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Notations

Subscripts related to fluid phases:

a Air,
Water,
o Generic fluid phase.

Subscripts related to the components of vectors and tensors (Einstein
summation convention is implied only for these subscripts): i,j, k,I,m,n.

Superscripts related to spatial discretization (in parentheses)

(i) to (m) Indices of grid entities: nodes, elements, volumes or faces,
(@) Average value between nodes i and j,

(e) Average value in a finite element,

(fc) Average value at a finite volume face,

(7) Time step index,

(v) Iteration index.

Superscripts related to components of a heterogeneous medium:

I Fracture system or background material
11 Rock matrix or inclusions

Superscripts related to averaged field-scale properties:

eff Effective parameter,
eq Equivalent parameter.

Superscripts related to homogenization analysis:

* Dimensionless variable,
(¢) Characteristic value.
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Symbols (physical units specified where appropriate):

Uppercase Latin letters:
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Cit

inc
Cil
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o

R gas
trap
Sa

trap
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S eo

max
SG{
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Coefficients in spatially discretized flow equations for phase o at
node j,

Geometry-dependent constant for calculating the effective water
permeability in a medium with highly permeable inclusions,
Geometry-dependent constant for calculating the effective water
permeability in a medium with weakly permeable inclusions,
Coefficient decreasing the time step size,

Coefficient increasing the time step size,

Specific water capacity in the pressure head based form of the
Richards equation, (m™"),

Storage coefficient in the pressure head based form of the
Richards equation, (m™),

Storage coefficient in the pressure based form of the Richards
equation, (Pa™h),

Hydraulic diffusivity tensor, (m?s™!),

Energy dissipation for fluid flow in porous medium, (Pa?),
Characteristic diffusivity at the field scale (m),

Characteristic diffusivity at the Darcy scale (m),

nth finite element,

nth face of a finite volume grid,

Gravity term in spatially discretized flow equation for phase o at
node j,

Total potential head of fluid phase «, (m),

Hydraulic conductivity of phase o at apparent saturation,
(ms™),

Hydraulic conductivity of phase o, (ms™!),

Characteristic length at the field scale, (m),

Mass density of fluid phase o with respect to the bulk volume of
porous medium, M, = p, ¢, S, , (kg m3),

Total mass flux of phase o at a control volume face, (kg s7h,
Characteristic dimension of a matrix block or inclusion, (m),
Universal gas constant, (J (mol"K)_l),

Effective air saturation for a heterogeneous medium in trapped-
air regime,

Effective water saturation for a heterogeneous medium in
trapped-air regime,

Saturation of fluid phase o,

Normalized saturation of phase o,

Maximum attainable saturation of phase «,

Minimum attainable saturation of phase «,
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Saturation of phase « at residual state,
Non-equilibrium mass flow rate between fractures and matrix, or

between background material and inclusions, (kg(m3 5)71 ),
Non-equilibrium volumetric flow rate between fractures and
matrix, or between background material and inclusions, s,
Domain of a representative elementary volume at the pore scale,
Part of a pore-scale representative elementary volume occupied
by phase «,

Matrix block domain,

ith finite volume,

Solution domain at the Darcy scale,

Auxiliary parameter in the formula for inter-nodal permeability,
Auxiliary parameter in the formula for relating parameters of the
Brook-Corey and van Genuchten functions.

Calligraphic Latin letters:

g0
&V

T

Spatial discretization operator for node j,

Set of finite elements sharing node j,
Relative air humidity,

Mole mass of fluid phase o, (kg mol~'),

Set of nodes belonging to n-th finite element,

Set of nodes connected to node j, including j,

Order of magnitude of number u,

Dimensionless gravity—capillarity ratio,

Dimensionless hydraulic diffusivity ratio between inclusions and
background,

Dimensionless permeability ratio between inclusions and
background,

Dimensionless time scale for Darcy-scale flow in porous material
L

Kelvin temperature, (°K).

Lowercase Latin letters:

ai
! / ! !
a, ay, ayy, a4

AN / /
b ) bOl? 02> bl

Length of the ellipsoidal inclusion in ith spatial direction, (m),
Parameters in the Gasto et al. formula for the inter-nodal
permeability,

Parameters in the Gasto et al. formula for the inter-nodal
permeability,

Parameters in the Gasto et al. formula for the inter-nodal
permeability,

Ellipsoid depolarisation coefficient in ith spatial direction,
Fractional flow function for fluid phase «,

Magnitude of the gravitational acceleration vector, (m s~2),
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Gravitational acceleration vector, (m s~2),

Pressure head of fluid phase o, (Pa),

Capillary pressure head, (Pa),

Air-entry pressure head, (Pa),

Pressure head scaling parameter, (Pa),

Average relative water permeability for the capillary-driven flow
between nodes i and j,

Average relative water permeability for the gravity-driven flow
between nodes i and j,

Integrated average relative water permeability between nodes i
and j,

Cardwell and Parsons lower bound for the equivalent perme-
ability in ith direction, i = 1,2, 3, (m?),

Cardwell and Parsons upper bound for the equivalent perme-
ability in ith direction, i = 1,2,3, (m?),

Average relative water permeability in a finite element,
Relative water permeability at the fracture—matrix interface,
Average relative water permeability between nodes i and j,

Relative permeability of phase o,

Intrinsic permeability tensor, (m?),

Equivalent intrinsic permeability tensor of heterogeneous
medium, (m?),

Effective intrinsic permeability tensor of a heterogeneous
medium, (m?),

Total permeability tensor in fractional flow formulation,
(m?(Pas) ™),

Permeability tensor of phase «, (m?),

Effective permeability tensor of a heterogeneous medium for
phase «, (mz),

Effective water permeability tensor for a heterogeneous medium
with highly permeable inclusions, (m?),

Effective water permeability tensor for a heterogeneous medium
with weakly permeable inclusions, (m?),

Effective water permeability tensor for a heterogeneous medium
in trapped-air regime, (m?),

Characteristic length at the Darcy scale, (m),

Characteristic dimension of Darcy-scale heterogeneities, (m),
Characteristic dimension of the averaging volume, (m),
Exponent in the van Genuchten capillary function,

Exponent in the Brooks—Corey capillary function,

Exponent in the van Genuchten capillary function,
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Unit vector normal to the boundary of a finite element,

Unit vector normal to the boundary of a finite volume,

Unit vector normal to the boundary of the porous domain,
Unit vector normal to the interface separating two porous
materials,

Atmospheric pressure, (Pa),

Capillary pressure, (Pa),

Air-entry pressure, (Pa),

Air-entry pressure during drainage, (Pa),

Air-entry pressure during wetting, (Pa),

Capillary pressure scaling parameter in the Gardner and van
Genuchten functions, (Pa),

Pressure in fluid phase «, (Pa),

Reference pressure for fluid phase o, (Pa),

Global pressure in the fractional flow formulation, (Pa),
Fluctuation of the fluid pressure for steady flow in ith spatial
direction, (Pa),

Cumulative evaporation flux at the soil surface, (m),
Cumulative infiltration flux at the soil surface, (m),

Local spatial coordinate in a matrix block or inclusion, (m),
Radius of a capillary tube, (m),

Main curvature radii of the air—water interface, (m),

Absolute error tolerance in the solution of nonlinear algebraic
equations,

Relative error tolerance in the solution of nonlinear algebraic
equations,

Time, (s),

Surface drying time in the evaporation simulation, (s),

Surface ponding time in the infiltration simulation, (s),

Generic variable,

Vector of unknown nodal values in the numerical solution,
Characteristic advective velocity at the field scale, (m sh,
Characteristic advective velocity at the Darcy scale, (m s7h,
Steady-state volumetric water flux between nodes

i and j, (m s7h,

Volumetric water flux at the soil surface, (ms™'),

Volumetric flux of fluid phase o with respect to the solid phase
(Darcy velocity), (ms™!),

Total volumetric flux in the fractional flow formulation, (ms™),
Volumetric fraction of a porous material,

Spatial coordinate vector, (m),

Spatial coordinate vector associated with a periodic cell, (m),
Elevation above the reference level, (m).
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Uppercase Greek letters:
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Interface between two porous materials,

Distance between nodes i and j, (m),

Normalized distance between nodes,

Time step, (s),

Weighting coefficient in the time discretization scheme,
External surface of a matrix block,

Interface between nested matrix blocks i and i+ 1 in MINC
method,

Weighting function in the finite element method,

Flux potential with respect to the water pressure head, (m),
Flux potential with respect to the water pressure, (Pa),

Shape function for node i in the finite element method,
Element shape function for node i in the finite element method,

Domain of a periodic cell,
Part of a periodic cell occupied by the background material,
Part of a periodic cell occupied by the inclusions.

Lowercase Greek letters:

Xg

Up.q

B
fm
p
ﬁ]’vq
,yfm
yl’,q
ou

NisM2, M35 M4

Oy

Inverse of the scaling pressure (or pressure head) in the capillary
function, (Pa~!) or (m™1),

Coefficients in the modified equation,

Relative compressibility coefficient for fluid phase o, (Pa™!),
Shape coefficient for the fracture-matrix transfer term,

Parameter in the averaging formula for the inter-nodal
permeability,

Coefficients in the modified equation,

Scaling coefficient for the fracture—matrix transfer term,
Coefficients in the modified equation,

Increment of the vector of unknown values in the iterative solution
procedure,

Scale parameter,

Gravity coefficient, cosine of the angle between x axis and the
gravity vector in one-dimensional problems,

Modified gravity coefficient,

Exponent in the power-law relative permeability function for phase
*,

Exponents in the Mualem and Burdine relative permeability
functions,

Volumetric content of phase o,



Notations

Oro:
950(
trap
Ga
trap
ew

K

Ay

Wk
Wy

Wy

XXi

Volumetric content of phase at the residual state «,

Volumetric content of phase o at the state of apparent saturation,
Effective volumetric air content for a heterogeneous medium in
trapped-air regime,

Effective volumetric water content for a heterogeneous medium in
trapped-air regime,

Connectivity parameter in the Mualem and Burdine relative
permeability functions,

Mobility of phase o, (Pas) ™,

Dynamic viscosity coefficient of fluid phase «, (Pa s),

Local spatial coordinate in the finite element scheme,

Weighting coefficient in the generalized power average formula
for the equivalent permeability in ith spatial direction,

Intrinsic mass density of fluid phase o, (kg m™3),

Reference intrinsic mass density of fluid phase o, (kg m™3),
Surface tension between phases o and f, (N m’l),

Small number used in numerical differentiation,

Porosity,

Auxiliary variable used to define the effective permeability in ith
spatial direction,

Wetting angle,

Weighting parameter in the averaging scheme for fracture—matrix
permeability,

Weighting parameter in the averaging formula for the inter-nodal
relative permeability,

Weighting parameter in the averaging formula for the inter-nodal
relative permeability.



Chapter 1
Introduction

The unsaturated zone, also called vadose zone, is located between the soil surface
and the groundwater table. Its depth is variable and depends on geological and cli-
matic factors. As the name implies, soils and rocks in the unsaturated zone are only
partially filled with water, the rest of the pore space being occupied by air. The vadose
region constitutes a vital link between groundwater, atmospheric water and surface
water. It is a place of intense human activity of various kinds, including civil and
environmental engineering and agriculture. Therefore, flow and transport phenom-
ena occurring in the unsaturated zone can be studied from different viewpoints, as
shown schematically in Fig. 1.1.

A distinct scientific specialization, soil physics, is entirely devoted to the study
of physical processes in soils, including the water flow in unsaturated conditions,
e.g. [17, 20, 47]. Soil physics developed in a close relationship to agronomy and
hydrology. In agricultural applications, emphasis is put on the availability of water
and dissolved nutrition substances to plants, which motivates the development of
comprehensive models to describe the soil-plant-atmosphere system, e.g. [8, 9].
Accurate evaluation of water infiltration into the soil and evapotranspiration from the
soil is also important for hydrological models. For instance, the infiltration capacity
of soils has a direct influence on the formation of runoff, and thus is an important
factor in predicting the risk of flood. Consequently, a trend towards explicit coupling
of the surface and shallow subsurface flow in hydrological models can be observed,
e.g. [11, 48].

