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The title page of Nicolaus Bernoulli’s dissertation The Use of the Art of
Conjecturing in Law, dated 1709. Nicolaus’s thesis appears to be the first extended

work applying statistical methods to legal questions.



Preface to the Third Edition

For a reader new to this book, we suggest that you read the prefaces to the first and

second editions for an overview; what we wrote there is still relevant as an

introduction to our subject and the method of the book. For the teacher who has

used prior editions, this edition includes over twenty new sections, including

the following: }1.5.4 (SIDS tragedies), }5.5.2 (State trooper literacy exam), }8.1.3
(Rheumatoid arthritis drug), }11.1.4 (Exonerations in death-sentence cases), }13.2.4
(Projecting airline costs), }14.9.1 (New York City police stops), plus new exposi-

tory material on various statistical techniques. In addition, each data table that

appears in the book is available for download as a plaintext file at http://www.

columbia.edu/~BL6/SFLdata.htm.

As in prior editions, much of the material for the new portions of this edition was

collected and explored with help from lawyers and statisticians involved in the

cases or studies. We thank them all for their generosity in assisting us. In this

connection, we would like to thank in particular Nathan A. Schachtman for

directing our attention to a number of new cases that we found useful to include

in this edition. We also thank Ms. Dan Bai for helping us to update the references.

New York, NY, USA Michael O. Finkelstein

Bruce LevinDecember 2014
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Preface to the Second Edition

In the decade that has passed since the first edition of this book appeared, the crest

of the wave of interest in statistical evidence has broadened and moved beyond its

origins in civil rights law. Significant new developments, reflected in this edition,

include, for example, DNA evidence (Sections 2.1.1, 3.1.2, and 3.2.2), epidemio-

logic studies in toxic substance litigation (Chapter 10), statistical models for

adjusting census counts (Section 9.2.1), and vote-dilution cases (Section 13.2.3).

It is emblematic of the importance of statistics in the pantheon of scientific evidence

that the leading Supreme Court precedent on such evidence—the Daubert1 case—
involved toxic substance claims in which epidemiologic studies played a key role.

In Daubert, the Court rejected the old Frye test of general acceptance in the

scientific community as the basis for admissibility, and explicitly imposed on

federal trial judges a gatekeeping function: they must now assess whether the

proffered evidence is both relevant and reliable. The new formulation puts judges

in the awkward position not only of counting scientific noses, but also of under-

standing and appraising the scientific basis of what an expert proposes to say, or

calculate, on the witness stand. Fortuitously, about a year after Daubert, in 1994,

the Federal Judicial Center issued and distributed to all federal judges a Reference
Manual on Scientific Evidence, which is largely a primer on the applications of

statistical methods. A new edition of theManual, which unexpectedly turned out to
be a best seller, is due to appear this year. Those who find this book heavy going

may wish to consult the Manual as a useful introduction to at least some subjects.

But new, case-driven applications of statistics are only part of the development.

Perhaps even more important, in the long run, is the continuing flow of statistical

studies of the legal system itself. Studies of this sort can offer insights that

sometimes challenge commonly held views of venerable legal institutions.

Section 5.6.3 gives an example of such a study, involving peremptory challenges

of prospective jurors, in which the authors analyze data and find that most peremp-

tory challenges are “guesses.” For another example, as this is being written, the

media are prominently reporting a large-scale statistical study of the death penalty,

undertaken at Columbia Law School, which paints a startling picture of the high

1Daubert v. Merrill Dow Pharmaceuticals, 509 U.S. 579 (1993).
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rate of serious errors in criminal trials leading to death sentences. The study will

almost certainly influence pending legislation and promises to provide important

data in the debate over capital punishment itself. One must note that in both these

studies it is the statistical pattern, emerging from the details of individual cases, that

tells the most compelling story.

As in the first edition, much of the material for the new portions of this second

edition was collected from lawyers, statisticians, or economists who were involved

in the cases. We thank them all for their generosity in assisting us. In this connec-

tion, we would like to acknowledge in particular Orley Ashenfelter, David Baldus,

William Fairley, David Freedman, and Sol Schreiber for their help in furnishing us

with their materials and consulting with us on matters of interpretation.

New York, NY, USA Michael O. Finkelstein

Bruce LevinJune 2000
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Preface to the First Edition

For the rational study of the law the black letter man may
be the man of the present, but the man of the future is the man
of statistics and the master of economics.

—Oliver Wendell Holmes
The Path of the Law (1897)

The aim of this book is to introduce lawyers and prospective lawyers to methods of

statistical analysis used in legal disputes. The vehicle of this entertainment is a

series of case studies interlaced with sections of mathematical exposition. The

studies consist of summaries drawn primarily (but not exclusively) from actual

cases, which are cast in the form of problems by questions posed to focus discus-

sion. They are designed to illustrate areas of the law in which statistics has played a

role (or at least has promised to do so), and to illustrate a variety of ways to reason

quantitatively. Also included are some statistical studies of the legal system, and

of the impact of proposed legislation or regulation. Wherever possible, excerpts of

data are given to expose the reader to the sobering, hands-on experience of

calculating statistics and drawing inferences. Judicial opinions are not given

because they generally do not elucidate the statistical issues that are our primary

concern. On the other hand, some judicial missteps are included so that the reader

may exercise critical faculties and enhance self-esteem as a newly minted expert by

correcting the bench.

Knowledge of probability or statistics is not required to calculate most of the

answers called for by the snippets of data in the case studies. For the uninitiated, the

statistical notes supply the technical tools. Some of these notes deal (in rather

condensed fashion) with material that is covered in elementary texts; others go

beyond that. For a more leisurely, detailed, or expansive discussion of the material,

the reader may wish to consult a statistics text; some references are given in the text

sections and in the bibliography. Our calculations for the mathematical questions in

the case studies are given in Appendix I. The legal issues and the statistical issues

not involving calculation are for the most part left to the reader.

Apart from the riveting intellectual interest of the subject, the lawyer or pro-

spective lawyer may fairly question whether one needs to know quite as much about

statistics as this book would teach. Of course, not all will. But for increasing

xi
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numbers of legal scholars, lawyers, judges, and even legislators, an acquaintance

with statistical ideas, to paraphrase Justice Holmes, is not a duty, it is only a

necessity. In diverse fields of learning, our knowledge is expressed in data that

are appraised statistically. What is true of the general world has filtered into the

courtroom. Economists of all stripes, social scientists, geneticists, epidemiologists,

and others, testifying in their fields of expertise, make use of statistical tools for

description and inference. In economics in particular, and in problems translated

into economic terms, the ubiquity of data and computers, and the current fashion,

have encouraged the creation of elaborate econometric models that are sufficiently

plausible to be accepted in learned journals. But even models with impressive

and intimidating technical apparatus may rest on shaky assumptions that, when

exposed, undermine their credibility.

Frequently, statistical presentations in litigation are made not by statisticians but

by experts from other disciplines, by lawyers who know a little, or by the court

itself. This free-wheeling approach distinguishes statistical learning from most

other expertise received by the courts and undoubtedly has increased the incidence

of models with inappropriate assumptions, or just plain statistical error. The

knowledgeable lawyer will be far more effective in proposing useful studies,

exposing serious failings in complex models, and making the issues intelligible to

a lay decisionmaker than one who is wholly dependent on a consultant for the next

question. And although the lawyer usually will not need to make calculations, an

appreciation of the principles—which is needed—is best gained from some modest

grappling with the data.

Do statistics really matter? This is a question that sometimes vexes statisticians.

In the legal setting, the questions are whether statistical models are fairly evaluated

in the adversary process and whether statistical findings are given their due in the

decisions. Unfortunately, the record here is spotty, even perverse. In some cases the

courts have appraised statistical evidence well, but in some important public-issue

litigation very good statistical models have been summarily rejected (and very bad

ones uncritically embraced) by judges and justices in pursuit of their own agendas.

The lawyer of the future predicted by Holmes ninety years ago has not yet come

into his or her own.

Despite the trampling of statistical evidence that has occurred in some notable

cases, it seems inevitable that studies based on data will continue to be pursued by

the scholarly community and presented with increasing frequency in litigated

matters involving public issues. A fuller appreciation of the standards for analyzing

data and making inferences should at least lead to more accurately focused studies

and more discerning treatment of such evidence by the courts. Beyond that, one

may hope that the realities exposed by statistical work will in time influence

perceptions of justice, even in the courtroom. A knowledgeable lawyer may not

dispatch questions of legal policy with statistics, but by knowing more of the

subject may hope to contribute to the store of rational and civilized discourse by

which insights are gained and new accommodations reached. That, in any event, is

the larger purpose of this book.

xii Preface to the First Edition



***

Much of the material in this book was collected from lawyers and statisticians

who were involved in the cases. We thank them all for their generosity in furnishing

us with their papers. They are too numerous to list, but we would like to mention in

particular David Baldus, Jack Boger, Will Fairley, David Freedman, Elizabeth

Holtzman, Jay Kadane, and Jack Weinstein. We would also like to acknowledge

Joseph Fleiss, Mervyn Susser, and Zena Stein, and their respective institutions, the

Division of Biostatistics, the Sergievsky Center of the Faculty of Medicine, Colum-

bia University, and the New York State Psychiatric Institute, for their liberal

support of this project.

We would like especially to thank Margaret Murphy, who steadfastly typed and

retyped the manuscript until the error rate was vanishingly small; Marcia Schoen,

who typed the calculation notes; Stephen Sullivan, Lynn Cushman, and Matthew

Herenstein for checking the citations; and Ann Kinney for editing the case studies

and checking the calculations.

We own a debt of gratitude to our families—Claire, Katie, Matthew, Betty, Joby,

Laura, and also Julie—for their patience, encouragement, and support during the

long evolution of this book.

New York, NY, USA Michael O. Finkelstein

Bruce LevinAugust 1989

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_16
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Descriptive Statistics 1

1.1 Introduction to descriptive statistics

Population parameters

Statistics is the science and art of describing data and drawing inferences from

them. In summarizing data for statistical purposes, our focus is usually on some

characteristic that varies in a population. We refer to such characteristics as

variables; height and weight are variables in a human population. Certain

parameters are used to summarize such variables. There are measures of central

location—principally the mean, median, and mode—that describe in various ways

the center of the data; these are discussed in Section 1.2. There are measures of

variability or dispersion—most notably the variance and standard deviation—that

describe how widely data vary around their central value; these are described in

Section 1.3. Finally, there are measures of correlation—particularly the Pearson

product-moment correlation coefficient—that describe the extent to which pairs of

characteristics (such as height and weight) are related in members of the popula-

tion; this coefficient is described for measured data in Section 1.4. Methods for

expressing association in binary data (i.e., data that can take only two values, such

as 1 or 0) are described in Section 1.5.

Typically, population values for such parameters are unknown and must be

estimated from samples drawn at random from the population. The measures of

central location, variability, and correlation have both a theoretical or population

version and a sample version, calculated for observed data, and used to estimate the

population version when it is unknown. In conventional notation, population

parameters are represented by Greek letters: μ for the mean; σ2 and σ for the

variance and standard deviation, respectively; and ρ for the correlation coefficient.

The corresponding sample versions are: x for the mean of the sample data; s2 and
s or sd for the variance and standard deviation, respectively; and r for the correla-
tion coefficient.
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Random variables

Sample estimates of population parameters will vary from sample to sample. The

extent of such variation can be described probabilistically using idealized entities

called random variables. Suppose, for example, that a single member of a human

population is selected “at random,”meaning that allmembers have an equal likelihood

of selection, and his or her height measured. The possible values of that measurement

define a random variable. If nmembers of a human population are selected at random,

their heights measured and the average taken, the values of the sample mean over all

possible samples of size n from the population also define a random variable.

Contrary to what the name might suggest, random variables, like individual

height and sample mean height, are not totally wayward and unpredictable. In

general, the probability of observing any value or set of values of the variables

can be known, at least in theory. Thus, while we cannot predict an individual’s

exact height, we can say that the individual height variable will lie between 50 600

and 50 900 with probability P, and that the sample mean height variable will lie

between those limits with probability P0. The definition thus subsumes a consider-

able degree of order.

Sample realizations

Sample data can be considered as particular realizations of random variables, just as

mathematical functionshave realized sets of values. Thus,wemay speakof the random

variable “individual income in the U.S.” contrasted with its observed value for any

person sampled from the population. To help distinguish between random variables

and their realizations, one uses capitals for the variables and lower case letters for their

values, as whenwewrite P [X¼ x] for the probability that the random variable X takes

on the value x. We distinguish the sample mean random variable from any particular

realization of it by writing X for the former and, as noted, x for the latter.
In this chapter we do not make probability statements about random variables.

Our purpose here is limited to describing what was actually observed in a sample.

For the measures of central location, variability, and correlation referred to above,

we give the theoretical population formulas and then the versions for sample data,

which in some cases are slightly modified. We have introduced the notion of

random variables here because it provides a compact and convenient notation for

the formulas and is the foundation for the probability statements made in Chapter 4,

which carry the subject to a deeper level. We return to the general discussion of

random variables in Section 4.1.

1.2 Measures of central location

Mean

By far the most common measure of location for sample data is the familiar

“average,” or arithmetic mean. The arithmetic mean, μ, of a characteristic, X, in a

2 1 Descriptive Statistics
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population of size N is calculated by summing the values of the characteristic over

the population and dividing the sum by the population size. In symbols,

μ ¼ 1

N

XN
i¼1

Xi;

where Σ denotes the operation of summation.

We note the following characteristics of the mean:

• The mean is the unique number for which the algebraic sum of the differences of

the data from that number is zero.

• Consequently, if each value in the population is replaced by the mean, the sum is

unchanged.

• The mean is the number that minimizes the average squared deviation of data

points from that number.

The population mean is a central value as described above, but it is not neces-

sarily a “representative” or “typical” value. It is a result of arithmetic that may be

possessed by none of the population. No one has the average 2.4 children. Nor is the

mean necessarily the most useful number to summarize data when variability is

important. One could drown in a river that has an average depth of 6 in. or have

been very warm in July, 1998, when the Earth’s average temperature was 61.7�F. A
woman’s life expectancy exceeds a man’s, but charging women more for pensions

is discriminatory, the Supreme Court has held, because not all women will outlive

the male expectancy. City of Los Angeles Dep’t of Water and Power v. Manhart,

435 U.S. 702, 708 (1978) (“Even a true generalization about a class is an insuffi-

cient reason for disqualifying an individual to whom the generalization does not

apply.”).

The mean in a sample is computed in the same way as the population mean, i.e.,

it is the sum of the sample values divided by the sample size. In a random sample,

the sample mean is a useful estimator of the population mean because it is both

unbiased and consistent. An estimator is said to be unbiased if its average over all

possible random samples equals the population parameter, no matter what that

value may be. An estimator is said to be consistent if, as the sample size increases,

the probability that the estimator (e.g., the sample mean) will differ from the

population parameter (e.g., population mean) by any given amount approaches

zero.1 The sample mean is also desirable because in many situations it will have

greater precision—i.e., it will vary less from sample to sample—than other com-

monly used estimators.

1 This is a statement of the famous law of large numbers. For a derivation see Sect. 1.3 at p. 24.
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Median and mode

The median of a population is any value such that at least half of the values lie at or

above and at least half lie at or below it.2 When there are an odd number n of points
in a sample, the sample median is the middle observation. When n is even, it is

customary to take the sample median as midway between the two middle

observations. Income distributions, for example, are often summarized by their

median because that figure is not unduly influenced by a few billionaires. The

sample median is a central value that minimizes the average absolute deviation of

the data points from that value.

The mode of a population is that value with highest relative frequency, and is

often chosen as expressing the most likely value. For example the modal number of

children in a household reflects the most frequently seen family size and may be a

more useful statistic than the mean.

In symmetrical distributions, such as illustrated in Fig. 1.2a, there is no ambigu-

ity in the notion of center of location: the mean, median, and (in unimodal

distributions) the mode coincide. In skewed distributions, however, such as in

Fig. 1.2a. Random variable X with a symmetrical probability distribution

2 “At least” appears in the definition to cover the case in which there are an odd number of discrete

data points. For example, if there are five points, the third point is the median: at least half the

points are at or above it and at least half are at or below it.
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Fig. 1.2b, they (and a variety of other measures) separate, each reflecting a different

aspect of the underlying distribution. In right-skewed distributions, such as an

income distribution, it is common to find that the mean exceeds the median,

which in turn exceeds the mode.

Variants of the mean

It is sometimes appropriate to use a weighted mean, as for example when (i) an

overall figure is to be derived from figures for strata of different sizes, in which case

weights are proportional to the sizes of the strata; or (ii) the degree of variability in

the data changes from one observation to the next, in which case weights inversely

proportional to variability provide an estimate of the population mean that will vary

less from sample to sample than any other weighted or unweighted average.

A major disadvantage of the sample mean is that it is sensitive to deviant or

outlying data points arising from a distribution with “heavy tails.” In these

circumstances, the sample mean loses some of its useful properties described

above and may not be seen as reliably “representing” the center of the data. Various

measures have been proposed to deal with this sensitivity. The proto-type of these is

the median, which is not affected even by several highly deviant data points.

Another is the trimmed mean, which is the mean computed after discarding the

top and bottom P % of the data.

Fig. 1.2b. Random variable X with a right-skewed probability distribution
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The geometric mean of n positive numbers is the nth root of their product. Thus,
the geometric mean of the numbers 1 and 100 is (100� 1)1/2¼ 10. The arithmetic

mean is (1 + 100)/2¼ 50.5. By de-emphasizing differences at the large end of a scale

compared with equal differences at the small end, the geometric mean in effect gives

less weight to the large numbers and is thus always less than the arithmetic mean

when all numbers are positive. The arithmetic mean of the logarithms of numbers is

equal to the logarithm of their geometric mean. Hence, the geometric mean arises, in

particular, when data are expressed in terms of their logarithms.

The geometric mean is encountered in regulations incorporating some average

when the data are bounded by zero on one side and unbounded on the other, so that a

skewed distribution is likely to result. For example, the geometric mean length of

hospital stay is used for purposes of Medicare in-hospital reimbursement, 62 Fed.

Reg. 45966 at 45983 (1997); in an Idaho water quality standard, fecal coliform

bacteria may not exceed a geometric mean of 50/100 mL based on a minimum of

five samples taken over a 30-day period, 40 C.F.R. Part 131 (1997); in an air quality

standard, sulfur dioxide emissions are limited to 29 parts per million, by volume,

based on a 24-hour daily geometric mean, 40 C.F.R. Part 60 (1997).

The harmonic mean of N positive numbers is defined as the reciprocal of the

arithmetic mean of the reciprocals of the N numbers. This type of average

de-emphasizes differences among large numbers relative to equal differences among

small numbers to an even greater extent than does the geometric mean. The harmonic

mean is often used for waiting times to events, when differences in relatively short

waiting times may be much more important than differences in very long waiting

times. It is also used when taking averages involves reciprocals. For example, the

U.S. Environmental Protection Agency prescribes that if a vehicle is given more than

one fuel economy test, the harmonic mean of the test results shall be taken as

representing the vehicle.3 To take an extreme case, suppose that in one test the vehicle

had anmpgof20and in another had anmpgof40.Theaverage of the reciprocalswould

be ½ (1/20 + 1/40)¼ 3/80; the harmonic mean would be the reciprocal of that, or

80/3¼ 26.6 mpg. The geometric mean is 28.3 mpg and the arithmetic mean is

30.0 mpg. Which is “right”? If the vehicle were driven 100 miles in each test, the

total fuel consumed would be 100/20+ 100/40¼ 7.5 gal; this is 200/7.5¼ 26.6 mpg.

Note that in computing an overall figure reciprocals of the mpg are used, the low value

receives more weight, and the harmonic mean gives the correct answer; both the

geometric and arithmetic means give answers that are too high.

To illustrate further the three types of averages, consider the numbers 10 and

1,000. Their arithmetic mean is (10 + 1,000)/2¼ 505. The geometric mean is

(10� 1,000)1/2¼ 100; and their harmonic mean is 1/[(1/2)(1/10 + 1/1,000)]¼ 19.8.

Mathematical expectation

The arithmetic mean is a special case of the more general notion of mathematical

expectation. The expected value of a characteristic X in a population, denoted EX,

3 EPA, Review of fuel economy data, 40 C.F.R. } 600.008-01 (2005).
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is the weighted sum of the Xs, with the weights given by their probabilities. In

symbols, X
x
x � P X ¼ x½ �:

If all outcomes are equally likely, the expected value is the familiar average or

mean value.

As an example, consider the roll of two dice X and Y. The expected value of the

sum of pips on the two dice is equal to the sum of the values of all possible

outcomes multiplied by their probabilities. The expected value is:

E X þ Yð Þ ¼ 2
1

36

� �
þ 3

2

36

� �
þ 4

3

36

� �
þ 5

4

36

� �
þ 6

5

36

� �
þ 7

6

36

� �
þ 8

5

36

� �
þ 9

4

36

� �
þ 10

3

36

� �
þ 11

2

36

� �
þ 12

1

36

� �
We note two properties of mathematical expectation:

• The expected value of a constant multiple of X is that constant times the expected

value of X. Changing units of height from inches to centimeters multiplies the

expected height by centimeters per inch (about 2.54).

• The expected value of the sum of two random variables is the sum of their

expectations, irrespective of the correlation between them. In the dice example,

the expected value for each die is 3.5 and the expected value of their sum is

simply 3.5 + 3.5¼ 7. The average income of a two-income (heterosexual) house-

hold is the sum of the average incomes of male and female wage earners in the

population, irrespective of the fact that the paired incomes generally are

correlated.

Measures of central location are frequently used to “smooth” away random

variation in data to disclose underlying patterns, as the following problem shows.

1.2.1 Parking meter heist

In the late 1970s, the City of New York owned and operated approximately 70,000

parking meters. Daily collections averaged nearly $50,000. Beginning in May

1978, Brink’s Inc. was awarded a contract to collect coins from these meters and

deliver them to the City Department of Finance. The predecessor collection com-

pany was Wells Fargo.

Acting on an anonymous tip, the City began an investigation of parking meter

collections. Surveillance of Brink’s collectors revealed suspicious activity.

Investigators then “salted” selected meters, inserting coins treated with a fluores-

cent substance. Most (but not all) of the “salted” meters were checked to ensure that

they had been completely emptied by Brink’s employees, and collections from the
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meters were reviewed to see if any treated coins were missing. The salting process

indicated that some of the coins collected by Brink’s employees were not returned

to the City. Surveillance at one location revealed that on several occasions Brink’s

employees transferred heavy bags from the collection vans to their personal

automobiles, and later from the automobiles to their residences.

On April 9, 1980, five Brink’s collectors were arrested and charged with grand

larceny and criminal possession of stolen property—$4,500 in coins allegedly taken

from that day’s parking meter collections. They were convicted and sentenced to

varying jail terms.

The City terminated the Brink’s contract as of April 9, hired a replacement firm

(CDC), and took draconian steps to ensure that there was no theft by employees of

the new firm.

There was a gasoline shortage in New York City from May to December 1979,

and gasoline rationing was in effect from June to September 1979. There was a

suburban commuter rail strike from June to August 1980.

The City sued Brink’s for negligent supervision of its employees and sought to

recover the amount stolen. No one knew how much was taken, but the City

proposed to estimate the amount from the collection data shown in Table 1.2.1.

In these data “1-A” stands for a small section (47 meters) near City Hall for which

City employees did the collections at all times, “# Cols” stands for the number of

collection days. There was no indication that CDC or City employees were

dishonest.

The judge charged the jury that, since the fact of theft had been established as

well as damage, the amount of liability need not be determined precisely, but only

as “a just and reasonable inference.” However, he cautioned the jurors that they

might not “guess or speculate.”

Questions

1. As attorney for the City, what damage calculation would you make with respect

to these data, assuming that the City seeks damages only for theft occurring

during the last 10 months of the Brink’s contract preceding April 1980? What

objections do you anticipate and how would you resolve them?

2. As attorney for Brink’s, what objections would you make to the City’s method of

estimating damages? Use the data for 1-A to make an alternative calculation.

3. Figure 1.2.1a shows the data as presented by the City. Figure 1.2.1b shows the

data from Brink’s point of view. Using these figures what would you argue for

each party?

Source

Brink’s Inc. v. City of New York, 717 F.2d 700 (2d Cir. 1983). For a debate on the

validity of the statistical inference, see Fairley & Glen, “A Question of Theft,” in

Statistics and the Law 221 (DeGroot, Fienberg & Kadane, eds., 1986) (with

comment by B. Levin and rejoinder by Fairley and Glen).
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Table 1.2.1. Parking meter collection data (revenue in dollars)

#Cols Total Avg/Col Total Avg Col #Cols

Incl 1-A Incl 1-A Incl 1-A 1-A 1-A 1-A

W 1 5/77 21 2,231,006 106,238 6,729 747 9

E 2 6/77 22 1,898,423 86,291 5,751 821 7

L 3 7/77 20 1,474,785 73,739 6,711 745 9

L 4 8/77 23 1,626,035 70,697 7,069 783 9

S 5 9/77 21 1,516,329 72,206 7,134 792 9

6 10/77 20 1,516,968 75,848 5,954 744 8

F 7 11/77 19 1,512,424 79,601 5,447 680 8

A 8 12/77 21 1,527,011 72,714 6,558 728 9

R 9 1/78 20 1,076,158 53,807 5,222 746 7

G 10 2/78 14 798,341 57,024 4,150 691 6

O 11 3/78 23 1,609,606 69,982 6,765 731 9

12 4/78 24 1,253,164 52,215 6,681 835 8

Totals/

Avgs

248 18,040,250 72,743 74,171 757 98

13 5/78 22 1,337,159 60,779 7,016 779 9

14 6/78 22 1,532,310 69,673 7,440 826 9

15 7/78 20 1,318,521 65,926 6,264 783 8

16 8/78 23 1,502,054 65,306 7,337 815 9

17 9/78 20 1,393,093 69,654 7,271 807 9

18 10/78 21 1,564,212 74,486 6,694 743 9

19 11/78 19 1,474,861 77,624 5,795 724 8

20 12/78 20 1,554,116 77,705 7,105 789 9

21 1/79 22 1,572,284 71,467 6,613 734 9

B 22 2/79 16 1,129,834 70,614 5,258 657 8

R 23 3/79 22 1,781,470 80,975 7,664 851 9

I 24 4/79 21 1,639,206 79,009 6,716 839 8

N 25 5/79 22 1,732,172 79,644 7,614 846 9

K 26 6/79 21 1,685,938 80,282 7,652 850 9

S 27 7/79 21 1,644,110 78,290 7,513 834 9

28 8/79 23 1,746,709 75,943 7,862 873 9

29 9/79 19 1,582,926 83,311 6,543 817 8

30 10/79 22 1,853,363 84,243 6,855 761 9

31 11/79 19 1,754,081 92,320 7,182 798 9

32 12/79 20 1,692,441 84,622 6,830 758 9

33 1/80 22 1,801,019 81,864 6,552 819 8

34 2/80 19 1,702,335 89,596 7,318 813 9

35 3/80 21 1,678,305 79,919 6,679 834 8

36 4/80 22 1,527,744 69,442 6,637 737 9

Totals/

Avgs

499 38,240,763 76,635 166,410 796 209

(continued)
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Notes

Theft from parking meter collections has been a persistent problem for New York

City. Perhaps the nadir was reached when members of a special city unit created to

prevent meter revenue theft were themselves charged with theft. See Selwyn Raab,

20 In Meter Anti-Theft Unit Accused of Stealing, N.Y. Times December 10, 1993,

Sec. A, at 2. Sed quis custodiet ipsos Custodes?

Table 1.2.1. (continued)

#Cols Total Avg/Col Total Avg Col #Cols

Incl 1-A Incl 1-A Incl 1-A 1-A 1-A 1-A

37 5/80 21 1,980,876 94,327 7,912 879 9

38 6/80 21 1,941,688 92,461 7,314 914 8

39 7/80 22 1,889,106 85,868 7,803 867 9

40 8/80 21 1,741,465 82,926 8,126 902 9

C 41 9/80 21 1,832,510 87,262 7,489 832 9

D 42 10/80 22 1,926,233 87,556 7,986 887 9

C 43 11/80 17 1,670,136 98,243 6,020 860 7

44 12/80 22 1,948,290 88,558 6,442 920 7

45 1/81 21 1,627,594 77,504 7,937 881 9

46 2/81 18 1,655,290 91,960 6,685 835 8

47 3/81 22 1,844,604 83,845 7,470 830 9

Totals/

Avgs

228 20,057,792 87,973 81,199 873 93

Fig. 1.2.1a. Revenue per meter per day for two 10-month periods
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1.2.2 Taxing railroad property

Property taxes are levied on the basis of assessed value, but the relation between

assessed value and market value varies for different classes of property, and for

different taxpayers. Railroads believed that state and local authorities discriminated

against them by overassessing their property relative to other taxpayers’ property.

To protect the railroads, Congress passed Section 306 of the Railway Revitalization

and Regulatory Reform Act (4-R Act), which was intended to stop certain forms of

property tax discrimination against railroads. This section (49 U.S.C. }11501
(1994)) provides that a state may not assess rail transportation at a value that has

a higher ratio to the true market value of the rail transportation property than the

ratio that the assessed value of other commercial and industrial property in the same

assessment jurisdiction has to the true market value of the other commercial and

industrial property.

Under the Act, railroads are entitled to relief if the ratio applicable to them

exceeds the ratio applicable to other property by 5% or more.

In applying the Act, assessment is determined from tax rolls and true market

value is determined on a sample basis from recent sales.

A sample distribution of the ratios of assessments to sales for Los Angeles

County is shown in the histogram in Fig. 1.2.2.

Fig. 1.2.1b. Revenue per collection day, May 1978–March 1981. Boxes represent the trend

obtained by locally weighted scatterplot smoothing (see Section 14.4)
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The legislative history indicates that the ratio for railroads was to be compared

with the ratio for the “average” or “weighted average” commercial and industrial

taxpayer in the taxing district. The word “average” was not used in the statute

because, according to a railroad spokesman at the hearings on the bill, it “has a

precise mathematical connotation which makes it unsuitable in this context.”

In litigation under this Act, the defendant local and state taxing authorities argue

that the correct measure of the average is the weighted mean.

When sampling from recent sales by each type (stratum) of property (commer-

cial, industrial, or utility), the weighted mean is obtained as follows: (a) in each

stratum, take the ratio of total sales value for the parcels sampled to the total

assessed value for these parcels; this gives the dollars of sales per dollar of

assessment in the sample; (b) multiply that sales value per dollar of assessed

value figure by the total assessed value of all property in the entire stratum to

estimate the total sales (market) value of all property in the stratum; (c) take the sum

of assessments for all strata and divide it by the total sales value for all property in

all strata as obtained in (b); this is the weighted mean assessment to sales ratio for

all property in the population.

Railroads argue that the parcel-weighted median should be used to express the

value of other industrial and commercial property.

The parcel-weighted median is obtained as follows: (a) for each parcel in the

sample, compute the ratio of its assessed value to its sales price; (b) array these

parcels so that the ratios increase from left to right; (c) attach a weight to each

parcel, representing the number of parcels in the corresponding stratum of the

population divided by the number of sample parcels in that stratum; (d) find the

ratio in the array that has half of the total weight to the left and half to the right.

0
0

50

100

150

N
um

be
r 

of
 P

ar
ce

ls

200

250

300

25 50

Assessment / Sales Ratios (%)

75 100 125

Fig. 1.2.2. Histogram for distribution of assessment/sales ratios. Expressed as percentages: Los

Angeles County, 1981–1982 sales, 1975 base year
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Generally, railway and utility properties are assessed centrally by state

authorities, while other commercial and industrial properties are assessed by

counties. Utility property is generally taxed at much higher ratios of assessed

value to market value ratios than locally assessed property. In California, for

example, a few hundred utilities in the state account for about 14% of the assessed

value of “other commercial and industrial property.” It was assumed in the liti-

gation that utilities were assessed at 100% of market value.

Questions

1. Which measure–the mean, the weighted mean, or the weighted median–is most

appropriate, given the language and history of the statute?

2. Which is the more appropriate measure of discrimination against the railroads:

the sum of the absolute or algebraic differences between the assessment/market

value ratio for the railroads and other properties? Which measure does your

choice suggest?

3. Which measure, if applied to all properties, would produce no change in total

revenue?

4. Do you agree with the rationales for picking themedian given by the Fourth Circuit

in the Clinchfield and CSX Transp. Inc. cases (described in the Notes, below).

5. The weighted mean assessment/sales ratio is a type of weighted harmonic mean

of the sample assessment/sales ratios within each stratum. Do you see why?

Source

Freedman, The Mean Versus the Median: A Case Study in 4-R Act Litigation,
3 J. Bus. & Econ. Stat. 1 (1985).

Notes

In litigation under the 4-R Act, some courts have favored the mean, others the

median. See, e.g., Southern Pacific v. California State Board of Equalization,

(unpublished; discussed in Freedman, supra) (mean); ACF Industries, Inc.

v. Arizona, 714 F.2d 93 (9th Cir. 1983) (median in de facto discrimination cases;

mean in de jure cases); Clinchfield R.R. Company v. Lynch, 527 F. Supp.

784 (E.D. N.C. 1981), aff’d, 700 F.2d 126 (4th Cir. 1983) (median); CSX Transp.

Inc. v. Bd. of Pub. Works of West Virginia, 95 F.3d 318 (4th Cir. 1996) (median).

Generally, the choice has not evoked much discussion. However, in Clinchfield

R.R. Co. v. Lynch, supra, the court endorsed use of the median, arguing that the

weighted mean would be skewed upward due to the large amounts of property

owned by public service companies that were centrally assessed at higher values in

much the same way as the railroads were assessed. The court argued that railroads

should not be compared primarily with utilities, but on a broader basis with other

industrial and commercial property. In CSX Transp. Inc. the court chose the median

because the mean was too highly affected by the inclusion or exclusion of a few

large properties.
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1.2.3 Capital infusions for ailing thrifts

In 1986, the Federal Home Loan Bank Board adopted a program to increase

regulatory capital of insured thrift institutions. The goal was to increase capital

from 3 to 6% of assets. The required annual increase for each institution was

computed as a percentage of the average return on assets (ROA) for the industry

as a whole. The percentage depended on whether the institution was in the standard

group, with base ratios of at least 3%, or in the lower group, with base ratios under

3%. The theory was that institutions would be able to retain these percentages of

earnings to bolster capital; those that lacked sufficient earnings would have to raise

outside capital. However, a segment of the industry in deep financial trouble had a

negative ROA; as a result, the mean return on assets for the industry was only

0.09%. This meant that it would take about 40 years to raise capital from an average

of 3–6% for the industry as a whole. To speed up the process, the Board announced

that it would shift to the median ROA, which was about 0.33%. This would raise

sufficient capital in about 12 years. To determine the median, each institution was

treated as a single data point. The Board explained:

The fundamental reason for this decision is that the mean is too sensitive to extremely high

or low ROA’s. This sensitivity becomes especially critical in an environment in which the

unhealthy segment of the industry operates at a severe loss. . . [The median] ROA should be

used because it focuses on the probability of the fiftieth percentile institution and on the

ranking that generates the fiftieth percentile institution. . .
[The median] more accurately reflects the ability of a large majority of insured

institutions to advance toward higher minimum required capital levels.

Questions

1. What asymmetry in the distribution of ROAs produces the difference between

the mean and median ROA?

2. Is the median ROA likely to be superior to the mean as a measure of general

industry capacity to raise levels of capital from retained earnings?

3. What other measures of central location could the Board have used?

Source

Federal Home Loan Bank Board, Regulatory Capital of Insured Institutions,
53 Fed. Reg. 11243 (March 30, 1988).

1.2.4 Disproportionate-share hospitals

A federal statute requires state Medicaid plans to identify hospitals that had

disproportionate numbers of Medicaid patients and to provide incremental

payments to such hospitals. The statute defines a “disproportionate-share hospital”

as one in which “the hospital’s Medicaid inpatient utilization rate [the percentage of

the hospital’s inpatient days that were attributable to Medicaid patients]. . . is at
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least one standard deviation above the mean Medicaid inpatient utilization rate for

hospitals receiving Medicaid payments.” In computing the mean for these purposes

California used a mean weighted by total hospital inpatient days; this had the effect

of raising the eligibility threshold because large urban hospitals had higher

proportions of Medicaid patients. Garfield Medical Center, a hospital that was not

eligible under this definition, sued, claiming that the federal statute, by specifying a

mean, precluded the state from using a weighted mean; it argued that the state

agency should treat all hospitals alike and as single data points in computing

the mean.

Questions

1. Is Garfield Medical Center right?

2. The Medicaid statute was amended (before the case) to include the phrase

“arithmetic mean” in another place but had not changed the provision in

question. Is that evidence that Congress intended that either a weighted or

unweighted mean could have been used?

3. After reading Section 1.3 answer the following: If the weighted mean is used,

should a weighted standard deviation also be used in setting the threshold? (In a

weighted standard deviation the squared differences are taken from the weighted

mean and each squared difference is multiplied by the weight for that observa-

tion before summing.) In this case, would the weighted or unweighted standard

deviation favor smaller hospitals like Garfield?

Source

Garfield Medical Center v. Kimberly Belshe, 68 Cal.App. 4th 798 (1998);

42 U.S.C. } 1396r-4(b)(1)(A)(2006)(emphasis supplied).

1.2.5 Hydroelectric fish kill

The Constantine Project is a 94-year-old hydroelectric generating facility located

on the St. Joseph River in Constantine, Michigan; it is owned by the Indiana

Michigan Power Company. In licensing proceedings before the Federal Energy

Regulatory Commission (FERC), the Michigan Department of Natural Resources

sought to have the FERC impose certain conditions designed to reduce the number

of fish entrained in the project’s turbines. The FERC refused, but did agree that the

company should compensate the state for the fish killed. The annual number of fish

killed was estimated from samples taken on random days. The company advocated

the use of a geometric mean to derive an annual kill rate because the daily samples

fluctuated, and on some days appeared to be unusually high. Using the geometric

mean of the sample data, the company estimated an annual kill rate of 7,750 fish.

Michigan objected that there was too little data to determine skewness, and

proposed the arithmetic mean instead. Using the arithmetic mean applied to essen-

tially the same sample data, Michigan estimated an annual kill rate of 14,866 fish.
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Question

Which is the better measure for estimating annual fish kill, the geometric or the

arithmetic mean?

Source

Kelley v. Federal Energy Regulatory Com’n, 96 F.3d 1482 (D.C. Cir. 1996).

Notes

Michigan’s recommendations were made to the FERC pursuant to a 1986 congres-

sional Act, which required the FERC to heed conservation recommendations of

federal and state fish and wildlife agencies when renewing dam licenses.

16 U.S.C.A. }803(j) (West Supp. 1998). Nevertheless, the agency did not invoke

that mandate until 1997, when it refused to relicense a small, aging hydroelectric

dam on Maine’s Kennebec River and ordered that it be removed. The dam’s

removal permitted nine species of Atlantic fish, including salmon and sturgeon, to

regain their traditional upriver spawning grounds. Editorial,Weighing the Needs of
Nature, N.Y. Times, November 27, 1997 at A38.

1.2.6 Pricey lettuce

Assume that romaine lettuce and iceberg lettuce each costs $1/lb, and that the

consumer buys 1 lb of each. If the price of romaine lettuce rises to $1.50/lb, the

Bureau of Labor Statistics had calculated its consumer price indices (collectively,

the CPI) by assuming that the proportionate quantities of the two kinds of lettuce

remained unchanged and used the arithmetic mean to calculate the percentage

increase in the cost of lettuce. Under this assumption, the arithmetic mean percent-

age increase is known as the Laspeyres Index.4 The Laspeyres Index is regarded as

an upper bound to the increase in the cost of living because it takes no account of the

substitution phenomenon: if the price of one commodity rises, consumers tend to

switch to similar commodities that are lower in price. In our example, consumer

satisfaction is assumed to be undiminished if the loss of romaine is offset by

purchase of more iceberg lettuce. This may seem improbable, but that is the theory.

The amount of extra iceberg needed is affected by another phenomenon, namely,

the law of diminishing returns: each additional dollar spent for a more expensive

commodity buys a declining quantum of satisfaction compared with the satisfaction

purchased with a dollar spent for the less expensive commodity.

Although the CPI does not purport to be a cost-of-living index, it is frequently

used in private contracts and in legislation (most notably in social security benefits)

4 If the proportionate quantities purchased after the price change are used, the index is called the

Paasche Index.
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to adjust payments for increases in cost of living. In April 1998, responding to

criticisms that its index overstated increases in cost of living, the Bureau stated that,

beginning in 1999, for certain types of commodities at the lowest level of aggrega-

tion, it would take substitution into account by: (i) assuming that the dollar share
for each commodity (e.g., in our example 50% for each kind of lettuce) would

remain the same after the price increase; and (ii) using the geometric mean for

averaging. The Bureau estimated that the effect of these changes would be to reduce

annual increases in the CPI by about 0.2 of a percentage point.

Questions

1. Compute the weighted arithmetic mean ratio of the new to the old lettuce prices,

using constant dollar shares as weights. What quantities of each kind of lettuce

are implied by this average? Looking at the reduction in quantity for romaine

lettuce and the increase in quantity for iceberg lettuce, what is the assumed

relation between quantum of satisfaction, and price and quantity of lettuce? Is

this assumed relation reasonable?

2. Answer the same questions as above, this time using the weighted geometric

mean ratio of new to old lettuce prices. [Hint: The weighted geometric mean

ratio is the anti-log of the weighted arithmetic mean of log ratios.]

3. Now assume that the price of romaine lettuce falls back $.50 to its original

$1/lb. Compare the changes in the ratios when the price rises and falls, using the

arithmetic mean and the geometric mean. Which result is superior?

Source

Bureau of Labor Statistics, Planned Changes in the Consumer Price Index Formula
(April 16, 1998); id., The Experimental CPI Using Geometric Means; available at
<www.stats.bls.gov/cpigmrp.htm>.

1.2.7 Apportionment of Representatives among the states

The U.S. Constitution requires the apportionment of Representatives among the states

“according to their respective Numbers.” Ideally, the number of persons per represen-

tative (called the state’s priority number) would be the same in each state. Exact

equality, however, is not possible given that the number of representatives is fixed by

statute at 435, each state must have at least one representative, and fractional

representatives are not allowed. After allocating one representative to each state, the

general method is to allocate the 51st representative to the state with the largest

population, the 52nd representative to the state with the highest priority number and

so on until all representatives have been assigned.But in calculating the priority number

(population per representative) does one use as the divisor the number of seats it has?

The number it will have if it receives the assignment? Or some average of the two? To

resolve this, in 1941 Congress adopted the “method of equal proportions,” also known

as the Hill method. In this method, when considering the allocation of the (n+ 1)st seat

to a state, the divisor is the geometric mean of the state’s nth and (n+ 1)st seats.
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This method was justified because it results in an allocation with a smaller relative
disparity than other methods. The relative disparity is calculated as follows: first one

calculates the “ideal” district size as the total population size of the U.S. divided by the

total number of representatives, i.e., 435. Then, for a given state, the relative disparity is

defined to be the difference between the ideal district size and the state’s average district

size (i.e., its population per final number of representatives for that state by a given

apportionment method), divided by either the ideal district size or the state’s average

district size, whichever is smaller.

In the 1990 apportionment, Montana went from two seats to one, losing a seat to

the State of Washington, which went from eight to nine seats. Montana sued,

claiming that the Hill method was unconstitutional because other methods would

produce smaller departures from the ideal. In particular, Montana argued that the

so-called Dean method, which used the harmonic mean of the nth and (n+ 1)st seats

in computing priority numbers, was superior because the allocation it produces

leads to the smallest sum of absolute disparities for any two states. The absolute

disparity for a given state is the absolute difference between the ideal district size

and the state’s average district size, given its number of seats; and the absolute

disparity for any two states is simply the sum of their absolute disparities. Montana

argued that the Dean formula was required because absolute disparities, not relative

disparities, should be the constitutional touchstone for an apportionment method.

Questions

1. Compute the divisors for the priority numbers for Montana and Washington

under the Hill and Dean methods.

2. Montana’s single district had a population of 803,655; Washington’s eight

districts had a population of 4,887,941. Compute the priority numbers for the

two states under both methods. Who wins the seat under each method?

3. The ideal district for the country as a whole was 572,466. Compute the relative

and absolute disparities under both methods for Montana and then for

Washington. Are the results consistent with the arguments of the parties?

Which method is more favorable to small states?

Source

U.S. Dep’t of Commerce v. Montana, 503 U.S. 442 (1992).

1.2.8 Super-drowsy drug

The Able Company claimed in TV advertisements that taking its product Super-

Drowsy (the active ingredient of which is an antihistamine) reduced the time it took

to fall asleep by 46% over the time necessary without pills. Able based this claim on a

sleep study. Thereafter Able was acquired by Baker, which conducted a new study.

The Federal Trade Commission (FTC) began an administrative proceeding

against Baker, claiming that the advertisements were not substantiated by the studies.
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In the sleep studies, people were asked to record how long they took to fall

asleep (“sleep latency”), and their average for a week was calculated. In Able’s

study, the statistician excluded those nights on which a person took less than

30 minutes to fall asleep on the ground that the subject was not insomniac on that

night. In the Baker study, only those who took more than 30 minutes on at least

4 nights out of 7 in the study week were included, but all seven nights were tallied in

the average time. In the next week, these people received Super-Drowsy and

recorded their sleep times (they took a pill only when they wished to). Baker’s

expert computed the average time to fall asleep for the selected subjects in the first

week and compared that with their average time in the second week. (The measured

sleep latency from which the averages were obtained was computed using the

mid-points of 15 minute intervals.) The average latency for week 1 was 53.8 and

for week 2 was 28.8; the percentage reduction was 46.5%.

The FTC’s expert computed a percentage reduction for each person and took the

average of those percentages, which was 40.9%.

The data are shown in Table 1.2.8; a scatterplot of the data is shown in Fig. 1.2.8.

Table 1.2.8. Sleep study data

(Average sleep latency in minutes)

Week Week Week Week Week Week

# 1 2 # 1 2 # 1 2

1 61.07 20.36 26 16.07 7.50 51 41.79 11.79

2 46.07 37.50 27 33.21 26.79 52 22.50 22.50

3 84.64 61.07 28 51.43 20.36 53 39.64 18.21

4 31.07 9.64 29 28.93 18.21 54 78.21 26.79

5 54.64 28.93 30 139.29 37.50 55 46.07 16.07

6 26.79 11.79 31 78.21 39.64 56 46.07 28.93

7 58.93 31.07 32 43.93 35.36 57 61.07 33.21

8 13.93 9.64 33 111.43 7.50 58 39.64 28.93

9 71.79 35.36 34 56.79 31.07 59 56.79 18.21

10 82.50 33.21 35 106.07 43.93 60 34.29 32.14

11 37.50 24.64 36 98.57 77.14 61 43.93 24.64

12 35.36 46.07 37 43.93 70.00 62 31.07 24.64

13 37.50 9.64 38 114.64 26.79 63 46.07 24.64

14 114.64 16.07 39 39.64 33.21 64 22.50 9.64

15 35.36 9.64 40 91.07 31.07 65 50.36 41.79

16 73.93 35.36 41 18.21 20.36 66 41.79 18.21

17 17.50 11.79 42 63.21 18.21 67 35.36 18.21

18 94.29 20.36 43 37.50 20.36 68 65.36 78.21

19 22.50 9.64 44 41.79 22.50 69 37.50 31.50

20 58.93 30.00 45 40.00 43.93 70 48.21 9.64

21 46.07 100.71 46 50.36 41.79 71 102.86 43.93

22 31.07 9.64 47 48.21 60.00 72 86.79 43.93

23 62.14 20.36 48 63.21 50.36 73 31.07 9.64

24 20.36 13.93 49 54.64 20.36

25 56.79 32.14 50 73.93 13.93
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Questions

1. What is the reason for the difference between the average computed by Baker’s

expert and the average computed by FTC’s expert?

2. Assuming that a single percentage-reduction figure would be appropriate, which

calculation is the more appropriate average?

3. What other types of disclosure might be used to resolve the dispute between

Baker and the FTC?

1.3 Measures of dispersion

In addition to measures of central location, summary measures of dispersion

(variability or scatter) are important descriptive devices because they indicate the

degree of likely deviation in the data from the central values. Like measures of

central location, dispersion measures come in various forms that emphasize differ-

ing aspects of the underlying data.

Fig. 1.2.8. Percentage reduction in sleep latency vs. baseline latency
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Variance and standard deviation

By far the most important measure of dispersion is the variance, denoted by σ2 or
Var, and its positive square root, the standard deviation, denoted by σ. The variance
is the mean squared deviation of the data from their mean value, and the standard

deviation is the root mean squared deviation. Thus, if X1,. . .,XN denote the values of

some characteristic in a population of size N with μ as their mean value, then

σ2 ¼ Var X ¼ 1

N

XN
i¼1

Xi � μð Þ2:

More generally, if X is a random variable, Var X¼E(X� μ)2. An alternative

expression for the variance that is useful for hand-held calculator computation is:

σ2 ¼ Var X ¼ EX2 � μ2;

where EX2 is the expected or average value of the squared X’s and μ is the average

or expected value of X. The variance and standard deviation measure dispersion in

the data because the farther the values of X lie from the mean, the larger the squared

deviations become, with corresponding increases in the mean squared deviation and

root mean squared deviation. The following properties follow immediately from the

definitions:

• Variance is never negative, and is zero only when the data have no variation.

• Adding a constant to the data does not change the variance.

• Multiplying the data by a constant, c, multiplies the variance by c2, and

multiplies the standard deviation by the absolute value of c. A change of scale

thus changes the σ measure of spread by the same scale factor.

• The standard deviation is in the same units as the data.

When sampling from a population with unknown mean and variance, we usually

estimate the mean with the sample mean X, based on a sample of size n, and
estimate the variance with the sample variance

s2 ¼ X1 � X
� �2 þ � � � þ Xn � X

� �2h i
= n� 1ð Þ:

The sample standard deviation is the positive square root of s2, usually denoted by

s or sd. The denominator n� 1 is used here rather than n to make the estimator s2

unbiased. The reason for bias is that in computing squared deviations, the sample

mean minimizes the sum of squares, which makes the expected value of the sum

slightly less than if the population mean were known and used. Dividing by n� 1

compensates for this and produces an estimator, s2, whose expected value is exactly
equal to σ2. In addition to being unbiased, s2 is also consistent for σ2. Note that

when a weighted mean is used as a central value, it is appropriate to use weighted

sums of squared deviations from that value to estimate variance.
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Variance of sample sums and the sample mean

The variance of the sample mean is of particular importance in statistics. To

illustrate its derivation, consider a large population of men whose characteristic

of interest is their height.

• If X1 and X2 are the heights of two different men selected independently from the

population, the variance of the sum X1 +X2 is equal to the sum of the component

variances. Thus, if height has a population variance σ2, the variance of the sum of

the heights of two men selected independently from that population is 2σ2. This
principle generalizes: if n men are selected independently from a large popula-

tion, the variance of the sum of their heights is nσ2.

• The variance of the difference between the heights of two men, X1�X2, is still

equal to the sum of the component variances. This may seem counter-intuitive,

but follows immediately from the fact that putting a minus sign in front of the

height for X2 doesn’t change the variance for that data. Then the variance

X1�X2 is equal to the variance of X1 + (�X2), which is the sum of the compo-

nent variances.

• If X and Y are not independent, but are positively correlated (e.g., a man’s height

and his adult son’s height), then the variance of their sum X+ Y will be greater

than the sum of the component variances and the variance of X� Y will be

smaller than the sum of the component variances. Do you see why? If X and Y are

negatively correlated, then the variance of X + Y will be smaller than the sum of

their variances and the variance of X� Y will be greater than the sum of the

component variances.

These simple results lead to formulas for the variance and standard deviation of

the sample mean. Recall that the mean height of a sample of n men drawn from the

population is equal to the sum of the sample heights divided by the sample size. If

the sample selections are made randomly and independently,5 the variance of the

sum of the n heights, each with variance σ2, is nσ2. Since the sum of the heights is

multiplied by 1/n, the variance of the sum is multiplied by 1/n2. The variance of the

sample mean is thus (1/n2)�nσ2¼ σ2/n and the standard deviation is σ=
ffiffiffi
n

p
.

The standard deviation of a sample mean is often called the standard error of the

mean to distinguish its variability from that of the underlying population. Since σ is

frequently unknown, the standard error of the mean must itself be estimated from

5Unless the sampling is done with replacement of the sampled item after each selection, which is

not usually the case, the requirement of independence is not perfectly satisfied because prior

selections affect the population for subsequent selections. However, if the sample is small relative

to the population (e.g., less than 10 %), the departure from perfect independence is not material

and the imperfection is usually ignored. When the lack of independence is material, the formulas

must be adjusted. See Sect. 4.5.

22 1 Descriptive Statistics

http://dx.doi.org/10.1007/978-1-4419-5985-0_4#Sec13_4


the sample. If a sample of size n is drawn from a population with unknown variance

σ2, the standard error of the mean is taken as s=
ffiffiffi
n

p
, where s2 estimates σ2.

The fundamental result for the standard error of the mean shows that the mean of

a sample is more stable, i.e., it varies less than its components. The stability of the

sample mean is the basis for the statistical regularity of mass phenomena. The

insurance industry lives on the fact that, although individuals experience unpredict-

able losses, in the aggregate claim amounts are relatively stable. Therein lies the

economic advantage of pooling insured risks. The formula also shows that,

although the precision of a sample estimate of the mean increases with sample

size, it does so more slowly than one might think because the increase is a function

of the square root of the sample size. A doubling of precision requires a quadrupling

of the sample.

In Hall v. Florida, 2014 WL 2178332, the U.S. Supreme Court dealt with the

standard deviation of IQ in a population and the standard error of measurement of

an individual’s supposedly true IQ in an IQ test. A Florida statute, as interpreted by

its supreme court, foreclosed further exploration of a capital defendant’s intellec-

tual disability that might preclude his execution if his IQ score was more than 70.

Since Hall’s lowest IQ score in evidence was 71, the Florida courts held that further

exploration was foreclosed. The 70 cutoff was derived from a Florida statute that

defined “significantly subaverage intellectual functioning as two or more standard

deviations from the mean score on a standardized intelligence test.” The mean score

is 100 and the standard deviation of IQ scores in the population is 15 points. The

standard error of measurement for an IQ test was said to be 5 points. The Court held

(5–4) that Florida’s strict cutoff precluding further exploration was unconstitutional

because, among other things, it ignored the fact that, given the standard error of

measurement of an IQ test, an individual’s score “is best understood as a range of

scores on either side of the recorded score. . .[a] score of 71, for instance, is

generally considered to reflect a range between 66 and 76 with 95% confidence.”

Chebyshev’s inequality

The standard deviation is particularly useful as a measure of variability because

many statements about the distribution of data or random variables can be made in

terms of the standard deviation. Roughly, the greater the number of standard

deviations a given value is from the mean, the less likely it is that a data point or

a random variable will exceed that value. A more precise statement is given by a

famous theorem of the Russian mathematician Pafnuty Lvovich Chebyshev (1824–

1894).6 The theorem, “Chebyshev’s inequality,” can be expressed as follows:

For any random variable or any set of data (population or sample) the probability that the

variable or a randomly selected data point would lie more than k standard deviations on

either side of the mean is less than 1/k2.

6 Philip Davis in The Thread: A Mathematical Yarn (1983) gives a charmingly whimsical account

of world-wide negative reaction to his rendering of Chebyshev’s name as “Tschebyscheff” in a

scholarly book.
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Chebyshev’s inequality thus tells us that less than 1/4 of the data from any

distribution will lie more than two standard deviations from the mean.7 When the

nature of the distribution is known more precisely, stronger statements usually can

be made. For example, in normal distributions, approximately 5% of the data lie

beyond 1.96 standard deviations from the mean (see Section 4.3).

Standardized random variables and data

An important use of the standard deviation is in the production of standardized

random variables and data. To standardize a random variable, one subtracts the

mean or expected value and divides by the standard deviation. The first step

“centers” the variable or the data by giving them a zero mean, and the second

step expresses the variable or data in terms of numbers of standard deviations from

the mean. The variable or data then have zero mean and unit standard deviation, by

construction. This standardization is important because probabilities often can be

calculated from standardized quantities. Chebyshev’s theorem is an example of

such a calculation. In symbols, the transformation is expressed as

Y* ¼ Y � μ

σ
;

where Y is the original random variable or data point and Y* is the standardized

version.

The law of large numbers

Chebyshev’s inequality provides a proof of the weak law of large numbers. Recall

the law, which states that, as sample size increases, the probability that the sample

mean will differ from the true mean by any given non-zero amount approaches zero.

What is the probability that the sample mean differs from the true mean by a given

amount, say d, or more? Express d in terms of the number of standard deviations,

say, k ¼ d= σ=
ffiffiffi
n

pð Þ standard deviations. Then Chebyshev’s inequality states that the
probability that d would be exceeded is less than 1=k2 ¼ σ2= nd2

� �
, a quantity that

goes to zero as n increases.

Coefficient of variation

Since the size of the standard error depends upon the units in which the data are

expressed, the standard errors of two estimators cannot be compared without

adjusting for differences in units. When a quantity that has only positive values is

involved, it is useful to compare the size of the standard error with the mean. A

frequently used measure is the coefficient of variation, which is the standard error

expressed as a percentage of the mean. This dimensionless statistic can be used to

compare the relative precision of two estimators.

7 The proof of this theorem is not difficult. See Freund & Walpole, Mathematical Statistics
158 (5th ed. 1992).
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Other measures

Although the variance and standard deviation are used almost reflexively by

statisticians, other measures of variability may be more appropriate in certain

contexts.

As in the case of the mean, problems may arise when there are significant

outliers (data points far from the central body). Because the variance uses squared

differences, it gives greater weight to large deviations and this may seriously distort

the measure of dispersion. Moreover, quite apart from the distorting effect of

outliers, the problem at hand may be one for which squared deviations are simply

inappropriate as a description.

The simplest class of measures involves the difference between upper and lower

percentiles. For example, the range of a set of numbers is the difference between the

largest and smallest number. The range is highly sensitive to outliers. Less sensitive

is the interquartile range, which is the difference between the 75th and 25th

percentiles and thus gives an interval containing the central 50% of the data.8

Another measure of dispersion, themean absolute deviation, is the average absolute
magnitude of departures from the mean value. Since the deviations are not squared,

the effect of outliers is deemphasized.

1.3.1 Texas reapportionment

The one-person, one-vote doctrine of the U.S. Supreme Court, based on Article I,

Section 2 of theU.S. Constitution, permits in congressional districts “only the limited

population variances which are unavoidable despite a good-faith effort to achieve

absolute equality, or for which justification is shown.” Kirkpatrick v. Preisler,
394 U.S. 526, 531 (1969). The constitutionality of state legislative reapportionments

is governed by the less strict standard of the Fourteenth Amendment as applied in

Reynolds v. Sims, 377 U.S. 533 (1964). Under that case, small divergences from a

strict population equality are permitted, but only if “based on legitimate

considerations incident to the effectuation of a rational state policy.” Id. at 579.

A reappointment plan for the Texas House of Representatives provided for

150 representatives from 90 single-member districts and 11 multimember districts.

The district data are shown on Table 1.3.1.

For these data, the average district size is 74,645 (74,644.78 exactly) and the

average squared district population is 5,573,945,867.

8 To compute the interquartile range proceed as follows: In a sample of n observations, first take

n/4 and round it up to the next integer m if n/4 is fractional. Find the mth largest and mth smallest

observation and take the difference. If n/4¼m is an integer, average the mth and (m + 1)st value

from either end of the data, and take the difference of the averages.

1.3 Measures of dispersion 25



Table 1.3.1. Redistricting plan for the Texas House of Representatives

Dist.

#

#

Mem

Total or

average

pop. per

mem.

(Under)

Over %

Dist.

#

#

Mem

Total or

average

pop. per

mem

(Under)

Over %

3 78,943 4,298 5.8 42 74,706 61 0.1

38 78,897 4,252 5.7 21 74,651 6 0.0

45 78,090 3,445 4.6 36 74,633 (12) (0.0)

70 77,827 3,182 4.3 64 74,546 (99) (0.1)

27 77,788 3,143 4.2 53 74,499 (146) (0.2)

77 77,704 3,059 4.1 68 74,524 (121) (0.2)

54 77,505 2,860 3.8 72 (4) 74,442 (203) (0.3)

39 77,363 2,718 3.6 90 74,377 (268) (0.4)

18 77,159 2,514 3.4 8 74,303 (342) (0.5)

57 77,211 2,566 3.4 50 74,268 (377) (0.5)

2 77,102 2,457 3.3 73 74,309 (336) (0.5)

30 77,008 2,363 3.2 16 74,218 (427) (0.6)

55 76,947 2,302 3.1 43 74,160 (485) (0.6)

9 76,813 2,168 2.9 89 74,206 (439) (0.6)

15 76,701 2,056 2.8 97 74,202 (443) (0.6)

14 76,597 1,952 2.6 99 74,123 (522) (0.7)

52 76,601 1,956 2.6 56 74,070 (575) (0.8)

29 76,505 1,860 2.5 24 73,966 (679) (0.9)

1 76,285 1,640 2.2 37 (4) 73,879 (766) (1.0)

47 76,319 1,674 2.2 75 (2) 73,861 (784) (1.1)

49 76,254 1,609 2.2 95 73,825 (820) (1.1)

6 76,051 1,406 1.9 7 (3) 73,771 (874) (1.2)

34 76,071 1,426 1.9 26 (18) 73,740 (905) (1.2)

76 76,083 1,438 1.9 35 (2) 73,776 (868) (1.2)

82 76,006 1,361 1.8 74 73,743 (902) (1.2)

13 75,929 1,284 1.7 41 73,678 (967) (1.3)

23 75,777 1,132 1.5 71 73,711 (934) (1.3)

51 75,800 1,155 1.5 48 (3) 73,352 (1,293) (1.7)

83 75,752 1,107 1.5 6 73,356 (1,289) (1.7)

65 75,720 1,075 1.4 91 73,381 (1,264) (1.7)

81 75,674 1,029 1.4 22 73,311 (1,334) (1.8)

100 75,682 1,037 1.4 94 73,328 (1,317) (1.8)

20 75,592 947 1.3 11 73,136 (1,509) (2.0)

25 75,633 988 1.3 86 73,157 (1,488) (2.0)

84 75,634 989 1.3 33 73,071 (1,574) (2.1)

44 75,278 633 0.8 87 73,045 (1,600) (2.1)

46 (11) 75,154 509 0.7 17 72,941 (1,704) (2.3)

63 75,191 546 0.7 93 72,761 (1,884) (2.5)

79 75,164 519 0.7 59 (2) 72,498 (2,148) (2.9)

101 75,204 559 0.7 96 72,505 (2,140) (2.9)

19 (2) 75,104 459 0.6 10 72,410 (2,235) (3.0)

58 75,120 475 0.6 98 72,380 (2,265) (3.0)

80 75,111 466 0.6 28 72,367 (2,278) (3.1)

88 75,076 431 0.6 66 72,310 (2,335) (3.1)

5 75,014 369 0.5 62 72,240 (2,405) (3.2)

31 75,025 380 0.5 4 71,928 (2,717) (3.6)

32 (9) 75,055 410 0.5 78 71,900 (2,745) (3.7)

60 75,054 409 0.5 92 71,908 (2,737) (3.7)

67 75,034 389 0.5 40 71,597 (3,048) (4.1)

69 74,765 120 0.2 85 71,564 (3,081) (4.1)

12 74,704 59 0.1



Questions

1. Treating the multimember districts as if they were separate equal districts, each

with one member, what summary statistics would be available to describe the

variation in district size?

2. Which measures are most appropriate from a legal point of view?

Source

White v. Regester, 412 U.S. 755 (1973).

1.3.2 Damages for pain and suffering

Patricia Geressy worked as a secretary for 5 years in the 1960s, and from 1984 to at

least 1997. She used a keyboard manufactured by Digital Equipment Corporation.

She suffered numbness, tingling in her hands, and burning in her wrists, ultimately

leading to multiple (unsuccessful) operations and substantial loss of the use of both

hands. In a suit against Digital, her experts attributed her injuries to repetitive stress

injury (RSI) caused by defendant’s keyboard. Defendant’s experts disputed this

conclusion. The jury returned a verdict of $1,855,000 for quantifiable damages and

$3,490,000 for pain and suffering.

After the verdict, the district court applied the New York rule that the court must

set aside an award and order a new trial unless a stipulation is entered to a different

award, if the verdict “deviates materially from what would be reasonable compen-

sation.” This standard replaced the old “shock the conscience” standard in a legisla-

tive effort to curb runaway awards for pain and suffering in personal injury cases.

In considering the reasonableness of the pain and suffering award, the court

followed a two-step process. First, it identified a “normative” group of cases in

which awards had been approved. These were cases of “reflex sympathetic dystro-

phy,” a syndrome involving continuous pain in a portion of an extremity after

sustaining trauma. Twenty-seven cases were identified as the normative group. The

pain and suffering awards in this group ranged from $37,000 for a work-related

hand and wrist injury necessitating surgery, to $2,000,000 for a car accident at

work, which caused herniated discs requiring spinal surgery and three knee

operations. As for the permitted range of variation, the court considered both one-

and two-standard deviation rules and opted for allowing two standard deviations:

“For present purposes, it is assumed that there are no extraordinary factors that

distinguish the case at bar from other cases in the normative group and that the pain

and suffering award should fall within two standard deviations.” The data for pain

and suffering awards in the 27 cases found to be comparable are shown in

Table 1.3.2.

In these data, the average squared award is $913,241 and average award squared

is $558,562 ($ in 000s).

1.3 Measures of dispersion 27



Questions

1. What is the maximum reasonable award for pain and suffering in this case under

the court’s two-standard deviation rule?

2. Is the court’s two-standard deviation interval based on the normative cases an

appropriate way to determine whether the compensation for pain and suffering

allowed in Geressy exceeded reasonable limits?

Source

Geressy v.Digital EquipmentCorp., 950F. Supp. 519 (E.D.N.Y. 1997) (Weinstein, J.).

1.3.3 Ancient trial of the Pyx

The trial of the Pyx, an ancient ceremony of the Royal Mint of Great Britain, was

the final stage of a sampling inspection scheme for gold and silver coinage. Over a

period of time one coin was taken from each day’s production and placed in a

thrice-locked box called the Pyx (from the Greek word for box; in early ecclesiasti-

cal literature, the Pyx was the vessel in which the bread of the sacrament was

reserved). At irregular times, usually separated by 3 or 4 years, a trial of the Pyx was

declared, a jury of Governors of the Goldsmiths assembled, and a public trial held

before the officers of the Mint. At the trial, the Pyx was opened and the contents

counted, weighed, and assayed, and the results compared with the standard set in

the indenture (contract) between the Crown and the Mint. The ceremony was well

established by 1279 when Edward I issued a proclamation describing the procedure

to be followed.

From the earliest times, the Master of the Mint was allowed a tolerance, or

“remedy,” with respect to the weight and fineness of the coins. If the remedy was

exceeded he was charged. At the end of the eighteenth century, the remedy was 1/6

of a carat, or 40 grains (gr) per lb. of gold; by the middle of the nineteenth century,

Table 1.3.2. Normative case awards ($ in 000s)

Case # Award Case # Award Case # Award

1 37 10 290 19 1,139

2 60 11 340 20 1,150

3 75 12 410 21 1,200

4 115 13 600 22 1,200

5 135 14 750 23 1,250

6 140 15 750 24 1,576

7 149 16 750 25 1,700

8 150 17 1,050 26 1,825

9 238 18 1,100 27 2,000
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improvements in mint technology had reduced the remedy to 1/20 of a carat, or

12 gr per lb.9 Because a single sovereign had a standard weight of 123 gr and

because there are 5,760 gr in a lb, the remedy for an individual sovereign would

have been 0.85417 gr. (Studies of later coins indicated that the remedy for an

individual coin was about twice the standard deviation for such coins.)

The trial was conducted by weighing the coins in the Pyx and comparing their

aggregate weight with the indenture standard for that number and denomination of

coins. For example, in a trial conducted in 1799, when the Pyx was opened after a

4-year period, there were 10,748 gold coins in three denominations with a weight of

190 lb, 9 oz, 8 dwt. According to the standard in force at the time, they should have

weighed 190 lb, 9 oz, 9 dwt, 15 gr; thus, they were in deficit 1 dwt, 15 gr, or 39 gr.

However, since the remedy was 40 gr/lb, the aggregate remedy for this weight was

1 lb, 3 oz, 18 dwt, so that the deficit was well within this figure. In fact, over many

centuries, the remedy was almost never exceeded.

The most famous Master of the Mint was Sir Isaac Newton, who held the post for

many years, starting in 1696. He survived without fine the “repeated ordeal” of the

trial of the Pyx, and successfully fought to prevent the Goldsmiths Company from

conducting the trial without the officials of theMint present to protect their interests.

Questions

1. Assume that the standard deviation of weights of sovereigns is about

0.85417/2¼ 0.42708 gr, and that there were 8,935 sovereigns (and only these

coins) in the Pyx. Use Chebyshev’s inequality to determine the probability that

the remedy would have been exceeded in the 1799 trial described in the text,

assuming the variations in weight were caused by random and independent

factors operating with respect to the manufacture of each coin.

2. Given the results of (1), would it be appropriate to limit the remedy to, e.g.,

3σ
ffiffiffi
n

p
, where σ is the standard deviation of a single coin and n is the number of

such coins?

3. Would Newton have cared how many coins were in the Pyx at the time his trials

were conducted?

4. Why not conduct sampling inspection by weighing individual coins?

Source

Stigler, Eight Centuries of Sampling Inspection: The Trial of the Pyx, 72 J. Am.

Stat. Assoc. 493 (1977); Westfall, Never at Rest: A Biography of Isaac Newton
607–10 (1980).

9 In troy weights, 24 gr¼ 1 dwt, 20 dwt¼ 1 oz, and 12 oz¼ 1 lb; thus 5,760 gr¼ 1 lb.
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1.3.4 Bush v. Gore: The U.S. Supreme Court’s election
2000 decision

In the 2000 presidential election the U.S. Supreme Court stopped the manual

recount of ballots ordered by the Florida Supreme Court. The Court’s per curiam
opinion (7—2) observed that in determining whether the intent of the voter could be

discerned in the recount (the Florida Supreme Court’s standard) some voters might

have their ballots judged by stricter standards than others. As an example, the Court

noted that in Broward County, which had already completed its recount, 26% of the

uncounted votes had been recovered, i.e., the voters’ intent could be discerned,

while in Palm Beach County, which had also partially manually recounted its votes,

only 8% of the uncounted votes had been recovered. Seven justices agreed that the

possibility that different counties (or even different precincts) could apply different

standards in determining the intent of the voter in manually reviewing undervote

ballots (i.e., ballots for which the machine had not registered a vote) raised an

equal-protection issue.

In the 15 counties with punch-card ballots, which were the focus of the dispute,

prior to any recount, the rate of undervoting (the rate of undervotes per 100 certified

votes) ranged from 0.86 to 3.04 with a mean of 1.770 and a standard deviation of

0.644. Now assume that each of the15 counties had either a 26 or 8% recovery

rate—these being the results cited by the Court as creating, or at least illustrating,

the equal-protection problem. A computer calculation of all possible distributions

of the 26 and 8% recovery rates among the 15 counties (there are 32,768 of them),

shows that the grand mean of the mean undervoting rates declines to 1.47 and the

mean standard deviation of the undervoting rates declines to 0.557. In 98% of the

distributions the standard deviation of the rates declines.

Question

What bearing do the results of the computer study have on the Court’s equal-

protection justification for stopping the recount?

Source

Finkelstein & Levin, Bush v. Gore: Two Neglected Lessons from a Statistical
Perspective, 44 Jurimetrics 181 (2004). For additional facts about the judicial

struggle over the recount, see Section 4.5.3.

1.4 A measure of correlation

Suppose that X is a man’s height and Y is his weight. To what extent are the two

associated in a population of men? A useful measure of association is the covari-
ance between X and Y, defined as the average value of the product of the deviation

of each variable from its mean. In symbols,
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Cov X; Yð Þ ¼ E X � EXð Þ Y � EYð Þ½ �:
Since above-average values of weight tend to occur with taller men and below-

average weights with shorter men, the average product of deviations will be

positive. On the other hand, if short men tended to be obese and tall men to be

skinny, the average product would be negative. If there were no association

between height and weight, the covariance would be zero.

The covariance does not change when constants are added to X and Y,
i.e., covariance is invariant under changes in the means of the variables. If a

scale agreeably short-weights everyone by 5 lb, the covariance of weight with

height is unchanged. However, cov (X, Y ) does depend on the unit scale of the

variables, so that multiplying X by a constant multiplies the covariance by that

constant, and similarly for Y. Shifting from inches to centimeters in measuring

height will change the covariance with weight. To achieve a dimensionless measure

that is invariant under changes in location or scale, we apply the covariance to the

standardized versions of X and Y, say x*¼ (X�EX)/sd(X), and similarly for Y*,
thereby arriving at Pearson’s product-moment correlation coefficient, denoted by ρ.
In symbols,

ρ ¼ cov X*,Y*ð Þ ¼ E X* � Y*½ � ¼ cov X; Yð Þ
sd Xð Þ � sd Yð Þ :

When the population correlation coefficient, ρ, is being estimated from a sample,

the sample coefficient, usually denoted by r, is calculated in the same way, using the

average in the data of the products of deviations in the numerator and sample

standard deviations in the denominator. Note that the adjustment required for the

sample standard deviation no longer pertains because the same adjustment should

be used in both the numerator and denominator of r, and thus cancels out.

The correlation coefficient takes on a maximum value of plus or minus one when

Y is a linear function of X, the case of perfect positive or negative correlation. A

large positive or negative value of r signifies a strong linear dependence between

X and Y. When r is large, prediction of Y from X is feasible; when r¼ 0, (linear)

prediction of Y based on X is no more accurate than prediction of Y when X is

unknown. Figures 1.4a–1.4c illustrate three sample data sets from populations with

varying degrees of positive correlation.

The correlation coefficient is by far the most common measure of dependence in

data. While there are no universal rules defining strong vs. weak associations, it is

often the case in the social sciences that correlation coefficients of 0.50 or more

are regarded as signifying strong relationships. For example, LSAT scores are

regarded as sufficiently good predictors of law school grades that law school

admissions are based on them. Yet the correlation between first-year law school

grade point averages and the LSAT test scores is usually less (and sometimes much

less) than 0.60.

An important property of r (or its population version, ρ) that helps to interpret the
coefficient is that r2 measures the proportion of total variation of Y that is
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Fig. 1.4. (a) Correlation� 0; (b) Correlation� 0.5; and (c) Correlation� 1
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“explained” by variation in X, while 1� r2 measures the proportion of total varia-

tion in Y that is unexplained by variation in X. By “explained” we do not mean to

imply that Y is necessarily caused by X, but only that because of the association

between them some of the variation in Y may be predicted from X. This notion is

made more precise in Section 13.3.

Care must be exercised when interpreting association based on the correlation

coefficient for the following reasons:

• The coefficient may show a high value due to correlation of extreme values

(outliers) even though there is a weak or non-existent linear relation in the center

of the data. See Fig. 13.3c at p. 371 (top panel) for an example.

• Conversely, a strong linear correlation in a body of data may be diminished by

outliers.

• Even if there is a strong (although not perfect) linear relation betweenX and Y, the
proportion of Y’s variability that is explained byX’s variability will be diminished

as the observed range of X is decreased. See Fig. 1.4d, where over the entire range

of X there is a correlation between X and Y and, relative to the total variation in Y,
the error in predicting Y from X is small. In the narrow range indicated between

the dotted lines, however, the observed correlation is weak, and the error in

predicting Y from X will be large compared with the reduced variability in Y.

Fig. 1.4d. Correlation depends on the range of the variables
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• ρmeasures the strength of linear dependence between X and Y, but may fail to be

a good measure of even strong non-linear relations. For example, if X is sym-

metrically distributed around zero, and if Y¼X2, then Y is totally (albeit

non-linearly) dependent on X, and may be perfectly predicted given X, yet it
can be shown that ρ¼ 0. While X and Y¼X2 does not often occur naturally as a

variable pair, statisticians often add a squared variable to their statistical models

to check for the presence of non-linear relations. The example demonstrates that,

while in general if X and Y are independent then ρ¼ 0, the converse is not

necessarily true. See Fig. 13.3c (bottom panel) for another example.

• Correlation does not necessarily imply causation. See Section 10.3 for a discus-

sion of the distinction.

Correlation measures for binary variables are discussed in Section 1.5 and some

other correlation measures for discrete variables are discussed in Section 6.3.

1.4.1 Dangerous eggs

A national trade association of egg manufacturers sponsored advertisements stating

that there was no competent and reliable scientific evidence that eating eggs, even

in quantity, increased the risk of heart attacks. The Federal Trade Commission

brought a proceeding to enjoin such advertisements on the ground that they were

false and deceptive. In the trial, the Commission staff introduced data prepared by

the World Health Organization reporting cholesterol consumption and rates of

ischemic heart disease (IHD) mortality in 40 countries. Experts who testified for

the FTC have since collected data for egg consumption and IHD mortality in

40 countries; these are shown in Table 1.4.1 and Fig. 1.4.1. For purposes of

reference, a single medium size egg weighs approximately 60 g.

In these data, the sum of the IHD mortality rates is 15,807 and the sum of the

squares of the rates is 8,355,365. The sum of the egg consumption rates is 1,130.5

and the sum of the squares of the rates is 37,011.87. The sum of the products of the

IHD mortality and egg consumption rates is 490,772.4.

Questions

1. Estimate Pearson’s correlation coefficient for the data by comparing Fig. 1.4.1

with Figs. 1.4a–1.4c. Check your estimate by calculating the correlation.

Interpret your result. [Hint: Cov(X, Y ) can be estimated byX
i
XiYi � nXY

� �
= n� 1ð Þ.]

2. What inference would you, as counsel to the FTC, draw from this result with

respect to U.S. egg consumption and IHD? As counsel for the egg trade associa-

tion, what points would you make in reply?

