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Notations

Subscripts related to fluid phases:

a Air,
w Water,
a Generic fluid phase.

Subscripts related to the components of vectors and tensors (Einstein
summation convention is implied only for these subscripts): i; j; k; l;m; n.

Superscripts related to spatial discretization (in parentheses)

ðiÞ to ðmÞ Indices of grid entities: nodes, elements, volumes or faces,
ðijÞ Average value between nodes i and j,
ðeÞ Average value in a finite element,
ðfcÞ Average value at a finite volume face,
ðsÞ Time step index,
ðmÞ Iteration index.

Superscripts related to components of a heterogeneous medium:

I Fracture system or background material
II Rock matrix or inclusions

Superscripts related to averaged field-scale properties:

eff Effective parameter,
eq Equivalent parameter.

Superscripts related to homogenization analysis:

� Dimensionless variable,
ðcÞ Characteristic value.

xv



Symbols (physical units specified where appropriate):

Uppercase Latin letters:

Aði jÞ
a

Coefficients in spatially discretized flow equations for phase a at
node j,

Bhigh
i j

Geometry-dependent constant for calculating the effective water
permeability in a medium with highly permeable inclusions,

Blow
i j Geometry-dependent constant for calculating the effective water

permeability in a medium with weakly permeable inclusions,
Cdec

it
Coefficient decreasing the time step size,

Cinc
it

Coefficient increasing the time step size,
Cch Specific water capacity in the pressure head based form of the

Richards equation, (m�1),
Cwh Storage coefficient in the pressure head based form of the

Richards equation, (m�1),
Cwp Storage coefficient in the pressure based form of the Richards

equation, (Pa�1),
D Hydraulic diffusivity tensor, (m2 s�1),
De Energy dissipation for fluid flow in porous medium, (Pa2),
DL Characteristic diffusivity at the field scale (m),
Dl Characteristic diffusivity at the Darcy scale (m),
EðnÞ nth finite element,

FðnÞ nth face of a finite volume grid,

GðjÞa
Gravity term in spatially discretized flow equation for phase a at
node j,

Ha Total potential head of fluid phase a, (m),
Ksa Hydraulic conductivity of phase a at apparent saturation,

(m s�1),
Ka Hydraulic conductivity of phase a, (m s�1),
L Characteristic length at the field scale, (m),
Ma Mass density of fluid phase a with respect to the bulk volume of

porous medium, Ma ¼ qa /a Sa;, (kg m�3),

QðfcÞa Total mass flux of phase a at a control volume face, (kg s�1),

Rb Characteristic dimension of a matrix block or inclusion, (m),
Rgas Universal gas constant, (Jðmol �KÞ�1),
Strap

a Effective air saturation for a heterogeneous medium in trapped-
air regime,

Strap
w Effective water saturation for a heterogeneous medium in

trapped-air regime,
Sa Saturation of fluid phase a,
Sea Normalized saturation of phase a,
Smax

a Maximum attainable saturation of phase a,
Smin

a Minimum attainable saturation of phase a,
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Sra Saturation of phase a at residual state,
Tm

a Non-equilibrium mass flow rate between fractures and matrix, or

between background material and inclusions, (kgðm3 sÞ�1 ),
Tv

a Non-equilibrium volumetric flow rate between fractures and
matrix, or between background material and inclusions, (s�1),

U Domain of a representative elementary volume at the pore scale,
Ua Part of a pore-scale representative elementary volume occupied

by phase a,
Vb Matrix block domain,
V ðiÞ ith finite volume,
W Solution domain at the Darcy scale,
Zk Auxiliary parameter in the formula for inter-nodal permeability,
Zs Auxiliary parameter in the formula for relating parameters of the

Brook-Corey and van Genuchten functions.

Calligraphic Latin letters:

DðjÞ Spatial discretization operator for node j,

EðjÞ Set of finite elements sharing node j,

H Relative air humidity,
Ma Mole mass of fluid phase a, (kg mol�1),

N
ðnÞ
elem

Set of nodes belonging to n-th finite element,

N
ðjÞ
nod

Set of nodes connected to node j, including j,

OðuÞ Order of magnitude of number u,
Rc Dimensionless gravity–capillarity ratio,
Rd Dimensionless hydraulic diffusivity ratio between inclusions and

background,
Rk Dimensionless permeability ratio between inclusions and

background,
Ri

t Dimensionless time scale for Darcy-scale flow in porous material
i,

T Kelvin temperature, (�K).

Lowercase Latin letters:

ai Length of the ellipsoidal inclusion in ith spatial direction, (m),
a0; a010; a011; a02 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
b0; b001; b002; b01 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
c0; c00 Parameters in the Gasto et al. formula for the inter-nodal

permeability,
di Ellipsoid depolarisation coefficient in ith spatial direction,
fa Fractional flow function for fluid phase a,
g Magnitude of the gravitational acceleration vector, (m s�2),
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g Gravitational acceleration vector, (m s�2),
ha Pressure head of fluid phase a, (Pa),
hc Capillary pressure head, (Pa),
he Air-entry pressure head, (Pa),
hg Pressure head scaling parameter, (Pa),

kði jÞ
ca

Average relative water permeability for the capillary-driven flow
between nodes i and j,

kði jÞ
gr

Average relative water permeability for the gravity-driven flow
between nodes i and j,

kði jÞ
int

Integrated average relative water permeability between nodes i
and j,

kcpl
ii

Cardwell and Parsons lower bound for the equivalent perme-
ability in ith direction, i ¼ 1; 2; 3, (m2),

kcpu
ii Cardwell and Parsons upper bound for the equivalent perme-

ability in ith direction, i ¼ 1; 2; 3, (m2),

kðelÞ
rw

Average relative water permeability in a finite element,

kfm
rw

Relative water permeability at the fracture–matrix interface,

kði jÞ
rw

Average relative water permeability between nodes i and j,

kra Relative permeability of phase a,
ks Intrinsic permeability tensor, (m2),
keq

s Equivalent intrinsic permeability tensor of heterogeneous
medium, (m2),

keff
s

Effective intrinsic permeability tensor of a heterogeneous
medium, (m2),

kt Total permeability tensor in fractional flow formulation,

(m2ðPa sÞ�1),
ka Permeability tensor of phase a, (m2),
keff

a
Effective permeability tensor of a heterogeneous medium for
phase a, (m2),

khigh
w

Effective water permeability tensor for a heterogeneous medium
with highly permeable inclusions, (m2),

klow
w

Effective water permeability tensor for a heterogeneous medium
with weakly permeable inclusions, (m2),

ktrap
w

Effective water permeability tensor for a heterogeneous medium
in trapped-air regime, (m2),

l Characteristic length at the Darcy scale, (m),
lh Characteristic dimension of Darcy-scale heterogeneities, (m),
lv Characteristic dimension of the averaging volume, (m),
mg Exponent in the van Genuchten capillary function,
nb Exponent in the Brooks–Corey capillary function,
ng Exponent in the van Genuchten capillary function,
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nE Unit vector normal to the boundary of a finite element,
nV Unit vector normal to the boundary of a finite volume,
nW Unit vector normal to the boundary of the porous domain,
n Unit vector normal to the interface separating two porous

materials,
patm Atmospheric pressure, (Pa),
pc Capillary pressure, (Pa),
pe Air-entry pressure, (Pa),
pdrain

e
Air-entry pressure during drainage, (Pa),

pwet
e Air-entry pressure during wetting, (Pa),

pg Capillary pressure scaling parameter in the Gardner and van
Genuchten functions, (Pa),

pa Pressure in fluid phase a, (Pa),
pref

a Reference pressure for fluid phase a, (Pa),
pglob Global pressure in the fractional flow formulation, (Pa),
~pi Fluctuation of the fluid pressure for steady flow in ith spatial

direction, (Pa),
qev Cumulative evaporation flux at the soil surface, (m),
qinf Cumulative infiltration flux at the soil surface, (m),
rb Local spatial coordinate in a matrix block or inclusion, (m),
rc Radius of a capillary tube, (m),
rc1; rc2 Main curvature radii of the air–water interface, (m),
sabs Absolute error tolerance in the solution of nonlinear algebraic

equations,
srel Relative error tolerance in the solution of nonlinear algebraic

equations,
t Time, (s),
tdry Surface drying time in the evaporation simulation, (s),
tpond Surface ponding time in the infiltration simulation, (s),
u Generic variable,
u Vector of unknown nodal values in the numerical solution,
vL Characteristic advective velocity at the field scale, (m s�1),
vl Characteristic advective velocity at the Darcy scale, (m s�1),

vðijÞst
Steady-state volumetric water flux between nodes
i and j, (m s�1),

vtop
w Volumetric water flux at the soil surface, (m s�1),

va Volumetric flux of fluid phase a with respect to the solid phase
(Darcy velocity), (m s�1),

vt Total volumetric flux in the fractional flow formulation, (m s�1),
w Volumetric fraction of a porous material,
x Spatial coordinate vector, (m),
y Spatial coordinate vector associated with a periodic cell, (m),
z Elevation above the reference level, (m).

Notations xix



Uppercase Greek letters:

C Interface between two porous materials,
Dxði jÞ Distance between nodes i and j, (m),
Dx0 Normalized distance between nodes,
Dt Time step, (s),
H Weighting coefficient in the time discretization scheme,
Kb External surface of a matrix block,

Kðiþ1=2Þ Interface between nested matrix blocks i and iþ 1 in MINC
method,

! Weighting function in the finite element method,
Uh Flux potential with respect to the water pressure head, (m),
Up Flux potential with respect to the water pressure, (Pa),

WðiÞ Shape function for node i in the finite element method,

WðiÞe
Element shape function for node i in the finite element method,

X Domain of a periodic cell,
XI Part of a periodic cell occupied by the background material,

XII Part of a periodic cell occupied by the inclusions.

Lowercase Greek letters:

ag Inverse of the scaling pressure (or pressure head) in the capillary
function, (Pa�1) or (m�1),

ap;q Coefficients in the modified equation,
ba Relative compressibility coefficient for fluid phase a, (Pa�1),
bfm Shape coefficient for the fracture–matrix transfer term,

b0 Parameter in the averaging formula for the inter-nodal
permeability,

bp;q Coefficients in the modified equation,

cfm Scaling coefficient for the fracture–matrix transfer term,
cp;q Coefficients in the modified equation,
du Increment of the vector of unknown values in the iterative solution

procedure,
e Scale parameter,
f Gravity coefficient, cosine of the angle between x axis and the

gravity vector in one-dimensional problems,
f0 Modified gravity coefficient,
ga Exponent in the power-law relative permeability function for phase

a,
g1; g2; g3; g4 Exponents in the Mualem and Burdine relative permeability

functions,
ha Volumetric content of phase a,

xx Notations



hra Volumetric content of phase at the residual state a,
hsa Volumetric content of phase a at the state of apparent saturation,
htrap

a
Effective volumetric air content for a heterogeneous medium in
trapped-air regime,

htrap
w

Effective volumetric water content for a heterogeneous medium in
trapped-air regime,

j Connectivity parameter in the Mualem and Burdine relative
permeability functions,

ka Mobility of phase a, ðPa sÞ�1,
la Dynamic viscosity coefficient of fluid phase a, (Pa s),
n Local spatial coordinate in the finite element scheme,
pi Weighting coefficient in the generalized power average formula

for the equivalent permeability in ith spatial direction,
qa Intrinsic mass density of fluid phase a, (kg m�3),
qref

a Reference intrinsic mass density of fluid phase a, (kg m�3),
rab Surface tension between phases a and b, (N m�1),
t Small number used in numerical differentiation,
/ Porosity,
vi Auxiliary variable used to define the effective permeability in ith

spatial direction,
Wetting angle,

xk Weighting parameter in the averaging scheme for fracture–matrix
permeability,

xv Weighting parameter in the averaging formula for the inter-nodal
relative permeability,

xw Weighting parameter in the averaging formula for the inter-nodal
relative permeability.
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Chapter 1
Introduction

The unsaturated zone, also called vadose zone, is located between the soil surface
and the groundwater table. Its depth is variable and depends on geological and cli-
matic factors. As the name implies, soils and rocks in the unsaturated zone are only
partially filled with water, the rest of the pore space being occupied by air. The vadose
region constitutes a vital link between groundwater, atmospheric water and surface
water. It is a place of intense human activity of various kinds, including civil and
environmental engineering and agriculture. Therefore, flow and transport phenom-
ena occurring in the unsaturated zone can be studied from different viewpoints, as
shown schematically in Fig. 1.1.

A distinct scientific specialization, soil physics, is entirely devoted to the study
of physical processes in soils, including the water flow in unsaturated conditions,
e.g. [17, 20, 47]. Soil physics developed in a close relationship to agronomy and
hydrology. In agricultural applications, emphasis is put on the availability of water
and dissolved nutrition substances to plants, which motivates the development of
comprehensive models to describe the soil-plant-atmosphere system, e.g. [8, 9].
Accurate evaluation of water infiltration into the soil and evapotranspiration from the
soil is also important for hydrological models. For instance, the infiltration capacity
of soils has a direct influence on the formation of runoff, and thus is an important
factor in predicting the risk of flood. Consequently, a trend towards explicit coupling
of the surface and shallow subsurface flow in hydrological models can be observed,
e.g. [11, 48].

On the other hand, the water flow processes in the unsaturated zone have sig-
nificant impact on groundwater flow in saturated aquifers, which constitute a major
source of drinking water. Even more importantly, the vadose zone is a buffer between
groundwater and various sources of pollutants located at the soil surface or in the
shallow subsurface. Reliable prediction of the fate of contaminants dissolved in water
requires the knowledge of water flow velocities in the unsaturated zone, which are in
general highly variable in space and time. Therefore, increasing attention is paid to
coupled saturated-unsaturated models of groundwater flow and contaminant trans-
port, e.g. [43, 44, 50]. Moreover, accounting for the unsaturated flow allows for

A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media, 1
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2 1 Introduction

Fig. 1.1 Typical problems related to water flow in the vadose zone

improved estimation of parameters related to the hydraulics of phreatic aquifers,
such as the recharge rate [18], the specific yield [35] or the height of the seepage
face in wells [5].

Water flow in the vadose zone has important implications also for geotechni-
cal engineering. Traditionally, soil mechanics focused mostly on completely dry or
fully saturated non-cohesive soils, and fully saturated cohesive soils. However, a wide
range of problems can be more accurately modelled, if the variability in the soil water
saturation is taken into account. This is particularly necessary for soils that swell,
shrink or collapse due to the changes in water saturation, but there is an increas-
ing awareness of the importance of unsaturated flow also for other applications,
including soil compaction, slope stability, flow in dams and embankments, protec-
tion of landfills, tunneling or interpretation of penetration tests, e.g. [30, 31, 51].
Unsaturated soil mechanics is still an emerging and very active field of research,
which developed substantially during the last twenty years, e.g. [10, 25, 28].

In all the applications mentioned above a crucial issue is the ability to accurately
model water flow in soils, or—more generally—partially saturated porous media.
This, however, is a challenging task, due to the multi-phase and multi-scale nature of
porous media, especially the ones formed by natural processes. Porous soils and rocks
in the vadose zone consist of several deformable solid and fluid phases, separated
by clearly distinguishable interfaces, representing sharp discontinuities in physical
and chemical properties [16, 33]. In general, each of the phases consists of multi-
ple chemical components, which can move between phases. Pore air, for instance,
is a mixture of gases, including water vapor, while pore water contains many dis-
solved substances, including gases. The number of phases and components included
in the mathematical model depends on the problem under consideration. In many
applications focusing on the water flow, a sufficient accuracy can be achieved with
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Fig. 1.2 Observation scales in a porous medium

a simplified model, where both air and water are considered as immiscible single-
component phases and the deformation of the solid skeleton is neglected. Such an
approach is adopted in the present work.

Modelling of flow in porous media is further complicated by the fact that the
relevant physical processes can be described at various observation scales. Mathe-
matical models applied at each scale typically represent the principles of conservation
of basic quantities such as mass, momentum and energy, but the exact form of the
governing equations may differ substantially between the scales. In some cases the
model describing processes at a larger scale can be derived directly from the equa-
tions relevant at a smaller scale by an appropriate averaging procedure. This process
is known as upscaling. Alternatively, the governing equations can be formulated
directly at the larger scale, based on phenomenological considerations. Two basic
scales, typically distinguished in porous media, are the pore scale and the Darcy
scale, Fig. 1.2. In the former case, the characteristic spatial dimension is the size of a
single pore, which in granular media is approximately proportional to the grain size.
At this scale, each phase occupies a distinct spatial domain, and each point of space
can be associated with a specific phase. On the other hand, it is assumed that each
phase can be regarded as a continuum within its own spatial sub-domain, i.e. the size
of the pores is much larger than the size of fluid molecules. The flow of fluid phases
can be described by the Navier-Stokes equations with appropriate conditions at the
fluid-solid and fluid-fluid interfaces. However, the pore scale description is not suit-
able for practical problems, which involve spatial domains having dimensions larger
than the pore size by many orders of magnitude. Therefore, the governing equations
describing behaviour of various phases are usually formulated at a much larger scale,
which in the present work will be referred to as the Darcy scale, from the name of
H. Darcy, who developed the well-known formula for the water seepage velocity in
a porous medium [7]. At this scale, each spatial point corresponds to a representative
elementary volume (REV), containing a sufficiently large number of pores, occupied
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by multiple fluid phases. Thus, in contrast to the pore scale description, at the Darcy
scale each phase forms a continuum over the entire spatial domain.

The most commonly used two-phase model of air and water flow at the Darcy
scale is a combination of the mass conservation equation for each fluid with the semi-
empirical equation for flow velocity, based on an extension of the Darcy formula for
the case of multi-phase flow. One of key components of the model is the capillary
function, describing the relationship between the water saturation and the capillary
pressure, defined as the difference between pressures in the air and water phases.
A complementary constitutive relationship is given by the relative permeability func-
tion, which describes the ability of each fluid phase to flow in the porous medium
as a function of the phase saturation. Both functions are strongly nonlinear. Their
form depends principally on the geometrical characteristic of the pore space and
on the properties of the fluid-fluid and fluid-solid interfaces (surface tension). The
mathematical model of two-phase flow is often formulated as two coupled partial
differential equations of parabolic type, with the two phase pressures or saturations
as the primary unknown variables.

The two-phase model can be simplified, if one assumes that the air phase is con-
tinuously distributed in pores, it is connected to the atmospheric air and much more
mobile than the water phase. Accordingly, the pressure in the air phase can be con-
sidered constant and equal to the atmospheric pressure, and the equation describing
air flow is eliminated. The remaining equation for the water flow is called the unsat-
urated flow equation or the Richards equation [34]. Similarly to the full two-phase
flow model, the Richards equation is based on semi-empirical concepts of the capil-
lary and relative permeability functions, introduced at the Darcy scale to account for
a number of pore scale phenomena, which at present are not fully understood. These
constitutive relationships are difficult to associate with the Darcy-scale processes in
a manner that is both physically rigorous and easy to implement practically. While
a number of improved formulations for the two-phase and unsaturated flow have
been proposed, e.g. [3, 14, 26, 29, 32, 49], the Richards equation remains a useful
and well-established tool in the unsaturated zone modelling, and is the basis of the
present analysis.

The present book focuses on two aspects of the application of the Richards equa-
tion. The first one is related to its numerical solution. Although significant develop-
ment of the numerical algorithms occurred in the last twenty years, e.g. [4, 27], solu-
tion of the Richards equation remains a challenging task due to the afore-mentioned
strongly nonlinear constitutive relationships, which must be appropriately repre-
sented in the discretized space-time domain. A particularly important issue is the
approximation of the relative permeability between the nodes of a spatial grid, which
is a necessary to estimate water fluxes, according to a discrete version of the Darcy
formula. As the relative permeabilities may differ by several orders of magnitude (for
example, during infiltration in a dry soil, or evaporation), the choice of the averaging
method is often essential for the overall accuracy of the approximate solution. Sev-
eral simple averaging schemes have been proposed, e.g. arithmetic mean, geometric
mean and upstream weighting, but each of them may lead to large errors for partic-
ular combinations of the initial and boundary conditions, grid size and the form of
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functional relationship between the relative permeability and the capillary pressure,
e.g. [1, 2, 15]. On the other hand, more accurate methods often require significantly
larger computational effort, e.g. [46]. In this work an averaging scheme is presented,
that is relatively easy to implement and significantly improves the solution accuracy
for a wide range of one- and two-dimensional problems. The method was proposed
in the paper [36], and further developed in [37, 38]. Extension of the method for
unstructured grids and implications for the solution of the full two-phase model are
also discussed. The analysis is carried out for a simple form of the Richards equa-
tion, which does not account for soil compressibility nor water uptake by plant roots.
While these two factors are very important in many applications related to the unsat-
urated zone and must be properly treated numerically, they have no direct influence
on the development of the averaging schemes for inter-nodal permeabilities.

The second topic considered in this book deals with flow in porous media showing
material heterogeneity at the Darcy scale. Heterogeneity may be related to various
physical and chemical properties of the porous medium. The focus of this work is on
porous formations composed of sub-domains characterized by distinct textural prop-
erties, which imply differences in pore geometry, and consequently in the physical
parameters such as permeability, hydraulic diffusivity or air entry pressure (defined
as the value of the capillary pressure above which the pore air flow is possible).
The important issue of chemical heterogeneity, for instance related to the wettability
and adsorption properties of the solid phase is not considered here. If the number of
heterogeneous regions in the considered spatial domain is large, their explicit rep-
resentation on a numerical grid becomes difficult or even impossible. Therefore, a
new observation scale can be introduced, which for the purposes of this work will
be called the field scale, Fig. 1.2. At this scale the relevant representative elemen-
tary volume encompasses sufficiently large number of Darcy scale heterogeneities
to allow for the development of an upscaled model. The heterogeneous structure can
be described in either deterministic or stochastic terms. In particular the stochas-
tic models for flow and transport in unsaturated heterogeneous porous media have
been a subject of intense research, e.g. [6, 12, 52]. In this book the deterministic
viewpoint is adopted and a specific heterogeneity pattern is considered: a binary
porous medium with disconnected porous inclusions (lenses) embedded in a contin-
uous porous background material. While such a structure is relatively simple, it is
representative of a number of natural porous formations, such as fluvial or coastal sed-
iments, or sandstone-shale sequences, e.g. [19]. On the other hand, this type of pattern
can be conveniently parametrized and analysed from the theoretical point of view,
allowing for a good general understanding of local heterogeneities on the large-scale
behaviour of the medium. The second part of this work presents an extended discus-
sion of several models based on the Richards equation, which were developed for
such type of media using the asymptotic homogenization approach [21–24, 39, 41].
These works showed that the macroscopic behaviour of the medium depends on
the ratio between the permeabilities of the inclusions and the background material.
A generalized model, valid for a wide range of inclusion-to-background permeability
ratio, was proposed [39], and its preliminary experimental verification was carried
out [40]. It can be also shown that the Richards approximation is not valid for media
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characterized by higher value of the air-entry pressure in the matrix than in inclu-
sions. In porous media showing heterogeneity with respect to the air-entry pressure
the assumption of the continuity of air phase in porous medium, which underlies the
Richards equation, may not be satisfied [41]. However, the accuracy of the Richards
equation can be improved, if the large-scale capillary and permeability functions are
appropriately modified [42].

The field scale discussed in this book represents an intermediate level in the hier-
archy of scales relevant to the modeling of water flow in the vadose zone, with the
characteristic length of the order of meters to dekameters. Significant research has
been devoted to the description of unsaturated zone processes at regional scale, cor-
responding to hydrological watersheds, with the horizontal dimensions of many kilo-
meters, e.g. [13, 45]. At such a scale, simplified mathematical models of the black-box
type are routinely used and an important question is how to relate their parameters
to the more detailed characteristics of the porous media available at smaller scales.
While regional-scale hydrological modelling is of high practical importance, it is not
considered in this book.

The book is structured as follows. Chapter 2 presents the mathematical formula-
tion of flow in unsaturated porous medium. The governing equations for the two-
phase model and the Richards model are discussed, together with various analytical
formulae for capillary and permeability functions. In Chap. 3 a numerical algorithm
to solve the governing flow equations is developed. The algorithm is formulated in
general terms and can be applied to both the two-phase model and the Richards
equation. Various methods of spatial discretization are discussed, including the con-
trol volume–finite difference and control volume–finite element approaches. The
approximation of the average permeability in spatially discretized Richards equation
is considered in detail in Chap. 4. Chapter 5 introduces basic concepts of upscaling.
In Chap. 6 the upscaled models developed for flow in binary media without air-entry
pressure effects are presented. The model accounting for air-entry effects is discussed
in Chap. 7. The final chapter summarizes the contents of the book and outlines some
open problems related to the discussed topics.
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of unsaturated water flow in a double-porosity medium under axi-symmetric conditions. Can
Geotech J 45(2):238–251. doi:10.1139/T07-096

41. Szymkiewicz A, Helmig R, Kuhnke H (2011) Two-phase flow in heterogeneous porous media
with non-wetting phase trapping. Trans Porous Media 86(1):27–47. doi:10.1007/s11242-010-
9604-x

42. Szymkiewicz A, Helmig R, Neuweiler I (2012) Upscaling unsaturated flow in binary
porous media with air entry pressure effects. Water Resour Res 48:W04522. doi:10.1029/
2011WR010893

43. Thoms R, Johnson R, Healy R (2006) Users guide to the variably saturated flow (VSF) process
for MODFLOW. Technical Report, USGS

44. Twarakavi N, Simunek J, Seo S (2008) Evaluating interactions between groundwater and vadose
zone using the HYDRUS-based flow package for MODFLOW. Vadose Zone J 7(2):757–768.
doi:10.2136/vzj2007.0082

45. Vereecken H, Kasteel R, Vanderborght J, Harter T (2007) Upscaling hydraulic properties and
soil water flow processes in heterogeneous soils: a review. Vadose Zone J 6(1):1–28. doi:
10.2136/vzj2006.0055

46. Warrick A (1991) Numerical approximation of Darcian flow through unsaturated soil. Water
Resour Res 27(6):1215–1222. doi:10.1029/91WR00093

47. Warrick A (2002) Soil physics companion. CRC Press, Boca Raton
48. Weill S, Mouche E, Patin J (2009) A generalized Richards equation for surface/subsurface flow

modelling. J Hydrol 366(1–4):9–20. doi:10.1016/j.jhydrol.2008.12.007
49. Whitaker S (1986) Flow in porous media II: the governing equations for immiscible, two-phase

flow. Transp Porous Media 1(2):105–125. doi:10.1007/BF00714688
50. Xu T, Sonnenthal E, Spycher N, Pruess K (2008) TOUGHREACT user’s guide: A simulation

program for non-isothermal multiphase reactive geochemical transport in variably saturated
geologic media, v1.2.1. Technical Report, Lawrence Berkeley National Laboratory

51. Xu YQ, Unami K, Kawachi T (2003) Optimal hydraulic design of earth dam cross section
using saturated-unsaturated seepage flow model. Adv Water Resour 26(1):1–7. doi:10.1016/
S0309-1708(02)00124-0

52. Zhang D (2002) Stochastic methods for flow in porous media: coping with uncertainties.
Academic Press, San Diego

http://dx.doi.org/10.1016/S0022-1694(02)00251-2
http://dx.doi.org/10.1061/(ASCE)HE.1943-5584.0000121
http://dx.doi.org/10.1029/2008WR007654
http://dx.doi.org/10.2478/v.10169-011-0016-2
http://dx.doi.org/10.1016/j.advwatres.2011.05.011
http://dx.doi.org/10.1139/T07-096
http://dx.doi.org/10.1007/s11242-010-9604-x
http://dx.doi.org/10.1007/s11242-010-9604-x
http://dx.doi.org/10.1029/2011WR010893
http://dx.doi.org/10.1029/2011WR010893
http://dx.doi.org/10.2136/vzj2007.0082
http://dx.doi.org/10.2136/vzj2006.0055
http://dx.doi.org/10.1029/91WR00093
http://dx.doi.org/10.1016/j.jhydrol.2008.12.007
http://dx.doi.org/10.1007/BF00714688
http://dx.doi.org/10.1016/S0309-1708(02)00124-0
http://dx.doi.org/10.1016/S0309-1708(02)00124-0


Chapter 2
Mathematical Models of Flow in Porous Media

In this chapter a general model for the two-phase fluid flow in porous media is
presented, together with its simplified form, known as the Richards equation, which
is applicable (under specific assumptions) to describe water flow in the vadose zone.
In each case the governing equations are formulated at the Darcy scale, using the
capillary pressure–saturation relationship and an empirical extension of the Darcy
equation for the multiphase flow. The validity of these concepts, and the models
based on them, is a subject of ongoing scientific debate, due to unclear connections
between the pore-scale and Darcy-scale physical quantities, e.g. [25, 29, 32, 56, 66,
88]. Nevertheless, the models described here can be used to simulate many practical
cases of multiphase flow in the subsurface with sufficient accuracy, e.g. [17, 31].
Therefore, they have been assumed as the starting point for the analysis presented in
this work.

The two-phase flow model considered here is based on the following assumptions:

1. Pore air and pore water are single-component fluids.
2. Mass transfers between the fluids, i.e. the dissolution of air in water and the

evaporation of water, are neglected.
3. The flow is isothermal.
4. Both fluid phases are barotropic, i.e. each phase density depends only on the

pressure in the respective phase.
5. The solid phase is homogeneous, materially incompressible and does not react

with the pore fluids.
6. The solid skeleton is rigid.
7. The flow of each fluid can be described by the extended Darcy formula including

the relative permeability coefficient.

Additional assumptions underlying the Richards equation are discussed in Sect. 2.2.2.
Fluid compressibility and soil skeleton deformation are not essential for the range of
problems considered in this book. However, fluid compressibility is included in order
to retain parabolic character of the governing equations for single phase flow. For a
description of more comprehensive modeling approaches, which take into account
the deformation of porous medium, see e.g. [20, 24, 47, 59, 70]. In the following
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sections the key components of the model are briefly outlined, based to a large extent
on the works [31, 33, 63].

2.1 Fundamental Concepts

2.1.1 Wettability and Capillarity

When two fluids are present in the pore space, one of them is preferentially attracted
by the surface of the solid skeleton. It is called the wetting fluid (or phase), while the
other fluid phase is called non-wetting. Here we consider only hydrophilic porous
media, showing greater affinity to water than to air, which are more widespread in
nature [33]. In the following the term wetting phase will be used as a synonym for
water and the term non-wetting phase—as a synonym for air.

Immiscible fluids are separated by a well defined interface, which, if observed
at a scale much larger than the molecule size, can be considered infinitely thin.
Since the cohesion between fluid molecules at one side of the interface is different
from that at the other side, the interface is characterized by some surface energy (or
surface tension), which is a measure of the forces that must be overcome to change
its shape. One consequence of the existence of the surface tension is the difference
in the equilibrium pressures of air and water, separated by a curved interface, due to
unbalanced tangential forces at the dividing surface. The pressure drop between the
air and water phases can be calculated from the Laplace equation [63]:

�p = pa − pw = σaw

(
1

rc1
+ 1

rc2

)
, (2.1)

where the subscripts a and w denote the air and water phases, respectively, σaw is
the surface tension of the air–water interface, and rc1 and rc2 are the main curvature
radii of the interface. The value of air-water surface tension at the temperature of
20 ◦C is equal to 0.0726 N m−1 and decreases with increasing temperature [63]. The
pressure is always smaller in the fluid occupying the concave side of the interface. In
the absence of any external forces, the interface of a droplet of one fluid contained in
another fluid tends to assume a spherical shape, which minimizes the surface energy.

In the presence of a solid surface the shape of the interface is determined by the
relative magnitude of the surface tensions between all three phases, Fig. 2.1a:

σaw cosψ = σsa − σsw , (2.2)

where σsa and σsw are the values of the surface tension between the solid phase and
air and water, respectively, and ψ is called the wetting angle. For a perfectly wetting
fluid, ψ = 0◦, i.e. the fluid tends to spread evenly over the whole solid surface. For
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(a) (b) (c)

Fig. 2.1 Surface tension effects: a equilibrium position of the fluid–fluid interface near the solid
surface, b rise of the wetting fluid in a capillary tube, c pendular ring around the contact point of
two solid grains

a perfectly non-wetting fluid, ψ = 180◦, which results in the formation of spherical
droplets on the solid surface.

The existence of surface tension is at the origin of the capillary rise observed in
small tubes, Fig. 2.1b. The molecules of the wetting fluid are attracted by the tube
wall, and a meniscus (curved interface) forms between water and air above the free
surface of water in the recipient. The pressure drop across the interface is denoted in
this context as the capillary pressure and can be calculated for a cylindrical tube as:

�p = pc = pa − pw = 2 σaw cosψ

rc
, (2.3)

where rc is the tube radius. Assuming that the value of the surface tension between
air and water corresponds to the temperature of 20 ◦C, the tube material is perfectly
wettable (ψ = 0◦), air is at constant atmospheric pressure everywhere, and water is
incompressible, one obtains the well known formula for the height of the capillary
rise:

hc = 1.5 × 10−5

rc
, (2.4)

where both hc and rc are in meters. Equation (2.4) is often used to approximate the
height of capillary rise in natural porous media, which are characterized by small
wettability angles. However, as the geometry of pores in natural porous media is
much more complex, the representation of pore system as a bundle of capillary tubes
does not hold in many situations, and more complex configurations of air and water in
the pore space are encountered, which will be discussed on the example of a granular
porous medium.

Since water molecules are preferentially attracted to the surface of the solid phase,
they can be adsorbed from the vapour present in the pore air. Thus, small amounts
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(a) (b) (c)

(e)(d)

Fig. 2.2 Spatial configurations of water and air in an unsaturated granular porous medium:
a adsorbed regime, b capillary pendular regime, c capillary funicular regime, d occluded air bubble
regime, e fully saturated regime

of water are always present in the form of thin films covering the surface of the solid
skeleton, Fig. 2.2a. The thickness of this layer depends on the strength of molecular
level interactions between solid and water and on the relative air humidity. Due to the
tight bonding of the adsorbed water to the solid surface, in many practical problems it
is considered as immobile [62]. As the amount of water in a porous medium increases,
it is attracted to the water adsorbed at the solid surface by the cohesion forces, but
on the other hand tends to minimize the area of the water–air interface. This form
of water is known as the capillary water, and occurs initially in acute corners of the
pores. If the porous skeleton is made of grains, water forms pendular rings around
the contact points, Figs. 2.1c and 2.2b. The corresponding water–air configuration
is known as the pendular stage. Pendular water is less tightly bound by the solid
phase, but it occurs in isolated regions, and does not form continuous flowpaths,
so it can be considered as macroscopically immobile [62]. The pressure drop at the
interface between pendular water and pore air can be theoretically calculated from
Eq. (2.1), assuming a negative value for rc1 and a positive value for rc2 (Fig. 2.1c). If
more water is added to the system, the regions occupied by pendular water coalesce
and continuous thicker films are formed along the pore walls. At this stage, known
as the funicular stage, the flow of liquid water is possible, Fig. 2.2c. For all three
water configurations mentioned above, air occupies continuously the central part of
the pores. As the amount of water in the system increases further, the water films
become thicker and pores can be entirely filled with water at the points where their
cross-section is smaller. The air phase loses its continuity and no macroscopic air
flow is possible. This is called the occluded air bubbles stage. With time the air can
dissolve in water and full water saturation is reached. Since in this work evaporation
and dissolution are neglected, the considerations presented in the following chapters
are applicable to funicular, occluded air, and fully water saturated stages.
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Fig. 2.3 Pore-scale represen-
tative elementary volume

2.1.2 Volume Fractions and Saturations

Continuum description of a multiphase porous medium at the Darcy scale implies
that the relevant physical quantities defined at a given point x represent averages
taken over a pore-scale representative elementary volume (REV) associated with that
point, Fig. 2.3. At the Darcy scale the same point can be occupied simultaneously
by all three phases, which is represented by the concepts of volume fractions and
saturations. The volume fraction of phase α is defined as the ratio of the volume of
the part of the REV occupied by phase α to the total volume of the REV:

θα = |Uα|
|U | . (2.5)

Porosity is defined as the volume fraction of pores, and it is equal to the sum of the
volume fractions of the two pore fluids:

φ = |Uw| + |Ua|
|U | = θa + θw . (2.6)

Moreover, it is convenient to define the saturation of each phase, which is equal to
the fraction of the pore space occupied by a given fluid:

Sα = θα

φ
. (2.7)

The sum of the air and water saturations must be equal to one:

Sa + Sw = 1 . (2.8)
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In general, each saturation can vary from 0 to 1. However, in most practical problems
the range of variability is smaller. For instance, if a fully water-saturated medium
is drained, at some point the mobile water (not adsorbed to the solid phase) looses
its continuity and the liquid flow will not be possible (transition from the funicular
to pendular state). The corresponding value of the water saturation is called residual
or irreducible values, and denoted by Srw, respectively. However, it should be noted
that the value of water saturation can be further decreased by natural evaporation or
oven drying. Similarly, during imbibition in a dry medium in natural conditions, it is
generally not possible to achieve full water saturation, as a part of the pores will be
occupied by isolated air bubbles. The corresponding residual air saturation is denoted
as Sra, respectively. However, the water saturation can increase above the value of
1 − Sra, for example if the air is compressed or dissolves in water. Therefore, the
residual saturations must be considered as problem-specific parameters, not material
parameters [31].

For practical purposes, the fluid saturations are often normalized with respect
to the range of values occurring in the problem under consideration. The resulting
normalized (effective) saturations are defined as:

Seα = Sα − Smin
α

Smax
α − Smin

α

, (2.9)

where Smax
α and Smin

α are the maximum and minimum saturation values occurring
for a given problem.

In soil physics and hydrology it is more common to quantify the relative amount
of fluid phases in soil using the volumetric fractions θα . If the compressibility of the
solid skeleton is neglected (φ = const), the volumetric phase contents are uniquely
defined by phase saturations. In field conditions the volumetric fraction of water
varies between the residual water content:

θrw = φ Srw , (2.10)

and the so-called saturated water content:

θsw = φ (1 − Sra) . (2.11)

The latter value refers to the state of maximum attainable water saturation. Equivalent
limit values can be defined also for the volumetric air content.

2.1.3 Fluid Potentials

At the Darcy scale, the energy state of each of the two fluids present in the pore
space is commonly characterized using the concept of energy potential. The energy
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potential is related to the forces acting on the fluid. It is defined as the negative integral
of the force over the path taken by an infinitesimally small volume of water, when it
moves from a reference location to the point under consideration [58]. The reference
point is commonly assumed to be at the surface of a free water body located at the
same elevation as the considered volume of the pore fluid, and subjected to normal
atmospheric pressure. Thus, the values of the fluid potentials are relative to the normal
atmospheric pressure. Potentials can be expressed as energy per unit mass (J kg−1),
energy per unit volume (Jm−3 = Pa) or energy per unit weight (Jkg−1m−1s2 = m).

Assuming that the fluid density depends only on its pressure and that the only mass
force is the gravity, acting in the direction of decreasing elevation z, the potential of
each pore fluid can be conveniently expressed in terms of the total hydraulic head:

Hα =
pα∫

pref
α

d p̂

ρα( p̂)g
+ z = hα + z, (2.12)

where pref
α is the reference pressure, ρα is the fluid density, p̂ is the integration

variable, g is the magnitude of gravitational acceleration, z is the elevation above the
reference level, and hα is the pressure head. As far as the water phase is considered, in
the fully water-saturated conditions the variable pw represents the pressure exerted by
unsupported water phase overlying the point of interest, while in partially saturated
conditions it accounts for the effect of capillary and adsorption forces binding water
molecules to the solid skeleton. These interactions include short range van der Waals
forces between water and solid, cohesion through hydrogen bonds in water and ion
hydration and binding of water in diffuse double layers [48, 58]. In the case of the
air phase (or the non-wetting fluid in general) the variable pa represents only the
pressure, as the interaction between this phase and the solid skeleton is typically
neglected.

The difference between the pressure potentials of air and water in unsaturated
conditions, caused by the action of capillary and adsorption forces, is often called
the capillary pressure, by analogy to the pore-scale capillary pressure defined by
Eq. (2.3). The capillary pressure at the Darcy scale is assumed to be a function of the
water saturation:

pa − pw = pc(Sw) . (2.13)

In hydrophilic porous media the capillary pressure is always nonnegative. If the pore
air pressure is constant, pc increases with decreasing water saturation, while the
water pressure potential decreases correspondingly. This is caused by the fact that
as the water saturation decreases, the relative amount of water molecules bound by
strong short range forces to the solid surface increases.

There are important differences between the pore-scale and Darcy-scale capillary
pressure. According to Eq. (2.3), the pressure is larger in the fluid occupying the con-
cave side of the interface. Therefore, from the pore scale point of view, the water pres-
sure is lower than the air pressure in pendular rings or in capillary tubes, but it is higher
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than the air pressure in the thin water layers around spherical solid grains, or around
occluded air bubbles. However, in each of these situations the Darcy-scale capillary
pressure is defined as a nonnegative value. Due to this discrepancy, some authors
prefer to use the term suction potential, instead of the capillary potential, and the
term matric potential, instead of the water pressure in the unsaturated zone, e.g. [58].
Indeed, the values of the water pressure potential at low saturations, measured with
respect to the atmospheric pressure, are often well below −100 kPa, which would
indicate negative absolute pressures. In this work, the terms capillary pressure and
water pressure are used, with a full recognition of the fact that in unsaturated condi-
tions they refer to the average energy state of water within a representative elementary
volume, rather than the physical pressure in the liquid water.

2.1.4 Capillary Function

The relationship between Darcy-scale capillary pressure and water saturation is
known under a number of names, such as the capillary function, suction function,
retention function, or soil water characteristic function [41, 48, 58, 63]. Figure 2.4
presents its basic features, in relation to various configurations of air and water in a
porous medium. Usually, if the medium is fully water-saturated, it can be invaded
by the air phase only if the air pressure exceeds the water pressure by a specific
value. The corresponding value of pc is called air-entry pressure or bubbling pressure
[41, 58]. This effect can be explained if the medium is conceptualized as a bundle of
capillary tubes. According to the Laplace law, Eq. (2.3), all tubes remain saturated, if
the water pressure is lower than the pressure of the surrounding air, but the capillary
pressure (pa − pw) does not exceed the maximum possible value for the largest tube.
After this value has been exceeded, the largest tube drains and the overall saturation
of the system becomes smaller than one. In natural porous media the value of the air
entry pressure corresponds to the diameter of the largest pore forming a connected
path through the system. The air entry pressure is more often observed in granular
media with relatively uniform grain size, and may be not pronounced in fine-textured
media [41]. Above the value of the air entry pressure, the water saturation decreases
with the increasing value of the capillary potential. The slope of the curve is deter-
mined by the uniformity of the size of pores. If the pores have very similar size, most
of them drain quickly above the entry pressure and the slope of the curve is very
steep. If the pores show large variability in size, at each increment of the potential
only a small part of the pores will be drained, and the decrease in saturation is much
more gradual. At some point, the value of the residual water saturation is reached,
and further liquid flow is inhibited by the lack of connectivity of the pendular capil-
lary water. The saturation can be further decreased by evaporation, but this requires
very large increments of the potential. The capillary pressure can be related to the
air relative humidity by the Kelvin equation [58]:
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Fig. 2.4 Capillary pressure–water saturation relationship for various air and water flow regimes

pc = − Rgas T ρw

Mw
ln (H ) , (2.14)

where Rgas is the universal gas constant
(
Rgas = 8.31 J mol−1 K−1

)
, T is the Kelvin

temperature, Mw is the mole mass of water
(
Mw = 0.018 kg mol−1

)
, and H is the

relative air humidity. For oven dry conditions the potential value of about 106 kPa is
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reported in the literature, which corresponds to the relative air humidity of 0.01 %
[21, 45].

It is important to note that the capillary pressure–saturation relationship shows
hysteresis and depends on the history of the flow. The drying process described above
corresponds to the so-called primary drainage curve. A complementary relationship,
i.e. the primary imbibition curve, can be obtained by increasing the water satura-
tion, starting from oven-dry conditions. During imbibition the values of the capillary
potential corresponding to a given water saturation are smaller than during the pri-
mary drainage. Moreover, it is in general not possible to reach full water saturation
during imbibition, due to the trapping of air bubbles. The maximum possible water
saturation 1 − Sra can be achieved for a value of the capillary potential larger than
zero. This value is the counterpart of the air-entry pressure at the primary drainage
curve, and is sometimes called the water-entry pressure [41]. As the latter term has
also other meanings, in this work the term air-entry pressure, or simply entry pressure
is consistently used for the characteristic value of the capillary pressure above which
air flow is possible, in relation to both imbibition and drainage. The entry pressure
at the imbibition curve is smaller than at the drainage curve, and sometimes does
not appear at all, i.e. the maximum saturation is reached only at pc = 0. In many
practical problems the water saturation varies between the residual value Srw and the
maximum value 1− Sra. The drainage process from 1− Sra to Srw is described by the
main drainage curve, while the corresponding imbibition process by the main imbi-
bition (or wetting) curve. If the flow direction is reversed before the limit saturation
is reached, the capillary pressure and saturation follow a so-called scanning curve,
which is a path in the area enclosed by the main curves.

The hysteresis is usually explained by the variations in the value of the wetting
angle between advancing and receding fluid at the solid surface, by the pore-scale
trapping of air and by the ink-bottle effect, e.g. [41, 63]. The latter one is related to
the fact that during imbibition the possibility of capillary flow is controlled by the
widest cross-section of the pore, while during drainage it is controlled by the smallest
cross-section. In this work the hysteresis of the capillary function at the Darcy scale
is not considered. However, in Chap. 7 it will be shown that a quasi-hysteresis may
occur in the field-scale capillary function for a porous medium that shows a specific
heterogeneous structure at the Darcy scale.

For practical purposes it is convenient to express the capillary function, for either
imbibition or drainage, as an analytical function. A large number of such analytical
formulae can be found in the literature. In this section only the ones used in the
following part of this book are presented. For a more detailed reviews of various
propositions, see [38, 43, 45]. Typically, the formulae are expressed in terms of
the normalized water saturation, Eq. (2.9). The choice of the parameters Smin

w and
Smax

w depends on the problem under consideration. For the primary drainage with
subsequent drying Smax

w = 1 and Smin
w = 0, for the primary imbibition Smax

w = 1−Sra
and Smin

w = 0, while for the main drainage and imbibition curves Smax
w = 1 − Sra

and Smin
w = Srw.

For the sake of consistency all the following functions have the capillary pressure
pc as their argument. In fact some of them were originally written in terms of the

http://dx.doi.org/10.1007/978-3-642-23559-7_7
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capillary pressure head hc. Transition to the pressure head based form is straight-
forward and requires only that the parameters pe and pg are replaced by the corre-
sponding pressure heads.

One of the most often used analytical models, proposed by Brooks and Corey [7],
can be written in the following form:

Sew =
{
(pc/pe)

−nb if pc > pe
1 if pc ≤ pe

, (2.15)

pc = pe (Sew)
−1/nb , (2.16)

where pe is the air-entry pressure and nb is a parameter related to the pore-size
distribution, generally ranging from 0.2 to 5. Large values of nb correspond to a rapid
decrease of the saturation above the entry pressure, which is typical for media having
uniformly sized pores. Smaller values of nb characterize media with non-uniform
pore size distributions. This model is useful for porous media having a distinct
air entry pressure and relatively uniform pore sizes, however it cannot reproduce
the inflection point in the capillary function, characteristic for many finely textured
soils [41].

Another well-known model, introduced by van Genuchten [79], has the following
form:

Sew = [
1 + (pc/pg)

ng
]−mg , (2.17)

pc = pg

[
(Sew)

−1/mg − 1
]1/ng

, (2.18)

where pg is a pressure scaling parameter, related to the average size of the pores
(in the original paper its inverse αg = 1/pg was used). The value of pg approx-
imately corresponds to the position of the inflection point at the capillary curve
described by Eq. (2.17). The exponents mg and ng are related to the pore size dis-
tribution, and in principle can be considered as independent of each other. However,
in order to reduce the number of independent parameters, and to develop analyti-
cal formulae for the relative permeability (discussed later in Sect. 2.1.6), it is often
assumed that mg = 1 − 1/ng or mg = 1 − 2/ng. The van Genuchten function
does not account explicitly for the air-entry pressure, although for some values of
ng and mg saturations very close to unity can be obtained for a certain range of the
capillary pressures above zero. Some authors proposed to introduce the air-entry
pressure as an additional explicit parameter in the van Genuchten model [34, 81].
In the special case of mg = 1 the van Genuchten function reduces to the Gardner
function [23]:

Sew = 1

1 + (
pc/pg

)ng
, (2.19)

pc = pg (Sew − 1)1/ng . (2.20)
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Table 2.1 Parameters of the van Genuchten (mg = 1−1/ng) and Brooks–Corey capillary functions
for various types of soil (van Genuchten function parameters from [10])

pg ng pe nb θsw θrw Ksw

(Pa) (–) (Pa) (–) (–) (–) (m s−1)

sand 677 2.68 440 1.124 0.43 0.045 8.25E−5
loamy sand 791 2.28 498 0.908 0.41 0.057 4.05E−5
sandy loam 1308 1.89 814 0.908 0.41 0.065 1.23E−5
loam 2725 1.56 1779 0.719 0.43 0.078 2.89E−6
silt 6131 1.37 4462 0.710 0.46 0.034 6.94E−7
clay 12263 1.09 12203 0.090 0.38 0.068 5.56E−7
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Fig. 2.5 Typical capillary functions for sand and clay

Lenhard et al. [44] established analytical relationships between the parameters of
Brooks–Corey function and van Genuchten function (with mg = 1 − 1/ng) for the
same porous material, based on the slope of the curves at normalized saturation equal
to 0.5. They are given by the following formulae:

nb = (ng − 1)
(

1 − 0.5ng/(ng−1)
)
, (2.21)

Zs = 0.72 − 0.35 exp
(
−(ng)

4
)
, (2.22)

pe = pg (Zs)
1/nb

[
(Zs)

ng/(1−ng) − 1
]1/ng

, (2.23)

where Zs is an auxiliary parameter. Typical values of the parameters of the
van Genuchten and Brooks–Corey models for several types of soil are listed in
Table 2.1. The van Genuchten function parameters were taken from [10]. The corre-
sponding Brooks–Corey function parameters were calculated using the above for-
mulae. Figure 2.5 shows the capillary functions for sand and clay, according to both
models.
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A relatively simple exponential formula is often used in the development of ana-
lytical solutions for the Richards equation, e.g. [3, 68]:

Sew =
⎧⎨
⎩

exp

(
− pc − pe

pg

)
if pc > pe

1 if pc ≤ pe

, (2.24)

pc = pe − pg ln(Sew) , (2.25)

where pe is the air entry pressure and pg is a pressure scaling parameter. This
formula can be considered as a complementary relationship to the Gardner expo-
nential relative permeability function (introduced later in Sect. 2.1.6).

Note that all the above formulae predict infinite value of the capillary pressure
as the normalized saturation approaches zero, which is not consistent with the fact
mentioned earlier, that even for oven-dry conditions the capillary pressure has a finite
value of about 106 kPa. Therefore, Eqs. (2.15)–(2.24) should be considered valid only
in the range of normalized water saturations significantly larger than zero. For the
dry range the capillary functions should be appropriately modified, to ensure a finite
value of the capillary pressure at zero water saturation [21, 37].

2.1.5 Darcy Equation

At the pore scale, the momentum conservation principle for each fluid phase is
represented by the Navier-Stokes equations. In the case of steady, laminar flow of
incompressible newtonian fluid α in a horizontal tube having a uniform circular
cross-section, the Navier-Stokes equations reduce to the Poiseuille equation, which
gives the following formula for the average fluid velocity vα [4]:

vα = − r2
c

8μα

d pα
d x

, (2.26)

where rc is the tube radius andμα is the dynamic viscosity coefficient of the fluid. An
important feature of this relationship is that the average velocity is directly propor-
tional to the pressure gradient, and the proportionality coefficient depends on the
geometric parameters and the fluid viscosity. In a more general case of three-
dimensional single-phase fluid flow in a medium characterized by arbitrary pore
geometry, a mathematically rigorous averaging of the pore scale Navier-Stokes equa-
tions yields the following result, e.g. [2, 4, 28, 86]:

vα = − ks

μα
(∇ pα − ρα g) , (2.27)
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where ks is the absolute (or intrinsic) permeability tensor and g is the gravity vector.
Intrinsic permeability has dimension of m2 and depends only on the geometric char-
acteristics of the pores. Its value can be computed for a given geometry of pores, by
solving Stokes equations in a representative elementary volume [77]. Alternatively,
it can be estimated using many empirical or semi-empirical formulae, developed
particularly for granular media, for instance those proposed by Hazen or Kozeny
and Carman [39, 82]. For practical purposes, however, the most reliable estimation
of permeability is obtained from laboratory or field measurements. Equation (2.27)
was derived from the pore-scale flow equations by several authors, e.g. [4, 28, 86].
The most important assumptions introduced in the derivation of Eq. (2.27) can be
summarized as follows [31]:

• Inertial effects are neglected, i.e. quasi-steady fluid flow is assumed.
• The flow is laminar.
• The viscous part of the stress tensor in fluid behaves according to the Newton law.

Equation (2.27) can be rewritten it terms of the hydraulic head as:

vα = −ks ρα g

μα
∇Hα = −Ksα ∇Hα , (2.28)

where Ksα is the hydraulic conductivity tensor for single-phase flow, which depends
on the properties of porous medium and the pore fluid. Equations (2.27) and (2.28)
represent an extension to three dimensions of the linear flow law, which was
established experimentally for the one-dimensional case by Darcy [14]. The head-
based form of the Darcy formula is often used in groundwater flow simulations,
when the variations of fluid density and viscosity are negligible, and the hydraulic
conductivity with respect to water Ksw can be considered constant.

If two fluids flow within the pore space, it is often assumed that their velocities
can be expressed by the following extended form of the Darcy formula, e.g. [63]:

vα = −kα (Sα)
μα

(∇ pα − ρα g) = −Kα (Sα) ∇Hα , (2.29)

where kα and Kα are permeability and conductivity tensors, which depend on the
saturation of phaseα. In a general case of anisotropic porous medium, the relationship
between permeability and saturation will be different for each component of the
permeability tensor. However, for practical purposes a simplified relationship is often
postulated in the following form:

kα (Sα) = ks krα (Sα) , (2.30)

where krα is a scalar relative permeability coefficient, assuming values from zero to
one. The equivalent relationship for the hydraulic conductivity tensor is:

Kα (Sα) = Ksα krα (Sα) , (2.31)



2.1 Fundamental Concepts 23

The maximum value krα = 1 corresponds to the case of full saturation with fluid
phase α. The minimum value krα = 0 occurs when the fluid phase becomes immo-
bilized, which corresponds to the fluid saturations below the residual saturation
Sα ≤ Srα . Alternatively, the extended Darcy formula can be rewritten in the fol-
lowing form:

vα = −ks λα (Sα) (∇ pα − ρα g) , (2.32)

where λα (Sα) = krα (Sα) /μα is the phase mobility.
In contrast to Eq. (2.27), the extension of Darcy equation for multiphase flow

given by Eq. (2.29) should be considered as purely phenomenological. As shown by
several authors, e.g. [1, 29], in the case of two fluid phases a rigorous averaging of
pore-scale momentum conservation leads to coupled Darcy-scale equations, where
the flow velocity of each phase depends on the potential gradients in both fluid
phases. Such results are consistent with the Onsager reciprocity theorem [66]. These
limitations notwithstanding, in the present work Eq. (2.29) is assumed to be a valid
approximation of two-phase flow in porous media at the Darcy scale.

2.1.6 Relative Permeability Functions

Since the relative permeability of fluid phase α varies from krα = 0 for Sα = Srα to
krα = 1 for Sα = 1, it can be conveniently represented by a function of the normalized
saturation of each phase, as given by Eq. (2.9), assuming Smin

α = Srα and Smax
α = 1.