On the other hand, the water flow processes in the unsaturated zone have sig-
nificant impact on groundwater flow in saturated aquifers, which constitute a major
source of drinking water. Even more importantly, the vadose zone is a buffer between
groundwater and various sources of pollutants located at the soil surface or in the
shallow subsurface. Reliable prediction of the fate of contaminants dissolved in water
requires the knowledge of water flow velocities in the unsaturated zone, which are in
general highly variable in space and time. Therefore, increasing attention is paid to
coupled saturated-unsaturated models of groundwater flow and contaminant trans-
port, e.g. [43, 44, 50]. Moreover, accounting for the unsaturated flow allows for

A. Szymkiewicz, Modelling Water Flow in Unsaturated Porous Media, 1
GeoPlanet: Earth and Planetary Sciences, DOI: 10.1007/978-3-642-23559-7_1,
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Fig. 1.1 Typical problems related to water flow in the vadose zone

improved estimation of parameters related to the hydraulics of phreatic aquifers,
such as the recharge rate [18], the specific yield [35] or the height of the seepage
face in wells [5].

Water flow in the vadose zone has important implications also for geotechni-
cal engineering. Traditionally, soil mechanics focused mostly on completely dry or
fully saturated non-cohesive soils, and fully saturated cohesive soils. However, a wide
range of problems can be more accurately modelled, if the variability in the soil water
saturation is taken into account. This is particularly necessary for soils that swell,
shrink or collapse due to the changes in water saturation, but there is an increas-
ing awareness of the importance of unsaturated flow also for other applications,
including soil compaction, slope stability, flow in dams and embankments, protec-
tion of landfills, tunneling or interpretation of penetration tests, e.g. [30, 31, 51].
Unsaturated soil mechanics is still an emerging and very active field of research,
which developed substantially during the last twenty years, e.g. [10, 25, 28].

In all the applications mentioned above a crucial issue is the ability to accurately
model water flow in soils, or—more generally—partially saturated porous media.
This, however, is a challenging task, due to the multi-phase and multi-scale nature of
porous media, especially the ones formed by natural processes. Porous soils and rocks
in the vadose zone consist of several deformable solid and fluid phases, separated
by clearly distinguishable interfaces, representing sharp discontinuities in physical
and chemical properties [16, 33]. In general, each of the phases consists of multi-
ple chemical components, which can move between phases. Pore air, for instance,
is a mixture of gases, including water vapor, while pore water contains many dis-
solved substances, including gases. The number of phases and components included
in the mathematical model depends on the problem under consideration. In many
applications focusing on the water flow, a sufficient accuracy can be achieved with
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Fig. 1.2 Observation scales in a porous medium

a simplified model, where both air and water are considered as immiscible single-
component phases and the deformation of the solid skeleton is neglected. Such an
approach is adopted in the present work.

Modelling of flow in porous media is further complicated by the fact that the
relevant physical processes can be described at various observation scales. Mathe-
matical models applied at each scale typically represent the principles of conservation
of basic quantities such as mass, momentum and energy, but the exact form of the
governing equations may differ substantially between the scales. In some cases the
model describing processes at a larger scale can be derived directly from the equa-
tions relevant at a smaller scale by an appropriate averaging procedure. This process
is known as upscaling. Alternatively, the governing equations can be formulated
directly at the larger scale, based on phenomenological considerations. Two basic
scales, typically distinguished in porous media, are the pore scale and the Darcy
scale, Fig. 1.2. In the former case, the characteristic spatial dimension is the size of a
single pore, which in granular media is approximately proportional to the grain size.
At this scale, each phase occupies a distinct spatial domain, and each point of space
can be associated with a specific phase. On the other hand, it is assumed that each
phase can be regarded as a continuum within its own spatial sub-domain, i.e. the size
of the pores is much larger than the size of fluid molecules. The flow of fluid phases
can be described by the Navier-Stokes equations with appropriate conditions at the
fluid-solid and fluid-fluid interfaces. However, the pore scale description is not suit-
able for practical problems, which involve spatial domains having dimensions larger
than the pore size by many orders of magnitude. Therefore, the governing equations
describing behaviour of various phases are usually formulated at a much larger scale,
which in the present work will be referred to as the Darcy scale, from the name of
H. Darcy, who developed the well-known formula for the water seepage velocity in
a porous medium [7]. At this scale, each spatial point corresponds to a representative
elementary volume (REV), containing a sufficiently large number of pores, occupied
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by multiple fluid phases. Thus, in contrast to the pore scale description, at the Darcy
scale each phase forms a continuum over the entire spatial domain.

The most commonly used two-phase model of air and water flow at the Darcy
scale is a combination of the mass conservation equation for each fluid with the semi-
empirical equation for flow velocity, based on an extension of the Darcy formula for
the case of multi-phase flow. One of key components of the model is the capillary
function, describing the relationship between the water saturation and the capillary
pressure, defined as the difference between pressures in the air and water phases.
A complementary constitutive relationship is given by the relative permeability func-
tion, which describes the ability of each fluid phase to flow in the porous medium
as a function of the phase saturation. Both functions are strongly nonlinear. Their
form depends principally on the geometrical characteristic of the pore space and
on the properties of the fluid-fluid and fluid-solid interfaces (surface tension). The
mathematical model of two-phase flow is often formulated as two coupled partial
differential equations of parabolic type, with the two phase pressures or saturations
as the primary unknown variables.

The two-phase model can be simplified, if one assumes that the air phase is con-
tinuously distributed in pores, it is connected to the atmospheric air and much more
mobile than the water phase. Accordingly, the pressure in the air phase can be con-
sidered constant and equal to the atmospheric pressure, and the equation describing
air flow is eliminated. The remaining equation for the water flow is called the unsat-
urated flow equation or the Richards equation [34]. Similarly to the full two-phase
flow model, the Richards equation is based on semi-empirical concepts of the capil-
lary and relative permeability functions, introduced at the Darcy scale to account for
a number of pore scale phenomena, which at present are not fully understood. These
constitutive relationships are difficult to associate with the Darcy-scale processes in
a manner that is both physically rigorous and easy to implement practically. While
a number of improved formulations for the two-phase and unsaturated flow have
been proposed, e.g. [3, 14, 26, 29, 32, 49], the Richards equation remains a useful
and well-established tool in the unsaturated zone modelling, and is the basis of the
present analysis.

The present book focuses on two aspects of the application of the Richards equa-
tion. The first one is related to its numerical solution. Although significant develop-
ment of the numerical algorithms occurred in the last twenty years, e.g. [4, 27], solu-
tion of the Richards equation remains a challenging task due to the afore-mentioned
strongly nonlinear constitutive relationships, which must be appropriately repre-
sented in the discretized space-time domain. A particularly important issue is the
approximation of the relative permeability between the nodes of a spatial grid, which
is a necessary to estimate water fluxes, according to a discrete version of the Darcy
formula. As the relative permeabilities may differ by several orders of magnitude (for
example, during infiltration in a dry soil, or evaporation), the choice of the averaging
method is often essential for the overall accuracy of the approximate solution. Sev-
eral simple averaging schemes have been proposed, e.g. arithmetic mean, geometric
mean and upstream weighting, but each of them may lead to large errors for partic-
ular combinations of the initial and boundary conditions, grid size and the form of
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functional relationship between the relative permeability and the capillary pressure,
e.g. [1, 2, 15]. On the other hand, more accurate methods often require significantly
larger computational effort, e.g. [46]. In this work an averaging scheme is presented,
that is relatively easy to implement and significantly improves the solution accuracy
for a wide range of one- and two-dimensional problems. The method was proposed
in the paper [36], and further developed in [37, 38]. Extension of the method for
unstructured grids and implications for the solution of the full two-phase model are
also discussed. The analysis is carried out for a simple form of the Richards equa-
tion, which does not account for soil compressibility nor water uptake by plant roots.
While these two factors are very important in many applications related to the unsat-
urated zone and must be properly treated numerically, they have no direct influence
on the development of the averaging schemes for inter-nodal permeabilities.

The second topic considered in this book deals with flow in porous media showing
material heterogeneity at the Darcy scale. Heterogeneity may be related to various
physical and chemical properties of the porous medium. The focus of this work is on
porous formations composed of sub-domains characterized by distinct textural prop-
erties, which imply differences in pore geometry, and consequently in the physical
parameters such as permeability, hydraulic diffusivity or air entry pressure (defined
as the value of the capillary pressure above which the pore air flow is possible).
The important issue of chemical heterogeneity, for instance related to the wettability
and adsorption properties of the solid phase is not considered here. If the number of
heterogeneous regions in the considered spatial domain is large, their explicit rep-
resentation on a numerical grid becomes difficult or even impossible. Therefore, a
new observation scale can be introduced, which for the purposes of this work will
be called the field scale, Fig. 1.2. At this scale the relevant representative elemen-
tary volume encompasses sufficiently large number of Darcy scale heterogeneities
to allow for the development of an upscaled model. The heterogeneous structure can
be described in either deterministic or stochastic terms. In particular the stochas-
tic models for flow and transport in unsaturated heterogeneous porous media have
been a subject of intense research, e.g. [6, 12, 52]. In this book the deterministic
viewpoint is adopted and a specific heterogeneity pattern is considered: a binary
porous medium with disconnected porous inclusions (lenses) embedded in a contin-
uous porous background material. While such a structure is relatively simple, it is
representative of a number of natural porous formations, such as fluvial or coastal sed-
iments, or sandstone-shale sequences, e.g. [19]. On the other hand, this type of pattern
can be conveniently parametrized and analysed from the theoretical point of view,
allowing for a good general understanding of local heterogeneities on the large-scale
behaviour of the medium. The second part of this work presents an extended discus-
sion of several models based on the Richards equation, which were developed for
such type of media using the asymptotic homogenization approach [21-24, 39, 41].
These works showed that the macroscopic behaviour of the medium depends on
the ratio between the permeabilities of the inclusions and the background material.
A generalized model, valid for a wide range of inclusion-to-background permeability
ratio, was proposed [39], and its preliminary experimental verification was carried
out [40]. It can be also shown that the Richards approximation is not valid for media
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characterized by higher value of the air-entry pressure in the matrix than in inclu-
sions. In porous media showing heterogeneity with respect to the air-entry pressure
the assumption of the continuity of air phase in porous medium, which underlies the
Richards equation, may not be satisfied [41]. However, the accuracy of the Richards
equation can be improved, if the large-scale capillary and permeability functions are
appropriately modified [42].

The field scale discussed in this book represents an intermediate level in the hier-
archy of scales relevant to the modeling of water flow in the vadose zone, with the
characteristic length of the order of meters to dekameters. Significant research has
been devoted to the description of unsaturated zone processes at regional scale, cor-
responding to hydrological watersheds, with the horizontal dimensions of many kilo-
meters, e.g. [13, 45]. Atsuch ascale, simplified mathematical models of the black-box
type are routinely used and an important question is how to relate their parameters
to the more detailed characteristics of the porous media available at smaller scales.
While regional-scale hydrological modelling is of high practical importance, it is not
considered in this book.

The book is structured as follows. Chapter 2 presents the mathematical formula-
tion of flow in unsaturated porous medium. The governing equations for the two-
phase model and the Richards model are discussed, together with various analytical
formulae for capillary and permeability functions. In Chap. 3 a numerical algorithm
to solve the governing flow equations is developed. The algorithm is formulated in
general terms and can be applied to both the two-phase model and the Richards
equation. Various methods of spatial discretization are discussed, including the con-
trol volume-finite difference and control volume—finite element approaches. The
approximation of the average permeability in spatially discretized Richards equation
is considered in detail in Chap.4. Chapter 5 introduces basic concepts of upscaling.
In Chap. 6 the upscaled models developed for flow in binary media without air-entry
pressure effects are presented. The model accounting for air-entry effects is discussed
in Chap. 7. The final chapter summarizes the contents of the book and outlines some
open problems related to the discussed topics.
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Chapter 2
Mathematical Models of Flow in Porous Media

In this chapter a general model for the two-phase fluid flow in porous media is
presented, together with its simplified form, known as the Richards equation, which
is applicable (under specific assumptions) to describe water flow in the vadose zone.
In each case the governing equations are formulated at the Darcy scale, using the
capillary pressure—saturation relationship and an empirical extension of the Darcy
equation for the multiphase flow. The validity of these concepts, and the models
based on them, is a subject of ongoing scientific debate, due to unclear connections
between the pore-scale and Darcy-scale physical quantities, e.g. [25, 29, 32, 56, 66,
88]. Nevertheless, the models described here can be used to simulate many practical
cases of multiphase flow in the subsurface with sufficient accuracy, e.g. [17, 31].
Therefore, they have been assumed as the starting point for the analysis presented in
this work.

The two-phase flow model considered here is based on the following assumptions:

—_—

Pore air and pore water are single-component fluids.

2. Mass transfers between the fluids, i.e. the dissolution of air in water and the

evaporation of water, are neglected.

The flow is isothermal.

4. Both fluid phases are barotropic, i.e. each phase density depends only on the
pressure in the respective phase.

5. The solid phase is homogeneous, materially incompressible and does not react

with the pore fluids.

