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − − − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

(5.31) 

We observe that at z = 0, equation (5.31) needs infinite terms for convergence.  
However, equation (5.31) converges rapidly for high values of the ratio z/Pe.  
Hence, our semianalytical solution is compared with the exact solution for 
different values of the ratio z/Pe. 

> pp:=plot([seq(subs(Pe=10,u[i](z)),i=0..N+1)],z=0..1,thickness=3); 

 

> display([pp],axes=boxed,title="Figure 5.23", labels=[z,"u"], 
caption=typeset("From the bottom to the top of the figure: ",u[0],"(z), ..., ", 
u[N+1],"(z)")); 
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Fig. 5.23 

 
> tf:=1.; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

 

 

 
> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(z=T1[j],Pe=10.,u[i-1](z)));od;od: 
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> plotdata:= [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.24", 
labels=[x,z,u],orientation=[-135,45]); 

 
Fig. 5.24 

 

 
 

> ua0:=1-1.477*exp(-3.658*z/Pe)+0.81*exp(-22.178*z/Pe)-0.385*exp 
(-53.05*z/Pe); 

 

> u[0](z); 

 

 

 

 

Note that with our semianalytical technique the temperature at x = 0 is obtained as 
an analytical function of z and Pe. 
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> pars:=[0.1,0.2,0.25,0.5,1,2]; 

 

> M:=nops(pars); 

 

> seq(evalf(subs(z=Pe*pars[i],ua0)),i=1..M); 

 
> seq(evalf(subs(z=Pe*pars[i],z=10,u[0](z))),i=1..M); 

 
>  

We obtain reasonable accuracy with the semianalytical solution.  Accuracy can be 
increased by increasing the number of node points. 

Example 5.7. Semianalytical Method for PDEs with Known Initial Profiles 

In all the previous examples, initial conditions were constants. The initial condition 
can be a function of x. For example, consider the heat transfer problem:[6]  

2

s 2

u u
 = D

t x

x
u(x,0) = cos

2L

u
(0,t) = 0 and u(L,t) = 0

x

∂ ∂
∂ ∂

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
∂

 (5.32) 

This BVP is solved for a given value of Ds = 1e-5 cm2/s and L = 0.02 cm below. 
Note that this BVP is solved directly in dimensionless form.  The program used 
above for example 5.1 is used here, as the boundary conditions are homogeneous.  
Only the following statements need to be changed. 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=Ds*diff(u(x,t),x$2); 
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> bc1:=diff(u(x,t),x); 

 

> bc2:=u(x,t); 

 

> IC:=u(x,0)=cos(Pi*x/2/L); 

 

> L:=0.02; 

 

> Ds:=2e-5; 

 
Note that since the problem is solved in dimensionless form, we plot the profiles 
until tf 20=  seconds.  The following plots are obtained. 

> N:=10; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 
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> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx), 
u(x,t)=u[i](t),x=i*h,rhs(ge));od; 

 

 

 

 

 

 

 

 

 

 



5.1   Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 417
 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 
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> eqs:=[seq(rhs(eq[j]),j=1..N)]; 

 

 

 

 

 
> Y:=[seq(u[i](t),i=1..N)]; 

 

> A:=genmatrix(eqs,Y); 
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> h:=eval(L/(N+1)); 

 

> A:=map(eval,A); 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0); 
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> Y:=evalm(mat&*Y0): 

> Y:=map(simplify,Y); 
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> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od; 
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> tf:=20; 

 

Set the color list: 

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]); 

 

> pp:=plot([seq(u[i](t),i=0..N+1)],t=0..tf,thickness=3); 

 

Plot the texts: 

> arw:=arrow(<6.0,0.55>,<-5.0,-0.57>,width=[1/1000,relative=true], 
head_width=[1/50,relative=false],head_length=[1/5,relative=false]): 

  pt:=textplot([[11,0.6,typeset("Follow the arrow: ",u[0],"(t), ..., ", 
u[N+1],"(t).")]]): 

> display([pp,pt,arw],title="Figure 5.25",axes=boxed,labels=[t,"u"]); 
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Fig. 5.25 
 
> tf:=20; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od: 

> plotdata:=[seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.26", 
labels=[x,t,u],orientation=[45,60]); 
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Fig. 5.26 

5.1.4   Semianalytical Method for PDEs in Composite Domains 

The semianalytical method developed earlier can be used to solve partial 
differential equations in composite domains also. Mass or heat transfer in 
composite domains involves two different diffusion coefficients or thermal 
conductivities in the two layers of the composite material.[6] In addition, even in 
case of solids with a single domain and constant physical properties, the reaction 
may take place mainly near the surface.  This leads to the formation of boundary 
layer near one of the boundaries.  In this section, the semianalytical method 
developed earlier is extended to composite domains. 

Example 5.8 

For example, in the diffusion reaction problem solved in example 5.5 for higher 
values of Thiele modulus (Φ>10), concentration depletes very close to the surface 
(x = 0).  Since we are interested in the flux at x = 0 it makes more sense to choose 
more node points near x = 0.   Equation (5.28) can be rewritten as 

2
21 1

12

2
22 2

22

1 2

u u
 =  u   0 < x <  (Region 1)

t x

u u
 =  u   x 1 (Region 2)

t x

u (x,0) = u (x,0) = 0

∂ ∂ − Φ α
∂ ∂

∂ ∂ − Φ α < <
∂ ∂

               (5.33) 
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where u1 and u2 are the dependent variables in region 1(0 < x < α) and region 2 
(α < x < 1),  respectively. The boundary conditions at x = 0 and x = 1 are: 

1u (0, t) = 1                                           (5.34) 

2u
(1, t) = 0

x

∂
∂

                                       (5.35) 

Both the dependent variable and its derivative are continuous at x = α:  

1 2u (  ,t) = u ( ,t)α α                                      (5.36) 

1 2u u
( ,x) = ( ,x)

x x

∂ ∂α α
∂ ∂

                                (5.37) 

When mass or heat transfer in composite domains are modeled, different thermal 
diffusivities or diffusion coefficients enter in the governing equation for each 
region and the mass/heat flux is continuous at x = α.  Equation (5.33) can be 
converted to the finite difference form as: 

2i i 1 i i 1
i2

1

2i i 1 i i 1
i2

2

u u 2u u
 =  u    i = 1..N [Region 1]

t h

u u 2u u
 =  - u    i = N+2..N+M+1 [Region 2]

t h

+ −

+ −

∂ − + − Φ
∂

∂ − + Φ
∂

   

(5.38) 

where N and M are the number of interior node points used in region 1 and 2, 
respectively, and the node spacing in each region are defined by: 

1 2

1
h  = ;  and h  = 

N+1 M+1

α − α
   (5.39) 

We are using the same dependent variable ui at interior node points, for both u1and 
u2 in equation (5.38) for convenience.  This satisfies the continuity of dependent 
variable at x = α (equation (5.36)) by default.  The initial conditions are 

iu (0) = 0   i = 1..N, i = N+2..N+M+1                   (5.40) 

Equation (5.36) can be written in finite difference form as: 

N+1 N N 1 N+1 N+2 N+3

1 2

1 3u  4u  + u 1 3u  + 4u u
 = 

2 h 2 h
−− − −

          (5.41) 

The procedure involved in solving PDEs in a composite domain can be 
summarized as follows: 
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1. Start the Maple program with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equations in two regions.  
4. Enter the value for α. 
5. Enter the initial conditions for the both the regions. 
6. Enter the boundary conditions at x = 0 and x = 1. 
7. Enter the number of interior node points N, M for region 1 and region 2, 

respectively. 
8. Enter the boundary condition at x = α (equation (5.36)). 
9. Convert the governing equations in both the regions to the finite difference 

form. 
10. Convert all the boundary conditions to the finite difference form. 
11. Eliminate the boundary values (u0(t) and uN+M+2(t)) using the boundary 

conditions at x = 0 and x = 1, respectively. 
12. Eliminate uN+1(t) i.e., the dependent variable at x = α using the boundary 

condition at x = α (equation 5.36 and 5.40). 
13. Store the dependent variables, ui, i = 1..N, N+2..N+M+2 in vars. 
14. Generate A matrix and b vector using Maple’s ‘genmatrix’ . 
15. Find the semianalytical solution and plot your results. 
16. Equation 5.37 is solved below in Maple for Φ = 5 using α = 0.5: 

> restart; 

> with(linalg):with(plots): 

> ge1:=diff(u1(x,t),t)=diff(u1(x,t),x$2)-Phi^2*u1(x,t); 

 

> ge2:=diff(u2(x,t),t)=diff(u2(x,t),x$2)-Phi^2*u2(x,t); 

 

> bc1:=u1(x,t)-1; 

 

> bcalpha:=diff(u1(x,t),x)=diff(u2(x,t),x); 

 

> bc2:=diff(u2(x,t),x); 
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> IC1:=u1(x,0)=0; 

 

> IC2:=u2(x,0)=0; 

 

The boundary condition u1(alpha,t) = u2(alpha,t) is satisfied by default.   Let N 
and M be the number of node points in region 1 and region 2, respectively. 

> N:=5; 

 

> M:=5; 

 

> alpha:=0.25; 

 

> Phi:=5; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h1; 

 

> dydxb:=1/2*(u[N+M](t)+3*u[N+M+2](t)-4*u[N+M+1](t))/h2; 

 

> dydxb2:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h1; 

 

> dydxf2:=1/2*(-u[N+3](t)-3*u[N+1](t)+4*u[N+2](t))/h2; 

 

The first and second derivatives in the governing equation are converted to finite 
difference form using the following finite difference approximations: 

> dydx:=piecewise(i<N+1,1/2/h1*(u[m+1](t)-u[m-1](t)),i>N+1, 
1/2/h2*(u[m+1](t)-u[m-1](t))); 
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Maple’s ‘piecewise’ command is useful in defining the first derivative and 
derivatives in different regions: 

> d2ydx2:=piecewise(i<N+1,1/h1^2*(u[m-1](t)-2*u[m](t)+ 
u[m+1](t)),i>N+1,1/h2^2*(u[m-1](t)-2*u[m](t)+u[m+1](t))); 

 

> bc1:=subs(diff(u1(x,t),x)=dydxf,u1(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u2(x,t),x)=dydxb,u2(x,t)=u[N+M+2](t),bc2); 

 
The boundary condition at the interface, x α=  is: 
> bcalpha:=subs(diff(u1(x,t),x)=dydxb2,diff(u2(x,t),x)=dydxf2,u1(x,t)= 
u[N+1](t),u2(x,t)=u[N+1](t),bcalpha); 
 

 
 

> eq[0]:=bc1;  

 

> eq[N+1]:=bcalpha;  

 

> eq[N+M+2]:=bc2; 

 

For the example given, the governing equation does not depend on x explicitly.  
However, for a general case (example 5.6), x appears in the governing equation 
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explicitly.  Hence, when the governing equation is converted to finite difference 
form the independent variable, x, has to be expressed in the finite difference form 
appropriately. 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u1(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u1(x,t),x) = subs(m=i,dydx),u1(x,t)=u[i](t), 
x=i*h1,rhs(ge1));od; 

 

 

 

 

 

Eq[N+1] is given the boundary condition at the interface between region 1 and 
region 2. The finite difference equations for region 2 are: 

> for i from N+2 to N+M+1 do eq[i]:=diff(u[i](t),t)= subs(diff(u2(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u2(x,t),x) = subs(m=i,dydx),u2(x,t)=u[i](t), 
x=alpha+(i-N-1)*h2,rhs(ge2));od; 
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The dependent variable at the boundary x 0=  is eliminated as: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 
The dependent variable at the boundary x α=  is eliminated as: 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

The dependent variable at the boundary x 1=  is eliminated as: 

> u[N+M+2](t):=solve(eq[N+M+2],u[N+M+2](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]):od:for i from N+2 to N+M+1 do 
eq[i]:=eval(eq[i]);od: 

> eqs:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..M)]: 

> Y:=[seq(u[i](t),i=1..N),seq(u[N+1+i](t),i=1..M)]; 

 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N+M,1):for i to N+M do b[i,1]:=-eval(b1[i]);od:evalm(b); 

 

> h1:=eval(alpha/(N+1));h2:=eval((1-alpha)/(M+1)); 
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> A:=map(eval,A): 

> if N+M >4 then A:=map(evalf,A);end:  

> mat:=exponential(A,t): 

> mat:=map(evalf,mat): 

> Y0:=matrix(N+M,1):for i from 1 to N+M do Y0[i,1]:=0;od:evalm(Y0): 

> s1:=evalm(Y0+inverse(A)&*b): 

> Y:=evalm(mat&*s1-inverse(A)&*b): 

> Y:=map(simplify,Y): 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from N+2 to N+M+1 do u[i](t):=evalf((Y[i-1,1]));od: 

> for i from 0 to N+M+2 do u[i](t):=eval(u[i](t));od; 
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> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]); 

 



434 5   Method of Lines for Parabolic Partial Differential Equations
 

> pp:=plot([seq(u[i](t),i=0..N+M+2)],t=0..0.1); 

 

> pt:=textplot([[0.015,1.0,typeset(u[0],"(t)"),align=below],seq([0.02+i*0.005, 
evalf(subs(t=0.02+i*0.005,u[i](t))),typeset(u[i],"(t)"),align=above], 
i=1..N+M-2)]); 

 

> display([pp,pt],title="Figure 5.27",thickness=3,axes=boxed,labels=[t,"u"]); 
 

 
Fig. 5.27 
 
> tf:=0.1; 

 

> MM:=30; 
 

> T1:=[seq(tf*i/MM,i=0..MM)]; 

 
 
 
 
 



5.1   Semianalytical Method for Parabolic Partial Differential Equations (PDEs) 435
 

> PP:=matrix(N+M+3,MM+1); 

 

> for i from 1 to N+M+3 do PP[i,1]:=0;od: 

> for i from 1 to N+M+3 do for j from 2 to MM+1 do 
PP[i,j]:=evalf(subs(t=T1[j],u[i-1](t)));od;od: 

> evalm(PP): 

> i:='i'; 

 
For making 3-D plots the x coordinate has to be defined appropriately. 

> X:=piecewise(i<N+3,(i-1)*h1,i>N+2,alpha+(i-N-2)*h2); 

 

> plot(X,i=1..N+M+3,thickness=4,title="Figure 5.28", 
axes=boxed,labels=['i',"X"]); 

 

 
 

Fig. 5.28 
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> plotdata:=[seq([ seq([eval(X),T1[j],PP[i,j]], i=1..N+M+3)], j=1..MM+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.29", 
labels=[x,t,u],orientation=[-75,60]); 

 

 
 

Fig. 5.29 

 
We observe that most of the reaction takes place near the surface, x 0= .  An 
analytical solution for the steady state distribution can be obtained as: 

> eq:=diff(U(x),x$2)-Phi^2*U(x); 

 

> Ua:=rhs(dsolve({eq,U(0)=1,D(U)(1)=0},U(x))); 

 
A more compact analytical solution can be obtained by using the matrix 
exponential method described in section 2.1.2.  The dimensionless mass flux at 
x 0=  is given by: 

> Flux:=-evalf(subs(x=0.,diff(Ua,x))); 
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> flux:=-dydxf; 

 
 
 
 

Steady state flux is obtained as: 

> flux:=limit(flux,t=infinity);Flux; 

 

      
We obtain almost a 5% error with our semianalytical solution.  The computation 
time taken for the semianalytical method depends on the total number of interior 
node points (N+M).  By using α = 0.25 without changing N and M, we obtain the 
following results: 

> Err:=abs(flux-Flux)/Flux*100; 

 
>  

The error has reduced significantly from 5% to 2%.  Hence, we conclude that stiff 
PDEs with boundary layers can be solved efficiently by dividing the region as two 
composite domains. 

5.1.5   Expediting the Calculation of Exponential Matrix 

We have used Maple to calculate the exponential matrix in all of the above 
examples. When N increases, the time taken by Maple for calculating the 
exponential matrix increases drastically.  For N = 10, the matrix order is 10 x 10.  
For this matrix, Maple takes around 1 minute to calculate the exponential matrix 
in a 2.6 GHz processor with 2GB RAM.  For a particular problem, one can derive 
an analytical expression for the exponential matrix by calculating the eigenvalues 
and eigenvectors analytically.[13] However, these expressions are valid for a 
particular problem only.  If the governing equation or the boundary conditions 
change, one has to redo all the steps.  This involves tedious algebra.  To avoid this, 
when all the eigenvalues of the coefficient matrix A are distinct, A matrix is 
converted to canonical form as 

A = PDP 1−  (5.42) 

Where D is the diagonal matrix of order NxN with the N distinct eigenvalues  
(λk, i = 1..N) as its diagonal elements.  P is the eigenvector matrix defined as 

[ ]1 2 N = X ,X ,..XP  (5.43) 
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where Pk is the eigenvector corresponding to the eigenvalue λk.  One of the main 
advantages of equation (5.42) is that, it simplifies the calculation of exponential 
matrix as: 

1exp( t) = exp( t) −A P D P    (5.44) 

Since D is a diagonal matrix, the exponential matrix of D is easily obtained as: 

1

2

N 1

N

t

t

t

t

e 0 ... 0 0

0 e ... 0 0

exp( ) = ... ... ... ... ...

0 0 ... e 0

0 0 ... 0 e

−

λ

λ

λ

λ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

Dt                       (5.45) 

Maple can be used to obtain the eigenvalues and eigenvector matrix (P).  Maple 
takes only a few seconds to calculate the eigenvalues (for a 20 x 20 matrix it takes 
less than a second). However, Maple takes a long time to calculate the eigenvector 
matrix. To overcome this problem, we can obtain the particular eigenvector Xk 
using the equation 

k k = ( )X  = λ−G A U 0      (5.46) 

where U is the diagonal matrix of order NxN.  We define Xk as  

[ ]T

k 1 2 NX  = , ,..β β β  (5.47) 

On substituting equation (5.47) into equation (5.46), we obtain equations for  
βi, i = 1..N.  Next by arbitrarily choosing β1 = 1, and by using rows 1 to N-1 of 
equation (5.46) we can solve βi, 1 = 2..N and obtain Xk. 

The following procedure in Maple can be used to obtain exponential matrix for 
any matrix with distinct eigenvalues. 

Example 5.9  

> restart; 

> with(linalg):with(plots): 

> UseHardwareFloats := true; 

 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2); 
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> bc1:=u(x,t); 

 

> bc2:=u(x,t); 

 

> IC:=u(x,0)=1; 

 

> N:=40; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1: 

> eq[N+1]:=bc2: 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 
 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od: 

> eqs:=[seq(rhs(eq[j]),j=1..N)]: 

> Y:=[seq(u[i](t),i=1..N)]: 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N,1):for i to N do b[i,1]:=-eval(b1[i]);od:evalm(b): 

> h:=eval(L/(N+1)): 

> A:=map(eval,A): 
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> if N > 4 then A:=map(evalf,A);end:  

> #evalm(A); 

> Nrow:=rowdim(A): 

> l:=evalf(eigenvalues(A)): 
 

> for i to Nrow do lambda[i]:=l[i];od: 

> Id:=Matrix(Nrow,Nrow,shape=identity): 

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]): 

> for k to Nrow do: 

> G:=evalm((A-lambda[k]*Id)&*X): 

> eqx[1]:=beta[1]=1:for i from 2 to Nrow do eqx[i]:=G[i-1,1]:od: 

> for i to Nrow do beta[i]:=fsolve(eqx[i],beta[i]);od: 

> XX[k]:=map(eval,evalm(X)): 

> for i to Nrow do unassign('beta[i]'):od:od: 
 

> P:=Matrix([seq(evalm(XX[i]),i=1..Nrow)]): 

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal): 

> for i to Nrow do expD1[i,i]:=exp(lambda[i]*t):od: 

> mat:=evalm(P&*expD1&*inverse(P)): 

When the above procedure was used to calculate the exponential matrix for 
example 7.1, the time taken for N=40 interior node points was less than 30 
seconds.  For the same number of node points, Maple takes more than 5 minutes 
to calculate the exponential matrix in a 2.6Ghz processor with 2 GB RAM.  The  
3-D plot obtained for example 7.1 with N=40 node points is given below: 
 

> Y0:=matrix(N,1):for i from 1 to N do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0): 

> b2:=subs(t=tau,evalm(b)): 

> mat2:=subs(t=t-tau,evalm(mat)): 

> mat3:=evalm(mat2&*b2): 

> mat4:=map(int,mat3,tau=0..t): 

> Y:=evalm(mat&*Y0+mat4): 

> for i from 1 to N do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od: 
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> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]): 

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1,5)],t=0..0.4,thickness=3); 

 

> pt:=textplot([seq([0.05+i*0.002,evalf(subs(delta=1,t=0.05+i*0.002,u[i](t))), 
typeset(u[i]),align=right],i=0..N+1,5)]); 

 

> display([pp,pt],title="Figure 5.30",axes=boxed,labels=[t,"u"]); 

 

 
 

Fig. 5.30 
 

> for i from 0 to N+1 do 
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od: 

> tf:=0.1; 
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> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 
 
 
 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: 

> plotdata:= [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.31", 
labels=[x,t,u],orientation=[45,45]); 

 
Fig. 5.31 

 

 

Example 5.10 

> restart; 

> with(linalg):with(plots): 
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> ge:=diff(u(x,t),t)=-diff(u(x,t),x); 

 

> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),t)=-diff(u(x,t),x); 

 

> IC:=u(x,0)=0; 

 

> N:=2; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydxb:=(u[N+1](t)-u[N](t))/h: 

> dydx:=1/h*(u[m](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1; 

 

> eq[N+1]:=bc2; 

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx), 
u(x,t)=u[i](t),x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 
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> #u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

> for i from 1 to N+1 do eq[i]:=eval(eq[i]);od; 

 

 

 

> eqs:=[seq(rhs(eq[j]),j=1..N+1)]: 

> Y:=[seq(u[i](t),i=1..N+1)]: 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N+1,1):for i to N+1 do b[i,1]:=-eval(b1[i]);od:evalm(b): 

> h:=eval(L/(N+1)): 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> evalm(A); 

 

> J:=jordan(A,S); 

 

> evalm(S); 
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> mat:=evalm(S&*exponential(J,t)&*inverse(S)); 

 

> Nrow:=rowdim(A): 

> l:=evalf(eigenvalues(A)); 

 

> for i to Nrow do lambda[i]:=l[i];od: 

> Id:=Matrix(Nrow,Nrow,shape=identity): 

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]): 

> for k to Nrow do: 

> G:=evalm((A-lambda[k]*Id)&*X): 

> eqx[1]:=beta[1]=1:for i from 2 to Nrow do eqx[i]:=G[i-1,1]:od: 

> for i to Nrow do beta[i]:=solve(eqx[i],beta[i]);od: 

> XX[k]:=map(eval,evalm(X)): 

> for i to Nrow do unassign('beta[i]'):od:od: 
 

> P:=Matrix([seq(evalm(XX[i]),i=1..Nrow)]); 

 

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal): 

> for i to Nrow do expD1[i,i]:=exp(lambda[i]*t):od: 

> expD1:=map(convert,expD1,trig): 

> mat:=evalm(P&*expD1&*inverse(P)): 

Error, (in evalm) unnamed vector or array with undefined entries. 

> mat:=map(expand,mat): 

> mat:=map(simplify,mat): 

> Y0:=matrix(N+1,1):for i from 1 to N+1 do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0): 
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> Y:=evalm(mat&*(Y0+inverse(A)&*b)-inverse(A)&*b): 

> #b2:=subs(t=tau,evalm(b)): 

> #mat2:=subs(t=t-tau,evalm(mat)): 

> #mat3:=evalm(mat2&*b2): 

> #mat4:=map(int,mat3,tau=0..t): 

> #Y:=evalm(mat&*Y0+mat4): 

> for i from 1 to N+1 do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od: 

> for i from 0 to N+1 do u[i](t):=subs(I=0,u[i](t));od: 

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]): 

> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1)],t=0..1,thickness=4); 

 

> pt:=textplot([seq([0.4,evalf(subs(delta=1,t=0.4,u[i](t))),typeset(u[i],"(t)"), 
align={below,right}],i=0..N+1)]); 

 

> display([pp,pt],title="Figure 5.32",axes=boxed,labels=[t,"u"]); 
 

 
Fig. 5.32 
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> for i from 0 to N+1 do p[i]:=plot(subs(delta=0.1,u[i](t)), 
t=0..0.4,thickness=3);od: 

> tf:=1; 
 

> M:=30; 
 

> T1:=[seq(tf*i/M,i=0..M)];  

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, title="Figure 5.33",axes=boxed, 
labels=[x,t,u],orientation=[45,45]); 
 

 
Fig. 5.33 
 

>  
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Example 5.11 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=-diff(u(x,t),x); 

 

> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),t)=-diff(u(x,t),x); 

 

> IC:=u(x,0)=0;N:=200; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> #dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydxb:=(u[N+1](t)-u[N](t))/h: 

> dydx:=1/h*(u[m](t)-u[m-1](t)): 

> #dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1): 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2): 

> eq[0]:=bc1; 

 

> eq[N+1]:=bc2; 
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> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> for i from 1 to N+1 do eq[i]:=eval(eq[i]);od: 

> eqs:=[seq(rhs(eq[j]),j=1..N+1)]: 

> Y:=[seq(u[i](t),i=1..N+1)]: 

> A:=genmatrix(eqs,Y,'b1'): 

> b:=matrix(N+1,1):for i to N+1 do b[i,1]:=-eval(b1[i]);od:evalm(b): 

> h:=eval(L/(N+1)): 

> A:=map(eval,A): 

> if N > 4 then A:=map(evalf,A);end:  

> Nrow:=rowdim(A); 

 

> #exponential(A,t); 

> #seq([seq(exp(-Nrow*t)*(Nrow*t)^(i-j),j=1..i)],i=1..Nrow); 

> mat:=Matrix(Nrow,[seq([seq(exp(-Nrow*t)*(Nrow*t)^(i-j)/factorial(i-j), 
j=1..i)],i=1..Nrow)],shape=triangular[lower]): 

> Y0:=matrix(N+1,1):for i from 1 to N+1 do 
Y0[i,1]:=evalf(subs(x=i*h,rhs(IC)));od:evalm(Y0): 

> Y:=evalm(mat&*(Y0+inverse(A)&*b)-inverse(A)&*b): 

> #b2:=subs(t=tau,evalm(b)): 

> #mat2:=subs(t=t-tau,evalm(mat)): 

> #mat3:=evalm(mat2&*b2): 

> #mat4:=map(int,mat3,tau=0..t): 

> #Y:=evalm(mat&*Y0+mat4): 

> for i from 1 to N+1 do u[i](t):=evalf((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](t):=eval(u[i](t));od: 

> for i from 0 to N+1 do u[i](t):=subs(I=0,u[i](t));od: 

> setcolors(["Red", "Blue", "LimeGreen", "Goldenrod", "maroon", 
"DarkTurquoise", "coral", "aquamarine", "magenta", "khaki",  "sienna", 
"orange", "yellow", "gray"]): 
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> pp:=plot([seq(subs(delta=1,u[i](t)),i=0..N+1,20)],t=0..1,thickness=3); 

 

> pt:=textplot([seq([0.05+i/20*0.09,evalf(subs(delta=1,t=0.05+i/20*0.09, 
u[i](t))),typeset(u[i]),align={below,right}],i=0..N+1,20)]); 

 

> display([pp,pt],title="Figure 5.34",axes=boxed,labels=[t,"u"]); 

 

 
 

Fig. 5.34 
 

> for i from 0 to N+1 do 
p[i]:=plot(subs(delta=0.1,u[i](t)),t=0..0.4,thickness=3);od: 

> tf:=1; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]: 

> PP:=matrix(N+2,M+1); 
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> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],subs(delta=1,u[i-1](t))));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,title="Figure 5.35",axes=boxed, 
labels=[x,t,u],orientation=[-45,45]); 
 

 
Fig. 5.35 

 

>  
 

It is recommended that one check the exponential matrix obtained using this 
expedited procedure with the exponential matrix obtained using Maple’s 
exponential matrix command for at least two values of interior node points (for 
e.g., N = 2, 4 etc).  Once it is verified that the above procedure works for a 
particular problem, one can use the procedure for obtaining the exponential matrix 
efficiently for high values of N. 

5.1.6   Summary 

In this chapter semianalytical solutions (solutions analytical in t and numerical in 
x) were obtained for parabolic PDEs.  In section 5.1.2, the given homogeneous 
parabolic PDE was converted to matrix form by applying finite differences in the 
spatial direction.  The resulting matrix differential equation was then integrated 
analytically in time using Maple’s matrix exponential.  This methodology helps us 
solve the dependent variables at different node points as an analytical function of 
time.  This is a powerful technique and is valid for all linear parabolic PDEs.  This 
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technique was then extended to nonhomogeneous parabolic PDEs in section 5.1.3 
by adding the nonhomogeneous part to the homogeneous solution. 

In section 5.1.4, the Graetz problem was solved using the semianalytical 
technique. The solution obtained is numerical in x and analytical in z. The solution 
is obtained as a function of the Peclet number.  The solution obtained compares 
well with the analytical solution reported in the literature.  Our technique avoids 
calculation of special functions and at the same time provides solutions explicit in 
the Peclet number. In section 5.1.5, the semianalytical technique developed earlier 
was extended to the case when the initial condition is a function of x. 

In section 5.1.6, semianalytical technique was extended to composite domains.  
Many chemical problems with mass transfer or kinetics limitations form a 
boundary layer near the surface. These problems can be handled conveniently by 
splitting the domain to composite domain as illustrated in this section.  In addition, 
composite solids (composite electrodes) with different physical properties can be 
handled by this technique.  Eight examples were given in this chapter. 

In section 5.1.7, a procedure to expedite the calculation of exponential matrix 
was developed.  This procedure is valid as long as all the eigenvalues are distinct. 

5.1.7   Exercise Problems 

1. Consider diffusion with convection in a coated wall reactor, where the 
reaction takes place at the wall.[9] The governing equation and boundary 
conditions for concentration are: 

2. 

2

0 2

0

c c 1 c
v  = D  +  

z r r r

c c
(0,z) = 0 and -D (R, z) = k c(R,z)

r r
c(r,0) = c

⎛ ⎞∂ ∂ ∂
⎜ ⎟∂ ∂ ∂⎝ ⎠

∂ ∂
∂ ∂

 

where v0 is the velocity, D is the diffusion coefficient, R is the radius, c0 
is the inlet concentration and k is the rate constant. Use the dimensionless 

variables 
2

0 0

c r zD
u = ;  x = ;  Z = 

c R v R
 to obtain the dimensionless 

governing equation and boundary/initial conditions: 

3. 

2

2

u u 1 u
 =  + 

Z x x x
u u

(0,Z) = 0 and (1, Z) + Ha u(1,Z) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

 

where 
kR

Ha=
D

 is the Hatta number.  Obtain semianalytical solutions 

for this problem and plot the profiles for Ha = 0.1, 1, 2 and 10.  (Hint: for 
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convenience, use t instead of Z so that the program given in the chapter 
can be used directly).  Solve this problem using Maple’s exponential 
matrix and also using the code given for expediting the calculation of 
exponential matrix.  How much computation time is saved for N = 20 
node points?Redo example 5.2 with the expedited code for the 
exponential matrix. How much computation time is saved? 

4. Redo example 5.4 with the expedited code for the exponential matrix. 
How much computation time is saved? 

5. Redo example 5.5 with the expedited code for the exponential matrix. 
How much computation time is saved? 

6. Redo example 5.6 with the expedited code for the exponential matrix. 
How much computation time is saved? 

7. Redo example 5.7 with the expedited code for the exponential matrix. 
How much computation time is saved? 

8. Consider cooling of spherical nuclear pellets.[9] The dimensionless 
temperature distribution is governed by: 

9. 

2

2

u u 2 u
 =  +  + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

 

where Q is the ratio of heat generation to heat conduction and Bi is the 
Biot number.  Solve this problem for the set of parameters Q = 1, Bi = 
0.2 and Q = 1, Bi = 10. 

10. Consider the electrochemical discharge of a planar electrode (example 5.3) 
again. After applying the finite differences, and eliminating the boundary 
values, the coefficient matrix for the node points i = 1..N, A is singular 
because of flux-boundary conditions at both the ends.  One cannot use the 
code given in the chapter for expediting the calculation of exponential 
matrix because A is singular.  The governing equations at the interior node 
points are: 

11. 

1 2 1
2

1 2 32
2

N 1 N 2 N 1 N
2

N N 1 N
2

du 2 u u
 = 

dt 3 h
u 2u udu

 = 
dt h

.....

du u 2u u
 = 

dt h
du u u2 2

 =  - 
dt 3 h 3 h

− − −

−

−

− +

− +

− δ
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Multiplying the first and the last equation by 3/2 and adding up all the 
equations we get: 

[ ]
N-1

1 N i
i = 2

3
d u  + u  + u

2
= - 

dt h

⎛ ⎞
⎜ ⎟ δ⎝ ⎠

∑
 

12. This differential equation can be integrated using the initial condition as: 

13. [ ]
N-1

1 N i
i = 2

3 t
u  + u  + u (N + 1) = 

2 h

δ− −∑  

This equation can be used to eliminate uN completely and we need to 
solve only the following N –1 ODEs: 

1 2 1
2

1 2 32
2

N-1

N 2 N 1 1 i
N 1 i = 2

2 2

du u u2
 = 

dt 3 h
u 2u udu

 = 
dt h

.....

t2
N 1  u 2u  u  u

du 2 h3
 =  + 

dt h 3 h

− −
−

−

− +

δ⎛ ⎞+ −− − − ⎜ ⎟
⎝ ⎠

∑
 

This is a system of N-1 first-order nonhomogeneous ODEs, which can be 
solved as illustrated in section 5.1.3 (example 5.4).  The resulting 
coefficient matrix is non-singular and has distinct N-1 eigenvalues.  The 
exponential matrix can be obtained efficiently using the expedition-
procedure given in the section 5.1.7.   Modify the program given in the 
chapter to obtain semianalytical solutions.  Plot the dimensionless 
concentration profiles for δ = 1. 

14. Consider dispersion of a linear kinematic wave in dimensionless 
form.[14]  The governing equation and boundary/initial conditions are: 

15. 

2

2

u u u
 =  -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂

 

Obtain a semianalytical solution for this problem for Pe = 1, 10 and 50.  
What is the computation time saved for Pe = 10 and 50?  Hint: Maple’s 
exponential matrix command may not work for this problem for all 
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values of Pe and N. In addition, different finite difference approximations 
might have to be used (see section 3.1.3). 

16. Consider the fluid-flow problem:[12] 

17. 

2

2

u u 1 u
=  +  + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

 

Obtain the semianalytical solution and plot the dimensionless velocity 
profiles. 

18. Consider the Graetz problem discussed in example 5.6. The same 
problem in planar geometry is: 

2
2

2

u u
2Pe(1 x )  = 

z x

u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

 

Solve this problem and plot the profiles for different values of Peclet 
number. 

19. Consider heat conduction in a slab with radiation at both ends.[6] The 
dimensionless governing equations and boundary/initial conditions are: 

2

2

u u
 =  

t x
u u

(0,t) + Hu(0,t) = 0 and (1, t) + Hu(1,t) = 0
x x

u(x,0) = 1

∂ ∂
∂ ∂

∂ ∂−
∂ ∂

 

where H is the dimensionless heat transfer coefficient. Obtain the 
semianalytical solutions for H = 1 and plot the profiles. 

20. Solve problem 20, chapter 7 using the semianalytical method. 
21. Solve problem 18, chapter 8 using the semianalytical method. 
22. Solve problem 19, chapter 8 using the semianalytical method. 
23. Solve example 7.4 using the semianalytical method. 
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5.2   Numerical Method of Lines for Parabolic Partial 
Differential Equations (PDEs) 

5.2.1   Introduction 

Transient heat conduction or mass transfer in solids with varying physical properties 
(diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) with nonlinear 
chemical reaction or heat source term is usually represented by a nonlinear parabolic 
partial differential equation. The semianalytical or analytical method of lines 
developed in chapter 5.1 cannot be used for nonlinear parabolic PDEs. In this 
chapter, we describe how one can arrive at the numerical solution by applying 
numerical method of lines for nonlinear parabolic PDEs by discretizing the spatial 
derivatives using finite differences and integrating numerically using Maple’s 
numerical IVP solver (Runge-Kutta, Gear and Rosenbrock solver). 

5.2.2   Numerical Method of Lines for Parabolic PDEs with Linear 
Boundary 

Conditions 

Consider a general nonlinear parabolic partial differential equation in dimensionless 
form 

2

0 1 22

u u u
 = a (x)  + a (x)  + a (x)u + f(u)

t x x

∂ ∂ ∂
∂ ∂ ∂

                 (5.48) 

with a known initial condition 

u (x,0) = 1                                        (5.49) 

and linear boundary conditions at both the boundaries: 

1 1 1

u
u(0, t) (0, t) = 

x

∂α + β γ
∂

 (5.50) 

and 

2 2 2

u
u(1, t) (1, t) = 

x

∂α + β γ
∂

  (5.51) 

where α1, β1, α2, and β2 are constants and γ1, and  γ2 can be functions of time. 
The numerical method of lines[1] [3] [4] [2] (Schiesser and Silebi, 1997; Cutlip 

and Shacham, 1999; Taylor; 1999; Constantinides and Mostoufi, 1999) involves 
converting the governing equation (equation (5.48)) to a system of coupled ODEs 
in time by applying finite difference approximations for the spatial derivatives  
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(see chapter 5.1). The governing equation (equation (5.48)) can be converted to 
finite difference form as follows: 

 i i 1 i i 1 i 1 i 1
0 i 1 i 2 i i i2

du u 2u u u u
 = a (x ) + a (x )  + a (x )u  + f(u )

dt h 2h
+ − + −− + −

 (5.52) 

where i is the node number, N is the number of interior node points, and h is the 
node spacing defined as 

L
h = 

N+1
                                      (5.53) 

where L is the length of the domain of interest.  Thus, x = 0 corresponds to the node 
point i = 0, x = 1 corresponds to the node point i = N+1 and x = xi = ih is the value 
of x at the node point i.  The variable ui corresponds to the dependent variable at 
node point i.  Equation (5.53) is a system of N nonlinear coupled ODEs for N 

dependent variables ( )iu ,i=1..N . The boundary values 0 N+1u and u  are 

eliminated using the boundary conditions. The boundary conditions (equations 
(5.50) and (5.51)) can be written in finite difference form as 

0 1 2
1 0 1

3u  + 4u  + u
u  +  = 0

2h

−α β          (5.54) 

and 

N+1 N N 1
2 N 1 2

3u  4u  + u
u  +  = 0

2h
−

+
−α β                    (5.55) 

Using the boundary conditions (equations (5.54) and (5.55)) the boundary values 
u0 and uN+1 can be eliminated.  Hence, the method of lines technique reduces the 
nonlinear parabolic PDE (equation (5.48)) to a nonlinear system of N coupled first 
order ODEs (equation (5.52)). This nonlinear system of ODEs is integrated 
numerically in time using Maple’s numerical ODE solver (Runge-Kutta, Gear, and 
Rosenbrock for stiff ODEs; see chapter 2.2.5).  The procedure for using Maple to 
solve nonlinear parabolic partial differential equations with linear boundary 
conditions can be summarized as follows: 
 

1. Start the Maple worksheet with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equation. 
4. Store the boundary conditions in bc1 (x = 0) and bc2 (x = 1). 
5. Enter the number of interior node points, N. 
6. Enter the length of the domain, L. 
7. Convert the governing equations to the finite difference form by using central 

the difference expression accurate to the order h2 for the first and second 
derivatives. 
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8. Convert the boundary conditions to the finite difference form by using the  
3-point forward and backward differences (accurate to the order h2), 
respectively, for bc1 and bc2. 

9. Eliminate the boundary values (u0(t) and uN+1(t)) using the boundary conditions. 
10. Store the finite difference equations in eqs. 
11. Store the dependent variables, ui, i = 1..N in Y. 
12. Store the initial conditions for the dependent variables in ICs. 

Find the numerical solution using Maple’s ‘dsolve’ command.  The syntax is: 

1. “dsolve({eqs,ICs},{Y},type=numeric)”.  Maple’s default numerical ODE 
solver, Runge-Kutta method accurate to the order Δt6, is used in this chapter.  

2. Once the numerical solution is obtained, plots can be made. 

Example 5.2.1. Diffusion with Second Order Reaction 

Consider diffusion in a slab with a second order reaction.  The governing equation 
in dimensionless form is (see example 5.1.5) 

2
2 2

2

u u
 = u

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0

x

∂ ∂ − Φ
∂ ∂

∂
∂

  (5.56) 

where Φ is the Thiele modulus.  This equation is solved in Maple below using the 
procedure described above. 

> restart; 

> with(linalg):with(plots): 

Enter the governing equation: 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t)^2; 

 
Enter the boundary conditions: 

> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),x); 
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Enter the initial condition: 

> IC:=u(x,0)=0; 

 
Enter the number of interior node points: 

> N:=10; 

 

> L:=1; 

 
Enter the value of the parameters: 

> Phi:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 
Convert the boundary conditions to the finite difference form: 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

> eq[0]:=bc1;  
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> eq[N+1]:=bc2;  

 
Convert the governing equations to the finite difference form: 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od; 

 

 

 

 

 

 

 

 

 

 
The boundary values are eliminated using the boundary conditions: 

> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 
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> h:=L/(N+1); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 

 

 

 

 

 

 

 

 

 

 

> eqs:=seq((eq[j]),j=1..N); 

 

 

 

 

 

 
> Y:=seq(u[i](t),i=1..N); 

 
> ICs:=seq(u[i](0)=rhs(IC),i=1..N); 
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Solve the equations numerically and store the numerical solutions in U[i]. 

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure); 

 

 

 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

 

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t)); 

 
Plot the numerical solutions: 

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..0.4,thickness=3);od: 

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..0.4); 

 

> display(pp,title="Figure 5.36",axes=boxed,thickness=4,labels=[t,"u"]); 

 

 
Fig. 5.36 
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> tf:=0.4; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 
 
 
 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.37", 
labels=[x,t,u],orientation=[-45,60]); 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.37 
  

 

> 
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Example 5.2.2. Variable Diffusivity  

Consider diffusion in a slab in which the diffusion coefficient varies as a function 
of concentration.[15] The governing equation in dimensionless form is  

u u
 = (1+ u)

t x x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 0

x

∂ ∂ ∂⎛ ⎞α⎜ ⎟∂ ∂ ∂⎝ ⎠

∂
∂

   (5.57) 

This equation (for α = 1) is solved below using the Maple program given for 
example 5.2.1 by just modifying the governing equation: 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff((1+alpha*u(x,t))*diff(u(x,t),x),x); 

 
> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),x); 

 

> IC:=u(x,0)=0; 

 

> N:=10; 

 

> L:=1; 

 

> alpha:=1; 
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> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od; 
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> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> h:=L/(N+1); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 



5.2   Numerical Method of Lines for Parabolic Partial Differential Equations (PDEs) 467
 

 

> eqs:=seq((eq[j]),j=1..N); 
 

 

 

 

 

 

 

 

 

> Y:=seq(u[i](t),i=1..N); 

 

> ICs:=seq(u[i](0)=rhs(IC),i=1..N);  

 

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure); 

 

 

 

 

 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

 

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t)); 

 

 



468 5   Method of Lines for Parabolic Partial Differential Equations
 

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..1,thickness=3);od: 

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..0.4); 

 

> display(pp,axes=boxed,title="Figure 5.38",thickness=3,labels=[t,"u"]); 
 

 
 

Fig. 5.38 

 
> tf:=1.; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 
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> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.39", 
labels=[x,t,u],orientation=[-45,60]); 

 

 
 

Fig. 5.39 
 

5.2.3   Numerical Method of Lines for Parabolic PDEs with 
Nonlinear Boundary 

Conditions 

When the boundary conditions are nonlinear, the procedure described in section 5.2.2 
cannot be used because the boundary values cannot be eliminated because of the 
nonlinear boundary conditions. This is handled by differentiating the finite 
difference form of the boundary condition with respect to t. This yields two 
additional nonlinear ODEs in time (see section 2.2.6 on DAEs), which are then 
solved simultaneously with N nonlinear ODEs arising from the discretization of 
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the governing equation at N interior node points.  This methodology is illustrated 
in the next example. 

Example 5.2.3. Nonlinear Radiation at the Surface  

Consider heat transfer in a slab with a nonlinear fourth order radiation boundary 
condition at the surface.[16] (Schiesser, 1991). The governing equation in 
dimensionless form is  

2

2

4

u u
 = 

t x

u(x,0) = 0

u
u(0,t) = 1 and (1,t) = 1-u(1,t)

x

∂ ∂
∂ ∂

∂
∂

 (5.58) 

This equation is solved below using the Maple program given for example 5.2.1 
by differentiating the boundary conditions: 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> bc1:=u(x,t)-1; 

 

> bc2:=diff(u(x,t),x)-1+(u(x,t))^4; 

 

> IC:=u(x,0)=0; 

 

> N:=4; 

 

> L:=1; 
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> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

Differentiate the boundary conditions: 
> eq[0]:=diff(bc1,t);  

 

> eq[N+1]:=diff(bc2,t);  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx), 
u(x,t)=u[i](t),x=i*h,rhs(ge));od; 
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> h:=L/(N+1); 

 

> for i from 0 to N+1 do eq[i]:=eval(eq[i]);od; 

 

 

 

 

 

 
> eqs:=seq((eq[j]),j=0..N+1);  

 

 

 
Enter the initial conditions separately for the boundary values consistent with the 
boundary conditions: 

> Y:=seq(u[i](t),i=0..N+1); 

 

> ICs:=u[0](0)=1,seq(u[i](0)=rhs(IC),i=1..N),u[N+1](0)=0; 

 

> sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure); 
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> for i from 0 to N+1 do U[i]:=subs(sol,u[i](t));od: 

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..1); 

 

> display(pp,axes=boxed,title="Figure 5.40",thickness=4,labels=[t,"u"]); 

 

 
 

Fig. 5.40 

 
> tf:=.2; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 
 
 
 

 

> PP:=matrix(N+2,M+1); 
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> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.41", 
labels=[x,t,u],orientation=[-90,90]); 

 

 
 

Fig. 5.41 
 

Accuracy can be increased by increasing the number of node points. 

5.2.4   Numerical Method of Lines for Stiff Nonlinear PDEs 

Stiff nonlinear PDEs cannot be solved using the Runge-Kutta subroutine (see 
chapter 2.2.5). Maple’s stiff solver can be used to solve stiff nonlinear PDEs 
efficiently. 

Example 5.2.4. Exothermal Reaction in a Sphere  

Consider heat transfer in a slab with a nonlinear fourth order radiation boundary 
condition at the surface.[16] (Schiesser, 1991) The governing equation in 
dimensionless form is  
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2

2

u u 2 u E
 =  + exp

t x x x R(u+273.16)

u(x,0) = 25

u
(0,t) = 0 and u(1,t) = 158

x

⎛ ⎞∂ ∂ ∂+ β −⎜ ⎟∂ ∂ ∂ ⎝ ⎠

∂
∂

         (5.59) 

where E = 30800, R = 1.987 and β the ratio of reaction rate to diffusion rate is 
6.699x1017.  This equation is solved below using the Maple program given for 
example 5.2.1 and by calling the stiff solver: 

> restart; 

> with(linalg):with(plots): 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x)+ 
beta*exp(-E/R/(u(x,t)+273.16));; 

 

> bc1:=diff(u(x,t),x);; 

 

> bc2:=u(x,t)-158; 

 

> IC:=u(x,0)=25; 

 

> N:=10; 

 

> L:=1; 
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> beta:=6.699e17;E:=30800;R:=1.987; 

 
 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 
> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 
> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=i*h,rhs(ge));od: 

> u[0](t):=(solve(eq[0],u[0](t))); 
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> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 

> h:=L/(N+1); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od: 

> eqs:=seq((eq[j]),j=1..N): 

> Y:=seq(u[i](t),i=1..N); 

 

> ICs:=seq(u[i](0)=rhs(IC),i=1..N); 

 
 

Maple's stiff solver (Rosenbrock algorithm) is used by setting the option stiff = 
true: 

> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,output=listprocedure); 

 

 

 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

 

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t)); 

 

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..0.4,thickness=3);od: 

> display({seq(p[i],i=0..N+1)},axes=boxed,title="Figure 5.42",labels=[t,"u"]); 
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Fig. 5.42 
 
> tf:=0.3784; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 
 
 
 
 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.43", 
labels=[x,t,u],orientation=[-45,60]); 
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Fig. 5.43 

 
The center of the sphere explodes after t = 0.3784 and the numerical calculations 
stop: 

> plot(U[0](t),t=0..1,thickness=3,title="Figure 5.44",axes=boxed, 
labels=[t,"u[0]"]); 

 

 
 

Fig. 5.44 
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A plot of u versus x is made. The temperature inside the sphere is less than the 
surface temperature of 158 0C. Because of the exothermal reaction, the temperature 
inside the sphere increases after t=0.36 and the process becomes unstable. 