However, in order to simplify the model formulation, the capillary function and
permeability functions for both fluids are typically defined with respect to the water
saturation normalized in the range between Smin

w = Srw and Smax
w = 1 − Sra. In such

a case, the relative permeability equals unity for the actual fluid saturation smaller
than one. In order to keep the physical consistency of the model, ks is interpreted
as the maximum permeability attainable for the considered problem, which can be
different for each phase, and is generally smaller than the permeability tensor for
single phase flow. In soil hydrology and soil physics the maximum attainable value
of the water conductivity:

Ksw = ks
ρw g

μw
, (2.33)

is often referred to as the saturated hydraulic conductivity. However, it corresponds
to the state of apparent saturation, with the corresponding volumetric water content
θsw smaller than the porosity φ. The formulae for relative permeability presented
below can be used in conjunction with various definitions of the normalized water
saturation Sew.

Simple power-type relationships between the normalized saturation and the
relative permeabilities are often postulated, e.g. [42, 63]:

krw = (Sew)
ηw , (2.34)

kra = (1 − Sew)
ηa , (2.35)
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Table 2.2 Parameters used in Burdine and Mualem relative permeability models

κ η1 η2 η3 η4

Mualem 0.5 1.0 2.0 2.5 + 2.0/nbc 1.0 + 1.0/nbc

Burdine 2.0 2.0 1.0 3.0 + 2.0/nbc 1.0 + 2.0/nbc

where the exponents ηw and ηa are fitting parameters. Relationships of this type can
be obtained on the theoretical basis, for simple models of laminar flow in bundles of
capillary tubes [54]. As it is the wetting fluid, water tends to move along the solid
phase surface and preferentially fills smaller pores. Therefore, at the same saturation
of each fluid the resistance of the medium to the flow of water is larger than the
resistance to the flow of air. Thus, the exponent ηw is typically larger than ηa.

More sophisticated models of the relative permeability are based on the considera-
tion of statistical distribution of the pore size within the medium, and the connectivity
between pores of various sizes. The pore size distribution can be computed from the
capillary function, due to the inverse relationship between the capillary radius and the
capillary pressure, as given by the Laplace law, Eq. (2.3). The connectivity parameter
is more difficult to derive theoretically and is often used as a fitting parameter in the
resulting model. Two well known statistical models were proposed by Burdine [9]
and Mualem [53]. They can be written in the following generalized form:

krw (Sew) = (Sew)
κ

[∫ Sew
0 pc(Ŝ)−η1 dŜ∫ 1

0 pc(Ŝ)−η1 dŜ

]η2

, (2.36)

kra (Sew) = (1 − Sew)
κ

[∫ 1
Sew

pc(Ŝ)−η1 dŜ∫ 1
0 pc(Ŝ)−η1 dŜ

]η2

, (2.37)

where Ŝ denotes the integration variable and the values of the connectivity parameter
κ and the exponents η1 and η2 are listed in Table 2.2.

In a general case the application of these models to an arbitrary pc(Sew) function
requires numerical integration. In some cases, however, the integrals can be evaluated
analytically. In particular, it is possible for the Brooks–Corey capillary function, for
which the following formulae are obtained:

krw (Sew) = (Sew)
η3 , (2.38)

krw (Sew) = (1 − Sew)
κ

[
1 − (Sew)

η4
]η2 , (2.39)

where the exponents η3 and η4 are given in Table 2.2. Note that the relative perme-
ability of the water phase is given by a simple power law, similarly as in Eq. (2.34). In
the case of van Genuchten capillary function, the Mualem formula can be integrated
analytically if mg = 1 − 1/ng, leading to the following result:
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krw(Sew) = Sκew

[
1 − (

1 − (Sew)
1/mg

)mg
]2
, (2.40)

kra(Sew) = (1 − Sew)
κ
[
1 − (Sew)

1/mg
]2 mg . (2.41)

In general, the connectivity factor κ can be treated as a fitting parameter of the model.
Improved agreement with laboratory measurements was reported for negative values
ranging from −1.28 for sands to −5.96 for clays [69]. The value of κ = 1/3 was
suggested for the non-wetting phase relative permeability [49].

The Burdine approach provides a closed-form analytical result for the
van Genuchten capillary function if mg = 1 − 2/ng:

krw (Sew) = Sκew

[
1 −

(
1 − (Sew)

1/mg
)mg

]
, (2.42)

kra (Sew) = (1 − Sew)
κ

[
1 − (Sew)

1/mg
]mg

. (2.43)

All the above formulae can be rearranged using the relevant analytical expressions
for Sew(pc) functions, in order to express the relative permeability of each phase as a
function of the capillary pressure. Typical relative permeability functions for sand and
clay according to Brooks–Corey–Burdine and van Genuchten–Mualem models are
shown in Fig. 2.6. Parameters of the porous media are taken from Table 2.1. Signifi-
cant differences between the two models are observed for clay. The van Genuchten–
Mualem model predicts a rapid decrease of the relative water permeability and a
rapid increase of the relative air permeability as the capillary pressure increases only
slightly from 0 to 100 Pa, which is inconsistent with the fact that the water satu-
ration in this range remains virtually constant and very close to 1. The reason for
this discrepancy is related to the integrals in formulae (2.36) and (2.37), where, in
the absence of the air-entry pressure, the inverse of the capillary pressure tends to
infinity as the water saturation tends to one. As a remedy, introduction of the air-entry
pressure as an additional parameter in the van Genuchten model is recommended
[34, 81].

Some empirical models define the relative permeability directly as a function of
the capillary pressure. Such approaches are typically used for the Richards equation,
where the assumption of constant air pressure allows to express the relative water
permeability as a function of the water pressure only. To this group belongs the
widely used exponential formula, originally suggested by Gardner [23] and modified
by Philip [61]:

krw(pc) =
⎧⎨
⎩

exp

(
− pc − pe

pg

)
if pc > pe

1 if pc ≤ pe

, (2.44)

where pe and pg have the same meaning as in Eq. (2.24). Another well-known
formula was also proposed by Gardner [23]:
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Fig. 2.6 Typical relative permeability functions for sand and clay according to Brooks–Corey–
Burdine model (left) and van Genuchten–Mualem model (right). At the top kr(Sew) functions, at
the bottom kr(pc) functions

krw(pc) = 1

1 + (
pc/pg

)ηw
. (2.45)

The above analytical expression has the same form as the formula for the capillary
function in Eq. (2.19). Equations (2.44) and (2.45) can be alternatively expressed in
terms of the capillary pressure head.

2.1.7 Density and Viscosity of Fluids

In general, the density of the water phase depends on the temperature, pressure and
the concentration of dissolved substances. For pure water in isothermal conditions,
the dependence of density on the pressure can be expressed as follows [31]:
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ρw(pw) = ρref
w exp

[
βw

(
pw − pref

w

)]
, (2.46)

where ρref
w is the reference water density (1000 kg m−3 at 20 ◦C), pref

w is the standard
atmospheric pressure (101325 Pa) and βw is the isothermal relative compressibility
coefficient. For the range of temperatures from 10 to 50 ◦C and pressures from 0 to
106 Pa, βw is approximately constant and equal to 4.5 × 10−10 Pa−1. This value of
βw corresponds to a change of density of approximately 0.5 kg m−3, if the pressure
changes by 106 Pa.

While in many practical applications water is considered incompressible, its
compressibility is included in this work, in order to keep consistency in the pre-
sentation of the governing equations for both fluid phases, and in order to maintain
parabolic character of the governing equation for the water flow in fully saturated rigid
porous medium. Application of the above formula is questionable for unsaturated
conditions, where pw is a measure of the energy potential rather than the actual pres-
sure of the water phase and assumes very large negative values [25]. In the examples
considered in this work the values of pw do not fall below −106 Pa, and the dis-
crepancy is neglected. Similarly to the density, the viscosity of water depends on
the temperature, pressure and chemical composition. For the purposes of the present
analysis, these dependencies are neglected, and a constant value of water viscosity
is assumed μw = 10−3 Pa s, which corresponds to the temperature of 20 ◦C.

The density of dry air can be obtained from the ideal gas law [31]:

ρa = Ma pa

Rgas T
= ca pa , (2.47)

where pa is the air pressure, Ma is the molecular mass of air (0.0029 kg mol−1),
Rgas is the universal gas constant (8.314 J mol−1 K−1), T is temperature in degrees
Kelvin and ca is the absolute compressibility coefficient for air. In the temperature
of 20 ◦C = 293.16 ◦K and at the normal atmospheric pressure the density of dry air
is ρa = 1.206 kg m−3. The density of pore air varies according to the changes in
the content of water vapour, but this effects are neglected in the present work. The
viscosity of air is assumed constant and equal to μa = 1.83 × 10−5 Pa s.

2.2 Governing Equations for Fluid Flow

2.2.1 Two-Phase Flow

The governing equations for two-phase flow in a porous medium are derived from
the mass conservation principle, applied to a Darcy-scale representative elementary
volume, as shown in Fig. 2.3. In the absence of source/sink terms, the change in the
total mass of fluid phase α inside the REV must be balanced by the total mass flux
across the REV boundary. For a rigid solid phase this can be written as:
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∂

∂t

∫
U

ρα Sα φ dU =
∫
∂U

ρα vα nU d∂U , (2.48)

where ∂U is the boundary of the REV and nU is a unit vector normal to ∂U and
directed outwards. Using the Gauss-Ostrogradski theorem and assuming immovable
REV boundaries, Eq. (2.48) can be transformed to a differential (strong) form:

∂

∂t
(ρα Sα φ)+ ∇ (ρα vα) = 0 . (2.49)

The velocity of each fluid phase with respect to the solid phase is given by the
extended Darcy formula, Eq. (2.29). Substitution of the Darcy equation into the mass
balance equation for each phase results in the following system of two coupled partial
differential equations:

∂

∂t
(ρw Sw φ)− ∇

[
ρw ks krw

μw
(∇ pw − ρw g)

]
= 0 , (2.50)

∂

∂t
(ρa Sa φ)− ∇

[
ρa ks kra

μa
(∇ pa − ρa g)

]
= 0 . (2.51)

Using the chain differentiation rule the storage term for each phase can be expanded
to show explicitly the contributions related to the fluid compressibility and saturation
change:

∂

∂t
(ρα Sα φ) = Sα φ

∂ ρα

∂ t
+ ρα φ

∂ Sα
∂ t

= Sα φ cα
∂ pα
∂ t

+ ρα φ
∂ Sα
∂ t

, (2.52)

where cα = dρα/dpα is the compressibility coefficient for phase α. For water cw =
ρw βw. For air ca is defined by Eq. (2.47). In order to obtain a closed system, one has
to make use of the additional relationships discussed in the previous sections. The air
saturation is uniquely defined by the water saturation (or vice versa), Eq. (2.8). The
water saturation is a function of the capillary pressure, i.e. the difference between the
air and water pressures, Eq. (2.13). The relative permeabilities depend on the fluid
saturations, and the densities on the fluid pressures, Eqs. (2.46)–(2.47). As a result,
a system of two equations with two unknowns is obtained.

Several possibilities exist with respect to the choice of the primary unknown
variables. For instance, one can choose the two pressures, pa and pw, and compute the
capillary pressure and the corresponding fluid saturations accordingly. However, such
a formulation is not suitable for the numerical solution, when the air phase disappears
completely from the porous medium. In such a situation, the derivatives of the discrete
form of the air flow equation are equal to zero. Therefore, it is recommended to choose
one of the fluid pressures and one of the saturations as the primary unknowns, e.g.
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[31]. As this work focuses on water flow, the water pressure pw and water saturation
Sw are chosen as the primary variables.

Equations (2.50)–(2.51) can be rewritten in order to show explicitly the depen-
dence of each term on the chosen primary variables:

∂

∂t
[ρw(pw) Sw φ] − ∇

[
ρw(pw) ks krw(Sw)

μw
(∇ pw − ρw(pw) g)

]
= 0 , (2.53)

∂

∂t
[ρa(pw, Sw) (1 − Sw) φ]

−∇
[
ρa(pw, Sw) ks kra(Sw)

μa
(∇ pw + ∇ pc(Sw)− ρa(pw, Sw) g)

]
= 0 . (2.54)

If the compressibility of the fluids and the porous medium can be neglected, a
simplified form of the governing equations is obtained:

φ
∂Sw

∂t
− ∇ vw = 0 , (2.55)

−φ ∂Sw

∂t
− ∇ va = 0 . (2.56)

Alternatively, the above equations can be transformed to the fractional flow formu-
lation, e.g. [6]. To this order the mass balance equations are added to each other:

∇ (vw + va) = ∇ vt = 0 , (2.57)

where vt = vw + va is the total fluid velocity. Equation (2.57) can be rewritten in
terms of the fractional flow function fw and the global pressure pglob defined as
follows:

fw = λw

λw + λa
, (2.58)

pglob = 1

2
(pw + pa)−

Sw∫
Smax

w

(
fw − 1

2

)
dpc

dSw
dSw , (2.59)

where Smax
w is the maximum water saturation, pc(Smax

w ) = 0. Equation (2.57) then
becomes an elliptic one with respect to the global pressure:

∇ {
kt

[∇ pglob − ( fw ρw + (1 − fw) ρa) g
]} = 0 , (2.60)

where:
kt = ks (λw + λa) . (2.61)

Using the definition of the total velocity, the water flux can be expressed as:
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vw = fw vt + fw λa ks (∇ pc + (ρw − ρa) g) . (2.62)

Inserting Eq. (2.62) into Eq. (2.55) one obtains the following equation for the water
saturation:

φ
∂Sw

∂t
+ ∇

[
fw vt + fw λa ks (ρw − ρa) g + fw λa ks

dpc

dSw
∇Sw

]
= 0 . (2.63)

The above equation has the form of an advection-diffusion one. The first two terms in
brackets represent the advective transport. The first term corresponds to the viscous
forces, while the second to the gravity forces. The diffusive transport, related to the
action of capillary forces, is represented by the third term in brackets. If the capillary
and gravity effects are neglected, Eq. (2.63) reduces to the Buckley-Leverett equa-
tion (nonlinear advection equation), well known in petroleum reservoir engineering
literature, e.g. [13, 31]. In the unsaturated zone, the capillary and gravity forces can
rarely be neglected, while the full fractional flow formulation poses problems in the
implementation of various types of boundary conditions occurring in unsaturated
zone modeling [6]. Moreover, in contrast to the phase pressures, the global pressure
is not continuous at the interfaces separating porous materials characterized by differ-
ent capillary functions. The fractional flow formulation is not used in the numerical
simulations presented in the following chapters. However, it will be referred to in
the discussion of the general properties of two-phase flow model.

2.2.2 Richards Equation

The two-phase model presented in the previous section can be considerably simplified
under specific conditions occurring for air and water flow in the unsaturated zone.
At the temperature of 20 ◦C the air viscosity is about 55 times smaller than the water
viscosity, which means that the air mobility is greater than the water mobility by
approximately the same factor, if the relative permeabilities of both fluids are similar.
Therefore, it can be expected that any pressure difference in the air phase will be
equilibrated much faster than in the water phase. On the other hand, it can be often
assumed that the air phase is continuous in the pore space and that it is connected
to the atmosphere. If the variations in the atmospheric pressure are neglected, one
can consider the pore air to be essentially at a constant atmospheric pressure. These
assumptions allow to eliminate the equation for the air flow from the system of
governing Eqs. (2.50)–(2.51). The capillary pressure is now uniquely defined by the
water pressure. For convenience it is often assumed that the reference atmospheric
pressure patm = 0, so one can write:

pc = patm − pw = −pw . (2.64)
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Accordingly, the water saturation and the relative water permeability can be defined
as functions of the water pressure. For the values of the water pressure smaller than
the negative of the air entry pressure, pw < −pe (where pe can be zero if the
van Genuchten capillary function is used), the water saturation and permeability can
be computed from the analytical models described in Sect. 2.1.4 and 2.1.6, assuming
pc = −pw. For the values of the water pressure which are larger than the negative
of the air entry pressure, pw > −pe, the water saturation and water permeability are
constant and equal to their maximum values.

The remaining equation for the water flow becomes:

∂

∂ t
(ρw φ Sw(pw))− ∇

[
ρw(pw) ks krw(pw)

μw
(∇ pw − ρw(pw) g)

]
= 0 . (2.65)

Taking into account Eq. (2.52) the storage term can be rewritten as:

∂

∂ t
(ρw φ Sw) = φ Sw ρwβw

∂pw

∂ t
+ ρw φ

∂Sw

∂pw

∂pw

∂ t
. (2.66)

Additionally, it is often assumed that the spatial gradients of the water density are
negligible:

∇ (ρw vw) ≈ ρw∇ vw .

Consequently, both sides of equation can be divided by ρw and one arrives at the
following form:

Cwp(pw)
∂pw

∂ t
− ∇

[
ks krw

μw
∇ (pw + ρw g)

]
= 0 , (2.67)

where Cwp is a storage coefficient:

Cwp = θw βw + dθw

dpw
. (2.68)

In hydrological and hydrogeological applications, Eq. (2.67) is often written in terms
of the water pressure head:

Cwh(hw)
∂hw

∂ t
− ∇ [

Ksw krw(hw)∇ (hw + z)
] = 0 , (2.69)

where Cwh = ρw g Cwp. Accordingly, the capillary and relative permeability func-
tions are defined in terms of the capillary pressure head, which is equal to the negative
water pressure head. Equations (2.67) and (2.69) describe transient water flow in both
saturated and unsaturated conditions and are sometimes called generalized Richards
equation.
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By further neglecting the water compressibility one arrives at the following
equation:

Cch(hw)
∂hw

∂t
− ∇ [

Ksw krw(hw)∇ (hw + z)
] = 0 , (2.70)

where the storage coefficient accounts only for the changes in water saturation:

Cch(hw) = φ
dSw

dhw
= dθw

dhw
. (2.71)

This coefficient is often called specific water (or moisture) capacity, e.g. [85].
Equation (2.70) was originally developed by Richards [65], while the correspond-

ing expression for the water flux in unsaturated conditions:

vw = −Ksw krw(hw)∇ (hw + z) (2.72)

was suggested earlier by Buckingham [8] and is often called Darcy-Buckingham
equation, e.g. [55]. In saturated conditions Cch = 0 and Eq. (2.70) degenerates to
an elliptic equation describing steady flow. Thus a generalized form of the Richards
equation, which includes water compressibility, Eq. (2.69), is preferable if parabolic
character of the governing equation is to be retained during transition between sat-
urated and unsaturated states. In geotechnical and hydrogeological applications,
Eq. (2.69) is often modified by accounting for the compressibility of the solid skele-
ton in the storage term φ = φ(pw, pa). These effects are not considered here, as they
are not essential for the analyses presented in the following chapters.

Equation (2.70) is often referred to as the pressure-based form of the Richards
equation. Alternatively it can be rewritten in the so-called mixed form, which includes
explicitly both the water content and the water pressure head:

∂θ(hw)

∂ t
− ∇ [

Ksw krw(hw)∇ (hw + z)
] = 0 . (2.73)

It was shown that the mixed form has better properties with respect to the numerical
solution, as it allows to minimize the mass balance error, persistent in the solutions
employing the pressure-based form [12]. The third possible form is obtained by
replacing the pressure head in all terms of Eq. (2.73) with the water content. To this
order the hydraulic diffusivity tensor is introduced:

D(θw) = dhw

dθw
Ksw krw(θw) , (2.74)
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so that Eq. (2.73) becomes:

∂θw

∂ t
− ∇ [

D (θw)∇θw
] + Ksw krw(θw)∇z = 0 . (2.75)

Note that the above equation can be obtained as the limit case of the saturation
equation in the fractional flow model, Eq. (2.63), assuming that the air phase is much
more mobile than the water phase, λa � λw, and that the air phase density is much
smaller than the water density ρa � ρw. In this case the relevant terms of Eq. (2.63)
become:

fw = λw

λa + λw
≈ 0 , (2.76)

fw λa = λw λa

λa + λw
≈ λw = krw

μw
, (2.77)

φ
∂Sw

∂ t
= ∂θw

∂ t
, (2.78)

fw vt ≈ 0 , (2.79)

fw λa ks (ρw − ρa) g ≈ λw ks ρw g = −Ksw krw ∇z , (2.80)

fw λa ks
dpc

dSw
∇Sw ≈ λw ks

dpc

dSw
∇Sw = −Ksw krw

dhw

dθw
∇θw . (2.81)

The above assumptions lead to Eq. (2.75).
The water content (or saturation) based form is easier to solve numerically than

the mixed or pressure based forms. Due to its similarity to the standard advection-
diffusion equation it is often used to obtain analytical or semi-analytical solutions of
the Richards equation, especially for one-dimensional flow, where the diffusivity and
conductivity coefficients are scalars. The major drawback of the water-content based
form is that it becomes indefinite in fully saturated conditions. Additional difficulty
arises when the domain under consideration contains porous regions characterized
by different capillary functions, because the water content is not continuous at such
interfaces (see Sect. 2.3.3).

Yet another form of the Richards equation can be obtained for an isotropic medium
using the Kirchhoff transform. The Kirchhoff variable, also called the flux potential
can be defined as (e.g. [36, 85]):

�h(hw) =
hw∫

−∞
krw(ĥ) dĥ , (2.82)

where ĥ is the integration variable. Using this transformation, the Richards equation
can be rewritten as follows:
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φ
dSw

d�h

∂�h

∂ t
− ∇ (Ksw ∇�h)+ Ksw krw(�h)∇z = 0 . (2.83)

Alternatively, the flux potential can be also defined with respect to the water pressure
as the primary variable:

�p(pw) =
pw∫

−∞
krw( p̂) d p̂ . (2.84)

Similarly to the water content, the flux potential is not continuous at material inter-
faces. Nevertheless, Eq. (2.83) is easier to solve numerically than the mixed and
pressure-based forms of the Richards equation, and in contrast to the saturation-
based form, can be used for fully saturated conditions. Several authors proposed
efficient numerical algorithms based on this form of the Richards equation, e.g.
[5, 36, 67]. Moreover, even if the mixed or pressure-based form of the Richards
equation is solved, the Kirchhoff transform can be a useful tool to approximate the
effective conductivity between the adjacent nodes (see Chap. 4).

While the Richards equation is a widely accepted model for the water flow
in unsaturated soils and rocks, one has to be aware of its limitations. For obvi-
ous reasons, it cannot be used when there is an explicit interest in the simulation
of air flow. Such applications include for example transport of volatile contami-
nants in the pore air, e.g. [11, 78], or dewatering by means of compressed air used
in tunnel construction, e.g. [57]. However, even if the primary interest is in the
water flow, the Richards equation can lead to inaccurate results, if one or more
of the underlying assumptions is not fulfilled, as pointed out by several studies,
e.g. [50, 51, 60, 80, 83, 84].

A number of sources for the possible discrepancies between the Richards model
and the full two-phase model can be identified. The first one is related to the vis-
cosity ratio between air and water. Numerical experiments [73] showed that the
agreement between results obtained from the Richards equation and from the two-
phase model is less than perfect for the water-to-air viscosity ratio smaller than
100. In natural conditions the viscosity of air can be expected to be only about 50
to 60 times smaller than the mobility of water. It should be noted that the phase
mobility depends not only on its viscosity, but also on the relative permeability.
Thus, further decrease in the mobility ratio can be expected if the relative perme-
ability of air is much smaller than the permeability of water, which occurs as the
air saturation approaches the residual value. For instance, it was shown that signif-
icant differences arise between the Richards model and the two-phase flow model
if the relative permeabilities of water and air are proportional to the fourth power
of the respective saturation, even assuming the viscosity ratio of the fluids equal
to 100 [19].

The second factor limiting the applicability of the Richards equation is the
presence of obstacles, which do not allow the pore air to contact freely with
the atmospheric air. Examples of such obstacles include layers of porous media
which are quasi-impermeable to air, either because they have very low intrinsic

http://dx.doi.org/10.1007/978-3-642-23559-7_4
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permeability, or because they are saturated or nearly saturated with water. In this
context, inadequacy of the Richards equation was demonstrated for various types of
problems, such as infiltration in columns with sealed bottom [74–76], drainage of
coarse sand overlaid by a layer of fine sand [40], field-scale infiltration with shallow
groundwater table [27], increase of the water level in wells during ponded infiltration
[26], or air trapping in flood embankments due to overtopping by flood wave [46].
The flowpaths of the pore air can also be blocked due to heterogeneous structure
of the porous medium, especially if coarse-textured inclusions with low air entry
pressure are embedded in a fine-textured background having high entry pressure.
Such effects are investigated in Chap. 7.

2.2.3 Single-Phase Flow

Single phase flow occurs when the pores are completely filled with only one fluid
phase, which in the context of this work is water. Since Sw = 1 and krw = 1, the
governing equation for the water flow becomes:

∂

∂ t
(ρw φ)− ∇

[
ρw ksw

μw
(∇ pw − ρw g)

]
= 0 . (2.85)

Similarly to the case of the Richards equation, saturated groundwater flow is usually
described in terms of the water pressure head. Moreover, the spatial gradients of the
water density are neglected, resulting in the following equation:

Csat
∂hw

∂ t
− ∇ [

Ksw ∇ (hw + z)
] = 0 , (2.86)

where the saturated storage coefficient Csat = ρw βw g φ is approximately constant.
The above equation is valid for a rigid solid skeleton. In groundwater aquifers the
compressibility of the skeleton is usually more important than the compressibility of
water and has to be accounted for in the storage coefficient, e.g. [16].

It is important to note that when porous media are subject to imbibition in
natural conditions, the transition from the unsaturated to fully saturated state occurs
not directly, but via the occluded air bubble regime. At this stage the Darcy-scale cap-
illary pressure is considered constant and equal to its minimum value (pwet

e in Fig. 2.4,
which can be equal to zero in many cases), while the water pressure assumes values
above −pwet

e . However, the water saturation can further increase due to compress-
ibility of the air bubbles, even though the macroscopic capillary pressure remains
equal to zero for positive values of the water pressure. Moreover, the increase of the
water saturation causes an increase in the relative permeability. While this effects
are often neglected and the water saturation and permeability are assumed to be
constant for the whole range of positive water pressures, the additional compress-
ibility of the medium resulting from the presence of air bubbles can be important,

http://dx.doi.org/10.1007/978-3-642-23559-7_7


36 2 Mathematical Models of Flow in Porous Media

for example when considering soil liquefaction due to rapidly oscillating loading,
e.g. [35].

2.3 Auxiliary Conditions

The governing equations for the two-phase (Eqs. (2.50)–(2.51)), unsaturated
(Eq. (2.65)) or single-phase (Eq. (2.85)) unsteady flow in porous media are par-
tial differential equations of parabolic type [31, 63]. These equations are solved in
the spatial domain W , as shown schematically in Fig. 2.7 and for the time interval
〈0, tmax〉. The solution problem should be well-posed, which means that the following
conditions are satisfied, e.g. [18, 71]:

• the solution exists,
• the solution is unique,
• the solution depends continuously on the initial and boundary conditions.

In order to obtain a well-posed problem, the initial and boundary conditions must
be formulated in an appropriate manner. The initial conditions specify the state of
the system at time t = 0, while the boundary conditions determine the behaviour
of the unknown functions at the external boundaries ∂W of the considered spatial
domain. For parabolic equations the boundary conditions can be in general time-
dependent. In the case of steady flow, the derivatives with respect to time disappear
from the governing equations and the equations become elliptic. For such type of
equations, only boundary conditions are required and they are independent of time.

Moreover, porous materials in the solution domain may be heterogeneous with
respect to the constitutive parameters and relationships such as the absolute per-
meability or the capillary and relative permeability functions. In general, one can
assume either that the spatial domain is composed of several porous regions separated
by internal boundaries (material interfaces), with uniform parameter distribution in
each region, or that the parameters are continuously variable in space. In the first
case the mathematical formulation must be complemented by additional conditions
for the material interfaces, which allow to link the solutions from the neighbour-
ing sub-domains. In the case of continuous distribution, a similar problem arises
during numerical solution of the governing equations when spatial discretization is
performed and specific material properties are assigned to each element of the grid.

2.3.1 Initial Conditions

The initial state of the system can be defined either in terms of the primary variables,
or in terms of other variables, from which the primary ones can be calculated. For
two-phase flow in the pw–Sw formulation, the initial conditions can be specified as:
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Fig. 2.7 Solution domain for flow equations with external and internal boundaries

pw(x, t = 0) = pinit
w (x) , (2.87)

Sw(x, t = 0) = Sinit
w (x) . (2.88)

In strictly unsaturated conditions, the initial water pressure can be replaced by the
initial air pressure pinit

a (x). However, if part of the domain is fully saturated with
water, the air pressure cannot be meaningfully defined. On the other hand, it is also
possible to define the initial conditions in terms of the two pressures:

pw(x, t = 0) = pinit
w (x) , (2.89)

pa(x, t = 0) = pinit
a (x) . (2.90)

The water saturation is then computed as Sinit
w = Sw(pinit

a − pinit
w ). For the Richards

model, only the initial value of the water pressure is necessary:

pw(x, t = 0) = pinit
w (x) . (2.91)

In strictly unsaturated conditions it is possible to use initial distribution of saturation.
The corresponding values of the water pressure are then obtained from the capillary
function pinit

w = −pc(Sinit
w ).

While the initial distribution of the relevant variables can be obtained from mea-
surements, it is common to assume some simple distribution schemes, for example:

• Uniform water and air pressures:

pw(x, t = 0) = pinit
w , (2.92)

pa(x, t = 0) = pinit
a , (2.93)

Sw(x, t = 0) = Sw(pa − pw) . (2.94)
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In a homogeneous medium, uniform pressure distribution implies uniform distri-
bution of the water saturation. In a heterogeneous medium, the values of water
saturation will be different in each material region. If the gravity force is present
in the system then some initial flow occurs due to the presence of gradient in the
gravity potential. Otherwise the system is at equilibrium.

• Uniform water saturation:

Sw(x, t = 0) = Sinit
w . (2.95)

This condition must be completed by specifying either water or air pressure.
Particular attention is required if such a condition is applied to a heterogeneous
medium. For fully water saturated domain, a natural choice is to use Sinit

w = 1 or
Sinit

w = 1 − Sra and assume a uniform or hydrostatic distribution of the water pres-
sure. If the medium is characterized by spatially varying entry pressure values, the
corresponding distribution of the capillary pressure is discontinuous. On the other
hand, in unsaturated conditions it is common to assume a uniform initial value of
the air pressure equal to the atmospheric pressure. In this case spatial variability
of the capillary function results in a discontinuous initial distribution of the water
pressure and implies initial water flow between adjacent material regions.

• Hydrostatic water and air pressure distributions:

pw(x, t = 0) = pref
w + ρw g z (2.96)

pa(x, t = 0) = pref
a + ρa g z (2.97)

Sw(x, t = 0) = Sw(pa − pw) (2.98)

This case describes a system in equilibrium. It is often applied if the position of the
groundwater table is known. The compressibility effects are assumed unimportant.

• Hydrostatic water pressure and uniform air pressure

pw(x, t = 0) = pref
w + ρw g z (2.99)

pa(x, t = 0) = patm (2.100)

Sw(x, t = 0) = Sw(pa − pw) (2.101)

Since the variations in the air pressure due to gravity are relatively small, they
are often neglected. If the atmospheric air pressure is assumed everywhere in the
domain, the vertical saturation profile above the water table corresponds exactly to
the capillary function drawn in Sw–hc coordinates. There is some initial air flow,
but it is negligibly small.
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2.3.2 Boundary Conditions

Boundary conditions provide information about the behaviour of the solution at
physical boundaries of the domain. In general three types of the boundary conditions
are distinguished, e.g. [63, 87]:

1. Dirichlet boundary conditions specify the values of the solution at a given part
of the boundary;

2. Neumann boundary conditions specify the value of the spatial derivative of the
solution. In the case of flow in porous media, this type of condition is usually
written in terms of the fluid flux in the direction normal to the boundary;

3. Robin boundary conditions, which specify a relationship between the value of
solution and its derivative, and can be viewed as a generalization of both Dirichlet
and Neumann boundary conditions.

various boundary conditions can be specified on different parts of the domain bound-
ary. For a steady flow problem, described by an elliptic equation, it is necessary to
provide Dirichlet boundary conditions on at least one point of the boundary, other-
wise the problem becomes ill-posed. For unsteady problems, described by parabolic
equations, no such restriction exists. In the case of two-phase flow it is necessary to
specify boundary conditions for each phase, and different types of condition can be
used for each fluid at the same part of the boundary. Some examples of boundary
conditions typically used in unsaturated flow modelling are listed below.

Dirichlet boundary conditions provide values of the pressures and/or saturations
of the two fluid phases. They are typically applied when:

• the water pressure is known, e.g.:

– the boundary corresponds to the groundwater table,
– the distance between the boundary and the groundwater table is known, and a

hydrostatic distribution of the water pressure between them can be assumed,
– the boundary is in contact with a free water body assumed to be static, e.g. at

the waterward slope of a dike or at the soil surface ponded by a water layer,
– a specific negative value of the water pressure is applied, e.g. during infiltration

or drainage experiments in controlled conditions,

• the air pressure is known, e.g. the boundary is exposed to the atmosphere and not
fully water saturated,

• the water saturation is known, e.g. the boundary is fully saturated and the air
pressure cannot be meaningfully specified,

• the boundary is far away from the region of interest and it can be assumed that the
water and air pressures and saturations are constant and equal to the initial ones.

Neumann boundary conditions are typically used when the boundary is imper-
meable for one or both phases, ρα vα nW = 0, where nW is a unit vector normal to
the boundary of the domain W . This condition is also used to represent infiltration
and evaporation fluxes at the soil surface.
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Fig. 2.8 Boundary conditions for a simple case of two-dimensional flow in a dike

Moreover, there are three specific sets of the boundary conditions widely applied
in the unsaturated zone modelling. They include the free drainage condition, the
seepage face condition and the soil-atmosphere interface condition e.g. [64, 72]. All
of them are system-dependent, which means that the imposed value of the pressure
of flux depends on the current state of the system. The free drainage condition
represents vertical flow of water through the bottom of the soil profile towards a
distant groundwater table. It is assumed that the water pressure gradient is zero and
only the gravity component contributes to the flow:

vw nW =
(
ρw

μw
kw(Sw) g

)
nW (2.102)

Thus, the condition is of Neumann type, but the actual value of the flux depends on
the solution at the specific boundary point.

The seepage face is a part of the outer surface of the porous medium which is
exposed to the atmosphere and through which water can flow freely out of the porous
domain. It typically occurs above the water level in wells and at the bottom of the
landward slopes of earth dams or embankments, Fig. 2.8. The seepage face is con-
sidered impermeable to water as long as the adjacent part of the porous medium is
unsaturated. If the pressure in the medium increases to the value of the atmospheric
pressure water flows out freely from the medium and no build-up of positive pres-
sure values is allowed. This is represented by assuming Neumann boundary condition
vw nW = 0 on the unsaturated part of the boundary and Dirichlet boundary condition
pw = 0 on the saturated part. The position of the saturated-unsaturated interface is
not known a priori and must be obtained iteratively during the numerical solution.

When modelling the infiltration and evaporation processes at the soil surface, it
is often necessary to switch between Neumann and Dirichlet boundary condition,
depending on the state of soil surface. During infiltration, at first a specific value of
the water flux is applied at the boundary, Fig. 2.9a. As a result of the infiltration the
water pressure at the soil surface increases from the initially negative value towards
zero (atmospheric pressure). If the applied flux is larger than the soil infiltration
capacity (equal to the saturated water conductivity) then positive values of the water
pressure appear at the surface, which physically corresponds to the formation of a
water layer on the ground surface (ponding). At this point the boundary condition for
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(a) (b) (c) (d)

Fig. 2.9 Boundary conditions for typical one-dimensional flow problems: infiltration towards a
distant groundwater table, a early stage, b late stage; evaporation from shallow groundwater table,
c early stage, d late stage

the water phase is switched to Dirichlet type (pw = 0 or some small positive value)
and it is assumed that the excess precipitation forms the surface runoff, Fig. 2.9b.
If the precipitation rate decreases below the soil infiltration capacity, the condition
is switched back to Neumann type. A similar switch in the boundary conditions is
performed when modelling evaporation. In this case the water pressure at the surface
decreases as the water evaporates from soil at a specific rate, Fig. 2.9c. However,
the water pressure cannot fall below a limit value defined by the temperature and
relative humidity of the air, pdry. If this value is reached, the boundary condition
is switched to Dirichlet type with pw = pdry and is maintained until the potential
evaporation rate decreases or a rainfall occurs, Fig. 2.9d. It should be noted that such
an approach provides only simplified description of the soil-atmosphere interface and
is used primarily with the Richards model. More sophisticated modelling concepts
are based on the coupling of air and water flow in porous medium with free flow
of the surface water (after ponding) or atmospheric air above the soil-atmosphere
interface, e.g. [22, 52].

2.3.3 Conditions at Material Interfaces

Porous media often consist of multiple regions, each of them having different
properties such as porosity, intrinsic permeability, capillary function and relative
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Fig. 2.10 Conditions at material interface separating two porous media

permeability functions. In each region the fluid flow is described by Eqs. (2.50)–
(2.51), or by Eq. (2.65). The solutions in different subdomains must be connected to
each other by appropriate interface conditions [30, 31].

Consider an interface between two porous materials, as shown in Fig. 2.10. At
the Darcy’s scale, the interface can be considered infinitely thin. Thus, the mass
conservation principle implies that for each phase the components of the mass fluxes
in the direction normal to the interface are equal:

(ρα vα)I n� = (ρα vα)II n� (2.103)

where n� is a unit vector normal to the interface � and oriented from material I to
material II .

The second interface condition can be derived from the principle of momentum
conservation [30], and states the continuity of the pressures in the two fluid phases,
and consequently the continuity of the capillary pressure:

pI
w = pII

w (2.104)

pI
a = pII

a (2.105)

pI
c = pII

c (2.106)

Note that the continuity of the capillary pressure implies that the water and air
saturations are discontinuous, except for the case of two media characterized by
the same capillary function. Moreover, if the saturation on one side of the interface
is known, the saturation at the opposite side can be computed from the capillary
pressure continuity condition:

SI
w = SI

w

(
pII

c

(
SII

w

))
(2.107)
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The above conditions hold if both fluid phases are continuous in the pore space at
each side of the interface. A special case arises if the one of the materials, say material
II , is characterized by a distinct air entry pressure, higher than the entry pressure of
the other material. As the value of pII

e is reached, the air (or non-wetting fluid in
general) is no longer continuous, and the macroscopic capillary pressure remains
at its minimum value. At the other side of the interface, the capillary pressure can
assume smaller values, or even reach zero if pI

e = 0. The state of the system can
be meaningfully defined by the capillary pressure pI

c or the corresponding water
saturation SI

w. On the other hand, the state of the material (I) cannot be uniquely
determined by the saturation or the capillary pressure in material (II). In such a
situation, the extended capillary pressure condition can be formulated as [15]:

{
pI

c (S
I
w) = pII

c (S
II
w ) if SI

w < SI
cw

SII
w = 1 − SII

ra if SI
w ≥ SI

cw

(2.108)

where the threshold saturation at the left side of the interface SI
cw corresponds to the

entry pressure of the material at the right-hand side, SI
cw = SI

w(p
II
e ). At the same

time, the pressure continuity condition for the water phase (2.104) holds, as the water
phase is continuous at both sides of the interface.

In the case of the Richards equation, only conditions for the water phase have to
be formulated at the interface. They include the continuity of the normal flux and
continuity of the water pressure. The water saturation, now uniquely defined by the
water pressure, is in general discontinuous at the interfaces. The interface conditions
must be properly taken into account in the development of spatial discretization
schemes for both two-phase model and the Richards equation, as it will be shown in
the following chapter.

Application of the pressure and flux continuity conditions for the case of single-
phase flow leads to the well known formula for the equivalent permeability of a
layered medium in the direction perpendicular to the layers. Assuming that the values
of the water pressure at points i , j and k are known, one can write:

− k I
s

pI ( j) − p(i)

�x I
= −kII

s
p(k) − pII( j)

�xII
= −keq

s
p(k) − p(i)

�x I +�xII
(2.109)

where keq
s is the equivalent intrinsic permeability and by virtue of the pressure con-

tinuity pI ( j) = pII( j). Solving the above double equation, one can express the
equivalent permeability as a weighted harmonic average of the permeabilities of the
two materials:

keq
s = (�x I +�xII ) k I

s kII
s

�x I kII
s +�xII k I

s
(2.110)

This formula will be used in the subsequent chapters to develop spatial discretization
schemes for both homogeneous and heterogeneous porous media.
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Chapter 3
Numerical Solution of Flow Equations

The governing equations for fluid flow in porous media presented in Chap. 2 can be
written in a general form of the following partial differential equation of parabolic
type:

∂Mα

∂t
+ ∇ (ρα vα) = 0 (3.1)

where Mα = ρα φ Sα denotes the mass of the fluid in a unit volume of porous medium
and vα is the volumetric fluid flux, given by the extended Darcy formula:

vα = − kα

μα
(∇ pα − ρα g) (3.2)

The two-phase model consists of two coupled equations (3.1), which are nonlinear
with respect to the chosen pair of primary unknowns, e.g. pw–Sw or pw–pa. The
Richards model is given by a single equation, nonlinear with respect to the chosen
primary unknown pw, hw or Sw. Finally, the single-phase water flow model is defined
by a single equation, linear with respect to the primary unknown pw (or hw). While
other formulations of the governing equations are possible (e.g. the fractional flow
formulation for the two-phase flow, or a variety of variable transformation approaches
for the Richards equation), in this work the formulation given by Eq. (3.1) is used,
due to its clear physical interpretation and consistent representation of the two-phase,
unsaturated and saturated flow cases.

Analytical solution of the governing equations is possible only for a few sim-
ple cases, and numerical methods are typically employed to obtain approximate
solutions. Numerical solution of a nonlinear partial differential equations describing
transient phenomena in a time-space domain involves several tasks or stages. For
each task, a number of alternative techniques exist, and the choice of one or other
approach may significantly influence the accuracy and efficiency of the computa-
tions. For an overview of various numerical approaches available for flow in porous
media, see e.g. [14, 33]. The main steps of the solution algorithm are as follows:
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1. Discretization in space. It is typically performed with the finite difference, finite
element or finite volume methods, and requires defining a number of points
(nodes) in the considered spatial domain, at which the values of the unknown
function are sought. Spatial discretization leads to a system of ordinary differen-
tial equations (or algebraic differential equations), containing the unknown nodal
values and their derivatives with respect to time.

2. Discretization in time. The resulting system of ordinary differential equations
has to be integrated in the specified time interval, which is divided into several
time steps. The solution at the next time level can be obtained using a variety
of explicit or implicit methods. For the reasons of stability, implicit schemes are
preferred. Application of an implicit scheme results in a system of nonlinear
algebraic equations for each time step, where the unknowns represent the nodal
values of the primary variables from the new time level.

3. Linearization. As the system of discrete equations arising for each time level is
nonlinear, it must be solved using an iterative method. First, an initial guess of
the unknown values is provided, and then a number of successive corrections are
calculated. To this order one can apply either different versions of the Newton
method, or a simpler approach, known as the modified Picard method.

4. Solution of the linear systems. For each nonlinear iteration, a system of linear
equations has to be solved, to compute the corrections to the unknown values.
The system is characterized by a sparse and banded coefficient matrix. Depending
on the problem under consideration, either direct or iterative methods can be
employed to solve the linear system.

In the following sections an overview of the basic discretization methods is pre-
sented, with the focus on the control-volume finite-element approach, which is used
in the numerical examples presented in the following part of the book. The solu-
tion algorithm is discussed in general terms, which allows for its application to
one-dimensional and multi-dimensional problems, and for alternative choices with
respect to the primary unknowns.

3.1 Basic Properties of Numerical Discretization Schemes

In the process of numerical discretization, the differential terms of the governing
equations are replaced by algebraic terms. The numerical scheme should satisfy
several requirements, in order to ensure that the solution of the system of discrete
equations approximates the solution of the original differential equation with suffi-
cient accuracy for the range of practically applicable discretization parameters (node
spacings and time steps). The basic property of the discretization scheme is conver-
gence. The numerical scheme is convergent if the resulting approximate solutions
tend to the exact solution of the original differential equation for decreasing spa-
tial and temporal discretization steps, e.g. [25, 33]. For nonlinear equations the
convergence is difficult to prove. It can be investigated empirically, by performing
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subsequent numerical solutions of the same initial-boundary problem with decreasing
spatial and temporal discretization steps, and comparing them with known analytical
solution. Moreover, some insights into the numerical properties of the nonlinear flow
equations can be obtained by considering the linear advection–diffusion equation of
the following form:

∂u

∂t
+ vu

∂u

∂x
− Du

∂2 u

∂x2 = 0 (3.3)

where u is a physical quantity subjected to the advective and diffusive transport and
vu and Du are constant parameters. Equation (3.3) can be regarded as a simplified
version of the saturation equation in the fractional flow model, Eq. (2.63), or the
Richards equation, e.g. Eq. (2.75). For linear differential equations the Lax theorem
holds, which states that the properties of consistency and stability are necessary and
sufficient conditions for a numerical scheme to be convergent [25, 33]. Analysis of
these properties is well-established for linear advection–diffusion equation. While the
results of the analysis of a linear equation cannot be directly applied to its nonlinear
counterparts, they offer some hints about the expected behaviour of the discretization
scheme.

The consistency of the discrete equation with the original differential equation
means that the local truncation errors tend to zero as the node spacings and time
steps decrease. The consistency analysis is performed by inserting the Taylor series
expansions of the unknown functions around the computational nodes into the alge-
braic approximations of the derivatives in the discrete scheme. The resulting equation
contains the differential terms of the original equation and the truncation error, i.e.
additional higher order terms from the Taylor expansions, which were neglected in
the discretization, e.g. [31]:

∂u

∂t
+ vu

∂u

∂x
− Du

∂2 u

∂x2 =
∑
p,q

αp,q�tβp,q�xγp,q
∂ p+qu

∂t p ∂xq
(3.4)

where p, q = 0, 1, 2, . . . and the coefficients αp,q and the exponents βp,q and χp,q

depend on the considered numerical scheme. The order of accuracy of the approx-
imation with respect to time and space corresponds to the value of the exponent
βp,q or γp,q , respectively, in the leading term of the truncation error. Furthermore,
according to the modified equation approach, the mixed time-space derivatives can
be eliminated from the expression for the truncation error by differentiation of the
original differential equation, so that only spatial derivatives remain [30]. If the lead-
ing term contains an even-order spatial derivative, then numerical dissipation effects
can be expected. The dissipation caused by the lowest (i.e. second) order term is
called numerical diffusion. Numerical diffusion (and dissipation in general) acts in
a manner analogous to the physical diffusion, smoothing sharp gradients present
in the solution. If the leading term contains an odd-order derivative, the solution
is influenced by numerical dispersion. Numerical dispersion leads to oscillations
in the solution, while keeping the initial steep gradients. The effects of numerical
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diffusion and dispersion are particularly important for advection dominated prob-
lems. If a significant physical diffusive mechanism is included in the governing
equation, the additional numerical diffusion becomes relatively less pronounced. On
the other hand, physical diffusion smoothes the oscillations caused by a dispersive
numerical scheme. In advection-dominated problems the appearance of diffusion
and dispersion errors is related to the method of approximation of the advective flux.
Strong numerical diffusion is typical for upwind (or upstream) schemes, where the
algebraic approximation of the advective flux at a specific node of the grid involves
values of the unknown function only from the nodes located upstream with respect to
the direction of transport. Numerical dispersion occurs for centred approximations
of the advective flux, which involve nodes located both upstream and downstream
of the considered grid point [25].

In the two-phase flow model, the diffusion is related to capillary forces, while
the advection to gravity and viscous forces. Due to the large value of viscosity ratio
between water and air, the viscous terms are relatively less important in the unsatu-
rated zone, as compared for example to the water–oil system. In the Richards equation
only capillarity and gravity forces are present. For gravity-dominated flow numerical
errors typically associated with the advection equation occur. Generally, numerical
diffusion errors are considered more acceptable than the numerical dispersion errors.
This is due to the fact that dispersion leads to non-monotonous, oscillatory profiles of
the pressures and/or saturations, which are not admissible from the physical point of
view. Numerical diffusion smears the saturation gradients, but the results are physi-
cally admissible, because similar profiles could be obtained from an accurate solution
of the same initial-boundary problem for a medium characterized by different con-
stitutive relationships with increased role of the capillary forces. For a discussion
of the monotonicity issues in relation to the relative importance of diffusive and
advective terms in the governing equation, see e.g. [26, 33]. Monotonicity is usually
achieved by applying upstream averaging of the relative permeability. Nevertheless,
the lack of oscillations does not guarantee that the solution is accurate and excessive
numerical diffusion may cause large errors, for instance by speeding up the arrival
time of the saturation front at a specific point. Thus, some authors argue that the use
of numerical diffusion to ensure monotonous solutions should be avoided [29].

Another important property of a numerical scheme is the stability. A scheme
is stable if small perturbations in the solution are not amplified. In the context of
numerical solution of the advection–diffusion equation, stability is related to the
method of discretization in time. The time-discretization schemes can be categorized
into explicit and implicit. In the explicit schemes, values of primary unknown for
any given point at the next time level can be obtained from the previous time levels,
independently of the values at other nodes. In the implicit schemes the algebraic
formulae approximating the spatial derivatives are written using nodal values from
the new time level, which usually results in a system of algebraic equations that
must be solved for each time step. Explicit schemes are only conditionally stable,
which means that the length of time step must be smaller than a specific limit value.
In contrast, some implicit schemes are unconditionally stable, which means that
the solution is stable for any choice of the time step. However, the presence of
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nonlinear terms in the governing differential equation may give rise to numerical
instabilities, even if the discretization scheme is unconditionally stable for linear
equations [2]. Moreover, for nonlinear equations the length of the time step is limited
by the convergence of the iterative solution of the nonlinear equations.

As the governing equations for the two-phase flow represent the mass conserva-
tion principle, it is advantageous if the discrete scheme is also mass-conservative. It
means that the change of the fluid mass in the considered domain between two time
steps should be equal to the integral of the mass flux over the domain boundary. If this
principle holds for the whole solution domain, the method is said to be globally con-
servative. If the principle holds for any of the sub-domains resulting from the spatial
discretization of the solution domain, the method is said to be locally conservative.
Mass conservation is affected by the choice of the form of the governing equation,
as well as by the choice of the actual discretization technique. The discrete equations
should satisfy the integral (divergence) form of the mass conservation principle, as
given by Eq. (2.65) [30]. With respect to the spatial discretization, it is important to
use a unique value of the numerical flux for each internal boundary between two
adjacent subdomains in the solution domain, so that the same quantity which leaves
one subdomain enters the neighbouring one. Such a property is satisfied by the finite
volume discretization. Also, the mass balance in the numerical solution can be neg-
atively affected if the time derivative in the storage term is expanded using the chain
differentiation rule, in order to obtain the time derivative of the primary unknown,
as shown in Chap. 2, Eq. (2.67).

3.2 Spatial Discretization

In the following, an approach to the discretization in the time-space domain known as
the method of lines is adopted. The partial differential equations are first
discretized in space, resulting in a semi-discrete form represented by a system of
ordinary differential equations (or differential algebraic equations) with respect to
time. The semi-discrete formulation allows for a direct comparison of various spatial
discretization techniques. The semi-discrete system is then integrated in the pre-
scribed time interval, as described in Sect. 3.3.

A fixed-grid spatial discretization is assumed, where the number of nodes and
their position in the solution domain remain constant during the simulation. For
a description of spatially adaptive algorithms, which coarsen or refine the mesh
according to the solution behavior see e.g. [46, 48].

3.2.1 Finite Difference Method

The finite difference method is applied to the strong (differential) form of the flow
equation, as given by Eq. (3.1). It is particularly useful for one-dimensional problems,

http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2


54 3 Numerical Solution of Flow Equations

(a) (b)

Fig. 3.1 Numerical grid for the finite difference method in one (a) and two (b) dimensions

e.g. [13, 32] or multidimensional problems in rectangular domains, e.g. [15, 28, 41,
60]. The numerical grid is defined by a number of lines which are parallel to the axes of
the spatial coordinate system with computational nodes placed at their intersections,
Fig. 3.1.

The finite difference method consists in replacing the derivatives of the unknown
functions by differential quotients involving the values of the unknown function
from the neighbouring nodes, according to the definition of the derivative. In the
one-dimensional case shown in Fig. 3.1a the mass fluxes between nodes i j and jk
can be approximated at mid-distance between nodes in the following way:

v(i j)
α = −ks k(i j)

rα

μα

(
p( j)
α − p(i)α

�x (i j)
− ρ(i j)

α g ζ

)
, (3.5)

v( jk)
α = −ks k( jk)

rα

μα

(
p(k)α − p( j)

α

�x ( jk)
− ρ( jk)

α g ζ

)
, (3.6)

where p(i)α , p( j)
α and p(k)α denote the pressure values at the computational nodes,

�x (i j) and �x ( jk) are the distances between the respective nodes, k(i j)
rα and k( jk)

rα

are the average inter-nodal values of the relative permeability, ρ
(i j)
α and ρ

( jk)
α are the

average inter-nodal values of the fluid density, g is the magnitude of gravitational
acceleration and ζ is the cosine of the angle between the x axis and the vector of
the gravity force. For horizontal flow ζ = 0, for vertical flow ζ = 1 if the x axis is
oriented downward and ζ = −1 if the x axis is oriented upward.

Typically, the variations in density between the two nodes are small and ρ
(i j)
α can

be approximated as the arithmetic average of the nodal values [33]:

ρ(i j)
α = 1

2

(
ρ(i)α + ρ( j)

α

)
. (3.7)
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The inter-nodal relative permeability is often approximated either as an arithmetic
average:

k(i j)
rα = 1

2

(
k(i)rα + k( j)

rα

)
, (3.8)

or as an upstream (upwind) average. In the latter case, k(i j)
rα is equal to the permeability

of the node which is positioned upstream with respect to the direction of the flow:

k(i j)
rα =

⎧⎪⎪⎨
⎪⎪⎩

k(i)rα if p( j)
α −p(i)α

�x (i j) − ρ
(i j)
α g ζ ≤ 0,

k( j)
rα if p(k)α −p( j)

α

�x ( jk) − ρ
( jk)
α g ζ > 0.

(3.9)

Several other permeability averaging schemes were proposed, particularly for the
case of incompressible Richards equation, e.g. [6, 10, 28, 70]. As the permeabilities
at the neighbouring nodes may differ by several orders of magnitude, the choice
of the averaging method significantly influences the accuracy of the results. This
problem is discussed in detail in Chap. 4.