The solid skeleton is rigid.

7. The flow of each fluid can be described by the extended Darcy formula including

the relative permeability coefficient.

e

o

Additional assumptions underlying the Richards equation are discussed in Sect. 2.2.2.
Fluid compressibility and soil skeleton deformation are not essential for the range of
problems considered in this book. However, fluid compressibility is included in order
to retain parabolic character of the governing equations for single phase flow. For a
description of more comprehensive modeling approaches, which take into account
the deformation of porous medium, see e.g. [20, 24, 47, 59, 70]. In the following
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sections the key components of the model are briefly outlined, based to a large extent
on the works [31, 33, 63].

2.1 Fundamental Concepts

2.1.1 Wettability and Capillarity

When two fluids are present in the pore space, one of them is preferentially attracted
by the surface of the solid skeleton. It is called the wetting fluid (or phase), while the
other fluid phase is called non-wetting. Here we consider only hydrophilic porous
media, showing greater affinity to water than to air, which are more widespread in
nature [33]. In the following the term wetting phase will be used as a synonym for
water and the term non-wetting phase—as a synonym for air.

Immiscible fluids are separated by a well defined interface, which, if observed
at a scale much larger than the molecule size, can be considered infinitely thin.
Since the cohesion between fluid molecules at one side of the interface is different
from that at the other side, the interface is characterized by some surface energy (or
surface tension), which is a measure of the forces that must be overcome to change
its shape. One consequence of the existence of the surface tension is the difference
in the equilibrium pressures of air and water, separated by a curved interface, due to
unbalanced tangential forces at the dividing surface. The pressure drop between the
air and water phases can be calculated from the Laplace equation [63]:

1 1
Ap = pa — pw = Oaw (—+—), (2.1)
I'cl r'c2

where the subscripts a and w denote the air and water phases, respectively, oqy is
the surface tension of the air—water interface, and r¢; and r., are the main curvature
radii of the interface. The value of air-water surface tension at the temperature of
20°Cis equal to 0.0726 Nm~! and decreases with increasing temperature [63]. The
pressure is always smaller in the fluid occupying the concave side of the interface. In
the absence of any external forces, the interface of a droplet of one fluid contained in
another fluid tends to assume a spherical shape, which minimizes the surface energy.
In the presence of a solid surface the shape of the interface is determined by the
relative magnitude of the surface tensions between all three phases, Fig.2.1a:

Oaw COS Y = 05q — Og (2.2)
where oy, and oy, are the values of the surface tension between the solid phase and

air and water, respectively, and ¥ is called the wetting angle. For a perfectly wetting
fluid, ¥ = 0°, i.e. the fluid tends to spread evenly over the whole solid surface. For
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2r,
A
Gavx pa Gaw
4 l// ' rcl 0
O'aw air pW hC X
water Y (wetting angle)
Osw Osa
(a) (b) (c)

Fig. 2.1 Surface tension effects: a equilibrium position of the fluid—fluid interface near the solid
surface, b rise of the wetting fluid in a capillary tube, ¢ pendular ring around the contact point of
two solid grains

a perfectly non-wetting fluid, ¢ = 180°, which results in the formation of spherical
droplets on the solid surface.

The existence of surface tension is at the origin of the capillary rise observed in
small tubes, Fig.2.1b. The molecules of the wetting fluid are attracted by the tube
wall, and a meniscus (curved interface) forms between water and air above the free
surface of water in the recipient. The pressure drop across the interface is denoted in
this context as the capillary pressure and can be calculated for a cylindrical tube as:

Ap=pc=pa—Pw=M, (2.3)

re
where r¢ is the tube radius. Assuming that the value of the surface tension between
air and water corresponds to the temperature of 20 °C, the tube material is perfectly
wettable (¢ = 0°), air is at constant atmospheric pressure everywhere, and water is
incompressible, one obtains the well known formula for the height of the capillary

rise: s
1.5 % 10~
ho= 222 2.4)

rc

where both /. and r are in meters. Equation (2.4) is often used to approximate the
height of capillary rise in natural porous media, which are characterized by small
wettability angles. However, as the geometry of pores in natural porous media is
much more complex, the representation of pore system as a bundle of capillary tubes
does not hold in many situations, and more complex configurations of air and water in
the pore space are encountered, which will be discussed on the example of a granular
porous medium.

Since water molecules are preferentially attracted to the surface of the solid phase,
they can be adsorbed from the vapour present in the pore air. Thus, small amounts
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Fig. 2.2 Spatial configurations of water and air in an unsaturated granular porous medium:
a adsorbed regime, b capillary pendular regime, ¢ capillary funicular regime, d occluded air bubble
regime, e fully saturated regime

of water are always present in the form of thin films covering the surface of the solid
skeleton, Fig.2.2a. The thickness of this layer depends on the strength of molecular
level interactions between solid and water and on the relative air humidity. Due to the
tight bonding of the adsorbed water to the solid surface, in many practical problems it
is considered as immobile [62]. As the amount of water in a porous medium increases,
it is attracted to the water adsorbed at the solid surface by the cohesion forces, but
on the other hand tends to minimize the area of the water—air interface. This form
of water is known as the capillary water, and occurs initially in acute corners of the
pores. If the porous skeleton is made of grains, water forms pendular rings around
the contact points, Figs.2.1c and 2.2b. The corresponding water—air configuration
is known as the pendular stage. Pendular water is less tightly bound by the solid
phase, but it occurs in isolated regions, and does not form continuous flowpaths,
so it can be considered as macroscopically immobile [62]. The pressure drop at the
interface between pendular water and pore air can be theoretically calculated from
Eq.(2.1), assuming a negative value for r¢; and a positive value for r¢p (Fig.2.1c). If
more water is added to the system, the regions occupied by pendular water coalesce
and continuous thicker films are formed along the pore walls. At this stage, known
as the funicular stage, the flow of liquid water is possible, Fig.2.2c. For all three
water configurations mentioned above, air occupies continuously the central part of
the pores. As the amount of water in the system increases further, the water films
become thicker and pores can be entirely filled with water at the points where their
cross-section is smaller. The air phase loses its continuity and no macroscopic air
flow is possible. This is called the occluded air bubbles stage. With time the air can
dissolve in water and full water saturation is reached. Since in this work evaporation
and dissolution are neglected, the considerations presented in the following chapters
are applicable to funicular, occluded air, and fully water saturated stages.
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Fig. 2.3 Pore-scale represen- REV domain U

tative elementary volume

’ solid U ‘ ’ REV boundary U

2.1.2 Volume Fractions and Saturations

Continuum description of a multiphase porous medium at the Darcy scale implies
that the relevant physical quantities defined at a given point X represent averages
taken over a pore-scale representative elementary volume (REV) associated with that
point, Fig.2.3. At the Darcy scale the same point can be occupied simultaneously
by all three phases, which is represented by the concepts of volume fractions and
saturations. The volume fraction of phase « is defined as the ratio of the volume of
the part of the REV occupied by phase « to the total volume of the REV:

A

Oy = .
U

2.5)

Porosity is defined as the volume fraction of pores, and it is equal to the sum of the
volume fractions of the two pore fluids:

Ul + U]

’ U|

=0, +6, . (2.6)

Moreover, it is convenient to define the saturation of each phase, which is equal to
the fraction of the pore space occupied by a given fluid:

Sy = 2. 2.7)

The sum of the air and water saturations must be equal to one:

Sa+Sw=1. (2.8)
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In general, each saturation can vary from 0 to 1. However, in most practical problems
the range of variability is smaller. For instance, if a fully water-saturated medium
is drained, at some point the mobile water (not adsorbed to the solid phase) looses
its continuity and the liquid flow will not be possible (transition from the funicular
to pendular state). The corresponding value of the water saturation is called residual
or irreducible values, and denoted by Sy, respectively. However, it should be noted
that the value of water saturation can be further decreased by natural evaporation or
oven drying. Similarly, during imbibition in a dry medium in natural conditions, it is
generally not possible to achieve full water saturation, as a part of the pores will be
occupied by isolated air bubbles. The corresponding residual air saturation is denoted
as Sy, respectively. However, the water saturation can increase above the value of
1 — S;a, for example if the air is compressed or dissolves in water. Therefore, the
residual saturations must be considered as problem-specific parameters, not material
parameters [31].

For practical purposes, the fluid saturations are often normalized with respect
to the range of values occurring in the problem under consideration. The resulting
normalized (effective) saturations are defined as:

Sq — Sin

= max __ ¢min
Sot Sot

Sea , (2.9)

where ST and S™" are the maximum and minimum saturation values occurring
for a given problem.

In soil physics and hydrology it is more common to quantify the relative amount
of fluid phases in soil using the volumetric fractions 6,,. If the compressibility of the
solid skeleton is neglected (¢ = const), the volumetric phase contents are uniquely
defined by phase saturations. In field conditions the volumetric fraction of water
varies between the residual water content:

and the so-called saturated water content:
st = 4’ (1 - Sra) . (2-11)

The latter value refers to the state of maximum attainable water saturation. Equivalent
limit values can be defined also for the volumetric air content.

2.1.3 Fluid Potentials

At the Darcy scale, the energy state of each of the two fluids present in the pore
space is commonly characterized using the concept of energy potential. The energy
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potential is related to the forces acting on the fluid. It is defined as the negative integral
of the force over the path taken by an infinitesimally small volume of water, when it
moves from a reference location to the point under consideration [58]. The reference
point is commonly assumed to be at the surface of a free water body located at the
same elevation as the considered volume of the pore fluid, and subjected to normal
atmospheric pressure. Thus, the values of the fluid potentials are relative to the normal
atmospheric pressure. Potentials can be expressed as energy per unit mass (Jkg=!),
energy per unit volume (Jm~3 = Pa) or energy per unit weight (Jkg~'m~!s> = m).
Assuming that the fluid density depends only on its pressure and that the only mass
force is the gravity, acting in the direction of decreasing elevation z, the potential of
each pore fluid can be conveniently expressed in terms of the total hydraulic head:

Pa
dp
Hy= | ——+z=hy+2, (2.12)
) Pa(P)g
Py

where péff is the reference pressure, p, is the fluid density, p is the integration

variable, g is the magnitude of gravitational acceleration, z is the elevation above the
reference level, and A, is the pressure head. As far as the water phase is considered, in
the fully water-saturated conditions the variable py, represents the pressure exerted by
unsupported water phase overlying the point of interest, while in partially saturated
conditions it accounts for the effect of capillary and adsorption forces binding water
molecules to the solid skeleton. These interactions include short range van der Waals
forces between water and solid, cohesion through hydrogen bonds in water and ion
hydration and binding of water in diffuse double layers [48, 58]. In the case of the
air phase (or the non-wetting fluid in general) the variable p, represents only the
pressure, as the interaction between this phase and the solid skeleton is typically
neglected.

The difference between the pressure potentials of air and water in unsaturated
conditions, caused by the action of capillary and adsorption forces, is often called
the capillary pressure, by analogy to the pore-scale capillary pressure defined by
Eq.(2.3). The capillary pressure at the Darcy scale is assumed to be a function of the
water saturation:

Pa— Pw = Pc(Sw) - (2.13)

In hydrophilic porous media the capillary pressure is always nonnegative. If the pore
air pressure is constant, p. increases with decreasing water saturation, while the
water pressure potential decreases correspondingly. This is caused by the fact that
as the water saturation decreases, the relative amount of water molecules bound by
strong short range forces to the solid surface increases.

There are important differences between the pore-scale and Darcy-scale capillary
pressure. According to Eq. (2.3), the pressure is larger in the fluid occupying the con-
cave side of the interface. Therefore, from the pore scale point of view, the water pres-
sure is lower than the air pressure in pendular rings or in capillary tubes, but it is higher
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than the air pressure in the thin water layers around spherical solid grains, or around
occluded air bubbles. However, in each of these situations the Darcy-scale capillary
pressure is defined as a nonnegative value. Due to this discrepancy, some authors
prefer to use the term suction potential, instead of the capillary potential, and the
term matric potential, instead of the water pressure in the unsaturated zone, e.g. [58].
Indeed, the values of the water pressure potential at low saturations, measured with
respect to the atmospheric pressure, are often well below —100kPa, which would
indicate negative absolute pressures. In this work, the terms capillary pressure and
water pressure are used, with a full recognition of the fact that in unsaturated condi-
tions they refer to the average energy state of water within a representative elementary
volume, rather than the physical pressure in the liquid water.