> px[0]:=plot([seq([i*h,subs(x=i*h,rhs(IC))],i=0..N+1)],thickness=3): 

> for j from 2 to M+1 do 
px[j]:=plot([seq([i*h,U[i](T1[j])],i=0..N+1)],thickness=3):od:; 

> display({seq(px[j*2],j=0..(M+1)/2)},title="Figure 5.45",axes=boxed, 
labels=[x,u]); 

 

 
 
Fig. 5.45 

 

5.2.5   Numerical Method of Lines for Nonlinear Coupled PDEs 

The procedure developed for a single nonlinear PDE can be extended to solve 
coupled PDEs. Numerical method of lines provides an efficient way to solve 
nonlinear coupled PDEs. 

Example 5.2.5. Two Coupled PDEs  

Consider the following highly coupled nonlinear PDEs[16] 
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∂
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(5.60) 

Equation (5.59) is chosen for illustration, because these equations are highly 
nonlinear, coupled, and also have an analytical solution:  

u = 1 + 10xt exp(-4x) and v = 1 + x2t       (5.61) 

Equation (5.59) is solved using the general procedure for nonlinear-coupled PDEs 
given below: 

1. Start the Maple worksheet with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equations (ge[1] and ge[2]). 
4. Store the boundary conditions in bc1[1]; bc1[2] (x = 0) and bc2[1]; bc2[2] (x = 1). 
5. Enter the number of interior node points, N. 
6. Enter the length of the domain, L. 
7. Convert the governing equations to the finite difference form by using a 

central difference expression accurate to the order h2 for the first and second 
derivatives. 

8. u[i,1], i = 0..N+1 corresponds to the first dependent variable u and u[i,2] 
corresponds to the a, second dependent variable, v. 

9. Convert the boundary conditions to the finite difference form by using the  
3-point forward and backward differences (accurate to the order h2). 

10. If the boundary conditions are linear, eliminate the boundary values using the 
boundary conditions and solve the equations as in section 5.2.2. 
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11. If the boundary conditions are nonlinear, differentiate the finite difference 
form of the boundary conditions and solve the equations as in section 5.2.3. 

12. Once the numerical solution is obtained, plots can be made. 

Equation (5.59) is solved in Maple below using this procedure: 

> restart; 

> with(linalg):with(plots): 

Enter the governing equations: 

> ge[1]:=diff(u[1](x,t),t)=diff((u[2](x,t)-1)*diff(u[1](x,t),x),x)+ 
(16*x*t-2*t-16*(u[2](x,t)-1))*(u[1](x,t)-1)+10*x*exp(-4*x);  

 
 

> ge[2]:=diff(u[2](x,t),t)=diff(u[2](x,t),x$2)+diff(u[1](x,t),x)+ 
4*(u[1](x,t)-1)+x^2-2*t-10*t*exp(-4*x); 

 

Enter the boundary conditions at x = 0: 

> bc1[1]:=u[1](x,t)-1; 

 

> bc1[2]:=u[2](x,t)-1; 

 

Enter the boundary conditions at x = 1: 

> bc2[1]:=3*u[1](x,t)+diff(u[1](x,t),x)-3; 

 

> bc2[2]:=5*diff(u[2](x,t),x)-evalf(exp(4))*(u[1](x,t)-1); 

 

Enter the initial conditions: 
> IC[1]:=u[1](x,0)=1; 

 

> IC[2]:=u[2](x,0)=1; 
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Enter the number of governing equations: 

> NN:=2; 

 

> N:=2; 

 

> L:=1; 

 

Develop finite difference expressions for the first and second derivatives for the 
given two dependent dependent variables: 

> for i to NN do  

> dydxf[i]:=1/2*(-u[2,i](t)-3*u[0,i](t)+4*u[1,i](t))/h; 

> dydxb[i]:=1/2*(u[N-1,i](t)+3*u[N+1,i](t)-4*u[N,i](t))/h; 

> dydx[i]:=1/2/h*(u[m+1,i](t)-u[m-1,i](t)); 

> d2ydx2[i]:=1/h^2*(u[m-1,i](t)-2*u[m,i](t)+u[m+1,i](t));od; 
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Convert the boundary conditions to the finite difference form: 

> for i to NN do bc1[i]:=subs(diff(u[1](x,t),x)=dydxf[1], 
diff(u[2](x,t),x)=dydxf[2],u[1](x,t) 

=u[0,1](t),u[2](x,t)=u[0,2](t),x=0,bc1[i]);od; 

 

 

> for i to NN do bc2[i]:=subs(diff(u[1](x,t),x)=dydxb[1], 
diff(u[2](x,t),x)=dydxb[2],u[1](x,t) 

=u[N+1,1](t),u[2](x,t)=u[N+1,2](t),x=L,bc2[i]);od; 

 

> for i to NN do eq[0,i]:=bc1[i];eq[N+1,i]:=bc2[i];od;  

 

 

 
 

Convert the first governing equation to the finite difference form: 

> for i from 1 to N do eq[i,1]:=diff(u[i,1](t),t)= subs(diff(u[1](x,t),x$2) = 
subs(m=i,d2ydx2[1]), 

diff(u[2](x,t),x$2) = subs(m=i,d2ydx2[2]),diff(u[1](x,t),x) = 
subs(m=i,dydx[1]),diff(u[2](x,t),x) = subs(m=i,dydx[2]),u[1](x,t)=u[i,1](t), 
u[2](x,t)=u[i,2](t),x=i*h,rhs(ge[1]));od; 
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Convert the second governing equation to the finite difference form: 

> for i from 1 to N do eq[i,2]:=diff(u[i,2](t),t)= subs(diff(u[1](x,t),x$2) = 
subs(m=i,d2ydx2[1]), 

diff(u[2](x,t),x$2) = subs(m=i,d2ydx2[2]),diff(u[1](x,t),x) = 
subs(m=i,dydx[1]),diff(u[2](x,t),x) = subs(m=i,dydx[2]),u[1](x,t)=u[i,1](t), 
u[2](x,t)=u[i,2](t),x=i*h,rhs(ge[2]));od; 

 

 

 
 

> for i to NN do u[0,i](t):=(solve(eq[0,i],u[0,i](t)));od; 

 

 

Eliminate the boundary values: 

> for i to NN do u[N+1,i](t):=(solve(eq[N+1,i],u[N+1,i](t)));od; 

 

 
 

 
> h:=L/(N+1); 

 

> for i from 1 to N do eq[i,1]:=eval(eq[i,1]);od; 
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> for i from 1 to N do eq[i,2]:=eval(eq[i,2]);od; 

 

 

 
Store the governing equations in eqs: 

> eqs:=seq(seq((eq[i,j]),i=1..N),j=1..NN); 

 

 

 

 

 

 

 

Store the dependent variables in Y: 

> Y:=seq(seq(u[i,j](t),i=1..N),j=1..NN); 

 

Store the initial conditions in ICs: 

> ICs:=seq(u[i,1](0)=rhs(IC[1]),i=1..N),seq(u[i,2](0)=rhs(IC[2]),i=1..N); 

 

> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,maxfun=1000000, 
abserr=1e-6,relerr=1e-5,output=listprocedure); 
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> for j to NN do for i to N do U[i,j]:=subs(sol,u[i,j](t));od:od; 

> for i to NN do U[0,i]:=subs(u[1,1](t)=U[1,1],u[1,2](t)=U[1,2], 
u[2,1](t)=U[2,1],u[2,2](t)=U[2,2],u[0,i](t));od; 

 

 

> for i to NN do U[N+1,i]:=eval(subs(u[N,1](t)=U[N,1],u[N,2](t)=U[N,2], 
u[N-1,1](t)=U[N-1,1],u[N-1,2](t)=U[N-1,2],u[N+1,i](t)));od; 

 

 
The numerical solution obtained is compared with the exact analytical solution at 
x = 1: 

> ua:=1+10*x*t*exp(-4*x); 

 

> va:=1+x^2*t; 

 

> U[N+1,1](1);evalf(subs(x=1.,t=1.,ua)); 

1.169488249
1.183156389  

> evalf(U[N+1,2](1));evalf(subs(x=1.,t=1.,va)); 

1.961089198  

 

> U[N+1,1](2);evalf(subs(x=1.,t=2.,ua)); 

1.341573468
1.366312778  

> evalf(U[N+1,2](2));evalf(subs(x=1.,t=2.,va)); 

2.920892289  
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We obtain reasonable results even with N=2 node points. 

> tf:=1.; 

 

> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 

 

 

 

 

 
 

> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC[1])));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1,1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.46", 
labels=[x,t,"u"],orientation=[-45,60]); 

 

 
Fig. 5.46 
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> plot3d(ua,x=0..1,t=0..1,axes=boxed,title="Figure 5.47", 
labels=[x,t,"ua"],orientation=[-45,60]); 

 

 
 
Fig. 5.47 

 
> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC[2])));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1,2](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.48", 
labels=[x,t,"v"],orientation=[-45,60]); 



490 5   Method of Lines for Parabolic Partial Differential Equations
 

 
Fig. 5.48 

 
> plot3d(va,x=0..1,t=0..1,labels=[x,t,"va"],axes=boxed,title="Figure 5.49", 
orientation=[-45,60]); 
 

 
Fig. 5.49 
 
>  
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The accuracy can be increased by increasing the number of interior node points.  
The results obtained with N = 10 are: 

> U[N+1,1](1);evalf(subs(x=1.,t=1.,ua)); 

1.180862704  
1.183156389  

> evalf(U[N+1,2](1));evalf(subs(x=1.,t=1.,va)); 

1.989643591  
2.  

> U[N+1,1](2);evalf(subs(x=1.,t=2.,ua)); 

1.362175566  
1.366312778  

> evalf(U[N+1,2](2));evalf(subs(x=1.,t=2.,va)); 

2.978132652  

         3.  

5.2.6   Numerical Method of Lines for Moving Boundary Problems 

The procedure developed for nonlinear PDEs can be extended to solve PDEs with 
moving boundaries. Analytical solutions for moving problems are restricted to 
linear models and pseudo-steady state solutions.  The numerical method of lines 
provides an efficient way to solve nonlinear PDEs with moving boundaries.    

Example 5.2.6. The Shrinking Core Model for Catalyst Regeneration  

Catalyst regeneration in a spherical particle (burning coal particle) can be represented 
by the following dimensionless equations[17] 

2

2

c

u u 2 u
 =  + 

t x x x

u(x,0) = 0

u(x ,t) = 0

u(1,t) = 1

∂ ∂ ∂
∂ ∂ ∂

                            (5.62) 
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where xc, the dimensionless shrinking core is governed by the flux at the shrinking 
interface: 

c

c

x  = x

c

A0

dx u
 = -k

dt x

x (0) = 1

c
 k = 

∂
∂

ρφ

                        (5.63) 

where cA0 is the dimensional concentration at the surface of the particle 
(moles/m3), ρ is the molar density (moles/m3) and φ is the volume fraction 
(dimensionless). In equation (5.61) t is the dimensionless time, x is the 
dimensionless distance and at any particular time t, varies from xc to 1. Even 
though equation (5.61) is linear, the finite difference form of the equation (5.61) 
involves node space h, which varies as a function of time as: 

c1 - x
h = 

N 1+
                                          (5.64) 

Since h changes as a function of time (t), the finite difference form of equation 
(5.18) (5.61) becomes nonlinear. Equation (5.61) is solved in Maple below using 
the program developed for example 5.2.1 by solving the finite difference form of 
the moving boundary equation (equation (5.62) simultaneously with the governing 
equations for the concentration profiles: 

> restart; 

> with(linalg):with(plots): 

Enter the governing equation for the dimensionless concentration with the 
boundary and initial conditions: 

> ge:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x); 

 

> bc1:=u(x,t)-0; 

 

> bc2:=u(x,t)-1; 
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> IC:=u(x,0)=0; 

 
Enter the governing equation for the shrinking interface: 

> ge2:=diff(xc[1](t),t)=-k*diff(u(x,t),x); 

 
Note that xc(t) is entered as xc[1](t) as Maple cannot handle a nonindexed variable 
xc with an indexed entrey u[i](t).  Enter the parameter values: 

> k:=0.1; 

 

> N:=10; 

 

> L:=1; 

 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h; 

 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)); 

 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),bc1); 

 

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),bc2); 
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Convert the moving boundary equation to the finite difference form: 

> eqX:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),ge2); 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t), 
x=xc[1](t)+i*h,rhs(ge));od; 
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> u[0](t):=(solve(eq[0],u[0](t))); 

 

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

 
The node spacing varies as a function time as: 

> h:=(1-xc[1](t))/(N+1); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od; 
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Now eqX is solved simultaneously with the finite difference governing equations 
(eq[i], i = 1.N) 

> eqX:=eval(eqX); 

 

> eqs:=seq((eq[j]),j=1..N),eqX; 
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> Y:=seq(u[i](t),i=1..N),xc[1](t); 

 

The initial condition for xc[1](T) is taken to be 0.999999 instead of 1 to avoid 
singularity in the governeing equations: 

> ICs:=seq(u[i](0)=rhs(IC),i=1..N),xc[1](0)=0.999999; 

 

 
> sol:=dsolve({eqs,ICs},{Y},type=numeric,stiff=true,abserr=1e-20, 
stop_cond=[u[2](t)-1,xc[1](t)],output=listprocedure); 

 

 

 

 

 

 

 

Maple’s stop condition is used to halt the computation when u[2](t) becomes 1 or 
xc[1](t) becomes zero. 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

 

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t)); 

 

> Xc:=subs(sol,xc[1](t)); 
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> sol(2.); 

Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated  
Warning, cannot evaluate the solution further right of 1.8213372, stop 
condition #2 violated 
 

 

 

 

 

Stop condition 2 has been violated which means that the shrinking interface xc has 
shrunk to zero. 

> tf:=1.8213373*0.99; 

 
The shrinking interace is plotted as a function of time as: 

> plot(Xc(t),t=0..tf,axes=boxed,title="Figure 5.50", 
thickness=3,labels=[t,"xc"]); 
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Fig. 5.50 
 
Concentration profiles are plotted below: 

> pp:=plot([seq(U[i](t),i=0..N+1)],t=0..tf); 

 
> display(pp,axes=boxed,title="Figure 5.51",thickness=3,labels=[t,"u"]); 
 

 
Fig. 5.51 
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> h:=subs(xc[1]=Xc,h); 

 

> for j from 0 to 20 do 
p[j]:=plot([seq([evalf(subs(t=tf*j/20,Xc(t)+i*h)),evalf(subs(t=tf*j/20, 

U[i](t)))],i=0..N+1)]):od: 

> display({seq(p[j],j=0..20)},thickness=4,axes=boxed,title="Figure 5.52", 
labels=[x,"u"]); 

 

 
Fig. 5.52 

 
> M:=30; 

 

> T1:=[seq(tf*i/M,i=0..M)]; 
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> PP:=matrix(N+2,M+1); 

 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*L/(N+1),rhs(IC)));od: 

> for i from 1 to N+2 do for j from 1 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([eval(subs(t=T1[j],Xc(t)+(i-1)*h)),T1[j],PP[i,j]], 
i=1..N+2)], j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Figure 5.53", 
labels=[x,t,u],orientation=[-90,0]); 

 

 
Fig. 5.53 

 
The preceding figure shows how the radius of the particles shrinks with time. 

5.2.7   Summary 

In this chapter nonlinear parabolic PDEs were solved numerically using numerical 
method of lines.  In section 5.2.2, the given nonlinear parabolic PDE with linear 
boundary conditions was converted to a system of nonlinear ODEs in time by 
applying finite differences in the spatial direction. The resulting system of 
nonlinear ODEs was then integrated numerically in time using Maple’s ‘dsolve’ 
command.  This methodology solves the dependent variables at different node 
points numerically in time. This is a powerful technique and is valid for all 
parabolic PDEs. This technique was then extended to parabolic PDEs with 
nonlinear boundary conditions in section 5.2.3 by differentiating the finite 
difference form of the boundary conditions.  The numerical method of lines 
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developed in this chapter is a powerful technique capable of handling most of the 
parabolic PDEs in the literature.   

In section 5.2.4, a stiff nonlinear PDE was solved using numerical method of 
lines. This stiff problem was handled by calling Maple’s stiff solver. The 
temperature explodes after a certain time. The numerical method of lines (NMOL) 
technique was then extended to coupled nonlinear parabolic PDEs in section 5.2.5.  
By comparing with the analytical solution, we observed that NMOL predicts the 
behavior accurately.  

In section 5.2.6, NMOL was extended to moving boundary problems. For 
moving boundary problems, the length of the domain changes with time. The 
finite difference equations for the PDEs were solved simultaneously with the 
governing equation for the moving boundary. For this purpose, the moving 
boundary equation is converted to finite difference form. NMOL can be used 
solve the moving boundary problem accurately and efficiently. A total of six 
examples were solved in this chapter. 

5.2.8   Exercise Problems 
1. Complete the details missing in example 5.2.2. 
2. Consider chapter 5.1, exercise problem 9.   

2

2

u u u
 =  -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂

 

Solve this linear problem using numerical method of lines for Pe = 1, 10.  
How many node points are needed for obtaining three digits accuracy if 
average concentration at t = 1 is used to verify convergence? 

3. Consider the Graetz problem discussed in example 5.6. Solve this 
problem using numerical method of lines for Pe = 1, 10 and 20. 

4. Consider the Graetz problem discussed in problem 11 of chapter 5.1.  
Solve this problem using numerical method of lines for Pe = 1, 10 and 20. 

Material and energy balances for a spherical catalyst can be written 
as:[12] (Davis, 1984) 

2
2

2

2
2

2

u u 2 u 1
 =  - u exp 1

t x x x

2 1
Le  = u exp 1

t x x x

u(x,0) = 0; (x,0) = 1

u
(0,t) = (0,t) = 0

x x
u(1,t) = (1,t) = 1

⎛ ⎞∂ ∂ ∂ ⎡ ⎤⎛ ⎞+ Φ γ −⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ θ⎝ ⎠⎣ ⎦⎝ ⎠
⎛ ⎞∂θ ∂ θ ∂θ ⎡ ⎤⎛ ⎞+ + βΦ γ −⎜ ⎟⎜ ⎟⎢ ⎥∂ ∂ ∂ θ⎝ ⎠⎣ ⎦⎝ ⎠

θ
∂ ∂θ
∂ ∂

θ
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where u is the dimensionless concentration and θ is the dimensionless 
temperature. Values of the parameters are Φ = 1, γ = 18, β = 0.04. Le is 
the ratio of molecular diffusivity to thermal diffusivity.  Solve these 
equations and plot the profiles using numerical method of lines for Le= 1 
and Le = 10. 

5. Consider adsorption in a pore[12]. (Davis, 1984) The dimensionless 
concentration u and the fraction of coverage, f are governed by: 

( )

( )

2

a d2

a d

u u
 =  - k 1 f u - k f

t x
f

 = k 1 f u - k f
t

u(x,0) = 0; f (x,0) = 1

u(0,t) = 1

u
(1,t) =0

x

∂ ∂ −⎡ ⎤⎣ ⎦∂ ∂
∂ −⎡ ⎤⎣ ⎦∂

∂
∂

 

Equation for f as the boundary conditions for f at x = 0 and x = 1. 
6. Consider Burger’s equation in one-dimension: [18] [1]  

2

2

u u u
 =  -u

t x x
1 1

u(0,t) = ; u(1,t) = 
t 1 t

1 + exp 1 + exp
4 2 4

1
u(x,0) = 

x
1 + exp

2

∂ ∂ ∂μ
∂ ∂ ∂

⎛ ⎞ ⎛ ⎞− −⎜ ⎟ ⎜ ⎟μ μ μ⎝ ⎠ ⎝ ⎠

⎛ ⎞
⎜ ⎟μ⎝ ⎠

 

Solve this problem using numerical method of lines and compare with 

the exact solution 
1

ua = 
x t

1 + exp
2 4

⎛ ⎞−⎜ ⎟μ μ⎝ ⎠

 [18](Byrne and 

Hinmarsh, 1987) for μ = 1 and μ = 0.1. 
7. Redo problem 7 for the boundary and initial conditions given in problem 2. 
8. Solve problem 20, chapter 7 using numerical method of lines. 
9. Solve problem 18, chapter 8 using numerical method of lines. 
10. Solve problem 19, chapter 8 using numerical method of lines. 
11. Consider the transient version of multiple steady state problem discussed 

in example 3.2.2: 
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2
2

2

u u γβ(1-u)
 =  - u exp

t x 1+β(1 u)

u
(0,t) = 0 and u(1,t) = 1

x

⎛ ⎞∂ ∂ Φ ⎜ ⎟∂ ∂ −⎝ ⎠
∂
∂

 

In chapter 3.2 we obtained multiple steady states (three states) for this 
problem for the values of the parameters Φ = 0.2, β = 0.8 and γ = 20.  Solve 
this transient problem using numerical method of lines for two different 
initial conditions u(x,0) = 1 and u(x,0) = 0?  What do you observe? Can you 
obtain all the three steady states discussed in example 3.2.2 

12. Consider the shrinking core problem discussed in example 5.2.6. Redo 
this problem if the particle is rectangular instead of spherical. The 
governing equations are: 

c

2

2

c

c

x  = x

c

A0

u u
 = 

t x
u(x,0) = 0; u(x ,t) = 0

u(1,t) = 1

dx u
 = -k

dt x

x (0) = 1

c
 k = 

∂ ∂
∂ ∂

∂
∂

ρφ

 

13. Redo problem 13, if the particle is cylindrical instead of rectangular. 

14. Metal hydride electrodes involve change or shrinking of phases during 
discharge.  Diffusion of hydrogen atoms inside a metal hydride particle 
can be modeled in dimensionless form:[19]  

c

2

2

0 c

c

x  = x0

c

u u 2 u
 =  + 

t x x x
u(x,0) = u ; u(x ,t) = 1

u
(1,t) = -

x
dx 1 u

 = 
dt u  - 1 x

x (0) = 1

∂ ∂ ∂
∂ ∂ ∂

∂ δ
∂

∂
∂
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where δ is the dimensionless current density and u0 is the dimensionless 
initial concentration.  Solve this problem for the parameters δ = 0.1 and 
u0 = 9. 
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Chapter 6 

Method of Lines for Elliptic Partial Differential 
Equations 

6.1   Semianalytical and Numerical Method of Lines for Elliptic 
PDEs 

6.1.1   Introduction 

Steady state mass or heat transfer in solids and current distribution in 
electrochemical systems involve solving elliptic partial differential equations.  The 
method of lines has not been used for elliptic partial differential equations to our 
knowledge.  Schiesser and Silebi (1997)[1] added a time derivative to the steady 
state elliptic partial differential equation and applied finite differences in both x 
and y directions and then arrived at the steady state solution by waiting for the 
process to reach steady state.[2] When finite differences are applied only in the x 
direction, we arrive at a system of second order ordinary differential equations in 
y. Unfortunately, this is a coupled system of boundary value problems in y 
(boundary conditions defined at y = 0 and y = 1) and, hence, initial value problem 
solvers cannot be used to solve these boundary value problems directly.  In this 
chapter, we introduce two methods to solve this system of boundary value 
problems.  Both linear and nonlinear elliptic partial differential equations will be 
discussed in this chapter.  We will present semianalytical solutions for linear 
elliptic partial differential equations and numerical solutions for nonlinear elliptic 
partial differential equations based on method of lines. 

6.1.2   Semianalytical Method for Elliptic PDEs in Rectangular 
Coordinates 

Steady state heat conduction or mass transfer in solids with constant physical 
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is 
usually represented by a linear elliptic partial differential equation. For linear 
parabolic partial differential equations, finite differences can be used to convert to 
any given partial differential equation to system of linear first order ordinary 
differential equations in time. In chapter 5.1, we showed how an exponential 
matrix method [3] [4] [5] could be used to integrate these simultaneous equations 
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analytically in time.  This exponential matrix method is extended to solve elliptic 
equations in this chapter (Subramanian & White, 2000).[6] This method involves 
applying finite differences in the x direction and analytically integrating in y.  The 
dependent variable and its derivative are solved simultaneously.  The unknown 
initial condition for either the variable or its derivative is found by using the 
boundary condition at the second boundary (e.g., y = 1).   An important aspect of 
our technique is that the solution obtained is semianalytical (analytical in y, finite 
differences in x).  A useful aspect of our technique is that the solution obtained is 
valid for both nonlinear and linear boundary conditions at y = 0 and y = 1.   

In this chapter, we describe how one can arrive at the semianalytical solutions 
(solutions are analytical in the y variable and numerical in the spatial dimension) 
for linear elliptic partial differential equations using Maple and the matrix 
exponential method. 

Example 6.1. Heat Transfer in a Rectangle 

The methodology is illustrated using a Laplace equation for heat transfer in a 
rectangle[7] [8] using length L and height H. The governing equation for the 
temperature in dimensionless form can be written as[8] 

2 2
2

2 2

u u
+  = 0

x y

∂ ∂ε
∂ ∂

   (6.1) 

where ε = H/L is the aspect ratio. For simplicity, the following boundary 
conditions are considered 

u(0,y) = 0 for    0  y  1  ≤ ≤    (6.2) 

u(1,y) = 0 for    0  y  1≤ ≤    (6.3) 

u(x,0) = 0 for   0  x  1≤ ≤    (6.4) 

and   

u(x,1) = 1 for   0  x  1≤ ≤    (6.5) 

Now finite differences are used to replace 
2

2
 

x

∂
∂

in equation 6.1 to give 

2
2i i 1 i i-1

2 2

d u u  - 2u  + u
 =      i = 1..N

dy h
+− ε                 (6.6) 

where N is the number of interior node points used in discretization and h = 
1/(N+1) is the node spacing.  Note that a central difference accurate to the order of 
h2 is used in equation 6.1. Note that ui denotes the temperature at point i on the 
line at x = ih.  The boundary conditions at x = 0 and x = 1 (equations (6.2) and 
(6.3) are transformed as 
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0u  = 0                                    (6.7) 

N+1u  = 0                                   (6.8) 

The boundary conditions in y are transformed as 

iu (y 0) = 0        i = 1..N=    (6.9) 

iu (y 1) = 1        i = 1..N=    (6.10) 

For convenience, let 
y

 = 
h

εζ .  This converts the governing equation (equation 6.6) 

and boundary conditions (equations (6.7) − (6.10)) to  

2
i

i 1 i i-12

0

N+1

i

i

d u
= -u  + 2u  -u       i = 1..N 

d

u  = 0

u  = 0

u ( 0) = 0      i = 1.. N

u (  ) = 1        i = 1..N
h

+ζ

ζ =
εζ =

   (6.11) 

In equation (6.11), there are N second order equations. These are converted to 2N 
first order equations as follows (Subramanian & White, 2000b;[9] Rice and Do, 
1995;[10] see chapter 2.1.2): 

i
N+1+i

N 1 i
i 1 i i-1

du
 = u          i = 1..N

d

du
= -u  + 2u  - u       i = 1..N 

d
+ +

+

ζ

ζ

           (6.12) 

with u0 = 0 and uN+1 = 0.  The initial conditions for these 2N differential equations 
are 

iu ( 0) = 0         i = 1..Nζ =    (6.13) 

and 

N+1+i iu ( 0) = c   i = 1..Nζ =    (6.14) 

In equation (6.14), the unknown constants ci, i = 1..N are found after integrating 
the equations in (6.12) and by using the boundary conditions at y = 1. 
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iu (  ) = 1
h

εζ =                                   (6.15) 

Equation (6.12) is a system of 2N linear first order differential equations and can 
be written in matrix form as 

d
=  + (x)

dζ
Y

AY b                            (6.16) 

where 

[ ]T

1 2 N N+2 N 3 2N 1 = u ,u ,..u ,u ,u ,..u+ +Y            (6.17) 

and A is the 2N x 2N coefficient matrix defined by 

 = 
⎡ ⎤
⎢ ⎥
⎣ ⎦

0 I
A

a 0
                                 (6.18) 

where 0 is the zero matrix of order N x N, I is the identity matrix of order N x N 
and a is a N x N matrix given by 

2 -1 0 0 0 ... 0

-1 2 -1 0 0 ... 0

0 -1 2 -1 0 ... 0

 = ... ... ... ... ... ... ...

0 ... 0 -1 2 -1 0

0 ... 0 0 -1 2 -1

0 ... 0 0 0 -1 2

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

a           (6.19) 

The constant vector b(ζ) is a column vector of order 2N x 1. Equation (6.16) can be 
integrated analytically by finding the exponential matrix [3] [4] [5] (Subramanian & 
White, 2000a; Varma & Morbidelli, 1997; Taylor & Krishna, 1993; Amundson, 
1966) 

0

0

exp( )  + exp[ ( )] ( ) d
ζ

= ζ ζ − λ λ λ∫Y A Y A b               (6.20) 

where λ is a dummy variable.  For the example chosen, both u0 and uN+1 are zero 
and, hence, the forcing function b (ζ) is a 2N x 1 zero vector.  However, if the 
boundary conditions are functions of y in equations 6.2 and 6.3, then b(ζ) is a 
function of ζ and the integral in equation (6.20) has to be evaluated.  We call this a 
semianalytical solution since the solution obtained is analytical in ζ (or y).  In our 
previous publication, the exponential matrix was found as a function of y.  
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However, since the a matrix has the elements –2/h2 and 1/h2 compared to the 
identity matrix I in equation 6.18, the resultant A matrix becomes unstable and the 
ratio of the largest eigenvalue to the smallest eigenvalue becomes very large for 
some cases.  

The procedure involved in solving a linear steady state elliptic PDE is 
summarized as follows: 

1. Start the Maple worksheet with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equation. 
4. Store the ‘x’ boundary conditions in bc1 (x = 0) and bc2 (x = 1). 
5. Store the ‘y’ boundary conditions in bc3 (y = 0) and bc4 (y = 1). 
6. Enter the number of interior node points, N. 
7. Enter the length of the domain, L. 
8. Transform the elliptic PDE from ‘y’ coordinate to ‘ζ’ coordinate using the 

variable transformation ζ = yε/h. 
9. Convert the boundary conditions in x (bc1, and bc2) to finite difference form 

by using 3-point forward and backward differences (accurate to the order 
h2), respectively, for bc1 and bc2. 

10. Convert the governing equation to finite difference form by using central 
difference expression accurate to the order h2 for the first and second 
derivatives in the spatial variable, x (equation (6.11)).  This gives raise to N 
second order linear ODEs in ζ.  This system of second order equations is 
converted to 2N first order linear ODEs in ζ as described in equation (6.12). 

11. The variable ui(ζ), i = 0..N+1 corresponds to the dependent variable, ui at 
node point i. 

12. The variable uN+1+i(ζ), i = 1..N corresponds to the derivative of the 

dependent variable, idu

dζ
at node point i. 

13. Eliminate the boundary values (u0(ζ) and uN+1(ζ)) using the boundary 
conditions. 

14. Store the right hand side of the finite difference equations in eqs. 
15. Store the dependent variables, ui, i = 1..N, I = N+2..2N+1 in Y. 
16. Generate A matrix using Maple’s ‘genmatrix’ command. Find the 

exponential matrix using the expedited matrix procedure given in chapter 5. 
(Note that this can be done only if the eigenvalues are distinct and nonzero). 

17. Find the solution by adding the non-homogeneous part according to  
equation 6.20. The first N rows of Y vector correspond to the dependent 
variable ui(ζ) and the second N rows of Y vector correspond to the 

derivative idu

dζ
 at node point i. 

18. Take initial condition as Y0 = g21 
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19. gT. There are 2N dependent variables and hence 2N unknown constants 
(initial conditions).  These constants are found out using the boundary 
conditions in y (bc3 and bc4).   Note that in example 6.1 the dependent 
variable is known at y = ζ = 0 is known and hence the constants p1,p2,..pN 
are known before hand.  However, the boundary condition at y = 0 may be 
of mixed type. 

20. Once the constants are solved, the solution obtained is converted to ‘y’ 
variable and the plots are made. 

Example 6.1 is solved below in Maple using this procedure.  For illustration,  
N = 2 node points are used.   

>restart;with(plottools):with(linalg):with(plots):  

Enter the governing equation: 

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2); 

 

Enter the boundary conditions: 

> bc1:=u(x,y)-0; 

 

> bc2:=u(x,y)-0; 

 

> bc3:=u(x,y)-0; 

 

> bc4:=u(x,y)-1; 

 

> epsilon:=1; 

 
Enter the finite difference approximations for the derivatives: 

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)); 

 

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)); 
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> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)); 

 

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)); 

 

Convert the boundary conditions to finite difference form: 

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),x=0,bc1); 

 

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),x=1,bc2); 

 

Enter the number of interior node points: 

> N:=2; 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 
Convert the governing equation to finite difference from (equation 6.12): 

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= 
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = 
subs(m=i,dydx),u(x,y)=u[i](zeta), 

x=i*h,rhs(h^2/epsilon^2*ge));od; 

 

 

Enter the boundary values: 

> u[0](zeta):=(solve(eq[0],u[0](zeta))); 
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> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); 

 

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)=u[N+1+i](zeta);od; 

 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do eq[N+1+i]: 

=eval(eq[N+1+i]);od; 

 

 

 

 

Generate the A matrix using the governing equations and the dependent variables. 

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]; 

 

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]; 

 

> A:=genmatrix(eqns,Y,'b1'); 
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Convert the entries of the A  matrix as decimals if N is greater than two (as 

shown in chapter 5.1): 

> if N>2 then A:=map(evalf,A):end; 

A Maple procedure is written to expedite the calculation for the exponential 
matrix (see chapter 5.1).  First the eigenvalues are found: 

>NRow:=rowdim(A); 

 
> L:=evalf(eigenvalues(A));  

 
Note that this procedure can be used only if all the eigenvalues are real and distinct. 
Also, for obtaining the eigenvectors (equation 5.26) since sβ  are coupled, all of the 

equations are solved simultaneously. In chapter 5.1, the equations for sβ  were 

solved individually one by one. 

> evalm(A); 

 

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b); 

 

Note that for the example given the b vector is zero. However, depending on the 

boundary conditions, bc3 and bc3, the b vector can be a function of ζ or a 
constant vector. 

> h:=eval(1/(N+1)); 
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> J:=jordan(A,S); 

 

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)): 

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): 

> b2:=evalm(subs(zeta=zeta1,evalm(b))): 

> mat2:=evalm(mat1&*b2): 

> mat2:=map(expand,mat2): 

> mat3:=map(int,mat2,zeta1=0..zeta): 

The initial condition vector is defined here. 

> Y0:=matrix(2*N,1); 

 

> for i to N do Y0[i,1]:=p[i];od: 

> for i to N do Y0[N+i,1]:=c[i]:od: 

> evalm(Y0); 

 
The solution is found by adding the nonhomogeneous part to the homogeneous 
part. 

> Y:=evalm(mat&*Y0+mat3): 

The solution at y = 0 and y = 1 is stored in sol0 and sol1 to calculate the unknown 
constants. 

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): 

> sol1:=map(eval,evalm(subs(zeta=epsilon/h,evalm(Y)))): 
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Now the boundary conditions bc3 and bc4 are applied. 

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od; 

 

 

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1],u(x,y) 

=sol1[i,1],bc4));od; 

 

 

The unknown constants are solved as: 

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)}); 

 

> assign(csol); 

> Y:=map(eval,Y): 

> for i from 1 to N do u[i](zeta):=eval((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: 

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon 

*y/h,u[i](zeta)));od; 

 

 

 

 

Hence, the semianalytical solution is obtained for temperature distribution.  The 
plots obtained for N=10 node points are given below: 
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> for i from 0 to N+1 do pl[i]:=line([0.3,0.98-abs(i-5.25)*0.14], 
[0.6,evalf(subs(y=0.6,u[i](y)))],thickness=1,linestyle=dot);  
pt[i]:=textplot([0.3,0.98-abs(i-5.25)*0.14,typeset(u[i],"(y)")], 
align=left):end do: 

> pp:=plot([seq(u[i](y),i=0..N+1)],y=0..1); 

 

> display([pp,seq(pl[i],i=0..N+1),seq(pt[i],i=0..N+1)],axes=boxed,thickness=3, 
title="Figure 6.1",labels=[y,"u"]); 

 
Fig. 6.1 
 
> M:=10; 

 

> T1:=[seq(evalf(i/M),i=0..M)]; 

 

> for j from 1 to M do 
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)], 

style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od: 

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],style=line, 
thickness=3,title="Figure 6.2",axes=boxed): 
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> for j from 1 to M+1 do 

pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[1](y))),typeset(y,sprintf("=%4.2f", 
T1[j]))],align=above);od: 

> display({seq(P[i],i=1..M+1),seq(pt[j],j=1..M+1)},labels=[x,u]); 

 

 
Fig. 6.2 

> Ny:=30; 

 

> PP:=matrix(N+2,Ny); 

 

> for i to Ny do PP[1,i]:=0;PP[N+2,i]:=0;od: 

> for i to N+2 do PP[i,1]:=0;PP[i,Ny]:=1;od: 

> for i from 2 to N+1 do for j from 2 to Ny-1 do  
PP[i,j]:=evalf(subs(y=(j-1)/(Ny-1),u[i-1](y)));od;od: 

> plotdata := [seq([ seq([(i-1)/(N+1),(j-1)/(Ny-1),PP[i,j]], i=1..N+2)], 
j=1..Ny)]: 

> surfdata(plotdata,axes=boxed,title="Figure 6.3", 
labels=[x,y,u],orientation=[-120,60] ); 
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Fig. 6.3 

 
Because of symmetry, we get u1 = uN, u2 = uN-1, etc.  Note that A matrix depends 
only on the governing equation and the boundary conditions at x = 0 and x = 1.  
Once the exponential matrix (exp(Aζ)) is found, the exponential matrix can be 
used for a different set of boundary conditions at y = 0 and y = 1.  This is true 
because the solution obtained is analytical in the y direction and valid for any 
boundary conditions in y as illustrated in the next example. 

Example 6.2 

For example, consider the following boundary value problem 

2 2

2 2

u u
 +  = 0

x y

u(0, y) 0       0 y 1

u(1, y) 0        0 y 1

u
(x,0) - u(x,0)    0 x 1

y

u(x,1) = 1       0 x 1

∂ ∂
∂ ∂

= ≤ ≤
= ≤ ≤

∂ ≤ ≤
∂

< <

   (6.21) 

For solving equation (6.21) there is no need to find the exponential matrix again.  
Since the boundary conditions at x = 0 and x = 1 do not change, the complete 
solution can be obtained using the exponential matrix obtained for the previous 
example by just recalculating the constants as described below: 
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> restart;with(plottools):with(linalg):with(plots): 

> Digits:=12; 
 

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2); 

 

> bc1:=u(x,y)-0; 

 
> bc2:=u(x,y)-0; 

 

Now, the boundary condition at y = 0 is redefined. 

> bc3:=diff(u(x,y),y)-u(x,y); 

 

> bc4:=u(x,y)-1; 

 
> epsilon:=1; 

 

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)); 

 

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)); 

 

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)); 

 

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)); 

 

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1); 
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> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2); 

 

> N:=10; 
 

> eq[0]:=bc1;  
 

> eq[N+1]:=bc2;  
 

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= 
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = 
subs(m=i,dydx),u(x,y)=u[i](zeta), 

x=i*h,rhs(h^2/epsilon^2*ge));od; 
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> u[0](zeta):=(solve(eq[0],u[0](zeta))); 

 

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); 

 

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od; 

 

 

 

 

 

 

 

 

 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do 
eq[N+1+i]:=eval(eq[N+1+i]);od; 
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> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]; 

 

 

 

 

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]; 

 

 

> A:=genmatrix(eqns,Y,'b1'); 
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> if N>2 then A:=map(evalf,A):end; 

 
> evalm(A); 
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> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b); 

 
> h:=eval(1/(N+1)); 

 

> J:=jordan(A,S); 
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> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)): 

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): 

> b2:=evalm(subs(zeta=zeta1,evalm(b))): 

> mat2:=evalm(mat1&*b2): 

> mat2:=map(expand,mat2): 

> mat3:=map(int,mat2,zeta1=0..zeta): 

> Y0:=matrix(2*N,1); 

 

> for i to N do Y0[i,1]:=p[i];od: 

> for i to N do Y0[N+i,1]:=c[i]:od: 

> evalm(Y0); 
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> Y:=evalm(mat&*Y0+mat3): 

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): 

> sol1:=map(eval,evalm(subs(zeta=epsilon/h,evalm(Y)))): 

>  

> bc3:=diff(u(x,y),y)-u(x,y); 

 

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i], 
x=i*h,bc3);od; 
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> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1], 
u(x,y)=sol1[i,1],bc4));od: 

The new sets of constants are: 

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)}); 

 

 

 

 

 

> assign(csol); 

> YY:=map(eval,Y): 

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od: 

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: 

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od; 
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Using the new values for constants the semianalytical solution is recalculated, the 
following plots are obtained, and the constants are unassigned. 

> for i to N do unassign('c[i]'):unassign('p[i]'):od: 

> for i from 0 to N+1 do 

pl[i]:=line([0.3,0.98-abs(i-5.25)*0.14],[0.6,evalf(subs(y=0.6,u[i](y)))], 
thickness=1,linestyle=dot); 

pt[i]:=textplot([0.3,0.98-abs(i-5.25)*0.14,typeset(u[i],"(y)")],align=left): 

end do: 
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> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..1,thickness=3);od: 

> pp:=plot([seq(u[i](y),i=0..N+1)],y=0..1,thickness=3): 

> display([pp,seq(pl[i],i=0..N+1),seq(pt[i],i=0..N+1)],title="Figure 6.4", 
axes=boxed,labels=[y,"u"]); 

 
Fig. 6.4 

> M:=5; 

 

> T1:=[seq(evalf(i/M),i=0..M)]; 

 

> for j from 1 to M do 
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)],style=line, 
thickness=3,axes=boxed,view=[0..1,0..1.1]):od: 

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)], 
style=line,thickness=3,title="Figure 6.5",axes=boxed): 

> for j from 1 to M+1 do  
pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),typeset(y,sprintf("=%4.2f", 
T1[j]))],align=above);od: 
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> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},labels=[x,u]); 

 
Fig. 6.5 

> Ny:=20; 

 

> PP:=matrix(N+2,Ny); 

 

For the three dimensional plot, first the boundaries, x = 0, x = 1, and y = 1 are 
defined. 

> for i to Ny do PP[1,i]:=0;PP[N+2,i]:=0;od: 

> for i to N+2 do PP[i,Ny]:=1;od: 

The temperature inside the rectangle is obtained using the semianalytical solution. 

> for i from 2 to N+1 do for j from 1 to Ny-1 do PP[i,j]:=evalf(subs(y= 
(j-1)/(Ny-1),u[i-1](y)));od;od: 

> plotdata := [seq([ seq([(i-1)/(N+1),(j-1)/(Ny-1),PP[i,j]], i=1..N+2)], 
j=1..Ny)]: 

> surfdata(plotdata,axes=boxed,title="Figure 6.6", 
labels=[x,y,u],orientation=[-120,60] ); 
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Fig. 6.6 

 

 
Note that a semianalytical solution in x can be obtained instead of y in the 
previous two examples by discretizing the spatial derivatives in the y derivatives. 

6.1.3   Semianalytical Method for Elliptic PDEs in Cylindrical 
Coordinates – Graetz Problem 

Example 6.3. Graetz Problem with a Fixed Wall Temperature 

As an aside, it is worth mentioning, that the technique described earlier can also be 
used for solving partial differential equations in cylindrical coordinates. For example, 
consider the Graetz problem,[1] 

2 2
2

2 2

u u 1 u u
2Pe(1 x )  =  +  +

y x x x y

u
(0,y) = 0  for 0  y  H

x
u(1,y) = 1  for 0 < y  H

u(x,0) = 0 for  0  x  1

u
(x,H) for 0  x  1

x

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

∂ ≤ ≤
∂

≤
≤ ≤

∂ ≤ ≤
∂

   (6.22) 

Schiesser and Silebi (1997)[1] solved this problem using the numerical method of 
lines by adding a time derivative for u and waiting for the steady state.  However, 
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our method directly yields the steady state solution (semianalytical in y and 
numerical in x) for the temperature profiles.  Note that the semianalytical solution 
can be obtained only in the y direction and not in the x direction for cylindrical 
coordinate problems because the coefficient matrix, A, in equation (6.16) becomes 
a function of x and the solution should be found using the matrizant instead of 
exponential matrix.  The calculation of the matrizant is time consuming.  See 
chapter 3.1.4 for additional information.  Note that a low value of the Peclet 
number, Pe = 1, is chosen so that the effect of the axial conduction can be seen.  
The Maple program developed for example 6.1 can be used for this example by 
making minor changes as follows: 

> restart;with(linalg):with(plots): 

The governing equation is entered in the following form: 

> ge:=diff(u(x,y),y$2)=2*Pe*(1-x^2)*diff(u(x,y),y)-diff(u(x,y),x$2)-
1/x*diff(u(x,y),x); 

 
> Digits:=30; 

 

For this example, ‘Digits’ has to be set to 30 for accurate predictions.  The 
boundary conditions are entered as: 

> bc1:=diff(u(x,y),x); 

 

> bc2:=u(x,y)-1; 

 

> bc3:=u(x,y)-0; 

 

> bc4:=diff(u(x,y),y); 

 

Parameters are entered here: 

> Pe:=1.0; 

 

> epsilon:=1; 
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Note that epsilon is given as 1 for this example since L and H are taken care of 
separately. 

> L:=1; 

 

> H:=2; 

 

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)): 

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)): 

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)): 

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)): 

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),x=0,bc1): 

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),x=1,bc2): 

> N:=10; 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

The governing equation is converted to finite difference form here.  Note that the 
first derivative with respect to 'y' is replaced by u[N+1+i], i= 1..N. 

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= 
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = 
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta), 
x=i*h,-rhs(h^2/epsilon^2*ge));od; 
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> u[0](zeta):=(solve(eq[0],u[0](zeta))); 

 

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); 

 

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= -u[N+1+i](zeta);od; 
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> h:=L/(N+1); 

 

> for i from 1 to N do eq[i]:=eval(eq[i]);od;for i from 1 to N do 
eq[N+1+i]:=eval(eq[N+1+i]);od;  
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> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]: 

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]; 

 

 
> A:=genmatrix(eqns,Y,'b1'): 

> Nrow:=rowdim(A); 

 

> II:=eigenvalues(A): 

> for i to Nrow do 

  lambda[i]:=II[i]; 

end do: 

> Id:=Matrix(Nrow,Nrow,shape=identity): 

> X:=matrix(Nrow,1,[seq(beta[i],i=1..Nrow)]): 

> for k to Nrow do 

  G:=evalm((A-lambda[k]*Id)&*X); 

  eqx[1]:=beta[1]=1: 

  for i from 2 to Nrow do 

    eqx[i]:=G[i-1,1]: 

  end do: 
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  cons:=fsolve({seq(eqx[i],i=1..Nrow)},{seq(beta[i],i=1..Nrow)}): 

  assign(cons): 

  XX[k]:=map(eval,evalm(X)): 

  for i to Nrow do 

    unassign('beta[i]'): 

  end do: 

end do: 

> PV:=Matrix(Nrow,Nrow,[seq(evalm(XX[i]),i=1..Nrow)]): 

> expD1:=Matrix(1..Nrow,1..Nrow,shape=diagonal): 

> for i to Nrow do 

  expD1[i,i]:=exp(lambda[i]*zeta): 

end do: 

> mat:=evalm(PV&*expD1&*inverse(PV)): 

> if N>2 then A:=map(evalf,A):end: 

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b): 

> h:=eval(1/(N+1)); 

 

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): 

> b2:=evalm(subs(zeta=zeta1,evalm(b))): 

> mat2:=evalm(mat1&*b2): 

> mat2:=map(expand,mat2): 

> mat3:=map(int,mat2,zeta1=0..zeta): 

> Y0:=matrix(2*N,1); 
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> for i to N do Y0[i,1]:=p[i];od: 

> for i to N do Y0[N+i,1]:=c[i]:od: 

> evalm(Y0); 

 

> Y:=evalm(mat&*Y0+mat3): 

The solution should be evaluated at y = H to find the constants. 