3. What effect would errors in the data have on the correlation coefficient?
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Table 1.4.1. Ischemic heart disease mortality and egg consumption among men aged 55–64 in

40 countries

(1) (2) (3) (4) (5)

Countries

Men aged

55–64 ischemic

heart disease

mortality

per 100,000

population

Egg

consumption

in grams per

capita per day

Calories

per day

Rank of

column

(1)

Rank of

column

(2)

1. Argentina 411.5 20.2 3,188 23 10

2. Australia 730.9 27.3 3,121 37 17

3. Austria 442.0 37.3 3,532 26 33

4. Belgium 435.7 30.8 3,617 25 23

5. Bulgaria 375.5 22.8 3,658 22 14

6. Canada 689.7 35.2 3,245 34 30

7. Chile 202.0 13.7 2,589 10 5

8. Costa Rica 219.8 20.6 2,567 12 11

9. Cuba 371.3 22.8 2,527 21 13

10. Denmark 578.2 28.3 3,354 33 19

11. Dominican Republic 129.3 10.2 2,429 4 3

12. Ecuador 91.4 8.6 2,206 2 2

13. Egypt 134.7 4.8 3,087 5 1

14. Finland 1,030.8 28.4 3,098 40 20

15. France 198.3 35.5 3,626 9 31

16. Greece 290.2 30.9 3,783 16 24

17. Hong Kong 151.0 32.3 2,464 7 27

18. Hungary 508.1 43.5 3,168 28 38

19. Ireland 763.6 33.8 3,430 38 29

20. Israel 513.0 57.9 3,386 29 40

21. Italy 350.8 29.7 3,648 20 22

22. Japan 94.8 42.5 3,091 3 36

23. Mexico 140.9 17.6 2,724 6 8

24. Netherlands 519.8 30.9 3,302 30 25

25. New Zealand 801.9 41.9 3,120 39 35

26. Nicaragua 44.5 28.9 2,568 1 21

27. Norway 570.5 25.0 3,052 32 15

28. Paraguay 163.0 16.8 3,084 8 7

29. Poland 346.7 32.5 3,618 19 28

30. Portugal 239.1 12.6 2,740 13 4

31. Rumania 246.8 28.2 3,422 14 18

32. Spain 216.5 41.6 3,356 11 34

33. Sweden 563.6 31.2 3,087 31 26

34. Switzerland 321.2 25.9 3,225 17 16

35. U.K. 710.8 35.6 3,182 35 32

36. U.S. 721.5 43.4 3,414 36 37

37. Uruguay 433.9 13.9 2,714 24 6

38. Venezuela 339.2 18.9 2,435 18 9

39. West Germany 462.5 46.3 3,318 27 39

40. Yugoslavia 251.5 22.2 3,612 15 12
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Source

In re National Comm’n on Egg Nutrition, 88 F.T.C. 89 (1976), modified, 570 F.2d

157 (7th Cir. 1977), cert. denied, 439 U.S. 821 (1978).

Notes

A large international study has suggested that variation in coronary artery disease

among men may also be explained by variation in levels of hepatic iron. Laufer,

Iron Stores and the International Variation in Mortality from Coronary Artery
Disease, 35 Medical Hypotheses 96 (1990). For example, in 19 countries for which

data were available, CAD mortality rates were correlated with iron (r¼ 0.55) and

quite highly correlated with a variable consisting of the product of iron and

cholesterol (r¼ 0.74). Id., Table 2, at 99. Recent studies suggest that, although

egg yolks contain a large amount of cholesterol (e.g., 213 mg), two eggs a day when

added to a low-fat diet have little effect on plasma cholesterol levels. See, e.g.,

Ginsberg, et al., A dose response study of the effects of dietary cholesterol on fasting
and postprandial lipid and lipoprotein metabolism in healthy young men, 1.4
Arteroscler. Thrombosis 576–586 (1994).

1.4.2 Public school finance in Texas

In many states, interdistrict disparities in school expenditures (due primarily to

differences in amounts raised by local property taxation) led to widespread attacks

on local financing of education in the 1970s. The seminal case was Serrano

Fig. 1.4.1. Ischemic heart disease mortality per 100,000 vs. egg consumption
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v. Priest, 5 Cal.3d 584, 487 P.2d 1241 (1971), which held that reliance on local

property taxes to fund public education “invidiously discriminates against the poor

because it makes the quality of a child’s education a function of the wealth of his

parents and neighbors.” 5 Cal.3d at 589, 487 P.2d at 1244.

In the Rodriguez case, brought after Serrano, plaintiffs attacked the Texas

system of dual financing, which depended in part on local property taxes. Plaintiffs

sought to prove that in Texas “a direct correlation exists between the wealth of

families within each district and the expenditures therein for education.” As a

result, plaintiffs argued, the financing system was designed to operate to the

detriment of the comparatively poor.

On appeal from a judgment for the plaintiffs, the Supreme Court reversed. The

Court observed that the principal evidence adduced in support of the comparative-

discrimination claim was a study by a Professor Berke, who asserted that there was

a positive correlation between expenditures on education per pupil and the wealth

of school districts, measured in terms of assessable property per pupil, and a

positive correlation between district wealth and the personal wealth of its residents,

measured in terms of median family income. See Table 1.4.2. The method of

sample selection was not given. The Court observed that if these correlations

could be “sustained” then it might be argued that expenditures on education were

dependent on personal wealth. However, the Court found that the evidence did not

support the district court’s conclusion to that effect:

Professor Berke’s affidavit is based on a survey of approximately 10% of the school

districts in Texas. His findings previously set out in the margin [Table 1.4.2] show only

that the wealthiest few districts in the sample have the highest median family income and

spend the most on education, and that the several poorest districts have the lowest family

incomes and devote the least amount of money to education. For the remainder of the

districts—96 districts composing almost 90% of the sample—the correlation is inverted,

i.e., the districts that spend next to the most money on education are populated by families

having next to the lowest median family incomes while the districts spending the least have

Table 1.4.2. Texas school finance sample data

110 districts out of 1200

Market value of taxable

property per pupil

Median family

income from 1960

Percent

minority

pupils

State and local

revenues per pupil

Above $100,000

(10 districts) $5,900 8% $815

$100,000–50,000

(26 districts) $4,425 32% $544

$50,000–30,000

(30 districts) $4,900 23% $483

$30,000–10,000

(40 districts) $5,050 31% $462

Below $10,000

(4 districts) $3,325 79% $305

1.4 A measure of correlation 37



the highest median family incomes. It is evident that, even if the conceptual questions were

answered favorably to appellees no factual basis exists upon which to found a claim of

comparative wealth discrimination.

Id. at 26–27.

Questions

The Court’s conclusion is susceptible to two interpretations: (i) there is no positive

overall correlation between district expenditures per pupil and median family

income because of the inverse relation in the central body of data, or (ii) there is

such a correlation, but it depends on a few extreme districts and that is insufficient

to brand the entire system.

1. Test proposition (i) by computing and interpreting a correlation coefficient for

the data in Table 1.4.2. Does the size of the coefficient take account of the

inverse relation in the center of the data?

2. What objections do you have to proposition (ii)?

Source

San Antonio Independent School District v. Rodriguez, 411 U.S. 1 (1973).

Notes

For more recent litigation over the validity under federal and state constitutions of

using local property taxes to finance public schools, see Purver, Annotation:
Validity of Basing Public School Financing System on Local Property Taxes,
41 A.L.R. 3d 1220. Educational production models estimated from statistical data

have been used in a number of these cases. See Sects. 13.6.2 and 13.6.3 for two

examples.

1.5 Measuring the disparity between two proportions

It is remarkable how many important legal issues involve a comparison of two

proportions. To make the discussion specific, consider the example of a test taken

by men and women on which men are observed to have a higher pass rate. Here are

three candidates (there are more to come) to describe the disparity in pass (or fail)

rates:

The difference between pass (or fail) rates

This measure has the desirable properties that (i) the difference between pass rates

is the same as the difference between fail rates (apart from a change in sign), and

(ii) it allows calculation of the number of women adversely affected by their lower
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pass rate. To illustrate the first property, if 72% of the men pass but only 65% of the

women, the difference is 7% points, the same absolute difference that arises from

using the 28% failure rate for men and the 35% failure rate for women. As for the

second property, the 7%-point shortfall for women multiplied by the number of

women who have taken or will take the test yields the number of women adversely

affected by the disparity. However, the difference may be interpreted as more or

less substantial depending on the level of rates. As one court observed, “[a] 7%

difference between 97 and 90% ought not to be treated the same as a 7% difference

between, e.g., 14 and 7%, since the latter figures evince a much larger degree of

disparity.”10

The ratio of the pass (or fail) rates

This measure, sometimes referred to as relative risk, takes account of the level of

rates. The relative risk is 1.08 in the 97–90% case and 2.0 in the 14–7% case.

However, relative risk is generally different for pass and fail rates. If fail rates are

used, the 97–90% case shows a larger disparity (3.33 against women) than the

14–7% (1.08 against women), reversing the order of disparity based on pass rates.

When pass rates are high (i.e., above 0.5) there is a “ceiling effect” that constrains

rate ratios to at most 2.0. At the same time, small differences produce highly

discrepant ratios between fail rates. This inconsistency is most troublesome when

there is no clear rationale for preferring one rate to the other.

The relative risk is frequently used in biostatistics and epidemiology (see

Chapter 10) to describe hazards to human health. We use this terminology for

both pass and fail rates even though it is a little inappropriate to describe passing a

test as a risk.

The odds ratio

The odds in favor of an event are defined as the probability that the event will occur

divided by the probability that it will not. That is, if the probability of an event is p,
the odds on the event are p/(1� p).

The ratio of two odds, unsurprisingly called the odds ratio, is another statistic

frequently encountered in statistical and epidemiological work. For the test taken

by men and women, the odds ratio is simply the odds on passing for men divided by

the odds on passing for women. In the 97–90% case, the odds on passing for men

are 0.97/0.03¼ 32.3; the odds on passing for women are 0.90/10¼ 9. The odds ratio

is then 32.3/9¼ 3.6 in favor of men. In contrast, the odds ratio in the 14–7% case is

(0.14/0.86)/(0.07/0.93)¼ 2.16 in favor of men. Thus, the odds ratio ranks the

disparity in the first case as greater than that in the second, contrary to the relative

risk (1.08 v. 2.0).

10 Davis v. City of Dallas, 487 F. Supp. 389, 393 (N.D. Tex. 1980).
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An important property of the odds ratio is invariance: it remains unchanged if both

the outcome and the antecedent factor are inverted. For example, the ratio of the odds

on passing for men to the odds on passing for women is equal to the ratio of the

odds on failing for women to the odds on failing for men. In the 97–90% case,

the odds on failing for women are 1/9 while the odds on failing for men are 3/97,

yielding the same odds ratio as before, 3.6. If only one variable is inverted, the

resultant odds ratio is equal to the reciprocal of the original ratio. When fail rates

are substituted for pass rates, the odds ratio for men vs. women is reciprocated (in the

97–90% case, 1/3.6¼ 0.278).

In general, whenever the relative risk is greater than 1, the odds ratio is greater

than the relative risk. Whenever the relative risk is less than 1, the odds ratio is

smaller. Most important, when the outcome rate is low, the odds ratio is approxi-

mately equal to the relative risk. Compare, for example, the relative risk of failing

with the odds ratio on failing for women vs. men in the 97–90% case. The relative

risk is 3.33; the odds ratio is 3.6.

An additional and important virtue of the odds ratio is that it is the same regardless

of which factor is treated as antecedent and which as outcome. Thus, the ratio of the

odds on passing for men to the odds on passing for women is equal to the ratio of the

odds on being male among those who passed to the odds on being male among those

who failed. This inevitability is important when “prospective” information is

required to show how the probability of a certain outcome depends on an antecedent

factor. So-called cohort studies—in which a selected group is divided on the basis of

an antecedent factor and then followed for some time to observe the outcome—

provide this type of information directly. But it may be difficult or impossible to use

this study design. An outcomemay be so rare, e.g., the occurrence of cancer due to an

environmental toxin, that identification of a reasonable number of outcomes would

require too large a sample and too long a follow-up period. The alternative is a

“retrospective” study in which the investigator selects two populations based on the

outcome factor and then compares the occurrence rates of the antecedent factor in the

two groups. So-called case-control studies are of this type.

A retrospective study in which one chooses equal numbers in both outcome groups

can be statistically more powerful than a prospective study, especially for rare

outcomes.A drawback is that the individual rate estimates obtained from retrospective

studies are seldom of direct interest. If, for example, we take samples of people who

pass a test and people who do not and determine the respective sex ratios, we can

estimate the probability that a personpassing the testwas aman, but this is not the same

as the probability that a man would pass the test. Do you see why not?

Because the odds ratio is invertible, however, the odds ratio computed from

retrospective data can be interpreted in the more relevant prospective sense. If a

retrospective study shows that the odds on being male among persons passing a test

are three times the odds on being male among persons failing the test, it is also true

that the odds on passing for men are three times the odds on passing for women.

Given the approximate equality of the odds ratio and the relative risk when an
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outcome rate is low, the odds ratio is a useful surrogate for the relative risk, which

could not otherwise be estimated from retrospective data.11

A drawback to the odds ratio (and the relative risk) is that, because they deal with

ratios of rates, no account is taken of the absolute numbers involved. Suppose we

compare a 97–90% pass rate disparity with a 14–5% disparity. The odds ratio for

the first case (3.6) shows a greater disparity than the odds ratio for the second (3.1).

If, however, 1,000 men and 1,000 women take each test, the excess number of

women failing the first test is 70 and the excess number failing the second is 90.

When the number of persons adversely affected is arguably the best measure of

practical impact, the difference in rates, or attributable risk (see Section 10.2), is a

more direct measure than the odds ratio. For example, in the United States, the odds

ratio relating smoking to lung cancer is about five times larger than the odds ratio

relating smoking to heart disease. However, because the incidence of heart disease

is much greater than the incidence of lung cancer, a smoking-cessation policy

would save many more people from heart disease than from lung cancer. The

odds ratio, perhaps the best overall measure for studies of causality, may not be

as useful as attributable risk in allocating resources for public policy purposes.

See Chapter 10 for further discussion of this subject.

1.5.1 Proficiency test with a disparate impact

An African-American woman was hired as a “fitter” in a department store during

the Christmas season. A condition of employment was that all employees were

required to take a proficiency test, which included an interview, before being hired.

Due to the rush of the season the woman was hired and took the test 2 weeks later.

She failed and was discharged. She sued, contending that a disparate number of

African-Americans failed the test. The data are in Table 1.5.1.

Under the four-fifths rule of the U.S. Equal Employment Opportunity

Com-mission (29 C.F.R. 1607.4(D) (1998)), the EEOC tests for adverse impact

on a minority group by calculating the rate of selection for each race, sex, or ethnic

group and determining whether the rate for that group is less than 80% of the rate

for the group with the highest rate. If so, adverse impact is presumed, and the

procedure must be validated as job-related. The rule provides as follows:

A selection rate for any race, sex, or ethnic group which is less than four-fifths (4/5)

(or 80%) of the rate for the group with the highest rate will generally be regarded by the

Federal enforcement agencies as evidence of adverse impact, while a greater than four-

11While case-control (retrospective) studies have efficiency advantages over cohort (prospective)

studies, they are not easily constructed to be free of bias. In particular, ensuring that controls are

similar to cases with respect to potentially confounding factors is notoriously difficult, and many

epidemiologic studies are fatally flawed because of failure to adjust adequately for such factors,

either by design or in the analysis. For this reason experimental studies, unlike observational

studies, incorporate randomization whenever possible to diminish the likelihood that confounding

factors are substantial sources of bias.
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fifths rate will generally not be regarded by Federal enforcement agencies as evidence of

adverse impact. Smaller differences in selection rate may nevertheless constitute adverse

impact, where they are significant in both statistical and practical terms or where a user’s

actions have discouraged applicants disproportionately on grounds of race, sex, or ethnic

group. Greater differences in selection rate may not constitute adverse impact where the

differences are based on small numbers and are not statistically significant, or where special

recruiting or other programs cause the pool of minority or female candidates to be atypical

of the normal pool of applicants for that group. Where the user’s evidence concerning the

impact of a selection procedure indicates adverse impact but is based upon numbers which

are too small to be reliable, evidence concerning the impact of the procedure over a longer

period of time, and/or evidence concerning the impact which the selection procedure had

when used in the same manner in similar circumstances elsewhere, may be considered in

determining adverse impact.

Questions

1. Compute the difference in rates, the ratios of rates, and the odds ratio for these

data. Do this first with passing as the primary outcome of interest and then with

failing as the primary outcome.

2. Does the test show a disparate impact on African-Americans under the express

terms of the four-fifths rule or under the policies reflected in the rule?

3. Suppose that the test is only weakly predictive of proficiency for those who

pass it, but is strongly predictive of a lack of proficiency for those who fail it (i.e.,

it is akin to a minimum qualifications test). Does that affect your answers to

question 2?

Source

Adapted from Van Ryzin, Statistical Report in the Case of Johnson v. Alexander’s
(1987). For other cases on the subject of the four-fifths rule see Sects. 5.5.1 and 6.2.1.

1.5.2 Bail and bench warrants

Elizabeth Holtzman, the Brooklyn district attorney, asked an investigator to deter-

mine the extent to which factors could be identified that would indicate whether an

accused would not appear for trial if granted bail. One factor the investigator

considered was prior bail violations for which a bench warrant had been issued.

To study the relation between these factors, the investigator selected a sample of

293 defendants on the basis of outcome: in approximately half the cases (147) no

Table 1.5.1. Department store proficiency test: test performance by race

Pass Fail Totals

Blacks 448 322 770

Whites 240 101 341

Totals 688 423 1,111
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bench warrant had been currently issued and in the other half (146) a bench warrant

had been currently issued. The investigator then looked to see what numbers of

warrants had previously been issued for each group, with the results shown in

Table 1.5.2.

Questions

1. What are the rates of bench warrants previously issued among those currently

issued and not currently issued? Are these rates dependent upon the sample sizes

chosen?

2. What are the rates of bench warrants currently issued among those previously

issued and not previously issued? Are these rates dependent upon the sample

sizes chosen?

3. How would you express the value of using prior issuance of a bench warrant as a

predictor of the current need for a warrant?

4. Can you tell from these data how many non-appearances would be avoided if

prior issuance of a warrant invariably resulted in denial of bail the second time?

Notes

Some important statistical studies have been made of the factors that are likely to

indicate whether an arrested person, if released, would return for trial. Per-haps the

most notable was the Manhattan Bail Project, conducted by the Vera Foundation in

the early 1960s. This was an experiment to see whether arrested persons with close

ties to the community would return for trial even if not required to post bail. The

result was an overwhelming success: only about 1% (3/250) of those recommended

by Vera for parole on this basis and who were paroled failed to show up for trial.

Ares, Rankin & Sturz, The Manhattan Bail Project: An Interim Report on the Use of
Pre-Trial Parole, 38 N.Y.U.L. Rev. 67 (1963). The success of the experiment

caused it to be institutionalized and expanded across the country. See Botein, The
Manhattan Bail Project: Its Impact on Criminology and the Criminal Law Pro-
cesses, 43 Texas L. Rev. 319 (1964–1965).

A significant and unanticipated finding of the Manhattan Bail Project study was

that a disproportionately large number of those recommended for release (60%)

were acquitted or had their cases dismissed, compared with 25% in the control

Table 1.5.2. Issuance of bench warrants: current issuance by previous issuance

Bench warrant

previously issued

No bench warrant

previously issued Total

Bench warrant

currently issued 54 92 146

No bench warrant

currently issued 23 124 147

Total 77 216 293
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group. A multiple regression statistical study (see Chapter 13) by the Legal Aid

Society suggested that, after accounting for other relevant factors, pretrial incarcer-

ation alone increased the probability of conviction. However, a constitutional

challenge to bail based on this study was rejected by the New York courts. As the

Appellate Division held, evidently not understanding the import of the statistical

findings, “It is not because bail is required that the defendant is later convicted. It is

because he is likely to be convicted that bail is required.” Bellamy v. The Judges,
41 A.D.2d 196, 202, 342 N.Y.S.2d 137,144 (1st Dept.), aff’d without opinion, 32 N.
Y.2d 886, 346 N.Y.S.2d 812 (1973).

For a case on a related subject see Section 6.3.1.

1.5.3 Non-intoxicating beer

Oklahoma passed a statute in 1958 that prohibited sale of “non-intoxicating” 3.2%

beer to males under the age of 21 and to females under the age of 18. In a challenge

to the statute, Justice Brennan, writing for the Court in Craig v. Boren, 429 U.S. 190
(1976), held that the gender-based differential constituted a denial to males 18–20

years of age of equal protection of the laws. The key passage in Brennan’s opinion

appears to be this:

The most focused and relevant of the statistical surveys, arrests of 18–20 year-olds for

alcohol-related driving offenses, exemplifies the ultimate unpersuasiveness of this eviden-

tiary record. Viewed in terms of the cor-relation between sex and the actual activity that

Oklahoma seeks to regulate—driving while under the influence of alcohol—the statistics

broadly establish that 0.18% of females and 2% of males in that age group were arrested for

that offense. While such a disparity is not trivial in a statistical sense, it hardly can form the

basis for employment of a gender line as a classifying device. Certainly if maleness is to

serve as a proxy for drinking and driving, a correlation of 2% must be considered an unduly

tenuous “fit.”

Id. at 201–202.

This statement was based on a study showing that, in a 4-month period in 1973 for

18–20 year-olds, there were 427 males and 24 females arrested in Oklahoma for

driving under the influence of alcohol. The Court apparently (and inexplicably)

derived its percentages by adding to the above figures arrests for drunkenness in the

same period (966 males and 102 females) and dividing by figures for the Oklahoma

total population in each category that were obtained from the census (69,688 males

and 68,507 females).

Questions

1. In defense of the statute, using Brennan’s percentages, compute (i) the relative

risk of DWI arrest by gender, and (ii) the fraction of all DWI arrests that would

be avoided if the male arrest rate could be reduced to the female rate. (This is the

attributable risk due to maleness—see Section 10.2.)
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2. Is Brennan’s position reasonable, given the defects in the statistics he used, as a

measure of the extent of the drinking and driving problem arising from 3.2%

beer among the young?

1.5.4 SIDS tragedies

In 1999 Sally Clark was tried, in England, for the murder of her baby sons,

Christopher and Harry. Christopher was born in 1996 and Harry about a year

later. Both were apparently healthy babies who had died, one at 8 weeks and the

other at 11 weeks of age. The cause of death was unknown; hence the diagnosis

after the first death was Sudden Infant Death Syndrome (SIDS). After the second

infant died, the mother was arrested and charged with murder in both their deaths.

At her trial an eminent pediatrician, Professor Sir Roy Meadow, testified for the

prosecution to a large government-funded study of SIDS cases in England between

1993 and 1996, which was just being released. The study found that the risk of SIDS

death as 1 in 1,303. But if the infant was from a non-smoking family that had a wage

earner, the mother was over age 26, and the infant was an only child, then the risk

fell to 1 in 8,543. The Clark family had those features (both parents were solicitors)

so the 1:8,543 figure was applicable. The report also calculated that the risk of two

deaths in such a family was about 1 in 8,543� 8,543¼ 1 in 73 million. Meadow

testified to that figure—which made headlines—but did not give the study’s quali-

fication that the figure did not “take account of familial incidence of factors” other

than those in the study and that in such dual-death cases it would be “inappropriate

to assume that maltreatment was always the cause.” Since there were 700,000 live

births per year in the United Kingdom, Meadow concluded that two SIDS babies in

the same family “will occur about once in every hundred years.” There was

elaborate medical testimony on both sides in addition to the statistics.

Of the 323 families with a SIDS baby in the study 5 of them had a prior SIDS

baby; of the 1,288 control baby families (there were 4 contemporaneous babies

used as controls for each SIDS case) there were only 2 prior SIDS cases.

Questions

1. What kind of study was this?

2. If two events are independent, the probability of their joint occurrence is equal to

the product of their individual probabilities. Events are said to be independent if

the probability of one is unaffected by the occurrence or non-occurrence of the

other. See Section 3.1 at p. 66. With this in mind, calculate a statistic relevant to

the issue raised by Meadow’s testimony and explain its relevance.

Source

R. v. Sally Clark, 203 WL 1822883, 203 EWC App. Crim. 1020 (Ct. of Appeal,

Crim. Div. 2003).
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How to Count 2

2.1 Permutations and combinations

The key to elementary probability calculations is an ability to count outcomes of

interest among a given set of possibilities called the sample space. Exhaustive

enumeration of cases often is not feasible. There are, fortunately, systematic

methods of counting that do not require actual enumeration. In this chapter we

introduce these methods, giving some applications to fairly challenging probability

problems, but defer to the next chapter the formal theory of probability.

Basic formula

A basic counting principle is this: if A can occur in m different ways and B in

n different ways, then, absent any restrictions on either A or B, both can occur in

m times n different ways. For example, if in a given political party there are three

potential candidates for president, and four for vice-president, then, barring any

prohibited marriages, there are 12 possible tickets for the two executive positions.

Permutations

A permutation is an ordered arrangement of distinct items into distinct positions or

slots. If there are n items available to fill slot 1, there will be n� 1 items remaining

to fill slot 2, resulting in n (n� 1) ways to fill two slots. Continuing in this manner,

there are n · (n� 1) · · · (n� r+ 1) ways to fill r	 n slots. This permutation number is

given the symbol nPr. In particular, there are nPn¼ n · (n� 1) · · · 2 · 1 ways to

arrange all n items, and this number is given the special symbol n!, read

“n factorial.” Factorial notation is well defined for positive integers. For n¼ 0,

because there is precisely one way to arrange an empty set of items into zero slots

(the arrangement is vacuous, but it is an arrangement), the definition 0!¼ 1 is

adopted as consistent and useful. Note that we can write nPr with factorial notation

as n!/(n� r)!

# Springer Science+Business Media, LLC 2015
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Combinations

Suppose now that in selecting r items out of n our only interest is in the

final collection of items as opposed to the number of arrangements. Then among

the nPr possible arrangements of these r items, each collection or combination is

repeated r! times (once for each rearrangement of the same r items), so that the

number of combinations of r items out of n is nPn/r!. This combination number,

sometimes given the symbol nCr, is most often denoted by the binomial coefficient,

n
r

� �
, read “n choose r.” Thus

n
r

� �
¼ nCr ¼ nPr

r!
¼ n!

r! n� rð Þ! ¼
n n� 1ð Þ� � � n� r þ 1ð Þ

r r � 1ð Þ� � �2 � 1 :

Note that in the final expression both numerator and denominator contain r factors.

Also note that
n
r

� �
¼ n

n� r

� �
. As an example, there are

5

2

� �
¼ 5!/(2!∙3!)¼

(5∙4)/(2∙1)¼ 10 committees of two that can be formed from a pool of five people.

There are also
5

3

� �
¼ 10 committees of three that can be formed (e.g., those left in

the pool after selecting committees of two).

The binomial coefficient also counts the number of different patterns of n items

that are of two types, say r of type 1 and n� r of type 0, when items of the same type

are indistinguishable. Among the n! potential arrangements, there are r! repetitions
due to indistinguishable rearrangements of type 1 items, and there are (n� r)!
repetitions due to rearrangements of type 0 items. Thus the r! ∙ (n� r)! repetitions
leave a total of only n!/[r!∙(n� r)!] distinguishable patterns. For example, if a coin

is tossed n times, there are
n
r

� �
distinct arrangements of outcomes with r heads and

n� r tails. More generally, if there are k types among n items—say, r1 of type 1. . .
and rk of type k—with objects of the same type indistinguishable, then the number

of distinct patterns is n!/(r1!. . .rk!); this is known as a multinomial coefficient. For
example, there are 2,520 distinct gene sequences of length eight that can be formed

from the genome {a, a, b, b, c, c, d, d}. Do you see why?

Stirling’s formula

A beautiful approximation known as Stirling’s formula may be used to calculate n!
when n is large:

n! �
ffiffiffiffiffiffiffiffi
2πn

p
� nn � e�n ¼

ffiffiffiffiffi
2π

p
� nnþ1=2 � e�n

where e is Euler’s constant� 2.718. A slightly more accurate version of Stirling’s

formula is

n! �
ffiffiffiffiffiffiffiffi
2πn

p
� nþ 1

2

� �nþ1
2

� e� nþ1
2ð Þ:

For example, when n¼ 10, n!¼ 10 · 9 · 8 · · · 3 · 2 · 1¼ 3,628,800. Stirling’s formula

gives 3,598,696 (99.2% accuracy), while the second approximation gives 3,643,221
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(99.6% accuracy). Stirling’s formula may be applied to the factorials in a binomial

coefficient to yield, for large n and r,

n
r

� �
� 1ffiffiffiffiffi

2π
p � nnþ

1
2

rrþ1
2 � n� rð Þn�rþ1

2

For example, when n¼ 2r, the binomial coefficient
n
r

� �
is approximately 2n/(πr)½.

This result is used in Sections 2.1.2 and 2.2.

Occupancy problems

Some probability problems correspond to placing balls at random into cells. The

number of balls in each cell is known as the occupancy number for that cell, or the

cell frequency. To compute the number of ways of obtaining a set of occupancy

numbers (without regard to the order of the cells or the order of the balls), multiply

(i) the number of ways of distributing the balls to arrive at a specific sequence of

cell frequencies by (ii) the number of different sequences of cell frequencies with

the given set of occupancy numbers. To calculate the probability of obtaining a

particular set of occupancy numbers, assuming equally likely outcomes, divide the

total number of distributions that produce that set of occupancy numbers by the

total number of ways of putting the balls into the cells. If there are n balls distributed
into k cells, the total number of possible distributions is kn.

The birthday problem is an example of an occupancy problem. Given a room

with N people, what is the probability that two or more people have the same

birthday? How large must N be for this chance to be at least 1/2? In this problem

there are k¼ 365 cells and N balls. No coincidences implies a set of occupancy

numbers all zero or one. Assuming that all birth dates are equally likely, the

probability of the sequence of cell frequencies (1, 1,. . ., 1, 0, 0,. . ., 0) is

[N!/(1!. . .0!)]/kN¼N!/kN, and there are
k
N

� �
¼ k!/[N!(k�N )!] such sequences.

Thus the probability of obtaining a set of occupancy numbers all zero or one is

(N!/kN)k!/[N!(k�N )!]¼ k(k� 1). . .(k�N + 1)/kN, or

365

365

� �
364

365

� �
� � � 365� N þ 1

365

� �
:

For N¼ 23, this works out to just under 0.50 so that the chance of at least one

coincidence is just over 0.50.

2.1.1 DNA profiling

DNA profiling has become standard in criminal proceedings in which identification

of a defendant is an issue. We describe briefly the genetic background and introduce

the statistical aspects raised by the method. Further issues are discussed at Sections

3.1.2 and 3.2.2.
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Human beings have 23 pairs of chromosomes in every cell except egg and sperm

cells, which have 23 single chromosomes. A chromosome is a very thin thread of

DNA (deoxyribonucleic acid). The thread consists of two long strings of four

chemical bases twisted to form a double helix. The four bases are abbreviated A,

T,G, and C (which stand for adenine, thymine, guanine, and cytosine). In double-

stranded DNA, the bases line up in pairs, an A opposite a T and a G opposite a C, so

that if a sequence on one strand is known the other is determined. Before cell

division, the two strands separate into single strands. Each strand then picks up free-

floating bases from the cell in accordance with the A-T and G-C pairing, thus

creating two identical double-stranded DNA helixes, one for each cell. The process

is completed when the replicated chromosome pairs separate into daughter cells.

This process assures uniformity of DNA throughout the cells of the body.

A gene is a stretch of DNA, ranging from a few thousand to tens of thousands of

base pairs, that produces a specific product, usually a protein. The position that a

gene occupies on the DNA thread is its locus. Genes are interspersed along the

length of the DNA and actually compose only a small fraction of the total molecule.

Most of the rest of the DNA has no known function.

Alternative forms of genes at the same locus, like those producing both normal

blood and sickle-cell anemic blood, are called alleles. A person has two genes at

each locus, one from the maternal chromosome and the other from the paternal

chromosome: the two genes together are referred to as the person’s genotype at the
locus. If the same allele is present in both chromosomes of a pair, the genotype is

said to be homozygous. If the two are different, the genotype is said to be heterozy-
gous. A heterozygous genotype with allele A from the maternal chromosome and

allele B from the paternal chromosome cannot be distinguished from one in which

allele A is from the paternal chromosome and allele B is from the maternal

chromosome. However, genes on the Y chromosome can only have come from

the father, which permits some spectacular lineage tracing–such as the evidence

that Thomas Jefferson was indeed the father of Eston Hemings Jefferson, the

younger son of his slave Sally Hemings. DNA Test Finds Evidence of Jefferson
Child by Slave, N.Y. Times, November 1, 1998, at A1, col 5. Matrilineal descent

can be traced using genes from mitochondrial DNA. Mitochondria are microscopic

organelles responsible for energy storage and release found in the cell, but outside

the nucleus, so they are not associated with the chromosomes. The transmission of

mitochondria is from mother to child because the sperm has very little material

other than chromosomes. All children of one woman will have identical mitochon-

drial DNA and this will be passed down through the female line to successive

generations.

VNTR analysis

One group of DNA loci that were used extensively in forensic analysis are those

containing Variable Numbers of Tandem Repeats (VNTRs). Technically, these are

not genes because they have no known effect on the person. This is an important

attribute for forensic work because it makes it less likely that the VNTRs would be
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influenced by natural selection or selection of mates, which could lead to different

frequencies in different populations.

A typical VNTR region consists of 500–10,000 base pairs, comprising many

tandemly repeated units, each some 15–35 base pairs in length. The number of

repeats, and hence the length of the VNTR region, varies from one region to another,

and different regions can be distinguished by their lengths. The variation in length of

VNTR regions is a form of length polymorphism. The term restriction fragment
length polymorphism (RFLP) refers to length polymorphism found in fragments of

DNA snipped out by a biochemical method (using restriction enzymes) which

isolates the same regions of DNA on the two chromosomes. The term allele is usually

applied to alternative forms of a gene; here we extend the term to include nongenic

regions of DNA, such as VNTRs. Each VNTR allele is distinguished by a character-

istic band on an autoradiograph in which the molecular weight of the band reflects the

number of repeats in the VNTR and determines its location. If the genotype is

homozygous, only a single band will appear; if heterozygous, two bands will appear.

To allow for measurement error that is roughly proportional to the fragment size,

preset “match windows” (e.g. 
2.5%) around each autorad band are used and two

bands are declared to match only if their match windows overlap.

Typically, there is a large number of alleles at VNTR regions (usually 15–25 can

be distinguished), no one of which is common. The number of genotypes (pairs of

alleles) is far larger; and when the possibilities for different loci are combined, the

number of allelic combinations quickly becomes astronomical. An example of an

autorad in an actual case is shown in Fig. 2.1.1.

PCR-based methods

The polymerase chain reaction (PCR) is a laboratory process for copying a chosen

short segment of DNA millions of times. The process is similar to the mechanism

by which DNA duplicates itself normally, except that by the use of enzymes only a

segment of the DNA is reproduced. At present, the method is used to reproduce

relatively short segments of DNA, up to 1,000 nucleotides in length, which is much

shorter than most VNTRs.

There are significant advantages to this process over the VNTR process. First, it

is possible to work with much smaller amounts of DNA, which is significant

because forensic traces may involve minute amounts of DNA. Second, amplifica-

tion of samples of degraded DNA is possible, which permits analysis of old and

decayed samples. Third, it is usually possible to make an exact identification of

each allele copied so that the measurement uncertainties associated with the

identification of VNTRs by weight are largely eliminated.

There are also some disadvantages. The amplification process is so efficient that

even a few molecules of contaminating DNA can be amplified with the intended

DNA. Second, most markers used in PCR-based typing have fewer alleles than

VNTRs and the distribution of allele frequencies is not as flat. Hence, more loci are

required to produce the same amount of information about the probability that two

persons share a profile. Furthermore, some of these loci are functional (they are
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genes, not just markers). Consequently, they are more likely to be subject to mating

and natural selection and may not conform to the population-genetics assumptions

used in evaluating the significance of a match. (For a discussion of such

assumptions, see Section 3.1.2.)

On balance, PCR methods are definitely superior to VNTR methods and have

largely replaced them in forensic analyses.

Questions

1. If there are 20 possible alleles at a locus, how many distinguishable homozygous

and heterozygous genotypes are possible at that locus?

2. If four similar loci are considered, how many possible distinguishable genotypes

are there?

Fig. 2.1.1. An

autoradiograph from an actual

case illustrating RFLP at the

D1S7 locus. In the case, the

suspects (S-1 and S-2) were

charged with having beaten to

death the two victims (V-1

and V-2). Blood stains were

found on the clothing of one

of the suspects. The lane

marked E Blood is the DNA

from those stains. The lanes

marked V-1 and V-2 are DNA

from the first and second

victims, respectively; the

lanes marked S-1 and S-2 are

DNA from the first and

second suspects, respectively.

The other lanes are for

molecular sizing and quality

control purposes. Note that E

blood matches Victim 1’s

blood, a result confirmed in

the case by matching on

10 loci.
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Source

National Research Council, The Evaluation of Forensic DNA Evidence (1996).

Notes

Works on DNA profiling abound. Besides the NRC Report cited above, see, e.g.,

Kaye & Sensabaugh, Reference Guide on DNA Evidence, in Federal Judicial

Center, Reference Manual on Scientific Evidence, (3rd ed. 2011).

2.1.2 Weighted voting

A nine-person board of supervisors is composed of one representative from each of

nine towns. Eight of the towns have approximately the same population, but one

larger town has three times the population of each of the others. To comply with the

one-man, one-vote doctrine of the federal constitution, the larger town’s supervisor

has been given 3 votes, so that there is a total of 11 votes.

In Iannucci v. Board of Supervisors, 20 N.Y.2d 244, 282 N.Y.S.2d 502 (1967),

the New York Court of Appeals held that, “The principle of one man one vote is

violated, however, when the power of a representative to affect the passage of

legislation by his vote, rather than by influencing his colleagues, does not roughly

correspond to the proportion of the population in his constituency. . . Ideally, in any
weighted voting plan, it should be mathematically possible for every member of the

legislative body to cast the decisive vote on legislation in the same ratio which the

population of his constituency bears to the total population.” Id., 20 N.Y.2d at

252, 282 N.Y.S.2d at 508.

Test whether the weighted-voting scheme complies with the Iannucci standard
by computing the number of ways the supervisors can vote so as to permit the larger

town, on the one hand, or a smaller town, on the other, to cast a decisive vote. A

decisive vote may be defined as a vote which, when added to the tally, could change

the result. Measures are carried by a majority; a tie defeats a measure. Note that the

larger town can cast a decisive vote if the other eight towns are evenly split (4-4) or

if they are divided 5-3, either for or against a measure. A smaller town can cast a

decisive vote if the larger town is joined by two smaller towns, again either for or

against a measure.

Questions

1. Counting affirmative and negative votes as separate ways, in how many ways

can the eight small-town supervisors vote on a measure so that the larger-town

supervisor has a deciding vote?

2. Using the same counting convention, in how many ways can the larger-town

supervisor and seven small-town supervisors vote on a measure so that the eighth

small-town supervisor has a deciding vote?
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3. Does the ratio of the two results indicate that by the Iannucci standard the larger

town has been correctly compensated for its larger size?

4. Using Banzhaf’s theory and Stirling’s formula, as applied at the voter level,

show that a voter in the larger town has 1=
ffiffiffi
3

p
the voting power of a voter in one

of the smaller towns.

Notes

The measure of voting power referred to in the problem was first suggested in

Banzhaf, Weighted Voting Doesn’t Work: A Mathematical Analysis, 19 Rutgers

L. Rev. (1965). The Iannucci case was the first to adopt Banzhaf’s theory.

At the voter level, the Banzhaf theory is in effect a square root rule: the probability

of breaking a tie in a district with N votes is approximately [2/(πN)]1/2 by

Stirling’s formula (see Section 2.1 at p. 48). At this level, the probability of

breaking a tie seems too remote to influence a voter. The U.S. Supreme Court has

so held. SeeWhitcomb v. Chavis, 403 U.S. 124 (1971); Board of Estimate v. Morris,
489 U.S. 688 (1989).

However, voters are probably influenced by the size of the anticipated plurality

and may feel that individual votes are more important if the plurality will be smaller

rather than larger. Under quite general conditions—particularly in close elections—

the plurality will be approximately normally distributed, with an ascertainable

probability P of exceeding a given value d in a district of a given size (in which

everyone votes). If a second district is k times larger than the first, it follows from

the assumption of normality that the plurality event in the larger district with the

same probability P is not dk, but d
ffiffiffi
k

p
: Thus, the square root relation derived from

the tiebreaking situation has a more general justification in terms of pluralities than

Banzhaf had given to it.

2.1.3 Was the bidding rigged?

Every six months the U.S. Maritime Administration issued requests for sealed bids

for sale of its obsolete ships. Seven firms in the ship dismantling business ostensibly

compete in bidding for these ships. In the last nine requests for bids, five firms

submitted lowest bids once each, and two submitted lowest bids twice each. The

firms deny collusion, arguing that the work is standard and the bidders have the

same cost structure.

Questions

1. Assuming that each firm has the same probability of success on a bid and that

success on one bid is independent of success on another, use a simple probability

model to argue that the distribution of successes suggests collusive allocation.

2. Is the observed distribution of successes the most probable?

3. Are the assumptions of the model reasonable?
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2.1.4 A cluster of leukemia

Between 1969 and 1979 there were 12 cases of childhood leukemia in Woburn,

Massachusetts, when only 5.3 were expected on the basis of national rates. There

are six approximately equal census tracts in Woburn. Six cases were clustered in

census tract 3334. Lawsuits were brought on the theory that the leukemia had been

caused by contaminated well water, although census tract 3334 did not receive the

largest amount of this water. See Fig. 2.1.4. For additional facts, see Section 11.2.2.

Question

In principle, how would you calculate the probability that a cluster of six or more

leukemia cases would occur as a matter of chance in one district, assuming that the

probability of leukemia is the same in all tracts and that 12 cases occurred?

Source

See Section 11.2.2.

2.1.5 Measuring market concentration

The U.S. Department of Justice guidelines to its enforcement policy for horizontal

mergers relate enforcement to a measure of market concentration known as the

Herfindahl Index (HHI). The HHI is an index of concentration calculated by

CT 3335

CT = Census Tract

Woburn

Wells G & H

CT 3336

CT 3334

CT 3333
CT 3332CT 3331

Fig. 2.1.4. Residences of

childhood leukemia patients

at time of diagnosis, Woburn,

Massachusetts, 1969–1979
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squaring the percentage market share of each firm in the market and then adding

those squares. To interpret the HHI, note that if all firms have equal market shares,

the index divided into 1002, or 10,000, is the number of such firms. Thus, when

firms have unequal market shares, dividing the HHI into 10,000 gives the number of

equal firms in a market of equivalent concentration. The index divided by 10,000

has another interpretation: it gives the probability that two customers selected at

random with replacement would be customers of the same firm. This probability is

also called the “repeat rate.”

Use of the HHI depends on the degree of concentration in the market and the

effect of the merger. Here are two examples from the guidelines.

• Where the post-merger market is “unconcentrated”, which is defined as a market

with an HHI that is below 1,000. In such an “unconcentrated” market, the

Department would be unlikely to challenge any merger. An index of 1,000

indicates the level of concentration that exists, for instance, in a market shared

equally by 10 firms.

• Where the post-merger market is “moderately concentrated,” with an HHI

between 1,000 and 1,800. A challenge would still be unlikely, provided the

merger increases the HHI by less than 100 points. If the merger increased the

index by more than 100 points, it would “potentially raise significant competi-

tive concerns,” depending on the presence or absence of other relevant factors

specified in the guidelines.

Questions

1. If there are N equal customers in a market, and the ith firm has ai customers, write

an expression for the number of different ways the customers may be distributed

among firms without changing market shares.

2. Write the above expression in terms of market shares, with the ith firm having

1/ni share of market, so that 1/ni¼ ai/N.

3. Use the approximation1 n!� nn/en to eliminate the number of customers, leaving

only market shares, and take the Nth root to make it equal the number of firms in

the market when each firm has the same percentage share of market. Is this

“entropy” index a plausible measure of concentration?

4. Compare the “entropy” measure with the HHI for the situation in which four large

firms share equally 80% of the market, with the remaining 20% shared first by

10, and then by 20, firms. Which measure shows the more concentrated market in

terms of anequivalent number of equal firmsas thenumber of small firms increases?

Source

Merger Guidelines of Department of Justice, Trade Reg. Rep. (CCH) }13,104
(1997); Finkelstein & Friedberg, The Application of an Entropy Theory of

1 This is a crude form of Stirling’s formula (see Section 2.1 at p. 48).
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Concentration to the Clayton Act, 76 Yale L.J. 677, 696-97 (1967), reprinted in

Finkelstein, Quantitative Methods in Law, ch. 5 (1978).

2.2 Fluctuation theory

A sequence of equal deposits and withdrawals to and from an account can be

likened to a series of coin tosses, with a deposit corresponding to heads and a

withdrawal corresponding to tails. The amount on deposit at any time is represented

by the excess of heads over tails. This process can be represented as a polygonal line

that starts at the origin, with vertices at abscissas 0, 1, 2. . . representing the

aggregate number of tosses and ordinates at each vertex equal to the net lead of

heads over tails (or tails over heads). The behavior of these paths is the subject of

fluctuation theory, which deals with problems such as leads in coin tossings and

random walks. The results of this theory are frequently counterintuitive because

people tend to believe that a random process that is balanced in probability will

remain closely balanced in result throughout a sequence. The more correct view,

reflected in various theorems, is that leads in one direction, even over long stretches,

are surprisingly likely to occur. This behavior is illustrated by a result of 10,000

tosses of a fair coin, shown in Fig. 2.2a. The result is that, in a coin-tossing game,

large leads (on the order of the square root of the number of tosses) in favor of one

Fig. 2.2a. Record of 10,000 tosses of an ideal coin
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party or the other, and the persistence of a lead in favor of one party or the other, are

more probable than one might imagine. W. Feller gives the following example: If a

fair coin is tossed once a second for 365 days a year, “in one out of 20 cases the

more fortunate player will be in the lead for more than 364 days and 10 hours. Few

people believe that a perfect coin will produce preposterous sequences in which no

change in lead occurs for millions of trials in succession, and yet this is what a good

coin will do rather regularly.” Feller, An Introduction to Probability Theory and Its
Applications 81 (3d ed. 1968).

Two basic points about paths representing fluctuations are noted here. First, the

number of possible paths representing n coin tosses in which there are a heads and

b tails is
n
a

� �
¼ n

b

� �
. Second, the number of paths that start at ordinate A, touch

or cross the line corresponding to ordinate B, and end at ordinate C (B lying below

A and C) is equal to the number of paths that start at A and end at a point C
0
that is as

far below B as B is below C. This is the “reflection” principle of D. André. See

Fig. 2.2b.

Assume that n is the total number of deposits and withdrawals, not necessarily

equal in number, but each deposit or withdrawal equal in amount; w is the size of

each single deposit or withdrawal; and aw is the amount by which the closing

Fig. 2.2b. The André Reflection Principle
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balance is less than the opening balance (a is a negative integer if the closing

balance exceeds the opening balance). The probability, P, that at some point

the opening balance was decreased by kw or more is: P¼ exp[�2k(k�a)],
approximately, for k� a. (The term exp[x] is alternate notation for the exponential

function ex). In the special case in which the opening and closing amounts are equal

and w¼ 1, the expected maximum dissipation is0:627
ffiffiffi
n

p
and the median maximum

dissipation is 0.589
ffiffiffi
n

p
.

If deposits and withdrawals are not equal in amount, no closed form approxima-

tion is known for the probability of any given dissipation of the account. In such

cases, computer simulation must be used instead. See Finkelstein and Robbins,

infra, for an example.

Further Reading

Feller, An Introduction to Probability Theory and Its Applications,
ch. 14 (3d ed. 1968).

2.2.1 Tracing funds for constructive trusts

A person who defrauds another of money may be declared a constructive trustee of

the funds for the defrauded party—if that party can trace the funds. There are

various rules for tracing. If the funds are deposited in a bank account, withdrawals

are deemed made first from non-trust funds (if they cannot be traced into new

assets), but to the extent the account is reduced at any point a subsequent restoration

by fresh deposits will not restore the trust. The sequence of deposits and

withdrawals may therefore be critical. Suppose that there are $10 in trust funds in

an account, and that during a day there are 50 one-dollar deposits and 50 one-dollar

withdrawals. As in the case of most banks, the order of deposits and withdrawals

within the day cannot be determined.

Questions

1. What is the probability that at some point during the day the trust funds were

reduced to 0?

2. What is the expected maximum reduction in the trust?

3. If this situation persists for 10 days (i.e., 50 repeated deposits and withdrawals

leaving the account even at the end of the day), is it reasonable to presume that

the fund has been reduced to 0 at some point during the period?

Further Reading

Finkelstein & Robbins, A Probabilistic Approach to Tracing Presumptions in the
Law of Restitution, 24 Jurimetrics 65 (1983).
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Elements of Probability 3

3.1 Some fundamentals of probability calculation

Many probability puzzles can be made transparent with knowledge of a few basic

rules and methods of calculation. We summarize some of the most useful ideas in

this section.

Probabilities

In the classic formulation, probabilities are numbers assigned to elements of a

sample space. The sample space consists of all possible outcomes of some concep-

tual experiment, such as flipping a coin or rolling dice. In making calculations,

probability numbers are assigned to the “simple” (indecomposable) elements, or

events, of the sample space. A subset of simple events is called a “compound”

event, and its probability is defined as the sum of the probabilities of the simple

events it contains. For example, if a coin is tossed four times, the simple events

comprising the sample space are the possible sequences of heads and tails in four

tosses; there are 16 such sequences, of which heads-tails-heads-tails (HTHT) is an

example. A compound event is some subset of the 16 sequences, such as tossing

two heads in four trials, which consists of the simple events HHTT, HTHT, HTTH,

THTH, THHT, and TTHH. The rules of the calculus of probabilities discussed in

this section give some short cuts for calculating probabilities of compound events.

Some probability chestnuts turn on the proper definition of the sample space, as the

example below shows.

Example. Assume that boys and girls are born with equal frequency. Mr. Able says,

“I have two children, and at least one of them is a boy.” What is the probability that

the other child is a boy? Mr. Baker says, “I went to the house of a two-child family,

and a boy answered the door.” What is the probability that the other child is a boy?

The answer to the first question is 1/3, but the answer to the second question is

1/2. The reason for this small paradox is that the sample space defined by Mr. Able

consists of families with three birth sequences of children: boy-girl, girl-boy, and

# Springer Science+Business Media, LLC 2015
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boy-boy. Since each has the same probability, and since only in the boy-boy case is

the “other” child a boy, the probability of that event is 1/3. In Mr. Baker’s case, by

designating a particular boy (the one who answered the door) the sample space of

family types is reduced to two: the door-answering child is a boy, and the other is a

girl, or the door-answering child is a boy, and the other is also a boy. Since there are

only two possible family types, the probability of boy-boy is 1/2, i.e., the probabil-

ity of the other child being a boy is 1/2.

The probability assigned to a simple event can be any number between 0 and 1. For

purposes of applications, useful assignments represent the long range frequency of the

events, such as 1/2 for the probability of tossing heads with a coin. However, nothing

in mathematical theory compels any particular assignment of probabilities to simple

events, except that an event certain not to occur has probability 0,1 and the

probabilities of the simple events constituting a sample space must sum to 1.

The concept of probability also applies to the degree of belief in unknown

events, past or future. It has been shown that the calculus of probabilities introduced

in this section can consistently be applied to both interpretations, so that what

probability “really is” need not be resolved to make use of the mathematical theory.

See Section 3.6.

Complementary events

The probability of the negation of a given event is one minus the probability of the

event. In symbols,

P �B½ � ¼ 1� P B½ �:
Examples

• If there is a 1 in 5 chance of selecting a black juror from a venire, there is a 4 in

5 chance of selecting a non-black juror.

• A game-show host (Monty Hall) presents a contestant with three closed doors.

Behind one of them is a prize, with equal likelihood for doors A, B, or C. The

contestant is asked to select a door; say he picks A. Before opening that door,

Monty opens one of the other doors, which both he and the contestant know will

be empty; say B. Then Monty presents the contestant with a choice: he may

either stick with A or switch to C. Question: Is it better to stick, or to switch, or

does it not matter?

Answer: The contestant has a 1/3 chance that the prize is behind A and a 1–1/3¼ 2/3

chance that the prize is behind B or C. Monty’s opening of B doesn’t change the

probability that the prize is behind A, because it gives no information about the

1 In infinite sample spaces, an event with probability 0 may still occur if the infinitude of

possibilities is non-denumerable. For example, when a dart is thrown at a target, the probability

that any specified point will be hit is zero because points have zero width, but still the dart hits the

target at some point.
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correctness of that choice. But by eliminating B, the probability of the prize being at

C is now 2/3. In short, the best strategy is to switch.

Disjoint unions

• The union of two events A and B is the occurrence of A or B (or both), i.e., their
inclusive disjunction. Thus, the union of two events encompasses both the

occurrence of either event without the other (their exclusive disjunction) or the
occurrence of both together (their conjunction).

• A and B are disjoint if they are mutually exclusive (i.e., their joint occurrence, or

conjunction, is impossible).

• The probability of a union of disjoint events A and B is the sum of their

individual probabilities. In symbols,

P A or B½ � ¼ P A½ � þ P B½ �:
Example. Suppose:

A¼ [Mr. F. is the girl’s father and has her blood type], with P[A]¼ 0.5, and

B¼ [Mr. F. is not the girl’s father, but has her blood type], with P[B]¼ 0.2.

Then: P[A or B]¼P[Mr. F has the girl’s blood type]¼ 0.7.

Unions in general

For events A and B, not necessarily disjoint, the probability of A or B equals the sum

of the individual probabilities less the probability of their conjunction, A and B.
In symbols,

P A or B½ � ¼ P A½ � þ P B½ � � P A and B½ �:

The joint probability P[A and B] is subtracted because the sum of the probability

of A and the probability of B generally overestimates P[A or B] because it counts the
probability of the joint occurrence of A and B twice: once in the probability of

A alone and again in the probability of B alone. This double counting is shown by

the top Venn diagram in Fig. 3.1, where the areas within the circles are proportional

to the probabilities of events A and B, respectively. The union of the two events is

represented by the total area covered by A and B. The region labelled A B represents

their intersection (conjunction).

It follows that the probability of A or B is no greater than the sum of their

individual probabilities. In symbols,

P A or B½ � 	 P A½ � þ P B½ �:
The same reasoning leads to the more general inequality

P AorBorC . . .ð Þ 	 P Að Þ þ P Bð Þ þ P Cð Þ þ . . .

3.1 Some fundamentals of probability calculation 63



Although there are other inequalities due to Bonferroni, this is known as the

Bonferroni inequality because it is the one most frequently encountered in

practice.2 See Section 6.2 for a discussion of the use of this inequality in setting

levels of statistical significance for tests involving multiple comparisons.

Example. Referring to Section 2.1.4, assume that the probability of observing six

or more cases of leukemia in any single census tract is 0.007925. Let P[Ai] be the

probability of observing such an event in census tract i. Then the probability of

observing six or more cases of leukemia in at least one of six census tracts is no

greater than

P A1½ � þ P A2½ � þ . . .þ P A6½ � ¼ 6� 0:007925 ¼ 0:04755:

Fig. 3.1. Venn diagrams

illustrating conjunction

(“and”) and inclusive

disjunction (“and/or”)

2 This is Bonferroni’s first inequality. More generally, if A1, · · , An are n events, the probability

of the union of A1, · · · , An is obtained as follows: first, take the sum of each event separately,X
i

P Ai½ � ; second, subtract the sum of all pairwise joint probabilities
X
i6¼ j

P Ai \ A j

	 

since the

previous sum overestimates the union’s probability; next, add back the sum of all joint

probabilities in triples,
X
i 6¼ j6¼k

P Ai \ A j \ Ak

	 

, since the previous step overcorrected slightly.

Continue in this way by alternately subtracting and adding sums of joint probabilities until one

adds or subtracts the final term P A1 \ � � � \ An½ �. At any stage, the probability of the union may be

approximated by the terms included up to that point, incurring an error no larger than the

magnitude of the first omitted term.
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In Section 2.1.4, where there were only 12 cases in total, the joint probability of

finding six cases in two tracts is the minuscule 0.000006, and the probability of this

occurrence in three or more tracts is zero. Bonferroni’s first approximation is

extremely accurate in this case.

Example. Assume that a person is infected with a virus for which there are

two diagnostic tests. Let A¼ [diagnostic test 1 is positive], with P[A]¼ 0.95. Let

B¼ [diagnostic test 2 is positive], with P[B]¼ 0.99.

What is the probability that the infected person would test positive on at least one

of the tests? By Bonferroni’s inequality P [A or B]	 0.95 + 0.99¼ 1.94. Clearly this

is not helpful. If the probability that both tests would be positive were

0.95� 0.99¼ 0.9405 (independent tests), then the probability of the union would

be 0.95 + 0.99� 0.9405¼ 0.9995. In this case the Bonferroni approximation is not

useful because the probability of the joint event is not negligible. In fact,

Bonferroni’s inequality shows that P[A and B] must be substantial, as follows.

The probability that one or the other test shows a false negative reading,P �A or �B½ �,
is, by Bonferroni’s inequality, no greater than P �A½ � þ P �B½ � ¼ 0:05þ 0:01 ¼ 0:06,
which is quite accurate because the probability of two false negatives is very small

(0.01� 0.05¼ 0.0005, for independent tests). Taking complements implies that

P A and B½ � ¼ P not �A or �Bð Þ½ � ¼ 1� P �A or �B½ � � 1� 0:06 ¼ 0:94:

Intersection

• The intersection of two events, A and B, is their conjunction, A and B.
• The probability of A and B is no greater than the probability of either event alone.

This follows from the rule for mutually exclusive events, since

P A½ � ¼ P A and B½ � þ P A and �B½ � � P A and B½ �:
• If event B implies event A then P[B]¼P[A and B], whence P[B]	P[A].

In words, an event is at least as likely to occur as any other event which implies

it, and an event is no more likely to occur than any other event which it implies.

Conditional probability

The conditional probability of an event A given an event B with P[B]> 0 is defined

as P[A | B]¼P[A and B]/P[B]. The conditional probability of A given B is the

relative likelihood of occurrence of A, among all times when B occurs.

Example. Referring to the boy-girl family example at p. 61, the unconditional

probability of a boy-boy family (A) is P[A]¼ 1/4. The probability of a family with

at least one boy (B) is P[B]¼ 3/4. The probability of a boy-boy family conditional

on there being at least one boy (B) is P[A and B]/P[B]¼ 1/4� 3/4¼ 1/3.

In Mr. Baker’s case, the probability of the door-answering child being a boy (C)
is P[C]¼ 1/2. Hence, the probability of a boy-boy family conditional on a boy

answering the door is P[A and C]/P[C]¼ 1/4 � 1/2¼ 1/2.
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For non-vacuous events, one can always write the joint probability of events

A and B as

P A and B½ � ¼ P A
��B	 


P B½ � ¼ P B
��A	 


P A½ �;

although note that in general P A
��B	 
 6¼ P B

��A	 

. In the preceding example,

P[A|B]¼ 1/3, but P[B|A]¼ 1.

Independent events

Events A and B are said to be independent if

P A
��B	 
 ¼ P A½ � ¼ P A

�� �B	 

:

In words, A and B are independent if the occurrence (or non-occurrence) of B does

not affect the likelihood of occurrence of A. Thus, for independent events we have
the multiplication rule

P A and B½ � ¼ P A
��B	 
 � P B½ � ¼ P A½ � � P B½ �:

Averaging conditional probabilities

An overall probability equals a weighted average of conditional probabilities.

In symbols,

P A½ � ¼ P A
��B	 
 � P B½ � þ P A

�� �B	 
 � P �B½ �:
This formula is called the rule of total probability. The weights are given by P[B]
and its complement. This follows by writing

P A½ � ¼ P AandBð Þor Aand �Bð Þ½ � ¼ P AandB½ � þ P Aand �B½ �:
The conditional probabilities are often interpreted as specific rates.

Example. The overall promotion rate P[A] in a company may be obtained from the

specific rates for black and non-black employees (respectively P[A | B] andP A
���B	 


)

by weighting the rates by the proportion of blacks and non-blacks, P[B] and P �B½ �.

3.1.1 Interracial couple in yellow car

In People v. Collins, 68 Cal. 2d 319, 438 P.2d 33 (1968) (en banc) an elderly

woman, while walking through an alley in the San Pedro area of Los Angeles, was

assaulted from behind and robbed. The victim said that she managed to see a young

woman with blond hair run from the scene. Another witness said that a Caucasian

woman with dark-blond hair and a ponytail ran out of the alley and entered a yellow

automobile driven by a black man with a mustache and a beard.
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A few days later, officers investigating the robbery arrested a couple on the

strength of these descriptions and charged them with the crime.3 It is not clear what

led police to the Collins couple. A police officer investigating the robbery went to

their house and took them to the police station, where they were questioned,

photographed, and then released. When police officers came a second time to

their house, apparently to arrest them, Malcolm was observed running out the

back and was found hiding in a closet in a neighboring house. The officer found

two receipts in Malcolm’s pocket, indicating that he had just paid two traffic fines in

a total amount equal to the amount of money stolen. Questioned as to the source of

the money, Malcolm and Janet gave conflicting accounts. Finally, first Janet alone,

and then the two together, engaged in a bargaining session with police in an effort to

have charges dismissed against Malcolm, in particular, because he had a criminal

record. Although no admissions were made, the tone of the conversion, according to

the appellate court, “evidenced a strong consciousness of guilt on the part of both

defendants who appeared to be seeking the most advantageous way out.”

At their trial, the prosecution called an instructor of mathematics to establish

that, assuming the robbery was committed by a Caucasian blonde with a ponytail

who left the scene in a yellow car driven by a black man with a beard and mustache,

the probability was overwhelming that the accused were guilty because they

answered to this unusual description. The mathematician testified to the “product

rule” of elementary probability theory, which states that the probability of the joint

occurrence of a number of mutually independent events equals the product of their

individual probabilities. The prosecutor then had the witness assume the following

individual probabilities for the relevant characteristics:

(a) Yellow automobile 1/10

(b) Man with mustache 1/4

(c) Girl with ponytail 1/10

(d) Girl with blond hair 1/3

(e) Black man with beard 1/10

(f) Interracial couple in car 1/1,000

Applying the product rule to the assumed values, the prosecutor concluded that

there was but one chance in 12 million that a couple selected at random would

possess all these incriminating characteristics. The prosecutor gratuitously added

his estimation that the “chances of anyone else besides these defendants being there

. . . having every similarity. . . is somewhat like one in a billion.” The jury convicted

the defendants. On appeal, the Supreme Court of California reversed, holding that

the trial court should not have admitted the evidence pertaining to probability.

3When defendants were arrested, the woman’s hair was light, not dark, blond and the man did not

have a beard. There was some evidence that the man had altered his appearance after the date on

which the offense had been committed. The car was only partly yellow.
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In an appendix to the opinion, the court proposed a mathematical model to prove

that, even on the prosecution’s assumption that the probability that a random couple

would answer to the description of the Collins couple (a “C-couple”) was 1 in

12,000,000, there was a 41% probability of there being at least a second C-couple, if

12,000,000 selections were made. One way of describing the court’s model

involves imagining that there is a very large population of couples in cars, with

the rate of C-couples in that population being 1 in 12,000,000. Out of this popula-

tion one picks a couple at random, checks whether it is a C-couple, returns it to the

population, and picks again. Assuming that one makes 12,000,000 selections to

simulate the creation of the population, count the number of C-couples picked.

Repeat this process many times and one finds that, in about 41% of these

hypothetical populations in which there appeared at least one C-couple, there was

more than one. The appendix concludes:

Hence, even if we should accept the prosecution’s figures without question, we would

derive a probability of over 40% that the couple observed by the witnesses could be

“duplicated” by at least one other equally distinctive interracial couple in the area,

including a Negro with a beard and mustache, driving a partly yellow car in the company

of a blonde with a ponytail. Thus, the prosecution’s computations, far from establishing

beyond a reasonable doubt that the Collinses were the couple described by the

prosecution’s witnesses, imply a very substantial likelihood that the area contained more

than one such couple, and that a couple other than the Collinses was the one observed at the

scene of the robbery.

Id. 438 P. 2d at 42.

Questions

1. Are the identifying factors listed likely to be statistically independent?

2. Suppose the frequency of identifying factors had been determined as follows:

A survey was made of couples in cars and one in a thousand of them was

interracial. In one of ten of those interracial couples there was a black man

with a beard. In one of three interracial couples in which the black man had a

beard the woman had blond hair. And so forth for the rest of the factors. In those

circumstances would multiplication together of the frequencies have been

correct?

3. Assuming the 1 in 12,000,000 figure were correct as the probability of selecting

at random a couple with the specified characteristics, what objections do you

have to the prosecutor’s argument?

4. Assume, as in the appendix to the court’s opinion, that the couples who might

conceivably have been at the scene of the crime were drawn from some larger

population in which the rate of C-couples was 1 in 12,000,000. Does it follow

that the 41% probability computed in the appendix is relevant to the identifica-

tion issue?

5. Does the conclusion of the court’s appendix that the prosecutor’s computation

implies a very substantial likelihood that a couple other than the Collinses was
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the one observed at the scene of the robbery follow from the preceding mathe-

matical demonstration?

Source

Finkelstein & Fairley, A Bayesian Approach to Identification Evidence, 83 Harv.

L. Rev. 489 (1970), reprinted inQuantitative Methods In Law, ch. 3 (1978); see also
Fairley & Mosteller, A Conversation About Collins, 41 U. Chi. L. Rev. 242 (1974).

Notes

The product rule has been involved in a number of cases both before and after

Collins.
In People v. Risley, 214 N.Y. 75, 108 N.E. 200 (1915), the issue was whether

defendant had altered a court document by typing in the words “the same.”

Defendant was a lawyer and the alteration helped his case. Eleven defects in the

typewritten letters on the court document were similar to those produced by the

defendant’s machine. The prosecution called a professor of mathematics to testify

to the chances of a random typewriter producing each of the defects found in the

words. The witness multiplied these component probabilities together to conclude

that the joint probability of all the defects was one in four billion. On appeal the

court reversed, objecting that the testimony was “not based upon actual observed

data, but was simply speculative, and an attempt to make inferences deduced from a

general theory in no way connected with the matter under consideration supply [sic]

the usual method of proof.” Id. at 85,108 N.E. at 203.

InMiller v. State, 240 Ark. 340, 399 S.W.2d 268 (1966), the expert testified that

dirt found on defendant’s clothing matched dirt at the burglary site as to color,

texture, and density and that the probability of a color match was 1/10, a texture

match was 1/100, and a density match was 1/1,000. Multiplying these together, the

expert concluded that the probability of an overall match was 1/1,000,000. On

appeal, the conviction was reversed. The expert’s testimony as to probability was

inadmissible because he had neither performed any tests, nor relied on the tests of

others, in formulating his probability estimates.

On the other hand, in Coolidge v. State, 109 N.H. 403, 260 A.2d 547 (1969), the
New Hamphire Supreme Court cited Collins, but came to a different conclusion.

The expert in that case obtained particles by vacuuming the victim’s clothes and the

defendant’s clothes and automobile (where the crime was believed to have taken

place). Forty sets of particles (one from the victim and the other from the defendant)

were selected for further testing on the basis of visual similarity under a micro-

scope. In these further tests the particles in 27 of the 40 sets could not be distin-

guished. Previous studies made by the expert indicated that “the probability of

finding similar particles in sweepings from a series of automobiles was one in ten.”

The expert concluded that the probability of finding 27 similar particles in

sweepings from independent sources would be only one in ten to the 27th power.

On cross-examination, the expert conceded that all 27 sets may not have been

independent of one another, but the court found that this went to weight rather than

admissibility and affirmed the conviction.
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3.1.2 Independence assumption in DNA profiles

We continue the discussion of DNA profiles that was begun in Section 2.1.1.

In forensic science applications, a sample of DNA that is connected with the

crime is compared with the suspect’s DNA. For example, in a rape case, DNA in

semen found in the victim may match the suspect’s DNA (which would be

incriminating) or may not (which would be exculpatory). If there is a match, its

forensic power depends on the probability that such a profile would have been left

by a randomly selected person, if the suspect was not responsible. This in turn

depends on the frequency of matching profiles in the population of persons who

could have left the trace.

To estimate such frequencies, DNA laboratories begin with the frequency of the

observed allele at each locus included in the profile. Each heterozygous genotype

frequency is determined by multiplying together the frequencies of the maternal

and paternal alleles that constitute the genotype, and multiplying that product by

two. For homozygous genotypes, the frequency of the observed allele should be

squared. The independence assumption that underlies the multiplications is justified

on the belief that people mate at random, at least with respect to VNTR alleles,

which are not known to correspond to any observable trait. However, the same

assumption is made for PCR alleles, which may involve observable traits.

A population whose genotypes are in these proportions is said to be in

Hardy-Weinberg (HW) equilibrium.

Genes that are on the same chromosome are linked, that is, they tend to be

inherited together. However, during the formation of a sperm or egg, the two

members of a chromosomal pair lined up side by side can randomly exchange

parts, a process called crossing over or recombination. Genes that are very close

together on the same chromosome may remain associated for many generations

while genes that are far apart on the same chromosome or on different

chromosomes become randomized more rapidly.

To arrive at an overall frequency for a multilocus genotype, it is usual to take the

product of the frequencies of the genotypes at the separate loci. This is justified on

the assumption that genotypes at different loci are independent. A population in

such a state is said to be in linkage equilibrium (LE). The state of LE, like HW, is

the result of random mating, but a population only arrives at LE after several

generations, whereas HW is arrived at in one generation. Because of recombination,

loci that are close together on the same chromosomal pair approach LE more slowly

than those far apart on the same pair or on different pairs. Departure from LE is

called linkage disequilibrium, and is an important tool for locating marker genes

close to true disease genes.

It has been objected that frequencies of apparent homozygotes will be greater

than expected under HW if either (i) there are subgroups in the population that tend

to in-breed and have higher rates of the particular alleles observed as homozygotes,

or (ii) only a single band is found at a locus because the autorad band for the other

allele erroneously has been missed. To protect against these possibilities, some

laboratories conservatively estimate the frequency of a homozygote as twice the
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frequency of the observed allele, instead of the square of its frequency. This change

will generally favor defendants by increasing the estimated frequency of matching

homozygous genotypes in the population.

To test the HW assumption, Table 3.1.2 shows allele frequencies for 3 out of

28 different alleles found at locus D2A44 in samples of varying sizes from four

white populations—Canadian, Swiss, French, and Spanish. Presumably there is not

extensive mating at random across these populations so that hypothetical combined

populations (e.g., the U.S. white population) would be vulnerable to departures

from HW.

Questions

1. To arrive at an average figure for a total population consisting of the four

subpopulations combined, compute the weighted average frequency of the

homozygous genotype consisting of allele 9 (without adjustment for the risk of

missing a band) and the heterozygous genotypes consisting of alleles 9 and

10 across the four subpopulations, with weights proportional to the sizes of the

subpopulation samples. (These calculations assume that there is mating at

random within each subpopulation, but not necessarily across subpopulations.)

2. Compute the frequency of the same alleles using the total population figures.

(These calculations assume that there is mating at random within and across the

subpopulations.)

3. Compare the results. Is HW justified?

4. Since there is not, in fact, mating at random across these subpopulations, what is

a sufficient condition for HW in the total population, given HW in each of the

subpopulations?

5. Consider a hypothetical population comprised of Canadians and non-Canadians

in equal numbers. The Canadians have allele 9 frequency 130/916 as in

Table 3.1.2, but the non-Canadians have allele frequency 786/916. Assuming

that HW holds for Canadians and non-Canadians separately and they don’t

intermarry, does HW hold in the combined population?

Table 3.1.2. Numbers of three alleles at locus D2S44 in samples from four populations

Allele type (i) Canadian Swiss French Spanish Total alleles by type

⋮

9 130 100 68 52 350

10 78 73 67 43 261

11 72 67 35 48 222

⋮

Total alleles/sample 916 804 616 508 2,844
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Source

Federal Bureau of Investigation, VNTR population data: a worldwide survey, at
461, 464-468, reprinted in National Research Council, The Evaluation of Forensic
DNA Evidence, Table 4.5 at 101 (1996).

Notes

DNA profiling has been subject to searching criticism by professional groups and in

the courts, but its value is now well established. The National Research Council

Report is one of many discussions of this subject. See, e.g., Faigman, et al.,Modern
Scientific Evidence, ch. 47 (1997).

3.1.3 Telltale fibers

Defendant Wayne Williams was charged with the murders of two young black

males in Atlanta, Georgia. There had been ten other similar murders. Critical

evidence against Williams consisted of a number of fibers found on the bodies

that resembled fibers taken from his environment, in particular, certain unusual

trilobal Wellman 181-b carpet fibers dyed English Olive. A prosecution expert

testified that this type of fiber had been discontinued and that, on conservative

assumptions, there had been only enough sold in a 10-state area to carpet

820 rooms. Assuming that sales had been equal in each of the ten states, that all

Georgia carpet had been sold in Atlanta, and that only one room per house was

carpeted, 81 Atlanta homes had carpet containing this fiber. Because, according to

the expert, there were 638,992 occupied housing units in Atlanta, the probability

that a home selected at random would have such carpeting was less than 81/638,992

or 1 in 7,792. Wayne Williams’s bedroom had carpet with this fiber (although

defendant subsequently disputed this).

Based on this testimony, the prosecutor argued in summation that “there would

be only one chance in eight thousand that there would be another house in Atlanta

that would have the same kind of carpeting as the Williams home.” Williams was

convicted. On appeal, the Georgia Court of Appeals held that the state’s expert

was entitled to discuss mathematical probabilities, that counsel in closing argument

was not prohibited from suggesting inferences to be drawn from the evidence, and

that such inferences might include mathematical probabilities.

Questions

1. Is the prosecutor’s argument correct?

2. Does the 1 in 7,792 figure imply that there is 1 chance in 7,792 that the fibers did

not come from Williams’s home?

3. If the Federal Rules of Evidence applied, should the evidence have been

excluded because by itself (no other evidence being considered), the probability

of guilt it implies is no more than 1 in 81?
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Source

Williams v. State, 251 Ga. 749, 312 S.E.2d 40 (1983).

3.1.4 Telltale hairs

State v. Carlson, 267 N.W.2d 170 (Minn. 1978).

Defendant Carlson was charged with murdering a 12-year old girl who had last been

seen in his company. Investigating officers found two foreign pubic hairs stuck to

the skin of the deceased in her groin area and head hairs clutched in her hand.

Gaudette, an expert on hair comparisons, testified that the pubic and head hairs

found on the victim microscopically matched those of the accused. Based on a study

he had done a few years earlier [the Gaudette-Keeping study described below] for

the pubic hair the “chances those hairs did not come from David Carlson would be

on the order of 1 chance in 800 for each hair,” and for the head hair the figure was

1 in 4,500. Carlson was convicted. On appeal, the Supreme Court of Minnesota

found that Gaudette’s testimony on mathematical probabilities was improperly

received because of “its potentially exaggerated impact on the trier of fact,” but

affirmed the conviction because the evidence was merely “cumulative and thus

nonprejudicial on the facts of the case.”

State v. Massey, 594 F.2d 676 (8th Cir. 1979).

Defendant Massey was charged with bank robbery. The robber wore a blue ski

mask and a similar mask was recovered from the house of Massey’s associate.

At his trial, an FBI expert testified that three out of five hairs found in the mask were

microscopically similar to one or more of nine mutually dissimilar hairs taken from

Massey’s scalp.4 Under questioning by the judge, the expert testified that he had

examined over 2,000 cases and that “only on a couple of occasions” had he seen

hairs from two different individuals that he “could not distinguish.” He also made

reference to the Gaudette-Keeping study, which found, as he described it, “that a

possibility that a hair which you have done or matched in the manner which I have

set forth, there’s a chance of 1 in 4,500 these hairs could have come from another

individual.” In summation, the prosecutor argued that, assuming there were as

many as 5 instances out of 2,000 in which hairs from different individuals could

not be distinguished, the accuracy was better than 99.44% and thus constituted

proof of guilt beyond a reasonable doubt. Massey was convicted. The court of

appeals reversed the conviction, holding that the prosecutor had “confused the

probability of occurrence of the identifying marks with the probability of mistaken

identification of the bank robber.” It also followed Carlson in objecting to the

evidence because of its “potentially exaggerated impact upon the trier of fact.”

4 It is unclear how a hair could be similar to more than one of nine mutually dissimilar hairs.

3.1 Some fundamentals of probability calculation 73



Gaudette-Keeping study

The unwillingness of the courts to accept population frequency evidence in Carlson

and Massey may have been due in part to, or at least justified by, the weaknesses of

the underlying studies on which the estimates were based. The Gaudette-Keeping

study to which the experts referred had been conducted several years earlier and

used the following methodology. A sample of 80 to 100 hairs “randomly selected”

from various parts of the scalps of 100 subjects was reduced to a subsample of 6 to

11 representative hairs from each subject (861 in all). Investigators examined every

interperson pair of hairs macroscopically and microscopically. Only 9 inter-person

pairs were found indistinguishable. The investigators knew, however, that hairs

from different people were involved. According to Gaudette, hair comparisons are

somewhat subjective, and when experiments included “common featureless hairs,”

investigators were unable to distinguish a much higher proportion of hairs than in

the original study. Nevertheless, Gaudette concluded in testimony in Carlson

that “if nine dissimilar hairs are independently chosen to represent the hair on the

scalp of Individual B, the chance that the single hair from A is distinguishable from

all nine of B’s may be taken as (1� (1/40,737))9, which is approximately

1� (1/4,500).”

Questions

1. Do you see how Gaudette-Keeping derived their estimate of 1/4,500 as the

probability of being unable to distinguish a hair selected at random from any of

9 selected from a subject? What assumptions underlie the method of calculation?