2.1.4 Capillary Function

The relationship between Darcy-scale capillary pressure and water saturation is
known under a number of names, such as the capillary function, suction function,
retention function, or soil water characteristic function [41, 48, 58, 63]. Figure2.4
presents its basic features, in relation to various configurations of air and water in a
porous medium. Usually, if the medium is fully water-saturated, it can be invaded
by the air phase only if the air pressure exceeds the water pressure by a specific
value. The corresponding value of p is called air-entry pressure or bubbling pressure
[41, 58]. This effect can be explained if the medium is conceptualized as a bundle of
capillary tubes. According to the Laplace law, Eq. (2.3), all tubes remain saturated, if
the water pressure is lower than the pressure of the surrounding air, but the capillary
pressure (p, — pw) does not exceed the maximum possible value for the largest tube.
After this value has been exceeded, the largest tube drains and the overall saturation
of the system becomes smaller than one. In natural porous media the value of the air
entry pressure corresponds to the diameter of the largest pore forming a connected
path through the system. The air entry pressure is more often observed in granular
media with relatively uniform grain size, and may be not pronounced in fine-textured
media [41]. Above the value of the air entry pressure, the water saturation decreases
with the increasing value of the capillary potential. The slope of the curve is deter-
mined by the uniformity of the size of pores. If the pores have very similar size, most
of them drain quickly above the entry pressure and the slope of the curve is very
steep. If the pores show large variability in size, at each increment of the potential
only a small part of the pores will be drained, and the decrease in saturation is much
more gradual. At some point, the value of the residual water saturation is reached,
and further liquid flow is inhibited by the lack of connectivity of the pendular capil-
lary water. The saturation can be further decreased by evaporation, but this requires
very large increments of the potential. The capillary pressure can be related to the
air relative humidity by the Kelvin equation [58]:
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Fig. 2.4 Capillary pressure—water saturation relationship for various air and water flow regimes

_ _Rgas T pw

Pe = A In (%) , (2.14)

where Rg,s is the universal gas constant (Rgas =8.31Jmol~! K‘l), 7 is the Kelvin
temperature, .#. is the mole mass of water (///w = 0.018kg mol’l), and 7 is the
relative air humidity. For oven dry conditions the potential value of about 10° kPa is
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reported in the literature, which corresponds to the relative air humidity of 0.01 %
[21, 45].

It is important to note that the capillary pressure—saturation relationship shows
hysteresis and depends on the history of the flow. The drying process described above
corresponds to the so-called primary drainage curve. A complementary relationship,
i.e. the primary imbibition curve, can be obtained by increasing the water satura-
tion, starting from oven-dry conditions. During imbibition the values of the capillary
potential corresponding to a given water saturation are smaller than during the pri-
mary drainage. Moreover, it is in general not possible to reach full water saturation
during imbibition, due to the trapping of air bubbles. The maximum possible water
saturation 1 — Sy, can be achieved for a value of the capillary potential larger than
zero. This value is the counterpart of the air-entry pressure at the primary drainage
curve, and is sometimes called the water-entry pressure [41]. As the latter term has
also other meanings, in this work the term air-entry pressure, or simply entry pressure
is consistently used for the characteristic value of the capillary pressure above which
air flow is possible, in relation to both imbibition and drainage. The entry pressure
at the imbibition curve is smaller than at the drainage curve, and sometimes does
not appear at all, i.e. the maximum saturation is reached only at p. = 0. In many
practical problems the water saturation varies between the residual value Sy, and the
maximum value 1 — S,. The drainage process from 1 — Sy, to Sy, is described by the
main drainage curve, while the corresponding imbibition process by the main imbi-
bition (or wetting) curve. If the flow direction is reversed before the limit saturation
is reached, the capillary pressure and saturation follow a so-called scanning curve,
which is a path in the area enclosed by the main curves.

The hysteresis is usually explained by the variations in the value of the wetting
angle between advancing and receding fluid at the solid surface, by the pore-scale
trapping of air and by the ink-bottle effect, e.g. [41, 63]. The latter one is related to
the fact that during imbibition the possibility of capillary flow is controlled by the
widest cross-section of the pore, while during drainage it is controlled by the smallest
cross-section. In this work the hysteresis of the capillary function at the Darcy scale
is not considered. However, in Chap. 7 it will be shown that a quasi-hysteresis may
occur in the field-scale capillary function for a porous medium that shows a specific
heterogeneous structure at the Darcy scale.

For practical purposes it is convenient to express the capillary function, for either
imbibition or drainage, as an analytical function. A large number of such analytical
formulae can be found in the literature. In this section only the ones used in the
following part of this book are presented. For a more detailed reviews of various
propositions, see [38, 43, 45]. Typically, the formulae are expressed in terms of
the normalized water saturation, Eq.(2.9). The choice of the parameters S\‘;}i“ and
S depends on the problem under consideration. For the primary drainage with
subsequent drying ST = 1 and S™I" = 0, for the primary imbibition ST = 1—S,,
and SM" = 0, while for the main drainage and imbibition curves ST = | — S,
and S;v“i“ = Srw-

For the sake of consistency all the following functions have the capillary pressure
Pc as their argument. In fact some of them were originally written in terms of the
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capillary pressure head /.. Transition to the pressure head based form is straight-
forward and requires only that the parameters p. and p, are replaced by the corre-
sponding pressure heads.

One of the most often used analytical models, proposed by Brooks and Corey [7],
can be written in the following form:

| (pe/pe)™™ if pe > pe
Sew = [ 1 it pe<pe’ @.15)
Pe = pe (Sew) /™, (2.16)

where p. is the air-entry pressure and ny, is a parameter related to the pore-size
distribution, generally ranging from 0.2 to 5. Large values of n}, correspond to a rapid
decrease of the saturation above the entry pressure, which is typical for media having
uniformly sized pores. Smaller values of ny, characterize media with non-uniform
pore size distributions. This model is useful for porous media having a distinct
air entry pressure and relatively uniform pore sizes, however it cannot reproduce
the inflection point in the capillary function, characteristic for many finely textured
soils [41].

Another well-known model, introduced by van Genuchten [79], has the following
form:

Sew = [1 + (Pc/Pg)ng]_mg ) (2.17)

1/ng
pe = pg [(Sea)™ e = 1] (2.18)

where p, is a pressure scaling parameter, related to the average size of the pores
(in the original paper its inverse ag = 1/p, was used). The value of p, approx-
imately corresponds to the position of the inflection point at the capillary curve
described by Eq. (2.17). The exponents m, and ng are related to the pore size dis-
tribution, and in principle can be considered as independent of each other. However,
in order to reduce the number of independent parameters, and to develop analyti-
cal formulae for the relative permeability (discussed later in Sect.2.1.6), it is often
assumed that mg = 1 — 1/ng or mg = 1 — 2/ng. The vanGenuchten function
does not account explicitly for the air-entry pressure, although for some values of
ng and mg saturations very close to unity can be obtained for a certain range of the
capillary pressures above zero. Some authors proposed to introduce the air-entry
pressure as an additional explicit parameter in the van Genuchten model [34, 81].
In the special case of mg = 1 the vanGenuchten function reduces to the Gardner
function [23]:

1
1+ (pe/pe)™
Pe = Pg (Sew — D2 (2.20)

Sew (2.19)
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Table2.1 Parameters of the van Genuchten (mgy = 1—1/ng) and Brooks—Corey capillary functions
for various types of soil (van Genuchten function parameters from [10])

Pg ng Pe ny Osw Orw Ksw
(Pa) ) (Pa) (-) (=) (-) (ms™")
sand 677 2.68 440 1.124 0.43 0.045 8.25E—5
loamy sand 791 2.28 498 0.908 0.41 0.057 4.05E-5
sandy loam 1308 1.89 814 0.908 0.41 0.065 1.23E-5
loam 2725 1.56 1779 0.719 0.43 0.078 2.89E—6
silt 6131 1.37 4462 0.710 0.46 0.034 6.94E—7
clay 12263 1.09 12203 0.090 0.38 0.068 5.56E—-7
10°F 10°
sand —— \ sand ——
10’ | clay ------ \\\ 10’ | clay ------ \
108 - 10° |

pc (Pa)
pc (Pa)

ew ()

Fig. 2.5 Typical capillary functions for sand and clay

Lenhard et al. [44] established analytical relationships between the parameters of
Brooks—Corey function and van Genuchten function (with mgy = 1 — 1/n,) for the
same porous material, based on the slope of the curves at normalized saturation equal
to 0.5. They are given by the following formulae:

mo = (1g — 1) (1-05%/0=7D) | 2.21)

Zs=0.72— 035 exp (—(ng)“) , (2.22)
1/

Pe = pg (Zy)'/™ [(Zs)"g/“*w _ 1] e (2.23)

where Z is an auxiliary parameter. Typical values of the parameters of the
van Genuchten and Brooks—Corey models for several types of soil are listed in
Table 2.1. The van Genuchten function parameters were taken from [10]. The corre-
sponding Brooks—Corey function parameters were calculated using the above for-
mulae. Figure2.5 shows the capillary functions for sand and clay, according to both
models.
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A relatively simple exponential formula is often used in the development of ana-
Iytical solutions for the Richards equation, e.g. [3, 68]:

exp(_u) it e > pe
Pg

1 if DPc = Pe
Pe = Pe — Pg In(Sew) , (2.25)

Sew = , (2.24)

where p. is the air entry pressure and py is a pressure scaling parameter. This
formula can be considered as a complementary relationship to the Gardner expo-
nential relative permeability function (introduced later in Sect.2.1.6).

Note that all the above formulae predict infinite value of the capillary pressure
as the normalized saturation approaches zero, which is not consistent with the fact
mentioned earlier, that even for oven-dry conditions the capillary pressure has a finite
value of about 10° kPa. Therefore, Egs. (2.15)—(2.24) should be considered valid only
in the range of normalized water saturations significantly larger than zero. For the
dry range the capillary functions should be appropriately modified, to ensure a finite
value of the capillary pressure at zero water saturation [21, 37].

2.1.5 Darcy Equation

At the pore scale, the momentum conservation principle for each fluid phase is
represented by the Navier-Stokes equations. In the case of steady, laminar flow of
incompressible newtonian fluid « in a horizontal tube having a uniform circular
cross-section, the Navier-Stokes equations reduce to the Poiseuille equation, which
gives the following formula for the average fluid velocity v, [4]:

rc2 d pg

(2.26)

Va:_Sy,a dx

where r is the tube radius and 1, is the dynamic viscosity coefficient of the fluid. An
important feature of this relationship is that the average velocity is directly propor-
tional to the pressure gradient, and the proportionality coefficient depends on the
geometric parameters and the fluid viscosity. In a more general case of three-
dimensional single-phase fluid flow in a medium characterized by arbitrary pore
geometry, a mathematically rigorous averaging of the pore scale Navier-Stokes equa-
tions yields the following result, e.g. [2, 4, 28, 86]:

Ks
Vo =——(Vpy — 02 8 (2.27)

o
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where K is the absolute (or intrinsic) permeability tensor and g is the gravity vector.
Intrinsic permeability has dimension of m? and depends only on the geometric char-
acteristics of the pores. Its value can be computed for a given geometry of pores, by
solving Stokes equations in a representative elementary volume [77]. Alternatively,
it can be estimated using many empirical or semi-empirical formulae, developed
particularly for granular media, for instance those proposed by Hazen or Kozeny
and Carman [39, 82]. For practical purposes, however, the most reliable estimation
of permeability is obtained from laboratory or field measurements. Equation (2.27)
was derived from the pore-scale flow equations by several authors, e.g. [4, 28, 86].
The most important assumptions introduced in the derivation of Eq.(2.27) can be
summarized as follows [31]:

e Inertial effects are neglected, i.e. quasi-steady fluid flow is assumed.
e The flow is laminar.
e The viscous part of the stress tensor in fluid behaves according to the Newton law.

Equation (2.27) can be rewritten it terms of the hydraulic head as:

Ks oo &
Mo

Vo = — VH, = —Ks VHy , (2.28)

where Ky, is the hydraulic conductivity tensor for single-phase flow, which depends
on the properties of porous medium and the pore fluid. Equations (2.27) and (2.28)
represent an extension to three dimensions of the linear flow law, which was
established experimentally for the one-dimensional case by Darcy [14]. The head-
based form of the Darcy formula is often used in groundwater flow simulations,
when the variations of fluid density and viscosity are negligible, and the hydraulic
conductivity with respect to water Ky, can be considered constant.