The flux divergence operator at node j can be approximated as:

∇ (ρα vα) = 1

�x ( j)

(
ρ( jk)

α v( jk)
α − ρ(i j)

α v(i j)
α

)
, (3.10)

where

�x ( j) = �x (i j) +�x ( jk)

2
. (3.11)

The resulting semi-discrete flow equation for fluid phase α at node j can be written
in the following general form:

�x ( j) dM ( j)
α

dt
+ A(i j)

α p(i)α + A( j j)
α p( j)

α + A( jk)
α p(k)α + G( j)

α = 0, (3.12)

where the partial derivative with respect to time was replaced by an ordinary deriv-
ative, because M ( j)

α is defined point-wise and is no longer a function of space. The
flow coefficients Aα are defined as follows:

A(i j)
α = − 1

�x (i j)

ρ
(i j)
α

μα
ks k(i j)

rα , (3.13)

A( jk)
α = − 1

�x ( jk)

ρ
( jk)
α

μα
ks k( jk)

rα , (3.14)

A( j j)
α = −

(
A(i j)

α + A( jk)
α

)
(3.15)
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and the gravity term G( j)
α is equal to:

G( j)
α = −ks k(i j)

rα

μα

(
ρ(i j)

α

)2
g ζ + ks k( jk)

rα

μα

(
ρ( jk)

α

)2
g ζ. (3.16)

The finite difference scheme for two-dimensional flow in a diagonally anisotropic
medium, Fig. 3.1b, can be developed in a similar manner. As a result one obtains a
five-point stencil of the following form:

�x ( j)
1 �x ( j)

2
dM ( j)

α

dt
+ A( j j)

α p( j)
α

+ A(i j)
α p(i)α + A(l j)

α p(l)α + A( jk)
α p(k)α + A( jm)

α p(m)α + G( j)
α = 0 (3.17)

where

�x ( j)
1 = �x (i j) +�x ( jk)

2
, �x ( j)

2 = �x (l j) +�x ( jm)

2
, (3.18)

and the flow coefficients are defined as:

A(i j)
α = −�x ( j)

2

�x (i j)
1

ρ
(i j)
α

μα
ks1 k(i j)

r1α , A( jk)
α = − �x ( j)

2

�x ( jk)
1

ρ
( jk)
α

μα
ks1 k( jk)

r1α ,

A(l j)
α = −�x ( j)

1

�x (l j)
2

ρ
(l j)
α

μα
ks2 k(l j)

r2α, A( jm)
α = − �x ( j)

1

�x ( jm)
2

ρ
( jm)
α

μα
ks2 k( jm)

r2α ,

A( j j)
α = −

(
A(i j)

α + A( jk)
α + A(l j)

α + A( jm)
α

)
. (3.19)

where ks1, ks2, kr1α and kr2α represent the intrinsic and relative permeabilities in the
direction of x1 and x2, respectively (in a general case the relative permeability can
be also direction-dependent). Assuming that the gravity force acts in the direction
opposite to x2 axis, the gravity term G( j)

α represents the balance of the gravitational
fluxes between pairs of nodes l– j and j–m, for which the coefficient ζ = 1. This
term can be written as:

G( j)
α = −�x ( j)

1
ks k(l j)

rα

μα

(
ρ(l j)

α

)2
g +�x ( j)

1
ks k( jm)

rα

μα

(
ρ( jm)

α

)2
g. (3.20)

An analogous scheme in three dimensions involves values of the fluid pressure from
node j and its six closest neighbours. Implementation of a fully anisotropic per-
meability and material heterogeneity is more naturally performed in the framework
of the finite volume schemes, of which Eqs. (3.12) and (3.17) can be considered as
special cases. These schemes are discussed in Sects. 3.2.3 and 3.2.4.
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3.2.2 Finite Element Method

The finite element method is widely used in many fields of engineering. A gen-
eral description of the method is provided by a number of textbooks, e.g. [30, 73].
Examples of its application to the subsurface flow modelling can be found in [33,
57–59, 71]. In the finite element method the spatial domain is divided into a number
of sub-domains called finite elements, Fig. 3.2. Each element can be characterized
by a different set of material properties. The values of the unknown functions are
sought in a number of points (nodes). The global set of nodes typically consists of
the grid vertices and, if a higher order of approximation is required, of additional
points located at the grid edges and inside elements. An unknown function u(x, t) is
approximated as:

u(x, t) =
Nn∑

i=1

u(i)(t)�(i)(x), (3.21)

where Nn is the number of nodes in the domain, u(i)(t) represent the nodal values
of the unknown function (in general time-dependent) and �(i) is the set of shape
functions (trial functions). The shape functions are defined in such a way that the
value of each function equals unity at node i and zero at all other nodes. Each function
�(i) can be split into a number of components, corresponding to the elements sharing
node i . These components are called element shape functions,�(i)e . Using the element
shape functions, the approximation of the unknown function inside a single element
can be written as:

ue(x, t) =
∑

i∈Nelem

u(i)(t)�(i)e (x), (3.22)

where Nelem denotes the set of nodes of the considered finite element. The basic
types of elements and shape functions are listed below. They are used not only in the
standard finite element method, but also in the finite volume schemes described in
the following sections.

In the simplest case of one-dimensional linear element E1 spanned over nodes i
and j , Fig. 3.2a, the element shape functions are defined as:

�(i)e (x) = x ( j) − x

�x (i j)
, (3.23)

�( j)
e (x) = x − x (i)

�x (i j)
(3.24)

and their derivatives with respect to x are constant in the element:
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(a) (b)

(c) (d)

Fig. 3.2 Numerical grids for the finite element method: a one-dimensional linear elements, b
two-dimensional rectangular elements, c two-dimensional triangular elements, d two-dimensional
quadrilateral elements

d�(i)e (x)

dx
= − 1

�x (i j)
, (3.25)

d�( j)
e (x)

dx
= 1

�x (i j)
. (3.26)

For a triangular element E (3) built on nodes i , j , and k, Fig. 3.2c, the linear shape
functions are as follows:

�(i)e (x) = 1

2 |E (3)|
[(

x ( j)
1 x (k)2 − x (k)1 x ( j)

2

)

+
(

x ( j)
2 − x (k)2

)
x1 +

(
x (k)1 − x ( j)

1

)
x2

]
, (3.27)

�( j)
e (x) = 1

2 |E (3)|
[(

x (k)1 x (i)2 − x (i)1 x (k)2

)

+
(

x (k)2 − x (i)2

)
x1 +

(
x (i)1 − x (k)1

)
x2

]
, (3.28)
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�(k)e (x) = 1

2 |E (3)|
[(

x (i)1 x ( j)
2 − x ( j)

1 x (i)2

)

+
(

x (i)2 − x ( j)
2

)
x1 +

(
x ( j)

1 − x (i)1

)
x2

]
, (3.29)

where |E (3)| is the area of the element. The derivatives of the shape functions with
respect to x1 and x2 are constant within the element:

∂�
(i)
e

∂x1
= 1

2 |E (3)| (x
( j)
2 − x (k)2 ),

∂�
(i)
e

∂x2
= 1

2 |E (3)| (x
(k)
1 − x ( j)

1 ), (3.30)

∂�
( j)
e

∂x1
= 1

2 |E (3)| (x
(k)
2 − x (i)2 ),

∂�
( j)
e

∂x2
= 1

2 |E (3)| (x
(i)
1 − x (k)1 ), (3.31)

∂�(k)e

∂x1
= 1

2 |E (3)| (x
(i)
2 − x ( j)

2 ),
∂�(k)e

∂x2
= 1

2 |E (3)| (x
( j)
1 − x (i)1 ). (3.32)

For an arbitrary quadrilateral element E (4), shown in Fig. 3.2d, the unknown
functions can be conveniently approximated using shape functions defined in terms
of local coordinates ξ1 and ξ2 :

ue(x, t) =
∑

i∈Nelem

u(i)(t)�(i)e (ξ1, ξ2). (3.33)

At the lowest approximation order, bilinear shape functions can be used, which have
the following form:

�(i)e = 1

4
(1 − ξ1) (1 − ξ2) , (3.34)

�( j)
e = 1

4
(1 + ξ1) (1 − ξ2) , (3.35)

�(k)e = 1

4
(1 + ξ1) (1 + ξ2) , (3.36)

�(l)e = 1

4
(1 − ξ1) (1 + ξ2) , (3.37)

where the nodes i , j , k and l are positioned with respect to the local coordinate axes ξ1
and ξ2, as shown in Fig. 3.2d. In contrast to the case of linear triangular elements, in
the bilinear quadrilateral elements the gradients of the shape functions vary linearly
in the element:

∂�
(i)
e

∂ξ1
= −1

4
(1 − ξ2) ,

∂�
(i)
e

∂ξ2
= −1

4
(1 − ξ1) , (3.38)
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∂�
( j)
e

∂ξ1
= 1

4
(1 − ξ2) ,

∂�
( j)
e

∂ξ2
= −1

4
(1 + ξ1) , (3.39)

∂�
(k)
e

∂ξ1
= 1

4
(1 + ξ2) ,

∂�
(k)
e

∂ξ2
= 1

4
(1 + ξ1) , (3.40)

∂�
(l)
e

∂ξ1
= −1

4
(1 + ξ2) ,

∂�
(l)
e

∂ξ2
= 1

4
(1 − ξ1) . (3.41)

The relationship between the local coordinates and the global coordinates x is
often obtained using the isoparametric approach, e.g. [30]. It is assumed that the
global coordinate at an arbitrary point within the element can be expressed using the
same shape functions as the unknown function:

x (e)1 (ξ1, ξ2) =
∑

i∈Nelem

x (i)1 �(i)e (ξ1, ξ2), (3.42)

x (e)2 (ξ1, ξ2) =
∑

i∈Nelem

x (i)2 �(i)e (ξ1, ξ2). (3.43)

The relations between the gradients of the shape functions with respect to the local
and global coordinates can be written as:

⎡
⎢⎢⎣

∂�
(i)
e

∂ξ1

∂�
(i)
e

∂ξ2

⎤
⎥⎥⎦ = Je

⎡
⎢⎢⎣

∂�
(i)
e

∂x1
∂�

(i)
e

∂x2

⎤
⎥⎥⎦ , (3.44)

⎡
⎢⎢⎣

∂�
(i)
e

∂x1
∂�(i)e

∂x2

⎤
⎥⎥⎦ = J−1

e

⎡
⎢⎢⎣

∂�(i)e

∂ξ1

∂�(i)e

∂ξ2

⎤
⎥⎥⎦ , (3.45)

where Je and J−1
e denote the transformation jacobian for the element and its inverse,

respectively:

Je =
⎡
⎢⎣

∂x1

∂ξ1

∂x2

∂ξ1
∂x1

∂ξ2

∂x2

∂ξ2

⎤
⎥⎦ , (3.46)

J−1
e = 1

|Je|

⎡
⎢⎣

∂x2

∂ξ2
−∂x2

∂ξ1

−∂x1

∂ξ2

∂x1

∂ξ1

⎤
⎥⎦ , (3.47)
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The approximations described above are applied to the unknown functions in the
governing equations (3.1). As the approximate functions do not satisfy exactly the
governing equation, the differential operator at the left-hand side of equation yields a
non-zero residual. The finite element method belongs to the group of weighted resid-
ual methods, which postulate that the integral of the residual of Eq. (3.1) multiplied
by a weighting function ϒ(x) (also called test function) be equal to zero:

∫
W

(
∂Mα

∂t
+ ∇ (ρα vα)

)
ϒ(x) dW = 0, (3.48)

where W denotes the solution domain. Applying the Gauss–Ostrogradski theorem
to the divergence operator, one obtains the following weak formulation of the flow
equation, which is the basis for the finite element solution:

∫
W

∂Mα

∂t
ϒ(x) dW −

∫
W

ραvα ∇ ϒ(x) dW +
∫

∂W

ραvα nW ϒ(x) d∂W = 0, (3.49)

where ∂W is the boundary of the domain W and nW is a unit vector normal to ∂W
and directed outward. In the standard Galerkin approach, the weighting functions
correspond to the shape functions, ϒ(i) = �(i). Equation (3.49) represents a set of
equations written for each node i and the corresponding function�(i). Each integral
over the solution domain W can be expressed as a sum of the integrals taken over
those elements E for which the weighting function assumes non-zero values:

∑
E∈E (i)

∫
E

∂Mα

∂t
�(i)e (x) dE −

∑
E∈E (i)

∫
E

ραvα ∇�(i)e dE

+
∑

E∈E (i)

∫
∂E

ραvα nW �(i)e d∂E = 0, (3.50)

where E (i) is the set of elements sharing node i and ∂E is the part of the external
boundary of the domain coinciding with the boundary of element E . The third term
on the left-hand side of Eq. (3.50) exists only for those elements which are adjacent
to the external boundary of the domain, where a non-zero flux is specified as the
boundary condition.

As an example, consider the solution of one dimensional Richards equation in a
homogeneous medium:

∂Mw

∂t
+ ∂

∂x
(ρw vw) = 0, (3.51)

vw = −ks krw

μw

(
∂ pw

∂x
− ρw g ζ

)
, (3.52)
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where Mw, ρw and krw are functions of pw. In order to obtain the semi-discrete
formulation, the approximation (3.21) can be applied to both Mw and pw functions
[13, 33]:

Mw(x, t) =
Nn∑

i=1

M (i)
w (t)�(i)(x), (3.53)

pw(x, t) =
Nn∑

i=1

p(i)w (t)�
(i)(x). (3.54)

The semi-discrete equation for node j is assembled from the integrals for the elements
E (1) and E (2), Fig. 3.2a. Integration of the storage term yields:

∫

E (1)

∂Mw

∂t
�( j)

e dE = ∂M (i)
w

∂t

∫

E (1)

�(i)e �
( j)
e dE + ∂M ( j)

w

∂t

∫

E (1)

�( j)
e �( j)

e dE

= �x (i j)

6

∂M (i)
w

∂t
+ �x (i j)

3

∂M ( j)
w

∂t
, (3.55)

∫

E (2)

∂Mw

∂t
�( j)

e dE = ∂M ( j)
w

∂t

∫

E (2)

�( j)
e �( j)

e dE + ∂M (k)
w

∂t

∫

E (2)

�(k)e �( j)
e dE

= �x ( jk)

3

∂M ( j)
w

∂t
+ �x ( jk)

6

∂M (k)
w

∂t
. (3.56)

The integral of the flux term over element E (1) can be expressed as:

∫

E (1)

(ρw vw)∇�( j)
e dE

= −
⎡
⎢⎣

∫

E (1)

ρw
ks krw

μw
∇ pw ∇�( j)

e dE −
∫

E (1)

ρ2
w

ks krw

μw
gζ ∇ �( j)

e dE

⎤
⎥⎦ , (3.57)

where ks and μw do not vary within the element. For linear shape functions both the
pressure gradient and the shape function gradient are also uniform:

∂ pw

∂x
= p( j)

w − p( j)
w

�x (i j)
, (3.58)

∂�
( j)
e

∂x
= 1

�x (i j)
. (3.59)
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While both ρw and krw depend on x locally in the element, the variability of the fluid
density is usually small and a constant average value ρ

(e)
w can be assumed:

ρ(e)w = 1

2

(
ρ(i)w + ρ( j)

w

)
, (3.60)

which allows to transform Eq. (3.57), so that only the relative permeability remains
within the integral:

∫

E (1)

(ρw vw)∇ �( j)
e dE

= −ρ(e)w ks

μw

[
p( j)

w

�x (i j)
− p(i)w

�x (i j)
− ρ(e)gζ

] ∫

E (1)

krw dE . (3.61)

The relative permeability coefficient is in general highly variable, even within a single
element. The corresponding integral can be written as:

∫

E (1)

krw dE = k(e)rw �x (i j), (3.62)

where k(e)rw is the average relative permeability in the element, which can be variously
defined, depending on the method used to approximate the integral. For example,
one can assume that the relative permeability coefficient varies linearly between the
nodes, which leads to a formula equivalent to the arithmetic mean:

k(e)rw = 1

2

(
k(i)rw + k( j)

rw

)
. (3.63)

Alternatively, one can evaluate krw as a function of the water pressure at a specific
number of points within the element and use a quadrature rule to approximate the
integral. In the simplest case of a single quadrature point, positioned in the centre of
the element, one obtains:

k(e)rw = krw

(
p(i)w + p( j)

w

2

)
. (3.64)

It is interesting to note that in the one-dimensional case with the water pressure
varying linearly between the nodes, by increasing the number of the quadrature
points one approaches the following result:
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∫

E (1)

krw dE = �x (i j)

p( j)
w − p(i)w

p( j)
w∫

p(i)w

krw( p̂)d p̂ = �x (i j)
�p

(
p j

w

)
−�p

(
p(i)w

)

p( j)
w − p(i)w

, (3.65)

where p̂ is a dummy integration variable and �p is the flux potential, as defined by
Eq. (2.84). The corresponding value of the average permeability in the element is
referred to as the integrated mean k(i j)

int :

k(e)rw = k(i j)
int = 1

p( j)
w − p(i)w

p( j)
w∫

p(i)w

krw( p̂)d p̂ =
�p

(
p( j)

w

)
−�p

(
p(i)w

)

p( j)
w − p(i)w

. (3.66)

The final form of the integral of the flux term can be written as:

∫

E (1)

(ρw vw)∇�( j)
e dE = −ρ(e)w ks k(e)rw

μα

(
p( j)

w

�x (i j)
− p(i)w

�x (i j)
+ ρ(e)w gζ

)
. (3.67)

An analogous formula arises from the integration in element E (2). Assembling the
contributions from both elements one obtains the following semi-discrete equation
for the node j :

�x (i j)

6

dM (i)
w

dt
+�x (i j) +�x ( jk)

3

dM ( j)
w

dt
+ �x ( jk)

6

dM ( j)
w

dt
+A( j i)

α p(i)α + A( j j)
α p( j)

α + A( jk)
α p(k)α + G( j)

α = 0, (3.68)

where the flow coefficients A(i j)
α and the gravity term G( j)

α are the same as in
Eqs. (3.13)–(3.16), if the element permeability k(e)rw is evaluated by the same formula
as the internodal permeability k(i j)

rw .
The approximation of the storage term includes contributions from node j and

neighbouring nodes i and k. It was shown that such an approximation of the time
derivative leads to oscillations in the water pressure profiles. This problem was inves-
tigated in detail in [13, 36, 51]. The technique commonly applied in multiphase and
unsaturated flow simulations in order to avoid oscillations is known as the mass-
lumping (diagonalization of the storage term). The integral of the storage term eval-
uated consistently with the finite element approach, which for an element E (n) can
be written as:

∫

E (n)

∂Mα

∂t
�( j)

e dE =
∑

i∈N (n)
elem

⎛
⎜⎝∂M (i)

α

∂t

∫

E (n)

�(i)e �( j)
e dE

⎞
⎟⎠ , (3.69)

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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is replaced by the mass-lumped approximation:

∫

E (n)

∂Mα

∂t
�( j)

e dE = ∂M ( j)
α

∂t

∑
i∈N (n)

elem

⎛
⎜⎝

∫

E (n)

�(i)e �( j)
e dE

⎞
⎟⎠ . (3.70)

As a result, the semi-discrete equation for node j contains only the spatial derivative
of the conserved quantity at node j , i.e. the storage properties are restricted to grid
nodes. For one-dimensional flow in a homogeneous medium, the application of mass
lumping leads to a semi-discrete finite element scheme that is identical to the finite
difference scheme, provided that the average relative permeability in the element and
the inter-nodal permeability in the finite difference scheme are approximated in the
same way (e.g. as arithmetic means of nodal permeabilities).

If two-dimensional Richards equation is solved on a mesh composed of linear
triangular elements, the gradients of shape functions are constant in each element
and the average values of the density and relative permeability in the element can
be approximated in a manner analogous to the one-dimensional case. For instance,
arithmetic average of the nodal values is often used, e.g. [59, 71]:

k(e)rw = 1

3

(
k(i)rw + k( j)

rw + k(k)rw

)
. (3.71)

Alternatively, numerical integration can be employed. For a single quadrature point
one obtains:

k(e)rw = krw

(
p(i)w + p( j)

w + p(k)w

3

)
, (3.72)

while for three quadrature points the formula is [66]:

k(e)rw = 1

3

(
krw

(
pA

w

)
+ krw

(
pB

w

)
+ krw

(
pC

w

))
, (3.73)

where the values of the pressure at the quadrature points can be interpolated from
the nodal values: ⎡

⎢⎣
pA

w

pB
w

pC
w

⎤
⎥⎦ = 1

6

⎡
⎢⎣

4 1 1

1 4 1

1 1 4

⎤
⎥⎦

⎡
⎢⎢⎣

p(i)w

p( j)
w

p(k)w

⎤
⎥⎥⎦ . (3.74)

In contrast to the one-dimensional case, for two-dimensional elements the integral
of the relative permeability cannot be easily expressed in terms of the flux potential.
In the case of quadrilateral elements, the gradients of the shape functions vary within
the element and the flux term has to be integrated numerically.

Material heterogeneity is naturally accounted for in the finite element scheme,
because the integral for each element is evaluated using element-specific capillary
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and relative permeability functions. For the Richards equation the water saturation
(and consequently the unit mass of water Mw) at node j in both elements is uniquely
defined by the primary variable p( j)

w . Additional considerations are required for the
two-phase flow, since the water saturation is discontinuous at the material interface.
However, the two values of saturation are related to each other by the extended
capillary continuity condition, Eq. (2.108). A more detailed discussion of this issue
is presented in Sect. 3.2.4.

Besides the standard Galerkin finite element method described above, other finite
element schemes are also used to solve the two-phase flow model and the Richards
equation. They include mixed-hybrid finite element, e.g. [9, 10, 22, 23] and the
locally discontinuous Galerkin finite element [21, 44, 45]. In the mixed-hybrid finite
elements the set of unknowns includes the values of the pressure in the centres of
the elements and the values of the flow velocities at the centres of element edges,
each type of unknown being approximated by different shape functions. This method
provides more accurate description of the velocity field, which is crucial in many
applications, for example when simulating the transport of dissolved contaminants.
However, there is additional numerical cost due to the larger number of unknowns.
The locally discontinuous Galerkin finite element method is based on the approxima-
tion of the unknown functions using shape functions that are defined only in a single
element (in contrast to the standard Galerkin approach, where each shape function is
defined over a number of neighbouring elements, sharing the same node). The local
approximations are then coupled by appropriate conditions defined for the fluxes at
element edges.

3.2.3 Cell-Centred Finite Volume Method

Due to their inherent conservative properties, the finite volume methods are widely
used to solve partial differential equations representing principles of conservation of
various physical quantities. In this group of methods, several discretization schemes
are available. Some of them can be regarded as a development of the finite difference
method, while others as special cases of the finite element approach. A general dis-
cussion is provided in e.g. [7, 20, 43]. Applications to subsurface flow are numerous,
and include among others [16, 18, 19, 27, 55].

In the finite volume method, the solution domain is divided into a number of cells
(finite volumes or control volumes), each containing a single computational node.
The discretization schemes are based on the integral form of the mass conservation
equation, applied to a control volume V ( j), which can be written as follows:

∂

∂t

∫

V ( j)

Mα dV ( j) +
∫

∂V ( j)

(ρα vαn( j)
V ) d∂V ( j) = 0, (3.75)

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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where ∂V ( j) denotes the boundary of cell V ( j) and n( j)
V is a unit vector normal to

∂V ( j) and directed outwards. The semi-discrete analogue of Eq. (3.75) is then written
for each cell. Assuming that the average value of the unit mass of fluid phase Mα in
the control volume corresponds to the nodal value M ( j)

α , the integral of the storage
term can be expressed as:

∂

∂t

∫

V ( j)

Mα dV = |V ( j)|dM ( j)
α

dt
, (3.76)

The integral of the mass flux over the cell boundary is expressed as the sum of
integrals over cell faces:

∫

∂V ( j)

(ρα vα n( j)
V ) d∂V ( j) =

∑
F∈∂V ( j)

∫
F

(
ρα vα n( j)

V

)
d∂V ( j), (3.77)

where |V ( j)| is the volume, area or length of the cell, depending on the dimension-
ality of the problem and F denotes those control volume faces which belong to the
boundary of the cell V ( j). The flux at each face is approximated by an algebraic for-
mula involving the values of the fluid potential from the control volume V ( j) and one
or more adjacent control volumes. The resulting value is used with the opposite sign
in the flux balance of both control volumes sharing the considered face. Thus, finite
volume schemes ensure local mass conservation. Within this framework a variety of
finite volume schemes can be developed, which differ in the methods of defining the
control volumes, representing the material heterogeneities and approximating the
fluxes at control volume faces.

A general division can be drawn between the cell-centred and vertex-centred
schemes. In both approaches, the finite volume grid is constructed on a primary grid
of the same type as used for the finite difference or finite element solution. In the
cell-centred schemes, each element of the primary grid becomes a control volume,
with the corresponding computational node placed in its geometric center, Fig. 3.3.
Each control volume is assumed to be materially homogeneous and the boundaries
between distinct material regions coincide with the control volume boundaries. This
approach is particularly appealing for one-dimensional problems or two-dimensional
problems involving diagonally anisotropic media and rectangular grids. In such cases,
the flux integral at an arbitrary face F (i j) between the control volumes V ( j) and V (i)

in Fig. 3.3a, can be approximated by a simple differential formula:

∫

F ( j i)

(ραvα n( j)
V ) dF = −|F ( j i)|ρα ks krα

μα

(
p( j)
α − p(i)α

�x (i j)
− ρα g ζ

)
, (3.78)

where |F (i j)| is the length or area of the face, depending on the dimension of the
problem. This approach is sometimes called the control volume finite difference
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(a) (b)

(c) (d)

Fig. 3.3 Numerical grids for the cell-centred finite volume method: a one-dimensional grid, b two-
dimensional rectangular grid, c two-dimensional triangular grid, d two-dimensional quadrilateral
grid

method [68], because it can be viewed as a natural extension of the finite difference
method. For instance, for one-dimensional problem, assuming unit dimensions of
the domain in the directions perpendicular to the flow, the resulting semi-discrete
equation for node j can be written in the same form as Eq. (3.12):

�x ( j) dM ( j)
α

dt
+ A( j i)

α p(i)α + A( j j)
α p( j)

α + A jk
α p(k)α + G( j)

α = 0, (3.79)

with the coefficients A( j i)
α and the gravity term G( j)

α defined by Eqs. (3.13)–(3.15) and
(3.16), respectively. However, the two schemes differ in the definition of�x ( j). In the
finite difference method, the distance �x ( j) results from the assumed node spacing
�x (i j) and �x ( jk). In the cell-centred finite volume scheme the cell dimensions
�x ( j) are assumed first, and the inter-nodal distances are then computed as:

�x (i j) = 1

2

(
�x (i) +�x ( j)

)
. (3.80)
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In a general case of non-uniform cell sizes, the position of cell faces does not cor-
respond to mid-distance between the cell centres. Therefore, in contrast to Eq. (3.5),
Eq. (3.78) is only first-order accurate.

Another difference between the standard finite difference scheme and the cell-
centred finite volume scheme is related to the implementation of the boundary con-
ditions. In the cell-centred scheme, Neumann boundary conditions can be introduced
in a natural way, by specifying the fluxes through the boundary faces of the corre-
sponding cells. If the boundary condition is of Dirichlet type, the flux through the
boundary face is approximated by a finite difference formula using the values of the
pressure at the boundary and in the cell centre. The issue becomes more complicated
for two phase flow, when the boundary condition for one phase is of Neumann type,
while for the other of Dirichlet type. Consider, for example, a typical situation at
the soil surface, when a specific infiltration flux is given for the wetting phase and
the non-wetting phase pressure is equal to the atmospheric pressure (see Sect. 3.5).
The non-wetting phase boundary flux can be computed from the pressure difference
between the boundary and cell centre, but the permeability depends on the capillary
pressure, which is a priori unknown at the surface, because the wetting phase pressure
is unknown. The wetting phase pressure can be obtained from the flux condition, but
this requires solution of a nonlinear equation.

Similarly to the finite element method, the cell-centred finite volume method
allows for a natural representation of the material heterogeneities, by assigning a
different set of constitutive properties to each cell. If the neighbouring cells belong
to different material regions, the intrinsic permeabilities ks are different at each
node, which means that instead of averaging only the relative permeability, one has
to average the total permeability kα = ks krα. A physically consistent averaging
scheme should satisfy the conditions for the continuity of the fluid pressure and
normal flux across the material interface, introduced in Sect. 2.3.3. The estimation of
the inter-nodal permeability across a material interface for one-dimensional problems
is discussed in more detail in the next chapter.

For non-rectangular grids, a two-point flux approximation based only on the values
of the fluid pressures from the two control volumes adjacent to the considered face
is generally inaccurate, as the lines connecting cell centres are not orthogonal to
the cell faces [18]. The accuracy can be improved if the values of the fluid pressure
from other neighbouring cells are taken into account in the approximation of the
pressure gradient, which leads to multi-point flux approximations. For instance, in
the case of triangular grids the diamond scheme can be used. This scheme requires
the pressure values from the cells i and j and from the two vertices of primary grid,
which coincide with the endpoints of the considered face. However, the values at
the vertices are not explicitly computed in the solution to the discrete equation, and
a reconstruction (interpolation) procedure is required to express each vertex value
as a weighted average of the values at the centres of the control volumes sharing
the vertex. Several reconstruction schemes are available, including weighting by
inverse distance and least squares interpolation [47, 63]. While the diamond scheme
can be considered as a simple case of multi-point stencil, the term multi-point flux
approximations is generally applied to the schemes, which makes explicit use of the

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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(a) (b)

(c)
(d)

Fig. 3.4 Numerical grids for the vertex-centred finite volume method: a one-dimensional grid, b
two-dimensional rectangular grid, c two-dimensional triangular grid, d two-dimensional quadrilat-
eral grid

pressure and flux continuity conditions to reconstruct pressure values at the control
volume faces. For a more detailed discussion of such schemes, see e.g. [1, 18].

3.2.4 Vertex-Centred Finite Volume Method

The second branch of the finite volume discretization approaches is represented by the
vertex-centred schemes. In this case the control volumes are created around each ver-
tex of the primary grid, forming a dual grid, as shown in Fig. 3.4. For one-dimensional
problems the dual grid is created in a straightforward manner by assigning to the con-
trol volume around vertex j one half of each of the two elements sharing this vertex,
i.e. E (1) and E (2). At the boundary, the control volume contains only a half of the
adjacent element. Note that if the size of the elements is not uniform, the computa-
tional nodes (vertices) are not at the geometric centres of the corresponding control
volumes.

For two-dimensional primary grids consisting of triangular elements, the dual grid
can be defined using a number of alternative approaches, as shown in Fig. 3.5, e.g. [7].
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Fig. 3.5 Various methods of
defining the dual grid for a
triangular primary grid

In the median-dual method, the barycenter of each element is connected by line seg-
ments to the mid-points of the element sides (primary grid edges). Another possibility
is to use the Voronoi diagram. In this approach the dual mesh consists of lines joining
the circumcentres of adjacent elements. The circumcentre of a triangle (the centre
of circumscribed circle) is located at the point of intersection of the perpendicu-
lar bisectors of its sides. Therefore, the control volume faces are perpendicular to
the edges of the primary mesh. This is a useful property in the case of isotropic
medium, because the gradient and flux normal to the faces can be easily computed
from the values at the two endpoints of the corresponding edge. The third option is
the centroid-dual grid, obtained by joining the barycenters of adjacent elements with
straight segments. The median-dual method is the most flexible approach, as it does
not require any limitations on the shape of the triangles. It can be easily extended
to quadrilateral elements (Fig. 3.4 b, d) and to other element shapes in two and three
dimensions.

Several important features distinguish the vertex-centred schemes from the cell-
centred schemes. The computational nodes coincide with the vertices of the primary
grid. Therefore, one has a direct access to the values of unknowns at the external
boundaries of the domain, and at the internal boundaries separating different material
regions. The control volumes located at the internal boundaries are heterogeneous,
containing two or more materials. Thus, the saturations of the fluid phases are dis-
continuous within the control volumes, which must be properly accounted for in the
discretization of the storage term. On the other hand, the faces separating control
volumes are located in materially homogeneous elements of the primary grid, which
simplifies the evaluation of the flux term. Even more importantly, the gradients of the
fluid pressures at a given point of the control volume face can be evaluated using
the finite element approach, where the pressure within an element is represented via
the nodal values and element shape functions. The resulting scheme is often called
control volume finite element method [33, 68]. It is described in more detail below.

Consider the control volume around node j , composed of two materials, (I) and
(II), as shown in Fig. 3.4. In evaluating the storage term, one has to refer to the
conditions at material interfaces, as described in Sect. 2.3.3. The continuity of the
water pressure implies that a unique primary unknown p( j)

w can be defined for node j .

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Consequently, the water density is also uniquely defined. However, the porosities
and water saturations are discontinuous at the interface. In the case of the Richards
equation, the values of the saturations in both materials can be computed from the
respective capillary functions, for the value of the capillary pressure p( j)

c = −p( j)
w :

∂

∂t

∫

V ( j)

M ( j)
w dV ( j) = |V I ( j)| ∂

∂t

(
φI S I

w

(
p( j)

w

)
ρ( j)

w

)

+ |V II ( j)| ∂

∂t

(
φII S II

w

(
p( j)

w

)
ρ( j)

w

)
, (3.81)

where |V I ( j)| and |V II ( j)| denote the volumes of the parts of the cell occupied by
materials I and II , respectively.

In the case of two phase flow, the water saturation is the second independent
variable, and a question arises, which of the two saturations should be taken as
the primary variable at the given node. In view of the considerations presented in
Sect. 2.3.3, the primary variable should represent the saturation in the material which
has the lowest air-entry pressure [34], because in this case the second saturation
can be uniquely defined as a function of the primary saturation, via the extended
capillary pressure continuity condition, Eq. (2.108). Assuming that material I has a
lower air entry pressure than material II , the primary variable S( j)

w represents the
saturation in material I , SI

w. The corresponding capillary pressure is pI
c (S

( j)
w ) and

the saturation in the second material is defined as SII
w

(
pI

c

(
S( j)

w

))
, leading to the

following approximation of the storage term:

∂

∂t

∫

V ( j)

M ( j)
w dV ( j) = |V I ( j)| ∂

∂t

(
φI S( j)

w ρ( j)
w

)

+ |V II ( j)| ∂

∂t

(
φII S II

w

(
pI

c

(
S( j)

w

))
ρ( j)

w

)
. (3.82)

Similarly to the cell-centred scheme, in order to approximate the integral of the
mass flux over a specific control volume face, the value of the flux is evaluated at a
chosen point of the face and multiplied by the face length or area, depending on the
dimensionality of the problem. In turn, the computation of the flux at a specific point
requires the values of the pressure gradient, average density and average relative
permeability:

∫
F

(
ρα vα n( j)

V

)
dF = Q(fc)

α = −|F |ρ
(fc)
α

μα
k(fc)α

(
(∇ pα)

(fc) − ρ(fc)α g
)

n( j)
V , (3.83)

where the superscripts (fc) denote the average values of the specific quantities at the
considered control volume face. In the control volume finite element approach, the

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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pressure gradient at face F is approximated using the shape functions for the respec-
tive element of the primary grid, which contains the control volume face. For one-
dimensional or triangular elements and linear shape functions, the resulting values of
the gradient are uniform within each element. For quadrilateral elements and bilinear
shape functions, the gradient is non-uniform and a specific point on the face has to
be chosen for evaluation. A usual choice is the midpoint of the face, denoted by A in
Fig. 3.4d. The resulting algebraic formula involves values from all four vertices of the
element. Alternatively one of the endpoints of the face can be used, i.e. either the geo-
metric center of the element, B or the midpoint of the adjacent primary grid edge, C .
In the former case, the same value of the gradient can be used for all faces in the
element. The latter option can be advantageous for rectangular elements because
the resulting formula for the normal gradient involves only two nodes (endpoints of
the edge), instead of all four. For an isotropic or diagonally anisotropic medium, the
five point finite difference stencil is recovered.

While the intrinsic permeability is uniform within the element, the relative per-
meability, which in general can be given by a tensor, depends on the position. It can
be evaluated using several approaches. For instance, a single average value can be
assumed for all faces in the element. This value can be obtained using one of the
formulas presented in Sect. 3.2.2. Alternatively, the value of the permeability can
be computed at the mid-point of the considered face, assuming a linear (or bilin-
ear) distribution of either the permeability itself, or the argument to the permeability
function, i.e. the water saturation or capillary pressure. In each of these cases the
permeability depends on the primary unknowns from all vertices of the element.
Another, widely used option is to evaluate the permeability for the considered face
based only on the two nodes located at the opposite sides of the face, which are the
endpoints of the adjacent edge of the primary grid (nodes i and j for the face F
shown in Fig. 3.4b, c and d). This approach allows to apply the upstreaming of the
relative permeability:

k(fc)rα =
⎧⎨
⎩

k( j)
rα if (∇ pα − ρ

(fc)
α g)n( j)

V ≤ 0,

k(i)rα if (∇ pα − ρ
(fc)
α g)n( j)

V > 0.
(3.84)

As it has been already mentioned, permeability upstreaming ensures monotonous
solution in case of advection-dominated flow, at the cost of increased numerical
diffusion. However, in the case of the Richards equation with scalar relative per-
meability, a number of more accurate schemes are available to estimate the average
permeability for one dimensional flow between two nodes. As shown in the following
chapter, they can be also used in a multidimensional setting.

The density at the control volume face can be approximated using various meth-
ods, e.g. it can be equal to the arithmetic mean of the values from the opposite nodes,
to the value from the upstream node, or to the value at face mid-point, interpolated
from all nodes of the grid element containing the face. In the following numerical
simulations, the density is approximated as an arithmetic average.
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Assembling the flux integrals from all faces of the control volume V ( j) results in
the following equation:

|V ( j)|dM ( j)
α

dt
+

∑
F∈∂V ( j)

Q(fc)
α = 0, (3.85)

where each flux term Q(fc)
α depends on the nodal values of the phase pressure:

Q(fc)
α =

∑
i∈Nelem

(Afc(i)
α p(i)α )+ G(fc)

α , (3.86)

where Nelem denotes the set of vertices of the element containing the considered
control volume face and the coefficients Afc(i)

α depend on the geometry, permeability
and fluid properties. The above equation can be rewritten in an expanded form:

|V ( j)|dM ( j)
α

dt
+

∑
k∈N ( j)

node

(
A( jk)

α p(k)α

)
+ G( j)

α = 0, (3.87)

where the set N
( j)

node includes the nodes of all elements contributing to the control

volume V ( j). The coefficients A( jk)
α and the gravity term G( j)

α are obtained by assem-
bling the contributions from all control volume faces.

A number of particular cases of this general control volume finite element scheme
can be distinguished. For instance, in one dimensional flow one obtains the finite
difference scheme given by Eq. (3.12), which is also identical with the lumped finite
element scheme, if the same formula is used for the average permeability in the
element and for the permeability at the control volume face. For a rectangular grid
in a homogeneous and diagonally anisotropic domain, Eq. (3.87) reduces to the five
point finite difference scheme given by Eq. (3.17), if the flux for each control volume
face is evaluated at the midpoint of the adjacent edge, instead of the midpoint of the
face. Another special case arises for a triangular grid in an isotropic domain, if the
dual grid is constructed as the Voronoi diagram, Fig. 3.5. In such a case, the pressure
gradient in the direction normal to the face can be accurately approximated using
only the values from the two nodes at the opposite sides of the face.

The control volume finite element spatial discretization described above can be
easily extended to the case of axisymmetric flow in coordinate system r–z. In such
a case, it is only necessary to replace two-dimensional area |V ( j)| with the volume
of three-dimensional figure obtained by rotation with respect to the z axis. In a
similar manner the lengths of the faces |F | should be replaced by the areas of the
corresponding surfaces of revolution. The scheme can be also extended to three
dimensions.

It should be noted that another variant of the vertex-centred method exists, where
the material properties are assigned to the control volumes of the dual grid and not
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to the elements of the primary grid. The resulting scheme becomes similar to the
cell-centred scheme. As each control volume is homogeneous, the evaluation of the
storage term is simpler than in the case of element-oriented material distribution.
On the other hand, the material interfaces run across the elements of primary grid,
implying a discontinuity of the pressure gradient within the corresponding element.
Therefore, special discretization techniques, similar to the ones developed for the cell-
centred schemes, are required to obtain physically consistent flux approximations,
which satisfy the continuity conditions at the material interfaces [17]. Moreover, the
position of the material interfaces in the solution domain typically corresponds to
the primary grid edges, since the primary grid is constructed from the geometric data
characterizing the solution domain. If uniform material properties are assigned to the
control volumes located at the interface, it means that the position of the interface
on the numerical grid is shifted with respect to its real position [49]. For this reasons
vertex-centred schemes with control volume-oriented material distribution are not
used in this book.

3.3 Solution of Semi-Discrete Equations

3.3.1 Discretization in Time

Spatial discretization of the flow equations by the control volume finite element
method results in a system of semi-discrete equations, which for the two-phase
model can be written in the following form:

|V ( j)|d M ( j)
w

d t
+

∑
k∈N ( j)

node

(
A( jk)

w p( j)
w

)
+ G( j)

w = 0, (3.88)

|V ( j)|d M ( j)
a

d t
+

∑
k∈N ( j)

node

(
A( jk)

a p( j)
w

)
+

∑
k∈N ( j)

node

(
A( jk)

a pc

(
S( j)

w

))
+ G( j)

a = 0.

(3.89)

If the pw–Sw formulation is chosen, the bulk fluid density M ( j)
α at node j depends

on the water pressure and saturation at this node. The flow coefficients A( jk)
α and the

gravity terms G( j)
α depend in general on the water pressures and saturations at node i

and the surrounding nodes from the set N
( j)

node. For the Richards model there is only
one equation per node:

|V ( j)|d M ( j)
w

d t
+

∑
k∈N ( j)

node

(
A( jk)

w p( j)
w

)
+ G( j)

w = 0, (3.90)
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in which the bulk fluid density M ( j)
w depends solely on the nodal water pressure, while

the coefficients A( jk)
w and the term G( j)

w are functions of the nodal water pressures
from node j and the set of surrounding nodes. Similar formulations result from
the application of the methods of finite differences, cell-centred finite volumes and
mass-lumped finite elements.

Since M ( j)
α is an algebraic function of the primary variables pw and Sw,

Eqs. (3.88)–(3.89) represent a system of differential algebraic equations, e.g. [39].
It is possible to convert it to a system of ordinary differential equations, where the
derivatives of the primary variables with respect to time appear explicitly. This can
be done by applying the chain differentiation rule to the storage term, as shown in
Eq. (2.66). Such an approach is typically used in the single-phase groundwater flow
simulations, where M ( j)

w depends linearly on pw [54, 74]. A shortcoming of this
technique is that the conserved quantity (the mass of water Mw) no longer appears
explicitly in the discrete equation. Moreover, in the case of multiphase flow the stor-
age coefficients depend nonlinearly on the primary variables, and additional error
is introduced when their value is averaged between the subsequent discrete time
levels [3]. This is particularly important in the case of the Richards equation, for
which conversion to the ordinary differential equations (i.e. to the pressure-based
form, given by Eq. (2.69)), may lead to significant mass balance errors [13], because
the specific storage capacity Cch strongly depends of pw. For this reason a mass-
conserving approach is adopted here, following [12, 13]. The time-discretization
scheme is applied directly to the mass storage term dM ( j)

α /dt .
Equations (3.88)–(3.89) and (3.90) can be written more concisely as:

dM ( j)
α

dt
= D ( j)

α (3.91)

where D
( j)
α is the spatial discretization operator. The semi-discrete system has to be

solved in the considered time domain 〈0, tmax 〉. The values of the primary variables
pw and Sw at t = 0 and the corresponding values of M ( j)

α and D
( j)
α are defined by the

initial condition. Thus, the solution of the semi-discrete system is equivalent to the
solution of an initial value problem for a system of differential algebraic equations.
This can be achieved using a number of methods, as described for example in [4]. A
general distinction can be made between explicit and implicit discretization schemes.
In the explicit schemes, the value of the time derivative for the specific time step is
approximated using the spatial discretization operator D

( j)
α evaluated at a number

of preceding time levels, for which the solution is known. In such a case, the values
of unknowns for each node at the new time level can be computed independently of
the other nodes. In the implicit schemes, the time derivative is approximated using
the spatial discretization operator evaluated at the new time level. Consequently, one
obtains a system of algebraic equations describing the dependencies between the
nodal values of primary variables at the new time level, which must be solved for
each time step. Depending on the number of previous time levels used to approximate

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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the new solution, the methods can be divided into single-step (only values from the
last level) and multi-step (based on values from several earlier time levels).

Some commonly used single-step time-discretization schemes can be written in
the following generalized form, e.g. [33]:

M ( j,τ+1)
α = M ( j,τ )

α +�t
(
�D ( j,τ+1)

α + (1 −�)D ( j,τ )
α

)
, (3.92)

where τ is the time level index, �t is the time step and the weighting coefficient �
ranges from 0 to 1. For � = 0 one obtains the explicit Euler scheme, for � = 1 the
implicit Euler (or fully implicit) scheme and for� = 0.5 the trapezoid scheme (also
known as mid-point or Crank–Nicholson scheme). The latter one has the accuracy of
the second order, while the two former—of the first order. Stability analysis carried
out for the linear advection–diffusion equation shows that for � ≥ 0.5 the scheme
is unconditionally stable, while for � < 0.5 it is only conditionally stable, i.e. the
time step �t must be limited. For nonlinear equations the choice of � = 0.5 may
lead to oscillations in the solution between subsequent time steps [62, 71]. Due to
its simplicity and stability, the implicit Euler scheme (� = 1) is chosen for time
discretization in the simulations presented in the following chapters.

While the use of low-order schemes is well-established in subsurface flow mod-
elling, more recently a trend towards application of higher order time-discretization
methods can be observed. Efficient implementation of such methods requires that the
time step size and the order of approximation are continuously adjusted in response to
the solution behaviour. A number of ready-made numerical packages for the integra-
tion of differential algebraic systems were successfully applied to model two-phase,
unsaturated and saturated flow, including DASPK [64, 65], IDA [16] or DLSODIS
[22]. It was shown that higher-order methods are more efficient than low-order meth-
ods, especially if very high solution accuracy is required. Their potential benefits
notwithstanding, such approaches are not considered in this work, which focuses on
the spatial discretization of the flux terms.

3.3.2 Linearization

Application of the implicit Euler time discretization scheme to the semi-discrete
system given by Eqs. (3.88)–(3.89) or (3.90) yields a system of nonlinear algebraic
equations for the time level τ + 1, which can be written in the following general
form:

F(u(τ+1)) =
⎡
⎢⎣

P(1)(u(τ+1))
...

P(Nu)(u(τ+1))

⎤
⎥⎦ = 0 (3.93)

where Nu is the number of unknowns, u is the vector of the unknown nodal
values at the new time level and P(i) are nonlinear algebraic functions. For the
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two-phase flow model, the number of unknowns is twice the number of nodes,
Nu = 2Nn :

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

P(1)w

P(1)a
...

P(Nn)
w

P(Nn)
a

⎤
⎥⎥⎥⎥⎥⎥⎦

and u =

⎡
⎢⎢⎢⎢⎢⎢⎣

p(1)w

S(1)w
...

p(Nn)
w

S(Nn)
w

⎤
⎥⎥⎥⎥⎥⎥⎦

(3.94)

and the nonlinear operators are defined as:

P( j)
w = |V ( j)| M ( j,τ+1)

w − |V ( j)| M ( j,τ )
w

+�t (τ+1)
∑

k∈N ( j)
node

(
A( jk,τ+1)

w p(k,τ+1)
w

)
+�t (p+1) G( j,τ+1)

w , (3.95)

P( j)
a = |V ( j)| M ( j,τ+1)

a − |V ( j)| M ( j,τ )
a +�t (τ+1)

∑
k∈N ( j)

node

[
A( jk,τ+1)

a p( j,τ+1)
w

]

+�t (τ+1)
∑

k∈N ( j)
node

[
A( jk,τ+1)

a p( j,τ+1)
c

)
+�t (τ+1) G( j,τ+1)

a = 0. (3.96)

For the Richards equation the number of unknowns is equal to the number of nodes:

P =
⎡
⎢⎣

P(1)R
...

P(Nn)
R

⎤
⎥⎦ and u =

⎡
⎢⎣

p(1)w
...

p(Nn)
w

⎤
⎥⎦ (3.97)

and the nonlinear operator for node j is:

P( j)
R = |V ( j)| M ( j,τ+1)

w − |V ( j)| M ( j,τ )
w

+�t (τ+1)
∑

k∈N ( j)
node

(
A( jk,τ+1)

w p( j,τ+1)
w

)
+�t (τ+1) G( j,τ+1)

w . (3.98)

The algebraic system has to be solved iteratively. To this end, the Newton and
or Picard methods are often employed. The Newton method is based on the Taylor
expansion of a function of multiple variables around a specific point. Suppose that the
value of P is known for an approximation of the solution u(τ+1,ν), and one searches
for the correction δu(ν+1), such that

P(u(τ+1,ν+1)) = 0, (3.99)
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where:
u(τ+1,ν+1) = u(τ+1,ν) + δu(ν+1). (3.100)

Making use of the Taylor expansion one can write:

P
(

u(τ+1),ν + u(ν)
)

≈ P
(

u(τ+1,ν)
)

+ J(ν) δu(ν+1) (3.101)

where J(ν) denotes the jacobian matrix, containing the derivatives of the functions
P with respect to the unknowns:

J (ν)mn = ∂P(m,τ+1,ν)

∂u(n,τ+1,ν)
. (3.102)

Requiring that Eq. (3.99) is satisfied, one obtains the following system of linear
equations for the corrections of the primary unknowns:

J(ν) δu(ν+1) = −P
(

u(τ+1,ν)
)
. (3.103)

Since Eq. (3.101) is only an approximation, the system of nonlinear equations is not
exactly satisfied by u(τ+1,ν+1) and the procedure must be repeated. The iterations
are continued until a specific convergence criterion is met, as discussed below.

Consider a simple case of one-dimensional incompressible two-phase flow. The
discretization operators for each node j can be written as:

P( j,τ+1,ν)
w = �x ( j)

(
M ( j,τ+1,ν)

w − M ( j,τ )
w

)
+ A( j i,τ+1,ν)

w p(i,τ+1,ν)
w

+ A( j j,τ+1,ν)
w p( j,τ+1,ν)

w + A jk,τ+1,ν
w p(k,τ+1,ν)

w + G( j,τ+1,ν)
w .

(3.104)

P( j,τ+1,ν)
a = �x ( j)

(
M ( j,τ+1,ν)

a − M ( j,τ )
a

)
+ A( j i,τ+1,ν)

w p(i,τ+1,ν)
w

+ A( j j,τ+1,ν)
a p( j,τ+1,ν)

w + A( jk,τ+1,ν)
a p(k,τ+1,ν)

w

+ A( j i,τ+1,ν)
a p(i,τ+1,ν)

c + A( j j,τ+1,ν)
a p( j,τ+1,ν)

c

+ A( jk,τ+1,ν)
a p(k,τ+1,ν)

c + G( j,τ+1,ν)
a . (3.105)

The derivatives of the algebraic functions P( j,τ+1,ν)
w and P( j,τ+1,ν)

a with respect
to the primary nodal unknowns p( j,τ+1,ν)

w and S( j,τ+1,ν)
w can be written as follows

(superscripts (τ + 1, ν) are omitted for brevity):

∂P( j)
w

∂ p( j)
w

= �t A( j j)
w , (3.106)
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∂P( j)
w

∂S( j)
w

= �x( j) ∂M( j)
w

∂S( j)
w

+�t

(
∂ A( j i)

w

∂S( j)
w

p(i)w + ∂ A( j j)
w

∂S( j)
w

p( j)
w + ∂ A( jk)

w

∂S( j)
w

p(k)w + ∂G( j)
w

∂S( j)
w

)
, (3.107)

∂P( j)
a

∂ pw
= �t A( j j)

a , (3.108)

∂P( j)
a

∂S( j)
w

= �x( j) ∂M( j)
a

∂S( j)
w

+�t

(
∂ A( j i)

a

∂S( j)
w

p(i)w + ∂ A( j j)
a

∂S( j)
w

p( j)
w + ∂ A( jk)

a

∂S( j)
w

p(k)w

+∂ A( j i)
a

∂S( j)
w

p(i)c + ∂ A( j j)
a

∂S( j)
w

p( j)
c + ∂ A( jk)

a

∂S( j)
w

p(k)c + A( j j)
a

∂ p( j)
c

∂S( j)
w

+ ∂G( j)
a

∂S( j)
w

)
,

(3.109)

where the derivatives of the subsequent terms are:

∂M ( j)
w

∂S( j)
w

= φρw, (3.110)

∂M ( j)
a

∂S( j)
w

= −φρa, (3.111)

∂ A( j i)
α

∂S( j)
w

= − 1

�x (i j)

ρα ks

μα

∂k(i j)
rα

∂S( j)
w

, (3.112)

∂ A( jk)
α

∂S( j)
w

= − 1

�x ( jk)

ρα ks

μα

∂k( jk)
rα

∂S( j)
w

, (3.113)

∂ A( j j)
α

∂S( j)
w

= ρα ks

μα

(
1

�x (i j)

∂k(i j)
rα

∂S( j)
w

+ 1

�x ( jk)

ρα ks

μα

∂k( jk)
rα

∂S( j)
w

)
, (3.114)

∂G( j)
α

∂S( j)
w

= ρ2
α ks g ζ

μα

(
∂k( jk)

rα

∂S( j)
w

− ∂k( jk)
rα

∂S( j)
w

)
. (3.115)

For one-dimensional Richards equation (also without compressibility), the diag-
onal jacobian entry is:

∂Pw

∂ pw
= �x ( j) ∂M ( j)

w

∂ p( j)
w

+�t A( j j)
w

+�t

(
∂ A( j i)

w

∂ p( j)
w

p(i)w + ∂ A( j j)
w

∂ p( j)
w

p( j)
w + ∂ A( jk)

w

∂ p( j)
w

p(k)w + ∂G( j)
w

∂ p( j)
w

)
, (3.116)
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where

∂M ( j)
w

∂ p( j)
w

= −φρw
∂S( j)

w

∂ p( j)
c

, (3.117)
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∂ A( j j)
w

∂ p( j)
w

= −ρα ks

μw

(
1

�x (i j)

∂k(i j)
rw

∂S( j)
w

+ 1

�x ( jk)

ρw ks

μw

∂k( jk)
rw

∂S( j)
w

)
∂S( j)

w

∂ p( j)
c
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)
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w
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The derivatives of P( j)
w and P( j)

a with respect to the primary variables from neigh-
bouring nodes are calculated in a manner similar to the one shown above for the
diagonal entries. While the evaluation can be done analytically, if all constitutive rela-
tionships are given by closed analytical expressions, the resulting formulas become
cumbersome, especially if the compressibility effects are included. Numerical dif-
ferentiation is often more convenient. The derivatives can be approximated using a
forward differential formula, e.g. [26]:

Jmn = ∂F (m)

∂u(n)
= F (m)(u(n) + υ, . . . )− F (m)(u(n), . . . )

υ
(3.122)

where υ is a small number. The choice of the parameter υ requires some consider-
ation. The values cannot be too small, due to roundoff errors in the digital number
representation. On the other hand, they must be small enough to ensure accurate
approximation of the derivative. For the examples shown in the following chapters,
satisfactory results were obtained with υ from the range 10−6 to 10−4 for both the
water pressure and the water saturation (υ = 10−6 was recommended in [26]).
The perturbed value of the primary unknown should be physically meaningful. For
instance, if u represents the water saturation and the node is fully saturated, the
derivative of the respective equation with respect to Sw must be approximated with
backward formula, i.e. υ < 0, because the functions pc(Sw) and krα(S) are defined
for Sw ≤ 1.

The Picard method can be considered as a simplification of the Newton method,
obtained by neglecting some terms of the nonlinear equation in the evaluation of the
derivatives. In the standard Picard approach only the terms of the form A(u( j)) u( j)

are taken into account, with the derivative approximated as:

∂
(

A(u( j)) u( j)
)

∂u( j)
≈ A(u( j)) (3.123)
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The standard Picard method is not used for subsurface flow equations. Instead, mod-
ified schemes are employed, where the dependency of pc on Sw (or vice versa) is
additionally taken into account. For the one-dimensional incompressible two-phase
flow model, the diagonal entries of the jacobian are computed as:

∂F ( j)
w

∂ p( j)
w

= �t A( j j)
w (3.124)

∂F ( j)
w

∂S( j)
w

= �x ( j) ∂M ( j)
w

∂S( j)
w

(3.125)

∂F ( j)
a

∂ p( j)
w

= �t A( j j)
a (3.126)

∂F ( j)
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∂S( j)
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= �x ( j) ∂M ( j)
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∂S( j)
w

+�t A( j j)
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∂ p( j)
c

∂S( j)
w

(3.127)

For the Richards equation without fluid compressibility, the diagonal entries are
computed as follows:

∂F ( j)
w

∂ p( j)
w

= �x ( j) ∂M ( j)
w

∂ p( j)
w

+�t A( j j)
w (3.128)

The above scheme, introduced by Celia et al. [13], is commonly used to solve the
Richards equation, e.g. [10, 47, 59, 67]. In this context, it is often referred to as
the modified Picard method. It can be further extended by taking into account the
derivative of the gravity term, evaluated numerically [72]. Such modification was
shown to be beneficial for gravity-dominated flow.