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): 

> sol1:=map(eval,evalm(subs(zeta=epsilon*H/h,evalm(Y)))): 

> for i to N do Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i], 
u(x,y)=p[i],x=i*h,bc3);od; 
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> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1], 
u(x,y)=sol1[i,1],bc4));od: 

Constants are found as: 

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)}); 
 

 

 

 

 

 
 

> assign(csol); 

> Y:=map(eval,Y): 

> for i from 1 to N do u[i](zeta):=eval((Y[i,1]));od: 

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: 

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od: 

The following plots are obtained using N = 10 interior node points.  Digits = 30 is 
required for N = 10 interior node points.  For N = 3 node points, the default 
number of Digits =10 is enough. 
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> for i from 0 to N+1 by 2 do p[i]:=plot(u[i](y),y=0..H,thickness=3);od: 

> pp:=plot([seq(u[i](y),i=0..N+1,2)],y=0..H,thickness=3, 
legend=[seq(typeset(u[i],"(y)"),i=0..N+1,2)]); 

 

> display(pp,axes=boxed,title="Figure 6.7",labels=[y,"u"]); 

 
 
Fig. 6.7 

 
> M:=5; 

 

> T1:=[seq(evalf(i*H/M),i=0..M)]: 

> P[1]:=plot([seq([h*i,0.],i=0..N+1)],style=line,thickness=3,axes=boxed): 

> for j from 2 to M+1 do 
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)], 

style=line,thickness=3,title="Figure 6.8",axes=boxed):od: 

> for j from 1 to M+1 do 
pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))),typeset(y,sprint 
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("=%4.2f",T1[j]))],align={above,left});od: 

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},labels=[x,u]); 

 
Fig. 6.8 

 
> a:=convert(T1[2],string); 

 

> a1:=sprintf("%4.2f",T1[2]); 

 

> Ny:=30; 

 

> PP:=matrix(N+2,Ny); 

 

> for i from 1 to N+2 do for j from 1 to Ny do  
PP[i,j]:=evalf(subs(y=(j-1)*H/(Ny-1),u[i-1](y)));od;od: 

> PP[N+2,1]:=0; 
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> plotdata := [seq([ seq([(i-1)/(N+1),(j-1)*H/(Ny-1),PP[i,j]], i=1..N+2)], 
j=1..Ny)]: 

> surfdata(plotdata,axes=boxed,title="Figure 6.9", 
labels=[x,y,u],orientation=[-150,45] ); 
 

Fig. 6.9 

 

 
 

The program developed for example 6.3 is very general and can be used for any 
linear elliptic partial differential equation with linear boundary conditions. 

6.1.4   Semianalytical Method for Elliptic PDEs with Nonlinear 
Boundary Conditions 

Example 6.4. Nonlinear Radiation Boundary Condition 

Consider the following boundary value problem with a nonlinear radiation 
boundary condition at y = 0. 

2 2

2 2

4

u u
 +  = 0

x y

u(0, y) 0       0 y < 1

u
(1, y) 0        0 y 1

x
u

(x,0) - u(x,0)     0 x 1
y

u(x,H) = 1       0 x 1

∂ ∂
∂ ∂

= ≤
∂ = ≤ ≤
∂
∂ ≤ ≤
∂

≤ ≤

   (6.23) 
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This equation is solved below in Maple using the program developed for example 
6.3.  The semianalytical method developed earlier is valid for nonlinear boundary 
conditions also.  This is true because the vector equation (6.6) is linear as both the 
governing equation and the boundary conditions in x are linear. The nonlinear 
boundary condition comes into the picture only for solving the constants.  This is 
illustrated in the following program.  

> restart;with(linalg):with(plots): 

> ge:=diff(u(x,y),y$2)=-epsilon^2*diff(u(x,y),x$2); 

 

> bc1:=u(x,y)-0; 

 

> bc2:=diff(u(x,y),x); 

 

The nonlinear boundary condition at y = 0 is entered: 

> bc3:=diff(u(x,y),y)-u(x,y)^4; 

 

> bc4:=u(x,y)-1; 

 

> H:=0.5; 

 

> epsilon:=1; 

 

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)): 

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)): 

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)): 

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)): 

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1); 
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> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2); 

 

> N:=10; 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= 
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = 
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta), 
x=i*h,rhs(h^2/epsilon^2*ge));od: 

> u[0](zeta):=(solve(eq[0],u[0](zeta))); 

 

> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); 

 

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od: 

> for i from 1 to N do eq[i]:=eval(eq[i]);od:for i from 1 to N do eq[N+1+i]:= 

eval(eq[N+1+i]);od: 

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]: 

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]: 

> A:=genmatrix(eqns,Y,'b1'): 

> if N>2 then A:=map(evalf,A):end: 

> evalm(A): 

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b): 

> h:=eval(1/(N+1)); 
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> J:=jordan(A,S): 

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)): 

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): 

> b2:=evalm(subs(zeta=zeta1,evalm(b))): 

> mat2:=evalm(mat1&*b2): 

> mat2:=map(expand,mat2): 

> mat3:=map(int,mat2,zeta1=0..zeta): 

> Y0:=matrix(2*N,1); 

 

> for i to N do Y0[i,1]:=p[i];od: 

> for i to N do Y0[N+i,1]:=c[i]:od: 

> evalm(Y0): 

> Y:=evalm(mat&*Y0+mat3): 

For calculating the constants, the solution is evaluated at y = 0 and y = H. 

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): 

> sol1:=map(eval,evalm(subs(zeta=epsilon*H/h,evalm(Y)))): 

The boundary condition at y = 0 (bc3) yields N nonlinear algebraic equations. 

> for i to N do 
Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od; 
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The boundary condition at y = H yields N linear algebraic equations. 

> for i to N do Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*sol1[N+i,1], 
u(x,y)=sol1[i,1],bc4));od; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



552 6   Method of Lines for Elliptic Partial Differential Equations
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Since the equations are nonlinear Maple's 'fsolve' is used to solve for the 
constants: 

> csol:=fsolve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)}); 
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When 'fsolve' is used Maple returns values that do not make physical sense.  The 
dependent variable at y = 0 (pi, i=1..N) cannot be negative.  Since the equations 
are nonlinear there can be more than one solution.  To get the correct solution 
that makes physical sense the range should be provided for the constants (see 
chapter 1). 

> csol:=fsolve({seq(Eq[i],i=1..2*N)},{seq(c[i]=0..1,i=1..N),seq(p[i]=0..1,i=1..N)}); 
 

 

 

 

 
 

> assign(csol); 

> YY:=map(eval,Y): 

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od: 

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: 

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od: 

> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..H,thickness=3);od: 

> pp:=plot([seq(u[i](y),i=0..N+1,2)],y=0..H,thickness=3, 
legend=[seq(typeset(u[i],"(y)"),i=0..N+1,2)]); 

 

> display({pp},axes=boxed,title="Figure 6.10",labels=[y,"u"]); 
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Fig. 6.10 

 
> M:=5; 

 

> T1:=[seq(evalf(i*H/M),i=0..M)]; 

 

> for j from 1 to M do 
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j],evalf(u[i](y))))],i=0..N+1)], 

style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od: 

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,1))],i=0..N+1)],style= line, 
thickness=3,axes=boxed): 

> for j from 1 to M+1 do  pt[j]:=textplot([0.5,evalf(subs(y=T1[j],u[5](y))), 
typeset(y,sprintf("=%4.2f",T1[j]))],align={above});od: 

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},title="Figure 6.11", 
labels=[x,u]); 
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Fig. 6.11 

 
> Ny:=30; 

 

> PP:=matrix(N+2,Ny); 

 

First, the boundaries x = 0 and y = 1 are defined. 

> for i to Ny do PP[1,i]:=0;od: 

> for i to N+2 do PP[i,Ny]:=1;od: 

The temperature inside the rectangle is obtained using the semianalytical solution: 

> for i from 2 to N+2 do for j from 1 to Ny-1 do  
PP[i,j]:=evalf(subs(y=(j-1)*H/(Ny-1),u[i-1](y)));od;od: 

> plotdata := [seq([ seq([(i-1)/(N+1),(j-1)*H/(Ny-1),PP[i,j]], i=1..N+2)], 
j=1..Ny)]: 

> surfdata(plotdata,axes=boxed,title="Figure 6.12", 
labels=[x,y,u],orientation=[-120,60]); 
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Fig. 6.12 
 

 
 

>  

6.1.5   Semianalytical Method for Elliptic PDEs with Irregular 
Shapes 

Example 6.5. Potential Distribution in a Hull Cell 

Current density distributions in electrochemical systems are governed by Laplace 
equation (Newman, 1991) with linear/nonlinear boundary condition at the 
boundaries (electrodes).  Consider a Hull cell (see Fig. 6.13) in which a metal is 
deposited at the cathode (Subramanian and White, 1999).    
 

 
Fig. 6.13 



6.1   Semianalytical and Numerical Method of Lines for Elliptic PDEs 557
 

The governing equation can be written as 

2 2

2 2

u u
 +  = 0

x y

u
(0, y) 0       0 y < 1

x
u

(1, y) 0        0 y 1.5
x

u(x,0) = 1        0 x 1

u(x,1+0.5x) = 0       0 x 1

∂ ∂
∂ ∂
∂ = ≤
∂
∂ = ≤ ≤
∂

≤ ≤
≤ ≤

   (6.24) 

The cathode surface is defined by the equation y = 1+0.5x. The semianalytical 
technique developed earlier can be used for equation (6.24).  The only change is 
the calculation of constants because of the fourth boundary condition (cathode).  
This is taken care of by using the equation for the cathode surface for calculating 
the constants. 

Example 6.5 is solved in Maple below as: 

> restart;with(plottools):with(linalg):with(plots): 

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2); 

 

> Digits:=20; 

 

> bc1:=diff(u(x,y),x); 

 

> bc2:=diff(u(x,y),x); 

 

> bc3:=u(x,y)-1; 

 

> bc4:=u(x,y); 
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Enter the equation for the cathode surface: 

> eq_cathode:=y=1+0.5*x; 

 

> epsilon:=1; 

 

> dydxf:=1/2/h*(-u[m+2](zeta)-3*u[m](zeta)+4*u[m+1](zeta)): 

> dydxb:=1/2/h*(u[m-2](zeta)+3*u[m](zeta)-4*u[m-1](zeta)): 

> dydx:=1/2/h*(u[m+1](zeta)-u[m-1](zeta)): 

> d2ydx2:=1/h^2*(u[m-1](zeta)-2*u[m](zeta)+u[m+1](zeta)): 

> bc1:=subs(diff(u(x,y),x)=subs(m=0,dydxf),u(x,y)=u[0](zeta),bc1); 

 

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,dydxb),u(x,y)=u[N+1](zeta),bc2); 

 

> N:=10; 

 

> eq[0]:=bc1;  

 

> eq[N+1]:=bc2;  

 

> for i from 1 to N do eq[N+1+i]:=diff(u[N+1+i](zeta),zeta)= 
subs(diff(u(x,y),x$2) = subs(m=i,d2ydx2),diff(u(x,y),x) = 
subs(m=i,dydx),diff(u(x,y),y)=epsilon/h*u[N+1+i](zeta),u(x,y)=u[i](zeta), 
x=i*h,rhs(h^2/epsilon^2*ge));od: 

> u[0](zeta):=(solve(eq[0],u[0](zeta))); 
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> u[N+1](zeta):=solve(eq[N+1],u[N+1](zeta)); 

 

> for i from 1 to N do eq[i]:=diff(u[i](zeta),zeta)= u[N+1+i](zeta);od: 

> for i from 1 to N do eq[i]:=eval(eq[i]);od:for i from 1 to N do 
eq[N+1+i]:=eval(eq[N+1+i]);od: 

> eqns:=[seq(rhs(eq[j]),j=1..N),seq(rhs(eq[N+1+j]),j=1..N)]: 

> Y:=[seq(u[i](zeta),i=1..N),seq(u[N+1+i](zeta),i=1..N)]: 

> A:=genmatrix(eqns,Y,'b1'): 

> if N>2 then A:=map(evalf,A):end: 

> evalm(A): 

> b:=matrix(2*N,1):for i from 1 to 2*N do b[i,1]:=-b1[i];od:evalm(b): 

> h:=eval(1/(N+1)); 

 

> J:=jordan(A,S): 

> mat:=evalm(S&*exponential(J,zeta)&*inverse(S)): 

> mat1:=evalm(subs(zeta=zeta-zeta1,evalm(mat))): 

> b2:=evalm(subs(zeta=zeta1,evalm(b))): 

> mat2:=evalm(mat1&*b2): 

> mat2:=map(expand,mat2): 

> mat3:=map(int,mat2,zeta1=0..zeta): 

> Y0:=matrix(2*N,1); 

 

> for i to N do Y0[i,1]:=p[i];od: 

> for i to N do Y0[N+i,1]:=c[i]:od: 

> evalm(Y0): 

> Y:=evalm(mat&*Y0+mat3): 

The boundary condition at y = 0 is applied as: 

> sol0:=map(eval,evalm(subs(zeta=0,evalm(Y)))): 

> for i to N do 
Eq[i]:=subs(diff(u(x,y),y)=epsilon/h*c[i],u(x,y)=p[i],x=i*h,bc3);od; 
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The boundary condition at the cathode surface is defined as: 

> for i to N do 
Eq[N+i]:=evalf(subs(diff(u(x,y),y)=epsilon/h*Y[N+i,1],u(x,y)=Y[i,1],bc4));od: 

> for i to N do Eq[N+i]:=evalf(subs(zeta=epsilon/h*(1+0.5*i*h),Eq[N+i]));od: 

The constants are solved as: 

> csol:=solve({seq(Eq[i],i=1..2*N)},{seq(c[i],i=1..N),seq(p[i],i=1..N)}); 
 

 

 

 

 

 

> assign(csol); 

> YY:=map(eval,Y): 

> for i from 1 to N do u[i](zeta):=eval((YY[i,1]));od: 

> for i from 0 to N+1 do u[i](zeta):=eval(u[i](zeta));od: 

> for i from 0 to N+1 do u[i](y):=eval(subs(zeta=epsilon*y/h,u[i](zeta)));od: 
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> for i from 0 to N+1 do p[i]:=plot(u[i](y),y=0..(1+0.5*i*h),thickness=2);od: 

> for i from 0 to N+1 do 

  pl[i]:=line([1.2,0.3+i*0.05],[0.9,evalf(subs(y=0.9,u[i](y)))],thickness=1, 
linestyle=solid); 

  pt[i]:=textplot([1.2,0.3+i*0.05,typeset(u[i],"(y)")],align=right): 

end do: 

> display([seq(p[i],i=0..N+1,2),seq(pl[i],i=0..N+1,2),seq(pt[i],i=0..N+1,2)], 
axes=boxed,title="Fig. 6.14",labels=[y,"u"]); 

 
Fig. 6.14 

 
> M:=10; 

 

> T1:=[seq(evalf(i/M),i=0..M)]; 
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> for j from 1 to M+1 do 
P[j]:=plot([seq([h*i,evalf(subs(y=T1[j]*(1+0.5*i*h),evalf(u[i](y))))],i=0..N+1)],
style=line,thickness=3,axes=boxed,view=[0..1,0..1.1]):od: 

> P[M+1]:=plot([seq([h*i,evalf(subs(x=i*h,0))],i=0..N+1)],style=line, 
thickness=3,axes=boxed): 

> for j from 1 to M+1 do  pt[j]:=textplot([0.5,evalf(subs(y=T1[j]*(1+0.5*5*h), 
u[5](y))),typeset(y,sprintf("=%4.2f",T1[j]))],align=above);od: 

> display({seq(P[i],i=1..M+1),seq(pt[i],i=1..M+1)},title="Fig. 6.15", 
labels=[x,u]); 

 

 
Fig. 6.15 

 
> Ny:=30; 

 

> PP:=matrix(N+2,Ny); 

 

> for i to N+2 do PP[i,1]:=1;PP[i,Ny]:=0;od: 

> for i from 1 to N+2 do for j from 2 to Ny-1 do  
PP[i,j]:=evalf(subs(y=(j-1)*(1+0.5*(i-1)*h)/(Ny-1),u[i-1](y)));od;od: 
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> plotdata := [seq([ seq([(i-1)/(N+1),(j-1)*(1+0.5*(i-1)*h)/(Ny-1),PP[i,j]], 
i=1..N+2)], j=1..Ny)]: 

> surfdata(plotdata,axes=boxed,title="Fig. 6.16", 
labels=[x,y,u],orientation=[45,45] ); 

 
Fig. 6.16 
 
> surfdata(plotdata,axes=boxed,title="Fig. 6.17", 
labels=[x,y,u],orientation=[120,0] ,style=patchnogrid);  

 
Fig. 6.17 
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> for i from 1 to N do curr[i]:=evalf(subs(y=1+0.5*i*h,diff(u[i](y),y)));od: 

> curr[0]:=4/3*curr[1]-1/3*curr[2]; 

 

> curr[N+1]:=4/3*curr[N]-1/3*curr[N-1]; 

 

> avecurr:=sum(curr[k],k=0..N+1)/(N+2); 

 

> plot([seq([i*h,curr[i]/avecurr],i=0..N+1)],thickness=4,axes=boxed, 
title="Fig. 6.18",style=point,labels=[x,'i/iavg']); 

 
Fig. 6.18 

6.1.6   Numerical Method of Lines for Elliptic PDEs in 
Rectangular Coordinates 

For nonlinear elliptic partial differential equations, successive relaxation or finite 
difference approximations can be used in both the coordinates.[7] [12] [13]  
(Constantinides & Mostoufi, 1999; Davis, 1984, Finlayson, 1980)  As illustrated 
by Schiesser (1991),[2]  a method of lines was used for 2D and 3D steady state 
problems by adding a pseudo time derivative, applying finite differences in all the 
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spatial coordinates and integrating numerically in time.  In this chapter, we apply 
finite differences in one of the directions (x), convert the governing equation and 
boundary conditions in x to finite difference form.  The resulting system of 
coupled nonlinear boundary values problems (second order ordinary differential 
equations in y) are then solved using Maple’s ‘dsolve’ numeric command for 
boundary value problems (see chapter 3.2.8). 

Example 6.6. Numerical Solution for Heat Transfer in a Rectangle 

Example 6.1 (heat transfer in a rectangle) is solved again using the numerical 
method of lines.  The procedure involved in solving a linear or nonlinear steady 
state elliptic PDE numerically is summarized as follows: 

1. Start the Maple worksheet with a ‘restart’ command to clear all variables. 
2. Call ‘with(linalg)’ and ‘with(plots)’ commands. 
3. Enter the governing equation. 
4. Store the ‘x’ boundary conditions in bc1 (x = 0) and bc2 (x = 1). 
5. Store the ‘y’ boundary conditions in bc3 (y = 0) and bc4 (y = 1). Note that a 

right hand side should be included so that Maple’s ‘dsolve’ command can be 
used. 

6. Enter the number of interior node points, N. 
7. Enter the length of the domain, L and height of the domain. 
8. Convert the boundary conditions in x (bc1, and bc2) to finite difference form 

by using 3-point forward and backward differences (accurate to the order 
h2), respectively, for bc1 and bc2. 

9. Convert the governing equation to finite difference form by using central 
difference expression accurate to the order h2 for the first and second 
derivatives in the spatial variable, x.  This gives raise to N second order 
ODEs in y.   

10. The variable ui(y), i = 0..N+1 corresponds to the dependent variable, ui at 
node point i. 

11. Eliminate the boundary values (u0(y) and uN+1(y)) using the boundary 
conditions.  Note that this can be done only for linear boundary conditions  
at x = 0 and x = 1. If boundary conditions are nonlinear, differentiate 
boundary conditions to obtain differential equations in y (see chapter 5.2 and 
example 5.2.3). 

12. Find the numerical solution using the ‘dsolve’ numeric command and 
boundary conditions bc3 and bc4. 

Example 6.6 is solved below in Maple using this procedure.   

> restart: with(linalg): with(plots): 

The governing equation and boundary conditions are entered.  Boundary 
conditions in y are entered with a right hand side. 

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2); 
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> bc1:=u(x,y); 

 

> bc2:=u(x,y); 

 

> bc3:=u(x,y)=0; 

 

> bc4:=u(x,y)-1=0; 

 
The dimensions of the domain and the number of interior node points are entered: 

> L:=1;H:=1; 

 

 

> N:=10; 

 
Boundary conditions in x and the governing equation are converted to finite 
difference form: 

> fd1:=(1/2)*(-u[m+2](y)-3*u[m](y)+4*u[m+1](y))/h; 

 

> bd1:=(1/2)*(u[m-2](y)+3*u[m](y)-4*u[m-1](y))/h; 

 

> cd1:=(u[m+1](y)-u[m-1](y))/h^2; 

 

> cd2:=(u[m-1](y)-2*u[m](y)+u[m+1](y))/h^2; 

 

> bc1:=subs(diff(u(x,y),x)=subs(m =0,fd1),u(x,y)=u[0](y),x=0,bc1); 
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> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,bd1),u(x,y)=u[N+1](y),x=1,bc2); 

 

> eq[0]:=bc1; 

 

> eq[N+1]:=bc2; 

 

> for i from 1 to N do 

eq[i]:=diff(u[i](y),y$2)=expand(subs(diff(u(x,y),x$2)=subs(m=i,cd2), 
diff(u(x,y),x)=subs(m=i,cd1),diff(u(x,y),y)=u[N+1+i](y),u(x,y)=u[i](y), 
x=i*h,rhs(ge))); 

end do; 
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> u[0](y):=(solve(eq[0],u[0](y))); 

 

> u[N+1](y):=solve(eq[N+1],u[N+1](y)); 

 

> h:=1/(N+1); 

 

> for i from 1 to N do 

  eq[i]:=eval(eq[i]); 

end do; 
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Boundary conditions in y are converted to index form and used with the governing 
equation in the interior node points to obtain a numerical solution. 

> BC3:=seq(subs(diff(u(x,y),y)=(D(u[i]))(0),u(x,y)=u[i](0),x=i*h,bc3),i=1..N); 

 

> BC4:=seq(subs(diff(u(x,y),y)=(D(u[i]))(H),u(x,y)=u[i](H),x = i*h,bc4), 
i=1..N); 

 

> BCS:=BC3,BC4; 
 

> sol:=dsolve({BCS,seq(eq[i],i=1..N)},type=numeric,output=listprocedure, 
abserr = 0.1e-8); 
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The solution obtained is used to make the following plots. 

> for i from 1 to N do 

  U[i]:=subs(sol,u[i](y)); 

  od: 

> U[0]:=subs(u[1](y)=U[1],u[2](y)=U[2],u[0](y)); 

 

> U[N+1]:=subs(u[N](y)=U[N],u[N-1](y)=U[N-1],u[N+1](y)); 

 

> for i from 0 to N+1 do 

  py[i]:=plot(U[i](y),y=0..H,thickness=4): 

  end do: 

> display({seq(py[i],i=0..N+1)},labels=[y,"u"],axes=boxed,title="Fig. 6.19"); 

 

 
Fig. 6.19 

 

> M:=20; 
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> for i from 1 to N do 

  fy[i]:=subs(sol,u[i](y)): 

  end do: 

> T1:=[seq(evalf(i*H/M),i=0..M)]; 

 

 

 

> for j from 1 to M+1 do 

  P[j]:=plot([seq([h*i,U[i](T1[j])],i=0..N+1)],style=line,thickness=3, 
axes=boxed,title="Fig. 6.20"): 

end do: 

> display({seq(P[i],i=1..M+1)},labels=[x,u]); 

 

 
Fig. 6.20 

 

> Ny:=30; 
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> PP:=matrix(N+2,Ny); 

 

> for i from 1 to N+2 do 

  for j from 1 to M+1 do 

    PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t))): 

  end do: 

end do: 

> plotdata:=[seq([seq([(i-1)*h,T1[j],PP[i,j]],i=1..N+2)],j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Fig. 6.21", 
labels=[x,y,u],orientation=[-145,60]); 

Fig. 6.21 

 

 

 

Note that finite differences accurate to the order h2 were applied in the x-direction 
and the resulting system of second order boundary value problems (ordinary 
differential equations) was solved numerically using Maple’s ‘dsolve’ numeric 
command in the y-direction. This is equivalent to applying finite differences in 
both x and y directions. The only difference is that in the y-direction Maple’s 
interpolation technique is used to expedite convergence.  In addition, one gets both 
the dependent variable and its derivative in y directly.  The method described may 
not work for stiff problems and Maple’s ‘dsolve’ command might take a long time 
to predict a numerical solution.  In addition, one might have to use advanced 
commands to get a converged solution (see chapter 3.2). 
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Example 6.7. Numerical Solution for Heat Transfer for Nonlinear Elliptic 
PDEs 

The numerical method of lines described in the previous example can be used for 
nonlinear elliptic partial differential equations, also. For example, consider the 
following nonlinear boundary value problem (diffusion with a second order 
reaction): 

2 2
2

2 2

u u
 +  = u

x y

u
(0, y) 0       0 y 1

x
u(1, y) 1        0 y 1

u(x,0) = 0    0 x 1

u
(x,1) = 0       0 x 1

y

∂ ∂
∂ ∂
∂ = ≤ ≤
∂

= ≤ ≤
≤ ≤

∂ < <
∂

   (6.25) 

The Maple program used for example 6.6 is used to solve this boundary value 
problem as shown in the worksheet that follows. 

> restart:with(linalg):with(plots): 

> ge:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)+u(x,y)^2; 

 

> Digits:=50; 

 

> bc1:=diff(u(x,y),x); 

 

> bc2:=u(x,y)-1; 

 

> bc3:=u(x,y)-0; 

 

> bc4:=diff(u(x,y),y); 
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> L:=1; 

 

> H:=1; 

 

> N:=10; 

 

> fd1:=(1/2)*(-u[m+2](y)-3*u[m](y)+4*u[m+1](y))/h; 

 

> bd1:=(1/2)*(u[m-2](y)+3*u[m](y)-4*u[m-1](y))/h; 

 

> cd1:=(u[m+1](y)-u[m-1](y))/h^2; 

 

> cd2:=(u[m-1](y)-2*u[m](y)+u[m+1](y))/h^2; 

 

> bc1:=subs(diff(u(x,y),x)=subs(m =0,fd1),u(x,y)=u[0](y),x=0,bc1); 

 

> bc2:=subs(diff(u(x,y),x)=subs(m=N+1,bd1),u(x,y)=u[N+1](y),x=1,bc2); 

 

> eq[0]:=bc1; 

 

> eq[N+1]:=bc2; 
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> for i from 1 to N do 

eq[i]:=diff(u[i](y),y$2)=expand(subs(diff(u(x,y),x$2)=subs(m=i,cd2), 
diff(u(x,y),x)=subs(m=i,cd1),diff(u(x,y),y)=u[N+1+i](y),u(x,y)=u[i](y), 
x=i*h,rhs(ge))); 

end do; 

 

 

 

 

 

 

 

 

 

 

> u[0](y):=(solve(eq[0],u[0](y))); 

 

> u[N+1](y):=solve(eq[N+1],u[N+1](y)); 
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> h:=1/(N+1); 

 

> for i from 1 to N do 

  eq[i]:=eval(eq[i]); 

end do; 

 

 

 

 

 

 

 

 

 

 

> BC3:=seq(subs(diff(u(x,y),y)=(D(u[i]))(0),u(x,y)=u[i](0),x=i*h,bc3),i=1..N); 
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> BC4:=seq(subs(diff(u(x,y),y)=(D(u[i]))(H),u(x,y)=u[i](H), 
x = i*h,bc4),i=1..N); 

 

> BCS:=BC3,BC4; 

 

 

> sol:=dsolve({BCS,seq(eq[i],i=1..N)},type=numeric,output=listprocedure, 
abserr = 0.1e-8); 

 

 

 

 

 

 

 

 

 

 

> for i from 1 to N do 

  U[i]:=subs(sol,u[i](y)); 

od: 

> U[0]:=subs(u[1](y)=U[1],u[2](y)=U[2],u[0](y)); 

 

> U[N+1]:=subs(u[N](y)=U[N],u[N-1](y)=U[N-1],u[N+1](y)); 
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> for i from 0 to N+1 do 

  py[i]:=plot(U[i](y),y=0..H,thickness=4): 

end do: 

> display({seq(py[i],i=0..N+1)},labels=[y,"u"],axes=boxed,title="Fig. 6.22"); 

 

 
 

Fig. 6.22 

 
> M:=20; 

 

> for i from 1 to N do 

  fy[i]:=subs(sol,u[i](y)): 

end do: 

> T1:=[seq(evalf(i*H/M),i=0..M)]; 
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> for j from 1 to M+1 do 

  P[j]:=plot([seq([h*i,U[i](T1[j])],i=0..N+1)],style=line,thickness=3, 
axes=boxed,title="Fig. 6.23"): 

end do: 

> display({seq(P[i],i=1..M+1)},labels=[x,u]); 
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Fig. 6.23 

 
> Ny:=30; 

 

> PP:=matrix(N+2,Ny); 

 

> for i from 1 to N+2 do 

  for j from 1 to M+1 do 

    PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t))): 

  end do: 

end do: 

> plotdata:=[seq([seq([(i-1)*h,T1[j],PP[i,j]],i=1..N+2)],j=1..M+1)]: 

> surfdata(plotdata,axes=boxed,title="Fig. 6.24",labels=[x,y,u], 
orientation=[-145,60]); 
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Fig. 6.24 

 

 

6.1.7   Summary 

In this chapter, linear elliptic partial differential equations were solved using the 
analytical method of lines.  This method involves applying finite differences in the 
x-direction and integrating the resulting system of coupled ordinary differential 
equations in the y-direction using the exponential method described in chapters 2, 
3 and 5.  In section 6.1.2, the given linear elliptic partial differential equation in 
rectangular boundary conditions was solved using a semianalytical method.  In 
section 6.1.3, a semianalytical method was extended for problems in cylindrical 
coordinates. In section 6.1.4, this method was extended to elliptic partial 
differential equations with nonlinear boundary conditions. In section 6.1.5, a Hull 
cell (irregular shape in y) was solved using the semianalytical method.  Note that 
the semianalytical method can be used for certain nonlinear elliptic partial 
differential equations (Subramanian and White, 2004).[14] 

The numerical method of lines was used to solve linear and nonlinear elliptic 
partial differential equations in section 6.1.7. This method involves using finite 
differences in one direction and solving the resulting system of boundary value 
problems in y using Maple’s ‘dsolve’ numeric command.  This method provides a 
numerical solution for both the dependent variables and its derivative in the  
y-direction.   

Both analytical and numerical methods of lines are presented in this chapter for 
elliptic partial differential equations. Semianalytical method, presented in this 
chapter is very powerful technique, and is valid for elliptic Partial differential 
equations with mixed boundaries also (Subramanian and White, 1999). Numerical 
method of lines presented in this chapter should be used with precaution, as it may 
not work for stiff problems.  A total of seven examples were presented in this 
chapter. 
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Exercise Problems 

1. Solve the following Poison’s equation using analytical method of lines 
(semianalytical method): 

2 2

2 2

u u
 +   = -1

x y

u(0,y) = 0; u(1,y) = 0

u(x,0) = 0; u(x,1) = 0

∂ ∂
∂ ∂

 

2. Solve the following Laplace equation with non-homogeneous two-flux 
boundary conditions and plot the profiles: 

2 2

2 2

u u
 +  = 0

y x

u u
(0,y) = 0 and (0,y) = 1

x x
u

u(x,0) = 0 and (x,1) = 0
y

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂
∂

 

3. Redo problem 2 after switching x and y. 
4. Consider the steady state diffusion in a cylinder 

2 2

2 2

u u 1 u
 +    = 0

y x x x

u
(0,y) = 0 and u(1,y) = 0

x
u

u(x,0) = 1 and (x,1) = 0
y

∂ ∂ ∂+
∂ ∂ ∂
∂
∂

∂
∂

 

Solve this problem using semianalytical method. 
5. Consider a rectangle catalyst of two dimensions in which a first order 

chemical reaction is taking place.  The governing equations and boundary 
conditions in dimensionless form are (Rice and Do, 1995):[10] 
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2 2
2

2 2

u u
 +  - u = 0

y x

u
(0,y) = 0 and u(1,y) = 1

x
u

(x,0) = 0 and u(x,1) = 1
y

∂ ∂ Φ
∂ ∂
∂
∂
∂
∂

 

Solve this problem using the semianalytical method. 
6. Consider current-potential distribution in a curvilinear Hull cell (Subramanian 

and White, 1999; Chapman, 1997 ?). The governing equations and boundary 
conditions are: 

2 2
2

2 2

u u u
 +x   x  = 0

x x

u u
(1, ) = 0 and (2, ) = 0

x x

u(x,0) = 1 and u(x, ) = 0
2

∂ ∂ ∂+
∂θ ∂ ∂

∂ ∂θ θ
∂ ∂

π

 

Solve this problem using semianalytical method. Hint: note that x varies 
from 1 to 2 and finite difference form of the governing equation should be 
programmed to take care of this. 

7. Consider diffusion with reaction in a non-isothermal cylindrical pellet 
(Finlayson, 1980).  The governing equations and boundary conditions are: 

2 2
2

2 2

u u 1 u (1-u)
 +  = uexp

y x x x 1 (1-u)

u
(0,y) = 0 and u(1,y) = 1

x

u
(x,0) = 0 and u(x,1) = 1

y

⎛ ⎞∂ ∂ ∂ γβ+ Φ ⎜ ⎟∂ ∂ ∂ + β⎝ ⎠

∂
∂

∂
∂

 

Solve this problem using numerical method of lines for Φ = 2, γ = 30 and  
β = 0.1.  Which method is more efficient - using the ‘dsolve’ command in x  
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(with finite differences in x) or ‘dsolve’ command in y (with finite 
differences in x) direction? 

8.   Complete the details missing in example 6.7. 
9.   Redo example 6.3 using numerical method of lines described in example 

6.6. (Apply finite differences in x and integrate using dsolve in y). 
10.   Redo problem 2 by applying finite differences in y and using dsolve in x.  

Hint: for programming purposes rewrite equation  (6.22) by switching x 
and y and use program given in example 6.6.  Compare problem 2 and 
problem 3. Which method do you recommend and why? Does the value of 
Peclet number make have an impact in the decision? 

11.    Redo example 6.5 using numerical method of lines. 
12.    Redo example 6.5 if cathode shape is given by y = 1 + 0.5x2. 
13. (Note that this is an advanced problem involving an advanced matrix 

method.) Consider example 6.1 again (with ε = 1).  If finite differences are 
applied only in the x-direction, the governing equation can be written in 
finite difference form as: 

2
i i 1 i i-1

2 2

d u u  + 2u  - u
= ,  i = 1..N

dy h
+−

   (6.26) 

After eliminating the boundary values (u0 and uN+1), the system of 
equations can be written in matrix form as: 

2

2

d
=  

dy

Y
aY                               (6.27) 

How is this a matrix related to the a matrix defined in equation (6.19)?  
Find the eigenvalues of a matrix.  Since all the eigenvalues are distinct, a 
matrix can be diagonalized (a = PDP-1) and equation (6.27) is modified as: 

2

2

d
=  

dy
-1Y

PDP Y                            (6.28) 

Pre-multiplying equation (6.28) by P-1 and defining Z = P-1Y we get: 

2

2

d
= 

dy

Z
DZ                               (6.29) 

Equation (6.29) is an easy equation to solve because D is a diagonal matrix 
and equation (6.29) yields the following decoupled equation for zi, the ith 
row of Z matrix (dii is the diagonal element of D matrix) 

2

i,i i2

d z
= d z ,  i = 1..N

dy
i    (6.30) 
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Equation (6.30) can be easily solved using the methods described in 
chapter 3.1 or using the ‘dsolve’ command to get a closed form solution 
for zi.  What are the boundary conditions for zi? How is the final solution 
obtained for u?  What are the advantages and disadvantages of this method 
compared to the method described in example 6.1? 

14. Apply the methodology described in problem 13 for the Graetz problem 
(example 6.3). 

15. Apply the procedure described in problem 13 for problem 4.  Hint: apply 
finite differences in x and integrate analytically in y. 

16. Redo problem 15 by applying finite differences in y and integrating 
analytically in x.  Once the equations are decoupled get analytical solutions 
in y using Maple’s ‘dsolve’ command. 
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Chapter 7 

Partial Differential Equations in Finite Domains 

7.1   Separation of Variables Method for Partial Differential 
Equations (PDEs) in Finite Domains 

7.1.1   Introduction 

Transient heat conduction or mass transfer in solids with constant physical 
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is 
usually represented by a linear parabolic partial differential equation.  Steady state 
heat or mass transfer in solids, potential distribution in electrochemical cells is 
usually represented by elliptic partial differential equations.  In this chapter, we 
describe how one can arrive at the analytical solutions for linear parabolic partial 
differential equations and elliptic partial differential equations in finite domains 
using a separation of variables method.  The methodology is illustrated using a 
transient one dimensional heat conduction in a rectangle. 

7.1.2   Separation of Variables for Parabolic PDEs with 
Homogeneous Boundary Conditions 

Parabolic partial differential equations with homogenous boundary conditions are 
solved in this section.  The dependent variable u is assumed to take the form u = 
XT, where X is a function of x alone and T is a function of t alone.  This leads to 
separate differential equations for X and T.  This methodology is best illustrated 
using an example. 

Example 7.1. Heat Conduction in a rectangle 

Consider heat transfer in a finite slab.[1] The dimensionless temperature profile is 
governed by: 

2

2

u u
  

t x

∂ ∂=
∂ ∂

                                        (7.1) 

with the initial condition  

u(x,0) 1 =                                          (7.2) 
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The boundary conditions are 

u(0,t) 0=                                           (7.3) 

and 

u(1,t) 0=                                         (7.4) 

Next, the following transformation is used 

u XT=                                          (7.5) 

where X is a function of x alone and T is a function of t alone.  Equation (7.5) is 
substituted into equation (7.1) to obtain: 

2

2

dT d X
X T

dt dx
=                                    (7.6) 

Dividing both sides of equation (7.6) by XT we obtain: 

2

2

1 dT 1 d X

T dt X dx
=                                     (7.7) 

We observe that in equation (7.7) the left hand side is a function of t only and the 
right hand side is a function of x only.  Hence, both sides of equation (7.7) should 
be equal to a constant: 

2
2

2

1 dT 1 d X

T dt X dx
= = −λ                              (7.8) 

We have used, -λ2, a negative constant in equation (7.8).  It can be shown that if 
the constant is positive the solution for T becomes infinite as t approaches infinity 
(steady state profile).  Equation (7.8) can be separated into two equations for T 
and X as: 

2dT
+ T 0

dt
λ =                                (7.9) 

and 

2
2

2

d X
+ X 0

dx
λ =                                (7.10) 

Equation (7.9) can be solved as: 

T T0 exp( 2t)= −                               (7.11) 
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where T0 is an unknown constant.  Equation (7.10) can be solved as: 

1 2X c sin( x) + c cos( x)=    (7.12) 

where c1 and c2 are unknown constants. The function X should satisfy the 
boundary conditions in x (equations (7.13) and (7.14): 

X(0) 0 =                                          (7.13) 

and 

X(1) 0 =                                        (7.14) 

Applying the boundary conditions for X we get 

2c 0=                                            (7.15) 

and 

1c sin( ) 0λ =                                   (7.16) 

Since c2 = 0 in equation (7.15), c1 in equation (7.16) cannot be zero. Equation (7.16) 
can be simplified as 

sin( ) = 0λ                                     (7.17) 

Equation (7.17) has an infinite number of solutions as given by: 

  n , n 1, 2, 3,   λ π= = ∞…    (7.18) 

Note that n = 0 corresponds to a trivial solution X = 0 and is hence neglected.  The 
solution for u is obtained by combining X and T (equation (7.5)) 

1 0 2 2u c T  sin(n x)exp( n t)π π= −    (7.19) 

The constants c1 and T0 can be combined as a single constant An.  Since there is an 
infinite number of eigenvalues, there are an infinite number of fundamental 
solutions that satisfy the given partial differential equations. The total solution can 
be expressed as the superposition of the individual solutions as: 

( )2 2
n

n =1

u A sin(n x)exp n t
∞

= π − π∑    (7.20) 
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We have not used the initial condition from equation (7.2) until now.  The initial 
condition is applied to equation (7.20) as 

n
n =1

1 A sin(n x)
∞

= π∑                                   (7.21) 

Equation (7.21) is multiplied on both sides by sin(mπx) and integrated from 0 to 1: 

( ) ( ) ( )
1 1

n
n =10 0

sin m x dx  A sin m x sin n x dx
∞

π = π π∑∫ ∫             (7.22) 

The integral in the right hand side simplifies as: 

( ) ( )
1

0

sin m x sin n x dx 0 if m  n

1
                                     if m n

2

π π = ≠

= =

∫
                   (7.23) 

Hence, all the terms in the infinite series in equation (7.22) vanish except when  
n = m:  

( ) ( )

( )

1 1
2

m

0 0

1

m

0

sin m x dx A sin m x dx

A 2 sin m x dx

π = π

⇒

= π

∫ ∫

∫

   (7.24) 

The dummy variable m can be changed to n in equation  (7.24) to give 

( )

( )

1

n

0

A 2 sin n x dx

1 cos n
     2       

n

= π

− π⎛ ⎞
= ⎜ ⎟π⎝ ⎠

∫
   (7.25) 

Once the coefficient An is obtained, the solution is completed as: 

( ) ( ) ( )2 2

n =1

1 cos n2
u  sin n x exp n t

n

∞ − π⎛ ⎞
= π − π⎜ ⎟π ⎝ ⎠

∑             (7.26) 
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The Maple program used to solve Example 7.1 is given below: 

> restart: 

> with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

The initial condition is entered here: 

> IC:=u(x,0)=1; 

 

The boundary conditions are entered here: 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=0; 

 

Next, u is separated as u = XT (equation (7.5)): 

> Eq:=subs(u(x,t)=X(x)*T(t),eq); 

 

> Eq:=Eq/X(x)/T(t); 

 

The governing equation for T is: 

> Eq_T:=lhs(Eq)=-lambda^2; 

 

T can be solved as; 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 
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The governing equation for X is: 

> Eq_X:=rhs(Eq)=-lambda^2; 

 

X can be solved as: 

> dsolve({Eq_X},X(x)); 

 

Maple sometimes attaches _C1 with the sine function and sometimes with the 
cosine function.  To avoid this, we can specify the initial conditions for X and its 
derivative: 

> X(x):=rhs(dsolve({Eq_X,D(X)(0)=c[1]*lambda,X(0)=c[2]},X(x))); 

 

The boundary conditions for X are: 

> Bc1:=X(x)=0; 

 

> Bc2:=X(x)=0; 

 

The constant c2 is solved using the boundary condition at X = 0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)); 

 

> c[2]:=solve(Eq_Bc1,c[2]); 

 

The second boundary condition at x = 1 gives: 

> Eq_Bc2:=eval(subs(x=1,Bc2)); 

 

If c1 is zero, then we get the trivial solution X = 0.  Hence, sin(λ) should be zero: 

> Eq_Eig:=sin(lambda)=0; 
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The eigenvalue equation can be solved to get the eigenvalue, λ: 

> solve(Eq_Eig,lambda); 

 

By default, Maple picks only one eigenvalue.  We can ask Maple to find all the 
eigenvalues using the following command: 
 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

_Z1 means the integer plane.  Hence, the eigenvalues can be taken as λ = nπ, n = 
1, 2, 3,...∞.  The solution for u can be written as: 

> U:=eval(X(x)*T(t)); 

 

The constants c1 and T0 can be combined as a single constant An: 

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U); 

 

Hence, the solution can be written as an infinite series: 

> u(x,t):=Sum(Un,n=1..infinity); 

 

The values of the eigenvalues can be substituted as: 

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t)); 

 

The constant An is obtained by applying the initial condition and by using the 
orthogonal property of the eigenfunction: 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 
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> I1:=int((sin(n*Pi*x))^2,x=0..1); 

 

> I2:=int(sin(n*Pi*x),x=0..1); 

 

The integrals can be simplified by substituting sin(nπ) = 0: 

> vars:={sin(n*Pi)=0}; 

 

> I1:=subs(vars,I1); 

 

> A[n]:=I2/I1; 

 

The dimensionless temperature profile is given by: 

> u(x,t):=eval(u(x,t)); 



7.1   Separation of Variables Method for PDEs in Finite Domains 595
 

 

For plotting purposes, we replace ∞ by, N, an integer: 

> u(x,t):=subs(infinity=N,u(x,t)); 

 

N = 20 is enough for this problem: 

> ua:=subs(N=20,u(x,t)); 

 

The solution obtained is plotted at t = 0.  We observe oscillations about initial 
condition 1.  This is called Gibb's phenomenon.  Theoretically it will take N = ∞ 
for this profile to become u = 1 at t = 0. 
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> plot(eval(subs(t=0,ua)),x=0..1,axes=boxed,title="Figure 7.1", 

thickness=3,labels=[x,"u(x,0)"]); 

 

 
 

Fig. 7.1 

 

Next, the initial condition is predicted using N = 100 terms in the series: 

> ua2:=subs(N=100,u(x,t)); 

 

> plot(eval(subs(t=0,ua2)),x=0..1,axes=boxed,title="Figure 7.2", 

thickness=3,labels=[x,"u(x,0)"]); 
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Fig. 7.2 

 

We observe better predictions as the number of terms increase. However, we need 
more terms at t = 0.  For values of t > 0, N = 20 is enough. Hence, a piecewise 
polynomial can be used to define the initial condition at t = 0 and the separation of 
variables solution obtained can be used for values of t > 0. 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 
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A three dimensional plot can be made as: 

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.3", 

labels=[x,t,"u"],orientation=[60,60]); 

 

 
 

Fig. 7.3 

 

The profiles across the slab at different times can be plotted as: 

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu), 

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.4", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]); 
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Fig. 7.4 

 

Example 7.2. Heat Conduction with an Insulator Boundary Condition 

In the previous example, temperature was specified at both boundaries.  In this 
example, the temperature flux is taken to be zero because of symmetry.[1] The 
governing equation is 

2

2

u u

t x

u(x,0) 1

u
(0,t) 0 and u(1,t) 0

x

∂ ∂=
∂ ∂

=

∂ = =
∂

   (7.27) 

Equation (7.27) is solved in Maple below by making few modifications in the 
program used for Example 7.1. 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 
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> IC:=u(x,0)=1; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=0; 

 

> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=Eq/X(x)/T(t): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 

 

> Eq_X:=rhs(Eq)=-lambda^2: 

> X(x):=rhs(dsolve({Eq_X,D(X)(0)=c[1]*lambda,X(0)=c[2]},X(x))): 

> Bc1:=diff(X(x),x)=0: 

> Bc2:=X(x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[1]:=solve(Eq_Bc1,c[1]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=cos(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> U:=eval(X(x)*T(t)): 

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U): 

> u(x,t):=Sum(Un,n=0..infinity): 

> u(x,t):=subs(lambda[n]=(2*n+1)/2*Pi,u(x,t)); 
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> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> I1:=int((cos(1/2*(2*n+1)*Pi*x))^2,x=0..1): 

> I2:=int(cos(1/2*(2*n+1)*Pi*x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> A[n]:=I2/I1; 

 

> u(x,t):=eval(u(x,t));  

 
> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 
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> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.5", 

labels=[x,t,"u"],orientation=[60,60]); 

 

 
 

Fig. 7.5 

 

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu), 

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.6", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]); 
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Fig. 7.6 

 

In the previous two examples, we obtained the coefficient An in the infinite series 
by using the orthogonal property of the eigenfunction. For certain cases it is not 
trivial to choose the eigenfunctions for obtaining the integrals.  A general criterion 
for obtaining the coefficient An is given by the Sturm-Liouville equation.[2] If the 
governing equation for X is given by: 

( ) ( ) ( )( )d dX
p x q x  + r x X 0

dx dx
⎛ ⎞+ β =⎜ ⎟
⎝ ⎠

                   (7.28) 

where, β is a constant.  The coefficient An is given by: 

( )

( )

1

n

0
n 1

2
n

0

IC r x dx

A

r x dx

φ
=

φ

∫

∫
   (7.29) 

where IC is the initial condition, φn is the eigenfunction that satisfies equation (7.28). 
In Example 7.1, sin(λx) was the eigenfunction and in Example 7.2 cos(λx) was  
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the eigenfunction. In both the examples, the weighting function r(x) was 1. For 
problems in cylindrical coordinates and spherical coordinates, r(x) is x and x2, 
respectively. 

Example 7.3. Mass Transfer in a Spherical Pellet 

Consider mass transfer in a spherical pellet.[1] The governing equation in 
dimensionless form is 

( ) ( )

2

2

u u 2 u

t x x x

u(x,0) 1

u
0,t 0 and u 1,t 0

x

∂ ∂ ∂= +
∂ ∂ ∂

=

∂ = =
∂

   (7.30) 

Equation (7.30) is solved in Maple below: 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x); 

 

> IC:=u(x,0)=1; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=0; 

 

> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2; 
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> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 

 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)); 

 

> dsolve({Eq_X},X(x)); 

 

The solution for X(x) can be taken as: 

> X(x):=c[1]*sin(lambda*x)/x+c[2]*cos(lambda*x)/x; 

 

>Bc1:=diff(X(x),x)=0; 

 

> Bc2:=X(x)=0; 

 

x = 0 cannot be substituted.  Hence, the limit at x = 0 is obtained: 

> Eq_Bc1:=eval(subs(x=0,Bc1)); 

Error, numeric exception: division by zero 

> limit(Bc1,x=0); 
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So the constant c2 should be zero. 

> c[2]:=0; 

 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=sin(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> U:=eval(X(x)*T(t)): 

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U): 

> u(x,t):=Sum(Un,n=1..infinity): 

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t)); 

 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

The eigenfunction is: 

> phi[n]:=sin(n*Pi*x)/x; 

 

The weighting function is: 

> r(x):=x^2; 

 

Next, the integrals are calculated to obtain An: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> IC; 
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> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1; 

 

The dimensionless concentration profile is given by: 

> u(x,t):=eval(u(x,t)): 

> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 

 

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.7", 

labels=[x,t,"u"],orientation=[60,60]); 
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Fig. 7.7 

 

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu), 

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.8", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]); 
 

 
Fig. 7.8 
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7.1.3   Separation of Variables for Parabolic PDEs with an Initial 
Profile 

In the previous three examples, the initial condition was uniform (= 1).  In this 
section, partial differential equations with an initial profile in x are considered.   