If two fluids flow within the pore space, it is often assumed that their velocities
can be expressed by the following extended form of the Darcy formula, e.g. [63]:

Vo= KB G e = Ky (Sa) VHy | (2.29)

Mo

where k, and K, are permeability and conductivity tensors, which depend on the
saturation of phase «. In a general case of anisotropic porous medium, the relationship
between permeability and saturation will be different for each component of the
permeability tensor. However, for practical purposes a simplified relationship is often
postulated in the following form:

Ko (Sa) = Ks ko (Sa) (2.30)

where ko is a scalar relative permeability coefficient, assuming values from zero to
one. The equivalent relationship for the hydraulic conductivity tensor is:

Koc (Soc) = Ksa kra (Sa) s (231)
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The maximum value k., = 1 corresponds to the case of full saturation with fluid
phase «. The minimum value k;, = 0 occurs when the fluid phase becomes immo-
bilized, which corresponds to the fluid saturations below the residual saturation
Sy < Sre. Alternatively, the extended Darcy formula can be rewritten in the fol-
lowing form:

Vo = —Ks Ao (So) (VDo — 0o 8) » (2.32)

where Ay (S¢) = ko (So) /e 1S the phase mobility.

In contrast to Eq.(2.27), the extension of Darcy equation for multiphase flow
given by Eq. (2.29) should be considered as purely phenomenological. As shown by
several authors, e.g. [1, 29], in the case of two fluid phases a rigorous averaging of
pore-scale momentum conservation leads to coupled Darcy-scale equations, where
the flow velocity of each phase depends on the potential gradients in both fluid
phases. Such results are consistent with the Onsager reciprocity theorem [66]. These
limitations notwithstanding, in the present work Eq.(2.29) is assumed to be a valid
approximation of two-phase flow in porous media at the Darcy scale.

2.1.6 Relative Permeability Functions

Since the relative permeability of fluid phase « varies from &, = O for S, = Sy to
kro = 1for S, = 1,itcanbe conveniently represented by a function of the normalized
saturation of each phase, as given by Eq. (2.9), assuming S™" = S, and ST = 1.
However, in order to simplify the model formulation, the capillary function and
permeability functions for both fluids are typically defined with respect to the water
saturation normalized in the range between SQi“ = Srw and S§** =1 — S,. In such
a case, the relative permeability equals unity for the actual fluid saturation smaller
than one. In order to keep the physical consistency of the model, K is interpreted
as the maximum permeability attainable for the considered problem, which can be
different for each phase, and is generally smaller than the permeability tensor for
single phase flow. In soil hydrology and soil physics the maximum attainable value
of the water conductivity:

sz = ks s (2-33)
M

is often referred to as the saturated hydraulic conductivity. However, it corresponds
to the state of apparent saturation, with the corresponding volumetric water content
Osw smaller than the porosity ¢. The formulae for relative permeability presented
below can be used in conjunction with various definitions of the normalized water
saturation Sey .

Simple power-type relationships between the normalized saturation and the
relative permeabilities are often postulated, e.g. [42, 63]:

krw = (Sew)nw s (234)
kra = (1 - Sew)m1 s (2‘35)
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Table 2.2 Parameters used in Burdine and Mualem relative permeability models

K ni m2 n3 N4
Mualem 0.5 1.0 2.0 2.5+ 2.0/npe 1.0 + 1.0/npe
Burdine 2.0 2.0 1.0 3.0 +2.0/npe 1.0 + 2.0/npe

where the exponents 7y, and n, are fitting parameters. Relationships of this type can
be obtained on the theoretical basis, for simple models of laminar flow in bundles of
capillary tubes [54]. As it is the wetting fluid, water tends to move along the solid
phase surface and preferentially fills smaller pores. Therefore, at the same saturation
of each fluid the resistance of the medium to the flow of water is larger than the
resistance to the flow of air. Thus, the exponent 1y, is typically larger than 7,.

More sophisticated models of the relative permeability are based on the considera-
tion of statistical distribution of the pore size within the medium, and the connectivity
between pores of various sizes. The pore size distribution can be computed from the
capillary function, due to the inverse relationship between the capillary radius and the
capillary pressure, as given by the Laplace law, Eq. (2.3). The connectivity parameter
is more difficult to derive theoretically and is often used as a fitting parameter in the
resulting model. Two well known statistical models were proposed by Burdine [9]
and Mualem [53]. They can be written in the following generalized form:

ew O\—11 4Q nm
kew (Sew) = (Sew)K M (2.36)
Jo pe(S)=mdS
1 PN &M
(S)™MdS
Kra (Sew) = (1 = Sew)* fﬂL , (2.37)
Jo pe(S)=mdS

where § denotes the integration variable and the values of the connectivity parameter
k and the exponents 1y and 7, are listed in Table2.2.

In a general case the application of these models to an arbitrary p.(S., ) function
requires numerical integration. In some cases, however, the integrals can be evaluated
analytically. In particular, it is possible for the Brooks—Corey capillary function, for
which the following formulae are obtained:

krw (Sew) = (Sew)'73 s (2~38)
krw (Sew) = (1 = Sew)* [1 = (Sew)™]™ (2.39)

where the exponents 73 and 714 are given in Table2.2. Note that the relative perme-
ability of the water phase is given by a simple power law, similarly as in Eq. (2.34). In
the case of van Genuchten capillary function, the Mualem formula can be integrated
analytically if mg = 1 — 1/n,, leading to the following result:



2.1 Fundamental Concepts 25

ke (Sew) = S5, [1 = (1 = (Sew) /™)™, (2.40)

kra(Sew) = (1 = Sew) [1 = (Sew) /727" . (2.41)

In general, the connectivity factor « can be treated as a fitting parameter of the model.
Improved agreement with laboratory measurements was reported for negative values
ranging from —1.28 for sands to —5.96 for clays [69]. The value of k = 1/3 was
suggested for the non-wetting phase relative permeability [49].

The Burdine approach provides a closed-form analytical result for the
van Genuchten capillary function if mg = 1 — 2/ny:

ke (Sew) = S& [1 _ (1 _ (Sew)‘/mg)mg] , (2.42)

Kia (Sew) = (1= Sen)* [1 = (S /7] ™ (243)

All the above formulae can be rearranged using the relevant analytical expressions
for Sew (pc) functions, in order to express the relative permeability of each phase as a
function of the capillary pressure. Typical relative permeability functions for sand and
clay according to Brooks—Corey—Burdine and van Genuchten—Mualem models are
shown in Fig. 2.6. Parameters of the porous media are taken from Table 2.1. Signifi-
cant differences between the two models are observed for clay. The van Genuchten—
Mualem model predicts a rapid decrease of the relative water permeability and a
rapid increase of the relative air permeability as the capillary pressure increases only
slightly from O to 100Pa, which is inconsistent with the fact that the water satu-
ration in this range remains virtually constant and very close to 1. The reason for
this discrepancy is related to the integrals in formulae (2.36) and (2.37), where, in
the absence of the air-entry pressure, the inverse of the capillary pressure tends to
infinity as the water saturation tends to one. As a remedy, introduction of the air-entry
pressure as an additional parameter in the van Genuchten model is recommended
[34, 81].

Some empirical models define the relative permeability directly as a function of
the capillary pressure. Such approaches are typically used for the Richards equation,
where the assumption of constant air pressure allows to express the relative water
permeability as a function of the water pressure only. To this group belongs the
widely used exponential formula, originally suggested by Gardner [23] and modified
by Philip [61]:

exp(_w) it pe > p
kw (pe) = Pe co ey (2.44)
1 if Pec = Pe

where pe and pg have the same meaning as in Eq.(2.24). Another well-known
formula was also proposed by Gardner [23]:
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Fig. 2.6 Typical relative permeability functions for sand and clay according to Brooks—Corey—
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1

_ (2.45)
14 (Pc/Pg) flw

krw(pe) =

The above analytical expression has the same form as the formula for the capillary
function in Eq. (2.19). Equations (2.44) and (2.45) can be alternatively expressed in
terms of the capillary pressure head.

2.1.7 Density and Viscosity of Fluids

In general, the density of the water phase depends on the temperature, pressure and
the concentration of dissolved substances. For pure water in isothermal conditions,
the dependence of density on the pressure can be expressed as follows [31]:
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pw(pw) = Py exp [ﬂw (Pw - p{,ff)] , (2.46)
where ,o{ff is the reference water density (1000 kg m—3 at20°C), p{ff is the standard

atmospheric pressure (101325 Pa) and By is the isothermal relative compressibility
coefficient. For the range of temperatures from 10 to 50 °C and pressures from 0 to
100 Pa, By is approximately constant and equal to 4.5 x 10710 Pa~!. This value of
B corresponds to a change of density of approximately 0.5 kg m™3, if the pressure
changes by 10° Pa.

While in many practical applications water is considered incompressible, its
compressibility is included in this work, in order to keep consistency in the pre-
sentation of the governing equations for both fluid phases, and in order to maintain
parabolic character of the governing equation for the water flow in fully saturated rigid
porous medium. Application of the above formula is questionable for unsaturated
conditions, where py, is a measure of the energy potential rather than the actual pres-
sure of the water phase and assumes very large negative values [25]. In the examples
considered in this work the values of py do not fall below —10°0 Pa, and the dis-
crepancy is neglected. Similarly to the density, the viscosity of water depends on
the temperature, pressure and chemical composition. For the purposes of the present
analysis, these dependencies are neglected, and a constant value of water viscosity
is assumed f1,, = 1073 Pas, which corresponds to the temperature of 20 °C.

The density of dry air can be obtained from the ideal gas law [31]:

0a = My Pa —cap
a Reas 7 aPa

(2.47)

where p, is the air pressure, .#, is the molecular mass of air (0.0029kg mol’l),
Ry is the universal gas constant (8.314J mol~!' K1), 7 is temperature in degrees
Kelvin and ¢, is the absolute compressibility coefficient for air. In the temperature
of 20°C = 293.16 °K and at the normal atmospheric pressure the density of dry air
is p, = 1.206kgm~3. The density of pore air varies according to the changes in
the content of water vapour, but this effects are neglected in the present work. The
viscosity of air is assumed constant and equal to i, = 1.83 x 107 Pas.

2.2 Governing Equations for Fluid Flow

2.2.1 Two-Phase Flow

The governing equations for two-phase flow in a porous medium are derived from
the mass conservation principle, applied to a Darcy-scale representative elementary
volume, as shown in Fig.2.3. In the absence of source/sink terms, the change in the
total mass of fluid phase « inside the REV must be balanced by the total mass flux
across the REV boundary. For a rigid solid phase this can be written as:
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9
5/ Oa Sa¢>dU=/,oa Ve ny daU | (2.48)
10

where dU is the boundary of the REV and ny is a unit vector normal to dU and
directed outwards. Using the Gauss-Ostrogradski theorem and assuming immovable
REYV boundaries, Eq. (2.48) can be transformed to a differential (strong) form:

0
Py (Pa Sa #) +V (P Vo) = 0. (2.49)

The velocity of each fluid phase with respect to the solid phase is given by the
extended Darcy formula, Eq. (2.29). Substitution of the Darcy equation into the mass
balance equation for each phase results in the following system of two coupled partial
differential equations:

d w Ks krw

F» (ow Sw¢) =V |:'0— (V pw — pw g)] =0, (2.50)
d Pa Ks kra
F” (paSa¢)_V|:—a (Vpa—pag)]=0- (2.51)

Using the chain differentiation rule the storage term for each phase can be expanded
to show explicitly the contributions related to the fluid compressibility and saturation
change:

0 a S,
—(pasaas)—sm 8”{ puth
0 E)S
= SuPCa —— p +pa¢ , (2.52)

at

where ¢y = dpy/dpy is the compressibility coefficient for phase «. For water ¢y, =
Pw Pw. For air ¢, is defined by Eq. (2.47). In order to obtain a closed system, one has
to make use of the additional relationships discussed in the previous sections. The air
saturation is uniquely defined by the water saturation (or vice versa), Eq. (2.8). The
water saturation is a function of the capillary pressure, i.e. the difference between the
air and water pressures, Eq.(2.13). The relative permeabilities depend on the fluid
saturations, and the densities on the fluid pressures, Eqs. (2.46)—(2.47). As a result,
a system of two equations with two unknowns is obtained.

Several possibilities exist with respect to the choice of the primary unknown
variables. For instance, one can choose the two pressures, p, and py, and compute the
capillary pressure and the corresponding fluid saturations accordingly. However, such
aformulation is not suitable for the numerical solution, when the air phase disappears
completely from the porous medium. In such a situation, the derivatives of the discrete
form of the air flow equation are equal to zero. Therefore, it is recommended to choose
one of the fluid pressures and one of the saturations as the primary unknowns, e.g.
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[31]. As this work focuses on water flow, the water pressure py, and water saturation
Sy are chosen as the primary variables.