2. Assuming the study results were accurate and representative, what two possible

meanings are attributable to the expert’s conclusion? Which is validly deducible

without other assumptions from the study?

3. What issues would you explore on cross-examination or in rebuttal testimony

with respect to the validity of the study?

Source

Gaudette’s studies were reported in Gaudette & Keeping, An Attempt at Determin-
ing Probabilities in Human Scalp Comparison, 19 J. Forensic Sci. 599 (1974);

Probabilities and Human Pubic Hair Comparisons, 21 id. 514 (1976); Some
Further Thoughts on Probabilities and Human Hair Comparisons, 23 id.

758 (1978). Gaudette’s work was criticized by Barnett & Ogle in Probabilities
and Human Hair Comparison, 27 id. 272 (1982). A 2009 report by a committee of

the National Research Council concluded that “testimony linking microscopic hair

analysis with particular defendants is highly unreliable. . . The committee found no

scientific support for the use of hair comparisons for individualization in

the absence of nuclear DNA.” NRC, Forensic Science Report 157 (2009). The

technique and the cases are discussed in Federal Judicial Center, Reference Manual
on Scientific Evidence, 112-119(3rd ed. 2011).
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Notes

Carlson was not a fluke—in Minnesota. In State v. Boyd, 331 N.W. 2d 480 (1983),

the Minnesota Supreme Court followed Carlson, but added some new reasons for

excluding population frequency statistics. It held that a population frequency

statistic of less than 1 in 1,000 should not have been admitted in evidence because

of a “real danger that the jury will use the evidence as a measure of the probability

of defendant’s guilt or innocence, and that evidence will thereby undermine the

presumption of innocence, erode the values served by the reasonable doubt stan-

dard, and dehumanize our system of justice.” Id. at 483. Boyd was followed in State
v. Kim, 398 N.W.2d 544 (1987) (population frequency less than 3.6%) and, with

specific reference to DNA profiling, in State v. Schwartz, 447 N.W.2d 422 (1989).

The Minnesota legislature responded to the trilogy of cases ending with Kim by

passing an act providing that: “In a civil or criminal trial or hearing, statistical

population frequency evidence, based on genetic or blood test results, is admissible

to demonstrate the fraction of the population that would have the same combination

of genetic marks as was found in a specific human biological specimen.” Minn. Stat.

}634.26 (1992). In subsequent rape cases, the Minnesota Supreme Court ignored the

statute and opted for a “black box” approach: quantification of random match

probabilities for DNA profiles may not be presented to the jury, although an expert

may use them as the basis for testifying that, to a reasonable scientific certainty, the

defendant is (or is not) the source of the bodily evidence found at the crime scene.

See, e.g., State v. Bloom, 516 N.W.2d 159 (1994). Is this a reasonable solution to the

problems of misinterpretation noted by the Minnesota Supreme Court?

The position of the Minnesota Supreme Court, as articulated in Boyd, is an

extension to population frequency statistics of an argument by Professor Laurence

Tribe against the use of Bayes’s theorem in evidence. See Section 3.3.2 at p. 84.

In his article, Professor Tribe objected to quantification of guilt, which Bayes’s

theorem could in some applications require, but did not go so far as to advocate the

exclusion of population frequency statistics.5 Most courts have not followed the

Minnesota Supreme Court on this issue. The conclusion of Judge Easterbrook in his

opinion in Branion v. Gramly, 855 F.2d 1256 (7th Cir. 1988), seems more reason-

able and probably represents the dominant view:

Statistical methods, properly employed, have substantial value. Much of the evidence we

think of as most reliable is just a compendium of statistical inferences. Take fingerprints.

The first serious analysis of fingerprints was conducted by Sir Francis Galton, one of the

pioneering statisticians, and his demonstration that fingerprints are unique depends entirely

on statistical methods. Proof based on genetic markers (critical in rape and paternity

litigation) is useful though altogether statistical. So, too, is evidence that, for example,

the defendant’s hair matched hair found at the scene of the crime. None of these techniques

leads to inaccurate verdicts or calls into question the ability of the jury to make an

5 The introduction of population frequency statistics, without Bayes’s theorem, does not require

jurors to come up with a numerical probability of guilt, but the Minnesota Supreme Court equated

the Bayesian and non-Bayesian scenarios by focusing on the risk that jurors would misread the

population statistics as just such a quantification.
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independent decision. Nothing about the nature of litigation in general, or the criminal

process in particular, makes anathema of additional information, whether or not that

knowledge has numbers attached. After all, even eyewitnesses are testifying only to

probabilities (though they obscure the methods by which they generate those

probabilities)—often rather lower probabilities than statistical work insists on. Id. at

1263-1264 (citations omitted).

3.1.5 Randomized response technique

There is an interesting application of the rule of total probability to a survey method

known as the randomized response technique. The method is designed to reduce

bias due to evasive answers when interviewing respondents on sensitive matters.

Respondents will often evade a truthful answer to a sensitive question for fear of

stigmatization or incrimination even with routine assurances of confidentiality.

In order to encourage more accurate responses, in the randomized response

technique an interviewer seeks a yes or no answer to a randomized question, such

that the interviewer has no way of knowing what question the respondent is actually

answering. In one variant of this technique, the interviewer hands the respondent a

coin and a card on which there are two questions: question H is the sensitive

question (e.g., Do you currently use recreational drugs?), while question T is an

innocuous question (e.g., Is your mother’s maiden name spelled with an even

number of letters?). Respondent is instructed to toss the coin, and without revealing

the outcome to the interviewer, answers yes or no to question H or T according as

the coin comes up heads or tails. Thus the interviewer never knows whether the

answer respondent records is to question H or T.
Suppose a proportion p out of n respondents answer yes in the above fashion.

Let A denote the event A¼ [respondent answered yes], and let B denote the event

B¼ [coin came up heads]. Then p is an estimate of P(A), the proportion of all

people in the population surveyed who would answer yes. We seek P(A |B), the
proportion of such respondents who would answer yes to the sensitive question.

Recall that the rule of total probability in the special case of two stratum categories,

B and �B, can be written as

P Að Þ ¼ P A
��B� �

P Bð Þ þ P A
���B� �

P �Bð Þ:
Hence,

P A
��B� � ¼ P Að Þ � P A

���B� �
P �Bð Þ� 

=P Bð Þ:
Questions

1. Assume thatP Bð Þ ¼ P �Bð Þ ¼ ½by the coin toss andP A
���B� � ¼ ½by design of the

innocuous question. If 30% of respondents answered yes to the interviewer, what

is the rate of current use of recreational drug use in the survey?
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2. Is the variance of the randomized response estimator larger or smaller than the

variance of the estimator obtained by simply asking all respondents the sensitive

question?

Source

Fleiss, Levin, & Paik, Statistical Methods for Rates and Proportions 4 (citing the

original article by Warner, Randomized Response: A Survey Technique for
Eliminating Evasive Answer Bias, 60 J. Am. Stat. Assoc. 63 (1965) and subsequent

articles).

3.2 Selection effect

Suppose that in Williams v. State (Section 3.1.4), a fiber found on one of the bodies

was compared with fibers found in the apartment of the defendant. If the defendant

did not leave the fiber, the chance of matching a pre-selected fiber is 1/100. But if

there are 50 distinct fibers in defendant’s apartment (each with a 1/100 chance of

matching), and the fiber found on the body is compared with each, the probability of

one or more matches is 1–0.9950¼ 0.395. In Coolidge v. State, p. 69, since the

40 pairs of particles were apparently chosen from a larger group on the basis of

visual (microscopic) similarity, the probability of a random match in the data might

be much higher than the 10% rate reported for studies that did not use a visual

similarity screening criterion. A great deal may thus depend on the way attempts to

match characteristics are made and reported, a phenomenon sometimes referred to

as “selection effect.”

3.2.1 L’affaire Dreyfus

In the 1899 retrial of the 1894 secret court-martial of Alfred Dreyfus, Captain in the

French General Staff, the prosecution again sought to prove that Dreyfus was

the author of a handwritten bordereau (note) that transmitted five memoranda

purportedly containing secret military information to the German ambassador in

Paris. This bordereau was among a package of papers that a charwoman, in the pay

of French intelligence, delivered to her employers, claiming that she discovered it

(the bordereau torn to pieces) in the ambassador’s wastebasket. The famous

criminologist Alphonse Bertillon testified that there were suspicious coincidences

of the initial and final letters in four of the 13 polysyllabic words in the bordereau.

Evaluating the probability of such a coincidence in a single word in normal writing

as 0.2, Bertillon argued that the probability of four sets of coincidences was

0.24¼ 0.0016 in normal writing. This suggested to him that the handwriting of

the document was not normal, which connected with a prosecution theory that

Dreyfus had disguised his own handwriting to conceal his authorship. A divided

military court again found Dreyfus guilty of treason, but this time with extenuating

circumstances.

3.2 Selection effect 77



Questions

1. Given the assumed probability of coincidence in a single word as 0.2, exactly

what probability did the expert compute?

2. If a high number of coincidences in the 13 polysyllabic words were somehow

indicative of contrived handwriting, compute a relevant probability under the

assumption that the handwriting was not contrived.

Source

Tribe, Trial by Mathematics: Precision and Ritual in the Legal Process, 84 Harv.

L. Rev. 1329, 1333-34 (1971); Rapport de MM. Darboux, Appell et Poincaré, in

L’affaire Dreyfus: La Révision du Procés de Rennes, Enquête 3 at 501 (1909).

Notes

The 1899 verdict was widely recognized as a manifest injustice; there was an

international outcry and Dreyfus was immediately pardoned on health grounds.

The Dreyfus family eventually obtained review of the court martial by the civil

court of appeals. As part of its investigation, the court requested the Academie des

Sciences to appoint an expert panel to examine and report on the expert evidence.

The panel–which included Henri Poincaré, a famous professor of the calculus of

probabilities at the Sorbonne–pronounced it worthless. They added that “its only

defense against criticism was its obscurity, even as the cuttlefish cloaks itself in a

cloud of ink in order to elude its foes.” Charpentier, The Dreyfus Case 226 (J. Lewis
May translation 1935). In 1906, the court exonerated Dreyfus and annulled the 1899

verdict. In the end, having endured five years on Devil’s Island, Dreyfus was

restored to the army, promoted to major, and decorated with the Legion d’Honneur.

3.2.2 Searching DNA databases

According to the 1996 Report of the Committee on DNA of the National Research

Council, in criminal investigations more than 20 suspects have already been

initially identified by computerized searches through DNA databases maintained

by various states. As the number and size of such databases increase, it is likely that

initial identifications will more frequently be made on this basis. In its report, the

Committee on Forensic DNA Science of the National Research Council stated that

in such cases the usual calculation of match probability had to be modified.

It recommended as one of two possibilities that the calculated match probability

be multiplied by the size of the data base searched.

Questions

1. Explain the theory of such a calculation by reference to Bonferroni’s inequality

(see Section 3.1 at p. 63–64).
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2. What is the probability computed with such an adjustment? Is it relevant to the

identification issue?

3. What is the difference between this case and the fiber matching problem referred

to in Section 3.2?

4. After reading Section 3.3 on Bayes’s theorem, consider the following: Suppose

that after the initial identification based on a computerized search, specific

evidence is discovered that would have been sufficient to have the suspect’s

DNA tested if the specific evidence had been discovered first. Does it make any

difference to the strength of the statistical evidence that it was used before or

after the specific evidence was discovered? Suppose the specific evidence was

very weak or even exculpatory so that it would not have led to a testing of the

suspect’s DNA. How would that affect the probative force of the statistical

evidence?

5. Should the adjustment recommended by the Committee be made?

Source

National Research Council, The Evaluation of Forensic DNA Evidence 32 (1996).

For criticisms of the Committee’s position see Donnelly & Friedman, DNA Data-
base Searches and the Legal Consumption of Scientific Evidence, 97 Mich. L. Rev.

931 (1999); see also Finkelstein & Levin, On the Probative Value of Evidence from
a Screening Search, 43 Jurimetrics 265 (2003).

3.2.3 Trawling in DNA Databases

Applying the independence assumption, an investigator calculated the chance of a

random match probability for a nine-locus genotype profile among unrelated

caucasians was 1 in 7.54� 106. But another investigator threw cold water on the

assumption of independence used in the calculation when she reported finding

122 nine-locus matches in a database consisting of 65,493 profiles of 13-locus

genotypes. (The remaining four loci did not match.)

Questions

1. Does the finding of 122 nine-locus matches cast doubt on the assumption of

independence underlying the random match probability calculation?

2. What’s the difference between the search in this problem and in the preceding

problem?

Source

Kaye, Trawling DNA Databases for Partial Matches, 19 Cornell J. of Law & Public

Policy 145 (2010).
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3.3 Bayes’s theorem

Bayes’s theorem is a fundamental tool of inductive inference. In science, as in law,

there are competing hypotheses about the true but unknown state of nature and

evidence that is more or less probable depending on the hypothesis adopted.

Bayes’s theorem provides a way of combining our initial views of the probabilities

of the possible states of nature with the probabilities of the evidence to arrive at

posterior probabilities of the states of nature, given the evidence. It is thus a way of

reasoning “backward” from effects to their causes.

In mathematical notation, Bayes’s theorem shows how a set of conditional

probabilities of the form P(Bj|Ai) may be combined with initial or prior probabilities

P(Ai) to arrive at final or posterior probabilities of the form P(Ai|Bj), wherein

the roles of conditioning event and outcome event have been interchanged.6

In the case of discrete events, Bayes’s theorem is easily derived. By definition,

P(Ai|Bj)¼P(Ai and Bj)/P(Bj). The joint probability P(Ai and Bj) may be written

P(Bj|Ai)P(Ai) and, similarly, the marginal probability P(Bj) may be written as

P B j

� � ¼X
i
P B j

��Ai

� �
P Aið Þ, the sum being taken over all possible states of nature

Ai (see Section 3.1). Thus we have

P Ai

��B j

� � ¼ P B j

��Ai

� �
P Aið ÞX

i
P B j

��Ai

� �
P Aið Þ :

In the case of only two states of nature, say A and not-A �Að Þ, the result is:

P A
��B� � ¼ P B

��A� �
P Að Þ

P B
��A� �

P Að Þ þ P B
���A� �

P �Að Þ :

A more enlightening formulation is in terms of odds:

P A
��B� �

P �A
��B� � ¼ P Að Þ

P �Að Þ �
P B

�� A� �
P B

�� �A� �
1ð Þ 2ð Þ 3ð Þ

:

In words, this says that (1) the posterior odds on the truth of state A as opposed to

not-A given evidence B are equal to (2) the prior odds on A times (3) the likelihood

ratio for B, i.e., the ratio of the probability of B given A and not-A. Thus, the
probative force of evidence is an increasing function of both the prior odds and the

likelihood ratio.

6 The difference between these events can be made clear from an example attributed to Keynes. If

the Archbishop of Canterbury were playing in a poker game, the probability that he would deal

himself a straight flush, given honest play on his part, is not the same as the probability of honest

play on his part, given that he has dealt himself a straight flush. The first is 36 in 2,598,960; the

second most people think would be much larger, perhaps close to 1.
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Bayes’s theorem honors the Rev. Thomas Bayes (1702-61), whose result was

published posthumously in 1762 by Richard Price in the Philosophical

Transactions. In Bayes’s paper, the prior probability distribution was the uniform

distribution of a ball thrown at random on a billiard table. While Bayes’s original

example utilized a physical prior probability distribution, some more controversial

applications of Bayes’s theorem have involved subjective prior probability

distributions. See Section 3.3.2.

Although prior odds are usually subjective, sometimes they are objective and

can be estimated from data. An intriguing example of objective calculation of a

prior probability was Hugo Steinhaus’s computation for paternity cases. See

Steinhaus, The Establishment of Paternity, Prace Wroclawskiego Towarzystwa

Naukowego, ser. A., No. 32, at 5 (1954).

The background, or prior, probability computed by Steinhaus was the probability

that the accused was the father after intercourse had been established, but before

serological test results were known. The posterior probability was the probability of

paternity given the test results. A significant aspect of Steinhaus’s procedure was

his use of population statistics to estimate the proportion of guilty fathers among

those designated for the test, even though no individuals (except those subsequently

exonerated by the test) could be identified as guilty or innocent. For the sake of

clarifying his theory, we simplify it slightly.

Different blood types occur with different frequencies in the population. Let the

type in question be called “A” and have frequency f; the frequency of those who do
not have this type is 1–f. Consider the group of accused fathers who take the

serological test because the child has blood type A, one not shared by the mother.

If the mothers’ accusations were always right, the serological test would show that

every member of this group had type “A” blood (although the converse, of course, is
not true). If the mothers’ accusations were always wrong, the members of this group

would constitute a random sample from the population with respect to blood type,

and the expected frequency of those with blood types other than A would be 1–f.
The disparity between the actual rate of type A blood in this accused group and the

population rate measures the overall accuracy of the accusations. The higher the

proportion of men with type A blood, the more correct the accusations.

Let p be the proportion of the accused group who are fathers. Then 1–p is the

proportion of unjustly accused men and (1–p) (1–f ) is the expected proportion of

those unjustly accused whom the test will exonerate. The ratio of the expected

proportion of the exonerated group to the proportion of the general population who

do not have blood type A is (1–p) (1–f )/(1–f ), or simply 1� p, the prior probability
of a false accusation. The importance of this ratio is that both its numerator and

denominator can be estimated from objective sample and population statistics.

Using the results of 1,515 Polish paternity cases in which serological tests had

been administered, Steinhaus concluded that the prior probability of a true accusa-

tion was about 70%. (With perhaps less than complete fairness, this factor has been

called “the veracity measure of women.”) The 70% figure may be regarded as the

background probability in paternity cases. It was, however, computed from a

subgroup of paternity cases, including only those cases in which the child did not

share the blood type of the mother, requiring a serological test to establish paternity.
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Nevertheless, it seems fair to test the attributes of various decision rules by this

subgroup because it is probably a random sample with respect to the fact of

paternity; at the very least there are not more paternities among defendants in this

group than in the larger group.

3.3.1 Rogue bus

On a rainy night, a driver is forced into a collision with a parked car by a swerving

bus that does not stop. There are two bus lines that travel the street: Company A has

80% of the buses; company B has 20% of the buses. Their schedules shed no light

on the culprit company. An eyewitness says it was company B’s bus, but eyewitness

testimony under sub-optimal conditions such as those prevailing here (rainy night,

speeding bus) is known to have a high error rate.

Questions

1. In a civil suit by the injured driver against company A, is the statistical evidence

that company A has 80% of the buses sufficient to satisfy plaintiff’s burden of

proof by a preponderance of the evidence that it was company A’s bus? In the

Smith case cited below, the court held (quoting Sargent v. Massachusetts
Accident Co., 307 Mass. 246, 250, 29 N.E.2d 825, 827 (1940)) that the evidence

must be such as to produce “actual belief” in the event by the jury, and statistical

evidence could only produce probabilities, not actual belief. Do you agree that

this is a valid reason for concluding that statistical evidence is per se

insufficient?

2. If suit is also brought against company B, is the eyewitness’s testimony

sufficient to satisfy plaintiff’s burden of proof that it was company B’s bus?

3. If the statistical evidence is insufficient but the eyewitness testimony is

sufficient, how do you reconcile those results?

4. Assume that the eyewitness testimony has a 30% error rate. Treating the

statistical evidence as furnishing the prior odds, and the eyewitness testimony

as supplying the likelihood ratio, use Bayes’s theorem to combine the statistical

and eyewitness evidence to determine the probability, given the evidence, that it

was company B’s bus.

Source

Cf. Smith v. Rapid Transit, Inc., 317 Mass. 469, 58 N.E.2d 754 (1945). For a

discussion of some other early cases on this subject, see Finkelstein, Quantitative
Methods in Law 60-69 (1978).
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Notes

Whether “naked” statistical evidence (i.e., statistical evidence without case-specific

facts) can be sufficient proof of causation in a civil or criminal case has provoked

extensive academic discussion, with the professorial verdict usually being negative,

at least in criminal cases. The arguments are criticized in Shaviro, Statistical-
Probability Evidence and the Appearance of Justice, 103 Harv. L. Rev.

530 (1989). For criminal cases, the discussion has been conducted on the level of

law-school hypotheticals, because in real cases there is always case-specific

evidence to supplement the statistics. For civil cases, statistics have been held to

be sufficient evidence of causation when that has seemed necessary to do justice.

The outstanding example is the diethylstilbestrol (DES) litigation, in which the

DES manufacturers were held proportionately liable, based on their market shares,

to plaintiffs whose mothers had taken DES during pregnancy, even though there

was no case-specific evidence of which company’s DES the mother had taken.

Sindell v. Abbott Labs, Inc, 26 Cal.3d 588, 607 P.2d 924 (1980), cert. denied,
449 U.S. 912 (1980); Hymowitz v. Lilly & Co., 73 N.Y.2d 487 (1989).

3.3.2 Bayesian proof of paternity

A New Jersey statute criminalizes sexual penetration when the defendant has

supervisory or disciplinary power by virtue of his “legal, professional or occupa-

tional status” and the victim is on “probation or parole or is detained in a hospital,

prison or other institution.” Defendant was a black male corrections officer at the

Salem County jail where the female victim was incarcerated on a detainer from the

Immigration and Naturalization Service. The victim conceived a child while in

custody. If defendant was the father he was guilty of a crime, irrespective of the

victim’s consent.

In contested paternity proceedings, prior to the advent of DNA testing, the parties

were frequently given Human Leukocyte Antigen (HLA) tests to identify certain

gene-controlled antigens in the blood. After making HLA tests, an expert witness for

the state testified that the child had a particular set of genes that was also possessed

by the defendant, but not by the mother. She further testified that the frequency of

this particular set of genes was 1% in the North American black male population.

The expert assumed that the odds of defendant being the father, quite apart from the

HLA tests, were 50–50 and, based on that assumption and the 1% frequency of the

gene type, concluded that “the likelihood of this woman and this man producing this

child with all of the geneticmakeup versus this womanwith a randommale out of the

black population. . . [results in] a probability of paternity of 96.55%.”

Questions

1. Was the expert’s testimony on the probability of paternity properly admitted?

2. Was the restriction to the rate of the haplotype in the black population

warranted?
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3. If the expert had proposed to give the jurors a hypothetical range of prior

probabilities and the posterior probability associated with each prior, should

her testimony have been admitted?

Source

State v. Spann, 130 N.J. 484, 617 A.2d 247 (Sup. Ct. N.J. 1993).

Notes

Whether Bayes’s theorem should be explicitly used as suggested in Question 3 has

been the subject of considerable academic and some judicial debate. On the

academic side, among the first articles are Finkelstein & Fairley, A Bayesian
Approach to Identification Evidence, 83 Harv. L. Rev. 489 (1970) (proposing the

use of Bayes’s theorem); Tribe, Trial by Mathematics:Precision and Ritual in the
Legal Process, 84 Harv. L. Rev. 1329 (1971) (criticizing the proposal); Finkelstein

& Fairley, A Comment on “Trial by Mathematics,” 84 Harv. L. Rev. 1801

(responding to Tribe); and Tribe, A Further Critique of Mathematical Proof,
84 Harv. L. Rev. 1810 (1971) (rejoinder). A further critique appears in Brilmayer

& Kornhauser, Review: Quantitative Methods and Legal Decisions, 46 U. Chi.

L. Rev. 116 (1978). See generally two symposia: Probability and Inference in the
Law of Evidence, 66 B. U. L. Rev. 377-952 (1986) and Decision and Inference in
Litigation, 13 Cardozo L. Rev. 253-1079 (1991). On the judicial side, compare

Plemel v. Walter, 303 Ore. 262, 735 P.2d 1209 (1987) and State v. Spann, supra
(both approving an explicit use) with Connecticut v. Skipper, 228 Conn. 610, 637

A.2d 1104 (1994) (disapproving an explicit use).

Those approving an explicit use in a criminal case argue that jurors tend to

underestimate the probative force of background statistical evidence. Such insensi-

tivity to prior probability of outcomes appears to be a general phenomenon in

subjective probability estimation. See, e.g., Judgment Under Uncertainty:
Heuristics and Biases, at 4–5 (Kahneman, Slovic & Tversky, eds., 1982). Empirical

studies based on simulated trials tend to support this. See, e.g., Goodman, Jurors’
Comprehension and Assessment of Probabilistic Evidence, 16 Am. J. Trial Advo-

cacy 361 (1992). They also point to what is called the prosecutor’s fallacy: the risk

that the jury will misinterpret the low population frequency of the blood type as the

probability of innocence. Those opposed to explicit use object that jurors would be

invited to estimate a probability of guilt before hearing all the evidence, which they

view as inconsistent with the presumption of innocence and the instruction

commonly given to jurors to withhold judgment until all the evidence is heard.

On the other hand, if the jurors wait until they hear all the evidence before estimating

their priors, the statistics are likely to influence those estimates. Some scholars

further object to any juror quantification of the probability of guilt as inconsistent

with the “beyond a reasonable doubt” standard for criminal cases. Since conviction

is proper despite some doubt, it is not clear why quantification of that doubt by a juror

would be per se objectionable. There is some evidence that quantification of the

burden of proof influences verdicts in an appropriate direction. Kagehiro & Stanton,

84 3 Elements of Probability



Legal vs. Quantified Definitions of Standards of Proof, 9 L. & Hum. Behav.

159 (1985).

Perhaps the strongest case for an explicit use by the prosecution arises if the

defense argues that the trace evidence does no more than place defendant in a group

consisting of those in the source population with the trace in question. Known as the

defense fallacy, the argument assumes that without the trace defendant is no more

likely to be guilty than anyone else in the source population. (This is an unlikely

scenario since there is almost always other evidence that implicates the defendant.)

The prosecution might then be justified in using Bayes’s theorem to show what the

probabilities of guilt would be if the jurors believed at least some of the other

evidence. Conversely, the prosecutor’s fallacy (that the frequency of the trace in the

population is the probability of innocence) assumes that the prior probability of

defendant’s guilt is 50%. If the prosecutor makes such an argument, the defense

should then be justified, using Bayes’s theorem, to demonstrate what the

probabilities would be if some or all of the other evidence were disbelieved.

Another set of issues is presented if identifying the source of the trace does not

necessarily imply guilt. A thumb print on a kitchen knife, used as a murder weapon,

may have been left there innocently. The complication here is that the same facts

suggesting guilt that are used to form the prior probability of authorship of the

print would also be used to draw an inference from authorship of the print to guilt.

If this is an impermissible double use, it would be hard or impossible to partition the

non-statistical evidence among uses.

Whether an explicit use of Bayes’s theorem is allowed in the courtroom may stir

legal academics more than jurors. In one empirical study the jurors simply

disregarded the expert’s Bayesian explanations of the statistics. See Faigman &

Baglioni, Bayes’ Theorem in the Trial Process: Instructing Jurors on the Value of
Statistical Evidence, 12 Law & Hum. Behav. 1 (1988). The more important

(and often ignored) teaching of Bayes’s theorem is that one need not assert that a

matching trace is unique or nearly unique in a suspect population to justify its

admission as powerful evidence of guilt.

3.4 Screening devices and diagnostic tests

Screening devices and diagnostic tests are procedures used to classify individuals

into two or more groups, utilizing some observable characteristic or set of

characteristics. Most familiar examples come from medical diagnosis of patients

as “affected” or “not affected” by some disease. For our discussion we adopt the

clinical paradigm, but the central ideas are by no means limited to that context.

False positives and negatives

No diagnostic test or screening device is perfect. Errors of omission and commission

occur, so we need to distinguish between the true status (say, A¼ affected or

U¼ unaffected) and the apparent status based on the test (say, +¼ test positive
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or �¼ test negative). A false positive diagnosis is the occurrence of a positive

outcome (+) in an unaffected person (U ); it is denoted by (+, U). A false negative is

the occurrence of a negative outcome (�) in an affected person (A); it is denoted by
(�, A). The situation may be summarized in a fourfold table of events, as follows.

Test outcome

True Status + �
A (A,+) correct (A, �) false negative

U (U,+) false positive (U, �) correct

Sensitivity and specificity

Although the terms false positive and false negative are unambiguous when

referring to the possible screening errors, an accuracy rate can be defined a few

different ways, and these are often confused in casual or uninformed communica-

tion. The sensitivity of a test is the proportion of all affected individuals who

(correctly) test positive, P[+|A]. The specificity of a test is the proportion of all

unaffected individuals who (correctly) test negative, P[�|U].
The term false positive rate usually (but not always) refers to the complement of

specificity,

false positive rate ¼ 1� specificity ¼ P þ��U	 

;

because it measures the rate of occurrence of falsely positive outcomes (among the

truly unaffected). The term false negative rate usually refers to the complement of

sensitivity,

false negative rate ¼ 1� sensitivity ¼ P ���A	 

because it measures the rate of occurrence of falsely negative outcomes (among the

truly affected). These terms must always be carefully examined, as some authors

use them to refer to another set of error rates with different denominators.

Positive and negative predictive values

Positive predictive value (PPV) is the proportion of all test-positive people who are
truly affected,

PPV ¼ P A
��þ	 
 ¼ P þ;A½ �

P þ½ � :

Negative predictive value (NPV) is the proportion of all test-negative people who

are truly unaffected,

NPV ¼ P U
���	 
 ¼ P �;U½ �

P �½ � :
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A screening device is characterized by its sensitivity and specificity. These are its

operating characteristics, which are objective quantifications of accuracy that do

not depend on the prevalence rate P[A]. However, the recipient of a screen test

(or its victim, as the case may be) is usually more concerned about the positive or

negative predictive values of the test since, having the test result in hand, interest

turns to the proportion of similarly classified people who are truly affected or not.

It is an important fact that predictive values do depend on overall prevalence

rates. In fact, for a test with given sensitivity and specificity, the odds on being

affected given a positive test are:

PPV

1� PPV
¼ P A

��þ	 

P U

��þ	 
 ¼ P þ��A	 

P A½ �

P þ��U	 

P U½ �

¼ sensitivity

1� specificity
� prevalence odds:

Compare this with Bayes’s theorem on p. 80. As the prevalence of a condition

becomes rare (P[A] approaching zero), PPV drops too, and sometimes surprisingly

so. For example, a test with sensitivity and specificity each equal to 99% is

generally considered quite precise, relative to most diagnostic procedures. Yet for

a condition with a not-so-rare prevalence of one per hundred, the odds on being

affected given a positive test outcome are (0.99/0.01)� (0.01/0.99)¼ 1, i.e., among

all positive results only 50% are in fact truly affected! For a prevalence rate of one

per thousand, the PPV is only about 10%. These low numbers raise serious ethical

and legal questions concerning action to be taken following positive test outcomes.

One course to pursue whenever feasible to improve a screen’s PPV is to repeat

the test, preferably with an independent procedure. Repeated administrations

of even the same screen results in much higher accuracy than does a single

administration.7 Another technique is to have some independent basis for the test,

i.e., some factor associated with increased prevalence odds.

ROC curve

Although we have assumed in our discussion a natural dichotomy, affected and

unaffected, one should be wary of arbitrary or forced dichotomization of an

underlying continuum. Often, for convenience or simplicity, an underlying spec-

trum of a condition (e.g., ability) is dichotomized (“fast” or “slow” learner). Aside

from the dangers of stigmatization and misclassification, an ill-chosen breakpoint

for the test diminishes accuracy. There is an inherent trade-off—lowering the

cut-off criterion for a test-positive outcome increases sensitivity but decreases

specificity, allowing more false positive errors; conversely, raising the cut-off

criterion increases specificity but lowers sensitivity. In general, if a dichotomous

7Assuming random misclassification errors and with a “positive” outcome defined as two or more

individual positives.
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classification is necessary, one should weigh the separate costs and benefits of each

kind of error or correct decision.

To compare two competing screening procedures in the context of an underlying

continuum, one should review each pair of values of sensitivity and specificity as

the cut-off criterion is varied. The term “relative operating characteristic (ROC)

curve” describes the locus of such pairs that trace a curve in the sensitivity-

specificity plane. If the ROC curve of one procedure dominates the others for any

classification criterion, then preference for that procedure is straightforward.

If ROC curves cross, then only within a range of sensitivity values is one screen

preferable to another. The area under an ROC curve is a commonly used

one-number measure of the classificatory accuracy of the underlying continuum.

(These notions developed historically from radio communications technology,

where ROC originally stood for “receiver operating characteristic.”) An example

of ROC curves is shown in Fig. 3.4.

3.4.1 Airport screening device

As of 1980, the FAA reinstituted the use of a statistically based hijacker profile

program (discontinued in 1973) to help identify people who might attempt to hijack

a plane using a nonmetallic weapon. Assume that approximately 1 person in 25,000

Fig. 3.4. ROC curves for good and bad screening tests
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carries such a weapon and that the test has sensitivity of 90% and specificity of

99.95%. One Lopez and his companion show the wrong profile. They are searched,

heroin is found, and they are arrested.

Question

On a motion to suppress the evidence in a subsequent prosecution, did the test

provide either “probable cause” to justify an arrest or “reasonable suspicion” to

justify a brief investigative detention?

Source

United States v. Lopez, 328 F. Supp. 1077 (E.D.N.Y. 1971); Monahan & Walker,

Social Science in Law, 211-12 (8th ed. 2014).

Notes

Screening devices are used in a variety of contexts, including educational admissions,

credit risk assessment, testing for drug use, and potential for criminal behavior. There

are three possible methods of selection for screening: (i) attempt to identify high-risk

individuals and test them; (ii) select individuals at random; and (iii) test everyone.

Each of these methods has provoked litigation. In United States v. Mendenhall,
446 U.S. 544 (1980), three justices found a psychological profile used to identify

heroin couriers sufficient to generate “reasonable suspicion” for an investigative

detention, but four justices found the profile insufficient. In Florida v. Royer,
460 U.S. 491 (1983), a majority of the Court rejected such profiles

as insufficient for probable cause, but allowed them as a basis for reasonable

suspicion. In United States v. Lopez, 328 F. Supp. 1077 (E.D.N.Y. 1971), a hijacker

screening device was upheld as sufficient for probable cause, despite “disquieting

possibilities.”

If psychological profiles are at the edge of acceptability, then pure chance should

be an insufficient basis for a search. The Supreme Court has held that “random”

(really haphazard) stops by police of automobiles, ostensibly to check licenses and

registration, are unreasonable seizures within the Fourth and Fourteenth

Amendments. Delaware v. Prouse, 440 U.S. 648 (1979). The Court found such

spot checks insufficiently productive compared with action taken on the basis of

observed violations, and noted that the discretion given to police officers held a

potential for abuse not present in more systematic methods. Id. at 659-63. Query
whether searches based on objective stopping rules would meet constitutional

objections.

Jar Wars: Some programs of universal testing have been sustained as reasonable,

while others have been rejected as too intrusive. In 1986, the Reagan administra-

tion, by executive order, declared drug use incompatible with federal employment

and gave agency heads authority to require urine tests of all new applicants and of

present employees suspected of drug use. The order asserted that the program was

not instituted to gather evidence for criminal prosecution. Executive Order

No. 12564, 3 C.F.R. 224 (1986), reprinted in 5 U.S.C. }7301, note at 909-911
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(1998). The program as implemented by the Customs Service was upheld in

National Treasury Employees Union v. Von Raab, 489 U.S. 656 (1989).

Bills have been introduced in many states to regulate drug testing in the

workplace. In 1987, a bill introduced in the New York Senate provided that any

screening test must “have a degree of accuracy of at least ninety-five percent” and

“positive test results must then be confirmed by an independent test, using

a fundamentally different method and having a degree of accuracy of 98%.”

Assuming that 0.1% of the adult working population takes drugs, and that

“accuracy” refers to both sensitivity and specificity, what is the positive predictive

value of a test program meeting the bill’s requirements?

3.4.2 Polygraph evidence

Edward Scheffer, an airman stationed at March Air Force Base in California,

volunteered to work as an informant on drug investigations for the Air Force Office

of Special Investigations (OSI). He was told that from time to time he would be

asked to submit to drug testing and polygraph examinations. Shortly after beginning

undercover work, he was asked to take a urine test. After providing the sample, but

before the results were known, he agreed to take a polygraph test administered by

an OSI examiner. In the opinion of the examiner, the test “indicated no deception”

when Scheffer denied using drugs after joining the Air Force. After the test,

Scheffer unaccountably disappeared from the base and was arrested 13 days later

in Iowa. OSI agents later learned that the urinalysis revealed the presence of

methamphetamine.

At his trial by court-martial, Scheffer sought to introduce the polygraph evidence

in support of his defense of innocent ingestion, i.e., that he had not knowingly used

drugs. The military judge denied the motion on the basis of Military Rule of

Evidence 707, which makes polygraph evidence inadmissible in court-martial

proceedings. Scheffer was convicted. On appeal, he contended that Rule 707 was

unconstitutional because the blanket prohibition of polygraph evidence deprived

him of a “meaningful opportunity to present a complete defense.”

When the case reached the Supreme Court, it upheld Rule 707. United States
v. Scheffer, 118 S. Ct. 1261 (1998). Justice Thomas, writing for the majority,

observed that the scientific community “remains extremely polarized about the

reliability of polygraph techniques” with overall accuracy rates from laboratory

studies ranging from 87% to little more than the toss of a coin. The lack of scientific

consensus was reflected in disagreements among federal and state courts over the

admissibility of such evidence, with most states maintaining per se rules excluding

or significantly restricting polygraph evidence. Rule 707’s blanket prohibition was

thus justified as in furtherance of the government’s legitimate interest in excluding

unreliable evidence. Id. at 1265–1266.
In his opinion, Justice Thomas had to deal with the fact that the government, and

in particular the Defense Department, routinely uses polygraph tests in screening

for personnel security matters, and in fact maintains a highly regarded Polygraph
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Institute for training examiners. As Justice Stevens noted in his dissent, “[b]etween

1981 and 1997, the Department of Defense conducted over 400,000 polygraph

examinations to resolve issues arising in counterintelligence, security, and criminal

investigations.” Id. at 1272, n. 7. Justice Thomas responded that “[s]uch limited, out

of court uses of polygraph techniques obviously differ in character from, and carry

less severe consequences than, the use of polygraphs as evidence in a criminal

trial.” Id. at 1266, n. 8. The Defense Department program yields some illuminating

data. For example, in fiscal year 1997, there were 7,616 individuals who were tested

under the Department of Defense Counterintelligence-Scope Program. Of these,

176 individuals were evaluated as “yielding significant psychological responses, or

were evaluated as inconclusive and/or provided substantive information.” Out of

this subgroup, at the time of the report, 6 persons had received adverse action

denying or withholding access to classified information, 2 were pending adjudica-

tion, and 14 were pending investigation.

Questions

[In answering the following questions, it may be helpful to construct a two-by-two

table with the rows being “guilty” and “not guilty”, and the columns being the

outcome of the polygraph test (“deception found” and “deception not found”).

Obviously, only part of the table can be filled in from the Defense Department data.]

1. Justice Stevens’s dissent cites a number of studies reporting accuracy rates for

polygraph tests between 80 and 95%. Assuming that the 1997 data from the

counterintelligence program are representative of the accuracy of the polygraph

examinations given by the Defense Department, what is an upper bound for the

positive predictive value (PPV) of the test (i.e., assuming all pending matters are

resolved unfavorably to the individuals)?

2. What statistic would you want to compute to appraise the accuracy of an

exonerating polygraph test, as in Scheffer’s case?

3. Is it reasonable or unreasonable to assume that in the Defense Department

program PPV� 1�NPV for its polygraph tests? If reasonable, what does this

suggest about the accuracy of the test when used as exonerating evidence?

4. How is the accuracy of the test as it might have been used in Scheffer’s case

affected by the difference in character between criminal proceedings, such as

Scheffer’s, and personnel screening? Was the Court right when it declined to

infer that, since the NPV of the test was apparently deemed sufficient for

counterintelligence screening purposes, it should also be sufficient for criminal

trials?

Source

United States v. Scheffer, 118 S. Ct. 1261 (1998); Department of Defense, Annual
Polygraph Report to Congress (Fiscal Year 1997); see also Finkelstein & Levin,On
the Probative Value of Evidence from a Screening Search, 43 Jurimetrics

265, 283-289 (2003).
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3.5 Monte Carlo methods

Monte Carlo methods (also known as simulation methods) constitute a branch of

empirical–as opposed to deductive–mathematics that deals with experiments using

random numbers. That name conjures up sequences of random results, as in a

gambling casino, which are at the heart of the method. With the advent of

computers Monte Carlo techniques have become widely used in statistics, as they

have in all fields of applied mathematics.

One of the basic problems addressed by Monte Carlo methods is to estimate a

distribution or average value of some possibly complicated statistic. In the

pre-computer era, problems of this sort were solved using the tools of mathematical

analysis and numerical approximation, with a range of results depending on the

complexity of the analysis and accuracy of the approximation. When simulation is

used, the computer generates data according to the specified distribution (such as

the normal distribution); calculates the statistic for each simulated data set; and

estimates the average value in the obvious way from the sample average of

simulated values. Thus, we replace complex analysis with reliance on the law of

large numbers to ensure that the sample estimate will be close to the true value with

high probability. Some mathematicians complain that mathematical insight is being

replaced by mindless computing. We don’t have to resolve that debate; it is

unquestioned that Monte Carlo methods are highly useful in statistics.

For example, suppose we want to calculate the probability that a test statistic will

reject the null hypothesis, but the mathematical distribution of the test statistic is

unknown. Using Monte Carlo methods, we have the computer generate a large

number of data sets, compute the test statistic each time, and count the sample

proportion of times the statistic rejects the null hypothesis. Tail probabilities, or

P-values, are often generated in this way. When the tail probabilities are very small,

it is inefficient to estimate them by the simple proportion of times they occur

because the number of simulations required to see even one event may be enor-

mous. In such cases, a more complicated technique known as importance sampling
is used instead. This technique estimates very small P-values with much greater

relative precision for a given number of simulations.

Simulation methods are routinely used to check the accuracy of large sample

techniques, such as approximate 95% confidence intervals. Here the computer

generates many data sets with known parameter values, and the proportion of

these contained inside the confidence intervals constructed by the method under

consideration estimates the true coverage probability.

In an interesting and relatively recent development known as the bootstrap, the
computer generates the data for Monte Carlo methods without assuming any

particular distribution. Instead, it uses the empirical distribution of an observed

set of data and samples from it with replacement to create multiple data sets known

as bootstrap samples. Statistical estimators are then calculated from each of the

bootstrap samples to make robust inferences about their distribution in the popula-

tion from which the original sample was drawn. For example, a famous data set

consisted of the average undergraduate GPA and first year law school grades for
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15 American law schools. The investigator sought to compute a confidence interval

for the correlation coefficient, but confronted problems of small sample size and a

nonnormal distribution for the coefficient. Using the bootstrap, he drew replicate

samples of size 15 at random and with replacement. Doing this 200 times generated

a Monte Carlo sample of 200 correlation coefficients. The lower 2.5% and upper

97.5% of these values provided the desired 95% confidence interval.

3.5.1 Sentencing a heroin swallower

Charles Shonubi was caught at Kennedy Airport attempting to enter the country

from Nigeria with 103 condoms in his digestive tract. The condoms held 427.4

grams of white powder. Analysis of a random sample of four condoms showed them

to contain heroin. Shonubi was convicted of importation and possession with intent

to distribute a controlled substance. From the fact that Shonubi had made at least

8 trips to Nigeria between September 1, 1990, and December 1, 1991, without a

reason or the apparent means to do so (he was earning $12,000 a year as a part-time

toll collector at the George Washington Bridge), the district judge inferred that

Shonubi had made seven prior trips for smuggling purposes.

Under federal sentencing guidelines, the length of sentence depends on the amount

brought in as part of the same course of conduct. But there was no information about

howmuch Shonubi had brought in on his prior seven trips. At the original sentencing,

the court multiplied 427.4 grams by 8, arriving at a total of 3419.2 grams, and

sentenced Shonubi to 151 months, that being the lower end of the guideline sentence

for 3,000 grams. On appeal, the Second Circuit held that the district court impermissi-

bly engaged in “surmise and conjecture” in assuming that the amounts brought in on

prior trips were the same. It remanded for resentencing, requiring the prosecution to

produce “specific evidence”–which it defined as “e.g., drug records, admissions, or

live testimony”– of amounts brought in by Shonubi on the seven prior trips.

On remand, the prosecution produced a study by an expert on drug policy,

Dr. David Boyum, who obtained U.S. Customs Service data on all 117 Nigerian

heroin swallowers arrested at Kennedy Airport between September 1, 1990, and

December 1, 1991 (the dates of the first and last trips shown on Shonubi’s passport).

For each swallower, the data included the gross weight of the heroin seized

(i.e., heroin plus condom or balloon). Deducting the estimated weight of the

condom, Dr. Boyum produced a list of 117 net weights. The mean weight was

432.1 grams; the median was 414.5 grams; and the standard deviation was 172.6

grams. Distributing these in 100-gram ranges or bins, Dr. Boyum generated the

distribution shown in Table 3.5.1 and the top panel of Fig. 3.5.1.

By computer simulation, Dr. Boyum performed a Monte Carlo study by making

7 selections at random from the 117 net weights (each time including the previously

selected quantity in the list before the next selection) and calculating their sum.

Dr. Boyum’s computer repeated this procedure 100,000 times and generated the

cumulative frequency distribution of the totals shown in the bottom panel of

Fig. 3.5.1.
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Table 3.5.1. Net weight in grams per internal smuggling trip known to DEA agents at Kennedy

Airport, September 1, 1990, to December 10, 1991

Net weight in grams Number of occurrences

0–100 1

100–200 7

200–300 13

300–400 32

400–500 31

500–600 21

600–700 6

700–800 1

800–900 2

900–1,000 2

1,000–1,100 0

1,100–1,200 0

1,200–1,300 1

Fig. 3.5.1. Cumulative frequency distribution of smuggled heroin
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Based on the cumulative frequency distribution generated by the Monte Carlo

study, the government argued that there was a 99% chance that Shonubi carried at

least 2090.2 grams of heroin on the seven trips combined; a 95% chance that he

carried more than 2341.4 grams; a 75% chance that he carried more than

2712.6 grams; and a 55% chance that he carried more than 3039.3 grams. Taking

a conservative position, the government contended that these outcomes met its

burden of proof that he carried at least 2,500 grams.

Questions

1. What objections do you have to the relevance of the government’s data?

2. What additional information might be collected to assist in the estimation

process?

3. The district court initially argued that, since the chemical nature of the powder as

heroin in the 103 condoms was validly extrapolated from analysis of only four

condoms, it should be permissible to extrapolate the amount carried on the seven

prior trips from the amount carried on the eighth trip. What is the flaw in that

argument?

Source

United States v. Shonubi, 895 F. Supp. 460 (E.D.N.Y. 1995) (a wide-ranging,

66-page opinion by District Judge Jack B. Weinstein that is a small treatise on

statistical evidence), vacated and remanded, 103 F.3d 1085 (2d Cir. 1997), on
remand, 962 F. Supp. 370 (E.D.N.Y. 1997).

3.5.2 Cheating on multiple-choice tests

In October 1993, some 12,000 police officers in New York City took a written

multiple-choice examination for promotion to sergeant. Four sets of examinees,

comprising 13 officers in all, were suspected of having collaborated in answering

questions. The suspected officers consisted of two dyads, one triad, and one hexad.

The suspicions were based on anonymous “tip” letters naming some of the officers,

and the fact that two pairs of brothers managed to sit near each other despite random

seating assignments. The statistician appearing for the department was given the

answer sheets of the suspected officers and asked for an analysis of answer patterns

to determine whether there had been cheating.

The examination consisted of morning and afternoon sessions. In each session,

the officers had varying numbers of jointly wrong answers (the same questions

answered incorrectly) and matching wrong answers (the same wrong answers to the

same questions). Following a design first suggested by William Angoff, the statis-

tician (Bruce Levin) counted the number of matching wrong answers in the

suspected groups and compared that with the numbers of such matches in random
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samples of answer sheets drawn from all those answer sheets with the same

numbers of wrong answers as the suspected answer sheets. For example, one

member of Dyad 2 had seven wrong answers and the other had six; there were

six matching wrong answers. This was compared with the rate of matching in

10,000 samples of dyads in which one answer sheet was drawn at random from all

other sheets with 7 wrong answers and the other was drawn at random from sheets

with 6 wrong answers. (In other cases where both members of a dyad had the same

number of wrong answers, selection would be made without replacement from all

answer sheets having that number of wrong answers). After each group was

selected, the answer sheets for that group were replaced. The same procedure was

followed for the triad and the hexad except that the numbers of matching wrong

answers were calculated as the total number of matching wrong answers for all

possible dyads in those groups. Dr. Levin called this primary analysis a “Modified

Angoff Procedure” because he had made a minor change to Angoff’s procedure.

(Angoff’s original procedure fixed only the product of the wrong answer count per

dyad; Levin fixed each person’s count.)

To check his results Dr. Levin made a new “Item-Specific” analysis in which he

limited the comparison groups to those who had answered incorrectly the same

specific questions as had the suspected group members; when the numbers were

small enough, a complete enumeration was used instead of Monte Carlo samples.

The data from both procedures for the two dyads are shown in Table 3.5.2.

Consider Dyad 2 in the afternoon session. The officers had 7 and 6 wrong

answers, respectively, and 6 of them (the maximum possible) matched, i.e., were

wrong in the same way (col. II). The comparison group was created from 10,000

replications in which one answer sheet was drawn from those with 7 items wrong

and the other was drawn from those with 6 items wrong (in both cases including the

Table 3.5.2. Wrong answers and matching wrong answers in promotion examination

Modified-Angoff

procedure Item-specific procedure

I II III IV V VI VII VIII

10,000 Replications 10,000 Replications

Group

names

# WA:

#MWA

Mean #

MWA

per group

# Groups

with� #

MWA

# JWA:

#MWA

# Examinees

with same

wrong items

Mean #

MWA

per group

Rate of

groups with

� # MWA

Dyad 1

a.m. 8,8:8 1.30 0 8,8:8 28 3.852 0.0005

p.m. 4,4:3 0.488 37 4,4:3 203 2.126 0.354

Dyad 2

a.m. 1,1:1 0.0487 487 1,1:1 7,182 0.491 0.491

p.m. 7,6:6 1.08 0 6,6:6 283 3.470 0.0396

Key: #WA¼ # wrong answers for each officer in the group; #MWA¼ the sum of the # of matching

wrong answer pairs; #JWA¼ # jointly wrong answers to the specific items
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suspected officers), with the sheets replaced after each dyad was selected. In the

replications, the average number of matching wrong answers was 1.08 (col. III) and

there were 0 groups with 6 matching wrong answers (col. IV). In the Item-Specific

Procedure there were 283 examinees who answered the same six questions

incorrectly (col. VI). The mean number of matching wrong answers for all possible

dyads drawn from this group was 3.47 (col. VII), and the rate of such groups with

6 (the maximum number) matching wrong answers was 0.0396 (col. VIII).

Questions

1. (a) Assuming the matching wrong answers are due to innocent coincidence,

estimate the probability of observing three matches for Dyad 1 in the afternoon

session; call this the likelihood of the data under the hypothesis of innocent

coincidence. (b) Assuming Dyad 1 was cheating, what likelihood would you

assign to the observed data? The ratio of (b) to (a) is the likelihood ratio for these

data. Use this to describe the strength of the evidence against innocent coinci-

dence and in favor of cheating. Is this ratio sufficient proof for a finding of

collaboration?

2. Why limit the comparison groups to those with the same number of wrong

answers?

3. Why use the Item-Specific Procedure? What conclusion should be reached if the

Item-Specific Procedure does not support the results of the Modified-Angoff

procedure?

4. Why not count matching correct answers as evidence of innocence?

5. Is it fair not to include non-matching wrong answers as evidence of innocence?

6. Can the results be explained on the theory that the officers may have studied

together, or studied the same material?

7. Because it cannot be determined who copied from whom, is the prosecution’s

evidence flawed?

References

Finkelstein & Levin, On the Probative Value of Evidence from a Screening Search,
43 Jurimetrics J. 265, 276-283 (2003); Angoff, The development of statistical
indices for detecting cheaters, 69 J. Am. Stat. Assoc. 44 (1947). See

Section 6.2.3 for further questions on these data.
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3.6 Foundations of probability

Statistical inference rests on concepts of probability and randomness. It is not a trivial

matter to give precise definitions for these profound ideas. In fact, the search for

precise formulation has been the source of lively controversy, and ofmathematical and

philosophical research into the foundations of probability and statistical inference.

The current view of physics is that, at sufficiently small scales of observation, the

laws of nature must be expressed probabilistically, and, indeed, any regularity or

“law” of nature observed at ordinary scales is itself a consequence of statistical

theorems that describe the aggregate behavior of large samples of objects. This idea

is also familiar to biologists, psychologists, social scientists, and others who seek

regularities in the highly complex systems of their disciplines. It is ironic, then, that

when empirical scientists turn to mathematicians or philosophers for precise

formulations of “probability,” they meet the response that there are various types

of probability (as many as five different formulations), that there is controversy

over which definition, if any, should be preferred as fundamental, and even debate

over whether some types of probability exist!

Objective probabilities are quantities that relate to the states of some physical

system, such as energy levels of an electron or the positions and velocities of

molecules in a coin at the moment it is tossed. Objective probabilities are regarded

as intrinsic properties of the system under consideration, and are assumed to exist

independently of an observer’s personal opinion. Objective probabilities are

initially unknown, but can be assigned in cases in which a physical symmetry

implies equally likely outcomes, like the numbers on a roulette wheel or the spots

on a fair die. These are sometimes called logical probabilities. More often, objec-

tive probabilities must be discovered by direct observation, when the relative

frequency of outcomes consistent with a given event accumulate in increasingly

larger series of identical trials. Thus, the probabilities associated with Schr€odinger’s
wave equation in quantum mechanics are often taken as objective probabilities,

because the equation is assumed to describe an intrinsic property of the physical

system (although the act of observation itself may indeed alter the wave equation).

These probabilities are given a “frequentist” interpretation in the sense that repeated

experiments show that the relative frequency of finding a particle in a given state

agrees closely with the predictions of the wave equation.

Those who argue against the objectivist, or frequentist, interpretation of proba-

bility contend primarily that its assumption of the existence of physical

probabilities is too restrictive to deal with some events of interest, e.g., those that

can never be repeated, or even observed. We need some concept of probability to

assign degrees of certainty or belief between 1 (truth) and 0 (falsity) to a statement

when its truth is unknown. Such assignments, however, are somewhat artificial in

terms of objective probabilities, because there is commonly no natural frequentist

interpretation for statements expressing degrees of belief, especially when unique

events are involved.

A less artificial approach involves recognition that probabilities also have a

subjective interpretation: subjective probabilities are numerical expressions of the
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degree of certainty about, or the degree of belief in, statements concerning the

occurrence of an event. Rational observers use their probability assessments to

place fair bets or to make other decisions; in fact, subjective probabilities are often

elicited in terms of the amount of money one is just willing to bet on the occurrence

of an event per unit reward. (Rewards should be considered in terms of utility rather

than money, since money has different values to different people.) Subjective

probabilities are not intrinsic properties of events, but reflect an observer’s frame

of mind and the amount of evidence available, which, of course, differ from

observer to observer. Subjective probabilities are also called epistemic because

they deal with a person’s knowledge. Subjective probabilities are said to be

coherent in a betting context when the assignment of probabilities to events

prohibits certain loss. It has been shown that coherence suffices to ensure that all

of the usual rules for manipulation of probabilities are satisfied.

There may in fact be no significant difference between the subjective definition

of probability applied to unique events and the classical definition based on relative

frequency. At the molecular level, two tosses of a coin are dissimilar events, yet

they are treated as similar for probabilistic purposes because of our subjective belief

that the chance of throwing heads is the same both times. And so, seemingly unique

events may be grouped together with respect to the degree of belief they inspire, and

the probability of the uncertain events in each case expressed as the relative

frequency of such events over all cases in the class. This is perhaps a more precise

statement of the intuitive notion that the evidence in a particular case has met a

certain standard of probability or persuasion. Thus, the statement “X is more likely

than not” implies that, if we affirmed a proposition (any proposition) when we had a

similar degree of belief, we would be right more than half the time.

Finally, there is an axiomatic or formalistic approach that abandons any attempt

at interpretation of the notion of probability, restricting attention to themathematical

formulations that assign numerical values to events and satisfy a few basic axioms.

These axioms define probability–no more, no less. The axiomatic approach does not

prescribe how to assign probabilities to events; it assumes only that some such

assignment, consistent with the axioms, exists. Each individual must decide where

the assignment comes from, and what real-world interpretation it has.

What is one to make of all this? Fortunately, the diversity of interpretation is

usually of no importance in practical matters, since all formulations obey the same

formal rules of calculation. Differences show up most in the choice of method for

statistical inference. The objective interpretation emphasizes methods with good

frequentist properties, i.e., long-run averages, while the subjectivist interpretation

emphasizes Bayesian methods, i.e., methods that combine prior subjective

probabilities with evidence to arrive at posterior assessments. The likelihood ratio

is a common thread in both interpretations.

When observed data are plentiful, frequentist and Bayesian inferences usually

agree. When there is little available data, an individual’s prior probability

assessments are likely to make a difference, as some of the preceding problems

have shown. In such cases the subjective assessment should be brought into the

open and its merits debated. One reason for doing this is that studies have shown
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that, in estimating posterior probabilities, uninformed decisionmakers tend to

misappraise the force of their prior probabilities relative to the evidence. Making

the prior explicit tends to correct for such bias.

Further Reading

Gillies, Philosophical Theories of Probability (2000).

Kahneman, Slovic & Tversky (eds.), Judgment Under Uncertainty: Heuristics and
Biases (1982).

Savage, The Foundations of Probability (1954).

3.6.1 Relevant evidence defined

Rule 401 of the Federal Rules of Evidence defines “relevant evidence” as “evidence

having any tendency to make the existence of any fact that is of consequence to the

determination of the action more probable or less probable than it would be without

the evidence.”

Questions

1. Does this definition import Bayesian or classical probability?

2. If Bayesian, reword the definition to make it classical; if classical, reword it to

make it Bayesian.

3. Professor Gary Wells suggests that people’s reluctance to base a verdict on

“naked statistical evidence” (see Section 3.3.1) may be due to the fact that “in

order for evidence to have significant impact on people’s verdict preferences,

one’s hypothetical belief about the ultimate fact must affect one’s belief about

the evidence.” Since statistical evidence that is not case-specific is unaffected by

one’s view of the case, it is seen as insufficient. Wells, Naked Statistical
Evidence of Liability: Is Subjective Probability Enough?, 62 J. Personality &

Soc. Psych. 739, 746-747 (1992) (suggesting the hypothesis and supporting

it with some experimental results). But if statistical evidence that is not

case-specific generates a 50+% prior probability in favor of a proposition, but

is nevertheless insufficient, why should the addition of even weak case-specific

evidence (as reflected in the likelihood ratio) make the total mix of evidence

sufficient? For example, if the statistical evidence generates a prior probability

of 80% in favor of a proposition, and with the case specific evidence the

posterior probability is 81%, why should the latter, but not the former, be

deemed sufficient in a civil case?
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Some Probability Distributions 4

4.1 Introduction to probability distributions

We continue the discussion of random variables that was begun in Section 1.1 at p. 1.

Discrete random variables

A discrete random variable is one that can take on only a finite (or at most

denumerable) number of values. For example, the number of members in a sample

household, X, can be thought of as a discrete random variable taking values 1, 2,

3, and 4+. If we knew the relative frequencies of different sizes of households, we

could set up an assignment between these possible values of the random variable

X and their relative frequencies, as shown in the following table:

x 1 2 3 4+

P[X¼ x] 0.1 0.2 0.5 0.2

The discrete random variable X is said to take the value 1 with probability 0.1,

the value 2 with probability 0.2, and, in general, the value x with probability

P[X¼ x]. The table is said to define the random variable’s distribution. Nothing
in mathematical theory compels any particular assignment, except that probabilities

must be nonnegative numbers between 0 and 1 and the probabilities for all possible

values of the random variable must sum to 1.

The probabilities associated with the various possible values of a random

variable may be specified by a formula that reflects in an idealized way the process

by which the values of the random variable are generated. The binomial distribution

(Section 4.2) specifies the probabilities of tossing x heads with a coin out of n tosses,
the number of heads being the random variable X generated by the coin tossing. The

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15
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hypergeometric distribution (Section 4.5) specifies the probabilities of picking

x marked chips in N selections (without replacement) from an urn that has

M marked and T–M unmarked chips, the number of marked chips among those

selected being the random variable X generated by the sampling without replacement.

The Poisson distribution (Section 4.7) specifies the probabilities of observing x rela-
tively rare events—such as accidents—occurring in a time period, where the random

variable X is the number of such events over the period. The above distributions are

for discrete random variables because they relate to counts of discrete events—

numbers of heads, marked chips, or accidents. For such discrete random variables,

the distributions P[X¼ x] are also called point probability functions because they

assign a probability to each discrete value of the random variable.

Probability distributions for discrete variables are usually represented by

histograms, in which each value of a random variable is represented by a rectangle of

unit width centered on that value and the area of the rectangle represents the probability

of that value. The total area of all the rectangles is 1. The histogram for rolling a pair of

dice utilizing the probability distribution in Section 1.2 at p. 7 is shown in Fig. 4.1a.

Continuous random variables

A continuous random variable is a mathematical extrapolation of a random variable

to a continuum of possible values, usually made for mathematical convenience. For

example, height or weight in a human population, or time to some event, may be

viewed as continuous random variables.

Fig. 4.1a. Probabilities of dice outcomes 2,. . ., 12
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For continuous random variables, a probability distribution is expressed as a

probability density function, which can be viewed as a limiting form of a point

probability function as the possible values of the discrete random variable become

more and more continuous.1 In a density function, the ratio of two ordinates

provides the relative likelihood of observing a value near one level versus the

other, and for this reason densities are also called relative frequency functions. The
normal, or Gaussian, bell-shaped curve (see Section 4.3) is a probability density

function that specifies the relative frequency with which a sample measurement will

depart by x standard deviations from the true or population mean value; it also is

used to approximate the probability distributions for discrete random variables

referred to above. These uses give it a key role in statistical inference. The

exponential density (see Section 4.8) is another important probability distribution,

one that is used to specify the probabilities of waiting times to an event when the

probability of the event does not change over time, and in particular is unaffected by

the past pattern of events.

Cumulative distributions

Most uses of probability distributions involve the probabilities of groups of events;

these are called cumulative probabilities because they involve adding together the

probabilities of the elementary events that make up the group. For example, the

probability of tossing x or fewer heads in n coin tosses, denoted by P[X	 x], is a
cumulative probability, the sum of the probabilities of tossing 0, 1, 2, . . ., x heads.

Similarly, the cumulative probability of at least x heads, denoted P[X� x], is the
sum of the probabilities of tossing x, xþ 1, xþ 2, . . . , n heads.

Cumulative probabilities for continuous random variables are obtained from the

relative frequency function as areas under the density curve. Relative frequency

functions are non-negative and the total area beneath the curve equals 1. Thus

P[X� x] is the area beneath the relative frequency curve to the right of x. For
example, if X is a random variable with a standard normal distribution, the proba-

bility that X> 1.96, denoted by P[X> 1.96], is the proportion of total area under the

curve to the right of the value x¼ 1.96 and corresponds to the shaded region in

Fig. 4.1b. The figure shows that the value x¼ 0 is 0.399/0.058¼ 6.9 times as likely

to occur as the value x¼ 1.96. It also shows that P[X> 1.96] is 0.025.

Probabilities of the form P[X	 x] are denoted by F(x), and the function F(x) is
called the cumulative distribution function (cdf) of the random variable X. The cdf
has an ogival shape, showing the inevitably increasing proportion of the population

with values of X at most equal to x, as x increases without limit (see Fig. 4.1c). Note

that in the figure, F (1.96) is 0.975, corresponding to the complementary probability

illustrated in Fig. 4.1b.

1More precisely, if we represent the discrete probability P[X¼ x] geometrically as the area of a

narrow rectangle centered at x and extending horizontally half-way to the two neighboring values

of x, then the probability density function is the approximate height of the rectangle in the limit, as

the neighboring values of x come closer together and P[X¼ x] approaches 0.
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Fig. 4.1b. Probabilities as areas under the standard normal relative frequency curve,

f xð Þ ¼ 2πð Þ�0:5
exp �x2=2ð Þ

Fig. 4.1c. Standard normal cumulative distribution function
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Further Reading

1. Mosteller, Rourke, & Thomas, Probability with Statistical Applications,
ch. 5 (2d ed. 1970).

2. Int’l Encyclopedia of Statistics 1101-9 (1978) (W. Kruskal and J. Tanur, eds.).

4.2 Binomial distribution

Suppose an urn contains a certain number of chips, a proportion p of which are

labeled ‘1,’ the rest labeled ‘0.’ Chips are withdrawn at random and replaced in the

urn after each drawing, so that the contents of the urn remain constant. After

n drawings, what is the probability of obtaining exactly r chips labeled ‘1’? An

equivalent problem is to find the probability of obtaining exactly r heads among

n tosses of a coin with probability of heads on a single toss equal to p. Both
problems involve a sequence of n binary random variables, each identically

distributed, with successive outcomes being statistically independent.2 Being

“independent” means that probabilities of subsequent outcomes do not depend on

prior outcomes. “Identically distributed” here means that the probability p remains

constant from one observation to the next. In such cases, the number of ‘1’s

(or heads, or generic “successes”) in n trials is a random variable X having a

binomial distribution with index n and parameter p, written X ~Bin(n, p).

Basic formula

For any integer r between 0 and n, we have the following probability formula for the

event that the binomial variable takes the value r:

P X ¼ r½ � ¼ n
r

� �
pr 1� pð Þn�r:

To derive this formula, note that any sequence of 1’s and 0’s containing r 1’s and
n–r 0’s occurs with probability pr 1� pð Þn�r

by the multiplication rule for

probabilities of independent events, and there are
n
r

� �
distinct such arrangements

of r 1’s and n� r 0’s (see Section 2.1). Since each distinct arrangement occurs with

the same likelihood, the total probability of obtaining r successes is as given above.

The binomial distribution may be illustrated with the following example: a

balanced die is tossed 24 times. What is the probability of tossing an ace three

times? The answer is given by the binomial formula for the point probability, with

n¼ 24 and p¼ 1/6:

2 Trials in such a sequence are called “Bernoulli trials” in honor of Jakob Bernoulli (1654–1705),

whose Ars Conjectandi was one of the earliest treatises on mathematical probability.

4.2 Binomial distribution 105

http://dx.doi.org/10.1007/978-1-4419-5985-0_2#Sec1_2


P X ¼ 3½ � ¼ 24

3

� �
1

6

� �3
5

6

� �21

¼ 0:204:

Cumulative binomial distribution

The binomial formula for individual terms may be summed to calculate exact “tail-

area” probabilities of events of the form “the number of successes is less than or

equal to r,” or “the number of successes is greater than r.” Such probabilities,

known as cumulative binomial probabilities, are calculated by summing up the

individual point probabilities for all events included in the statement. To continue

the prior example, the probability of tossing three or fewer aces, is the sum of the

probabilities of tossing 0, 1, 2, and 3 aces. In symbols:

P X 	 3½ � ¼
X3
i¼0

24

i

� �
1

6

� �i
5

6

� �24�i

¼ 0:416:

Binomial mean and variance

Calculating cumulative binomial probabilities can become laborious (without a

computer), particularly when n is large and r is not close to either 0 or n. In such

cases, certain approximations for these probabilities make the calculation much

simpler by capitalizing on the properties of the binomial variable as a sum of

independent and identically distributed random variables (see Section 4.3). These

approximations require knowledge of the mean and variance of the binomial

distribution, which are derived as follows.

Take a single binary variable, say Y, which might be a single toss of a coin. Heads

take the value 1 and tails the value 0 with probabilities p and 1� p, respectively. In
that case, the number of heads has an expected value equal to

EY ¼ 1�pþ 0� 1� pð Þ ¼ p, and a variance equal to Var Y ¼ E Y � pð Þ2 ¼
1� pð Þ2�pþ 0� pð Þ2� 1� pð Þ ¼ p 1� pð Þ. Now take a binomial variable X that

is the sum of n realizations of Y. Its expectation is EX ¼ n � EY ¼ np. And since

these realizations are statistically independent, the variances also sum to

VarX ¼ n � VarY ¼ n p 1� pð Þ. Returning to our die example, the expected number

of aces in 24 tosses is 24(1/6)¼ 4; the variance of the number is 24(1/6)(5/6)¼ 10/3;

and the standard deviation is √3:33 ¼ 1:82. These results enable us to express

binomial outcomes as standardized variables. For example, if we tossed 0 aces in

24 tosses, the result would be (0� 4)/1.82¼�2.2 standard deviations below expec-

tation. Such expressions are used repeatedly in making estimates of cumulative

binomial probabilities.

These formulas for the binomial mean and variance still apply if p varies

randomly from trial to trial if the expected value Ep of the random p is used, in

place of p, i.e., the expected value of X is n ·Ep. However, if there are subgroups of
trials with p a fixed constant within subgroups but varying randomly from subgroup

to subgroup, the expected value of the sum of realizations X will still be n ·Ep, but
the variance of X will be larger than the variance given by the binomial formula

using Ep in place of p. This effect is known as “overdispersion.”
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Binomial sample proportion

Binomial variables are frequently expressed in terms of the sample proportion,

p̂ ¼ X=n, by dividing the number of successes, X, by the sample size, n. The
expected value of p̂ is E p̂ð Þ ¼ 1=nð Þ � np ¼ p, i.e., p̂ is an unbiased estimator

of p. The variance of p̂ is

Var p̂ð Þ ¼ 1=n2
� � � Var Xð Þ ¼ 1=n2

� � � n p 1� pð Þ ¼ p 1� pð Þ=n:

(See Section 1.2.) Thus, the standard deviation of p̂ (more commonly called the

standard error of the sample proportion) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=np

.

Binomial tables

Table B in Appendix II tabulates the cumulative binomial distribution for smaller

numbers of trials (n	 25 and n¼ 30, 35,. . .,50) and values of p in multiples of 0.05

up to 0.50. For values of p> 0.50, the probability of at least X successes is

computed as the probability of n� x or fewer failures with 1� p as the probability

of failure. The probability of n� x or fewer failures is the complement of the

probability of n� x+ 1 or more failures. Hence, the probability of at least

X successes is equal to 1� (probability of at least n� x+ 1 failures), with 1� p as

the probability of failure.

Multinomial distribution

The binomial distribution generalizes to themultinomial distributionwhen there are
more than two possible outcomes of a trial. The probability of obtaining cell

frequencies n1, . . ., nk in n ¼ n1 þ � � � þ nk independent tosses of a k-sided die

with outcome probabilities p1, . . ., pk on each toss is given by

n
n1, . . . , nk

� �
pn11 � � � pnkk ;

where

n
n1, . . . , nk

� �
¼ n!Yk

i¼1

ni!

is the multinomial coefficient (see Section 2.1 at p. 48). For example, toss a pair of

ordinary dice six times. What is the probability of getting three 7’s, two 11’s, and

one 12? Rolling a pair of dice is equivalent to tossing a single eleven-sided “die”

with outcomes 2,. . ., 12 occurring with probabilities 1/36, 2/36, 3/36, 4/36, 5/36,

6/36, 5/36, 4/36, 3/36, 2/36, 1/36, respectively. We get the set of 7’s, 11’s, and

12 with probability 6!/(3! · 2! · 1!) · (6/36)3 · (2/36)2 · (1/36)1¼ 60 · 0.0046296 ·

0.0030864 · 0.027778¼ 2.3815� 10�5.
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4.2.1 Discrimination in jury selection

In Avery v. Georgia, 345 U.S. 559 (1953), a black defendant was convicted by a jury

selected from a panel of sixty veniremen. Their names were drawn from a box

containing tickets with the names of persons on the jury roll—yellow tickets for

blacks, white tickets for whites. Five percent of the tickets were yellow, yet not a

single yellow ticket was selected. Writing for the U.S. Supreme Court, Justice

Frankfurter held that “[t]he mind of justice, not merely its eyes, would have to be

blind to attribute such an occasion to mere fortuity.” Id. at 564, but made no

calculation.

The Court first calculated binomial probability in a jury discrimination challenge

inWhitus v. Georgia, 385 U.S. 545 (1967). InWhitus, blacks constituted 27% of the

tax digest from which jury lists were selected. The digest indicated race. From this

digest, jury commissioners selected a “revised” jury list of around 600 names on the

basis of personal acquaintance. A venire of 90 was selected “at random” from this list.

The venire included 7 blacks. The petit jury that convicted the defendant was selected

from this venire: there were no blacks on the jury. The racial breakdown of the

“revised” jury list did not appear. One jury commissioner, however, testified that his

best estimate was that 25% to 30% of the list was black. Without benefit of briefs or

argument, citing a law review article, the Court calculated that “[a]ssuming that 27%

of the list was made up of the names of qualified Negroes, the mathematical

probability of having seven Negroes on a venire of 90 is 0.000006.” Id. at 552, n.2.

Questions

1. Using a binomial model, do you agree with Justice Frankfurter in Avery?

2. Is the event for which the Whitus court calculated a probability appropriate to

test the hypothesis of random selection with respect to race?

3. Suppose the venire inWhitus had consisted of 25 persons, of whom 2 were black,

and the revised jury list was 25% black. Using Table B in Appendix II, would

you reject the hypothesis of random selection from this list?

Notes

For a discussion of this subject see Finkelstein, The Application of Statistical
Decision Theory to the Jury Discrimination Cases, 80 Harv. L. Rev. 338 (1966),

reprinted in revised form in Quantitative Methods in Law, ch. 2 (1978).

4.2.2 Educational nominating panel

Under a system established in 1965, the Mayor of Philadelphia appoints nine

members of the School Board, but is assisted in that task by the Educational

Nominating Panel. The function of the Panel is to seek out qualified applicants

and submit nominees to the Mayor. Of the Panel’s 13 members, all appointed by the

Mayor, four must come from the citizenry at large and nine must be the highest
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ranking officers of certain specified citywide organizations or institutions, such as

labor union councils, commerce organizations, public school parent-teacher

associations, degree-granting institutions of higher learning, and the like. Panels

serve for 2 years. The Panels of 1965 to 1971 (all appointed by Mayor Tate) were

constituted as shown in Table 4.2.2.

Throughout this period, the general population of Philadelphia was approxi-

mately one-third black and the school-age population was 60% black.

A civic organization sued, claiming that: (i) the Mayor had unconstitutionally

excluded qualified blacks from consideration for membership in the 1971 Panel in

violation of the Fourteenth Amendment and the city charter; and (ii) the framers of the

city charter intended that the nine organizational seats on the Panel, when combined

with the four at-large selections, would reflect a cross section of the community. The

district court rejected both claims. It held that differences between representation of

blacks in the population and on the Panel were of no significance, largely because the

number of positions on the Panel was too small to provide a reliable sample; the

addition or subtraction of a single black meant an 8% change in racial composition.

The court of appeals reversed. It found that “the small proportion of blacks on

the Panel is significant in light of the racial composition of the public schools.

Because one qualification for Panel membership is interest in the public school

system and because the parents of school children are likely to have this interest, a

color-blind method of selection might be expected to produce that many more black

Panel members.” Educational Equality League v. Tate, 472 F.2d 612, 618 (3d Cir.

1973). On review, the Supreme Court found that the appropriate comparison was

the population of highest-ranking officers of the designated organizations, not the

general population, and that the smallness of the 13-member panel precluded

reliable conclusions. For these and other reasons, it dismissed the case.

Philadelphia v. Educational Equality League, 415 U.S. 605 (1974).

The record did not indicate the racial composition of the highest ranking officers

of the designated organizations, nor, with one exception, did the opinions of the

courts indicate whether blacks appointed to the Panel were from the designated

organizations or from the general citizenry.

Questions

1. Assuming that at least one-third of the heads of the designated classes of

organizations were black, does the smallness of the 13-member panel preclude

reliable conclusions based on a binomial model?

2. Since selection for the Panel was not random, is the binomial model of any use in

this context?

Table 4.2.2. Educational Nominating Panels. Philadelphia, 1965–1971

Whites Blacks

1965 10 3

1967 11 2

1969 12 1

1971 11 2
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4.2.3 Small and nonunanimous juries in criminal cases

In Louisiana, the traditional common law unanimous 12-person jury has been

replaced by a three-tier system: a unanimous 12-person jury for conviction of the

most serious felonies; a 9-to-3 jury for conviction of less serious felonies; and a

unanimous 5-person jury for conviction of the least serious felonies.

Assume that in Louisiana juries are selected at random from a population that is

20% minority. In addition, consider the data shown in Table 4.2.3 on first ballot and

final verdict collected by Kalven and Zeisel from a sample of 225 jury cases in

Chicago (where unanimity was required). In the aggregate, 1,828 out of 2,700

jurors cast a first ballot for conviction.

Questions

1. As the attorney for a minority-group defendant charged with a felony in the

middle category, use a binomial model and the Kalven and Zeisel data to argue

that the probability that a minority juror will be required to concur in the verdict

is substantially reduced by the shift from unanimous 12 to 9–3 verdicts.

2. Use a binomial model and the Kalven and Zeisel data to argue that a 9-to-3

conviction vote on a first ballot is easier to obtain than a unanimous 5 conviction

vote on the first ballot for lesser offenses.

3. As a prosecutor, use the Kalven and Zeisel data to attack the binomial model.

Source

Johnson v. Louisiana, 406 U.S. 356 (1972); see also Apodaca v. Oregon, 406
U.S. 404 (1972); Taylor-Thompsen, Empty Votes in Jury Deliberations,
113 Harv. L. Rev. 1261 (2000).

Table 4.2.3. Jury voting

First ballot and final verdict

Number of guilty votes on first ballot

Final Verdict 0 1–5 6 7–11 12

Not guilty 100% 91% 50% 5% 0%

Hung 0 7 0 9 0

Guilty 0 2 50 86 100

No. of Cases 26 41 10 105 43

From: Kalven & Zeisel, The American Jury 488 Table 139 (1966)
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Notes

In the 1970s six Supreme Court decisions dealt with the constitutionality of

decisions by juries with fewer than twelve members or by nonunanimous verdicts.