Both Newton and Picard schemes require appropriate specification of the first
guess to the solution and the convergence criterion to terminate the iterations. The
iterative procedure is usually started using the value from the last time step as the
initial guess of the solution:

u(τ+1,ν=0) = u(τ ) (3.129)

An alternative approach is to use value extrapolated from previous time steps, e.g.
using the following formula [38]:

u(τ+1,ν=0) = u(τ ) + ∂u
∂t
�t (τ+1) + ∂2u

∂t2

(
�t (τ+1)

)2
(3.130)

where the values of the derivatives can be approximated by finite difference formulas
from the results at the previous time levels:

∂u
∂t

= u(τ ) − u(τ−1)

� t (τ )
(3.131)
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∂2u
∂t2 = 2

� t (τ ) +� t (τ−1)

[
u(τ ) − u(τ−1)

�t (τ )
− u(τ−1) − u(τ−2)

�t (τ−1)

]
(3.132)

It should be noted that this formula may not be efficient if abrupt changes in the
boundary conditions occur. Thus, if the time step is rejected due to the lack of
convergence of the iterative solver, in the next attempt the more conservative initial
guess given by Eq. (3.129) is recommended.

The iterative process ends when some specific termination criterion is satisfied.
A common approach is to specify the termination criterion in terms of the absolute
and relative change in the values of the primary variable, i.e. iterations are stopped
when:

δu( j,ν+1) ≤ sabs + srel

∣∣∣u( j,τ+1,ν)
∣∣∣ (3.133)

for all nodes j , where sabs is the absolute error tolerance and srel is the rela-
tive error tolerance. In the case of two-phase flow, different tolerances should be
specified for the saturation and water pressure. Most of the numerical simulations
described in the following part of the book were performed using sabs = 1 Pa and
sabs = 10−5 for pw, while for the water saturation only absolute tolerance was
used, sabs = 10−4. For the Richards equation the termination criterion can be spec-
ified in terms of the water pressure, or a mixed criterion can be used [35, 59].
In the latter case, the allowable error is specified in terms of the absolute error
in the water content (or saturation) in the unsaturated conditions and absolute error
in the water pressure in the saturated conditions. It was shown that such criterion
allows for faster termination of the iterative process without negatively affecting the
accuracy.

Another possibility is to use a criterion related to the mass balance error. The
value of the discrete operator P( j,τ+1.ν)

α corresponds to the local error in the mass
balance for node j , and ideally should be equal to zero. The iterations are stopped if
the value is sufficiently close to zero:

P( j,τ+1,ν)
α ≤ smb

abs + smb
rel M ( j,τ+1,ν)

α |V ( j)| (3.134)

where the absolute and relative tolerance smb
abs and smb

rel is provided by the user. For a
discussion of other possible termination criteria, see e.g. [71].

The Newton and Picard iterative schemes for flow in porous media were com-
pared by several authors, e.g. [5, 42, 52, 72]. Theoretically, the standard Newton
method has quadratic convergence rate, compared to the linear convergence rate of the
Picard method. Therefore, if the first guess is sufficiently close to the solution
the Newton method converges faster than the Picard method. If this is not the case,
the Newton scheme may fail to converge. The Picard scheme converges slower, but
is less sensitive to the first guess. Some authors proposed a mixed iterative approach,
where the first few iterations are performed with the Picard scheme, and the remain-
ing ones with the Newton scheme. However, it is difficult to estimate a priori the
number of Picard iterations required to reach the vicinity of the solution. For instance,
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Lehmann and Ackerer [42] obtained good results using Picard scheme only for the
first iteration, while in the simulations of Tracy [66] up to 20 Picard iterations were
needed. Another option is to switch the schemes when the magnitude of correc-
tions δu( j,ν+1) falls below a specific threshold, which depends on the parameters of
the numerical grid [11]. It is also important to note that the Newton method requires
more computational effort than the Picard one, due to the necessity to evaluate the full
jacobian. Other iterative approaches, which were proposed to solve the subsurface
flow equations, include the quasi-Newton methods, where the value of the jaco-
bian from the first iteration is reused in subsequent iterations e.g. [11], Broyden and
Anderson acceleration applied to either Newton or Picard scheme, e.g. [11, 24, 69],
relaxation, e.g. [71] and line search techniques, e.g. [53]. In the solution of cou-
pled flow and deformation problems, the arc-length iterative method is often used,
e.g. [50].

In the numerical examples from the following chapters the Newton method was
used in conjunction with line search algorithm, which increases the chance of finding
the solution if the first approximation is not in its neighbourhood [40, 53]. It is
based on the assumption that the vector δu(ν+1) shows the correct direction of the
decreasing residual value for the nonlinear system, but its magnitude may be too large,
resulting in an overshooting of the solution. In each iteration the vector δu(ν+1) is first
computed using the standard Newton approach, Eq. (3.103). The new approximation
is accepted only if the corresponding residuum of the discretization operator is smaller
than the residuum computed for the previous approximation:

∥∥∥P
(

u(τ+1,ν) + δu(ν+1)
)∥∥∥ < ∥∥∥P

(
u(τ+1,ν)

)∥∥∥ (3.135)

where ‖ · ‖ denotes the Euclidean norm. If this condition is not satisfied, the
Newton step is successively reduced by half: δu′ = δu(ν+1)/2, δu(ν+1)/4, . . .
until a decrease in the residuum norm is obtained for u(τ+1,ν) + δu′. For the range
of examples considered in this book, the Newton approach with line search per-
formed better than Picard, standard Newton, mixed Picard–Newton or quasi-Newton
schemes. However, the efficiency of various iteration schemes is problem-dependent
and this conclusion cannot be generalized.

3.3.3 Selection of Time Step Size

The use of constant time step is in most cases inefficient. The time step size should
be adjusted during the simulation, so that small steps are taken when the solution
varies strongly in time, for instance due to an abrupt change in the boundary condi-
tions, while large steps are applied for the periods of smooth behaviour. In general,
there are two strategies for the control of time step size. The first one is based on the
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performance of the iterative method, e.g. [33, 59], while the other one on the estima-
tion of the accuracy of approximation of the time discretization scheme, e.g. [37, 48,
64]. In the first case, it is required that the number of iterations necessary to reach
convergence for each time step remains within a specified interval 〈N min

it , N max
it 〉. If

the number of iterations for a given time step was Nit > N max
it then the next time

step is reduced by a factor Cdec
it < 1. Conversely, if the number of iterations was

Nit < N min
it , the time step is increased by a factor C inc

it > 1. Since rapid changes in
the time step size are not desirable, both factors are relatively close to 1. Usually, the
minimum and maximum allowable values of �t are also specified, in order to keep
the time step size within reasonable limits. Numerical simulations showed in this
book were performed using this approach, with N min

it = 3, N max
it = 7, Cdec

it = 0.6
and C inc

it = 1.1.
An alternative method of time step control is based on the estimation of the

truncation error of the time discretization scheme, which is proportional to (�t p)n ,
where n is the order of accuracy of the scheme. The obtained values are compared
to the error tolerance required for the specific problem, and the time step size is
adjusted in such a way that the tolerance criterion is met. Such schemes are typically
used in conjunction with high-order time integration methods, e.g. [22, 39, 48, 64],
but they can be applied also in the framework of simpler low-order schemes, e.g.
implicit Euler or trapezoid [37, 38].

3.3.4 Solution of Linear Systems

For each iteration performed in the framework of the Newton or Picard method, the
system of linear equations (3.103) must be solved to obtain the corrections to the
unknown nodal values δu(ν+1). The linear system is characterized by a sparse and
banded coefficient matrix J(ν).

Systems of linear algebraic equations can be solved using either direct or iterative
method. Direct methods allow to obtain an exact solution to the system in a finite
number of arithmetic operations, with the accuracy limited only by the numerical
roundoff error. These methods are usually based on Gaussian elimination or lower-
upper decomposition. They are very efficient for sparse systems characterized by
very narrow bandwidth, which arise from the discretization of one-dimensional flow
equations. For multi-dimensional problems, the direct methods are generally con-
sidered inefficient, because the execution of the algorithm requires large amount of
memory to store temporary values and large number of arithmetic operations.

The iterative methods provide a series of approximate solutions to the system,
starting from the first guess, which is successively updated. If the series is convergent,
its limit is the solution of the system. The major advantage of the iterative methods
is that one can fully exploit the sparse structure of the coefficient matrix and each
iteration requires much less computer memory and time than the solution by a direct
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method. Thus, if sufficiently accurate approximation can be obtained in a limited
number of iterations, the iterative methods largely outperform the direct methods for
problems with large number of unknowns. However, similarly to the case of iterative
schemes for nonlinear equations, the convergence is not warranted. Subsequent linear
iterations may be divergent or the convergence may be very slow. The convergence of
linear iterative methods depends heavily on the properties of the coefficient matrix,
which should preferably be diagonally dominant, i.e. the largest coefficient (in terms
of the absolute value) in each row should be located at the main diagonal. Such
matrices arise from the discretization of the Richards equation. However, for the
two phase flow the largest coefficients are usually positioned off-diagonally. The
properties of the matrix can be improved by preconditioning, i.e. multiplication
of both sides of the system of equations by a specially selected matrix, so that the
resulting system is more amenable to the iterative solution. For a general discussion of
iterative methods and preconditioning techniques, see [56]. Iterative methods used to
solve the linear systems resulting from the discretization of subsurface flow equations
include, among other, the generalized minimal residual (GMRES) [23, 65], conjugate
gradient (CG) [41], conjugates gradient stabilized (CGSTAB) [26], bi-conjugate
gradient stabilized (BiCGSTAB) [65], and multigrid methods [9]. Preconditioning
techniques include incomplete lower-upper factorization (ILU) [26] and algebraic
multigrid [8].

Since in this work relatively small discrete systems are considered (up to about
5000 unknowns), all numerical solutions were obtained using direct methods. They
include versions of lower-upper decomposition for matrices with bandwidth equal
to three and seven [25], used for the one-dimensional Richards equation and the
one-dimensional two-phase model, respectively. Two-dimensional discrete systems
were solved using a variant of Gaussian elimination for sparse matrices, as described
in [61].
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Chapter 4
Computation of Inter-Nodal Permeabilities
for Richards Equation

As shown in Chap. 3, an important problem in the spatial discretization of the unsa-
turated and two-phase flow equations is related to the averaging of the fluid perme-
abilities. Various averaging techniques are presented in this chapter, with particular
focus on the case of one-dimensional unsaturated flow in a homogeneous medium,
for which accurate inter-nodal permeability estimations based on the steady flow
analysis are available. It is shown that the relation between capillary and gravity
forces at the scale of a single grid cell has key importance for the choice of the
averaging scheme. The method proposed by the author is presented in detail, and its
extensions to heterogeneous materials and multidimensional problems are discussed.
Finally, implications for two-phase flow modelling are considered.

4.1 Overview of Averaging Approaches for One-Dimensional
Flow

The averaging methods described below can be used for one-dimensional incom-
pressible unsaturated flow in a homogeneous medium. The water pressure head hw
is chosen as the primary variable, in order to facilitate the presentation of the averag-
ing methods based on the analysis of the steady state pressure distribution between
nodes. The semi-discrete equation for node j obtained using the finite difference
method, Eq. (3.12), can be rewritten as follows:

�x(ij) dθ(j)w

d t
+ v(jk)

w − v(ij)w = 0 , (4.1)

where the volumetric fluxes (Darcian velocities) are defined as:

v(ij)w = −Ksw k(ij)rw

(
h(j)w − h(i)w

�x(ij)
− ζ

)
, (4.2)
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v(jk)w = −Ksw k(jk)rw

(
h(k)w − h(j)w

�x(jk)
− ζ

)
. (4.3)

In the above equations Ksw is the saturated conductivity of the water phase and ζ is the
cosine of the angle between the x axis and the gravity vector, introduced in Eqs. (3.5)
and (3.6). The average relative permeabilities k(ij)rw and k(jk)rw can be computed using
a number of methods as discussed below.

4.1.1 Simple Averaging Methods

In the simplest approach, if the nodal relative permeabilities are known, the average
value can be calculated as one of the well-known algebraic means:

• arithmetic mean:

k(ij)rw = 1

2

(
k(i)rw + k(j)rw

)
, (4.4)

• geometric mean:

k(ij)rw =
√

k(i)rw k(j)rw , (4.5)

• harmonic mean:

k(ij)rw = 2 k(i)rw k(j)rw

k(i)rw + k(j)rw

. (4.6)

For the same pair of numbers, the arithmetic averaging yields the largest value of the
three methods listed above, while the harmonic averaging—the smallest one. The use
of arithmetic mean is well-established in the numerical solution of the unsaturated
flow equation, e.g. [11, 23, 25, 35, 43]. It provides relatively accurate results for
many typical flow problems, but also has some deficiencies. It tends to overestimate
the infiltration rate for capillary-dominated flow, e.g. [19, 21], while for gravity-
dominated flow on coarse grids it may lead to unphysical oscillations in the resulting
water pressure profile, e.g. [5, 39]. This effect can be considered as equivalent to the
oscillations appearing in the solution of linear advection equation using centred in
space approximation of fluxes, i.e. it is related to the numerical dispersion.

Geometric averaging yields values of the inter-nodal permeability smaller than
the arithmetic averaging. Therefore, it offers some improvement when the arithmetic
mean overestimates the flow rate, i.e. during capillary-driven infiltration, e.g. [8, 21,
32]. However, for precisely the same reason, the geometric mean, as compared to the
arithmetic mean, leads to larger oscillations and more severe convergence problems
in the case of gravity-dominated flow, e.g. [3, 40].

The harmonic mean yields accurate values of the average permeability for steady-
state saturated flow in a layered medium in the direction perpendicular to the layers

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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(see Sect. 2.3.3). While some authors recommended its use also for unsaturated flow
in a homogeneous medium [7, 29], in such a case it could be accurate only if the
distribution of the relative permeability between nodes were piecewise-constant, i.e.
the whole half of the grid cell adjacent to node i had a constant permeability k(i)rw,
while the other half, adjacent to node j had a constant permeability k(j)rw. This is not
true, since in unsaturated flow the permeability varies continuously between nodes,
following the variation of the saturation in a nonlinear manner. Thus, the harmonic
mean tends to underestimate the inter-nodal permeability, particularly for downward
water infiltration into a dry porous medium. Note that in the limit case of the initial
water saturation equal to the residual saturation and the initial relative permeability
equal to zero, both geometric and harmonic averaging predict k(ij)rw = 0, i.e. no flow
at all, which is inconsistent from the physical point of view.

Some schemes are based on the averaging of the argument to the relative per-
meability function, rather than the relative permeability itself. For example, the
inter-nodal permeability can be calculated for the arithmetic average of the nodal
saturations:

k(ij)rw = krw

(
S(i)w + S(j)w

2

)
. (4.7)

It was shown [28, 30, 46] that this method provides somewhat better results than the
averaging of the nodal permeabilities given by Eq. (4.4).

Since in the unsaturated flow the relative permeability is uniquely defined by the
water pressure head, the inter-nodal permeability can be calculated using the average
of the nodal values of the pressure head:

k(ij)rw = krw

(
h(i)w + h(j)w

2

)
. (4.8)

While Eq. (4.8) is rather seldom used, one can note that it is consistent with the
finite element approximation of the flux term if linear shape functions and a single-
point quadrature rule are used, as discussed in Sect. 3.2.2. Geometric and harmonic
averaging of the nodal water pressure heads in the argument of the permeability
function in Eq. (4.8) was also tested, but these approaches do not seem to offer any
particular advantage [21].

Another averaging method, which was already mentioned in Sect. 3.2.2, is the
integrated mean:

k(ij)rw = k(ij)int = 1

h(j)w − h(i)w

h(j)w∫

h(i)w

krw(ĥ) dĥ = �h(h
(j)
w )−�h(h

(i)
w )

h(j)w − h(j)w

, (4.9)
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where�h is the flux potential defined with respect to the water pressure head. Follow-
ing Eq. (2.83) the volumetric water flux can be written in terms of the flux potential
as:

vw = −Ksw

(
∂�h

∂x
− ζ krw

)
, (4.10)

or in a discrete form as:

v(ij)w = −Ksw
�
(j)
h −�

(i)
h

�x(ij)
− ζ Ksw k(ij)rw . (4.11)

For ζ = 0, comparing Eq. (4.11) with the discrete form of the Darcy equation given
by Eq. (4.2) results in a formula for k(ij)rw identical with Eq. (4.9). Thus, the integrated
mean is an accurate approximation of the inter-nodal conductivity for horizontal
unsaturated flow. It was also reported to give accurate results for vertical flow if the
node spacing was sufficiently fine, i.e. when the capillary gradient was much larger
than the gravity gradient at the scale of a single grid cell [30, 34]. On the other hand,
as mentioned in Sect. 3.2.2, the integrated mean results from the exact integration of
the flux term in one-dimensional finite element method with linear shape functions
used to represent the distribution of pw or hw.

Comparative studies available in the literature [6, 21, 30, 34, 36] show that the per-
formance of the simple averaging methods listed above is highly problem-dependent.
For example, Haverkamp and Vauclin [21] obtained accurate solutions using geomet-
ric averaging, while the simulations presented by Belfort and Lelmann [6] indicated
that the geometric mean severely underestimates the flow rate. It is clear that the
performance of simple averaging schemes varies according to the following factors:
form of the relative permeability function, direction of the flow, initial and boundary
conditions and distance between nodes. This observation motivated the development
of more accurate averaging methods, in which these factors are at least partially
represented. Such methods are described in the following sections.

4.1.2 Direction Dependent Methods

The second group of methods takes into account the direction of the flow. The two
most basic approaches are the upstream mean and the downstream mean:

• upstream mean:

k(ij)rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(i)rw if
h(j)w − h(i)w

�x(ij)
− ζ ≤ 0

k(j)rw if
h(j)w − h(i)w

�x(ij)
− ζ > 0

(4.12)

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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• downstream mean:

k(ij)rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(i)rw if
h(j)w − h(i)w

�x(ij)
− ζ > 0

k(j)rw if
h(j)w − h(i)w

�x(ij)
− ζ ≤ 0

(4.13)

As mentioned in Chap. 3, in the case of linear advection equation, the upstreaming
of the advective flux introduces numerical diffusion, and thus ensures oscillation-
free solution at the cost of additional smoothing. Therefore, the upstream mean is the
preferred choice for two-phase flow with important contribution of advective (viscous
or gravity) terms [16, 22]. It is also recommended for the simulation of gravity-driven
unsaturated flow [16]. On the other hand, upstream averaging introduces large errors
for capillary-dominated (diffusive) flow, for example in the case of upward flow
driven by capillary forces [5, 39, 40].

The downstream mean is practically not used, since it may lead to severe under-
estimation of the average permeability and, similarly to the geometric and harmonic
average, it cannot reproduce infiltration into very dry medium [6]. Moreover, in
the case of pure advection equation the use of downstream approximation of the
advective fluxes causes instability of solution [14].

The unsaturated water flux consists of two parts. The first one is related to the
capillary forces, and has diffusive character, while the other one is related to the grav-
ity forces, and has advective character. In view of this fact, some authors propose to
split the flux and use a different permeability averaging scheme for each component:

v(ij)w = −Ksw

(
k(ij)ca

h(j)w − h(i)w

�x(ij)
− ζ k(ij)gr

)
, (4.14)

where k(ij)ca and k(ij)gr denote the average relative permeabilities for the capillary and
gravity term, respectively. The principal difficulty related to the application of such
methods is that if different averaging schemes are used for the capillary and gravity
term, the expression:

k(ij)ca
h(j)w − h(i)w

�x(ij)
− ζ k(ij)gr

does not necessarily has the same sign as the water potential gradient:

h(j)w − h(i)w

�x(ij)
− ζ .

If this is the case, the flux becomes wrongly oriented leading to physically inadmis-
sible solutions. In particular, depending on the choice of the two permeabilities, this
method may predict a non-zero flux for hydrostatic case, when the total potential
gradient is equal to zero. Nevertheless, such an approach offers some advantages

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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over the simple averaging methods, like the arithmetic mean, especially for the case
of downward infiltration, when both capillary and gravity gradients are oriented in
the same direction.

Taking into account the considerations presented above, a natural choice for k(ij)ca

is the integrated mean k(ij)int , while for the gravity term the upstream mean should
be used. Note that in this case the choice of the upstream direction should be based
on the gravitational potential, not the total potential, which means that k(ij)gr is equal
to the permeability of the node which is placed higher with regard to the reference
level:

k(ij)gr =
⎧⎨
⎩

k(i)rw if ζ ≥ 0 ,

k(j)rw if ζ < 0 .
(4.15)

The combination of integrated average for k(ij)ca and upstream average for k(ij)gr was used
by Zhang and Ewen [47], while Fuhrmann and Langmach [17] applied arithmetic
average for k(ij)ca and the upstream average for k(ij)gr . On the other hand, Zaidel and

Russo [46] used the standard arithmetic mean for k(ij)gr , while for k(ij)ca they developed

a simplified formula which approximates k(ij)int for the relative permeability function
of the van Genuchten–Mualem type. Ross [33] also applied the arithmetic average
for gravity term in his scheme based on the Kirchhoff transform, but recognized that
it should be replaced by a weighted average, with weighting parameters giving more
importance to the upper node. In general, if k(ij)gr is approximated with other schemes
than the upstream mean, the monotonicity of the solution is not guaranteed [17].

Equation (4.14) can be transformed to the form of Eq. (4.2):

v(ij)w = −Ksw k(ij)rw

(
h(j)w − h(i)w

�x(ij)
− ζ

)
, (4.16)

if the inter-nodal permeability for the whole flux term is defined as:

k(ij)rw =
[

k(ij)ca
h(j)w − h(i)w

�x(ij)
− ζ k(ij)gr

]/[
h(j)w − h(i)w

�x(ij)
− ζ

]
. (4.17)

4.1.3 Darcian Means

A physically consistent framework for computing inter-nodal permeabilities in the
discretized unsaturated flow equation was introduced by Warrick [44]. It is called the
Darcian mean approach, because it postulates equivalence between the discrete and
differential (continuous) forms of the Darcy equation for steady unsaturated water



4.1 Overview of Averaging Approaches for One-Dimensional Flow 97

flow between nodes x(i) and x(j). Assuming (without the loss of generality) that the
saturated conductivity Ksw is equal to unity, one can write the following relation:

v(ij)st = −k(ij)rw

(
�h(ij)w

�x(ij)
− ζ

)
= −krw(hw)

(
dhw

dx
− ζ

)
, (4.18)

where v(ij)st is the uniform steady flux between nodes and �h(ij)w = h(j)w − h(i)w . The
differential form of the Darcy equation can be integrated as follows:

x(j)∫

x(i)

dx = −
h(j)w∫

h(i)w

krw(hw) dhw

v(ij)st − ζkrw(hw)
. (4.19)

For horizontal flow with ζ = 0 one obtains:

�x(ij) = − 1

v(ij)st

h(j)w∫

h(i)w

krw(hw)dhw . (4.20)

Comparing this result with the discrete form of the Darcy equation appearing in
Eq. (4.18) gives:

k(ij)rw = 1

�h(ij)w

h(j)w∫

h(i)w

krw(ĥ)dĥ = k(ij)int . (4.21)

Thus, the integrated mean corresponds to the Darcian mean for horizontal flow.
For ζ �= 0 the Darcian mean depends on �x(ij) and is different from any of the

simple averages listed in the previous section. Analytical solution can be obtained if
the relative permeability is an exponential function of hw as defined by Eq. (2.44):

krw(hw) = exp
(
hw/hg

)
, (4.22)

where hg > 0 is a scaling parameter expressed in terms of the water pressure head.
For such a constitutive relationship, the integration of Eq. (4.19) yields [2, 12]:

v(ij)st =
ζ ′
(

k(j)rw − exp(ζ ′) k(i)rw

)
1 − exp(ζ ′)

, (4.23)

where:
ζ ′ = �x(ij) ζ/hg . (4.24)

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Making use of the following relationship:

�hw = h(j)w − h(i)w = hg Lk , (4.25)

where Lk = ln(k(j)rw/k
(i)
rw), one can define the inter-nodal permeability as:

k(ij)rw = −v(ij)st �x(ij)/hg

�h(ij)w − ζ �x(ij)
=

ζ ′
(

exp(ζ ′) k(i)rw − k(j)rw

)
(1 − exp(ζ ′)) (Lk − ζ ′)

. (4.26)

The above formula was developed by Baker [2] for the case of ζ = 1, while an
equivalent result was obtained by Desbarats [12] for a more general case of arbitrary
ζ . Moreover, Baker [2] and Baker et al. [5] showed that the Darcian average varies in
the range between the integrated mean (k(ij)int ) and the permeability at the upper node

(k(i)rw, assuming that the gravity force acts in the direction of x axis). Baker et al. [5]
proposed to compute the inter-nodal permeability as a weighted arithmetic average
of those two values:

k(ij)rw = ωv k(i)rw + (1 − ωv) k(ij)int , (4.27)

where ωv is a weighting parameter ranging from 0 to 1. In this work the original
formula for ωv [3, 5] is extended for the case of arbitrary ζ :

ωv =
(

k(i)rw exp(ζ ′)− k(j)rw

)
Lk ζ

′ − (1 − exp(ζ ′)
)
�k

(
Lk − ζ ′)

(1 − exp(ζ ′)) (Lk − ζ ′)
(

k(i)rw Lk −�k
) (4.28)

where �k = k(j)rw − k(i)rw, and

ζ ′ = �x(ij) ζ√
k(i)rw k(j)rw

∂krw

∂hw

∣∣∣∣
krw=

√
k(i)rw k(j)rw

. (4.29)

It means that the modified gravity coefficient ζ ′ depends on the derivative of the
relative permeability function computed for the geometric mean of the nodal per-
meabilities. The above formula is exact for the exponential relative permeability
function, for which Eqs. (4.27)–(4.28) reduce to Eq. (4.26). As shown by Baker
et al. [5] and Baker [3], it is a relatively accurate approximation of the true
Darcian mean also for other types of the relative permeability functions. An advan-
tage of such approach is that the inter-nodal permeability always remains in the
physically consistent range between k(ij)int , which is the limit value for capillary dom-

inated flow and k(i)rw which is the limit value for gravity-dominated flow. On the other

hand, the relative permeability function must be inverted to obtain hw

(√
k(i)rw k(j)rw

)
,
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which may be impossible to carry out analytically for more complicated functions
(e.g. van Genuchten–Mualem model).

In principle, the Darcian means can be computed for an arbitrary relative perme-
ability function by integrating numerically Eq. (4.18) or by solving (also numerically)
the steady-state flow equation:

− ∂

∂x
krw(hw)

(
∂hw

∂x
− ζ

)
= 0 (4.30)

in the domain 〈x(i), x(j)〉 with the boundary conditions hw = h(i)w for x = x(i) and
hw = h(j)w for x = x(j). The resulting value of the steady-state flux can be subsequently
used to calculate the inter-nodal permeability. Unfortunately, the numerical solution
of steady-state Richards equation is a non-trivial problem in itself, and the amount
of work necessary to compute the permeabilities for each pair of nodes at each time
step of a transient simulation is prohibitive. Warrick [44] suggested to express the
inter-nodal permeability as a weighted arithmetic average of the permeability values
at the upper and lower node:

k(ij)rw = ωw k(i)rw + (1 − ωw) k(j)rw (4.31)

whereωw is a weighting parameter ranging from 0 to 1. For a known grid spacing and
relative permeability function it is possible to perform multiple solutions of the steady
problem at the preprocessing stage in order to obtain the values of the parameter ωw
as a function of the two nodal permeability values. During transient flow simulation,
ωw can be interpolated from the table for the considered pair of permeabilities k(i)rw

and k(j)rw. However, if the relative permeability function or the grid spacing change,
a new interpolation table must be generated, which requires additional numerical
effort.

The method based on Eq. (4.31) was further developed by Gasto et al. [19]. They
showed that for Brooks–Corey–Burdine and van Genuchten–Mualem permeability
functions, the weighting parameter ωw can be expressed as a function of four vari-
ables: k(i)rw, k(j)rw, �x′ and n′. For Brooks–Corey model �x′ = �x(ij)/he, where he
is the air entry pressure head, and n′ = 1 + nb, while for van Genuchten–Mualem
model �x′ = �x(ij)/hg, where hg is the pressure scaling parameter expressed in
terms of the pressure head, and n′ = ng. Gasto et al. [19] fitted a closed form analyt-
ical function, which allows to compute ωw directly if the four variables are known.
The calculation is performed according to the following formula:

ωw =
⎡
⎢⎣1 +

a′
(

k(i)rw

)b′/(
k(j)rw

)c′

1 + β ′ n′
(

k(i)rw

)b′/(
k(j)rw

)c′

⎤
⎥⎦

−1

, (4.32)

with the parameters a′, b′ and c′ defined as follows:
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Table 4.1 Fitting parameters used in the formula of [19] for Brooks–Corey (BC) and
van Genuchten–Mualem (VG) relative permeability functions

a′
10 a′

11 a′
2 b′

01 b′
02 b′

1 c′
0 β ′

BC 0.208 0.634 0.191 0.690 2.294 0.049 0.020 0.008
VG 0.465 0.052 0.112 0.551 1.939 0.057 0.009 0.011

a′ = 1 − (a′
10 + a′

11 log n′) �x′

1 + a′
2 (n

′)2 �x′ , (4.33)

b′ = b′
01 n′

b′
02 n′ − 1

− b′
1�x′ , (4.34)

c′ = b′
01 n′

b′
02 n′ − 1

+ c′
0

(
n′ − 1

)
�x′ . (4.35)

Thus, the approximating formula contains altogether eight fitting parameters. Two
sets of parameters were provided—one for Brooks–Corey–Burdine and the other
one for van Genuchten–Mualem functions. Their values are listed in Table 4.1. This
approach is relatively simple to implement, but has some limitations. First, the fitted
analytical formula is valid only for 1.05 ≤ n′ ≤ 5 and the values of the normalized
node spacing �x′ < 1, which is satisfied when:

�x(ij) ≤ he or �x(ij) ≤ hg . (4.36)

The above condition limits the applicability of this approach for coarse textured soils,
where the pressure scaling parameter is of the order of a few centimetres. Moreover,
adaptation of the method to other types of hydraulic functions would require a new
parameter fitting procedure.

4.2 Improved Approximation Scheme

In this section, the averaging method proposed by the author, which also belongs
to the Darcian averaging framework, is presented in more detail. The presentation
closely follows the original paper [39]. The method is based on the analysis of the
approximate shape of steady-state water pressure head profiles. The form of the pres-
sure profile depends on the type of flow and three major cases can be distinguished,
as shown in Fig. 4.1. In the following discussion it is assumed (without the loss of
generality) that x axis is inclined downward, so that the values of ζ range from 0 to
1. The three basic flow regimes are as follows:

• Infiltration in dry soil:
−∞ < �h(ij)w /�x(ij) < 0 .
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(a) (b) (c)

Fig. 4.1 Steady-state profiles of the water potential head for different types of flow (after [45])

In this case, both capillary and gravity forces act in the direction of x axis. In the
upper part of the profile the water saturation and relative permeability are larger.
Consequently, the gradient in the water pressure is smaller than in the lower part
of the domain, in order to ensure uniform flux in both parts. For

�h(ij)w /�x(ij) → 0

the pressure profile tends to a vertical line.
• Drainage or infiltration close to the water table:

0 < �h(ij)w /�x(ij) < ζ .

In this case, the saturation in the lower part of the domain is larger than in the
upper part, but the flow direction is downward, because the capillary potential
gradient is smaller than the gravity potential gradient. The pressure profile varies
from uniform (�h(ij)w /�x(ij) → 0) to hydrostatic (�h(ij)w /�x(ij) → ζ ).

• Capillary rise or evaporation:

ζ < �h(ij)w /�x(ij) < ∞ .

The gradients of the capillary and gravity potentials act in the opposite directions.
Since the capillary gradient in larger, the flow is in upward direction.

Note that for each flow regime the profiles are monotonous. The differences in profile
shapes suggest that for each case a separate averaging formula should be considered.
Moreover, three special limit cases can be distinguished:



102 4 Computation of Inter-Nodal Permeabilities for Richards Equation

• Horizontal flow: ζ = 0. As shown above, in this case the Darcian mean corresponds
to the integrated mean.

• Uniform pressure distribution:

�h(ij)w /�x(ij) = 0 .

In this case, the average permeability is trivially k(ij)rw = k(i)rw = k(j)rw.
• Hydrostatic pressure distribution:

�h(ij)w /�x(ij) − ζ = 0 .

In this case, the Darcian averaging principle cannot be used, because both flux and
gradient are equal to zero. However, the limit value of the inter-nodal permeability
for

(� h(ij)w /�x(ij) − ζ ) → 0

is given by the upstream value k(i)rw [5].

4.2.1 Infiltration

For infiltration in a dry soil inaccurate approximations of the inter-nodal permeability
may lead to two types of errors. For capillary-dominated flow, the correct limit value
is given by the integrated mean. Many other averaging methods (in particular the
arithmetic or upstream average) overestimate the inter-nodal permeability and con-
sequently predict too large infiltration rates. On the other hand, for gravity-dominated
flow all simple averaging methods except the upstream average underestimate k(ij)rw ,
which leads to oscillatory profile of the water pressure head. The deficiencies of the
commonly used averaging methods were shown by Baker [4] on the example of a
simple numerical grid consisting of three nodes. Here a similar analysis is performed
in order to derive an improved formula for the inter-nodal permeability. It is based
on the observation that for steady state unsaturated flow in a homogeneous porous
medium the pressure profile resulting form the solution of the Richards equation is
monotonous. On coarser numerical grid, the monotonicity can be violated by inaccu-
rate approximation of the inter-nodal permeability, leading to unphysical oscillations
(wiggles).

Consider a numerical approximation of steady flow equation on a grid consisting
of three nodes, as shown in Fig. 4.2. The flux continuity condition at node j can be
written as:

− k(ij)rw

(
h(j)w − h(i)w

�x(ij)
− ζ

)
= −k(jk)rw

(
h(k)w − h(j)w

�x(jk)
− ζ

)
. (4.37)
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(a) (b)

Fig. 4.2 Approximate water pressure head profiles for infiltration (a) and drainage (b). Modified
with permission from [39]

Physically admissible profiles for steady flow are represented by solid lines in Fig. 4.2.
The values of the water potential head at the central node h(j)w should be in the range
between h(A)w and h(i)w , where h(A)w corresponds to a linear profile and is defined as:

h(A)w = �x(jk) h(i)w +�x(ij) h(k)w

�x(ij) +�x(jk)
. (4.38)

Assuming h(j)w = h(A)w , the continuity condition given by Eq. (4.37) can be satisfied
only if the relative permeability is constant, k(ij)rw = k(ik)rw , which is the case for
saturated flow. In unsaturated conditions, k(ij)rw > k(jk)rw , because the upper part of the
medium is more saturated with water. Consequently, if h(j)w = h(A)w then v(ij)w > v(jk)w
and the flux continuity condition is not satisfied. In order to equilibrate the fluxes,
the value at the central node j must be larger than h(A)w .

In the second limit case, when h(j)w = h(i)w the relative permeabilities at nodes i
and j are equal, k(i)rw = k(j)rw, and the capillary pressure gradient is zero. The flux in
the upper part of the column can be written as:

v(ij)w = ζ k(i)rw = ζ k(j)rw , (4.39)

while the flux between the nodes j and k can be written as:

v(jk)w = −k(jk)rw

(
�h(jk)w

�x(jk)
− ζ

)
. (4.40)
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If the following condition holds:

v(ij)w ≤ v(jk)w , (4.41)

then one can be sure that there exists a value of the pressure head h(j)w between h(A)w

and h(i)w , for which v(ij)w = v(jk)w . Inequality (4.41) together with Eqs. (4.39) and (4.40)
imply the following condition for the inter-nodal permeability k(jk)rw :

k(jk)rw ≥ ζ k(j)rw

ζ −�h(jk)w /�x(jk)
. (4.42)

If the applied averaging method underestimates the permeability k(jk)rw , the fluxes are
not in equilibrium even for h(j)w = h(i)w and the profile becomes non-monotonous, as
shown by the dashed line in Fig. 4.2. The maximum amplitude of the wiggle cannot
exceed �x(ij), since for h(j)w = h(i)w + �x(ij) one obtains a hydrostatic potential
distribution between x(i) and x(j), and thus v(ij)w = 0 < v(jk)w for any value of k(jk)rw .
Equation (4.42) represents a sufficient condition, although not a necessary one, for
a non-oscillating solution. In some situations physically admissible profiles can be
obtained for smaller values of k(jk)rw , but the use of the presented approximation
guarantees a monotonous solution for all cases. Note that as �h(jk)w tends to zero,
the limit permeability value from Eq. (4.42) tends to the upstream mean k(jk)rw = k(j)rw,
while, on the other hand, the upstream mean always satisfies the condition given by
Eq. (4.42). This is consistent with the findings of other authors who recommended
the use of upstream mean to ensure monotonous solution of the Richards equation
[15, 16].

In the case of capillary dominated flow, (�h(jk)w /�x(jk)) → −∞ and consequently
the lower limit for k(jk)rw given by Eq. (4.42) tends to zero. On the other hand, it is
known that for capillary dominated flow the appropriate averaging method is the
integrated mean k(jk)int . Therefore, one can use the integrated mean as long as it satisfies
the condition Eq. (4.42) and then switch to the limit value given by Eq. (4.42). To
summarize, the inter-nodal relative permeability between any two adjacent nodes j
(upper) and k (lower) can be computed according to the following formula:

k(jk)rw = max

(
k(jk)int ,

ζ k(j)rw

ζ −�h(jk)w /�x(jk)

)
. (4.43)

This method requires only slightly more computational effort than the integrated
mean approach.
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4.2.2 Drainage

A similar reasoning can be applied to derive the limit value of the average permeabil-
ity for drainage as (�h(jk)w /�x(jk)) → 0. This case is shown in Fig. 4.2b. Physically
admissible profiles are obtained for values of h(j)w in the range between h(i)w and h(A)w ,
the latter one being interpolated linearly according to Eq. (4.38). In unsaturated
conditions, k(ij)rw is smaller than k(jk)rw and consequently the total water potential gra-
dient in the lower part of the domain should be smaller than in the upper part. In the
limit case when h(j)w = h(i)w the average permeability k(jk)rw should satisfy the following
condition:

ζk(j)rw ≥ −k(jk)rw

(
h(k)w − h(j)w

�x(jk)
− ζ

)
. (4.44)

Inequality (4.44) can be transformed to the following form:

k(jk)rw ≤ ζk(j)rw

ζ −�h(jk)w /�x(jk)
. (4.45)

If k(jk)rw is overestimated and does not satisfy Eq. (4.45), the water fluxes v(ij)w and v(jk)w

equilibrate for a value of the water pressure head h(j)w < h(i)w , producing a wiggle in
the pressure head profile, shown with the dashed line in Fig. 4.2b. The value of h(j)w

will not exceed h(k)w −�x(jk), for which a zero gradient of the total water potential
in the lower part of the domain is obtained. As in the previous case, Eq. (4.45) gives
a sufficient, although not a necessary condition to obtain a monotonous solution.

The limit value of k(jk)rw defined by Eq. (4.45) tends to infinity as the value of
the capillary gradient �h(jk)w /�x(jk) approaches ζ . In such a case, another formula
is necessary. It can be obtained from an analysis of the approximate potential head
profile within a singe grid cell between nodes j and k, as shown in Fig. 4.3. Let
us assume that �x(jk) is larger than �h(jk)w only by a small value �x(jD), i.e. the
hydrostatic distribution of the water pressure is approached. An intermediate point
x(D) is introduced in such a way that it divides the grid cell in two unequal segments
〈x(j), x(D)〉 and 〈x(D), x(k)〉. For a linear potential distribution, the value of h(D)w would
be equal to h(B)w defined as:

h(B)w = h(k)w −
(
�h(jk)w

)2

ζ �x(jk)
. (4.46)

In unsaturated conditions, the value of the potential head h(D)w should fall between
h(j)w and h(B)w . On the basis of Fig. 4.3 one can assume that the total hydraulic gradient
within the segment 〈x(D), x(j)〉 is approximately the same as the hydraulic gradient
between x(j) and x(k), and both of them are close to zero:
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Fig. 4.3 Water potential head profile during drainage close to the hydrostatic state. Modified with
permission from [39]

h(k)w − h(D)w

x(k) − x(D)
− ζ ≈ h(k)w − h(j)w

x(k) − x(j)
− ζ → 0 . (4.47)

On the other hand, for the conditions close to the hydrostatic state the value of the
inter-nodal permeability approaches the permeability of the upper node. Thus, the
average permeability in the segment 〈x(D), x(k)〉 is approximately k(Dk)

rw ≈ k(D)rw . The
value of k(D)rw is not known—it is between k(j)rw and k(B)rw . Let us assume k(D)rw ≈ k(B)rw —
if one assumes k(D)rw = k(j)rw, then the conductivity for the whole grid block would
be equal to k(j)rw, which is correct only for the limit case when �h(jk)w /�x(jk) = ζ .
Consequently, the water flux between x(D) and x(k) is estimated as:

v(Dk)
w ≈ −k(Dk)

rw

(
h(k)w − h(D)w

�x(jk) −�x(jD)
− ζ

)
≈ −k(B)rw

(
h(k)w − h(j)w

�x(jk)
− ζ

)
. (4.48)

For steady flow, the flux v(Dk)
w should be equal to the average flux between the nodes

j and k:

v(Dk)
w = v(jk)w = −k(jk)rw

(
h(k)w − h(j)w

�x(jk)
− ζ

)
. (4.49)

Therefore, the following approximation can be developed:

k(jk)rw ≈ k(B)rw , (4.50)
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where:

k(B)rw = krw

(
h(B)w

)
= krw

⎛
⎜⎝h(k)w −

(
�h(jk)w

)2

ζ �x(jk)

⎞
⎟⎠ (4.51)

For �h(jk)w → �x(jk), Eq. (4.50) yields the expected limit value k(jk)rw → k(j)rw, while
for �h(jk)w � �x(jk) the value of the inter-nodal conductivity tends to k(k)rw , which is
an overestimation and does not satisfy Eq. (4.45). The suggested approach is to use
the minimum of the two values of k(jk)rw given by Eqs. (4.45) and (4.50):

k(jk)rw = min

(
k(B)rw ,

ζ k(j)rw

ζ −�h(jk)w /�x(jk)

)
. (4.52)

The obtained averaging formula is very simple to implement, as it does not involve
the integrated average.

4.2.3 Capillary Rise

In contrast to the previous cases, for capillary rise the over- or underestimation of the
inter-nodal permeability does not lead to oscillations in the numerical solution. While
the permeability in the upper part of the domain is smaller than in the lower part,
this can be always compensated for by an arbitrarily small potential gradient in the
lower part, i.e. the water pressure profile close to hydrostatic, see Fig. 4.4. Therefore,
any value of the inter-nodal permeability from the range k(j)rw to k(k)rw will lead to
physically admissible monotonous solution. Nevertheless, depending on �x(jk), the
actual steady-state relative permeability varies from the permeability of the upper
node k(j)rw to the integrated mean k(jk)int , which in the case of initially dry soil may
represent a range of several orders of magnitude. A more accurate approximation of
k(j)rw can be obtained if the grid cell is divided in two parts, as shown in Fig. 4.4. The
length of the upper sub-cell is denoted by�x(jE), while the length of the lower sub-cell
is �x(Ek). The position of point x(E) is chosen in such a way that the corresponding
value of the water pressure head is:

h(E)w = h(k)w − ζ �x(jk) . (4.53)

In the lower sub-cell, the water pressure distribution is close to the hydrostatic one,
which means that the average permeability between the points x(E) and x(k) can be
estimated as:

k(Ek)
rw ≈ k(E)rw = krw

(
h(E)w

)
. (4.54)
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Fig. 4.4 Water pressure head profile for capillary rise. Modified with permission from [39]

In the upper sub-cell, the flow is dominated by capillary forces and the average
permeability can be approximated by the integrated mean:

k(jE)int = 1

h(E)w − h(j)w

h(E)w∫

h(j)w

krw(ĥ) dĥ . (4.55)

For steady-state flow, the water flux should be the same in each part of the cell.
Moreover, it should be equal to the flux between nodes j and k estimated using the
average inter-nodal permeability k(jk)rw . This conditions can be written as follows:

v(jk)w = v(jE)w = v(Ek)
w , (4.56)

where:

v(jk)w = −k(jk)rw

(
�h(jk)w

�x(jk)
− ζ

)
, (4.57)

v(jE)w = −k(jE)int

(
�h(jk)w − ζ�x(jk)

�x(jE)
− ζ

)
, (4.58)

v(Ek)
w = −k(E)rw

(
ζ �x(jk)

�x(jk) −�x(jE)
− ζ

)
. (4.59)

The double equality (4.56) can be transformed to a system of two equations with
two unknowns, k(jk)rw and�x(jE). By requiring v(jE)w = v(Ek)

w one arrives at a quadratic
equation with respect to�x(jE). This equation has one positive and one negative root.
The positive root is given by the following formula:
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�x(jE) = −�h(jk)w + Zk

2 ζ (k(E)rw /k
(jE)
int − 1)

, (4.60)

where:

Zk =
√(
�h(jk)w

)2 + 4 ζ �x(jk)
(

k(E)rw /k
(jE)
int − 1

) (
�h(jk)w − ζ �x(jk)

)
. (4.61)

The average permeability k(jk)rw is equal to the weighted harmonic average of the
permeabilities of the two sub-cells:

k(jk)rw = �x(jk) k(jE)int k(E)rw

(�x(jk) −�x(jE)) k(jE)int +�x(jE) k(E)rw

. (4.62)

Note that the harmonic averaging is applied to the values of k(jE)int and k(E)rw which
themselves represent average permeabilities and can be considered uniform in the
respective parts of the cell. Such an approach is physically justified, in contrast to
the harmonic averaging of nodal relative permeabilities k(j)rw and k(k)rw as described in
Sect. 4.1.1. While the final formula for capillary rise is somewhat more complex than
the formulas for infiltration and drainage, the arithmetic operations are straightfor-
ward to perform once the value of the integrated mean k(jE)int is known.

4.2.4 Implementation Issues

The application of the method described above requires that for any pair of nodal
values of the pressure head, h(j)w and h(k)w , first the value of the capillary gradient
�h(jk)w /�x(jk) needs to be computed and compared to the gravity coefficient ζ . Based
on this comparison, one of the three available formulae must be chosen. It means
that for more complex flow scenarios the averaging formula may change with time
and/or spatial position.

While the method was developed for the pressure head as the primary variable in
the Richards equation, it can be easily adapted to the case of primary variable pw.
To this order the values of pressure head should be replaced by the values of the
pressure, while the gravity coefficient ζ should be replaced by ζ ρw g, where g is
the magnitude of the gravitational acceleration. In the numerical examples presented
below both forms of the governing equations are used.

The proposed approach, similarly to the integrated mean and the method of
Baker [3], requires an integration of the relative permeability defined as a func-
tion of the water pressure (or pressure head). For several models of the relative
permeability functions, including the exponential, Brooks–Corey–Burdine and
Brooks–Corey–Mualem models, this can be done analytically. However, for the
widely used van Genuchten–Mualem model (and many other), analytical integration
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is not possible. The use of numerical integration significantly increases the compu-
tational effort and the time of the simulation. An efficient approach is to create at
the preprocessing stage a look-up table containing the values of the flux potential
�p or �h defined as a function of the water pressure (or head). These values are
calculated using numerical integration with a large number of quadrature points, in
order to obtain an accurate approximation. During the simulation of unsteady flow,
the integrated mean is computed as the difference in flux potentials divided by the
difference in the pressures (or heads), with the values of the flux potential interpolated
from the look-up table. In the examples presented below, linear interpolation was
used, although more sophisticated techniques are also available [30]. Interpolation
from a look-up table can be also used to evaluate the water saturation and the relative
permeability as functions of the water pressure. Such an approach offers a signif-
icant speedup of the computations, even if simple permeability averaging schemes
are employed. In order to minimize the error introduced by interpolation, the points
should be spaced non-uniformly, with higher density in the regions where the val-
ues of hydraulic functions change more rapidly. Numerical experiments presented
in [39] and [40] showed that if the interpolation is used, the proposed averaging
method requires simulation time comparable to the standard averaging approaches
like arithmetic or geometric means.

4.2.5 Evaluation for Steady Flow

The accuracy of the formulae presented in the previous sections can be evaluated by
comparing the resulting values of the inter-nodal permeability with the ones obtained
from the solution of equation describing steady state incompressible unsaturated flow
between two nodes. First, let us consider exponential relative permeability function
given by Eq. (4.22). In this case the exact value of the steady-state inter-nodal per-
meability is given by the formula of Baker et al. [5], Eq. (4.26), which results from
the analytical solution of the steady flow equation. In Tables 4.2 and 4.3 these exact
permeability values (K-EXACT) are compared with the approximations obtained
using the formulae of Szymkiewicz [39] (K-SZYM), described in Sects. 4.2.1–4.2.3,
as well as other commonly used averaging schemes. They include the arithmetic
(K-ARIT), geometric (K-GEOM), harmonic (K-HARM) and integrated (K-INT)
averages, as well as upstream weighting (K-UPS) and the method based of flux
splitting (K-SPLIT), as given by Eqs. (4.14) and (4.17). In the latter case, it was
assumed that the relative permeability for the capillary flux is equal to the integrated
mean approach and the relative permeability for the gravitational flux is equal to
the permeability of the upper node. The calculations were carried out for two values
of the pressure scaling parameter: hg = 1 m and hg = 0.05 m, which correspond
respectively to a moderate and a strong nonlinearity in the krw(hw) relationship. Two
values of the gravity coefficient were used: ζ = 1 (vertical flow) and ζ = 0.707
(flow direction inclined by 45◦ to the horizontal plane). The inter-nodal distance
was assumed constant, �x = 0.2 m. A number of boundary value problems were



4.2 Improved Approximation Scheme 111

Table 4.2 Exact and approximate steady-state inter-nodal permeability values for exponential
relative permeability function with hg = 1 m, �x = 0.2 m

Test case 1 2 3 4 5 6

Flow type Infiltration Capillary rise Drainage Infiltration Capillary rise Drainage

h(j)w (m) −1.00E−03 −5.00E+00 −1.50E−01 −1.00E−03 −5.00E+00 −1.00E−01

k(j)rw (–) 9.99E−01 6.74E−03 8.61E−01 9.99E−01 6.74E−03 9.05E−01

h(k)w (m) −5.00E+00 −1.00E−03 −1.00E−03 −5.00E+00 −1.00E−03 −1.00E−03

k(k)rw (–) 6.74E−03 9.99E−01 9.99E−01 6.74E−03 9.99E−01 9.99E−01
ζ (–) 1.00E+00 1.00E+00 1.00E+00 7.07E−01 7.07E−01 7.07E−01
K-EXACT 2.11E−01 1.86E−01 9.26E−01 2.07E−01 1.90E−01 9.50E−01
K-SZYM 1.98E−01 1.92E−01 8.94E−01 1.98E−01 2.00E−01 9.32E−01
K-ARIT 5.03E−01 5.03E−01 9.30E−01 5.03E−01 5.03E−01 9.52E−01
K-GEOM 8.20E−02 8.20E−02 9.27E−01 8.20E−02 8.20E−02 9.51E−01
K-HARM 1.34E−02 1.34E−02 9.25E−01 1.34E−02 1.34E−02 9.50E−01
K-INT 1.98E−01 1.98E−01 9.28E−01 1.98E−01 1.98E−01 9.51E−01
K-UPS 9.99E−01 9.99E−01 8.61E−01 9.99E−01 9.99E−01 9.05E−01
K-SPLIT 2.29E−01 2.06E−01 6.64E−01 2.21E−01 2.04E−01 7.97E−01

Table 4.3 Exact and approximate steady-state inter-nodal permeability values for exponential
relative permeability function with hg = 0.05 m, �x = 0.2 m

Test case 7 8 9 10 11 12

Flow type Infiltration Capillary rise Drainage Infiltration Capillary rise Drainage

h(j)w (m) −1.00E−03 −5.00E+00 −1.50E−01 −1.00E−03 −5.00E+00 −1.00E−01

k(j)rw (–) 9.80E−01 3.72E−44 4.98E−02 9.80E−01 3.72E−44 1.35E−01

h(k)w (m) −5.00E+00 −1.00E−03 −1.00E−03 −5.00E+00 −1.00E−03 −1.00E−03

k(k)rw (–) 3.72E−44 9.80E−01 9.80E−01 3.72E−44 9.80E−01 9.80E−01
ζ (–) 1.00E+00 1.00E+00 1.00E+00 7.07E−01 7.07E−01 7.07E−01
K-EXACT 3.84E−02 7.62E−04 1.27E−01 2.87E−02 1.79E−03 2.74E−01
K-SZYM 3.77E−02 4.74E−04 1.06E−01 2.70E−02 1.51E−03 2.45E−01
K-ARIT 4.90E−01 4.90E−01 5.15E−01 4.90E−01 4.90E−01 5.58E−01
K-GEOM 1.91E−22 1.91E−22 2.21E−01 1.91E−22 1.91E−22 3.64E−01
K-HARM 7.44E−44 7.44E−44 9.38E−02 7.44E−44 7.44E−44 2.38E−01
K-INT 9.80E−03 9.80E−03 3.12E−01 9.80E−03 9.80E−03 4.27E−01
K-UPS 9.80E−01 9.80E−01 4.98E−02 9.80E−01 9.80E−01 1.35E−01
K-SPLIT 4.71E−02 1.02E−02 −7.17E−01 3.65E−02 1.01E−02 −5.45E−01

examined, which represent all three types of flow, i.e. infiltration, drainage and cap-
illary rise in either vertical or inclined direction.

It can be seen that the approximation method proposed by the author (K-SZYM)
is in most cases more accurate than any other method. The exceptions are represented
by test cases 3 and 6, corresponding to drainage where the permeabilities at the upper
and lower node are very similar, and consequently most of the averaging methods give
similar results. It should be noted that for the same two cases the method based on flux
splitting predicts average permeability which is outside the range of values defined
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by the two nodal permeabilities, and thus physically inadmissible. It means that such
an averaging scheme should be used with care. The advantages of the new method
can be seen even more clearly in Table 4.3, where the results for highly nonlinear
relative permeability function are reported. Here the maximum relative error of the
new method does not exceed 40 %, while other methods often lead to errors of more
than one order of magnitude. For drainage (test cases 9 and 12) the method based on
flux splitting predicts negative values of the permeability coefficient, which means
that the flux direction is opposite to the direction resulting from the water potential
gradient.

Further results for steady-state flow can be found in [39]. In that paper various
averaging schemes were verified against numerical solutions of steady flow equa-
tion for fifteen relative permeability functions, corresponding to a range of soils
from sands to clays. Included were four Brooks–Corey–Burdine functions, four
van Genuchten–Mualem functions, two exponential functions, one Gardner func-
tion, two van Genuchten–Mualem functions with negative connectivity parameter κ
(see Sect. 2.1.6), and two combinations of van Genuchten capillary function with
power-type relative permeability functions, as proposed in [27]. For each function
a large number of steady flow problems was solved, with the internodal distances
varying between 1 mm and 100 m and the nodal values of the water pressure head
ranging from −1 mm to −100 m. For any specific test case, the error of the considered
averaging scheme was defined as follows:

ERR-K = log10
k(jk)rw

k(jk)ref

(4.63)

where k(jk)rw was computed with the considered averaging scheme, and k(jk)ref is the
reference value obtained from the numerical solution of steady state flow equation
between nodes. Such a formulation was chosen in order to give equal weight to
over- and underestimation of the average permeability, and to facilitate comparison
of the relative errors, which often differ by several orders of magnitude. In view of
the large number of results, representative error measures were defined to quantify
the accuracy of each method of inter-nodal permeability approximation:

• root-mean square error, RMS-ERR-K

RMS-ERR-K =
√√√√ 1

N

N∑
1

(ERR-K)2 (4.64)

where N is the number of test cases in the considered set,
• maximum error value (largest overestimation), max(ERR-K),
• minimum error value (largest underestimation), min(ERR-K).