Equations (2.50)—(2.51) can be rewritten in order to show explicitly the depen-
dence of each term on the chosen primary variables:

Pw(pw) Ks kew (Sw)
Mw

9
5;[pw(pw)Sw¢]—-V [ (pr-—pw(pw)gﬁ =0, (2.53)

ad
5 [pa(pw’ SW) (1 - Sw) ¢]

_v |:,0a(l7w, Sw) Ks kra(Sw)

Ma

(VPw + Vpe(Sw) = pa(pw, Sw) g)} =0. 254

If the compressibility of the fluids and the porous medium can be neglected, a
simplified form of the governing equations is obtained:

S

$— —Vvy =0, (2.55)
ot
EN

—¢3%—vw=0. (2.56)

Alternatively, the above equations can be transformed to the fractional flow formu-
lation, e.g. [6]. To this order the mass balance equations are added to each other:

V{Vyg+Vv)=Vv=0, (2.57)
where vi = vy, + Vv, is the total fluid velocity. Equation (2.57) can be rewritten in

terms of the fractional flow function fy and the global pressure pgiob defined as
follows:

Aw
= , 2.58
Jw o (2.58)
1 b 1\ d
Pc
— _ N ds,, , 2.59
Pglob 2 (pw + Pa) / (fw 2) as, w ( )
Swax

where S§?* is the maximum water saturation, pc(Sy™*) = 0. Equation (2.57) then
becomes an elliptic one with respect to the global pressure:

% {kt [V Pglob — (fw ow + (1 = fw) pa) g]} =0, (2.60)

where:
K =ks (Aw + 2a) - (2.61)

Using the definition of the total velocity, the water flux can be expressed as:
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Vw = fuVi+ fwraks (Vpe+ (pw — pa) 8) - (2.62)

Inserting Eq. (2.62) into Eq.(2.55) one obtains the following equation for the water
saturation:

a8 d
9" +V [fwvt+fwxa ks (ow — pa) g+fwxaks§vsw} =0. (2.63)
w

The above equation has the form of an advection-diffusion one. The first two terms in
brackets represent the advective transport. The first term corresponds to the viscous
forces, while the second to the gravity forces. The diffusive transport, related to the
action of capillary forces, is represented by the third term in brackets. If the capillary
and gravity effects are neglected, Eq. (2.63) reduces to the Buckley-Leverett equa-
tion (nonlinear advection equation), well known in petroleum reservoir engineering
literature, e.g. [13, 31]. In the unsaturated zone, the capillary and gravity forces can
rarely be neglected, while the full fractional flow formulation poses problems in the
implementation of various types of boundary conditions occurring in unsaturated
zone modeling [6]. Moreover, in contrast to the phase pressures, the global pressure
is not continuous at the interfaces separating porous materials characterized by differ-
ent capillary functions. The fractional flow formulation is not used in the numerical
simulations presented in the following chapters. However, it will be referred to in
the discussion of the general properties of two-phase flow model.

2.2.2 Richards Equation

The two-phase model presented in the previous section can be considerably simplified
under specific conditions occurring for air and water flow in the unsaturated zone.
At the temperature of 20 °C the air viscosity is about 55 times smaller than the water
viscosity, which means that the air mobility is greater than the water mobility by
approximately the same factor, if the relative permeabilities of both fluids are similar.
Therefore, it can be expected that any pressure difference in the air phase will be
equilibrated much faster than in the water phase. On the other hand, it can be often
assumed that the air phase is continuous in the pore space and that it is connected
to the atmosphere. If the variations in the atmospheric pressure are neglected, one
can consider the pore air to be essentially at a constant atmospheric pressure. These
assumptions allow to eliminate the equation for the air flow from the system of
governing Eqgs. (2.50)—(2.51). The capillary pressure is now uniquely defined by the
water pressure. For convenience it is often assumed that the reference atmospheric
pressure p,m = 0, so one can write:

Pc = Patm — Pw = —Pw - (2.64)
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Accordingly, the water saturation and the relative water permeability can be defined
as functions of the water pressure. For the values of the water pressure smaller than
the negative of the air entry pressure, py, < —p. (Where p can be zero if the
van Genuchten capillary function is used), the water saturation and permeability can
be computed from the analytical models described in Sect.2.1.4 and 2.1.6, assuming
Pc = —pw. For the values of the water pressure which are larger than the negative
of the air entry pressure, py, > — pe, the water saturation and water permeability are
constant and equal to their maximum values.
The remaining equation for the water flow becomes:

Ow(pw) Ks kew (Pw)
Hw

a
57 (¢ Sw(pw)) =V [ (V pw — pw(pw) g)} =0. (2.65

Taking into account Eq. (2.52) the storage term can be rewritten as:

0Sw Opw

— 2.66
opw 0t ( )

) pud S =S L
91 Pw w) = WPW/SW 91 Pw

Additionally, it is often assumed that the spatial gradients of the water density are
negligible:
V (pw Vw) = pwV Vy .

Consequently, both sides of equation can be divided by p,, and one arrives at the
following form:

8pw ks krw
Cwp(pw) 37 \ p Vipw+prwg | =0, (2.67)

w

where Cy,, is a storage coefficient:
Cwp = 0w Bw + — . (2.68)

In hydrological and hydrogeological applications, Eq. (2.67) is often written in terms
of the water pressure head:

Cwh(hw) 8:_:/ -V [sz krw (hw)V (hy + Z)] =0, (2.69)

where Cynh = pw g Cwp. Accordingly, the capillary and relative permeability func-
tions are defined in terms of the capillary pressure head, which is equal to the negative
water pressure head. Equations (2.67) and (2.69) describe transient water flow in both
saturated and unsaturated conditions and are sometimes called generalized Richards
equation.
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By further neglecting the water compressibility one arrives at the following
equation:

hw
Ceh(hw) aa_t -V [sz kew(hw)V (hy + Z)] =0, (2.70)

where the storage coefficient accounts only for the changes in water saturation:

dSw dby
Chlhy) =¢p — = — . 2.71
ch( W) ¢dhw diy ( )

This coefficient is often called specific water (or moisture) capacity, e.g. [85].
Equation (2.70) was originally developed by Richards [65], while the correspond-
ing expression for the water flux in unsaturated conditions:

Vo = —Ksw kew (hw)V (hw + 2) (2.72)

was suggested earlier by Buckingham [8] and is often called Darcy-Buckingham
equation, e.g. [55]. In saturated conditions Ccp, = 0 and Eq.(2.70) degenerates to
an elliptic equation describing steady flow. Thus a generalized form of the Richards
equation, which includes water compressibility, Eq. (2.69), is preferable if parabolic
character of the governing equation is to be retained during transition between sat-
urated and unsaturated states. In geotechnical and hydrogeological applications,
Eq. (2.69) is often modified by accounting for the compressibility of the solid skele-
ton in the storage term ¢ = ¢ (pw, pa). These effects are not considered here, as they
are not essential for the analyses presented in the following chapters.

Equation (2.70) is often referred to as the pressure-based form of the Richards
equation. Alternatively it can be rewritten in the so-called mixed form, which includes
explicitly both the water content and the water pressure head:

96 (hw)

v [Kow krw (hw) V (hy +2)] = 0. (2.73)

It was shown that the mixed form has better properties with respect to the numerical
solution, as it allows to minimize the mass balance error, persistent in the solutions
employing the pressure-based form [12]. The third possible form is obtained by
replacing the pressure head in all terms of Eq. (2.73) with the water content. To this
order the hydraulic diffusivity tensor is introduced:

dh
D(by) = dg—w Ksw krw Ow) (2.74)

w
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so that Eq. (2.73) becomes:

36y,
S =V [D ) Vou] + Kok (6) V2 = 0. (2.75)

Note that the above equation can be obtained as the limit case of the saturation
equation in the fractional flow model, Eq. (2.63), assuming that the air phase is much
more mobile than the water phase, A, > Ay, and that the air phase density is much

smaller than the water density p, << pyw. In this case the relevant terms of Eq. (2.63)
become:

fom = o (2.76)
YT da+ Aw ’ ’
)"W )Va krw

Ay = Ay = — , 2.77
Swra ot Y= (2.77)

9Sw 00y
= D 2.78
PP at (2.78)
fovi= 0, (2.79)
Sfwhraks (ow — pa) 8~ AwkKs pw g = —Kswkrw Vz (2.80)

d d dh

Fu ha Ks ﬁ VSy A A ks ﬁ VSy = K ke ﬁ Vo, .  (281)

The above assumptions lead to Eq. (2.75).

The water content (or saturation) based form is easier to solve numerically than
the mixed or pressure based forms. Due to its similarity to the standard advection-
diffusion equation it is often used to obtain analytical or semi-analytical solutions of
the Richards equation, especially for one-dimensional flow, where the diffusivity and
conductivity coefficients are scalars. The major drawback of the water-content based
form is that it becomes indefinite in fully saturated conditions. Additional difficulty
arises when the domain under consideration contains porous regions characterized
by different capillary functions, because the water content is not continuous at such
interfaces (see Sect.2.3.3).

Yet another form of the Richards equation can be obtained for an isotropic medium
using the Kirchhoff transform. The Kirchhoff variable, also called the flux potential
can be defined as (e.g. [36, 85]):

hy
() = / ke () s | (2.82)

—00

where /1 is the integration variable. Using this transformation, the Richards equation
can be rewritten as follows:
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s, ad
‘f’dT:;a_;l —V (Kew V) + Ky kr (Ph) V2 = 0 . (2.83)

Alternatively, the flux potential can be also defined with respect to the water pressure
as the primary variable:
Pw

p(pu) = / ke (P) P . (2.84)

—00

Similarly to the water content, the flux potential is not continuous at material inter-
faces. Nevertheless, Eq. (2.83) is easier to solve numerically than the mixed and
pressure-based forms of the Richards equation, and in contrast to the saturation-
based form, can be used for fully saturated conditions. Several authors proposed
efficient numerical algorithms based on this form of the Richards equation, e.g.
[5, 36, 67]. Moreover, even if the mixed or pressure-based form of the Richards
equation is solved, the Kirchhoff transform can be a useful tool to approximate the
effective conductivity between the adjacent nodes (see Chap.4).

While the Richards equation is a widely accepted model for the water flow
in unsaturated soils and rocks, one has to be aware of its limitations. For obvi-
ous reasons, it cannot be used when there is an explicit interest in the simulation
of air flow. Such applications include for example transport of volatile contami-
nants in the pore air, e.g. [11, 78], or dewatering by means of compressed air used
in tunnel construction, e.g. [5S7]. However, even if the primary interest is in the
water flow, the Richards equation can lead to inaccurate results, if one or more
of the underlying assumptions is not fulfilled, as pointed out by several studies,
e.g. [50, 51, 60, 80, 83, 84].

A number of sources for the possible discrepancies between the Richards model
and the full two-phase model can be identified. The first one is related to the vis-
cosity ratio between air and water. Numerical experiments [73] showed that the
agreement between results obtained from the Richards equation and from the two-
phase model is less than perfect for the water-to-air viscosity ratio smaller than
100. In natural conditions the viscosity of air can be expected to be only about 50
to 60 times smaller than the mobility of water. It should be noted that the phase
mobility depends not only on its viscosity, but also on the relative permeability.
Thus, further decrease in the mobility ratio can be expected if the relative perme-
ability of air is much smaller than the permeability of water, which occurs as the
air saturation approaches the residual value. For instance, it was shown that signif-
icant differences arise between the Richards model and the two-phase flow model
if the relative permeabilities of water and air are proportional to the fourth power
of the respective saturation, even assuming the viscosity ratio of the fluids equal
to 100 [19].

The second factor limiting the applicability of the Richards equation is the
presence of obstacles, which do not allow the pore air to contact freely with
the atmospheric air. Examples of such obstacles include layers of porous media
which are quasi-impermeable to air, either because they have very low intrinsic
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permeability, or because they are saturated or nearly saturated with water. In this
context, inadequacy of the Richards equation was demonstrated for various types of
problems, such as infiltration in columns with sealed bottom [74-76], drainage of
coarse sand overlaid by a layer of fine sand [40], field-scale infiltration with shallow
groundwater table [27], increase of the water level in wells during ponded infiltration
[26], or air trapping in flood embankments due to overtopping by flood wave [46].
The flowpaths of the pore air can also be blocked due to heterogeneous structure
of the porous medium, especially if coarse-textured inclusions with low air entry
pressure are embedded in a fine-textured background having high entry pressure.
Such effects are investigated in Chap. 7.