Example 7.4. Heat Conduction in a rectangle with an Initial Profile 

Example 7.1 is solved again with a sinusoidal profile in x as the initial condition.[1] 

The dimensionless temperature profile is governed by: 

( ) ( )

( ) ( )

2

2

u u

t x

u x,0 sin x

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

= π

= =

                       (7.31) 

Equation (7.31) is solved in Maple below: 

> restart: 

> with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

The initial condition is entered here: 

> IC:=u(x,0)=sin(Pi*x); 

 

The boundary conditions are entered here: 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=0; 
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> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))): 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=X(x)=0: 

> Bc2:=X(x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[2]:=solve(Eq_Bc1,c[2]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=sin(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda): 

> U:=eval(X(x)*T(t)): 

> Un:=subs(c[1]=A[n]/T0,lambda=lambda[n],U): 

> u(x,t):=Sum(Un,n=1..infinity): 

> u(x,t):=subs(lambda[n]=n*Pi,u(x,t)); 

 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> phi[n]:=sin(n*Pi*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> IC; 
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> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1); 

 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1); 

 

The coefficient of An is obtained as: 

> A[n]:=I2/I1; 

 

For n = any integer value other than 1, An is zero: 

> eval(subs(n=2,A[n])); 

 

> eval(subs(n=3,A[n])); 

 

> eval(subs(n=100,A[n])); 
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> eval(subs(n=1,A[n])); 

Error, numeric exception: division by zero 

The limit command is applied to n = 1: 

> A[1]:=limit(A[n],n=1); 

 

There is only one nonzero term in the infinite series: 

> u(x,t):=A[1]*sin(1*Pi*x)*exp(-Pi^2*t); 

 

> plot3d(u(x,t),x=1..0,t=0.3..0,axes=boxed,title="Figure 7.9", 

labels=[x,t,"u"],orientation=[60,60]); 

Fig. 7.9 

 

 

> plot([subs(t=0,u(x,t)),subs(t=0.05,u(x,t)),subs(t=0.1,u(x,t)), 

subs(t=0.2,u(x,t)),subs(t=.3,u(x,t))],x=0..1,title="Figure 7.10", 

axes=boxed,thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1", 

"t=0.2","t=0.3"]); 
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Fig. 7.10 

Example 7.5. Heat Conduction in a Slab with a Linear Initial Profile 

Example 7.2 is solved again with a linear profile in x as the initial condition.[1] 
The dimensionless temperature profile is governed by: 

( )

( ) ( )

2

2

u u

t x

u x,0 1 x

u
0,t 0 and u 1,t 0

x

∂ ∂=
∂ ∂

= −

∂ = =
∂

                     (7.32) 

Equation (7.32) is solved in Maple below by changing a few commands as: 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 
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> IC:=u(x,0)=1-x; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=0; 

 

> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 

 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=diff(X(x),x)=0: 

> Bc2:=X(x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[1]:=solve(Eq_Bc1,c[1]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=cos(lambda)=0: 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> U:=eval(X(x)*T(t)): 

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U): 

> u(x,t):=Sum(Un,n=0..infinity): 

> u(x,t):=subs(lambda[n]=(2*n+1)/2*Pi,u(x,t)); 
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> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> phi[n]:=cos((2*n+1)/2*Pi*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> IC; 

 

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1); 

 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1: 

> A[n]:=simplify(A[n]); 

 

> u(x,t):=eval(u(x,t)); 

 
> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 
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The dimensionless temperature distribution is given by: 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 

 

> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.11", 

labels=[x,t,"u"],orientation=[45,60]); 

 

 
 

Fig. 7.11 

 

> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu), 

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.12", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]); 
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Fig. 7.12 

 

Temperature at the surface, x = 0, can be found and plotted: 

> us:=eval(subs(x=0,uu)); 

 

> plot(us,t=0..1,axes=boxed,title="Figure 7.13",thickness=3,labels=[t,"u"]); 
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Fig. 7.13 

7.1.4   Separation of Variables for Parabolic PDEs with 
Eigenvalues Governed by Transcendental Equations 

In the previous five examples, eigenvalues were explicitly solvable (nπ or 

2n 1

2

+ π ).  For some problems, the eigenvalues cannot be solved explicitly.  In 

this section, we solve problems in which eigenvalues are obtained numerically.     

Example 7.6. Heat Conduction in a Slab with Radiation Boundary Conditions 

Consider heat conduction in a rectangle with radiation at the surface.[1] The 
dimensionless temperature profile is governed by: 

2

2

u u
 = 

t x

u(x,0) = 1

u u
(0,t) 0 and (1,t)  u(1,t) 0

x x

∂ ∂
∂ ∂

∂ ∂= + =
∂ ∂

        (7.33) 
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Equation (7.33) is solved in Maple below: 

> restart: 

> with(plots): 

The governing equation, initial and boundary conditions are entered here: 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> IC:=u(x,0)=1; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=diff(u(x,t),x)+u(x,t)=0; 

 

> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))): 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=diff(X(x),x)=0: 

> Bc2:=diff(X(x),x)+X(x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[1]:=solve(Eq_Bc1,c[1]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

The eigenvalue equation is: 

> Eq_Eig:=cos(lambda)-lambda*sin(lambda); 
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> solve(Eq_Eig,lambda); 

 

Maple predicts negative eigenvalues: 

> fsolve(Eq_Eig,lambda); 

0.8603335890.  

Positive eigenvalues can be obtained by specifying a positive range in the 'fsolve' 
command. 

> fsolve(Eq_Eig,lambda=0..3); 

0.8603335890  

The eigenvalue equation can be plotted as a function of the eigenvalue as: 

> plot(Eq_Eig,lambda=0..20,thickness=3,title="Figure 7.14"); 

 

 
Fig. 7.14 

 

The first 20 eigenvalues are obtained as: 

> N:=20; 
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> l[1]:=fsolve(Eq_Eig,lambda=0..3); 

l1 := 0.8603335890  

> for i from 2 to N do l[i]:=fsolve(Eq_Eig,lambda=l[i-1]..l[i-1]+4);od: 

> seq(l[i],i=1..N); 

 

 

 
> U:=eval(X(x)*T(t)): 

> Un:=subs(c[2]=A[n]/T0,lambda=lambda[n],U): 

> u(x,t):=Sum(Un,n=1..infinity); 

 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> phi[n]:=cos(lambda[n]*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> IC; 

 

> I2:=int(rhs(IC)*phi[n]*r(x),x=0..1): 

> A[n]:=I2/I1; 

 

> u(x,t):=eval(u(x,t)); 
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> u(x,t):=subs(infinity=N,u(x,t)): 

> for i to N do lambda[i]:=l[i];od: 

The transient analytical solution is: 

> Digits:=5:u(x,t):=evalf(u(x,t)); 

 

 

 

 

 

 

 

 

> uu:=piecewise(t=0,rhs(IC),t>0,u(x,t)): 

The plots are obtained as: 

> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.15", 

labels=[x,t,"u"],orientation=[45,60]); 
 

 
Fig. 7.15 
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> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu), 

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.16", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]); 
 

 
Fig. 7.16 

7.1.5   Separation of Variables for Parabolic PDEs with 
Nonhomogeneous Boundary Conditions 

In the previous examples, both of the boundary conditions were homogeneous.  
For non-homogeneous boundary conditions, the separation of variables method 
cannot be applied directly.  Alternatively, functionality in x (w(x)) is introduced to 
take care of the non-homogeneity of the boundary conditions and separation of 
variables method is applied for the original partial differential equation with the 
homogeneous boundary conditions.      

Example 7.7. Heat Conduction in a slab with Nonhomogeneous Boundary 
Conditions 

Consider heat conduction in a rectangle with a nonhomogeneous boundary 
condition at x = 1.[1]  
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( )

( ) ( )

2

2

u u

t x

u x,0 0

u 0,t 0 and u 1,t 1

∂ ∂=
∂ ∂

=

= =

                         (7.34) 

The separation of variables method cannot be directly applied because of the 
nonhomogeneous boundary condition at x 1= . To take care of this non-
homogeneity the following transformation is introduced 

( ) ( ) ( )u x, t  g x, t w x= +    (7.35) 

where w(x) satisfies the nonhomogeneous boundary conditions 

( ) ( )w 0 0 and w 1 1= =    (7.36) 

and g(x,t) satisfies the homogeneous boundary conditions 

( ) ( )g 0,t 0 and g 1,t 0= =    (7.37) 

Substituting the transformation equation (7.35) into the governing equation (7.34) 
we get 

2 2

2 2

g g d w

t x dx

∂ ∂= +
∂ ∂

                                   (7.38) 

Equation (7.38) can be separated for g and w as: 

2

2

g g

t x

∂ ∂=
∂ ∂

                                       (7.39) 

2

2

d w
0

dx
=                                          (7.40) 

Equation (7.40) can be solved for the boundary conditions (equation (7.36)) as: 

w x =                                          (7.41) 

Next, equation (7.39) can be solved using separation of variables method with the 
homogeneous boundary conditions (equation (7.37)) as in Example 7.1 as: 

( ) ( )2 2
n

n =1

g  A sin n x exp n t
∞

= π − π∑       (7.42) 
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The final solution is: 

( ) ( )2 2
n

n =1

u  g w 

   A sin n x exp n t x
∞

= +

= π − π +∑             (7.43) 

Initial condition is applied to equation (7.42) as 

( )n
n =1

0  A sin n x x
∞

= π +∑                           (7.44) 

By applying the Sturm-Liouville theorem, the coefficient An for partial differential 
equations with nonhomogeneous boundary conditions is obtained as: 

( ) ( )

( )

1

n

0
n 1

2
n

0

IC w  r x dx

A

r x dx

− φ
=

φ

∫

∫
   (7.45) 

For this example, ( ) ( )nr x 1,  IC 0,  w x, and f sin npx= = = = . 

The Maple program used to solve Example 7.7 is given below: 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> IC:=u(x,0)=0; 

 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=1; 

 

> eq1:=eval(subs(u(x,t)=g(x,t)+w(x),eq)); 
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> eqw:=diff(w(x),x$2); 

 

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2); 

 

> bc1w:=w(x)=0; 

 

> bc2w:=w(x)=1; 

 

> w(x):=rhs(dsolve({eqw,w(0)=0,w(1)=1},w(x))); 

 

> Eq:=subs(g(x,t)=X(x)*T(t),eqg): 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))): 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x); 

 

> Bc1:=X(x)=0; 

 

> Bc2:=X(x)=0; 

 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[2]:=solve(Eq_Bc1,c[2]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 



7.1   Separation of Variables Method for PDEs in Finite Domains 627
 

> Eq_Eig:=sin(lambda)=0: 

> solve(Eq_Eig,lambda): 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda): 

> G1:=eval(X(x)*T(t)): 

> Gn:=subs(c[1]=A[n]/T0,lambda=lambda[n],G1): 

> g(x,t):=Sum(Gn,n=1..infinity): 

> g(x,t):=subs(lambda[n]=n*Pi,g(x,t)); 

 
> u(x,t):=g(x,t)+w(x); 

 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 
> phi[n]:=sin(n*Pi*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1: 

> A[n]:=simplify(A[n]): 
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> u(x,t):=eval(u(x,t)): 

> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 

 
> plot3d(uu,x=1..0,t=0.5..0,axes=boxed,title="Figure 7.17", 

labels=[x,t,"u"],orientation=[-135,60]); 
 

 
Fig. 7.17 

 

> plot([subs(t=0,uu),subs(t=0.05,uu),subs(t=0.1,uu),subs(t=0.2,uu), 

subs(t=0.5,uu)],x=0..1,axes=boxed,title="Figure 7.18", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]); 
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Fig. 7.18 

 

In this example, w is just a linear function of x.  However, for some complicated 
problems, w can be complicated functions of x as shown in the next example. 

Example 7.8. Diffusion with Reaction 

Consider the diffusion of a gas (A) through a stagnant liquid (B) in a container.[3]  

A reacts with B according to the irreversible reaction kA + B C⎯⎯→  (see 
Example 5.5). The governing equation for this problem in dimensionless form is, 

( )

( ) ( )

2
2

2

u u
u

t x

u x,0 0

u
u 0,t 1 and 1,t 0 

x

∂ ∂= − Φ
∂ ∂

=

∂= =
∂

 (7.46) 

where 
2

AB

kL
 =  

D
Φ is the Thiele modulus.  This problem is solved in Maple 

below. 
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> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t); 

 

> IC:=u(x,0)=0; 

 

> bc1:=u(x,t)=1; 

 

> bc2:=diff(u(x,t),x)=0; 

 

> eq1:=expand(eval(subs(u(x,t)=g(x,t)+w(x),eq))); 

 
> eqw:=diff(w(x),x$2)-Phi^2*w(x); 

 

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2)-Phi^2*g(x,t); 

 

> bc1w:=w(x)=1; 

 

> bc2w:=diff(w(x),x)=0; 

 

> dsolve({eqw},w(x)); 

 

w(x) can be written as: 

> w(x):=w1*cosh(Phi*x)+w2*sinh(Phi*x); 

 



7.1   Separation of Variables Method for PDEs in Finite Domains 631
 

> eq_bc1w:=eval(subs(x=0,bc1w)): 

> eq_bc2w:=eval(subs(x=1,bc2w)): 

> w1:=solve(eq_bc1w,w1): 

> w2:=solve(eq_bc2w,w2): 

> w(x):=eval(w(x)): 

> w(x):=combine(w(x)): 

> w(x):=cosh(Phi*(1-x))/cosh(Phi); 

 

> Eq:=subs(g(x,t)=X(x)*T(t),eqg); 

 

> Eq:=expand(Eq/X(x)/T(t)); 

 

For convenience, Φ2 is written to the left hand side. 

> Eq:=lhs(Eq)+Phi^2=rhs(Eq)+Phi^2;; 

 

> Eq_T:=lhs(Eq)=-lambda^2; 

 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 

 

T(t) can be written as: 

> T(t):=T0*exp(-lambda^2*t)*exp(-Phi^2*t); 
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> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=X(x)=0: 

> Bc2:=diff(X(x),x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[2]:=solve(Eq_Bc1,c[2]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=cos(lambda)=0: 

> solve(Eq_Eig,lambda): 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda): 

> G1:=eval(X(x)*T(t)): 

> Gn:=subs(c[1]=A[n]/T0,lambda=lambda[n],G1): 

> g(x,t):=Sum(Gn,n=1..infinity): 

> g(x,t):=subs(lambda[n]=(2*n-1)/2*Pi,g(x,t)); 

 

> u(x,t):=g(x,t)+w(x); 

 
> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> phi[n]:=sin((2*n-1)/2*Pi*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 
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> I1:=subs(vars,I1): 

> I1:=simplify(I1); 

 

> I2:=subs(vars,I2): 

> I2:=simplify(I2); 

 

I2 is simplified further: 

> I2n:=numer(I2): 

> I2d:=denom(I2): 

> I2d:=expand(I2d): 

> I2:=I2n/I2d; 

 

> A[n]:=I2/I1: 

> A[n]:=simplify(A[n]): 

> u(x,t):=eval(u(x,t)); 

 

 
> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 

> uu:=piecewise(t=0,rhs(IC),t>0,ua): 

> plot3d(subs(Phi=1,uu),x=1..0,t=0.5..0,axes=boxed,title="Figure 7.19", 

labels=[x,t,"u"],orientation=[-45,60]); 
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Fig. 7.19 
 

> plot([subs(t=0,Phi=1,uu),subs(t=0.05,Phi=1,uu),subs(t=0.1,Phi=1,uu), 

subs(t=0.2,Phi=1,uu),subs(t=0.5,Phi=1,uu)],x=0..1,axes=boxed, 

title="Figure 7.20.",thickness=5,labels=[x,"u"], 

legend=["t=0","t=0.05","t=0.1","t=0.2","t=0.5"]); 
 

 
Fig. 7.20 
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7.1.6   Separation of Variables for Parabolic PDEs with Two Flux 
Boundary Conditions 

In section 7.1.5, non-homogeneity in the boundary conditions was removed by 
adding w(x) to the solution.  However, for partial differential equations with two 
nonhomogeneous flux boundary conditions, this method does not work.[4] For 
this case two separate functions (w(x) v(t)) are introduced to take care of the non-
homogeneity of the boundary conditions and the separation of variables method is 
applied for the partial differential equation with the homogeneous boundary 
conditions.      

Example 7.9. Diffusion in a Slab with Nonhomogeneous Flux Boundary 
Conditions 

Consider diffusion in a rectangle with a nonhomogeneous boundary condition 
at x 1=  x[4]   

( )

( ) ( )

2

2

u u

t x
u x,0 0

u u
0,t 0 and 1,t

x x

∂ ∂=
∂ ∂

=
∂ ∂= = δ
∂ ∂

 (7.47) 

The technique illustrated in section 7.1.5 cannot be directly applied for this 
problem because w(x) cannot be solved to satisfy the two flux boundary 
conditions at x = 0 and x = 1. To take care of the non-homogeneity the following 
transformation is introduced 

( ) ( ) ( ) ( )u x, t  g x, t w x v t= + +    (7.48) 

where w(x) satisfies the boundary conditions 

( ) ( )dw dw
0 0 and 1

dx dx
= = δ    (7.49) 

and g(x,t) satisfies the homogeneous boundary conditions 

( ) ( )g g
0,t 0 and 1,t 0

x x

∂ ∂= =
∂ ∂

   (7.50) 

The variable v(t) satisfies the initial condition: 

( )v 0 0 =                                           (7.51) 

Substituting the transformation (equation (7.48)) into the governing equation (7.47) 
we get 
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2 2

2 2

g dv g d w

t dt x dx

∂ ∂+ = +
∂ ∂

                                  (7.52) 

Equation(7.52) can be separated as: 

2

2

g g

t x

∂ ∂=
∂ ∂

                                          (7.53) 

2

2

dv d w

dt dx
=                                      (7.54) 

The left hand side of equation (7.54) is a function of time alone and the right hand 
side is a function of x alone.  Hence, both sides should be equal to a constant k, 

2

2

dv d w
k

dt dx
= =                               (7.55) 

The second half of equation (7.55) can be solved with the boundary conditions to 
give, 

k d=                                 (7.56) 

and 

( ) 2 w x  x B
2

δ= +                               (7.57) 

where B is an arbitrary constant.  The left hand side of equation (7.55) can be 
solved with the initial condition for v(t) (equation(7.51)) to give 

( )v t dt=             (7.58) 

Hence, the solution is given by 

2

u(x,t)  g(x,t)  w(x)  v(t)

          g(x,t)  x   t  B
2

= + +
δ= + + δ +

             (7.59) 

Now g(x,t) is obtained by solving equation (7.53) with the homogeneous boundary 
conditions (equation (7.50)) to give, 

2 2
n

n  1

g(x,t)  A  exp( -n π  t)cos(nπx)
∞

=
= ∑                (7.60) 

where An , n = 1,2,…, are constants.  Hence, the final solution is given by, 

2 2 2
n

n  1

u(x,t)  x   t  B A  exp( -n  t)cos(n x)
2

∞

=

δ= + δ + + π π∑       (7.61) 
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The constants An and B are obtained by imposing the initial condition, 

2
n

n  1

u(x,0)  0    x   B   A cos  (n x) 
2

∞

=

δ= = + + π∑             (7.62) 

Next, An is obtained as in section 7.1.5 as: 

1

n n
0

n 1 2 2
2
n

0

(0 w) r(x)dx
2(-1)

A    = -
n  

r(x)dx

− φ
= δ

π
φ

∫

∫
                   (7.63) 

For this example r(x)  = 1, IC = 0, w = 2x   B
2

δ + x and φn = cos(nπx). Next B 

is obtained by multiplying both sides of equation (7.63) by r(x) and integrating 
from 0 to 1: 

1 1 1 1
2

n n
n  10 0 0 0

ICr(x)dx    r(x)x dx  B r(x)dx   A r(x) dx 
2

∞

=

δ= + + φ∑∫ ∫ ∫ ∫
  

(7.64) 

Note that the last integral in equation (7.64) goes to zero.  For this example  
IC = 0, r(x) = 1, and φn = cos(nπx).  Substituting these values in equation (7.64) 
we get,  

B  
6

−δ=                                       (7.65) 

Substituting equations (7.63) and (7.65) into equation (7.62) we get the complete 
solution: 

( ) ( ) ( ) ( )
n

2 2 2
2 2

n  1

11 2
u  t  3x 1   exp n  t cos n x

6 n

∞

=

⎡ ⎤−
= δ + − − − π π⎢ ⎥

π⎢ ⎥⎣ ⎦
∑     (7.66) 

The Maple program used to solve Example 7.9 is given below: 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 
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> IC:=u(x,0)=0; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=diff(u(x,t),x)=delta; 

 

> eq1:=eval(subs(u(x,t)=g(x,t)+w(x)+v(t),eq)); 

 

The governing equations for v(t), w(x) and g(x, t) are: 

> eqv:=diff(v(t),t)=k; 

 

> eqw:=diff(w(x),x$2)=k; 

 

> eqg:=diff(g(x,t),t)=diff(g(x,t),x$2); 

 

The boundary conditions for w(x) are: 

> bc1w:=diff(w(x),x)=0; 

 

> bc2w:=diff(w(x),x)=delta; 
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w(x) can be solved with the boundary condition at x = 0 as: 

> w(x):=rhs(dsolve({eqw,D(w)(0)=0},w(x))); 

 

The value of constant k is found using the boundary condtion at x = 1: 

> bc2w:=subs(x=1,diff(w(x),x))=delta; 

 

> k:=solve(bc2w,k); 

 

> w(x):=1/2*delta*x^2+B; 

 

v(t) is solved as: 

> v(t):=rhs(dsolve({eqv,v(0)=0},v(t))); 

 

> Eq:=subs(g(x,t)=X(x)*T(t),eqg): 

g(x, t) is obtained as: 

> Eq:=expand(Eq/X(x)/T(t)): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))): 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=diff(X(x),x)=0: 

> Bc2:=diff(X(x),x)=0: 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[1]:=solve(Eq_Bc1,c[1]): 

> Eq_Bc2:=eval(subs(x=1,Bc2)): 

> Eq_Eig:=sin(lambda)=0: 

> solve(Eq_Eig,lambda): 
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> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda): 

> G1:=eval(X(x)*T(t)): 

> Gn:=subs(c[2]=A[n]/T0,lambda=lambda[n],G1): 

> g(x,t):=Sum(Gn,n=1..infinity): 

> g(x,t):=subs(lambda[n]=n*Pi,g(x,t)); 

 

> u(x,t):=g(x,t)+w(x)+v(t); 

 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

The constant An is found as: 

> phi[n]:=cos(n*Pi*x): 

> r(x):=1: 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int((rhs(IC)-w(x))*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1; 
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Next, constant B is found as: 

> eqB:=int(lhs(eq_An*r(x)),x=0..1)=int(rhs(eq_An*r(x)),x=0..1); 

Error, (in simpl/Im) too many levels of recursion 

> eqB:=subs(vars,eqB); 

 

> B:=-delta/6; 

 

> u(x,t):=eval(u(x,t)); 

 

> u(x,t):=subs(infinity=N,u(x,t)): 

> ua:=subs(N=20,u(x,t)): 

> uu:=piecewise(t=0,rhs(IC),t>0,ua); 

 

> plot3d(subs(delta=1,uu),x=1..0,t=0.5..0,axes=boxed,title="Figure 7.21", 

labels=[x,t,"u"],orientation=[-135,60]); 
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Fig. 7.21 

 

> plot([subs(t=0,delta=1,uu),subs(t=0.2,delta=1,uu),subs(t=0.5,delta=1,uu), 

subs(t=0.7,delta=1,uu),subs(t=1,delta=1,uu)],x=0..1,title="Figure 7.22", 

axes=boxed,thickness=5,labels=[x,"u"],legend=["t=0","t=0.2","t=0.5", 

"t=0.7","t=1.0"]); 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.22 
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7.1.7   Numerical Separation of Variables for Parabolic PDEs  

In the previous sections, analytical expressions were derived for the eigenfunction 
(X(x)) and eigenvalues were obtained analytically or numerically from a trans- 
cendental equation. Alternatively, one can numerically obtain the eigenfunctions and 
eigenvalues. The advantage with the numerical approach is that the method is very 
general and one does not need to use Bessel or other special functions for the 
eigenfunctions.  Also, there is no need to solve the transcendental equation.  The 
methodology is illustrated by solving Example 7.1 numerically.    

Example 7.10. Heat Transfer in a Rectangle 

Consider the heat transfer problem  

2

2

u u
 = 

t x

u(x,0) = 1

u(0,t) = 0 and u(1,t) = 0

∂ ∂
∂ ∂

                           (7.67) 

The steps involved are the same as those in Example 7.1.  The only difference is 
that the eigenfunction X(x) and the eigenvalues λ’s are obtained numerically.  An 

additional boundary condition at x = 0 
dX

(0) = 0
dx

⎛ ⎞
⎜ ⎟
⎝ ⎠

 is taken to obtain the 

eigenvalue.  Read Example 3.2.15 for additional details.  The Maple program used 
to solve this example using numerical separation of variables is given below: 

> restart: 

> with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> IC:=u(x,0)=1; 

 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=0; 
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> Eq:=subs(u(x,t)=X(x)*T(t),eq): 

> Eq:=Eq/X(x)/T(t): 

> Eq_T:=lhs(Eq)=-lambda^2: 

> T(t):=rhs(dsolve({Eq_T,T(0)=T0},T(t))); 

 

> Eq_X:=rhs(Eq)=-lambda^2: 

> Eq_X:=expand(Eq_X*X(x)); 

 

The eigenvalue λ is obtained using the shooting technique. The third condition at  

x = 0 is assumed for 
dX

dλ
. The sensitivity equation is developed for the sensitivity 

variable  X2 =  

> eqlambda:=subs(X(x)=X(x,lambda),Eq_X): 

> eqlambda:=diff(eqlambda,lambda): 

> eqlambda:=subs(diff(X(x,lambda),lambda)=X2(x),eqlambda): 

> eqlambda:=subs(X(x,lambda)=X(x),eqlambda); 

 

The dependent variables are: 

> vars:=(X(x),X2(x)); 

 

The initial conditions for X and X2 are: 

> ICs:=(X(0)=0,D(X)(0)=1,X2(0)=0,D(X2)(0)=0); 

 

A tolerance 1e - 9 is set.  A scaling factor of 1/2 is used for obtaining eigenvalues. 

> tol:=1e-9;rho:=1/2; 
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Different initial guesses are used to predict the first ten eigenvalues: 

> lambdaguess:=[3,6,9,12,15,18,21,24,27,30]; 

 

> MM:=nops(lambdaguess); 

 

> Xexp:=0: 

> for i from 1 to MM do  

> lambda0:=lambdaguess[i]; 

> k:=1;err:=1; 

> while err>tol do 

> eqs:=subs(lambda=lambda0,Eq_X),subs(lambda=lambda0,eqlambda); 

> Sol[i]:=dsolve({eqs,ICs},{vars},type=numeric,output=listprocedure); 

> Xpred:=rhs(Sol[i](1)[2]); 

> X2pred:=rhs(Sol[i](1)[4]); 

> lambda1:=lambda0+rho*(Xexp-Xpred)/X2pred; 

> err:=abs(lambda1-lambda0); 

> lambda0:=lambda1;k:=k+1; 

> end; 

> l[i]:=lambda0; 

> kk[i]:=k; 

> Err[i]:=err; 

> od: 

The first ten eigenvalues are: 

> seq(l[i],i=1..MM); 
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The number of iterations required to get the eigenvalues are: 

> seq(kk[i],i=1..MM); 

 

The error associated with the eigenvalues is: 

> seq(Err[i],i=1..MM); 

 

The first ten eigenfunctions are plotted as: 

> for i to MM do XX[i]:=subs(Sol[i],X(x)):od: 

> for i to MM do p[i]:=plot(XX[i](x),x=0..1,thickness=3,title="Figure 7.23", 

axes=boxed):od: 

> display({seq(p[i],i=1..MM)},labels=[x,"X"]); 

Fig. 7.23 

 

 
 

The first eigenfunction becomes negative.  The second eigenfunction becomes 
negative one then returns to zero.  Similarly, the nth eigenfunction crosses the x 
axis n - 1 times. 

> U:=eval(X(x)*T(t)): 

The solution can be taken as: 

> Un:=A[n]*XX[n](x)*exp(-lambda[n]^2*t); 



7.1   Separation of Variables Method for PDEs in Finite Domains 647
 

 
> for i to MM do lambda[i]:=l[i];od: 

> u(x,t):=Sum(Un,n=1..MM); 

 
The constant An is obtained as: 

> eq_An:=eval(subs(t=0,u(x,t)))=rhs(IC); 

 

> I1:=int(X(x)^2,x=0..1): 

> I2:=int(X(x),x=0..1): 

> An:=I2/I1; 

 
The coefficient  An , n = 1.. .10 are numerically obtained as: 

> for j to MM do  

> N:=200:I1:=0:I2:=0: 

> for i from 1 to N-1 do I1:=I1+XX[j](i/N)^2*2/(2*N);I2:=I2+XX[j](i/N)*2/(2*N)od: 

> I1:=I1+(XX[j](0)^2+XX[j](1)^2)/(2*N): 

> I2:=I2+(XX[j](0)+XX[j](1))/(2*N): 

> A[j]:=I2/I1;od: 

> seq(A[j],j=1..MM); 

 

 

> u(x,t):=eval(u(x,t)): 

> ua:=evalf(u(x,t)); 
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> uu:=piecewise(t=0,rhs(IC),t>0,ua): 

> plot3d(uu,x=1..0,t=0.3..0,axes=boxed,title="Figure 7.24", 

labels=[x,t,"u"],orientation=[60,60]); 

 

 
Fig. 7.24 

 

> plot([subs(t=0,uu),subs(t=0.01,uu),subs(t=0.05,uu),subs(t=0.1,uu), 

subs(t=0.2,uu)],x=0..1,axes=boxed,title="Figure 7.25", 

thickness=5,labels=[x,"u"],legend=["t=0","t=0.01","t=0.05","t=0.1","t=0.2"]); 
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Fig. 7.25 

7.1.8   Separation of Variables for Elliptic PDEs  

The separation of variables method can be used for steady state elliptic PDEs also.  
In this case, the dependent variable is separated in the x and y coordinates. In 
order to apply separation of variables method, only one boundary condition can be 
nonhomogeneous. If more than one boundary condition is nonhomogeneous, then 
the problem has to be reduced to the case where only one boundary condition is 
nonhomogeneous. One has to separate the original boundary value problem into 
two boundary value problems, each of which will have only one nonhomogeneous 
boundary condition. The methodology is illustrated using steady state heat transfer 
in a rectangle.       

Example 7.11. Heat Transfer in a Rectangle 

Consider the steady state heat transfer problem.[1] The boundary condition at  
y = 1 (the nonhomogeneous boundary condition) is used to find the coefficient An 
in the infinite series after separating the variables.    

2 2

2 2

u u
 +  = 0

y x

u(0,y) = 0 and u(1,y) = 0

u(x,0) = 0 and u(x,1) = 1

∂ ∂
∂ ∂

 (7.68) 
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The Maple program used to solve this example is given below: 

> restart: 

> with(plots): 

Derivatives in y are entered on the left hand side and derivatives in x are entered 
on the right hand side. 

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2); 

 

The boundary conditions at x = 0 and x = 1 are entered: 

> bc1:=u(x,y)=0; 

 

> bc2:=u(x,y)=0; 

 

The boundary conditions at y = 0 and y = 1 are entered: 

> bc3:=u(x,y)=0; 

 

> bc4:=u(x,y)=1; 

 

The dependent variable is separated as: 

> Eq:=subs(u(x,y)=X(x)*Y(y),eq); 

 

> Eq:=expand(Eq/X(x)/Y(y)); 

 

> Eq_Y:=lhs(Eq)=lambda^2: 

> Eq_Y:=eval(Eq_Y*Y(y)); 
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> dsolve(Eq_Y,Y(y)); 

 

Y(y) can be written as: 

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y); 

 

The homogeneous boundary condition in y (at y = 0) is used to eliminate one of 
the constants. 

> Bc3:=Y(y)=0; 

 

> Eq_Bc3:=eval(subs(y=0,Bc3)); 

 

> C[2]:=solve(Eq_Bc3); 

 

> Y(y):=eval(Y(y)); 

 

X(x) is obtained as in Example 7.1: 

> Eq_X:=rhs(Eq)=lambda^2: 

> Eq_X:=expand(Eq_X*X(x)); 

 

> dsolve({Eq_X},X(x)); 

 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x); 

 

> Bc1:=X(x)=0; 

 

> Bc2:=X(x)=0; 
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> Eq_Bc1:=eval(subs(x=0,Bc1)); 

 

> c[2]:=solve(Eq_Bc1,c[2]); 

 

> Eq_Bc2:=eval(subs(x=1,Bc2)); 

 

> Eq_Eig:=sin(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> U:=eval(X(x)*Y(y)); 

 

> Un:=subs(c[1]=A[n]/C[1],lambda=lambda[n],U): 

> u(x,y):=Sum(Un,n=1..infinity): 

The dimensionless temperature is: 

> u(x,y):=subs(lambda[n]=n*Pi,u(x,y)); 

 

The constant  An is obtained using the nonhomogeneous boundary condition at y = 1: 

> eq_An:=eval(subs(y=1,u(x,y)))=rhs(bc4); 

 

> phi[n]:=sin(n*Pi*x); 

 

> r(x):=1; 
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> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int(1*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1/sinh(n*Pi); 

 

> u(x,y):=eval(u(x,y)); 

 
> u(x,y):=subs(infinity=N,u(x,y)): 

> ua:=subs(N=20,u(x,y)): 

> uu:=piecewise(y<0.99,ua,y>0.99,1); 

 
> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.26", 

labels=[x,y,"u"],orientation=[-120,60]); 
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Fig. 7.26 
 

> plot([subs(y=0,uu),subs(y=0.4,uu),subs(y=0.6,uu),subs(y=0.8,uu), 

subs(y=0.9,uu),subs(y=1,uu)],x=0..1,title="Figure 7.27", 

axes=boxed,thickness=5,labels=[x,"u"],legend=["y=0","y=0.4","y=0.6", 

"y=0.8","y=0.9","y=1.0"]); 
 

 
Fig. 7.27 
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Example 7.12. Diffusion in a Cylinder 

Consider the steady state diffusion in a cylinder 

2 2

2 2

u u 1 u
+    = 0

y x x x

u
(0,y) = 0 and u(1,y) = 0

x

u
u(x,0) = 1 and (x,1) = 0

x

∂ ∂ ∂+
∂ ∂ ∂

∂
∂

∂
∂

 (7.69) 

The boundary condition at y = 0 (the nonhomogeneous boundary condition) is 
used to find the coefficient An in for this example.  Also, this example involves 
calculating the eigenvalues from the transcendental equation as illustrated in 
Example 7.14. The Maple output for this problem is given below: 

> restart: 

> with(plots): 

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)-1/x*diff(u(x,y),x); 

 

> bc1:=diff(u(x,y),x)=0; 

 

> bc2:=u(x,y)=0; 

 

> bc3:=u(x,y)=1; 

 

> bc4:=diff(u(x,y),x)=0; 
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> Eq:=subs(u(x,y)=X(x)*Y(y),eq); 

 
> Eq:=expand(Eq/X(x)/Y(y)); 

 

> Eq_Y:=lhs(Eq)=lambda^2: 

> Eq_Y:=eval(Eq_Y*Y(y)); 

 

> dsolve(Eq_Y,Y(y)); 

 

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y); 

 

> Bc4:=diff(Y(y),y)=0; 

 
> Eq_Bc4:=eval(subs(y=1,Bc4)); 

 
> C[2]:=solve(Eq_Bc4,C[2]); 

 

> Y(y):=eval(Y(y)); 

 

> combine(Y(y)); 
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> Y(y):=C[1]*cosh(lambda*(1-y))/sinh(lambda); 

 

> Eq_X:=rhs(Eq)=lambda^2: 

> Eq_X:=expand(Eq_X*X(x)); 

 

> dsolve({Eq_X},X(x)); 

 

> X(x):=c[1]*BesselJ(0,lambda*x)+c[2]*BesselY(0,lambda*x); 

 

> Bc1:=diff(X(x),x)=0; 

 

> Bc2:=X(x)=0; 

 

> BesselJ(0,0); 

 

> BesselY(0,0); 

Error, (in BesselY) numeric exception: division by zero 

> c[2]:=0; 

 

> Eq_Bc2:=eval(subs(x=1,Bc2)); 

 

> Eq_Eig:=BesselJ(0,lambda)=0; 
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> l[1]:=fsolve(Eq_Eig,lambda=0..3); 

 
> N:=20; 

  

> for i from 2 to N do l[i]:=fsolve(Eq_Eig,lambda=l[i-1]..l[i-1]+4);od: 

> seq(l[i],i=1..N); 

 

 

 

> U:=eval(X(x)*Y(y)): 

> Un:=subs(c[1]=A[n]/C[1],lambda=lambda[n],U); 

 

> u(x,y):=Sum(Un,n=1..N): 

> eq_An:=eval(subs(y=0,u(x,y)))=rhs(bc3); 

 

> phi[n]:=BesselJ(0,lambda[n]*x); 

 

> r(x):=x; 

 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int(1*phi[n]*r(x),x=0..1): 

> A[n]:=I2/I1/cosh(lambda[n])*sinh(lambda[n]); 
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> u(x,y):=eval(u(x,y)); 

 

> for i to N do lambda[i]:=l[i];od: 

> ua:=evalf(u(x,y)): 

> uu:=piecewise(y=0,1,y>0,ua): 

> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.28", 

labels=[x,y,"u"],orientation=[30,60]); 
 

 

Fig. 7.28 

 

> plot([subs(y=0,uu),subs(y=0.1,uu),subs(y=0.2,uu),subs(y=0.3,uu), 

subs(y=0.4,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 7.29", 

thickness=5,labels=[x,"u"],legend=["y=0","y=0.1","y=0.2","y=0.3","y=0.4", 

"y=1.0"]); 
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Fig. 7.29 

 

Example 7.13. Heat Transfer with Nonhomogeneous Boundary Conditions 

Consider the steady state heat transfer problem with nonhomogeneous boundary 
conditions in both x and y 

2 2

2 2

u u
 + 0

y x

u(0,y) = 0 and u(1,y) = 1

u(x,0) = 0 and u(x,1) = 1

∂ ∂ =
∂ ∂

   (7.70) 

If we define u = v(x,y) + w(x,y) then both v and w satisfy the Laplace equation  

2 2 2 2

2 2 2 2

v v w w
 +  = 0  and   +  = 0

y x y x

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

               (7.71) 

where v(x,y) has to satisfy only one nonhomogeneous boundary condition (at y = 1): 

v(0,y) = 0 and v(1,y) = 1

v(x,0) = 0 and v(x,1) = 0

   (7.72) 
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and w(x,y) has to satisfy only one nonhomogeneous boundary condition (at x = 1): 

w(0,y) = 0 and w(1,y) = 0

w(x,0) = 0 and w(x,1) = 1

   (7.73) 

The final solution u = v + w satisfies nonhomogeneous boundary conditions at 
both y = 1 and x = 1. The solution for v was derived in Example 7.11. The 
solution for w can be obtained by interchanging x and y in the solution for w. The 
Maple output for this example is given below: 

> restart: 

> with(plots): 

> eq:=diff(v(x,y),y$2)=-diff(v(x,y),x$2); 

 

> bc1:=v(x,y)=0; 

 

> bc2:=v(x,y)=0; 

 

> bc3:=v(x,y)=0; 

 

> bc4:=u(x,y)=1; 

 

> Eq:=subs(v(x,y)=X(x)*Y(y),eq); 

 

> Eq:=expand(Eq/X(x)/Y(y)); 

 

> Eq_Y:=lhs(Eq)=lambda^2: 

> Eq_Y:=eval(Eq_Y*Y(y)); 
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> dsolve(Eq_Y,Y(y)); 

 
> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y); 

 

> Bc3:=Y(y)=0; 

 

> Eq_Bc3:=eval(subs(y=0,Bc3)); 

 

> C[2]:=solve(Eq_Bc3); 

 

> Y(y):=eval(Y(y)); 

 

> Eq_X:=rhs(Eq)=lambda^2: 

> Eq_X:=expand(Eq_X*X(x)); 

 

> dsolve({Eq_X},X(x)); 

 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x); 

 

> Bc1:=X(x)=0; 

 

> Bc2:=X(x)=0; 

 

> Eq_Bc1:=eval(subs(x=0,Bc1)); 
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> c[2]:=solve(Eq_Bc1,c[2]); 

 

> Eq_Bc2:=eval(subs(x=1,Bc2)); 

 
> Eq_Eig:=sin(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> V:=eval(X(x)*Y(y)); 

 

> Vn:=subs(c[1]=A[n]/C[1],lambda=lambda[n],V): 

> v(x,y):=Sum(Vn,n=1..infinity): 

> v(x,y):=subs(lambda[n]=n*Pi,v(x,y)); 

 

> eq_An:=eval(subs(y=1,v(x,y)))=rhs(bc4); 

 

> phi[n]:=sin(n*Pi*x); 

 

> r(x):=1; 

 

> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int(1*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 
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> I2:=subs(vars,I2): 

> A[n]:=I2/I1/sinh(n*Pi); 

 

> v(x,y):=eval(v(x,y)); 

 
> v(x,y):=subs(infinity=N,v(x,y)): 

> va:=subs(N=20,v(x,y)); 

 
> wa:=subs(x=Y,y=X,va):wa:=subs(X=x,Y=y,wa); 
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> ua:=va+wa; 

 

 

> plot(subs(x=1,ua),y=0..1,thickness=3,title=”Figure 7.30”,axes=boxed); 

 

 
Fig. 7.30 
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> uu:=piecewise(x=1,1,y=1,1,ua); 

 
> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.31", 

labels=[x,y,"u"],orientation=[-120,60],view=[0..1,0..1,0..1]); 

 

 
Fig. 7.31 

 

> plot([subs(y=0,uu),subs(y=0.4,uu),subs(y=0.6,uu),subs(y=0.8,uu),subs 

(y=0.9,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 32", 

thickness=5,labels=[x,"u"],legend=["y=0","y=0.4","y=0.6","y=0.8","y=0.9", 

"y=1.0"]); 
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Fig. 7.32 
 

Example 7.14. Heat Transfer with a Nonhomogeneous Governing Equation 

> restart: 

> with(plots): 

> eq:=diff(u(x,y),y$2)=-diff(u(x,y),x$2)-1; 

 

> bc1:=u(x,y)=0; 

 

> bc2:=u(x,y)=0; 

 

> bc3:=u(x,y)=0; 

 

> bc4:=u(x,y)=0; 
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> eq:=expand(subs(u(x,y)=g(x,y)+w(x),eq)); 

 

> eq_w:=diff(w(x),`$`(x,2))+1=0; 

 

> w(x):=rhs(dsolve({eq_w,w(0)=0,w(1)=0},w(x))); 

 

> eqg:=diff(g(x,y),`$`(y,2)) = -diff(g(x,y),`$`(x,2)); 

 

> Eq:=subs(g(x,y)=X(x)*Y(y),eqg): 

> Eq:=expand(Eq/X(x)/Y(y)): 

> Eq_Y:=lhs(Eq)=lambda^2: 

> Eq_Y:=eval(Eq_Y*Y(y)): 

> dsolve(Eq_Y,Y(y)): 

> Y(y):=C[1]*sinh(lambda*y)+C[2]*cosh(lambda*y): 

> Bc3:=Y(y)=0; 

 
> Eq_Bc3:=eval(subs(y=0,Bc3)): 

> C[2]:=solve(Eq_Bc3): 

> Y(y):=eval(Y(y)); 

 

> Eq_X:=rhs(Eq)=lambda^2: 

> Eq_X:=expand(Eq_X*X(x)): 

> dsolve({Eq_X},X(x)): 

> X(x):=c[1]*sin(lambda*x)+c[2]*cos(lambda*x): 

> Bc1:=X(x)=0; 
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> Bc2:=X(x)=0; 

 

> Eq_Bc1:=eval(subs(x=0,Bc1)): 

> c[2]:=solve(Eq_Bc1,c[2]); 

 

> Eq_Bc2:=eval(subs(x=1,Bc2)); 

 
> Eq_Eig:=sin(lambda)=0; 

 

> _EnvAllSolutions := true: 

> solve(Eq_Eig,lambda); 

 

> G:=eval(X(x)*Y(y)); 

 

> Gn:=subs(c[1]=A[n]/C[1],lambda=lambda[n],G): 

> u(x,y):=Sum(Gn,n=1..infinity)+w(x): 

> u(x,y):=subs(lambda[n]=n*Pi,u(x,y)); 

 

> eq_An:=eval(subs(y=1,u(x,y)))=rhs(bc4); 

 

> phi[n]:=sin(n*Pi*x); 

 

> r(x):=1; 
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> I1:=int(phi[n]^2*r(x),x=0..1): 

> I2:=int((0-w(x))*phi[n]*r(x),x=0..1): 

> vars:={sin(n*Pi)=0}: 

> I1:=subs(vars,I1): 

> I2:=subs(vars,I2): 

> A[n]:=I2/I1/sinh(n*Pi); 

 

> u(x,y):=eval(u(x,y)); 

 
> u(x,y):=subs(infinity=N,u(x,y)): 

> ua:=subs(N=20,u(x,y)): 

> uu:=piecewise(y<0.9999,ua,y>0.9999,0); 

 
> plot3d(evalf(uu),x=0..1,y=1..0,axes=boxed,title="Figure 7.33", 

labels=[x,y,"u"],orientation=[-120,60]); 
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Fig. 7.33 

 

 

> plot([subs(y=0,uu),subs(y=0.6,uu),subs(y=0.8,uu),subs(y=0.9,uu), 

subs(y=0.95,uu),subs(y=1,uu)],x=0..1,axes=boxed,title="Figure 7.34", 

thickness=5,labels=[x,"u"],legend=["y=0","y=0.6","y=0.8","y=0.9","y=0.95", 

"y=1.0"]); 

 

 
 

Fig. 7.34 
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7.1.9   Summary 

In this chapter, analytical solutions were obtained for parabolic and elliptic partial 
differential equations in finite domains using separation of variables method. In 
section 7.1.2, a linear parabolic partial differential equation with homogeneous 
boundary conditions was solved using the separation of variables method. The 
dependent variable was assumed to be a product of two separate functions of x  
and t. These functions were then solved using the corresponding boundary and 
initial conditions. The final solution was obtained by superposition of individual 
solutions. In section 7.1.3 this method was then extended to problems with an 
initial profile in x. In sections 7.1.2 and 7.1.3 analytical explicit relations were 
obtained for the eigenvalues. In section 7.1.4 eigenvalues were obtained from a 
nonlinear implicit transcendental equation. In section 7.1.5, the method was 
extended to parabolic partial differential equations with nonhomogeneous 
boundary conditions. In section 7.1.6, the method was extended to parabolic 
partial differential equations with nonhomogeneous flux boundary conditions (at 
both of the boundaries). 

In section 7.1.7, eigenfunctions and eigenvalues were obtained numerically.  
This method is very general and can be used to avoid the use of complicated 
special function solutions. In section 7.1.8, the separation of variables method 
which was illustrated earlier for parabolic partial differential equations was 
extended to elliptic partial differential equations.  A total of fourteen examples 
were presented in this chapter. 

7.1.10   Exercise Problems 

1. Complete the details missing in Example 7.5.   
2. Obtain an analytical solution for Example 7.5 if the initial condition is 

replaced by u(x,0) = 1-xm, where m is an integer. 
3. Redo Example 7.4 if the initial condition is given by the piecewise function 

u(x,0) = x   0  x  0.5

            = 1 - x  0.5 < x  1

≤ ≤
≤

 

4. Solve the following parabolic PDE using the separation of variables 
method: 

2

2

u u
 = 

t x
x

u(x,0) = cos
2

u
(0,t) = 0 and u(1,t) = 0

x

∂ ∂
∂ ∂

π⎛ ⎞
⎜ ⎟
⎝ ⎠

∂
∂
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5. Obtain an analytical solution for Example 5.2 using the separation of 
variables method and plot the profiles. 

6. Obtain an analytical solution for the Graetz problem described in Example 
5.6. If you are not able to find the eigenfunction and eigenvalues analytically, 
find them numerically. 

7. Consider diffusion with convection in a coated wall reactor where the reaction 
takes place at the wall (Rice and Do, 1995;[2] chapter 5.1, exercise problem 1). 
The governing equation and boundary conditions for concentration in 
dimensionless form are: 

2

2

u u 1 u
 =  + 

Z x x x
u u

(0,Z) = 0 and (1, Z) + Ha u(1,Z) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

 

where Ha is the Hatta number.  Obtain an analytical solution for this 
problem using the separation of variables method. 

8. Consider the cooling of spherical nuclear pellets (Rice and Do, 1995;[2] 
chapter 5.1, exercise problem 7).  The dimensionless temperature 
distribution is governed by: 

2

2

u u 2 u
 =  +  + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

 

where Q is the ratio of heat generation to heat conduction and Bi is the Biot 
number.  Obtain an analytical solution for this problem using the separation 
of variables method.  Plot the profiles for Q = 1, Bi = 0.2 and Q = 1, Bi = 10.   