The values of these error measures are reported in Table 4.4 for some of the aver-
aging methods used in the previous example: K-ARIT, K-GEOM, K-INT, K-UPS

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Table 4.4 Root-mean-square errors obtained with various permeability averaging schemes for
steady flow test cases. Data from [39]

K-SZYM K-BAKER K-GASTO K-ARIT K-GEOM K-INT K-UPS

Average 0.12 0.36 0.29 1.61 1.14 1.01 1.30
Small �x 0.04 0.07 0.33 1.13 0.84 0.09 1.34
Medium �x 0.13 0.38 0.22 1.33 0.89 0.62 1.44
Large �x 0.17 0.49 0.19 2.17 1.55 1.68 1.10
Infiltration 0.04 0.11 0.33 0.86 1.26 0.57 1.04
Drainage 0.22 0.51 0.09 2.57 1.29 1.90 0.27
Capillary rise 0.11 0.49 0.26 1.74 0.77 0.64 1.96

and K-SZYM. Moreover, computations were performed with the method of [19]
(K-GASTO), for Brooks–Corey and van Genuchten–Mualem functions and node
spacing satisfying condition given by Eq. (4.36), and with the method of Baker [3]
(K-BAKER), for those relative permeability functions, which can be inverted ana-
lytically to obtain hw(krw).

Table 4.4 provides the average value of RMS-ERR-K for all test cases, as well as
separate results obtained for three ranges of inter-nodal distances �x: small (1 mm,
1 cm, 2 cm), medium (10, 20, 50 cm) and large (1, 10, 100 m), and three types of
flow (infiltration, drainage, capillary rise). It should be noted that due to its definition
RMS-ERR-K is always positive and provides information only on the magnitude of
error, without indicating whether the specific method under- or overestimates the
internodal permeability. As the errors are defined in terms of decimal logarithm, a
value of RMS-ERR-K = 1.0 corresponds to an error of one order of magnitude (i.e.
1000 %), while a value of 0.17—to an error of about 50 %.

Overall, it can be seen that the methods based on Darcian means are significantly
more accurate than the simple averaging schemes, especially on medium or coarse
grids. On fine grids, accurate results were obtained also with the integrated mean
approach. As far as the type of flow is considered, the author’s method gave the best
results of all methods for infiltration and capillary rise, while for drainage it was sec-
ond best, after the method of Gasto et al. [19]. The performance of the simple methods
differ significantly, depending on the type of flow. For infiltration, the arithmetic and
integrated averages provided average errors below one order of magnitude, while
the average errors of the geometric average and the upstream weighting exceeded
this value. In contrast, for drainage the upstream weighting largely outperformed the
other simple methods, allowing to obtain very high accuracy. For the capillary rise,
the geometric and integrated means proved more accurate than the arithmetic and
upstream means.

Finally, the methods can be also compared in terms of the largest error obtained
for the ensemble of test problems. The maximum and minimum error values are
reported in Table 4.5. The most extreme case corresponds to the overestimation of
the inter-nodal permeability by 10.5 orders of magnitude using the arithmetic mean
approach, which occurred for drainage with large �x in a soil characterized by a
very rapid decrease of the relative permeability within a small range of the negative
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Table 4.5 Root-mean-square errors obtained with various permeability averaging schemes for
steady flow test cases. Data from [39]

K-SZYM K-BAKER K-GASTO K-ARIT K-GEOM K-INT K-UPS

min(ERR-K) −1.50 −4.30 −1.24 −2.89 −5.38 −3.23 −6.05
max(ERR-K) 0.11 4.47 1.60 10.50 5.40 8.55 8.18

values of the water pressure head. Other simple averaging methods may also lead to
over- or underestimation of the permeability by several orders of magnitude in par-
ticular conditions. Significant errors were generated also by the method of Baker [3],
despite the fact that the average errors obtained with this method are rather small.
This indicates that the latter method may be relatively inaccurate for some specific
types of the relative permeability functions. In contrast, the largest errors generated
by the method of Szymkiewicz [39] did not exceed 1.5 order of magnitude. The
method of Gasto et al. [19] was similarly accurate, but due to its limitations it could
be applied to a substantially smaller number of test cases.

4.2.6 Evaluation for Unsteady Flow

In this section, four one-dimensional unsteady flow test cases are discussed, in order
to show the performance of the proposed method in comparison with other averaging
schemes. The first two examples are similar to the ones presented in [39], but differ
in the values of soil parameters and in accounting for the compressibility of water.
The soil is characterized by Brooks–Corey–Burdine hydraulic functions with the
following parameters: porosity φ = 0.4, residual saturations Srw = Sra = 0, intrinsic
permeability ks = 8.5×10−12 m2, entry pressure pe = 440 Pa, exponent nb = 1.124.
The parameters correspond to sand with a relatively uniform grain size distribution.

The first example is vertical downward infiltration in a 2-m thick soil layer with
initially uniform distribution of the water pressure pw = −49050 Pa, corresponding
to the water saturation of 0.005. At the soil surface a constant value of the water
pressure is imposed, pw = −500 Pa (Sw = 0.866), while at the bottom of the layer
the free drainage condition is applied. Numerical simulations were performed for two
values of node spacing,�x = 20 cm and�x = 1 cm, respectively. Figure 4.5 shows
the water saturation profiles after 3 h of infiltration obtained on the coarser grid for
various permeability averaging schemes. They are compared to the reference solution
obtained on a fine grid with �x = 1 mm. For such a fine discretization, essentially
the same results were obtained using K-INT and K-UPS schemes. As discussed
above, these two averaging schemes represent the limit values of the inter-nodal
conductivity for downward infiltration. Thus, the corresponding solution is assumed
to be a close approximation of the exact solution. The reference solution predicts
a very sharp wetting front, which cannot be exactly reproduced on the coarse grid.
However, K-UPS, K-ARIT, K-BAKER and K-SZYM approximate the position of
the wetting front with reasonable accuracy. The latter two methods give very similar
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Fig. 4.5 Example 1: water saturation profiles obtained with various permeability averaging meth-
ods, coarse grid

results, which are somewhat more accurate than the upstream weighting and on the
other hand do not produce oscillations, which occur in the solution obtained with
K-ARIT. The integrated mean (K-INT) and the method based on arithmetic averaging
of the water saturation (K-S-ARIT) not only lead to oscillations but also considerably
underestimate the position of the wetting front. The least accurate solution is given
by the geometric mean, which severely underestimates the inter-nodal permeability
and consequently predicts virtually no flow. The latter three methods are clearly not
adequate to simulate gravity-dominated infiltration on coarse grids.

In contrast, if a finer node spacing of 1 cm is used, the differences between various
methods are much smaller. The only exception is the geometric mean, which still
underestimates the position of the wetting front and produces saturation values larger
than the boundary saturation in the wet zone (not shown here). In order to better show
the differences between the other methods, only a small part of the solution domain
near the wetting front is presented in Fig. 4.6. For the considered node spacing,
K-SZYM gives the same values as K-INT (the latter one is not shown in the figure).
This approach underestimates the position of the wetting front, albeit only slightly.
Even better results are obtained with K-BAKER, K-GASTO and K-S-ARIT. In con-
trast, both K-ARIT and K-UPS give more diffuse solutions, which overestimate the
position of the wetting front, K-UPS being less accurate than K-ARIT. Note also
that the geometric averaging predicts the position of the wetting front at the value of
x ≈ 0.5 m, well outside the range shown in the figure.

The second example concerns drainage in the same domain as in Example 1. The
initial condition is pw = 0 in the whole soil layer and this value is maintained at the
bottom as the boundary condition. At the soil surface a zero-flux condition is imposed.
Water drains from the layer under the influence of gravity. The same values of �x
as in Example 1 were used. The water saturation profiles for coarse grid after 4 h of
drainage are shown in Fig. 4.7. It can be seen that all simple permeability averaging
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Fig. 4.6 Example 1: water saturation profiles obtained with various permeability averaging meth-
ods, fine grid
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Fig. 4.7 Example 2: water saturation profiles obtained with various permeability averaging meth-
ods, coarse grid

schemes lead to oscillatory solutions. In contrast, monotonous saturation profiles
are obtained with K-UPS, K-BAKER and K-SZYM, the latter one being closest to
the reference solution. For the finer grid,�x = 1 cm, all averaging schemes produce
very accurate solutions, thus the results are not shown here.

The test cases presented above may suggest that the node spacing of about 1 cm
is fine enough to obtain sufficiently accurate results with the arithmetic averaging
scheme, which is widely used in unsaturated flow modelling. Such a conclusion was
drawn by van Dam and Feddes [43] on the basis of several numerical simulations
performed by those authors. However, a re-examination of two of their test cases
presented by Szymkiewicz [39] showed that the results obtained with �x = 1 cm
significantly differ from those obtained for a finer grid if arithmetic averaging is
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applied. The two cases (Examples 3 and 4 in the numeration of this chapter) are
briefly described here, following [39]. Both problems concern vertical flow in a
40 cm column of soil characterized by the van Genuchten capillary function and
Mualem relative permeability function with the following parameters: θsw = 0.43,
θrw = 0.01, pg = 3940 Pa, ng = 1.507, mg = 1 − 1/ng, ks = 2.065 × 10−13 m2

(Ksw = 17.5 cm d−1) and the connectivity parameter κ = −0.14. Note that for the
non-standard Mualem permeability function neither K-GASTO nor K-BAKER can
be applied.

The boundary conditions correspond to the soil–atmosphere interface, as described
in Sect. 2.3.2. In Example 3 the soil is initially dry, with a uniform water content
θ init

w = 0.1, corresponding to the water pressure head hinit
w = −832.5 cm. At the

top of the column a constant infiltration flux of vtop
w = 100 cm d−1 is imposed, until

the soil surface reaches saturation. Afterwards, the boundary condition is switched
to a constant pressure head, htop

w = 0. The infiltration continues, but the value of
the flux decreases in time. At the bottom, the initial value of the water content
is maintained. The solutions are compared in terms of the cumulative infiltration
qinf , defined as the integral of the infiltration flux over time. The reference solution
obtained on a fine grid with �x = 0.05 cm predicted the cumulative infiltration
of qinf = 3.69 cm at t = 0.1 d, while the ponding occured (the surface became
saturated) at tpond = 0.006 day. On such a fine grid, virtually the same results were
obtained using the arithmetic and integrated permability averaging and they were
cross-checked with the Hydrus-1D code [35]. On a coarser grid of �x = 1 cm,
the arithmetic averaging yielded the cumulative infiltration qinf = 3.88 cm and
tpond = 0.009 d, the geometric averaging: qinf = 3.66 cm and tpond = 0.002 d,
respectively, while the author’s method: qinf = 3.68 cm and tpond = 0.006 d. In
this case the new method offers a considerable improvement over the arithmetic
averaging.

In Example 4 the soil is initially moderately wet (θ init
w = 0.1, hinit

w = −200 cm)
and a constant evaporation flux of vtop

w = −0.5 cm d−1 is applied at the surface, until
the water pressure head at the surface reaches the value of hdry = −1377 m, which
is then maintained as a Dirichlet boundary condition. The evaporation continues, but
the flux diminishes with time. At the bottom, the initial value of the water pressure
head is kept. Similarly to the previous case, the solutions are compared in terms of the
cumulative flux at the surface. According to the reference solution (�x = 0.05 cm),
the cumulative evaporation flux after 5 days is qev = 0.89 cm and the water pressure
head at the soil surface reaches its limit value after tdry = 0.51 day. For�x = 1 cm the
differences between averaging schemes are even larger than in the previous case, with
the arithmetic averaging predicting qev = 1.12 cm and tdry = 1.14 d, the upstream
averaging: qev = 1.26 cm and tdry = 1.41 d, and the author’s method: qev = 0.90 cm
and tdry = 0.63 d. Again, the new method proved more accurate than the arithmetic
mean.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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4.3 Saturated–Unsaturated Transition

A special case for permeability averaging arises when one of the nodes is fully water-
saturated, with the water pressure larger than the entry pressure for the given soil,
while the other node is unsaturated. If the value of the water pressure at the saturated
node increases, the inter-nodal relative permeability obtained from the steady-state
solution will also increase, tending in the limit to the value k(jk)

rw = 1. Among the
simple averaging methods presented in Sect. 4.1, only the integrated mean, Eq. (4.9),
and the formula based on the arithmetic average of nodal pressures, Eq. (4.8), are
able to reproduce this behaviour. Other methods, based on the averaging of the
nodal permeabilities or saturations, do not predict any change in the inter-nodal
permeability, because both permeability and saturation are independent of the water
pressure in the saturated range. For a more detailed discussion of the errors arising
at the saturated–unsaturated interface, see [31].

As far as the methods based on the Darcian averaging approach are considered,
one should note that the formulae presented in Sect. 4.2 are applicable without any
modifications to the case of saturated–unsaturated transition. They are based on the
integrated mean permeability and on the values of permeability calculated for some
intermediate values of the pressure head. Thus, a change of the pressure head at
the saturated node will influence the resulting inter-nodal permeability, even if both
nodal permeabilities remain constant. The same is true for the formulae of Baker [2],
Baker et al. [5] and Baker [3]. In contrast, the formula of Gasto et al. [19] was
developed for strictly unsaturated conditions, but the authors proposed a modification
to account for the saturated–unsaturated transition, which can be also used with
any other scheme for unsaturated permeability averaging. The grid cell is explicitly
divided in two parts, one fully saturated and the other one unsaturated, with the
interface located at x(S), as shown in Fig. 4.8. Assuming that node j is saturated,
one can write the flux continuity condition at the saturated–unsaturated interface as
follows:

− k(jS)rw

(
h(S)w − h(j)w

�x(jS)
− ζ

)
= −k(Sk)

rw

(
h(k)w − h(S)w

�x(Sk)
− ζ

)
, (4.65)

where h(S)w is the water pressure head corresponding to the transition from unsaturated
to saturated state (equal to zero or the air entry pressure, depending on the assumed
constitutive relationship). The relative permeability in the saturated zone is k(jS)rw = 1,
while the permeability in the unsaturated zone k(Sk)

rw can be computed with the formula
of Gasto et al. [19], or any other formula suitable for unsaturated flow. If k(Sk)

rw
depends on �x(Sk), Eq. (4.65) is nonlinear with respect to �x(Sk) and has to be
solved iteratively. A further simplification can be introduced if one considers that
the pressure distribution between nodes j and k is linear. This leads to the following
expression for the inter-nodal permeability k(jk)rw [19]:
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Fig. 4.8 Water pressure head
profile near the saturated–
unsaturated interface

k(jk)rw = k(Sk)
rw �h(jk)w(

h(k)w − h(S)w

)
+ k(Sk)

rw

(
h(S)w − h(j)w

) , (4.66)

where the unsaturated permeability k(Sk)
rw is computed assuming the position of the

interface:

x(S) = x(k) −�x(jk)
h(k)w − h(S)w

�h(jk)w

. (4.67)

An analogous formula can be easily obtained for the opposite case, i.e. when the
lower node is saturated.

As an example, let us consider steady-state vertical downward flow (ζ = 1)
in a porous medium characterized by Brooks–Corey–Burdine relative permeability
function with the air-entry pressure head he = 0.25 m and the shape parameter
nb = 2.0. The distance between nodes is �x = 0.20 m and the water pressure head
at the lower node is h(k) = −5.0 m, with the corresponding relative permeability
k(k)rw = 3.91 × 10−11. At the upper node, the water pressure head assumes four
different values, such that h(j)w ≥ −he and k(j)rw = 1, as shown in Table 4.6. For
each case, the inter-nodal relative permeability obtained from a numerical solution
of the steady-state problem is compared with four approximations. The approximate
methods include those proposed by Szymkiewicz [39] (K-SZYM), Baker et al. [5]
(K-BAKER) and Gasto et al. [19] (K-GASTO), as well as the integrated mean (K-
INT) and the method based on the arithmetic average of the water pressure head
(K-H-ARIT). The results in Table 4.6 shows that the most accurate approximation in
this case is obtained with the formula of Baker et al. [5]. Good results are also obtained
with K-SZYM, which predicts values equal to the integrated mean, except for the first
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Table 4.6 Inter-nodal permeability values for saturated–unsaturated transition obtained from the
numerical solution of steady flow equation and various approximating formulae

Test case 1 2 3 4

h(j)w (m) −0.25 0.00 1.00 5.00
K-NUM 4.04E−02 9.24E−02 2.42E−01 5.44E−01
K-SZYM 4.04E−02 5.71E−02 2.14E−01 5.29E−01
K-BAKER 4.10E−02 8.89E−02 2.41E−01 5.44E−01
K-GASTO 8.82E−02 9.24E−02 1.09E−01 1.61E−01
K-INT 7.52E−03 5.71E−02 2.14E−01 5.29E−01
K-H-ARIT 6.77E−09 1.00E−08 5.96E−08 1.00E+00

case, where it is close to the reference value, while K-INT underestimates the steady-
state permeability by a factor of about 5. K-GASTO is the most accurate method for
hw = 0, while in other cases it is less accurate than K-BAKER and K-SZYM, but still
correctly reproduces the order of magnitude of the inter-nodal permeability. Finally,
the arithmetic averaging of the water pressure head, K-H-ARIT, while showing the
expected increase of the inter-nodal permeability with the increase of the pressure
at the upper node, leads to very inaccurate results for all cases except the last one,
where at least the correct order of magnitude is reproduced.

4.4 Heterogeneous Medium

The permeability averaging methods described in the previous sections were based
on the assumption that the porous medium between the two adjacent nodes is homo-
geneous. Nevertheless, they can be directly applied also for heterogeneous media if
the material properties are associated with grid cells (elements) and the nodes are
placed at material interfaces (vertex-centred scheme with element-oriented material
properties, discussed in Sect. 3.2.4). In such a case, the porous medium between two
adjacent nodes is always homogeneous, and any of the averaging methods described
above can be applied.

On the other hand, additional considerations are necessary if the adjacent nodes
belong to different material regions, as shown in Fig. 4.9. In such a case, physi-
cally consistent approximation of the inter-nodal permeability can be obtained if
one makes use of the interface conditions discussed in Sect. 2.3.3. The following
discussion focuses again on the case of one-dimensional incompressible unsaturated
flow. The interface separating materials I and II is located at x(F), between nodes
x(j) and x(k), as shown in Fig. 4.9. The materials are characterized by the saturated
hydraulic conductivities KI

sw and KII
sw and the relative permeability functions kI

rw(hw)

and kII
rw(hw), respectively. The flux continuity condition for the interface can be writ-

ten as follows:
v(jF)w = v(Fk)

w , (4.68)

http://dx.doi.org/10.1007/978-3-642-23559-7_3
http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Fig. 4.9 Water pressure head profile in a layered medium. Modified with permission from [40]

where:

v(jF)w = −KI
sw kI(jF)

rw

[
h(F)w − h(j)w

�x(jF)
− ζ

]
, (4.69)

v(Fk)
w = −KII

sw kII(Fk)
rw

[
h(k)w − h(F)w

�x(Fk)
− ζ

]
. (4.70)

In the above equations, kI(jF)
rw denotes the average relative permeability in material I

between node j and the interface, while kII(Fk)
rw is the average relative permeability in

material II between the interface and node k. Equations (4.68)–(4.70) account for the
continuity of the water pressure across the interface since the same value of h(F)w is
used for both sides. The average relative permeabilities for the two layers above and
below the interface can be computed with any suitable method, leading to a nonlinear
equation with respect to h(F)w . The equation can be solved iteratively, yielding the
value of h(F)w and the corresponding permeabilities in each of the two the sub-cells.
The resulting value of the inter-nodal conductivity K(jk)

w must satisfy the following
relationship:

− K(jk)
w

[
h(k)w − h(j)w

�x(jk)
− ζ

]
= v(jF)w = v(Fk)

w . (4.71)

In contrast to the case of homogeneous medium with constant saturated conductiv-
ity, here the averaging is applied to the total conductivity Kw = Ksw krw, not only
to the relative permeability krw. In view of the flux continuity condition given by
Eqs. (4.68)–(4.70), the average inter-nodal conductivity K(jk)

w can be subsequently
computed the as weighted harmonic mean of the two sub-cell conductivities:
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K(jk)
w =

[
�x(jF) +�x(Fk)

] [ �x(jF)

KI
sw kI(jF)

rw

+ �x(Fk)

KII
sw kII(Fk)

rw

]−1

. (4.72)

It is clear that the choice of the method used to compute the average relative perme-
ability in each of the homogeneous sub-cells will have significant influence on the
final result. Therefore, the use of improved methods based on the Darcian averag-
ing principle is recommended. Note also that for saturated flow, when the relative
permeabilities are equal to unity at both sides of the interface, one recovers from
Eq. (4.72) a formula for the average saturated conductivity analogous to Eq. (2.110):

K(jk)
sw =

[
�x(jF) +�x(Fk)

] [�x(jF)

KI
sw

+ �x(Fk)

KII
sw

]−1

. (4.73)

A number of other methods to calculate inter-nodal permeability at a material
interface can be found in the literature. Possibly the most straightforward option is to
apply one of the simple averages defined by Eqs. (4.4)–(4.6) to the total conductivity
Kw or permeability kw, instead of the relative permeability krw. For the case of
arithmetic averaging, the resulting formula can be written as follows:

K(jk)
w = 1

2

(
KI

sw kI(j)
rw + KII

sw kII(k)
rw

)
. (4.74)

This formula is used, for example, in the well known HYDRUS-1D numerical code
[35]. Its drawback is that it does not lead to physically consistent inter-nodal perme-
ability for steady-state saturated flow. In the latter case, as it was mentioned above,
accurate results are obtained using the harmonic mean. Therefore, an often used
approach, e.g. [1, 13, 26], is to compute the average intrinsic permeability (or satu-
rated conductivity) as the harmonic mean of the intrinsic permeabilities (or saturated
conductivities) of the two materials, while the relative permeability is computed by
the upstream weighting:

K(jk)
w = K(jk)

sw k(jk)rw , (4.75)

k(jk)rw =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(j)rw if
h(k)w − h(j)w

�x(jk)
− ζ ≤ 0 ,

k(k)rw if
h(k)w − h(j)w

�x(jk)
− ζ > 0 ,

(4.76)

where K(jk)
sw is given by Eq. (4.73) This method leads to physically consistent result

for saturated flow. On the other hand, the use of upstream averaging ensures a monoto-
nous solution.

The scheme proposed by Romano et al. [32] is based on Eq. (4.68) but introduces
two additional ghost points in the vicinity of the interface, Fig. 4.9. One of them is
located above the interface and extrapolates the pressure profile from the lower layer.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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The other one is positioned below the interface and extrapolates the pressure profile
from the upper layer. It is assumed that the interface is located mid-way between the
nodes j and k and the extrapolation is linear, so the following relation holds:

1

2

(
h(j)w + h(k)

′
w

)
= 1

2

(
h(j)

′
w + h(k)w

)
, (4.77)

where h(j)
′

w and h(k)
′

w denote the water pressure head values at the ghost nodes. The
flux continuity condition is written as:

− KI
sw kI(jk)

rw

[
h(k)

′
w − h(j)w

�x(jk)
− ζ

]
= −KII

sw kII(jk)
rw

[
h(k)w − h(j)

′
w

�x(jk)
− ζ

]
, (4.78)

where the average relative permeability for each of the materials is equal to the
geometric mean of the values at the real and ghost node:

kI(jk)
rw =

√
kI

rw

(
h(j)w

)
× kI

rw

(
h(k)

′
w

)
, (4.79)

kII(jk)
rw =

√
kII

rw

(
h(j)

′
w

)
× kII

rw

(
h(k)w

)
. (4.80)

The nonlinear system of equations (4.77)–(4.78) has to be solved iteratively for each
material interface. The inter-nodal conductivity is then computed as the harmonic
average of the conductivities in two sub-layers:

K(jk)
w = 2 KI

sw kI(jk)
rw KII

sw kII(jk)
rw

KI
sw kI(jk)

rw + KII
sw kII(jk)

rw

(4.81)

While this method was shown to be more accurate than the standard arithmetic
and geometric weighting of the nodal conductivities in the test cases considered
by Romano et al. [32] and Brunone et al. [8], it raises two questions. First, it is
not clear, why the pressure values at ghost nodes, which do not have any physical
interpretation, should be used instead of the value of the pressure at the interface, as
in Eq. (4.68). Second, geometric averaging of the relative permeabilities was shown
to be very inaccurate in some problems involving homogeneous media, and one can
expect similar type of errors in the heterogeneous case.

Szymkiewicz and Helmig [40] compared the performance of various permeabil-
ity averaging schemes for one-dimensional incompressible flow in layered soils.
Principal results of their investigation are presented here. Four approximation meth-
ods were used to compute the average permeability across a material interface
separating sand and clay layers. They include Eqs. (4.68)–(4.72) combined with
the method of Szymkiewicz [39] to evaluate the permeability at each side of the
interface (referred to as CC-SZYM), the simple arithmetic averaging, Eq. (4.74)
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Table 4.7 Parameters of soils used in the numerical simulations of steady-state flow in a hetero-
geneous medium. Modified with permission from [40]

Soil θrw θsw pe or pg nb or ng Ksw

(–) (–) (Pa) (–) (m s−1)

BC-sand 0.020 0.417 711 0.592 5.83 × 10−5

BC-clay 0.056 0.423 3360 0.127 2.50 × 10−7

VGM-sand 0.043 0.430 677 2.68 8.25 × 10−5

VGM-clay 0.007 0.360 19620 1.09 5.56 × 10−8

(CC-ARIT), the combination of harmonic averaging of the intrinsic permeability
and upstream weighting of the relative permeability, Eqs. (4.73), (4.75) and (4.76)
(CC-UPS), and the method of Romano et al. [32] (CC-ROM). The results were
compared to the values of the inter-nodal permeability obtained from the numerical
solution of steady-state flow equation between the two points, using very fine spatial
discretization. The two soils were characterized by either Brooks–Corey–Burdine
or van Genuchten–Mualem functions. Their parameters are listed in Table 4.7. For
each set of hydraulic functions, a large number of simulations was performed, with
varying sequence of the layers (sand over clay, clay over sand), distance between
nodes, �x = {1, 2, 5, 10, 20, 50, 100, 200, 500} cm, and potential head values at
the nodes, hw = {10, 0,−1,−10,−100,−1000} cm (for Brooks–Corey model the
potential values were modified by adding negative value corresponding to he, as
listed in Table 4.7 for respective soils).

The error of each averaging scheme was defined similarly to Eq. (4.63). However,
the values of total conductivity were used instead of the relative permeability:

ERR-K = log10
K(jk)

w

K(jk)
ref

(4.82)

where K(jk)
w and K(jk)

ref denote, respectively, the approximate inter-nodal conductivity
and the reference conductivity obtained from the steady-state solution. For each
averaging method the root mean square, maximum and minimum error values were
defined in the way described in Sect. 4.2.5. The values of these parameters are listed
in Table 4.8 for soils characterized by Brooks-Corey functions and in Table 4.9 for
the van Genuchten–Mualem functions. Additionally, for the schemes CC-ROM and
CC-SZYM the values of the potential head at the interface h(F)w can be compared with
the values obtained from the numerical steady flow solution. The corresponding root
mean square errors, denoted as RMS-ERR-H, are also reported.

The results shown in the tables indicate that the averaging scheme CC-SZYM,
based on the approximation of the Darcian means, is much more accurate in predicting
the value of steady-state average conductivity than the other three methods. CC-ROM
is second best, but still can lead to over- or underestimation of the conductivity by
several orders of magnitude. It can be also noted that all methods are less accurate
for the van Genuchten–Mualem model than for the Brooks–Corey–Burdine model.
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Table 4.8 Errors of permeability approximation schemes for steady-state flow in a heterogeneous
medium, Brooks–Corey–Burdine functions. Reproduced with permission from [40]

Scheme RMS-ERR-K max(ERR-K) min(ERR-K) RMS-ERR-H
(–) (–) (–) (m)

CC-ARIT 1.91 6.18 −0.24 −
CC-ROM 0.66 2.32 −2.77 0.1815
CC-UPS 1.56 5.46 −2.55 −
CC-SZYM 0.08 1.34 −0.32 0.0041

Table 4.9 Errors of permeability approximation schemes for steady-state flow in a heterogeneous
medium, van Genuchten–Mualem functions. Reproduced with permission from [40]

Scheme RMS-ERR-K max(ERR-K) min(ERR-K) RMS-ERR-H
(–) (–) (–) (m)

CC-ARIT 3.21 10.37 −0.28 −
CC-ROM 1.78 5.58 −7.30 23.42
CC-UPS 1.94 7.88 −3.71 −
CC-SZYM 0.10 0.07 −0.51 1.31

Moreover, Szymkiewicz and Helmig [40] carried out comparisons of various
permeability averaging schemes for several unsteady flow problems, using both cell-
centred and vertex-centred spatial discretizations. In cell-centred scheme they used
the same four methods for approximating permeability at material interface, as in the
steady state analysis described above. In the framework of vertex-centred approach,
where the porous material between the nodes is always homogeneous, the inter-nodal
permeabilities were computed as arithmetic averages, Eq. (4.4) (VC-ARIT), geomet-
ric average, Eq. (4.5) (VC-GEOM), upstream weighting, Eq. (4.12) (VC-UPS) and
the method of Szymkiewicz [39] (VC-SZYM). Two examples from [40] are presented
below.

The first example concerns vertical downward infiltration with prescribed water
flux at the surface, see Fig. 4.10a for the details of the geometry and the initial and
boundary conditions. The sand and clay layer are characterized by
Brooks–Corey–Burdine hydraulic functions with the parameters listed in Table 4.7.
Since the hydraulic conductivity of clay is much smaller than the conductivity of
sand, after some time a saturated zone develops at the material interface. Figure 4.11
shows the distribution of the volumetric water content in the soil profile after 32 h
of infiltration. The thick solid line denotes the reference solution obtained on a
dense grid with �x = 1 mm. One can note the presence of a fully saturated
zone in the vicinity of the interface with the maximum values of θw = 0.417
for sand and θw = 0.423 for clay. Below the interface a relatively sharp wetting
front can be observed in the clay layer, while above the interface the water con-
tent in sand also decreases rapidly. The simulations performed on a coarse grid with
�x = 20 cm show significant influence of the method used for computing inter-nodal
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Fig. 4.10 Initial and bound-
ary conditions used in simula-
tions of flow in layered media.
Modified with permission
from [40]

(a) (b)

permeabilities, for either vertex-centred (Fig. 4.11a) or cell-centred (Fig. 4.11b)
discretization approaches. The results obtained with VC-SZYM and CC-SZYM
schemes are relatively close to the reference solution. Similarly accurate results
(not shown here) can be obtained with the method of Baker et al. [5]. In contrast,
the schemes based on geometric averaging lead to very inaccurate profiles, with
large saturated zone in the sand layer. The arithmetic and upstream weighting lead to
moderately accurate solutions, which reproduce the general shape of the reference
profile, but with more shifting and smoothing than the methods based on Darcian
averaging.

In the second test case, evaporation from a three-layer soil profile was simulated.
Evaporation was enforced by imposing a very large negative value of the pressure
head at the soil surface. The details of the problem formulation are presented in
Fig. 4.10b. The soil materials are characterized by van Genuchten–Mualem functions,
with parameters listed in Table 4.7. A very long process was considered, with the final
time equal to 5×104 h, and the cumulative amount of evaporated water equal to 7.26
cm, as predicted by the reference solution on fine grid (�x = 1 mm). The coarse
grid simulations with �x = 10 cm predicted very different amounts of cumulative
evaporation, depending on the applied method of permeability averaging. The relative
error can be defined as:

ERR-EV = qev − qref
ev

qref
ev

× 100 % (4.83)

where qev and qref
ev denote the value of cumulative evaporation obtained in a given

solution and the reference value, respectively. The relative errors are listed in
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Fig. 4.11 Infiltration in layered medium: water content profiles obtained with vertex-centred
(a) and cell-centred (b) schemes (t = 32 h, �x = 20 cm). Reproduced with permission
from [40]

Table 4.10. It can be seen that the smallest errors were obtained with the schemes
based on the method of Szymkiewicz [39] and with the CC-UPS scheme. Arithmetic
averaging and VC-UPS led to very large overestimation of the cumulative evapora-
tion. In contrast, the schemes based on geometric mean significantly underestimated
the evaporation. The profiles of the water pressure head at the end of simulation
obtained using the same spatial discretization are shown in Fig. 4.12. They confirm
high accuracy of the improved method of permeability averaging discussed in this
work. The results obtained with VC-SZYM and CC-SZYM schemes are very close
to the reference solution. In particular, these methods correctly predict the large gra-
dient of the pressure head in the upper part of the central sand layer. Such a large
gradient is necessary to sustain the upward flow in sand, as the relative permeability
in the dry upper part of the sand layer is very small. Obviously, the accuracy in the the
pressure gradient is strongly influenced by the accuracy in the inter-nodal permeabil-
ity, as the product of these two values gives the volumetric water flux. The schemes
VC-UPS, VC-ARIT and CC-ARIT overestimate the inter-nodal permeability. There-
fore, the resulting gradients are smaller than in the reference solution. On the other
hand, CC-ROM and VC-GEOM underestimate the inter-nodal permeability, leading
to gradients much larger than in the reference profile.

For a finer discretization, �x = 1 cm, the errors caused by arithmetic and
upstream averaging significantly diminish, but they are still much larger than for
the K-SZYM approach, with the exception of CC-UPS, which provides the most
accurate results. The difference in performance between the two schemes based on
upstream weighting, i.e. CC-UPS and VC-UPS, may be due to the fact that in VC



128 4 Computation of Inter-Nodal Permeabilities for Richards Equation

Table 4.10 Evaporation in a layered medium: relative errors in the cumulative amount of evaporated
water for various permeability averaging schemes. Data from [40]

�x = 10 cm �x = 1 cm
Scheme ERR-EV Scheme ERR-EV Scheme ERR-EV Scheme ERR-EV

(%) (%) (%) (%)

CC-ARIT 400 VC-ARIT 237 CC-ARIT 19.7 VC-ARIT 16.4
CC-ROM −59.1 VC-GEOM −63.9 CC-ROM −58.9 VC-GEOM −59.3
CC-UPS −9.63 VC-UPS 469 CC-UPS 2.11 VC-UPS 29.1
CC-SZYM −2.33 VC-SZYM −5.25 CC-SZYM 3.09 VC-SZYM 3.07
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Fig. 4.12 Evaporation in a layered medium: pressure head profiles obtained with vertex-centred
(a) and cell-centred (b) schemes (t = 50000 h, �x = 10 cm). Reproduced with permission
from [40]

scheme the change in water content at highly permeable side of the interface results
in an immediate change in the part of the control volume located at the weakly per-
meable part of the interface. This is caused by the assumption of the continuity of
the water pressure across the interface. If the control volumes at the interface are
large, considerable amounts of water can move instantaneously across the interface.
In the CC-UPS scheme, the interface coincides with the boundary between control
volumes and harmonic averaging of the saturated conductivity (which gives more
weight to the weakly permeable medium) partly compensates for the acceleration
caused by upstream weighting of the relative conductivity [40]. Finally, it should
be noted that in this numerical example the performance of the schemes based on
geometric averaging (CC-ROM and VC-GEOM) does not improve as the grid is
refined.
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4.5 Multidimensional Problems

As shown in Chap. 3, permeability averaging in multidimensional problems can be
carried out either using a finite-element like approach or a finite-difference like
approach (used either in the finite difference or finite volume framework). In the first
case, the permeability value at a specific point in the element is interpolated from
the nodal values at all vertices of the element, or is evaluated as a function of the
capillary pressure or water saturation at the considered point, which in turn is inter-
polated from the nodal pressures or saturations. In the second case, the permeability
is evaluated at the midpoint of a primary grid edge, connecting two nodes. To this
order many averaging schemes developed for one-dimensional flow can be used.
However, their applicability depends on the properties of the numerical grid and the
degree of anisotropy of the porous medium. Assuming that the spatial discretization
is performed with the control volume finite element approach, several specific cases
can be distinguished, as discussed below:

• Isotropic permeability, rectangular grid. In this case, all methods developed for
one-dimensional flow can be used. The methods based on flux splitting and Darcian
averaging can be expected to yield more accurate results, as they provide different
relative permeabilities for horizontal and vertical fluxes.

• Isotropic permeability, unstructured grid. All simple averaging methods can be
used, as well as the flux splitting methods, if one takes into account that the value of
the gravitational coefficient ζ varies from one edge to the other, depending on their
orientation with respect to the gravity vector. In the group of Darcian means, the
variability of gravitational coefficient is included in the method of Szymkiewicz
[39], and can be easily introduced in the methods of Baker [2] and Baker et al. [5],
as shown in Sect. 4.1.3.

• Diagonally anisotropic permeability, rectangular grid. If the main anisotropy axes
are aligned with the axes of spatial coordinate system and with the grid lines,
the permeability in each direction can be computed with the one-dimensional
approach. The relative permeability functions can be different in the horizontal
and vertical direction.

• Anisotropic intrinsic permeability, isotropic relative permeability, arbitrary grid.
For anisotropic media, the flux along specific edge depends on the components of
the water potential gradient in both parallel and perpendicular directions. It means
that the one-dimensional steady-state analysis, which is the basis of the Darcian
averaging schemes, does not hold strictly. However, such methods can still be
used to approximate the scalar relative permeability, which is then multiplied by
the intrinsic permeability tensor.

• Anisotropic intrinsic and relative permeability, arbitrary grid. In this case, it is
impossible to define the relative permeability function for an arbitrary direction.
Therefore, methods based on the integration of the relative permeability function,
including the integrated mean and Darcian mean approaches, cannot be used. In
contrast, methods based on averaging of the nodal permeability values can be
still applied, for example by averaging each component of the permeability tensor

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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separately. Upstreaming can be easily implemented assuming that the permeability
tensor is positively definite, which in the context of groundwater flow means that
the flux is directed from the node with larger potential to the node with lower
potential.

In all the above cases, the permeability averaging is performed within a materially
homogeneous grid element, according to the vertex-centred discretization scheme.
In a heterogeneous medium, the inter-nodal permeabilities are calculated separately
for the elements at each side of the edge, using the same pair of nodal pressures
and different relative permeability functions. In some cases, the methods based on
Darcian mean concept can be applied for multidimensional problems also in the
framework of the cell-centred discretization, which implies the existence of material
interfaces between nodes. This is possible if the medium is diagonally anisotropic
and the grid is rectangular. In such a case, the interface condition given by Eq. (4.68)
can be easily formulated for each spatial direction and the relative permeabilities at
each side of the interface can be computed using more accurate formulae. However,
in a more general case of unstructured cell-centred grids, one-dimensional Darcian
approximations cannot be easily implemented.

In order to show the applicability of the improved averaging scheme [39] to two-
dimensional flow in an isotropic medium, a comparison of the numerical results
with the analytical solution of Tracy [42] is performed. The flow domain is a square
L1 = 1 m by L2 = 1 m, with x1 axis horizontal and x2 axis oriented vertically upward.
The capillary and relative permeability functions are formulated with respect to the
water pressure head hw and have the exponential form:

θw = θrw + (θsw − θrw) exp(hw/hg) , (4.84)

Kw = Ksw exp(hw/hg) , (4.85)

with the parameters θsw = 0.45, θrw = 0.15, hg = 2 m and Ksw = 10−5 m s−1. The
compressibility of soil and water is neglected. As the initial condition, a uniform
distribution of the water pressure hinit

w = −10 m is assumed. Along the bottom and
the vertical sides of the domain this value is maintained as the boundary condition.
At the top boundary a sinusoidal distribution of the pressure head is imposed:

htop
w (x1) = hg ln

[
exp

(
hinit

w

hg

)
+
(

1 − exp

(
hinit

w

hg

))
sin

(
πx1

L1

)]
(4.86)

For the above assumptions the value of the water pressure for a given spatial point
(x1, x2) and time t can be calculated analytically as [42]:
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hw(x1, x2, t) = hg ln

{
exp

(
hinit

w

hg

)
+ h′′ sin

πx1

L1
exp

(
L2 − x2

2 hg

)
[

sinh(β ′′ x2)

sinh(β ′′ L2)
+ 2

L2 c′′
∞∑

n=1

(−1)n
λ′′

n

γ ′′ sin(λ′′
n x2) exp(−γ ′′ t)

]}

(4.87)

where:

c′′ = (θsw − θrw)

hg Ksw
, γ ′′ = (β ′′)2 + (λ′′

n)
2

c′′ , λ′′
n = nπ

L2
,

β ′′ =
√

1

4 (hg)2
+
(
π

L1

)2

, h′′ = 1 − exp(hinit
w /hg).

Numerical simulations were performed using both rectangular and unstructured
(triangular) meshes. For each mesh type, two levels of refinement were considered:
a coarser one with �x = 10 cm and a finer one with �x = 2 cm. In the case of
unstructured grid, these values refer to the node spacing imposed along the boundaries
of the domain. The unstructured mesh was generated using NetGen code, developed
by Burzyński [9]. The vertex centred finite volume approach was used with two-
point approximation of the average permeability at each cell face, which allowed
for the use of various schemes developed for one-dimensional flow. The pressure
gradient was evaluated using the finite element approach. For structured meshes the
evaluation point was chosen as either the edge midpoint or the face midpoint, as
shown in Chap. 3, Fig. 3.4. In the first case the scheme becomes equivalent to the
finite difference scheme, and is denoted by FD. For each simulation the root mean
square error of the nodal values of the water pressure at the final time t = 720 s was
computed:

RMSEp =
√√√√ 1

N

N∑
1

(pnum − pref)
2 (4.88)

where N is the number of internal nodes in the domain, pnum is the final water
pressure at a specific node from the numerical solution and pref is the correspond-
ing pressure value obtained from the analytical solution (pw = hw ρw g). The val-
ues of RMSE for different grids and permeability averaging schemes are listed in
Table 4.11.

It can be seen that the permeability averaging schemes K-SZYM and K-BAKER
are significantly more accurate than the other approaches. In this test case, the flow
is dominated by capillary forces and K-SZYM is equivalent to the integrated mean
method. On the other hand, for exponential permeability function K-BAKER repre-
sents the exact solution of steady-state flow. Thus, one could expect K-BAKER to
be the most accurate of all methods. However, the results show that it is slightly less
accurate than K-SZYM. This apparent contradiction can be explained by the fact that

http://dx.doi.org/10.1007/978-3-642-23559-7_3
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Table 4.11 Example 7: root mean square errors in the water pressure (Pa) for different numerical
approximation schemes

Grid K-SZYM K-BAKER K-GEOM K-ARIT K-UPS

Structured, FD
Fine 32 35 271 388 1915
Coarse 836 911 1036 2183 6308

Structured, FE
Fine 29 31 271 389 1914
Coarse 676 746 920 2160 6298

Unstructured, FE
Fine 39 39 219 322 1634
Coarse 502 536 979 1754 5334

Fig. 4.13 Example 7: water pressure distribution for the final time t = 720 s according to the
analytical solution and three numerical solutions of coarse grid

applying steady-state results to transient flow introduces additional error. It should
be also noted that for this particular setting the geometric mean is more accurate than
the arithmetic mean, while the upstream weighting produces considerable errors,
even on finer grids.

In Fig. 4.13 the distribution of the water pressure for t = 720 s obtained with
the K-SZYM method on structured and unstructured coarse grids is compared to
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Fig. 4.14 Example 7: water pressure profile along the vertical symmetry axis according to the
analytical solution and three numerical solutions of coarse grid (t = 720 s)

the analytical solution and to the solution on structured grid using K-UPS averaging
scheme. The plots are consistent with the error measures reported in Table 4.11. The
solutions obtained using K-SZYM scheme are in a very good visual agreement with
the reference analytical solution, while K-UPS predicts a more diffuse wetting front.
Figure 4.14 shows the water pressure profiles along the vertical symmetry axis at
the end of the simulation obtained for the coarse unstructured grid using K-SZYM,
K-ARIT and K-UPS. It can be seen that the result for K-SZYM is virtually the same
as the analytical solution, K-ARIT gives a slight discrepancy, while K-UPS predicts
significantly different profile shape.

4.6 Two-Phase Flow

The development of approximate Darcian averages, such as the ones presented in
Sect. 4.2, is not possible for two-phase flow, because the relative permeability depends
on the pressures in both fluid phases. In contrast, the simple averaging methods such
as the arithmetic, geometric, harmonic and upstream mean can be in principle used to
compute the inter-nodal permeability for each of the fluid phases. It is also possible to
define an integrated mean for each fluid phase by integrating the relative permeability
with respect to the capillary pressure:
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k(ij)rw = 1

p(j)c − p(i)c

p(j)c∫

p(i)c

krw(p̂) dp̂ (4.89)

k(ij)ra = 1

p(j)c − p(i)c

p(j)c∫

p(i)c

kra(p̂) dp̂ (4.90)

It should be noted that the above formula for krw is equivalent to the integrated mean
developed for the Richards equation, Eq. (4.9), only if the air pressure is atmospheric
(pa = 0) and both nodes are unsaturated.

The two-phase flow model includes advective terms related to viscous and gravity
forces, as well as the capillary diffusion term. The Richards equation represents a
limit case where the viscous forces are negligible and only capillary and gravity terms
remain. Thus some insights into the problem of permeability averaging for two phase
flow can be gained from the analysis of the Richards equation presented in the above
sections. In particular, one can expect that if the pressure gradients in the air phase are
negligible, the average permeability of the water phase will vary in the range from the
integrated mean (for capillary dominated flow) to the permeability of the upper node
(for gravity dominated flow), with the arithmetic mean being a reasonable approxi-
mation for intermediate conditions. This is confirmed by numerical solutions of Celia
and Binning [10] and Kees and Miller [24], who employed arithmetic averaging, and
Touma and Vauclin [41], who used geometric averaging on a relatively fine grid. On
the other hand, if significant pressure gradients exist in the non-wetting phase, the role
of advective terms related to the viscous forces increases. Consequently, arithmetic,
geometric or integrated averaging will produce oscillatory solutions, which can be
avoided by employing upstream average. Permeability upstreaming is commonly
used for two-phase flow with non-wetting to wetting phase mobility ratio close to
one or smaller than one, e.g. in liquid hydrocarbons—water system [22]. However,
the application of upstreaming for capillary driven two-phase flow in air-water sys-
tem may lead to overly diffusive and inaccurate solutions. An approach alternative
to upstreaming is the explicit addition of artificial diffusion to the discrete equations.
This method was applied in [20] for the fractional flow formulation.

The influence of the permeability averaging method on the solution of one-
dimensional two phase flow equations was investigated in the framework of the finite
element discretization by Helmig and Huber [22], and in the framework of the finite
volume formulation by Szymkiewicz [38]. In the following two other illustrative
examples are presented. In the first test case, one-dimensional, horizontal, capillary
dominated flow is considered. The dimension of the solution domain is 0.5 m and
the soil is characterized by Brooks–Corey–Burdine hydraulic functions with the fol-
lowing parameters: φ = 0.4, Srw = Sra = 0, k = 1.25 × 10−12 m2, pe = 814 Pa,
nb = 0.686. The compressibility of water and soil is neglected. Initially, the pore
air is at atmospheric pressure (pa = 0) and the water saturation is Sw = 0.1. At the
left-hand side boundary (x = 0), a constant value of water saturation Sw = 0.95 is
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Fig. 4.15 Water saturation profiles for two-phase horizontal flow (t = 4 h)

imposed, while the air phase is maintained at atmospheric pressure. The right-hand
side boundary is assumed to be impermeable for both fluids (vw = va = 0). For
such conditions, a semi-analytical solution of Sunada and McWhorter [37] can be
applied. The semi-analytical solution is computed following the improved method
by Fucik et al. [18]. It is compared to the results of the numerical simulations using
three permeability averaging schemes: the upstream weighting, arithmetic averag-
ing and integrated averaging with respect to the kα(pc) function. For a fine grid,
�x = 0.5 cm, all three approaches gave results very close to the analytical solution
(results not shown here). For a coarser grid with �x = 5 cm, significant differences
occur, as shown in Fig. 4.15. The integrated mean provides results very close to the
reference solution, while K-ARIT and K-UPS lead to more diffuse wetting fronts,
which in the case of K-UPS reaches the boundary of the domain. Note that the same
relative accuracy of the three methods is observed for the Richards equation if the
flow is capillary-dominated, which is the case for horizontal flow or vertical flow
with small �x, as shown in Example 1, Fig. 4.6.

In the final example, vertical two phase flow is considered. The geometry, soil para-
meters and initial conditions are the same as in the previous case. The boundary con-
ditions correspond to ponded infiltration, i.e. at the top of the soil layer pw = 100 Pa
and Sw = 1, while at the bottom the initial values of the water pressure and saturation
are maintained. In this case no analytical solution can be applied and a numerical
solution on dense grid�x = 0.05 cm is considered as the reference. The coarse grid
solutions (�x = 0.5 cm) shown in Fig. 4.16 behave differently from the previous
case. The integrated mean underestimates the position of the wetting front, while
the upstream weighting and arithmetic averaging are more accurate with respect to
the position of the front, but show more significant numerical diffusion, especially
in the case of upstream weighting.

An additional issue arises when a part of the solution domain is fully saturated
with water and the medium has a non-zero value of the entry pressure. In such a
case, the air pressure at the water-saturated nodes is physically undefined, but in the
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numerical algorithm it is computed as pa = pw + pe, and thus can be higher than
the atmospheric pressure. If air at atmospheric pressure is present at a neighboring
node, a gradient in the air potential occurs between the water-saturated node and
the unsaturated node, even though physically no flow is possible. The average air
permeability in this case should be equal to zero, which is naturally accounted for
by the use of upstream weighting and geometric averaging. For other averaging
formulae, appropriate modifications have to be made to prevent non-physical fluxes.

The above examples show that there is a potential for improvement of the per-
meability averaging formulas for the two-phase flow, based on the relations between
capillary, gravity and viscous forces at the scale of a single numerical grid cell.
However, such an analysis is beyond the scope of the present work.
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Chapter 5
Upscaling from Darcy Scale to Field Scale

Many porous media, either natural or human-made, show heterogeneous structure
at the Darcy scale, represented by spatial variability of their characteristics such as
porosity, intrinsic permeability or capillary function. If the domain under consid-
eration consists of a limited number of well-defined locally homogeneous material
regions, e.g. an earth dam with a clay core or a soil profile with few distinct layers,
the flow can be modelled analytically or numerically using the Darcy-scale flow
equations in each region, linked by appropriate conditions at the interfaces. How-
ever, porous media are often characterized by spatial variability of their hydraulic
properties at a scale which is very small compared to the size of the domain under
consideration. For example, rocks often have dense network of fractures with the
spacing of the order of centimeters or decimeters, while the size of the flow domain
is of the order of tens of meters to kilometers. Similarly, many soils and loose geolog-
ical sediments contain large numbers of relatively small inclusions or lenses having
properties different from the background material. Explicit representation of such
features on a numerical grid would require excessively large number of grid cells.
Even with the ever-increasing capabilities of the computers, such problems are dif-
ficult to solve within a reasonable time frame. Moreover, if the materials of the
neighbouring sub-regions have contrasting hydraulic properties, e.g. permeability,
the convergence of the numerical solution is usually negatively affected, because
the linear systems of algebraic equations, arising from the discretization of the gov-
erning differential equations, tend to be ill-conditioned, even in the case of single
phase flow. These difficulties increase for highly nonlinear unsaturated or two-phase
flow phenomena. Finally, the heterogeneous structure is often not known in much
detail, which means that it is difficult, and perhaps not purposeful to reconstruct the
heterogeneity field. Instead, some representative pattern can be assumed.

All these factors motivate the development of upscaling approaches, which
attempt to reproduce the behaviour of the system in terms of large-scale variables,
defined as some kind of average values, representative for a volumetric element con-
taining a number of small-scale material heterogeneities. In the context of flow in
porous media, upscaling can be performed at various levels of the hierarchy of scales.
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For instance, the Darcy equation can be regarded as a result of upscaling pore-scale
Navier-Stokes equations, while the latter ones represent an upscaled description of
the molecular-scale processes. This chapter and the following ones focus on upscal-
ing from the Darcy scale to the field scale. In the following discussion, those two
scales are also denoted by more generic names: small (or local) scale and large
(or macroscopic) scale. While an overview of various heterogeneity patterns is pre-
sented, the major focus of this work is on binary media containing disconnected
inclusions scattered in the background material. It should be also noted that in many
applications it is possible to distinguish more than one scale larger than the Darcy
scale, for instance the scale of a single geological layer, which is heterogeneous
due to the presence of fractures or lenses, and the scale of a reservoir composed of
several layers. In this work, only the first level of upscaling above the Darcy scale is
considered.

The literature on upscaling is very broad and its comprehensive review is beyond
the scope of this book. General works consulted by the author include [17, 18, 99].
Other contributions are cited in the following sections.

5.1 Heterogeneity Patterns

Porous media show various types of heterogeneity at the Darcy scale. Some of them
are shown in Fig. 5.1. Perhaps the most well known and widely studied pattern is that
of layered medium (Fig. 5.1a), e.g. [79, 115]. Horizontal layering, in particular, is
present in many geological formations of sedimentary rocks or loose sediments, due
to the conditions of depositional environment in which they were formed. Such media
are characterized by very high (actually the highest possible) anisotropy of the field-
scale permeability. The problem of upscaling of layered media arises, for example,
if a three dimensional mathematical model of flow is replaced by a two dimensional
model describing flow in the horizontal plane, which is a typical situation in reservoir
modeling, e.g. [116].

Another widely studied heterogeneity pattern is represented by media containing
lenses or inclusions of one or more porous materials dispersed in a porous back-
ground material of different physical characteristics (Fig. 5.1b), e.g. [13, 36, 37,
46, 50, 55, 77, 78, 86, 95, 104, 105]. This pattern is also encountered in many
sedimentary formations. Knudby et al. [55] lists the following examples: fluvial sed-
iments containing paleochannels (high permeability inclusions embedded in a low
permeability background), sandstone/shale sequences (low permeability inclusions
embedded in a high permeability material), coastal deposits (deltaic paleochannels
represent the highly permeable regions), and some glacial deposits. The limit cases
are represented by stony soils (stones as impermeable inclusions, e.g. [73]) and
porous media containing cavities or vugs, much larger than the pore size, e.g. [9].
The background material is often referred to as matrix, however the term matrix is
also used in a different meaning for fractured media (see below). Similar structures
are also encountered in human-made porous media, e.g. masonry walls consisting
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(a) (b) (c)

Fig. 5.1 Typical field-scale heterogeneity patterns: a layered medium, b medium with dispersed
inclusions, c fractured medium

of bricks or porous rock slabs cemented with mortar. The inclusions can be either
separated form each other, or they can overlap, forming continuous paths of the cor-
responding porous material in one or more spatial directions. Field-scale properties
of such media are significantly influenced by the volume fraction, shape and con-
nectivity of the inclusions, e.g. [55, 96]. Binary media with disconnected inclusions
are the major focus of the following chapters.

Fractured rocks show a very distinct heterogeneous structure, resulting from the
presence of multiple thin, approximately planar discontinuities, which arise mostly
due to mechanical failure (Fig. 5.1c). The volume of the fractures is negligible com-
pared to the volume of the rock mass, which is referred to as matrix, but if they are
connected they form a network of preferential flowpaths, which greatly modifies the
field-scale hydraulic properties of the medium. Since a large part of oil and ground-
water resources resides in fractured rocks (mostly limestones and sandstones), this
type of heterogeneous porous media receives considerable attention in the literature,
e.g. [14, 16, 28, 58, 83]. The large-scale hydraulic behaviour of fractured media is
influenced by several factors. For instance, while it is often assumed that the flow in
a single fracture can be described by the Darcy formula, this is not always the case,
and other models have to be used, like the Forchheimer equation, e.g. [113]. The rock
matrix may be either permeable (in the case of many sedimentary rocks) or imper-
meable (in the case of igneous or metamorphic rocks). If the matrix is permeable,
its permeability is orders of magnitude smaller than the permeability of fractures.
Moreover, the matrix can be continuous and contribute to the large-scale flow or
it can be divided by fractures into separate blocks, which release or absorb fluid
from the fracture network. Due to the presence of two hydraulic systems with widely
different characteristics, it is often impossible to reproduce the large-scale flow in
fractured rocks using simple parameter averaging, because large local gradients of
pressure arise between the fractures and matrix. The recognition of this fact led to
the development of double porosity models. In this case the governing equations for
field-scale flow are formulated separately for each pore system and they are coupled
by additional terms describing fluid transfer between the systems.