2.2.3 Single-Phase Flow

Single phase flow occurs when the pores are completely filled with only one fluid
phase, which in the context of this work is water. Since Sy, = 1 and kry = 1, the
governing equation for the water flow becomes:

Pw Ksw

w

a
57 (W) =V [ (V pw — pw g)} =0. (2.85)
Similarly to the case of the Richards equation, saturated groundwater flow is usually
described in terms of the water pressure head. Moreover, the spatial gradients of the
water density are neglected, resulting in the following equation:

Csat -V [sz V (hw + Z)] =0, (2.86)

ot

where the saturated storage coefficient Csyt = pw Bw g ¢ is approximately constant.
The above equation is valid for a rigid solid skeleton. In groundwater aquifers the
compressibility of the skeleton is usually more important than the compressibility of
water and has to be accounted for in the storage coefficient, e.g. [16].

It is important to note that when porous media are subject to imbibition in
natural conditions, the transition from the unsaturated to fully saturated state occurs
not directly, but via the occluded air bubble regime. At this stage the Darcy-scale cap-
illary pressure is considered constant and equal to its minimum value (p¥'*' in Fig. 2.4,
which can be equal to zero in many cases), while the water pressure assumes values
above —pY’ ¢t However, the water saturation can further increase due to compress-
ibility of the air bubbles, even though the macroscopic capillary pressure remains
equal to zero for positive values of the water pressure. Moreover, the increase of the
water saturation causes an increase in the relative permeability. While this effects
are often neglected and the water saturation and permeability are assumed to be
constant for the whole range of positive water pressures, the additional compress-
ibility of the medium resulting from the presence of air bubbles can be important,
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for example when considering soil liquefaction due to rapidly oscillating loading,
e.g. [35].

2.3 Auxiliary Conditions

The governing equations for the two-phase (Egs.(2.50)—(2.51)), unsaturated
(Eq. (2.65)) or single-phase (Eq.(2.85)) unsteady flow in porous media are par-
tial differential equations of parabolic type [31, 63]. These equations are solved in
the spatial domain W, as shown schematically in Fig.2.7 and for the time interval
(0, tmax)- The solution problem should be well-posed, which means that the following
conditions are satisfied, e.g. [18, 71]:

e the solution exists,
e the solution is unique,
e the solution depends continuously on the initial and boundary conditions.

In order to obtain a well-posed problem, the initial and boundary conditions must
be formulated in an appropriate manner. The initial conditions specify the state of
the system at time ¢t = 0, while the boundary conditions determine the behaviour
of the unknown functions at the external boundaries 0 W of the considered spatial
domain. For parabolic equations the boundary conditions can be in general time-
dependent. In the case of steady flow, the derivatives with respect to time disappear
from the governing equations and the equations become elliptic. For such type of
equations, only boundary conditions are required and they are independent of time.

Moreover, porous materials in the solution domain may be heterogeneous with
respect to the constitutive parameters and relationships such as the absolute per-
meability or the capillary and relative permeability functions. In general, one can
assume either that the spatial domain is composed of several porous regions separated
by internal boundaries (material interfaces), with uniform parameter distribution in
each region, or that the parameters are continuously variable in space. In the first
case the mathematical formulation must be complemented by additional conditions
for the material interfaces, which allow to link the solutions from the neighbour-
ing sub-domains. In the case of continuous distribution, a similar problem arises
during numerical solution of the governing equations when spatial discretization is
performed and specific material properties are assigned to each element of the grid.

2.3.1 Initial Conditions

The initial state of the system can be defined either in terms of the primary variables,
or in terms of other variables, from which the primary ones can be calculated. For
two-phase flow in the py,—Sy, formulation, the initial conditions can be specified as:
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Fig. 2.7 Solution domain for flow equations with external and internal boundaries

pw(x, 1 =0) = pi(x), (2.87)
Sw(x, 1 =0) = Sit(x) (2.88)

In strictly unsaturated conditions, the initial water pressure can be replaced by the
initial air pressure pmlt (x). However, if part of the domain is fully saturated with
water, the air pressure cannot be meaningfully defined. On the other hand, it is also
possible to define the initial conditions in terms of the two pressures:

pw(x, 1 =0) = piMi(x) (2.89)
pax,t =0) = pMi(x) . (2.90)
The water saturation is then computed as St = Sy, (pinit — pinity For the Richards

model, only the initial value of the water pressure is necessary:
pw(x, 1 =0) = pi'(x) . (291

In strictly unsaturated conditions it is possible to use initial distribution of saturation.
The corresponding values of the water pressure are then obtained from the capillary
function pitit = — p (Sinit),

While the initial distribution of the relevant variables can be obtained from mea-
surements, it is common to assume some simple distribution schemes, for example:

e Uniform water and air pressures:

pw(x, 1 = 0) = pilit, (2.92)
pa(x,t = 0) = pit | (2.93)

Sw(x, 1 =0) = Sw(pa — pw) - (2.94)
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In a homogeneous medium, uniform pressure distribution implies uniform distri-
bution of the water saturation. In a heterogeneous medium, the values of water
saturation will be different in each material region. If the gravity force is present
in the system then some initial flow occurs due to the presence of gradient in the
gravity potential. Otherwise the system is at equilibrium.

Uniform water saturation:

Sw(x, 1 =0) = st (2.95)

This condition must be completed by specifying either water or air pressure.
Particular attention is required if such a condition is applied to a heterogeneous
medium. For fully water saturated domain, a natural choice is to use S\i;‘i‘ =1or
Si?it = 1 — S, and assume a uniform or hydrostatic distribution of the water pres-
sure. If the medium is characterized by spatially varying entry pressure values, the
corresponding distribution of the capillary pressure is discontinuous. On the other
hand, in unsaturated conditions it is common to assume a uniform initial value of
the air pressure equal to the atmospheric pressure. In this case spatial variability
of the capillary function results in a discontinuous initial distribution of the water
pressure and implies initial water flow between adjacent material regions.
Hydrostatic water and air pressure distributions:

pu(x, 1 =0)=pi' + py gz (2.96)
Pax, 1 =0)=p 4 p, gz 2.97)
SwX,t =0) = Sw(pa — pw) (2.98)

This case describes a system in equilibrium. It is often applied if the position of the
groundwater table is known. The compressibility effects are assumed unimportant.
Hydrostatic water pressure and uniform air pressure

pw(x, 1 =0) = pi' + py gz (2.99)
Pa(X, 1 =0) = pam (2.100)
Sw(X, £ =0) = Sy(pa — pw) (2.101)

Since the variations in the air pressure due to gravity are relatively small, they
are often neglected. If the atmospheric air pressure is assumed everywhere in the
domain, the vertical saturation profile above the water table corresponds exactly to
the capillary function drawn in Sy~ coordinates. There is some initial air flow,
but it is negligibly small.
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2.3.2 Boundary Conditions

Boundary conditions provide information about the behaviour of the solution at
physical boundaries of the domain. In general three types of the boundary conditions
are distinguished, e.g. [63, 87]:

1. Dirichlet boundary conditions specify the values of the solution at a given part
of the boundary;

2. Neumann boundary conditions specify the value of the spatial derivative of the
solution. In the case of flow in porous media, this type of condition is usually
written in terms of the fluid flux in the direction normal to the boundary;

3. Robin boundary conditions, which specify a relationship between the value of
solution and its derivative, and can be viewed as a generalization of both Dirichlet
and Neumann boundary conditions.

various boundary conditions can be specified on different parts of the domain bound-
ary. For a steady flow problem, described by an elliptic equation, it is necessary to
provide Dirichlet boundary conditions on at least one point of the boundary, other-
wise the problem becomes ill-posed. For unsteady problems, described by parabolic
equations, no such restriction exists. In the case of two-phase flow it is necessary to
specify boundary conditions for each phase, and different types of condition can be
used for each fluid at the same part of the boundary. Some examples of boundary
conditions typically used in unsaturated flow modelling are listed below.

Dirichlet boundary conditions provide values of the pressures and/or saturations
of the two fluid phases. They are typically applied when:

e the water pressure is known, e.g.:

— the boundary corresponds to the groundwater table,

— the distance between the boundary and the groundwater table is known, and a
hydrostatic distribution of the water pressure between them can be assumed,

— the boundary is in contact with a free water body assumed to be static, e.g. at
the waterward slope of a dike or at the soil surface ponded by a water layer,

— a specific negative value of the water pressure is applied, e.g. during infiltration
or drainage experiments in controlled conditions,

e the air pressure is known, e.g. the boundary is exposed to the atmosphere and not
fully water saturated,

e the water saturation is known, e.g. the boundary is fully saturated and the air
pressure cannot be meaningfully specified,

e the boundary is far away from the region of interest and it can be assumed that the
water and air pressures and saturations are constant and equal to the initial ones.

Neumann boundary conditions are typically used when the boundary is imper-
meable for one or both phases, py Vo Dy = 0, where ny is a unit vector normal to
the boundary of the domain W. This condition is also used to represent infiltration
and evaporation fluxes at the soil surface.
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Fig. 2.8 Boundary conditions for a simple case of two-dimensional flow in a dike

Moreover, there are three specific sets of the boundary conditions widely applied
in the unsaturated zone modelling. They include the free drainage condition, the
seepage face condition and the soil-atmosphere interface condition e.g. [64, 72]. All
of them are system-dependent, which means that the imposed value of the pressure
of flux depends on the current state of the system. The free drainage condition
represents vertical flow of water through the bottom of the soil profile towards a
distant groundwater table. It is assumed that the water pressure gradient is zero and
only the gravity component contributes to the flow:

Vy Dy = ("—Wkw(sw>g) ny (2.102)

w

Thus, the condition is of Neumann type, but the actual value of the flux depends on
the solution at the specific boundary point.

The seepage face is a part of the outer surface of the porous medium which is
exposed to the atmosphere and through which water can flow freely out of the porous
domain. It typically occurs above the water level in wells and at the bottom of the
landward slopes of earth dams or embankments, Fig.2.8. The seepage face is con-
sidered impermeable to water as long as the adjacent part of the porous medium is
unsaturated. If the pressure in the medium increases to the value of the atmospheric
pressure water flows out freely from the medium and no build-up of positive pres-
sure values is allowed. This is represented by assuming Neumann boundary condition
vy Ny = 0 on the unsaturated part of the boundary and Dirichlet boundary condition
pw = 0 on the saturated part. The position of the saturated-unsaturated interface is
not known a priori and must be obtained iteratively during the numerical solution.

When modelling the infiltration and evaporation processes at the soil surface, it
is often necessary to switch between Neumann and Dirichlet boundary condition,
depending on the state of soil surface. During infiltration, at first a specific value of
the water flux is applied at the boundary, Fig.2.9a. As a result of the infiltration the
water pressure at the soil surface increases from the initially negative value towards
zero (atmospheric pressure). If the applied flux is larger than the soil infiltration
capacity (equal to the saturated water conductivity) then positive values of the water
pressure appear at the surface, which physically corresponds to the formation of a
water layer on the ground surface (ponding). At this point the boundary condition for
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Fig. 2.9 Boundary conditions for typical one-dimensional flow problems: infiltration towards a
distant groundwater table, a early stage, b late stage; evaporation from shallow groundwater table,
c early stage, d late stage

the water phase is switched to Dirichlet type (p,, = 0 or some small positive value)
and it is assumed that the excess precipitation forms the surface runoff, Fig.2.9b.
If the precipitation rate decreases below the soil infiltration capacity, the condition
is switched back to Neumann type. A similar switch in the boundary conditions is
performed when modelling evaporation. In this case the water pressure at the surface
decreases as the water evaporates from soil at a specific rate, Fig.2.9c. However,
the water pressure cannot fall below a limit value defined by the temperature and
relative humidity of the air, pqry. If this value is reached, the boundary condition
is switched to Dirichlet type with py = pary and is maintained until the potential
evaporation rate decreases or a rainfall occurs, Fig. 2.9d. It should be noted that such
an approach provides only simplified description of the soil-atmosphere interface and
is used primarily with the Richards model. More sophisticated modelling concepts
are based on the coupling of air and water flow in porous medium with free flow
of the surface water (after ponding) or atmospheric air above the soil-atmosphere
interface, e.g. [22, 52].

2.3.3 Conditions at Material Interfaces

Porous media often consist of multiple regions, each of them having different
properties such as porosity, intrinsic permeability, capillary function and relative
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Fig. 2.10 Conditions at material interface separating two porous media

permeability functions. In each region the fluid flow is described by Egs. (2.50)—
(2.51), or by Eq. (2.65). The solutions in different subdomains must be connected to
each other by appropriate interface conditions [30, 31].

Consider an interface between two porous materials, as shown in Fig.2.10. At
the Darcy’s scale, the interface can be considered infinitely thin. Thus, the mass
conservation principle implies that for each phase the components of the mass fluxes
in the direction normal to the interface are equal:

(Pa Vot)l npr = (py Va)” nr (2.103)

where nr is a unit vector normal to the interface I" and oriented from material / to
material /1.