Five of these cases involved the “small jury” issue.

InWilliams v. Florida, 399 U.S. 78 (1970), the Court approved (7-1) unanimous

six-member juries, asserting that “[w]hat few experiments have occurred—usually

in the civil area—indicate that there is no discernible difference between the results

reached by . . . different-sized juries.” Id. at 101.
In Colgrove v. Battin, 413 U.S. 149 (1973), the Court held (5–4) that six-member

federal civil juries meet the Seventh Amendment requirement of trial by jury. The

Court bolstered its historical argument by adding that “four very recent studies have

provided convincing empirical evidence of the correctness of the Williams conclu-

sion that ‘there is no discernible difference’ ” in verdicts between six-member and

twelve-member juries (Id. at 159, n.15).
In Ballew v. Georgia, 435 U.S. 223 (1978), the Court drew the line and held that

five-person juries in criminal cases violated the Sixth and Fourteenth Amendments.

The opinion for the Court by Justice Blackmun, joined on these points by five other

Justices, is striking for its extensive reliance on speculative probability models to

disprove the Court’s earlier opinion that there was no discernible difference

between 6- and 12-member juries.

Based on various studies, Justice Blackmun found that progressively smaller

juries (i) are less likely to foster effective group deliberation (id. at 232); (ii) are less
likely to be accurate (id. at 234); (iii) are subject to greater inconsistencies (id. at
234–35); (iv) are less likely to be hung and more likely to convict (id. at 236); and
(v) are less likely to include adequate minority representation (id. at 236–37).

On the issue of accuracy, Justice Blackmun cited a model by Nagel and Neef,

which purported to show that the optimal jury size for minimizing error is between

six and eight (id. at 234). The model made (i) “the temporary assumption, for the

sake of calculation,” that each juror votes independently (the “coin flipping”

model); (ii) the assumptions “for the sake of discussion” that 40% of innocent

defendants and 70% of guilty defendants are convicted; (iii) the assumption that

95% of all defendants are guilty; and (iv) the value judgment, following Blackstone,

that the error of convicting an innocent person (Type I error) is ten times worse than

the error of acquitting a guilty person (Type II error) (so that an error of the first type

should be given ten times the weight of an error of the second type). Using the coin

flipping model and the assumptions in (ii), Nagel and Neef calculated that the

probability that a juror would vote to convict an innocent person was 0.926 and to

convict a guilty person was 0.971; and the probability that a juror would vote to

acquit a guilty person was 0.029 and to acquit an innocent person was 0.074. These

are highly implausible results. Using these probabilities, the coin-flipping model,

the assumption that 95% of defendants are guilty, and Blackstone’s weighting

scheme, Nagel and Neef calculated total weighted error for juries of different

sizes. They found the point of minimum weighted errors to be 7 persons (468 errors

per thousand at 7 versus, e.g., 481 errors per thousand at 12 and 470 at 5). Nagel and

Neef, Deductive Modeling to Determine an Optimum Jury Size and Fraction
Required to Convict, 1975 Wash. U.L.Q. 933, 940–48.
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The Court approved the Blackstone 10 to 1 weighting of Type I and II errors as

“not unreasonable” and cited the Nagel and Neef conclusion that “the optimal jury

size was between six and eight. As the size diminished to five and below, the

weighted sum of errors increased because of the enlarging risk of the conviction of

innocent defendants.” Id. at 234.
On the issue of consistency, the Court again cited Nagel and Neef. Based on

Kalven and Zeisel’s data indicating that 67.7% of jurors vote to convict on the first

ballot, Nagel and Neef computed the standard error of the proportion of first ballot

conviction votes as 0:677 � 1� 0:677ð Þ= n� 1ð Þ½ �1=2. Using a t value at the

two-tailed 0.5 level with 11 d.f., they computed 50% confidence intervals for the

“conviction propensity,” which ranged from 0.579 to 0.775 for the 12-member jury

and from 0.530 to 0.830 for the 6-member jury. (For a discussion of t tests and

confidence intervals, see Section 7.1.) The Court cited these figures as evidence of

significant diminished consistency, id. at 235, n.20. “They [Nagel and Neef] found

that half of all 12-person juries would have average conviction propensities that

varied by no more than 20 points. Half of all 6-person juries, on the other hand, had

average conviction propensities varying by 30 points, a difference they found

significant in both real and percentage terms.” Id. at 235.
Given the arbitrariness of the assumptions, the patent inappropriateness of the

binomial model, and the outlandishness of the computed probabilities, it is remark-

able, and unfortunate, that the Supreme Court embraced the results of the Nagel and

Neef model as expressing truths about the effect of jury size on the correctness and

consistency of verdicts.

Ballew was followed by Burch v. Louisiana, 441 U.S. 130 (1979), in which the

Court held that a 5-to-1 verdict for conviction in a state criminal trial was unconsti-

tutional. The opinion by Justice Rehnquist does not cite social science studies but

simply rests on arguments that (i) most states with small juries do not also allow

nonunanimous verdicts, and (ii) when a state has reduced its juries to the minimum

size allowed by the Constitution, the additional authorization of nonunanimous

verdicts would threaten the constitutional principle that led to the establishment of

the size threshold.

Modeling of jury behavior is not new to probability theory. Nicolas Bernoulli

dealt with the subject at the beginning of the 18th century; Condorcet and Laplace

each pursued it; and Poisson seemingly exhausted it in his Recherches sur la
probabilité des jugements . . . published in 1837.

A modern investigation by Gelfand and Solomon, using a slight variation of

Poisson’s model and Kalven and Zeisel’s data on initial and final votes, purports to

show that about two-thirds of those accused are guilty and that the chance that a

juror will not err on his first ballot (this being the measure of juror accuracy) is 90%.

Interestingly, calculations from the models show virtually no differences between

the probabilities of conviction for 6- and 12-member juries, the first being 0.6962,

the second 0.7004. See Gelfand and Solomon, Modeling Jury Verdicts in the
American Legal System, 69 J. Am. Stat. Assoc. 32 (1974). For a commentary on

this work, see Kaye,Mathematical Models and Legal Realities: Some Comments on
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the Poisson Model of Jury Behavior, 13 Conn. L. Rev. 1 (1980); see also Saks &

Weighner Marti, A Meta-Analysis of the Effects of Jury Size, 21 Law & Hum.

Behav. 451 (1997).

4.2.4 Cross-section requirement for federal jury lists

The Sixth Amendment to the U.S. Constitution requires that jury panels be drawn

from a source representing a “fair cross section” of the community in which the

defendant is tried. The fair-cross-section requirement applies only to the larger pool

serving as the source of the names and not to the petit jury itself. To make out a case

of prima facie violation of the Sixth Amendment, defendant must prove that (a) the

representation of a given group is not fair and reasonable in relation to the number

of members of the group in the community, and (b) the underrepresentation is the

result of systematic exclusion of the group in the jury selection process. A defen-

dant need not prove discriminatory intent on the part of those constructing or

administering the jury selection process.

The jury selection process in the Hartford Division of the Federal District Court

for Connecticut began with a “Master Wheel” composed of 10% of the names on

the voter registration lists–some 68,000 names. From those names the clerks (with

judicial help in close cases) picked some 1,500 qualified people for a “Qualified

Wheel.” From the Qualified Wheel names were picked at random for the “Jury

Clerk’s Pool.” When a venire was required, the jury clerk entered into a computer

certain selection criteria for people in the Jury Clerk’s Pool (e.g., omitting names of

jurors who had served the preceding month) and from this created a “picking list” of

people to be summoned for jury duty.

However, because of a programming error at Yale University (the computer read

the “d” in Hartford as meaning that the person was deceased), no one from Hartford

was included in the Qualified Wheel. Some other unexplained practice or mistake

excluded people from New Britain. Voting-age blacks and Hispanics constituted

6.34% and 5.07%, respectively, of the voting-age population in the Division. But

since about two-thirds of the voting-age blacks and Hispanics in the Division lived in

Hartford andNewBritain, their exclusionmade theQualifiedWheel unrepresentative.

To cure that problem, a new representative Qualified Wheel was selected. But

when it came time to assemble a picking list for the venire in the Jackman case, to

save the work involved in assembling the old picking list the clerk used the

remaining 78 names on that list and supplemented it with 22 names from the new

Qualified Wheel.

Defendant Jackman attacked the venire selected in this way as violating the

cross-section requirement of the Sixth Amendment. To analyze the underrepresen-

tation of Hispanics and blacks, defendant created a “functional wheel” by weighting

the proportions of Hispanics and blacks in the two sources (the old and the new

Qualified Wheels) by the proportions in which they contributed to the picking list

(i.e., 78% and 22%, respectively). With this weighting, blacks constituted 3.8% and

Hispanics 1.72% of the functional wheel.
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Questions

1. Appraise the representativeness of the functional wheel for blacks and Hispanics

by computing the probability that not more than one black would be included in

a venire of 100 selected at random from the wheel. Make the above calculations

using both the functional wheel and the new Qualified Wheel. Make the same

calculation for Hispanics. Do the results suggest to you that the functional wheel

was not a fair cross section?

2. How many Hispanics and blacks would have to be added to an average venire to

make it fully representative? Do these numbers suggest that the functional wheel

was not a fair cross section as to either group?

3. Which test—probabilities or absolute numbers—is the more appropriate mea-

sure of the adequacy of a cross-section?

Source

United States v. Jackman, 46 F.3d 1240 (2d Cir. 1995) (finding the functional wheel
unacceptable). See Detre, A Proposal for Measuring Underrepresentation in the
Composition of the Jury Wheel, 103 Yale L.J. 1913 (1994).

Notes

In many district courts, the master wheel tends to underrepresent blacks and

Hispanics because it is chosen primarily, if not exclusively, from voter registration

lists and those groups tend to underregister in proportion to their numbers in the

population. In United States v. Biaggi, 680 F. Supp 641, 647, 655 (SDNY 1988),

aff’d, 909 F. 2d. 662 (2d Cir. 1990), the district court cited the following evidence of
underrepresentation in the 1984 Master Wheel for the Southern District of

New York:

Minority group Eligible population Master wheel Percentage point disparity

Hispanic 15.7% 11.0% 4.7

Black 19.9% 16.4% 3.6

On these figures, the district court in Biaggi held that, since only 1–2 blacks and
1–4 Hispanics would have to be added to an average venire of 50–60 to make it

fully representative, the jury wheel was close enough to a cross-section to pass

Sixth Amendment muster. The Second Circuit affirmed, but commented that the

case pushed the absolute numbers test to its limit. 909 F.2d at 678. Using probabil-

ity analysis, can you distinguish Biaggi from Jackman?

4.2.5 Cat litter imbroglio

C & D manufactures “Super Scoop Clumping” cat litter that uses baking soda as its

odor-fighting ingredient. Clorox makes “Fresh Step” cat litter that uses carbon for

that purpose. When Clorox began airing TV commercials claiming that carbon was
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a better odor-killer than baking soda, C & D sued, alleging that the commercials

were false.

Clorox’s commercials said that its claims were supported by a “sensory lab

test” it called the Jar Test. The test consisted of jars with cat feces or cat urine that

were covered with baking soda or carbon (and control jars that were uncovered).

Eleven panelists rated the samples on a 0 to 15 scale. Three booths were set up,

one with the feces and urine jars covered with carbon, another with the jars

covered with baking soda, and a third with the uncovered jars (the control

booth). The jars were wrapped with paper so their contents could not be seen.

Each panelist opened a portal door in the booth, took quick sniffs for five seconds,

closed the door, took a 30 second break at which he smelled a neutral odor, then

reopened the portal, sniffed again, and finished by rating the booth’s malodor. The

same procedure was followed for each of the booths. This trial was repeated

4 times for each of the 11 panelists, for a total of 44 samplings for each of the

booths. The order of the booths was randomized between trials—presumably so

that a panelist would not know what rating he had given the current booth in his

prior trials. The control booth had a malodor rating of an average of 2.72 in the

44 trials. All eleven panelists gave a malodor rating of 0 for the carbon booth,

resulting in a score of 0 for each of the 44 trials. Baking soda was found to have an

average rating of 1.85.

Clorox had trained the eleven panelists to evaluate odors on a specific scale.

Over the course of their training, panelists smelled identical smells at different

levels of intensity in order to develop a common metric for pungency. Clorox taught

its panelists that, when they could not detect a certain olfactory stimulus, they

should note that absence by giving that odor a rating of zero.

The court found that the study was unreliable. It noted that “Clorox’s own

evidence acknowledges that humans, even trained specialists, report smells even

when none are present.” It then concluded that it agreed with C & D’s expert that “it

is highly implausible that eleven panelists would stick their noses in jars of

excrement and report 44 independent times that they smelled nothing unpleasant.”

To this the court appended a footnote as follows: “Taking the average false alarm

rate of 14% from [citation], the statistical probability of Clorox’s results is 0.13%.

Even assuming that Clorox’s training and selection of panelists reduced the average

false alarm rate to 7%, the probability of Clorox’s results is still only 4%.”

Questions

1. What model did the court use to obtain the probabilities it cites in the footnote?

2. Suppose there were subtle markings on the paper wrapping the jars which may

have helped raters to identify the jars, thereby increasing the likelihood they

would give the same rating to the same jars. What effect would that have on the

probability the court calculated?

3. Suppose instead that each rater gives independent ratings for each booth, but that

despite their training designed to produce a common metric for pungency,

different raters report scores with systematically different levels of ratings.

What effect would that have on the probability the court calculated?
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Source

Church & Dwight Co. Inc. v. Clorox Co., 840 F. Supp. 717 (S.D.N.Y. 2012).

4.3 Normal distribution and a central limit theorem

Normal distribution

The normal distribution is the probability law of a continuous random variable with

the familiar “bell-shaped” relative frequency curve. There is a family of normal

distributions whose members differ in mean and standard deviation. “The” normal

distribution refers to the member of that family with zero mean and unit standard

deviation. A random variable with this distribution is referred to as a standard

normal random variable. Normal distributions are a family in that any normal

variable may be generated from a standard normal by multiplying the standard

variable by the desired standard deviation, and then adding the desired mean. This

important property implies that all family members have the same general shape,

and therefore only the standard normal distribution need be tabulated.

The bell-shaped relative frequency curve for the standard normal distribution is

given by the formula

φ xð Þ ¼ 1ffiffiffiffiffi
2π

p e�x2=2:

It is shown in Fig. 4.1b. Normal tail-area probabilities are calculated by numerical

integration of this function or by special approximation formulas. M. Abramowitz

and I. Stegun, Handbook of Mathematical Functions, Chapter 26, Section 2, lists

many of these. Normal probabilities are widely tabled, and are available on some

hand calculators and in virtually all statistical software for computers. Cumulative

normal probabilities are given in Table A1 of Appendix II. The chart below,

excerpted from Table A2, shows the rapidity with which deviant values become

improbable in normal distributions.

Distance of

deviate from

mean

Probability of deviation (in units of

standard deviation) this extreme or

more

1.64 0.10

1.96 0.05

2.58 0.01

3.29 0.001

3.90 0.0001

The familiar quotation of a mean value plus or minus two standard deviations is

based on the fact that a normal random variable falls within two standard deviations

of its expected value with a probability close to the conventional 95% level.
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The normal distribution is symmetrical around its mean, so that deviations

z units above the mean are as likely as deviations z units below the mean. For

example, there is a 5% chance that a normal deviate will be greater than the mean

by 1.64 standard deviations or more, and a 5% chance that it will be less than the

mean by 1.64 standard deviations or more, for a total of 10% for an absolute

deviation of 1.64 or more.

Central limit theorems

The normal distribution derives its importance in mathematical statistics from

various remarkable central limit theorems. In substance, these theorems describe

the outcome of a process that results from the actions of large numbers of indepen-

dent random factors, each of which has only a slight effect on the process as a

whole. The cumulative effect of these factors is the sum Sn ¼ X1 þ X2 þ � � � þ Xn,

where the Xi are individual factors. The problem is to determine the probability

distribution of Sn when little is known about the distribution of the component

factors Xi. This might seem impossible, but the emergence of regularity in the sum

from underlying disorder among the components is the essence of these

far-reaching statistical laws. In particular, it can be shown that the distribution of

Sn (suitably adjusted) is approximately normal. The adjustment commonly made is

to subtract from Sn the sum of the expectations of the Xi, and then to divide the

difference by the square root of the sum of the variances of the Xi. The result is a

standardized random variable, with zero mean and unit variance, whose distribution

approaches the standard normal distribution as n becomes large. The central limit

theorem applies even when component variables have different distributions,

provided only that their variances are not too different (in a sense that can be

made quite precise). It is the central role played by the normal distribution, as the

limiting distribution of standardized sums of many other distributions, that gives

this particular limit theorem its name and its importance.

An equivalent formulation is that the number of standard errors between the

sample mean and its expected value follows a standard normal distribution, in the

limit as the sample size becomes large. The standard error (of the mean) is defined

as the standard deviation of the sample mean regarded as a random variable. When

the component variables have the same standard deviation, σ, the standard error is

equal to σ divided by the square root of n; when the components differ in variability,

the standard error is the root mean squared standard deviation,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

i
σ2i =n

q
, divided

by
ffiffiffi
n

p
.

The mathematical root of the central limit theorem, as the limit of the sum of

binary variables, goes back to Abraham De Moivre (1667–1754) and Pierre Simon,

Marquis de Laplace (1749–1827). An empirical root was added in the early

nineteenth century, when variations in astronomical measurements led to general

interest in discovering natural laws of error. Carl Friedrich Gauss (1777–1855)

systematically studied the normal distribution as a description of errors of measure-

ment, and the normal distribution is frequently called “Gaussian” in recognition of
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his work. Gauss used this distribution to justify his method of least-squares estima-

tion, which he applied with spectacular success in 1801 to predict the orbits of two

newly discovered asteroids, Ceres and Pallas. At the same time, the concept of a law

of errors began to extend from the narrow context of measurement error to other

areas of natural variation. Adolphe Quetelet (1796–1874) was prominent among

those introducing the normal distribution into the investigation of biological and

social phenomena. See Section 4.6.1.

Normal approximation for the cumulative binomial

Although the central limit theorem gives a precise statement only in the limit as

n becomes arbitrarily large, its utility derives from the asymptotic (i.e., large

sample) approximation it implies for finite sample sizes. As an example, consider

n Bernoulli trials, where each trial constitutes an independent random variable that

takes values 1 or 0 (respectively, “success” or “failure”), with constant probability

of success denoted by p. As indicated in Section 4.1, the expected value of a single

trial is p, the expected value of the sum is np, the standard deviation in a single trial

is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þp

, and the standard deviation of the sum is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np 1� pð Þp

. Since the

sample proportion of successes equals the sample mean of the trials, the standard

deviation of the sample proportion is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p 1� pð Þ=np

. The normal approximation is

applied as follows.

Suppose that in n trials the number of successes is less than expected, and one

wishes to assess the probability that it would be so low. If n is sufficiently large, the
probability that the number of successes would be less than or equal to the observed

number is given approximately by the probability that a standard normal variate

would have a value that was less than or equal to z, where

z ¼ observed number of successesð Þ � expected number of successesð Þ
standard deviation of the number of successesð Þ

Since the normal distribution is symmetrical, this probability is the same as the

probability that a standard normal variate would have a value greater than or equal

to the absolute value (i.e., magnitude) of z.
Suppose we toss a die 100 times and ask what the probability is of obtaining ten

or fewer aces. Thusn ¼ 100, p ¼ 1=6, andq ¼ 5=6. The expected number of aces is

1=6ð Þ � 100 ¼ 16:67, and the standard deviation of the number of aces is

√100 � 1=6ð Þ � 5=6ð Þ ¼ 3:727. Thus zj j ¼ 10� 16:67j j=3:727 ¼ 1:79. Interpolation
in Table A1 of Appendix II shows that the probability that z would be at least 1.79

standard deviations below the mean is 1� 0:9625þ 0:9641ð Þ=2 ¼ 0:0367.
How large must a sample be for the normal approximation to be reasonably

accurate? Generally, the more symmetrical the distributions of the components, the

more closely their sum is approximated by the normal distribution. A rule of thumb

is that the mean of the sum must be at least three standard deviations from each

end of its range. For example, in the binomial case, the closer p is to 0.5, the
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more symmetrical are the distributions of the component binary variables

and the binomial distribution of their sum. If there are 10 trials with p ¼ 0:5,

np ¼ 10� 0:5 ¼ 5 and √n p 1� pð Þ ¼ √10 � 0:5 � 0:5 ¼ √2:5 ¼ 1:58.
Since the mean is 5/1.58¼ 3.16 standard deviations from both 0 and 10, the

normal approximation is adequate. However, if p¼ 0.1, then np¼ 1 and the stan-

dard deviation is √10 � 0:1 � 0:9 ¼ 0:949. The mean in this case is 1/0.949¼ 1.054

standard deviations from the 0 end of the distribution; the binomial distribution is

too skewed to justify use of the normal approximation. A somewhat less stringent

rule is that both np and n(1� p) must be at least equal to 5 if the normal approxi-

mation is to be reasonably accurate.

In some studies (see, e.g., Section 4.7.5), one encounters data that have been

truncated by the elimination of all values on one side of a certain cut-off point.

When a truncation is substantial, the distribution of the remaining data becomes

highly skewed, degrading the accuracy of the normal distribution.

One sometimes requires normal tail-area probability estimates for extreme

deviates, e.g., those 5 or more standard deviations from the mean. A useful

approximation is that the tail area to the right of x is approximately φ(x)/x
for large x, where φ(x) is the standard normal density function given above.

For example, if x¼ 5 the exact upper tail area is 2.86� 10�7; the approximation

yields 2.97� 10�7. When extremely small tail areas are involved, the normal

distribution is no longer an accurate approximation to discrete distributions such

as the cumulative binomial or hypergeometric (see Section 4. 5). The error becomes

proportionately large, although still minute in absolute terms.

Continuity correction

Because the normal distribution describes a continuous variable while the binomial

describes a discrete (integer) variable, when sample sizes are small a “correction for

continuity” is generally recommended to improve the accuracy of the approxima-

tion. This correction is made by reducing the absolute difference between the

observed and expected values by 1/2 unit in computing z, so that the difference

between observed and expected values is moved closer to zero.3 See Fig. 4.3.

For proportions, the correction is made by reducing the absolute difference

by 1/(2n). In the dice example, z is recomputed as follows: z ¼ 10� 16:67j j�ð
0:5Þ=3:727 ¼ 1:655. The probability of a departure at least this far below the mean

is approximately 0.05, so that the continuity correction does make a bit of a

difference on these data, even with n as large as 100.

Further Reading

Stigler, The History of Statistics: The Measurement of Uncertainty Before 1900
(1986).

3 The correction is not applied if the observed value already differs from the expected value by less

than 1/2.
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4.3.1 Alexander: Culling the jury list

After Whitus (see Section 4.2.1), the next jury challenge in which the Supreme Court

notedmathematical probability wasAlexander v. Louisiana, 405U.S. 625 (1972). The
Court summarized the facts as follows: “In Lafayette Parish, 21% of the population

was Negro and 21 or over, therefore presumptively eligible for grand jury service. Use

of questionnaires by the jury commissioners created a pool of possible grand jurors

which was 14%Negro, a reduction by one-third of possible black grand jurors. [Of the

7,374 questionnaires returned 1,015were fromblacks.] The commissioners then twice

culled this group to create a list of 400 prospective jurors, 7% of whom were Negro

[27 in number]—a further reduction by one-half.” Id. at 629.
In a footnote, the Court “took note” of “petitioner’s demonstration that under one

statistical technique of calculating probability, the chances that 27 Negroes would

have been selected at random for the 400-member final jury list, when 1,015 out of

7,374 questionnaires returned were fromNegroes, are one in 20,000.” Id. at 630, n.9.

Questions

1. Use the normal approximation for the cumulative binomial distribution to check

the probability calculation in Alexander.

2. Assume that in the culling process in Alexander the Commissioners identified a

qualified pool of people from whom the 400-person list was selected at random.

Fig. 4.3. One-half continuity correction to approximate P S � 7½ �, where S ~Bin(10, 0.5)
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Use the normal approximation to estimate the largest proportion of blacks in the

qualified pool that would be consistent (at the 5% level) with the 7% black

representation on the list, assuming that the list was a small fraction of the

qualified pool. Use this proportion to calculate a minimum ratio of the qualifica-

tion rate among whites to the qualification rate among blacks.

4.3.2 Castaneda: Measuring disparities

In Castaneda v. Partida, 430 U.S. 432 (1977), the Supreme Court considered

whether a criminal defendant had made a prima facie case of discrimination against

Mexican-Americans in selection for grand jury service. Defendant’s evidence

consisted of data showing that, although Mexican-Americans constituted approxi-

mately 79.1% of Hidalgo county’s population, out of 870 persons summoned for

grand jury duty over an 11-year period, only 339, or 39%, were Mexican-

Americans. Writing for the majority, Justice Blackmun compared this disparity

with the disparities in three other cases in which discrimination had been found, and

concluded, without explanation, that the disparity in Castaneda was sufficient for a
prima facie case. In a lengthy footnote appended to that conclusion, and apparently

in support of it, Blackmun accepted the idea that the racial results of nondiscrimi-

natory jury selection should have a binomial distribution. Then, using the normal

approximation for the binomial, he computed the probability that so few Mexican-

Americans would have been included if selection had been made at random from

the general population. In rough fashion, the opinion approves use of the conven-

tional level of statistical significance:

“As a general rule for such large samples, if the difference between the expected value and

the observed number [of Mexican-Americans] is more than two or three standard

deviations, then the hypothesis that the jury selection was random would be suspect to a

social scientist.” Id. at 496, n.17.

(The standard deviation of a sample statistic, such as the sample mean, is frequently

referred to as the standard error of the statistic to distinguish its sampling variability

from the variability of the sampled trait in the population. It would thus be more

appropriate to express the Court’s social science norm in terms of standard errors

rather than standard deviations. See Section 1.3, at p. 22.)

The facts in Castaneda put the observed disparities well beyond two or three

standard errors. The Court calculated that the expected number of Mexican-

Americans was 688 and the standard error for the observed minus expected

difference was 12. Since the observed number was only 339, the shortfall was

688–339¼ 349, which represented 349/12¼ 29 standard errors. Such a disparity,

the Court reported, had a probability of 1 in 10140. The Court made the same

computation for the 2 1/2-year period during which the state district judge

who presided at Partida’s trial was in charge of the selection process. In that period,

there were only 100 Mexican-Americans out of 220 persons summoned;

the disparity was 12 standard errors with an associated probability of 1 in 1025.
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These probabilities are orders of magnitude smaller than almost any encountered

in scientific pursuits.

The dissenting justices in Castaneda did not argue that chance could account for
the underrepresentation of Mexican-Americans. Rather, they argued that the overall

census figure of 79.1% Mexican-Americans was misleading because it did not take

into account how many Mexican-Americans were not citizens, how many were

migrant workers and not residents of the county, how many were illiterate, how

many were not of sound mind and good moral character, and how many had

been convicted of a felony or were under indictment or legal accusation for theft

or a felony—all disqualifications for jury service.

Justice Blackmun rejected these arguments. He pointed out that none of these

points was backed with evidence and that, when census figures were broken down

in a more detailed way, sharp disparities remained. For example, on the literacy

issue, Blackmun calculated that Spanish-surnamed people constituted 65% of those

over 25 with some schooling. He found the disparity between that figure and

the 39% representation to be significant, reporting that “the likelihood that such

a disparity would occur by chance is less than 1 in 1050.” Id. at 489, n. 8.

Questions

1. The Court has held in some cases that, to constitute prima facie evidence of

discrimination, a disparity must be “longstanding and gross.” Justice Blackmun

calculated P-values to buttress his conclusion that the disparities shown in

Castaneda met that standard. What are the pros and cons of that approach?

2. The prosecution did not argue that the underrepresentation of Mexican-

Americans was due to chance. Would the statistical exercise have become

irrelevant if the prosecution had stipulated that the observed disparities were

not caused by chance?

Notes

In the wake of Castaneda, the federal courts have hammered the “two or three

standard deviation” social science norm into a rule of law, and frequently have

relied on it, particularly in employment discrimination cases. See, e.g.,

Section 4.4.1.

The other issue in Castaneda was the so-called governing majority theory. As a

discrimination case, Castaneda was unique in that Mexican-Americans controlled

the government of the county; in particular, three of the five jury commissioners

who selected jurors were Mexican-Americans. Justice Blackmun found this

insufficient to rebut defendant’s prima facie case because it could not be pre-

sumed, as he put it, “that human beings would not discriminate against their own

kind.” Id. at 500.
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4.4 Testing statistical hypotheses

When testing an hypothesis (called a null hypothesis, denoted by H0) against an

alternative hypothesis (denoted by H1), two types of error are possible: the error of

rejecting the null hypothesis when it is true (known as Type I error), and the error of

failing to reject the null hypothesis when it is false (known as Type II error).

The maximum allowable rate of Type I error is known as the level of statistical
significance of the hypothesis test, or the α (alpha) level. The rate of Type II errors

is denoted by β (beta). The complement of the Type II error rate, 1� β, is known as
the power of the test, so that power is the probability of (correctly) rejecting the null

hypothesis.

The level of statistical significance is a test specification that is set by the

investigator in light of the Type I error rate that he or she is willing to accept.

Frequently used levels are 0.05 or 0.01. By using 0.05, the investigator incorrectly

rejects the null hypothesis in no more than one case in twenty; using a 0.01 level

reduces the rate of such errors to one in a hundred.

Why not insist on a smaller Type I error? The reason is this tradeoff: the lower

the rate of Type I error, the fewer the rejections of the null hypothesis and the

greater the rate of Type II error. Thus, strengthening the level of statistical signifi-

cance of a test reduces its power for fixed sample size.

On the facts in Avery (see Section 4.2.1), an investigator using a one-tailed test

will decide whether or not to reject the null hypothesis by considering only the

probability that so few (in this case, not any) yellow tickets would be selected in a

random drawing. This probability is variously called the “observed” or “attained”

significance level, or “P-value.” Since under the hypothesis of random selection the

probability of selecting no yellow tickets is 0.046 (i.e., less than 0.05), an investi-

gator using a one-tailed test and a significance level of 0.05 would reject the null

hypothesis.4

On the other hand, an investigator using a two-tailed test might decide whether

or not to reject the null hypothesis by computing the probability of departing from

the expected number by at least the observed amount in either direction from the

mean. Since the expected number of yellow tickets in the sample is 3, the relevant

departures include zero on the low side and six or more on the high side. The

P-value approximately doubles (the exact value goes from 0.046 to 0.125, some-

what more than double due to the skewness of the binomial distribution with n¼ 60

and p¼ 0.05; but see below). An investigator insisting on a 0.05 level of signifi-

cance would not reject the null hypothesis on these data. The test is called

two-tailed because to include in the Type I error rate departures which are either

too far below or too far above the null expectation is to count both tail-area

probabilities.

4 Deciding in advance as a test specification to reject the null hypothesis when the P-value falls

below 0.05 ensures that the maximum rate of Type I error is no more than 0.05.
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When the normal distribution is used to approximate the cumulative binomial

distribution, a one-tailed test with a 0.05 rate of Type I error rejects the null

hypothesis for departures of 1.645 standard deviations or more from the expected

numbers in the hypothesized direction. A two-tailed test with a Type I error rate of

0.05 rejects the null hypothesis only for departures of at least 1.96 standard

deviations from the mean in either direction.

When a random variable has a normal distribution, or other symmetrical distri-

bution, a two-tailed test doubles the P-value of the one-tailed test. If the distribution
is asymmetric—as is the case in a binomial distribution with np close to 0 or n—it is

no longer clear how to define the two tails. Doubling the P-value is appropriate only
if the overriding concern is to equalize Type I errors, which is not a usual goal. A

commonly used procedure (which we refer to as the point-probability method)

takes the point probability of the observed data under the null hypothesis and adds

to it the probability of any outcome in either tail with an equal or smaller probabil-

ity. The resulting sum is the P-value of the two-sided test. For example, recall that

in Avery the null hypothesis is that the probability of selecting a black juror is 0.05;
since 60 selections were made, the expected number of blacks selected is

60� 0.05¼ 3. The probability that as few as 0 blacks would be selected is 0.046.

That is the lower tail. To get the upper tail, consider in turn the probability of 4, 5,

etc., blacks being selected and start adding probabilities when they are equal to or

less than 0.046. When X¼ 6, p¼ 0.049, and when X¼ 7, p¼ 0.020. Thus, the

probability of 7 or more blacks has to be added to 0.046. The two-tailed significance
level is now 0.076, which is still not significant, although it is smaller than twice

0.046 and smaller than 0.125, the value previously computed by going equal

distances on either side of the expected value.5 In the asymmetrical situation, the

point-probability method is to be preferred to the more simplistic ways of calculat-

ing P-values in a two-tailed test.

Many scientific researchers recommend two-tailed tests even if there are good

reasons for assuming that the result will lie in one direction. The researcher who

uses a one-tailed test is in a sense prejudging the result by ignoring the possibility

that the experimental observation will not coincide with his prior views. The

conservative investigator includes that possibility in reporting the rate of possible

error. Thus routine calculation of significance levels, especially when there are

many to report, is most often done with two-tailed tests. Large randomized clinical

trials are always tested with two tails.

In most litigated disputes, however, there is no difference between non-rejection

of the null hypothesis because, e.g., blacks are represented in numbers not signifi-

cantly less than their expected numbers, or because they are in fact overrepresented.

In either case, the claim of underrepresentation must fail. Unless whites also sue,

the only Type I error possible is that of rejecting the null hypothesis in cases of

underrepresentation when in fact there is no discrimination: the rate of this error is

5A still smaller P-value, in which the two-tailed test remains statistically significant, is obtainable

using the generalized likelihood ratio method. See Section 5.6 at p. 201.
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controlled by a one-tailed test. A one-tailed test is appropriate when the investigator
is not interested in a difference in the reverse direction from that hypothesized

because the consequences of a finding in the reverse direction are the same as the

consequences of a finding of no difference. See Fleiss, Levin, & Paik, Statistical
Methods for Rates and Proportions 20 (3d ed. 2003).

Note that a two-tailed test is more demanding than a one-tailed test in that it

results in fewer rejections of the null hypothesis when that hypothesis is false in the

direction suggested by the data. It is more demanding because it requires greater

departures from the expected numbers for a given level of statistical significance;

this implies that a two-tailed test has a larger Type II error rate and less power than a

one-tailed test with the same significance level. Since power and statistical signifi-

cance are both desirable attributes, two-tailed tests should not be used where one-
tailed tests are appropriate, especially if power is an issue.

A two-tailed P-value may be said to “work assuredly” if a hypothesis test based

on rejecting the null hypothesis whenever the two-tailed P-value is less than or

equal to alpha will have a Type I error no greater than alpha (so it “works”), and this

holds true for any value of the parameter specified by the null hypothesis (so it’s

“assured”). Because of the discreteness of the binomial distribution, when a P-value
is less than or equal to alpha, it is almost always strictly less than alpha, so that the

actual Type I error of the test is somewhat less than alpha and the test works

assuredly. However, some researchers want to remove this bit of conservatism from

the test by making a “mid-p correction.” In this correction if, e.g., a binomial P-
value is calculated for X � x0 the mid-p correction for that P-value would subtract

one-half the probability that X ¼ x0. Thus the mid-p correction takes an observed

tail probability and then subtracts one-half the probability of the observed value

from the tail. However, a P-value with the mid-p correction is not guaranteed to

work assuredly. There are examples where if one rejects the null hypothesis if and

only if the mid-p corrected P-value is less than alpha, the Type I error is greater than
alpha. Similarly, if one uses it for confidence intervals, the coverage probability can

be less than 95% for some true parameter values. See Section 4.5.4.

For a discussion of Type II errors and statistical power in hypothesis testing,

see Section 5.4.

4.4.1 Hiring teachers

In Hazelwood School District v. United States, 433 U.S. 299 (1977), an employ-

ment discrimination case decided shortly after Castaneda, the data showed that of

405 school teachers hired by the defendant school district, only 15 were black. The

United States, as plaintiff, claimed that this should be compared with the teacher

population of St. Louis County, including the City of St. Louis, in which case the

population of the pool would be 15.4% black. The defendant school district

contended that the city population should be excluded, leaving a population of

teachers that was 5.7% black.
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In the opinion for the Court, Justice Stewart computed the disparity as less than

two standard deviations using the teacher pool and excluding the City of St. Louis,

but greater than five standard deviations if the city were included. Id. at 311, n.17.
For this and other reasons, the Court remanded for a determination whether the

United States’ position on the labor pool was correct. In dissent, Justice Stevens

noted that his law clerk had advised him (after his opinion had been drafted) that

there was only about a 5% probability that a disparity that large would have

occurred by random selection from even the 5.7% black teacher pool. Id. at
318, n. 5. Justice Stevens concluded on these and other grounds that a remand

was unnecessary since discrimination was proved with either pool.

Questions

1. Compute the probability that so large a disparity would occur by random

selection using each pool.

2. What is the source of the difference between the conclusions of the majority and

the dissent? With whom do you agree?

3. What criticisms do you have of a two-or-three standard deviation rule?

Further Reading

Meier & Zabell, What Happened in Hazelwood: Statistics, Employment Discrimi-
nation, and the 80% Rule, Am. Bar Foundation Res. J. 139 (1984), reprinted in

Statistics and the Law 1 (DeGroot, Fienberg, & Kadane, eds., 1986).

4.5 Hypergeometric distribution

Suppose an urn contains T chips of which M are marked in a given way and T�M
are unmarked. A random sample of size N is drawn without replacement, i.e., at

each drawing a chip is withdrawn with equal likelihood from those remaining in the

urn. Let X denote the number of marked chips in the sample. Then the random

variable X, has a hypergeometric distribution with indices T, M, and N.

Basic hypergeometric formula

The probability function of X may be derived as follows. This kind of random

sampling implies that each of the possible
T
N

� �
samples of size N from the urn is

equally likely (see Section 2.1). For given integer x, there are
M
x

� �
ways of

choosing exactly x marked chips from among the M available, and there are

T �M
N � x

� �
ways of choosing N–x unmarked chips from among the T–M available:
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so, there are a total of
M
x

� �
T �M
N � x

� �
ways of choosing a sample size

N containing exactly x marked chips. Thus,

P X ¼ x½ � ¼
M
x

� �
T �M
N � x

� �
T
N

� �
is the required probability function for the hypergeometric distribution. Obviously

X cannot exceed the sample size, N, or the total number of marked chips available,
M. Likewise, X cannot be less than zero, or less than N � T �Mð Þ ¼ M þ N � T,
for otherwise the sample would include more unmarked chips than the total number

of unmarked chips available, T�M. Consequently, the possible values of X are

max 0,M þ N � Tð Þ 	 x 	 min M;Nð Þ:
It is helpful to visualize the notation in a fourfold table, illustrated below for the

event [X¼ x].

marked unmarked total

sampled x N – x N

not sampled M–x x – (M+N–T) T –N

total M T–M T

The hypergeometric formula can be re-expressed in a number of ways using the

definition of the binomial coefficient:

P X ¼ x½ � ¼ M

x

 !
T �M

N � x

 !�
T

N

 !

¼ M! T �Mð Þ!N! T � Nð Þ!
x! M � xð Þ! N � xð Þ! x�M � N þ Tð Þ!T!

¼ N

x

 !
T � N

M � x

 !�
T

M

 !
:

The hypergeometric formula thus yields the same result when the rows and columns

of the fourfold table are transposed. This means that in applications it does not

matter which of two dichotomies is regarded as “sampled” and which as “marked.”

For example, in a study of the influence of race on parole, we can regard black

inmates as the sampled group and compute the probability of X paroles among

them. Alternatively, we can regard the paroled inmates as the sampled group and

compute the probability of X blacks among them. On the assumption of no associa-

tion between race and parole, the hypergeometric formulas apply and lead to the

same result in either case.
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Mean and variance

In deriving the mean and variance of the binomial distribution, it was helpful to

view the binomial random variable as a sum of independent and identically

distributed binary variables (see Section 4.1). The hypergeometric random variable

X is also a sum of binary outcomes (1¼marked, 0¼ unmarked), but now succes-

sive outcomes are neither statistically independent nor identically distributed as the

drawing progresses. Why? This situation is typical of sampling from a finite

population. The statistical dependence affects the variance of X, but not the

mean: X has expectation equal to N times the expected value of a single drawing,

which has expectation M/T, yielding EX ¼ MN=T. The variance of X is equal to

N times the variance of a single drawing times the finite population correction

factor T � Nð Þ= T � 1ð Þ (see Section 9.1). The variance of a single drawing is

M=Tð Þ � 1�M=Tð Þ and thus,

Var X ¼ M � N � T �Mð Þ � T � Nð Þ
T2 � T � 1ð Þ :

Tail area probabilities

To compute tail area probabilities, one may sum individual terms of the

hypergeometric formula if they are not too numerous. Otherwise, a version of the

central limit theorem for sampling without replacement from finite populations

applies. As M and N both become large, with M/T approaching a limiting value

p (0< p< 1) and N/T approaching a limiting value f (sampling fraction, 0< f< 1),

the standardized variable Z ¼ X � EXð Þ= Var Xð Þ1=2 approaches a standard normal

random variable in distribution. Thus, for large M, N, and T, the distribution of

X may be approximated by a normal distribution with mean Tfp and variance

T � p 1� pð Þ � f 1� fð Þ. In the case of a fixed sample size N, with T large, the

hypergeometric distribution is approximately binomial with index N and parameter

p, since with N equal to a small fraction of T, sampling without replacement differs

negligibly from sampling with replacement.

Example. Consider the following data:

marked not marked total

sampled 2 8 10

not sampled 38 52 90

total 40 60 100

The exact probability that the number X of marked chips would be x¼ 2 is given

by the hypergeometric formula:
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P X ¼ x½ � ¼ M

x

 !
T �M

N � x

 !�
T

N

 !
¼ 40

2

 !
60

8

 !�
100

10

 !

¼ 40 � 39
2

� 60 � 59� � �53
8 � 7� � �2 � 1

�
100 � 99� � �91
10 � 9� � �2 � 1 ¼ 0:115:

In similar fashion, we find P X ¼ 1½ � ¼ 40

1

� �
60

9

� ��
100

10

� �
¼ 0:034 and

P X ¼ 0½ � ¼ 40

0

� �
60

10

� ��
100

10

� �
¼ 0:004. Thus P X 	 2½ � ¼ 0:154. Using the

normal approximation with ½ continuity correction, we find that

P X 	 2½ � ¼ P X 	 2:5½ � ¼ P Z 	 2:5� 40 � 10=100ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
40 � 60 � 10 � 90ð Þ= 1002 � 99� �q

264
375 ¼ �1:016;

which is approximately equal to the probability that a standard normal variate is less

than or equal to –1.016, that is, 0.156.

Non-central hypergeometric distribution

An interesting property of binomial distributions also leads to hypergeometric

distributions. Suppose X has a binomial distribution with index N and parameter

P, and Y has an independent binomial distribution with index T�N and the same

parameter P. If we are told that the sum of the two isM, i.e., X+Y¼M, what is the
conditional distribution of X? The answer is hypergeometric with indices T, M, and

N. This property is used to derive Fisher’s exact test in Section 5.1.

What happens if the two parameters are unequal, say P1 for X and P2 for Y? In
that case, given X+Y¼M, the conditional distribution of X is said to follow the

non-central hypergeometric distribution with indices T, M, and N, and parameter

Ω ¼ P1=Q1ð Þ= P2=Q2ð Þ, where Ω is the odds ratio for the two P’s. Note that the

distribution depends only on Ω and not otherwise on the individual parameters P1

and P2. The probability distribution for X given X + Y¼M has the somewhat

daunting expression

P X ¼ x
��X þ Y ¼ M

	 
 ¼
N
x

� �
T � N
M � x

� �
Ωx

X
i

N
i

� �
T � N
M � i

� �
Ωi

;

where the summation extends over all possible values of x (namely the larger of 0 or

M+N� T at the low end, up to the smaller of M and N at the high end). This

distribution can be used to determine exact confidence intervals for odds ratios,
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(see Section 5.3 at p. 179), and point estimates for relative hazard functions in

survival analysis (see Section 11.1).

Terminology

The name “hypergeometric” was given by the English mathematician John Wallis

in 1655 to the terms of the sequence a, a aþ bð Þ, a aþ bð Þ aþ 2bð Þ, . . ., with nth

term equal to a aþ bð Þ� � � aþ n� 1ð Þbð Þ. This generalizes the geometric sequence

whose terms are a, a2, a3, . . . when b ¼ 0. When b ¼ 1 we write the nth term in the

hypergeometric sequence as a n½ � ¼ a aþ 1ð Þ� � � aþ n� 1ð Þ. The hypergeometric

probability function P X ¼ x½ � may then be expressed as the following ratio of

hypergeometric terms:

M � xþ 1ð Þ x½ � � T �M � N þ xþ 1ð Þ N�x½ � � 1 N½ �

T � N þ 1ð Þ N½ � � 1 x½ � � 1 N�x½ � :

4.5.1 Were the accountants negligent?

When conducting an audit, accountants check invoices by drawing random samples

for inspection. In one case, the accountants failed to include any of 17 fraudulent

invoices in their sample of 100 invoices. When the company failed, after the

accountants had certified its financial statements, a creditor who had relied on the

statements sued, claiming that the accountants had been negligent.

Questions

1. What is the probability that none of the 17 invoices would be included in a

random sample of 100 if there were 1,000 invoices in all?

2. Suppose the sample were twice as large?

3. Is the difference sufficient to justify holding the accountants liable for failing to

draw a larger sample?

4. How should the accountants handle the problem if invoices are of different

amounts?

Source

Ultramares Corp. v. Touche, 255 N.Y. 170 (1931).

Note

Statistical sampling is now widely used by accountants in audits. See, e.g., Ameri-

can Institute of Certified Public Accountants, Statement on Auditing Standards,

No. 39, Audit Sampling (1981) (as amended).

See also Taylor & Glezen, Auditing: An Assertions Approach, ch. 14 (7th ed. 1997).
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4.5.2 Challenged election

Under New York law, as interpreted by New York’s Court of Appeals, a defeated

candidate in a primary election is entitled to a rerun if improperly cast votes

(it being unknown for whom they were cast) “are sufficiently large in number to

establish the probability that the result would be changed by a shift in, or invalida-

tion of, the questioned votes.” In an election, the challenger won by 17 votes;

among the 2,827 votes cast were 101 invalid votes.

Questions

1. If X is the number of improper votes that were cast for the winner, what is the

smallest value of X that would change the results if the improper votes were

removed from the tally?

2. What is the expected value of X if the improperly cast votes were a random

selection from the total votes cast?

3. Use the normal approximation to the cumulative hypergeometric distribution to

compute the probability that Xwould so far exceed expectation that the results of

the election would be changed.

4. Are the assumptions used in computing the probabilities reasonable?

5. From the point of view of the suitability of the model, does it matter whether the

winner is the incumbent or the challenger?

Source

Ippolito v. Power, 22 N.Y.2d 594, 294 N.Y.S.2d 209 (1968). See Finkelstein &

Robbins, Mathematical Probability in Election Challenges, 73 Colum. L. Rev.

241 (1973), reprinted in Quantitative Methods In Law, 120–30 (1978). A criticism

of the random selection model appears in Gilliland & Meier, The Probability of
Reversal in Contested Elections, in Statistics and the Law, 391 (DeGroot, Fienberg,
& Kadane, eds., 1986, with comment by Robbins).

4.5.3 Election 2000: Who won Florida?

The year 2000 presidential election was one of the closest in history. In the end, the

outcome turned on the result in Florida. After protest proceedings by the Democrats,

on November 26, 2000, Florida election officials certified that the Bush/Cheney

Republican ticket had won by 537 votes out of some 5.8 million cast. The Democrats

had sought recounts by manual inspection of ballots that had registered as non-votes

(“undervotes”) by the punch-card voting machines in four heavily Democratic

counties. Two of these counties had completed their recounts within the time

allowed by Florida state officials and their results had been included in the certified
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totals. But two large counties–Miami-Dade and Palm Beach–did not meet the

deadline and the recounted votes were not included. Palm Beach had completed

the recount shortly after the deadline and Miami-Dade had completed only a partial

recount and had stopped, leaving uncounted some 9,000 ballots registered as

undervotes for president.

The Democrats returned to court, this time in contest proceedings. Florida law

provides as a ground for contesting an election a “rejection of a number of legal

votes sufficient to change or place in doubt the results of the election.” The

Democrats contended that the punch-card machines in particular failed to count

ballots on which the intent of the voter could be discerned by manual inspection and

hence were legal votes that had been rejected by the machine.

The Democrats produced evidence purporting to show that the Gore/Lieberman

ticket would pick up enough votes in Miami-Dade and Palm Beach counties to win

the election, given manual recounts confined to the undervotes in those counties.

(The Republicans attacked this evidence as biased.) The Democrats did not offer

testimony on the probability of reversal if there were a state-wide recount. Nor did the

Republicans. Although the opinion is not clear, it appears that the trial court would

have required such evidence. The trial judge, N. Sander Sauls, held that there was

“no credible statistical evidence, and no other substantial evidence to establish by a

preponderance of a reasonable probability that the results of the statewide election in the

State of Florida would be different from the result which has been certified by the State

Elections Canvassing Commission.”

On December 8, the Supreme Court of Florida reversed, holding that such a

showing based on a state-wide recount was not necessary. “The contestant here

satisfied the threshold requirement by demonstrating that, upon consideration of the

thousands of undervotes or ‘no registered vote’ ballots presented, the number of

legal votes therein were sufficient to at least place in doubt the result of the

election.” The court ordered that the results of the manual recount to date be

included and that a recount proceed not only with respect to the 9,000 unrecounted

votes in Miami-Dade, but also, as a matter of remedy, in all other counties with

uncounted votes. A vote was to be included as a legal vote if “the voter’s intent may

be discerned from the ballot.” No further specification was given.

The rate at which a voter’s intent could be discerned in undervoted ballots (the

recovery rate) evidently depended on the standards applied and the type of voting

machine. In those counties already recounted, involving punch-card voting

machines, recovery rates ranged from about 8% in Palm Beach, to 22% in

Miami-Dade, to about 26% in Broward. More liberal standards, at least in punch-

card counties, were thought to favor Gore. Giving effect to the votes that had

already been recounted, the Bush plurality shrank to 154 votes. Immediately

following the Florida Supreme Court’s decision, a feverish recount began around

the state. Two optical scanning counties, Escambia and Manatee, completed their

recounts immediately and had in the aggregate about a 5% recovery rate.

On the next day—in a 5–4 decision—the U.S. Supreme Court stayed the recount

and granted certiorari. Late in the evening on December 12, the Court reversed the

Florida Supreme Court, holding (7-2) that the Florida court’s opinion violated
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the equal protection clause of the Fourteenth Amendment by failing to identify and

require standards for accepting or rejecting ballots. The Court further held (5-4) that

since the Florida Supreme Court had said that the Florida Legislature intended to

obtain the safe-harbor benefits of 3 U.S.C. }5 for the Florida electors, any recount

would have to be completed by December 12, the safe harbor date. Since this was

obviously impossible, the case was over; Bush was declared the winner of Florida

and the election.

Would Bush have won if the U.S. Supreme Court had not stopped the recount?

Table 4.5.3 shows the reported vote totals for each of the 67 counties in Florida, giving

effect to the recount numbers as of the time of the Florida Supreme Court’s decision.

Questions

1. Assume that in each county the recovery rate of legal votes from the uncounted votes

is 26% for punch-card counties and 5% for optical scan counties, and the recovered

votes are divided between the two candidates in the same proportions as the counted

votes. If the recount had been allowed to go forward, who would have won?

2. Assuming that the machine-counted votes are a random sample from all of the

ascertainable votes (i.e., the counted votes and the undervotes that would have

been ascertainable upon a manual recount), test the null hypothesis that Gore

won Florida among the ascertainable votes by calculating the statistical signifi-

cance of the plurality computed in (1) above.

3. Had Judge Sauls granted the Democrats’ request for a manual recount in the four

counties, then the 195 plurality in Table 4.5.3 would be apropos, with only

Miami-Dade left to finish recounting. In that case, what would have been the

probability of a reversal?

Sources

Bush v. Gore, 531 U.S. 98 (2000).

Gore v. Harris, 2000 Fla. Lexis 2373 (2000). County data are from a CNN

website.

See also Finkelstein & Levin, Bush v. Gore: Two Neglected Lessons from a
Statistical Perspective, 44 Jurimetrics 181 (2004).

Notes

Monte Carlo studies show that the results given here are not sensitive to variations

in recovery rates among the counties by type of machine. Contrary to general

opinion at the time, higher recovery rates in punch-card counties would have served

only to increase Bush’s lead.

Note, however, that the calculations here are based on county data. More

detailed precinct data might show a different projected outcome if, for example,

there were precincts in Bush counties that had high undercount rates and went for

Gore. More significantly, no data are included on the overvotes, i.e., those ballots

for which no vote was registered because the voter picked two presidential
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candidates. The rate of vote recovery for such ballots (based on the face of the ballot

and not on demographic factors) would probably be much lower than for

the undervote ballots.

4.5.4 Taking the stand

Researchers used unique data from over 300 criminal trials to investigate the effect

on juries of knowledge that defendants had a criminal record. The strength of

evidence was measured on a 1–7 scale, with 7 being the strongest. The data are

as follows:

Questions

1. Use the basic hypergeometric formula to compute the probability of the

observed data in the cases with evidence strength <3.5. Using that result, what

is the mid-p correction?

2. The two-tailed P-value for the data in question (1) using the mid-p exact test and

doubling the P-value for one tail is 0.0487. If the mid-p correction is not made,

what is the two-tailed P-value?

3. The two-tailed, mid-p corrected test has a Type I error rate that exceeds 0.05 in

this example. How, in principle, would you calculate that rate?

Source

Eisenberg & Hans, Taking a Stand on Taking the Stand: The Effect of a Prior
Criminal Record on the Decision to Testify and on Trial Outcomes, 94 CORN. L. REV.

1353 (2009).

Table 4.5.4. Jury knowledge of prior criminal record and conviction

Number Not

convicted

Number

Convicted

Percent

Convicted

Evidence Strength< 3.5

Jury did not learn of

record

32 7 18.0

Jury learned of record 12 9 42.9*

Evidence Strength� 3.5

Jury did not learn of

record

11 109 90.8

Jury learned of record 3 41 93.2

*The researchers reported that the significance was< 0.05 using the “mid-p exact test.”
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4.6 Tests of normality

There are various summary measures used to appraise the shapes of distributions

in general, and to check for departure from the normal distribution in particular.

Skewness

Skewness measures the asymmetry of a distribution around its central value.

It is defined as the average value of the cubed deviations from the mean, often

reported in standardized form by dividing by the cube of the standard deviation. For

a symmetrical distribution, skewness is zero. Do you see why?

Skewness is important to recognize because many probability calculations

assume a normal distribution, which is symmetrical, but the sums of highly asym-

metrical random variables approach normality slowly as their number increases,

making the normal approximation inaccurate. In addition, in skewed distributions

the various measures of central tendency (see Section 1.2) have different values.

In unimodal distributions (those with a single hump), positive skewness means the

hump is on the left and a long tail lies to the right. Negative skewness is the opposite.

For example, the exponential distribution with mean 1/c, with relative frequency

function f xð Þ ¼ ce�cx for x > 0, is positively skewed, with standardized third

moment, i.e. skewness, equal to 2.6

Kurtosis

Kurtosis is a measure of the peakedness of the center of a distribution compared to

the heaviness of its tails. The coefficient of kurtosis is defined as the average of

deviations from the mean raised to the fourth power, standardized by dividing by the

squared variance, fromwhich result the value 3 is subtracted. For normal distributions,

the coefficient of kurtosis has the value 0. For a given variance, distributions with high

narrow peaks and heavy tails have positive kurtosis; distributions with low, broader

peaks and thinner tails have negative kurtosis. For example, an exponential distribu-

tion has thicker tails than the normal distribution with relative frequency function

proportional to exp �cxð Þ as opposed to exp �cx2ð Þ for the normal. The exponential

distribution has kurtosis of 6. The uniform distribution, on the other hand, has no tails

and its coefficient of kurtosis is –1.2.7

Kolmogorov-Smirnov tests

The coefficients of skewness and kurtosis do not make reliable tests of normality

because they are too sensitive to outlying observations (due to the high power towhich

6 Exponential distributions are common waiting-time distributions; see Section 4.8.
7 A uniform distribution assigns equal probability density to all points in a given interval. The uniform

distribution on the interval [0, 1] has relative frequency function f xð Þ ¼ 1 for x∈ 0; 1½ � and f xð Þ ¼ 0

elsewhere. A uniformly distributed random variable X has mean 1/2 and variance 1/12. The probabil-

ity that X	 x is simply x for any x between 0 and 1. Its skewness is zero by symmetry.
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deviations are raised). A better test, applied to the normal and other continuous

distributions, is theKolmogorov-Smirnov test. In this test, the statistic is themaximum

absolute difference between the empirical and theoretical cumulative distribution

functions (cdf’s). The empirical cdf in a set of data is the proportion of data points

at or below any given value. (The theoretical cdf was defined in Section 4.1.)

This maximum difference itself has a probability distribution that is tabled.

Fig. 4.6. Normal probability paper
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SeeAppendix II, TableG1.Kolmogorov-Smirnov can also be used to testwhether two

empirical distributions have the same parent. See Appendix II, Table G2.

In the Silver “butterfly” straddle data (see Section 4.6.2), the entry

“D Normal¼ 0.295232” in Fig. 4.6 is the maximum absolute difference used in the

Kolmogorov-Smirnov test.What does TableG1 show about the probability associated

with a value at least that large under normality for sample sizes in excess of 50?

Normal probability graph paper

Normal probability graph paper is a convenient device for testing normality that

also makes use of the cumulative distribution function. See Fig. 4.6 for a sample.

On this paper the cdf for the normal distribution is a straight line. The empirical cdf

is plotted as the ordinate against the value of the observation as the abscissa.

Departures from a straight line indicate non-normality.

SEMERTXE)4=FED(SELITNAUQSTNEMOM

N 587 SUM WGTS 587 100% MAX 170 99% 56.1987 LOWEST HIGHEST
MEAN -0.11925 SUM -70 75% Q3 5 95% 15 -170 65
STD DEV 18.1571 VARIANCE 329.679 50% MED 0 90% 5 -170 65
SKEWNESS -0.0427321 KURTOSIS 51.0753 25% QI -5 10% -6.00014 -65 70
USS 193200 CSS 193192 0% MIN -170 5% -15 -60 165
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FREQUENCY TABLE

STNECREPSTNECREPSTNECREPSTNECREP

VALUE COUNT CELL CUM VALUE COUNT CELL CUM VALUE COUNT CELL CUM VALUE COUNT CELL CUM
-170 2 0.3 0.3 -30 1 0.2 2.6 5 105 17.9 90.5 50 1 0.2 99.0
-65 1 0.2 0.5 -25 4 0.7 3.2 10 21 3.6 94.0 55 1 0.2 99.2
-60 1 0.2 0.7 -20 5 0.9 4.1 15 9 1.5 95.6 65 2 0.3 99.5
-55 2 0.3 1.0 -15 14 2.4 6.5 20 9 1.5 97.1 70 1 0.2 99.7
-50 1 0.2 1.2 -10 20 3.4 9.9 25 3 0.5 97.6 165 1 0.2 99.8
-40 2 0.3 1.5 -5 113 19.3 29.1 30 3 0.5 98.1 170 1 0.2 100.0
-35 5 0.9 2.4 0 255 43.4 72.6 40 4 0.7 98.8

Fig. 4.6.2. Silver “butterfly” straddles output
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The student should plot the silver butterfly straddle data on the bottom of

Fig. 4.6.2 on the graph paper, using the scale for the data shown in the figure on

the abscissa and the cdf values shown for the ordinate. Ten points should suffice to

draw the curve. Compare this curve with the line for the normal distribution with

the same mean (–0.11925) and standard deviation (18.1571) as in the data. This line

can be drawn using only two points, e.g., the mean at the 50th percentile and 1.645

standard deviations at the 95th percentile. Are the differences between the empiri-

cal cdf and the normal cdf line consistent with positive kurtosis?

Chi-squared

For use of chi-squared to test normality, see Section 6.1.

4.6.1 Heights of French conscripts

In the first part of the nineteenth century, interest in the normal distribution as

an error law led a Belgian astronomer and poet, Adolphe Quetelet, to use

the normal curve to test whether data relating to human populations were

sufficiently homogeneous to be aggregated as coming from a single source

for purposes of social science analysis. Finding normality in many data sets led

Quetelet to the view that variation in characteristics was caused by accidental

factors operating on a true or ideal type—l’homme type—the average man.

Quetelet became famous for this concept. Initially, he viewed the idea merely

as a device for smoothing away random variation and uncovering mathematical

laws of social behavior. But later, influenced by his conclusion that variation

represented accidental imperfections, Quetelet endowed the average man with

superior moral qualities emblematic of democratic virtue. Quetelet’s tendency to

Table 4.6.1. Heights of French conscripts—1817 data

I II III IV V

Height

(in meters)

Observed #

of men

Observed cumulative

# of men

Expected #

of men

Expected cumulative

# of men

Less than

1.570

28,620 28,620 26,345 26,345

1.570–1.597 11,580 40,200 13,182 39,527

1.597–1.624 13,990 54,190 14,502 54,029

1.624–1.651 14,410 68,600 13,982 68,011

1.651–1.678 11,410 80,010 11,803 79,814

1.678–1.705 8,780 88,790 8,725 88,538

1.705–1.732 5,530 94,320 5,627 94,166

1.732–1.759 3,190 97,510 3,189 97,355

Above

1.759

2,490 100,000 2,645 100,000

Total 100,000 100,000
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overestimate the prevalence of the normal distribution has been dubbed

“Quetelismus.”

In one study, Quetelet looked at data on the chest sizes of 5,732 Scottish

militiamen and the heights of 100,000 French conscripts, and compared them

with the expected distribution under normality. The chest-size data appeared

consistent with normality. The height data are set forth in Table 4.6.1. Conscripts

below 1.57 meters (501.800) were excused.

Questions

1. Test the data for normality using normal probability graph paper, Kolmogorov-

Smirnov, or chi-squared.

2. What departures from normality do you find? What are the possible

explanations?

3. Test Quetelet’s finding that, except for the first two rows, the data are normally

distributed by consolidating the first two rows and retesting for normality. What

conclusion do you reach?

Source

Adolphe Quetelet, Letters Addressed to H.R.H. The Grand Duke of Saxe Coburg
and Gotha, on the Theory of Probabilities as Applied to the Moral and Political
Sciences 277–278 (Downes, tr., 1849), discussed in Stigler, Measurement
of Uncertainty before 1900, at 215–216 (1986); see also Hacking, The Taming of
Chance, ch. 13 (1990).

4.6.2 Silver “butterfly” straddles

Beginning in the late 1960s, investors began buying silver futures in certain

configurations known as “butterfly” straddles. A butterfly straddle consists of a

package of long and short futures contracts (10,000 oz. per contract) which is so

balanced with respect to expiration dates that the value of the overall package

fluctuates much less than the value of the component contracts. If properly

liquidated, the straddle can create short-term capital losses in one year which are

largely balanced by long-term capital gains in the next. This tax effect attracted

investors, particularly those with short-term capital gains which could be offset by

the short-term losses.

The IRS brought suit against investors who used straddles for this purpose. The

Service claimed that, since the dominant (if not exclusive) motive was tax avoid-

ance, the tax benefits of the transaction should be denied. As part of its case, the IRS

presented a statistical model designed to show that a profit was highly improbable

because the value of the butterfly moved too little to permit profitable liquidation
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after commissions. The data used by the IRS commodities expert consisted of the

change in closing prices of various butterfly combinations over specified periods. In

a given year there might be three or four possible butterflies with different delivery

months. For example, in the period 1973–1979 there were four 2–2 butterflies with

delivery months as follows: January-March-May, March-May-July, May-July-

September, and July-September-November. A 2–2 butterfly straddle would

involve, e.g., a short position of 5 contracts for January, a long position of

10 contracts for March, and a short position of 5 contracts for May. For a given

butterfly with, e.g., a 4-week holding period, the weekly price change was measured

as the difference between the closing price for the butterfly as a whole on

Wednesday in week 1 and on Wednesday in week 4; and so on for weeks 2 and

5, etc. Each 4-week price change is thus a data point. For the daily, 4-week price

change, the successive data points are the differences in closing prices on day 1 in

weeks 1 and 4, day 2 in weeks 1 and 4, etc. The standard deviations of the daily and

weekly price changes over the 6-year period (1973–1979) were computed, although

most contracts were held for less than 1 year and the maximum holding period was

17 months. A sample of the data for butterfly spreads is shown in Table 4.6.2.

The IRS expert pointed out that, because commissions associated with buying

and liquidating futures positions (approximately $126) in most cases exceeded two

standard deviations, and price changes were normally distributed, it was highly

improbable that prices would fluctuate sufficiently to cover such costs and allow a

profit, even if they moved in a favorable direction. In further support of that

deduction, the expert produced computer analyses of samples of butterfly data.

One such page appears as Fig. 4.6.2.

Table 4.6.2. Silver butterfly analysis: August 1973–July 1979

Holding period

Width

1–2 months 2–2 months 2–3 months

Weekly Daily Weekly Daily Weekly Daily

1 week m 3.42 2.05 0.08 0.04 0.63 –0.30

sd 36.36 34.91 27.40 23.30 50.78 30.09

n 181 1,150 652 3,350 207 1,066

4 weeks m 13.48 8.92 1.46 0.78 0.44 –1.82

sd 55.32 46.02 32.68 28.10 58.08 41.54

n 178 1,135 643 3,505 207 1,051

8 weeks m 29.60 18.34 –2.62 –1.57 –1.64 –4.25

sd 63.30 58.02 30.36 28.08 54.68 47.84

n 129 899 473 2,700 158 787

24 weeks m 77.56 70.32 –5.86 –2.92 2.67 0.64

sd 103.92 101.92 42.56 39.53 80.00 78.52

n 70 616 271 1,665 131 654

Key: m¼mean (in dollars)

sd¼ standard deviation (in dollars)

n¼ number of observations
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Questions

1. The expert argued, on the basis of the Kolmogorov-Smirnov statistic in the

computer printout [D: Normal 0.295232; Prob>D< 0.01] that “there was only

a 0.01 chance the data were not normally distributed.” What is the correct

statement?

2. The expert argued that, if the data were not normally distributed due to positive

kurtosis, the thinner tails made it even less likely than under the normal hypoth-

esis that there would be opportunities for profit. What is the correct statement?

3. If the daily price changes of the 2–2 butterfly were independent (e.g., a price

change from day 1 to day 2 would tell us nothing about the price change between

days 2 and 3) would that support the expert’s assumption that the 4-week price

changes were normally distributed?

4. Are the standard deviations of the 4-week and 8-week holding period price

changes consistent with independence of daily price changes?

5. Use Chebyshev’s theorem (see Section 1.3 at p. 18) to argue for the IRS.

6. Does the expert’s holding-period statistic reflect the potential for profitable

liquidation of a butterfly straddle?

7. What alternative methods of analysis might the expert have used to demonstrate

the small likelihood of a profitable liquidation of a butterfly straddle?

Source

Smith v. Commissioner, 78 T.C. 350 (1982), aff’d, 820 F.2d 1220 (4th Cir. 1987)

(Report of Roger W. Gray).

4.7 Poisson distribution

Let X denote the number of successes in n independent trials with constant

probability of success p, so that X is binomially distributed with mean np.
Let n become large while p approaches zero, in such a way that np approaches

the constant μ. This might occur if we consider the probability of an event—such as

an accident—occurring over some time period. As we divide the time interval into

progressively smaller segments, the probability p of occurrence within each seg-

ment decreases, but since the number of segments increases, the product remains

constant. In such cases, the distribution of X approaches a limiting distribution

known as the Poisson distribution, after the French mathematician Siméon Denis

Poisson (1791–1840). Because it describes the distribution of counts of individually

rare events that occur in large numbers of trials, many natural phenomena are

observed to follow this distribution. For example, the number of atoms in a gram

of radium that disintegrate in a unit of time is a random variable following

the Poisson distribution because the disintegration of any particular atom is a rare

event, and there are numerous atoms in a gram of radium. The number of traffic

accidents per month at a busy intersection, the number of gypsy moth infestations
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per acre of forest, the number of suicides per year, all may have Poisson

distributions (or mixtures of Poisson distributions to allow for heterogeneity in

the average rate μ).

Basic formula

The probability function for the Poisson distribution with mean μ is

P X ¼ x½ � ¼ e�μ � μx=x! for x ¼ 0, 1, 2, . . .

The mean value is μ and the variance is also equal to μ, as a result of the limiting

nature of the Poisson: the binomial variancenp 1� pð Þ approaches μ asnp ! μ and
p ! 0. The most likely outcome (modal value) in a Poisson distribution is the

greatest integer less than or equal to the mean μ. The distribution is positively

skewed for small values of μ, less so for large values of μ. The standardized Poisson
variable X � μð Þ=√μ approaches the standard normal distribution as μ becomes

large. This is a consequence of the following important property of the Poisson

distribution: if X1 and X2 are independent Poisson variables with means μ1 and μ2,
respectively, then X1 +X2 also has a Poisson distribution, with mean μ1 + μ2. Thus, a
Poisson variable with large mean can be viewed as a sum of many independent

Poisson variates with approximately unit mean, to which the central limit theorem

may be applied.

As an example, suppose you drive back and forth to work each day with a per trip

chance of getting a flat tire of 0.001. In 1 year, you risk a flat tire, say, 500 times.

What are the chances of getting one or more flat tires in a year? Two or more?

The chances are given by the Poisson distribution with mean μ¼ 500� 0.001¼ 0.5:

P[X> 0]¼ 1�P[X¼ 0]¼ 1� e�0.5¼ 0.39 andP[X> 1]¼ 1�P[X¼ 0]�P[X¼ 1]

¼ 1 � e�0.5(1 + 0.5) ¼ 0.09.

Conditioning property

We mention two other useful properties of the Poisson distribution. The first is a

conditioning property: let X1 and X2 have independent Poisson distributions with

means μ1 and μ2. Then the conditional distribution of X1 given fixed sum

X1 +X2¼N is binomial with index N and parameter p ¼ μ1= μ1 þ μ2ð Þ. Here is an
example of this useful relation. In an age discrimination suit, typist A claims he was

replaced by a younger typist B with inferior accuracy. A typing test is administered

to both typists and the number of errors recorded as X1 for A and X2 for B. How do

we compare typing precision? Assume X1 and X2 are each distributed as Poisson

variables with means μ1 and μ2. Under the null hypothesis of equal precision,

the conditional distribution of X1 given a total of N¼X1 +X2 errors observed is

Bin(N, 1/2) and thus H0 can be tested in the usual manner.

Poisson process

The second property relates the number of events that occur in a given time period

to the waiting time between events. An event that occurs repeatedly over time is
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said to follow a Poisson process if the following three conditions hold: (i) the

occurrence of events in non-overlapping time periods is statistically independent;

(ii) the probability of a single event occurring in a short time period of length h is

approximately μh; and (iii) the probability of two or more events occurring in the

same short time period is negligible. It follows from these conditions that (a) the

number of events that occur in a fixed time interval of length T has a Poisson

distribution with mean μT, and (b) the interarrival times between successive events

are statistically independent random variables that follow an exponential distribu-

tion with mean 1/μ. The exponential waiting-time distribution is characteristic of a

constant “hazard” process, where the likelihood of an occurrence does not depend

on the past pattern of occurrences. The Poisson process is used in survival (follow-

up) studies to analyze the effects of risk factors on mortality in a population,

especially over short time periods. See Sections 11.1 and 11.2.

Compound Poisson distribution

The foregoing discussion of the Poisson distribution assumed that μ is a fixed

quantity. A compound Poisson distribution arises when there is random variability

in μ. There are many different compound Poisson distributions, depending on the

population distribution of the random Poisson mean μ. For example, a random

sample of n drivers will provide n realizations of a theoretical quantity, say μj
( j¼ 1,. . .,n), representing the “accident proneness” for driver j. Thus μj for driver j
may be thought of as the long-run average of the number of observed accidents that
the driver would have over an infinite number of hypothetical replications of a unit
time period. While the parameter μj is not directly observable for any driver, the

number of accidents, Xj, that driver j has in a unit time period is observable. If Xj has

a Poisson distribution with mean μj, then X1,. . .,Xn constitute a sample of size

n from a compound Poisson distribution.

A remarkable theorem, due to Herbert Robbins, provides a way to estimate

the mean of unobservable μ’s for designated subgroups in a compound Poisson

distribution. As applied to the example of drivers, Robbins’s theorem states that the

mean value of μ among a group of drivers with i accidents is equal to i+ 1 times

the marginal probability of i+ 1 accidents divided by the marginal probability of

i accidents; in symbols,

E μ
��X ¼ i

	 
 ¼ iþ 1ð Þ � P X ¼ iþ 1½ �=P X ¼ i½ �:

Here E μ
��X ¼ i

	 

is the average of the μ random variable in the subset of drivers

with i accidents in the observation period; P[X¼ i] is the overall probability of

i accidents, which is an average (over the distribution of μ) of Poisson probabilities,
e�μμi=i!.

The theorem is useful for what it tells us about subgroups of drivers. For

example, since no driver is immune from accidents, those drivers who are

accident-free in a given year would still have some accident propensity (non-zero

μ’s) and should attribute their good records partly to above-average driving skills
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and partly to luck. In the next year the group should expect to have some accidents,

but fewer than the average for all drivers. We say that the better-than-average

accident record of the zero-accident group has “regressed” toward the mean for all

drivers. Robbins’s theorem gives an estimate of this regression for each subgroup of

drivers i ¼ 0, 1, . . .ð Þ based, counterintuitively, on the performance of other drivers

as well as those in the particular subgroup. The theorem is remarkable because it

holds irrespective of the distribution of the random Poisson mean μ, and expresses

an apparently unobservable quantity, E μ
��X ¼ i

	 

, in terms of the estimable

quantities P X ¼ i½ � and P X ¼ iþ 1½ �. For example, the theorem tells us that, for a

cohort of drivers who had 0, 1, 2, etc., accidents in year one, if their propensities

don’t change, drivers with 0 accidents in year one will be expected in year two to

have the same number of accidents as were had in year one by drivers who had

1 accident in that year (i.e., the number of such drivers). Do you see why?

4.7.1 Sulphur in the air

In January 1983, the Environmental Protection Agency (EPA) approved Arizona’s

plan for control of sulphur dioxide emissions from copper smelters. By statute, the

plan had to “insure attainment and maintenance” of National Ambient Air Quality

Standards (NAAQS). Under those standards, the permitted emissions may not be

exceeded more than one day per year. The Arizona plan was designed to permit

excess levels approximately 10 times in 10 years, or an average of once per year.

Discharge from smelters is highly variable, depending on meteorological

conditions and other factors.

A person living near a smelter sued, contending, among other things, that there was

too great a risk of bunching, i.e., two ormore days exceeding the limits in a single year.

Questions

1. Use the Poisson distribution to determine the risk of bunching two or more days

(not necessarily contiguous) in a single year, assuming that the occurrence of

excess emissions is a simple Poisson process.

2. Is the assumption reasonable?

Source

Kamp v. Hernandez, 752 F.2d 1444 (9th Cir. 1985),modified, Kamp v. Environmen-
tal Defense Fund, 778 F.2d 527 (9th Cir. 1985).
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4.7.2 Vaccinations

Plaintiffs sued the Israeli Ministry of Health when their child suffered irreversible

functional damage after receiving a vaccination. The vaccine is known to produce

functional damage as an extremely rare side effect. From earlier studies in other

countries it is known that this type of vaccine has an average rate of 1 case of

functional damage in 310,000 vaccinations. The plaintiffs were informed of this

risk and accepted it. The child’s vaccine came from a batch that was used to give

300,533 vaccinations. In this group there were four cases of functional damage.

Question

Do the data suggest that the risk of functional damage was greater for this batch of

vaccine than the risk that plaintiffs had accepted?

Source

Aitkin, Evidence and the Posterior Bayes Factor, 17 Math. Scientist 15 (1992).

Notes

In the U.S., compensation for vaccine injury is in most cases covered by the

National Childhood Vaccine Injury Act, 42 U.S.C. }}300aa-1 et seq. The act

authorizes compensation for specified injuries, id. }300aa-10(a), caused by a cov-

ered vaccine, id. }300aa-11(c)(1). When the time period between the vaccination

and the first symptom or manifestation set in the Vaccine Injury Table of the act

is met, it is presumed that the vaccine caused the injury, id. }300aa-11(c)(1)(c)(ii).
If this time period is not met, causation must be established by a preponderance of

the evidence as a whole, id. }}300aa-11(c)(1)(c)(ii)(II)-13(a)(1). For a case involv-
ing the swine flu vaccine, see Section 10.3.4.

4.7.3 Is the cult dangerous?

A district attorney is considering prosecution of a cult group on the ground of

“reckless endangerment” of its members. The cult’s leader preaches suicide if its

devotees suffer doubts about the cult, and advises long car trips with minimal sleep.

Over a 5-year period, 10 of some 4,000 cult members have died by suicide or in

automobile accidents, while the death rate from these causes in the general popula-

tion in the same age bracket is 13.2 deaths per 100,000 person-years.

Question

1. As a statistical advisor to the district attorney, use the Poisson distribution to

analyze these data.
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4.7.4 Incentive for good drivers

California proposes a plan to reward drivers who have no accidents for 3-year

periods. An incentive for such drivers is being considered on the theory that good

drivers may become careless and deteriorate in performance. A study of a group of

drivers for two 3-year periods (in which there was no known change in general

conditions affecting the rate of accidents) produced the data of Table 4.7.4.

Questions

1. On the assumption that each driver has a Poisson distribution for accidents, and that

the accidentproneness of drivers doesnot changebetween the twoperiods, compute

the expected number of accidents in the second period for those drivers who had

zero accidents in the first period. (Hint: this is an example of the conditioning

property of the Poisson distribution discussed at p. 146.Write an expression for the

expected contribution to the number of accidents in the second period by any driver

with an aggregate of n accidents in the two periods, remembering that a driver with

more thanzero accidents in thefirst periodcontributesnothing to the sum.Show that

this is the same as the proportion of drivers with one accident in the first period and

n� 1 in the second period. Check your result by applying Robbins’s theorem,

estimating marginal probabilities as needed.)