Dual structure is also observed in many soils. Primary soil particles tend to
coalesce into secondary structural units called peds, clods or aggregates [82, 90].
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These objects have variable geometric forms, described as platy, blocky, columnar or
angular, and they are separated from each other by failure zones, which can be void or
filled with porous material coarser than the aggregates. Such soils are characterized
by a bimodal distribution of the pore sizes, with two distinct classes corresponding
to the intra-aggregate micropores and inter-aggregate macropores. The term macro-
pores is also used to describe shrinkage cracks, wormholes, root channels and other
highly permeable structural forms. Due to their relatively large size, macropores
become saturated with water only when the soil water pressure is close to zero and
they drain quickly. During heavy rainfall, when the soil surface reaches saturation,
water enters macropores, leading to the preferential (bypass) flow. In such a case sig-
nificant amount of contaminants can be rapidly transferred to deeper soil horizons.
Below the uppermost saturated layer of soil, the flow is characterized by local non-
equilibrium conditions, because significant local pressure gradients arise between the
water-filled macropores and the surrounding dry or moderately wet matrix. In order
to capture this effect, double porosity models, similar in form to the ones developed
for fractured media, are often applied at the field-scale. The flow in macropores is
typically described either by the Darcy formula (assuming very steep capillary and
relative permeability functions), e.g. [41], or by the kinematic wave model, which
neglects the capillary forces and takes into account only gravity, e.g. [51].

The term binary media is often used to describe heterogeneous porous media com-
posed of two materials, such that the variability of hydraulic parameters within each
material can be neglected, e.g. [55]. At the local scale, binary media are characterized
by two distinct sets of hydraulic parameters. Binary structures include, among other,
layered media composed of two materials and inclusions of single material dispersed
in a homogeneous background. Assuming that the Darcy formula is valid for all pore
systems, both fractured rocks and structured soils can be regarded as special cases
of binary porous media, with very small fraction of the highly permeable material
and large permeability contrast between the two components.

A general case of heterogeneity is represented by media which do not show any
particular structure. The upscaling problem for such media often arise in large scale
simulations of flow in groundwater or petroleum reservoirs, due to the discrepancy
in the resolution of the geological model, providing detailed rock characteristics, and
the numerical model used to simulate flow processes. Each cell of the numerical grid
contains many cells of the geological model, and a question arises how to transfer
the small scale variability to the large scale model in such a way that the overall
behaviour of the medium is correctly represented.

5.2 Overview of Upscaling Approaches

Development of a large number of upscaling techniques for subsurface flow mod-
eling was motivated by problems arising in petroleum engineering, hydrogeology
and vadose zone hydrology, e.g. [18, 24, 25, 71, 72, 84, 101, 106, 111]. Each of
these fields of application has its distinct features. In petroleum engineering, the
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focus is on large scale (up to hundreds of kilometers), predominantly horizontal two
phase or three phase flow, which at the reservoir scale is driven mostly by viscous
forces, although capillarity and gravity can be locally important. Hydrogeological
applications are related to mostly horizontal, single-phase water flow in aquifers,
with the dimension of several kilometers. In contrast, water flow in vadose zone is
typically driven by capillary and gravity forces, and occurs mostly in vertical direc-
tion, at a scale of several meters, although the importance of horizontal flow has
been increasingly recognized [45, 101]. Nevertheless, there is a significant degree
of overlap between conceptual approaches applied in these three domains and each
of them can benefit from the advancement made in the other ones. For example, the
double porosity models initially developed for fractured reservoirs, e.g. [11, 103]
were later applied to describe flow in structured soils at considerably smaller spatial
scales, e.g. [41].

Upscaling approaches can be broadly categorized in two groups, according to the
way in which the large-scale mathematical model is developed. In the first group, an
a priori assumption is made on the form of the mathematical model describing flow
at the field scale, based on some phenomenological considerations. For instance, it
is often assumed that the field-scale flow equations have the same form as the Darcy-
scale flow equations presented in Chap. 2. In such a case, the upscaling problem
consists in finding the large-scale constitutive properties and parameters characteriz-
ing the system. However, this type of models can be inaccurate, particularly for media
with large permeability contrast between the component materials. For such cases,
other phenomenological models were developed, e.g. the double-porosity models
mentioned above, the relaxation models, e.g. [85], or the stream-tube approach,
e.g. [101]. In these approaches the large-scale flow equations have different form
than the Darcy-scale ones.

In the second group of methods, the description of the field-scale behaviour
is obtained in a more rigorous way, by mathematical derivation starting from the
description of flow at the Darcy scale. The form of the field-scale equations is not
assumed a priori, rather it results from the assumptions on the physics of the local
scale process and the local structure of the medium, which are taken into account
during the derivation procedure. The transition from small scale equations to large
scale equations can be performed using different mathematical techniques, for exam-
ple the asymptotic homogenization for periodic media, e.g. [8, 15, 88], the volume
averaging, e.g. [108] or various stochastic approaches, e.g. [26, 39, 114]. These
methods offer a sound theoretical background to deal with the following important
issues related to upscaling:

• Is it possible to replace a heterogeneous medium with a homogeneous equiva-
lent characterized by intrinsic effective parameters, independent of the boundary
conditions of the large-scale problem?

• What is the form of the governing equations at the large scale?
• What is the relation between the large-scale parameters and the parameters of the

small-scale model?
• What is the domain of validity of the large-scale model?

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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Two basic prerequisites for the existence of an equivalent large-scale model with
intrinsic parameters are the separation of scales and the existence of a representative
elementary volume (REV) at the smaller scale. These two conditions are invoked, in
slightly different forms, by both the periodic homogenization method and the volume
averaging method. In the former approach the medium is assumed to be periodic,
with the periodic cell being equivalent to an REV. The condition of separation of
scales is specified in the following form, e.g. [8]:

ε = l

L
� 1 , (5.1)

where ε is the scale separation parameter, l is the dimension of the periodic cell and L
is the dimension of the large scale domain. While this criterion is rather imprecise, it
is generally considered that the large-scale model is a good approximation if ε < 0.1
[8] and the accuracy of approximation increases for decreasing ε. It should be noted
that besides the geometric scale separation, the asymptotic homogenization method
postulates the separation of scales with respect to the characteristic length of the
relevant physical processes. For instance, if wave propagation is considered, it is
required that the periodic cell dimension be much smaller than the length of the
wave [8].

In the volume averaging method, the averaging procedure is performed in a region
of dimension lv, which satisfies the following assumption [108]:

lh � lv � L , (5.2)

where lh is the characteristic dimension of the local heterogeneities. The averaging
region is equivalent to a representative elementary volume. The medium may not be
periodic in the deterministic sense, but the distribution of heterogeneities is assumed
to be stationary, such that the medium shows translational invariance.

If the conditions of separation of scales and existence of REV are not satisfied,
it is generally not possible to obtain a large-scale model with intrinsic parameters.
It means that at the large scale the parameters of the governing equations will be
problem-specific, depending on the actual boundary conditions. In this context, a
distinction can be made between equivalent and effective large-scale parameters,
which applies particularly to the permeability or hydraulic conductivity [84]. The
effective parameters represent intrinsic large scale properties of the material and
they can be defined only in the particular case mentioned above. The term equivalent
parameters has a more general meaning and denotes the parameters of any upscaled
model for a heterogeneous medium, which can be problem-dependent. It should be
also noted that the separation of scales and the presence of REV are necessary but
not sufficient conditions for the existence of the large-scale model with effective
parameters. In other words, even if both of them hold it may be not possible to derive
a large-scale model, depending on the physics of the small-scale process.

The methods described above were developed in the deterministic framework,
which assumes that full information about the spatial distribution of all parameters
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of the porous medium is available at the smaller scale. However, both of them can be
used in the stochastic framework, which assumes that the local heterogeneity pattern
of the porous medium is uncertain and can be characterized by some specific proba-
bility distribution, e.g. [1, 69]. The assumptions of stationarity and scale separation,
Eq. (5.2), are also relevant to the stochastic analysis [26]. If they are satisfied, the
results obtained by stochastic upscaling are qualitatively equivalent to those obtained
by the deterministic approach, i.e. the large scale models should have the same form
[7, 8]. The difference is in the effective parameters, which in the stochastic case are
given by random functions with specific probability distribution. Under certain addi-
tional assumptions, stochastic large-scale models can be also derived analytically
when the separation of scales does not hold, with the resulting effective parameters
depending on the large-scale boundary conditions of the problem.

In this work, a deterministic point of view is adopted and the upscaled mod-
els of flow in heterogeneous porous media of binary periodic structure are con-
sidered. The following part of this chapter presents an overview of the upscaling
techniques applicable for such type of media, while in the subsequent chapters the
results obtained with the asymptotic homogenization approach for a medium with
disconnected inclusions are discussed in more detail. In particular, it will be shown
how the form of the field-scale model and the definition of effective parameters are
influenced by the local geometric structure and the ratio of the permeability and the
entry pressure between the two materials constituting the heterogeneous medium.

5.3 Permeability Upscaling for Steady Single-Phase Flow

Steady-state incompressible single-phase flow represents possibly the simplest
upscaling problem on the conceptual level, because the only parameter to be upscaled
is the intrinsic permeability tensor. Nevertheless, it turns out to be a non-trivial task,
given the large variety of heterogeneous structures occurring in natural porous media.
Comprehensive reviews of various methods used to estimate the large-scale equiva-
lent permeability tensor can be found in [84, 89, 106]. In this section, three groups
of techniques are presented in more detail: algebraic averaging formulas, effective
medium approximations and the methods based on direct solution of the steady flow
equation. All of them can be easily applied to binary media, which are the primary
focus of this work and they can be useful also for more complex cases of transient
unsaturated or two-phase flow, as will be discussed later. The first two approaches
have the advantage of simplicity, as the upscaled permeability can be calculated from
an explicit analytical formula or from the solution of a simple nonlinear equation, but
on the other hand they are accurate only for some particular heterogeneity patterns.
In contrast, the methods from the latter group are more difficult to implement but
offer much larger flexibility.
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5.3.1 Algebraic Averaging

Consider a binary porous medium composed of two isotropic materials having
absolute permeabilities k I and k II (the subscript s is omitted to simplify notation)
and the corresponding volumetric fractions of wI and wII . Even if both constituents
are isotropic, the equivalent field-scale permeability is in a general case a tensor,
due to the possible anisotropic spatial distribution of the materials. Assuming that
the spatial coordinate axes are parallel to the main axes of field-scale anisotropy, the
permeability tensor becomes diagonal. The permeability value in each direction keq

ii
is bounded by the weighted harmonic mean and the weighted arithmetic mean of the
components’ permeabilities, e.g. [8, 84, 99]:

kharm � keq
ii � karit , (5.3)

where the weighted harmonic and arithmetic averages are defined as follows:

kharm =
[

wI

k I
+ wII

k II

]−1

. (5.4)

karit = wI k I + wII k II . (5.5)

In a layered medium, the arithmetic average corresponds to the equivalent permeabil-
ity in the two directions parallel to the layers, while the harmonic average corresponds
to the equivalent permeability in the direction perpendicular to the layers. For any
specific pair of the volumetric fractions, the layered medium represents the hetero-
geneity pattern with maximum anisotropy. For all other geometric configurations,
the equivalent permeability in any direction is somewhere between these two limit
values. The bounds for equivalent permeability given by (5.3) are known as Wiener
bounds or Voigt–Reuss bounds [8, 84, 99, 110].

In view of the fact that the equivalent permeability in any direction is bounded by
Eq. (5.3), some simple averaging formulas to estimate the equivalent permeability of
a heterogeneous medium can proposed. For example, the generalized power mean
has the following form [53, 84]:

keq
ii =

[
wI

(
k I

)πi + wII
(

k II
)πi

] 1
πi , (5.6)

where πi is a weighting coefficient, which in principle can be different for each
spatial direction i . In order to respect the Wiener bounds, πi should be between −1
and 1. In the former case, Eq. (5.6) represents harmonic averaging, while in the latter
case—arithmetic averaging. For πi → 0 the limit value is given by the weighted
geometric mean:

keq
ii =

(
k I

)wI (
k II

)wII

. (5.7)
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(a) (b)

Fig. 5.2 Heterogeneity patterns of two-dimensional binary medium showing large-scale perme-
ability isotropy: a checkerboard, b coated circles

Geometric mean represents the accurate value of the effective permeability for a
two dimensional binary medium with equal volume fractions of the constituents,
which are arranged in a checkerboard pattern, Fig. 5.2a [99]. In the stochastic frame-
work, geometric mean corresponds to the effective permeability of an isotropic two-
dimensional medium, for which the logarithm of permeability follows the normal
probability distribution [84].

However, the principles of harmonic and arithmetic averaging can be also used
to derive estimations for the equivalent permeability which take into account more
detailed information on the small-scale structure of the medium, such as, for exam-
ple, the Cardwell and Parsons bounds [21, 63, 84]. Consider a three dimensional
heterogeneous upscaling cell, consisting of N1 × N2 × N3 uniform sub-cells with
known permeability values, Fig. 5.3. One possible method to estimate the perme-
ability in x1 direction is to replace the domain by a bundle of columns parallel to x1
axis, Fig. 5.3a. The equivalent permeability of each column is given by the harmonic
average of the permeabilities of the sub-cells constituting the column:

kh, jk
11 =

(
1

N1

N1∑
i=1

1

ki jk

)−1

, (5.8)

where the superscripts i , j and k refer to the position of the sub-cell with respect to the
three coordinate axes. Since the columns are parallel to each other, the permeability
of the whole domain is given by the arithmetic mean of the columns’ permeabilities.

kcpl
11 = 1

N2 N3

N2∑
j=1

N3∑
k=1

kh, jk . (5.9)

This result corresponds to the lower Cardwell and Parsons bound of the equivalent
permeability. In a limit case, the presence of a single impermeable sub-cell in each
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(a) (b)

Fig. 5.3 Computation of Cardwell and Parsons bounds for the equivalent permeability in x1 direc-
tion

column is sufficient to make the equivalent permeability zero, even if the impermeable
sub-cells are widely separated from each other in the three dimensional medium.

The complementary upper bound is derived by conceptualizing the heteroge-
neous domain as a sequence of slices perpendicular to x1 direction, Fig. 5.3b. The
permeability of each slice in x1 direction is given by the arithmetic mean of the
permeabilities of the sub-cells constituting the slice:

ka,i
11 = 1

N2 N3

N2∑
j=1

N3∑
k=1

ki jk . (5.10)

The equivalent permeability of the sequence of slices is then computed as the har-
monic mean of their permeabilities:

kcpu
11 =

(
1

N1

N1∑
i=1

1

ka,i
11

)−1

. (5.11)

Note that in a particular case of an impermeable medium with small amount of
permeable sub-cells it is sufficient that a single permeable sub-cell is present in each
slice to give a non-zero equivalent permeability kcpu

ii , even if the permeable sub-cells
do not form a continuous path through the medium.

Some authors proposed averaging formulas based on a combination of the Card-
well and Parsons bounds. For example, Li et al. [63] suggested to use a weighted
power average of the lower and upper bound as an appropriate estimation for per-
meability in the horizontal directions:
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keq
ii =

(
kcpu

ii

)2/3 (
kcpl

ii

)1/3
i = 1, 2. (5.12)

Vertical permeability is estimated from another formula, which takes into account
possible local-scale anisotropy of the sub-cells. If the component materials are
isotropic, this formula reduces to the lower Cardwell and Parsons bound for flow
in the vertical direction kcpl

33 .
In the approach of Sviercoski [94], developed for two-dimensional media, the

diagonal components of the equivalent permeability tensor are calculated as:

keq
ii = 1

2

[
kcpu

ii + kcpl
ii

2
+

(
kcpu

ii kcpl
ii

)1/2
]

i = 1, 2, (5.13)

which is the arithmetic mean of the arithmetic and geometric means of the lower and
upper bounds for the relevant spatial direction. A method to compute the off-diagonal
components of the equivalent permeability tensor is also provided in [94].

5.3.2 Effective Medium Theory

The effective medium theory allows to estimate the permeability of heterogeneous
mixtures and is particularly well suited for the case of binary media composed of
spherical or ellipsoidal inclusions embedded in a background material. In this case
the notion of effective permeability can be used, because separation of scales and
stationarity of the medium are implied. The approach is based on the analysis of the
perturbation of a uniform potential field caused by a single inclusion placed in an
infinite homogeneous domain. For ellipsoidal inclusions, the corresponding solution
can be obtained analytically. Various effective medium schemes differ in the way of
accounting for the interactions between inclusions, which leads to significant differ-
ences in the results as the volume fraction of inclusions increases. Three formulae
widely used in many disciplines of engineering are known as the Maxwell formula,
the self-consistent (or symmetric Bruggeman) formula and the differential or asym-
metric Bruggeman formula (although a variety of other names for each of them can
be found in the literature). The formulas are presented here after [99] for the case of
uniformly aligned ellipsoids, with the equivalent permeability given by a diagonal
tensor. In the following the background is denoted as material I and the inclusions
as material II.

The Maxwell formula is based on the assumption that the total perturbation of the
potential field is the sum of perturbations caused by single inclusions. The expression
for the effective permeability can written as follows [99]:

keq
ii = k I + wII

(
k II − k I

)
1 + di wI

(
k II − k I

)
/k I

, (5.14)
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Table 5.1 Depolarisation coefficients for various shapes of inclusions [52, 67]

Shape d1 d2 d3

Spheroid a1 �= a2 = a3
1

1 + 1.6(a1/a2)+ 0.4(a1/a2)2

1 − d1

2

1 − d1

2

Sphere a1 = a2 = a3
1

3

1

3

1

3
Infinite elliptical cylinder a3 = ∞ a2

a1 + a2

a1

a1 + a2
0

Infinite circular cylinder a1 = a2, a3 = ∞ 1

2

1

2
0

Infinite disk a2 = a3 = ∞ 1 0 0

where the superscripts I and II refer to the background material and inclusions,
respectively, and di is the depolarization coefficient in i th direction, which depends
on the shape of the inclusion. In a general case of triaxial ellipsoid, the depolarisation
coefficients are given be the following formula [67, 99]:

di = a1 a2 a3

2

∫ +∞

0

du(
u + a2

i

) √(
u + a2

1

) (
u + a2

2

) (
u + a2

3

) , (5.15)

where u is the integration variable and ai is the length of the ellipsoid axis parallel to
the spatial direction xi . The resulting coefficients, however, depend only on the ratio
between the lengths of the axes, and not on their actual lengths. Several particular
cases can be distinguished, for which simpler expressions are available, as shown in
Table 5.1. Note that the case of discs with infinite dimensions in two directions is
equivalent to a layered medium, and the Maxwell formula provides the corresponding
values of the arithmetic and harmonic averages. Due to the assumed lack of interaction
between inclusions, the formula is considered to be a good approximation for the
so-called dilute limit with wII � 1. However, it is also relatively accurate for higher
inclusion contents, provided that the inclusions are well separated from each other
[67].

The Maxwell formula is asymmetric, which means that for any pair of materials
with specific volume fractions two values of the effective permeability keff

ii are possi-
ble, depending on which of the materials is assumed to form discontinuous inclusions.
It can be shown that for an arbitrary binary medium which shows large-scale isotropy
the effective permeability is between the two values predicted by the Maxwell for-
mula assuming inclusions in the form of spheres (in three-dimensional media) or
circles (in two-dimensional media) [47, 67, 99]. This pair of values is known as
the Hashin–Shtrikman bounds [47]. The Hashin-Shtrikman bounds give exact val-
ues of permeability for a particular type of medium represented by an assemblage
of coated spheres or circles, as shown in Fig. 5.2b. The larger value is obtained for
low-permeability cores inside high-permeability coatings, and the smaller value—for
the inverse case. For all other macroscopically isotropic binary media the effective
permeability is between these bounds.
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The self consistent approximation is obtained from the analysis of a single inclu-
sion embedded in a homogeneous medium, whose permeability is assumed to be
equal to the unknown effective permeability. This leads to an implicit formula of the
following form [99]:

wI
(
k I − keff

ii

)
di k I + (1 − di ) keff

ii

+ wII
(
kII − keff

ii

)
di kII + (1 − di ) keff

ii

= 0 . (5.16)

Using the above formula, the components of the effective tensor can be computed
independently of each other, because for each spatial direction it is assumed that
the material surrounding the inclusion is isotropic. Other formulations take into
account the anisotropy of the surrounding material, which leads to a system of 2
or 3 coupled nonlinear equations (depending on the dimension of the problem),
which must be solved to obtain the components of keff [36, 77, 78]. In contrast
to the Maxwell formula, in the self-consistent scheme a specific threshold value
of the volume fractions of inclusions exists, above which they become connected
and their properties dominate the equivalent properties of the system. The threshold
value depends on the shape of inclusions and is equal to 1/2 for circles and 1/3 for
spheres. Moreover, the self consistent approximation shows symmetry with respect
to the volumetric fraction of the materials. It means that for a specific proportion of
the weakly and highly permeable material there is only one value of the effective
permeability, regardless of the choice of material for background and inclusions.

Finally, the differential formula is based on the consideration of the increment
of the effective permeability caused by a small increment in the volume fraction
of inclusions. It is assumed that the corresponding value can be obtained using the
Maxwell formula. Integration of the resulting differential equation in the range of
the volume fractions of inclusions from 0 to the considered value of wII yields the
following expression for keff [99]:

wI kII − k I

kII − keff
ii

=
(

k I

keff
ii

)di

. (5.17)

The resulting nonlinear equation has to be solved numerically. Similarly to the
Maxwell formula, the differential scheme is asymmetric.

The values of the effective permeability obtained with various effective medium
formulae are plotted in Figs. 5.4 and 5.5, together with the arithmetic and harmonic
averages. Figure 5.4 shows the results for isotropic inclusions in two and three dimen-
sions (i.e. circles and spheres). For each geometry two sets of results are presented,
corresponding respectively to highly permeable inclusions with kII/k I = 104 and
weakly permeable inclusions with kII/k I = 10−4. In all cases, the Maxwell formula,
which assumes well-separated inclusions, predicts effective permeability which is
close to the background permeability even for large inclusions fraction wII . There-
fore, it is close to the arithmetic mean in the case of weakly permeable inclusions and
to the harmonic mean in the case of highly permeable inclusions. The self-consistent
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Fig. 5.4 Effective permeability as a function of inclusions fraction for an assemblage of inclusions:
a circles, highly permeable, b circles, weakly permeable, c spheres, highly permeable, d spheres,
weakly permeable; results are shown for the Maxwell formula (MAX), self-consistent scheme
(SCE), differential scheme (DEM), arithmetic (ARIT) and harmonic (HARM) averaging
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Fig. 5.5 Effective permeability as a function of inclusions fraction for ellipsoids of revolution with
a1 = a2 = 5 a3: a longitudinal direction, keff

11 = keff
22 , highly permeable inclusions, b longitudinal

direction, weakly permeable inclusions, c transversal direction, keff
33 , highly permeable inclusions,

d transversal direction, highly permeable inclusions. Abbreviations as in Fig. 5.4

approach differs significantly from the Maxwell approximation, because it predicts
a rapid change of the effective permeability in the vicinity of the threshold value,
while the differential scheme gives values relatively close to the Maxwell formula.

Figure 5.5 show the components of the effective permeability tensor for a medium
containing oblate spheroids, with two equal axes parallel to the directions x1 and x2
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and a shorter axis parallel to the direction x3. The largest differences between various
schemes arise for the highly permeable ellipsoids in the directions parallel to the
longer axes and for the weakly permeable ellipsoids in the direction parallel to the
shorter axis. In the first case, it can be intuitively understood that as the fraction of
inclusions increases the connected paths will be formed principally in the directions of
the longer axes and the corresponding results are highly sensitive to the assumptions
on the inclusions connectivity, underlying various schemes. In the case of weakly
permeable inclusions, the clusters of connected inclusions, which form parallel to the
longer axes, do not have much influence on the permeability in the parallel direction,
as long as the more permeable material remains connected along the same direction.
However, they strongly reduce the connectivity of the background material in the
perpendicular direction. Thus, the perpendicular permeability is much influenced by
the connectivity of the weakly permeable ellipsoids in the direction of their longest
axes.

The effective medium approximations were used by several authors to compute
the field-scale permeability of heterogeneous porous media [36, 70, 77, 78, 118].
Comparisons with the results of numerical solution of steady-state flow were also
made in a number of papers [36, 46, 55, 61, 96]. It was found that the Maxwell
scheme provides reasonable estimates for isotropic assemblages of non-overlapping
inclusions (e.g. spheres, cubes, regular octahaedra) [61, 96]. For anisotropic geome-
tries the effective permeability is highly influenced by the shape and spatial arrange-
ment of inclusions [46, 55]. Depending on these factors, many different values of
the effective permeability are possible for the same volume fraction of inclusions. In
such cases, the effective medium approximations cannot be expected to be accurate
and improved formulas are required, which take into account more information on
the local geometry [55]. The effective medium approximations can be extended for
the case of larger number of component materials. Such extended formulas were
compared by Neuweiler and Vogel [70] with the results of numerical solution of
steady flow equation (see below) for media with random non-Gaussian distribution
of permeability, where either weakly or highly permeable materials formed con-
nected paths through the medium. The best agreement with the numerical solution
was obtained for the differential effective medium scheme.

5.3.3 Direct Solution of Steady Flow Equation

In this group of methods, the equivalent permeability tensor for an arbitrary heteroge-
neous upscaling cell is calculated from the solution of the steady state flow equation.
The equation can be solved in a domain which corresponds to the upscaling cell itself
(local approach), in a larger domain encompassing the cell (extended local approach)
or in the whole field-scale domain (global approach), e.g. [44]. In the local approach,
the so-called cell problem is solved for an upscaling cell, which may correspond to
an REV, if it exists, or to a cell of the numerical grid for the field-scale problem. The
cell problem is given by the steady flow equation, e.g. [84, 117]:
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− ∇ · (k ∇ p) = 0 (5.18)

with an appropriate set of boundary conditions, as discussed below. Note that in order
to simplify the presentation (and without the loss of generality) it is assumed that
the density, viscosity and gravitational acceleration are all equal to one, the phase
subscript is omitted, and the gravity term is not explicitly shown (p represents the
excess of pressure over the hydrostatic value). The equivalent permeability tensor is
computed in such a way that certain relations between the volume averages of the
small-scale quantities are satisfied. These quantities include the potential gradient
(driving force), the volumetric fluid flux and the energy dissipation [117]. The equiv-
alent permeability can be defined in terms of the volumetric averages of two of those
quantities. An intuitive and widely used definition is based on the correspondence
between the Darcy-scale and field-scale volumetric fluxes and gradients:

〈v〉 = −〈k ∇ p〉 = −keq 〈∇ p〉 , (5.19)

where the angular brackets denote the volume averaging operator:

〈u〉 = 1

|V |
∫

V
u dV (5.20)

where V is the relevant spatial domain. Some authors suggest to use a definition
based on the preservation of the energy dissipation De, which is motivated by ther-
modynamical considerations [19, 49]:

〈De〉 = −〈∇ p · v〉 = 〈∇ p〉 keq 〈∇ p〉 . (5.21)

Note that the equivalent permeability is a tensor with nine components (although the
number can be reduced to six if symmetry is assumed), so for a single solution of the
steady flow problem Eqs. (5.19) or (5.21) represents a set of three scalar equations
with nine unknowns. Therefore, three independent solution must be provided to
compute all components of the large-scale tensor. It is also clear that the solution of
the steady flow equation is determined by the boundary conditions, which must be
carefully chosen.

A usual procedure is to perform three solutions of the cell problem with such a
choice of the boundary conditions that in each case the average field-scale gradient
in one of the spatial directions is equal to unity. For each considered spatial direction
i it is convenient to express the Darcy-scale pressure as a sum of the average value
and a spatial deviation:

pi = 〈pi 〉 + p̃i . (5.22)

Equation (5.18) can be then rewritten as:

− ∇ (k ∇ p̃i ) = ∇ (k ∇〈pi 〉) . (5.23)
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The above equation is solved for the spatial deviation p̃i , with the gradient of the
average pressure acting as a source term. The components of the average gradient
∇〈pi 〉 are equal to one in i th direction and zero in other directions.

Three types of boundary conditions are typically imposed for the spatial deviation
of the potential, e.g. [2, 84, 113]:

1. Periodic boundary conditions imply that the values of the spatial deviations of the
pressure and their derivatives at the opposite sides of the upscaling cell are equal,
Fig. 5.6a. These conditions naturally arise when the large-scale flow equation
is derived for a periodic medium using asymptotic homogenization procedure,
e.g. [3, 59, 87]. They are also applied in the framework of the volumetric averaging
method, e.g. [81]. In both these cases, the cell problem is defined for a REV of the
porous medium and the resulting values of the permeability are effective (intrinsic)
parameters. However, periodic conditions are also used for arbitrary upscaling
cells. In order to obtain a well-posed problem, a Dirichlet boundary condition (the
value of either pressure or its fluctuation) must be specified at least in a single
arbitrary point of the boundary. Typically, this value is chosen as zero, although
it does not influence the resulting equivalent permeability, which depends solely
on the gradients of the unknown.

2. Linear (or uniform pressure drop) boundary conditions imply that the pressure
varies linearly along the considered spatial direction, assuming the same values
as the spatial coordinate, Fig. 5.6b. If the problem is formulated in terms of the
pressure deviation, its value is uniformly equal to zero at all boundaries.

3. Confined (or permeameter) boundary conditions enforce one-dimensional flow
along the considered spatial direction by specifying constant values of the pressure
(corresponding to a unit gradient) at the perpendicular sides of the cell and no-flow
conditions at the parallel sides, Fig. 5.6c.

For periodic or uniform boundary conditions the equivalent permeability defin-
itions based on the preservation of flux and energy dissipation become equivalent
[113]. Taking into account that the average pressure gradient for each of the three
solutions is a unit vector, the components of the tensor can be calculated either
according to Eq. (5.19) [100]:

keq
i j = 〈k ∇ p j 〉i =

〈
3∑

m=1

kim
∂p j

∂xm

〉
(5.24)

or according to Eq. (5.21) [100]:

keq
i j = 〈∇ pi k ∇ p j 〉i =

〈
3∑

m=1

3∑
n=1

kmn
∂pi

∂xn

∂p j

∂xm

〉
. (5.25)

If the cell problem is formulated in terms of the pressure deviation, the corresponding
pressure gradients are calculated as:
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(a) (b) (c)

Fig. 5.6 Boundary conditions for the solution of two-dimensional cell problem formulated in terms
of the pressure p (lower row) or the fluctuation of pressure p̃ (lower row); flow in x1 direction

∂pm

∂xn
= ∂ p̃m

∂xn
+ 1 for m = n , (5.26)

∂pm

∂xn
= ∂ p̃m

∂xn
for m �= n . (5.27)

The resulting tensor is characterized by symmetry and positive-definiteness [113].
If confined boundary conditions are applied, the off-diagonal components of the

equivalent tensor are often assumed to be zero, e.g. [2, 84], while the diagonal com-
ponents are computed from the volume averages of the fluxes as given by Eq. (5.19)
or from the surface averages evaluated at the cell boundaries perpendicular to the
flow direction. However, Wu et al. [112] pointed out the inconsistency of such a
formulation. For confined boundary conditions, the formulation of the cell problem
in terms of the pressure p and its fluctuation p̃ are not equivalent, because it is
not guaranteed that the volumetric average of the pressure gradient obtained from
Eq. (5.18) is a unit vector in i th direction. Moreover, even if the cell boundaries par-
allel to the flow are considered impermeable, the volume average of the fluxes in the
directions perpendicular to the main flow can be non-zero, which makes it possible
to compute the off-diagonal components of the equivalent permeability tensor. Wu
et al. [112] recommended to calculate the full tensor by applying Eq. (5.19) to the
solutions in three spatial directions, which results in a linear system of equations with
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nine unknowns. It should be noted that the confined boundary conditions become
equivalent to the periodic conditions for symmetric cell geometries.

It is also possible to use other types of boundary conditions. For instance, one can
solve the cell problem for multiple sets of linearly variable values of the pressure
p imposed along the boundaries. If the number of solutions exceeds the geometric
dimension of the cell, the corresponding set of Eq. (5.19) becomes over-determined
and the components of the equivalent tensor can be obtained from the solution of an
optimization problem, possibly with additional constraints imposing the symmetry
of the tensor [106].

For some particular geometries, the cell problem can be solved analytically. For
a layered medium with layers perpendicular to one of the coordinate axes, say the
vertical axis x3, the cell problem with either periodic or confined boundary condi-
tions yields the well-known result of the volume-weighted harmonic average for keq

33
and the volume-weighted arithmetic average for keq

11 and keq
22. In the case of uniform

boundary conditions, analytical solution is also possible, but keq
33 depends on the

dimensions of the upscaling cell. If the dimensions l1 and l2 are larger than l3 by
a factor of 20 or more, the result is close to the harmonic mean, while for smaller
horizontal dimensions the effective permeability is larger [65]. This is due to the fact
that uniform boundary conditions impose constant gradient of the potential along
boundaries parallel to the flow, while according to the flux continuity condition for
steady flow the gradients in the weakly permeable layers should be larger than in
the highly permeable layers. The formula developed by Sviercoski [94], described
in Sect. 5.3.1, represents an approximate analytical solution to the cell problem with
periodic boundary conditions. Knudby et al. [55] proposed approximate analytical
formulas for the effective permeability of two-dimensional medium containing rec-
tangular inclusions, based on the numerical solution of the cell problem with confined
boundary conditions.

In general, however, the cell problem must be solved numerically. The accuracy
and computational efficiency of the solution of the cell problem is influenced by the
number of nodes of the numerical grid, by the choice of the spatial discretization
scheme applied to the steady flow equation, as well as by the choice of the method
used to solve the system of linear algebraic equations resulting from spatial dis-
cretization. In the case of periodic boundary conditions, it was shown that for the
same numerical grid the solution obtained with the standard Galerkin finite element
method yields the upper estimate of the sum of the diagonal components of the equiv-
alent permeability tensor, while the solution obtained with the mixed-hybrid finite
element method—the lower estimate [117]. As the grid is refined, these two solutions
become closer to each other and to the accurate value of the effective permeability,
which is between them. If the upscaling cell contains a large number of material
regions with highly contrasting permeabilities, the discontinuous Galerkin method
proves particularly efficient [83].

The values of the equivalent permeability obtained from the numerical solution
of cell problem for some simple geometries are listed in Tables 5.2 and 5.3. Six
two-dimensional patterns were considered, as shown in Fig. 5.7. In each case the
volumetric fraction of material II (inclusions) is equal to 0.25. The permeability of
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Table 5.2 Equivalent permeability obtained from the solution of cell problem for geometries shown
in Fig. 5.7, k II /k I = 0.1

Geometry Periodic Linear Confined kcpl kcpu Sviercoski, Maxwell,
Eq. (5.13) Eq. (5.14)

(a) 0.649 0.658 0.649 0.591 0.710 0.649 0.660
(b) 0.659 0.671 0.660 0.559 0.713 0.634 0.660
(c) 0.637 0.656 0.638 0.515 0.706 0.607 0.660
(d), keq

11 0.693 0.717 0.694 0.591 0.775 0.680 0.710

(d), keq
22 0.566 0.613 0.566 0.308 0.710 0.488 0.591

(e), keq
11 0.775 0.775 0.775 0.775 0.775 0.775 0.775

(e), keq
22 0.309 0.498 0.309 0.309 0.309 0.309 0.309

(f), keq
11 0.533 0.590 0.490 0.449 0.628 0.535 n/a

(f), keq
22 0.675 0.689 0.679 0.609 0.741 0.673 n/a

(f), keq
12 −0.0286 −0.0297 0.0 0.0 0.0 −0.0287 n/a

Table 5.3 Equivalent permeability obtained from the solution of cell problem for geometries shown
in Fig. 5.7, k II /k I = 10

Periodic Linear Confined kcp,l kcp,u Sviercoski, Maxwell,
Eq. (5.13) Eq. (5.14)

(a) 1.54 1.68 1.54 1.41 1.69 1.55 1.51
(b) 1.52 1.65 1.51 1.40 1.79 1.59 1.51
(c) 1.56 1.69 1.56 1.42 1.94 1.67 1.51
(d), keq

11 1.77 2.31 1.77 1.41 3.25 2.24 1.69
(d), keq

22 1.44 1.74 1.45 1.69 1.29 1.48 1.41

(e), keq
11 3.25 3.25 3.25 3.25 3.25 3.25 3.25

(e), keq
22 1.29 1.62 1.29 1.29 1.29 1.29 1.29

(f), keq
11 1.48 1.71 1.47 1.35 1.64 1.49 n/a

(f), keq
22 1.88 2.33 2.05 1.59 2.23 1.90 n/a

(f), keq
12 −0.0796 −0.134 0.0 0.0 0.0 −0.0836 n/a

(a) (b) (c) (d) (e) (f)

Fig. 5.7 Cell geometries used in the numerical example: a square inclusion, b round inclusion, c
diamond-shaped inclusion, d rectangular inclusions, e layered medium, f L-shaped inclusion
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Table 5.4 Equivalent permeability obtained with simple averaging formulas for cell geometries
shown in Fig. 5.7

k II /k I Arithmetic Harmonic Geometric

0.1 0.775 0.309 0.562
10 3.25 1.29 1.78

material 1 equals unity, while the permeability of material 2 is either 0.1 or 10. The
solutions were obtained using numerical code EFFCOND, developed by the author
and described in more detail in [96]. It is based on cell-centred finite volume dis-
cretization for rectangular grids. Uniform grids of 256 by 256 cells were used in each
case. Periodic, uniform and confined boundary conditions were applied as described
above, and the effective permeability was computed using Eq. (5.24). For confined
boundary conditions, the off-diagonal components were assumed to be zero. The
obtained results are close to those reported by other authors for the same geometries
and permeability ratio [2, 95], with the exception of the case of uniform boundary
conditions applied to geometry (a) with weakly permeable inclusions, for which the
results given in [2] seem overestimated. For each case the Cardwell and Parsons
bounds are provided, as well as the approximation of Sviercoski [94], Eq. (5.13), and
the Maxwell approximation, Eq. (5.14), where applicable. Moreover, in Table 5.4
the values of arithmetic, geometric and harmonic averages are listed. The presented
results confirm the observations from the previous paragraphs. For isotropic geome-
tries, the numerical results obtained using periodic and confined boundary conditions
are virtually the same, while uniform boundary conditions predict slightly larger per-
meability values. The same is true for the layered geometry, where the application
of uniform boundary conditions leads to overestimation of the permeability in the
direction parallel to the layers, with respect to the exact result given by the harmonic
mean. For the L-shaped inclusion, each set of boundary conditions leads to a different
equivalent permeability tensor. It is interesting to note that for the weakly permeable
inclusion larger differences between various schemes are observed in the direction
x1, which is perpendicular to the longer dimension of the L-shaped inclusion. Con-
versely, if the inclusion is more permeable than the background, larger differences
are observed in the direction parallel to its longer dimension. This effect is similar
to the one described for the effective medium approximations. The method of Svier-
coski [94] is in good agreement with the numerical solution of periodic problem,
except for the case of rectangular inclusions, where the largest differences between
the upper and lower Cardwell and Parsons bounds are observed. Note also that the
Maxwell approximation is close to the results of periodic solution for both isotropic
and rectangular inclusions.

In contrast to the local methods described above, the extended local approach
assumes that the steady flow problem is defined for a larger domain which con-
tains the considered upscaling cell, whereas the averaging of pressures and fluxes is
performed only in the cell itself. It is expected that in this way the influence of bound-
ary conditions on the equivalent permeability is reduced, while, on the other hand,
the effects of larger-scale heterogeneous features (e.g. highly permeable channels
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spanning several neighbouring cells) are better captured, e.g. [107]. Global upscal-
ing methods were also proposed, e.g. [109]. These methods require that the flow
problem is solved for the whole heterogeneous domain, with explicit representa-
tion of the spatial variability of the permeability tensor. The equivalent permeability
is then calculated for each cell based on the detailed information on the pressures
and fluxes within the cell, which is obtained from the global solution. While such
approach requires considerable numerical effort and seems to contradict the very idea
of upscaling, it is justified if the results are subsequently used for many coarse-grid
simulations with relatively similar boundary conditions. An iterative local-global
method was developed in [22]. In this method the equivalent permeabilities are first
calculated for each coarse grid cell using a local or extended local approach. The
obtained values are then used to solve the large-scale boundary problem on a coarse
grid. The resulting values of the large-scale pressures are then interpolated to provide
boundary conditions for the cell problems, which are solved in order to obtain more
accurate estimates of the equivalent permeabilities. The procedure is continued until
the required degree of consistency between the local and global solutions is achieved.

5.4 Upscaling of Transient Two-Phase Flow

5.4.1 Local Equilibrium and Quasi Steady-State Models

The problem of upscaling becomes significantly more complex in the case of unsteady
multiphase flow, because in addition to the spatial scales, time scales must be also
considered. In the phenomenological approach to upscaling, it is often considered that
the field-scale governing equations have the same form as the Darcy-scale equation,
while the equivalent constitutive relationships in the form of field-scale capillary
and/or relative permeability functions are defined for each upscaling cell. In principle,
this can be done for an arbitrary case, if one has full information on the Darcy-scale
distribution of the primary variables and constitutive relationships within the cell.
The averaging of additive quantities like mass or volume can be performed by taking
volume integrals over the upscaling cells, which leads to the following definitions of
the large-scale porosity and volumetric phase fractions:

φeq = 〈φ〉 = 1

V

∫
V

φ dV , (5.28)

θ
eq
α = 〈θα〉 = 1

V

∫
V

θα dV . (5.29)

Consequently, the large scale saturation can be defined as:

Seq
α = θ

eq
α

φeq . (5.30)
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The averaging of non-additive quantities like pressure or permeability is more prob-
lematic. The average phase pressure is sometimes defined as a volumetric average
weighted by the respective fluid saturation, e.g. [66]. The phase permeabilities can-
not be averaged directly. Instead, they must be obtained from the average fluxes, in
a manner analogous to the one described above for steady state flow. The absolute
permeability can be obtained using one of the methods described in the previous
section. Once the phase permeabilities and the absolute permeability are known, it
is possible to introduce the large-scale relative permeabilities, which are anisotropic
in a general case.

A fundamental question is how to obtain the small scale distribution of the relevant
physical quantities, which would best correspond to the large-scale process under
consideration. The assumption of local steady-state flow within an upscaling cell is
often invoked. Intuitively, this seems justified if the time necessary to equilibrate fluid
potentials at the scale of a single cell is much smaller than the time of the field-scale
flow. Such an assumption simplifies the calculation of the equivalent constitutive
functions, because the Darcy-scale distribution of the relevant physical quantities,
which must be averaged, is uniquely determined by the conditions at the cell bound-
aries, which in turn can be related to the averaged field-scale variables. However,
the actual steady-state distribution is significantly influenced by the local balance of
viscous, gravity and capillary forces [93]. In this regard, several possibilities can be
distinguished.

If the viscous forces are locally much smaller than the capillary and gravity forces,
the conditions of vertical equilibrium prevail. The pressures in each fluid phase is
hydrostatic and is uniquely defined by its value at a single point in the upscaling
cell (e.g. at the top or bottom). The capillary pressure can be reconstructed from the
difference between the two pressures and it varies linearly in the cell. The values of
the saturations and relative permeabilities can be then obtained at any point from the
Darcy scale constitutive functions for the respective material.

Depending on the relation between the capillary and gravity forces, two limit
cases of the vertical equilibrium can be distinguished. If the capillary forces dominate
locally over the gravity forces, the capillary equilibrium conditions can be assumed,
e.g. [20, 24]. In this case the capillary pressure is considered constant within the
whole periodic cell, since the local variations of the phase pressures due to the
gravity are negligible. The average large scale phase contents and saturations can be
computed in a simple manner on the basis of the volumetric fraction of the materials.
The equivalent permeability can be computed by solving a cell problem described in
Sect. 5.3.3 independently for each phase, using the values of the phase permeability
instead of the absolute permeability. In principle, any other approach for the absolute
permeability upscaling can be used. As a result, one obtains a permeability tensor
for each phase, corresponding to the specified value of the capillary pressure. Note
that in general this tensor cannot be related to the equivalent absolute permeability
tensor by a scalar relative permeability coefficient (except for the case where all
materials in the cell are characterized by the same capillary and relative permeability
functions and differ only in the values of the absolute permeability). The large-scale
relative permeability function has to be defined separately for each component of
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the permeability tensor. Local capillary equilibrium is sometimes assumed even for
structured soils, e.g. [31] or fractured rocks, e.g. [75], although it is recognized that
for large local contrasts in hydraulic permeability this assumption may be invalid, as
discussed below.

The other limit case of the vertical equilibrium arises when the capillary pressure
is neglected, e.g. [38]. The Darcy-scale distribution of the fluid phases results from
gravitational segregation. The upper part of the cell is occupied by the less dense
phase with the denser fluid at residual saturation in each of the porous material, while
in the lower part of the cell the denser fluid is at maximum saturation and the less
dense one—at residual saturation. For an arbitrary position of the interface between
the two zones one can compute the corresponding average phase saturations and
permeabilities.

Another case of local steady state flow is represented by the viscous limit, obtained
by neglecting both capillary and gravity forces, e.g. [24]. The flow is purely advective
and the saturation distribution is determined by the saturation values at the inlet
boundary of the cell. A further simplifying assumption can be introduced, which
states that the fractional flow function (defined by Eq. (2.58)) is constant at the inlet,
and consequently in the whole upscaling cell. The small scale saturation distribution
is then obtained by inverting the fractional flow function for a specific material.
Upscaling procedures based on steady-state solutions for intermediate conditions
between the capillary and viscous limits were also proposed [33, 102]

The validity of the steady state approximations can be considered in the frame-
work of more rigorous upscaling methods, like periodic homogenization or the vol-
ume averaging method. When large-scale equations are derived by such methods,
it becomes clear that the relationship between the characteristic times of flow in
different material regions at the smaller and larger scale plays a fundamental role.
The characteristic time can be defined as the time which is necessary for an initially
equilibrated system to reach a new equilibrium state after a solicitation from a change
in the boundary conditions. At the Darcy scale, the characteristic times for advective
and diffusive processes are (e.g. [8]):

tadv
l ≈ l

vl
, tdif

l ≈ l2

Dl
, (5.31)

where l is the dimension of REV (or periodic cell), vl the characteristic velocity,
Dl is the characteristic value of the diffusion coefficient. At the large scale the
corresponding times are:

tadv
L ≈ L

vL
, tdif

L ≈ L2

DL
, (5.32)

where L is the dimension of the large-scale domain and is used as a subscript to
denote the relevant large-scale parameters. As mentioned earlier, two-phase flow
involves both advective processes, related to gravity and viscosity forces and diffu-
sive processes, related to the capillary forces. Moreover, the velocity and diffusion

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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coefficient are not constant and may vary significantly during the same flow event,
which makes the estimation of appropriate time scales difficult. It is clear, however,
that the ratio of the characteristic time of flow in a single upscaling cell to the charac-
teristic time for the whole large scale domain is influenced by two factors. The first
one is the ratio of the cell dimension to the dimension of the field-scale domain, given
by the scale separation parameter ε, as introduced in Eq. (5.1). The second one is the
ratio of the values of the large-scale advection velocities and diffusion coefficients, to
their small-scale counterparts, where the latter ones can differ considerably between
the porous materials constituting the upscaling cell.

tadv
l

tadv
L

≈ l vL

L vl
,

tdif
l

tdif
L

≈ l2 DL

L2 Dl
, (5.33)

In general, the local steady state approximations are valid if the time scales for
local and global flow are well separated from each other, i.e. the above ratios are
much smaller than unity. However, this condition is not sufficient, because even in
this case the resulting large-scale model may have form different from the Darcy-
scale model. In particular, this is true for dominating viscous forces, when the flow has
advective character. As shown, for instance, by Durlofsky [30] and Neuweiler [68] in
such a case the field-scale model for a heterogeneous medium contains an additional
diffusive term. This is analogous to the problem of hydrodynamic dispersion, where
a diffusive term arises during upscaling from the pore scale to the Darcy scale, to
account for the local fluctuations of advective velocity, even if there is no diffusion
at the pore scale, e.g. [76, 91].

On the other hand, even for diffusive capillary flow the local steady state assump-
tion may not hold, if the separation of spatial scales is not satisfied or if there is a
large contrast in the diffusivities of the components, implying large differences in the
characteristic times for local scale flow. Consider the case when the spatial scales are
well separated, l � L , but the medium consists of two materials with very different
diffusivities DI

l 
 DII
l . If the highly permeable material forms a connected path

through the large-scale domain, then it is reasonable to assume that the large scale
characteristic diffusivity will be of the order of the diffusivity of the more perme-
able material. The resulting value of the large-scale characteristic time tdif

L can be
much smaller than the value of characteristic time necessary to reach equilibrium
at the scale of an REV in the component material with very low diffusivity tdif

l . In
other words, the response of the macroscopic system will be observed before the
local equilibrium conditions will be established in all upscaling cells. In the follow-
ing section some models developed for such media are briefly presented, while the
issue is elaborated in more detail in Chap. 6 in the framework of the homogenization
method.

http://dx.doi.org/10.1007/978-3-642-23559-7_6
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5.4.2 Local Non-Equilibrium Models

One possibility to deal with the upscaling problems when local steady state approx-
imations do not hold, is to use transient flow simulation to estimate the large-scale
constitutive functions for each upscaling cell, which are then used as input parameters
to a large-scale equation of the same form as the Darcy-scale equation. The transient
simulation is performed for the whole field-scale domain, which requires consider-
able numerical effort, or for a part of the domain with the boundary conditions chosen
to approximate the considered large-scale flow [6]. At each time step of the transient
simulation, the average values of the relevant physical quantities like phase pressures,
saturations and fluxes can be computed, allowing to deduce large-scale capillary and
permeability functions. Such approach is applied in petroleum reservoir modeling
under the name of dynamic pseudo-functions, see e.g. [12, 27] for an overview of
various methods from this group. Even though the use of pseudo-functions allows
in many cases to obtain very good agreement between the field-scale solution and
detailed Darcy-scale solution, considerable numerical effort is necessary to solve the
transient problem in a heterogeneous domain. The resulting pseudo-functions are
problem-specific (not intrinsic material properties), depend heavily on the chosen
initial and boundary conditions, and may be physically inconsistent [12].

While the pseudo-function approach is used mainly in oil reservoir simulations
with unstructured heterogeneity patterns, many local non-equilibrium models were
developed specifically for fractured media or structured soils and can be extended for
other types of binary structures with connected paths of highly permeable material in
a weakly permeable background material (matrix). For a review of such models, see
[40, 57, 64, 92]. These models are often based on double (dual) porosity concept,
which assumes that the flow phenomena in two pore systems (i.e. in the network
of fractures and in the microporous matrix) are regarded as distinct, albeit coupled
processes, which have to be accounted for explicitly at the field scale. The relevant
models can be conveniently classified with regard to the following criteria (Fig. 5.8):

1. Degree of refinement in the representation of flow in the matrix blocks
2. Connectivity of the matrix blocks

According to the first criterion, the simplest approach is to introduce at each point
of the field scale domain two sets of physical variables, characterizing the average
state of the fracture and matrix systems, as originally proposed by Barenblatt et al.
[11]. Consequently, the number of field-scale equations is either two (in the case of
saturated flow or Richards equation) or four (in the case of two-phase flow). A further
distinction of the models from this group can be made with respect to the second
criterion. If the matrix blocks are connected to each other and form continuous paths
for flow, the governing large-scale equations for phase α can be written as:

wI ∂

∂t

(
φ I ρ I

α SI
α

)
− ∇

[
ρ I
α keff,I

α

(
∇ pI

α − ρ I
α g

)]
+ T m

α = 0 , (5.34)

wII ∂

∂t

(
φ II ρ II

α SII
α

)
− ∇

[
ρ II
α keff,II

α

(
∇ pII

α − ρ II
α g

)]
− T m

α = 0 , (5.35)
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(a) (b)

(c) (d)

(e) (f)

Fig. 5.8 Conceptual models of flow in dual porosity media

where the superscripts I and II refer to the fracture system and the rock matrix,
respectively. Large-scale flow of fluid phase α can occur both in the fracture and
matrix systems and there are two large-scale effective permeability tensors, denoted
by keff,I

α and keff,II
α . In transient conditions fluid transfer between fractures and matric

may occur locally at any point of the macroscopic domain, due to the difference in
the fluid potentials between the two regions. This is represented by the mass transfer
term T m

α , which has the dimension of mass per volume per time.
If the fracture network is dense and the rock matrix is divided into separate blocks,

it can be assumed that the macroscopic flow is possible only via the fracture network,
however it is affected by the fluid exchange with matrix blocks, acting as a source
term. The governing equations for phase α simplify to [103]:

wI ∂

∂t

(
φ I ρ I

α SI
α

)
− ∇

[
ρ I
α keff,I

α

(
∇ pI

α − ρ I
α g

)]
+ T m

α = 0 , (5.36)

wII ∂

∂t

(
φ II ρ II

α SII
α

)
− T m

α = 0 . (5.37)

A further simplification can be introduced if one assumes that the fractures have
negligible storage properties due to their very small volume fraction. Thus the flow
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in fractures can be treated as stationary, which leads to the following formulation [10]:

− ∇
[
ρ I
α keff,I

α

(
∇ pI

α − ρ I
α g

)]
+ T m

α = 0 , (5.38)

wII ∂

∂t

(
φ II ρ II

α SII
α

)
− T m

α = 0 . (5.39)

Various authors use different naming conventions to distinguish between models
with connected and disconnected matrix blocks. The first type (Eqs. (5.34)–(5.35))
is often termed dual (or double) permeability, while the second group (Eqs. (5.36)–
(5.37))—dual (or double) porosity, e.g. [35, 92]. Since the latter name is also used
to describe a broader class of models shown in Fig. 5.8, some authors use the names
dual-porosity dual-permeability and dual-porosity single-permeability, e.g. [58], or
dual continuum connected matrix models and dual continuum disconnected matrix
[64] for the respective groups of models.

The models described above can be easily adapted to the case of incompressible
unsaturated flow, described by the Richards equation. For instance, the well-known
dual-permeability model proposed by Gerke and van Genuchten [41] can be written
as follows:

wI ∂

∂t

(
φ I S I

w

)
− ∇

[
keff,I

w

(
∇ pI

w − ρ I
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)]
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)]
− T v

w = 0 , (5.41)

where T v
w is the term describing volumetric water transfer between fractures and

matrix (or rather, in this case, macropore and micropore domains). It has the dimen-
sion of inverse time (volume per volume per time). The above model is often applied
for quasi one-dimensional field-scale flow, for which the following simplifying
assumption is made [41]:

keff,I
w = wI k I

w(S
I
w) , (5.42)

keff,II
w = wII k II

w (S
II
w ) . (5.43)

However, this is strictly true only if the fractures are parallel to the field-scale flow
direction.