9. Consider dispersion of a linear kinematic wave in dimensionless form 
(Aris, 1999;[5] chapter 5.1, exercise problem 9). The governing equation 
and boundary/initial conditions are: 

2

2

u u u
 =  -Pe

t x x
u(0,t) = 1; u(1,t) = 0

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
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Obtain an analytical solution for this problem using the separation of 
variables method.  Plot the profiles for Pe = 1, 10 and 50. 

10. Consider the fluid-flow problem (Davis, 1984;[6] chapter 5.1, exercise 
problem 10): 

2

2

u u 1 u
 =  +  + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

 

Obtain an analytical solution using separation of variables method and plot 
the dimensionless velocity profiles. 

11. Consider the Graetz problem in planar geometry (chapter 5.1, exercise 
problem 11).  The governing equations and boundary/initial conditions are: 

2
2

2

u u
2Pe(1 x )  = 

z x
u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

 

Solve this problem analytically and plot the profiles for different values of 
Peclet number. Hint: if you can’t find the eigenfunction and eigenvalues 
analytically, find them numerically. 

12. Consider heat conduction in a slab with radiation at both ends (Carslaw and 
Jaeger, 1959[1]; chapter 5.1, exercise problem 12). The dimensionless 
governing equations and boundary/initial conditions are: 

2

2

u u
 =  

t x
u u

(0,t) + Hu(0,t) = 0 and (1, t) + Hu(1,t) = 0
x x

u(x,0) = 1

∂ ∂
∂ ∂

∂ ∂−
∂ ∂

 

where H is the dimensionless heat transfer coefficient. Obtain an analytical 
solution and plot the profiles for H = 1, 10. 

13. Consider the particle electrode problem discussed in Example 7.6. Example  
7.6 describes the charging of a particle. The governing equations for 
electrochemical discharge of a particle electrode are: 
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2

2

u u
 = 

t x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂
∂ ∂

∂ ∂ δ
∂ ∂

 

Explain how one can find an analytical solution for this problem using the 
solution obtained in Example 7.9.  Plot the profiles for δ = 0.1, 1, 2 and 5. 

14. The electrochemical discharge of spherical particles is very similar to 
problem 13 (Subramanian and White, 2001[4]). Governing equations and 
boundary/initial conditions for this problem are: 

2

2

u u 2 u
 =  + 

t x x x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ δ
∂ ∂

 

Obtain an analytical solution for this problem using the separation of 
variables method.  Plot the profiles for δ = 0.1, 1, 2 and 5. 

15. Consider problem 13 and 14.  How does the governing equation change for 
cylindrical coordinates?  Obtain an analytical solution for the cylindrical 
geometry with the same boundary/initial conditions in problem 14 and 15 
using the separation of variables method and plot the profiles for δ = 0.1, 1, 
2 and 5. 

16. Consider the diffusion reaction discussed in Example 7.8. A similar equation 
governs the overpotential during galvanostatic charge/discharge of porous 
electrodes in the absence of concentration gradients:[7] 

2
2

2

u u
 =  - u

t x
u(x,0) = 0

u u
(0,t) =  and (1,t) = -

x x

∂ ∂ ν
∂ ∂

∂ ∂δ δβ
∂ ∂  

where ν is the modified exchange current density, δ is the applied current 
density and β is the ratio of solution phase conductivity to solid phase 
conductivity (usually  < 1). Obtain an analytical solution for this problem 
using the separation of variables method and plot the profiles. 

17. Solve the following Poison’s equation using the separation of variables 
method and plot the profiles: 
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2 2

2 2

u u
 +   = -1

x y

u(0,y) = 0; u(1,y) = 0

u(x,0) = 0; u(x,1) = 0

∂ ∂
∂ ∂

 

18. Solve the following Laplace equation with nonhomogeneous two flux 
boundary conditions and plot the profiles: 

2 2

2 2

u u
 +  = 0

y x

u u
(0,y) = 0 and (0,y) = 1

x x

u
u(x,0) = 0 and (x,1) = 0

x

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂
∂

 

19. Consider the Graetz problem with axial conduction.[8] [7] The governing 
equation is: 

2 2
2

2 2

T T 1 T T
2Pe(1 r )  =  +  +  

z r r r z

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 

with the following boundary conditions 

T
(0,z) = 0

r

∂
∂

for  L0  z  z≤ ≤  

T(1,z) = 1 for  L0  z  z≤ ≤  

T(r,0) = 0 for  0  r < 1≤  

and 

L

T
(r,z ) = 0

z

∂
∂

     for  0  r  1≤ ≤  

Obtain an analytical solution for this problem and plot the temperature 
distribution for Pe = 10 and zL = 2.  Hint: if you can’t find the 
eigenfunction and eigenvalues analytically, find them numerically. 

20. Consider the transient diffusion problem in a composite plate consisting of 
two regions of different conductivities. The governing equations for  
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dimensional concentration in region I (0 ≤ x ≤ α), u1 and region II (α ≤ x  
≤ 1), u2 are: 

2
1 1

2 2

2
2 2

2

1 2

1

2

1 2

1 2
2

u 1 u
 =     0  x  

t x

u u
 =       x  1

t x
u (x,0) = u (x,0) = 1

u
(0,t) = 0 

x
u (1,t) = 0

u ( ,t) = u ( ,t)

1 u u
( ,t) = ( ,t)

x x

∂ ∂ ≤ ≤ α
∂ β ∂

∂ ∂ α ≤ ≤
∂ ∂

∂
∂

α α
∂ ∂α α

β ∂ ∂

 

where, β2 is the ratio of diffusion coefficients in region II to region I.  
Using the governing equations and boundary conditions at x = 0 and 1, 
show that eigenfunctions for regions I and II are: 

( )
[ ]( )

1 n n

2 n n

X  = A cos x

X  = B sin 1 x

βλ

λ −
 

where, λn is the eigenvalue.  Using the third boundary condition 
(concentrations are continuous at x = α), show that the eigenfunctions can 
be rewritten as: 

( ) [ ]( )
( ) [ ]( )

1 n n n

2 n n n

X  = C cos x sin 1

X  = C cos sin 1 x

βλ λ − α

βλ α λ −
 

Next, use the fourth boundary condition to obtain the eigenvalue λn.  Thus, 
the transient solutions can be obtained as: 

( ) [ ]( ) ( )

( ) [ ]( ) ( )

2
1 n n n n

n 1

2
2 n n n n

n 1

u  = C cos x sin 1 exp t

u  = C cos sin 1 x exp t

∞

=
∞

=

βλ λ − α −λ

βλ α λ − −λ

∑

∑
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Next, use the initial condition to find the coefficient Cn: 

( ) [ ]( )

( ) [ ]( )

n n n
n 1

n n n
n 1

1 = C cos x sin 1

1 = C cos sin 1 x

∞

=
∞

=

βλ λ − α

βλ α λ −

∑

∑
 

Multiply both sides of each equation by the corresponding eigenfunction 
and integrate over the domain of interest: 

[ ]( ) ( ) [ ]( ) [ ]( ) ( ) ( )

[ ]( ) ( ) ( ) ( ) [ ]( ) [ ]( )

n m n n m n m
n 10 0

1 1

m m n n m n m
n 1

sin 1 cos x dx = C sin 1 sin 1 cos x cos x dx

sin 1 x cos dx = C cos cos sin 1 x sin 1 x dx

α α∞

=

∞

=α α

λ − α βλ λ − α λ − α βλ βλ

λ − βλ α βλ α βλ α λ − λ −

∑∫ ∫

∑∫ ∫

 

Simplify the integrals in both the equations and add both the equations to 
obtain the constant Cn (you might have to use the eigenvalue equation to 
simplify the integrals).  Once an analytical solution is obtained, plot the 
profiles for α = 0.4 and β = 0.5. 

21. Consider electrochemical discharge composite planar electrodes.[4] The 
governing equations are same as problem 20 with the only difference being 
the boundary condition at x = 1: 

2u
(1,t) = -

x

∂ δ
∂

 

where, δ is the dimensionless applied current density. Obtain an analytical 
solution for this problem and plot the profiles for α = 0.4, β = 0.5 and δ = -1. 
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Chapter 8 

Laplace Transform Technique for Partial 
Differential Equations 

8.1   Laplace Transform Technique for Partial Differential 
Equations (PDEs) in Finite Domains 

8.1.1   Introduction 

Transient heat conduction or mass transfer in solids with constant physical 
properties (diffusion coefficient, thermal diffusivity, thermal conductivity, etc.) is 
usually represented by a linear parabolic partial differential equation. In this 
chapter, we describe how one can arrive at the analytical solutions for linear first 
order hyperbolic partial differential equations and parabolic partial differential 
equations in finite domains using the Laplace transform technique.   

8.1.2   Laplace Transform Technique for Hyperbolic PDEs 

Linear first order hyperbolic partial differential equations are solved using Laplace 
transform techniques in this section.  Hyperbolic partial differential equations are 
first order in the time variable and first order in the spatial variable.  The method 
involves applying Laplace transform in the time variable to convert the partial 
differential equation to an ordinary differential equation in the Laplace domain.  
This becomes an initial value problem (IVP) in the spatial direction with s, the 
Laplace variable, as a parameter. The boundary conditions in x are converted to 
the Laplace domain and the differential equation in the Laplace domain is solved 
by using the techniques illustrated in chapter 2.1 for solving linear initial value 
problems. Once an analytical solution is obtained in the Laplace domain, the 
solution is inverted to the time domain to obtain the final analytical solution (in 
time and spatial coordinates).  This is best illustrated with the following example.    

Example 8.1. Wave Propagation in a Rectangle 

Consider the propagation of a wave in a rectangle.[1] The dimensionless concentration 
profile is governed by: 
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( )
( )

u u
v 0

t x
u x,0 1

u 0,t 0

∂ ∂+ =
∂ ∂

=

=

                            (8.1) 

Equation (8.1) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

The governing equation is entered here: 

> eq:=diff(u(x,t),t)+v*diff(u(x,t),x); 

 

The initial and boundary conditions are entered here. 

> u(x,0):=1; 

 

> bc1:=u(0,t)=0; 

 

The governing equation and the boundary condition are converted to the Laplace 
domain: 

> eqs:=laplace(eq,t,s); 

 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s); 

 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 
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> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

The solution obtained in the Laplace domain is converted to the time domain here: 

> u:=invlaplace(U(x),s,t); 

 

The following plots can be obtained: 

> plot3d(subs(v=1.,u),x=0..1,t=1e-6..1,axes=boxed,title="Figure 8.1", 
labels=[x,t,"u"],orientation=[-137,50]); 

 

 
 
Fig. 8.1 

> plot([subs(v=1,t=0.1,u),subs(v=1,t=0.25,u),subs(v=1,t=0.5,u), 
subs(v=1,t=1,u)],x=0..1,axes=boxed,title="Figure 8.2", 
thickness=5,labels=[x,"u"]); 
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Fig. 8.2 
 

Example 8.2. Wave Propagation in a Rectangle 

Consider the propagation of a wave in a rectangle with a known initial profile.  
The dimensionless concentration profile is governed by: 

( ) ( )
( )

u u
  0

t x
u x,0 1 exp x

u 0,t 0

∂ ∂+ =
∂ ∂

= − −

=

   (8.2) 

Equation (8.2) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)+diff(u(x,t),x); 
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> u(x,0):=1-exp(-x); 

 

> bc1:=u(0,t)=0; 

 

The solution obtained in the Laplace domain is: 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(0,t),t,s)=U(0),bc1); 

 

> U(x):=rhs(dsolve({eqs,bc1},U(x))); 

 

The solution obtained in the time domain is obtained as: 

> u:=invlaplace(U(x),s,t); 

 

> plot3d(u,x=1e-6..1,t=0..1,axes=boxed,title="Figure 8.3", 
labels=[x,t,"u"],orientation=[120,60]); 
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Fig. 8.3 
 

> plot([subs(t=0.1,u),subs(t=0.25,u),subs(t=0.5,u),subs(t=1,u)],x=0..1, 
axes=boxed,title="Figure 8.4",thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.4 
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8.1.3   Laplace Transform Technique for Parabolic Partial 
Differential Equations – Simple Solutions   

Linear first order parabolic partial differential equations in finite domains are 
solved using the Laplace transform technique in this section.  Parabolic PDEs are 
first order in the time variable and second order in the spatial variable.  The 
method involves applying the Laplace transform in the time variable to convert the 
partial differential equation to an ordinary differential equation in the Laplace 
domain. This becomes a boundary value problem (BVP) in the spatial direction 
with s, the Laplace variable as a parameter. The boundary conditions in x are 
converted to the Laplace domain and the differential equation in the Laplace 
domain is solved by using the techniques illustrated in chapter 3.1 for solving 
linear boundary value problems. Once an analytical solution is obtained in the 
Laplace domain, the solution is inverted to the time domain to obtain the final 
analytical solution (in time and spatial coordinates).  Certain simple problems can 
be inverted to the time domain using Maple. This is best illustrated with the 
following examples.    

Example 8.3. Heat Transfer in a Rectangle 

Example 7.4, heat transfer in a rectangle with a sinusoidal initial profile,[2] is  
solved here again using the Laplace transform technique. The dimensionless 
temperature profile is governed by: 

( ) ( )
( ) ( )

2

2

u u

t x
u x,0 sin x

u 0,t  = 0 and u 1,t  = 0

∂ ∂=
∂ ∂

= π  (8.3) 

Equation (8.3) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=sin(Pi*x); 

 

> bc1:=u(x,t)=0; 
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> bc2:=u(x,t)=0; 

 

The governing equation and the boundary conditions are converted to the Laplace 
domain: 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(0),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(1),bc2); 

 

The governing equation in the Laplace domain is solved as: 

> dsolve(eqs,U(x)); 

 

The governing equation is solved with the boundary conditions as: 

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x))); 

 

The solution obtained is converted to the time domain as: 

> u:=invlaplace(U(x),s,t); 

 

> plot3d(u,x=1..0,t=0..0.2,axes=boxed,title="Figure 8.5", 
labels=[x,t,"u"],orientation=[120,60]); 
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Fig. 8.5 

 

> plot([subs(t=0,u),subs(t=0.05,u),subs(t=0.1,u),subs(t=0.2,u)],x=0..1, 
title="Figure 8.6",axes=boxed,thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.6 
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In all the examples previously discussed, the boundary conditions did not involve 
derivatives until now. When there is a derivative in the boundary condition it has 
to be taken care of while applying the Laplace transform as shown in the next 
example. 

Example 8.4. Transient Heat Transfer in a Rectangle 

Consider heat transfer in a rectangle with a derivative boundary condition. The 
dimensionless temperature profile is governed by: 

( )

( ) ( )

2

2

u u

t x
x

u x,0 sin
2

u
u 0,t 0 and 1,t 0

x

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

∂= =
∂

           (8.4) 

Equation (8.4) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=sin(Pi*x/2); 

 

> bc1:=u(x,t)=0; 

 

> bc2:=diff(u(x,t),x)=0; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s): 

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2); 

 

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x))); 

 

> u:=invlaplace(U(x),s,t); 

 

> plot3d(u,x=1..0,t=0..0.2,axes=boxed,title="Figure 8.7", 
labels=[x,t,"u"],orientation=[120,60]); 

 

 
 
Fig. 8.7 
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> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1, 
axes=boxed,title="Figure 8.8.",thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.8 

 
In examples 8.3 and 8.4 Maple was used to invert from the Laplace domain to the 
time domain.  Unfortunately, these two examples are very simple and, hence, we 
could invert to the time domain using Maple.  For practical problems, inversion is 
not straightforward. The inversion to the time domain can be done in two different 
ways. In section 8.1.4, short time solutions will be obtained by converting the 
solution in Laplace domain to an infinite series.  In section 8.1.5, a long time 
solution will be obtained by using the Heaviside expansion theorem. 

8.1.4   Laplace Transform Technique for Parabolic Partial 
Differential Equations – Short Time Solution 

The methodology is the same as that used in section 8.1.3. When Maple fails to 
invert the Laplace domain solution to the time domain, a short time solution can 
be obtained by converting the Laplace domain solution to an infinite series in 
which each term can be easily inverted to time domain. The solution obtained for 
heat transfer in a rectangle in example 7.1 using the separation of variables 
method cannot be used at short times. At time t = 0, one would need infinite 
number of terms in the separation of variables solution.  Fortunately, the Laplace 
transform technique helps us obtain a solution, which can be used efficiently at 
short times also.  This is best illustrated with the following examples.    
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Example 8.5. Heat Transfer in a Rectangle 

Consider Example 7.1 heat transfer in a rectangle[2] which is solved here again 
using the Laplace transform technique.  The dimensionless temperature profile is 
governed by: 

( )
( ) ( )

2

2

u u

t x
u x,0 1

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

=

= =

 (8.5) 

Equation (8.5) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

The governing equation and boundary conditions are entered and converted to the 
Laplace domain. 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=1; 

 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=0; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1); 
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> bc2:=laplace(bc2,t,s): 

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2); 

 

The solution obtained in the Laplace domain is: 

> U(x):=rhs(dsolve({eqs,bc1,bc2},U(x))); 

 

Maple fails to invert the solution obtained: 

> invlaplace(U(x),s,t); 

 

 
The first two terms of U(x) are expressed as an infinite series below: 

> U1s:=-exp(s^(1/2)*x)/s/(exp(s^(1/2))+1); 

 

> U2s:=-exp(-s^(1/2)*x)*exp(s^(1/2))/s/(exp(s^(1/2))+1); 

 

We want to write a series in terms of S=exp(-s^(1/2)) so that the series will 
converge: 

> U1S:=series(subs(exp(s^(1/2))=1/S,U1s),S); 

 
> U1S:=subs(S=exp(-s^(1/2)),U1S); 

 
> simplify(U1S); 
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Hence, U1S can be written as the infinite series: 

> U1S:=Sum((-1)^n*exp(s^(1/2)*(x-n))/s,n=1..infinity); 

 

The general term in the above series is: 

> u1s:=(-1)^n*exp(s^(1/2)*(x-n))/s; 

 

The time domain solution for this expression is: 

> u1t:=invlaplace(u1s,s,t); 

 

Hence, the inverse of U1S is the infinite series given by: 

> U1t:=Sum(u1t,n=1..infinity); 

 

Similarly, U2S is inverted below: 

> U2S:=series(subs(exp(s^(1/2))=1/S,U2s),S); 

 

> U2S:=subs(S=exp(-s^(1/2)),U2S); 
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> simplify(U2S); 

 

> U2S:=Sum((-1)^n*exp(-s^(1/2)*(x+n-1))/s,n=1..infinity); 

 

> u2s:=(-1)^n*exp(-s^(1/2)*(x+n-1))/s; 

 

> u2t:=invlaplace(u2s,s,t); 

 

> U2t:=Sum(u2t,n=1..infinity); 

 

The final solution for u in the time domain is: 

> Ut:=U1t+U2t+1; 

 

For plotting purposes, infinity is replaced by N = 20: 

> u:=subs(infinity=N,Ut); 
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> u:=subs(N=20,u); 

 

The following plots can be obtained: 

> plot3d(u,x=0..1,t=1e-6..0.1,axes=boxed,title="Figure 8.9", 
labels=[x,t,"u"],orientation=[60,60]); 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.9 
  

 
> plot([subs(t=1e-6,u),subs(t=1e-3,u),subs(t=0.01,u),subs(t=0.05,u)], 
x=0..1,axes=boxed,title="Figure 8.10",thickness=5,labels=[x,"u"]); 
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Fig. 8.10 

 
Note that for plotting purposes t = 0 is replaced by t = to avoid singularity at  
t = 0. 

Example 8.6. Mass Transfer in a Spherical Pellet 

Consider Example 7.3, mass transfer in a spherical pellet,[2]  which is solved again 
here. The governing equation in dimensionless form is 

( )

( ) ( )

2

2

u u 2 u

t x x x
u x,0 1

u
0,t 0 and u 1,t 0

x

∂ ∂ ∂= +
∂ ∂ ∂

=
∂ = =
∂

   (8.6) 

Equation (8.6) is solved in Maple and the results obtained are given below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+2/x*diff(u(x,t),x); 

 

> u(x,0):=0; 
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> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=1; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(0),laplace(u(x,t),t,s)=U(0),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(diff(laplace(u(x,t),t,s),x)=D(U)(1),laplace(u(x,t),t,s)=U(1),bc2); 

 

> U(x):=rhs(dsolve({eqs,bc2},U(x))); 

 

> U(x):=subs(_C2=0,U(x)); 
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> convert(U(x),exp); 

 

> U1s:=exp(s^(1/2))/s/(exp(s^(1/2))^2-1)*exp(s^(1/2)*x)/x; 

 

> U2s:=-exp(s^(1/2))/s/(exp(s^(1/2))^2-1)*exp(-s^(1/2)*x)/x; 

 

> U1S:=series(subs(exp(s^(1/2))=1/S,U1s),S): 

> U1S:=subs(S=exp(-s^(1/2)),U1S): 

> simplify(U1S); 

 

> U1S:=1/x*Sum(exp(s^(1/2)*(x-2*n+1))/s,n=1..infinity); 

 

> u1s:=exp(s^(1/2)*(x-2*n+1))/s; 

 

> u1t:=invlaplace(u1s,s,t); 
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> U1t:=1/x*Sum(u1t,n=1..infinity); 

 

> U2S:=series(subs(exp(s^(1/2))=1/S,U2s),S): 

> U2S:=subs(S=exp(-s^(1/2)),U2S): 

> simplify(U2S); 

 

> U2S:=-1/x*Sum(exp(-s^(1/2)*(x+2*n-1))/s,n=1..infinity); 

 

> u2s:=exp(-s^(1/2)*(x+2*n-1))/s: 

> u2t:=invlaplace(u2s,s,t); 

 

> U2t:=-1/x*Sum(u2t,n=1..infinity); 

 

> Ut:=U1t+U2t; 
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> u:=subs(infinity=N,Ut): 

> u:=subs(N=20,u); 

 

> plot3d(u,x=1e-6..1,t=1e-6..0.1,axes=boxed,title="Figure 8.11", 
labels=[x,t,"u"],orientation=[-150,60]); 

 

 
 
Fig. 8.11 

 
> plot([subs(t=1e-6,u),subs(t=1e-2,u),subs(t=0.05,u),subs(t=0.1,u)],x=0..1, 
axes=boxed,title="Figure 8.12",thickness=5,labels=[x,"u"]); 
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Fig. 8.12 

 

8.1.5   Laplace Transform Technique for Parabolic Partial 
Differential Equations – Long Time Solution 

The short time solutions obtained in section 8.1.4 (examples 8.1.5 and 8.1.6) require 
only a few terms in the infinite series at short times to converge. However, at long 
times the series requires a large number of terms and cannot be used efficiently. The 
long time solution can be obtained using Heaviside expansion theorem.[1] If we 
denote the solution obtained in the Laplace domain as F(s): 

( ) ( )
( )

p s
F s  = 

q s
   (8.7) 

Typically when linear partial differential equations are solved using the Laplace 
transform method the solution obtained in the Laplace domain can be represented as 
in equation (8.7) and q(s) usually has an infinite number of roots. If s = µn,  
n = 1..∞ are the distinct roots of q(s), q(s) can be factorized as 

( ) ( )( ) ( ) ( )1 2 nq s = s s ... s ... s ∞− μ − μ − μ − μ             (8.8) 

Using equation (8.8), equation (8.7) (if the order of q(s) is greater than the order of 
p(s)) can be converted to partial fractions as: 
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( ) ( )
( )

1 2 n n 1

1 2 n n 1

p s A A A A
F s  ... ...

q s s s s s
+

+

= = + + + +
− μ − μ − μ − μ       

(8.9) 

From equation (8.9) the coefficient An can be obtained by multiplying both sides 
by s - µn. 

( )( )
( )

( ) ( ) ( )n 1 n 2 n n 1 n
n

1 2 n 1

p s s A s A s A s
... A ...

q s s s s
+

+

− μ − μ − μ − μ
= + + + +

− μ − μ − μ  
(8.10) 

Next, the limit s → µn is obtained from equation (8.10): 

( ) ( )
( )n

n
n

s

p s s
A

q slim
→μ

⎛ ⎞− μ
=⎜ ⎟⎜ ⎟

⎝ ⎠
   (8.11) 

Since s = nμ is a root of q(s) both the numerator and the denominator become 

zero when the limit is applied. Consequently, L’Hopital’s rule is applied to find 
the limit of equation (8.11). 

( )( )
( )

( )( ) ( )
( )

( )
( )

n n

n n n
n

s s n

p s s p' s s p s  p
A  = 

q s q' s q'lim lim
→μ →μ

− μ − μ + μ
= =

μ
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠  

(8.12) 

Once the coefficients are obtained, the inverse Laplace transform can be obtained 
from equation (8.9) as: 

( )

( ) ( )( ) ( )

n

n = 1 n

1 1 n
n n

n = 1 n = 1n

A
F s

s

A
f t L F s L  = A exp t

s

∞

∞ ∞
− −

=
− μ

⇒

= = μ
− μ

∑

∑ ∑

      (8.13) 

Equation (8.13) gives the solution in the time domain.  Often s = 0 happens to be 
an additional root of q(s).  In this case F(s) can be written as: 

0 n

n = 1 n

A Ap(s)
F(s) =  =  + 

q(s) s s

∞

− μ∑              (8.14) 

A0 is obtained by multiplying both sides of equation (8.14) and applying the limit s  
→ 0.  A0 is obtained by applying L’Hopital’s rule as before as: 
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( )( )
( )

( )( ) ( )
( )

( )
( )s 0 s 0

n n
0

p s s p' s s p s  p 0
A

q s q' s q' 0lim lim
→ →

⎛ ⎞ ⎛ ⎞− μ − μ +
= = =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

  (8.15) 

The solution in time domain is obtained as: 

( ) ( )1 1 10 n
0 n n

n = 1 n = 1n

A A
f (t) L F(s) L L  A A exp t

s s - 

∞ ∞
− − −⎛ ⎞= = + = + μ⎜ ⎟ μ⎝ ⎠

∑ ∑
 

(8.16) 
Equation (8.16) can be used to invert the solution obtained in the Laplace  
domain as long as all the roots of q(s) are distinct and the order of q(s) is greater 
than p(s).   

Example 8.7. Heat Conduction with an Insulator Boundary Condition 

Consider heat transfer in a rectangle with an insulator boundary condition at one 
end.[2] The dimensionless temperature profile is governed by: 

( )

( ) ( )

2

2

u u

t x

u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂=
∂ ∂

=

∂ = =
∂

   (8.17) 

Equation (8.17) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

First, the governing equations and boundary conditions are converted to the 
Laplace domain and solved in the Laplace domain: 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=0; 
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> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=1; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)); 

 

> eq1:=eval(subs(x=1,bc2)); 

 

> con:=solve({eq0,eq1},{c[1],c[2]}); 
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The solution obtained in the Laplace domain is: 

> U(x):=subs(con,U(x)); 

 

The polynomials are:  

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

Note that the order of q(s) is greater than the order of p(s). 

> A(s):=P(s)/diff(Q(s),s); 

 

The roots of Q(s) are found as: 

> solve(Q(s),s); 

 

> _EnvAllSolutions := true; 

 

> solve(Q(s),s); 

 

The roots can be taken as: 

> 0,-((2*n-1)*Pi/2)^2; 
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Next, the coefficients are found: 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

First A0 is found: 

> A[0]:=subs(mu=0,A[n]); 

 

The coefficient An for values n = 1..∞ can be found as: 

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,A[n])); 

 

An is simplified as: 

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)}; 

 

> A[n]:=simplify(subs(vars,A[n])); 

 

The general terms in the Laplace domain solution are (see equation (8.16)): 

> u0s:=A[0]*1/s; 

 

The inverse Laplace transform is: 

> u0t:=invlaplace(u0s,s,t); 

 

The term in the infinite series is 

> uns:=A[n]/(s-mu); 
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> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt); 

 

The final solution is obtained as: 

> U:=u0t+Sum(unt,n=1..infinity); 

 

As in chapter 7, the initial condition is used at time, t = 0, to avoid Gibb’s 
phenomenon: 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)); 

 

The following plots are obtained: 

> plot3d(u,x=0..1,t=0..1,axes=boxed,title="Figure 8.13", 
labels=[x,t,"u"],orientation=[-150,60]); 
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Fig. 8.13 
 

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.3,u)],x=0..1, 
axes=boxed,title="Figure 8.14",thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.14 
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The short time solution for the same problem can be obtained using the 
methodology described in section 8.1.4 (examples 8.5 and 8.6) as: 

> Ut:=U1t+U2t; 

 

Example 8.8. Diffusion with Reaction 

Consider Example 7.8, diffusion with reaction in a rectangle, which is solved here 
using the Laplace transform technique. The dimensionless concentration profile is 
governed by: 

( )

( ) ( )

2
2

2

u u
u

t x

u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂= − Φ
∂ ∂

=

∂ = =
∂

   (8.18) 

Equation (8.18) is solved in Maple below: 

>restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-Phi^2*u(x,t); 

 

> u(x,0):=0; 

 

> bc1:=u(x,t)=1; 

 

> bc2:=diff(u(x,t),x)=0; 

 



710 8   Laplace Transform Technique for Partial Differential Equations
 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

[1]> U(x):=c[1]*cosh((s+Phi^2)^(1/2)*x)+c[2]*sinh((s+Phi^2)^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> U(x):=combine(simplify(U(x))): 

The shifting theorem is used to find the inverse Laplace transform[1] as:  
L-1F(s)=exp(-Φ2t)L=1F(s-Φ2). 
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> U(x):=factor(U(x)); 

 

> U1(x):=subs(s=s-Phi^2,U(x)); 

 

> P(s):=numer(U1(x)); 

 

> Q(s):=denom(U1(x)); 

 

> A(s):=P(s)/diff(Q(s),s); 

 

> solve(Q(s),s); 

 

> _EnvAllSolutions := true: 

> solve(Q(s),s): 

The roots are: 

> Phi^2,-((2*n-1)*Pi/2)^2; 

 

> A[n]:=simplify(subs(s=mu,A(s))); 
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> A[0]:=subs(mu^(1/2)=Phi,mu=Phi^2,A[n]): 

> A[0]:=simplify(A[0]); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,mu=-((2*n-1)*Pi/2)^2,A[n])): 

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)}: 

> A[n]:=simplify(subs(vars,A[n])); 

 

> u0s:=A[0]*subs(mu=Phi^2,1/(s-mu)); 

 

> u0t:=invlaplace(u0s,s,t); 

 

> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt); 
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The time domain solution is obtained by multiplying the inverse Laplace 
transform of U1(x) by exp(-Φ2t): 

> U:=simplify(u0t*exp(-Phi^2*t))+Sum(unt,n=1..infinity)*exp(-Phi^2*t); 

 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

The following plots are obtained: 

> plot3d(subs(Phi=1,u),x=1..0,t=0.5..0,axes=boxed,title="Figure 8.15", 
labels=[x,t,"u"],orientation=[-45,60]); 

 

 
 
Fig. 8.15 
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The solution obtained matches the separation of variables solution obtained in 
example 7.8. 

Example 8.9. Heat Conduction with Time Dependent Boundary Conditions 

Consider that one of the main advantages of the Laplace transform technique is that it 
can be used for time dependent boundary conditions, also. The separation of variables 
technique cannot be directly used and one has to use Duhamel’s superposition 
theorem[1] for this purpose.  Consider the modification of example 8.7: 

( )

( ) ( ) ( )

2

2

u u

t x
u x,0 0

u
0,t 0 and u 1,t exp t

x

∂ ∂=
∂ ∂

=
∂ = = −
∂

             (8.19) 

Equation (8.19) is solved by slightly modifying the Maple program used for 
example 8.7 as: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=0; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=exp(-t); 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

> A(s):=P(s)/diff(Q(s),s); 
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> solve(Q(s),s); 

 

> _EnvAllSolutions := true: 

> solve(Q(s),s): 

The roots are: 

> -1,-((2*n-1)*Pi/2)^2; 

 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

> A[0]:=subs(mu^(1/2)=I,mu=-1,A[n]): 

> A[0]:=simplify(A[0]); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*(2*n-1)/2*Pi,mu=-((2*n-1)*Pi/2)^2,A[n])): 

> vars:={cos(1/2*(2*n-1)*Pi)=0,sin(1/2*(2*n-1)*Pi)=(-1)^(n-1)}: 

> A[n]:=simplify(subs(vars,A[n])); 

 

> u0s:=A[0]*subs(mu=-1,1/(s-mu)); 

 

> u0t:=invlaplace(u0s,s,t); 
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> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-((2*n-1)/2*Pi)^2,unt); 

 

> U:=u0t+Sum(unt,n=1..infinity); 

 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

The following plots are obtained: 

> plot3d(u,x=0..1,t=0..1,axes=boxed,title="Figure 8.16", 
labels=[x,t,"u"],orientation=[-150,50]); 
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Fig. 8.16 

 
The dimensionless temperature at the surface x =0 reaches a maximum and then 
decreases as a function of time: 

> plot(subs(x=0,u),t=0..2,thickness=3,axes=boxed,title="Figure 8.17", 
labels=[t,"u(0,t)"]); 

 

 
 

Fig. 8.17 
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8.1.6   Laplace Transform Technique for Parabolic Partial 
Differential Equations – Heaviside Expansion Theorem  
for Multiple Roots 

In section 8.1.5, q(s) had only distinct roots.  Some times when partial differential 
equations are solved using the Laplace transform technique, the polynomial q(s) 
has multiple roots in addition to the infinite number of distinct roots. In this 
section, we consider q(s) as having an infinite number of distinct roots and a 
different root s = μ0 repeated twice. Even though one can invert when q(s) has any 
number of roots repeated any number of times, for most of the practical problems 
we will encounter roots being repeated only twice.  In this case, the solution 
obtained in the Laplace domain can be expressed as: 

( )
1 2 n

2
n = 10 n0

B B Ap(s)
F(s)  

q(s) s ss

∞

= = + +
− μ − μ− μ

∑            (8.20) 

First, B2 is obtained by multiplying both sides by (s - μ0)
2 and applying the limit  

s → μ0: 

( )( )
( ) ( ) ( )

2
20 n

1 0 2 0
n = 1 n

p s s A
B s B s

q s s

∞− μ
= − μ + + − μ

− μ∑        (8.21) 

B2 is obtained by applying the limit s  → μ0: 

( )( )
( )0

2

0
2

s

p s s
B  

q slim
→μ

⎛ ⎞− μ
= ⎜ ⎟

⎜ ⎟
⎝ ⎠

             (8.22) 

Maple’s ‘limit’ command can be used to find the limit.  Next, B1 is obtained by 
differentiating both sides of equation (8.21) with respect to s: 

( ) ( )
( ) ( )

2

0 n
1 0

n = 1 n

p s s Ad
B 2 s

ds q s s

∞⎛ ⎞− μ
= + − μ⎜ ⎟

⎜ ⎟ − μ⎝ ⎠
∑            (8.23) 

B2 is obtained by applying the limit s  → μ0 in equation (8.23): 

( ) ( )
( )0

2

0
1

s

p s sd
B  

ds q slim
→μ

⎛ ⎞⎛ ⎞− μ
⎜ ⎟= ⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
              (8.24) 
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Once the constants B1 and B2 are obtained equation (8.20) can be inverted as: 

( ) ( )( )
( )

( ) ( ) ( )

1 1 1 11 2 n
2

n 1n nn

1 0 2 0 n n
n 1

B B A
f t L F s L  + L L  

s ss

                          B exp t B t exp t A exp t

∞
− − − −

=

∞

=

⎛ ⎞⎛ ⎞
= = +⎜ ⎟⎜ ⎟ ⎜ ⎟− μ − μ− μ⎝ ⎠ ⎝ ⎠

= μ + μ + μ

∑

∑
 

(8.25) 

Example 8.10. Heat Transfer in a Rectangle 

Consider Example 7.1 heat transfer in a rectangle[2] which is solved here again 
using the Laplace transform technique. The dimensionless temperature profile is 
governed by: 

( )
( ) ( )

2

2

u u

t x
u x,0 1

u 0,t 0 and u 1,t 0

∂ ∂=
∂ ∂

=

= =

   (8.26) 

Equation (8.26) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=1; 

 

> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=0; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x)+1/s; 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> U(x):=factor(combine(simplify(U(x)))); 

 

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

> solve(Q(s),s); 
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> _EnvAllSolutions := true; 

 

> solve(Q(s),s); 

 

s = 0 is repeated twice (one root coming from 2 and the other coming from the 
sine term in q(s)).  The roots are (where n goes from 1 to infinity): 

> 0,0,-n^2*Pi^2; 

 

> mu0:=0; 

 

The coefficients B2 and B1 are found as (equations (8.22) and (8.24)): 

> b[2]:=(s-mu0)^2*P(s)/Q(s); 

 

> B[2]:=limit(b[2],s=0); 

 

> b[1]:=diff(b[2],s): 

> B[1]:=limit(b[1],s=0); 

 

For this problem the contribution from the repeated root s = 0 is zero.  This is not 
always true as shown in the next example. 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu=-n^2*Pi^2,A[n])): 

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0}; 
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> A[n]:=simplify(subs(vars,A[n])): 

> A[n]:=simplify(subs(vars,expand(A[n]))); 

 

> b1s:=B[1]*subs(mu0=0,1/(s-mu0)); 

 

> b1t:=invlaplace(b1s,s,t); 

 

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2); 

 

> b2t:=invlaplace(b2s,s,t); 

 

> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-n^2*Pi^2,unt); 

 

The solution is obtained and plotted as: 

> U:=b1t+b2t+Sum(unt,n=1..infinity); 

 



724 8   Laplace Transform Technique for Partial Differential Equations
 

> u:=piecewise(t=0,1,t>0,subs(infinity=20,U)): 

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.18", 
labels=[x,t,"u"],orientation=[45,60]); 
 

 
Fig. 8.18 

 

> plot([subs(t=0,u),subs(t=0.01,u),subs(t=0.05,u),subs(t=0.1,u)],x=0..1, 
axes=boxed,title="Figure 8.19",thickness=5,labels=[x,"u"]); 
 

 
Fig. 8.19 
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Example 8.11. Diffusion in a Slab with Nonhomogeneous Flux Boundary 
Conditions during Charging of a Battery 

Consider Example 7.9, charging of a planar battery electrode, which is solved here 
using the Laplace transform technique.  The dimensionless concentration profile is 
governed by: 

( )

( ) ( )

2

2

u u

t x

u x,0 0

u u
0,t 0 and 1,t

x x

∂ ∂=
∂ ∂

=

∂ ∂= = δ
∂ ∂

 (8.27) 

Equation (8.27) is solved in Maple and the results obtained are given below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=0; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=diff(u(x,t),x)=delta; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> U(x):=factor(combine(simplify(U(x)))); 

 

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

> solve(Q(s),s); 
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> _EnvAllSolutions := true; 

 

> solve(Q(s),s); 

 

> 0,0,-n^2*Pi^2; 

 

> mu0:=0; 

 

> b[2]:=(s-mu0)^2*P(s)/Q(s); 

 

> B[2]:=limit(b[2],s=0); 

 

> b[1]:=diff(b[2],s): 

> B[1]:=limit(b[1],s=0); 

 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu=-n^2*Pi^2,A[n])): 

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0}; 

 

> A[n]:=simplify(subs(vars,A[n])): 

> A[n]:=simplify(subs(vars,expand(A[n]))); 
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> b1s:=B[1]*subs(mu0=0,1/(s-mu0)); 

 

> b1t:=invlaplace(b1s,s,t); 

 

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2); 

 

> b2t:=invlaplace(b2s,s,t); 

 

> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-n^2*Pi^2,unt); 

 

> U:=b1t+b2t+Sum(unt,n=1..infinity); 
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> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

> plot3d(subs(delta=1,u),x=0..1,t=0..0.5,axes=boxed,title="Figure 8.20", 
labels=[x,t,"u"],orientation=[-135,60]); 

 

 
Fig. 8.20 
 

Example 8.12. Distribution of Overpotential in a Porous Electrode 

During the galvanostatic discharge of porous electrodes in the absence of 
concentration gradients, overpotential is governed by the following equation: 

( )

( ) ( )

2
2

2

u u
u

t x

u x,0 0

u u
0,t  and 1,t  

x x

∂ ∂= − ν
∂ ∂

=

∂ ∂= −δ = δβ
∂ ∂

         (8.28) 

where ν is the modified exchange current density, δ is the applied current density 
and β is the ratio of solution phase conductivity to solid phase conductivity 
(usually  < 1). Equation (8.28)is solved in Maple and the results obtained are given 
below: 
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Example 8.12 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)-nu^2*u(x,t); 

 

> u(x,0):=0; 

 

> bc1:=diff(u(x,t),x)=-delta; 

 

> bc2:=diff(u(x,t),x)=delta*beta; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 
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> U(x):=c[1]*cosh((s+nu^2)^(1/2)*x)+c[2]*sinh((s+nu^2)^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> U(x):=factor(combine(simplify(U(x)))); 

 

> U1(x):=subs(s=s-nu^2,U(x)); 

 

> P(s):=numer(U1(x)); 

 

> Q(s):=denom(U1(x)); 

 

> solve(Q(s),s); 
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> _EnvAllSolutions := true; 

 

> solve(Q(s),s); 

 

The roots are: 

> 0,0,nu^2,-n^2*Pi^2; 

 

> mu0:=0; 

 

> b[2]:=(s-mu0)^2*P(s)/Q(s); 

 

> B[2]:=limit(b[2],s=0); 

 

> b[1]:=diff(b[2],s): 

> B[1]:=limit(b[1],s=0); 

 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 
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> A[0]:=subs(mu^(1/2)=nu,mu^(3/2)=nu^3,mu=nu^2,A[n]): 

> A[0]:=simplify(A[0]); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu^(3/2)=-I*n^3*Pi^3, 
mu=-n^2*Pi^2,A[n])): 

> vars:={cos(n*Pi)=(-1)^n,sin(n*Pi)=0}; 

 

> A[n]:=simplify(subs(vars,A[n])): 

> A[n]:=simplify(subs(vars,expand(A[n]))); 

 

> b1s:=B[1]*subs(mu0=0,1/(s-mu0)); 

 

> b1t:=invlaplace(b1s,s,t); 

 

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2); 

 

> b2t:=invlaplace(b2s,s,t); 

 

> u0s:=subs(mu=nu^2,A[0]/(s-mu)); 
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> u0t:=invlaplace(u0s,s,t); 

 

> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-n^2*Pi^2,unt); 

 

> U:=b1t*exp(-nu^2*t)+b2t*exp(-nu^2*t)+simplify(u0t*exp(-nu^2*t))+ 
exp(-nu^2*t)*Sum(unt,n=1..infinity); 

 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

> pars:={nu=1,delta=1,beta=0.1}; 

 

> plot3d(subs(pars,u),x=0..1,t=0..0.5,axes=boxed,title="Figure 8.21", 
labels=[x,t,"u"],orientation=[-60,60]); 
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Fig. 8.21 

 
> plot([subs(t=0,pars,u),subs(t=0.05,pars,u),subs(t=0.1,pars,u), 
subs(t=0.2,pars,u)],x=0..1,axes=boxed,title="Figure 8.22", 
thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.22 
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In all the examples discussed in this chapter until now, the roots of q(s) were 
obtained analytically. This is not always possible.  Often the roots should be 
obtained numerically as in section 7.1.4.  This is illustrated in the next example. 

Example 8.13. Heat Conduction in a Slab with Radiation Boundary 
Conditions 

Consider Example 7.6, heat conduction in a rectangle with radiation at the 
surface,[2] which is solved here using the Laplace transform technique. The 
dimensionless temperature profile is governed by: 

 ( )

( ) ( ) ( )

2

2

u u

t x
u x,0 1

u u
0,t 0 and 1,t u 1,t 0

x x

∂ ∂=
∂ ∂

=
∂ ∂= + =
∂ ∂         

(8.29) 

Equation (8.29) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=1; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=diff(u(x,t),x)+u(x,t)=0; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 
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> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x)+1/s; 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)): 

> U(x):=factor(simplify(U(x))); 

 

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

Maple cannot find the eigenvalues directly. 

> solve(Q(s),s); 
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> eig:=sinh(s^(1/2))*s^(1/2)+cosh(s^(1/2)); 

 

For convenience s=-λ2 is substituted to find the eigenvalues. 

> eiglambda:=simplify(subs(s^(1/2)=I*lambda,s=-lambda^2,eig)); 

 

> plot(eiglambda,lambda=0..20,thickness=3,title="Figure 8.23", 
axes=boxed); 

 

 
 
Fig. 8.23 

 
The roots are: 

> 0,0,-lambda^2; 

 

> fsolve(eiglambda,lambda=1); 

0.8603335890  
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The first 20 eigenvalues are obtained numerically. 

> N:=20; 

 

> l[1]:=fsolve(eiglambda,lambda=0..2); 

l1 := 0.860333589  

> for i from 2 to N do l[i]:=fsolve(eiglambda,lambda=l[i-1]..l[i-1]+4);od: 

> seq(l[i],i=1..N); 

 

> mu0:=0; 

 

> b[2]:=(s-mu0)^2*P(s)/Q(s); 

 

> B[2]:=limit(b[2],s=0); 

 

> b[1]:=diff(b[2],s): 

> B[1]:=limit(b[1],s=0); 

 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 
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> A[n]:=simplify(subs(mu^(1/2)=I*lambda,mu^(3/2)=-I*lambda^3, 
mu=-lambda^2,A[n])); 

 

> vars:={cos(lambda)=lambda*sin(lambda)}; 

 

> A[n]:=simplify(subs(vars,expand(A[n]))); 

 

> b1s:=B[1]*subs(mu0=0,1/(s-mu0)); 

 

> b1t:=invlaplace(b1s,s,t); 

 

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2); 

 

> b2t:=invlaplace(b2s,s,t); 

 

> uns:=A[n]/(s-mu); 

 

> unt:=invlaplace(uns,s,t); 
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> unt:=subs(mu=-l[n]^2,lambda=l[n],unt); 

 

The solution obtained can then be plotted. 

> U:=b1t+b2t+Sum(unt,n=1..infinity); 

 

> u:=piecewise(t=0,1,t>0,subs(infinity=20,U)): 

> u:=evalf(u): 

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.24", 
labels=[x,t,"u"],orientation=[45,60]); 

 

 
 

Fig. 8.24 
 

> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1, 
title="Figure 8.25",axes=boxed,thickness=5,labels=[x,"u"]); 
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Fig. 8.25 

8.1.7   Laplace Transform Technique for Parabolic Partial 
Differential Equations in Cylindrical Coordinates 

The Laplace transform technique can be used for problems in cylindrical 
coordinates also. Problems in cylindrical coordinates involve Bessel functions.  
Maple’s inbuilt Bessel functions can be used for modeling these problems.  This is 
illustrated in the following example.   

Example 8.14. Heat Conduction in a Cylinder 

Consider heat conduction in a cylinder.[2] The dimensionless temperature profile 
is governed by 

( )

( ) ( )

2

2

u u 1 u

t x x x
u x,0 0

u
0,t 0 and u 1,t 1

x

∂ ∂ ∂= +
∂ ∂ ∂

=
∂ = =
∂

    (8.30) 

Equation (8.30) is solved in Maple below: 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2)+1/x*diff(u(x,t),x); 
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> u(x,0):=0; 

 

> bc1:=diff(u(x,t),x)=0; 

 

> bc2:=u(x,t)=1; 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),bc2); 

 

> dsolve(eqs,U(x)); 

 
Since BesselY becomes infinite x = 0_C2 should be zero and the solution is taken 
as: 

> U(x):=c[1]*BesselJ(0,(-s)^(1/2)*x); 
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> eq0:=eval(subs(x=0,bc1)); 

 

> eq1:=eval(subs(x=1,bc2)); 

 

> con:=solve({eq1},{c[1]}): 

> U(x):=subs(con,U(x)): 

> U(x):=factor(simplify(U(x))); 

 

> P(s):=numer(U(x)); 

 

> Q(s):=denom(U(x)); 

 

> solve(Q(s),s); 

 

> eig:=BesselJ(0,(-s)^(1/2)); 

 

> convert(eig,BesselI); 

 

> eiglambda:=simplify(subs(s^(1/2)=I*lambda,(-s)^(1/2)=lambda, 
s=-lambda^2,eig)); 

 

> plot(eiglambda,lambda=0..20,thickness=3,axes=boxed): 

The roots are: 

> 0,-lambda^2; 
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> N:=20; 

 

> l[1]:=fsolve(eiglambda,lambda=0..3); 

l1 := 2.404825558  

> for i from 2 to N do l[i]:=fsolve(eiglambda,lambda=l[i-1]..l[i-1]+4);od: 

> seq(l[i],i=1..N); 

 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

> A[0]:=limit(A[n],mu=0); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*lambda,(-mu)^(1/2)=lambda, 
mu^(3/2)=-I*lambda^3,mu=-lambda^2,A[n])); 

 

> u0s:=A[0]*subs(mu=0,1/(s-mu)); 

 

> u0t:=invlaplace(u0s,s,t); 

 

> uns:=A[n]/(s-mu); 
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> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-l[n]^2,lambda=l[n],unt); 

 

The following solution and plots are obtained: 

> U:=u0t+Sum(unt,n=1..infinity); 

 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

> u:=evalf(u): 

> plot3d(u,x=0..1,t=0..0.5,axes=boxed,title="Figure 8.26", 
labels=[x,t,"u"],orientation=[-145,60]); 

 

 
 

Fig. 8.26 
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> plot([subs(t=0,u),subs(t=0.1,u),subs(t=0.2,u),subs(t=0.5,u)],x=0..1, 
title="Figure 8.27",axes=boxed,thickness=5,labels=[x,"u"]); 

 

 
Fig. 8.27 

 

8.1.8   Laplace Transform Technique for Parabolic Partial 
Differential Equations for Time Dependent Boundary 
Conditions – Use of Convolution Theorem 

In example 8.9 the Laplace transform technique was used to solve a time 
dependent problem.  Inversing the Laplace transform is not straightforward. For 
complicated time dependent boundary conditions the convolution theorem can be 
used to find the inverse Laplace transform efficiently.  If H(s) is the solution 
obtained in the Laplace domain, H(s) is represented as a product of two functions: 

( ) ( ) ( )H s F s G s=    (8.31) 

where F(s) is chosen such that it can be represented as: 

( ) ( )
( )

p s
F s

q s
=    (8.32) 

F(s) is chosen so that the order of q(s) is greater than the order of p(s).  F(s) is then 
inverted using the methodology illustrated in section 8.1.5 and 8.1.6.  If F(s) and 
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G(s) are inverted to time domain individually, H(s) is then found using the 
convolution theorem[1] (Varma and Morbidelli, 1997): 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

t

0

1 1

h t f t g d

where

f t L F s  and g t L G s− −

= − τ τ τ

= =

∫
             (8.33) 

In equation (8.33), τ is a dummy variable.  An alternate form of equation (8.34) 
can also be used: 

( ) ( ) ( )
t

0

h t f g t d= τ − τ τ∫    (8.34) 

The methodology is illustrated using the following example.   