2. Assuming statistical significance, what conclusions do you draw?

Source

Ferreira, Quantitative Models for Automobile Accidents and Insurance, 152–55
(U.S. Dep’t of Trans. 1970).

4.7.5 Epidemic of cardiac arrests

From April 1981 through June 1982, there was an unusual increase in the number of

cardiopulmonary arrests and deaths in the eight-bed pediatric intensive care unit

(ICU) at a large medical center hospital in San Antonio, Texas. A disproportionate

number of the deaths (34 of 42) occurred during the evening shift (3:00 p.m. to

11:00 p.m.), as compared with 36 of 106 during the previous 4 years. A consultant

believed that at least some of these events were compatible with drug intoxication.

Table 4.7.4. Distribution of accidents for a cohort of drivers

Accidents in first period 0 1 2+

Drivers having this number of accidents in first period 6,305 1,231 306

Accidents by drivers having this number of accidents in first period 0 1,231 680

Accidents for these drivers in second period 1,420 421 157
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Table 4.7.5 gives the number of deaths and the number of evening shifts worked for

the eight nurses who were present when at least five deaths occurred.

Other data showed that (i) only Nurse 32 was assigned to care for significantly

more patients during the epidemic period at the time of their deaths (21 of 42)

than to patients in the pre-epidemic period at the times of their deaths (4 of 39);

(ii) Nurse 32 had been caring for 20 of the 34 children who died during the evening

shift in the epidemic period as compared with 1 of the 8 who died in the evening

shift in the pre-epidemic period; (iii) for 10 of the 16 children who had coronary

resuscitation, the resuscitation events were repeated on different days but on the

same nursing shift, with Nurse 32 being assigned to 9 of the 10 cases; and (iv) no

other nurse or non-nursing personnel had significantly elevated risk.

Questions

1. Under the null hypothesis that time of death is independent of nurse on evening

shift, find the probability of a clustering of deaths as far above expectation for

any nurse as that observed, assuming that (a) no additional evidence is available

with respect to Nurse 32, and (b) Nurse 32 is suspected on prior grounds.

(Ignore the fact that the data are truncated to five or more deaths.)

2. What is the relative risk of death when Nurse 32 is on duty vs. that when she

is off duty?

3. Would the statistical evidence alone be sufficient to sustain a murder charge

against Nurse 32?

4. In a prosecution based on non-statistical but circumstantial evidence with

respect to the death of a particular patient, are the statistics admissible?

Source

Istre, et al., A Mysterious Cluster of Deaths and Cardiopulmonary Arrests in a
Pediatric Intensive Care Unit, 313 New Eng. J. Med. 205 (1985).

Table 4.7.5. Deaths in a pediatric ICU during shifts of selected personnel

Nurse code Number of evening deaths (n¼ 34) Shifts worked (n¼ 454)

13 14 171

22 8 161

31 5 42

32 27 201

43 6 96

47 18 246

56 17 229

60 22 212
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Notes

After Nurse 32 left the hospital, she went to another smaller hospital where she

killed a patient by lethal injection, was caught, convicted, and was sentenced to

99 years. She was then criminally prosecuted and convicted of injuring a child at the

first hospital, one of the patients who did not die but who required recurrent

cardiopulmonary resuscitations on the evening shifts. The method was overdose

injection (or injections) of unprescribed heparin. The evidence was circumstantial

and non-statistical, but the statistics were introduced over objection.

In another, similar case, the clustering was more extreme. Of the 52 nurses who

took care of 72 patients at the time of their cardiac arrests, one nurse (Nurse 14) was

the nurse at the time of 57 arrests, while the next highest total for a nurse was 5.

Other statistical evidence also pointed to Nurse 14. After a bench trial, the criminal

prosecution of Nurse 14 for murder and attempted murder was dismissed, the court

holding that the statistics merely placed her at the scene of the cardiac arrests and

there was no evidence of crime, as opposed to malpractice or mistake.

The Washington Post, June 8, 1988 at B1; Sacks, et al., A Nurse-Associated
Epidemic of Cardiac Arrests in an Intensive Care Unit, 259 J. Am. Med. Assoc.

689 (1988). See also Buehler, et al., Unexplained Deaths in a Children’s Hospital,
313 New Eng. J. Med. 211 (1985); Fienberg & Kaye, Legal and Statistical Aspects
of some Mysterious Clusters, 154 J. Roy. Stat. Soc. A, Part 1, p. 61 (1991).

4.8 Geometric and exponential distributions

Geometric and exponential distributions are closely related to the Poisson

distribution. In a Poisson process (see Section 4.7 at p. 146), the times between

successive events are statistically independent random variables that follow an

exponential distribution. The exponential waiting-time distribution is character-

istic of a constant “hazard” process, in which the likelihood of a new occurrence

does not depend on the past pattern of occurrences.

Geometric distribution

It is perhaps easiest to begin with the discrete analogue of the exponential distribu-

tion, namely, the geometric distribution. When there is a series of independent

trials, with constant probability P of success and q of failure, the number of trials, n,
to the first success has a geometric probability distribution defined as

P X ¼ n½ � ¼ pqn�1;

where n� 1. It can easily be shown that, for this model, the mean number of trials is

1/p, and the variance of the number of trials is q/p2. The probability that the number

of trials would exceed n is qn. Setting this equal to 1/2 and solving for n, the median

number of trials is about� ln(2)/ln(q). Note that p is the discrete hazard constant,

i.e. the conditional probability of a success on the next trial, given no prior successes.
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Exponential distribution

In the continuous exponential distribution, the analogue of p is the hazard constant

β, which is the limiting value of the conditional probability of an event in a brief

time period given no event up to then, divided by the length of the interval, as the

period shrinks to zero. That is, the conditional probability of failure in a brief

interval dt starting at any time t (given no failure up to time t) is approximately

β · dt. The probability density function of a waiting time x to an event is given by

βe�βx. The mean waiting time is 1/β; the variance of the waiting time is 1/β 2; and

the standard deviation is 1/β. Thus, the mean waiting time is only one standard

deviation from the left end of the density (0 waiting time), while the right tail of the

density extends to infinity. This skewness is reflected in the relationship of the

median to the mean. The probability that the waiting time would exceed t is e�βt;

setting this equal to 1/2 and solving for t, we find that the median time to failure is

(ln 2)/β. Since ln 2 is about 0.69 and 1/β is the mean waiting time, it follows that the

median waiting time is about 69% of the mean. This result tells us that waiting

times that are less than the mean are more probable than those that are greater than

the mean. These relationships are depicted in Fig. 4.8, the curve for the standard

(β¼ 1) exponential distribution, which has both mean and variance equal to 1.

Models that allow for changes in the hazard over time are described in Chapter 11.

Fig. 4.8. Probability density function for the standard exponential distribution
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4.8.1 Marine transportation of liquefied natural gas

Distrigas Corporation applied to the Federal Power Commission for permission to

import Algerian liquefied natural gas (LNG), transporting it in tankers to a specially

built facility on Staten Island, New York. Since a large spill of LNG in port could

result in catastrophic fire, the Commissioner prepared a report on the risk of

accident. An applicant barge report submitted as part of the proceedings stated

that, in the case of a barge, the estimated expected time to the first accident is

7,000 years. Assume the statement is correct.

Questions

1. What probability model is appropriate for this problem?

2. Assuming that such a model was used in generating the figure quoted above,

in what year is the first accident most likely?

3. What is the probability of at least one accident within the first 10 years?

4. Is there any “bunching” of probability around the 7000 year mark? What is the

standard deviation of the time to first accident?

Source

Fairley, “Evaluating the ‘Small’ Probability of a Catastrophic Accident from the

Marine Transportation of Liquefied Natural Gas,” Statistics and Public Policy
331 (Fairly & Mosteller, eds., 1977).

4.8.2 Network affiliation contracts

An affiliation contract between a television station and a television network permits

the station to broadcast network programs. Such contracts are treated as having 1-year

terms, but are renewed unless terminated by affirmative act of either party. Assuming

that the contracts are highly valuable, may a purchaser of the station depreciate

the amount allocated to the contract for tax purposes? The Internal Revenue Code

provides that an intangible asset may be depreciated only if its “life”may be estimated

with “reasonable accuracy.” The data on terminations for 250 CBS and NBC affiliates

in markets with at least three VHF stations were as shown in Table 4.8.2.

Table 4.8.2. Contract terminations for 250 CBS and NBC affiliates

Years through which experience is

determined

Number of affiliation years

commenced

Number of

terminations

1957 944 64

1958 1,110 70

1959 1,274 77

⋮ ⋮ ⋮

1962 1,767 88
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Questions

1. Use the geometric distribution and these data to estimate the life of a contract

for the 1963 tax return.

2. What objections would you have to this model?

Source

Deming & Glasser, Statistical Analysis of the Termination of Contracts of Televi-
sion Network Affiliations (report to the Tax Court in Commissioner of Internal
Revenue v. Indiana Broadcasting Corporation, 41 T.C. 793, rev’d, 350 F.2d

580 (7th Cir. 1965)).

Notes

This tax depreciation issue has arisen in other contexts, such as the depreciation

of newspaper subscriptions. See, e.g., Deming and Glasser, A Markovian Analysis
of the Life of Newspaper Subscriptions, 14 Management Science B-283 (1968).

See also Section 11.1.3.

4.8.3 Dr. Branion’s case

Dr. John Branion was convicted of killing his wife by garroting her with the cord of

an iron and then shooting her. Both Branion and his wife were from prominent

families, and the death and trial attracted considerable public attention in Chicago,

where they lived. Many years after his conviction, Branion filed for habeas corpus.

He claimed that it would have been impossible for him to have driven from the

hospital in the Hyde Park district of Chicago, where he was attending patients until

11:30 a.m. on the day of the murder, make two stops, go home and garrot his wife,

and then call the police to report the murder by 11:57 a.m.

The statistical argument over time focused on two segments: the driving time and

the garroting time. The police drove the same route six times, not exceeding the

speed limit, and clocked times between 6 and 12 minutes, with the average time

being 9 minutes. As for garroting time, Branion interpreted the prosecutor’s pathol-

ogist as testifying that to form the observed bruises would have required pressure to

his wife’s neck for 15 to 30 minutes. From a graph in his brief, Branion apparently

assumed that: (i) driving times and garroting times would each have normal

distributions; (ii) a driving time of 6 minutes would be 3 standard deviations from

the mean of 9 minutes, or 1 minute; (iii) a garroting time of 15minutes would also be

3 standard deviations from themean of 22.5 minutes, or 2.5 minutes. Branion argued

that the P-value of each of these events (i.e., driving time less than 6 minutes and

garroting time less than 15 minutes) was less than 0.01 and the P-value of the joint
event was less than 0.01� 0.01¼ 0.0001. Branion concluded that on the basis of the

driving and garroting times the chance that he was guilty was less than 1 in 9,000.
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Questions

1. Are the assumed standard deviations likely to be true?

2. Are the times of the two events (driving and garroting) likely to be independent?

If they are independent, is it appropriate to multiply their individual P-values
together to get the P-value of their sum?

3. Referring to driving times, the court observed that “[n]othing suggests a Gauss-

ian distribution or the absence of skewness.” If the driving-time distribution was

skewed, whom would that help, Branion or the state? Would the exponential

distribution be appropriate here?

4. Assuming that driving and garroting times are independent, what is an upper

limit of the probability that their sum would be less than 27 minutes (11:30 to

11:57) if the standard deviations were as Branion implicitly argued?

Source

Branion v. Gramly, 855 F.2d 1256 (7th Cir. 1988), cert. denied, 490 U.S. 1008 (1989).

Notes

According to an affidavit filed in the case, the presiding judge at the trial, Reginald

Holzer, who was subsequently convicted of accepting bribes in other cases,

accepted a $10,000 bribe from Branion’s friends and agreed to grant a defense

motion for a judgment notwithstanding the verdict (which was not appealable) for a

second $10,000. A few days later, however, the judge reneged because the district

attorney had got wind of a meeting between the judge and Branion’s friends and, in

a private meeting with the judge, had threatened to arrest everyone concerned if the

judge reversed the jury’s verdict. Mindful of the money already received, Judge

Holzer agreed to free Branion on bail pending appeal. Branion then fled to Africa,

first to the Sudan and then to Uganda; it was said that he became Idi Amin’s

personal physician. When Amin fell, the new regime unceremoniously shipped him

back to the United States, where he started serving a life sentence. Id. at 1266–1267.
The court of appeals opinion reciting these facts was caustically criticized as

false by Branion’s habeas corpus attorney. See D’Amato, The Ultimate Injustice:
When a Court Misstates the Facts, 11 Cardozo L. Rev. 1313 (1990).

4.9 Gamma distribution

A positive random variable Λ (capital lambda) is said to have a gamma distribution

with parameters α and β if its probability density function is given by
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f λ
��α, β� � ¼ 1

Γ αð Þβαλ
α�1exp �λ=βð Þ

for positive values of Λ¼λ, where the parameters α and β are positive constants.

Γ(x) is the gamma function. The parameter α is called the shape parameter because

it governs the shape of the density function. When α< 1, the density has a reverse-J

shape with a vertical asymptote at λ¼ 0. When α¼ 1, the density is that of the

exponential distribution with mean β. When α> 1, the densities have a skewed bell-

shaped appearance.

When α¼ r is a positive integer, the gamma distribution describes the probabil-

ity distribution of the waiting time for r events to occur in a Poisson process.

Alternatively, and equivalently, it describes the probability distribution of the sum

of the waiting times to the first events for r independent Poisson processes, because
the waiting times between consecutive events in a Poisson process have indepen-

dent and identical exponential distributions. The parameter β is called the scale
parameter because if a random variable with a gamma distribution is multiplied by a

scaling constant c, then the distribution of the scaled variable is again gamma with

the same shape parameter but new scale parameter cβ. Thus β plays a role

analogous to σ for a normal distribution in reflecting the scale of measurement.

The chi-squared distribution (see Section 5.2) with υ degrees of freedom is a

gamma distribution with shape parameter α¼ υ/2 and scale parameter β ¼2. The

mean of a gamma distribution with parameters α and β is E(λ)¼ αβ and the variance
is Var(λ)¼ αβ2.

There is an analogy between the family of gamma distributions for continuous

waiting times and the family of negative binomial distributions for discrete waiting

times. Just as the sum of waiting times that have independent geometric

distributions (defined at p. 152) has a negative binomial distribution, so the sum

of continuous waiting times that have independent exponential distributions

(also defined at p. 152) has a gamma distribution.

The gamma distribution plays an important role in describing overdispersion

in Poisson regression models. See Section 14.9.
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Statistical Inference for Two Proportions 5

5.1 Fisher’s exact test of equality for two proportions

When comparing two proportions, it is common practice simply to quote a figure

representing the contrast between them, such as their difference or ratio. Several

such measures of association have already been introduced in Section 1.5, and we

discuss others in Section 6.3. The properties of these measures and the choice of a

“best” one are topics in descriptive statistics and the theory of measurement. There

are interesting questions here, but what gives the subject its depth is the fact that the

data summarized in the description may often be regarded as informative about

some underlying population that is the real subject of interest. In such contexts, the

data are used to test some hypothesis or to estimate some characteristic of that

population. In testing hypotheses, a statistician computes the statistical significance

of, say, the ratio of proportions observed in a sample to test the null hypothesis H0

that their ratio is 1 in the population. In making estimates, the statistician computes

a confidence interval around the sample ratio to indicate the range of possibilities

for the underlying population parameter that is consistent with the data. Methods

for constructing confidence intervals are discussed in Section 5.3. We turn now to

testing hypotheses.

Independence and homogeneity

The data from which two proportions are computed are frequently summarized in a

fourfold, or 2� 2, table. The most common null hypothesis in a fourfold table states

that attribute A, reflected in one margin of the table, is independent of attribute B,
reflected in the other margin. Attributes A and B are independent when the

conditional probabilities of A given B to do not depend on B, and we have

P A
��B	 
 ¼ A½ � ¼ P A

���B	 

. Thus, independence implies homogeneity of the

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_5
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conditional rates. For example, in Section 5.1.1, Nursing examination, the hypoth-

esis is that whether a nurse passes the test (attribute A) is independent of ethnicity or
race (attribute B). Conversely, if these two conditional probabilities are equal, then

in the combined group the pass rate also equals P[A]. Thus, homogeneity implies

independence. When A and B are independent, the joint probability is the product of

the marginal probabilities, since P AandB½ � ¼ P A
��B	 
 � P B½ � ¼ P A½ � � P B½ �.

We usually formulate hypotheses in terms of independence for cross sectional

studies where both A and B are regarded as random outcomes of sampling. When

the sampling design has fixed the numbers in each level of one attribute, it is

customary to formulate hypotheses in terms of homogeneity, i.e., equality, of the

conditional rates. The independence and homogeneity hypotheses are equivalent,

and in either formulation the null hypothesis will be tested in the same way.

Exact test of equality of two proportions

One fundamental method for testing the null hypothesis is Fisher’s exact test. This

test treats all marginal totals of the 2� 2 table as fixed; e.g., in Section 5.1.1 one

considers possible outcomes that might have occurred keeping the numbers of

black and white nurses and the numbers of those passing and failing fixed. In

particular, one counts the number of ways blacks could have passed in numbers

no greater than those observed. That number is divided by the total number of ways

that all passing and failing outcomes could be distributed among the total number of

test takers without regard to race. If this probability is small, the null hypothesis is

rejected. For the hypergeometric formulas used in the test, see Section 4.5.

It may seem artificial that Fisher’s exact test treats the margins of the fourfold

table as fixed, when in most situations the numbers in at least two of the four

margins would vary in repetitions of the sampling scheme. If men and women take a

test repeatedly, the numbers passing in each group would not be fixed. In fact, where

the goal is to simulate prospectively the behavior of a process—as for example in

planning an experiment with adequate sample size to guarantee a certain level of

statistical power—it is inappropriate to assume fixed margins. However, hypothesis

tests by no means require consideration of all outcomes, for the data may already be

inconsistent with the null hypothesis within a relevant subset of all the events that

might have occurred. This is the key idea behind regarding all margins as fixed: if

the disparity between two observed proportions is unlikely to occur under the null

hypothesis among those instances when the margins assume the specific values

observed, then there are already grounds for rejecting that hypothesis.1

1 In particular, a maximum 5% Type I error rate arranged for the test conditional on the observed

margins implies a maximum 5% error rate for the unconditional test in which the margins are not

fixed. The test has to produce some margins, and for any fixed set of margins the test has at most a

5% error rate by construction: since the error rate for the unconditional test is the weighted average

of the error rates for each possible marginal result, the average or unconditional rate is also at most

5%. The test is conservative in that the average error rate will be less than 5%. Some authors regard

this as a defect of conditional tests, but it is a necessary consequence if one decides to limit the

conditional error probability to 5% under all marginal outcomes.
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To summarize the general philosophy adopted here: when testing hypotheses,

we seek to embed the observed data in a probability space of other possible events.

If this can be done in several ways, we generally prefer the smallest relevant space,

which tends to focus speculation about “the way things might have been” closer to

the facts at hand. In the case of a fourfold table, the preferred probability space

consists of all those cell frequencies inside the table that are consistent with the

observed margins.

There are important technical benefits from the conditional approach. First, the

distribution of the cells in the table depends on fewer unknown parameters. Under

the null hypothesis of homogeneity, for example, the common value of the popula-

tion proportion is an unknown “nuisance” parameter that would have to be

estimated or reckoned with in some manner. But once we condition on the margins,

we get a single (hypergeometric) distribution with no nuisance parameters, an

extremely useful simplification.

Second, among all tests at level α, the conditional test is the uniformly most

powerful unbiased test.2 That is, the conditional test is the unbiased test most likely

to lead to a rejection of the null hypothesis when it is false. Occam’s razor seems

vindicated here, since conditioning on all margins produces these good tests.3

5.1.1 Nursing examination

Twenty-six white nurses and nine black nurses took an examination. All whites and

four blacks passed.

2 The power of a test is the probability of rejecting H0 when it is false (see Section 5.4). An

unbiased test is one in which the probability of rejecting H0 when it is false is not less than the

probability of rejecting it when it is true. A test is uniformly most powerful unbiased if, for

every value of the parameter under the alternative hypothesis, the test is more powerful than any

other unbiased test with the same level of significance. Here, level of significance refers to the

maximum Type I error rate over all possible parameter values satisfying the null hypothesis.

Because of the discreteness of count data, the level of significance of a test may be somewhat

less than the nominal α level set by the decision maker, and strictly speaking the test may be not

quite unbiased or uniformly most powerful, but nearly so. The theorem asserted in the text is

exactly true for a version of the conditional test that mathematically smoothes away the

discreteness.
3 Another motivation for conditioning on the margins is the “randomization model.” For a given

group of test-takers, the ability to pass a test may be, like one’s sex, an inherent characteristic of the

person taking the test. The number who will pass, like the numbers of male and female test-takers,

could be regarded as predetermined given the group. The margins are fixed in this sense.

Irrespective of the total number of passes, or how many men and women take the test, the only

random element of interest is the distribution of that number between men and women. Under H0,

the observed alignment of passes and fails is just one of many possible outcomes, all equally likely,

and that forms the basis for the conditional test.
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Question

1. Use Fisher’s exact test to calculate the significance probability of the difference

in pass rates.

2. Was the court right when it held that the data were not sufficient for preliminary

relief because small changes in the number passing could produce large changes

in the percentage passing for each racial group?

Source

Dendy v. Washington Hospital Ctr., 431 F. Supp. 873 (D.D.C. 1977), remanded,
581 F.2d 990 (D.C. Cir. 1978).

5.2 The chi-squared and z-score tests for the equality
of two proportions

Chi-squared

A commonly used approximation to Fisher’s exact test in large samples is Pearson’s

chi-squared test. To apply this test, one computes a statistic, somewhat confusingly

called “chi-squared,” that has, approximately, a chi-squared probability distribution

with one degree of freedom under the null hypothesis. The chi-squared statistic is

computed from the observed and expected values in the 2� 2 table. The expected

value for each cell, calculated under the assumption of independence, is the product

of the corresponding marginal proportions, multiplied by the total sample size. The

difference between the observed and expected frequencies for each cell is squared,

then divided by the expected frequency; the contributions of each of the four cells

are summed to obtain the chi-squared value for that table. In short, chi-squared is

the sum of “observed minus expected squared over expected.”

It is intuitively plausible that the chi-squared statistic is a reasonable test statistic

to account for the disparity between observed and expected frequencies in a 2� 2

table. The larger the disparity, the greater the value of the statistic. Squaring the

difference ensures that all contributions to the total disparity are positive; a simple

difference without squaring would result in positive and negative values that would

sum to zero. Dividing by the expected value for each cell corrects for each

disparity’s dependence on its base: the difference between 52 observed and

50 expected observations is far less important (i.e., carries less evidence against

H0) than the difference between 3 observed and 1 expected observation. By the

same token, the difference between 30 observed and 10 expected observations

contributes 10 times as much to the chi-squared statistic as does the difference

between 3 observed and 1 expected, reflecting the fact that proportionate deviations

from expectation become more unlikely under H0 as sample size increases.

The chi-squared statistic is a useful test for independence of factors in the 2� 2

table and for many other situations because of the remarkable fact that its
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distribution is approximately the same irrespective of the expected values for the

cells. This means that the theoretical distribution of the chi-squared statistic under

the null hypothesis can be expressed in a single table, such as Table C inAppendix II.

If the chi-squared statistic exceeds the critical value given in the table, the hypothesis

of independence is rejected.

We have referred above to a chi-squared distribution because there is, in fact, a

family of chi-squared distributions that differ by what is called “degrees of free-

dom” (see Fig. 5.2). To appreciate the meaning of degrees of freedom, it is helpful

to refer to the relationship between chi-squared and normal distributions. If a

random variable with a standard normal distribution is squared, the squared value

has, by definition, a chi-squared distribution with one degree of freedom. The sum

of two such squared variables, if independent, has a chi-squared distribution with

two degrees of freedom, and so on. When there are more than 30 degrees of

freedom, the chi-squared distribution is approximately normal [Do you see

why?], so that the normal distribution frequently is used instead.4

When the chi-squared statistic is computed for a 2� 2 table, the absolute

difference between expected and actual values is the same for each cell.

Fig. 5.2. Members of the family of chi-squared distributions

4 The expected value of a random variable with a chi-squared distribution equals the number of

degrees of freedom, and its variance is twice the number of degrees of freedom.
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Consequently, although four terms contribute to the chi-squared sum, this sum can

also be expressed algebraically as the square of single approximately normal

variable, so that there is really only one independent term; thus, chi-squared has

only one degree of freedom.5

Tables for the continuous chi-squared distribution only approximate the sam-

pling distribution of the discrete chi-squared statistic. To improve the approxima-

tion for 2� 2 tables with fixed margins, the absolute difference between actual and

expected values in each cell is reduced by 0.5 before squaring. This procedure is

conservative in favor of the null hypothesis because it decreases the value of the

chi-squared statistic. Although there has been debate over the value of this correc-

tion, it is generally used because it conforms the chi-squared approximation more

closely to the results of Fisher’s exact test. (The adjustment over-corrects in tables

larger than 2� 2 and in procedures that do not condition on the margins, so it is not

applied in those instances.)

To see how chi-squared is calculated, consider Connecticut v. Teal, 457 U.S. 440
(1982), in which a test used to determine eligibility for promotion was challenged as

discriminatory. Of 48 blacks who took the test, 26 (54%) passed, while of

259 whites who took the test, 206 (80%) passed. Id. at 443, n. 3. Is there a

statistically significant difference in the pass rates for the two groups?

Table 5.2 shows the observed data together with the expected numbers

computed from the marginal frequencies, under the equivalent hypothesis that

passing is independent of race. Thus, in the upper left cell the expected number

of blacks who pass is equal to the proportion of blacks in the sample (48/307) times

Table 5.2. Calculation of chi-squared for the Teal data

(expected values in parentheses)

Pass Fail Total

Black 26

(36.274)

22

(11.726)

48

White 206

(195.726)

53

(63.274)

259

Total 232 75 307

5 This assumes fixed margins. When the margins are viewed as random, chi-squared for the 2� 2

table can be shown to have the chi-squared distribution with one degree of freedom when the

population cell frequencies are unknown and estimated from the margins as described above. If the

true population cell frequencies were known and used, the chi-squared statistic would have three

degrees of freedom instead of one. There was an acrimonious debate between Karl Pearlson and

R. A. Fisher over this point in the early 1900’s. Pearson introduced chi-squared as a formal

goodness-of-fit statistic. However, he thought the proper degrees of freedom for the 2� 2 table

should be three, even when expected cell frequencies were estimated from the margins. Fisher

argued that one df is lost for each marginal parameter estimated. His calculation of one degree of

freedom was ultimately proved correct, although the point was apparently never fully appreciated

by Pearson.
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the proportion of those who pass in the sample (232/307) times the sample size

(307). This product is 36.274. A comparable calculation is made for each of the

other cells.

X2 ¼
��26� 36:274

��� 0:5
� �2

36:274
þ
��22� 11:726

��� 0:5
� �2

11:726

þ
��206� 195:726

��� 0:5
� �2

195:726
þ
��53� 63:274

��� 0:5
� �2

63:274

¼ 9:7742 � 36:274�1 þ 11:726�1 þ 195:726�1 þ 63:274�1
� �

¼ 95:531 � 0:1338 ¼ 12:78:

Table C in Appendix II shows that for one degree of freedom there is a null

probability of less than 0.0005 that chi-squared would exceed 12.78. Thus, we

reject the hypothesis that passing is independent of race or that pass rates are

homogeneous.

In the above example, if the numbers in each cell had been halved, the

chi-squared statistic would have been 5.75, which would have been at about the

0.02 level of significance. The 0.02 value is the probability under the null hypothe-

sis that a departure this large would be observed in either direction. The probability
that so few blacks would pass under the null hypothesis is half this, or about 0.01.

This illustrates the fact that, for fourfold tables, chi- squared is automatically a

two-tailed test because either positive or negative differences between proportions

contribute to a significant result.6 Since in many legal pursuits a one-tailed test is

appropriate (see Section 4.4), the one-tailed significance level, which is half the

two-tailed level shown in Table C, should be used instead.

Some important attributes of the chi-squared statistic follow.

1. A chi-squared test statistic has a chi-squared distribution only for counted data,
with independent observations classified into a fixed number of mutually exclu-
sive and exhaustive categories. A chi-squared test is not applicable when the

units of observation are measured data, or rates or percentages. For example, to

test whether the pattern of weekday vs. weekend snowfall is the same in

New York and Boston, we could set up a 2� 2 table with attribute A equal to

city and attribute B equal to part of the week. However, it would not be valid to

enter the total number of inches of fallen snow into the cells and then to calculate

the chi-squared statistic (as one investigator essentially did in a study of snow-

fall—see Snowstorms Hardest on Fridays, N.Y. Times, Jan. 28, 1978). The

reason is that depth of snow is a measured variable, not a count, with a degree

of variability not provided for by the chi-squared test. Even if we agree to count

6 Chi-squared is generally called an “omnibus” test because any pattern of departures from

expected values weighs against the null hypothesis. This is of particular importance in tables

larger than 2� 2.
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inches as discrete units, they are not independent: given that the first inch of a

storm falls on a weekend, the next inch is highly likely to do so. On the other

hand, it would be valid to apply the chi-squared test to the distribution of

snowstorms, since storms (rather than inches) may be considered independent

events, countable and classifiable into one of the four city/part-of-week

categories.

2. The chi-squared statistic is not a good measure of the strength of association in a

2� 2 table. Observe that if we double the count in each cell of a 2� 2 table, the

degree of association does not change, but chi-squared (without continuity

correction) doubles. The value of chi-squared is determined both by the degree

of association and by the total sample size. Dividing the (uncorrected)

chi-squared statistic by the sample size, we obtain a reasonable measure of

association known as phi-squared, discussed in Section 6.3.

3. Accurate approximation of the sampling distribution of the chi-squared statistic

requires sample sizes that are not too small. For a fourfold table Fisher’s exact

test should be used instead of chi-squared if (a) the total sample size N is less

than 20, or (b) N lies between 20 and 40 and the smallest expected cell frequency

is less than 5. G. Snedecor and W. Cochran, Statistical Methods 221 (7th

ed. 1980).

4. In computing expected cell frequencies one would like to use the product of the

marginal proportions times the sample size, on the hypothesis that these two

attributes are independent, but the population values are rarely known and

usually must be estimated. Even when the null hypothesis is true, the expected

values in the population will generally differ from the values determined by the

product of the observed marginal proportions. Expected cell frequencies

computed in this way are examples of maximum likelihood estimates of the

population expected cell frequencies under the null hypothesis,7 and are used

because they have desirable statistical properties. For a discussion of maximum

likelihood estimation, see Section 5.6.

With respect to the test for independence, these estimates conform most

closely to the null hypothesis because they approximately minimize the

chi-squared statistic, i.e., any other choice of expected values under the null

hypothesis would result in larger values of chi-squared. This property does not

hold for tables with larger numbers of cells, and different procedures are

required to find the expected values that minimize the chi-squared statistic if a

minimum figure is deemed appropriate. Modern computer programs to calculate

chi-squared statistics in complicated situations generally estimate expected cell

frequencies by the method of maximum likelihood, rather than by minimizing

chi-squared.

7 A maximum likelihood estimate of a population parameter is that value of the parameter that

maximizes the probability of observing the sample data (regarded as fixed).
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5. A convenient computing formula for chi-squared (corrected for continuity) for

the fourfold table is

1

2

1 2

a b n
c d n
m m N

X2 ¼ N ad � bcj j � N=2ð Þ2
m1 � m2 � n1 � n2 ;

where the factor N/2 is the correction for continuity. This expression, multiplied

by the factor (N� 1)/N, is equal to the squared standardized hypergeometric

variable used in the normal approximation to Fisher’s exact test, corrected for

continuity.

6. For additional uses of chi-squared, see Section 6.1.

The two-sample z-score test

As previously stated, Fisher’s exact test and the chi-squared approximation to it are

based on a conditional model wherein the marginal totals are fixed, and the people

in the sample who pass the test are distributed under H0 at random with respect to

the two groups taking the test. For the test of homogeneity given two groups of fixed

sample sizes, there is a different model—the two-sample binomial model—that

does not appear to involve conditioning on both sets of margins, at least on its face.

Rather, it assumes that the members in each group are a random sample selected

from large or infinite populations, wherein the probabilities of selecting a group

member who would pass the test are equal under the null hypothesis. It is an

interesting, but by no means intuitively obvious fact, that the square of the

two-sample z-score presented below is algebraically the same as the chi-squared

statistic presented above for testing the null hypothesis of independence. An

advantage of the two-sample binomial model is that it can easily be adapted to

test null hypotheses specifying non-zero differences in pass rates and to construct

confidence intervals for the observed difference (see Section 5.6).

To implement the two-sample z-score test, note that, if the difference in pass

rates in two populations isD, the corresponding difference in two large independent
samples will be normally distributed, approximately, with a mean D and a standard

deviation σ equal to the square root of the sum of the variances of the rates for the

two samples. The variance of the sample pass rate for group i¼ 1 or 2 is PiQi/ni,
where Pi is the pass rate for group i in the population, Qi¼ 1�Pi, and ni is the

sample size for group i. If the population pass rates were known, a z-score would be
obtained by subtracting D from the sample difference in pass rates and dividing by

σ ¼ P1Q1=n1 þ P2Q2=n2ð Þ1=2. This is called a two-sample z-score because it

reflects the binomial variability in the samples from both groups. When the values

of Pi are not known they may be estimated from each sample separately, and the
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estimates used to compute σ. The resulting z-score is most often used in the

construction of confidence intervals for D. When testing the null hypothesis that

P1¼P2,D is equal to 0 underH0, and we require only the common value of the pass

rate, say P¼P1¼P2. Here it is preferable to estimate P by pooling the data from

both groups, i.e., the estimate of P is obtained from the pass rate in the margin, say

p, and this estimate is used to compute σ. This pooling is justified since by

assumption of H0 the probability of success is the same for each group, and the

combined data provide the best estimate of that probability. Thus,

z ¼ p1 � p2

pq n�1
1 þ n�1

2

� �	 
1=2 ;
where pi is the sample pass rate for group i. Like the expression for X 2 at p. 162, this

two-sample z-score test statistic is virtually identical to the standardized

hypergeometric variable described in Section 4.5 (uncorrected for continuity) that

could be used in Fisher’s exact test; the only difference is that the standardized

hypergeometric is less than the standardized difference in proportions from the

two-sample binomial model by the negligible factor of [(N–1)/N]1/2, where

N ¼ n1 þ n2, the total sample size. Thus, essentially the same numerical test

procedures result whether none (chi-squared), one (two-sample z), or both (Fisher’s
exact) sets of margins are regarded as fixed.

The following variations are noted:

1. The correction for continuity may be applied by subtracting 0.5 from the

numerator of the larger proportion and adding 0.5 to the numerator of the smaller

proportion. This reduces the difference between them, and is conservative in

favor of the null hypothesis. It brings the distribution of the z-score more in line

with that of Fisher’s test. In large samples the correction is negligible.

2. Sometimes there is only a single sample of data together with an external or a

priori basis for selecting the expected pass rate. Then a one-sample z-score test is
appropriate, in which the expected rate is deemed fixed and the sole source of

variability is the binomial variability of the sample.

5.2.1 Suspected specialists

The administration of an options exchange has found that certain closing

transactions reported on the tape of the exchange appear to be fictitious. The

administration suspects that certain specialists who held inventories of the stock

may have inserted the false reports to improve their positions. The specialists deny

this, claiming that the fictitious transactions are mistakes. A closing transaction on

an up-tic would be favorable to a specialist who had a long position in a stock; a

closing transaction on a down-tic would be favorable to a specialist who had a short

position in a stock. In preparation for an enforcement proceeding, the staff of the

exchange compared the fictitious transactions with unquestioned transactions in the

same time period. The data are shown in Table 5.2.1.
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Question

1. Use chi-squared to test whether the data support the specialists’ claim.

5.2.2 Reallocating commodity trades

A commodities broker with discretionary authority over accounts F and G is

accused by the owners of account F of siphoning off profitable trades to account

G, in which the broker had an interest. The siphoning was allegedly accomplished

by reallocating trades after their profitability was known. The broker denies the

charge and responds that the greater proportion of profitable trades in account G is a

matter of chance. There were 607 profitable and 165 unprofitable trades in account

F and 98 profitable and 15 unprofitable trades in account G.

Question

Are the data consistent with the broker’s defense?

5.2.3 Police examination

Twenty-six Hispanic officers and sixty-four other officers took an examination.

Three Hispanic and fourteen other officers passed.

Question

1. Use the two-sample z-score method to test the null hypothesis that there is no

difference between the pass rates for Hispanic and other officers.

Source

Chicano Police Officer’s Assn v. Stover, 526 F.2d 431 (10th Cir. 1975), vacated,
426 U.S. 944 (1976).

Table 5.2.1. Options exchange transactions

Specialist position

Closing transaction

Tics Fictitious Unquestioned

Long Plus 29 77

Minus 6 67

Short Plus 2 56

Minus 45 69
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5.2.4 Promotions at a bank

The Federal Reserve Bank of Richmond is accused of discrimination against blacks

because it failed to promote them equally from salary Grades 4 and 5. Table 5.2.4

shows, for each of the years 1974–77, (i) the number of employees who were

employed in the pay grade at the beginning of each year, (ii) the number of black

employees, (iii) the number of employees who were promoted in each year, and

(iv) the number of black employees promoted.

Questions

1. Consider the aggregate data for Grade 4. Representing the employees by balls in

an urn, there are 199 balls at the start, of which 124 are black and 75 are white.

Seventy-three are withdrawn at random from the urn, representing promotions.

The balls are not replaced. What is the probability that there would be no more

than 39 black balls out of the sample of 73? Does this model correspond to a

(i) one-sample binomial? (ii) a two-sample binomial? (iii) a hypergeometric

model? How do things change if the balls are returned to the urn after each

selection? Which model is appropriate to the problem?

2. Suppose there are two urns, one for blacks and the other for whites, each with a

very large number of balls. The balls in each urn are labeled promotion and

non-promotion in the proportion 73/199¼ 0.357 for promotion. One hundred

and twenty-four balls are drawn from the black urn, of which 39 are promotions,

and 75 are drawn from the white urn, of which 34 are promotions. What is the

probability that the difference in promotion proportions would be as large as

that observed? Is this a more appropriate model than those previously

described?

Table 5.2.4. Promotions by race: Federal Reserve Bank of Richmond, 1974–1977

Grade 4 Total in grade

Total blacks

in grade

Total

promotions

Total black

promotions

1974 85 52 47 27

1975 51 31 14 8

1976 33 21 9 3

1977 30 20 3 1

Total 199 124 73 39

Grade 5 Total in grade Total blacks

in grade

Total

promotions

Total black

promotions

1974 90 39 39 14

1975 107 53 28 14

1976 79 41 37 19

1977 45 24 16 5

Total 321 157 120 52
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3. In the case, plaintiff ’s expert used different (and erroneous) data and applied a

hypergeometric test. The court of appeals objected to the data used by the expert

(the data given here were found correct by the court). The court also objected to

the hypergeometric test on two grounds: (i) a statistical text stated that a

binomial test was proper when sample size was at least 30, and the aggregate

numbers for each grade were greater than 30; and (ii) any terminated or pro-

moted employees during the period were presumably replaced, and thus the

numbers in the sample were not “finite without replacement” as required for a

hypergeometric test. Do you agree?

4. The expert testified that a one-tailed test was justified because it was reasonable

to assume that if there was discrimination it was not against whites. The court of

appeals rejected this approach and the one-tailed test. Do you agree?

5. For the purpose of statistical tests, is there an objection to aggregating the data

over different years? Over grades and years?

Source

EEOC v. Federal Reserve Bank of Richmond, 698 F.2d 633 (4th Cir. 1983), rev’d
on other grounds, sub nom. Cooper v. Federal Reserve Bank of Richmond,
467 U.S. 867 (1984).

5.3 Confidence intervals for proportions

Basic definition

A confidence interval for a population proportion P is a range of values around the

proportion observed in a sample with the property that no value in the interval would

be considered unacceptable as a possible value for P in light of the sample data. To

make this more precise, consider a two-sided 95% confidence interval for a propor-

tion P, given a sample proportion p. The interval includes all those values P0 that are
consistentwith the sample data in the sense that ifP0 were the null hypothesis it would
not be rejected on the basis of the sample, at the selected level of significance. Since

we are defining a two-sided 95% confidence interval, the level of significance is 0.05,

two-sided, or 0.025 in each tail. The lower bound of the 95% two-sided confidence

interval is the proportionPl< p such that the sample data would just cause us to reject

the null hypothesis Pl at the 0.025 level; the upper bound of the 95% two-sided

confidence interval is the proportion PU> p such that the sample data would just

cause us to reject PU as a null hypothesis at the 0.025 level of significance. One-sided

confidence intervals are defined in the same way, except that for a one-sided 95%

confidence interval (either upper or lower) the level of significance for rejecting the

null hypothesis is 0.05 instead of 0.025. Figures 5.3a and 5.3b illustrate these

definitions.
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The value p= .25 is
inside the interval
since tail area below .2
is greater than .05.

The value p= .3156 is
equal to the 95% limit
since tail area below .2
just equals .05.

The value p= .40 is
not in the interval
since tail area below .2
is less than .05.
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Fig. 5.3a. Determining those values of P that lie below or above the one-sided upper 95%

confidence limit. Curves rather than rectangles are used to represent the binomial distribution for

clarity.

The value p= .25 is
inside the interval
since tail area above  .2
is greater than .05.

The value p= .1127 is
equal to the 95% limit
since tail area above  .2
just equals .05.

The value p= .08 is
not in the interval
since tail area above .2
is less than .05.
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Fig. 5.3b. Determing those values of P that lie below or above the one-sided lower 95% confi-

dence limit. Curves rather than rectangles are used to represent the binomial distribution for clarity.
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Example. Forty prospective jurors are selected at random from a large wheel, and

eight of them are women. What is a 95% confidence interval for the proportion of

women in the wheel? One way of getting an answer is to consult the cumulative

binomial distribution table (Appendix II, Table B). Given the 40 prospective jurors

selected and the 8 successes (women) we look for the values of P0 that make the tail

probabilities each equal to 0.025. If P0 ¼ 0.10, the Table tells us that the probability

of 8 or more successes is 0.0419; since this is slightly greater than the 0.025 critical

value, it follows that PL is a little less than 0.10. If P0 ¼ 0.35, the Table tells us that

the probability of 8 or fewer successes is 1� 0.9697¼ 0.0303. Since the critical

value of 0.025 for the lower tail is a little less than 0.0303, PU is a little more than

0.35. Thus, based on our sample of 40 which had 20%women, we are 95% confident

that the proportion of women in the wheel ranges between about 10% and 35%.

Example. In a toxicity experiment, a potential carcinogen causes no tumors (S¼ 0)

when added to the diet of n¼ 100 rats for 6 months. What is an upper 95%

confidence limit for P, the probability that a rat will develop a tumor under the

same experimental conditions? The answer is given by the solution for PU in

(1�PU)
100¼ 0.05, or PU¼ 1� 0.050.01¼ 0.0295. Having seen no tumors in

100 rats, we are 95% confident that the rate of such tumors does not exceed 2.95%.8

Figures 5.3c and 5.3d provide a graphical means for obtaining two-sided 95%

and 99% (or one-sided 97.5% and 99.5%) confidence intervals for a binomial

proportion. To use the charts, find the pair of curves with sample size equal to n,
enter the horizontal axis with the sample proportion, and read PU and PL from the

vertical axis. Use Fig. 5.3c to confirm the 95% confidence interval for the jury

selection example described above.

Why use the term “confidence” rather than “probability”? Why don’t we say that

“the probability is 95% that P< 0.0295”? The reason is that P is a population

parameter and not a random variable with a probability distribution. It is the

confidence limits PL and PU that are random variables based on the sample data.

Thus, a confidence interval (PL, PU) is a random interval, which may or may not

contain the population parameter P. The term “confidence” derives from the

fundamental property that, whatever the true value of P, the 95% confidence

interval will contain P within its limits 95% of the time, or with 95% probability.

This statement is made only with reference to the general property of confidence

intervals and not to a probabilistic evaluation of its truth in any particular instance

with realized values of PL and PU. For the same reason it is incorrect to argue that

P has a greater probability of being near the center of the confidence interval than at

8 For values of S between 0 and n, one can solve for PU and PL with the help of tables of the

F distribution (see Table F in Appendix II). Let uα denote the critical value of the F with a ¼ 2

Sþ 1ð Þ and b ¼ 2 n� Sð Þ degrees of freedom, cutting off probability α in the upper tail. Then

PU ¼ auα= auα þ bð Þ. Letting υα denote the upper α critical value of the F distribution with c ¼ 2

n� Sþ 1ð Þ and d¼ 2S degrees of freedom, the lower confidence limit isPL ¼ d= d þ cυαð Þ. In the
toxicity experiment, what would have been the upper 95% confidence limit if one mouse had

developed a tumor?
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the edges, or that P has the same probability of being above or below the sample

estimate.

A probabilistic evaluation of a confidence interval’s enclosure of the population

parameter would require the population parameter to have a probability distribu-

tion. This is the Bayesian approach. In the Bayesian formulation, it is the interval

that is considered fixed (after the data have been realized) and the parameter P that

Fig. 5.3c. Exact two-sided 95% confidence limits for a binomial proportion. (When the sample

proportion s/n is 0.50 or less, read the 95% confidence limits from the left-hand vertical scale;
when above 0.50, use the right-hand scale)

174 5 Statistical Inference for Two Proportions



is random and has a probability distribution. Bayesian methods are seldom used in

this context, because there is no adequate basis for selecting a probability distribu-

tion for P. Still other formulations are possible, e.g., likelihood-based intervals

containing all values P with sufficiently high likelihood ratios with respect to the

maximum likelihood. In large samples, likelihood-based intervals yield approxi-

mately the same results as the more familiar methods we have described, although

differences do arise in small samples.

Fig. 5.3d. Exact two-sided 99% confidence limits for a binomial proportion. (When the sample

proportion s/n is 0.50 or less, read the 99% confidence limits from the left-hand vertical scale;
when above 0.50, use the right-hand scale)
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Approximate intervals

When n is large and P is not too near zero or one, an approximate 95% confidence

interval is given by the sample estimate p plus or minus 1.96 standard errors of p.
(The standard error of p is estimated from the sample as (pq/n)1/2.) The rationale for
this approximation is simply that the normal approximation is used for the cumula-

tive binomial. It is not an exact confidence interval because (i) the normal approxi-

mation is used, and (ii) a single value of p is used in computing the variance when

obviously values of PL and PU should be used instead. However, in sufficiently

large samples (e.g., when n P and n Q are both at least 5; see Section 5.2 at p. 166)

the approximation is close enough for practical purposes.

For small n, or when P is close zero or one, the approximate interval does not

closely correspond to the exact 95% confidence interval, as the following example

shows.

Example. Let n¼ 20, S¼ 1, so p¼ 0.05. The approximate interval gives limits of

0:05
 1:96 0:05ð Þ 0:95ð Þ=20½ �1=2 ¼ 0:05
 0:0955or �0:046, 0:146ð Þ:
The lower limit is obviously inaccurate, and the entire interval is shifted to the left

of the exact interval (0.0013, 0.249).

To improve the accuracy of the approximation we may refine the approximate

interval by using the 1/2 continuity correction and the null hypothesis variance

P0Q0/n in the test statistic. The result is a quadratic inequality whose roots are

provided by the following formulas for the lower and upper critical limits

(see Fleiss, Levin & Paik, Statistical Methods for Rates and Proportions 28–29

(3d ed. 2003)):

pL ¼
2npþ c2α=2 � 1
� �

� cα=2 � c2α=2 � 2þ 1=nð Þ þ 4p nqþ 1ð Þ
h i1=2

2 nþ c2α=2

� �
and

pU ¼
2n pþ c2α=2 þ 1
� �

þ cα=2 � c2α=2 þ 2� 1=nð Þ þ 4p nq� 1ð Þ	 
1=2
2 nþ c2α=2

� � ;

where c is the value of a normal deviate for the selected P-value, e.g., c¼ 1.96 for

1� α¼ 0.95. These limits always lie between zero and one for n and p, and come

remarkably close to the exact confidence limits. In the last example, the formulas

yield the interval (0.003, 0.269).
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Intervals for the difference between two proportions

Approximate confidence intervals for the difference between two proportions are

again the sample estimate plus or minus 1.96 standard errors for the difference.

Since the variance of the difference between two proportions is the sum of the

variances for each (see p. 15), the approximate confidence limits are

p1 � p2 
 1:96 p1q1=n1 þ p2q2=n2½ �1=2:
This interval will contain P1�P2 approximately 95% of the time.

Intervals for rate ratios

For rate ratios, it is advisable first to apply a logarithmic transformation to the

sample ratio in order to improve the accuracy of the normal approximation. The

variance of ln p can be shown to be consistently estimated by q/np. Then since

ln p1= p2ð Þ ¼ ln p1 � ln p2, the standard error of ln ( p1/p2) is consistently

estimated by

q1= n1 p1ð Þ þ q2= n2 p2ð Þ½ �1=2:

Fig. 5.3e. A 95% confidence interval covers the true p in 19 out of 20 replications
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Thus, approximate 95% confidence intervals are given by

ln p1=p2ð Þ 
 1:96 q1= n1 p1ð Þ þ q2= n2 p2ð Þ½ �1=2:

The width of the confidence interval grows as either p1 or p2 approaches zero, in
contrast to the confidence interval for P1�P2, which narrows as either p1 or p2
approaches zero. A 95% confidence interval for P1/P2 is obtained by taking antilogs

of the above confidence limits. One-sided limits are obtained analogously.

Example. Two hundred black employees take a test for employment and 20 pass

( p1¼ 0.10); 100 white employees take the test and 25 pass ( p2¼ 0.25). The point

estimate for P1/P2 is 0.10/0.25¼ 0.40, indicating a substantial disparate impact for

the test. But is this sample difference sufficient evidence of a substantial difference

in the population of test takers? Or, to put matters more specifically, does a

one-sided 95% confidence interval for P1/P2 exclude unity at its upper limit? The

value 4/5?

We proceed as follows. Taking logarithms, we have the point estimate for

ln P1=P2ð Þ ¼ ln 0:40ð Þ ¼ �0:9163:

The estimated s.e. is

0:90= 200 � 0:10ð Þ þ 0:75= 100 � 0:25ð Þ½ �1=2 ¼ 0:2739:

Thus, an upper 95% confidence limit for ln (P1/P2) is

�0:9163þ 1:645 � 0:2739 ¼ �0:4657:

Taking the antilog, we have exp (�0.4657)¼ 0.63. The conclusion is that, at the

upper limit of the one-sided 95% confidence interval, blacks pass the test at 63% of

the rate at which whites pass.

Intervals for odds ratios

A similar analysis pertains to the odds ratio, Ω ¼ P1 Q2=P2 Q1. A consistent

estimator of ln Ω is the sample log odds ratio ln( p1 q2/p2 q1), with standard error

consistently estimated by

s:e: ¼ n1 p1ð Þ�1 þ n1q1ð Þ�1 þ n2 p2ð Þ�1 þ n2q2ð Þ�1
h i1=2

:

Thus, an approximate 95% confidence interval for ln Ω is given by the limits

ln p1q2=p2q1ð Þ 
 1:96 � s:e:
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In the above example, the point estimate for the odds ratio is

0:10� 0:75ð Þ= 0:25� 0:90ð Þ ¼ 0:333;

i.e., the odds of a black passing are one-third the odds of a white passing. The

two-sided 95% confidence interval is given by

ln 0:333ð Þ 
 1:96 1=20þ 1=180þ 1=25þ 1=75ð Þ1=2 ¼ �1:099
 1:96 � 0:330;
for a confidence interval of (�1.746, �0.452) for lnΩ. Taking antilogs, the confi-

dence interval for Ω is given by (exp[–1.746], exp[–0.452])¼ (0.17, 0.64). Thus, at

the upper limit of a two-sided 95% confidence interval, the odds of a black passing

are about 64% of the odds of a white passing.

When sample sizes are not large, one can obtain an exact confidence interval for

the odds ratio Ω ¼ P1Q2=P2Q1 by following a procedure analogous to that used in

computing an exact confidence interval for a binomial parameter. To illustrate the

procedure, assume that n1 blacks and n2 whites took a test in which m1 persons

passed and m2 persons failed. S1 blacks passed the test, creating an odds ratio of Ω̂ .

Regarding the marginsm1,m2, n1, n2 of the two-by-two table as fixed, the upper end

of a two-sided 95% confidence interval, Ωu, is the value Ωu > Ω̂ for which the

lower-tail area probability, i.e., the probability of S1 or fewer black successes, is

equal to 0.025. This lower-tail area probability is the sum of the non-central

hypergeometric probabilities (see Section 4.5 at p. 129) for x¼ 0, 1,. . ., S1. The

lower end of the confidence interval, Ωl, is the value Ωl < Ω̂ for which the upper-

tail area probability, i.e., the probability of S1 or more successes (up to the lesser of

m1 or n1), is equal to 0.025. There is no closed form solution to the equation, so that

numerical methods involving computer iteration are required to calculate the limits.

In the last example, the exact two-sided 95% confidence interval for the odds ratio

is (0.165, 0.670), in fairly good agreement with the large sample approximation

(0.17, 0.64). In general, the exact confidence interval is somewhat wider than the

approximate interval.

The reader may have noticed that the specification of 2.5% tail-area probability

for the hypothesis tests at the endpoints of the confidence intervals discussed in this

section has the same arbitrariness as does the doubling of a one-sided P-value to get
a two-sided P-value in the case of asymmetrical distributions. Indeed, any of the

more refined definitions of two-sided P-values discussed in Section 4.4 can be

inverted to get a corresponding two-sided confidence interval as follows: the 95%

confidence interval is the shortest interval that includes all those parameter values

P0 for which the two-sided P-value exceeds 0.05. Such confidence intervals are

generally shorter than those that require 2.5% tail-area probabilities at the

endpoints, while maintaining a guaranteed minimum coverage probability of

95%. In the binomial example of one success out of twenty, the point probability

method of Section 4.4 yields an upper limit of PU¼ 0.244, because this is the

largest P0 for which the two-sided P-value (in this caseP X 	 1
��P0	 
þ P X � 9

��P0	 

)
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is not less than 0.05. For the lower limit, PL¼ 0.00256, because this is the

smallest P0 for which the P-value (in this case only P X � 1
��P0	 


because

P X ¼ 0
��P0	 


> P X ¼ 1
��P0	 


) is not less than 0.05. Compare the length of the

interval (0.00256, 0.244) with the previously obtained interval (0.0013, 0.249).

The generalized likelihood ratio method of Section 4.4 yields an even shorter

interval, (0.00256, 0.227).

5.3.1 Confounders and confidence intervals

In Brock v. Merrell Dow Pharmaceuticals, 874 F.2d 307 (5th Cir. 1989), the court

of appeals reviewed a plaintiff’s verdict in one of the Bendectin cases. It held that

lack of epidemiological proof was fatal to plaintiff’s case. In describing epidemiol-

ogy, the court wrote:

Undoubtedly, the most useful and conclusive type of evidence in a case such as this is

epidemiologic studies. Epidemiology attempts to define a relationship between a disease

and a factor suspected of causing it—in this case, ingestion of Bendectin during

pregnancy. . .. One difficulty with epidemiologic studies is that often several factors can

cause the same disease. Birth defects are known to be caused by mercury, nicotine, alcohol,

radiation, and viruses, among other factors. When epidemiologists compare the birth defect

rates for women who took Bendectin during pregnancy against those who did not take

Bendectin during pregnancy, there is a chance that the distribution of other factors may not

be even between the two groups. Usually, the larger the size of the sample, the more likely

that random chance will lead to an even distribution of these factors among the two

comparison groups, unless there is a dependence between some of the other factors and

the factor being studied. For example, there would be a dependence between variables if

women who took Bendectin during pregnancy were more or less likely to smoke than

women who did not take Bendectin. Another source of error in epidemiological studies is

selective recall—i.e., women who have children with birth defects may be more likely to

remember taking Bendectin during pregnancy than those women with normal children.

Fortunately, we do not have to resolve any of the above questions, since the studies

presented to us incorporate the possibility of these factors by use of a confidence interval.
The purpose of our mentioning these sources of error is to provide some background

regarding the importance of confidence intervals.

Id. at 311-312 (emphasis in original).

Question

Do confidence intervals reflect the risk that an epidemiological study may be biased

by the presence of confounders or selective recall?

5.3.2 Paucity of Crossets

In State v. Sneed, 76 N.M. 349, 414 P.2d 858 (1966), there was evidence that the

accused had on occasion used the name “Robert Crosset,” and that on the day of the
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murder someone by that name had purchased a handgun which apparently was the

murder weapon. An expert witness examined telephone books in the area of the

crime and found no Crosset in approximately 129 million (!) listings. He guessed

the frequency of Crosset to be about one in a million and the frequency of Robert to

be 1 in 30. Assuming independence, he concluded that the frequency of Robert

Crosset was 1 in 30 million. Reversing defendant’s conviction, the Supreme Court

of New Mexico objected to the use of “a positive number. . . on the basis of

telephone books when the name Robert Crosset was not listed in those books.”

Question

What might the expert have calculated as a reasonable, upper-bound estimate from

the telephone book data for the frequency of the name Robert Crosset in the

population?

5.3.3 Purloined notices

Financial Information, Inc., publishes a Daily Called Bond Service, which provides

information concerning the redemption of municipal and corporate bonds. The

information initially appears on index cards that are published daily and sent to

subscribers. The data on the cards list the name of the issuer, redemption date, price,

redemption agent, and the coupon numbers of the bonds to be redeemed. About

2,500 of these cards are published annually.

The service is provided to 500 subscribers, primarily the back offices of banks

and brokerage houses. It enables subscribers to keep track of the redemption dates

of portfolios of corporate and municipal bonds.

Moody’s Investors Service, Inc., publishes a municipal and government manual

and a municipal and government news report. These publications also provide

information concerning redemption of municipal bonds, the same information

provided by Financial’s service with respect to those bonds. Moody’s is a sub-

scriber to Financial’s service. Moody’s subscribes to more sources of basic infor-

mation on bond redemptions than does Financial: while both use national and local

newspapers, Moody’s uses more newspapers than Financial.

Sometime in 1980, Financial began to suspect that Moody’s was copying

information from its service. In December 1980, Financial planted an error in its

index cards “redeeming” some bonds that had in fact been redeemed a year earlier.

Moody’s published the fake redemption. Further checking showed that in 1980

seven of ten Financial errors were reproduced by Moody’s, while in 1981 all eight

Financial errors were copied by Moody’s. There is no serious dispute that Moody’s

copied the notices that repeated Financial’s errors, but Moody’s executives claimed

that Moody’s only copied about 22 notices a year.

In 1981, of 1,400 redemption notices published for municipal bonds, 358 such

notices were published by Moody’s before the comparable notice was published by
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Financial; 155 such notices were published simultaneously or within 5 days of

Financial’s first publication; 97 such notices did not appear in Financial’s service;

and 179 additional notices published by Moody’s contained more information than

appeared in Financial’s service.

Questions

1. Focusing on the roughly 600 notices for which copying could not be ruled out, as

an expert for Financial, compute a 99% one-sided lower confidence limit for the

proportion of copied notices based on the 1981 errors. Confirm that the lower

limit based on the 1980 and 1981 errors combined is 0.54.

2. As a lawyer for Moody’s, how do you respond?

Source

Financial Information, Inc v. Moody’s Investors, 751 F.2d 501 (2d Cir. 1984), aff’d
after remand, 808 F.2d 204 (2d Cir. 1986). On the second appeal, the court of

appeals affirmed the dismissal of Financial’s claim on the ground that the notices

were not copyrightable and there was preemption of state unfair competition law. In

passing, it noted that the record would support a finding of no “wholesale appropri-

ation” by Moody’s, citing the facts that (i) plaintiff’s expert was “statistically

certain that Moody’s had copied only 40–50% of the time,” and (ii) a Moody’s

exhibit demonstrated that, of its 1,400 called bond entries in 1 year, 789 could not

possibly have come from copying Financial’s cards.

5.3.4 Commodity exchange reports

The Commodity Futures Trading Commission requires commodity exchanges to

keep records of the 30-min interval (each such interval being referred to as a

bracket) in which transactions are recorded. In December 1979, the Commission,

concerned with the accuracy of the records, required each exchange to submit

reports on the percentage of transactions for which bracket information was inac-

curate. It advised: “The contract market may use valid random sampling techniques

to estimate the degree of accuracy of the data, provided that the estimate can be

expected to differ from the actual error percentage by no more than plus or minus

two per cent when measured at the 95% confidence interval.”

Question

If pilot studies indicate that for one exchange the error rate was about 5%, how large

a sample would be required to satisfy the Commission?
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Source

CFTC Letter to Commodity Exchanges dated December 7, 1979.

5.3.5 Discharge for dishonest acts

After being discharged by their employer, Pacific Northwest Bell (PNB), Charles

and Linda Oliver sued PNB, contending that a company-wide policy that subjected

employees to disciplinary proceedings for “dishonest acts” committed outside of

employment was discriminatory because of its disproportionate impact on black

employees. An expert examined personnel data of a sample of 100 employees who

had been discharged for dishonest acts; of these, 18 employees, 6 of whom were

black, had committed dishonest acts outside of employment. Among the six were

the Olivers. The work force consisted of 975 blacks out of some 21,415 PNB

employees (4.6%). The expert contrasted the 33% rate of blacks among those

discharged with the 4.6% rate of blacks in the workforce and argued that PNB’s

policy had a disparate impact on blacks.

The appellate court found the sample too small to support a finding of disparate

impact because the subtraction of even one or two blacks would shift the percentage

significantly, citing International Bd. of Teamsters v. United States, 431 U.S. 324,

339-40 n.20 (1977) (“[c]onsiderations such as small sample size may of course

detract from the value of such [statistical] evidence”); Morita v. Southern Cal.
Permanente Med. Group, 541 F.2d 217, 220 (9th Cir. 1976), cert. denied,
429 U.S. 1050 (1977) (statistical evidence derived from an extremely small sample

has little predictive value and must be disregarded).

Question

The court’s “change one or two” analysis is a naive method of finding other rates at

which blacks were discharged that are seemingly plausible due to sampling

variability. Treating the sampling variability issue as one calling for a confidence

interval analysis, use Fig. 5.3c to determine whether you agree with the court’s

conclusion.

Source

Oliver v. Pacific Northwest Bell Tel. Co., 106 Wash. 2d. 675, 724 P.2d 1003 (1986).

Notes

The objection to small samples reflected inOliver has surfaced in many other cases.

In addition to the cases cited, see, e.g., Wade v. New York Tel. Co., 500 F. Supp.

1170, 1180 (S.D.N.Y. 1980) (rejecting an inference of discrimination raised by
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the discharge of one or two minority employees above expected numbers);

Bridgeport Guardians Inc. v. Members of Bridgeport Civil Serv. Comm’n, 354 F.

Supp. 778, 795 (D. Conn.), modified, 482 F.2d 1333 (2d Cir. 1973) (rejecting an

inference of discrimination “when a different result achieved by a single candidate

could so drastically alter the comparative figures”). See also Philadelphia
v. Education Equality League, 425 U.S. 604 (1974), discussed in Section 4.2.2.

5.3.6 Confidence interval for promotion test data

Compute a 95% approximate confidence interval for the ratio of pass rates for

blacks and whites in the Teal data of Table 5.2 at p. 164.

Questions

1. Interpret your result.

2. Does the four-fifths rule of the EEOC (see Section 1.5.1) suggest a reason

for preferring an interval estimate of the true ratio that you have just computed

to a test of the hypothesis that the ratio is 1, as computed in Sections 5.1.1

and 5.2.3?

5.3.7 Complications in vascular surgery

Dr. Z is a vascular surgeon practicing in the Eastern United States. Administrative

proceedings were brought against him to withdraw his hospital operating privileges

on the ground that his rates of complication were too high. As one example, in

certain peripheral vascular surgery his rate of amputation was 4 out of 61, or 6.56%,

over a 2-year period. This was compared with the Eastern Vascular Surgery mail-

out, mail-back survey for the same time period, which reported a rate of amputation

of 65/2,016, or 3.22%. The EVS is a survey conducted by mailing questionnaires to

vascular surgeons; about 30–40% respond.

Questions

1. Use the Fleiss quadratic formula in Section 5.3 at p. 177 to compute an

approximate 95% two-sided confidence interval for Dr. Z. What argument for

Dr. Z might be based on your calculation?

2. What objections might you raise to use of the EVS as a standard?

3. What additional data might you gather in support of Dr. Z?
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5.3.8 Torture, disappearance, and summary execution
in the Philippines

Victims of torture, disappearance, or summary execution at the hands of the

military under the Filipino regime of Ferdinand E. Marcos brought a class action

against him after he fled to Hawaii. In the compensatory damage phase of a

trifurcated trial, the district court required class members to opt in by submitting

claims detailing their abuse. Of the 10,059 claims filed, the court determined that

518 were facially invalid or duplicates, leaving 9,541 claims. To keep proceedings

manageable, the court allowed use of a statistical sample of claims to measure

damages for the entire class. A random sample of 137 claims was selected and

depositions were taken of those claimants. A special master and court-appointed

expert, Sol Schreiber, reviewed the claims, found that six of them were invalid, and

for the rest made recommendations as to damages in three subclasses: torture,

disappearance, and summary execution. He then recommended that the average

award for each subclass sample be given to the remaining members of the subclass.

Table 5.3.8a below gives some summary statistics for the special master’s

recommendations, and Table 5.3.8b gives the full data for the summary execution

and disappearance cases.

The sample size of 137 was determined by a statistical expert, James

Dannemiller. He testified in substance that a random sample of 137 claims would

be required for a 95% confidence interval of plus or minus five percentage points

(the “industry standard,” as he put it) assuming that the population rate of valid

claims was 90%. As a post hoc justification, he noted that the special master had

determined that 6 of the 137 claims, or 4.38%, had been found invalid.

As to the sample claims, contrary to the Special Master’s recommendations, the

jury found only two claims invalid. The jury modified awards in 46 of the

135 claims and for the rest followed the recommendations. As to the claims of

the remaining class members, the jury adopted the special master’s

recommendations. The special master recommended compensatory damages of

Table 5.3.8a. Summary of special master’s damage recommendations for valid claims

Torture Summary Execution Disappearance

Number of valid

claims in sample

64 50 17

Sample range $20,000–$100,000 $75,000–$220,000 $50,000–$216,667

Sample average $51,719 $128,515 $107,853

Sample standard

deviation

$26,174 $34,143 $43,103

Interquartile range $30,000–$75,000 $95,833–$155,000 $87,222–$121,785

#Valid remaining

claims in subclass

4,869 3,184 880

Subclass amounts $251,819,811 $409,191,760 $94,910,640
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approximately $767.5 million and the jury returned a verdict of $770 million. The

court entered judgment in accordance with the jury’s findings.

Questions

1. Does the expert’s sample size guarantee that a 95% confidence interval for the

percentage of invalid claims will not exceed plus or minus five percentage

points?

2. Assuming that the data are normally distributed, check for overall fairness to

defendant and to plaintiffs as a group by computing an approximate 95%

confidence interval for the average award in each subclass. Is it valid to argue

that defendant has no ground for objecting to the use of the sample average

because it is as likely to be below as above the population average?

3. Check for fairness to individual plaintiffs by looking at the variation in individ-

ual awards in each subclass. Given this variation, is use of the average fair to

plaintiffs within each subclass?

Table 5.3.8b. Special master’s damage recommendations

Summary Execution Summary Execution Disappearance

1 220,000 26 129,167 1 216,667

2 185,000 27 128,533 2 172,667

3 180,000 28 126,111 3 156,250

4 178,000 29 126,000 4 127,500

5 175,000 30 119,444 5 121,785

6 165,000 31 118,042 6 119,250

7 165,000 32 115,278 7 108,005

8 165,000 33 111,250 8 105,000

9 162,000 34 104,167 9 103,583

10 160,000 35 103,667 10 97,500

11 160,000 36 101,700 11 90,903

12 160,000 37 100,000 12 87,500

13 155,000 38 95,833 13 87,222

14 155,000 39 93,667 14 67,083

15 150,000 40 93,667 15 65,000

16 148,000 41 93,611 16 57,600

17 145,833 42 90,556 17 50,000

18 140,000 43 90,250

19 140,000 44 90,000

20 140,000 45 81,944

21 135,750 46 81,667

22 135,000 47 79,500

23 135,000 48 79,042

24 134,533 49 78,555

25 130,000 50 75,000
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Source

Hilao v. Estate of Marcos, 103 F.3d 767 (9th Cir. 1996); Recommendations of

Special Master and Court-Appointed Expert, Sol Schreiber, December 30, 1994.

Notes

The trial of bellwether cases in large class actions, with the results extrapolated to

the class, has received approval in theory, if the cases to be tried are representative

of the class. In In re Chevron U.S.A., 109 F.3d 1016 (5th Cir. 1997), the court found
that 15 cases selected by plaintiffs and 15 by defendants lacked the requisite level of

representativeness so that results from the 30 cases, tried as bellwethers, could not

be extrapolated to the class. The court laid down the requirements for extrapolation,

which included confidence interval analysis, as follows:

[B]efore a trial court may utilize results from a bellwether trial for a purpose that extends

beyond the individual cases tried, it must, prior to any extrapolation, find that the cases tried

are representative of the larger group from which they are selected. Typically, such a

finding must be based on competent, scientific, statistical evidence that identifies the

variables involved and that provides a sample of sufficient size so as to permit a finding

that there is a sufficient level of confidence that the results obtained reflect results that

would be obtained from trials of the whole.

Id. at 1020.

5.4 Statistical power in hypothesis testing

The power of an hypothesis test is defined as the probability of correctly rejecting

the null hypothesis when it is false. The concept of power is complementary to the

Type II error rate–power plus the Type II error rate equals 1. Most alternative

hypotheses are composite, i.e., comprise many possible non-null parameter values.

The null hypothesis that a coin is fair is the simple hypothesis that the probability of

tossing heads is one-half. In the composite alternative hypothesis that the probabil-

ity of tossing heads differs from one-half, the probability could be any other value.

Since one can compute the power of a given test at any such parameter value, we

usually refer to the test’s power function.
The ideal hypothesis test would have a power function equal to 1 for any

parameter value in the alternative hypothesis. Although this ideal cannot be attained

in practice with fixed sample sizes, we may more closely approach the ideal by

increasing sample size.

Power is an important concept for two related reasons. (1) When designing a

sampling plan or a comparative trial, it is essential to provide for a sample

sufficiently large to make it reasonably likely that any effects worth detecting

will be found statistically significant. A study that has, say, only a 25% chance of

finding significance in the presence of a large effect is probably not worth the effort

and expense. (2) The power of a test is important to the interpretation of
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non-significant findings. Frequently, a finding of non-significance is interpreted as

support for the null hypothesis. This may be warranted if the power to detect

important effects is high, for then the failure to detect such effects cannot easily

be attributed to chance. But if power is low, then the non-significant result cannot be

taken as support of either hypothesis, and no inferences should be drawn from the

failure to reject the null.

For example, in its final Rules for Identification, Classification, and Regulation
of Potential Occupational Carcinogens, OSHA determined that non-positive epi-

demiologic studies will be considered as evidence of safety only if they are “large

enough for an increase in cancer incidence of 50% above that in the unexposed

controls to have been detected.” 29 C.F.R. }1990. 144 (a) (1997). While OSHA

admitted that “[a]n excess of 50% can hardly be regarded as negligible,” it

determined that “to require greater sensitivity would place unreasonable demands

on the epidemiologic technique.” 45 Fed. Reg. 5060 (Jan. 22, 1980). This determi-

nation was based on testimony that the smallest excess risk established in an

epidemiologic study was between 30% and 40%, and that epidemiologic technique

cannot be expected to detect risk increases of 5–10%. Do you agree with OSHA’s

logic?

As another case in point, in the late 1970s a randomized clinical trial tested

whether or not strictly pharmacologic therapy could lower mortality rates as much

as coronary bypass surgery among patients with chronic, stable angina. The major

finding was that there was no significant difference between the two treatments in

terms of 5-year survival. The study received much publicity, and was taken as

evidence that supported a popular trend away from surgery. What was not widely

reported was that (i) the observed surgical mortality rate was substantially (but not

significantly) lower than the pharmacologic mortality rate, and (ii) the power of

the test of the null hypothesis was low, in fact less than 30%. Consequently, there

may have been great harm done to patients in this category who were advised

to defer bypass surgery. See Weinstein and Levin, The Coronary Artery Surgery
Study (CASS): A Critical Appraisal, 90 J. Thoracic & Cardiovascular Surgery

541 (1985).

The power of standard hypothesis tests has been tabled for a wide variety of

parameter values and sample sizes. We illustrate the fundamental idea with a simple

example for which no special tables are needed. Suppose we are testing the null

hypothesis H0 : P1 ¼ P2 in a two-sample binomial problem with sample sizes n1
and n2 at level α¼ 0.05. The alternative is, say, the one-sided hypothesis that

P1 � P2 ¼ D > 0. In this example there are two steps to calculating power. First,

compute how large the observed difference p1� p2 has to be to reject the null

hypothesis. We call this the critical value. Then, assuming the alternative hypothe-

sis that P1 � P2 ¼ D > 0, compute how likely it is that the observed difference

p1� p2 would exceed the critical value. That probability is the power of the test

against the specific alternative hypothesis. In detail, one proceeds as follows.

The z-score test rejects H0 when the difference in sample proportions p1� p2
satisfies the inequality
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p1 � p2 > 1:645 pq
�
n�1
1 þ n�1

2

�� 1=2
;

where p and q refer to the pooled rate of the two groups. Under the alternative

hypothesis, with true proportions P1 and P2 and difference equal to D> 0, we

standardize the sample difference by subtracting the true mean D and dividing by

the true standard error P1Q1=n1ð Þ þ P2 Q2=n2ð Þf g1=2. Furthermore, in large

samples the quantity pq will be approximately equal to PQ, where P is the

proportion n1P1 þ n2P2ð Þ= n1 þ n2ð Þ. Thus, the power of the test at P1 and P2 is

the probability that an approximately standard normal random variable exceeds

the value

1:645 PQ n�1
1 þ n�1

2

� �� 1=2 � D
h i

= P1Q1=n1ð Þ þ P2Q2=n2ð Þf g1=2:

This probability can be found in tables of the normal distribution.

For example, if P1¼ 0.6 and P2¼ 0.5 and the sample sizes are 100 each, then the

power of the test of H0: P1¼P2 equals the probability that an approximately

standard normal random variable exceeds the value 0.22, which is only 0.41. The

moral is: large samples are needed to detect relatively small differences with

adequate power.

5.4.1 Death penalty for rape

On November 3, 1961, in Hot Springs, Arkansas, William Maxwell, a black male,

was arrested for rape. He was subsequently convicted and sentenced to death.

Maxwell was 21 years old at the time of the offense. “[T]he victim was a white

woman, 35 years old, who lived with her helpless 90 year-old father; . . . their home

was entered in the early morning by the assailant’s cutting or breaking a window

screen; . . .. and. . . .. she was assaulted and bruised, her father injured, and the lives
of both threatened.” Maxwell v. Bishop, 398 F.2d 138, 141 (8th Cir. 1968).

In a federal habeas corpus proceeding, Maxwell argued that the death sentence

for rape in Arkansas was applied in a racially discriminatory manner. To support

this assertion, Maxwell relied on a study by Dr. Marvin Wolfgang, a sociologist at

the University of Pennsylvania. The study examined every rape conviction in a

“representative sample” of 19 Arkansas counties between January 1, 1945, and

August 1965.

From these Arkansas data, Dr. Wolfgang concluded that the critical variables in

determining the death sentence were the race of the offender and the race of the

victim. He based this conclusion on the fact that other variables that might have

accounted for the disparity did not seem to be significantly associated either with

defendant’s race or with the sentence. Factors not significantly associated with

defendant’s race or the sentence were type of entry into the victim’s home,

seriousness of injury to the victim, and defendant’s prior record. Factors not
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significantly associated with defendant’s race were the commission of a contempo-

raneous offense and previous imprisonment. A factor not significantly associated

with the sentence was the victim’s age. Factors that were significantly associated

with defendant’s race were the defendant’s age and the victim’s age.

Question

Excerpts from the data are shown in Tables 5.4.1a–5.4.1f. Do the data on prior

record or type of entry support Dr. Wolfgang’s conclusion?

Table 5.4.1a. Race of defendant by sentence

Death Life Total

Black 10 24 34

White 4 17 21

Total 14 41 55

Table 5.4.1b. Race of victim by sentence

Death Life Total

Black 1 14 15

White 13 26 39

Total 14 40 54

Table 5.4.1c. Race of defendant by prior record

No Record Record Total

Black 20 14 34

White 13 8 21

Total 33 22 55

Table 5.4.1d. Prior record by sentence

Death Life Total

Prior record 12 21 33

No record 2 20 22

Total 14 41 55

Table 5.4.1e. Race of defendant by type of entry

Unauthorized Authorized Total

Black 13 18 31

White 3 17 20

Total 16 35 51

Table 5.4.1f. Type of entry by sentence

Death Life Total

Unauthorized 6 10 16

Authorized 8 27 35

Total 14 37 51
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Source

Maxwell v. Bishop, 398 F.2d 138 (8th Cir. 1968), vacated and remanded,
398 U.S. 262 (1970); see also, Wolfgang & Riedel, Race, Judicial Discretion,
and the Death Penalty, 407 Annals Am. Acad. Pol. Soc. Sci. 119 (1973). For much

more elaborate studies of the relation between race and the death penalty, see

Section 14.7.2.

5.4.2 Is Bendectin a teratogen?

For 23 years Merrell Dow Pharmaceuticals, Inc. manufactured Bendectin, a drug

taken for morning sickness in pregnancy.