Appropriate definition of the fracture-matrix transfer term was a subject of numer-
ous studies, e.g. [32, 42, 43, 74, 119–121]. Difficulties associated with this task can
be illustrated by considering flow in a simple periodic cell consisting of a matrix
block surrounded by fractures, Fig. 5.9. In view of the discussion in the previous
section, it is clear that if the fluid in the cell is subjected to an external excitation,
the potential in fractures will equilibrate at much faster rate than in the matrix block
and can be regarded as uniform within the cell. Due to the continuity condition,
the potential in the matrix block will be equal to the potential in the fracture at the
outer surface of the block, but it will vary strongly inside the block. The intensity of
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Fig. 5.9 Representation of the water pressure in a single matrix block according to different models:
dotted line—real distribution, solid line—dual continuum approximation, lines with points—MINC
approximation

fracture-matrix transfer is determined by the local gradient of the fluid potential in
the vicinity of the surface of the block. However, it is difficult to relate the transfer
intensity to the average value of the block potential. An often used approximation
is the so-called first order transfer term, which relates the transfer intensity to the
difference between the average fluid potentials in the two regions. For the case of
incompressible unsaturated water flow, Gerke and van Genuchten [42] proposed an
expression which can be rewritten as follows:

T v
w = βfm γ fm

R2
b

kfm
w

μw

(
pI

w − pII
w

)
, (5.44)

where βfm is a dimensionless coefficient depending on the shape of the matrix block,
γ fm is a dimensionless scaling factor, Rb is the characteristic dimension of the block,
representing the shortest distance from the centre of the block to the fracture (Fig. 5.9)
and kfm

w is the average permeability for fracture–matrix transfer. In the absence of
mineral coating, which could potentially alter the interface permeability, the estima-
tion of kfm

w is based on the matrix block parameters:

kfm
w = k II

sw
1

2

[
k II

rw(p
I
w)+ k II

rw(p
II
w )

]
. (5.45)

The relative permeability function is computed for the value of the water pressure at
the interface (assumed to be equal to the pressure in the fracture system, pI

w, and for
the average pressure in the matrix block, pII

w , and an arithmetic average of those two
values is taken. For the case of compressible liquid, an average value of the density
should be defined, in addition to the average value of the relative permeability.

The first-order formula is appropriate for later stages of flow in the block, when
the difference between pI

w and pII
w is relatively small. It is inaccurate during early
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stages of flow, where large gradients develop close to the outer surface of the block.
An improved second-order approximation was proposed by Zimmerman et al [121]
and further modified by Köhne et al [56]. It can be written as follows:

T v
w = βfm

2 R2
b

kfm
w

μw

(
p f

w − pII
w

) [∣∣pII
w − pinit

w

∣∣ + ∣∣pI
w − pinit

w

∣∣]
(

pII
w − pinit

w

) , (5.46)

where pinit
w is the initial pressure in the system (assumed to be equal in the fractures

and matrix). In the original paper [121] the average permeability was equal to the
matrix permeability at the interface, i.e. it was computed using the values of the water
pressure and capillary pressure from the fracture system:

kfm
w = k II

sw k II
rw(p

I
w) . (5.47)

However, such approximation was shown to be inaccurate for some block shapes
and porous materials [56, 62, 97]. Köhne et al. [56] obtained good results for the
average permeability defined as:

kfm
w = k II

sw
ωk krw(pII

w )+ krw(pI
w)

ωk + 1
, (5.48)

where the value of the weighting coefficient ωk depends on the texture of the porous
material forming the blocks. An average value ωk = 17 was suggested for fine
textured soils [56].

A more detailed description of the local flow in the matrix blocks is offered by
the second group of dual-porosity models, which include the Multiple Interacting
Continua (MINC) model [80] and its subsequent modifications, e.g. [34, 54, 122]. In
this approach it is assumed that the flow parameters in matrix blocks vary principally
in function of the distance to the nearest fracture, as shown in Fig. 5.9. Each block
is divided into several concentric shells, based on the distance to the surrounding
fractures, Figs. 5.8c and 5.9. Thus, each point of the large scale domain is associated
with a single set of variables characterizing the fracture system and several of sets of
variables characterizing the state of each shell of the matrix block. The large scale
equation for the fracture system contains a source term, describing interaction with
the outermost shell of the matrix block:

wI ∂

∂t

(
φ I ρ I

α SI
α

)
− ∇

[
ρ I
α keff,I

α

(
∇ pI

α − ρ I
α g

)]
+ T m

α = 0 . (5.49)

In this case, the mass transfer term can be written as:

T m
α = wII |�b|

|Vb|
kfm
α

μα

pI
α − pII (1)

α


r (1)b /2
, (5.50)
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where |�b| and |Vb| denote, respectively, the area of the outer surface and the volume
of a single matrix block and
r (1)b is the thickness of the outermost shell of the matrix
block, Fig. 5.9. In the standard MINC formulation the matrix blocks are separated
from each other. Therefore the equation for each matrix shell i can be written as:

wII |V b(i)|
|Vb|

∂

∂t

(
φ II (i) ρ II (i)

α SII (i)
α

)
− Qb(i−1/2) + Qb(i+1/2) = 0 , (5.51)

where the mass flux between adjacent matrix shells i and i + 1 is described as:

Qb(i+1/2) = wII |Λ(i+1/2)|
|Vb|

k II (i+1/2)
rα

μα

pII (i+1)
α − pII (i)

α

(
r (i)b +
r (i+1)
b )/2

. (5.52)

In the above formulae, |�(i+1/2)| is the area of the interface between the neighboring
shells, |V b(i)| is the volume of i th shell and 
r (i)b is thickness of i th shell.

The MINC method is equivalent to solving one-dimensional flow equation
in the representative matrix block to obtain a more accurate estimation of the
fracture-matrix fluid flux. By introducing the concept of nested shells, the flow can
be represented as a quasi radial process with respect to the coordinate rb. At the outer
surface of the matrix block, the fluid pressure is equal to the pressure in the fracture,
while at the center of the block symmetry (i.e. no-flow) condition applies. The average
permeabilities kfm

α and k II (i+1/2)
rα can be computed using various approaches suitable

for one dimensional flow, like the upstream weighting or arithmetic averaging. The
accuracy of the MINC approximation increases with the number of shells. If only one
shell is used per matrix block, MINC reduces to the dual continuum–disconnected
matrix model with first order transfer term, described earlier.

In principle, it is possible to extend the MINC approach by introducing connec-
tivity between the shells of the adjacent matrix blocks, Fig. 5.8d. Depending on the
structure of the medium, the connectivity could be applied to all shells or only to the
outermost of them. However, such approach is only rarely used.

The original MINC formulation did not specify the method to obtain the large-
scale permeability for the fracture system. This question was addressed in an extended
method developed by Karimi-Fard et al. [54]. The authors proposed to compute the
effective permeability of the medium from the solution of steady state cell prob-
lem with confined boundary conditions. The approach is oriented towards irregular
fracture patterns, for which it is hard to define a representative shape of the matrix
block. The subdivision of the matrix domain is based on the results of the solution of
another cell problem, representing single-phase flow from fractures to matrix. The
boundaries between matrix shells are defined by selected isolines of the fluid pressure
inside the matrix domain. This method was applied by Tatomir et al. [98] to sim-
ulate two-phase flow in a large-scale realistic fracture field from Bristol geological
formation.

The third group of double porosity models represents the highest level of refine-
ment with respect to the flow in matrix blocks. Models of this type were obtained by
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several authors using the method of periodic homogenization, mostly focusing on the
conceptually simpler case of disconnected matrix blocks [4, 5, 48, 60]. The resulting
model consists of a single large-scale equation for the flow in the fractures, which
contains an integral source term, describing the fracture-matrix transfer. The evalu-
ation of the transfer term requires that a three-dimensional flow equation is solved
for a representative matrix block at each point of the large-scale domain, Fig. 5.8e.
In the next chapter a similar model obtained for unsaturated flow in a medium with
disconnected inclusions [60] will be discussed in more detail. The homogenization
approach has been extended to account for the possible connections between the
matrix blocks for the case of single phase flow, with fluid density as the primary vari-
able [23, 29]. The resulting model has a complex form, consisting of two large-scale
equations for flow in the fracture and matrix systems, respectively, and an additional
three-dimensional local-scale equation, describing time-dependent behavior of the
local deviation of the density in the matrix blocks, which must be solved for each
time step in each point of the macroscopic domain. The corresponding conceptual
representations of the fractured medium with disconnected and connected matrix
blocks are shown in Fig. 5.8f. In contrast to the standard dual continuum and MINC
models, the homogenization approach provides a method to compute large-scale
permeability of heterogeneous medium for an arbitrary local geometry.
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Chapter 6
Flow in Binary Media with Heterogeneous
Hydraulic Diffusivity

In the previous chapter it was shown that field-scale models for unsaturated or
two-phase flow may have various forms, depending on the heterogeneity pattern
of the medium, hydraulic characteristics of the component materials and the inter-
play between various forces driving the Darcy-scale flow. In this chapter, a group
of field-scale models describing capillary-dominated unsaturated flow in a medium
with disconnected inclusions is examined. The models were obtained using periodic
homogenization approach. The following presentation is based on papers [23–25,
42]. The focus is on the comparison of various models and the development of a
generalized formulation as proposed in [42]. Numerical simulations are presented,
which allow to compare the generalized upscaled model with Darcy-scale numerical
solutions with explicit representation of the heterogeneous structures. Preliminary
experimental validation of the generalized model is also described following [44].

6.1 Periodic Homogenization Method

The periodic homogenization method is based on asymptotic expansion of the rele-
vant variables appearing in the governing equations. The principles of this method
are described in a number of textbooks, e.g. [8, 20, 36], while the application to
flow in porous media include e.g. [9, 19, 29, 32]. The models presented here were
obtained using the physically-oriented approach developed by Auriault [5–7, 38]. It
is assumed that the medium is periodic and shows two distinct geometric scales, as
discussed in Chap. 5:

ε = l

L
� 1. (6.1)

The governing equations at the small scale are written in terms of dimensionless
variables, with each physical (dimensional) variable u normalized with respect to its
characteristic constant value:

u = u∗ u(c), (6.2)
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where u∗ is a dimensionless variable and u(c) is a characteristic constant. The sepa-
ration of scales allows to introduce a two-scale formulation with two dimensionless
spatial variables, defined as:

x∗ = x/L , (6.3)

y∗ = x/ l, (6.4)

where x∗ is the large-scale spatial variable and y∗ is the small-scale spatial variable.
All dependent variables are represented as functions of the two dimensionless spatial
variables and the dimensionless time variable in the form of the following asymptotic
expansions:

u∗ (
x∗, y∗, t∗

) = u∗(0) (x∗, y∗, t∗
)

+ ε u∗(1) (x∗, y∗, t∗
) + ε2 u∗(2) (x∗, y∗, t∗

) + · · · , (6.5)

where the subsequent terms u∗(i) are y-periodic.
The homogenization procedure according to [6, 7] includes the following steps:

1. The governing equations describing the considered physical process at the small
scale are formulated together with the conditions at the interfaces separating the
material regions.

2. The equations are normalized according to Eq. (6.2). The spatial variable is nor-
malized with respect to l, i.e. it is replaced by the dimensionless variable y∗.

3. The order of magnitude of the arising dimensionless numbers is estimated with
respect to the powers of the scale parameter ε. This is usually written as:

R = O(εn), (6.6)

which means that the dimensionless number R satisfies the following relation:

εn+1 � R � εn−1, (6.7)

where n is an integer number.
4. The asymptotic expansions (6.5) are introduced in the normalized small-scale

equations and the spatial derivative operator is replaced by its two-scale equiva-
lent:

∂

∂y∗ → ∂

∂y∗ + ε
∂

∂x∗ . (6.8)

The interface conditions are similarly expanded.
5. In the expanded equations the terms at the same power of ε are identified. For each

power of ε, a corresponding boundary value problem is defined by a differential
equation together with the interface conditions and the periodicity conditions
for terms u∗(i). These boundary problems allow to formulate the macroscopic
model as the equation describing the behaviour of u∗(0), which takes into account
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the influence of higher order terms in the asymptotic expansion (6.5), up to the
required order of accuracy. The higher order terms are accounted for either in
the definition of the effective parameters or by additional terms arising in the
governing equation. Thus, the resulting large-scale equation may have a different
form than the local-scale equation.

6.2 Basic Assumptions

The considered porous medium has a binary structure and consists of isolated inclu-
sions of porous material II dispersed in a continuous background material I, Fig. 6.1.
It is assumed that the volume fractions of the two materials are of the same order of
magnitude:

O(wI ) = O(wII ). (6.9)

At the scale of a single periodic cell, the flow is governed by the Richards equation,
Eq. (2.67):

Cwp
∂pw

∂t
− ∇

[
kw

μw
(∇ pw − ρw g)

]
= 0, (6.10)

where Cwp is the storage coefficient defined according to Eq. (2.68):

Cwp = φ βw Sw + φ
dSw

d pw
. (6.11)

Note that both the storage coefficient Cwp and the permeability tensor kw are func-
tions of the water pressure pw. In the original papers [24, 25, 27, 42] the fluid com-
pressibility effects were neglected. In this presentation the water compressibility
is taken into account, which allows to cover the fully water-saturated case. This
modification does not affect the results of homogenization. However, the porous
medium is assumed to be rigid, as the development of upscaled equations describing
deformation of a heterogeneous medium is outside the scope of this work.

It is assumed that Eq. (6.10) applies to both background (�I ) and inclusions (�II )
parts of a periodic cell �. The flow equations at the local scale can be thus written
as follows:

C I
wp
∂pI

w

∂t
− ∇

[
k I

w

μw

(
∇ pI

w − ρ I
w g

)]
= 0 in �I , (6.12)

C II
wp
∂pII

w

∂t
− ∇

[
k II

w

μw

(
∇ pII

w − ρ II
w g

)]
= 0 in �II , (6.13)

where the subscripts I and II refer to the two porous materials. At the inter-
face between the two materials, denoted by �, the water pressure and the normal

http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2


180 6 Flow in Binary Media

Fig. 6.1 Structure of a heterogeneous porous medium with inclusions

component of the volumetric water flux are assumed continuous. These conditions
are specified as follows:

pI
w = pII

w on �, (6.14)[
k I

w

μw

(
∇ pI

w − ρ I
w g

)]
n� =

[
k II

w

μw

(
∇ pII

w − ρ II
w g

)]
n� on �, (6.15)

where n� is a unit vector normal to the interface �.
Dimensionless variables can be introduced as follows:

pι∗w = pιw/p(c)w , (6.16)

ρι∗w = ριw/ρ
(c)
w , (6.17)

C ι∗
wp = cιw/c

ι(c)
w , (6.18)

kι∗w = kιw/kι(c)w , (6.19)

where ι = I, II denotes the material index. Note that the characteristic pressure is
the same for both materials. It represents the pressure drop resulting from initial and
boundary conditions (some authors use the air entry pressure as the scaling value,
which is a material-specific parameter, e.g. [30]). The characteristic values of density
and viscosity are assumed the same for both materials. The local-scale equations can
be recast into a normalized form:

R I
t C I∗

wp
∂pI∗

w

∂t∗
− ∂

∂ y∗
i

[
k I∗

w,i j

(
∂pI∗

w

∂ y∗
j

+ Rg ρ
I∗
w
∂y∗

3

∂ y∗
j

)]
= 0 in �I , (6.20)
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R II
t CII∗

wp
∂pII∗

w

∂t∗
− ∂

∂ y∗
i

[
kII∗

w,i j

(
∂pII∗

w

∂ y∗
j

+ Rg ρ
II∗
w

∂y∗
3

∂ y∗
j

)]
= 0 in �II , (6.21)

where y3 is assumed to be oriented vertically upwards. The corresponding interface
conditions are:

pI∗
w = pII∗

w on �, (6.22)[
k I∗

w,i j

(
∂pI∗

w

∂ y∗
j

+ Rg ρ
I∗
w
∂y∗

3

∂ y∗
j

)]
n�

=
[
kII∗

w,i j

(
∂pII∗

w

∂ y∗
j

+ Rg ρ
II∗
w

∂y∗
3

∂ y∗
j

)]
n� on �. (6.23)

In the above equations, several dimensionless numbers appear. The numbers R I
t and

R II
t represent the relations between the characteristic time of the diffusive flow at

the local scale and the chosen observation time t (c):

R I
t = C I (c)

wp μw l2

k I (c)
w t (c)

= l2

DI (c) t (c)
, (6.24)

RII
t = CII(c)

wp μw l2

k(c)w(2) t (c)
= R I

t
DI (c)

DII(c)
= R I

t /Rd, (6.25)

where Dι(c) denotes the characteristic diffusivity for a specific porous material ι:

Dι(c) = kι(c)w

C ι(c)
wp μw

(6.26)

and Rd is the ratio of characteristic diffusivities:

Rd = DII(c)

DI (c)
. (6.27)

The ratio of permeabilities is:

Rk = kII(c)
w

k I (c)
w

. (6.28)

The dimensionless number representing the ratio of gravity to capillary forces (Bond
number) at the local scale is:

Rg = ρ
(c)
w g l

p(c)w

. (6.29)
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The order of magnitude of the dimensionless numbers has to be estimated with
respect to the parameter ε. The models presented in this chapter were obtained for
the following assumptions:

• The characteristic observation time corresponds to diffusive flow in the continuous
background material at large spatial scale L:

O
(

t (c)
)

= O

(
L2

DI (c)

)
. (6.30)

Since l/L = ε, the following estimations hold:

O
(
R I

t

)
= O

(
ε2

)
, (6.31)

O
(
R II

t

)
= O

(
R I

t /Rd

)
. (6.32)

• At the local scale, the capillary forces dominate over the gravity forces:

O
(
Rg

) = O (ε) . (6.33)

The latter condition holds for relatively small inclusion sizes and large pressure
drops. Note that this assumption does not remove gravity force from the large scale
model.

It should be noted that the diffusivity depends on both permeability and storage
capacity coefficients. For a specific value of the capillary pressure, the fine-textured
component of a binary medium may have smaller permeability, but also smaller
capacity compared the coarse-textured component. As a result, the diffusivities of
both materials have the same order of magnitude, or the diffusivity of the fine-textured
medium is larger. Development of the upscaled model requires assumptions on both
diffusivity and permeability ratios, appearing in the normalized equations and inter-
face conditions, respectively. The models presented below were obtained assuming
that the ratio Rk is of the same order as the ratio Rd, which implies the capacity ratio
of the order of 1, i.e. similar capacity coefficients in the two components. However,
the results are applicable also to the case of contrasting storage capacities, which is
discussed here following [39]. In order to illustrate this problem, consider steady state
flow in the neighbourhood of the material interface � separating two materials with
the same permeability, but contrasting capacities, C I

wp � C II
wp. The water pressure is

continuous at the interface and its gradient is the same at both sides, since k I
w = k II

w .
If the pressure is increased, the increment should be the same on both sides due to
the pressure continuity condition. However, the saturation will change by different
values at each side, because of the contrasting capacity coefficients. The saturation
increase will be much larger in the medium with larger capacity. Thus the continuity
of water flux does not hold. If both flux and pressure continuity conditions are to be
satisfied, one has to assume that in�II only a small boundary layer is affected by the
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process. Locally, in the boundary layer the flux is the same as in the neighbouring
material. However, if the pressure gradient is evaluated with respect to the whole
volume of�II , its value will be much smaller. Thus, an additional scaling factor will
appear in the normalized boundary condition and the results will be equivalent to the
case with contrasting permeabilities and similar storage coefficients.

6.3 Upscaled Models for Different Diffusivity Ratios

A number of different models are obtained if the ratio of the diffusivities is var-
ied. The models differ in the form of the governing large scale equation and in the
definition of the effective parameters of the heterogeneous medium. While homoge-
nization is performed on dimensionless equations, the resulting models are written in
dimensional form, more suitable for practical purposes. The details of the derivation
are omitted, as they can be found in the original papers.

6.3.1 Moderately Heterogeneous Medium

Assuming that the diffusivities of the two component materials are of the same order
of magnitude, Lewandowska and Laurent [24] developed an equation for large-scale
unsaturated flow, which in the notation of this work can be written as follows:

Ceff
wp
∂ peff

w

∂ t
− ∇

[
keff

w

μw

(
∇ peff

w − ρeff
w g

)]
= 0, (6.34)

where peff
w is the effective (large-scale) water pressure, Ceff

wp is the effective storage

capacity coefficient, and keff
w is the effective water permeability tensor. Alternatively,

the storage term can be written in terms of the effective water content θeff
w :

∂θeff
w

∂t
− ∇

[
keff

w

μw

(
∇ peff

w − ρeff
w g

)]
= 0. (6.35)

The main result of the homogenization is the existence of an upscaled wetting phase
pressure, which can be considered as uniform within the representative elementary
volume (REV, periodic cell) at the zeroth order of approximation. The dimension-
less variable p∗(0)

w is independent of y∗ and the same holds for the corresponding
dimensional variable peff

w . Consequently, local capillary equilibrium conditions pre-
vail and the upscaled parameters can be computed directly for any assumed value of
the upscaled pressure peff

c = −peff
w . Moreover, the water density is also uniform in

the cell:
ρeff

w = ρw

(
peff

w

)
. (6.36)
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Fig. 6.2 Effective water
content (eff) as an average
of the water content in the
background material (bk)
and inclusions (in), assuming
equal volume fractions of the
two constituents
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The local distribution of the water saturation in a periodic cell is piecewise-uniform,
i.e. for each material there is a single value of the saturation:

SI
w = SI

w

(
peff

w (x, t)
)

in �I , (6.37)

SII
w = SII

w

(
peff

w (x, t)
)

in �II . (6.38)

The average (effective) water content can be defined as the volume-weighted average
of the water contents of the two materials:

θeff
w = wI θ I

w + wII θ II
w . (6.39)

An example of the effective water content as a function of the effective capillary
pressure is shown in Fig. 6.2.

The effective storage coefficient is written as:

Ceff
wp = βw θ

eff
w + wI φ I dSI

w

d pw
+ wII φ II dSII

w

d pw

= βw θ
eff
w + wI dθ I

w

d pw
+ wII dθ II

w

d pw
. (6.40)

Taking into account that the average porosity is equal to:

φeff = wIφ I + wIIφ II , (6.41)
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it is also possible to define a large-scale average water saturation as:

Seff
w = θeff

w

φeff . (6.42)

Note that the effective saturation cannot be obtained by simple averaging of the
saturations in the two materials, except for the case when both materials have the
same porosity.

The effective permeability tensor keff
w is defined using auxiliary variables χ1, χ2

and χ3, corresponding to the three spatial directions. The auxiliary variable for each
direction χm , m = 1, 2, 3, is the solution to a boundary value problem defined for
the periodic cell. The problem is specified as follows [24]:

∂

∂yi

[
k I

w,i j

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)]
= 0 in �I , (6.43)

∂

∂yi

[
k II

w,i j

(
peff

w

) ∂

∂y j

(
χ II

m + ym

)]
= 0 in �II , (6.44)

with the continuity conditions at the background-inclusion interface:

χ I
m = χ II

m , (6.45)[
k I

w,i j

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)]
m�,i =

[
k II

w,i j

(
peff

w

) ∂

∂y j

(
χ II

m + ym

)]
m�,i , (6.46)

where y is a local spatial variable associated with a periodic cell, k I
w,i j denotes

component i j of the tensor k I
w and n�,i is the i th component of the unit vector

normal to the interface. At the outer boundaries of the cell, periodic boundary
conditions for χm are specified. Moreover, the average value of χm should equal
zero. In order to satisfy this condition, and on the other hand to ensure a unique
solution of the problem, the value of χm is set to 0 at an arbitrary point in the
periodic cell. Note that in the above equations the effective water pressure is a
parameter, rather than a variable. The problem must be solved assuming a spe-
cific value of peff

w and the corresponding piecewise-uniform distribution of the water
saturations and permeabilities.

The solution for each spatial direction allows to compute entries in the corre-
sponding column of the effective permeability tensor:

keff
w,mi = 1

|�|
[ ∫

�I

k I
w, j i

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)
d�

+
∫

�II

k II
w, j i

(
peff

w

) ∂

∂y j

(
χ II

m + ym

)
d�

]
, (6.47)
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where |�| denotes the volume of the periodic cell. One can obtain the large-scale
permeability function by solving the local boundary value problem (6.43)–(6.46)
for a number of values of pw from the range of interest and using interpolation to
estimate the components of the effective tensor for intermediate values of the capillary
pressure. While it is possible to compute the upscaled absolute permeability tensor
(assuming peff

w = peff
c = 0), is not possible to express the upscaled total water

permeability as a product of a tensor absolute permeability and a scalar relative
permeability function, except for the case when the relative permeability functions
are the same in both materials.

The model described above is consistent with other models developed for the
assumption of local capillary equilibrium for either two-phase flow or Richards
equation, e.g. [1, 11, 30, 35]. As shown by Neuweiler and Eichel [31], if the
gravitational force is more important at the local scale, the homogenized model
has a similar form, but differs in the definition of effective parameters. However,
even in such a case, the model obtained for capillary-dominated flow remains
a reasonable approximation.

It should be noted that the method to compute keff
w resulting from homogenization

is equivalent to the solution of a steady flow equation with periodic boundary con-
dition, as described in Sect. 5.3.3. Thus, it can be concluded that the use of periodic
conditions in upscaling is valid when assumptions underlying the homogenization
theory, in particular the existence of REV and the separation of scales, are satisfied.
On the other hand, for any specific value of the effective capillary pressure the effec-
tive permeability tensor can be estimated using approximate formulae, for instance
those based on the effective medium theory or Cardwell and Parsons bounds. The
advantage of such methods is that they are much simpler to implement than the
method based on the solution of local boundary value problem, albeit at the cost of
lower accuracy.

6.3.2 Weakly Permeable Inclusions: Local Equilibrium

If the inclusion-background diffusivity ratio is of the order ε, the characteristic time
of flow in inclusions is longer than in the background material, but still signifi-
cantly shorter than the observation time at the macroscopic scale. Application of the
homogenization procedure leads to a model characterized by a uniform value of the
zero-order water pressure p∗(0)

w , corresponding to peff
w in the whole periodic cell,

and consequently to a local capillary equilibrium model [39, 42]. The homogenized
equation has the same form as Eq. (6.34):

Ceff
wp
∂ peff

w

∂ t
− ∇

[
klow

w

μw
∇

(
peff

w − ρeff
w g

)]
= 0, (6.48)

http://dx.doi.org/10.1007/978-3-642-23559-7_5
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with the effective storage coefficient Ceff
wp defined by Eq. (6.40). However, the effec-

tive permeability klow
w is obtained from a different local boundary value problem.

Since the normal water flux in the interface condition Eq. (6.23) is scaled by a factor
of ε, it is neglected at the zero order of approximation. The auxiliary variables χm

are defined only in the part of the periodic cell corresponding to the background
material (�I ):

∂

∂yi

[
kw,i j

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)]
= 0 in �I (6.49)

with a zero-flux condition at the background-inclusion interface:

[
k I

w,i j

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)]
n�,i = 0. (6.50)

The resulting effective permeability tensor is computed from the formula:

keff
w,mi = 1

|�|
∫

�I

k I
w, j i

(
peff

w

) ∂

∂y j

(
χ I

m + ym

)
d�. (6.51)

The above formulation represents a lower limit case of the definition for moder-
ately heterogeneous media, given by Eqs. (6.43)–(6.47). The limit is obtained when
the ratio kII(c)

w /k I (c)
w → 0. In such a case, the contribution of the permeability of

inclusions to the effective permeability, given by the second integral in Eq. (6.47), is
negligible, and the auxiliary variable χ can be defined only on the�I part of the peri-
odic cell. The interface condition Eq. (6.46) becomes Eq. (6.50). If the background
material is isotropic then for any value of the large-scale water pressure the resulting
effective permeability tensor can be written as:

klow
w,i j

(
peff

w

)
= Blow

i j k I
w,i j

(
peff

w

)
, (6.52)

where the components of the tensor, Blow
i j < 1, are constant for a given geometry of

the periodic cell.
Note that while the inclusions are considered impermeable for the purposes of

computing the effective permeability, they are sufficiently permeable to ensure fast
equilibration of the water pressure locally within a periodic cell, and thus contribute
to the storage term, which has the same form in the present model as in the case of
moderately heterogeneous media, described in the previous section.
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6.3.3 Weakly Permeable Inclusions: Local Non-Equilibrium

For the permeability ratio of the order of ε2, the characteristic time of flow in a
single inclusion is approximately the same as the characteristic time of flow in the
connected background material at the macroscopic scale:

O

(
L2

DI (c)
h

)
= O

(
l2

DII(c)
h

)
. (6.53)

In other words, the large-scale response of the system appears before the pres-
sure in all inclusions reaches equilibrium with the surrounding background mater-
ial. Accordingly, homogenization leads to a two-scale local non-equilibrium model
[25]. The governing equation for flow at the macroscopic scale is written as
follows:

wI C I
wp
∂ peff

w

∂ t
− ∇

[
klow

w

μw

(
∇ peff

w − ρeff
w g

)]
+ T v

w = 0. (6.54)

The primary variable in the above equation, peff
w , represents the water phase pres-

sure in the background material, which at the zeroth order of approximation can
be considered uniform in �I part of the periodic cell. The first term in Eq. (6.54)
represents the contribution of the background material to the storage capacity of the
heterogeneous medium:

wI C I
wp
∂ pI

w

∂ t
= wI ∂ θ

I
w

∂ t
. (6.55)

On the other hand, the water pressure in the inclusions is not equilibrated with the
pressure in the background material. At any point x of the large-scale domain, the
evolution of the water pressure pII

w (x, y, t) in the associated periodic cell can be
described by the following equation:

C II
wp
∂ pII

w

∂ t
− ∂

∂yi

[
k II

w,i j

μw

∂pII
w

∂y j

]
= 0 in �II . (6.56)

Note that the equation for local flow in inclusions does not account for gravity,
according to the assumption on the local dominance of the capillary forces. The
boundary condition for Eq. (6.56) is:

pII
w (x, y, t) = peff

w (x, t) on �, (6.57)

which results from the assumed continuity of the water pressure at the material
interface.

The non-equilibrium transfer term T v
w describes volumetric water transfer between

the background material and inclusions. Since the inclusions are disconnected from
each other, by virtue of the mass conservation principle the integral of the normal
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water flux over the interface � is equal to the rate of change of the mass of water in
the inclusions:

T v
w = − 1

|�|
∫
�

[
k II

w,i j

μw

∂

∂y j
pII

w

]
n�,i d�

= 1

|�|
∫

�II

C II
wp
∂ pII

w

∂ t
d� = 1

|�|
∫

�II

∂ θ II
w

∂ t
d�

= 1

|�|
∂

∂ t

∫

�II

θ II
w d� = wII ∂θ̄

II
w

∂ t
, (6.58)

where θ̄ II
w is the average water content in the inclusion. The term T v

w can be considered
as the non-equilibrium part of the storage term, which complements the equilibrium
part given by Eq. (6.55). The local distribution of the pressure and saturation in
inclusions is obtained from the solution of the local flow equation Eq. (6.56).

The model is characterized by a coupling of large-scale and small-scale variables.
Its solution domain consists of a large-scale domain associated with the variable x
(in general three-dimensional), coupled with a set of local domains (in general also
three-dimensional), corresponding to inclusions associated with each point of the
large scale domain. Note that it is not necessary to solve the local flow equation
(6.56) for each inclusion present in the physical domain—the equation must be
solved only at the nodes of the numerical grid covering the large-scale domain (see
Sect. 6.5).

The effective permeability tensor klow
w is defined by the same local boundary

value problem for the auxiliary variable χ as given by Eqs. (6.49)–(6.50). It means
that the large-scale permeability of the heterogeneous medium does not depend
on the permeability of inclusions. Still, the inclusions are sufficiently permeable
to contribute to the storage properties of the heterogeneous medium at the chosen
time scale. However, in contrast to the model described in the previous section, the
equilibration of capillary pressure is not instantaneous, which leads to the appearance
of the non-equilibrium term T v

w.
Models of the same type were also obtained by other authors using the peri-

odic homogenization method [2–4, 10, 18]. They are sometimes called distributed-
microstructure models, e.g. [13]. As mentioned in Chap. 5, such models represent the
most detailed form of the double-porosity models. Other double-porosity models can
be considered as their simplifications, see for instance the discussion by Zimmerman
et al. [45]. Taking into account the fact that the gravity force is absent from the
local flow equation (6.56) and that the condition at the interface is uniform in space,
for an isotropic medium one can assume that the local flow is essentially radial. It
can be described by a one-dimensional equation with respect to a spatial coordinate
representing the distance from the nearest interface point. This leads to the same
description of the non-equilibrium water transfer as in the MINC model. Such a for-
mulation is strictly equivalent to the homogenization result for circular or spherical

http://dx.doi.org/10.1007/978-3-642-23559-7_5
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inclusions, while for other shapes it represents a reasonably accurate approxima-
tion [21, 41, 43]. A further simplification is possible if the locally variable water
pressure and saturation in inclusions are replaced by average values, correspond-
ing to the centre of inclusion. The gradient of the water pressure at the outer of
inclusion can be then roughly approximated as a difference between the interface
value (equal to the value in the background material) and the average value in inclu-
sion, divided by a characteristic dimension of inclusion. In this way the first-order
transfer term is obtained, as given by Eq. (5.44). The error caused by inaccurate
approximation of the gradient is partially compensated for by introducing correc-
tion factors or adjusting the relative permeability at the interface, as discussed in
Sect. 5.4.2. Thus, the model obtained by homogenization fits well into the frame-
work of double-porosity single-permeability models. These models are based on the
assumption that field-scale flow between weakly permeable regions (matrix blocks or
inclusions) is negligible. As shown by Lewandowska et al. [25], the double-porosity
single permeability model can be also used to describe flow in media with connected
weakly permeable regions, provided that the contrast in hydraulic diffusivities is
of the order of ε2. In such a case the dynamics of water in the weakly permeable
regions is determined mostly by the fluid transfer from and to the highly permeable
system. In the numerical example shown in [25], the model described above was
more accurate than the double-porosity double-permeability formulation of Gerke
and van Genuchten [16], which accounts for large-scale flow in the matrix domain,
but uses first-order approximation for the non-equilibrium transfer term. However,
from practical point of view, the double permeability model has an advantage of flex-
ibility (at the cost of reduced accuracy), since it can be used both in conditions close
to saturation, when the flow is dominated by highly permeable fractures or macrop-
ores, and in drier conditions, where most of the moisture transfer takes place in the
weakly permeable regions.

6.3.4 Quasi-Impermeable Inclusions

Yet another model arises when the permeability ratio is much smaller than ε2. The
flow in inclusions is then so slow compared to the flow in the background material,
that its influence can be neglected both in the storage term and in the effective
permeability. The resulting limit model has the following form:

wI C I
wp
∂ peff

w

∂ t
− ∇

[
klow

w

μw

(
∇ peff

w − ρeff
w g

)]
= 0, (6.59)

where the effective permeability is defined as in the previous two models, Eqs. (6.49)–
(6.50). Similarly as in the case of local non-equilibrium model, described in the
previous section, the principal variable peff

w corresponds to the pressure in the back-
ground material �I . The model given by Eq. (6.59) is valid for the assumption that
the observation time is of the order of the time of flow in the background material

http://dx.doi.org/10.1007/978-3-642-23559-7_5
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at large-scale. If long-time processes are to be simulated, then the observation time
corresponding to the flow in inclusions should be chosen, which would lead to a
local non-equilibrium model, accounting for the evolution of the water pressure in
inclusions.

6.3.5 Highly Permeable Inclusions

When the inclusions are much more permeable than the background, the unsatu-
rated flow can be described with a homogenized equation of the following form
[23, 27]:

Ceff
wp
∂ peff

w

∂ t
− ∇

[
khigh

w

μw

(
∇ peff

w − ρeff
w g

)]
= 0. (6.60)

As it was in the case of moderately heterogeneous medium, local equilibrium con-
ditions prevail, because the characteristic time of flow is much shorter for inclusions
than for the background. Accordingly, the effective storage coefficient Ceff

wp is defined
by Eq. (6.40). However, the effective permeability tensor is defined differently than
for the moderately heterogeneous case. The auxiliary variable χm , m = 1, 2, 3
is defined only on the part of the periodic cell corresponding to the background
material �I :

∂

∂yi

[
k I

w,i j

(
peff

w

) ∂

∂y j

(
−χ I

m + ym

)]
= 0 in �I . (6.61)

At the inclusion-background interface a Dirichlet condition is specified:

χm = ym on �, (6.62)

while at the outer boundaries of the cell periodic boundary conditions are imposed
for χm . The components of the effective permeability tensor are then computed as
follows:

khigh
w,mi = 1

|�|
∫

�I

k I
w, j i

(
peff

w

) ∂

∂y j

(
−χ I

m + ym

)
d�. (6.63)

Similarly to the case of weakly permeable inclusions, if the background material is
isotropic then the effective permeability tensor can be written as:

khigh
w,i j = Bhigh

i j k I
w,i j

(
peff

w

)
, (6.64)

where the components of the tensor, Bhigh
i j > 1, are constant for a given geometry

of the periodic cell. Thus, the effective permeability does not depend on the perme-
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ability of inclusions, only on the permeability of the background material and the
local geometry. It can be shown [42] that the definition of the effective permeability
presented above can be obtained as a limit case of the formulation for moderately
heterogeneous media, Eqs. (6.43)–(6.47). As the inclusion-background permeabil-
ity ratio tends to infinity, the term ∇(−χm + ym) approaches zero in the inclusion
domain �II , which implies χm → ym . Consequently, the boundary problem can be
solved only in �I domain, with the condition at the interface given by Eq. (6.62). A
similar formulation for the effective permeability was obtained by other authors in
the case of two-phase flow in media with highly permeable inclusions [32, 33].

6.4 Generalized Formulation

As shown in the preceding sections, the form of the large-scale model and the
definition of the effective permeability depends on the assumed permeability ratio
between inclusions and background. Figure 6.3 summarizes all the large-scale models
described above. However, the permeability of each material is a nonlinear function
of the water pressure and it is possible that the permeability ratio will be highly
variable even during a single flow event in a heterogeneous medium. For instance,
at large negative values of pw clay is much more permeable than sand, while in the
range of values close to zero the permeability of sand is larger by several orders of
magnitude. The model applicable for a specific range of pressure values may be not
useful outside this range. Thus, in view of the possible practical application of the
results of homogenization it is necessary to consider the possible transitions between
various models.

It has been already mentioned that the definitions of the effective permeability ten-
sor for the cases of weakly and highly permeable inclusions, klow

w and khigh
w , represent

the limit cases of the formulation developed for moderately heterogeneous media,
keff

w . They are obtained when kII(c)
w /k I (c)

w → 0 and kII(c)
w /k I (c)

w → ∞, respectively.
Thus, the definition applicable for moderately heterogeneous media can be used
for the whole range of permeability ratios. Consequently, a continuous transition
exists between the model for moderately heterogeneous media, Eq. (6.34), and the
local equilibrium models for media with weakly permeable inclusions, Eq. (6.48),
or highly permeable inclusions, Eq. (6.60). These transitions are indicated by white
arrows in Fig. 6.3.

On the other hand, the local non-equilibrium model, Eq. (6.54), includes the model
for quasi-impermeable inclusions, Eq. (6.59), and the local equilibrium model for
weakly permeable inclusions, Eq. (6.48), as special cases. In all three models the
effective permeability tensor is defined by the same local boundary value problem,
Eqs. (6.49) and (6.50), which does not take into account the permeability of inclu-
sions. The models differ in the contribution of inclusions to the storage term. The
most general formulation is represented by the non-equilibrium model, where the
change in the amount of water stored in inclusions is obtained by solving the local
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Fig. 6.3 Summary of various large-scale models with their domains of validity, arrows indicate
possible transition between models. Modified with permission from [42]

flow equation, Eq. (6.56), and integrating either the volume of water in the inclusion
or the flux at the interface �, according to Eq. (6.5). If the permeability of inclusions
tends to zero, the changes in the local distribution of the pressure and saturation
in inclusions, caused by the changes of the pressure at the interface, are insignifi-
cant. Thus, the non-equilibrium part of the storage term, associated with inclusions,
becomes:

1

|�|
∫

�II

C II
wp
∂ pII

w

∂ t
d� ≈ 0. (6.65)

Consequently, the model for quasi-impermeable inclusions, Eq. (6.59), is obtained.
The second limit case of the local non-equilibrium model arises when

kII(c)
w → k I (c)

w .

At the local scale, the characteristic time of flow in the inclusion becomes comparable
with the time of flow in the background material and it can be assumed that the water
pressure inside each inclusion equilibrates instantaneously with the pressure in the
background material via the interface condition Eq. (6.57), so

pII
w (x, y, t) → peff

w (x, t).

Thus, the non-equilibrium part of the storage term can be written as:
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1

|�|
∫

�II

C II
wp
∂ pII

w

∂ t
d� ≈ wII C II

wp
∂ peff

w

∂ t
= wII ∂ θ

II
w

(
peff

w

)
∂ t

(6.66)

and the local equilibrium model for weakly permeable inclusions, Eq. (6.48), is recov-
ered. The possible transitions between various models are indicated by dark arrows
in Fig. 6.3.

In view of the above considerations, a generalized model for all values of the
permeability ratio can be proposed in the following form [42]:

wI C I
wp
∂ pef f

w

∂ t
− ∇

[
keff

w

μw
∇

(
peff

w − ρeff
w g

)]
+ T v

w = 0, (6.67)

where Q is the non-equilibrium part of the storage term associated with inclusions
and obtained from the local flow equation (6.56) and the effective permeability tensor
keff

w includes both background and inclusions permeabilities according to Eqs. (6.43)–
(6.47). For weakly permeable inclusions, the definition of the effective permeability
becomes equivalent to the definition given by Eqs. (6.49) and (6.50), while the non-
equilibrium term T v

w accounts for the local variability of the pressure and saturation in
inclusions. For moderate heterogeneity or highly permeable inclusions, the influence
of inclusions on the effective permeability is captured, while the local distribution
of the pressure in inclusions obtained from the local flow equation quickly reaches
the equilibrium state at the scale of a single periodic cell. Thus, all the cases shown
in Fig. 6.3 are represented.

The model requires an initial condition for the large-scale pressure peff
w as well

as an additional initial condition for the pressure in inclusions pII
w (x, y, t = 0). The

boundary conditions for the large-scale equation are specified in the same way as
for the standard Richards equation (Sect. 2.3.2), for instance, as Dirichlet conditions
(pressure or saturation in the background material) or Neumann conditions (water
flux across the external boundary of the domain). The boundary condition for the
local flow equations is given by the continuity of pressure at the interface, Eq. (6.57).

6.5 Numerical Implementation

Numerical implementation of the generalized model is performed in two stages:

1. Computation of the effective permeability function keff
w

(
peff

w

)
defined by the local

boundary value problem, Eqs. (6.43) and (6.44).
2. Solution of the large-scale flow equation, Eq. (6.65), coupled with the solution of

the local-scale flow equations in inclusions, Eq. (6.56).

The examples presented in this chapter were computed with numerical codes
EFFCOND [40] (already mentioned in Chap. 5) and DPOR-2D [43, 44], developed
by the author. EFFCOND solves the local boundary value problem for effective

http://dx.doi.org/10.1007/978-3-642-23559-7_2
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conductivity in a three dimensional rectangular domain. The two porous materials are
assumed locally isotropic and can be characterized by different relative permeability
functions. The domain is covered with a uniform rectangular grid and the elliptic par-
tial differential equation is solved with cell-centred finite volume scheme. The code
allows to solve the local boundary value problem for a number of values of the capil-
lary pressure from a user-specified range, creating an effective permeability function
in tabulated form, which is then used as input to the numerical code DPOR-2D.
During the solution of the large-scale equation, the components of the effective per-
meability tensor for any given value of the capillary are interpolated linearly from
the table.

The code DPOR-2D solves the coupled flow equations for the field-scale domain
and inclusions. In principle such type of coupling can be handled in three different
ways:

• Full coupling implies that the discrete equations for the large-scale flow and local
flow are assembled into one large system of N × (1 + M) unknowns, where N is
the number of nodes in the large-scale domain and M is the number of nodes in
the interior of an inclusions.

• Iterative coupling means that in each time step the large-scale equation and the
local-scale equations are solved separately in such a way that one iteration of the
large-scale equation follows one iteration of the local equations, and each solution
is used to update the other one until a specific convergence criterion is met.

• Sequential coupling consists in solving for each time step first the large-scale
equation, with the values of the non-equilibrium term from the previous step, and
then solving the local-scale equations with the updated values of the interface
conditions. Thereafter the solution proceeds to the next time step.

In the code DPOR-2D an iterative coupling procedure was applied in order to avoid
the necessity to solve discrete equations with large number of unknowns. On the
other hand, preliminary analysis showed that sequential coupling leads to conver-
gence problems, due to strong interdependencies between the large-scale and local
equations. In the numerical code, several simplifying assumptions were introduced
with respect to the more general formulation presented above:

• large-scale problem is two-dimensional, in either cartesian or radial coordinates,
• local flow in inclusions can be described using the MINC approximation,
• large-scale permeability tensor is diagonal,
• permeability of inclusions is scalar,
• flow is incompressible.

For the large-scale domain, a uniform rectangular grid is used, Fig. 6.4. The large-
scale equation is discretized in space using the vertex-centred finite volume approach
with two-point flux estimation. The discretization with respect to time is carried out
with first-order implicit Euler scheme. The non-equilibrium transfer T v

w is expressed
in terms of the average water content in the inclusions θ̄ II

w , computed from the
local-scale flow equation:
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(a) (b)

Fig. 6.4 Spatial discretization of the large-scale and local domains used in DPOR-2D
numerical code

T v( j,τ+1)
w = wII θ̄

II( j,τ+1)
w − θ̄

II( j,τ )
w


 t
. (6.68)

This yields the following discretization scheme for the upscaled equation:

wI |V ( j)| θ
I ( j,τ+1)
w − θ

I ( j,τ )
w


 t
+ wII |V ( j)| θ̄

II( j,τ+1)
w − θ̄

II( j,τ )
w


 t
+ Q( j i,τ+1)

w + Q( jk,τ+1)
w + Q( jl,τ+1)

w + Q( jm,τ+1)
w = 0, (6.69)

where i , j , k, l and m are node indices and τ is time level index. In the above equation
both θ I

w and θ̄ II
w depend on the value of the main variable peff

w . In the first case, the
value of θ I

w is calculated directly from the capillary function for the background
material. In the second case, θ̄ II

w is obtained from the solution of the local-scale flow
equation describing flow in an inclusion associated with the node j of the large-scale
grid, with the coupling condition at the interface, Eq. (6.57). The water fluxes at the
control volume faces are approximated using two-point finite difference formulae,
e.g.:

Q( j i,τ+1)
w = −

∣∣∣F ( j i)
∣∣∣ keff( j i)

w,11

μw

(
peff( j,p+1)

w − peff(i,p+1)
w


x ( j i)
1

)
, (6.70)

Q( jl,τ+1)
w = −

∣∣∣F ( jl)
∣∣∣ keff( jl)

w,33

μw

(
peff( j,τ+1)

w − peff(l,τ+1)
w


x ( jl)
3

+ ρ( jl)
w g

)
, (6.71)
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where |F ( j i)| and |F ( jl)| denote the areas of the corresponding control volume faces,
while keff( j i)

w,11 and keff( jl)
w,33 are the average inter-nodal permeabilities. For the sake of

simplicity, in the examples presented here the inter-nodal relative permeability is
computed using the arithmetic mean approach. Other, more accurate approaches,
as the ones discussed in Chap. 4, could be used if necessary. Note, however, that in
the case of methods based on the integration of the relative permeability function,
the integral of the function (flux potential �p) must be computed and tabulated at
the preprocessing stage, since the large-scale relative permeability obtained from
homogenization cannot be described by a closed analytical formula and is in general
different for each spatial direction.

At each point of the large-scale domain, an additional equation for the local
flow in a representative inclusion must be solved. While Eq. (6.56) describes a three
dimensional problem, in the numerical implementation a simplified one-dimensional
formulation was applied, following the MINC approach, discussed previously. The
spatial discretization of a single inclusion is presented in Fig. 6.4b. In a discrete form
the local flow equation for node n in an inclusion can be written as follows:

∣∣∣V b(n)
∣∣∣ θ

II(n,τ+1)
w − θ

II(n,τ )
w


 t
+ Qb(n+1/2,τ+1)

w − Qb(n−1/2,τ+1)
w = 0, (6.72)

where the fluxes are approximated by the following algebraic formulae:

Qb(n+1/2,τ+1) =
∣∣∣�(n+1/2)

∣∣∣ k(n+1/2,τ+1)
w

μw

(
pII(i+1,τ+1)

w − pII(i,τ+1)
w


rb

)
, (6.73)

where |�(n+1/2)| is the area of the boundary between adjacent nested gridblocks
in the MINC discretization. Again, in the above formula the inter-nodal relative
permeabilities k(n+1/2,τ+1)

w are computed as algebraic averages of the nodal values.
More accurate results could be obtained with improved averaging formulae for the
relative permeability, as presented in Chap. 4. However, in the numerical simulations
presented in this chapter the results were not sensitive to the choice of permeability
averaging scheme, due to fine grid spacing in inclusions.

The iterative coupling procedure applied at each time step is shown schematically
in Fig. 6.5. The iterations are started with the values of the large-scale pressure peff

w
taken from the previous time step, or extrapolated from two previous time steps.
Then the local equations are solved at each macroscopic node j to obtain the new
approximation of the water content in the inclusions, using peff( j,τ+1,ν)

w as the bound-
ary condition. The resulting values are then integrated for each inclusion and used to
compute the residuum of Eq. (6.69). The local-scale equations are then solved once
again using a perturbed value of the macroscopic water pressure peff( j,τ+1,ν)

w + υ

in order to obtain the perturbed values of the water content in inclusions, which
are then used to estimate the derivative of the non-equilibrium term with respect to
the main variable peff

w . The derivative is added to the jacobian matrix for the large-

http://dx.doi.org/10.1007/978-3-642-23559-7_4
http://dx.doi.org/10.1007/978-3-642-23559-7_4
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Fig. 6.5 Coupled solution of the large-scale and local-scale equations for a single time step

scale equation J. Then a single iteration for the discretized large-scale equation is
performed:

J(ν) δp(ν+1) = −P(ν) , (6.74)

where δp is the vector of corrections to the nodal values of the effective water pressure
and P is the vector of the residuals of discrete equations (6.69). It is possible to use
either full jacobian, according to the Newton method, or an approximation in the form
of modified Picard method, where the derivatives of the relative permeability over
the water pressure are neglected (see Sect. 3.3.2). The latter option was used in this

http://dx.doi.org/10.1007/978-3-642-23559-7_3


6.5 Numerical Implementation 199

work. If the corrections are smaller than the prescribed error tolerance, the iterations
are terminated. Otherwise, the local flow equations are solved using the updated
values of the effective pressure as the boundary condition and the iterative process
is continued. This solution scheme was initially developed for macroscopically one-
dimensional problems (DPOR-1D code, described in detail in [39]) and later extended
to two dimensions [44]. It was shown to be convergent and reliable in a number of
applications [25, 43, 44].

6.6 Comparison with Darcy-Scale Numerical Solutions

In order to illustrate the influence of inclusion-background diffusivity ratio, a num-
ber of numerical simulations were carried out for a model heterogeneous medium
shown in Fig. 6.6. The scale parameter is ε = 0.1, which is often considered as the
maximum value for which the homogenization approach is applicable [7]. The two
porous materials are isotropic and characterized by the same capillary and relative
permeability functions, the only difference being the absolute permeabilities. While
such an assumption is not likely to be fulfilled in a real-life case, it allows to clearly
distinguish between various flow regimes by keeping the ratio of permeabilities con-
stant for each simulation (application of the model to flow in real heterogeneous
porous media is described in the next section). The hydraulic functions are given by
the van Genuchten–Mualem model, Eqs. (2.17), (2.40) and (2.41) with the following
parameters: pg = 2, 500 Pa, ng = 1.8 and mg = 1 − 1/ng. The porosity is φ = 0.4,
the residual air saturation Sra = 0 and the residual water saturation Srw = 0.1. The
absolute permeability of the background material is ks = 3×10−12 m2. Eight sets of
simulations were performed, each with a different value of the absolute permeabil-
ity in inclusions, so that the values of the inclusion-background diffusivity ratio Rd
(in this case equal to the permeability ratio) were equal to 103, 101, 1, 10−1, 10−2,
10−3, 10−4 and 10−6, respectively.

For each value of the inclusions permeability, three simulations were performed:
two fine-scale solutions based on the two-phase model and the Richards equation,
respectively, and an upscaled solution based on the model described in the previous
section. The fine-scale solutions were carried out on a uniform dense grids of 20
elements in the horizontal direction and 200 elements in the vertical direction, with
explicit representation of the heterogeneous structure of the medium. The upscaled
solution was obtained on a numerical grid of 1 by 50 elements. While an apparently
more logical choice would be to associate each periodic cell with a single element of
the macroscopic model, this would result in a coarse grid of only 10 elements in the
vertical direction, leading to significant errors in the spatial discretization of fluxes,
as discussed in Chap. 4. As the upscaled model represents a continuum description of
the behaviour of an heterogeneous system, the choice of the spatial discretization is
in principle independent of the actual size of the periodic cell, although for real-life
field-scale applications one would expect grid elements to be significantly larger than
the periodic cell.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_4
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Fig. 6.6 Structure of heterogeneous medium used in numerical examples

Figure 6.7 shows the relationship between the ratio of inclusion to background
permeability and the ratio of effective permeability to the background permeability
for the considered geometry of periodic cell, as obtained with the general formula-
tion of the local boundary value problem, Eqs. (6.43)–(6.47). Note that the effective
permeability is the same for each spatial direction. The symmetry of the plot in the
logarithmic scale can be clearly seen. For the permeability of inclusion smaller or
larger than the permeability of background by a factor of 100 or more, the effective
permeability–background permeability ratio becomes constant. It means that the
effective permeability is a linear function of the background permeability and is not
affected by the permeability of inclusions. This result is consistent with the discus-
sion of the upscaled models for weakly permeable and highly permeable inclusions
presented earlier in this chapter.

In each simulation the same set of initial and boundary conditions was used, which
corresponds to infiltration in a dry soil column with free drainage at the bottom, as
shown in Fig. 6.6. The value of the infiltration flux was chosen in such a way that the
medium remains unsaturated even for the smallest considered value of the effective
permeability, corresponding to the inclusion-background diffusivity ratio of 10−6.

The results obtained with various models are compared in terms of the vol-
umetric water flux observed at the outflow of the column in function of time,
which can be called breakthrough curve, by analogy to the experiments on solute
transport. The breakthrough curves for highly permeable inclusions (Rd = 103

and Rd = 101) are shown in Fig. 6.8, together with the results for homogeneous
medium (Rd = 1). It can be seen that the differences between the two-phase and
Richards models are negligible for all three permeability ratios. Moreover, the results
obtained with the upscaled model are very close to the Darcy-scale solutions. As the
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Fig. 6.8 Evolution of the volumetric water flux at the outflow for homogeneous medium and highly
permeable inclusions. Solid lines—Darcy-scale Richards model, dash-dot lines—Darcy-scale two-
phase model, dashed lines—generalized upscaled model

inclusion-background permeability ratio increases, the outflow from the column
starts earlier, but the shape of the breakthrough curve remains unchanged. In fact,
for all three values of the permeability ratio the homogenization predicts that local
equilibrium conditions prevail at the scale of a single periodic cell.