Example 8.15. Heat Conduction in a Rectangle with a Time Dependent 
Boundary Condition 

Consider heat conduction in a rectangle with a time dependent boundary 
condition.[2] The dimensionless temperature profile is governed by: 

( )

( ) ( ) ( )

2

2

u u

t x

u x,0 0

u 0,t 0 and u 1,t w t

∂ ∂=
∂ ∂

=

= =

   (8.35) 

Equation (8.35) is solved in Maple below for a general time dependent function, 
w(t), and plots are obtained for a particular step function. 

> restart:with(inttrans):with(plots): 

> eq:=diff(u(x,t),t)=diff(u(x,t),x$2); 

 

> u(x,0):=0; 
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> bc1:=u(x,t)=0; 

 

> bc2:=u(x,t)=w(t); 

 

> eqs:=laplace(eq,t,s): 

> eqs:=subs(laplace(u(x,t),t,s)=U(x),eqs); 

 

> bc1:=laplace(bc1,t,s): 

> bc1:=subs(laplace(u(x,t),t,s)=U(x),laplace(w(t),t,s)=W(s),bc1); 

 

> bc2:=laplace(bc2,t,s): 

> bc2:=subs(laplace(u(x,t),t,s)=U(x),laplace(w(t),t,s)=W(s),bc2); 

 

> dsolve(eqs,U(x)); 

 

> U(x):=c[1]*cosh(s^(1/2)*x)+c[2]*sinh(s^(1/2)*x); 

 

> eq0:=eval(subs(x=0,bc1)): 

> eq1:=eval(subs(x=1,bc2)): 

> con:=solve({eq0,eq1},{c[1],c[2]}): 

> U(x):=subs(con,U(x)); 

 

> U(x):=factor(combine(simplify(U(x)))); 
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Next U1(x) is written as a product of two functions (see equations (8.31) and 
(8.33)): 

> U1(x):=simplify(U(x)/W(s)/s); 

 

U1(x) is chosen so that q(s) is a higher order than p(s) (see equation (8.32)): 

> G(s):=W(s)*s; 

 

where W(s) is the Laplace transform of the time dependent boundary condition 
w(t) in equation (8.11.35.). Next, U1(X) is inverted to the time domain as 
illustrated in section 8.1.7 to obtain f(t) as: 

> P(s):=numer(U1(x)); 

 

> Q(s):=denom(U1(x)); 

 

> solve(Q(s),s); 

 

> _EnvAllSolutions := true; 

 

> solve(Q(s),s); 

 

> 0,0,-n^2*Pi^2; 

 

> mu0:=0; 

 

> b[2]:=(s-mu0)^2*P(s)/Q(s); 
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> B[2]:=limit(b[2],s=0); 

 

> b[1]:=diff(b[2],s): 

> B[1]:=limit(b[1],s=0); 

 

> A(s):=P(s)/diff(Q(s),s): 

> A[n]:=simplify(subs(s=mu,A(s))); 

 

> A[n]:=simplify(subs(mu^(1/2)=I*n*Pi,mu^(3/2)=-I*n^3*Pi^3, 
mu=-n^2*Pi^2,A[n])): 

> vars:={sin(n*Pi)=0}; 

 

> A[n]:=simplify(subs(vars,A[n])): 

> A[n]:=simplify(subs(vars,expand(A[n]))); 

 

> b1s:=B[1]*subs(mu0=0,1/(s-mu0)); 

 

> b1t:=invlaplace(b1s,s,t); 

 

> b2s:=B[2]*subs(mu0=0,1/(s-mu0)^2); 

 

> b2t:=invlaplace(b2s,s,t); 

 

> uns:=A[n]/(s-mu); 

 



752 8   Laplace Transform Technique for Partial Differential Equations
 

> unt:=invlaplace(uns,s,t); 

 

> unt:=subs(mu=-n^2*Pi^2,unt); 

 

> f(t):=b1t+b2t+Sum(unt,n=1..infinity); 

 

Next, a step function is chosen for w(t) and plotted: 

> w(t):=Heaviside(t-1)-1/2*Heaviside(t-2); 

 

> plot(w(t),t=0..5,thickness=3,title="Figure 8.28",axes=boxed); 

 

 
Fig. 8.28 
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The Laplace transform of w(t) is: 

> W(s):=laplace(w(t),t,s); 

 

The function g(t) is obtained by inverting G(s): 

> G(s):=s*W(s); 

 

> g(t):=invlaplace(G(s),s,t); 

 

Next, the convolution integral is carried out to obtain the final time domain 
solution as: 

> gtau:=subs(t=tau,g(t)); 

 

> ftau:=subs(t=t-tau,f(t)); 

 

> U:=int(ftau*gtau,tau=0..t); 

 

> u:=piecewise(t=0,0,t>0,subs(infinity=20,U)): 

> plot3d(simplify(u),x=0..1,t=0..5,axes=boxed,title="Figure 8.29", 
labels=[x,t,"u"],orientation=[135,45]); 



754 8   Laplace Transform Technique for Partial Differential Equations
 

 
 

Fig. 8.29 
 

The dimensionless temperature at different points inside the rectangle are plotted as: 

> plot([simplify(subs(x=1,u)),simplify(subs(x=0.75,u)),simplify(subs(x=0.5,u)), 
simplify(subs(x=0.25,u)),simplify(subs(x=0.0,u))],t=0..5.,thickness=3, 
axes=boxed,title="Figure 8.30",labels=[t,"u"]); 
 

 
Fig. 8.30 
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8.1.9   Summary 

In this chapter, analytical solutions were obtained for linear hyperbolic and 
parabolic partial differential equations in finite domains using Laplace transform 
technique. In section 8.1.2, a linear hyperbolic partial differential equations was 
solved using the Laplace transform technique. First, the partial differential 
equation was converted to an ordinary differential equation by converting the PDE 
from the time domain to the Laplace domain. For hyperbolic partial differential 
equations this results in an initial value problem (IVP), which is solved 
analytically in the Laplace domain as illustrated in chapter 2.1.  The analytical 
solution obtained in the Laplace domain was converted easily to the time domain 
using Maple’s inbuilt Laplace transform package. For parabolic partial differential 
equations, the governing equation in the Laplace domain is a boundary value 
problem (BVP), which is solved analytically as in chapter 3.1. For certain simple 
parabolic partial differential equations, the Laplace domain solution can be 
inverted to time domain easily using Maple as illustrated in section 8.1.3.   

Often inversion to time domain solution is not trivial and the time domain 
involves an infinite series.  In section 8.1.4 short time solution for parabolic partial 
differential equations was obtained by converting the solution obtained in the 
Laplace domain to an infinite series, in which each term can easily inverted to 
time domain.  This short time solution is very useful for predicting the behavior at 
short time and medium times.  For long times, a long term solution was obtained 
in section 8.1.5 using Heaviside expansion theorem.  This solution is analogous to 
the separation of variables solution obtained in chapter 7.  In section 8.1.6, the 
Heaviside expansion theorem was used for parabolic partial differential equations 
in which the solution obtained has multiple roots.  In section 8.1.7, the Laplace 
transform technique was extended to parabolic partial differential equations in 
cylindrical coordinates.  In section 8.1.8, the convolution theorem was used to 
solve the linear parabolic partial differential equations with complicated time 
dependent boundary conditions. For time dependent boundary conditions the 
Laplace transform technique was shown to be advantageous compared to the 
separation of variables technique. A total of fifteen examples were presented in 
this chapter. 

8.1.10   Exercise Problems 

1. Complete the details missing in example 8.2 (i.e., complete the Maple 
program).  Can you obtain an analytical solution if the initial condition is 
replaced by u(x,0) = x? 

2. Complete the details missing in example 8.6. 
3. Obtain the short time solution reported in example 8.7. 
4. Consider charging a battery as discussed in example 8.11. Complete the 

details missing in this example.  Obtain the short time solution for the same 
problem. 

5. Solve the following parabolic PDE using the Laplace transform technique 
(see examples 8.3 and 8.4): 
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( )

( ) ( )

2

2

u u

t x
x

u x,0 cos
2

u
0,t 0 and u 1,t 0

x

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

∂ = =
∂

 

6. Solve the following simple parabolic PDE using the Laplace transform 
technique: 

( )

( ) ( )

2

2

2

u u

t x
x

u x,0 sin
2

u 0,t 0 and u 1,t exp t
4

∂ ∂=
∂ ∂

π⎛ ⎞= ⎜ ⎟
⎝ ⎠

⎛ ⎞π= = −⎜ ⎟
⎝ ⎠

 

7. Solve the following steady state heat transfer problem by applying the 
Laplace transformation in y coordinate: 

( ) ( )

( ) ( ) ( )

2 2

2 2

u u
0

x y

u 0,y 0; u 1,y 0

u
u x,0 sin(πx); x,0 πsin πx

y

∂ ∂+ =
∂ ∂

= =
∂= = −
∂

 

8. Solve the following wave equation using the Laplace transformation 
technique: 

( ) ( )

( ) ( ) ( )

2 2

2 2

u u
0

t x
u 0,t 0; u( 1,t ) = 0

u
u x,0  = sin πx ; x,0 0

t

∂ ∂− =
∂ ∂

=
∂ =
∂

 

9. Obtain an analytical solution for the Graetz problem described in example 
5.6 and exercise problem 6 in chapter 7. 
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10. Consider diffusion with convection in a coated wall reactor, where the 
reaction takes place at the wall (Rice and Do, 1995;[3] chapter 5.1, exercise 
problem 1; chapter 7, exercise problem 7).  The governing equation and 
boundary conditions for concentration in dimensionless form are: 

( ) ( ) ( )
( )

2

2

u u 1 u

Z x x x
u u

0,Z 0 and 1, Z Ha u 1,Z 0
x x

u x,0 1

∂ ∂ ∂= +
∂ ∂ ∂
∂ ∂= + =
∂ ∂

=

 

where Ha is the Hatta number. Obtain an analytical solution for this 
problem using the Laplace transform technique. 

11. Consider cooling of spherical nuclear pellets (Rice and Do, 1995;[3] chapter 
5.1, exercise problem 7; chapter 7, exercise problem 8).  The dimensionless 
temperature distribution is governed by: 

2

2

u u 2 u
 =  +  + Q

t x x x
u u

(0,t) = 0 and (1, t) + Bi u(1,t) = 0
x x

u(x,0) = 1

∂ ∂ ∂
∂ ∂ ∂
∂ ∂
∂ ∂

 

where Q is the ratio of heat generation to heat conduction and Bi is the Biot 
number. Obtain an analytical solution for this problem using the Laplace 
transform technique.  Plot the profiles for Q = 1, Bi = 0.2 and Q = 1, Bi = 10.   

12. Consider dispersion of a linear kinematic wave in a dimensionless form 
(Aris, 1999;[4] chapter 5.1, exercise problem 9; chapter 7, exercise problem 
9).  The governing equation and boundary/initial conditions are: 

( ) ( )
( )

2

2

u u u
Pe

t x x
u 0,t 1; u 1,t 0

u x,0 0

∂ ∂ ∂= −
∂ ∂ ∂

= =

=

 

Obtain an analytical solution for this problem using the Laplace transform 
technique.  Plot the profiles for Pe = 1, 10 and 50. 

13. Consider the fluid flow problem (Davis, 1984;[5] chapter 5.1, exercise 
problem 10; chapter 7, exercise problem 10): 
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2

2

u u 1 u
=  +  + 4

t x x x
u

(0,t) = 0 and u(1,t) = 0
x

u(x,0) = 0

∂ ∂ ∂
∂ ∂ ∂
∂
∂

 

Obtain an analytical solution using the Laplace transform technique and 
plot the dimensionless velocity profiles. 

14. Consider the Graetz problem in planar geometry[5] (chapter 5.1, exercise 
problem 11, chapter 7, exercise problem 11).  The governing equations and 
boundary/initial conditions are: 

2
2

2

u u
2Pe(1 x )  = 

z x
u(x,0) = 0

u
(0,z) = 0 and u(1,z) = 1

x

∂ ∂−
∂ ∂

∂
∂

 

Solve this problem analytically and plot the profiles for different values of 
the Peclet number.   

15. Consider heat conduction in a slab with radiation at both ends (Carslaw and 
Jaeger, 1959;[2] chapter 5.1, exercise problem 12; chapter 7, exercise 
problem 12). The dimensionless governing equations, and the boundary 
and initial conditions are: 

( ) ( ) ( ) ( )
( )

2

2

u u
 

t x
u u

0,t   Hu 0,t 0 and 1, t Hu 1,t 0
x x

u x,0  = 1

∂ ∂=
∂ ∂

∂ ∂− + = + =
∂ ∂

 

where H is the dimensionless heat transfer coefficient. Obtain an analytical 
solution and plot the profiles for H = 1, 10. 

16. Consider the electrochemical discharge of spherical particles[6] (Subramanian 
and White, 2001; chapter 7, exercise problem 14). Governing equations, and 
boundary and initial conditions for this problem are: 

2

2

u u 2 u
 =  + 

t x x x
u(x,0) = 1

u u
(0,t) = 0 and (1,t) = -

x x

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ δ
∂ ∂
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Obtain the short time and the long time solution for this problem using the 
Laplace transform technique.  Plot the profiles for δ = 0.1, 1, 2 and 5. 

17. Redo exercise problem 13, chapter 7 using the Laplace transform technique 
if the flux at the surface is a function of time. 

( ) ( )u
1,t f t

x

∂ =
∂

 

Solve this problem for the following functions:  

( )
( ) ( )
( ) ( )

tf t e

f t sin t

f t Delta t  (delta function)

−= −

= −

= −

 

18. Consider a stirred pot in which pure solvent is used to extract oil from 
spherically shaped seeds.[3] Dimensionless concentrations of oil in the 
seeds (u) and in the solvent (C) are governed by the following equations. 

2

2

x 1

u u 2 u
 =  + 

t x x x
dC u

 = -3
dt x
u

(0,t) = 0 and u(1, t) = C(t)
x

u(x,0) = C(0) = 1

=

∂ ∂ ∂
∂ ∂ ∂

∂α
∂

∂
∂

 

where α is the capacity ratio of seed to the solvent.  Obtain an analytical 
solution for this problem using the Laplace transform technique and plot 
the profiles for α = 0.2 and α = 1. 

19. Consider a porous electrode in contact with a separator (at x = 0) and a 
current collector (at x = r).[7] Dimensionless electrolyte concentrations in 
the porous electrode (u) and in the separator (C) are governed by the 
following equations: 

( )

( ) ( ) ( )

( ) ( )

2

2

1.5

u u
 J

t x
dC 3rJε

 3u 0,t 3C
dt 2

u rJε u
0,t 3u 0,t 3C and r,t 0

x 2 x
u x,0 C 0 1

∂ ∂= ε +
∂ ∂

= − + −

∂ ∂ε = − + − =
∂ ∂

= =
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where ε is the porosity and r is the ratio of electrode thickness to separator 
thickness.  Note that separator concentration (C) cannot be eliminated from 
the governing equation for electrode concentration (u) in the time domain.  
However, the separator concentration C can be eliminated in the Laplace 
domain.  Obtain an analytical solution for this problem using the Laplace 
transform technique and plot the profiles for ε = 0.4 and r = 4. 

20. Does problem 18 have a steady state solution?  If so, explain how you 
would obtain it. 

21. Does problem 19 have a steady state solution?  If so, explain how you 
would obtain it. 
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Chapter 9 
Parameter Estimation 

9.1   Introduction 

Chemical engineers develop mathematical models of systems of interest that usu-
ally include parameters. This chapter describes methodology that can be used to 
determine these parameters, which usually appear in a nonlinear manner. For  
example, the material balance equation for the reaction    

1A Bk⎯⎯→  
(9.1) 

in a constant volume isothermal batch reactor is     

1
A

A

dC
k C

dt
= −  

(9.2) 

Equation (9.2) can be integrated easily to obtain, 

1( ) (0) k t
A AC t C e−=  (9.3) 

Equation (9.3) shows that the model equation for ( )AC t depends on 1k in a 

nonlinear manner (i.e., 1k  appears in the exponential term in equation (9.3)). Be-

quette [1] (p. 458) shows how to use experimental data to determine both 1k and 

(0)AC by using the least squares method for a linearized form of equation (9.3). 

That is, taking the natural logarithm of both sides of equation (9.3) yields 

1ln ( ) ln (0)A AC t C k t= −  (9.4) 

In equation (9.4), the dependent variable ln ( )AC t  depends linearly on the  

parameter 1k and the parameter ln (0)AC . Bequette rewrites equation (9.4) as  

1 2 y tθ θ= +  (9.5) 

where  
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ln ( )Ay C t=  (9.6) 

1 1kθ = −  (9.7) 

and 

2 ln (0)ACθ =  (9.8) 

Bequette then uses the least squares method to determine 1 2and θ θ  (Bequette 

calls these ( 1 2and p p )) since equation (9.5) is in the form of a straight line  

y mx b= +  (9.9) 

Unfortunately, this method is of limited value because chemical engineers often 
want to determine simultaneously more than two parameter values. For example, 
we would like to develop a procedure for determining the rate contents 

1 2 3 4,  ,  ,  and k k k k  for the reversible reactions  

1 3

2 4

A  B  C
k k

k k
⎯⎯→ ⎯⎯→←⎯⎯ ←⎯⎯  (9.10) 

In this case (see equation 2.10), for a constant volume, isothermal batch reactor  

1 2   A
A B

dC
k C k C

dt
= − +  

(9.11) 

1 2 3 4   B
A B B C

dC
k C k C k C k C

dt
= − − +  

(9.12) 

3 4 C
B C

dC
k C k C

dt
= −  

(9.13) 

Unfortunately, it is not possible to recast equations (9.10)-(9.13) into a simple 
equation like equation (9.9). 

9.2   Least Squares Method 

The determination of parameters such as rate constants in mathematical models of 
interest to chemical engineers is often done by using the least squares method. 
This method is based on some assumptions about the independent and the depend-
ent variables. Typically we begin by assuming that the independent variables such 
as time are known exactly and the dependent variables are random or stochastic 
variables (i.e., they are not known precisely). These variables are measured and 
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have measurement noise associated with them. We define the true values of these 
variables that would be obtained when measured if there were no randomness as-
sociated with the measurement. This true value is an hypothetical value which is 
postulated to exist. Consequently, a measured value will differ from the true value 
by a measurement error. We call this error a random error because it represents the 
difference between a random variable and its true value. 

To develop the linear least squares equations for a model that is linear in the  

parameters θ  let the objective function ( )θΦ  be defined as 

( ) ( ) ( )* *- -
T

Y Y Y YθΦ =  (9.14) 

where 
*Y  is a vector of measured values and Y is a vector of predicted values, 

which are obtained by multiplying the independent variables matrix X  by the 

vector of parameters θ : 

Y Xθ=  (9.15) 

Equation (9.15) can be written for a straight line model (see equation (9.9) with 1x  as the 

independent variable ( t , e.g., see equation (9.5)) specified for the first data point, 2x  

specified as the second data point, etc.: 

1

2

1

1

1n

x

x
X

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.16) 

where n is the number of data points. The column of 1’s in equation (9.16) is for 

the intercept ;b  that is, θ  is the vector of parameters and for a straight line model 

and is given by  

1

2

θ
θ

θ
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.17) 

where for equation (9.9) the parameter vector is 

m

b
θ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.18) 

It should be mentioned that X  could be written as  
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1

2

1

1

1 n

x

x
X

x

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.19) 

where in this case  

b

m
θ ⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (9.20) 

since the constant b would come first in the model equation 

1 2y xθ θ= +  (9.21) 

This way of writing andX θ  provides a convenient way of writing models with two or 

more independent variables ( )2 and ,  e.g.t t  such as  

2
1 2 3y x xθ θ θ= + +  (9.22) 

In this case, the independent variable matrix for equation (9.21) is: 

2
1 1

2
2 2

2

1

1

1 n n

x x

x x
X

x x

⎛ ⎞
⎜ ⎟
⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

(9.23) 

An equation for θ  based on the experimental data and model predictions can be 

obtained from the objective function ( ).θΦ  Equation (9.14) becomes by using 

equation (9.15)  

( ) ( ) ( )* *T
Y X Y Xθ θ θΦ = − −  

(9.24) 

Equation (9.24) can be expanded by recalling that the matrix transpose process is 
additive [2] 

( ) ( ) ( )* *T T T
Y X Y Xθ θ− = −  

(9.25) 

Substitution of equation (9.25) into equation (9.24) yields  
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( ) ( ) ( ) ( ) ( )* * *T T
Y Y X X Y Xθ θ θ θΦ = − − −  (9.26) 

Equation (9.26) can be expanded to obtain 

( ) ( ) ( ) ( ) ( )* * * *-
T T T T

Y Y Y X X Y X Xθ θ θ θ θΦ = − +  (9.27) 

Equation (9.27) can be simplified by recognizing that [2] 

( ) ( ) ( )* * TT
X Y Y Xθ θ=  (9.28) 

and that 

( )T T TX Xθ θ=  (9.29) 

Thus, by substituting equations (9.28) and (9.29) into equation (9.27) we  
obtain 

( ) ( ) ( )* * *2
T T T TY Y Y X X Xθ θ θ θΦ = − +  (9.30) 

The next step is to take the derivative of equation (9.30) with respect to θ  and set the re-

sulting vector equal to the zero vector 0 : 

( ) ( )*0 2 0
T T TY X X Xθ θ θ

θ θ θ
∂Φ ∂ ∂⎡ ⎤= − + =⎢ ⎥⎣ ⎦∂ ∂ ∂

 (9.31) 

The first non zero term on the right hand side of equation (9.31) can be written as 

( )* *T TY X X Yθ
θ
∂ ⎡ ⎤ =⎢ ⎥⎣ ⎦∂

 (9.32) 

where care has been taken to insure that the derivative has been taken properly. That is, 
according to equation A.75a in Crassidis and Junkins, [2] 

( ) ( ) ( ) ( )T T T TAx b C Dx e A C Dx e D C Ax b
x

∂ ⎡ ⎤+ + = + + +⎢ ⎥⎣ ⎦∂
 (9.33) 

Comparison of equation (9.33) to equation (9.32) shows that in  
our case, the symbols in equation (9.33) are defined as follows: 

*, 0, , , , and 0x A b Y C I D X eθ= = = = = = . Substitution of these sym-

bols into equation (9.33) yields the results given in equation (9.32). Note that the 
quantity in the square bracket on the left side of equation (9.32) is a scalar.  
Equation A.71 of Crassidis and Junkins[2] shows that the derivative of a scalar 
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with respect to a vector yields a vector. That is, if f  is a scalar and x  is a x 1n    

vector 

1 2

T

n

f f f f

x x x x

⎡ ⎤∂ ∂ ∂ ∂= ⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦
…  (9.34) 

In our case, 

( )* T
f Y X θ=  (9.35) 

Consider the case where we have two parameters and three data points 

[ ]1 2

Tθ θ θ=  (9.36) 

* * * *
1 2 3

T
Y Y Y Y⎡ ⎤= ⎣ ⎦  (9.37) 

and 

1

2

3

1

1

1

x

X x

x

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 (9.38) 

Substitution of equations (9.36) - (9.38) into equation (9.35) yields 

( ) ( ) ( )* * *
1 1 2 1 2 1 2 2 3 1 3 3f Y x Y x Y xθ θ θ θ θ θ= + + + + +  (9.39) 

Application of equation (9.34) to equation (9.39) yields 

* * *
1 2 3

* * *
1 1 2 2 3 3

Y Y Yf

Y x Y x Y xθ
⎡ ⎤+ +∂ = ⎢ ⎥∂ + +⎣ ⎦

 (9.40) 

The right hand side of equation (9.32) becomes 

*
1

* *
2

1 2 3 *
3

1 1 1T

Y

X Y Y
x x x

Y

⎡ ⎤
⎡ ⎤ ⎢ ⎥= ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9.41) 

* * *
* 1 2 3

* * *
1 1 2 2 3 3

T Y Y Y
X Y

Y x Y x Y x

⎡ ⎤+ +
= ⎢ ⎥+ +⎣ ⎦

 (9.42) 

Comparison of equations (9.40) and (9.42) reveals that equation (9.32) is correct. 
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The last term in equation (9.31) can be evaluated by letting 

TC X X=  (9.43) 

and recalling that (see equation A.75b in Crassidis and Junkins [2]) 

( ) ( )T TC C Cθ θ θ
θ
∂ = +

∂
 (9.44) 

Since the matrix 
TX X  is symmetrical, the matrix 

TX X  is equal to its  

transpose: 

( )TT TX X X X=  (9.45) 

Thus, equation (9.44) and (9.45) yield 

( ) ( )( ) 2
TT T T T TX X X X X X X Xθ θ θ θ

θ
∂ = + =

∂
 (9.46) 

Note equation (9.46) also requires taking the derivative of a scalar with respect to 
a vector which yields a vector. That is, in this case, 

T Tf X Xθ θ=  (9.47) 

which for our example case becomes 

[ ]
1

1
1 2 2

1 2 3 2
3

1
1 1 1

1

1

x

f x
x x x

x

θ
θ θ

θ

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎢ ⎥⎣ ⎦

 (9.48) 

or 

[ ]

3

1 1
1 2 3 3

22

1 1

3 i
i

i i
i i

x

f

x x

θ
θ θ

θ
=

= =

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.49) 

or 

[ ]

3

1 2
1

1 2 3 3
2

1 2
1 1

3 i
i

i i
i i

x

f

x x

θ θ
θ θ

θ θ

=

= =

⎡ ⎤+⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.50) 
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or 

3 3 3
2 2 2

1 1 2 1 2 2
1 1 1

3 i i i
i i i

f x x xθ θ θ θ θ θ
= = =

⎡ ⎤= + + +⎢ ⎥
⎣ ⎦

∑ ∑ ∑  (9.51) 

Applying equation (9.34) to equation (9.51) yields 

3

1 2
11

3 3
1 2

1 2
1 122

3

2
i

i

i i
i i

f
x

f

f
x x

θ θ
θ

θ
θ θ

θθ

=

= =

∂⎡ ⎤ ⎡ ⎤+⎢ ⎥ ⎢ ⎥∂∂ ⎢ ⎥ ⎢ ⎥= =
∂⎢ ⎥ ⎢ ⎥⎡ ⎤

+∂ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ∂ ⎣ ⎦⎣ ⎦⎣ ⎦

∑

∑ ∑
 (9.52) 

The right hand side of equation (9.46) becomes for our example case 

3

1 1

3 3
22

1 1

3

2 2
i

T i

i i
i i

x

X X

x x

θ
θ

θ
=

= =

⎡ ⎤
⎢ ⎥ ⎡ ⎤⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎣ ⎦
⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.53) 

 

3

1 2
1

3 3
2

1 2
1 1

3

2 2
i

T i

i i
i i

x

X X

x x

θ θ
θ

θ θ

=

= =

⎡ ⎤+⎢ ⎥
⎢ ⎥=
⎢ ⎥

+⎢ ⎥
⎣ ⎦

∑

∑ ∑
 (9.54) 

Comparison of equation (9.52) to equation (9.54) reveals that equation (9.46) is 
correct. Substitution of equations (9.32) and (9.46) into equation (9.31) yields 

*2 2 0T TX Y X Xθ
θ

∂Φ = − + =
∂

 (9.55) 

Equation (9.55) can be solved for θ : 

( ) 1 *T TX X X Yθ
−

=  (9.56) 

which is the least squares equation for models that are linear in the parameters θ .   

Equation (9.56) can also be derived by considering the least squares problem as 

an over-determined system of equations. That is, we would like to find θ  such 

that  
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*X Yθ =  (9.57) 

but we have an over-determined system since θ  is typically a much smaller vec-

tor than 
*Y . Consequently, if we multiply equation (9.57) from the left by the 

transpose of ( )TX X  we obtain 

*T TX X X Yθ =  (9.58) 

and we realize that 
TX X  is a n x n square matrix that is the same size ( )1n x  as 

the vector θ  and the vector 
*TX Y . Usually, ( ) 1TX X

−
 exists; consequently, the least 

squares or normal equation for θ  can be obtained: 

( ) 1
*T TX X X Yθ

−
=  (9.59) 

Additional discussion about this approach can be found in Lopez (page 772) [3] 
and Ogunnaike and Ray (Example D.8, page 1230). [4] 

9.2.1   Summation Form or Classical Form 

The normal least squares equation (9.59) can be determined in summation or clas-
sical form [5, 6] by writing the objective function as 

( ) ( )2

1 2 1 2
1

,
n

i i
i

y xθ θ θ θ
=

Φ = − −∑  (9.60) 

where iy  represents the measured experimental value at the independent variable 

ix . The derivative of Φ  in equation (9.60) with respect to 1θ  is 

( )1 1
11

2 0
n

i i
i

y xθ θ
θ =

∂Φ = − − − =
∂ ∑  (9.61) 

Equation (9.61) can be written out for three data points ( )3n =  for illustration 

purposes: 

( ) ( ) ( )1 1 2 1 2 1 1 2 3 1 1 3 0y x y x y xθ θ θ θ θ θ− − + − − + − − =  (9.62) 

Inspection reveals that equation (9.62) can be simplified to  
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1 2
1 1

n n

i i
i i

y n xθ θ
= =

= +∑ ∑  (9.63) 

The derivative of Φ with respect to 2θ is 

( )1 2
12

2 0
n

i i i
i

y x xθ θ
θ =

∂Φ = − − − =
∂ ∑  (9.64) 

which can be rewritten as 

2
1 2

1 1 1

n n n

i i i i
i i i

x x y xθ θ
= = =

+ =∑ ∑ ∑  (9.65) 

Next, let y  be the average or mean value of the experimentally measured values 

of the dependent variable be defined as follows 

1

1 n

i
i

y y
n =

= ∑  (9.66) 

and the average value of the independent variable values be defined in a similar 
manner 

1

1 n

i
i

x x
n =

= ∑  (9.67) 

Equation (9.63) can be rewritten by using andy x  (equations (9.66) and (9.67), 

respectively) to yield an expression for 1θ  in terms of andy x  for convenience. 

If we can find an equation for 2θ  in terms of the measured values of andi iy x , 

we can substitute it into equation (9.65) and have expressions for the parameters 

1 2andθ θ  in terms of the measured values. Equation (9.63) can be rewritten as 

1 2y xθ θ= −  (9.68) 

Substitution of equation (9.68) into (9.65) yields 

( ) 2
2 2

1 1 1

n n n

i i i i
i i i

y yx x x y xθ θ
= = =

⎛ ⎞− + =⎜ ⎟
⎝ ⎠
∑ ∑ ∑  (9.69) 

or 

22
2

1 1 1 1 1

1 n n n n n

i i i i i i
i i i i i

y x x x y x
n n

θ θ
= = = = =

⎛ ⎞⎛ ⎞− + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑  (9.70) 

Equation (9.70) can be rewritten as 
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22

1 1 1 1 1 1

1n n n n n n

i i i i i i i
i i i i i i

x x n x y x y x
n n

θ
= = = = = =

⎛ ⎞⎛ ⎞⎛ ⎞− − = −⎜ ⎟⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎝ ⎠
∑ ∑ ∑ ∑ ∑ ∑  (9.71) 

or 

2

1 2
2

1 1 1 1

1

n

i n n n n
i

i i i i i
i i i i

x

x y x y x
n n

θ =

= = = =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟− + = −⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

∑
∑ ∑ ∑ ∑  (9.72) 

Thus, equation for 2θ  becomes 

1 1 1
2 2

2 1

1

1n n n

i i i i
i i i

n

in
i

i
i

y x y x
n

x

x
n

θ = = =

=

=

⎛ ⎞− ⎜ ⎟
⎝ ⎠=
⎛ ⎞
⎜ ⎟
⎝ ⎠−

∑ ∑ ∑

∑
∑

 (9.73) 

Next, let 

( )

2

212

1 1

n

in n
i

xx i i
i i

x

S x x x
n

=

= =

⎛ ⎞
⎜ ⎟
⎝ ⎠= − = −
∑

∑ ∑  (9.74) 

and 

1 1

1

n n

i in
i i

xy i i
i

y x

S y x
n

= =

=

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= −
∑ ∑

∑  (9.75) 

Thus, equation (9.73) becomes 

2
xy

xx

S

S
θ =  (9.76) 

Next, write equation (9.60), the objective function, as a sum of the residuals 

( )( )2

1 2
1

n

E i i
i

SS y xθ θ
=

= − +∑
 

(9.77) 

which can be expanded and rewritten as 



772 9   Parameter Estimation
 

2 2
2

1

n

E i xy
i

SS y ny Sθ
=

= − −∑  (9.78) 

Next, let’s define 

2 2

1

n

yy i
i

S y ny
=

= −∑  (9.79) 

so that equation (9.78) becomes 

2E yy xySS S Sθ= −  (9.80) 

Note that yyS can also be written as 

( )2

1

n

yy i
i

S y y
=

= −∑  (9.81) 

which can be seen by letting 2n =  and expanding equation (9.81) to 

( ) ( )2 2

1 2yyS y y y y= − + −  (9.82) 

which becomes 

2 2 2 2
1 1 2 22 2yyS y y y y y y y y= − + + − +  (9.83) 

or 

2 2 2
1 2 1 22 2 2yyS y y y y y y y= + − − +  (9.84) 

or 

2 2

1 1

2
n n

yy i i
i i

S y y y ny
= =

= − +∑ ∑  (9.85) 

or 

2 2

1

2
n

yy i
i

S y n y y ny
=

= − +∑  (9.86) 

Thus, 

2 2

1

n

yy i
i

S y ny
=

= −∑  (9.87) 
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Note that ESS has 2n −  degrees of freedom since two degrees of freedom were 

used to determine 1 2andθ θ . Thus, let the mean square ( )EMS  be defined as 2s  

2

2
E

E

SS
MS s

n
= =

−
 (9.88) 

which can be used to estimate the variance ( )2σ . We will call s  the standard 

deviation. Next, let the predicted value of the dependent variable be written with a 

caret, ˆ :iy   

1 2ˆi iy xθ θ= +  (9.89) 

Now, let’s develop an equation for the sum of the difference between the meas-

ured value of the dependent variable iy  and the average value of the observed 

values y  in terms of ˆiy . Start by writing the identity 

( ) ( )ˆ ˆi i i iy y y y y y− = − + −  (9.90) 

Next, square both sides of equation (9.90) and sum over all n observations 

( ) ( ) ( ) ( )( )2 2 2

1 1 1 1

ˆ ˆ ˆ ˆ2
n n n n

i i i i i i i
i i i i

y y y y y y y y y y
= = = =

− = − + − + − −∑ ∑ ∑ ∑  (9.91) 

The third term on the right hand side of equation (9.91) can be expanded to  
obtain 

( )( ) ( ) ( )
1 1 1

ˆ ˆ ˆ ˆ ˆ2 2 2
n n n

i i i i i i i i
i i i

y y y y y y y y y y
= = =

− − = − − −∑ ∑ ∑  (9.92) 

Now let ir  be the residual: 

ˆi i ir y y= −  (9.93) 

so that equation (9.92) becomes 

( )( )
1 1 1

ˆ ˆ ˆ2 2 2
n n n

i i i i i i
i i i

y y y y y r y r
= = =

− − = −∑ ∑ ∑  (9.94) 

Note that both terms on the right hand side of equation (9.94) are zero since the 
sum of the residuals is always equal to zero, 

1

0
n

i
i

r
=

=∑  (9.95) 

and the sum of the residuals weighted by the predicted values ( )ˆiy  is also zero: 
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1

ˆ 0
n

i i
i

y r
=

=∑  (9.96) 

Thus, equation (9.91) simplifies to 

( ) ( ) ( )2 2 2

1 1 1

ˆ ˆ
n n n

i i i i
i i i

y y y y y y
= = =

− = − + −∑ ∑ ∑  (9.97) 

Equation (9.97) can be rewritten as 

( )2

1

n

i R E
i

y y SS SS
=

− = +∑  (9.98) 

where ESS  is given by equation (9.80) and RSS  is called the regression sum of 

squares and is defined as 

( )2

1

ˆ
n

R i
i

SS y y
=

= −∑  (9.99) 

The left hand side of equation (9.97) can be written as (see equation (9.81)) 

( )2

1

n

yy i
i

S y y
=

= −∑  (9.100) 

so that equation (9.98) becomes     

yy R ES SS SS= +  (9.101) 

Substitution of equation (9.80) into equation (9.101) yields an equation for RSS  

in terms of 2θ : 

2R xySS Sθ=  (9.102) 

Finally, the coefficient of determination is called 2R  and can be written in terms 

of ESS  and yyS  by using equation (9.102) as follows: 

2 1R E

yy yy

SS SS
R

S S
= = −  (9.103) 

or in terms of 2θ : 

2 2
2

xy

yy

S
R

S
θ=  (9.104) 
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Values of 2R close to 1 imply that the variability in y  as defined by yyS can be 

explained by the regression model; however, it is important to note that 2R has no 
meaning for cases when x  is a controlled variable because the magnitude of 

2R depends on the spacing of through xyx S  (see equation(9.104)). 

The least squares estimates 1 2andθ θ  have several important statistical 

properties. For example, 

2

1

n
xy

i i
ixx

S
c y

S
θ

=

= =∑  (9.105) 

where 

1,..,i
i

xx

x x
c i n

S

−= =  (9.106) 

This means that 2θ  is a linear combination of the observations ( )iy . Now since 

the observations ( )iy  are assumed to be random variables that are normally and 

independently distributed, 2θ  is also a normally and independently distributed 
random variable. 

9.2.2   Confidence Intervals: Classical Approach 

The confidence intervals for 1 2, , andθ θ  the variance 2σ  can be determined by 

assuming that the errors in measuring iy  are normally and independently  

distributed so that the distribution of the variable 1v  which is defined as 

1 1
1

21
E

xx

v
x

MS
n S

θ θ−=
⎛ ⎞

+⎜ ⎟
⎝ ⎠

 (9.107) 

follows a student’s t  distribution with 2n −  degrees of freedom. Therefore, a 

( )100 1 α−  percent confidence interval on the intercept 1θ  is given by 

2 2

1 1/2, 2 1 /2, 2

1 1
n E n E

xx xx

x x
t MS t MS

n S n Sα αθ θ θ− −

⎛ ⎞ ⎛ ⎞
− + ≤ ≤ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.108) 

In a similar manner the distribution of the variable 2v
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2 2
2

E

xx

v
MS

S

θ θ−=  
(9.109) 

follows a student’s t  distribution with 2n −  degrees of freedom, and 

2 2/ 2, 2 2 / 2, 2
E E

n n
xx xx

MS MS
t t

S Sα αθ θ θ− −− ≤ ≤ +  (9.110) 

Also, if the errors are normally and independently distributed, the sampling  

distribution of the variable 3v
 

( )
3 2

2 En MS
v

σ
−

=  (9.111) 

is chi-square with 2n −  degrees of freedom. Thus, for 100 ( )1 α−  confidence 

interval in percent 

( ) ( )2
2 2

/ 2 1 / 2, 2

2 2E E

n

n MS n MS

α α

σ
χ χ − −

− −
≤ ≤  (9.112) 

The standard error ( )se  of the slope 2θ  is defined as 

( )2
E

xx

MS
se

S
θ =  (9.113) 

and the standard error of the intercept 1θ  is 

( )
2

1

1
E

xx

x
se MS

n S
θ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
 (9.114) 

9.2.3   Prediction of New Observations 

A new measurement 0x  can be used to predict a new observation, 0ŷ : 

1 20 0ŷ xθ θ= +  (9.115) 

where 0ŷ  is the point estimate of the new observation. Let the difference between 

value 0y  and the predicted value 0ŷ  be the random variable, ϕ , where 

0 0ˆy yϕ = −  (9.116) 
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and ϕ  is normally distributed with mean zero and variance. That is, 

( ) ( )0 0ˆV V y yϕ = −  (9.117) 

The variance ( )V ϕ  in this case includes the variance of the fitted regression line 

and the variance of the error term: 

( ) ( )2

02 1
1

xx

x x
V

n S
ϕ σ

⎡ ⎤−
= + +⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.118) 

because 0y  is independent of 0ŷ . Thus, the ( )100 1 α−  percent prediction  

interval on a future observation at 0x  is 

( ) ( )2 2

0 0
0 / 2, 2 0 0 / 2, 2

1 1
ˆ ˆ1 1n E n E

xx xx

x x x x
y t MS y y t MS

n S n Sα α− −

⎛ ⎞ ⎛ ⎞− −
− + + ≤ ≤ + + +⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 
(9.119) 

9.2.4   A One Parameter through the Origin Model 

A single parameter model that forces the data to go through the origin can be written as 

1y xβ ε= +  (9.120) 

In this case, the objective function can be written as 

( ) ( )2

1 1
1

n

i i
i

S y xβ β
=

= −∑  (9.121) 

The normal equation in this case is 

2
1

1 1

ˆ
n n

i i i
i i

x y xβ
= =

=∑ ∑  (9.122) 

so that 

1
1

2

1

ˆ

n

i i
i

n

i
i

y x

x
β =

=

=
∑

∑
 (9.123) 

The mean square error in this case is 

( )2

1

ˆ

1

n

i i
i

E

y y
MS

n
=

−
=

−

∑
 

(9.124) 

or 
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2
1

1 1

ˆ

1

n n

i i i
i i

E

y y x
MS

n

β
= =

−
=

−

∑ ∑
 (9.125) 

For this one parameter case, the ( )100 1 α−  percent confidence interval becomes 

1 / 2, 1 1 1 / 2, 1
2 2

1 1

ˆ ˆE E
n nn n

i i
i i

MS MS
t t

x x
α αβ β β− −

= =

− ≤ ≤ +
∑ ∑

 (9.126) 

A ( )100 1 α−  percent confidence interval for the expected value of the mean  

response at ( )( )0 1 0x x E y x=  is 

( )
2 2
0 0

0 / 2, 1 1 0 0 / 2, 11
2 2

1 1

ˆ ˆE E
n nn n

i i
i i

x MS x MS
y t E y x y t

x x
α α− −

= =

− ≤ ≤ +
∑ ∑

 (9.127) 

The ( )100 1 α−  percent prediction interval on a future observation a 0x x=  for 0y  is 

2 2
0 0

0 / 2, 1 0 0 / 2, 1
2 2

1 1

ˆ ˆ1 1n E n En n

i i
i i

x x
y t MS y y t MS

x x
α α− −

= =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟− + ≤ ≤ + +
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑
 (9.128) 

9.3   Nonlinear Least Squares 

The nonlinear least squares method can be used to determine parameter values that 
appear in model equations such as those given by equations (9.11) – (9.13). How-
ever, before doing that let’s consider a simpler problem. Bard [7] shows how to 
determine the pre-exponential factor or Arrhenius constant and the activation  
energy for reaction (9.1) at different temperatures. In this case, let’s assume that 

we know ( )0AC  and form the fraction of reactant remaining, y : 

( )  0A Ay C C=  (9.129) 

And set the initial condition to 

1 at 0y t= =  (9.130) 

In this case  
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1 1exp(  )y k x= −  (9.131) 

where 

1 time in hoursx =  (9.132) 

and 

1 1 2 2k =θ  exp ( θ x )−  (9.133) 

where 1θ is the Arrhenius constant in 1hr−  and 2θ  is the activation energy divided by the 

gas constant R so that the unit of 2θ is K . Here 2x  is the second  

independent variable T  in units of K . 
In this case, we have one dependent variable y , two independent vari-

ables 1 2 and x x , and two parameter values ( )1 2and θ θ . The model equation is  

( )( )1 2 2 1exp  exp   y x xθ θ⎡ ⎤= − −⎣ ⎦  (9.134) 

The experimental data from Bard [7] are presented in Table 9.1. 

Table 9.1 

 



780 9   Parameter Estimation
 

The next step in the process is to define the scalar objective function Φ that  
depends on the vector of parameters θ   

( ) ( ) ( )* *T
Y Y Y YθΦ = − −  (9.135) 

where 
* vector of experimental values for the depdendent variable Y y=  (9.136) 

( ) vector of predicted values of  from equation 9.19Y y=  (9.137) 

The minimum of Φ with respect to the parameters θ  can be found by setting the 

derivative of Φ with respect to the θ  equal to zero:  

0
θ

∂Φ =
∂

 (9.138) 

Equation (9.134) is nonlinear in the parameter valuesθ . Consequently, let’s ex-

pand Y in a Taylor series about guessed values for the parameter ( )kθ where the 

superscript k indicates iteration number k . Thus, 

( ) ( )( )
( )

,  ,  
k

k Y
Y x Y x

θ

θ θ θ
θ

∂≈ + Δ
∂

 (9.139) 

or 

( ) ( )
( ),

k

kY Y x J
θ θ

θ θ
=

= + Δ  (9.140) 

where 
( 1) ( )k kθ θ θ+Δ = −  (9.141) 

and for two parameters ( )1 2 and θ θ   

1 1

1 2

1 2

n n

Y Y

J

Y Y

θ θ

θ θ

∂ ∂⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥

= ⎢ ⎥
⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

 (9.142) 

where 1 1Y θ∂ ∂ is referred to as the sensitivity coefficient of the dependent vari-

able Y  with respect to parameter number one 1θ  evaluated at the first experimen-

tal condition as indicated by the subscript 1 on ( )1i.e., Y Y . Again, the subscript 

n  is the total number of data points which can include different independent  
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variable values. For example, 15n =  for the data in Table 9.1 where y  was  

measured at three different temperatures for five different times. Substitution of 
equation (9.140) into equation (9.135) yields 

( ) ( ) ( )* *T
Y Y J Y Y Jθ θ θΦ Δ = − − Δ − − Δ  (9.143) 

The minimum of ( )θΦ Δ  given by equation (9.143) can be found by taking its 

derivative with respect to θΔ  and setting that vector equal to the zero vector.  

This can be done by using equation (9.33) above where in this case  

, ,x A Jθ= Δ = − * *, , ,b Y Y e Y Y C I= − = − =  and D J= − . Thus, 

( ) ( )* * 0T TJ J Y Y J J Y Yθ θ
θ

∂Φ = − − Δ + − − − Δ + − =
∂Δ

 (9.144) 

or 

( )( )*2 0TJ J Y Yθ
θ

∂Φ = Δ − − =
∂Δ

 (9.145) 

or 

( )*2 0TJ Y Y J θ
θ

∂Φ = − − − Δ =
∂Δ

 (9.146) 

Equation (9.146) can be divided by 2 and then expanded to yield  

( )* 0T TJ J J Y YθΔ = − +  (9.147) 

which can be solved to obtain an expression for the change in the parameter vector θΔ : 

( ) ( )-1 *T TJ J J Y YθΔ = −  (9.148) 

This is an equation that can be used in an iterative process to find θ  when the 

model is nonlinear in one or more of the parametersθ . 

The procedure to determine the values for the elements of 

( )1 2  and  in this caseθ θ θ  consists of the following steps when it is possible to 

obtain the elements of J  analytically. 

1. Guess values for ( )kθ . 

2. Use ( )kθ to determine J according to equation (9.142). 

3. Use ( )kθ to determine Y  according to equation (9.134). (Y  is the vector 

of values of y obtained from the model equation (equation (9.134) in this  

case) evaluated at the independent variables 1 through 15 with ( )kθ  and the  

experimental data point values for 
1, 2,and j jx x with 1,  15j = .) 
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4. Solve equation (9.148) for θΔ .                 