Merrell Dow estimated that some 25% of pregnant women in the United States

took the drug; it was popular in other countries as well. In the 1980s, suspicions

were raised that Bendectin was associated with certain types of birth defects such as

limb deformities, cleft lips and palates, or congenital heart disease.

After a highly publicized trial in Florida, over 500 lawsuits were filed by

plaintiffs who had been in utero when their mothers had taken Bendectin. A number

of these cases were consolidated for pretrial proceedings in the U.S. District Court

for the Southern District of Ohio. Merrell Dow withdrew the drug from the market

and offered to settle all cases with a fund of $120 million. This offer was rejected,

and a consolidated jury trial ensued solely on the issue of causation, without

reference to the emotionally compelling facts relating to any particular plaintiff.

At the trial, Merrell Dow introduced the results of ten cohort studies of congeni-

tal malformations, this being the entire published literature of cohort studies at that

time. (Merrell Dow also introduced some case control and other studies, but we

focus on the cohort results.) The cohort studies showed that with respect to all

defects there was a combined relative risk of 0.96 with a standard error for the

logarithm of 0.065. The five studies with separate data for limb reduction defects

showed a combined relative risk of 1.15 with a standard error of 1.22 for the

logarithm. (The results for the all-defect studies are shown in Table 8.2.1a, and

the method by which they were combined is described in Section 8.2 at p. 251.)

A plaintiffs’ expert, Dr. Shanna Swan, contended that teratogens are usually

associated only with certain types of defects, while the cohort studies in question

covered all defects. She argued that the narrower effect of Bendectin might have

been masked in the studies. The overall rate for all defects in the unexposed

population is approximately 3%. The highest rates are 1/1,000 for limb reductions,

2/1,000 for major heart defects, and 3/1,000 for pyloric stenosis. If Bendectin had

doubled the rate of each of these defects, but affected no others, the rate of overall

defects would have increased from 3% to 3.6%, creating a relative risk of 1.2.

Questions

Were the cohort studies presented by defendants large enough to detect a relative

risk of 1.2? In answering this general question, resolve the following underlying

questions.
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1. Assuming that the rate of defects is 3% among those unexposed, what is the

power in a sample of 1,000 people to reject the null hypothesis that the exposed

group is at the same risk as those unexposed if the true risk for those exposed is

3.6%?

2. Show that 7,495 exposed people must be included in a study to give a 90%

chance of rejecting the hypothesis (at the 5% one-tailed level of significance)

that the rate of defects in the exposed population is no greater than the general

population rate of 3%, if the actual rate is 3.6% for all defects combined in the

exposed population.

3. Show that 11,940 exposed people must be included in a study to give 90% power

if the study were limited to limb reductions and Bendectin doubled the rate of

such defects.

4. Assuming the all-defect data are correct and correctly combined, do they support

the expert’s observation that the non-significant study results have too little

power to be evidence against the alternative hypothesis of a 1.2 relative risk?

5. Same question with respect to the limb reduction studies under the alternative

hypothesis of a 2.0 relative risk.

Source

In re Bendectin Litig., 857 F.2d 290 (6th Cir. 1988), cert. denied, 488 U.S. 1006

(1989).

5.4.3 Automobile emissions and the Clean Air Act

The federal Clean Air Act, 42 U.S.C. }7521 (Supp. 1998), provides for certification
of vehicles as conforming with emission standards and makes unlawful new fuels or

fuel additives not used in the certification process without a waiver by the adminis-

trator of the Environmental Protection Agency (EPA). The administrator may grant

a waiver if he determines that the applicant has established that the new fuel or fuel

additive “will not cause or contribute to a failure of any emission control device or

system (over the useful life of any vehicle in which such device or system is used) to

achieve compliance by the vehicle with the emission standards with respect to

which it has been certified.. . .” Id., }7545(f) (4).
The EPA allows evidence of emission effect based on sample studies and uses

three different statistical tests, with respect to a fuel expected to have an instanta-

neous emission effect: (1) the Paired Difference Test, which determines the mean

difference in emissions between the base fuel and the waiver fuel in vehicles driven

first with one, and then with the other, of these fuels; (2) the Sign of the Difference

Test, which assesses the number of vehicles in the test exhibiting an increase or

decrease in emissions; and (3) the Deteriorated Emissions Test, which adds the
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incremental emissions caused by the waiver fuel to the emission levels certified for

the vehicle after 50,000 miles and compares that with the standard allowed for that

vehicle.

Here we consider the Deteriorated Emissions Test.9 The EPA has provided by

regulation that the Deteriorated Emissions Test should be such as to provide a 90%

probability of failure of the test if 25% or more of the vehicle fleet of the type tested

would fail to meet emission standards using the waiver fuel or fuel additive. In a

waiver proceeding involving a proprietary fuel called Petrocoal (a gasoline with

methanol additive), 16 vehicles were tested with Petrocoal and a standard fuel. Two

vehicles failed the Deteriorated Emissions Test.

Questions

1. Did Petrocoal pass the Deteriorated Emissions Test?

2. What additional specifications for testing has the EPA left up to the proponents?

3. How many vehicles would need to be tested if, under the same power

requirements as in the regulation, there were to be no more than a 0.10 probabil-

ity of failing the test if the fleet proportion were only 5%?

Source

Motor Vehicle Mfrs. Ass’n of U.S. v E.P.A., 768 F.2d 385 (D.C. Cir. 1985);

Gastwirth, Statistical Reasoning in Law and Public Policy, 616-7 (1988).

5.5 Legal and statistical significance

The fact that a difference is statistically significant does not necessarily mean that it

is legally significant. When large samples are involved even small differences can

become statistically significant, but nevertheless may not turn legal litmus paper. If

an employer pays men on average more than equally qualified women, the differ-

ence is not evidence of intentional discrimination unless it is large enough to imply

such intent and to make it unlikely that confounding factors other than gender are

responsible. Sometimes the legally required difference is given a number. In

reviewing charges that a test for employment has a disparate adverse impact on a

minority group, the EEOC by regulation has adopted a four-fifths rule: adverse

impact will be presumed if minority group members pass at a rate that is less than

80% of the rate of the group with the highest pass rate (see Section 1.5.1 at p. 42). In

toxic tort cases, some courts have held that, in order to prove causation from

9 For a discussion and application of the Paired Difference Test see Section 7.1.1. The Sign of

the Difference Test is a nonparametric test generally called the sign test; it is discussed in

Section 12.1.
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epidemiological data, the relative risk of disease from the exposure must be greater

than 2.10 (See Section 10.2 at p. 301.)

The question has been raised whether statistical significance should be tested

against the non-zero difference deemed legally important, rather than the zero

difference required by classical statistical tests. After all, if it is only sampling

error that creates a legally significant difference, it may be argued that such proof is

insufficient for the same reason that leads us to test for statistical significance in the

first place.

To analyze this issue, consider a group of plaintiffs that has been exposed to a

toxin, contracted a disease, and sues. Define a loss as either the granting of an award

to a plaintiff in the base group (who would have contracted the disease in any

event), or the denial of an award to a plaintiff in the excess group (who would not

have contracted the disease without the exposure). In decision theory, investigators

look at the mathematically expected loss, which roughly can be translated as the

average loss over a run of cases. The expected loss is a function of the true relative

risk and the cutoff criterion for the point estimate.

Consider the following decision rule: if the point estimate of the relative risk is

>2 find for the plaintiff; otherwise find for the defendant. Call this a “2-rule.” Under

the 2-rule we ignore statistical significance. A basic argument for this rule is that it

is a “minimax” solution: for any value of the “true” or long-term relative risk, the

maximum expected error under the 2-rule is less than under other rules with

different cutoff criteria.

To illustrate the rule, consider the case in which the true relative risk is 2. This

means that half the plaintiffs should recover. Assuming symmetry in sampling

(which is not unreasonable in large samples), in 1/2 of the samples the point

estimate of the relative risk will be less than 2, and no award would be made.

This would be an error for half the plaintiffs. Thus for 1/2� 1/2¼ 1/4 of the class

there will be errors in refusing to make awards. The same calculation applies to

errors in making awards, so that the total expected error is 1/2 per person.

It can be shown from elementary calculus that 1/2 is the maximum expected

error under the 2-rule for any value of the true relative risk. To illustrate this without

calculus, consider the case in which the true relative risk is far above 2, say 8. The

point estimate based on a sample would almost certainly be greater than 2, awards

would be made in almost every case, and the proportion of erroneous awards would

be 1/8. Thus, the rate of errors is far below 1/2. A similar calculation can be made

for a true relative risk that is below 2. In fact, the curve of error frequency as against

the true relative risk is bell-shaped and reaches its high point of 1/2 when the

relative risk is 2 and dwindles to zero as the relative risk moves away from 2 in

either direction.

10 This requirement is based on simple algebra. The probability that a randomly selected plaintiff

would be in the base group (and hence not entitled to an award) is 1/RR, where RR is the relative

risk. The probability that a plaintiff would be in the excess group (and hence entitled to an award)

is 1� 1/RR. If RR¼ 2 then 1� 1/RR¼ 1/2. If RR >2 then it is more likely than not that a

randomly selected plaintiff would be in the excess group.
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Now suppose that instead of a 2-rule we require that the point estimate of the

relative risk be at least 6 before an award is made. If the true relative risk is 3, there

is a greater than 50% probability that the point estimate will be less than 6. In that

case, no awards would be made and the rate of error would be 2/3. There is a smaller

than 50% probability that the point estimate would be greater than 6, in which case

an award would be made, with error rate 1/3. The expected total error is the sum of

these two rates weighted by their probabilities, and since it is more probable that the

point estimate will be below 6 than above it, the weighted sum of the two rates will

be greater than 1/2. Thus the 2-rule has a smaller maximum expected error than

rules with higher cutoff points.11

If we adopt a 2-rule, but also require statistical significance as against 2, we

would in effect be adopting rules with cutoff points above 2 in every case. How

much above depends on the sample size and the degree of significance required. As

we have indicated, such rules would have greater maximum expected error rates

than the 2-rule.

The same line of argument indicates that using the 2-rule and requiring statistical

significance even as against 1 also increases total error over the 2-rule without the

significance requirement. Those cases in which a point estimate of 2 would not be

significant as against 1 in effect require a cutoff criterion above 2 and this, as we have

seen, increases maximum expected error. However, this would occur only in very

small studies in which a point estimate above 2 would not be statistically significant

as against 1, whereas testing significance against 2 would require a cutoff criterion

greater than 2 in every case. The increase in maximum expected error is thus much

smaller when significance is tested against 1 than it is when tested against 2. Note

also that if there is no significance as against 1, there is insufficient evidence that

defendant caused anyone harm; if there is no significance as against 2, the only

question is whether the plaintiff is among those injured. We may therefore justify

requiring statistical significance as against 1 but not 2 on two grounds: a smaller

increase in maximum expected error and a more fundamental issue.

5.5.1 Port Authority promotions

Black police officers at the Port Authority of New York and New Jersey who were

candidates for promotion to sergeant brought suit, claiming that the Port Authority

procedures had a disparate impact on black candidates. The promotion process had

three steps: first, a written test designed to gauge a candidate’s knowledge of the

law, of police supervision, and of social and psychological problems at work;

second, those who passed the written test took an oral test designed to measure

judgment and personal qualifications; candidates who succeeded on the second step

11 The general formula for the expected loss, which is a function of the true relative risk (R) and the
point estimate criterion (r), is 1=2þ 1� 2=Rð Þ P rð Þ � 1=2ð Þ, where P(r) is the probability of no

award under the point estimate criterion when r>R. The formula shows that the expected loss

exceeds 1/2 when R> 2 and r>R so that P(r)> 1/2.
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proceeded to the final step–a performance appraisal based on a supervisory perfor-

mance rating and the candidate’s attendance record. Candidates completing

the examination process were placed on an “Eligible List” by rank according to

the weighted composite score achieved on the written and oral tests and on the

performance appraisal. The written examination received 55% of the weight in the

composite score. After the list was issued, the Port Authority promoted candidates,

starting with those with the highest scores and proceeding, as needed, down the list

for a period of 3 years, when a new list was created.

A total of 617 candidates took part in the examination process, of whom

508 were white, 64 were black, and 45 were in other groups. The number passing

the written examination was 539—of whom 455 were white and 50 were black. The

mean score of whites on the examination was 79.17% and of blacks was 72.03%,

yielding a difference of 5.0 standard deviations. On the oral test, blacks passed at a

higher rate than whites. Whites and blacks passed the performance appraisal with

approximately the same mean percentage score. Also undergoing performance

appraisal were 6 white officers who were “grandfathered” from a pre-existing list.

The 316 candidates who underwent performance appraisal were listed in order of

their composite scores from the three steps on the eligibility list. Promotions were

made from the top of the list downward, and during its 3 year life the 85th candidate

was reached. The 85 candidates included 78 whites, 5 blacks, and 2 members of

other groups. Eight white candidates either retired, withdrew, or were from the

grandfathered group, leaving 70 whites actually promoted through the process.

Thus, according to the court, 14% (70 of 501) of the white candidates who went

through the process were actually promoted as against 7.9% (5 of 63) of the black

candidates.12

One reason for these disparate results was that, on the written component,

although the passing score was lower, the minimum score a candidate could achieve

and still be within the top 85 candidates was 76. This level was attained by 42.2% of

the black candidates but 78.1% of the white candidates, a difference that was highly

statistically significant.

Questions

1. Looking at the pass-fail results of the written test alone, compute the ratio of the

black to white pass rates and the P-value for the ratio. Do the results suggest

disparate impact in light of the EEOC’s four-fifths rule (see Section 1.5.1) and

the Supreme Court’s two- or three-standard deviations rule in Castaneda (see

Section 4.3.2?)

[Point of information: In the case, the calculation of significance was made

for the difference between the two pass rates. Here we ask for a calculation of

the P-value based on the ratio of rates, since it is the ratio that is tested under the

12 The reason for 501 instead of 508� 8¼ 500 white candidates and 63 instead of 64 black

candidates does not appear.
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four-fifths rule. Although the two null hypotheses are the same, the test statistics

have slightly different properties.]

2. The district court resolved the tension between the EEOC and Supreme Court

rules by arguing that the written examination did not have a disparate impact

because the disparity would lose statistical significance if two additional blacks

had passed the test. The court of appeals agreed. Make your own calculation. Do

you agree with this argument?

3. The court of appeals looked at the overall results of the promotion process (14%

of whites compared with 7.9% of blacks promoted) and concluded that there was

disparate impact because the four-fifths rule was violated. But the difference was

not statistically significant. The court of appeals put the lack of significance

aside for two reasons: (i) “where statistics are based on a relatively small number

of occurrences, the presence or absence of statistical significance is not a reliable

indicator of disparate impact”; and (ii) the difference was not caused by chance,

but by the written test, which, “apart from its screening out some candidates, was

to cause blacks to rank lower on the eligibility test than whites.” Make your own

calculation of the pass ratio and its P-value. Do you agree with the court’s

reasoning?

Source

Waisome v. Port Authority of New York & New Jersey, 948 F.2d 1370 (2d Cir.

1991). See also Matrixx Initiatives, Inc. v. Siracusano, 131 S. Ct. 1309 (2011). (The
Supreme Court unanimously declines to adopt a bright-line rule that would base the

materiality of drug adverse event reports on whether they reveal a statistically

significant increased risk of adverse events occurring due to the drug’s use.)

5.5.2 State trooper literacy exam

The United States brought a civil rights action against the State of Delaware,

claiming that the State’s use of a literacy examination called Alert discriminated

against blacks in the hiring of state troopers. Applicants scoring below 75 on Alert

were rejected. One issue in the case was whether test scores correlated sufficiently

with measures of job performance to justify their use, despite its adverse impact on

black applicants. An expert for the state compared test scores of incumbent troopers

with job performance scores and found correlations between 0.15 and 0.25.

The court then had to decide whether the correlations were high enough to give

the test validity. There was “earnest contention” between the experts on whether

these correlations could be described as “low” or “moderate.” The court rejected

“moderate” because a standard statistical text deemed correlations of 0.1 as “low”

and 0.3 as “moderate,” and none of the statistically significant coefficients had

reached the higher level. More usefully, the court pointed out that defendants

conceded that when the coefficients were squared, the test scores only accounted
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for between 4 and 9% of the variation in trooper performance (which seems too

high, given the unsquared coefficients). The court nevertheless found that the test

had validity because the coefficients were statistically significant. It held: “Weak

though the predictive capacity may be, however, if the strength of the statistical

relationship is such that it reaches a benchmark level of statistical significance,

then, as. . .the United States’ expert statistician stated, one can conclude that the

relationship between the two variables is ‘real.’”

Questions

1. Was the court correct in having the validity of Alert turn on the statistical

significance of its correlation with job performance?

2. What is the probable impact on the correlations of the fact that the data were

based on the Alert scores and job performance of incumbent troopers?

Source

United State v. Delaware, 2004 U.S. Dist. Lexis 4560 (D. Del. 2004).

5.6 Maximum likelihood estimation

We have previously discussed two properties of the sample mean and variance:

unbiasedness and consistency (see Sections 1.2 at p. 3 and 1.3 at p. 21). Although

it is comforting when a statistical estimator can be proved unbiased, it is not

always convenient or even possible to obtain an unbiased estimator for a given

parameter. It is more important by far for an estimator to have the consistency

property, which states that in large samples the estimate will be close to the true

parameter with high probability, even if the expected value of the estimator is not

exactly equal to the parameter it seeks to estimate. For example, while the sample

variance s2 is an unbiased estimator of a population variance σ 2, the sample

standard deviation s is a slightly biased estimator of σ. This is usually of no

concern, as s is a consistent estimator of σ, the bias becoming negligible as the

sample size increases.

In problems more complex than estimating a mean or variance, it is not always

obvious how to estimate the parameter or parameters of interest. The question then

arises, how do we find an estimate for the parameters in a given problem, and can

we find one that is consistent? Are there any general principles to which we can

appeal? As it happens, in a surprisingly wide class of problems, we can find a

consistent estimator by the method of maximum likelihood, which yields a special

bonus: not only are maximum likelihood estimates (mle’s for short) consistent, but

in most cases they are also asymptotically efficient, which means that in large

samples the mle has about the smallest variance possible among all competing
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estimators. The mle thus “squeezes” the maximum amount of information about the

parameter from the data.13

Likelihood functions

The maximum likelihood method is easy to understand. First, we introduce the

likelihood function, L Θ
��X� �

, where Θ represents the parameter or parameters to be

estimated, and X represents the observed data. The likelihood function is simply

the probability of observing data X, when Θ is the true parameter governing

the distribution of X, but here we regard the data as fixed and consider how the

probability of the data varies as a function of Θ. For example, suppose we have

observed the outcomes Z1,. . ., Zn of n tosses of a coin with probability Θ of success

on a single toss. The likelihood function is then

L Θ
��X� � ¼ L Θ

��Z1, . . . ,Zn

� � ¼ Θs � 1� Θð Þn�s;

WhereS ¼
X

Zi the total number of successes. If only S had been recorded, but not

the actual sequence of outcomes, the binomial probability formula would give the

likelihood function L Θ
��n, S� � ¼ n

s

� �
Θs 1� Θð Þn�s

regarded as a function of Θ. In

this example L Θ
��X� �

andL Θ
��n, S� �

are proportional for each value of Θ, so that the
two versions are essentially equivalent for purposes of comparing the likelihood

function at different values of Θ. In general, likelihood functions are only defined

uniquely up to constants of proportionality, meaning constants that may depend on

the (fixed) data, but not on the parameter Θ.

The mle

The maximum likelihood estimate of Θ, denoted by Θ̂ n, is that value of Θ which

maximizes the likelihood function L Θ
��X� �

.The mle thus has the interpretation as

the parameter value that renders the observations “most likely,” and as such is

intuitively appealing as an estimator. In the binomial example, to find Θ̂ n we ask

what value of Θ maximizes the functionΘs 1� Θð Þn�S
, or equivalently, what value

of Θ maximizes the log-likelihood function

ln L Θ
��X� � ¼ S � ln�Θþ n� Sð Þ � ln 1� Θð Þ:

The answer, from calculus, is that Θ̂ n ¼ S=n is the maximizer, i.e., the sample

proportion S/n is the maximum likelihood estimate of the binomial parameter. In

common problems like this and others involving normal, Poisson, and exponential

13 In technical terms, the limiting ratio of the variance of the estimator to the theoretical minimum

variance for any regular estimator approaches unity as the sample size grows large. See Rice,

Mathematical Statistics and Data Analyses, ch. 8 (2d ed. 1995).
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variables, the sample mean is an mle. In more complicated problems, an iterative

computing algorithm must be employed as there are no closed-form solutions like

Θ̂ n ¼ S=n. Because of its importance in statistical work, maximum likelihood

estimation is routinely provided for in computer programs for a vast array of

problems.

Here is another important property of maximum likelihood estimators: if instead

of the parameter Θ interest focuses on some one-to-one transformed version of Θ,
say Θ

0 ¼ f Θð Þ, then the value of Θ0 that maximizes the likelihood function

L Θ
0 ��X� �

, regarded as a function of Θ0 is simply f Θ̂ n

� �
, i.e., the mle of the

transformed parameter is just the transformed mle of the original parameter.

Thus, in the example the mle of the log odds equals the log odds of the mle of p.
This invariance property means that in a given problem we are free to choose the

parameter of interest however we wish; if we can find the mle for one form of the

parameter, then we have found the mle for all forms.

The negative of the second derivative of the log-likelihood function is called the

observed information, and is an important measure of the amount of statistical

information contained in a sample of a data. The standard error of the mle is given

by the positive square root of the reciprocal of the observed information; it is

routinely calculated to determine the mle’s statistical significance and confidence

intervals.

Likelihood ratios

Extremely useful statistics are constructed by taking the ratio of the maximum

value of the likelihood function under the alternative hypothesis to the maxi mum

value of the function under the null hypothesis. The likelihood ratio statistic is

defined as L1 Θ̂ 1

��X� �
=L0 Θ̂ 0

��X� �
, where L1 is the likelihood under H1, L0 is the

likelihood under H0, and Θ̂ i is the maximum likelihood estimate of any unknown

parameters under either hypothesis Hi. The likelihood ratio is an important measure

of the weight of statistical evidence; large values indicate strong evidence in favor

of H1 and against H0. The likelihood ratio was used to measure the strength of

evidence in the discussion of Bayes’s theorem (Section 3.3), screening devices

(Section 3.4), and cheating on multiple-choice tests (Section 3.5.2).

As an example, we compute the likelihood ratio for the data in the Teal case, at
p. 164. In Teal, black and white officers took a test for promotion. Black officers

passed the test at the rate of 26/48¼ 54% and failed at the rate of 22/48¼ 46%;

white officers passed at the rate of 206/259¼ 80% and failed at the rate of

53/259¼ 20%. Under the null hypothesis that the pass (and fail) rates for the two

groups are the same, the maximum likelihood estimates are their pooled rates, i.e.,

the pooled pass rate is (26 + 206)/(48 + 259)¼ 232/307¼ 75.57%, and the pooled

fail rate is 75/307¼ 24.43%. The maximum likelihood value of the data under the

null hypothesis is
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232

307

� �232
� 75

307

� �75
¼ 7:4358� 10�75:

Under the alternative hypothesis, the pass (and fail) rates for the two groups are

different. The likelihood function for the two sets of rates is the product of their

individual likelihoods, using as maximum likelihood estimators the rates in the

sample data. Thus, the maximum likelihood under the alternative is

26

48

� �26
22

48

� �22" #
� 206

259

� �206
53

259

� �53" #
¼ 4:1846� 10�72:

The ratio of the likelihood under the alternative hypothesis to that under the null

is 4.1846� 10�72/7.4038� 10�75¼ 564. Thus, we are 564 times more likely to see

these data under the alternative than under the null hypothesis. This is very strong

evidence in favor of the alternative as against the null.

As a second example, likelihood ratios can be used to define the tails in a

two-tailed test when the probability distribution of the test statistic is asymmetric.

See Section 4.4 at p. 124 for a discussion of the problem in the context of

Avery v. Georgia. The likelihood ratio (LR) method defines the two-tailed

P-value as the sum of the point probabilities corresponding to those values

of x with an LR statistic equal to or greater than that of the observed x. The LR
statistic for testing that a binomial parameter p equals a given value p0 is defined
as LR xð Þ ¼ p̂ x 1� p̂ð Þn�x=px

0 1� p0ð Þn�x
, where x is the observed value of X,

and p̂ ¼ x=n is the sample proportion and maximum likelihood estimate of p.
In Avery, p̂ ¼ 0 and the numerator is taken as 1, while the denominator is 0.050

(1� 0.05)60¼ 0.046, so that LR(0)¼ 21.71. Evaluating LR(x) for other values of
x¼ 1, 2. . ., 60, one finds that LR is at least 21.71 for values of x starting at x¼ 9

(with LR(9)¼ 67.69; the value for x¼ 8 just misses with LR(8)¼ 21.60). Thus the

probability of 9 or more blacks (0.0028) has to be added to 0.046, yielding the

two-tailed P-value 0.0488 by the LR method. The fact that the P-value by the LR
method is less than the P-value by the point-probability method in this example is

not a general phenomenon. The differences between them simply illustrate that

different test procedures may lead to different results in borderline cases. Both

methods are superior to the simpler methods. As always, the analyst should

decide on the procedure before its evaluation on the data at hand.

To simplify computations and to assess the statistical significance of the

likelihood ratio statistic it is common practice to compute a log-likelihood ratio

statistic, G2, given byG2 H1 : H0ð Þ ¼ 2log L1
�
Θ̂ 1

��X=L0�Θ̂ 0

��X� 
. It is a convenient

computational fact that G2 for a two-by-two table, as in the Teal example, is equal

to 2 �P (observed) · log{observed/expected under H0}, where the sum is over all

cells in the table. The statistic is asymptotically equivalent to Pearson’s chi-squared

statistic, i.e., G2 is approximately distributed as χ21 under H0, with degrees of

freedom equal to the difference between the number of unknown parameters

under H1 and H0. The likelihood ratio is obtained by dividing G2 by 2 and
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exponentiating. For the Teal data, G2¼ 12.67 and χ2 ¼ 12:78, in fairly close

agreement. Using G2, the likelihood ratio is exp [12.67/2]¼ 564, in agreement

with our previous result.

The fact thatG2 has a chi-squared distribution can be used to assess the statistical

significance of the likelihood ratio. Since χ21 ¼ 12:67 has a null probability of

less than 0.0005, the likelihood ratio for the Teal data is statistically significantly

greater than 1.

These results extend to larger tables, where G2 sums over all cells in the

table, and has more degrees of freedom in its chi-squared distribution. As a result,

the log-likelihood ratio statistic is widely used in the analysis of multi-way

contingency tables.

A virtue of the log-likelihood ratio statistic is that it can be calculated in

completely general situations, e.g., with non-count distributions where the Pearson

goodness-of-fit statistic would be inappropriate. In addition, its interpretation in

terms of strength of evidence is regarded as superior to P-values for this purpose.

5.6.1 Purloined notices revisited

In the purloined notices problem (Section 5.3.3), Moody’s executives testified that

Moody’s copied only about 22 notices a year out of a possible 600, or about 4%.

Assuming this to be the null hypothesis and about 50% copying to be the alternative

hypothesis—based on the fact that for 1980 and 1981 combined some 15 out of

18 errors were copied—compute a likelihood ratio of the alternative to the null.

5.6.2 Do microwaves cause cancer?

Concern with the effects of low-level ionizing radiation has extended to the effects

of low-level microwaves. There are important biological differences between the

two. As a photon or energy packet of an ionizing ray passes through a substance, the

photon breaks chemical bonds and causes neutral molecules to become charged;

such ionization can damage tissues. In contrast, a photon of a billion-hertz micro-

wave has only one six-thousandth of the kinetic energy normally possessed by a

molecule in the human body; consequently, such a photon would be far too weak to

break even the weakest chemical bonds. Although it is still possible that weak

microwave energy might directly alter tissue molecules, it is not clear by what

mechanisms significant changes could occur.

A 3-year animal study conducted in the 1980s involved 100 rats irradiated with

microwaves for most of their lives, absorbing between 0.2 and 0.4 watts per

kilogram of body weight, the latter figure being the current American National

Standards Institute limit for human beings. The irradiated rats were compared with

100 control rats. The investigators examined 155 measures of health and behavior,

which revealed few differences between exposed and control groups.
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One striking difference was much publicized: primary malignant tumors devel-

oped in 18 of the exposed rats but in only 4 of the controls. No single type of tumor

predominated. The total number of tumors in the controls was below the number

expected for the strain, with the malignancy rate in the exposed group about as

expected.

Questions

1. Find the maximum likelihood estimate of p1 and p2, the tumor rates under the

two treatments. What is the mle of the relative risk, p1/p2?

2. Find the likelihood ratio under the hypothesis of different pi vs. the null

hypothesis p1¼ p2. Is the likelihood ratio significantly large?

3. What is your assessment of the strength of the evidence that microwaves were

responsible for the difference in tumor rates?

Source

Foster & Guy, The Microwave Problem, 225 Scientific American 32 (September

1986).

5.6.3 Peremptory challenges of prospective jurors

The distinct possibility that in certain cases lawyers will use their peremptory

challenges to stack the jury by race or sex has led to new questioning of this

hallowed practice.14 One of the questions raised is the extent to which lawyers

making challenges are able to identify biased jurors. To explore that question, a

study used actual courtroom data (instead of simulations) and a mathematical

model to estimate the extent of lawyers’ consistency in strikes. The model divided

prospective jurors who were struck into two conceptual groups: those who were

clear choices given the facts of the case, and those who were guesses. A juror was

defined as a clear choice for a strike when he or she had such characteristics (even

though not justifying removal for cause) that lawyers for one side or the other (but

not both) generally would agree that the juror should be struck as biased. The

lawyers might be wrong, but where there is such professional agreement the

strongest case is made for permitting a strike. The category of guesses included

those jurors whom lawyers for both sides might strike, either because of conflicting

14 Race and gender discrimination in the exercise of peremptory challenges has been declared

unconstitutional by the Supreme Court. See, e.g., Batson v. Kentucky, 476 U.S. 79 (1986)(race);

J.E.B. v. Alabama, 114 S. Ct. 1419 (1994)(gender). However, proof of discrimination is difficult

because judges tend to accept weak justifications for strikes. See DiPrima, Selecting a jury in
federal criminal trials after Batson and McCollum, 95 Colum. L. Rev. 888, 911 (1995).
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views of the juror’s bias or for some other reason, such as perceived unpredictabil-

ity. The need for peremptory challenges was argued to be less cogent in the case of

guesswork jurors than of clear-choice jurors.

To estimate the proportions of each type of juror, the study gathered data from

the courtrooms of a few of the small minority of federal judges who require that the

challenges of both sides be exercised simultaneously, instead of sequentially, as is

the usual practice. The focus was on the number of overstrikes—i.e., jurors struck

by both parties. The study theory was that a clear-choice juror by definition could

not be overstruck, but a guesswork juror could be overstruck if the lawyers for the

two sides had conflicting views of the juror’s potential bias, or agreed on some other

seemingly undesirable trait, such as unpredictability, or some combination of these.

The numbers of clear-choice and guesswork jurors, and the numbers of strikes of

such jurors were estimated by the maximum likelihood method based on the

overstrike data and the key assumption that guesswork jurors had equal

probabilities of being overstruck. The study gathered data from 20 selections.15

In a common configuration, after excuses for cause, the venire consisted of

32 persons. Both sides used all their permitted strikes: the prosecution made

7 strikes and the defense 11 strikes (in both cases these strikes included alternates).

The number of overstrikes ranged from none to four, averaging a little more than

one per selection.

Questions

1. Assume that a venire has 32 prospective jurors, the prosecution makes 7 strikes,

the defense makes 11 strikes, and there is 1 overstrike. On the assumption that

guesswork strikes are made at random from those jurors who are not clear

choices, use the hypergeometric distribution to find the probability of one

overstrike if (i) there were all clear-choice jurors save one each for the prosecu-

tion and the defense; (ii) there were no clear-choice jurors for either side; and

(iii) there were three clear-choice jurors for the prosecution and five for the

defense. Among these, which is your mle? [Hint: In computing the

hypergeometric probabilities, assume that the prosecution first designates its

7 strikes and the defense then designates its 11 strikes, without knowledge of the

prosecution’s choices.]

2. Does the result suggest that lawyers may have more strikes than they can

effectively use?

3. If the randomness assumption does not hold, what effect would this have on the

mle of clear choices?

15 There were 16 cases and 20 selections because in four of the cases the alternates were selected

separately.
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Source

Finkelstein & Levin, Clear choices and guesswork in peremptory challenges in
federal criminal trials, 160 J. Roy. Stat. Soc. A 275 (1997).

Notes

The study recognized that categorization of struck jurors as either clear choices or

guesswork was too black and white. In the gray real world there would be

disagreements among lawyers over clear-choice jurors and not all guesswork jurors

would have the same probability of being overstruck. The authors argued, however,

that any spectrum of consensus about jurors would have an expected number

of overstrikes, and so could be modeled by the clear-choice/guesswork model

with approximately the same expected overstrike number. Thus, the percentage

of clear-choice jurors in the categorical model could be understood not literally, but

as an index to express the degree of randomness in lawyers’ selections. In the report

of the study, the results across the 20 selections were combined, giving an mle

indicating about 20% of strikes were clear-choice jurors and 80% of strikes were

guesswork jurors.

The results of the courtroom data study are broadly consistent with the results of

simulation studies of lawyers’ consistency and accuracy in making peremptory

challenges. For a review of the simulation literature, see Hastie, Is attorney-
conducted voir dire an effective procedure for the selection of impartial juries?,
40 Am. Univ. L. Rev. 703 (1991).
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Comparing Multiple Proportions 6

6.1 Using chi-squared to test goodness of fit

Chi-squared is a useful and convenient statistic for testing hypotheses about

multinomial distributions. This is important because a wide range of applied

problems can be formulated as hypotheses about “cell frequencies” and their

underlying expectations. For example, in Section 4.6.2, Silver “butterfly” straddles,

the question arises whether the price change data are distributed normally; this

question can be reduced to a multinomial problem by dividing the range of price

changes into subintervals and counting how many data points fall into each interval.

The cell probabilities are given by the normal probabilities attaching to each of the

intervals under the null hypothesis, and these form the basis of our expected cell

frequencies. Chi-squared here, like chi-squared for the fourfold table, is the sum of

the squares of the differences between observed and expected cell frequencies, each

divided by its expected cell frequency. While slightly less powerful than the

Kolmogorov-Smirnov test—in part because some information is lost by grouping

the data—chi-squared is easier to apply, can be used in cases where the data form

natural discrete groups, and is more widely tabled.

Chi-squared can also be used to test whether two different samples of data come

from the same or different distributions when the source distribution of the data is

unspecified. The cell frequencies for each sample are obtained as above, with

expected cell frequencies estimated proportional to the marginal frequencies. The

chi-squared statistic is applied to the resulting 2� k contingency table. Under the

null hypothesis that the two samples come from the same distribution, the test

statistic has a chi-squared distribution with k� 1 degrees of freedom.

Problems involving 2� k tables also arise when comparing k proportions. To test
the homogeneity of sample proportions p1,. . ., pk, based on samples of size n1,. . .,
nk, respectively, a convenient and equivalent computing formula for chi-squared is
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X2 ¼
Xn
i¼1

ni
pi � pð Þ2
p q

;

where p is the pooled (marginal) proportion, given by

p ¼ 1� q ¼
Xk
i¼1

ni pi

.Xk
i¼1

ni;

which estimates the common true proportion under the null hypothesis. In general,

whenever theory or circumstance suggest expected cell frequencies, hypotheses

can be tested by comparing observed with expected data using chi-squared. For

example, with two categorical variables, A (with r levels) and B (with c levels), the
cross-classified data form an r� c table. The hypothesis of statistical independence
between A and B can be tested using chi-squared, where the expected cell frequency

in the ith row and jth column is estimated as the product of the ith row margin

and the jth column margin, divided by the grand total. Under the hypothesis of

independence, the chi-squared statistic follows a chi-squared distribution with

(r� 1)(c� 1) degrees of freedom. Chi-squared is also used to test hypotheses about

more than two variables, i.e., is used to test goodness of fit to various hypotheses in

higher-dimensional contingency tables. The expected cell frequencies are usually

estimated by the method of maximum likelihood (see Section 5.6).

In many r� c tables, the numbers in one or more cells are too small for the

tabled chi-squared distribution to approximate accurately the distribution of

the chi-squared test statistic. For tables larger than 2� 2, it is recommended that

chi-squared not be used if the expected cell frequency is less than 5 in more than

20% of the cells or less than 1 in more than 10% of the cells. (A special rule for

fourfold tables is given in Section 5.2 at p. 166). In such cases one strategy is to

collapse some of the rows and/or columns to form a smaller table. No change in

method is required when the collapsing is done on the basis of expected values

determined on an a priori basis without reference to the sample data, or from the

marginal frequencies of the table.

Another reason to collapse a table is to make subgroup comparisons, e.g., to

study which portions of the r� c table are contributing most to a significant overall

chi-squared. When the number and type of subgroup comparisons can be

pre-specified, an adjustment is required simply to control for the inflation of Type

I error that occurs when making multiple comparisons. Bonferroni’s method (see

Section 6.2) may be applied by multiplying the attained significance level by the

pre-specified number of tables tested.

On the other hand, when regrouping by inspection of the innards of the table, i.e.,

when post-hoc comparisons are made, an adjustment is required not only for

multiple comparisons, but also for the selection effect of testing hypotheses with

the same data that were used to formulate those hypotheses. Here an appropriate

method is to calculate the usual chi-squared statistic for the regrouped table (even to
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the level of possible fourfold tables), but then to assess the significance of the result

with the chi-squared distribution on (r� 1)(c� 1) degrees of freedom.

For example, a 3� 3 table has nine proper fourfold sub-tables without summing,

and nine possible fourfold tables obtained by summing two rows and columns.

To assess simultaneously the significance of any of these 18 fourfold tables, under

Bonferroni’s method, multiply the attained level of significance by 18. Alterna-

tively, ordinary chi-squared for a collapsed table is found significant only if it

exceeds the upper α¼ 0.05 critical value of the chi-squared distribution on

(3� 1)� (3� 1)¼ 4 degrees of freedom. In so doing, one will incorrectly reject

the hypothesis of independence for any of these tables with probability no greater

than α.

Further Reading

Fleiss, Levin & Paik, Statistical Methods for Rates and Proportions, ch. 9 (3rd

ed., 2003).

Gabriel, Simultaneous test procedures for multiple comparisons on categorical
data, 61 J. Am. Stat. Assoc. 1081 (1966).

Miller, Simultaneous Statistical Inference, ch. 6, } 2 (2d ed., 1981).

6.1.1 Death-qualified jurors

In a death penalty proceeding there are usually two phases: the determination of

guilt or innocence and, if the defendant is convicted of a potentially capital offense,

the penalty phase at which the jury decides between life imprisonment and death.

Prior to the Supreme Court’s decision in Witherspoon v. Illinois, 391 U.S. 510

(1968), the prosecution could challenge for cause all members of the venire who

expressed any degree of opposition to capital punishment. In Witherspoon, defen-
dant claimed that his jury was unconstitutionally biased toward conviction and

death because all individuals with scruples against the death penalty had been

excluded. The Court held that the jury was biased toward death, but that the

evidence did not persuade it that the jury was also biased toward conviction. It

restricted the group that could be constitutionally excluded from the guilt or

innocence phase to those who either (1) could not vote for capital punishment in

any case (“Witherspoon excludable”) or (2) could not make an impartial decision as

to a capital defendant’s guilt or innocence (“nullifiers”). Those permitted to serve

under this test are known as death-qualified jurors.

AfterWitherspoon, challenges were made that death-qualified juries were biased

toward conviction compared with juries from which only nullifiers were excluded.

It was urged that Witherspoon-excludables should be included at the guilt or

innocence phase, and, if defendant were found guilty, a new jury impaneled

excluding them for the penalty phase.
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To explore these issues, social scientists studied whether Witherspoon-

excludable jurors tended to vote differently from death-qualified jurors at the

guilt or innocence phase. In one such study, Cowan, Thompson, and Ellsworth

obtained a sample of adults eligible for jury service from venire lists, a newspaper

advertisement, and by referral. Those who said they could not be fair and impartial

in deciding guilt or innocence were excluded from the sample. The remainder were

divided into two groups—those who said they would be unwilling to impose the

death penalty in any case (Witherspoon-excludable) and those who said they would

consider imposing it in some cases (death-qualified jurors).

The subjects were then shown a videotape reenactment of an actual homicide

trial. After the viewing, they were assigned to juries, some with death-qualified

jurors only and others with up to 4 Witherspoon-excludables. The jurors recorded a

confidential predeliberation verdict and a second verdict after one hour’s delibera-

tion. The results are shown in Table 6.1.1.

Questions

1. What does the study show?

2. Is there a statistically significant difference in conviction behavior between

Witherspoon-excludable and death-qualified jurors?

Source

Cowan, Thompson, & Ellsworth, The Effects of Death Qualification on Jurors’
Predisposition to Convict and on the Quality of Deliberation, 8 Law & Hum.

Behav. 53 (1984); see Hovey v. People, 28 Cal.3d 1 (1980).

Notes

In a challenge to an Arkansas conviction, the district court found the Cowan,

Thompson, and Ellsworth study and other similar studies persuasive and

Table 6.1.1. Verdict choices of death-qualified and excludable jurors

Pre-deliberation ballot Death-qualified Excludable

First degree murder 20 1

Second degree murder 55 7

Manslaughter 126 8

Not guilty 57 14

Total 258 30

Post-deliberation ballot Death-qualified Excludable

First degree murder 2 1

Second degree murder 34 4

Manslaughter 134 14

Not guilty 27 10

Total 197 29
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granted relief.1 A sharply divided Eighth Circuit affirmed, but the Supreme Court

reversed. In Lockhart v.McRee, 476 U.S. 162 (1986), Justice Rehnquist, writing for
the majority, swept away the social science. In his view, the studies were defective

because the individuals were not actual jurors in an actual case. Moreover, the

studies did not even attempt to predict whether the presence of one or more

Witherspoon-excludables on a guilt-phase jury would have altered the outcome of

the guilt-phase determination.

But even if the studies had been convincing, Rehnquist regarded the social

science exercise as irrelevant. The fair cross-section requirement of the Eighth

Amendment for jury venires does not apply to petit juries, which cannot constitute a

cross-section. In any event, the cross-section requirement applies only to “distinc-

tive groups,” and individuals whose only tie is their opposition to the death penalty

do not constitute such a group. Finally, Rehnquist held that the death qualification

does not deprive defendant of the impartial jury required by due process because an

impartial jury consists of nothing more than “jurors who will conscientiously apply

the law and find the facts,” and McCree did not even claim that his jury would not

do that. Justices Brennan, Marshall, and Stevens dissented.

6.1.2 Spock jurors

Dr. Benjamin Spock, author of a famous book on baby care, and others were

convicted of conspiracy to cause young men to resist the draft during the Vietnam

War. The defendants appealed, citing, among other grounds, the sex composition of

the jury panel. The jury itself had no women, but chance and peremptory challenges

could have made that happen. Although the defendants might have claimed that the

jury lists (from which the jurors are chosen) should contain 55% women, as in the

general population, they did not. Instead they complained that six judges in

the court averaged 29% women in their jury lists, whereas the seventh judge, before

whom Spock was tried, had fewer, not just on this occasion, but systematically. The

last 9 jury lists for that judge, in chronological order, contained the counts shown in

Table 6.1.2. Spock’s jury was selected from the panel with 9 women and 91 men.

Questions

1. Use chi-squared to determine whether the proportion of women on these juries is

consistent with the hypothesis of a constant probability of accepting a woman

juror.

2. If so, use the pooled data for p and calculate a 95% confidence interval for that

estimate. Do your results support Spock’s defense on this issue?

3. Consider three post-hoc groupings of jurors: the low juries (#’s 4 and 8), the

medium juries (#’s 1–3 and 5–7), and the high jury (# 9). Using this sub-grouping,

test the hypothesis of constant probability of accepting a woman juror.

1 The combined significance of the six studies was very high. See Section 8.1.
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Source

Zeisel, Dr. Spock and the Case of the Vanishing Women Jurors, 37 U. Chi. L. Rev.
1 (1969–70); Mosteller & Rourke, Sturdy Statistics 206–7 (1973). The Mosteller-

Rourke book misstates the outcome: the court of appeals reversed the conviction on

other grounds, without reaching the jury selection issue. U.S. v. Spock, 416 F.2d

165 (1st Cir. 1965).

6.1.3 Grand jury selection revisited

In Orleans Parish, Louisiana, nine grand juries were selected between September

1958 and September 1962, when a grand jury was impaneled that indicted a black

suspect. Each grand jury had twelve members. There were two blacks on eight of

the juries and one on the ninth. Defendant contended that the number of blacks on a

jury was limited by design. Blacks constituted one-third of the adult population of

the Parish, but the Supreme Court of Louisiana held that the low level of black

representation was due to lower literacy rates and requests for excuse based on

economic hardship.

Questions

1. Test whether the lack of variation in numbers of blacks is inconsistent with a

binomial selection process by using the chi-squared test of homogeneity for the

observed and expected numbers of blacks on each of the juries (a 2� 9 table).

The test, unconventionally, requires referring the statistic to the lower tail of

chi-squared. (An alternative test uses the multiple hypergeometric model, with

column totals of 12 and row totals of 17 and 108, for blacks and whites,

respectively).

Table 6.1.2. Sex composition of jury panels

# Women Men Total

Proportion

women

1 8 42 50 0.16

2 9 41 50 0.18

3 7 43 50 0.14

4 3 50 53 0.06

5 9 41 50 0.18

6 19 110 129 0.15

7 11 59 70 0.16

8 9 91 100 0.09

9 11 34 45 0.24

Total 86 511 597 0.144
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2. Using the binomial model, find the expected number of juries with less than

2 blacks, exactly 2 blacks, and more than 2 blacks, this collapsing being used to

increase the expected numbers in each cell. Use the chi-squared goodness-of-fit

statistic to compare the observed and expected number of juries in each cate-

gory. What do you conclude?

Source

State v. Barksdale, 247 La. 198, 170 So.2d 374 (1964), cert. denied, 382 U.S. 921

(1965).

6.1.4 Howland Will contest

Hetty Howland Robinson claimed the estate of her aunt, Sylvia Ann Howland, who

died in 1865. The claim was based on an alleged secret agreement between aunt and

niece to leave the niece the estate. The only written evidence of the agreement was a

previously undisclosed and separate “second page” inserted into a will of the aunt’s.

Robinson claimed that, at her aunt’s direction, she wrote both copies of the second

page; that her aunt signed the first copy on the morning of January 11, 1862; signed

the second copy after tea on the same day; and signed the will itself that evening.

A subsequent will, made in September 1863, gave Robinson only the income from

the estate.

The executor rejected Robinson’s claim, asserting that the signatures on the two

second pages were forgeries, having been traced from the signature on the will

itself. The case became a cause célèbre. Oliver Wendell Holmes, Sr., appeared as a

witness for the executor, as did Harvard Professor Benjamin Peirce, probably the

most noted mathematician of his day. Professor Peirce, assisted by his son, Charles

Sanders Peirce, undertook to demonstrate by statistical means that the disputed

signatures were forgeries. Their method involved counting the number of

downstrokes (30 in all) that “coincided” in the authentic, and one of the disputed,

signatures (the other disputed signature was not mentioned) and comparing those

coincidences with coincidences in other pairs of admittedly genuine signatures of

Sylvia Ann Howland. According to Charles Sanders Peirce’s testimony,

downstrokes were considered to coincide if “in shifting one photograph over

another in order to make as many lines as possible coincide—that the line of

writing should not be materially changed. By materially changed, I mean so

much changed that there could be no question that there was a difference in the

general direction of the two signatures.” The undisputed signature on the will

and one of the disputed signatures coincided with respect to all 30 downstrokes

(see Fig. 6.1.4). Professor Peirce compared the number of coincidences in the

thirty downstrokes in every possible pairing of 42 undisputed signatures of

Sylvia Ann Howland taken from various other documents. At trial he disclosed

the data of Table 6.1.4 from the study. (Note that only the aggregate number of pairs
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and aggregate number of coinciding strokes were disclosed for pairs with between

13 and 30 coincidences.)

Assume, as appears probable, that the pair of authentic and disputed signatures

was the only pair for which all 30 downstrokes coincided. Since there were

Fig. 6.1.4. Undisputed and challenged signatures of Sylvia Ann Howland

Table 6.1.4. Coincidence of 30 downstrokes in 861 signature pairs

Coincidences per pair Number of pairs Number of strokes coinciding

0 0 0

1 0 0

2 15 30

3 97 291

4 131 524

5 147 735

6 143 858

7 99 693

8 88 704

9 55 495

10 34 340

11 17 187

12 15 180

13

⋮ 20 288

30

861 5,325
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861 pairs and 30 downstrokes in each, there were 25,830 comparisons, of which

5,325, or slightly over 1 in 5, coincided. On this basis, Benjamin Peirce assumed

that the probability of a coincidence was approximately 1/5 and testified, using a

binomial model, that the probability of finding 30 coincidences in one pair of

signatures was “once in 2,666 millions of millions of millions.” (Note: his conclu-

sion would appear to be misstated. The probability of 30 independent matches is

(5325/25,830)30¼ 2.666�10–21, which is equal to once in 3.75� 1020 pairs.)

Questions

1. Assuming that the 861 pairs are independent observations, use chi-squared to

determine whether the data are consistent with Peirce’s binomial model.

2. What reasons would you have for doubting the independence assumption?

3. What analysis of these data might be less open to dispute?

Source

The Howland Will Case, 4 Am. L. Rev. 625 (1870), discussing Robinson v.Mandell,
20 Fed. Cas. 1027 (No. 11959) (C.C.D. Mass. 1868). This case appears to be the first

in which probabilities were computed in a legal proceeding. See Meier & Zabell,

Benjamin Peirce and the Howland Will, 75 J. Am. Stat. Assoc. 497 (1980).

Notes

The Howland Will case is unusual in two respects: Professor Peirce was called to

demonstrate that the differences between the questioned and exemplar signatures

were too few (in fact, none) to be consistent with the natural variation of the

subject’s handwriting; in addition, to support his opinion, he presented a quantita-

tive measure (albeit flawed) for the probability of the absence of such differences.

In the more usual modern case, a forensic handwriting expert is called to testify that

the differences between the questioned and exemplar handwritings are too numer-
ous to be consistent with natural variation, and no quantitative measure of proba-

bility is given. Lack of quantification in the field of handwriting expertise is a factor

that led a trial court, in a notable case, to hold that proposed testimony by a forensic

document expert was not sufficiently scientific to be admitted, as such; the expert

would be allowed to testify only as a person with “specialized knowledge,” and the

jury cautioned appropriately. United States v. Starecpyzel, 880 F. Supp. 1027

(S.D.N.Y. 1995) (slanting capital letter “E” in two questioned signatures found in

only 5 out of 224 exemplars).

6.1.5 Imanishi-Kari’s case

In 1986, Dr. Imanishi-Kari, the head of a serological research laboratory at MIT,

was accused of fraud by a graduate student working in her laboratory. The student

asserted that Imanishi-Kari had fabricated data behind a scientific paper that was
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published in the April 25, 1986, issue of the journal Cell. The paper was the fruit

of collaborative research at Imanishi-Kari’s laboratory and a Boston molecular

biology laboratory headed by Dr. David Baltimore. A prominent researcher,

Baltimore had won a Nobel Prize and had become president of Rockefeller Univer-

sity. The finding of the Cell paper was that the introduction of a gene from one

strain of mouse to another changed the antibody repertoire in the recipient mouse.

The new antibodies were found to carry certain characteristics of the donor mouse

and certain characteristics of the recipient mouse.

An NIH scientific panel investigated, found some mistakes in the paper, which

were corrected in subsequent publications, but cleared Imanishi-Kari of scientific

misconduct. However, the case then became notorious when Representative John

Dingell’s subcommittee on Oversight and Investigations subpoenaed laboratory

records and held hearings on the charges in 1988, 1989, and 1990. NIH’s Office of

Research Integrity (ORI) then reopened the investigation and in 1994 issued a

231-page report finding that Imanishi-Kari had fabricated data behind the paper.

Dr. Baltimore was not accused of fraud, but was forced to resign from Rockefeller

University because he had defended Imanishi-Kari.

The allegedly fabricated data were counts per minute (cpm) of gamma radiation

by a gamma counter. To support the fraud charge, ORI compared the uniformity of

distribution of certain “insignificant digits” in the questioned handwritten data and

in the unquestioned gamma counter tapes. The theory was that digits that carried no

information relating to the outcome of the experiment could be expected to be

uniformly distributed between 1 and 9 in an authentic data set, whereas fabricated

data would tend to show nonuniformities due to the fabricator’s personal and

unconscious digit preferences. To obtain insignificant digits, ORI started at the

right of each cpm number and moved left until reaching the first non-zero digit.

That digit was then counted if it was not the left-most digit; if it was, the number

was discarded. Thus, the 7 in a cpm of 7,000 would be considered significant and

would not be counted, but the 8 in 28,000 would be considered insignificant and

would be counted. There were always initial right-hand zeros because Imanishi-

Kari rounded the cpms in the handwritten data, usually to the nearest 10. To put

control group cpms on a similar basis, ORI also rounded before counting insignifi-

cant digits. This was done by rounding to the nearest 1,000 for cpms over 10,000;

rounding to the nearest 100 for cpms less than 10,000 but over 1,000; rounding

to the nearest 10 for cpms less than 1,000 but over 100; and discarding cpms less

than 100.

Table 6.1.5 shows the digit frequencies in 47 cpms of questioned handwritten

data and a similar number from one of the control data sets.

Question

Do the data support ORI’s argument?

Source

Thereza Imanishi-Kari, Docket No. A-95-33, Decision No. 1582 (June 21, 1996),

Dep’t of Health and Human Services, Departmental Appeals Board, Research
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Integrity Adjudications Panel. See, in particular, Appendix B of the ORI initial

decision at B-22 to B-33. The questioned cpm data are the high counts (cpm of at

least 600) from page 1:121 of Imanishi-Kari’s laboratory notebook; the control cpm

data are the first 47 non-discarded cpms from the high counts on page 1: 102–104.

On people’s inability to fabricate random digits and the use of that fact in detecting

fraud, see Mosimann, Wiseman, & Edelman, Data Fabrication: Can People
Generate Random Digits?, 4 Accountability in Research 31 (1995).

Notes

The appeals panel found that ORI had not proved its charges of fraud by a

pre-ponderance of the evidence and reversed the finding of scientific misconduct.

In particular, the panel found the uniformity analysis flawed because: (i) prior studies

supporting uniformity analysis had used it only to demonstrate some form of human

intervention and it was undisputed in this case that Imanishi-Kari had personally

rounded the data; (ii) studies demonstrating uniformity of digit frequencies were only

of the right-most digit (sometimes called the “terminal” or “error” digit), but ORI’s

study was of the right-most, non-zero digit that was not the leftmost digit and there

was no authority that analysis of such digits was a commonly accepted statistical

technique or that such digits would not have some information that would make them

significant; (iii) the use of the control groups was suspect because the handwritten

data were rounded and it did not appear that ORI’s rounding protocol for the control

group mimicked that used by Imanishi-Kari. Finally, the panel concluded that, even if

the analysis were valid, it could not infer from a lack of uniformity alone that the data

had been fabricated. Panel Op. 107–109.

6.2 Bonferroni’s inequality and multiple comparisons

An important application of Bonferroni’s inequality (see Section 3.1 at pp. 63–64)

lies in correcting the nominal error rate in multiple or simultaneous tests of

significance. Suppose one is testing k hypotheses, not necessarily statistically

Table 6.1.5. Frequencies of insignificant cpm digits in questioned and control data

Digit Questioned cpm data digit frequencies Control cpm data digit frequencies

1 0 7

2 14 6

3 2 3

4 3 10

5 4 3

6 4 2

7 6 7

8 11 7

9 3 2
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independent. For example, in comparing three treatments—T1, T2, and T3—we may

wish to make three paired comparisons: T1 versus T2, T1 versus T3, and T2 versus T3.
The same data will be used for T1 in each of the first two comparisons, etc. If each

significance test were conducted at the nominal α¼ 0.05 level, the chance of

making one or more Type I errors is more than 5%, since there are three

opportunities to err. However, the precise overall Type I error rate is often difficult

to calculate because of correlations between tests. The Bonferroni inequality gives

a simple solution to the problem of controlling the overall Type I error rate: for

k comparisons (in the example k¼ 3), conduct each test at the nominal α¼ 0.05/k
level. For if Ei denotes the event that a Type I error is made in the ith comparison,

then

P at least one Type I error occurs½ �
¼ P E1 or . . . or Ek½ � 	 P E1½ � þ . . .þ P Ek½ �

¼ 0:05

k
þ . . .þ 0:05

k
¼ 0:05:

Thus, the overall Type I error rate is no larger than 0.05. The method is slightly

conservative, in that the true error rate will be somewhat less than 0.05, but in

practice the conservatism is negligible.

The second Bonferroni inequality can provide a lower bound to the overall Type
I error if the pairwise occurrence of two Type I errors can be calculated, for then2

P E1 or . . . or Ek½ � � P E1½ � þ . . .þ P Ek½ �
� P E1 and E2½ � þ P E1 and E3½ � þ . . .þ P Ek�1 and Ek½ �ð Þ:

In practice, if k is not too large and the correlation between tests is not too strong, the
terms P [Ei and Ej] will not be too far from the value they would have had if the tests

had been independent, namely (0.05/k)2. Since there are
k
2

� �
¼ k k � 1ð Þ=2 of

them, the correction terms to the first Bonferroni inequality are not far from
1
2
k k � 1ð Þ � 0:05=kð Þ2 ¼ 0:00125 � k � 1ð Þ=k, which is fairly small. Thus

α¼ 0.05/k usually provides a quick and simple control for multiple comparisons.

In particular, when comparing rates from each of k groups to a reference group,

we have two possible procedures: (i) test for homogeneity of all rates (including the

reference group) using chi-squared (see Section 6.1) or (ii) compare each group

with the reference group and reject as significant any z-score statistic at or beyond
the nominal α¼ 0.05/k level. Often, especially when k is small, the latter procedure

reaches a higher level of statistical significance than the chi-squared procedure. The

reason is that chi-squared is an “omnibus” test (i.e., sensitive to a wide class of

alternatives), whereas pairwise comparisons are particularly powerful when the

reference group is markedly different from at least one other group. On the other

2 The possibility of errors in three or more tests also exists, but is considered negligible.
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hand, chi-squared will be more powerful when there are diffuse but moderate

differences among several groups, because each cell contributes to the

chi-squared sum.

While Bonferroni’s inequality is the best known method for adjusting for

multiple comparisons, other procedures are more powerful, i.e., are more likely to

lead to a rejection of the null hypothesis if it is false for at least one of the

comparisons. The so-called Holm step-down procedure is one example. In this

method, the comparisons are ranked from most to least significant. If there are

k such comparisons, the first one is tested at the level α/k, as in Bonferroni’s

procedure; if the difference is not significant, i.e., the null hypothesis is not rejected,

the procedure stops and no comparisons are significant. If the first comparison is

significant, the second is tested at α/(k� 1). If the difference is not significant, the

procedure stops and only the first comparison is deemed significant If the second

comparison is significant the procedure continues by testing the next comparison at

level α/(k� 2), etc. The final criterion is simply α.
Because Holm’s procedure uses a level of significance for each comparison that

is equal to or larger than the level α/k used in Bonferroni’s procedure, it always

rejects at least as many comparisons as Bonferroni’s procedure, and is therefore

more powerful. However, Type I error is still bounded by α. To see this, consider

the case in which the null hypothesis is true for all comparisons. If Holm’s

procedure is followed, what is the probability that the null hypothesis will be

rejected for at least one comparison? For that to occur, the first comparison

would have to be rejected, because if it is not rejected the procedure stops and no

comparisons are rejected. The significance level associated with the first compari-

son is α/k. Thus, Type I error will occur only if the P-value for one or more of

the k comparisons is 	 α/k. The probability under the null hypothesis that a

particular P-value will be 	 α/k is by definition α/k. By Bonferroni’s inequality,

the probability that one or more such events will occur is k(α/k)¼ α. The Holm

procedure therefore bounds Type I error at 	 α.
The attained level of significance or “Holmed” P-value for the ith comparison

that preserves α as overall Type I error is determined as follows. For the first

i comparisons on the list, multiply each nominal P-value by k� i+ 1. The maxi-

mum of these values, or 1, whichever is less, is the “Holmed” P-value for the ith
comparison. The Holm procedure rejects only those null hypotheses for which the

Holmed P-value is 	 α.

Further Reading

Miller, Simultaneous Statistical Inference, ch. 1, }2 (2d ed. 1981).

Holm, A simple sequentially rejective multiple test procedure, 6 Scand. J. Stat.

65 (1979).

Aickin & Gensler, Adjusting for multiple testing when reporting re-search results:
the Bonferroni versus Holm methods, 86 Am. J. Pub. Health 726 (1996).

Levin, On the Holm, Simes, and Hochberg multiple test procedures, id. at 628.
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6.2.1 Wage additives and the four-fifths rule

Illinois Bell had a system of “wage additives” by which employees with certain

experience or education were eligible at hire to receive salary additives that would

raise their salaries one or more steps above entry level. The EEOC contended that

the administration of this program with respect to the additive for nontechnical

education discriminated in favor of white males and against other race/sex groups.

See Section 1.5.1 for the text of the EEOC’s four-fifths rule on this subject.

According to an EEOC Q & A on the rule, the comparisons are to be made between

males and females, and among blacks, Native Americans, Asians, Hispanics, and

non-Hispanic whites; there is no obligation to compare racial groups within sexes

(i.e., white males with black females, etc.) (EEOC, 8 F.E.P. 401:2306 Q’s & A’s to
Clarify and Provide a Common Interpretation of the Uniform Guidelines on
Employer Selection Procedures, Q & A No. 17 (1979)).

The EEOC director involved in the case tested males and females in the

aggregate and found a violation and (despite the regulation) tested each race/sex

group against white males and found violations. The data are shown in Table 6.2.1.

Question

In his survey of all groups, the EEOC director found the difference in rates of wage

additives between white females and white males to be statistically significant at the

5% level by the two-sample z-score test. As the attorney for Illinois Bell, what

objections would you make to this calculation and what alternative calculations

would you offer?

Source

Wollenberg, The Four-Fifths Rule-of-Thumb: An EEO Problem For OTC
Statisticians (Unpubl. Memo presented at a Bell System Seminar on Statistics in

EEO Litigation, Oakbrook, Illinois, October 10, 1979).

Table 6.2.1. Non-technical education additives

Category Number of employees Employees with additives

White male 143 20

Black male 38 6

Hispanic male 7 1

Asian and other male 8 0

White female 103 5

Black female 59 4

Hispanic female 38 2

Asian and other female 13 2

Total 409 40
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6.2.2 Discretionary parole

Native American and Mexican American inmates of the Nebraska Penal and

Correctional Complex sued under 42 U.S.C. 1983 (1981), claiming that the five-

member Nebraska Board of Parole denied discretionary parole to them on the

grounds of race and ethnicity. The data for 1972 and 1973 are shown in Table 6.2.2.

On these data, the Eighth Circuit Court of Appeals affirmed the denial of relief.

The court noted that for Native Americans the difference between the expected

(35) and observed (24) number of discretionary paroles was only 11, and for

Mexican Americans the difference between expected (11) and observed (5) was

only 6. In each case, the court concluded that the difference represented less than

two standard deviations. It computed the standard deviation by taking the square

root of the product of the total number of individuals who received discretionary

paroles (535), the probability of randomly selecting a Native American from the

eligible inmate population (0.065), and the probability of randomly selecting

someone other than a Native American (0.935). (Id. at 1377, n. 19). The result

was 5.7. A similar computation for Mexican Americans yielded 3.2. Since in each

case there was a departure of less than two standard deviations from expectation,

the court concluded that the Supreme Court’s rule in Hazelwood and Castaneda
was not violated (Id. at 1377–78), and the statistics were “not quite sufficient” for a
prima facie case. Id. at 1379.

Questions

1. Use chi-squared to test the null hypothesis of no association between race or

ethnicity and parole against omnibus alternatives of arbitrary differences

between groups.

2. What probability model underlies the court’s computation?

3. If Native Americans are to be compared with all others, as the court does, what

other model might be more appropriate and what are the results?

4. In using chi-squared for 2� 2 tables to test significance, apply two different

methods to adjust for multiple comparisons.

Source

Inmates of the Nebraska Penal and Correctional Complex v. Greenholtz, 567 F.2d

1368 (8th Cir. 1977).

Table 6.2.2. Parole by race and ethnicity

Native Mexican

White Black American American Total

Received discretionary parole 358 148 24 5 535

Eligible for release by discretionary

parole

590 235 59 18 902
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6.2.3 Cheating on standardized multiple-choice tests revisited

In the police examination for promotion to sergeant described in Section 3.5.2,

departmental proceedings were brought against the suspected officers. The court

held that the anonymous tip letters would not be admitted in evidence. A psychome-

trician, testifying for the defense, argued that because the letters had been excluded,

and in any event did not identify all of the suspected officers, the probabilities of

matching wrong answers had to be computed on a screening basis. By that he meant

that the prior identifications had to be ignored and all possible pairs of officers among

the 12,570 taking the test (approximately 155 million) had to be examined to see

whether the suspected officers had a statistically significant number of matching

answers (in the expert’s method all matching answers, both right and wrong, were

counted). Statistical significance was to be measured using an alpha level of 0.001,

adjusted for multiple comparisons by the Bonferroni method. With that adjustment,

significance required a departure of at least seven standard errors above expectation.

When this screening was done there were 48 suspicious pairs, but none of the

suspected officers was included in those pairs.

The psychometrician also argued that the department’s expert had overlooked

the problem of multiple comparisons in his analysis. He claimed that there were

8 comparisons based on the fact that there were 4 groups of officers and 2 methods

of analysis (Modified Angoff and Item Specific). When adjustment was made, the

results lost statistical significance. There were also morning and afternoon sessions

of the test and matching wrong-answer data were computed for each separately.

However, the psychometrician believed that no adjustment for the two sessions was

required because different data were used for the two sessions.

Questions

1. Is a screening approach to adjustment appropriate in this case?

2. Assuming a screening approach is not required, what is the number of

comparisons for which adjustment should be made in determining statistical

significance?

6.2.4 InterMune’s Actimmune

InterMune, Inc., a California-based pharmaceutical company, developed,

marketed, and sold drugs for lung and liver diseases. It was headed by W. Scott

Harkonen. It sold an interferon biologic agent it brand named Actimmune, which

was approved by the FDA for two very rare diseases. In 1999, a small Austrian

clinical trial showed that Actimmune might be a promising treatment for another

rare and fatal disease, idiopathic pulmonary fibrosis (“IPF”). IPF is characterized

by progressive scarring, or fibrosis of the lung, which leads to its destruction. The

progress of the disease is measured by the Forced Vital Capacity (FVC) of the lung,

measured as a percentage, with higher percentages indicating greater capacity and
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less disease. The cause of IPF is unknown, and once afflicted, IPF sufferers usually

die within 2–3 years.

In response to the Austrian study, InterMune launched a more ambitious clinical

trial of Actimmune’s efficacy in treating IPF. The study was a randomized, double-

blind, placebo-controlled trial, with 162 patients treated with Actimmune and

168 receiving a placebo. The primary endpoint was progression-free survival time,

progression of IPF being defined as a specific, measurable decrease in lung function.

There were ten secondary endpoints, “survival” being the seventh. When the trial

ended, and the data were unblinded and analyzed, there was no difference between the

treatment and placebo groups with regard to the primary endpoint, progression-free

survival time; the P-value was 0.51. However, there was a “trend toward a survival

benefit” with regard to the secondary endpoint, survival: 16/162 Actimmune-treated

patients (9.9%) died during the study compared to 28/168 patients in the placebo group

(16.7%). This represented a 40% decrease in mortality (P-value¼ 0.084).

After receiving these results, and after another analysis suggested that

Actimmune’s effectiveness might depend on the severity of IPF when it was

administered, Harkonen asked Michael Crager, then Senior Director of Biostatistics

at InterMune, to have its statistical consulting company (Pharmanet) run a subgroup

analysis, dividing patients into three IPF groups: severe (FVC 0—55%); moderate

(FVC 56—70%); and mild (FVC 71—100%). These subgroups were not

preplanned. After Crager delivered these results, Harkonen asked him to run the

data for two subgroups: those with FVC greater and less than 55%, thus combining

the mild-to-moderate subgroups. In the mild-to-moderate subgroup there were

6/126 deaths in the Actimmune-treated patients (4.8%) compared with 21/128

deaths in the placebo group (16.4%); this represented a 70% decrease in mortality

in favor of Actimmune versus placebo (P¼ 0.004).

Based on these results, Actimmune, under Harkonen’s direction, issued a press

release with the headline “InterMune announces Phase III data demonstrating

survival benefit of Actimmune in IPF.” And the subheadline: “Reduces Mortality

by 70% in Patients with Mild to Moderate Disease.” And “. . .preliminary data from

its phase III clinical trial . . .demonstrates a significant survival benefit in patients

with mild to moderate disease randomly assigned to Actimmune versus a control

treatment (P¼ 0.004).”

Questions

1. Can you confirm the P¼ 0.004 calculation cited in the press release?

2. Harkonen was prosecuted under the federal wire fraud statute for issuing a false

press release. Assuming that the data in the press release correctly reported what

had been done in the clinical trial, were the quoted statements false?

Source

United States v. Harkonen, 2010 WL 2985257 (N.D. Calif. 2010), aff’d, 510 Fed.

Appx. 633 (9th Cir. 2013), cert. denied, 134S. Ct. 824 (2013). Compare Kleinman
v. Elan Corp., 706 F.3d 145, 154–155 (2d Cir. 2013).
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6.3 More measures of association: Phi-squared (f2)
and tauB (tB)

The chi-squared statistic is not a good measure of association within a table because

its value depends on the sample size. As stated in Section 5.2, if each cell in a 2� 2

table is multiplied by 2, the association within the table does not change but

chi-squared is increased by a factor of 2. A measure of association based on

chi-squared that avoids this defect is phi-squared (also called the mean squared

contingency), which is defined as chi-squared (without correction for continuity)

divided by the sample size. Whereas the range of chi-squared is unbounded,

phi-squared runs from 0, when attributes are independent, to 1, when two diagonal

cells in the 2� 2 table have positive values and the other two are zero (i.e., perfect

correlation). Unfortunately, this characteristic does not carry over to larger tables.

For the general r� c table, phi-squared ranges between zero and the smaller of r� 1

and c� 1, with the upper limit only attainable when r¼ c. See generally H. Blalock,
Social Statistics 212–21, 228–29 (1960). A leading authority, Harald Cramér, has

suggested that phi-squared be standardized by dividing by the smaller of r� 1 and

c� 1. Cramér, Mathematical Methods of Statistics 282 (1946).

The positive square root of phi-squared is known as the “phi coefficient.” Erratic

phi coefficients for ten job groups showing the correlation between a battery of test

scores and an average of two supervisory rankings were cited by the U.S. Supreme

Court in Albemarle Paper Co. v. Moody, 422 U.S. 405 (1975), to buttress its

conclusion that a test battery with a discriminatory impact was not acceptable

because it was not “‘predictive of or significantly correlated with important

elements of work behavior. . .’” Id. at 431.
In a 2� 2 table phi-squared is equal to the square of Pearson’s correlation

coefficient (see Section 1.4) and this may help in its interpretation. In the Teal
data (see p. 164), phi-squared is 0.0460¼ 14.12 (chi-squared without the correction

for continuity) divided by 307 (the sample size). The phi coefficient is thusffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0460

p ¼ 0:214. This association appears low compared with the simple arith-

metic difference in pass rates (25.4 percentage points). It also seems lower than the

relative risk for pass rates of 0.68 (well below 80%) and the odds ratio of 0.30.

No one of these measures is right in any absolute sense; they measure different

aspects of the data.

Tau B is another measure of association between attributes on two sides of a

contingency table, being one of a number of so-called “error reduction” measures.

It is defined as the percentage reduction in the expected number of errors in

classification into categories on one side of the contingency table that results

from knowing the classification on the other side. For example, in Section 1.5.2,

Bail and Bench Warrants, if the correlation between the previous issuance of a

warrant and the current issuance of a warrant were perfect, knowledge of prior

issuance would reduce classification errors to zero, since we would know perfectly

from the issuance which defendants would fail to appear. Conversely, if prior

issuance were unrelated to the need for a current warrant, knowledge of prior

224 6 Comparing Multiple Proportions

http://dx.doi.org/10.1007/978-1-4419-5985-0_1#Sec21
http://dx.doi.org/10.1007/978-1-4419-5985-0_1#Sec16
http://dx.doi.org/10.1007/978-1-4419-5985-0_5#Sec3


issuance would not help us at all and there would be no reduction in classification

errors. In the more usual middle case, the computation proceeds as follows.

First, calculate the expected number of errors that would occur if we randomly

allocated the 293 defendants into a group of 146 who currently failed to appear and

147 who appeared.3 Since 147/293¼0.502 of the defendants appeared, we would

expect this fraction of the 146 allocated to the nonappearance category to be

incorrectly placed (73.25). Likewise, we would expect 146/293¼ 0.498 of the

defendants allocated to the appearance group to be incorrectly placed (73.25).

(These numbers are always equal.) Thus, random placement would yield a total

of 146.5 errors.

Next, calculate the number of errors that would be expected if we knew whether

each defendant had a bench warrant previously issued. By this logic, we expect

that, of the 54 cases allocated to the non-appearance/prior warrant cell, 23/77 of

them, or 16.13 cases, would be misallocated because they would appear. An equal

number of misallocations (16.13 cases) would be made with respect to the appear-

ance/prior warrant cell. The corresponding error figures for the defendants for

whom no bench warrant had been previously issued are each 52.81. Therefore, by

knowing whether a defendant had a bench warrant previously issued, we have

reduced the expected number of errors to 16.13 + 16.13 + 52.81 + 52.81¼ 137.88.

The τB statistic is defined as the percentage decrease in the expected number of

classification errors due to knowledge of the conditioning factor. In our example

this is (146.50� 137.88)/146.50¼ 0.059, or 5.9%. By this measure, the reduction in

errors does not appear substantial.

For ease of computation for 2� 2 tables, τB may be obtained from the formula,

referring to the schematic table in Section 5.2 at p. 167:

τB ¼ 1� N � abcd

m1m2m3m4

a�1 þ b�1 þ c�1 þ d�1
� �

See generally Blalock at 232–34. This can be shown to be identical to phi-squared.

For more general r� c tables with cell proportions denoted by pij, the formula

becomes

τB ¼
X
i

X
j

pi j � pi� p� j

� �2
p� j

,
1�

X
j

p2� j

 !
;

where pi • is the marginal proportion in the ith row (the conditioning factor) and p• j is
the marginal proportion in the jth column.

3 These numbers are not reflective of the rate at which bench warrants were issued, but rather of the

sampling design of the retrospective study. The τB measure (like the odds ratio) yields the same

result for retrospective and prospective data in 2� 2 tables, but (unlike the odds ratio) not in larger

tables.
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Further Reading

Goodman & Kruskal, Measures of Association for Cross-Classifications (1979).

6.3.1 Preventive detention

The Comprehensive Crime Control Act of 1984 authorizes denial of bail to

defendants who pose a danger to “the safety of any other person and the community.”

18 U.S.C. }3142(e) (1999). Among the factors that the judicial officer “shall take into

account” in denying bail are “the history and characteristics of the person, including

his character, physical and mental condition, family ties, employment, financial

resources, length of residence in the community, community ties, past conduct,

history relating to drug or alcohol abuse, criminal history, and record concerning

appearances at court hearings,” as well as “the nature and seriousness of the danger to

any person or the community that would be posed by the person’s release.”

A study of 1,500 defendants on pre-trial release in New York State found that

four factors distinguished defendants who were rearrested before trial, or who failed

to appear at trial, from those who “succeeded” on bail or personal recognizance.

The factors were: (1) number of prior violent felony arrests within the previous

5 years; (2) number of non-felony arrests in same period; (3) months in present

employment; and (4) years of education. Defendants were classified into low,

medium and high risk groups based on these factors. The results were shown in

Table 6.3.1.

Questions

1. Compute and interpret τB for these data using the “A or B” column for the

outcome.

2. What is the bearing, if any, of the result on the constitutionality of the federal

preventive detention statute?

Source

Monahan & Walker, Social Science in Law 171–72 (8th ed. 2014), reprinting data

from Center for Governmental Research, Final Report: An Empirical and Policy
Examination of the Future of Pretrial Release Services in New York State (1983).

Table 6.3.1. Defendants’ failure to appear and/or rearrest by risk level

Failure rates (%)

Risk level Percent of defendants Failed to appear (A) Rearrested (B) A or B

Low 61 7 12 18

Medium 20 11 16 28

High 19 16 28 37

Total 100 10 15 24
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Notes

The U.S. Supreme Court upheld the constitutionality of the preventive detention

statute in U.S. v. Salerno. 481 U.S. 739 (1987). Writing for the majority, Chief

Justice Rehnquist held that (i) there was no violation of substantive due process

because the incarceration was not punitive, and (ii) there was no unconstitutional

denial of bail because the Bail Clause does not prohibit a complete denial of bail.

The present statute is not the first preventive detention law. Under a 1970

District of Columbia law, any defendant charged with a “dangerous” or “violent”

crime could be held for a pre-trial detention hearing at which a judicial officer

would determine whether the defendant could be released without danger to the

community; if not, he could be detained for up to 60 days. With this act as a

framework, a team of Harvard law students studied pre-trial crimes committed by

defendants arrested in Boston. Of 427 defendants who would have been eligible for

preventive detention under the D.C. law, 62 (14.5%) were rearrested; of these,

33 (7.7%) were arrested for “violent” or “dangerous” crimes, and 22 (5.2%) were

convicted of such crimes.