The second interface condition can be derived from the principle of momentum
conservation [30], and states the continuity of the pressures in the two fluid phases,
and consequently the continuity of the capillary pressure:

Py =Py (2.104)
Py =Pl (2.105)
pl=pl (2.106)

Note that the continuity of the capillary pressure implies that the water and air
saturations are discontinuous, except for the case of two media characterized by
the same capillary function. Moreover, if the saturation on one side of the interface
is known, the saturation at the opposite side can be computed from the capillary
pressure continuity condition:

st =sL(p!(sih) (2.107)
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The above conditions hold if both fluid phases are continuous in the pore space at
each side of the interface. A special case arises if the one of the materials, say material
11, is characterized by a distinct air entry pressure, higher than the entry pressure of
the other material. As the value of p!/ is reached, the air (or non-wetting fluid in
general) is no longer continuous, and the macroscopic capillary pressure remains
at its minimum value. At the other side of the interface, the capillary pressure can
assume smaller values, or even reach zero if pé = 0. The state of the system can
be meaningfully defined by the capillary pressure pCI or the corresponding water
saturation S!. On the other hand, the state of the material (I) cannot be uniquely
determined by the saturation or the capillary pressure in material (II). In such a
situation, the extended capillary pressure condition can be formulated as [15]:

Hpc’ (S0 =pd (S if S5 < S, (2.108)

Sl =1-¢sI it S > Sz,

where the threshold saturation at the left side of the interface S/, corresponds to the
entry pressure of the material at the right-hand side, S%, = SI(pll). At the same
time, the pressure continuity condition for the water phase (2.104) holds, as the water
phase is continuous at both sides of the interface.

In the case of the Richards equation, only conditions for the water phase have to
be formulated at the interface. They include the continuity of the normal flux and
continuity of the water pressure. The water saturation, now uniquely defined by the
water pressure, is in general discontinuous at the interfaces. The interface conditions
must be properly taken into account in the development of spatial discretization
schemes for both two-phase model and the Richards equation, as it will be shown in
the following chapter.

Application of the pressure and flux continuity conditions for the case of single-
phase flow leads to the well known formula for the equivalent permeability of a
layered medium in the direction perpendicular to the layers. Assuming that the values
of the water pressure at points i, j and k are known, one can write:

L pl(j) _ p(i) _ _k” p(k) _ pH(j) — p(k) _ p(i) 5109
s Ax! T AxT T Ax 4+ AxI (2.109)

where k¢ is the equivalent intrinsic permeability and by virtue of the pressure con-
tinuity p/) = pf(D  Solving the above double equation, one can express the
equivalent permeability as a weighted harmonic average of the permeabilities of the
two materials:

(Ax! + AxTy k! kT

kst =
AxT k! + AxTT k]

S

(2.110)

This formula will be used in the subsequent chapters to develop spatial discretization
schemes for both homogeneous and heterogeneous porous media.
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Chapter 3
Numerical Solution of Flow Equations

The governing equations for fluid flow in porous media presented in Chap.?2 can be
written in a general form of the following partial differential equation of parabolic
type:

oM.,

_8t +V(pava) =0 (3.1

where M, = p,, ¢ S, denotes the mass of the fluid in a unit volume of porous medium
and v, is the volumetric fluid flux, given by the extended Darcy formula:

Ka
Vo =——(Vpa—pag) (3.2)

(%

The two-phase model consists of two coupled equations (3.1), which are nonlinear
with respect to the chosen pair of primary unknowns, e.g. py—Sy or py—pa. The
Richards model is given by a single equation, nonlinear with respect to the chosen
primary unknown py,, hy or Sy. Finally, the single-phase water flow model is defined
by a single equation, linear with respect to the primary unknown py, (or hy,). While
other formulations of the governing equations are possible (e.g. the fractional flow
formulation for the two-phase flow, or a variety of variable transformation approaches
for the Richards equation), in this work the formulation given by Eq.(3.1) is used,
due to its clear physical interpretation and consistent representation of the two-phase,
unsaturated and saturated flow cases.

Analytical solution of the governing equations is possible only for a few sim-
ple cases, and numerical methods are typically employed to obtain approximate
solutions. Numerical solution of a nonlinear partial differential equations describing
transient phenomena in a time-space domain involves several tasks or stages. For
each task, a number of alternative techniques exist, and the choice of one or other
approach may significantly influence the accuracy and efficiency of the computa-
tions. For an overview of various numerical approaches available for flow in porous
media, see e.g. [14, 33]. The main steps of the solution algorithm are as follows:
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1. Discretization in space. It is typically performed with the finite difference, finite
element or finite volume methods, and requires defining a number of points
(nodes) in the considered spatial domain, at which the values of the unknown
function are sought. Spatial discretization leads to a system of ordinary differen-
tial equations (or algebraic differential equations), containing the unknown nodal
values and their derivatives with respect to time.

2. Discretization in time. The resulting system of ordinary differential equations
has to be integrated in the specified time interval, which is divided into several
time steps. The solution at the next time level can be obtained using a variety
of explicit or implicit methods. For the reasons of stability, implicit schemes are
preferred. Application of an implicit scheme results in a system of nonlinear
algebraic equations for each time step, where the unknowns represent the nodal
values of the primary variables from the new time level.

3. Linearization. As the system of discrete equations arising for each time level is
nonlinear, it must be solved using an iterative method. First, an initial guess of
the unknown values is provided, and then a number of successive corrections are
calculated. To this order one can apply either different versions of the Newton
method, or a simpler approach, known as the modified Picard method.

4. Solution of the linear systems. For each nonlinear iteration, a system of linear
equations has to be solved, to compute the corrections to the unknown values.
The system is characterized by a sparse and banded coefficient matrix. Depending
on the problem under consideration, either direct or iterative methods can be
employed to solve the linear system.

In the following sections an overview of the basic discretization methods is pre-
sented, with the focus on the control-volume finite-element approach, which is used
in the numerical examples presented in the following part of the book. The solu-
tion algorithm is discussed in general terms, which allows for its application to
one-dimensional and multi-dimensional problems, and for alternative choices with
respect to the primary unknowns.

3.1 Basic Properties of Numerical Discretization Schemes

In the process of numerical discretization, the differential terms of the governing
equations are replaced by algebraic terms. The numerical scheme should satisfy
several requirements, in order to ensure that the solution of the system of discrete
equations approximates the solution of the original differential equation with suffi-
cient accuracy for the range of practically applicable discretization parameters (node
spacings and time steps). The basic property of the discretization scheme is conver-
gence. The numerical scheme is convergent if the resulting approximate solutions
tend to the exact solution of the original differential equation for decreasing spa-
tial and temporal discretization steps, e.g. [25, 33]. For nonlinear equations the
convergence is difficult to prove. It can be investigated empirically, by performing
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subsequent numerical solutions of the same initial-boundary problem with decreasing
spatial and temporal discretization steps, and comparing them with known analytical
solution. Moreover, some insights into the numerical properties of the nonlinear flow
equations can be obtained by considering the linear advection—diffusion equation of
the following form:

Ou Ou O’ u

_ +Vu_

o Vigr " P =0 G-

where u is a physical quantity subjected to the advective and diffusive transport and
v, and D, are constant parameters. Equation (3.3) can be regarded as a simplified
version of the saturation equation in the fractional flow model, Eq.(2.63), or the
Richards equation, e.g. Eq.(2.75). For linear differential equations the Lax theorem
holds, which states that the properties of consistency and stability are necessary and
sufficient conditions for a numerical scheme to be convergent [25, 33]. Analysis of
these properties is well-established for linear advection—diffusion equation. While the
results of the analysis of a linear equation cannot be directly applied to its nonlinear
counterparts, they offer some hints about the expected behaviour of the discretization
scheme.

The consistency of the discrete equation with the original differential equation
means that the local truncation errors tend to zero as the node spacings and time
steps decrease. The consistency analysis is performed by inserting the Taylor series
expansions of the unknown functions around the computational nodes into the alge-
braic approximations of the derivatives in the discrete scheme. The resulting equation
contains the differential terms of the original equation and the truncation error, i.e.
additional higher order terms from the Taylor expansions, which were neglected in
the discretization, e.g. [31]:

Ou Ou % u orta

- —~ _D,— = Bp.a AxTra —

o TV ~Duga = ;:ozp,th S (3.4)
where p, g =0, 1,2, ... and the coefficients o), , and the exponents 3, , and X, 4

depend on the considered numerical scheme. The order of accuracy of the approx-
imation with respect to time and space corresponds to the value of the exponent
Bp.q OF Vp.q, respectively, in the leading term of the truncation error. Furthermore,
according to the modified equation approach, the mixed time-space derivatives can
be eliminated from the expression for the truncation error by differentiation of the
original differential equation, so that only spatial derivatives remain [30]. If the lead-
ing term contains an even-order spatial derivative, then numerical dissipation effects
can be expected. The dissipation caused by the lowest (i.e. second) order term is
called numerical diffusion. Numerical diffusion (and dissipation in general) acts in
a manner analogous to the physical diffusion, smoothing sharp gradients present
in the solution. If the leading term contains an odd-order derivative, the solution
is influenced by numerical dispersion. Numerical dispersion leads to oscillations
in the solution, while keeping the initial steep gradients. The effects of numerical
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diffusion and dispersion are particularly important for advection dominated prob-
lems. If a significant physical diffusive mechanism is included in the governing
equation, the additional numerical diffusion becomes relatively less pronounced. On
the other hand, physical diffusion smoothes the oscillations caused by a dispersive
numerical scheme. In advection-dominated problems the appearance of diffusion
and dispersion errors is related to the method of approximation of the advective flux.
Strong numerical diffusion is typical for upwind (or upstream) schemes, where the
algebraic approximation of the advective flux at a specific node of the grid involves
values of the unknown function only from the nodes located upstream with respect to
the direction of transport. Numerical dispersion occurs for centred approximations
of the advective flux, which involve nodes located both upstream and downstream
of the considered grid point [25].

In the two-phase flow model, the diffusion is related to capillary forces, while
the advection to gravity and viscous forces. Due to the large value of viscosity ratio
between water and air, the viscous terms are relatively less important in the unsatu-
rated zone, as compared for example to the water—oil system. In the Richards equation
only capillarity and gravity forces are present. For gravity-dominated flow numerical
errors typically associated with the advection equation occur. Generally, numerical
diffusion errors are considered more acceptable than the numerical dispersion errors.
This is due to the fact that dispersion leads to non-monotonous, oscillatory profiles of
the pressures and/or saturations, which are not admissible from the physical point of
view. Numerical diffusion smears the saturation gradients, but the results are physi-
cally admissible, because similar profiles could be obtained from an accurate solution
of the same initial-boundary problem for a medium characterized by different con-
stitutive relationships with increased role of the capillary forces. For a discussion
of the monotonicity issues in relation to the relative importance of diffusive and
advective terms in the governing equation, see e.g. [26, 33]. Monotonicity is usually
achieved by applying upstream averaging of the relative permeability. Nevertheless,
the lack of oscillations does not guarantee that the solution is accurate and excessive
numerical diffusion may cause large errors, for instance by speeding up the arrival
time of the saturation front at a specific point. Thus, some authors argue that the use
of numerical diffusion to ensure monotonous solutions should be avoided [29].

Another important property of a numerical scheme is the stability. A scheme
is stable if small perturbations in the solution are not amplified. In the context of
numerical solution of the advection—diffusion equation, stability is related to the
method of discretization in time. The time-discretization schemes can be categorized
into explicit and implicit. In the explicit schemes, values of primary unknown for
any given point at the next time level can be obtained from the previous time levels,
independently of the values at other nodes. In the implicit schemes the algebraic
formulae approximating the spatial derivatives are written using nodal values from
the new time level, which usually results in a system of algebraic equations that
must be solved for each time step. Explicit schemes are only conditionally stable,
which means that the length of time step must be smaller than a specific limit value.
In contrast, some implicit schemes are unconditionally stable, which means that
the solution is stable for any choice of the time step. However, the presence of
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nonlinear terms in the governing differential equation may give rise to numerical
instabilities, even if the discretization scheme is unconditionally stable for linear
equations [2]. Moreover, for nonlinear equations the length of the time step is limited
by the convergence of the iterative solution of the nonlinear equations.

As the governing equations for the two-phase flow represent the mass conserva-
tion principle, it is advantageous if the discrete scheme is also mass-conservative. It
means that the change of the fluid mass in the considered domain between two time
steps should be equal to the integral of the mass flux over the domain boundary. If this
principle holds for the 