5. Solve equation (9.141) for ( 1)kθ + . 

6. Replace ( )kθ with ( 1)kθ + . 

7. Repeat steps 2 through 6 until each i

i

θ
θ

Δ  becomes small (e.g., 

4 41 2
1 2

1 2

10 ,  and 10
θ θθ θ

θ θ
− −Δ ΔΔ ≤ Δ ≤ ).   

Figure 9.1 shows a flow diagram for this procedure. 

 

Fig. 9.1 Nonlinear Parameter Estimation Algorithm for k Independent Variable Values, 
One Dependent Variable (Y ) and n Parameters (θ ) 
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A Maple worksheet for this procedure is presented below. 

Example 9.1 Parameter Estimation 

> restart: 

> with (linalg): 

Enter experimental data for fraction of reactant remaining for all fifteen data 
points(yexp, j=1,15). 

> yexp:=matrix(15,1,[0.980,0.983,0.955,0.979,0.993,0.626,0.544,0.455, 
0.225,0.167,0.566,0.317,0.034,0.016,0.066]): 

Enter values for the independent variables (time in hours and temperature in K) 
for all 15 data points in pairs (tj,tempj, j=1,15).  

> x:=matrix(15,2,[0.1,100,0.2,100,0.3,100,0.4,100,0.5,100,0.05,200,0.1,200, 
0.15,200,.2,200,0.25,200,0.02,300,0.04,300,0.06,300,0.08,300,0.1,300]): 

The first row in the x matrix is: 

> x [1,1],x[1,2]; 

,0.1 100  

Enter the model equation (ymodel) for the fraction of reactant remaining as a 
function of time, temperature and parameter values theta1(Arrhenius constant, in 
hr-1) and theta2 (Activation energy divided by R, in K) . 

> ymodel:=exp(-theta1*t*exp(-theta2/T)); 

 

Use the ymodel equation to predict the values of the dependent variable in ypred. 

>  ypred:=matrix(15,1,[seq(eval(ymodel,{t=x[j,1],T=x[j,2]}),j=1..15)]): 

Note that ypred is a 15 x 1 matrix or vector, the first element of which is: 

> ypred[1,1]; 

 

Use Maple's Jacobian command in ‘linalg’ to find the elements of J (the sensitivity 
coefficients of the dependent variable to the parameters, theta1 and theta2). These 
are the derivates of the dependent variable y with respect to the parameters  
evaluated at the experimental conditions.  
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> J:=jacobian([seq(ypred[j,1],j=1..15)],[theta1,theta2]): 

 
Note that J is a 15 x 2 matrix. The rows of J consist of two elements. The first 
element in the first row is the derivative of the model equation (ymodel) with re-
spect to theta1 evaluated at the experimental conditions associated with the first 
data point (x[1,1] and x[1,2]). We use ypred  to obtain and evaluate this element. 
The second element in the first row of J is the derivate of ymodel with respect to 
theta2 evaluated at the first data point. The elements in the first row of J are shown 
next. 
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> J[15,1];J[15,2]; 

 
Next, determine the error between the measured value of y (yexp) and the pre-
dicted value of y (ypred). This is needed in the iteration process programmed be-
low for determining the parameter values, theta1 and theta2, via the least squares 
equation. 

> err:=evalm(yexp-ypred): 

The variable named err is a 15 x 1 matrix the first element of which is: 

> err[1,1]; 

 
Initialize an iteration counter, n_iters.

 
> n_iters:=0; 

n_iters := 0 

Initialize the parameter vector theta. Initial guesses can often be determined by 
considering only one of the data points. Another method is to try different initial 
guesses until the method yields the same converged values for theta1 and theta2. 

> theta:=matrix(2,1,[500,1e3]); 

 

Initialize the delta theta vector.  

> dtheta:=evalm(theta); 

 

Write a ‘do’ loop that solves for delta theta, updates the parameter values, and 
uses a while statement to check for convergence or exceeding 100 iterations. 

> while max(abs(dtheta[1,1]/theta[1,1]),abs(dtheta[2,1]/theta[2,1]))> 1.0e-7 
and   
   n_iters <100 do  

Jeval:=eval(J,{theta1=theta[1,1],theta2=theta[2,1]}): 
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JevalT:=transpose(Jeval):   
dthea:=evalm(inverse(JevalT&*Jeval)&*JevalT&*eval(err,{theta1=theta[
1,1],theta2=theta[2,1]})): 
 theta:=evalm(theta+dtheta); 
 n_iters:=n_iters+1;  
end do: 
 

Enter the number of iterations needed to obtain convergence. 

> n_iters; 

 

Print the converged values for theta1 and theta2. 

> evalm(theta); 

 

Use the converged values of theta1 and theta2 to determine predicted values of y 
for plotting, call this plotypred: 

> plotypred:=eval(ymodel,{theta1=theta[1,1],theta2=theta[2,1]}); 

 

Prepare the experimental data points for plotting.  

> plotdata:=[seq([x[j,1],x[j,2],yexp[j,1]],j=1..15)]; 

 

 

 
 
Specify the data (yexp) plot, P1, and the predicted values (ypred), P2. 

 > P1:=plot3d(plotdata,t=0..0.5,T=100..300,axes=boxed,style=point, 
symbol=box,symbolize=14,color=black): 
 

> P2:=plot3d(plotypred,t=0..0.5,T=100..300,axes=boxed,style=wireframe): 

Display the plots for the data and the predicted values of y on the same plot as 
functions of time, t, and temperature, T. 

> display({P1,P2},title="Example 9.1",labels=["t","T","y"], 
labeldirections=[horizontal,horizontal,vertical]); 
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Example 9.1 

Inspection of this figure reveals that more experimental data would be helpful par-
ticularly for shorter times at higher temperatures. The low temperature (100 K) 
data are not very useful since y changes so little over the 0.5 hour experiment. 

Extension of Example 9.1 

Example 9.1 above presents the methodology needed to obtain values for the pa-
rameters in an algebraic model that is nonlinear in the parameters. Usually, we 
will not be able to find an analytical solution to the differential equation model, 
and we will be forced to solve a differential equation model by numerical meth-
ods. This extension is intended to help you learn how to solve a model in differen-
tial equation form that is nonlinear in the parameters. That is, we will solve  
numerically the differential equation model (equation(9.2)) written in dimen-

sionless form where 1k  is given by equation (9.133) to obtain the parameter  

values by using the data in Example 9.1 above. Again, solve numerically the fol-

lowing differential equation model (where we have used 1 2andb b  instead of 

1 2andθ θ  as the parameters): 

( )exp1 2

dy
b b T y

dt
= − −  (9.149) 

and 
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( ) .y 0 1 0=  (9.150) 

Determine the parameter values and1 2b b by using the data given in Example 9.1 

and the nonlinear least squares method.  Recall that in Example 9.1 we needed the 

elements of the Jacobian matrix J (see equation (9.142)). In this case, integrate 

simultaneously the time dependent sensitivity coefficients (i.e., the Jacobi matrix 

elements 1 andy b∂ ∂ 2y b∂ ∂ ) and the differential equations. The needed  

three differential equations can be developed by taking the total derivative (as 
shown below) of the right hand side of equation (9.149) which we call h : 

( )exp1 2h b b T y= − −  (9.151) 

Inspection of equation (9.151) shows that h  depends on and 1 2b b y, at a fixed 

T . However, we know that the dependent variable y also depends on 

and1 2b b . Thus, sensitivity equations (Jacobian matrix elements 

1 2and y b y b∂ ∂ ∂ ∂ ) can be obtained by differentiating both sides of equation 

(9.151) with respect to b  by using the chain rule: 

dy Dh h h y

b dt Db b y b

∂ ∂ ∂ ∂⎛ ⎞ = = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.152) 

Equation (9.152) becomes (after we exchange the order of differentiation on the 
left hand side of equation (9.152)) 

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.153) 

Next, write equation (9.153) for our case where [ ]1 2

T
b b b= as follows: 

11 1

2 2 2

h yy h
y bb bd

h ydt y h
y bb b

∂ ∂⎛ ⎞∂ ∂⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟= +
⎜ ⎟∂ ∂⎜ ⎟ ⎜ ⎟∂ ∂
⎜ ⎟⎜ ⎟ ⎜ ⎟ ∂ ∂∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.154) 

Next, extract from equation (9.154) the differential equations for 

1 2and y b y b∂ ∂ ∂ ∂ : 

1 1 1

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.155) 



9.4   Hessian Matrix Approach 789
 

2 2 2

d y h h y

dt b b y b

⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.156) 

By taking the derivatives, equations (9.155) and  (9.156) yield 

( ) ( )2 1 2
1 1

exp exp
d y y

b T y b b T
dt b b

⎛ ⎞ ⎛ ⎞∂ ∂= − − + − −⎡ ⎤⎜ ⎟ ⎜ ⎟⎣ ⎦∂ ∂⎝ ⎠ ⎝ ⎠
 (9.157) 

and 

( ) 2 2
1 1

2 2

1
exp exp

d y b b y
b y b

dt b T T T b

⎛ ⎞ ⎛ ⎞∂ − − ⎡ − ⎤ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − + −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎢ ⎥∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠ ⎝ ⎠
 (9.158) 

Thus, we now have three dependent variables, ( )1 2, , and y y b y b∂ ∂ ∂ ∂ and 

two independent variables ( )andt T . These three dependent variables have the 

following initial conditions: 

( )0 1.0y =  (9.159) 

1 0

0.0
t

y

b
=

∂ =
∂

 (9.160) 

2 0

0.0
t

y

b
=

∂ =
∂

 (9.161) 

Fix T and integrate numerically in time the equations for the dependent vari-

ables 1( , ,y y b∂ ∂ 2and )y b∂ ∂ to find their dependence on time. We need to 

do this for the three different temperatures. We need to use the values obtained 
numerically for the model predictions and the elements of the Jacobian.  Also, 

note that you will need to use guessed values for 1 2andb b to obtain the needed 

values for the dependent variable y and the Jacobian elements 

1 2and y b y b∂ ∂ ∂ ∂ . Compare the values of and1 2b b  obtained in this man-

ner to the ones obtained in Example 9.1. 

9.4   Hessian Matrix Approach 

An equation which is essentially the same as equation (9.148) for θΔ  can be ob-

tained by using a different approach from that used above where we expanded the 
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dependent variable vector Y  in a Taylor series about an initial vector of the pa-

rameter values 
( )kθ  (see equation (9.139)). In this case, instead of expanding the 

model equations Y  as shown in equation (9.139), expand the objective  

function ( )θΦ  in a Taylor series about the kth guess of the parameter vector of 

( )kθ :  

( )( ) ( )( )
( )

( )
( )

1 1

2 kk

T

Tk k H
θ θθ θ

θ θ θ θ θ
θ ⎛ ⎞=⎜ ⎟

⎝ ⎠

+

=

⎛ ⎞∂Φ⎜ ⎟Φ = Φ + Δ + Δ Δ
⎜ ⎟∂⎝ ⎠

 (9.162) 

where the parameter vector 
( )1kθ +

 is unknown  and 

( ) ( )1k kθ θ θ+Δ = −  (9.163) 

as before.  The Hessian matrix H  is defined as 

2

T
H

θ θ
∂ Φ=

∂ ∂
 (9.164) 

We want to find the parameters θ  that make the derivative of ( )θΦ  with respect 

to θ  equal to the zero vector. Let’s do this by taking the derivative of 
( )( )1kθ +Φ  

given by equation (9.162) with respect to θΔ  by replacing 
( )1kθ +

 with θΔ  as 

the unknown vector and setting the resulting equation equal to the zero vector to 
obtain 

( )( )
( )

( )1
0

2

k

k

T

k

T
H

θ θ

θ θ

θ θ
θ θ θ θ

θ θ
θ

=

=

⎡ ⎤⎛ ⎞
⎢ ⎥∂Φ ∂ ∂ ∂Φ⎜ ⎟= Φ + Δ⎢ ⎥⎜ ⎟∂Δ ∂Δ ∂Δ ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤∂ ⎢ ⎥+ Δ Δ =
⎢ ⎥∂Δ
⎣ ⎦

 (9.165) 

Since 
( )( ) ( )k kθ is a constant  and θΦ  is a vector of known constants, the first  

term in equation (9.165) is the zero vector and the second term in equation (9.165)  
becomes 
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( ) ( )k k

T

θ θ θ θ

θ
θ θ θ

= =

⎡ ⎤⎛ ⎞
⎢ ⎥∂Φ ∂Φ ∂Φ⎜ ⎟= Δ =⎢ ⎥⎜ ⎟∂Δ ∂ ∂⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 (9.166) 

where care has been taken to evaluate the derivative carefully (note that the result-
ing derivative is a column vector, as required). The third term in equation (9.165) 
becomes by using equation (9.44) 

( )

1 1

2 2 k k
k

T TH H H
θ θ θ θ

θ θ

θ θ θ
θ = =

=

⎛ ⎞ ⎛ ⎞∂Φ ⎜ ⎟Δ Δ = + Δ⎜ ⎟
⎜ ⎟⎜ ⎟∂Δ ⎝ ⎠⎝ ⎠

 (9.167) 

Equation (9.165) becomes by using equations (9.166) and (9.167) 

( )
( )

1
0 0

2 k k

k

T
H H

θ θ θ θ
θ θ

θ
θ θ = =

=

⎛ ⎞∂Φ ∂Φ= + + + Δ =⎜ ⎟⎜ ⎟∂Δ ∂ ⎝ ⎠
 (9.168) 

Since H  is a symmetric matrix (see equation (9.164)) and therefore ,TH H=  

equation (9.168) becomes 

( )

1
2 0

2 k

k

H
θ θ

θ θ

θ
θ θ =

=

⎛ ⎞∂Φ ∂Φ= + Δ =⎜ ⎟∂Δ ∂ ⎝ ⎠
 (9.169) 

Equation (9.169) can be solved for θΔ : 

( )
( )

1
k

k

H
θ θ

θ θ

θ
θ

−

=
=

∂ΦΔ = −
∂

 (9.170) 

or by using equation (9.163) we have 

( ) ( )
( )

( )

1 1
k

k

k k H
θ θ

θ θ

θ θ
θ

+ −

=
=

∂Φ= −
∂

 (9.171) 

The next step is to determine expressions for 

( )kθ θ

θ
=

∂Φ
∂

and ( )
1

k
H

θ θ

−

=
 in terms  

of the sensitivity coefficients and the experimental data that can be used in  
equation (9.171). First, expand equation (9.114) to  
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( ) ( ) ( )* * * *T T T TY Y Y Y Y Y Y YθΦ = − − +  (9.172) 

Next, recall that [2] 

( )* *
T

TY Y Y Y=  (9.173) 

so that equation (9.172) becomes 

( ) ( ) ( )* * *2
T T TY Y Y Y Y YθΦ = − −  (9.174) 

Next, take the derivative of ( )θΦ  in equation (9.174) with respect to θ  

( )( )*0 2
T TY Y Y Y

θ θ θ
∂Φ ∂ ∂= − +
∂ ∂ ∂

 (9.175) 

Next, take the derivative of the second term in equation (9.175) as indicated to  
obtain 

( )( )* *2 2
T

T Y
Y Y Y

θ θ
⎛ ⎞∂ ∂− = − ⎜ ⎟∂ ∂⎝ ⎠

 (9.176) 

The third term in equation (9.175) becomes 

( )
T

T TY Y
Y Y Y Y

θ θ θ
⎛ ⎞∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂⎝ ⎠

 (9.177) 

Equation (9.177) can be simplified by recognizing that 

T
T Y Y

Y Y
θ θ

⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠
 (9.178) 

Thus, by using equation (9.178), equation (9.177) becomes 

( ) 2
T

T Y
Y Y Y

θ θ
⎛ ⎞∂ ∂= ⎜ ⎟∂ ∂⎝ ⎠

 (9.179) 

Substitution of equation (9.176) and (9.179) into equation (9.175) yields 

*2 2
T T

Y Y
Y Y

θ θ θ
⎛ ⎞ ⎛ ⎞∂Φ ∂ ∂= − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂⎝ ⎠ ⎝ ⎠

 (9.180) 

or 
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( )*2
T

Y
Y Y

θ θ
⎛ ⎞∂Φ ∂= − −⎜ ⎟∂ ∂⎝ ⎠

 (9.181) 

Equation (9.181) can be written as 

( ) ( )*2
T

J Y Y
θ

∂Φ = − −
∂

 (9.182) 

Substitution of equation (9.182) into equation (9.171) yields 

( ) ( )
( ) ( ) ( )( )1 1 *2 kkk

k k H J Y Y θ θθ θθ θ
θ θ+ −

===
= + −  (9.183) 

To obtain H  first write the objective function in summation form: 

( ) ( )2*

1

n

i i
i

Y Yθ
=

Φ = −∑  (9.184) 

where *
iY  is element i of 

*Y  and iY  is element i of Y  and n is the number of 

data points.  The derivative of the objective function Φ  in equation (9.184) with 

respect to parameter ( )jj θ  yields 

( )*

1

2
n

i
i i

ij j

Y
Y Y

θ θ=

∂Φ ∂= − −
∂ ∂∑  (9.185) 

Equation (9.185) can be written for each parameter, so for two parameters  

( )1, 2j =  equation (9.185) yields 

( )

( )

*

11 1

*

12 2

2

2

n
i

i i
i

n
i

i i
i

Y
Y Y

Y
Y Y

θ θ

θ θ

=

=

∂Φ ∂⎛ ⎞⎛ ⎞ − −⎜ ⎟⎜ ⎟∂ ∂⎜ ⎟⎜ ⎟ =
⎜ ⎟⎜ ⎟∂Φ ∂− −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∑

∑
 (9.186) 

Equation (9.186) can be written in matrix notation as 

( ) ( )*2
T

J Y Y
θ

∂Φ = − −
∂

 (9.187) 

where J  is given by equation (9.142) for two parameters.  Note that equation 

(9.187) is the same as equation (9.182), as expected. 
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Next, the Hessian matrix H  (see equation (9.164)) can be written in terms of 

the sensitivity coefficients. First, in our case we have 

TH
θ θ
∂Φ=

∂ ∂
 (9.188) 

Equation (9.188) can be written for two parameters: 

2 2

1 1 1 2

2 2

2 1 2 2

H
θ θ θ θ

θ θ θ θ

⎛ ⎞∂ Φ ∂ Φ
⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟= ⎜ ⎟∂ Φ ∂ Φ
⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.189) 

Next, find the elements of 1,1H  in equation (9.189) by writing equation (9.185) 

for 1j =  then taking the derivative of the resulting equation with respect to 1θ : 

( )
2 2

*
1,1

11 1 1 1 1 1

2
n

i i i
i i

i

Y Y Y
H Y Y

θ θ θ θ θ θ=

∂ Φ ∂ ∂ ∂= = − −
∂ ∂ ∂ ∂ ∂ ∂∑  (9.190) 

Next, write equation (9.185) with 1j = and then take the derivative with respect to 

2θ  to obtain 2,1H : 

( )
2 2

*
2,1

12 1 2 1 2 1

2
n

i i i
i i

i

Y Y Y
H Y Y

θ θ θ θ θ θ=

∂ Φ ∂ ∂ ∂= = − −
∂ ∂ ∂ ∂ ∂ ∂∑  (9.191) 

For simplicity, workers in the past [7] [8] have neglected the second terms on the 
right hand sides of equations (9.190) and (9.191), and similar terms  for the other 

elements of H . The resulting approximation to H  is often called N  after New-

ton. [7] Note that by making this assumption we obtain elements of N  that can be 

written as products of the sensitivity coefficients. That is, for two parameters and 
three data points 

1 1 2 2 3 3 1 1 2 2 3 3

1 1 1 1 1 1 1 2 1 2 1 2

1 1 2 2 3 3 1 1 2 2 3 3

2 1 2 1 2 1 2 2 2 2 2 2

2

Y Y Y Y Y Y Y Y Y Y Y Y

H N
Y Y Y Y Y Y Y Y Y Y Y Y

θ θ θ θ θ θ θ θ θ θ θ θ

θ θ θ θ θ θ θ θ θ θ θ θ

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎜ ⎟≈ =
⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 
(9.192) 

or in general 

2 TH N J J≈ =  (9.193) 
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Finally, by using equations (9.187) and (9.193) equation (9.171) becomes 

( ) ( ) ( ) ( ) ( ) ( )( )
1

1 *4 kkk

k k T TJ J J Y Y θ θθ θθ θ
θ θ

−
+

===

⎡ ⎤= + −⎢ ⎥⎣ ⎦
 (9.194) 

Comparison of equation (9.194) to (9.148) shows that the approximate Hessian 

matrix approach (since we are using and notN H ) leads to the same equation 

except for the factor of 4. This factor of 4 accelerates the convergence when the 
parameter values are near their converged values, but can cause additional itera-
tions to be needed for poor initial guesses. Another iterative method that could be 
used is the Marquardt method (see reference [9] for a discussion). 

9.5   Confidence Intervals 

The parameters that we have obtained for models that are linear in the parameters 
(see equation (9.56)) or by iteration for the models that are nonlinear in the pa-
rameters are known as point estimates. We would like to determine confidence  
intervals for these point estimates of the parameters so that we can use these con-
fidence intervals to help us understand better the models we are developing for the 
systems we are studying. We want to use our parameter estimates to design sys-
tems and the more confidence we have in the models we use and the values of the 
parameters in those models, the more confidence we will have in the system that 
we design carrying out the objective of the system. For example, if we can de-
velop a model with small confidence intervals for the point estimates of the  
parameters we will have less uncertainty and more confidence in the design. Es-
sentially, we would like to continue our model development until we have small 
confidence intervals for the parameters. This may require changing the model or 
more often the kinetic reaction mechanism for the process of interest. These steps 
are illustrated in Example 9.5 of Rawlings and Ekerdt.[8] 

The procedure that we use to develop confidence intervals is based on making 
some assumptions about the variables we measure (concentration of A as a func-

tion of time, ( ),AC t  e.g.) and the parameters in the model equation. One assump-

tion is that the measured independent variable (time, ,t e.g.) is known exactly.  

Another assumption is the measured dependent variable values ( )( ), e.g.AC t  are 

normally distributed random variables at each value of time. However, we typi-
cally have sufficient resources to carry out only two or three replicate experi-
ments; consequently, we alter our assumption to be that the measured dependent 
variables are random variables whose values are distributed according to the stu-
dent’s t distribution (see Figure 7.7 of Constantinides and Mostoufi [9]). For a 
large number of replicate experiments the student’s t distribution becomes the 
normal distribution (see Figure 9.4 of Rawlings and Ekerdt [8] and Figure 7.5(a) 
of Constantinides and Mostoufi [9]). The term used to determine whether or not 
the student’s t  distribution and the normal distribution are the same is “degrees of 
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freedom.” This term is often defined as the number of observations made in excess 
of the minimum number needed to estimate an unknown quantity. For example, 

the sample mean or arithmetic average of the concentration of AC  measured at 

time 1 mint = (e.g.) is 

( )
( ),

1
,

1 min
1 min

n

A i
i

A avg

C t
C t

n
=

=
= =

∑
 

(9.195) 

where n is the number of times we made the measurement. If we were only able 
to make one measurement, n  would equal 1; and, consequently, we would have 
only one degree of freedom, and we would not be able to determine the sample 

variance ( )2σ , which is defined as 

( ) ( ), ,
2 1

1 min 1 min

1

n

A Ai avg
i

C t C t

n
σ =

= − =
=

−

∑
 

(9.196) 

because n  would be equal 1 for only one measurement. The denominator of equa-

tion (9.196) is ( )1n −  because one degree of freedom (i.e., one observation) was 

used to calculate the average in equation (9.195). The variance for one measure-
ment, of course, makes no sense. Consequently, we would have to make at least 

two measurements ( )2n = to obtain a value for 2σ . 

The measured dependent variable is equal to its true value plus measurement 
error and is also equal to an estimated value plus a residual error, which is often 
referred to simply as a residual. That is, the measured value of the dependent vari-

able, *
iY , is equal to its true value, iY , which we will never know for sure, plus a 

measurement error, iυ , which we also do not know: 

*

measured value true value of                     measurement error

of dependent variable        dependent variable               at th condition

at th condition                     at th con

i i iY Y

i

i i

υ= +

dition

 (9.197) 

Also, the measured dependent variable *
iY  is equal to its estimated value, iY , plus 

a residual, iε , at condition, i : 

*
i i iY Y ε= +  (9.198) 
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The measurement error, iυ , is often assumed to be a normalized, normally dis-

tributed random variable with a zero mean and a known variance. The normal 
probability density function for the measurement error at condition i  is 

( ) ( )2

2

1
exp

22
i

ip
υ μ

υ
σσ π

⎡ ⎤−
= −⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.199) 

where the mean ( )μ  of the n  measurement errors at the thi experimental condi-

tion is 

( )
1

n
i j

j n

υ
μ

=
=∑  (9.200) 

and the variance is 

( )( )2

2

1 1

n i j

j n

υ μ
σ

=

−
=

−∑  (9.201) 

We can write equation (9.199) in compact form as 

( )2,i Nυ μ σ∼  (9.202) 

If we set 0μ = and 2 1.0σ = , for example, equation (9.202) becomes 

( )0,1.0i Nυ ∼  (9.203) 

Which is plotted in Figure 9.4 of Rawlings and Ekerdt [8] for iυ instead of x . 

9.6   Sensitivity Coefficient Equations 

Maple can be used to determine the sensitivity equations (see Example A.2 of 
Rawlings and Ekerdt) for a first order, isothermal constant volume reactor model 
where 

A
A

dC
kC

dt
= −  (9.204) 

and 

( ) 00A AC t C= =  (9.205) 
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We have two parameters 0 andAC k ( 1 0 2andAC kθ θ= = ) so we will have 

two sensitivity coefficients and two sensitivity coefficient equations. The first sen-

sitivity coefficient is defined as the rate of change of ( )AC t  with respect to the 

parameter 0AC , That is, define 

( ) ( )
1

0

A

A

C t
S t

C

∂
=

∂
 (9.206) 

or since 1 0ACθ =
 

1
1

AC
S

θ
∂=
∂

 (9.207) 

The second sensitivity coefficient is the rate of change of ( )AC t  with respect to 

the parameter k : 

( ) ( )
2

AC t
S t

k

∂
=

∂
 (9.208) 

or since 2 kθ =
 

2
2

AC
S

θ
∂=
∂

 (9.209) 

These sensitivity coefficients were determined by the Maple Jacobian command 
for this model and evaluated at the experimental times in the Maple worksheet for 

Example 9.1 (see the J  matrix). The sensitivity coefficient equations for 

( ) ( )1 2andS t S t can be obtained by taking the derivative of the left hand side of 

equation (9.204) with respect to the parameters and the total derivative of the right 
hand side of equation (9.204). That is, let the right hand side of equation (9.204) 
be the function h  

Ah kC= −  (9.210) 

and take the derivative of equation (9.210) with respect to the parameters which 
requires that we take the total derivative of h : 

A A

A

dC Dh h h C

dt D Cθ θ θ θ
∂ ∂ ∂ ∂⎛ ⎞ = = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.211) 
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Equation (9.211) can be rewritten by exchanging the order of differentiation on 
the left hand side: 

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.212) 

Equation (9.212) becomes 

1 1 1

2 2 2

A A

A

A A

A

C h h C

Cd

C h h Cdt

C

θ θ θ

θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.213) 

We can write the elements of equation (9.213) as individual equations: 

1 1 1

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.214) 

and 

2 2 2

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.215) 

We can find 1 ,h θ∂ ∂  etc., by inspection in this case (or by using Maple to get 

the total derivative). Thus, equation (9.214) becomes  

( )
1 1

0A Ad C C
k

dt θ θ
⎛ ⎞∂ ∂= + −⎜ ⎟∂ ∂⎝ ⎠

 (9.216) 

or in terms of ( )1S t
 

1 1

d
S kS

dt
= −  (9.217) 

Equation (9.215) becomes 

( )
2 2

A A
A

d C C
C k

dt θ θ
⎛ ⎞∂ ∂= − + −⎜ ⎟∂ ∂⎝ ⎠

 (9.218) 

or in terms of ( )2S t
 

2 2A

d
S C kS

dt
= − −  (9.219) 
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The initial conditions for the sensitivity coefficients are: 

( ) 0
1

1 00

0 1.0A A

At

C C
S t

Cθ
=

∂ ∂= = = =
∂ ∂

 (9.220) 

and 

( ) 0
2

2 0 0

0 0.0A A

t t

C C
S t

kθ
= =

∂ ∂= = = =
∂ ∂

 (9.221) 

We now have three dependent variables, ( ) ( ) ( )1 2, , andAC t S t S t , which we 

can write in matrix form: 

1
1

2
2

0 0

0 0

1 0

A

A

dC

dt k C
dS

k S
dt

k S
dS

dt

⎛ ⎞
⎜ ⎟

−⎛ ⎞⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎜ ⎟ = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟− −⎜ ⎟ ⎝ ⎠⎝ ⎠

⎜ ⎟⎜ ⎟
⎝ ⎠

 (9.222) 

The initial conditions are: 

( )
( )
( )

0

1

2

0

0 1

0 0

A AC C

S

S

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (9.223) 

Maple and the matrix exponential can be used to find that 

( ) ( )
( ) ( )
( ) ( )

0

1

2 0

exp

exp

exp

A A

A

C t C kt

S t kt

S t t C kt

= −

= −

= − −

 (9.224) 

(Note that we have numbered the parameters differently from Rawlings and 

Ekerdt.[8] They set 1 2 0and Ak Cθ θ= = ). The elements in the first row of the 

Jacobian matrix (see equation (9.142)) in this case are as follows: 

( ) ( )1
11 1

1 1 10 0

0 exp 0 1.0A

t t

Y CY
J S t

θ θ θ
= =

∂ ∂∂= = = = = = =
∂ ∂ ∂

 (9.225) 
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( )1
12 2

2 2 20 0

0 0.0A

t t

Y CY
J S t

θ θ θ
= =

∂ ∂∂= = = = = =
∂ ∂ ∂

 (9.226) 

The elements in the second row depend on the guessed values for k  (e.g., 
10.52mink −= ) and 0AC  (e.g., 38mol m ) as well as the time for the first data 

point (e.g., 1mint = ). In this case the elements in the second row become 

1

1 1

2
021 1
0.52min0 01 1 1

0.52min 0.52min

0.5945A
t
kt t

k k

Y CY
J S

θ θ θ −

− −

=
== =

= =

∂ ∂∂= = = = =
∂ ∂ ∂

 (9.227) 

11 1

33 3
00 0

2
22 2 31min1min 1min

2 2 2 0.52min0.52min 0.52min
88 8

min
4.7562

AA A

A
tt t
kk k
C mol mC mol m C mol m

Y CY mol
J S

mθ θ θ −− −
== =
== =

== =

∂ ∂∂= = = = = −
∂ ∂ ∂

 
(9.228) 

These equations show that the sensitivity coefficients are the elements of the Jaco-
bian matrix. For models that are nonlinear in the dependent variables we may not 
have analytical expressions for the sensitivity coefficients. In this case, the  

Jacobian elements, ijJ , will be determined numerically. 

Maple can be used to solve numerically the material balance equation and sen-
sitivity equations for an nth order reaction case. The material balance equation 
(model equation) is 

nA
A

dC
kC

dt
= −  (9.229) 

Use Maple and nonlinear parameter estimation to determine the parameters 

0, , andAC k n . In this case, the vector of parameters, θ is: 

AOC

k

n

θ
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (9.230) 

Let ( )3
AC

S t
n

∂=
∂

 or ( )3
3

AC
S t

θ
∂=
∂

. The system of equations is 

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.231) 

where 
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n
Ah kC= −  (9.232) 

Equation (9.231) becomes 

1 1 1

2 2 2

3 3 3

A A

A

A A

A

A A

A

C h h C

C

C h Chd
Cdt

C h Ch

C

θ θ θ

θ θ θ

θ θ θ

∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂

= +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (9.233) 

or 

1 1 1

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.234) 

2 2 2

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.235) 

3 3 3

A A

A

d C h h C

dt Cθ θ θ
⎛ ⎞∂ ∂ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.236) 

In this case, 

n
Ah kC= −  (9.237) 

so that 

1n
A

A

h
nkC

C
−∂ = −

∂
 (9.238) 

and 

( )n
A A

h
kC ln C

n

∂ = −
∂

 (9.239) 

Thus, equation (9.234) becomes by using equation (9.238) 

( )1

1 1

0 nA A
A

d C C
nkC

dt θ θ
−⎛ ⎞ ⎛ ⎞∂ ∂= + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.240) 
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or 

11
1

n
A

dS
nkC S

dt
−= −  (9.241) 

Equation (9.235) becomes by using equation (9.237) for 2h θ∂ ∂  and equation  

(9.238) 

( )1

2 2

n nA A
A A

d C C
C nkC

dt θ θ
−⎛ ⎞ ⎛ ⎞∂ ∂= − + −⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

 (9.242) 

or 

12
2

n n
A A

dS
C nkC S

dt
−= − −  (9.243) 

and equation (9.236) becomes by using equation (9.239) 

( ) 13
3

n n
A A A

dS
kC ln C nkC S

dt
−= − −  (9.244) 

The initial conditions are as follows 

( )
( )
( )
( )

0

1

2

3

0

0 1

0 0

0 0

A AC C

S

S

S

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟=⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠

 (9.245) 

Maple’s ‘dsolve’ (numeric) can be used to solve the following four differential 
equations (equations (9.246), (9.247), (9.248) and (9.249)) 

nA
A

dC
kC

dt
= −  (9.246) 

11
1

n
A

dS
nkC S

dt
−= −  (9.247) 

12
2

n n
A A

dS
C nkC S

dt
−= − −  (9.248) 

( ) 13
3

n n
A A A

dS
kC ln C nkC S

dt
−= − −  (9.249) 

subject to the initial condition given by equation (9.245). 
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The above process can be used to find ( ) ( )1 2 1 2 3 4,  ,  ,  ,  ,  and y t y t b b b b  in 

Example 7.1 of Constantinides and Mostoufi[9] by using Maple and the Gauss-

Newton Method with 1 2 1.0w w= = in equations 7.177 and 7.178 in Constanti-

nides and Mostoufi and the data from Run 2 only. The objective function Ф to be 
minimized in this case is: 

( ) ( ) ( ) ( )* * * *

1 1 1 1 2 2 2 21 1 2 2

T T

Ф Y Y J b Y Y J b Y Y J b Y Y J b= − − Δ − − Δ + − − Δ − − Δ  (9.250) 

where 

1,1 1,1 1,1 1,1

1 2 3 4

1,2 1,2 1,2 1,2

1 2 3 41

1,17 1,17 1,17 1,17

1 2 3 4

Y Y Y Y

b b b b

Y Y Y Y

J b b b b

Y Y Y Y

b b b b

∂ ∂ ∂ ∂⎛ ⎞
⎜ ⎟∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂
⎜ ⎟

= ∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟
⎜ ⎟

∂ ∂ ∂ ∂⎜ ⎟
⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

 (9.251) 

and 1,1 1,1 1,1 1,1

1 2 3 4

,  ,  ,  and 
Y Y Y Y

b b b b

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

 are the sensitivity coefficients for depend-

ent variable number 1 ( )1y  to the parameter values 1 2 3 4,  ,  ,  and b b b b  evalu-

ated at experimental data point number 1, etc. The matrix 
2

J  has elements that 

are the sensitivity coefficients for dependent variable number 2 ( )2y . One can use 

the values given as results for 1 2 3 4,  ,  ,  and b b b b  on page 522 of Constantinides 

and Mostoufi as the initial guesses for a Maple program. In this case, bΔ  is ob-

tained from 

( ) ( )1 * *
1 1 2 21 1 2 2 1 2

T T T Tb J J J J J Y Y J Y Y
− ⎡ ⎤⎡ ⎤Δ = + − + −⎣ ⎦ ⎣ ⎦  (9.252) 

In this case, the sensitivity equations can be written as 

y yd h h

dt b b y b

∂ ∂⎛ ⎞ ∂ ∂= +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 (9.253) 

where 
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[ ]
[ ]

1 2

1 2

,

,

T

T

y y y

h h h

=

=
 

(9.254) 

and 

[ ]1 2 3 4

T
b b b b b=  (9.255) 

Here 

1
1 1 1

2

1
y

h b y
b

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (9.256) 

and 

2 3 1 4 2h b y b y= −  (9.257) 

Equation (9.253) can be written in expanded form: 

1 1 1 1 1 1 1 1 1 1 1 11 1

1 2 3 4 1 2 3 4 1 2 3 41 2

2 2 2 2 2 2 2 2 2 2 2 2 2

1 2 3 4 1 2 3 4 1 2 1 2

y y y y h h h h y y y yh h

b b b b b b b b b b b by yd

y y y y h h h h h h y y ydt

b b b b b b b b y y b b

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂⎜ ⎟ ⎜ ⎟ ⎜ ⎟= +
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

2

3 4

y

b b

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟∂
⎜ ⎟∂ ∂⎝ ⎠

 
(9.258) 

Each of the derivatives ( )1 1 2 2, , etc.y b y b∂ ∂ ∂ ∂ is a sensitivity coefficient, 

each of which depends on time. Equation (9.258) can be used to write the  
following eight equations for the time dependence of the sensitivity coefficients: 

1 1 1 1 1 2

1 1 1 1 2 1

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.259) 

1 1 1 1 1 2

2 2 1 2 2 2

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.260) 

1 1 1 1 1 2

3 3 1 3 2 3

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.261) 

1 1 1 1 1 2

4 4 1 4 2 4

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.262) 

2 2 2 1 2 2

1 1 1 1 2 1

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.263) 
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2 2 2 1 2 2

2 2 1 2 2 2

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.264) 

2 2 2 1 2 2

3 3 1 3 2 3

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.265) 

and 

2 2 2 1 2 2

4 4 1 4 2 4

d y h h y h y

dt b b y b y b

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂= + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
 (9.266) 

To simplify the notation, let s  be the vector of dependent variables.  

In this case the vector s  will have 10 elements  

( 1 2 2 3 1 1 4 1 2 5 1 3 6 1 41
, , , , , ,s y s y s y b s y b s y b s y b= = = ∂ ∂ = ∂ ∂ = ∂ ∂ = ∂ ∂  

7 2 1 8 2 2 9 2 3, , ,s y b s y b s y b= ∂ ∂ = ∂ ∂ = ∂ ∂ )10 2 4and  s y b= ∂ ∂ . Also, in 

this case since 2y does not appear in 1
1

2

,
h

h
y

∂
∂

is equal to zero and the last term in 

each of the equations (9.259) through (9.262) drops out.  Also, since 2h does not 

depend explicitly on 1b or 2b  the terms 2 1 2 2andh b h b∂ ∂ ∂ ∂ in equations 

(9.263) and (9.264) are zero.  The final system of equations is 

1 1
1 1

2

1
ds s

b s
dt b

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 (9.267) 

2
3 1 4 2

ds
b s b s

dt
= −  (9.268) 

3 1 1
1 1 1 3

2 2

2
1

ds s b
s b s s

dt b b

⎛ ⎞ ⎛ ⎞
= − + −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.269) 

2
4 1 1 1 1

1 42
2 2

2ds b s b s
b s

dt b b

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠
 (9.270) 

5 1 1
1 5

2

2ds b s
b s

dt b

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (9.271) 
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6 1 1
1 6

2

2ds b s
b s

dt b

⎛ ⎞
= −⎜ ⎟
⎝ ⎠

 (9.272) 

7
3 3 4 7

ds
b s b s

dt
= −  (9.273) 

8
3 4 4 8

ds
b s b s

dt
= −  (9.274) 

9
1 3 5 4 9

ds
s b s b s

dt
= + −  (9.275) 

10
2 3 6 4 10

ds
s b s b s

dt
= − + −  (9.276) 

The initial conditions for the dependent variables are as follows: 

1 2 3 4 5 6 7 8 9 100.18, 0, and  0s s s s s s s s s s= = = = = = = = = =  (9.277) 

Note that the predicted values for 1y  at each time are in the vector 1Y . That is,  

( ) ( ) ( ) ( )1 1 1 1 10 , 10 , 20 , , 190
T

Y y t y t y t y t= = = = =⎡ ⎤⎣ ⎦…  (9.278) 

and 2Y stores the predicted values of 2y . Note that the elements of 
1 2

and J J are 

evaluated at each time also. In this case, the elements of 
1

J  are obtained from solu-

tions of the set of equations ( )1 1 3 1 2 4, , etc.y b s y b s∂ ∂ = ∂ ∂ = . In this case, A  

is ( ) 1

1 1 2 2

T TA J J J J
−

= +  and the correlation coefficient matrix is R  where the 

elements of R  are obtained from the elements of A : 

 
ij

ij

ii jj

a
r

a a
=  for 1 to 4i =  and 1 to 4j =  (9.279) 

9.7   One Parameter Model 

To illustrate the derivation of a confidence interval, let’s first determine the pa-
rameter value for a one parameter model. That is, for an isothermal, constant  
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volume batch reactor in which the reactant A  disappears due to a chemical  
reaction we can write the reaction rate expression as 

A products→  (9.280) 

and the material balance as 

A
A

dC
kC

dt
= −  (9.281) 

where we have assumed that the reaction is first order in species A . The solution 
to equation (9.281) is 

( )0 expA AC C kt= −  (9.282) 

Assume we know 0AC . Define 
0

A

A

C
f

C
=  and let 

( )expf kt= −  (9.283) 

Next, take the natural logarithm of each side of equation (9.283) to obtain 

ln f kt= −  (9.284) 

Next, let 

y mx=  (9.285) 

so that 

m k= −  (9.286) 

or 

kθ = −  (9.287) 

Next, use the following measured values of AC  to find f , then find k  using least 

squares. 
3 *(min) ( / ) ln

0 8.47 1.0 0

1 5.0 0.5903 0.527

2 2.95 0.3483 1.055

3 1.82 0.2149 1.538

4 1.05 0.1240 2.088

5 0.71 0.08383 2.479

At C mol m f Y f=

−
−
−
−
−
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For a one parameter model the independent variable matrix becomes a vector.  
That is, for the five data points we have  

1

2

3

4

5

x

x

X x

x

x

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(9.288) 

and for this one parameter model 1 1,x t= 2 2 ,x t=  etc. so equation (9.288) is the 

following vector 

1

2

3

4

5

X

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 
(9.289) 

For the one parameter model, equation (9.56) simplifies to a scalar equation 

( ) 1 *T TX X X Yθ
−

=  (9.290) 

where the carte on theta specifies that θ  is a point estimate of θ . In this case 

[ ] 11 2 3 4 5
2

3

4

5

TX X ⎡ ⎤=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 
(9.291) 

or 

1 4 9 16 25 55.0TX X = + + + + =  (9.292) 

Thus, equation (9.290) becomes  
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( )1
1 2 3 4 5 0.527

55
1.055

1.538

2.088

2.479

θ ⎛ ⎞= −⎡ ⎤⎜ ⎟
⎝ ⎠ ⎢ ⎥−⎢ ⎥

⎢ ⎥−
⎢ ⎥−⎢ ⎥
⎢ ⎥−⎣ ⎦

 (9.293) 

Equation (9.293) yields 

( ) ( ) ( ) ( )( )1
0.524 2.110 4.614 8.352 12.393

55
θ ⎛ ⎞= − + − + − + − + −⎜ ⎟

⎝ ⎠

 
(9.294) 

or 

0.509θ = −  (9.295) 

Thus, 

( ) 1 10.509 min 0.509 mink − −= − − =  (9.296) 

A confidence interval for θ  can be found by using equation (9.126). In this case, 
equation (9.126) becomes for 0.05 and 5nα = =  

0.025,4 0.025,4
2 2

1 1

ˆ ˆE E
n n

i i
i i

MS MS
t t

x x
θ θ θ

= =

− ≤ ≤ +
∑ ∑

 
(9.297) 

Equation (9.124) can be used to determine EMS
 

( )2*

1

ˆ

1

n

i i
i

E

Y y
MS

n
=

−
=

−

∑
 

(9.298) 

where 

ˆˆi iy xθ=  (9.299) 

Thus, 
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( )( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( )( )( )

2

2

2

2

2

0.527 0.509 1

1.055 0.509 2

1.538 0.509 3

2.088 0.509 4

2.479 0.509 5

5 1

EMS = − − −

+ − − −

+ − − −

+ − − −

+ − − −
−

 

(9.300) 

0.002218EMS =  (9.301) 

The student’s t  value for 2 0.025 and degrees of freedom 4α = =  can be 

obtained from a table in many texts (e.g., see Table A.3 of Navidi[10]) or from Maple: 

0.025,4 2.776t =  (9.302) 

Thus, the confidence interval ( )ci  becomes 

0.025,4
2

E

i
i

MS
ci t

x
=

∑
 

(9.303) 

0.002218
2.776

55
ci =  (9.304) 

0.0176ci =  (9.305) 

Consequently, the parameter value is the point estimate θ̂ ±  the confidence  
interval ci : 

ˆ 0.509 0.0176ciθ ± = − ±  (9.306) 

or 

0.527 0.491θ− ≤ ≤ −  (9.307) 

Equation (9.128) can be used to determine the prediction interval for a new obser-

vation at 0 1.5 minx = , for example.  In this case, we have 
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0 0
ˆŷ xθ=  (9.308) 

( ) ( )0ˆ 0.509 1.5 0.7636y = − = −  (9.309) 

and equation (9.128) becomes 

( ) ( )

( ) ( )

2

2

0

1.5
0.7366 2.776 0.002218 1

55

1.5
0.7636 2.776 0.002218 1

55
y

⎛ ⎞
− − +⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ ≤ − + +⎜ ⎟

⎜ ⎟
⎝ ⎠

 
(9.310) 

00.7636 0.1333 0.7636 0.1333y− − ≤ ≤ − +  (9.311) 

00.897 0.630y− ≤ ≤ −  (9.312) 

For 0 4.5x =
 

( ) ( )0ˆ 0.509 4.5 2.29y = − = −  (9.313) 

and equation (9.128) yields 

( ) ( )

( ) ( )

2

2

0

4.5
2.29 2.776 0.002218 1

55

4.5
2.29 2.776 0.002218 1

55
y

⎛ ⎞
− − +⎜ ⎟

⎜ ⎟
⎝ ⎠

⎛ ⎞
≤ ≤ − + +⎜ ⎟

⎜ ⎟
⎝ ⎠

 
(9.314) 

0 ˆ2.29 0.153 2.29 0.153y y− − ≤ ≤ − +  (9.315) 

9.8   Two Parameter Model 

In this case, take the natural logarithm of equation (9.282) to obtain 

0ln lnA AC C kt= −  (9.316) 

Now let’s include 0AC  (i.e., 0ln AC ) as an unknown parameter. Let 

ln Ay C=  (9.317) 
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so that equation (9.316) becomes 

y mx b= +  (9.318) 

or 

1 2y xθ θ= +  (9.319) 

where 

2m k θ= − =  (9.320) 

and 

x t=  (9.321) 

Also, let 

1 0ln Ab Cθ = =  (9.322) 

The data become 

( ) ( )3min / ln

0 8.47 2.1365

1 5.0 1.6094

2 2.95 1.0818

3 1.82 0.5988

4 1.05 0.0488

5 0.71 0.3425

A Ax t C mol m C=

−

 
(9.323) 

and the matrix X  becomes 

1 0

1 1

1 2

1 3

1 4

1 5

X

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 (9.324) 

and its transpose is 

1 1 1 1 1 1

0 1 2 3 4 5
TX

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 (9.325) 

Let 
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6 15

15 55
TC X X

⎡ ⎤
= = ⎢ ⎥

⎣ ⎦
 (9.326) 

which yields 

1

11 1

21 7
1 2

7 35

C−

⎡ ⎤−⎢ ⎥
= ⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

 (9.327) 

The experimental data are as follows: 

*

2.1365

1.6094

1.0818

0.5988

0.0488

0.3425

Y

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
−⎣ ⎦

 (9.328) 

Equation (9.56) becomes 

1 1 *

2

TC X Y
θ

θ
−

⎡ ⎤
=⎢ ⎥

⎢ ⎥⎣ ⎦
 (9.329) 

or 

1

2

2.1365

1.609411 1
1 1 1 1 1 1 1.081821 7

1 2 0 1 2 3 4 5 0.5988

7 35 0.0488

0.3425

θ

θ

⎡ ⎤
⎢ ⎥

⎡ ⎤ ⎢ ⎥−⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥
−⎣ ⎦

 (9.330) 

Thus 

1

2

11 1
5.132821 7

1 2 4.0521

7 35

θ

θ

⎡ ⎤−⎡ ⎤ ⎢ ⎥ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥ ⎢ ⎥⎣ ⎦ −⎢ ⎥⎣ ⎦

 (9.331) 

and 
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1

2

2.1097

0.5017

θ

θ

⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎢ ⎥⎣ ⎦

 (9.332) 

Thus 

1 1
2 min 0.5017 mink θ − −= − =  (9.333) 

and 

10ln 2.1097AC θ= =  (9.334) 

so that the estimate for the initial concentration is 

3
0 8.246AC mol m=  (9.335) 

Note that the estimated value for 0AC  is different from the measured value. 