To determine how well these crimes could have been predicted on the basis of

factors specified in the statute, investigators collected 26 items of personal data for

each defendant to give substance to the general criteria of the statute. They

constructed two “dangerousness scales” for each defendant, the first by combining

the scores for each factor and weighting the individual items intuitively, the second

by weighting each factor by weights designed to maximize predictive power of the

sum. In each scale, the higher the score, the greater the probability of recidivism

(in the sense of being convicted for an offense while on bail).

The results under both scales showed that whatever the cutoff point, more

nonrecidivists would be detained than recidivists. In the intuitive scale, at the

“best” cutoff point (30), some 70 (16.4%) of the sample defendants would be

detained, of whom 18 would be recidivists and 52 would not.

The second method used linear discriminant analysis, an objective method by

which a computer assigns weights to the different factors to optimize the associa-

tion between scores and recidivism. The method is similar to the least squares

estimation of multiple regression. See Section 13.2. The scores ranged from 52.13

to 13.5. However, even with optimal weighting, the best cutoff included more

nonrecidivists than recidivists. At a 35 cutoff, a total of 63 (14.8%) defendants

would have been detained; of these only 26 were recidivists. See Note, Preventive
Detention: An Empirical Analysis, 6 Harv. Civ. Rights–Civ. Lib. L. Rev.

289 (1971).

A method of statistical prediction with important substantive consequences had

been used in connection with federal parole. (Federal parole and the United States

Parole Commission were abolished in 1986 by the Comprehensive Crime Control

Act of 1984.) Under 18 U.S.C. 4206(d) (1982), a prisoner could not be released if

there was a “reasonable probability” that he would commit any crime. To assess

that probability, the U.S. Parole Commission adopted a statistical measure called a

Salient Factor Score, which categorized inmates eligible for parole consideration on
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predictive factors. Various sets of such factors were tried from time to time. The set

last used had seven factors: prior convictions; prior commitments; age at current

offense; commitment within 3 years of current offense; probation, parole, confine-

ment, or escape status at time of current offense; and history of heroin/opiate

dependence. For each group of scores a guideline period of incarceration was

specified, depending on the severity of the offense (grouped in eight categories).

Departures from the guidelines were permitted, but reasons had to be given.

The accuracy of the Salient Factor Score was not impressive. A 1982 study

indicated that the highest risk group (lowest Salient Factor Scores) had a failure rate

of only 49%, while the lowest risk group (highest Salient Factor Scores) still had a

failure rate of 12%.4

Clinical and statistical predictions of future violence have been offered in

sentencing proceedings involving capital punishment. In an important case, the

American Psychiatric Association informed the Supreme Court, in an amicus brief,

that “the unreliability of psychiatric predictions of long-term future dangerousness

is by now an established fact within the profession.” The APA’s best estimate was

that two out of three predictions of long-term future violence made by psychiatrists

were wrong. The Court accepted this estimate, but held that the opinion of a

psychiatrist (who had not examined the defendant) that the defendant would

commit a future violent act was nevertheless admissible in a death sentencing

proceeding, on the ground that cross-examination would ferret out its weaknesses.

Barefoot v. Estelle, 463 U.S. 880 (1983).

In State v. Davis, 96N.J. 611, 477 A.2d 308 (1984), defendant at a penalty trial,

after a plea of guilty to murder, offered to prove by statistical data through an expert

sociologist (who had never met or evaluated him) that based on “demographic

features” the probability of recidivism should he be released at age 57 (after a

30-year sentence) would be extremely low. The principal demographic facts were

the low rates of criminality among white males aged 57 and among first-degree

murderers. Based on these factors, the expert opined that “Mr. Davis would never

again commit another serious crime of any kind.”

The trial court refused to allow this testimony, but on appeal the Supreme Court

of New Jersey reversed, citing studies showing that age was a strong predictor of

4 Several courts suggested that strict adherence to the Parole Commission guidelines would violate

a constitutional or statutory requirement of individualized determination. See, e.g., Geraghty
v. United States Parole Comm’n, 579 F.2d 238, 259–63 (3rd Cir. 1978), rev’d on other grounds,

445 U.S. 388 (1980); United States v. Cruz, 544 F.2d 1162, 1164 (2d Cir. 1976); United States
v. Norcome, 375 F. Supp. 270, 274, n.3 (D.C.), aff’d, 497 F.2d 686 (D.C. Cir. 1974). These courts
rejected only exclusive reliance on the guidelines; as one court put it, the guidelines could be used

“as a tool but not as a rule.” Page v. United States, 428 F. Supp. 1007, 1009 (S.D. Fla. 1977). But

other courts held that there was no inconsistency between individualized sentencing and strict

adherence to parole guidelines, because each defendant was individually evaluated to obtain the

guideline score. See, e.g., Daniels v. United States Parole Comm’n, 415 F. Supp. 990 (W.D. Okla.

1976). But see United States v. Booker, 543 U.S. 220 (2005) in which the Court held that the

federal statute making the Federal Sentencing Guidelines mandatory violated the Sixth Amend-

ment guarantee of trial by jury.
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future criminal behavior, and that “clinical” predictions by psychiatrists and

psychologists of future violence were accurate in no more than one case in three.

The court concluded that the evidence “generally satisfied broad standards of

relevancy” and was therefore admissible as a mitigating factor. The court also

held that the competency of the evidence was to be determined “without strict

adherence to the standards governing competency of expert testimony otherwise

applicable in the guilt phase of a criminal case.”

For a general discussion of the legal status of individualized (“clinical”) versus

statistical prediction, and some of the dilemmas inherent in this sort of prediction,

see Underwood, Law and the Crystal Ball: Predicting Behavior with Statistical
Inference and Individualized Judgment, 88 Yale L.J. 1408 (1979).
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Comparing Means 7

7.1 Student’s t-test: Hypothesis testing
and confidence intervals

We have seen that a hypothesis test concerning the mean of a normal population can

be carried out by standardizing the sample mean, i.e., by subtracting the population

mean specified by the null hypothesis and dividing by the standard error of the

mean, σ=
ffiffiffi
n

p
. The resulting statistic is a z-score, and may be referred to the standard

normal distribution for tail area probabilities. In large samples we have also used a

consistent estimate for σ when it is unknown. For example, in the two-sample

binomial problem, the unknown standard error of the difference between

proportions under the null hypothesis p1¼ p2, p 1� pð Þ n�1
1 þ n�1

2

� �	 
1=2
, is

estimated by

p̂ 1� p̂ð Þ n�1
1 þ n�1

2

� �	 
1=2
;

where p̂ is the pooled proportion p̂ ¼ n1 p̂ 1 þ n2 p̂ 2ð Þ= n1 þ n2ð Þ. Use of the

standard normal distribution in this case is justified as an approximation in large

samples by the central limit theorem.

When the standard error of the mean is unknown in normal populations, and the

sample size is small to moderate, say, less than 30, then estimation of the standard

error introduces additional and nonnegligible variability in the test statistic’s

sampling distribution. In 1908, in a paper entitled “The Probable Error of a

Mean,” written under the pen name of Student while employed at the Guinness

brewery in Dublin, William Sealy Gosset (1876–1937) correctly guessed the

mathematical form of the sampling distribution for the statistic,

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_7
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t ¼ X � μ

s=
ffiffiffi
n

p :

Here X is the sample mean of n observations from a normal population with mean

μ and variance σ2, and s2 ¼ n� 1ð Þ�1
X

Xi � X
� �2

is the usual unbiased estimate

of σ2. Student checked his work with one of the earliest examples of the Monte

Carlo method; he was later proved correct by R.A. Fisher. The test statistic and its

distribution now bear Student’s name in his honor.

The Student t-distribution depends on the sample size through the degrees of

freedom parameter, which equals n� 1 for a single sample of size n. One degree of
freedom is lost because, in estimating the standard deviation, one parameter, μ, has
to be estimated (by X). More generally, the degrees-of-freedom parameter is the

total sample size decreased by the number of mean (or regression) parameters that

must be estimated before one can calculate a sum of squares for the standard error.

For small degrees of freedom, the distribution’s relative frequency function looks

similar to the bell-shaped normal curve except that it has heavier tails, reflecting the

greater uncertainty introduced by the estimation of σ. As the sample size grows, the

distribution approaches the normal distribution: technically, the normal distribution

is a t-distribution with infinite degrees of freedom, although for n in excess of 30 the
t-distribution is practically indistinguishable from the standard normal. A table of

percentiles for Student’s t-distribution appears in Appendix II, Table E. Notice how
the values exceed those of the normal distribution for small degrees of freedom, and

how they approach the normal percentiles as the degrees of freedom increase.

Hypothesis testing: paired samples

An important application of the single sample t-test is to assess the significance of

the difference between the means of two paired variables (the “paired t-test”). For

example, in a matched-pairs study (a “buddy study”) female employees are paired

one-to-one with male employees who most closely match them in terms of several

potentially confounding factors. Then the difference, di between the female and

male employees’ salary in the ith pair is obtained, and the sample mean d and

sample variance s2 of the differences calculated. Under the null hypothesis of no

salary differences between paired employees, the test statistic t ¼ d= s=
ffiffiffi
n

pð Þ is

referred to Student’s t-distribution on n� 1 degrees of freedom. The differences are

assumed to be normally distributed, although mild to moderate departures from

normality do not seriously affect accuracy here.

If the data are seriously non-normal, various strategies are possible to achieve

accuracy. If the distribution has fat tails, a normalizing transformation can some-

times be found (e.g., a logarithmic, or a “power” transformation, such as the square

root, cube root, or reciprocal). These transformations improve the approximation by

symmetrizing and thinning the tails through de-emphasis of extreme values. On

transformations, see generally Section 13.9. If the data are still of questionable

normality, a nonparametric method should be used. See Chapter 12.
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Hypothesis testing: independent samples

To compare two independent samples, the two-sample t-test is used. Assuming a

sample of size n1 from a normal population with mean μ1 and variance σ2, and an

independent sample from another normal population with mean μ2 and the same

variance σ2, the test statistic

t ¼ X1 � X2

� �� μ1 � μ2ð Þ
s p n�1

1 þ n�1
2

� �1=2
has a Student t-distribution on n1 + n2� 2 degrees of freedom. Here s2p is the pooled
estimate of the common variance σ2,

s2p ¼
X

sample 1

Xi � X1

� �2 þ X
sample 2

Xi � X2

� �2 !�
n1 þ n2 � 2ð Þ:

Thus, to test the null hypothesis H0: μ1¼ μ2, we use the test statistic

t ¼ X1 � X2

s p n�1
1 þ n�1

2

� �1=2
and reject H0 if |t|� tν,α¼ two-tailed 100α% critical value for Student’s t-distribu-
tion with ν¼ n1 + n2� 2 degrees of freedom.

When the assumption of equal variance in the two populations is untenable, the

required distributions cannot be specified without knowledge of the variance ratio, a

difficulty known as the Behrens-Fisher problem. While there is no convenient exact

solution, there is a simple approximate solution known as the Satterthwaite approx-

imation. The test statistic used is

t ¼ X1 � X2

� �� μ1 � μ2ð Þ
s21=n1 þ s22=n2
� �1=2

where s21 and s
2
2 are unbiased estimates of the respective population variances σ21 and

σ22, no longer assumed equal. While this statistic is not precisely distributed as a

Student t-variable, it is closely approximated by a Student t-distribution with

degrees of freedom estimated by

s21=n1 þ s22=n2
� �2

s21=n1
� �2

= n1 � 1ð Þ þ s22=n2
� �2

= n2 � 1ð Þ
Critical values for fractional degrees of freedom are obtained by interpolation in

Table E of Appendix II.
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Confidence intervals for means

Student’s t-distribution is also used to construct confidence intervals for a popula-

tion mean, or difference of means. Analogous to normal-theory confidence intervals

(see Section 5.3), a two-sided 95% confidence interval for the mean μ, given a

sample of size n, is

X � tν, 0:05s=
ffiffiffi
n

p 	 μ 	 X þ tν, 0:05s=
ffiffiffi
n

p
;

where tν,0.05 is the two-tailed 5% critical value for Student’s twith ν¼ n� 1 degrees

of freedom (cutting off 2.5% probability in the upper tail). For the difference in

means, the 95% confidence interval is

X1 � X2 
 tν, 0:05s p n�1
1 þ n�1

2

� �1=2
;

where now ν¼ n1 + n2� 2 degrees of freedom. Note that only two changes to the

normal-theory confidence intervals are needed: σ is replaced by s or sp, and the

normal critical values are replaced by those from the t-distribution.

t for 2� 2

Student’s t, or something analogous to it, was not needed in our discussion of tests

for single-sample binomial problems because in the binomial case the variance

σ2¼ npq is completely determined once a hypothesis about the mean μ¼ np is

specified. Thus, there is no need to account for additional variability in an indepen-

dent estimator for σ2. In the two-sample binomial case, the variance of the difference

in proportions is unknown, being pq n�1
1 þ n�1

2

� �
, where p is the unknown value of

p1 and p2, assumed equal in the two populations sampled. When we use an estimator

for this variance, why don’t we use Student’s t-distribution? An obvious answer is

that Student’s t assumes normal distributions, not binomial distributions, so that

Student’s t does not bring us toward any exact solution for small sample sizes. A

more subtle reason follows from the fact that the variance of the two-sample

binomial z-score (see Section 5.2 at p. 167) is not inflated when pq is estimated

from the marginal data, so that there is no reason to use the t-distribution.1 If one
were to use the two-sample t-statistic in this problem, estimating the variance by s2p
as above, the t-distribution approximation to the exact distribution of twould tend to
be not as good as the normal approximation to the exact distribution of the z-score.
Of course, for truly exact distribution theory and computation in the two-sample

binomial problem, we may use the hypergeometric or two-sample (bivariate)

binomial distribution, thereby dispensing with approximating distributions.

1 This is because for fixed marginal rate, p̂ , z is a standardized hypergeometric variable with

zero mean, E z
�� p̂	 
 ¼ 0], and unit variance, Var z

�� p̂� � ¼ 1. The identity Var zð Þ ¼ E Var z
�� p̂� �þ

Var E z
�� p̂	 


then shows that Var(z)¼ 1 also unconditionally.
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Hypothesis testing and confidence intervals: The correlation coefficient

To test the null hypothesis that ρ¼ 0, we use the statistic

t ¼ r � n� 2

1� r2

� �1=2

;

where r is a sample correlation coefficient, which has a t-distribution with n� 2

degrees of freedom (assuming that one variable is a linear function of the other plus

a normal error). In the dangerous eggs data (Section 1.4.1), since r¼ 0.426,

t¼ 0.426�[38/(1� 0.4262)]1/2¼ 2.903 with 38 df, which is highly significant

( p< 0.01, two tails).

To compute a confidence interval for ρ it is necessary to transform r into a

statistic z that is approximately normally distributed for any value of ρ. On the

assumption that the variables have a joint bivariate normal distribution, the required

transformation, due to R.A. Fisher, is given by

z ¼ 1

2
ln

1þ r

1� r

� �
;

with approximate expected value E(z)¼ (1/2)�ln[(1 + ρ)/(1� ρ)], and variance

Var(z)¼ 1/(n� 3), where n is the sample size. This leads to the following 95%

confidence interval for E(z):

z� 1:96

n� 3ð Þ1=2
	 E zð Þ 	 zþ 1:96

n� 3ð Þ1=2
:

To obtain confidence limits for ρ itself, invert the transform using

r ¼ e2z � 1

e2z þ 1
:

In the dangerous eggs data, z¼ (1/2)ln[(1 + 0.426)/(1� 0.426)]¼ 0.455. The confi-

dence interval is 0:455
 1:96=
ffiffiffiffiffi
37

p
, leading to an upper limit of 0.777 and a lower

limit of 0.133. Inverting these values, we have 0.132	 ρ	 0.651.

7.1.1 Automobile emissions and the Clean Air Act revisited

The federal Clean Air Act requires that before a new fuel or fuel additive is sold in

the United States, the producer must demonstrate that the emission products

generated will not cause a vehicle to fail to achieve compliance with certified

emission standards. To estimate the difference in emission levels, the EPA requires,

among other tests, a Paired-Difference Test in which a sample of cars is first driven

with the standard fuel, and then with the new fuel and the emission levels compared.

EPA then constructs a 90% confidence interval for the average difference; if the
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interval includes 0 the new fuel is eligible for a waiver (but it must pass other tests

as well; see Section 5.4.3 for a further description).

The data in Table 7.1.1 show the nitrous oxide emissions for sixteen cars driven

first with a standard fuel, and then with Petrocoal, a gasoline with a methanol

additive.

Questions

1. Compute a 90% confidence interval for the average difference in emissions

using the t-distribution. Does Petrocoal pass this test?

2. Suppose the statistician ignored the fact that the data were in the form of

matched pairs, but instead treated them as two independent samples, one involv-

ing the standard fuel and the other involving Petrocoal. Would Petrocoal pass the

test? What is the reason for the difference in results? Do the data satisfy the

assumptions required for the two-sample t-test to be valid in this case?

Source

Motor Vehicle Mfrs. Ass’n of U.S. v. E.P.A., 768 F. 2d 385 (D.C. Cir. 1985);

Gastwirth, Statistical Reasoning in Law and Public Policy 612 (1988).

7.1.2 Voir dire of prospective trial jurors

In the California procedure for impaneling trial jurors, counsel and the judge

participate in questioning. In the federal procedure (also used in many states),

Table 7.1.1. Emission data for NOx

Base Fuel (B) Petrocoal (P) Difference (P-B) Sign

1.195 1.385 +0.190 +

1.185 1.230 +0.045 +

0.755 0.755 0.000 tie

0.715 0.775 +0.060 +

1.805 2.024 +0.219 +

1.807 1.792 –0.015 –

2.207 2.387 +0.180 +

0.301 0.532 +0.231 +

0.687 0.875 +0.188 +

0.498 0.541 +0.043 +

1.843 2.186 +0.343 +

0.838 0.809 –0.029 –

0.720 0.900 +0.180 +

0.580 0.600 +0.020 +

0.630 0.720 +0.090 +

1.440 1.040 –0.400 –

Average 1.075 1.159 0.0841

St. Dev. 0.5796 0.6134 0.1672
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the judge does so alone, although counsel may suggest questions. Presumably, the

federal method is faster, but by how much? In a 1969 test of the two methods

conducted with California state judges, the usual California procedure was followed

for a 2-month period and the federal procedure was followed for cases assigned to

the same judges in the following 2-month period. Records of impaneling times were

kept. Excerpts from the data are shown in Table 7.1.2.

Questions

1. Use a t-test to assess the statistical significance of the difference in impaneling

times and to construct a confidence interval for the mean difference.

2. Do the data appear normally distributed?

3. Repeat the test after making a reciprocal transformation of the data to improve

normality. What conclusion do you reach?

Source

William H. Levit, Report on Test of Federal and State Methods of Jury Selection
(Letter to Chief Justice Roger J. Traynor dated October 15, 1969).

Table 7.1.2. Test judges’ voir dire impaneling times

Minutes to impanel jury

Judge State Federal

A 290 120

B 80 60

C 96 177

D 132 105

E 195 103

F 115 109

G 35 65

H 135 29

I 47 45

J 80 80

K 75 40

L 72 33

M 130 110

N 73 40

O 75 45

P 25 74

Q 270 170

R 65 89
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7.1.3 Ballot position

A New York State law provided that in a particular primary in New York City

incumbents be listed first on the ballot. Previously, position had been determined

by lot. A non-incumbent facing an incumbent challenged the law, introducing a

study of 224 two-candidate races in New York City in which position had been

determined by lot. The study showed that: (i) in races in which incumbents

appeared first on the ballot, they received an average 64.3% of the vote; (ii) in

races in which incumbents appeared second on the ballot they received an average

of 59.3% of the vote; and (iii) in races in which neither candidate was an incumbent,

the average percentage of votes received by the candidate in first position was

57.6%. Of the 224 races included in the study, there were 72 two-candidate races in

which no incumbent ran. In the 152 races in which incumbents ran, they appeared in

second position on the ballot 31 times. The sample variance of the incumbent’s

percentage of the vote in those races in which they were first on the ballot was

148.19; the sample variance in those races in which they appeared in second

position was 177.82.

Questions

1. Do these data show a statistically significant advantage for the first position on

the ballot?

2. Is there an explanation other than ballot position?

Source

In re Holtzman v. Power, 62 Misc.2d 1020, 313N.Y.S.2d 904 (Sup. Ct.), aff’d,
34 A.D.2d 779, 311N.Y.S.2d 37 (1st Dep’t), aff’d, 27N.Y.2d 628, 313N.Y.S.2d

760 (1970).

7.1.4 Backdating stock options

A company issuing stock options to its executives usually sets the exercise price of

the options based on the price of its stock on the date of issuance. Backdating of

stock options occurs when a company, after a rise in its stock, backdates the options

to put in a lower exercise price, thus building in a profit for the executive. The

Louisiana Municipal Police Employees’ Retirement System (LAMPERS) was a

stockholder of Countrywide Financial Corporation since June 2007. Suspecting that

such backdating had occurred, LAMPERS brought suit in a Delaware court to

compel Countrywide to make available its records relating to stock options. Dela-

ware law provides that to obtain non-public corporate records a stockholder must

produce “some evidence” of corporate waste or mismanagement, e.g., here,

backdating. To carry its burden, LAMPERS retained Richard Goldberg, an
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economist, to do a statistical study of option prices. Goldberg’s hypothesis was that

if, in fact, a company is backdating its option grants, then one would expect to see a

spike in the company’s stock price in the trading period immediately following the

option grant date that exceeds the anticipated increase for a randomly selected

period. In one of his studies, Goldberg calculated the average log-price change in

the average of the high and low share prices in the 15 trading days after the grant

date for seven option grants in the period 1997–2002. A selection of his data is

shown in the Table 7.1.4. He then compared that return to the average of the same

return for all 15-trading day periods over the same 6-year period. (He used non-

overlapping periods and excluded any period that overlapped with a 15-trading day

period after grant dates; there were about 85 such periods.) He calculated this return

to be 0.6%.

Questions

1. Compute the sample mean and standard deviation for the % log-price change in

these data.

2. Compute a 95% confidence interval for mean % log-price change. What statisti-

cal and legal conclusions do you reach?

3. Goldberg excluded from his study four option grants that were prescheduled as

to both date and number of shares. Was this correct? An expert for the company

calculated that there was no statistically significant difference between the

average return for the prescheduled four option grants and the return for the

seven option grants. Does that vitiate Goldberg’s conclusions?

Source

Louisiana Municipal Police Employees’ Retirement System v. Countrywide Finan-
cial Corporation, 2007 WL 2896540 (Del. Ch. Oct. 2, 2007), order clarified, 2007

WL 4373116 (Del. Ch. Dec. 6, 2007). We are indebted to Fang Ji, then a student at

Columbia Law School, for a paper that called our attention to this case.

Table 7.1.4 Stock option grants and price changes

Option Grant date

Avg HiLo $

On Grant date

Avg HiLo $

15 days later

% Ln Price

Changea

12/27/1999 25.16 26.66 5.8

2/28/2000 24.75 28.34 13.6

3/9/2000 23.34 26.94 14.3

6/28/2000 32.03 35.59 10.5

5/31/2001 38.40 43.40 12.2

2/12/2002 38.49 44.03 13.4

3/19/2002 43.56 46.35 6.2
aThe percent log price change is the difference between the log prices at the two times multiplied

by 100; it is slightly less than the arithmetic percentage change
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7.1.5 Bullet lead identification

In crimes involving shootings, bullets may be recovered from the crime scene and

unexpended cartridges found in the possession of a suspect. Did they come from the

same source? The method of choice for making this determination was a composi-

tional analysis of trace elements in the lead, comparing the crime scene and

suspect’s bullets. The FBI used seven elements for this purpose: antimony, arsenic,

bismuth, cadmium, copper, silver, and tin. If the concentrations of all seven

elements were close enough to be within measurement error, the FBI expert

would declare that the bullets were “analytically indistinguishable” (for which we

use the shorthand “match”), which was taken as evidence that the bullets came from

the same melt of lead. That was seen as some evidence that both bullets were

purchased by the suspect.

For each element in each bullet, the Bureau took three replicate measurements,

averaged them, and then calculated a standard deviation of the three measurements

(not the standard error of the average measurement). It then constructed a confi-

dence interval of two standard deviations on either side of the average measure-

ment. If the confidence intervals for the crime scene and suspect’s bullets

overlapped to any extent for all seven elements, the bullets were declared to

match. Because the standard deviations for the measurements of two bullets tended

to be the same for the same element, differences of up to four standard deviations

between measurements effectively were allowed for a match. However, this is not a

standard way to define a match window in statistical science. The standard way

would be to compute a confidence interval for the difference between the averaged

measurements in the two bullets and if those intervals included zero for all seven

elements, a match would be declared.

Questions

1. If the variance of a single measurement is σ2: (i) What is the variance of the

average of the three replicate measurements? (ii) What is the variance of the

difference between the two average measurements? (iii) What is the standard

error of the difference?

2. If it is desired to have the usual 5% test of statistical significance applied as a

criterion for the test was a whole, what level of statistical significance should be

used for each element?

3. A 95% two-sided confidence interval around the observed difference would be

about how many standard errors? [Hint: use a t-test with 4 df; do you see why?]

Is this larger or smaller than the Bureau’s four standard deviation test?

4. Which is more serious in this context, Type I or Type II error?

Source

Finkelstein & Levin, 13 J. Law and Public Policy 119 (2005).
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Notes

Critics of the FBI’s methods and testimony claimed that the Bureau’s methods

produced too many false positives (i.e. declaring a match when the bullets were

from different melts). To meet such criticism the Bureau conducted a study using

archive data from 23,000 bullets that were collected over 14 years. It winnowed out

some 1,837 bullets that it felt reasonably confident came from different melts.

Applying its criterion to all possible pairs of bullets it found that false positive

matches were quite rare—in less than 1 out of 2,433 pairs. However, in United
States v. Mikos, 2003 WL 22922197 (N.D. Ill. 2003), the court rejected the study

and excluded the expert’s proffered opinion that the bullets probably came from the

same melt because the FBI’s sample was not randomly selected. The Bureau then

discontinued making such analyses.

7.2 Analysis of variance for comparing several means

We can apply the notion of analysis of variance to compare several means. Suppose

there are k samples of data drawn having sample sizes ni, sample means Yi and

sample variances s2i , for i¼ 1,. . .k. We wish to test the hypothesis that the true mean

μi is the same in each group, H0 : μ1 ¼ μ2 ¼ . . . ¼ μk, against the alternative

hypothesis that at least two means differ. In addition to the overall test of signifi-

cance, we wish to make multiple post-hoc comparisons between means, e.g., to

compare mean Yi with mean Y j for various pairs. As in Section 6.2, the task is to

limit the probability of making one or more Type I errors to a given level α. A
closely related problem is to provide simultaneous confidence statements such as

“μi lies in the interval Yi 
 li ” or “the difference μi� μj lies in the interval

Yi � Yi j 
 li j.” The limits li and lij must be chosen so that for the many such

statements possible, there is a probability of at least 1� α that each interval contains
its respective parameter; i.e., that the total probability that one or more intervals will

fail to contain its parameter is no more than α. We consider each of these inferential

problems in the simplest case of the so-called “one-way layout,” in which there is

no special recognition of structure among the group categories (such as crossing or

nesting of categories). More complicated designs are commonly used in experi-

mental settings but these appear less often in observational settings most often

encountered in legal disputes.

Let the jth observation in the ith sample be denoted by Yij ( j¼ 1,. . ., ni) and let

the grand mean be denoted by Y ¼
X

i

X
j
Yi j=N, where N¼ n1 + n2 + . . .+ nk is

the total sample size. The analysis of variance states that the total sum of squares

SStot ¼
Xk
i¼1

Xni
j¼1

Yi j � Y
� �2

is equal to the sum of two components, the “between-group” sum of squares,
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SSb ¼
Xk
i¼1

ni Yi � Y
� �2

and the “within-group” sum of squares,

SSw ¼
Xk
i¼1

Xni
j¼1

Yi j � Yi

� �2 ¼Xk
i¼1

ni � 1ð Þs2i :

The between-group sum of squares, SSb, is a weighted sum of squared deviations of

each group’s sample mean about the grand mean, and is a measure of how much the

sample means differ from one another. The within-group sum of squares, SSw, is a
measure of inherent variability in the data. Assuming a constant variance σ2 in each
group, the expected value of SSw is equal to N � kð Þσ2. Thus, an unbiased estimate

of σ2 is given by the within-group mean square, MSw¼ SSw/(N� k).
Under the null hypothesis of equal means, the differences between the sample

means Yi also reflect only inherent variability, and the expected value of SSb can be

proven equal to k � 1ð Þσ2, so that the between-groupmean squareMSb¼ SSb/(k� 1)

is a second unbiased estimate of σ2, but only under H0. Under the alternative

hypothesis, SSb reflects systematic group differences as well as inherent variability,

and in that case MSb tends to be larger than MSw, with expected value that can be

shown equal to

E MSbð Þ ¼ σ2 þ
X
i

ni μi � μð Þ2
k � 1

;

where μ ¼
X

i
niμi=N is the sample-weighted average of true group means. Thus,

an index of inequality between group means is given by the variance ratio, or

F-statistic

F ¼ MSb
MSw

¼ SSb= k � 1ð Þ
SSw= N � kð Þ :

Assuming the data are normally distributed, the F-statistic has an F-distribution
with k� 1 and N� k degrees of freedom under H0. The F-distribution is defined in

general as the distribution of two independent chi-squared random variables, each

divided by its respective degrees of freedom.2 Departures from H0 in any direction

(or directions) will causeMSb to tend to exceedMSw, and thus the null hypothesis is
rejected for large values of F. Percentage points for the F-statistic are provided in

Table F of Appendix II.

2 An F variate with df1 and df2 degrees of freedom has mean df2/(df2 – 1) and variance

2 � d f 22 � d f 1 þ d f 2 � 2ð Þ=½d f 1 � d f 2 � 2ð Þ2 � d f 2 � 4ð Þ�.
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For example, suppose one is comparing scores on a proficiency test among four

ethnic groups in a disparate impact case. Assume that the sufficient statistics, which

summarize the relevant information, are as follows:

Ethnic group Sample size Group mean Sample variance St. dev.

Black 50 75.2 225.0 15.0

Hispanic 35 70.3 289.0 17.0

Asian 20 78.8 324.0 18.0

Other 50 84.9 256.0 16.0

N¼ 155 Y ¼ 77:68

The following display, called the ANOVA table, summarizes the results of the

breakdown in sums of squares and the overall test of significance:

Source of

variation

Sum of

squares df

Mean

square Expected mean square F¼MSb/MSw

Between

groups

4,845.27 3 1,615.09 σ2 þ
X

i
ni μi � μð Þ2=3 6.16

Within groups 39,551.00 151 261.93 σ2

Total 44,396.27 154

Since the 0.005 critical value for F on 3 and 151 degrees of freedom is less than

the critical value for F on 3 and 120 degrees of freedom, which is 4.50 (see the third

Table F in Appendix II), the differences among means is significant at the 0.005

level.

Which among the several groups differ significantly? The answer depends in

part on how many comparisons one wishes to address. In the example above, if the

Other category represented unprotected non-minorities, and only the three

comparisons of the minority groups with Other were relevant, then Bonferroni’s

adjustment (see Section 6.2) may be used: any of the three two-sample Student

t-tests that are significant at the α/3 level will be taken as evidence of a significant

difference between groups. For example, if α¼ 0.01, then the t-test comparing

Black to Other is 3.13 with 98 df: comparing Hispanic to Other, t is 4.04 with 83 df:
and comparing Asian to Other, t is 1.39 with 68 df. From Table E, the critical value

for t at the 0.01/3 level is about 3.09 on 60 df, and slightly smaller for larger dfs.

Thus, two of the three comparisons are significant at the 0.01 level, adjusting for

three planned comparisons.

Scheffé’s method

Frequently, there are unanticipated “interesting” comparisons suggested by the

data. The number of such possible post-hoc inferences grows rapidly with the

number of groups. In the example, it might be of interest to see whether any

significant differences exist among the minority groups; or to compare the Other

group with an average of the three minority groups; or to compare the average score

of Asian and Other with that of the Black group, or the Hispanic Group, or an

7.2 Analysis of variance for comparing several means 243

http://dx.doi.org/10.1007/978-1-4419-5985-0_BM1#Sec172
http://dx.doi.org/10.1007/978-1-4419-5985-0_6#Sec7
http://dx.doi.org/10.1007/978-1-4419-5985-0_BM1#Sec166
http://dx.doi.org/10.1007/978-1-4419-5985-0_BM1#Sec173


average of the two, etc. In fact, we might broaden our purview to include arbitrary

contrasts between means, that is, a comparison of an arbitrary weighted average of

one subset of means with that of another subset, even though there are infinitely

many such contrasts. Clearly, Bonferroni’s method cannot be used to adjust for all

of these.

It may be surprising, then, that there is a method of adjustment, known as

Scheffé’s method, that can be used to make simultaneous comparisons and confi-

dence statements even for a class of comparisons large enough to allow arbitrary

post-hoc contrasts. A key property of the method is that with probability 1� α, all
of the (possibly infinitely many) confidence intervals constructed from the data will

cover their respective true parameters. Another convenient feature is that, if the

overall F-test of the null hypothesis of equal means is significant, then there is some
contrast (although possibly not a simple pair-wise difference) that the Scheffé

method will find significant. Conversely, if the overall F-test is not significant,

then none of the contrasts will be found significant. Thus, the Scheffé method

allows us to ransack the data, examining any contrast of interest ad libidum.

The method is as follows. Consider an arbitrary contrast of the formδ ¼
X

i
ciμi,

where the coefficients c1,. . ., ck sum to zero. For example, the contrast δ¼ μi� μj
has coefficients ci¼ 1, cj¼�1, and the rest zero; or in the proficiency test example,

the contrast δ¼ (μ1 + μ2)/2� (μ3 + μ4)/2 has coefficients c1¼ c2¼ 1/2 and

c3¼ c4¼ –1/2. Any such contrast may be estimated by the sample version of the

contrast, δ̂ ¼
X

i
ciYi which has variance Var δ̂

� � ¼ σ2
X

i
c2i =ni that itself can be

estimated by Var δ̂
� � ¼ MSw

X
i
c2i =ni. Scheffé’s method, then, constructs the

intervals

δ̂ � D MSw �
Xk
i¼1

c2i =ni

 !1=2

< δ < δ̂ þ D MSw �
Xk
i¼1

c2i =ni

 !1=2

;

where the multiplier D is the square root of the quantity (k� 1) times the upper α
percentage point of the F-distribution with k� 1 and N� k degrees of freedom,

D¼ [(k� 1) �F k�l, N�k;α]
1/2. For example, to construct a 95% Scheffé interval for

the contrast δ¼ (μ1 + μ2)/2� (μ3 + μ4)/2 in the testing example, the sample contrast

is δ̂ ¼ 75:2 þ 70:3ð Þ=2 � 78:8 þ 84:9ð Þ=2 ¼ 72:75 � 81:85 ¼ � 9:10,
with variance estimated by

MSw �
X

i

1=4

ni
¼ 261:93 � 1

4
� 50�1 þ 35�1 þ 20�1 þ 50�1
� � ¼ 7:76;

and standard error
ffiffiffiffiffiffiffiffiffi
7:76

p ¼ 2:79. The multiplier is D¼ (3�F3,151;0.05)
1/2

¼ (3� 2.66)1/2¼ 2.82. The confidence interval is then
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�9:10� 2:82 � 2:79 < δ < �9:10 þ 2:82 � 2:79;
or�17.0< δ<�1.2. Since zero is excluded by this interval, the contrast is declared

significantly different from zero by the Scheffé criterion. The Scheffé confidence

intervals for each of the six possible pairwise differences in means may be

constructed similarly with the following result:

Contrast Estimate Standard error

Simultaneous 95%

confidence interval

Black–Hispanic 4.9 3.57 (–5.2, 15.01)

Black–Asian –3.6 4.28 (–15.7, 8.51)

Black–Other –9.7 3.24 (–18.8, –0.61)

Hispanic–Asian –8.5 4.54 (–21.3, 4.3)

Hispanic–Other –14.6 3.57 (–24.7, –4.51)

Asian–Other –6.1 4.28 (–18.2, 6.0)

Thus, there are significant differences in mean scores between the Black and

Other groups, and between the Hispanic and Other groups.

Note that the Scheffé method gives somewhat wider confidence intervals than

the corresponding intervals would be for the difference between two means using as

multiplier the critical value from Student’s t-distribution at the Bonferroni-adjusted
α/6 level. This is because of the wider class of confidence statements for which the

Scheffé method provides 95% coverage probability. In general, for a small number

of planned comparisons, Bonferroni’s method is preferable in the sense of yielding

narrower confidence intervals. For many comparisons, or for those suggested post

hoc, Scheffé’s method should be used.

The Bonferroni and Scheffé methods are the most common adjustments for

multiple comparisons and simultaneous confidence intervals for several means, but

there are many others that are discussed in the references below.

Further Reading

Miller, Simultaneous Statistical Inference (2d ed., 2011).

Scheffé, The Analysis of Variance (1999).

7.2.1 Fiddling debt collector

The ABC Debt Collection Company [not its real name] was in the business of

taking on consignment for collection large numbers of consumer receivables. Its

fees were a percentage of what it collected. Since the company had issued and sold

debentures to the public, it was required under the federal securities laws to make

periodic public reports of its income. At a point when collections were slow,

management adopted the accounting practice of assuming that 70% of the face

amount of the consigned receivables would be collected, and reported its fee

income on that basis. The Securities and Exchange Commission discovered and

challenged this practice. To justify it, the accountant for the company produced
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three allegedly random samples of receivables from three successive years.

According to the accountant, in each year he selected the samples by paging

through the list of receivables consigned during a year at least 3 years prior to the

time of examination and pointing at random to those he wanted. Company clerical

employees then brought the files of those selected and the accountant made the

computations, producing the data given below. The accountant did not keep lists of

the files he selected, but said that he trusted company employees to bring the files he

designated. He also said that no files were missing and that all had sufficient data to

permit him to determine what proportion of the face of the receivable was collected.

For each receivable the accountant stated that he computed a proportion collected,

and then averaged the proportions and computed their standard deviations.

The result was that the mean proportions collected for the three samples were

0.71, 0.70, and 0.69, respectively. The standard deviations were 0.3 in each sample.

The sample size was 40 in each case.

Based on the closeness of the means to 0.70, the accountant stated that he

believed he was justified in approving the company’s use of the 0.70 collection

figure.

Questions

Are the means of the three samples too close together to be consistent with their

alleged random selection from a large pool? To answer this question, compute an

F-statistic and determine a relevant probability from the F-table. To compute the

F-statistic make the following calculations.

1. Compute the within-sample (within-group) sum of squares, SSw. Compute the

within group mean square, MSw.

2. Compute the between-sample (between-group) sum of squares, SSb. Compute

the between-group mean square, MSb.

3. Using the above-results, compute the F-statistic.

4. What is the null hypothesis? What is a plausible alternative hypothesis? Given

the alternative hypothesis, which tail of the F-distribution (upper or lower) is

suggested as a rejection region for the null hypothesis?

5. What is the P-value of the F-statistic? [Hint: the probability below a given value

of an F-distribution with a and b degrees of freedom is the same as the upper-tail

probability starting from the reciprocal of the given value of an F-distribution
with b and a degrees of freedom, P[Fa,b< f]¼P[Fb, a> 1/f].]

Notes

The principal of ABC was subsequently convicted of fraud in connection with the

financial statements of the company, and the accountant confessed to having

participated in that fraud.
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Combining Evidence Across Independent
Strata 8

8.1 Mantel-Haenszel and Fisher methods
for combining the evidence

Quite often, a party seeking to show statistical significance combines data from

different sources to create larger numbers, and hence greater significance for a

given disparity. Conversely, a party seeking to avoid finding significance

disaggregates data insofar as possible. In a discrimination suit brought by female

faculty members of a medical school, plaintiffs aggregated faculty data over several

years, while the school based its statistics on separate departments and separate

years (combined, however, as discussed below).

The argument for disaggregation is that pooled data may be quite misleading.

A well known study showed that at the University of California at Berkeley female

applicants for graduate admissions were accepted at a lower rate than male

applicants. When the figures were broken down by department, however, it

appeared that in most departments the women’s acceptance rate was higher than

the men’s. The reason for the reversal was that women applied in greater numbers

to departments with lower acceptance rates than to the departments to which men

predominantly applied. The departments were therefore variables that confounded

the association between sex and admission.1 See Bickel, Hammel, & O’Connell,

Sex Bias in Graduate Admissions: Data from Berkeley, 187 Science 398 (1975).

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15

1 This is an instance of “Simpson’s Paradox.” In the Berkeley data, there was substantial variation

in the disparity between acceptance rates from department to department, although, even if there

were a fixed level of disparity, comparing aggregated rates could still be misleading. Suppose, for

example, Department A had an overall acceptance rate of 50%, which was the same for men and

women, while Department B had an overall acceptance rate of 10%, also the same the men and

women. If 80 men and 20 women apply to Department A, while 20 men and 80 women apply to

Department B, then of the 100 men, 42 will be accepted while of the 100 women, only 18 will be

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_8
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The argument for aggregation is that disaggregation deprives data of

significance when there is a small but persistent tendency across strata. If blacks

are persistently underrepresented on jury panels, the difference may not be statisti-

cally significant in any one panel, yet the aggregation would reflect the persistence

of discriminatory practices and the aggregated data would be significant. In fact,

a test based on aggregated data, when valid, is the most powerful possible.

The Berkeley data illustrate a situation in which the comparison of a single

acceptance rate for men with one for women was thoroughly misleading. A more

subtle problem arises when a single measure of disparity is appropriate and the

question is whether the data from independent strata can be aggregated without

biasing the resulting estimate of that measure. Two sufficient conditions for an

unbiased estimate of a common odds ratio are that either (i) the outcome rate in

each group (acceptance rate for men and for women) is constant across the stratifi-

cation variable (department, in the Berkeley example), or (ii) the exposure rate at

each outcome level (sex, for those accepted and rejected) is constant across the

stratification variable. For an assumed constant difference or relative risk, the two

sufficient conditions are that either (i) the outcome rate overall, or (ii) the exposure

rate overall are constant over the stratification variable. These are sufficient, but not

necessary, conditions because there are special configurations in which both

correlations exist, but there nevertheless will be no aggregation bias.

A composition of the aggregation and disaggregation points of view is to

disaggregate when there is a risk of bias, but then to combine the evidence from

the various sources or strata. That is, having disaggregated the data to reduce bias

and increase validity, we then seek a statistic that sums up the situation in an

appropriate way. Here are some examples:

• In the Berkeley example discussed above, compute acceptance rates for men and

women for each department separately, and then combine the evidence to test for

a significant difference.

• In a study of advancement, compare black and white employees with respect to

promotion after one year of employment. Because qualifications and

backgrounds vary substantially, match each black employee with a white

employee and compare their respective promotions in order to control for

differences in group composition. Then combine the evidence across matched

pairs to estimate the relative odds on promotion.

The idea behind the combination of evidence for testing hypotheses about two

groups is simple. Within each stratum we focus on the number of particular

outcomes in a certain group, e.g., the number of offers to women or the number

of black promotions. The particular choice of outcome or group is arbitrary and

different choices lead to equivalent analyses. An expected value for the observed

accepted. Thus, the odds ratios equal 1 for each department separately, but the odds ratio in the

aggregated data is 3.3.
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number is generated for each stratum by multiplying the probability of success

under the null hypothesis for that stratum by the number of group members in the

stratum. The differences between observed and expected numbers are summed for

the strata, and the absolute difference is reduced by 0.5 to correct for continuity.

In one form of analysis, this corrected difference is divided by the standard error of

the sum. (Since the strata are independent by hypothesis, the standard error of the

sum of the differences is simply the square root of the sum of the variances of those

differences.) The result under the null hypothesis has an approximate standard

normal distribution. In an equivalent form of analysis the corrected difference is

squared and divided by the variance of the sum; the resulting statistic has a

chi-squared distribution, with a single degree of freedom.

Binomial test

If it is appropriate to represent success by a binomial outcome with a given rate

(e.g., selection of relatively few from a large population), the sum of the differences

between observed and expected values (corrected for continuity) is divided by the

square root of the sum of binomial variance terms; the resulting test statistic has an

approximate normal distribution.

For example, in Cooper v. University of Texas at Dallas, 482 F. Supp.

187 (N.D. Tex. 1979), plaintiff charged the university with sex discrimination in

hiring faculty members and submitted data comparing the hires during the 1976–

1977 time period with data on doctoral candidates receiving Ph.D. degrees in 1975

(from which the availability proportions were derived). The data are shown in

Table 8.1.

Note that women are underrepresented in each department, but that only in

Natural Science is the difference statistically significant at the 5% level. The sum

of the binomial variances for each department is 30.131; the standard error is the

square root of that, or 5.489. The difference between the actual and expected

numbers of women hired (corrected for continuity) and divided by the standard

error is (�11.17 + 0.5)/5.489¼�1.94. This difference has an attained level of

significance of about 0.026 (one-tailed).

Table 8.1. Hiring practices, University of Texas, 1976–1977

1

University

Division

2

Availability

(prop.

women

Ph.D.s)

3

Total

hires

4

Female

hires

5

Expected

(2� 3)

6

Diff

(4–5)

7

# of SDs

8

Exact

level

of signif.a

Arts-Hum. 0.383 48 14 18.38 �4.38 �1.30 0.123

Hum. Dev. 0.385 32 12 12.32 �0.32 �0.31 0.532

Manag. 0.043 26 0 1.12 �1.12 �1.08 0.319

Nat. Sci. 0.138 38 1 5.24 �4.24 �2.08 0.025

Soc. Sci. 0.209 34 6 7.11 �1.11 �0.47 0.415

Totals 178 33 44.17 �11.17

aThe numbers given in the table in the court’s opinion are not all correct. The correct numbers,

using the binomial distribution to compute exact levels of significance, are given here
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Mantel-Haenszel test

When complete applicant data are available (i.e., numbers hired and not hired by

sex) or when promotions are considered, then a different analysis is preferable. The

natural null hypothesis is that the hires or promotions were made at random with

respect to sex from the combined group in each stratum. The expected value now is

the number of group members times the overall success rate in each stratum.

The formula for the hypergeometric variance for each stratum is m1m2n1n2/
{N2(N� 1)} where m1 is the number of successful outcomes in the stratum (e.g.,

aggregate promotions); m2 is the number of non-successful outcomes in the stratum

(e.g., the number of those not promoted), the n’s are the respective numbers in each

group (e.g., the numbers of men and women); andN is the total number in the stratum.

See Section 4.5. The corrected difference between observed and expected sums divided

by the standard error is a statistic that has a standard normal distribution (approxi-

mately) under the null hypothesis of no systematic influence of group on success. We

refer to this as the Mantel-Haenszel z-score. In squared form, the statistic has a

chi-squared distribution (approximately) with one degree of freedom, and is known

as theMantel-Haenszel chi-squared test. TheMantel-Haenszel procedurewas accepted

by the court in Hogan v. Pierce, 31 Fair Emp. Prac. Cas. (BNA) 115 (D.D.C. 1983).

As a simple illustration of the Mantel-Haenszel procedure, consider the matched-

pairs advancement study. Here each pair is an independent “stratum” with

n1¼ n2¼ 1. If both members of a pair are promoted, or if neither is promoted, then

there is no departure from expectation for that pair under the null hypothesis of race-

neutral promotion. Such concordant pairs are “conditionally uninformative” because

their hypergeometric variance is zero, since either m1 or m2 is zero, and so they

provide no information about the pairwise disparity in promotion rates. For discor-

dant pairs, with one member promoted and the other not, the expected number of

black promotions is 1/2 per pair and the hypergeometric variance of the difference

between observed and expected equals 1 · 1 · 1 · 1/{22·1}¼ 1/4 per pair. Thus if there

are n discordant pairs, comprising b pairs with black member promoted and white

member not, and c¼ n� b pairs with white member promoted and black member

not, the Mantel-Haenszel chi-squared statistic with continuity correction is

X2 ¼
��b� n=2ð Þ��� 1=2
� �2

n=4
¼
��b� c

��� 1
� �2

bþ c
;

distributed as X2 with 1 df under the null hypothesis. In this form the test is called

McNemar’s test. Note how the Mantel-Haenszel procedure for matched pairs

specializes to a binomial analysis of the number of discordant pairs in which

the black member, say, is promoted, b ~Bin(n, 1/2).2 A distinct virtue of the

2 If we assume there is a constant odds ratio on promotion comparing black and white employees,

then it can be shown that the random variable b has a Bin(n, P) distribution with P given by

P ¼ Ω= Ωþ 1ð Þ. A maximum conditional likelihood estimate of P given n is P¼ b/n, and a

maximum likelihood estimate of the odds ratio on promotion is Ω ¼ b=c. Binomial confidence

intervals for P can be transformed into corresponding intervals for Ω via Ω ¼ P= 1� Pð Þ.
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Mantel-Haenszel procedure is that it generalizes the buddy-study design to matched

sample or stratified designs with larger strata of any size.

The Mantel-Haenszel procedure is powerful for detecting departures from the

null hypothesis that are consistently in one direction; such consistent differences

rapidly become highly unlikely under the null hypothesis. The Mantel-Haenszel

procedure is the method of choice in such circumstances. However, the procedure is

not powerful for detecting departures from the null hypothesis that occur in both

directions, where cancellations reduce the sum of accumulated differences. Should

a test that is powerful against alternatives of this form be desired, a different statistic

is used: the squared difference between the observed and expected counts (without

correction) in each stratum is divided by the variance term for that stratum, after

which the sum is taken. This sum has a chi-squared distribution with k degrees of
freedom, where k is the number of strata. In this situation, departures from expec-

tation in either direction cause a large statistic, although if there are many strata

each containing few observations, power may be modest. In the case of the Mantel-

Haenszel procedure, even if the number of strata is large and sample sizes are small

within strata (as in a matched-pair study), power may be adequate if the direction of

effect is consistent.3

Fisher’s method

Of several other testing methods available for combining the evidence from inde-

pendent sources, the most commonly used is R.A. Fisher’s method, which is easily

implemented in a wide variety of circumstances. Fisher’s method provides a

statistic for testing whether the null hypothesis in each of k independent tests is

true, against the alternative that the specific null hypothesis is false in at least one of

the component problems. In principle there need be no relation between the

component problems, hypotheses, or test statistics, but for our purposes we shall

assume that the hypothesis and test statistics are of the same form in each

component.

Fisher’s method is based on a property of the attained level of significance.

Suppose there are two independent strata, each involving a one-sided hypothesis

test based on a statistic T for which large negative values lead to rejection of the null

hypothesis. Since by assumption each statistic is independent, one might be

tempted simply to multiply together the levels of significance, p1 and p2, for the
statistic in each stratum to obtain a joint level of significance, p1p2. Thus, if the test
statistic has a 0.10 level of significance in each of two strata, the joint level of

significance would be 0.01. However, this gives the probability that the test statistic

in each of the strata would have a level of significance less than 0.10, which is

artificial to the problem. The statistic of interest is actually the probability that the

product of the two significance levels would be as small as that observed. In the

3Note that if both tests are conducted with the intention to quote the more (or less) significant

result, then Bonferroni’s correction indicates that to limit this procedure’s Type I error, each

component test should be conducted at the α/2 level.
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example this probability will include cases in which p1¼ 0.2 and p2¼ 0.05 (for

example), and not only cases in which both p1 and p2 are less than 0.1.

Fisher used a transformation to obtain the probability distribution under the null

hypothesis of the product of the significance probabilities. He showed that if the

null hypothesis were true in each stratum, then each attained level of significance

would be uniformly distributed on the unit interval,4 and as a consequence�2 times

the sum of the natural logs of the attained levels of significance would have a

chi-squared distribution with degrees of freedom equal to twice the number of tests.

The desired probability is then given by the upper chi-squared tail area above

�2 times the sum of log attained significance levels. In the example given above,

the log of 0.1¼�2.3026, so that Fisher’s statistic equals �2 � (�2.3026

+�2.3026)¼ 9.2104. The upper 5% critical value for chi-squared with four degrees

of freedom is 9.488, so that the evidence is not quite significant at that level. But

note that combining the evidence has achieved a level of significance that is almost

twice as high as for each stratum separately.

In the Cooper v. University of Texas data, the sum of the logs of the significance

levels is�8.43. This times�2 equals 16.86. Since there are 5 departments, we look

at chi-squared with 10 degrees of freedom and find that the upper 5% critical value

is 18.31, which indicates that the data are not quite significant at the 0.05 level

( p¼ 0.077). However, the data on hires are discrete, while Fisher’s method

assumes that the data have continuous P-values. Applying Lancaster’s correction

for that fact yields a value of 21.47 for Fisher’s statistic, which is significant at the

0.05 level ( p¼ 0.018). This result is slightly stronger than the binomial P-value
previously obtained (see p. 249) by accumulating the differences between observed

and expected values and dividing by the standard deviation of the sum of the

binomial variables ( p¼ 0.026).5

The methods described above also apply to the not uncommon situation in which

there are multiple independent studies of the same phenomenon and some or all of

them have a low level of statistical significance. This was the situation in studies of

the relationship between attitudes toward the death penalty and conviction

decisions of death-qualified jurors. See Section 6.1.1. Six different studies showed

that death-qualified jurors were more likely to convict, with z values ranging from

1.07 to 2.73. The z’s (respectively, two-sided P-values) were: 1.90 (0.057); 2.05

4 In general, if X is a random variable with cumulative distribution function F, then the random

variable Y¼F(X) is called the probability transform of X. If F is continuous, Y has a uniform

distribution on the unit interval from 0 to 1, because the event [Y< p] occurs if and only if X is

below its pth quantile, which occurs with probability p. In the present application, if X is a random

outcome of the test statistic T with null distribution F, then the attained level of significance is

Y¼P[T	X]¼F(X).
5 See Lancaster, The combination of probabilities arising from data in discrete distributions,
36 Biometrika 370 (1949). We are indebted to Joseph L. Gastwirth for calling our attention to

this adjustment. The Lancaster adjustment actually overcorrects. The exact P-value is 0.024,

which is above the P-value given by Fisher’s test with Lancaster’s correction. In this case, the

binomial P-value referred to in the text comes considerably closer to the correct figure.
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(0.040); 1.40 (0.162); 1.07 (0.285); 2.58 (0.010); 2.73 (0.006). The chi-squared

value is (�2∑ln p)¼ 37.84, which is highly significant on chi-squared with 12 df.

While simple and elegant, Fisher’s method has low power when the number of

studies is large and the significance levels are modest. For example, if the attained

significance level were equal to 1/e¼ 0.37 in each stratum, Fisher’s chi-squared

would be 2k, equal to its degrees of freedom for any k, thus never much exceeding

the 0.50 significance level. The Mantel-Haenszel method of combining the evi-

dence is preferable in such cases.

Estimating a common parameter

Up to now we have combined evidence to test a null hypothesis in light of the

several sources of data. In many contexts it is more important to estimate a common

parameter, assumed to exist, and a confidence interval for the estimate. We discuss

two methods: the first is quite general; the second accompanies the Mantel-

Haenszel test discussed earlier.

The more general method assumes that one has an unbiased (or at least consis-

tent) point estimate of some common parameter of interest together with a standard

error in each independent study. Under the assumption that the true parameter is the

same in each study, any weighted average of the point estimates also has that same

mean. To minimize the variance of the weighted average, one chooses weights for

each study inversely proportional to the variance, i.e., the squared standard error, of

the respective point estimates. The variance of the weighted average that results

from this choice is one over the sum of the reciprocals of the variances. From this a

confidence interval for the common parameter can be constructed as (weighted

average) 
1.96 s.e.

For example, if study 1 has an estimated logs odds ratio of 0.5 with standard

error 0.3, and study 2 has an estimated log odds ratio of 0.7 with standard error 0.4,

the weighted average is (0.5 · 0.3�2 + 0.7 · 0.4�2)/(0.3�2 + 0.4�2)¼ 0.572 with

standard error 1/(0.3�2 + 0.4�2)1/2¼ 0.240. A 95% confidence interval for the

weighted average is 0.572
 1.96 · 0.240¼ 0.572
 0.47.

The Mantel-Haenszel procedure also offers an estimate of an assumed common

odds ratio underlying each fourfold table. To state the estimator, together with a

standard error formula for its logarithm, we use the following notation for cell

frequencies in the ith table (i¼ 1,. . ., k):

Xi Wi

Yi Zi
Ti

Let Bi¼XiZi/Ti denote the product of the main-diagonal cell frequencies

in table i divided by the table total Ti, and let Ci¼ YiWi/Ti denote the product

of the off-diagonal cell frequencies divided by the table total. Let B ¼
X

i
Bi and

C ¼
X

i
Ci denote the sums of these products over all tables. The Mantel-Haenszel

estimator of the common odds ratio is then the ratio ORMH¼B/C.
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It is an advantage of this method that, since we are dealing with sums of

products, a study with a zero cell in its fourfold table may still be included in

computing the common odds ratio; this could not be done in the first method

(without arbitrarily adding a value to the zero cell) since it assumed that each

study generated a finite point estimate of the log odds ratio.

Note that the estimator can be viewed as a weighted average of individual table

cross-product ratios XiZi/YiWi, where the weights are given by Ci/C. From this it is

easy to see that, if the number of tables k remains fixed while the table sizes Ti
become large, the Mantel-Haenszel estimator is approximately a weighted average

of the true underlying table odds ratios. Assuming these all have a common value, it

follows that ORMH is a consistent estimator of that common odds ratio.

It is also true that the Mantel-Haenszel estimator is consistent in another

asymptotic (large sample) framework: when each of the table totals remains

small, but the number of tables k becomes large. For example, a “buddy study”

(see pp. 248, 250) may match male and female employees on important

characteristics, such as experience and qualifications, to avoid confounding bias.

At the end of one year, it is observed whether or not the employees are promoted. Is

there an equitable promotion policy? Each pair is a two-by-two table with the total

Ti for each table being 2. The Mantel-Haenszel estimator of the odds ratio on

promotion for female versus male employees is given by ORMH¼ b/c, where b is

the number of pairs in which the woman was promoted and the man was not and c is
the number of tables in which the man was promoted and the woman was not. The

estimator b/c is also known as the McNemar estimate of the common odds ratio for

matched pairs data. As k becomes large, ORMH converges to the true odds ratio by

the strong law of large numbers.

Another application of the Mantel-Haenszel estimator is given in Section 11.2 at

p. 323 to estimate a hazard rate ratio in survival analysis.

Robins, Greenland, and Breslow give a formula for the large sample variance of

the logarithm of ORMH that is itself a consistent estimator of the variance in both

asymptotic frameworks mentioned above.6 In addition to the notation above, let

Pi¼ (Xi+ Zi)/Ti denote the fraction of total frequency Ti in the main-diagonal cells

of the ith table, and let Qi¼ (Yi+Wi)/Ti¼ 1�Pi denote the fraction of total fre-

quency Ti in the off-diagonal cells. Then the “RGB” estimator is given as follows:

Vâ r logORMHf g ¼ 1=2ð Þ
X k

i¼1
PiBi

B2
þ
X k

i¼1
PiCi þ QiBið Þ
BC

þ
X k

i¼1
QiCi

C2

8<:
9=;:

The square root of this variance estimate is the standard error (s.e.) of the Mantel-

Haenszel log odds ratio estimator, and may be used to set confidence intervals.

Thus, a large-sample approximate 95% confidence interval for the log odds ratio

6 Robins, Greenland, & Breslow, A general estimator for the variance of the Mantel-Haenszel odds
ratio, 124 Am. J. Epidemiology 719 (1986).
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is given by log ORMH
 1.96∙s.e., and an approximate 95% confidence interval

for the common odds ratio is obtained by exponentiating the endpoints of that

interval, viz.,

exp log ORMH 
 1:96 s:e:f g ¼ ORMH � =� exp 1:96 s:e:f g:
In the matched pairs example, the RGB estimate of the variance of the logarithm

of ORMH is (1/2){(b/2)/(b/2)2 + 0 + (c/2)/(c/2)2}¼ (1/b) + (1/c).
We return to this subject in the discussion of meta-analysis in Section 8.2.

The generalized Mantel-Haenszel chi-squared statistic

Sometimes the evidence one needs to combine across independent strata requires

more cells than the four of a two-by-two table. An example appears in Section 8.1.3

where four binomial proportions must be compared within each of two independent

strata, so there we need to combine the evidence from two 2� 4 tables. When

comparing k independent proportions within a single stratum, we used the

chi-squared statistic given in Section 6.1 and referred it to the chi-squared distribu-

tion with k� 1 degrees of freedom; here we discuss the analogous procedure for

combining the evidence from several such 2� k tables. The resulting test statistic is
called the generalized Mantel-Haenszel test, also known as the generalized
Cochran-Mantel-Haenszel test. The procedure is used to test the null hypothesis

that the k proportions being compared are equal in the underlying population within
each stratum, though the common proportion is allowed to (and may very well)

vary from stratum to stratum.

Suppose there are g independent strata, and let us denote the generic table in the
ith stratum (i¼1,. . .,g) as follows:

Outcome

Group

1 . . . k Total

Success Y1
(i) . . . Y

ðiÞ
k

M(i)

Failure n
ið Þ
1 � Y

ið Þ
1

. . . n
ið Þ
k � Y

ið Þ
k

N ið Þ �M ið Þ

Total n
ðiÞ
1

. . . n
ðiÞ
k

N(i)

The analysis conditions upon each of the column margins as well as each of the

row sums in each of the tables. As in the Mantel-Haenszel procedure for 2� 2

tables, we proceed by accumulating counts in certain reference cells across the

strata and subtracting the accumulated expected values of those counts evaluated

under the null hypothesis. In the present case, there are k� 1 reference cells to

consider rather than just one (the final cell being determined from the marginal

total). We may choose any subset of k� 1 cells to serve as reference cells, and any

choice will produce the same final test statistic, so long as the same choice is made

consistently across strata. Suppose we choose the first k� 1 cells in the first row as

the reference cells. We then collect the sum of each reference cell across the g strata
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in the sum vector with k� 1 components, S ¼
Xg
i¼1

Y
ið Þ
1 ; . . . ;

Xg
i¼1

Y
ið Þ
k�1

 !
, and

deduct E0(S), the vector of the corresponding sums of expected values of the

components of S under the null hypothesis. The expected value of the jth compo-

nent of S is E0 S j

� � ¼Xg
i¼1

M ið Þn ið Þ
j =N

ið Þ for j¼ 1,. . .k� 1.

Because the margins are considered fixed in the conditional approach, the sum of

expected values acts as a constant against which S can be compared in the pivotal

“observed minus expected” type of score statistic, S�E0(S). This is a vector

statistic that must be assessed with multivariate statistical methods. Software is

widely available for computing these quantities and from there, the final

chi-squared statistic X2, which takes the multivariate form of observed minus

expected squared divided by variance.7

For a fixed number of strata g, when the sample sizes n
ðiÞ
j are all large, the

statistic X2 has an approximate chi-squared distribution on k� 1 degrees of free-

dom, reflecting the fact that the k� 1 components of S are free to vary, while the

remaining accumulated difference between observed and expected counts from the

kth column is determined from the marginal constraints. Analogous to the

one-degree-of-freedom Mantel-Haenszel procedure, X2 is also approximately

distributed as chi-squared on k� 1 degrees of freedom even if the marginal

frequencies n
ðiÞ
j are small, so long as the number of strata g is large. For example,

in a generalized buddy-study one can match a case patient with a given disease to a

hospital control patient with an unrelated illness, together with a healthy neighbor-

hood control subject, assessing each person for exposure to a binary antecedent risk

factor. The resulting matched triplet’s data can be written as a little 2� 3 table with

column margins of 1, 1, and 1. X2 may then be used to combine the evidence across

a sample of g such matched triplets to test the null hypothesis that the exposure

proportions are identical across the three types of subjects within each matched

triplet, though the common exposure proportion would be expected to vary from

triplet to triplet due to variation in the matching factors.

We note that the generalized Mantel-Haenszel procedure may also be used

when, instead of comparing k binary proportions across several independent strata,

we are comparing two groups of subjects in terms of a k-category response variable
in each of several independent strata. For example, epidemiologic studies of the

relation between smoking and lung cancer in the 1950s and 1960s trichotomized the

smoking habits of lung cancer patients as current, past, and never. Comparisons of

these cases with healthy controls needed to stratify the sample into g groups

7 Conveniently, the variance-covariance matrix has a known form that again depends only

on the table margins. The multivariate generalization takes the form

X2 ¼ S� E0 Sð Þf g Cov0 Sð Þf g�1 S� E0 Sð Þf g0 in standard matrix notation, where {Cov0(S)}
–1 is

the inverse of the (k–1)�(k–1) covariance matrix for S under the null hypothesis.
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determined from a cross-classification of confounding factors such as age, sex,

socioeconomic status, etc. In order to test the null hypothesis that smoking habits

were unassociated with development of lung cancer, the evidence from the resulting

2� 3 tables (with larger margins this time) was combined using precisely the

approach described above.

Further Reading

Fleiss, Levin, & Paik, Statistical Methods for Rates and Proportions,
ch. 10 (3d ed. 2003).

8.1.1 Hiring lawyers

The State of Mississippi Department of Justice was accused of discriminating

against black lawyers and black support personnel who applied for positions with

the state. The data on the numbers of applicants and hires for 1970–1982 for

positions as attorneys are shown in Table 8.1.1. The suit was instituted in 1975

when Attorney General Winter was in office. He was followed by Attorney General

Summer in 1980. (The names are not fictitious.)

Question

Analyze the data for statistical significance using the Mantel-Haenszel z-score.
Would Fisher’s exact test and his method of combining evidence be useful in this

problem? Would pooling of data be an acceptable alternative?

Source

Mississippi Council on Human Relations v. Mississippi, J76 Civ. 118R (1983)

(Magistrate’s decision) (unpublished).

Table 8.1.1. Attorney applicants and hires at the office of the Attorney General from 1970

to 1983

1970 1971 1972 1973 1974 1975 1976

W 7/12 5/20 11/17 10/21 6/18 2/15 3/16

B – – – 0/2 0/7 0/7 2/5

1977 1978 1979 1980 1981 1982

W 13/19 8/18 6/15 7/27 4/21 1/4

B 1/4 0/1 1/4 3/12 1/5 3/13

A/B: The figure to the left of the slash (A) is the number of people ultimately hired from that

year’s applicants, even if they were not hired in the same year that they applied; the figure to the

right of the slash (B) represents the number of applicants
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8.1.2 Age discrimination in employment terminations

A publisher was accused of age discrimination in its terminations of copywriters

and art directors. Between January 3, 1984, and January 21, 1986, there were

15 involuntary terminations of copywriters and art directors. Tables 8.1.2a and

8.1.2b show the ages of the copywriters and art directors at the date of each

termination. Thus, on July 27, 1984, there were 14 copywriters ranging in age

from 24 to 62 and 17 art directors ranging in age from 24 to 56; the age of the

terminated copywriter was 36. Table 8.1.2c shows (1) the aggregate ages of

the terminated copywriter(s) or art director(s); (2) the number terminated; (3) the

average age of all copywriters and art directors at the time of a termination;

(4) the average age times the number of terminations (the expected sum of ages

at termination under the null hypothesis); (5) the number of persons at risk of

termination at each termination; (6) the variance of the ages of those at risk

of termination; and (7) the sampling variance of column (1) [equal to column

Table 8.1.2a. Ages of copywriters by dates of involuntary termination

Jan 3
1984 Jan 6

Jun
29

Jul
27 Oct 5

Nov
19

Nov
20

Dec
31

Mar
1

1985
Mar
29 Jun 7

Dec
11

Jan
21
1986

1 36 36 36 36 36 36 36 37 37 37

2 52 52 52 52 52 53 53a

3 36 36a

4 28 28 28 28 28 28 28

5 41 41 41 41 41 42

6 30 30 30 30 30 30 30 30 30 31 31

7 49a

8 27 28

9 47 47 47a

10 34 34a

11 44 44

12 40 40 40 40 40 40 40 40 41 41 41

13 47 47 47 47 47 47 47 48 48a

14 36 36

15 36 36 36 37

16 62 62 62 62 62 63 63 63a

17 33 33 33 33 33 34 34 34 34 34 34 35 35

18 26 26 26a

19 29 29 30 30 30 30 30 30 30 30 30 31 31

20 28 28 28 28 28 28 28 29 29 29 29 30 30

21 42 42 43 43 43 43 43 43 43 44

22 24 24

23 26 27 27 27 27

24 35 35 35 35

25 23 23 24 24 24 24 24 24 25 25 25 25 25

26 30 30 31 31 31 31 31 31 31 31

aInvoluntary termination
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Table 8.1.2b. Ages of art directors by dates of involuntary termination

Jan 3
1984 Jan 3

Jun
29

Jul
27 Oct 5

Nov
19

Nov
20

Dec
31

Mar
1

1985
Mar
29 Jun 7

Dec
11

Jan
21
1986

1 47 47 47 47 47 48a

2 34 34 34 34 34 34 34 35 35 35 35 36a

3 24 24 24 25 25 25

4 38 38 39 39 39 39 39 39 39 39 40 40 40

5 36 36

6 52

7 55 55 55 55 55 55 55 56a

8 55 55 56 56 56 56 56 56a

9 24 24

10 34 34 35 35 35 35 35 35 35 36 36 36 36

11 30 30 30 31 31a

12 28 28

13 38 38 38 38 39 39 39 39

14 33a

15 34 35 35 35 35

16 37 37a

17 35 35 31 35 35 35 35 35 35 36 36

18 31 31 31 32 32 32

19 27 27 28 28 28 28 28

20 39 39 39 39 40

21 24 24 24 24

22 35 35 35 35 36 36 36 36 36

23 48 48 49 49 49 49 49 49 49 49 49 50 50

24 34 34 35 35 35

25 52 52 53 53 53 53 53 53 53 53 54

26 25 25

27 30 30 31 31 31 31 31 31 31 32

28 47 47 48 48 48 48 48 48 48 48 48 49 49

aInvoluntary termination

Table 8.1.2c. Combining the evidence: copywriters and art directors

(1)
S[ j]

(2)
m[ j]

(3)
μ[ j]

(4)
(2)� (3)

(5)
N[ j]

(6)
σ2[ j]

(7)
Var S[ j]

1 49 1 38.68 38.68 31 106.93 106.93

2 34 1 38.33 38.33 30 106.82 106.82

3 47 1 39.03 39.03 31 98.16 98.16

4 36 1 38.71 38.71 31 95.75 95.75

5 31 1 39.14 39.14 29 97.71 97.71

6 48 1 39.43 39.43 28 103.32 103.32

7 53 1 39.11 39.11 27 104.32 104.32

8 175 3 38.21 114.63 28 103.60 287.77

9 48 1 35.44 35.44 27 58.25 58.25

10 26 1 35.22 35.22 27 52.02 52.02

11 37 1 35.78 35.78 23 54.08 54.08

12 36 1 34.56 34.56 25 50.97 50.97

13 33 1 35.27 35.27 26 60.74 60.74

Total 653 15 563.4 1276.84



6 times column 2, times the finite population correction factor, which is column

5 minus column 2 divided by column 5 minus 1].

Questions

1. How does the age of each terminated copywriter or art director compare with the

average for all copywriters and art directors at each termination?

2. Combining the evidence at each termination, do the data show a statistically

significant greater risk of termination for older employees?

We revisit these data in Section 11.2.1.

8.1.3 Rheumatoid arthritis drug

A public drug development company, Rigel Pharmaceuticals, Inc., was accused of

fraud in claiming that the results of a clinical trial of a drug it called R788 for

treatment of rheumatoid arthritis demonstrated a statistically significant beneficial

effect for patients with the disease. The trial was described by the company as a

multi-center, randomized, double-blind, placebo-controlled, ascending-dose study

involving 189 patients in multiple sites in the United States and Mexico. The

primary endpoint of the study was an improvement of 20% over baseline using

the American College of Rheumatology (ACR) criteria; but the data also included

other binary outcomes for improvements of 50 and 70% over baseline. The

company’s press release gave the results for the pooled data shown in Table 8.1.3a.

(The P-values are comparing each dose with the placebo).

A stockholders action claimed that use of the pooled data was misleading and

that Mexico and the U.S. should have been analyzed separately. Rigel subsequently

reported data broken out by country; the data are shown in Table 8.1.3b. Rigel did

not report P-values for these data.

Table 8.1.3a. R788 results for RA patients (pooled data)

Overall

Treatment Group

Number of

patients

ACR20

responses (%)

ACR50

responses (%)

ACR70

responses (%)

Placebo 47 18 (38) 9 (19) 2 (4)

50 mg 46 15 (32) 8 (17) 1 (2)

100 mg 49 32 (65)a 24 (49)b 16 (33)c

150 mg 47 34 (72)c 27 (57)c 19 (40)c

Total 189 99 (52) 68 (36) 38 (20)
ap¼ 0.008
bp¼ 0.002
cp< 0.001
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Questions

1. Rigel’s statistical consulting company reported that it used a single randomization

list, which means that as patients were enrolled (whether in Mexico or the U.S.)

they were randomized in the ratio one-to-three either to a placebo or to one of the

doses (with equal probabilities to each of the doses). Are the aggregate data

consistent with this method? Are the country-specific data consistent with it?

2. In the ascending dose design, patients are first randomized to placebo or the low-

dose arm only (50 mg in the actual trial). Once recruitment for that stage is

complete and safety outcomes are in hand, the Data and Safety Monitoring

Board (“DSMB”) reviews the safety data and if there are no safety concerns

they clear the trial investigators to randomize new patients to placebo and the

next higher dose (100 mg). There is another safety review after recruitment for

the second stage and if approval is given, recruitment into the highest dose group

(150 mg) can start. The trial publication indicated that “once enrollment was

completed at a given dose level and all enrolled patients at that dose level had

received therapy for at least 4 weeks, the Data Safety Monitoring Board deter-

mined whether enrollment into the next higher dosing regimen could occur.”

Could this design feature explain the pattern seen in the country-specific data?

3. InRigel’s reportedP-values for thepooleddata, no adjustmentwasmade formultiple

comparisons. Should this have been done?What difference would that havemade?

4. What evidence is there in the data indicating a “country effect”? Are either of the

sufficient conditions for pooling the data across country satisfied (see p. 248

supra) for an assumed common odds ratio between any given dose and placebo?

Table 8.1.3b. R788 results for RA patients (by country)

U.S. Treatment

Group

Number

of patients

ACR 20

responses (%)

ACR 50

responses (%)

ACR 70

responses (%)

Placebo 25 6 (24) 1 (4) 0 (0)

50 mg 46 15 (33) 8 (17) 1 (2)

100 mg 21 11 (52) 6 (29) 3 (14)

150 mg 5 2 (40) 2 (40) 2 (40)

Total 97 34 (35) 17 (18) 6 (6)

Mexico

Treatment

Group

Number

of patients

ACR 20

responses (%)

ACR 50

responses (%)

ACR 70

responses (%)

Placebo 22 12 (55) 8 (36) 2 (9)

50 mg 0 0 (0) 0 (0) 0 (0)

100 mg 28 21 (75) 18 (64) 13 (46)

150 mg 42 32 (76) 25 (60) 17 (40)

Total 92 65 (71) 51 (55) 32 (35)
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5. If a generalized Mantel Haenszel method is used to combine the data for the

two countries (see p. 255 supra), the resulting chi-squared is 7.558; on 3 df,

p¼ 0.056. Rigel conceded that it knew there was a country effect at the time it

made its disclosure of the P-values for the pooled data, but did not report

P-values that took account of this effect. Did that make its report of the pooled

data a false statement under the federal securities laws?

Source

In re Rigel Pharmaceuticals, Inc. Securities Lit., 697 F.3d 869 (9th Cir. 2012).

Notes

The scientific publication for this study may be found in Weinblatt et al., Treatment of
rheumatoid arthritis with a Syk kinase inhibitor, 58 ARTHRITIS & RHEUMATISM 3309 (Nov.

2008). A second study of R788, involving 219 patients, found no difference in primary

end point (ACR20) between the R788 groups (50, 100, and 150 mg doses) and the

placebo. There were some differences in secondary end points that the investigators

attributed tobaselinedifferences inpatients.Genovese,etal.,AnoralSykkinase inhibitor
in the treatment of rheumatoidarthritis. . ., 63ARTHRITIS&RHEUMATISM337 (Feb. 2011).

8.2 Meta-analysis

Combining the evidence is a valid and informative procedure when data are

collected with similar measurement techniques in each stratum, under similar

conditions of observation and study protocol. In Section 8.1, in particular, we

assumed that each stratum furnished data governed in part by a common parameter

value that was the target of statistical inference. For example, to test the null

hypothesis of no association between group membership and employment success,

the Mantel-Haenszel procedure assumes a common odds ratio of unity in each

stratum. As another example, in taking a weighted average of separate point

estimates, we assumed each estimate was unbiased or consistent for a single common

parameter. The data were also assumed to be statistically independent across strata.

It is tempting (especially in toxic tort cases) to apply these techniques to a

broader problem: to select, review, summarize, and combine the results from

separate published studies on a common scientific issue. Whether Bendectin is a

teratogen is an example; see Section 8.2.1. The result of such a “study of studies” is

called meta-analysis. While the statistical methods used to combine the evidence

across studies are those already discussed, meta-analytic results differ in their

interpretability, degree of validity, and the extent to which they can be generalized.

Two different studies rarely measure precisely the same parameter. Differences

in study methods and measures, subject populations, time frames, risk factors, and

analytic techniques, etc., all conspire to make the “common” parameter different in
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each study.8 Nor is it always clear that one wants necessarily to have the same para-

meter in each study: many replications of a study demonstrating the lack of a toxic

effect of a drug in non-pregnant women would not be informative for pregnant women.

One must then ask what one is testing or estimating when one combines a

heterogeneous group of studies. The answer is some ill-specified average of the

estimated parameters from the selected studies. Whatever the average is, it depends

very much on the sampling scheme by which studies are selected for combination.