Figure 6.9 show the distribution of the water saturation in the heterogeneous
medium for various permeability ratios. These results are obtained with the Darcy-
scale solution of the Richards equation. Since the capillary function is the same for
both materials, the variability of the saturation results from the variability of the water
pressure. Comparing the results for homogeneous medium, Rd = 1, with the results
for Rd = 103 one can note that in the latter case the saturation in the domain is
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Fig. 6.9 Distribution of the water saturation in the heterogeneous medium obtained from the fine
scale solution of the Richards equation for different values of the hydraulic diffusivity ratio Rd

lower, because the effective permeability is higher and the value of the permeability
necessary to transmit the infiltrating water flux corresponds to a lower saturation.
Moreover, for highly permeable inclusions one can see that the saturation is not uni-
form in the inclusions, but the variations are relatively small. This can be checked in
Fig. 6.10a, which shows profiles of the water saturation along the vertical symmetry
axis of the column obtained with different models for t = 21, 600 s. In the case of
the upscaled model, the saturation in the background and the average saturation in
inclusions are both shown. It can be seen that the saturation profile obtained from the
Darcy-scale solution (solid line) shows oscillations. These oscillations are caused by
the action of gravity force at the local scale. In each inclusion the lower part is more
saturated than the upper part. This effect is not represented in the upscaled model,
which neglects local-scale gravity effects. Despite this simplification, the profile of
the average saturation in the background material and in the inclusions, represented
by the dashed and dotted line, respectively, follow the fine-scale profile with good
accuracy. Moreover, in the upscaled model the values for background and inclusions
virtually coincide with each other, indicating local equilibrium conditions.
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from the fine scale solution of the Richards equation and from the upscaled model: a Rd = 103,
b Rd = 10−3. In the upscaled model, the values for inclusions represent averages of the local
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The results for weakly permeable inclusions show a more varied behaviour in
function of the permeability contrast, as shown in Fig. 6.11. For Rd = 10−1 the
breakthrough curve has the same shape as for the homogeneous medium, but the
outflow is lagged in time due to a reduction of the effective permeability. However,
as the permeability of inclusions decreases further, the outflow appears earlier, while
the breakthrough curve is characterized by two distinct phases. In the first phase, the
value of the flux increases rapidly, but does not reach the maximum (steady-state)
value. The second phase is represented by a much slower, gradual increase of the
flux towards its steady state value. Such effect is caused by local non-equilibrium
conditions at the scale of a single periodic cell. During infiltration a part of the
water bypasses the weakly permeable inclusions, contributing to the early outflow.
However, the steady state cannot be reached until all inclusions reach capillary equi-
librium with the surrounding matrix, and the water is no longer absorbed by the
inclusions. The permeability of inclusions is sufficiently low to prevent instanta-
neous equilibration of the pressures, but on the other hand it is sufficiently large to
allow significant quantities of water to enter the inclusions. These effects become
visible for Rd = 10−2 = ε2 and are most pronounced for Rd = 10−3 = ε3. They
are still significant, though to a lesser extent, for Rd = 10−4 = ε4. However, for
Rd = 10−6 = ε6 the breakthrough curve regains the steep shape similar to the case
of homogeneous medium, although the breakthrough appears at much earlier time.
This can be explained by the fact that for very low permeability of inclusions the



204 6 Flow in Binary Media

0

 1e-007

 2e-007

 3e-007

 4e-007

 5e-007

 6e-007

 7e-007

 8e-007

 20000  25000  30000  35000  40000  45000  50000  55000  60000

v w
 (

m
 s-1

)

t (s)

kII/kI

1

10-1

10-2

10-3

10-4

10-6

Fig. 6.11 Evolution of the volumetric water flux at the outflow for homogeneous medium and
weakly permeable inclusions. Solid lines—Darcy-scale Richards model, dash-dot lines—Darcy-
scale two-phase model, dashed lines—generalized upscaled model

actual amount of water that enters them is very small and most of the infiltrating
water bypasses the inclusions and contributes to the outflow.

These observations are confirmed by Fig. 6.9, which shows the distribution of the
water saturation for the permeability ratios Rd = 10−1, 10−3 and 10−6. In the first
case, differences in saturation between the background and inclusions appear only at
the infiltration front and quickly disappear. In the second case, differences persist in
all periodic cells, indicating local non-equilibrium of the water pressure. With time,
the saturation in inclusions tends to the saturation in the background material, as local
pressure equilibrium is approached. In the third case, the saturation in all inclusions
remains practically equal to the initial saturation, as only very small amount of water
enters the inclusions due to their low permeability.

It can be noted that also in the case of weakly permeable inclusions the solutions
obtained using the Richards equation and the two-phase model for heterogeneous
medium are virtually coinciding, Fig. 6.11. The generalized upscaled model follows
the reference solutions with a reasonable accuracy. Some slight discrepancies arise
for Rd = 10−2 and 10−3, possibly due to differences in the spatial grids used for
the upscaled and fine-scale models. It should be also remembered that the scale
separation parameter is ε = 0.1, which can be considered a limit value for applica-
bility of homogenization, as mentioned earlier. It means that the effects of terms
of the higher orders of ε, which were neglected in the upscaled equations, can be
relatively important. This is also a possible explanation for the fact that the local non-
equilibrium effects are the most pronounced for permeability ratio of 10−3, and not
10−2 as predicted theoretically. These remarks notwithstanding, one can conclude
that the upscaled model captures the important features of flow for the whole range
of inclusion-background permeability ratio.
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(a) (b)

Fig. 6.12 Scheme a and photograph b of the experimental setup. Scheme not to scale. Figure b
reproduced with permission from [26]

6.7 Comparison with Experiment

Experimental verification of the upscaled model is described in [26, 44]. The
experiments were carried out at Laboratoire d’étude des Transferts en Hydrologie et
Environnement (LTHE) in Grenoble, France. A model binary medium was created by
embedding spheres made of sintered clay in fine sand in a quasi-periodic arrangement.
The hydraulic characteristics of the two materials were obtained from independent
tests performed on homogeneous samples. The resulting capillary and permeability
functions were then used to compute the large-scale hydraulic functions, which in
turn were applied in the numerical simulation of flow in heterogeneous medium.

6.7.1 Experimental Setup

The setup consisted of an acrylic box having dimensions 15 cm by 15 cm in the
horizontal directions and 18 cm in the vertical direction, Fig. 6.12. The box was
opened at the top and filled completely with a mixture of sand and spheres. The
spheres were placed manually layer by layer, with the spheres in each layer touching
each other, Fig. 6.13. After each layer was placed, the void space between the spheres
was filled with sand and the medium was compacted. Both sand and spheres were in
air-dry conditions. Three experiments were carried out and for each of them the box
was filled anew with air-dry porous materials. Three additional tests were carried out
for homogeneous sand, in order to provide data for independent estimation of the
hydraulic parameters for sand. Also in this case, for each experiments the box was
filled with air-dry material, keeping the same packing and compacting procedure.
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(a)
(b)

Fig. 6.13 Structure of the binary medium: a arrangement of spheres in sand, b periodic cell. Figure
a reproduced with permission from [26], figure b reproduced with permission from [44]

At the top surface of the medium, a quarter-disc infiltrometer was placed in one
of the corners of the box. The radius of the infiltrometer base was 6 cm. The infil-
trometer allowed to impose a specific constant value of the water pressure at the
contact between its base and the surface of the porous medium, while the amount
of infiltrating water was measured at regular time intervals. The applied pressure
head was hw = −8.5 cm (pw = −834 Pa) in all experiments. The estimated mea-
surement error in the water volume was 1.25 cm3. The cumulative infiltration curves
for homogeneous sand and double porosity medium are shown in Fig. 6.14 and the
corresponding values of infiltration flux in Fig. 6.15. Moreover, the position of the
wetting front on the vertical sides of the box and at the upper surface was observed.
Due to limited amount of water in the supply tube, the wetting front never reached
the bottom of the box nor the sides opposite to the infiltrometer. The observed wet
zone had always a regular and symmetric shape, which suggested that axisymmetric
conditions of the flow were preserved.

6.7.2 Material Parameters

Hostun HN38 sand [14] was used in the experiments. It has a relatively uniform
grain distribution with the average grain size of 162µm and 51 % of the particles
(by weight) in the size interval between 100 and 200µm. As shown in Table 6.1,
in all experiments the porosity of the sand was very similar and close to 0.4 (the
porosity was calculated assuming specific density of sand particles 2.65 g cm−3). It
was assumed that the sand can be characterized by van Genuchten capillary function
and a power-type function for the relative permeability:



6.7 Comparison with Experiment 207

Table 6.1 Parameters of the experiments in sand and binary medium

Sand Binary medium
Minimum Maximum Average Minimum Maximum Average

Volumetric fraction of sand 1.000 1.000 1.000 0.555 0.555 0.555
Porosity of sand 0.376 0.295 0.0 16215 2.27 0.56
Total time of the infiltration 0.376 0.295 0.0 16215 2.27 0.56
Total volume of the infiltrated water 0.376 0.295 0.0 16215 2.27 0.56

For each category minimum, maximum and average values of the three experiments are reported.
Reproduced with permission from [44]

Sew = [
1 + (−pw/pg

)ng
]−mg

, (6.75)

θw = θrw + Sew (θsw − θrw), (6.76)

kw = ksw krw, (6.77)

krw = (Sew)
ηw , (6.78)

with mg = 1 − 2/ng and ηw considered as an independent parameter. This model,
advocated in a number of papers, e.g. [15, 22], was chosen based on preliminary
tests, where it offered a better fit to experimental data than the most commonly used
Brooks–Corey and van Genuchten–Mualem models.

The parameters of the hydraulic functions for sand were obtained partly from an
inverse analysis of the infiltration experiments performed in homogeneous sand and
partly from independent measurements or assumptions. The residual water content
was assumed to be θ I

rw = 0, since the volumetric water content measured gravi-
metrically for air dry sand was below 0.001. The saturated water content was set to
θ I

sw = 0.342, which was the value measured in previous one dimensional experi-
ments on the same sand [28], with very similar porosity. The saturated water content is
smaller than the porosity by about 13 %, due to pore-scale air trapping. The assumed
value of θ I

sw is also consistent with the value measured in the radial flow experiments
after the end of infiltration at the soil surface, which was 0.314. As the latter value
corresponds to the capillary pressure head of 8.5 cm, imposed by the infiltrometer,
one should expect it to be lower than θ I

sw.
It is well known that the parameter fitting based only on the cumulative infiltra-

tion curve often leads to problems with finding a unique set of parameters, because
some of the parameters may be highly correlated with each other, e.g. [17]. In order
to reduce the number of parameters determined by inverse analysis, the exponents
ng and ηw were set to fixed values ng = 7 and ηw = 7. It was found by a trial
and error procedure that such values best represent the sharp transition between
wet and dry zones observed in the experiments. The remaining parameters, ksw and
αg = 1/pg, were obtained by numerical solution of an inverse problem. This con-
sisted in minimizing the sum of squared differences between measured and computed
values of the cumulative infiltration for all measurement times. The objective function
was minimized using Marquard–Levenberg algorithm [34] integrated with the for-
ward solution by DPOR-2D code for homogeneous sand. The numerical solution for
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Table 6.2 Hydraulic parameters of sand and sintered clay [44]

φ (–) θsw (–) θrw (–) pg (Pa) ng (–) mg (–) ηw (–) ksw (m2) Ksw (m s−1)

Sand 0.392 0.342 0.0 2964 7.00 0.71 7.00 1.20e − 11 1.18e − 4
Clay 0.376 0.295 0.0 16215 2.27 0.56 – 1.17e − 14 1.15e − 7

Fig. 6.14 Cumulative amount of infiltrated water as a function of time, for homogeneous sand and
double-porosity medium, as obtained from the experiments and numerical simulations. Modified
with permission from [44]

infiltration in homogeneous sand was based on the Richards equation (two-phase
model was not applied in the analysis of this experiment). The initial condition was
assumed to be pw = −98, 100 Pa (water pressure head hw = −1, 000 cm). At the
part of the boundary in contact with the infiltrometer, the water pressure was pw =
−834 Pa (hw = −8.5 cm). Other boundaries were considered impermeable for water.
A uniform grid with spacing equal to 0.5 cm in both vertical and radial direction was
used, with adaptive time step in the range from 10−12 to 1 s.

The resulting values of the sand parameters are summarized in Table 6.2. The
cumulative infiltration curve corresponding to the fitted parameters is shown in
Fig. 6.14. It can be seen that a very good fit is obtained. For the purposes of compari-
son, another inverse solution was carried out, where four parameters were fitted, i.e.
ksw, pg, ng and ηw. This resulted in a fit which was even better in terms of the cumu-
lative infiltration curve, but very inaccurate with respect to the observed position of
the wetting front [44]. For this reason, the second solution is not shown here.

The characteristics of the sintered clay, of which the spheres were made, were
taken from an earlier paper [28], which describes experiments on quasi one dimen-
sional flow in a similar binary medium. The clay spheres were produced manually in
a pottery workshop, and thus showed some slight variations in shape and size. Their
average diameter was 6.4 mm, with minimum and maximum measured values of 4.3
and 9.4 mm. The origin of the clay was La Bisbal, Spain. It was washed and sintered
at temperature of 1, 000◦C, following an old traditional technology. The porosity
of the sintered clay measured with mercury porosimeter was φ II = 0.376 with the
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Fig. 6.15 Cumulative amount of infiltrated water as a function of time, for homogeneous sand and
double-porosity medium, as obtained from the experiments and numerical simulations. Modified
with permission from [44]

average pore size around 0.7µm, the specific skeleton density ρ II
s = 3.01 g cm−3

and the dry bulk density ρ II
d = 1.88 g cm−3. Additional saturation tests were per-

formed to determine the saturated water content in clay. The average saturated water
content obtained from these test was θ II

sw = 0.295, which is significantly less than
the measured porosity. The residual water content was assumed to be θ II

rw = 0.
In order to determine the hydraulic parameters of the sintered clay, an infiltra-

tion experiment was carried out using a cylinder made of the same material as the
spheres [28]. The standard van Genuchten–Mualem hydraulic model was chosen, as
given by Eqs. (2.17), (2.40) and (2.41). The parameters ksw, αg = 1/pg and ng were
obtained by numerical optimization procedure based on minimizing the difference
between simulated and measured values of the cumulative infiltration. The parame-
ter fitting procedure was carried out using HYDRUS 1D computer program [37].
The obtained values are listed in Table 6.2. Note that the permeability of the sin-
tered clayey material is significantly larger than the values reported for natural clay
soils, e.g. [12].

The periodic cell characterizing the heterogeneous medium at the Darcy scale
is shown in Fig. 6.13b. The spheres are touching each other in each horizontal
layer, whereas the vertical distance between layers was based on the volumetric
fraction of the spheres wII = 0.445. For such an arrangement the effective per-
meability tensor is diagonal. The values of the permeability in vertical and radial
directions were computed from the solution of the local boundary value problem,
Eqs. (6.43) and (6.44), for the geometry shown in Fig. 6.13b. They are plotted in
Fig. 6.16. It can be seen that the anisotropy is relatively small. Moreover, the effec-
tive permeability function for both spatial directions follows the shape of the per-
meability function for sand, i.e. it is determined mostly by the permeability of the
background material.

http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2
http://dx.doi.org/10.1007/978-3-642-23559-7_2
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the experiments

(a) (b)

Fig. 6.17 a Distribution of the average water content in the heterogeneous medium (sand and
spheres) at the end of the infiltration obtained from the numerical simulation using upscaled model;
b corresponding range of the wet zone observed in the experiment. Modified with permission
from [44]

6.7.3 Results

The parameters of the two materials and the effective permeability function were used
as input to the upscaled model. Numerical solution was carried out for a uniform
grid with spacing 0.5 cm in each direction. The spherical inclusions were discretized
using 10 concentric shells for each inclusions, with uniform spacing of 0.032 cm.
Other parameters were the same as in the inverse analysis for homogeneous sand.

As shown in Fig. 6.14, the cumulative infiltration curve predicted by the upscaled
model is in a relatively good agreement with the experimental results. While falling
slightly below the average of the experimental curves, it is still within the range of
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(a) (b)

Fig. 6.18 a Distribution of the average water content at t=330 s and b the corresponding values of the
non-equilibrium transfer term, as obtained from the numerical solution. Modified with permission
from [44]

the measured values, indicated by the vertical bars. This is confirmed by the analysis
of the instantaneous infiltration flux shown in Fig. 6.15, where similar agreement
between the measured and computed values is observed. Furthermore, one can com-
pare the distribution of the average water content in the domain obtained from the
numerical solution with the range of the wet zone observed at the end of the infil-
tration, Fig. 6.17. The water content shown in Fig. 6.17a represents an average for
the sand and spheres at a given point of the large-scale domain. Since the water con-
tent was not measured in the experiments, the comparison can be only qualitative.
The sharp transition zone between dry and wet part of the domain seen in Fig. 6.17a
approximately corresponds to the observed extent of the wetted “bulb” outlined in
Fig. 6.17b, although the latter one is smaller by about 1–2 cm in each direction.
While the agreement between simulations and observations can be further improved
by adjusting one or more parameters of the upscaled model, such results are not pre-
sented here as the main objective of this analysis was to test the predictive capability
of the homogenization approach.

Figure 6.18 shows distribution of the average volumetric water content at an ear-
lier stage of the infiltration, t = 330 s and the corresponding spatial distribution of
the background–inclusion water transfer intensity T v

w. The transfer intensity is shown
in terms of volume of water per volume of porous medium per second. It can be seen
that the zone of the highest intensity of the water transfer corresponds to the wetting
front. This zone is relatively narrow, while behind the infiltration front the intensity
significantly diminishes. This suggests that water pressure tends to equilibrate rela-
tively quickly and the non-equilibrium phenomena are limited to the vicinity of the
wetting front, even though the inclusion-background intrinsic permeability ratio is
of the order of 10−3. However, the difference in intrinsic permeability is not enough
to ensure significant non-equilibrium effects, since the latter ones are influenced by
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the relative permeability and specific water storage functions of the two materials. In
this case, it seems that the actual contrast in hydraulic diffusivities is not sufficiently
large to produce prolonged non-equilibrium water transfer. While the water transfer
intensity obtained from the numerical simulation cannot not be verified by direct
comparison with measurements, the numerical results are generally consistent with
the experiment.
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of unsaturated water flow in a double-porosity medium under axi-symmetric conditions. Can
Geotech J 45(2):238–251. doi:10.1139/T07-096

45. Zimmerman R, Hadgu T, Bodvarsson G (1996) A new lumped-parameter model for flow
in unsaturated dual-porosity media. Adv Water Resour 19(5):317–327. doi:10.1016/0309-
1708(96)00007-3

http://dx.doi.org/10.1007/s11440-007-0049-5
http://dx.doi.org/10.1007/s11440-007-0049-5
http://dx.doi.org/10.1139/T07-096
http://dx.doi.org/10.1016/0309-1708(96)00007-3
http://dx.doi.org/10.1016/0309-1708(96)00007-3


Chapter 7
Flow in Binary Media with Heterogeneous
Air-Entry Pressure

The upscaled models presented in Chap. 6 are based on the assumption that the
Richards equation is a valid model of water flow at the local (Darcy) scale. This,
however, is not necessarily the case, especially during transition between unsatu-
rated and water-saturated conditions in porous media showing distinct and locally
variable values of the entry pressure. As the continuity of the air phase and its connec-
tion to the atmosphere may be lost, the assumptions underlying the Richards model
no longer hold, and the description should be based on the full two-phase flow model.
This chapter presents the development of an upscaled model which accounts for het-
erogeneity in the air entry pressure and which is applicable to capillary-dominated
flow in media showing moderate permeability contrast. It is shown that, after appro-
priate modification, the upscaled Richards equation shows a better agreement with
the reference two-phase model than the non-upscaled Richards equation solved for
explicitly represented heterogeneous structure. The following presentation is based
on papers [8, 9].

7.1 Upscaled Model of Two-phase Capillary Flow

7.1.1 Basic Assumptions

The porous medium is characterized by the same binary structure as considered in
Chap. 6, see Fig. 6.1, i.e. it is composed of a continuous background material, denoted
by superscript I and disconnected inclusions, denoted by superscript II. Furthermore,
it is assumed that the condition of separation of scales, given by Eq. (6.1), is satisfied.
At the local scale, the flow of water and air in each region is described by Eqs. (2.50)–
(2.51), with the storage terms written according to Eq. (2.52):
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where cw and ca are the compressibility coefficients of water and air. The conditions
at the interface � vary, depending on the saturation of the two materials, as discussed
in the following sections. Similarly to the previous chapter, the characteristic time of
the process is chosen as the time of flow at the macroscopic scale in the background
material. However, in contrast to the previous chapter, the analysis is limited to the
case when the permeabilities of the two materials are of the same order of magnitude.

As far as the local balance of driving forces is considered, we assume that at
the scale of a single periodic cell the capillary forces dominate over the viscous
and gravitational forces. These conditions can be quantified by two dimensionless
numbers. The Bond number Rg represents the ratio of gravitational to capillary
forces, while the capillary number Rc represents the ratio of viscous to capillary
forces, e.g. [2]:

Rg =
(
ρ
(c)
w − ρ

(c)
a

)
g(c) lg

p(c)c

= O(ε) � 1, (7.5)

Rc = μ
(c)
α v(c)α lc

k(c)s p(c)c

= O(ε) � 1, (7.6)

where the superscript (c) denotes characteristic values. The characteristic length for
the Bond number lg can be assumed equal to the vertical dimension of a single
heterogeneity (inclusion), while the length in the capillary number lc can be taken
as the dimension of the heterogeneity in the direction of the flow. A more detailed
discussion of the role of dimensionless numbers in upscaling of two-phase flow can
be found in [2, 3, 7].

The form of the upscaled model depends on the continuity of the non-wetting fluid
across the material interface � between the background material and inclusions. One
can distinguish three cases, which are described in the following paragraphs.
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7.1.2 Capillary Flow without Entry Pressure Effects

If both air and water are mobile at either side of the material interface, one can
assume that the pressures in each of the phases (and consequently also the capillary
pressure) are continuous across the background-inclusion interface:

pI
w = pII

w on �, (7.7)

pI
a = pII

a on �. (7.8)

Moreover, the continuity of normal mass fluxes across the interface can be assumed:
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where n� is the unit vector normal to the interface �.
For the above interface conditions, Saez et al. [6] derived a homogenized model

of the following form:
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This model can be regarded as a two-phase counterpart of the upscaled Richards
equation with local equilibrium, described in Sect. 6.3.1. The pressures in each fluid
phase is uniform within a unit cell at the zeroth order of approximation. Conse-
quently, the phase densities are also uniform, their values corresponding to the phase
pressures, ρeff

α = ρα
(

peff
c

)
. Moreover, the capillary pressure:

peff
c = peff

a − peff
w

is uniform in a periodic cell, i.e. local capillary equilibrium conditions occur. How-
ever, the saturations and phase contents are different in each of the two regions,
because the background material and inclusions are characterized by different
pc − Sew curves. The effective (average) porosity and volumetric phase contents
are defined similarly as in the case of the upscaled Richards equation:

φeff = wI φ I + wIIφ II , (7.13)

θeff
α = wI θ I
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(
peff
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)
+ wII θ II

α

(
peff

c

)
, (7.14)

Seff
α = θeff

α /φeff . (7.15)

http://dx.doi.org/10.1007/978-3-642-23559-7_6
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In order to simplify the presentation, it is assumed that the residual saturations of
air and water are zero in each material, i.e. the saturations can change in the whole
range of values between 0 and 1:

0 ≤ Sια ≤ 1, (7.16)

0 ≤ θια ≤ φ, (7.17)

where ι = 1, 2 is the index of porous material. This assumption does not reduce the
generality of the model and the case with non-zero residual saturations is described
in [8].

The effective permeability tensors for each phase depend on the effective capillary
pressure. They are defined in a similar way as the effective water permeability in
the case of upscaled Richards equation, Eqs. (6.43)–(6.47). For the chosen value of
the effective capillary pressure, a corresponding piecewise-constant distribution of
the phase permeability is assumed, with k I

α

(
peff

c

)
in the background material and

k II
α

(
peff

c

)
in the inclusions. Next, the local boundary value problem, Eqs. (6.43)–

(6.46), is solved for each spatial direction m to obtain the corresponding auxiliary
variable χm , which has to satisfy periodic boundary conditions. Based on these
results, the entries of the effective tensor are computed from Eq. (6.47). The same
procedure applies to water and air phases. Note that the formulation of the local
boundary value problem implies that the local permeability values are larger than
zero in inclusions as well as in the background material, i.e. the fluid is mobile
everywhere in the periodic cell. This is consistent with the assumed conditions at the
interface �, Eqs. (7.7)–(7.10). If both materials are isotropic, instead of the solution
of the elliptic boundary value problem, simplified approaches can be used to compute
the components of the effective tensor for the given pair of scalar values k I

α

(
peff

c

)
and

k II
α

(
peff

c

)
. However, the procedure outlined above seems more accurate for complex

geometries [1, 2].

7.1.3 Infiltration with Entry Pressure Effects

The model described above is valid on condition that both fluid phases are present
and mobile on both sides of the interface. If the capillary functions in both inclusions
and background do not show air entry pressure (as is the case, for instance, with the
van Genuchten model), the air phase disappears from the system for the same value
of pc = 0 in both materials. However, if the capillary functions have distinct entry
pressures, which are different in each material, one of the materials becomes fully
saturated at a value of the capillary pressure for which the other material remains
unsaturated. In such a case an extended capillary pressure continuity condition must
be used at the interface �, as discussed in Sect. 2.3.3. The effect of this change on
the upscaled model depends on whether the flow is of infiltration or drainage type
and whether the entry pressure is higher in the background or in inclusions. This

http://dx.doi.org/10.1007/978-3-642-23559-7_6
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Fig. 7.1 Upscaled capillary functions for heterogeneous medium with coarse-textured inclusions:
a infiltration, b drainage, (bk) background material, (in) inclusions, (std) standard upscaling method,
(mod) modified upscaling method accounting for the air entry pressure effects

problem was analyzed for flow in one-dimensional layered medium by [4, 10] and
for a multidimensional medium with inclusions by [8].

First, infiltration in a medium with higher entry pressure in the background is
considered, pI

e > pII
e . Since the entry pressure is in general inversely proportional

to the characteristic size of the pores, the inclusions can be regarded as having
coarser texture (larger pores) compared to the finer background material. Initially
the medium is dry, which corresponds to a large value of the capillary pressure.
As the water infiltrates, the capillary pressure decreases and the saturation in both
materials increases. When the value of the entry pressure of the background pI

e is
reached, this material becomes fully saturated with water. However, the water content
in inclusions is still below its maximum value, due to the differences in shape of the
capillary functions. This is shown schematically in Fig. 7.1a. If capillary equilibrium
conditions hold at the Darcy scale, the inclusion becomes surrounded with fully
water saturated fine material and the connectivity of the air phase is lost. In contrast,
the water phase remains connected throughout the medium, and the continuity of its
pressure and normal flux can be assumed at the material interfaces. The difference
between the air pressure in inclusions and the pressure in the water phase does not
exceed the entry value for the background material, so the air remains trapped in
inclusions. The threshold value of the effective water content, which corresponds to
the effective capillary pressure equal to the entry pressure of the background, can be
written as:

θ
trap
w = wI φ I + wII φ II S II

w

(
pI

e

)
< φeff (7.18)

and the corresponding effective water saturation is:

Strap
w = θ

trap
w /φeff < 1. (7.19)
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The corresponding values for the air phase:

θ
trap
a = φeff − θ

trap
w , (7.20)

Strap
a = 1 − Strap

w , (7.21)

can be considered as the field-scale residual air content and saturation, respectively.
Note that these residual values result only from the presence of material hetero-
geneities, since the pore-scale residual saturations are neglected here. The actual
value of the field-scale residual air content depends on the shapes of the capillary
functions of the porous materials, as shown in Fig. 7.1a.

Even if the water pressure increases further, the air phase cannot leave the inclu-
sions. This is in contrast to the model described in the previous section, where further
decrease of the capillary pressure results in the corresponding decrease of θ II

a and θeff
a

and the increase of the wetting phase permeability, computed from the solution of the
cell problem. Such approach does not take into account the fact that the non-wetting
phase cannot leave the inclusions, because it cannot overcome the entry pressure
in the background material. In order to include this effect, the interface conditions
(7.7)–(7.10) and the upscaled equations should be modified.

In the simplified case of incompressible flow (cw = ca = 0) the interface condi-
tions can be specified as follows:
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w on �, (7.22)
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e on �, (7.23)

where pI
e is the entry pressure of the background material, while for the normal

fluxes the following condition holds:
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Note that the air phase pressure is undefined in the background material. With
these boundary conditions, the upscaled equation for water becomes:

− ∇
(
ρeff

w
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w

μw
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∇ peff
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w g
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= 0, (7.26)

where ktrap
w is the effective wetting phase permeability obtained from the solution

of the local boundary value problem with the relative permeability k I
rw = 1 in the

background material and k II
rw = k II

rw

(
pI

e

)
in the inclusions. Equation (7.26) describes

steady flow, because the water saturation cannot increase any further and the fluids
are incompressible. Since the background becomes impermeable with respect to the
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non-wetting phase, the corresponding effective permeability becomes keff
a = 0. Note

that this result cannot be obtained from the solution of the cell problem, because the
problem becomes ill-posed when the permeability in any part of the cell is equal to
zero. The air content in inclusions is constant:

θeff
a = θ

trap
a = const. (7.27)

The capillary pressure in inclusions remains constant and equal to the entry pressure
in the background material. Thus, any increase in the water pressure will cause the
same increase of the air pressure and the air saturation in inclusions will remain
constant. In reality, air can dissolve in water or move upwards in form of small
bubbles, but these long-term processes are not accounted for by the present model,
based on two-phase immiscible formulation.

If the compressibility of the fluids is taken into account, the model becomes more
complex, since the air saturation in inclusions can change due to the compressibility.
The relevant upscaled equations can be written as:
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w
∂θeff

w

∂t
− ∇

[
ρeff

w
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w

μw

(
∇ peff

w − ρeff
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)]
= 0, (7.28)
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∂θ II

a

∂t
= 0. (7.29)

Equation (7.29) states that the mass of the air phase trapped in inclusions should
remain constant. Note that the local capillary function is used instead of an upscaled
one. The change in saturation is driven by the change in the macroscopic wetting
phase pressure. A positive change in peff

w causes an increase of the non-wetting
phase pressure in inclusions and consequently an increase in the density of the non-
wetting fluid. In order to keep the mass constant, the increase in density should be
balanced by a decrease of volume occupied by the fluid, which means in turn that
the capillary pressure decreases. On the other hand, if peff

w decreases, the capillary
pressure in inclusions is expected to increase. It can even reach values higher than
the entry pressure in the background, which enables the non-wetting fluid to move
from inclusions to the background. In this case one should switch again to the model
with two continuous phases, described in the previous section. Note also that the
saturation change in inclusions due to the compressibility is assumed to be small and
its influence on the effective permeability tensor for the water phase is neglected.

7.1.4 Drainage with Entry Pressure Effects

As the second case, drainage in a medium with disconnected coarse inclusions is
analyzed. The medium is initially fully saturated with the wetting phase (Sw = 1)
and starts to be invaded by the non-wetting phase. However, the drainage is possible
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only after the critical capillary pressure pI
e is reached. In the range of capillary

pressures below that value, the upscaled equations have the following form:

θeff
w cw

∂peff
w

∂t
− ∇

[
ρw

keff
s

μw

(
∇ peff

w − ρeff
w g

)]
= 0, (7.30)

θeff
a = 0 = const, (7.31)

where the effective permeability of the wetting phase is equal to the effective intrinsic
permeability of the medium.

Initially, there is no capillary equilibrium between inclusions and background,
because the capillary pressure in each material is equal to its entry pressure. Once the
entry pressure for the matrix is exceeded, the non-wetting phase from the injection
zone starts invading the system. As soon as there is a connected path of the non-
wetting phase between the injection zone and inclusions, the capillary pressure in
inclusions increases, until it equilibrates with the surrounding background material,
with the corresponding non-wetting phase saturation in inclusions much larger than
the one in the background. This can be represented by a discontinuity in the effective
capillary curve, Fig. 7.1b. The water content is constant and equal to the porosity for
peff

c < pI
e . If the capillary pressure increases by a very small value above the entry

pressure of the background, the average water content within a unit cell decreases
rapidly to the value corresponding to the capillary equilibrium conditions, because the
inclusions desaturate quickly. Such behavior is confirmed by physical experiments
on heterogeneous media with disconnected coarse-textured inclusions [11].

Comparing this result with the one obtained for infiltration, one can note that the
presence of disconnected coarse inclusions causes a hysteretic behaviour of the het-
erogeneous medium in the range of capillary pressures below the entry pressure of
the background material pI

e . The upscaled capillary and permeability functions are
different for infiltration and drainage, as shown in Fig. 7.1a, b. In contrast, application
of the standard upscaling procedure based on the assumption of local capillary equi-
librium for the whole range of pressures leads to a unique capillary curve for both
infiltration and drainage, shown by dotted lines in Fig. 7.1. In the range of capillary
pressures above the entry pressure of the background material, all three curves are
the same.

The hysteresis results from the presence of material heterogeneities at the Darcy
scale and occurs even if locally each of the materials is characterized by a unique
capillary curve for infiltration and drainage. The presented approach can be also
used when each of the material exhibits hysteresis in its local scale capillary curve.
In this case, the method of computing the effective parameters remains the same,
but different local scale functions should be used as input, depending on the process
which is to be simulated.

The numerical implementation of the upscaled model with entry pressure effects
depends on the formulation used in the numerical code to solve the effective equa-
tions. As mentioned in Chap. 3, two approaches are possible, i.e. either the principal
variables are the pressures of the two fluids and the phase content and permeabilities
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are calculated as functions of the pressure difference (capillary pressure) or the prin-
cipal variables are one of the pressures and one of the saturations and the capillary
pressure and permeabilities are calculated as the functions of the saturation. In the
first case, one should remember that when the capillary pressure is below the critical
value peff

c < pI
e , Eqs. (7.14)–(7.15) are no longer valid because the air phase content

is either constant or changes very slightly due to the compressibility. In the second
case, one should remember that during infiltration the value of the wetting phase
content cannot exceed the critical value θ trap

w =φeff − θ trap
a . During the drainage one

has to deal with a discontinuous capillary function. For the purposes of consistent
numerical solution, it can be replaced by a continuous capillary curve, with linear
variation of θeff

w between peff
c and peff

c + υ, where υ is a small number (similar
technique for the unsaturated flow equation was used by [11].

Finally, one has to consider an inverse heterogeneity pattern, i.e. fine-textured
inclusions with high entry pressure embedded in a continuous coarser background
with low entry pressure. During infiltration in such a medium the air phase disappears
in inclusions earlier than in the background. Consequently, there is no trapping effect
and the standard upscaling procedure can be used for the effective capillary and water
permeability functions. In the range of capillary pressures below the entry pressure
pII

e , the inclusions are impermeable to air, and the cell problem used to define the
effective air permeability must be modified. The auxiliary variable χ is defined only
in the background material, while the material interface is considered impermeable.
The resulting formulation would be the same as the cell problem describing water
permeability in a medium with weakly permeable inclusions, described in Sect. 6.3.2.

The same observation regarding the air permeability holds for drainage. Since the
medium starts to drain as soon as the entry pressure of the coarse material is exceeded,
there is no discontinuity in the resulting capillary curve. Until the value of the entry
pressure for inclusions is reached, the saturation in inclusions remains equal to one,
but the effective water content decreases, due to the drainage of the continuous coarse-
textured background. In this range the inclusions must be considered as impermeable
to air. If the difference in the shape of the capillary curves of the two materials is very
large, for high values of the capillary pressure a phenomenon of water phase trapping
in fine inclusions may occur, as pointed out by [5]. Since the coarse background is
virtually impermeable for water in the range of capillary pressures around the entry
pressure of the inclusions, the changes of the capillary pressure in the background
(e.g. due to evaporation) are not reflected by the changes of the water saturation in
inclusions, because mobile water phase cannot enter the coarse material. Analysis of
such phenomena would require accounting for evaporation and vapor transfer and is
beyond the scope of this work.

7.1.5 Modified Richards Equation

The above analysis has important implications for the Richards equation. The latter
approach differs from the full two-phase model in two important aspects. First,

http://dx.doi.org/10.1007/978-3-642-23559-7_6
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the volume of water entering or leaving a porous domain is not balanced with the
corresponding volume of air which must be displaced by water or replace water,
respectively. Second, the water content (or saturation) and permeability are defined
as functions of the water pressure, which is assumed to be equal to the negative of the
capillary pressure. Thus, it is not possible to describe the air entry effects discussed
above using the Richards equation as the model of flow at the Darcy scale.

Consider, for instance, horizontal two-dimensional incompressible flow in a
domain containing a single centrally placed inclusion, with entry pressure lower
than at the background. Initially, the capillary pressure is equal to the entry pressure
in the background material, and the air is at atmospheric pressure (pa = 0). If the
water pressure is uniformly increased along the boundaries of the cell, the water
pressure in the interior will equilibrate with the new value, due to the continuity of
the water phase. According to the two-phase flow model, the pressure of the air in
the inclusion will increase by the same value, while the capillary pressure and satu-
ration will remain the same, because the air cannot leave the inclusion through the
fully water-saturated background material. However, in the Richards equation the
new capillary pressure, taken as the negative of the water pressure, will be smaller
than the entry pressure in the background and the corresponding water saturation in
the inclusions will increase. Since the increase in water saturation is not balanced
with a decrease in air saturation, the result will be such that some amount of water
enters the inclusion. If the boundary water pressure is increased to pw = 0, the whole
domain will eventually become fully water-saturated.

Differences between the Richards model and the two-phase model are also appar-
ent for drainage of initially fully water-saturated medium with coarse inclusions.
Since in the Richards approach the capillary pressure, and consequently the water
saturation, depends uniquely on the water pressure, as soon as the water pressure
becomes smaller than (−pII

e ), i.e. the negative of the entry pressure in inclusions, the
saturation in inclusions decreases. According to the two-phase model, the drainage
cannot start until pw falls below (−pI

e ) which is the negative of the entry pressure
for the fine-textured background.

In order to overcome this deficiency of the Richards equation, a different approach
can be adopted. In this approach, the Richards equation is used not as a Darcy-
scale model, but as an upscaled model, with the effective capillary and permeability
functions which account for the entry pressure effects in the same way as it was
presented for the full two-phase model in the preceding sections. Such a model does
not result from a direct upscaling of the Darcy-scale Richards equation. Rather, it
should be regarded as a simplification of the two-phase model which is introduced
only at the field scale, after the entry pressure effects have been taken into account.

7.2 Numerical simulations

In order to illustrate the application of the modified Richards equation, two numer-
ical examples are presented. They concern two-dimensional flow in a heteroge-
neous medium with inclusions characterized by lower air-entry pressure than the
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(a) (b)

Fig. 7.2 Geometry and boundary conditions used in the numerical example: a water table fluctu-
ation, b infiltration in a dry soil

background. For each example, several numerical simulations are provided, based
on different models. First, the two-phase model and the Richards equation are solved
for the homogeneous background material without inclusions, in order to evaluated
the differences between these two approaches due to factors other than material het-
erogeneity. These solutions are denoted as 2PH-BK and RE-BK, respectively. Next,
Darcy-scale solutions are provided for a heterogeneous medium containing inclu-
sions, again using both the two-phase model and the Richards equation. They are
denoted as 2PH-DAR and RE-DAR, respectively. Finally, two forms of upscaled
Richards equation are solved. The first one is based on the standard approach, which
assumes the continuity of the capillary pressure in the periodic cell in the whole
range of its values, with the effective parameters defined as in Sect. 7.1.2. This solu-
tion is denoted as RE-UPS-1. The second upscaled solution takes into account the
air-entry pressure effects, which lead to air trapping during infiltration and retarda-
tion of drainage in inclusions, as described in Sects. 7.1.3 and 7.1.4. This solution is
referred to as RE-UPS-2.

7.2.1 Geometry and Material Parameters

In each of the two examples, the flow takes place in the same two-dimensional domain
represented by a rectangle of 60 by 40 cm, Fig. 7.2. The heterogeneous domain con-
tains 100 inclusions of the dimensions 4 by 2 cm arranged in a regular pattern in the
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Table 7.1 Hydraulic parameters of porous media used in numerical examples

φ (–) Srw (–) Sra (–) pe (Pa) nb (–) ks (m2)

Background 0.4 0.0 0.0 1,200 1.5 1e−11
Inclusions 0.4 0.0 0.0 400 2.5 1e−10
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Fig. 7.3 Capillary functions used in the numerical examples: a infiltration, b drainage, (bk) back-
ground material, (in) inclusions, (std) standard upscaling method, (mod) modified upscaling method
accounting for the air entry pressure effects
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Fig. 7.4 Water permeability functions used in the numerical examples: a infiltration, b drainage,
(bk) background material, (in) inclusions. The effective permeability in horizontal and vertical
direction is shown only for the modified method

background material, so that the scale parameter ε = 0.1 for both horizontal and
vertical direction. The two porous materials are characterized by Brooks–Corey–
Burdine hydraulic functions. Their parameters are listed in Table 7.1. The capillary
functions and the relative permeability functions for the wetting phase are shown in
Figs. 7.3 and 7.4. Both materials are characterized by a sharp decrease of the water
saturation above the air-entry pressure, which is typical for uniformly sized pores.
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7.2.2 Example 1: Fluctuating Water Table

The considered flow process consists of two stages. At the beginning of the simu-
lation, the domain is fully saturated with water and the position of the water table
corresponds to the top of the domain, Fig. 7.2a. The water pressure is distributed
hydrostatically from pw = 0 at the top to pw = 3924 Pa at the bottom. In the first
phase the water table is gradually lowered until it reaches the bottom of the domain.
This is represented by a linear decrease of the water pressure from the initial value
at t = 0 to the value pw = 0 at t = 1200 s. The latter value of the pressure is kept
constant at the bottom until t = 7200 s, allowing the water to drain from the domain
under the action of the gravity force. Next, the upward infiltration stage begins. The
water table is gradually risen to its initial position. Accordingly, the pressure at the
bottom increases linearly from pw = 0 at t = 7200 s to pw = 3924 Pa at t = 8400 s.
This value remains constant till the end of the simulation at t = 9600 s. The top of
the domain and the vertical edges are considered impermeable for water. For the
air flow equation, the initial condition is pa = 0 in the whole domain and a constant
boundary value pa = 0 is also imposed at all external boundaries, which represents
unobstructed contact with atmospheric air.

The Darcy-scale numerical simulations for heterogeneous domain were per-
formed on a uniform rectangular grid consisting of 60 (horizontal) by 40 (vertical)
elements. For the assumed set of boundary conditions the upscaled problems become
essentially one-dimensional in the vertical direction, and were solved as such, using
40 elements along x3 axis. The same approach was applied to solve the flow equations
in a homogeneous medium (without inclusions).

The results obtained with different models are compared in terms of the average
water saturation of the domain, which changes in function of time, as shown in
Figs. 7.5 and 7.6. The average water saturation is obtained by dividing the total
volume of water in the domain by the total volume of the pores. The drainage and
infiltration phases can be easily distinguished as they correspond to the decrease and
increase in the average saturation, respectively. In the solutions for homogeneous
material, Fig. 7.5, the average water saturation at the end of the drainage–infiltration
sequence becomes equal to the initial saturation, i.e. Sw = 1. There are virtually no
differences between the two-phase model and the Richards equation. In contrast, the
presence of inclusions gives rise to significant discrepancies in the results obtained
with these two models. In RE-DAR solution the drainage starts earlier than in the
2PH-DAR solution and the amount of drained water is larger, which corresponds to
smaller saturation in the domain at the end of drainage phase. The Richards equation
does not take into account the fact that drainage of inclusions is only possible if the
air is able to reach them, i.e. if the air-entry pressure in the background material
is exceeded. The evolution of the average saturation shown in Fig. 7.5 is consistent
with the distribution of the local saturation in the domain at t = 960 s, t = 7200 s and
t = 8160 s shown in Figs. 7.7, 7.8 and 7.9, respectively. It can be seen that according to
the Richards equation some inclusions become drained even though the background
material around them remains fully saturated. In the 2PH-DAR model, the entry
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Fig. 7.5 Example 1: Evolution of the average water saturation in homogeneous background material
without inclusions according to the two-phase solution (2PH-BK) and the Richards model (RE-BK)
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Fig. 7.6 Example 1: Evolution of the average water saturation in heterogeneous domain
according to Darcy-scale two-phase solution (2PH-DAR), Darcy-scale Richards model
(RE-DAR), Richards model upscaled in the standard way (RE-UPS-1) and the modified upscaled
Richards model (RE-UPS-2)

pressure effects are correctly taken into account and the inclusions remain fully
saturated in the lower part of the domain, where the difference between the air
pressure and the water pressure does exceed the air entry pressure of the background
material.

In the second phase of the flow, which corresponds to upward infiltration, the dif-
ferences between the two-phase model and the Richards equation become even more
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Fig. 7.7 Example 1: Distribution of the water saturation at t = 960 s, notation as in Fig. 7.6

Fig. 7.8 Example 1: Distribution of the water saturation at t = 7200 s, notation as in Fig. 7.6



230 7 Flow in Binary Media with Heterogeneous Air-Entry Pressure

Fig. 7.9 Example 1: Distribution of the water saturation at t = 8160 s, notation as in Fig. 7.6

pronounced. According to the 2PH-DAR solution, as the water table is risen the back-
ground material in the whole domain becomes fully saturated, before the previously
drained inclusions reach full saturation. The blocking of flow paths for air leads to
trapping of large quantities of air in the inclusions. The inclusions remain unsaturated
till the end of the simulation. In contrast, RE-DAR solution shows that all inclusions
become fully saturated at the end of the simulation. While there are some unsaturated
inclusions immediately behind the wetting front in the background material, they are
quickly filled with water, as can be seen in Fig. 7.9. Thus, the Richards equation pre-
dicts a reversible drainage–infiltration process, which is similar to the one observed
for homogeneous medium, Fig. 7.5. On the other hand, the two-phase flow model
describes a reversible phenomenon only in the case of homogeneous medium, while
in the presence of coarse-textured inclusions the initial fully water-saturated state is
not recovered.

As can be seen from Fig. 7.6, the upscaled model based on the standard approach,
RE-UPS-1, follows very closely the solution of Darcy-scale Richards equation,
RE-DAR. This proves the accuracy of the homogenization approach, but both solu-
tions are far from the two-phase solution, which should be considered as the reference
point. In contrast, the modified approach, RE-UPS-2, is in a reasonable agreement
with the 2PH-DAR model, and correctly captures the irreversibility of the drainage–
infiltration cycle. This suggest that the Richards equation can be used to describe
unsaturated water flow in porous media showing heterogeneity with respect to the air
entry pressure, on condition that the effective functions are appropriately modified.
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Fig. 7.10 Example 2: Evolution of the average water saturation in homogeneous domain

7.2.3 Example 2: Two-Dimensional Infiltration

The second example represents two-dimensional downward infiltration in an ini-
tially dry porous medium, Fig. 7.2b. The initial value of the water pressure is
pw = −9810 Pa (water pressure head of hw = −1 m) and the air is at atmospheric
pressure pa = 0. At the left part of the top boundary, the water pressure is instanta-
neously risen to the value pw = 0, while the air pressure is kept at atmospheric value,
which implies full water saturation. All other boundary segments are considered
impermeable for water and open for the atmospheric air (pa = 0). Since the upscaled
problem is also two-dimensional, all numerical simulations were performed on the
same grid of 60 by 40 elements.

In contrast to the previous example, some differences between the two-phase
model and the Richards model can be noticed even for homogeneous medium. The
corresponding values of the average saturation in the background material with-
out inclusions are shown in Fig. 7.10. The Richards equation predicts a slightly
faster infiltration rate than the two-phase model, while at the end of the simulation
the domain becomes wholly water-saturated according to both approaches. As the
boundaries are open for air flow, the discrepancy seems to be caused by the viscous
resistance to air flow. In fact, decreasing the air viscosity by two orders of magnitude
leads to a perfect matching, as shown in Fig. 7.10.

The evolution of average water saturation in heterogeneous medium is plotted
in Fig. 7.11, while Figs. 7.12 and 7.13 show the spatial distribution of the water
saturation in the domain for two intermediate times. In Fig. 7.11 it can be seen that
the presence of inclusions leads to a much larger discrepancy between the Richards
and two-phase solutions in terms of the evolution of the average water saturation.
In the first case, the whole domain becomes fully water-saturated at the end of
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Fig. 7.11 Example 2: Evolution of the average water saturation in heterogeneous domain, notation
as in Fig. 7.6

Fig. 7.12 Example 2: Distribution of the water saturation at t = 540 s, notation as in Fig. 7.6

the simulation. In the second case, only the background material saturates, while
a significant amount of air is trapped in the inclusions. Thus, the final steady-state
average saturation is 0.706 according to the two-phase flow model and the infiltration
rate represented by the slope of the saturation curve is significantly smaller than in
the Richards model.
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Fig. 7.13 Example 2: Distribution of the water saturation at t = 1800 s, notation as in Fig. 7.6

As far as the upscaled models are considered, one can see that RE-UPS-1 follows
the corresponding Darcy-scale solution of the Richards equation (RE-DAR) very
closely. In contrast, the difference between the two-phase model and the modified
Richards equation RE-UPS-2 is significantly larger than in the previous example,
although a qualitative agreement can be observed. While the final steady state satu-
ration of RE-UPS-2 (0.688) is only slightly smaller than the corresponding saturation
obtained from 2PH-DAR, more pronounced differences are observed in the infiltra-
tion rate, which is lower in the RE-UPS-2 approach. A possible reason for these
discrepancies may be a more important role played by gravity and viscous forces,
compared to the previous test case. A closer examination of Fig. 7.13 reveals that
the saturation in inclusions at the end of simulation is not uniform. In particular, the
inclusions close to the infiltration boundary have much higher saturation than the
value corresponding to the entry pressure in the background material Sw = 0.064.
The actual values reach locally 0.578. In the initial stages of the infiltration, the vis-
cous and gravitational forces are important and the capillary equilibrium assumption
does not hold for the periodic cells close to the infiltration boundary. Since the water
saturation is higher than the one predicted from the capillary equilibrium model, the
equivalent permeability of the cell with respect to water is also significantly increased.
Consequently, the water infiltration according to 2PH-DAR solution proceeds faster
than in the RE-UPS-2 approach, based on the assumption of local capillary equilib-
rium. Nevertheless, the modified upscaled model RE-UPS-2 is considerably closer
to the reference two-phase solution than either the Darcy-scale Richards equation or
the upscaled Richards equation without entry pressure effects.
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Chapter 8
Summary

The flow of water through porous media in partially saturated conditions is an
important, and on the other hand complex problem, relevant to several disciplines of
science and engineering. The present book is a contribution to this field of research,
which particularly focuses on the problem of numerical solution of the flow equa-
tions and on capturing the influence of Darcy-scale material heterogeneities in the
field-scale models of water flow in unsaturated porous media.

A general background to the mathematical modeling of flow in porous media was
given in Chap. 2. The two-phase flow of water and air in the unsaturated zone was
discussed, as well as the simplified, and more widely used Richards approach, which
neglects the air flow, assuming instantaneous equilibration of the air pressure with
the atmosphere. In each case the flow is described by nonlinear partial differential
equations of parabolic type. The nonlinearity results from complex relationships
between the capillary pressure, saturations and permeabilities of the two fluid phases,
which can be represented by several types of analytical functions.

In practical applications, the unsaturated flow equations usually must be solved
using numerical methods. This is performed in several stages. Spatial discretization
using finite difference, finite element or finite volume approach transforms a partial
differential equation into a system of ordinary or algebraic differential equations with
respect to time. Next, implicit temporal discretization results in a system of nonlinear
algebraic equations for each time step. The system must be solved iteratively, and
the subsequent corrections to the vector of unknowns are obtained from the solution
of a system of linear algebraic equations, arising for each iterations. In Chap. 3
basic numerical techniques relevant to each of those stages were outlined and the
similarities and differences between various available approaches were discussed.
The numerical scheme based on vertex-centred finite volume discretization, used in
the following chapters, was presented in more detail.

One aspect of the numerical solution of the Richards equation, which received
particular attention in Chap. 4, was the problem of approximation of the relative
conductivity between adjacent nodes of the numerical grid. A number of averaging
schemes available in the literature were compared and evaluated. The performance of
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simple methods, like arithmetic, geometric or upstream averaging is highly dependent
on the form of relative permeability function, boundary conditions of the problem
and node spacing. The relationship between the value of the average permeability
and the interplay of capillary and gravity forces was explored in the framework of
the so-called Darcian approach. The Darcian averaging is based on consideration
of steady-state flow between adjacent nodes. A method of this type, proposed by
the author in an earlier paper, was comprehensively evaluated. It was shown to be a
viable alternative to other existing methods, offering accurate approximation for a
wide range of relative permeability functions and grid sizes.

Another important issue related to the modeling of water flow in the unsaturated
zone is the upscaling, i.e. the development of models which describe in the average
terms large-scale behaviour of media showing small-scale heterogeneity. This work
focused on upscaling from Darcy scale to field scale and a brief overview of the prob-
lem was presented in Chap. 5. The importance of factors such as local heterogene-
ity pattern, separation of scales, existence of the representative elementary volume
and balance of capillary, viscous and gravity forces was discussed. The following
Chaps. 6 and 7 focused more specifically on upscaling of flow in a porous medium
composed of disconnected inclusions embedded in a continuous background mater-
ial. The upscaled models obtained with the periodic homogenization approach were
presented. The main point was to show that even if a relatively simple flow model
is assumed at the Darcy scale, the large-scale flow in a heterogeneous medium may
have non-standard characteristics.

In Chap. 6 the influence of inclusion–background diffusivity ratio was analyzed.
The results of a numerical experiment indicated qualitative differences between the
media with weakly permeable and highly permeable inclusions. In the former case,
the increase of inclusions’ diffusivity led to a monotonic acceleration of the infiltra-
tion process. In contrast, for weakly diffusive inclusions the large scale response of
the system was strongly related to the actual value of the diffusivity ratio, measured
with regard to the scale parameter ε. Depending on this value, the outflow can be
either retarded or accelerated in comparison to the homogeneous medium. Theo-
retical analysis showed that for the diffusivity ratio of ε2 the flow is dominated by
local non-equilibrium of the capillary pressure at the scale of a single representa-
tive elementary volume, leading to prolonged water transfer between inclusions and
background. This process is represented by an additional “memory” term arising in
the large scale equation. A generalized upscaled equation was discussed, which is
suitable for the whole range of the inclusion–background diffusivity ratio. A prelim-
inary experimental verification of this model was also described.

Chapter 7 deals with the heterogeneity in the air entry pressure. This important
parameter represents the value of the capillary pressure below which the air phase
loses its connectivity and cannot flow. If the entry pressure in inclusions is lower
than in the background material, two types of phenomena can be expected. First,
during infiltration some amount of air becomes trapped in the inclusions, as it can-
not overcome the entry pressure to move through the water-saturated background.
Second, if the medium is initially fully water-saturated the drainage of inclusions
cannot start earlier than the drainage of the background material, because only then
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the air phase can form connected paths through the medium. These two cases cannot
be represented by the standard Richards equation, and significant differences were
observed in the Darcy-scale numerical solutions of the Richards equation and the ref-
erence two-phase model. Such differences do not occur for a homogeneous medium.
The performance of the Richards equation can be greatly improved by introducing
upscaled capillary and permeability functions which account for the entry pressure
effects and show quasi-hysteresis in the range of capillary pressures below the entry
pressure of the background material. It is important to stress that the hysteresis results
purely from the heterogeneous structure of the medium at Darcy scale, and not from
the pore scale effects, which are neglected in the analysis.

In the author’s view, several issues considered in this book offer perspectives
for further research. For instance, the performance of the improved method for
inter-nodal permeability averaging should be evaluated more thoroughly for mul-
tidimensional problems, involving unstructured grids and anisotropic media. More-
over, an attempt can be made to extend the presented approach to the case of two-
phase flow, by adding viscous forces to the capillary–gravity balance. There are also
numerous possibilities for further development of the presented upscaling approach.
They include a more general formulation, which would account for both local non-
equilibrium of the fluid pressures, discussed in Chap. 6, and air-entry effects, consid-
ered in Chap. 7. Another direction would be to introduce a more realistic local-scale
description, encompassing hysteresis in the hydraulic functions of each material,
inter-phase mass transfer and deformations of the solid skeleton. Finally, the need
for a comprehensive experimental verification of the upscaling approaches must be
emphasized.
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