The confidence intervals for 1 2andθ θ  can be determined by using equations 

(9.108) and (9.110), respectively. In this case the mean squared error ( )EMS is 

(see equation (9.88)) 

2

2
E

E

SS
MS s

n
= =

−
 (9.336) 

which in our case becomes 

( )( )
6 2*

1 2
1

6 2

n

i i
i

E

Y x
MS

θ θ
=

=

− +
=

−

∑
 

(9.337) 

or 

)( ))((
( )( )
( )( )
( )( )
( )( )

( )( ) )

2

2

2

2

2

2

2.1365 2.1097 0.5017 0

1.6094 2.1097 0.5017 1

1.0818 2.1097 0.5017 2

0.5988 2.1097 0.5017 3

0.0488 2.1097 0.5017 4

0.3425 2.1097 0.5017 5
0.00186265

4

EMS ⎛ ⎡ ⎤= − −⎜ ⎣ ⎦⎝

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − ⎦⎣

⎡ ⎤+ − − − ⎦⎣
=  

(9.338) 
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In this case the student’s t  value for 95% confidence level requires that  

0.05α =  so that 2 0.025α =  and with 4 degrees of freedom is 

0.025,4 2.776t =  (9.339) 

Recall that equation (9.108) is 

2 2

1 1/2, 2 1 /2, 2

1 1
n E n E

xx xx

x x
t MS t MS

n S n Sα αθ θ θ− −

⎛ ⎞ ⎛ ⎞
− + ≤ ≤ + +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

(9.340) 

which in this case becomes 

( ) ( )

( ) ( )

2

2

1

2.51
2.1097 2.776 0.00186265

6 17.5

2.51
2.1097 2.776 0.00186265

6 17.5
θ

⎡ ⎤
− +⎢ ⎥

⎢ ⎥⎣ ⎦

⎡ ⎤
≤ ≤ + +⎢ ⎥

⎢ ⎥⎣ ⎦

 
(9.341) 

or  

12.023 2.194θ≤ ≤  (9.342) 

or according to equation (9.322) 

3
07.561 8.993AC mol m≤ ≤  

(9.343) 

The confidence interval for 2θ  is (see equation (9.110) 

2 2/2, 2 2 /2, 2
E E

n n
xx xx

MS MS
t t

S Sα αθ θ θ− −− ≤ ≤ +  (9.344) 

or in this case 

2 2

2

0.00186265 0.00186265
0.5017 2.776 0.5017 2.776

17.5 17.5
θ⎛ ⎞ ⎛ ⎞− − ≤ ≤ − +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (9.345) 

or 

20.5303 0.4731θ− ≤ ≤ −  (9.346) 
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or according to equation (9.320) 

0.5303 0.4731k≤ ≤  (9.347) 

Knowing the confidence intervals on 1 2and θ θ  is useful because when they are 

small the point estimates of the parameters, 1 2and θ θ , are reasonable and the 
two parameter model may be a good fit to the experimental data. However, we 

cannot arbitrarily pick values for 1 2and θ θ  that are within their confidence in-

tervals and be assured that the chosen pair have the probability of a 100 ( )1 α−  

confidence level because we applied a 95% confidence level for each parameter 

( )1 2 and θ θ  one at a time when we found their individual confidence intervals.  

Consequently, we need to construct a joint confidence region [5] for the two  
parameters that will yield a 95% confidence level for both parameters  
simultaneously as described next.   

The joint confidence region for 1 2and θ θ  can be constructed (see page 389 of 

reference 5, page 484 of reference 9, and page 520 reference 8) by using the F  
factor: 

( ) ( )
, ,

T
T

p n p
E

X X
F

pMS α

θ θ θ θ
−

− −
≤  

(9.348) 

where in our case the number of parameters is p  and 

2, 0.05, and 6p nα= = = . From Table A.4 of reference 5 we find that 

0.05,2,4 6.94F =  (9.349) 

Equation (9.348) becomes 

[ ]

( )( )

1
1 2

2

2.10976 15
2.1097 0.5017

0.501715 55
6.94

2 0.00186265

θ
θ θ

θ
−⎡ ⎤⎡ ⎤− + ⎢ ⎥⎢ ⎥ +⎣ ⎦ ⎣ ⎦ =  

(9.350) 

or 

2 2
1 1 2 1 2 26 10.2654 8.7956 30 8.104 55 0.025854θ θ θ θ θ θ− + + − + =  (9.351) 

Equation (9.351) is an equation for an ellipse which yields the joint confidence  

interval for 1 2and θ θ . That is, the parameter values that exist within this ellipse 

have a joint probability of being accurate at a 95% confidence level. The Maple 
worksheet below presents a plot of equation (9.351). 
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>  
>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  

 

>  
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The values inside the ellipse shown in this figure represent the acceptable parame-

ter values for this case.  

9.9   Exercise Problems 

1. Use the two parameter, three data points case (see equations (9.136), (9.137), 
and (9.138)) to confirm that equation (9.44) is correct. 

2. Confirm by hand that the elements of the Jacobian matrix given in  
Example 9.1 are correct. 

3. Use the matrix exponential method to solve equations (9.149), (9.153), and 
(9.158) with equations (9.159), (9.160), and (9.161) as the initial conditions.  
Compare your results to the elements of the Jacobian matrix in Example 9.1. 
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Chapter 10 

Miscellaneous Topics  

10.1   Miscellaneous Topics on Numerical Methods 

10.1.1   Introduction 

In the previous chapters analytical, symbolic, and semianalytical methods for 
solving problems in chemical engineering were programmed in Maple. In 
addition, Maple can be used just as any other programming language like 
FORTRAN.  In this chapter, numerical schemes for solving problems in chemical 
engineering are programmed in Maple.   

10.1.2   Iterative Finite Difference Solution for Boundary Value 
Problems 

Linear Boundary Value Problems were converted to finite difference form and the 
resulting system of coupled linear algebraic equations was solved symbolically in 
section 3.1.5.  Nonlinear Boundary Value Problems were converted to finite 
difference form and the resulting system of coupled nonlinear algebraic equations 
was solved numerically in section 3.2.3 using Maple’s fsolve command.  
Alternatively a recurrence relationship can be obtained for the resulting system of 
coupled nonlinear algebraic equations.  This recurrence relationship can then be 
used to iterate for finding the solution at the node points.  This is best illustrated 
with the following examples.   

Example 10.1. Diffusion with a Second Order Reaction 

Examples 3.2.1 and 3.2.3, diffusion with a second order reaction is solved here 
again.  Consider diffusion with a second order reaction in a rectangular pellet 
(Rice and Do, 1995).  The dimensionless concentration is governed by: 

2
2 2

2

d u
= u

dx
du

(0) = 0
dx
u(1) = 1

Φ

             (10.1) 
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where Φ is the Thiele modulus. Equation 10.1 can be converted to finite difference 
form as: 

2i - 1 i i + 1
i2

0 1 2

N+1

u  - 2u  + u
= u , i = 1.. N

h
-3u  + 4u  - u

 = 0
2h

u  = 1

Φ

       (10.2) 

Equation 10.2 can be used to obtain the recurrence relation as: 

1 2
0

2 2 2
i - 1 i + 1 i

i

N+1

4uold  - uold  
unew  

3

unew  + uold  - h uold  
unew  =   , i = 1.. N

2
unew  = 1

=

Φ
   (10.3) 

Note that in equation 10.3, updated solution at node point i – 1 is used for node 
point i. An initial guess of ui = 0.5, i = 0..N is taken. uN+1 is taken as 1. Equation 10.3 
is programmed for Φ = 1 in Maple below: 

> restart: 

> with(plots): 

Warning, the name changecoords has been redefined 
 

The number of node points and length of the domain are entered here: 
 

> N:=10; 

:= N 10  

> L:=1; 

:= L 1  

The governing equation is entered here.  The nonlinear term in the governing 
equation is entered as f for convenience: 

 

> ge:=diff(u(x),x$2)-Phi^2*f; 

 := ge  − ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟d

d2

x2
( )u x Φ2 f  
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The boundary conditions are entered here: 

> bc1:=diff(u(x),x); 

 := bc1
d
d
x

( )u x  

> bc2:=u(x)-1; 

:= bc2 − ( )u x 1  

The governing equation and the boundary conditions are converted to finite 
difference form here.  Note that for finite difference expressions updated values of 
u, unew are used whenever possible. 

 
> d2ydx2:=(u[m+1]-2*u[m]+unew[m-1])/h^2; 

 

 := d2ydx2
− + u  + m 1

2 u
m

unew  − m 1

h2
 

> dydx:=(u[m+1]-unew[m-1])/2/h; 
 

 := dydx
1
2

− u  + m 1
unew  − m 1

h  

> dydxf:=(-u[2]+4*u[1]-3*u[0])/(2*h); 

 := dydxf
1
2

− + − u
2

4 u
1

3 u
0

h  

> dydxb:=(unew[N-1]-4*unew[N]+3*u[N+1])/(2*h); 

 := dydxb
1
2

− + unew
9

4 unew
10

3 u
11

h  

> eq[0]:=subs(diff(u(x),x)=dydxf,u(x)=u[0],bc1): 

> eq[N+1]:=subs(diff(u(x),x)=dydxb,u(x)=u[N+1],bc2): 

> for i from 1 to N do 
eq[i]:=subs(diff(u(x),x$2)=d2ydx2,diff(u(x),x)=dydx,u(x)=u[i],x=i*h,m=i,ge);od: 

Node spacing and the nonlinear function are defined here: 

> h:=evalf(L/(N+1)); 

:= h 0.09090909091  

> F(x):=u(x)^2; 

 := ( )F x ( )u x 2
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The parameters are entered here.    

> pars:={Phi=1}; 

:= pars { }= Φ 1  
The recurrence relations are derived here: 

 
> for i from 0 to N+1 do 
Unew[i]:=subs(pars,u=uold,f=subs(u(x)=uold[i],pars,F(x)),solve(eq[i],u[i]));od; 

 

 := Unew
0

− + 0.3333333333 uold
2

1.333333333 uold
1

 

 := Unew
1

 +  − 0.5000000000 uold
2

0.5000000000 unew
0

0.004132231405 uold
1

2  

 := Unew
2

 +  − 0.5000000000 uold
3

0.5000000000 unew
1

0.004132231405 uold
2

2  

 := Unew
3

 +  − 0.5000000000 uold
4

0.5000000000 unew
2

0.004132231405 uold
3

2  

 := Unew
4

 +  − 0.5000000000 uold
5

0.5000000000 unew
3

0.004132231405 uold
4

2  

 := Unew
5

 +  − 0.5000000000 uold
6

0.5000000000 unew
4

0.004132231405 uold
5

2  

 := Unew
6

 +  − 0.5000000000 uold
7

0.5000000000 unew
5

0.004132231405 uold
6

2  

 := Unew
7

 +  − 0.5000000000 uold
8

0.5000000000 unew
6

0.004132231405 uold
7

2  

 := Unew
8

 +  − 0.5000000000 uold
9

0.5000000000 unew
7

0.004132231405 uold
8

2  

 := Unew
9

 +  − 0.5000000000 uold
10

0.5000000000 unew
8

0.004132231405 uold
9

2  

 := Unew
10

 +  − 0.5000000000 uold
11

0.5000000000 unew
9

0.004132231405 uold
10

2  

:= Unew
11

1  

An initial guess of 0.7 is used.  Error is initialized to 1. 

> for i from 0 to N+1 do uold[i]:=0.7;od: 

> iter:=0;err:=1; 

:= iter 0  

:= err 1  

A for loop can be written for the iteration as: 

> while err>1e-6 do  

> for i from 0 to N+1 do unew[i]:=eval(Unew[i]);od: 

> kk:='kk':err:=sqrt(sum((unew[kk]-uold[kk])^2,kk=0..N+1)/(N+2)); 

> iter:=iter+1: 

> for i from 0 to N+1 do uold[i]:=unew[i];od:end: 
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A total of 272 iterations were required and the calculated error is: 

> iter;err; 

272  

0.9953728481 10-6
 

The following plot is obtained: 

>plot([seq([i*h,unew[i]],i=0..N+1)],thickness=3,axes=boxed,labels=[x,u]); 

 
Fig. 10.1 

Example 10.2. Nonisothermal Reaction in a Catalyst Pellet – Multiple Steady 
States 

The dimensionless concentration in a non-isothermal catalyst pellet (Villedsen and 
Michelsen, 1978, example 3.2.2) is governed by: 

2
2

2

d u γβ(1-u)
 = u exp

dx 1+β(1 u)

du
(0) = 0

dx
u(1) = 1

⎛ ⎞
Φ ⎜ ⎟−⎝ ⎠

              (10.4) 
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This boundary value problem has multiple solutions for Φ = 0.2, β = 0.8 and  
γ = 20. Equation 10.4 is solved in Maple by modifying the program given for 
example 10.1 as given below. For this problem, 20 node points are chosen to 
improve the accuracy. 

> N:=20; 

:= N 20  

> F(x):=u(x)*exp(gamma*beta*(1-u(x))/(1+beta*(1-u(x)))); 

 := ( )F x ( )u x e
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

γ β ( )− 1 ( )u x
 + 1 β ( ) − 1 ( )u x

 

> pars:={Phi=0.2,gamma=20,beta=0.8}; 

 := pars { }, ,= Φ 0.2 = γ 20 = β 0.8  

When an initial guess of 0.95 is used the following plot is obtained: 

 
Fig. 10.2 
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When an initial guess of 0.01 is used, the lower steady state is predicted: 

 

 
Fig. 10.3 

Since this problem is stiff, an error tolerance of 10-6 was used.  It has to be noted 
that iterative finite difference method does not predict the middle steady state 
predicted in example 3.2.2. 

10.1.3   Finite Difference Solution for Elliptic PDEs 

Steady state linear elliptic PDEs in finite domains are solved by applying finite 
difference technique in both x and y coordinates in this section. When finite 
differences are applied, a linear elliptic PDE is converted to a system of linear 
algebraic equations. This resulting system of linear equations can be directly 
solved using Maple’s solve or fsolve command.  This is best illustrated with the 
following examples.    

Example 10.3. Heat Transfer in a Rectangle 

Consider the steady state heat transfer problem (Carslaw and Jaeger, 1973) solved 
in example 7.11. The governing equation for temperature is: 
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2 2

2 2

u u
 +  = 0

x y

u(0,y) = 0 and u(L,y) = 0

u(x,0) = 0 and u(x,H) = 1

∂ ∂
∂ ∂

         (10.5) 

where L is the length and H is the height of the rectangle. If N interior node points 
in the x-axis and M interior node points are used in the y-axis equation 10.5 can be 
converted to finite difference form as: 

i - 1,j i,j i + 1,j i ,j - 1 i,j i,j + 1

2 2

0,j

N + 1,j

i,0

i,M+1

u  - 2u  + u u  - 2u  + u
 +  = 0, i = 1.. N, j = 1..M

h k
u  = 0,  j = 1..M

u  = 0,  j = 1..M

u  = 0, i = 0..N + 1

u  = 1, i = 0..N + 1
 

   (10.6) 

Equation 10.6 is a system of (N+2)x(M+2) linear equations and solved using 
Maple’s fsolve command below. 

> restart;with(plots): 

Warning, the name changecoords has been redefined 
 

The governing equation is entered here: 

> ge:=diff(u(x,y),x$2)+diff(u(x,y),y$2); 

 := ge  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
( )u ,x y

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
( )u ,x y  

Length and height of the rectangle are entered here: 

> L:=1;H:=1; 

:= L 1  

:= H 1  
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Number of node points in the x-axis (N) and y-axis (M) are entered now: 

> N:=10;M:=10; 

:= N 10  

:= M 10  

The boundary conditions at x = 0 and x = L are entered as bc1 and bc2 
respectively: 

> bc1:=u(x,y)-0; 

:= bc1 ( )u ,x y  

> bc2:=u(x,y)-0; 

:= bc2 ( )u ,x y  

The boundary conditions at y = 0 and y = H are entered as bc3 and bc4 
respectively: 

> bc3:=u(x,y)-0; 

:= bc3 ( )u ,x y  
> bc4:=u(x,y)-1; 

:= bc4 − ( )u ,x y 1  

Next, finite difference expressions are entered for the spatial derivatives in x and y 
coordiantes. 

> dudxf:=1/2*(-u[2,m]-3*u[0,m]+4*u[1,m])/h; 

 := dudxf
1
2

− − + u
,2 m

3 u
,0 m

4 u
,1 m

h  

> dudxb:=1/2*(u[N-1,m]+3*u[N+1,m]-4*u[N,m])/h; 

 := dudxb
1
2

+ − u
,9 m

3 u
,11 m

4 u
,10 m

h  

> dudx:=1/2/h*(u[n+1,m]-u[n-1,m]); 

 := dudx
1
2

− u
, + n 1 m

u
, − n 1 m

h  

> d2udx2:=1/h^2*(u[n-1,m]-2*u[n,m]+u[n+1,m]); 

 := d2udx2
− + u

, − n 1 m
2 u

,n m
u

, + n 1 m

h2
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> dudyf:=1/2*(-u[n,2]-3*u[n,0]+4*u[n,1])/k; 

 := dudyf
1
2

− − + u
,n 2

3 u
,n 0

4 u
,n 1

k  

> dudyb:=1/2*(u[n,M-1]+3*u[n,M+1]-4*u[n,M])/k; 

 := dudyb
1
2

+ − u
,n 9

3 u
,n 11

4 u
,n 10

k  

> dudy:=1/2/k*(u[n,m+1]-u[n,m-1]); 

 := dudy
1
2

− u
,n  + m 1

u
,n  − m 1

k  

> d2udy2:=1/k^2*(u[n,m-1]-2*u[n,m]+u[n,m+1]); 

 := d2udy2
− + u

,n  − m 1
2 u

,n m
u

,n  + m 1

k2
 

Boundary conditions are converted to finite difference form below: 

> bc1:=subs(diff(u(x,y),x)=dudxf,u(x,y)=u[0,m],x=0,bc1); 

:= bc1 u
,0 m  

> bc2:=subs(diff(u(x,y),x)=dudxb,u(x,y)=u[N+1,m],x=L,bc2); 

:= bc2 u
,11 m  

> bc3:=subs(diff(u(x,y),y)=dudyf,u(x,y)=u[n,0],y=0,bc3); 

:= bc3 u
,n 0  

> bc4:=subs(diff(u(x,y),y)=dudyb,u(x,y)=u[n,M+1],y=H,bc4); 

:= bc4 − u
,n 11

1  

Boundary conditions are stored as equations below.   A total of N+M+2 equations 
arise from the boundary conditions. 

> for i from 1 to M do eq[0,i]:=subs(m=i,y=i*k,bc1);od: 

> for i from 1 to M do eq[N+1,i]:=subs(m=i,y=i*k,bc2);od: 

> for i from 0 to N+1 do eq[i,0]:=subs(n=i,x=i*h,bc3);od: 

> for i from 0 to N+1 do eq[i,M+1]:=subs(n=i,x=i*h,bc4);od: 

Next, the governing equation is converted to finite difference form and stored  
as algebraic equations. Even though the example chosen does not have first 
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derivatives in x and y, this program is written to accommodate first derivatives in 
both the governing equation and the boundary conditions. 

> for i from 1 to N do for j from 1 to M do eq[i,j]:=subs(diff(u(x,y),x$2) = 
subs(n=i,m=j,d2udx2),diff(u(x,y),y$2) = subs(n=i,m=j,d2udy2), 
diff(u(x,y),x) = subs(n=i,m=j,dudx),diff(u(x,y),y) = 
subs(n=i,m=j,dudy),u(x,y)=u[i,j],x=i*h,y=j*k,ge);od;od; 

> h:=evalf(L/(N+1));k:=evalf(H/(M+1)); 

:= h 0.09090909091  

:= k 0.09090909091  

> eqs:=seq(seq(eq[i,j],i=0..N+1),j=0..M+1): 

An initial guess of 0.5 is used. 

> vars:=seq(seq(u[i,j]=0.5,i=0..N+1),j=0..M+1): 

The system of algebraic equations are solved using Maple’s fsolve command and 
the solution obtained is plotted below: 

> soln:=fsolve({eqs},{vars}): 

> assign(soln): 

> plotdata := [seq([ seq([i*h,j*k,u[i,j]], i=0..N+1)], j=0..M+1)]: 

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60] ); 
 

 
Fig. 10.4 
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Example 10.4. Heat Transfer in a Cylinder 

Consider the steady state heat transfer problem in a cylinder (Carslaw and Jaeger, 

1973).  The governing equation for temperature is: 

 

2 2

2 2

u 1 u u
+    = 0

x x x y

u
(0,y) = 0 and u(L,y) = 0

x

u
u(x,0) = 0 and (x,H) = 1

y

∂ ∂ ∂+
∂ ∂ ∂

∂
∂

∂
∂

          (10.7) 

Equation 10.7 is solved using the Maple program developed for example 10.3 for 
L = 1 and H = 1.  The results obtained are given below: 

> ge:=diff(u(x,y),x$2)+1/x*diff(u(x,y),x)+diff(u(x,y),y$2); 

 := ge  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
( )u ,x y

∂
∂
x

( )u ,x y

x
⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
( )u ,x y  

> L:=1;H:=1; 

:= L 1  

:= H 1  

> N:=10;M:=10; 

:= N 10  

:= M 10  

> bc1:=diff(u(x,y),x); 

 := bc1 ∂
∂
x

( )u ,x y  

> bc2:=u(x,y)-1; 

:= bc2 − ( )u ,x y 1  

> bc3:=u(x,y); 

:= bc3 ( )u ,x y  
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> bc4:=diff(u(x,y),y); 

 := bc4 ∂
∂
y

( )u ,x y  

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60] ); 
 

 
Fig. 10.5 

10.1.4   Iterative Finite Difference Solution for Elliptic PDEs 

In section 10.1.4 linear elliptic PDEs were solved by solving finite difference 
equations numerically using Maple’s fsolve command.  For nonlinear elliptic 
PDEs, the resulting finite difference expressions are nonlinear.  For solving a large 
number of nonlinear equations fsolve command may not be ideal because fsolve 
requires a good initial guess and might require a long time.  Oftentimes, fsolve 
command may not yield a result. For handling nonlinear problems, Maple can be 
used as any other programming language like FORTRAN etc. A recursion relation 
can be derived for the elliptic PDE using Maple. The resulting recursion can be 
programmed in Maple to achieve a desired accuracy. In this section Gauss-Jordan 
iteration (Stress et al) is used for nonlinear elliptic PDEs. This is best illustrated 
with the following examples.    

Example 10.5. Heat Transfer in a Rectangle – Nonlinear Elliptic PDE 

Consider a nonlinear steady state heat transfer problem governed by the following 
elliptic PDE: 
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2 2
u

2 2

u u
 +  + e  = 0

x y

u(0,y) = 0 and u(L,y) = 0

u(x,0) = 0 and u(x,H) = 1

∂ ∂
∂ ∂

       (10.8) 

where L is the length and H is the height of the rectangle.  If N interior node 
points in the x-axis and M interior node points are used in the y-axis equation 10.5 
can be converted to finite difference form as: 

i - 1,j i,j i + 1,j i ,j - 1 i,j i,j + 1
i,j2 2

0,j

N + 1,j

i,0

i,M+1

u  - 2u  + u u  - 2u  + u
 +  + exp(u ) = 0, i = 1.. N, j = 1..M

h k
u  = 0,  j = 1..M

u  = 0,  j = 1..M

u  = 0, i = 0..N + 1

u  = 1, i = 0..N + 1  
  (10.9) 

Equation 10.9 is a system of (N+2)x(M+2) nonlinear equations. Equation 10.9 can 
be used to obtain the recurrence relation: 

i - 1,j i + 1,j i ,j - 1 i,j + 1
i,j2 2

i,j

2 2

0,j

N + 1,j

i,0

i,M+1

unew  + uold unew  + uold
 +  + exp(uold )

h kunew  = , i = 1.. N, j = 1..M
1 1

2  + 
h k

unew  = 0,  j = 1..M

unew  = 0,  j = 1..M

unew  = 0, i = 0..N + 1

unew

⎛ ⎞
⎜ ⎟
⎝ ⎠

 = 1, i = 0..N + 1

 

  (10.10) 

Equation 10.10 is programmed using the Maple program given below.  N = 10 and 
M = 10 node points are used for this program.  Error is calculated based on the 
difference of the dependent variables between two successive iterations.  Mean of 
the squares of errors at all the node points is found and a set tolerance of 10-12 is 
used for verifying the convergence. 
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> restart;with(plots): 

Warning, the name changecoords has been redefined 
 

The governing equation is entered below.  The nonlinear function is stored as f. 

> ge:=diff(u(x,y),x$2)+diff(u(x,y),y$2)+f; 

 := ge  +  + ⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

x2
( )u ,x y

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟∂

∂2

y2
( )u ,x y f  

Length and height of the rectangle are entered here: 

> L:=1;H:=1; 
:= L 1  

:= H 1  

Number of node points used in x and y coordinates are entered. 

> N:=10;M:=10; 

:= N 10  

:= M 10  

Next, the boundary conditions are entered: 

> bc1:=u(x,y); 

:= bc1 ( )u ,x y  

> bc2:=u(x,y); 

:= bc2 ( )u ,x y  

> bc3:=u(x,y); 

:= bc3 ( )u ,x y  

> bc4:=u(x,y); 

:= bc4 ( )u ,x y  

Next, finite difference expressions for the governing equation and boundary 
conditions are entered: 

> dudxf:=1/2*(-u[2,m]-3*u[0,m]+4*u[1,m])/h; 

 := dudxf
1
2

− − + u
,2 m

3 u
,0 m

4 u
,1 m

h  
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> dudxb:=1/2*(unew[N-1,m]+3*u[N+1,m]-4*unew[N,m])/h; 

 := dudxb
1
2

+ − unew
,9 m

3 u
,11 m

4 unew
,10 m

h  

> dudx:=1/2/h*(u[n+1,m]-unew[n-1,m]); 

 := dudx
1
2

− u
, + n 1 m

unew
, − n 1 m

h  

> d2udx2:=1/h^2*(unew[n-1,m]-2*u[n,m]+u[n+1,m]); 

 := d2udx2
− + unew

, − n 1 m
2 u

,n m
u

, + n 1 m

h2
 

> dudyf:=1/2*(-u[n,2]-3*u[n,0]+4*u[n,1])/k; 

 := dudyf
1
2

− − + u
,n 2

3 u
,n 0

4 u
,n 1

k  

> dudyb:=1/2*(unew[n,M-1]+3*u[n,M+1]-4*unew[n,M])/k; 

 := dudyb
1
2

+ − unew
,n 9

3 u
,n 11

4 unew
,n 10

k  

> dudy:=1/2/k*(u[n,m+1]-unew[n,m-1]); 

 := dudy
1
2

− u
,n  + m 1

unew
,n  − m 1

k  

> d2udy2:=1/k^2*(unew[n,m-1]-2*u[n,m]+u[n,m+1]); 

 := d2udy2
− + unew

,n  − m 1
2 u

,n m
u

,n  + m 1

k2
 

Next, boundary conditions and governing equation are converted to finite difference 
form: 

> bc1:=subs(diff(u(x,y),x)=dudxf,u(x,y)=u[0,m],x=0,bc1); 

:= bc1 u
,0 m  

> bc2:=subs(diff(u(x,y),x)=dudxb,u(x,y)=u[N+1,m],x=L,bc2); 

:= bc2 u
,11 m  

> bc3:=subs(diff(u(x,y),y)=dudyf,u(x,y)=u[n,0],y=0,bc3); 

:= bc3 u
,n 0  
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> bc4:=subs(diff(u(x,y),y)=dudyb,u(x,y)=u[n,M+1],y=H,bc4); 

:= bc4 u
,n 11  

> for i from 1 to M do eq[0,i]:=subs(m=i,y=i*k,bc1);od: 

> for i from 1 to M do eq[N+1,i]:=subs(m=i,y=i*k,bc2);od: 

> for i from 0 to N+1 do eq[i,0]:=subs(n=i,x=i*h,bc3);od: 

> for i from 0 to N+1 do eq[i,M+1]:=subs(n=i,x=i*h,bc4);od: 

> for i from 1 to N do for j from 1 to M do eq[i,j]:=subs(diff(u(x,y),x$2) = 
subs(n=i,m=j,d2udx2),diff(u(x,y),y$2) = subs(n=i,m=j,d2udy2), 
diff(u(x,y),x) = subs(n=i,m=j,dudx),diff(u(x,y),y) = 
subs(n=i,m=j,dudy),u(x,y)=u[i,j],x=i*h,y=j*k,ge);od;od; 

> h:=evalf(L/(N+1));k:=evalf(H/(M+1)); 

:= h 0.09090909091  

:= k 0.09090909091  

Next, the nonlinear function is entered and the recurrence relation is derived for 
the node points: 

> F:=exp(u(x,y)); 

 := F e
( )u ,x y

 

> for i from 0 to N+1 do for j from 0 to M+1 do 
unew[i,j]:=subs(u=uold,f=subs(u(x,y)=uold[i,j],F),solve(eq[i,j],u[i,j]));od;od; 

> for i from 0 to N+1 do for j from 0 to M+1 do  
unew[i,j]:=subs(u[i,j-1]=unew[i,j-1],unew[i,j]);od;od; 

> for i from 0 to N+1 do for j from 0 to M+1 do uold[i,j]:=0.5;od;od; 

Initially the error is set to 1 and iteration counter is set to zero. 

> err:=1; 

:= err 1  

> iter:=0; 

:= iter 0  

> while err>1e-12 do  

> for i from 0 to N+1 do for j from 0 to M+1 do 
Unew[i,j]:=eval(unew[i,j]);od;od; 

> kk:='kk':jj:='jj':err:=sum(sum((Unew[kk,kk]-uold[kk,kk])^2, 
kk=0..N+1),jj=0..M+1)/(N+2)/(M+2); 
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> iter:=iter+1: 

> for i from 0 to N+1 do for j from 0 to M+1 do 
uold[i,j]:=Unew[i,j];od:od:end: 

The program has converged after 136 iterations.  The error associated with the 
problem is: 

> iter;err; 

136  

0.9202589808 10-12
 

The result obtained can be plotted as: 

> plotdata := [seq([ seq([i*h,j*k,unew[i,j]], i=0..N+1)], j=0..M+1)]: 

> surfdata(plotdata,axes=boxed, labels=[x,y,u],orientation=[-120,60] ); 

 
Fig. 10.6 

10.1.5   Numerical Method of Lines for First Order Hyperbolic 
PDEs 

Linear first order hyperbolic PDEs were solved analytically in chapter 8 (section 
8.1.2). Linear and nonlinear first order hyperbolic PDEs can be solved numerically 
using numerical method of lines illustrated in chapter 5.2.  First order hyperbolic 
PDEs are usually specified with a boundary condition at x = 0 and an initial 
condition. In this chapter first order hyperbolic PDEs are solved in the domain  
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x = 0..1. First order hyperbolic PDEs are relatively difficult to solve because of the 
development of steep gradients at the boundaries and wave propagation. First, 
spatial derivatives are converted to finite difference form. The resulting system of 
ODEs is then solved numerically in time.  The methodology is illustrated with the 
following examples.    

Example 10.6. Wave Propagation in a Rectangle with Consistent 
Initial/Boundary Conditions. 

Consider wave propagation in a rectangle (Schiesser, 1991). For simplicity and 
illustration purpose, consistent initial/boundary conditions are taken: 

 

u u
+  = 0

t x
u(x,0) = 0

u(0,t) = texp(-t)

∂ ∂
∂ ∂

           (10.11) 

If N node points in the x-axis (excluding x = 0) equation 10.11 can be converted to 
finite difference form as: 

0

i i + 1 i - 1

N N N - 1

u  = texp(-t)

du u  - u
 = , i = 1.. N-1

dt 2h
du u  - u

 = 
dt h

1
h = 

N

        (10.12) 

Note that boundary condition at x = 0 is used at node point i = 0 and governing 
equation is used for the node points i = 1..N.  Central difference is used for the 
first derivative for node points i = 1..N-1 and backward difference is used for  
the first derivative for the node point i = N. Equation 10.11 is solved in Maple 
below: 

> restart; 

> with(plots): 

Warning, the name changecoords has been redefined 
 

The governing equation is entered here: 

> ge:=diff(u(x,t),t)=-diff(u(x,t),x); 

 := ge  = ∂
∂
t

( )u ,x t −⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∂

∂
x

( )u ,x t  
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The boundary condition at x = 0 and the initial condition are entered here: 

> bc1:=u(x,t)-t*exp(-t); 

 := bc1  − ( )u ,x t t e
( )−t

 

> IC:=u(x,0)=0; 

:= IC = ( )u ,x 0 0  

Number of node points and length of the domain are entered here: 

> N:=10; 

:= N 10  

> L:=1; 

:= L 1  

Next, boundary condition and governing equation are converted to finite 
difference form: 

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h; 

 := dydxf
1
2

− − + ( )u
2

t 3 ( )u
0

t 4 ( )u
1

t

h  

> dydxb:=1/2*(u[N-2](t)+3*u[N](t)-4*u[N-1](t))/h; 

 := dydxb
1
2

+ − ( )u
8

t 3 ( )u
10

t 4 ( )u
9

t

h  

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)); 

 := dydx
1
2

− ( )u  + m 1
t ( )u  − m 1

t

h  

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

 := bc1  − ( )u
0

t t e
( )−t

 

> eq[0]:=bc1;  

 := eq
0

 − ( )u
0

t t e
( )−t

 

> for i from 1 to N-1 do eq[i]:=diff(u[i](t),t)= subs(diff(u(x,t),x) = 
subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,rhs(ge));od: 

>eq[N]:=diff(u[N](t),t)=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N](t),x=L,rhs(ge)): 

> u[0](t):=solve(eq[0],u[0](t)); 
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 := ( )u
0

t
t

e t
 

> h:=L/N; 

 := h
1

10  

> for i from 1 to N do eq[i]:=eval(eq[i]);od: 

> eqs:=seq((eq[j]),j=1..N): 

> Y:=seq(u[i](t),i=1..N); 

 := Y , , , , , , , , ,( )u
1

t ( )u
2

t ( )u
3

t ( )u
4

t ( )u
5

t ( )u
6

t ( )u
7

t ( )u
8

t ( )u
9

t ( )u
10

t  

> ICs:=seq(u[i](0)=rhs(IC),i=1..N); 

ICs = ( )u
1

0 0  = ( )u
2

0 0 = ( )u
3

0 0 = ( )u
4

0 0 = ( )u
5

0 0 = ( )u
6

0 0  = ( )u
7

0 0, , , , , , , := 

 = ( )u
8

0 0  = ( )u
9

0 0  = ( )u
10

0 0, ,
 

>sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure); 

sol = t ( )proc ( )  ... end proct = ( )u
1

t ( )proc ( ) ... end proct, ,[ := 

 = ( )u
2

t ( )proc ( )  ... end proct  = ( )u
3

t ( )proc ( )  ... end proct, ,

 = ( )u
4

t ( )proc ( )  ... end proct  = ( )u
5

t ( )proc ( )  ... end proct, ,

 = ( )u
6

t ( )proc ( )  ... end proct  = ( )u
7

t ( )proc ( )  ... end proct, ,

= ( )u
8

t ( )proc ( )  ... end proct = ( )u
9

t ( )proc ( ) ... end proct, ,

 = ( )u
10

t ( )proc ( )  ... end proct ]

 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

 := U
0

t

e t
 

The following plots are obtained: 

> for i from 0 to N do p[i]:=plot(U[i](t),t=0..2,thickness=3);od: 

> display({seq(p[i],i=0..N)},axes=boxed,labels=[t,"u"]); 
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Fig. 10.7 

> tf:=2.; 

:= tf 2.  

> M:=30; 

:= M 30  

> T1:=[seq(tf*i/M,i=0..M)]: 

> PP:=matrix(N+1,M+1); 

 := PP ( )array , ,.. 1 11 .. 1 31 [ ]  

> for i from 1 to N+1 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC)));od: 

> for i from 1 to N+1 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+1)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, labels=[x,t,u],orientation=[-45,60]); 
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Fig. 10.8 
 
 

An analytical solution at x = 1 can be obtained as in chapter 8, section 8.1.2 as: 

> ua:=Heaviside(t-1)*(t-1)*exp(1-t); 

 := ua ( )Heaviside  − t 1 ( ) − t 1 e
( )− 1 t

 

Analytical solution is compared to the numerical solution as: 

> plot([ua,U[N](t)],t=0..5,thickness=3,axes=boxed); 

 

 
Fig. 10.9 
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We observe that the numerical solution traces the analytical solution, but steep 
gradients are smoothened.  In addition, the numerical solution slightly oscillates.  
When node points are increased, the accuracy increases.  For N = 20 node points 
the following plot is obtained: 

 

 

Fig. 10.10 

Example 10.7. Wave Propagation in a Rectangle with inconsistent 
Initial/Boundary Conditions 

Consider wave propagation in a rectangle (Schiesser, 1991) with inconsistent 
initial/boundary conditions: 

 

u u
+  = 0

t x
u(x,0) = 0

u(0,t) = 1

∂ ∂
∂ ∂

     (10.13) 

Equation 10.13 is solved using the Maple program developed for example 10.6 
and the following plots are obtained:  
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Fig. 10.11 

 
Fig. 10.12 

> ua:=Heaviside(t-1); 

:= ua ( )Heaviside − t 1  
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> plot([ua,U[N](t)],t=0..4,thickness=3,axes=boxed); 

 

Fig. 10.13 

When backward finite difference accurate to the order h is used for the first 
derivative in the governing equation, the solution does not oscillate, and the 
following plots are obtained for N = 10 node points. 

 

Fig. 10.14 



10.1   Miscellaneous Topics on Numerical Methods 847
 

 
Fig. 10.15 

 

 

Fig. 10.16 
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10.1.6   Numerical Method of Lines for Second Order Hyperbolic 
PDEs 

First order hyperbolic PDEs were solved numerically in section 10.1.5.  Second 
order hyperbolic PDEs are usually specified with boundary conditions at x = 0 and 
x = 1.  In addition, initial conditions for both the dependent variable and its time 
derivative are specified.   The methodology is very similar to numerical method of 
lines for parabolic PDEs described in chapter 5.2.  The only difference is that 
instead of a system of first order ODEs, second order hyperbolic PDEs result in a 
system of second order ODEs.  The resulting system of second order ODEs is 
solved numerically in time.  The methodology is illustrated with the following 
examples.    

Example 10.8. Wave Equation with Consistent Initial/Boundary Conditions 

Consider wave equation in a rectangle (Schiesser, 1991). For simplicity and 
illustration purpose, consistent initial/boundary conditions are taken: 

 

2 2

2 2

u u
 =  

t x
u

u(x,0) = sin( x) ; (x,0) = 0
t

u(0,t) = 0; u(1,t) = 0

∂ ∂
∂ ∂

∂π
∂

       (10.14) 

If N interior node points in the x-axis (excluding x = 0 and x = 1 as in chapter 5.2) 
equation 10.14 can be converted to finite difference form as: 

0

2
i i + 1 i i - 1

2 2

N+1

u  = 0

d u u  - 2u  + u
 = , i = 1.. N

dt h
u  = 0

1
h = 

N+1

    (10.15) 

Note that boundary condition at x = 0 is used at node point i = 0, boundary 
condition at x = 1 is used at node point i = N+1 and governing equation is used for 
the node points i = 1..N. Equation 10.15 is solved in Maple below: 

> restart; 

> with(plots): 

Warning, the name changecoords has been redefined 
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Governing equation, boundary and initial conditions are entered here: 

> ge:=diff(u(x,t),t$2)=diff(u(x,t),x$2); 

 := ge  = 
∂
∂2

t2
( )u ,x t

∂
∂2

x2
( )u ,x t  

> bc1:=u(x,t); 

:= bc1 ( )u ,x t  

> bc2:=u(x,t); 

:= bc2 ( )u ,x t  

> IC1:=u(x,0)=sin(Pi*x); 

:= IC1 = ( )u ,x 0 ( )sin π x  

> IC2:=diff(u(x,t),t)=0; 

 := IC2  = ∂
∂
t

( )u ,x t 0  

> N:=10; 

:= N 10  

> L:=1; 

:= L 1  

> dydxf:=1/2*(-u[2](t)-3*u[0](t)+4*u[1](t))/h: 

> dydxb:=1/2*(u[N-1](t)+3*u[N+1](t)-4*u[N](t))/h: 

> dydx:=1/2/h*(u[m+1](t)-u[m-1](t)): 

> d2ydx2:=1/h^2*(u[m-1](t)-2*u[m](t)+u[m+1](t)): 

> bc1:=subs(diff(u(x,t),x)=dydxf,u(x,t)=u[0](t),x=0,bc1); 

:= bc1 ( )u
0

t  

> bc2:=subs(diff(u(x,t),x)=dydxb,u(x,t)=u[N+1](t),x=1,bc2); 

:= bc2 ( )u
11

t  

> eq[0]:=bc1:  

> eq[N+1]:=bc2: 

> for i from 1 to N do eq[i]:=subs(diff(u(x,t),x$2) = 
subs(m=i,d2ydx2),diff(u(x,t),x) = subs(m=i,dydx),u(x,t)=u[i](t),x=i*h,ge);od: 
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Values at the exterior node points (x = 0 and x = 1) are solved as: 

> u[0](t):=(solve(eq[0],u[0](t))); 

:= ( )u
0

t 0  

> u[N+1](t):=solve(eq[N+1],u[N+1](t)); 

:= ( )u
11

t 0  

> h:=L/(N+1); 

 := h
1

11  

> for i from 1 to N do eq[i]:=eval(eq[i]);od: 

> eqs:=seq((eq[j]),j=1..N): 

> Y:=seq(u[i](t),i=1..N); 

 := Y , , , , , , , , ,( )u
1

t ( )u
2

t ( )u
3

t ( )u
4

t ( )u
5

t ( )u
6

t ( )u
7

t ( )u
8

t ( )u
9

t ( )u
10

t  

Initial conditions are entered here: 

>ICs:=seq(u[i](0)=rhs(subs(x=i*h,IC1)),i=1..N), 
seq(D(u[i])(0)=rhs(subs(x=i*h,IC2)),i=1..N); 

ICs  = ( )u
1

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

π
11

 = ( )u
2

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

2 π
11

 = ( )u
3

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

3 π
11

 = ( )u
4

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

4 π
11

, , , , := 

 = ( )u
5

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

5 π
11

 = ( )u
6

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

6 π
11

 = ( )u
7

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

7 π
11

 = ( )u
8

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

8 π
11

, , , ,

 = ( )u
9

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

9 π
11

 = ( )u
10

0 ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟sin

10 π
11

 = ( )( )D u
1

0 0  = ( )( )D u
2

0 0  = ( )( )D u
3

0 0, , , , ,

 = ( )( )D u
4

0 0  = ( )( )D u
5

0 0  = ( )( )D u
6

0 0  = ( )( )D u
7

0 0  = ( )( )D u
8

0 0, , , , ,

 = ( )( )D u
9

0 0  = ( )( )D u
10

0 0,  
>sol:=dsolve({eqs,ICs},{Y},type=numeric,output=listprocedure): 

> for i to N do U[i]:=subs(sol,u[i](t));od: 

> U[0]:=subs(u[1](t)=U[1],u[2](t)=U[2],u[0](t)); 

:= U
0

0  

> U[N+1]:=subs(u[N](t)=U[N],u[N-1](t)=U[N-1],u[N+1](t)); 

:= U
11

0  

> for i from 0 to N+1 do p[i]:=plot(U[i](t),t=0..1,thickness=3);od: 
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The solution obtained is plotted below: 

> display({seq(p[i],i=0..N+1)},axes=boxed,labels=[t,"u"]); 

 
Fig. 10.17 

> tf:=2.; 

:= tf 2.  

> M:=30: 

> T1:=[seq(tf*i/M,i=0..M)]: 

> PP:=matrix(N+2,M+1): 

> for i from 1 to N+2 do PP[i,1]:=evalf(subs(x=(i-1)*h,rhs(IC1)));od: 

> for i from 1 to N+2 do for j from 2 to M+1 do 
PP[i,j]:=evalf(subs(t=T1[j],U[i-1](t)));od;od: 

> plotdata := [seq([ seq([(i-1)*h,T1[j],PP[i,j]], i=1..N+2)], j=1..M+1)]: 

> surfdata( plotdata, axes=boxed, labels=[x,t,u],orientation=[15,60]); 
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Fig. 10.18 

 

Example 10.9. Wave Equation with Inconsistent Initial/Boundary Conditions 

Consider wave equation in a rectangle with inconsistent initial/boundary 
conditions: 

 

2 2

2 2

u u
 =  

t x
u

u(x,0) = 0 ; (x,0) = 0
t

u
u(0,t) = 1; (1,t) = 0

x

∂ ∂
∂ ∂

∂
∂

∂
∂

    (10.16) 

Equation 10.16 is solved in Maple and the following plots are obtained: 

> ge:=diff(u(x,t),t$2)=diff(u(x,t),x$2); 

 := ge  = 
∂
∂2

t2
( )u ,x t

∂
∂2

x2
( )u ,x t  
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> bc1:=u(x,t)-1; 

:= bc1 − ( )u ,x t 1  

> bc2:=diff(u(x,t),x); 

 := bc2 ∂
∂
x

( )u ,x t  

> IC1:=u(x,0)=0; 

:= IC1 = ( )u ,x 0 0  

> IC2:=diff(u(x,t),t)=0; 

 := IC2  = ∂
∂
t

( )u ,x t 0  

 

 

Fig. 10.19 
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Fig. 10.20 
 

 
Fig. 10.21 
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Compared to example 10.7, we observe oscillations in example 10.8. For hyperbolic 
PDEs with inconsistent initial/boundary conditions, method of lines is not a good 
choice.  Special numerical methods that involve discretization in both x and t are 
required for this purpose (Schiesser 1991). 

10.1.7   Summary 

In this chapter, classical numerical methods for solving BVPs and PDEs were 
programmed in Maple. In section 10.1.2, nonlinear Boundary Value Problems 
(ODEs) were solved numerically. First, the given nonlinear BVP in x was 
converted to a system of nonlinear coupled algebraic equations by applying finite 
differences for the spatial derivatives in the governing equation and boundary 
conditions.   The resulting system of nonlinear algebraic equations was the solved 
using iteration by developing recurrence relations.  The same methodology was 
then extended to elliptic PDEs in sections 10.1.3 and 10.1.4 by applying finite 
difference approximations in both x and y coordinates.  In section 10.1.3 linear 
elliptic PDEs were solved using fsolve command and in section 10.1.4 nonlinear 
elliptic PDEs were solved using iteration.   

First order hyperbolic PDEs were solved using numerical method of lines in 
section 10.1.5. The methodology involves applying finite differences in x and 
integrating numerically in time. The same methodology was then extended to 
second order hyperbolic PDEs in section 10.1.6.  A total of nine examples were 
presented in this chapter. 

10.1.8   Exercise Problems 

1. Consider diffusion with a second-order reaction in a cylindrical catalyst 
pellet (exercise problem 2 chapter 3). Solve this problem using recursion 
technique described in section 10.1.2. 

2. Redo exercise problem 3 of chapter 3 using recursion technique described 
in section 10.1.2. 

3. Consider the Graetz problem discussed in example 6.3.  Solve this problem 
by applying finite differences in both directions as described in section 
10.1.3. 

4. Consider the elliptic PDE with nonlinear boundary condition discussed in 
example 6.4. Solve this problem by applying finite differences in both 
directions as described in section 10.1.3. 

5. Consider current-distribution problem discussed in example 6.5.  Redo this 
problem using the methodology described in section 10.1.3.  Hint: the node 
spacing in y changes as a function. 

6. Consider diffusion with second-order reaction discussed in example 6.7.  
Redo this problem using the methodology described in section 10.1.3. 

7. Redo problem 3 using iterative finite difference technique described in 
section 10.1.4. 

8. Redo problem 4 using iterative finite difference technique described in 
section 10.1.4. 
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9. Redo problem 5 using iterative finite difference technique described in 
section 10.1.4. 

10. Redo problem 6 using iterative finite difference technique described in 
section 10.1.4. 

11. Consider diffusion with reaction in a non-isothermal cylindrical pellet 
(Finlayson, 1980, exercise problem 7, chapter 6).  The governing equations 
and boundary conditions are: 

2 2
2

2 2

u u 1 u (1-u)
 +  = uexp

y x x x 1 (1-u)

u
(0,y) = 0 and u(1,y) = 1

x

u
(x,0) = 0 and u(x,1) = 1

y

⎛ ⎞∂ ∂ ∂ γβ+ Φ ⎜ ⎟∂ ∂ ∂ + β⎝ ⎠

∂
∂

∂
∂

 

Solve this problem using finite difference technique (either using fsolve 
command [section 10.1.3] or iteration [section 10.1.4]) for Φ = 2, γ = 30 
and β = 0.1.  Which method is more efficient? 

12. Complete the details missing in example 10.7.   
13. Complete the details missing in example 10.9. 
14. Redo example 10.6 if the boundary condition at x = 0 is replaced by 

2u(0,t) = t exp(-t) . 

15. Redo example 10.8 if the initial condition is replaced by 
u(x,0) = xsin( x)π . 

16. In problem 16, how can one change the boundary conditions at x = 0 
without changing the consistency of boundary/initial conditions?  Solve 
this new problem. 
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