This is a serious problem for meta-analysis, because so often there is no “scientific”

sampling of studies. Obviously, bias in the selection of studies is compounded when

one limits the selection to all published studies, because of the well known bias that

favors publication of significant over non-significant findings. This is the “file-

drawer” problem for meta-analysis: how to access the unknown number of negative

findings buried in researchers’ file drawers to achieve a balanced cross section of

findings. Finally, there is an almost inevitable lack of independence across studies.

Successive studies by the same researcher on a subject are often subject to the same

systematic biases and errors: a recognized authority in a field may determine an

entire research program; and in extreme cases, scientific competitors may have

hidden agendas that affect what gets studied and reported.

For these reasons, results of meta-analysis will be most generalizable if the

protocol includes the following steps: (1) creating a preestablished research plan for

including and excluding studies, which specifies criteria for the range of patients,

range of diagnoses, and range of treatments; (2) making a thorough literature

search, including an effort to find unpublished studies; (3) assembling a list of

included and excluded studies, in the latter case with the reasons for their exclusion;

(4) calculating the P-value, a point estimate of effect, and a confidence interval for

each study; (5) testing whether the studies are homogeneous, i.e., whether the

differences among them are consistent with random sampling error and not some

systematic factor or unexplained heterogeneity; if a systematic difference is found

in subgroups of studies—e.g. cohort versus case-control studies—making separate

analyses of the two groups; (6) if the studies are homogeneous, calculating a

summary statistic for all of them together, with a confidence interval for the

statistic; (7) calculating the statistical power curves for the result against a range

of alternative hypotheses; (8) calculating the robustness of the result, namely, how

many negative studies would have to exist (presumably unpublished or perhaps in a

foreign language not searched) for the observed effect to be neutralized; and

(9) making a sensitivity analysis, i.e., eliminating a study or studies that appear to

have more serious design flaws to measure the effect on the results.

8 This point is quite apart from sampling variability. Even in large samples where sampling

variability may be ignored, systematic differences between studies remain.
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Fixed effects

Assume that there are k independent studies each estimating a parameter, such as a

relative risk (RR), and the ith study estimates RRi, with variance of the log RRi

equal to σ2i , assumed to be known. The log summary relative risk (SRR) is the

weighted average of the ln(RRi)¼ bi estimates, with the weights inversely propor-

tional to σ2i . In symbols:

b ¼ ln SRRð Þ ¼
Xk
i¼1

σ�2
i ln RRið Þ=

Xk
i¼1

σ�2
i ¼

Xk
i¼1

wibi=
Xk
i¼1

wi;

where the weight wi ¼ σ�2
i . Taking antilogs, an approximate 95% confidence

interval for SRR is obtained from

SRRð Þ � exp 
1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ln SRRð Þ½ �

p� �
with the variance (V ) of the natural log of SRR given by:

V ln SRRð Þ½ � ¼ 1=
Xk
i¼1

σ�2
i ¼ 1=

Xk
i¼1

wi:

With respect to homogeneity, (6) above, if the studies are homogeneous in the

sense of all measuring the same thing and differ merely because of sampling

variation, then the squared difference between the natural log of the ith study and

the natural log of the SRR divided by the variance of the ith study summed over all

k studies has a chi-squared distribution with k� 1 degrees of freedom. In symbols:

Xk
i¼1

wi bi � bð Þ2 ¼
Xk
i¼1

ln RRið Þ � ln SRRð Þ½ �2=σ2i  χ2k�1:

With respect to power, (7) above, under the assumptions already given for

k studies it can be shown that an approximate expression for the power, θm, of the
meta-analysis to reject the null hypothesis H0: RR¼ 1 versus H1: RR> 1 is

θm ffi pr Z < ln ψð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V ln SRRð Þ½ �

p
� 1:96

n o
;

where Z is a standard normal variable and ψ is the relative risk under the alternative

hypothesis, which is assumed to be greater than 1. Given the set of {σi} values, power
curves can be constructed by plotting values of θm as a function of the values of ψ .9

9 For values of ψ not close to SRR, V may need to be recomputed when it depends on ψ .
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Random effects

Uptonowthediscussionhasassumedthat the truevalueof theparameterunderlyingeach

study was the same, or that within identifiable subsets of studies, the parameter was a

constant. The chi-squared for homogeneity tests this hypothesis, but it is known that this

test often lacks good statistical power.Thus, even if the chi-squared test for homogeneity

does not reject that hypothesis, there may be actual variation in the true odds ratios

between studies, and variability in the sample odds ratios beyondwhat can be accounted

forbysamplingerrorwithineachstudy. Inothercases, theheterogeneitymaybeclear,but

not explainable by known, systematic factors. This is typically the case when endpoints

are difficult to diagnose, or when studies are conducted under conditions with many

impinging factors that are hard to control or evenmeasure.The situation also ariseswhen

each subject in an investigationprovides repeatedobservationsover time, and, in a sense,

becomes his or her own“study.”The statisticalmethods ofmeta-analysis can be brought

tobear to combine the evidence contributedbyeach subject to theoverall studyquestion,

but almost always biologic variability will be a substantial source of heterogeneity

between the subject (study)-specific parameters. In such cases interest shifts away from

testing the hypothesis of homogeneity as a preliminary step in the analysis, and toward

specifying a model that embraces the heterogeneity as a real part of the uncertainty in

drawing inferences.Random-effectsmodels do this, anda random-effectsmeta-analysis

isone that explicitlypermitsvariation in the trueparameter fromstudy tostudy,andseeks

tomake inferences about somecentral featureof thedistributionof the trueparameters in

the population, either real or hypothetical, of all such studies.

The methods for random-effects meta-analysis are, in the simplest cases, parallel

to those for fixed-effects analysis, as described above. The essential substantive

difference is that the standard error of the final estimate (of the population mean

parameter) in the random-effects model is larger than the standard error of the final

estimate (of the assumed common parameter) in the fixed-effects model, due to the

acknowledged presence of between-study heterogeneity.

Here is an explicit random-effects model. Suppose we let βi denote the true para-
meter value for the ith study (i¼ 1,. . ., k), and let bi denote the study estimate of βi.
For example, we may let βi be the true log relative risk for study i, and take

bi¼ ln(RRi) to be the study’s estimated log relative risk.10 When individual study

sample sizes are large, the central limit theorem ensures that the sample estimate

bi will be approximately normally distributed with mean βi and variance given by

the squared standard error σi
2; in symbols, bi~N (βi, σi

2). The fixed effects model

assumes that all the βi are equal, but the random effects model assumes that the βi
have a distribution, say F, with mean β, say, and variance τ2. The object of the

meta-analysis is to estimate β. (It is here that the assumption of a complete and

unbiased set of studies becomes crucial for meta-analysis—to estimate β without

10 For combining the evidence about odds ratios from several independent fourfold tables, the

Mantel-Haenszel chi-squared procedure and its associated estimate of the assumed common odds

ratio are available. See Section 8.1 at p. 250. The method given here will be equivalent to the

Mantel-Haenszel procedure when each of the fourfold tables has large margins.
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bias, the βi ought to be a random sample from F, or at least unbiased.) Note that

to derive a summary estimator for β, we need make no distributional assumption

about F other than the existence of the mean β and variance τ2.11

Viewedas anestimateofβ, the individual studyestimates areeachunbiased, because

E[bi]¼E{E[bi|βi]}¼ β. Given the design of the ith study, which fixes σi
2, the variance

ofbi as an estimate ofβ isσi
2 + τ2, reflecting the uncertainty ofbi as anestimate ofβiplus

the variation of βi around the populationmean β. If wewish to estimate β by aweighted
average of the bi, the weights that will minimize the variance of the estimate are

inversely proportional to σi
2 + τ2. Thus, we may use as the summary statistic,

b* ¼
Xk
i¼1

w*
i bi=

Xk
i¼1

w*
i , where w*

i ¼ 1= σ2i þ τ2
� �

;

and the variance of the estimate will be

V b*ð Þ ¼ 1Xk
i¼1

w*
i

¼ 1Xk
i¼1

1= σ2i þ τ2
� �:

Notice the similarity between these formulas and those in the fixed-effects model.

Relative to the fixed-effects model, where a few studies with very large sample sizes

can dominate the estimate (because their respective σi
2 are small and weights

wi¼ σi
�2 are large), in the random-effects model the presence of τ2 in the weights

w�
i has a tendency to reduce the dominance of those large studies. There are two

examples of interest. If there were no heterogeneity at all, then τ2 would equal zero,

and the analysis reduces to the fixed effects case. At the other extreme, if the between-

study variance τ2 were large compared with the squared standard errors σi
2 of each

study, then the weights w�
i would be essentially equal, i.e., in a random-effects meta-

analysis with substantial heterogeneity, the studies contribute essentially equal

weight. Notice, finally, that whenever τ2 is non-zero, the weight wi is less than the

corresponding fixed effect weight wi¼ σi
�2, and thus the variance 1/∑iwi

* of the

summary estimate b* will be greater than the variance 1/∑iwi of the fixed-effect

summary estimate. This is the “price” to be paid for the additional uncertainty

introduced by the between-study heterogeneity. Generally τ2 is unknown and must

be estimated from the data. An unbiased estimate of τ2 is furnished by the following:

11 Technically, we assume only that E[bi|βi, σi
2]¼ βi, Var[bi|βi, σi

2]¼ σi
2, E[βi|σi

2]¼ β, and

Var[βi|σi
2]¼ τ2. The normal assumption for bi given βi and σi

2 is used when making large sample

inferences about the summary estimate of β. For this purpose it is often assumed that the

distribution F is also approximately normal, in which case the summary estimate of β is too.

However, the assumption of normality for F is often questionable and a source of vulnerability for

the analyst.
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(i) Obtain the homogeneity statisticQ ¼
X k

i¼1
wi bi � bð Þ2 as in the fixed-effects

model.

(ii) Obtain the quantities w ¼ 1=kð Þ
X k

i¼1
wi and S

2
w ¼

X k

i¼1
wi � wð Þ2= k � 1ð Þ.

(iii) If Q	 k� 1, then estimate τ2 as 0. Otherwise estimate τ2 as

τ2 ¼ Q� k � 1ð Þ
k � 1ð Þ w� s2w= kwð Þ�  :

Further Reading

A standard book on meta-analysis is Glass, McGaw, & Smith (1981).

8.2.1 Bendectin revisited

In the Bendectin litigation (see Section 5.4.2) Merrell Dow, the defendant,

introduced a summary of the results of published cohort studies of Bendectin and

congenital malformations. The summary is shown in Tables 8.2.1a and 8.2.1b.

Questions

1. Compute an estimate for the log relative risk and a standard error for that

estimate based on the combined evidence in the studies.

2. Find a 95% confidence interval for the estimate.

3. State the point estimate and confidence interval in the original scale of

relative risk.

Table 8.2.1a. Cohort studies of Bendectin and congenital malformations

First author Year Months of pregnancy Type of malformation

Bunde 1963 1st trimes All diag. at birth

Brit. GP 1963 1st trimes All

Milkovich 1976 1st 84 days “Severe”

Newman 1977 1st trimes “Postural excluded”

Smithells 1978 2–12 Weeksa “Major”

Heinonen 1979 1–4 Months “Uniform,” “Major & minor”b

Michaelis 1980 1–12 Weeks “Severe”

Fleming 1981 1–13 Weeks Defined and other

Jick 1981 1st trimes Major

Gibson 1981 1st trimes “Total”
aThe most unfavorable (to Bendectin) reasonable break-point
bTumors excluded

8.2 Meta-analysis 267

http://dx.doi.org/10.1007/978-1-4419-5985-0_5#Sec19


4. What magnitude of common relative risk would have an 80% probability of

being declared significant at the 0.05 level, two-tailed?

5. The weighted variance of the ln(RR) of the individual studies (Q) is 21.46.

Interpreting this as a test of the hypothesis of homogeneity of the true

ln(RR)’s, what conclusion do you reach?

6. Compute an estimate of τ2 and interpret your result. (The mean and variance of

the weights are 26.975 and 844.828, respectively.)

8.2.2 Avandia and heart attacks

GlaxoSmithKline (GSK) sold rosiglitazone under the trade name Avandia, whose

principal use was to help diabetics control the sugar level in their blood. After its

launch in 2000, Avandia quickly captured a large part of the diabetic market,

becoming a huge best seller for GSK. However, in 2007 questions were raised

whether the drug caused myocardial infarctions (MIs or heart attacks). At that time,

42 studies were identified by investigators, almost all of which had been sponsored

by GSK. Most of the studies were small, involving no more than a few hundred

subjects, but two were large, involving several thousand subjects. Twenty-six

studies showed higher MI rates for subjects in the Avandia arm compared with a

placebo or standard treatment; 11 studies showed a lower rate of MIs; and one

showed equal rates. Four studies had no MIs in either arm. With one exception,

none of the studies were statistically significant, and the one which was significant

showed a lower rate of MIs in the Avandia arm.

Table 8.2.1b. Findings of Bendectin cohort studies

Exposed Not Exposed

First author # Infants

#

Malformed # Infants

#

Malformed Log RRc
S.E. log

(RRc)

Bunde 2,218 11 2,218 21 �0.654 0.303

Brit. GP 70 1 606 21 �0.892 0.826

Milkovich 628 14b 9,577 343b �0.478 0.223

Newman 1,192 6 6,741 70 �0.734 0.343

Smithells 1,622 27 652a 8 0.307 0.332

Heinonen 1,000 45 49,282 2,094 0.058 0.124

Michaelis 951 20 11,367 175 0.307 0.195

Fleming 620 8 22,357 445 �0.431 0.296

Jick 2,255 24 4,582 56 �0.139 0.202

Gibson 1,685 78 5,771 245 0.086 0.104

Total 12,241 234 113,153 3,478
aExposed over 12 weeks
bComputed from the given rates
cRelative risk. The columns of Log RR and S.E. log (RR) come from court documents and do not

necessarily agree with values calculated from the raw frequencies.
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Table 8.2.2. Myocardial infarctions in Avandia studies

Study number Avandia N Avandia MI’s Control N Control MI’s

1 357 2 176 0

2 391 2 207 1

3 774 1 185 1

4 213 0 109 1

5 232 1 116 0

6 43 0 47 1

7 121 1 124 0

8 110 5 114 2

9 382 1 384 0

10 284 1 135 0

11 294 0 302 1

12 563 2 142 0

13 278 2 279 1

14 418 2 212 0

15 395 2 198 1

16 203 1 106 1

17 104 1 99 2

18 212 2 107 0

19 138 3 139 1

20a 196 0 96 0

21 122 0 120 1

22 175 0 173 1

23 56 1 58 0

24 39 1 38 0

25 561 0 276 2

26 116 2 111 3

27 148 1 143 0

28 231 1 242 0

29 89 1 88 0

30 168 1 172 0

31a 116 0 61 0

32 1,172 1 377 0

33a 706 0 325 0

34 204 1 185 2

35 288 1 280 0

36 254 1 272 0

37 314 1 154 0

38a 162 0 160 0

39 442 1 112 0

40 394 1 124 0

41 2,635 15 2,634 9

42 1,456 27 2,895 41

42 1,456 27 2,895 41

Totals 15,556 86 12,277 72
aObserved Avandia and control group event frequencies¼ 0
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The data for the 42 studies are shown in Table 8.2.2. In the notation of

Section 8.1, the elements of the Mantel-Haenszel estimate of the common odds

ratio and the RGB formula for the variance of its logarithm are: B¼ 43.064,

C¼ 30.179, ∑iPiBi¼ 23.364, ∑iPiCi¼ 16.338, ∑iQiBi¼ 19.700, and

∑iQiCi¼ 13.842.

Questions

1. Assuming that there is a common odds ratio underlying the tables, compute the

Mantel-Haenszel estimate for it and a 95% confidence interval for the estimate.

What do you conclude?

2. A weighted average of the log odds ratios in the individual studies, with the

weights inversely proportional to the variance of the respective point estimates,

is another method for estimating the logarithm of a common odds ratio. To apply

this method to tables with zero cells, it is necessary to add some value to each

cell of such tables (otherwise the OR for those tables would be zero or unde-

fined). When 0.5 is added (a common choice) the result for the Avandia data is

OR¼ 1.26, which is not significant at the two-tailed 0.05 level. Which method/

result is to be preferred?

3. A subsequent large-scale randomized controlled trial in diabetic patients showed

a non-significant hazard rate ratio of 1.14 with a wide 95% confidence interval

(0.80, 1.63). Under what circumstances, if any, may an expert validly rely on a

meta-analysis that shows a statistically significant result when subsequent large-

scale randomized controlled trials show a non-significant result?

Source

Finkelstein & Levin, Meta-Analysis of “Sparse” Data: Perspectives from the
Avandia Case, 52 Jurimetrics 123 (2012); Nissen &Wolski, Effect of Rosiglitazone
on the Risk of Myocardial Infarction and Death from Cardiovascular Causes,
356 N. Eng. J. Med. 2457 (2007).
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Sampling Issues 9

9.1 The theory of random sampling

The objective of random sampling is to be able to draw valid statistical inferences

about properties or parameters of the population from which the sample is drawn.

For example, a random sample of a company’s employee medical claims drawn for

auditing may have the purpose of estimating the proportion of improper allowances

in the entire set of claims for a given time period. Other statistical inferences that

rely on sampling include hypothesis tests about purported parameter values, pre-

diction of future events, and selection or ranking of populations along some

dimension of preferability.

For valid sampling of discrete populations it is necessary to have an enumeration

of the population, called the sampling frame, available either physically or in

principle, so that the probability of selecting any possible sample is known in

advance. A simple random sampling procedure guarantees that each possible

sample of a given size is equally likely to be selected. Stratified random sampling

takes a simple random sample within each of several pre-specified subsets or strata

of the sampling frame.

A common misconception regarding random sampling is that the goal is to

obtain a representative sample of the population. The term has no definite meaning.

If the sole goal were representativeness in some defined sense, systematic but

non-random selection of units judged to be representative might well be preferable

to a simple random sample. The statistician’s reason for preferring a random

sample, as stated above, is to be able to make probabilistic statements, such as

the following: “the estimated proportion of improper allowances in the sampled

population is 0.10, and with 99% confidence the proportion is at least 0.05, in the

sense that if the true (population) proportion were any less, there would have been

less than a 1% chance of observing a sample with as high a proportion of improper

allowances as was in fact observed.” Without the probability space generated by the

random sampling procedure it becomes impossible, or at best speculative, to assign

quantitative statements about the reliability of inferences based on the sample.

# Springer Science+Business Media, LLC 2015
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While representativeness is not the primary goal of random sampling, it is true

that random sampling does tend to produce samples generally “like” the population

in the sense that the mean quantity of interest in the sample will likely be close to

that parameter in the population. This is a consequence of the law of large numbers:

sample means and proportions accurately approximate population means and

proportions with high probability in sufficiently large samples (see Section 1.2).

However, some imbalance almost always occurs. An important side benefit of

random sampling is that it reduces the opportunity for bias, conscious or uncon-

scious, to affect the resulting sample. We note that what is random, or unbiased, is

the sampling procedure, not the sample itself. The term “random sample” is

shorthand for “a sample generated by a randomization procedure.”

The random sample can be selected (i) by use of a table of random digits, or

appropriate “pseudo-random number generators” available on all computers and

many calculators; (ii) physical randomization devices such as a roulette wheel or a

lottery; (iii) systematic sampling, e.g., sampling every nth item from the population

ordered in suitable fashion. Of these methods, random number tables and generators

provide the most reliable randomization. Physical randomization devices often

produce questionable results. Systematic sampling is only random if the ordering

of the population is random with respect to the attribute sampled. Hidden

periodicities threaten the validity of a systematic scheme, e.g., sampling every

seventh item in a daily file would give biased results if there were weekly cycles

in the frequency of the sampled attribute. Note that “haphazard” and “convenience”

samples are not random samples. Sometimes the term probability sample is used to
distinguish random samples from these other types of samples.

Stratified and Cluster Sampling

With stratified random sampling we reinstate controlled features into the sampling

design. The relative proportion of the total sample size devoted to a given stratum

may be chosen to give that stratum its “fair share” according to its size in the

population. In this way, finely stratified random sampling can be both adequately

“representative” and still support statistical inferences within strata. Inferences can

then be combined across strata to arrive at general statements about the population

as a whole. For example, mortality rates are often estimated by stratified random

sampling within specific age- and sex-based strata. The specific mortality rates may

then be applied to the population age/sex structure to arrive at an estimated average

mortality rate, or they may be applied to a reference age/sex structure to arrive at a

“standardized” rate.

Stratified random sampling has another important property that often makes its

use imperative. The sampling units within a stratum may be more homogeneous in

terms of the properties being measured than they are across strata. In such cases

more precise estimates are obtained from a weighted average of stratum-specific

estimates than from a simple random sample. An extreme case makes the point

obvious. Suppose there are two strata: stratum A has a property occurring 100% of

the time; stratum B has the property occurring 0% of the time. Even a small random
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sample from each stratum can be used to infer correctly that the property occurs p%
of the time in the population, where p is the percentage share of stratum A. A simple

random sample, on the other hand, will provide an unbiased estimate of p, but with
extra variability due to the random mixture of stratum A and B units in the sample.

The optimal sampling scheme—i.e., the one that produces estimates with the

smallest sampling error–allocates sample sizes in proportion to the relative stratum

size times the stratum standard deviation. Most often, however, the stratum stan-

dard deviations will be unknown before sampling, in which case one usually

allocates the sample sizes in proportion to the stratum sizes. This is less efficient

than the optimal allocation unless the stratum standard deviations are equal, in

which case the methods are equally efficient. To get a more precise idea of how

much more efficient stratified sampling can be, the variance of the stratified

estimator of a sample mean (μ̂ ) when the sizes of the strata are known and sampling

is proportional to stratum size can be written as

Var μ̂ð Þ ¼
X
i

piσ
2
i =n;

where pi is the proportional size of the ith stratum, σ2
i

is the variance of the

population in the ith stratum, and n is the sample size. By contrast, if strata sizes

are unknown so that a simple random sample must be used, the variance of the mean

of the sample (X) can be written as

Var X
� � ¼ X

i

piσ
2
i þ

X
i

pi μi � μð Þ2
( )

=n ¼ σ2=n;

where σ2 is the marginal variance of a single randomly selected observation

X without regard to stratum, μi is the mean of the population in the ith stratum,

and the other terms are as defined above. Notice that the first term in the braces

(divided by n) is the variance of the mean of a stratified sample. If the strata are

ignored, the use of a simple random sample will increase the variance of the sample

mean by the second term within the braces (also divided by n). The equations make

clear that if X varies widely among strata, so that the second term is large relative to

the first, the variance of the stratified estimator μ̂ can be substantially smaller than

the variance of the simple mean X.
Cluster sampling uses a random sample of special units. These units may be

large, e.g. cities, in which case there is subsequent random selection from them, or

quite small, e.g. city blocks, in which case all members are interviewed. Cluster

sampling often provides an economical strategy for surveys in human populations.

When deciding upon the type of cluster to be sampled, e.g., census tracts, blocks, or

households, consideration should always be given to the cost of sampling the units

in relation to the variance of the estimate. Thus, one may select the type of unit as

the one which gives smallest variance for a given cost, or smallest cost for a given

variance. The variance of an estimate in cluster sampling is typically greater than in

9.1 The theory of random sampling 273



simple random sampling with the same total sample size, although the trade-off in

terms of cost economy is often well worth the inflation in variance.

The variance of a sample mean obtained from a single-stage cluster sample is

given by the variance that would obtain if the sample had been drawn by simple

random sampling, multiplied by a quantity called the variance inflation factor
(VIF). The VIF depends on two quantities: the size of the clusters sampled and

the homogeneity of the units within a cluster relative to that between clusters. The

latter quantity is most conveniently measured by the intracluster correlation
coefficient (ICC), which is defined to be the correlation that would appear between

pairs of observations sampled at random from the same randomly selected cluster.

If two subjects within a given cluster tend to be more similar than two subjects from

two different clusters, the ICC is positive. This reduces the information per subject

sampled and increases the variance of estimated means. (It is possible for the ICC to

be negative, in which case cluster sampling can be more efficient than random

sampling in terms of both cost and precision, although this situation occurs only

occasionally.) The variance inflation factor is given by the expression

VIF ¼ 1þ m� 1ð Þρ:
where ρ is the ICC and

m ¼
X

m2
i

.X
mi ¼

X
mi

�
mi

.X
mi

�
is a weighted average of the individual cluster sizes mi, weighted in proportion to

the cluster sizes themselves.

When the size of the cluster may be chosen by the survey designer, and the ICC

is positive and does not vary substantially across the different choices of cluster

size, the VIF formula shows that for a given total sample size it is better to sample

more clusters of smaller size than it is to sample fewer clusters of larger size.

Because cluster sampling produces observations that are not statistically inde-

pendent, special methods are required to estimate the population variance and ICC

before one can provide a correct standard error for estimated means or proportions.

Software packages such as SUDAAN (Survey Data Analysis) are generally

required in complex surveys to allow for the design effects introduced by clustering

and multistage sampling.

Stratified and cluster sampling are almost always needed when sampling a large

natural population. A good example, described in Zippo Manufacturing Company
v. Rogers Imports, Inc., 216 F. Supp. 670 (S.D.N.Y. 1963), was a survey to

determine whether Rogers lighters were confused with Zippo lighters. The universe

was the adult (over 18) smoking population (then 115 million people) of the

continental United States. Judge Fienberg described the stratified cluster sampling

method as follows:

Three separate surveys were conducted across a national probability sample of smokers,

with a sample of approximately 500 for each survey. The samples were chosen on the basis
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of data obtained from the Bureau of Census by a procedure which started with the selection

of fifty-three localities (metropolitan areas and non-metropolitan counties), and proceeded

to a selection of 100 clusters within each of these localities—each cluster consisting of

about 150–250 dwelling units—and then to approximately 500 respondents within the

clusters. The manner of arriving at these clusters and respondents within each cluster was

described in detail. The entire procedure was designed to obtain a representative sample of

all smoking adults in the country. The procedures used to avoid [or more properly, reduce]

sampling error and errors arising from other sources, the methods of processing, the

instructions for the interviewers, and the approximate tolerance limits for a sample base

of 500 were also described.

Id. at 681.

Ratio estimates

In estimating the size of some subgroup of a population from a sample, it is

sometimes more efficient to estimate the ratio of the subgroup to the population

in the sample; the ratio thus estimated is multiplied by a figure for the total

population obtained from other sources to arrive at an estimate of the subgroup.

This is called ratio estimation. Its advantage lies in the fact that, if the sizes of the

subgroup and the population are highly correlated in samples, their ratio will vary

less from sample to sample than either quantity separately; use of the ratio will thus

reduce the sampling error of the estimate.

Sampling with and without replacement

Random sampling from a finite population of size N with replacement means that

each possible sample of n units is equally likely, including those in which units may

be resampled two or more times. Sampling without replacement means that only

samples with n distinct units may be drawn. Usually survey sampling is done

without replacement for practical reasons, although when the population sampling

frame is large there is little difference between the two methods. For finite

populations of small size, however, sampling without replacement produces

estimates that are somewhat more precise than analogous estimates obtained with

replacement. This is because, as the sample size increases to an appreciable fraction

of the population, it becomes increasingly unlikely that the sample mean will vary

by a given amount from the population mean. The effect on the variance of the

sample mean is quantifiable as a multiplicative correction factor, known as the finite
population correction factor. The factor is (N� n)/(N� 1), where N is the size of

the population, and n is the size of the sample. Thus, the sample mean has a variance

equal to σ2=nð Þ N � nð Þ= N � 1ð Þ, which is approximately equal to σ2=nð Þ 1� fð Þ
when N is large, where f¼ n/N is the sampling fraction.

Nonsampling variability

In practice, sampling variation is rarely the only source of variability. The other

principal sources are (i) defects in the sampling frame involving incomplete or

inaccurate enumeration of the target populations; (ii) defects in methods of selection

that result in unequal probabilities of selection; and (iii) defects in collection of data
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from the sample (including such matters as nonresponse, evasive answer, and

recall bias).

A common misconception is that a sample’s precision depends on its size

relative to the size of the population; in this view, samples that are a tiny fraction

of the population do not provide reliable information about that population. The

more correct view is that if a population can be sampled correctly (a difficult task

for large and diverse populations), the precision of the sample depends principally

on the variability of the population, to a lesser extent on the sample size, and

perhaps most importantly on the avoidance of defects that create nonsampling

variation. A drop of blood is a good sample, even though it is a tiny fraction of

the body’s blood supply, because the heart is a good randomization device and

blood is a relatively homogeneous fluid. Skepticism about the validity of small

samples from large populations is justified when it is difficult or impossible to

compile a complete list. For this reason, public opinion surveys are likely to have

greater variability than that indicated by formal calculation of sampling variability.

For example, “random digit dialing” is a widely used method for conducting

telephone surveys. While the sampling procedure is random with respect to tele-

phone numbers, systematic differences do exist between those with and without

telephones. Many systematic errors or sampling biases have a potential for far more

serious distortion than does sampling variability. Some statisticians believe that an

estimate of nonsampling variability should be integrated with sampling variability

to derive confidence intervals for sampling estimates that reflect both sources of

error, but this is not yet the general practice.

Direct assessment of sampling and non-sampling error

Complex, multi-stage sampling plans often make it impossible to provide formulas

for sampling variability. One technique to measure such variability involves

splitting the sample in various ways and computing the sample results for each of

the subsamples. The variation in results provides a direct assessment of variability,

which is usually expressed as the root mean squared difference between each

subsample and the average of the subsamples. These techniques have the virtue

of measuring all variability, both sampling and nonsampling.

Sample v. census

In many cases, a well organized and well executed sample may be more accurate

than a census. The reason is that nonsampling errors can be minimized when

working with a smaller number of items or respondents, and such errors are often

more important than sampling errors. The Census Bureau itself at one time planned

to use post-census samples to correct the census for the undercount of some

minorities, but subsequently withdrew that proposal after litigation and criticism.

See Section 9.2.1.
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Acceptance of sampling

After some initial rejections, sampling is now widely accepted in judicial and

administrative proceedings, and required in numerous contexts by government

regulations. The use of sampling is expressly approved by theManual for Complex
Litigation, Third, 21.493 (1995). For some sampling guidelines developed for law

cases see, e.g., Glasser, Recommended Standards on Disclosure of Procedures
Used for Statistical Studies to Collect Data Submitted in Evidence in Legal
Cases, 39 The Record of the Association of the Bar of the City of New York

49 at 64 (Jan./Feb. 1984).

Further Reading

Cochran, Sampling Techniques (3rd ed., 2007).

Deming, Some Theory of Sampling (2010).

9.1.1 Selective Service draft lotteries

President Nixon’s executive order for the 1970 draft lottery provided that the

sequence for inducting men into military service would be based on birthdays

selected at random. The order provided:

That a random selection sequence will be established by a drawing to be

conducted in Washington, D.C., on December 1, 1969, and will be applied nation-

wide. The random selection method will use 366 days to represent the birthdays

(month and day only) of all registrants who, prior to January 1, 1970, shall have

attained their nineteenth year of age but not their twenty-sixth. The drawing,

commencing with the first day selected and continuing until all 366 days are

drawn, shall be accomplished impartially.

On the day designated above, a supplemental drawing or drawings will be

conducted to determine alphabetically the random selection sequence by name

among registrants who have the same birthday.

The random selection sequence obtained as described above shall determine the

order of selection of registrants who prior to January 1, 1970, shall have attained

their nineteenth year of age but not their twenty-sixth and who are not volunteers

and not delinquents. New random selection sequences shall be established, in a

similar manner, for registrants who attain their nineteenth year of age on or after

January 1, 1970.

The random sequence number determined for any registrant shall apply to him

so long as he remains subject to induction for military training and service by

random selection.

Random Selection for Military Service, Proc. No. 3945, 34 Fed. Reg. 19,017

(1969), reprinted in 50 U.S.C. 455 app. (1970).

The sequence was important because Selective Service officials announced that

those in the top third would probably be called, those in the middle third would

possibly be called, and those in the bottom third were unlikely to be called.

9.1 The theory of random sampling 277



Pursuant to this order, 366 birth dates were marked on slips and put into a bowl

(beginning with 31 for January, etc.). After stirring, the slips were drawn one by one

from the bowl. All men with the given birth dates were called to military service in

the order of selection. Thus, since September 14 was the first date selected, all men

born on September 14 were selected first. Only the first 100 were to be drafted from

any birth date. The data appear in Table 9.1.1a.

In the 1971 draft lottery, two bowls were used; in one were slips for 365 days

(omitting February 29) and in the other were slips numbered from 1 to 365. A date

drawn from one bowl was given a selection number by drawing from the second

bowl. The data from this drawing are given in Table 9.1.1b.

Table 9.1.1a. 1970 Draft: Random selection sequence, by month and day

Jan. Feb. Mar. Apr. May June July Aug. Sep. Oct. Nov. Dec.

1 305 086 108 032 330 249 093 111 225 359 019 129

2 159 144 029 271 298 228 350 045 161 125 034 328

3 251 297 267 083 040 301 115 261 049 244 348 157

4 215 210 275 081 276 020 279 145 232 202 266 165

5 101 214 293 269 364 028 188 054 082 024 310 056

6 224 347 139 253 155 110 327 114 006 087 076 010

7 306 091 122 147 035 085 050 168 008 234 051 012

8 199 181 213 312 321 366 013 048 184 283 097 105

9 194 338 317 219 197 335 277 106 263 342 080 043

10 325 216 323 218 065 206 284 021 071 220 282 041

11 329 150 136 014 037 134 248 324 158 237 046 039

12 221 068 300 346 133 272 015 142 242 072 066 314

13 318 152 259 124 295 069 042 307 175 138 126 163

14 238 004 354 231 178 356 331 198 001 294 127 026

15 017 089 169 273 130 180 322 102 113 171 131 320

16 121 212 166 148 055 274 120 044 207 254 107 096

17 235 189 033 260 112 073 098 154 255 288 143 304

18 140 292 332 090 278 341 190 141 246 005 146 128

19 058 025 200 336 075 104 227 311 177 241 203 240

20 280 302 239 345 183 360 187 344 063 192 185 135

21 186 363 334 062 250 060 027 291 204 243 156 070

22 337 290 265 316 326 247 153 339 160 117 009 053

23 118 057 256 252 319 109 172 116 119 201 182 162

24 059 236 258 002 031 358 023 036 195 196 230 095

25 052 179 343 351 361 137 067 286 149 176 132 084

26 092 365 170 340 357 022 303 245 018 007 309 173

27 355 205 268 074 296 064 289 352 233 264 047 078

28 077 299 223 262 308 222 088 167 257 094 281 123

29 349 285 362 191 226 353 270 061 151 229 099 016

30 164 217 208 103 209 287 333 315 038 174 003

31 211 030 313 193 011 079 100
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Questions

1. Looking at Fig. 9.1.1, a scatterplot for the 1970 lottery, do the data appear

uniformly distributed?

2. Classifying sequence numbers into two or more appropriate subsets, find the

tally for each birth month and use chi-squared to test for randomness in the 1970

lottery. Use the same method to test for randomness in the 1971 draft lottery.

3. What conclusions do you draw about the randomization mechanisms in the two

lotteries?

Table 9.1.1b. 1971 Draft: Random selection sequence, by month and day

Jan Feb. Mar. Apr. May June July Aug. Sep Oct. Nov. Dec.

1 133 335 014 224 179 065 104 326 283 306 243 347

2 195 354 077 216 096 304 322 102 161 191 205 321

3 336 186 207 297 171 135 030 279 183 134 294 110

4 099 094 117 037 240 042 059 300 231 266 039 305

5 033 097 299 124 301 233 287 064 295 166 286 027

6 285 016 296 312 268 153 164 251 021 078 245 198

7 159 025 141 142 029 169 365 263 265 131 072 162

8 116 127 079 267 105 007 106 049 108 045 119 323

9 053 187 278 223 357 352 001 125 313 302 176 114

10 101 046 150 165 146 076 158 359 130 160 063 204

11 144 227 317 178 293 355 174 230 288 084 123 073

12 152 262 024 089 210 051 257 320 314 070 255 019

13 330 013 241 143 353 342 349 058 238 092 272 151

14 071 260 012 202 040 363 156 103 247 115 011 348

15 075 201 157 182 344 276 273 270 291 310 362 087

16 136 334 258 031 175 229 284 329 139 034 197 041

17 054 345 220 264 212 289 341 343 200 290 006 315

18 185 337 319 138 180 214 090 109 333 340 280 208

19 188 331 189 062 155 163 316 083 228 074 252 249

20 211 020 170 118 242 043 120 069 261 196 098 218

21 129 213 246 008 225 113 356 050 068 005 035 181

22 132 271 269 256 199 307 282 250 088 036 253 194

23 048 351 281 292 222 044 172 010 206 339 193 219

24 177 226 203 244 022 236 360 274 237 149 081 002

25 057 325 298 328 026 327 003 364 107 017 023 361

26 140 086 121 137 148 308 047 091 093 184 052 080

27 173 066 254 235 122 055 085 232 338 318 168 239

28 346 234 095 082 009 215 190 248 309 028 324 128

29 277 147 111 061 154 004 032 303 259 100 145

30 112 056 358 209 217 015 167 018 332 067 192

31 060 038 350 221 275 311 126
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Source

Fienberg, Randomization and Social Affairs: the 1970 Draft Lottery 171 Science

255 (1971); see also, 172 Science 630 (1971); Rosenblatt & Filliben, Randomiza-
tion and the Draft Lottery, 171 Science 306 (1971).

9.1.2 Uninsured motor vehicles

When Michigan required “no fault” insurance coverage of motor vehicles, the law

was challenged on constitutional grounds. One challenge was that the law com-

pelled purchase of insurance by all motorists, including “many poor people who

had the right to drive but had not the means to buy insurance.” The question of how

many uninsured motorists would be coerced by the law to buy insurance became a

key issue in the trial. To resolve this question, the state proposed drawing a random

sample of registered vehicles to investigate their insurance status.

At the time of trial, the state’s computer file listed 4,569,317 authorized license

plate numbers; of these, 63,652 plates had been stolen, were missing, or had never

been manufactured, leaving 4,505,665 passenger vehicles registered in Michigan.

A two-stage sample was drawn: first, a systematic sample of every 1,126th number

from the total file, starting with the randomly selected number 577, to produce a

Fig. 9.1.1. The 1970 Draft: Random selection sequence vs. birth date
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sample of just under 4,000 vehicles; second, a subsample of every 16th number,

starting with the random number 9, a subsample of 249 vehicles. This sample was

the largest that could be investigated in the time allowed. Investigation determined

that 233 vehicles were still being operated in the state, and that of this number

226 were insured. The statistician estimated from these data that 226/233, or 97% of

the vehicles in the state were insured.

Questions

1. Compute a 95% confidence interval for this estimate.

2. Assuming the sampling methodology was correct, is it fair to argue that the

sample (233 vehicles) is too small to “represent” the universe of motor vehicles?

3. What would be the basis for arguing that the statistician’s estimate understates

the true percentage of uninsured vehicles?

Source

Katz,Presentation of a confidence interval estimate as evidence in a legal proceeding,
Dept. of Stat., Mich. St. U. (1974).

9.1.3 Mail order survey

A mail-order house in Colorado sells stationery and novelty items in California and

other states. Because the company had a “substantial presence” in the state,

California claimed a sales tax on the company’s California sales for the period

1972–1976. The company responded that part of its sales were at wholesale, for

which no tax was due.

To substantiate its claim, the company made a sample survey of its mail orders.

The survey procedure, agreed to in advance by the California Board of Equaliza-

tion, consisted of a questionnaire mailed to the California entity that put in every

35th California order placed in 1975. The questionnaire asked whether the purchase

was for resale or personal use. Of 5,121 entities in the sample, 2,966 responded to

the questionnaire, a typical response rate for such mail surveys (Tables 9.1.3a and

9.1.3b). Among survey respondents, the aggregate value of orders for resale was

$8,029 out of a total (for respondents) of $38,160. The value of respondents’ resale

orders was thus $8,029/$38,160, or 21% of their total orders. The total value of

Table 9.1.3a. Percentage distribution of orders by size (by number not value)

Respondents Nonrespondents

Under $10 44 49

$10–$29 48 42

$30–$49 6 6

$50 and up 2 3
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orders in the sample (respondents and nonrespondents combined) was $66,016. The

value of respondents’ orders for resale was thus $8,029/$66,016, approximately

12% of all orders in the sample. The company’s total mail-order sales in California

for the period were $7.01 million.

Question

The company proposed allocating 21% of its business to the resale category, for

which no tax is due. The board proposed allocating 12% to that category. Which has

the better case?

Source

Freedman, A Case Study of Nonresponse: Plaintiff v. California State Board of
Equalization (unpublished ms.). For a similar survey that was not allowed by the

court, see Sprowls, The Admissibility of Sample Data into a Court of Law: a Case
History, 4 UCLA L. Rev. 222 (1956-57).

Notes

Missing information and nonresponse are endemic problems in statistical samples

and surveys. When the sampling technique is proper and there is indication from a

covariate that the sample is not skewed, studies with substantial missing data and

nonresponse have been accepted by the courts. Compare, Vuyanich v. Republic
National Bank, 505 F. Supp. 224, 255–58 (N.D. Tex. 1980) (party challenging data
should demonstrate that errors and omissions are not distributed randomly and bias

the results; despite challenges, data base was accepted); and Rosado v. Wyman,
322 F. Supp. 1173 (E.D.N.Y. 1970) (due to the passage of time only 62.6% of the

welfare records in a random sample of 5,344 could be found; the court accepted the

sample after noting that the average payment and family size approximated those

known characteristics of the whole population) with E.E.O.C v. Eagle Iron Works,
424 F. Supp. 240, 246–47 (S.D. Ia. 1976) (data for 60% of current and former

employees rejected where all the missing racial data were from former employees)

and Bristol Meyers v. F.T.C., 185 F. 2d 258 (4th Cir. 1950) (survey with 20%

response rate rejected; no followup study of the nonrespondents). See also

Section 13.5 at p. 403.

The courts have generally been reluctant to accept estimates of taxes due based

on samples taken by taxing authorities when the taxpayer has kept required records,

but have permitted such estimates when required records are missing. See Bright,

Kadane, and Nagin, Statistical Sampling in Tax Audits, 1988 Am. Bar Foundation

Table 9.1.3b. Percentage distribution of orders by shipping address

Respondents Nonrespondents

San Francisco 23 24

Los Angeles 27 25

Other 50 51
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Res. J. 305; Narmac, Inc. v. Tracy, 614 N.E.2d 1042 (Ohio 1993); Wallach v. Tax
Appeals Tribunal, 614 N.Y.S.2d 647 (3rd Dep’t 1994). Pennsylvania’s Department

of Revenue has been authorized by statute to determine tax liabilities “based upon a

reasonable statistical sample or test audit” when the taxpayer’s records are incom-

plete or when review of each item “would place an undue burden upon the

Department.” Act of June 30, 1995 (P.L. 139, No. 21), Section 2915-A.

9.1.4 Domino effect

Amstar Corp. sued Domino’s Pizza, Inc., claiming that defendant’s use of the name

“Domino” on its pizza infringed on the Domino Sugar trademark. Both sides

presented survey evidence on whether defendant’s use of the name “Domino”

tended to create confusion among consumers.

Plaintiff surveyed 525 persons in 10 cities in the eastern United States (two of

which had Domino’s Pizza outlets). The persons interviewed were women reached

at home during the day who identified themselves as the household member

responsible for grocery buying. Shown a Domino’s Pizza box, 44.2% of those

interviewed indicated their belief that the company that made the pizza

made other products; 72% of that group (31.6% of all respondents) believed that

the pizza company also made sugar.

Question

What criticisms do you have of the sampling frame for this study?

Source

Amstar Corp. v. Domino’s Pizza, Inc., 205 U.S.P.Q. 128 (N.D. Ga. 1979), rev’d,
615 F. 2d 252 (5th Cir. 1980).

Notes

The use of sample surveys in trademark infringement cases to establish or refute

claims of consumer confusion is now well established. Zippo Manufacturing
Co. v. Rogers Imports, Inc., 216 F. Supp. 670 (S.D.N.Y. 1963) was a seminal

case in which a finding of confusion was based on such a survey. See p. 274 for a

description of the stratified cluster samples used in that case. A much followed

statement of the requirements for admissibility of surveys was given by Judge

Glasser in Toys “R” Us, Inc. v. Canarsie Kiddie Shop, Inc., 559 F. Supp. 1189, 1205
(E.D.N.Y. 1983):

The trustworthiness of survey evidence depends upon foundation evidence that (1) the

‘universe’ was properly defined, (2) a representative sample of that universe was selected,

(3) the questions to be asked of interviewees were framed in a clear, precise and

non-leading manner, (4) sound interview procedures were followed by competent

interviewers who had no knowledge of the litigation or of the purpose for which the survey
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was conducted, (5) the data gathered was accurately reported, (6) the data was analyzed in

accordance with accepted statistical principles, and (7) objectivity of the entire process was

assured.

Do you have any objection to Judge Glasser’s formulation? The survey in Toys “R”

Uswas conducted by “random interception” of customers at shopping areas, such as

shopping malls. Would that method of selection satisfy the described standard?

Surveys purporting to show confusion are frequently rejected, perhaps more fre-

quently than those purporting to show little or no confusion. See, e.g., Alltel Corp.
v. Actel Integrated Communications, Inc., 42 F. Supp. 2d 1265, 1269, 1273

(S.D. Ala. 1999) (survey purporting to show confusion rejected); Cumberland
Packing Corp. v. Monsanto Company, 32 F. Supp. 2d 561 (E.D.N.Y. 1999)

(see Section 9.1.5; same); Levi Strauss & Co. v. Blue Bell, Inc, 216 U.S.P.Q. 606,

modified, 78 F.2d 1352 (9th Cir. 1984) (defendant’s survey showing that an

overwhelming majority of shirt purchasers were not confused found more persua-

sive than plaintiff ’s survey, which showed 20% consumer confusion); but see, e.g.,

Sterling Drug, Inc. v. Bayer AG, 14 F. 3d 733, 741 (2d Cir. 1994) (survey showing

confusion accepted).

Further reading

Diamond, Reference Guide on Survey Research in Federal Judicial Center,
Reference Manual on Scientific Evidence 359 (3rd ed. 2011).

9.1.5 NatraTaste versus NutraSweet

The manufacturer of NatraTaste, an aspartame sweetener, brought suit against the

maker of NutraSweet and EQUAL, other aspartame sweeteners, for trade dress

infringement in violation of the Lanham Act. A product’s trade dress is its total

image, including features such as size, shape, color or color combinations, texture,

or graphics. Plaintiff contended that the NutraSweet box in which the packets were

sold too closely resembled the trade dress of NatraTaste’s box. To be protected, a

trade dress must be so distinctive as to point to a single source of origin. A generic

trade dress, i.e., one pointing to a category, but not to a particular product, is

ineligible for protection under the act. The court found that both the NatraTaste

and NutraSweet trade dresses were distinctive and then turned to the question of

confusion.

As the court described it, plaintiff’s NatraTaste box is rectangular with over-all

blue coloring. The name “NatraTaste” appears in large cursive font on the front and

back panels of the box. The letters are green with white lining and stand out against

the blue background. There is a photograph of a coffee cup with a saucer in the

center right. Resting on the saucer is a photograph of an individually wrapped paper

packet marked “NatraTaste.” Another coffee cup to the lower left and saucers to the

upper left cast shadows in the background. In the center right is a bright pink burst
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containing a comparative advertisement stating “Same Sweetener AS EQUAL. . .
At A Sweeter Price.” The top and side panels also say “NatraTaste” in the same

style and format as in the front and back panels, but in slightly smaller font. Plaintiff

introduced NatraTaste to the table-top market in 1993, shortly after defendant’s

patent on aspartame expired.

Defendant’s NutraSweet box is also rectangular, but not as wide along the front

and the side panels are thinner than the NatraTaste box. Although the box is light

blue, there is less variation in blue tones than on the NatraTaste box. At the top of

the front panel of the box is the red and white NutraSweet swirl logo, which stands

out against the blue background. Below the logo is the trademark “NutraSweet” in

big, black, block print. The bottom half of the front panel is largely taken up by a

picture of a coffee cup on a saucer. An individual packet of NutraSweet is on the left

side of the saucer, tilted against the cup so that the NutraSweet swirl logo and the

NutraSweet trademark printed on the packet are visible. The back panel is identical

to the front panel. The two side panels also display prominently the logo and the

NutraSweet trademark. Defendant introduced and advertised Nutrasweet as a

branded ingredient of foods and soft drinks in the 1980s, entered the table-top

market with the aspartame sweetener EQUAL in 1982, and in 1997 introduced

NutraSweet into that market.

Plaintiff claimed that points of similarity likely to cause confusion were (1) blue

lighting and “the pronounced shadowing and gradation of the blue shades;” (2) a

cup of black coffee (although NutraSweet’s coffee is dark brown); (3) a packet

resting on a saucer; and (4) a cup and a saucer resting on an undefined surface.

Plaintiff did not claim that similarity of names was a source of confusion. The court

commented that “The relevant inquiry is not how many details the two boxes share.

It is whether the similarities create the same general, overall impression such as to

make more likely the requisite confusion among the appropriate purchasers.”

As part of its case that the boxes were confusingly similar, plaintiff introduced

studies of consumer confusion. Respondents were selected from users or buyers of

sugar substitutes in the previous six months. In the Two-Room, Array-Methodology

study, respondents were shown a NatraTaste box in one room and were then

escorted into a second room in which five other boxes of sweeteners, including

NutraSweet, were displayed in a row on a table (the order was rotated). The four

“control” boxes were Sweet Servings, Equal, Sweet One, and Sweet Thing. Only

one of the control boxes had a blue background, and its blue was indigo. They were

then asked: “Do you think any of these sugar substitutes is made by the same

company as the first box you saw?” Those who answered affirmatively were then

asked to identify the boxes and to give their reasons. No instruction was given

against guessing.

The results were these: of the 120 people surveyed, 43% picked the NutraSweet

box as made by the same company that made the NatraTaste box, while

the percentages for the four control boxes were 13, 18, 7, and 8%, respectively.

The average for the control boxes was thus 12%, which the expert deducted from

the 43% to arrive at 31% as the level of consumer confusion attributable to trade

dress with regard to the NutraSweet box.
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Among its other findings, the court held that the color blue signified aspartame in

the sweetener industry (pink was for saccharin); being generic, it could not be a

protected element of NatraTaste’s trade dress.

Questions

1. What objections do you have with regard to the entry criteria and the method of

conducting the study?

2. What criticisms do you have of the expert’s analysis of the responses?

Source

Cumberland PackingCorp. v.MonsantoCompany, 32 F. Supp. 2d 561 (E.D.N.Y. 1999).

9.1.6 Cocaine by the bag

In People v. Hill, 524 N.E. 2d 604 (Ill. App. 1998), defendants were convicted of

possessing more than 30 grams of substance containing cocaine. They had been

caught with some 55 plastic bags containing white powder. Although the opinion

is not perfectly clear, it appears that the government chemist selected two or three

bags at random, definitively tested them, and found that they each contained

cocaine. The total weight of substance in those bags was 21.93 grams. The other

bags were subjected to a color test, the results of which led the chemist to

conclude, and she so testified, that they probably also contained cocaine. How-

ever, since the color test was only preliminary, the chemist conceded that it would

not prove to a reasonable scientific certainty that the substance being examined

was cocaine.

The appellate court allowed the conviction to stand only for the offense of

possessing less than 30 grams of cocaine, since only 21.93 grams had been established

bydefinitive tests. It held that “where separate bagsor containers of suspected drugs are

seized, a sample fromeach bag or containermust be conclusively tested to prove that it

contains a controlled substance.” Id. at 611. In reaching this conclusion the court

distinguished People v Kaludis, 497 N.E.2d 360 (Ill. App. 1996), a case decided two
years earlier, inwhich the issuewaswhether randomsamplingwas sufficient to sustain

a conviction for possessionof100 tablets suspected ofbeingmethaqualone.The tablets

were of the same size, shape, and hardness, and all were falsely marked “Lemmon

714.” The chemist conducted tests on several randomly selected tablets, which conclu-

sively established the presence of methaqualone. On appeal, the court concluded that

where the substance is homogeneous, random sampling provides a sufficient basis for

proving beyond a reasonable doubt that all of the tablets contained a controlled

substance. Id. at 365–366.
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Questions

1. Assuming that the chemist selected three bags at random for definitive tests, use

a confidence interval analysis to explore whether the sample data should be

deemed sufficient for a jury to find beyond a reasonable doubt that at least some

of the unsampled bags contained cocaine.

2. Use the hypergeometic distribution to demonstrate that the lower limit of a 95%

confidence interval is 21 bags.

3. Do you agree that Hill was properly distinguished from Kaludis?

Notes

Estimating the amount of drugs for purposes of defining the offense or for sentencing

has become an important issue in enforcement of the drug laws. Random testing has

generally been approved by the courts. See Frank, et al., Representative Sampling of
Drug Seizures in Multiple Containers, 36 J. Forensic Sci. 350 (1991) (listing cases

and discussing construction of a lower-tail confidence limit for the number of drug

containers in a seizure based on analysis of a sample of such containers). For another

example of the problems, see Section 3.5.1.

9.1.7 ASCAP sampling plan

The American Society of Composers, Authors & Publishers (“ASCAP”) is a

performing rights society that issues licenses for the performance of music

composed and published by its members. ASCAP has over 17,000 writer-members,

2,000 publisher-members, and 39,000 licensees. Its fees are collected primarily

from local television and radio stations and from television networks pursuant to

“blanket” licenses, which give the licensees the right to perform any piece

in ASCAP’s repertoire. Revenues are distributed among ASCAP’s members,

approximately one-half to the publishers and one-half to the writers.

The amount distributed to each member is based upon how often and how

prominently his or her music is played. Music on network television is censused,

but plays on local radio and local television—which account for the bulk of

ASCAP’s revenue—are sampled. The general features of the sampling plan are

controlled by the provisions of an amended antitrust consent decree obtained by the

United States in proceedings against ASCAP. The provisions of the decree, as

amended in 1950, are that ASCAP is required “to distribute to its members the

monies received by licensing rights of public performance on a basis which gives

primary consideration to the performance of the compositions of the members as

indicated by objective surveys of performances. . . periodically made by or for

ASCAP.” U.S. v. ASCAP, 1950–1951 Trade Cas. (CCH), }62,595 at p. 63,755

(consent injunction filed March 14, 1950). In 1960, this general provision was

implemented by a more detailed decree. U.S. v. ASCAP, 1960 Trade Cas. (CCH), }
69,612 at p. 76,468 (consent injunction filed Jan. 7, 1960).
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ASCAP implemented the amended decree by designing a random, stratified, and

disproportionate sample for non-network television and radio.

The sample was stratified first by media (local TV, local radio, wired music,

and other services); second, by major geographic regions (New England, Middle

Atlantic, etc.); third, by type of community (standard metropolitan, other metro-

politan, non-metropolitan, rural); fourth, by size of station measured by the

ASCAP license fee (through categories); and a separate stratum was set up for

solely FM stations. Within each cell a sample was drawn at random. Sample

results were then multiplied by statistical multipliers to blow the sample up to the

universe and by economic multipliers to reflect the value of the performances to

ASCAP.

In ASCAP’s report to its members, ASCAP’s expert made these statements

about the sampling plan:

Randomness: What it is and how achieved

(a) Scientific process of selection so that sample differs from universe it

represents only by chance.

(b) Which days of the year, which times of day, and which stations are included

in the sample are determined by statistical laws.

(c) Each playing has a knowable chance of inclusion in the sample.

Sampling Precision

(a) Sampling precision is the degree to which the sample represents the

universe.

(b) The less the sampling precision, the greater the overstatement or under-

statement of a member’s playings.

(c) Sampling precision is greater for a composition with many playings and is

least when playings are few.

(d) To increase sampling precision for works with few playings requires

expensive, overall increases in sample size and leaves less money for

distribution.

Questions

1. To what extent are the above statements correct?

2. What types of data should the court require in order to support estimates of the

accuracy of the samples?
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9.1.8 Current Population Survey

The Census Bureau conducts a monthly sample survey of the population called the

Current Population Survey (CPS). Among other things, the Bureau of Labor

Statistics uses these data to generate unemployment figures. The CPS is

redesigned every ten years to take advantage of population counts in the decennial

census, but the basic features of the sampling plan remain fairly constant.

The Bureau begins the CPS by dividing the United States into 3,141 counties and

independent cities, which are grouped together to form 2,007 Primary Sampling

Units (PSUs). Each PSU consists of either a city, a county, or a group of contiguous

counties. PSUs are then further grouped into 754 strata, each within a state. Some of

the largest PSUs, like New York or Los Angeles metropolitan areas within their

respective states, are thought to be unique, and constitute strata all by themselves.

There are 428 PSUs that are in strata all by themselves. The remaining 326 strata

are formed by combining PSUs that are similar in certain demographic and

economic characteristics, like unemployment, proportion of housing units with

three or more people, numbers of people employed in various industries, and

average monthly wages for various industries.

The sample is chosen in stages. In the first stage, one PSU is selected from each

stratum. PSUs that are in strata all by themselves are automatically included. PSUs

that are combined with others in a stratum are selected using a probability method

which ensures that, within each stratum, the chance of a PSU getting into the sample

is proportional to its population.

Within each PSU, working with census block data, housing units are sorted by

geographic and socioeconomic factors and are assembled into groups of four

neighboring households each. At the second and final stage, a systematic sample

of every nth group in the PSU is then selected. Every person aged sixteen or over

living in a selected group is included in the sample. The 1999 CPS included about

50,000 households and about 1 person in 2,000 (from the civilian noninstitutional

population aged 16 and over).

Because the sample design is state-based, the sampling ratios differ by state and

depend on state population size as well as both national and state reliability

requirements. The state sampling ratios range roughly from 1 in 100 households

to 1 in 3,000 households. The sampling ratio used within a sample PSU depends on

the probability of selection of the PSU and sampling ratio for the state. In a sample

PSU with a probability of selection of 1 in 10 and a state sampling ratio of 1 in

3,000, a within-PSU sampling ratio of 1 in 300 groups achieves the desired ratio of

1 in 3,000 for the stratum.

One important use of the CPS is to measure unemployment. Suppose that in one

month the Bureau’s sample consisted of 100,000 people, 4,300 of whom were

unemployed. The Bureau could estimate a national unemployment figure by

multiplying 4,300 by the factor 2,000: 4,300� 2,000¼ 6,800,000. However, the

Bureau does not apply the same weight to everyone in its sample. Instead, it divides

the sample into groups (by age, sex, race, Hispanic origin, and state of residence)

and weights each group separately.

9.1 The theory of random sampling 289



One group, for example, consists of white men aged 16–19. (We ignore state of

residence and use national figures in this example.) The Bureau uses census data to

estimate the total number of these men in the civilian noninstitutional population of

the country, correcting for known trends in population growth. Suppose this

figure was about 6.5 million. If in one month 4,400 people turned up in the sample,

of whom 418 were unemployed, the Bureau would weight each such unemployed

person in the sample by the factor 6.5 million/4,400¼ 1,477 instead of 2,000. The

Bureau therefore estimates the total number of unemployed white men aged 16–19

in the civilian noninstitutional population as 1,477� 418¼ 617,386.

Each group gets its own weight, depending on the composition of the sample.

The total number of unemployed people is estimated by adding up the separate

estimates for each group.

The Bureau estimates that the current sample design maintains a 1.9%

coefficient of variation (CV) on national monthly estimates of unemployment,

using an assumed 6% level of unemployment as a control to establish consistent

estimates of sampling error.

Questions

In making the CPS the Census Bureau uses stratified sampling, cluster sampling,

and ratio estimation.

1. How is each method used?

2. What is the purpose of each method?

3. What is each method’s effect on sampling error compared with a simple random

sample of the same size from the entire population?

4. What factors should influence the sampling ratios used in the systematic samples

within PSUs?

5. Assuming the given value for the CV, what would be a 90% confidence interval

for a national unemployment estimate?

Source

Freedman, Pisani & Purvis, Statistics, ch. 22 (3rd ed. 1998). Bureau of Labor

Statistics, U.S. Dep’t of Labor, How the Government Measures Unemployment,
available online at <www.bls.gov/cps_htgm.htm>; other documentation can be

found at<www.bls.gov/cps/documentation.htm>.

9.1.9 Insurance payments to doctors

The ABC health insurance company makes payments to doctors for covered

medical treatments, the amount of such payments based on codes for each

patient-visit set by the doctor from a code book. If the company suspects a doctor
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of systematically “upcoding” his claims—i.e. submitting a higher code requiring a

larger payment than can be documented—or performing unnecessary procedures, it

disputes the claims and hires an independent coding company to recode the

procedures. Damages are computed as the difference between the payment received

by the doctor from the insurance company less the amount that would have been

payable under the “correct” coding. To estimate the mean damage per claim in a

category of claims (called a stratum) a statistician for the company proceeds as

follows: (1) He takes a simple random sample of the doctor’s patients over some

period of time (usually seeking to obtain about 30 or more patients covering up to

six years of claims). All of the claims for each patient sampled comprise a cluster

sample of claims. (2) He obtains the estimated mean and sample standard deviation

for the damage in each stratum. (3) For any stratum jwith only one claim per patient

in the sample, he estimates the standard error of the mean damage per claim,

denoted by s.e.j, by dividing the standard deviation in that stratum by the square

root of Nj, the number of claims sampled in the stratum. (4) For any stratum with

multiple claims per patient he accounts for cluster sampling by multiplying the

standard error for such claims by the square root of the variance inflation factor.

As stated in Section 9.1, the variance inflation factor is equal to VIFj¼
1 + (m j� 1)ICCj, where ICCj is the intracluster correlation coefficient and wherem j

is the cluster-size-weighted average of the cluster sizes for each cluster of claims in

the jth stratum. The intracluster correlation coefficient can be estimated as a function

of the difference between the “between mean squares” and the “within mean

squares” from a one-way analysis of variance (see Section 7.2) wherein each patient

is a “group” and each claim damage is an “observation.” The “between mean

squares” in a given stratum reflects the variability of each patient’s mean claim

damages from patient to patient. The “within mean squares” reflects the variability of

each damage claim within patients about their patient-specific means.

Continuing, the statistician then estimates the total damage in stratum j, say Dj,

as the mean damage per claim times the number of claims in that stratum in the

universe. The s.e. for Dj is equal to the standard error of the mean damage per claim

times the number of claims in that stratum in the universe of all claims over the

relevant time period. A 95% confidence interval for Dj is Dj +/– 1.96 s.e.(Dj).

Further steps are needed to obtain a confidence interval for the total damages across

all strata. The simplest method would be to sum the endpoints of the respective

lower and upper confidence limits of the Dj, but this tends to produce intervals for

the total damage that are too wide (i.e., they have coverage probabilities in excess of

95%). Other methods are preferred that have proper 95% coverage and which

account for the correlations between mean claim damages in different strata

(which arise when claims from the same patient occur in different strata).

Questions

1. Why use cluster sampling in this application?

2. What is the interpretation of homogeneity of units within clusters compared to

that between clusters in this example? Would you expect there to be a greater
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similarity in the damage amounts within clusters than between clusters? Is it

reasonable to find that the intracluster correlation coefficient (ICC) would be

positive in this application?

3. In one case there were 23 patients sampled in a given stratum with a total of

46 observations. The cluster-size weighted average cluster size was 3.347 and

the ICC was 0.435. Calculate the VIF. How much does this inflate the standard

error of the mean? What does that tell you about the doctor’s practices?

4. Should the statistician ignore the variance inflation factor and/or the correlations

between mean damage estimates in different strata in order to keep the analysis

simple?

9.1.10 Wage and hour class action

Loan officers for U.S. Bank National Association (USB) sued for unpaid time-and-a-

half overtime, claiming that they had been misclassified as exempt employees under

the outside salesperson exemption of the California Labor Code. The exemption

applied to employees who spend more than 50 percent of the workday engaged in

sales activities outside the office. After certifying a class of 260 plaintiffs, the trial

court devised a plan to determine the extent of USB’s liability by extrapolating from a

randomsample. The court directed its clerk to draw names “from the proverbial hat” to

select 20 class members plus five alternates as the sample. The court settled on this

number and the method of selection as “convenient and manageable,” but without

input from either side’s statistical experts. The court excluded one sample member as

atypical because it felt his work activities differed from those of other class members.

After the sample was selected, the court granted plaintiffs’ motion to amend their

complaint and ordered the parties to give all class members, including those selected

for the sample, a second opportunity to opt out. Four of the 20 sample members opted

out and five of the more than 200 remaining class members did so. The opt-outs

probably occurred because the plaintiffs admitted that they spent more than 50 percent

of their workday out of the office. The alternates were used to replace members of the

sample who opted out and the one who was removed by the court. Another member of

the sample group was excluded because he did not respond to a trial subpoena and

gave no testimony that could be included in the results. Finally, testimony from the

two named plaintiffs were added to the sample. The court justified the inclusion of the

named plaintiffs by noting that the overtime estimate for the class was higher without

their testimony.

Questions

1. Did any (or all) of the following practices make the random sample an improper

basis for extrapolation to the class: (a) random selection by the court clerk without

expert input; (b) court exclusion of an “atypical” member of the sample; (c) the

second wave of opt-outs; and (d) addition of testimony from two named plaintiffs?
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2. Plaintiffs’ expert calculated that the average weekly overtime for the sample

(apparently including everyone) was 11.86 hours with a standard error of 5.14

hours. Was the standard error too large for the sample results to validly be

extrapolated to the class?

3. Should the courts draw a distinction between extrapolation for purpose of

liability and extrapolation for purpose of damages? Are any of your answers to

question 1 affected by whether extrapolation is sought for liability or damages?

4. If the sample met statistical standards and was sufficiently precise to generate a

valid aggregate damage figure, does the defendant have a due process objection

that awarding all members of the class the average would overpay those not

entitled to recovery (or entitled to less) and underpay others?

Source

Duran v. U.S. Bank National Assoc., 325 P.3d 916 (Sup. Ct. Calif. 2014) (rejecting

extrapolation); Bell v. Farmers Ins. Exchange, 115 Cal. App. 4th 715 (2004)

(approving extrapolation for damages).

9.2 Capture/recapture

Capture/recapture is a method for estimating the unknown size of a population. The

method was originally developed for estimating the number of fish in a lake, or the

size of a wild animal population. We use the fish example. The method is predicated

on the properties of random sampling. It involves picking a random sample ofm fish

from the lake, tagging them, and then returning them to the lake. One then picks a

second sample of n fish and counts the number of tagged fish. From this procedure,

we can immediately write down a fourfold table as follows:

We observe X¼ x, the number of tagged fish in the second sample. If being

caught in the second sample is independent of being caught and tagged in the first

sample, then the expected value of X is

EX ¼ m

T

� � n

T

� �
T ¼ mn

T
:

Notice that EX/n¼m/T, so that the expected proportion of tagged fish in the

second sample equals the proportion that the first sample is to the total population.
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Replacing EX by its unbiased estimator x and solving for T yields T ¼ mn=x.1 We

emphasize that this estimate assumes that (i) all fish have an equal probability of

being caught in the first sample (i.e., it is not the case that some fish are more likely

to be caught than others), and (ii) the fact of being caught in the first sample does

not affect the probability of being caught in the second sample (e.g., fish don’t like

being caught and become more wary). If either of these assumptions is violated,

there is what is known as correlation bias: the population will be underestimated if

the correlation is positive (which would occur if some fish are more prone to being

caught than others), or overestimated if the correlation is negative (which would

occur if the event of being tagged made fish more wary).

9.2.1 Adjusting the census

Since 1980 the U.S. Census has been the subject of intense litigation. The root of the

problem is the recognition that there is a net undercount of the population and that

some groups—notably blacks and Hispanics—are undercounted to a greater degree

than others. In 1990, the census counted 248.7 million people. A post-census survey

estimated that there were 19 million omissions and 13 million erroneous

enumerations; the Census Bureau estimated that these numbers would grow in the

2000 census. The solution studied for many years in various permutations and once

favored by the Bureau is to use a post-census sample survey as a basis for adjusting

the census. The proposed adjustments probably would alter the population shares of

states sufficiently to shift the apportionment of a few congressional seats. It would

also affect the distribution of federal funds, and probably also intrastate

redistricting. The matter is political because the undercounted groups tend to vote

Democratic.

When New York State and New York City and others first demanded adjust-

ment, the Census Bureau rejected it as infeasible. In the ensuing litigation, the

Supreme Court held that adjustment for the undercount of minorities was not

constitutionally required.2 But after this victory, the Bureau changed its position

and announced that improvements in technology and the growing difficulty of

conducting the traditional census made adjustment both feasible and desirable.

Subsequently, the Bureau made public its plan to adjust for the 2000 census.

In the Bureau’s plan, there were two types of sampling. First, there was a

Nonresponse Followup Program in which follow-up visits would be made to a

random sample of housing units that did not respond to the mailout-mailback

census questionnaire. The sample was designed so that responses (either from the

questionnaire or a visit) would be obtained from a total of 90% of the housing units

1 This estimator is slightly biased because ET̂ > T. To substantially eliminate this bias one uses

the slightly modified estimator T¼ {(m + 1)(n+ 1)/(x + 1)}� 1.
2Wisconsin v. City of New York, 517 U.S. 1 (1996).
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in a census tract. Information from the visited nonresponding units would be used to

impute the characteristics of the unvisited 10% of units.

Second, the Bureau would conduct a Post Enumeration Survey (“PES”) to adjust

census figures. The PES would be a cluster sample of 60,000 blocks containing

some 750,000 housing units and 1.7 million people. After the census has been

completed, the people in these blocks would be interviewed and the list created

from the interviews would be matched against the census for those blocks. A person

found in the PES, but not in the census, would presumptively be an erroneous

omission from the census, although follow-up might be necessary to confirm that

the person was properly included in the PES (e.g., did not move to the block after

census day). A person found in the census, but not in the PES, would presumptively

be an erroneous enumeration, although once again follow-up might be necessary

(e.g., the person moved out of the block after census day). The estimation of the

undercount is based on capture/recapture technology: the census is the capture and

the PES is the recapture.

In drawing the PES and in estimating adjustment factors from it, the Bureau

would divide the population into post-strata defined by demographic and geo-

graphic factors; one post-stratum might be Hispanic male renters age 30–49 in

California. For each state there are six race-ethnicity groups, seven age-sex groups,

and two property tenure groups—renters and owners. No differentiation is made

between urban, suburban, and rural areas; the Bureau assumes that the undercount

rate is the same everywhere within each post-stratum. The “raw” dual system

estimator for each post-stratum is computed from the (slightly simplified) formula

DSE ¼ Census

M=NP
� 1� EE

Ne

� �
:

In this formula, DSE is the dual-system estimate of the population in a post-stratum;

Census is the census count in that stratum; M is the estimated total number of

matches obtained by weighting up sample matches; Np is the estimated population

obtained by weighting up post-census sample counts; EE is the estimated number of

erroneous enumerations obtained by weighting up the number of erroneous

enumerations in the sample blocks; and Ne is the estimated population obtained

by weighting up the census counts in the sample blocks. The ratio of the DSE to the

census count is the “raw” adjustment figure for the post-stratum. It is called a raw

figure because the Bureau statistically “smoothes” the estimates to reduce sampling

error. The adjusted counts from the post-strata are then combined to produce state

and local population figures.

Matching two large files of data without unique identifiers, like social security

numbers or fingerprints, is a complex and error-prone process. Even after follow-up

there are relatively large numbers of unmatched persons for whom it cannot be

determined whether the error is in the census or the PES. Statistical models whose

error rates are themselves unknown are planned to resolve those cases. Even the

determination of match status can be problematical. For example, if a person picked

up in a block in the PES cannot be matched to that block in the census, nearby
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blocks are searched for a match, but a search of the entire file would be impossible.

There is a trade-off here: the smaller the area searched, the larger the number of

false omissions; but enlarging the area searched creates operational problems.

People who move between census day and the PES are another complication in

determining match status. To match people who move out of the block after census

day, information has to be collected from “proxy” interviews-with neighbors,

current occupants of the household, etc. The chance for error here is large. Given

the manifold problems, it is not surprising that studies of the matching process have

shown that the number of errors is relatively large in comparison to the effect being

measured. Moreover, as would be expected, false non-matches systematically

exceed false matches, creating an upward bias in the estimates of gross omissions.

Would the proposed DSE account for the disproportionate undercount of minor-

ity groups? A test of capture/recapture estimation is to compare the figures resulting

from adjustment aggregated to a national level with national figures obtained by

demographic analysis. Demographic analysis gives figures for the total

U.S. population by age, race, and sex that are derived from administrative records

independent of the census, including birth and death certificates, and Medicare

records. Some figures are shown in Table 9.2.1. Figure 9.2.1 shows the share

changes, by state, from the proposed adjustment to the census as of July 15, 1991.

Questions

1. Justify the DSE formula given above in terms of capture/recapture methodology.

2. What do Table 9.2.1 and Figure 9.2.1 suggest as to the validity of the

assumptions underlying capture/recapture?

3. If adjusted figures cannot be shown to create more accurate proportionate shares

down to the state or intrastate district levels, should adjustment nevertheless be

made to increase numeric accuracy and eliminate systematic error against

minorities?

4. If national demographic figures by race are more reliable, would it be preferable

simply to “scale up” each counted minority person so that the national totals

were correct?

Table 9.2.1. Estimated net census undercounts, by race and sex, from the Post-Enumeration

Survey and from demographic analysis

Post enumeration survey Demographic analysis Difference

Black males 804,000 1,338,000 �534,000

Black females 716,000 498,000 +218,000

Other males 2,205,000 2,142,000 +63,000

Other females 1,554,000 706,000 +838,000

Figures as of 15 July 1991. “Other” is non-black, including whites and Asians

296 9 Sampling Issues



Source

Brown, et al., Statistical Controversies in Census 2000, 39 Jurimetrics 347 (1999).

Notes

The Bureau’s plans provoked a new flurry of congressional activity and lawsuits,

this time to prevent adjustment. When the cases reached the Supreme Court, it held

that the Census Act prohibited sampling for congressional apportionment purposes,

Fig. 9.2.1. Share changes from the proposed adjustment to the census, as of July 15, 1991
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but allowed it for other purposes.3 This round of litigation has left two important

open questions. One is whether adjustment would be constitutional for apportion-

ment under the “actual Enumeration” clause, if the census statutes were amended to

permit it. The other is whether adjusted or unadjusted figures are constitutionally

required for drawing intrastate district lines.

The issues have become moot, for the moment, by the recommendation of

the Bureau, made after the 2000 census, not to adjust the count. The advisory

committee considering the question found that the national adjusted figures were

significantly different from demographic estimates for some population groups,

suggesting that there was an unidentified error in the adjustment method. President

Bush’s Secretary of Commerce, to whom the decision whether to adjust had been

delegated, adopted the recommendation.

3Department of Commerce v. United States House of Representatives, 525 U.S. 316 (1999).

298 9 Sampling Issues



Epidemiology 10

10.1 Introduction

Statistical data are frequently used, in the law and elsewhere, to establish or

measure causal relations based on associations. The gold standard for doing this

is the randomized, double-blind experiment. Here are the key features of such an

experiment.

First, the subjects are divided into treatment and control groups by some random

mechanism, such as a random number table. This feature has important advantages.

Random selection: (i) does not depend on the personal preferences of the investi-

gator, whose choices might bias the selections; (ii) tends to eliminate any system-

atic differences between the treatment and control groups that might account for, or

“confound,” an effect associated with treatment status; and (iii) is the model used in

calculating the statistical significance of the results, and thus provides the firmest

basis for such calculations.

Second, the study is further strengthened by requiring that it be double-blind,

i.e., neither the investigators nor the subjects know to which group the subjects have

been assigned. This precaution is aimed at preventing conscious or unconscious

bias from affecting the investigators’ behavior, e.g., in the evaluation of subject

responses or outcomes; it also distributes any placebo effect equally between

treatment and control groups.

Third, the groups are followed for predetermined periods by a prespecified

protocol and preselected outcomes are studied for differences. Predetermination

is important to prevent an opportunistic cutoff from biasing the results; prespeci-

fication assures that both groups are treated in as similar a manner as possible,

except for treatment, so that differences in outcome can be attributed to treatment

effect; and preselection of outcomes prevents a searching for “interesting” effects,

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_10
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which, if found, cannot be reliably judged because the search itself will compromise

calculations of statistical significance.

Finally, important studies are then replicated with varying protocols and subjects

to reduce the chance of mistaken conclusions.

Gold standard studies are seldom encountered in the law. In most cases, we

cannot ethically or practically by randomized experiment replicate the setting or the

conduct that produced a lawsuit. When residents of southern Utah sued the federal

government contending that fallout from atmospheric A-bomb tests in Nevada

caused the leukemia that killed their children, the question of causation could not

be addressed by randomly selecting children for comparable exposures. And so

when the law asks causation questions like this, it has to be content with less—

sometimes far less—than the gold standard of the double-blind, randomized,

controlled trial.

Below the gold standard we have what are called observational studies. In such

studies, as the name suggests, we do not create the data but assemble and examine

what already exists. Perhaps the prime example is the epidemiologic study, which

from careful study of statistical associations attempts to unearth the causes of

disease. In epidemiologic studies, assignment to study or comparison groups is

not made by chance, but by the vicissitudes of life. Children exposed to fallout may

be compared with those living in the general area who were born and grew up

before the tests had been started or after they had been stopped.

When there is both an exposed group, and a control group that has not been

exposed, the groups usually are compared by computing a relative risk (RR) or odds

ratio (OR). The relative risk is the rate of disease in the exposed group divided by

rate in the unexposed control group. The odds ratio is the same, except using odds

instead of rates. See Section 1.5 for a discussion of these measures. A variant of

these measures is the standardized mortality (or morbidity) ratio (SMR), defined

as the observed number of deaths (or disease cases) in the study group divided by

the expected number given the observed follow-up time of the study group and

the incidence rates from a reference population. The denominator of the SMR is the

number of deaths (or cases) one would expect in the study population if it had the

same rates as the reference population. Usually the numerator of an SMR is

estimated from sample data drawn from the study population, while the denomina-

tor uses rates in health census data taken from the reference population. Where

age-specific rates are available, these can be used to provide more accurate

expectations for the deaths or cases in the study group.

Epidemiologic studies can be highly persuasive, but are weakened by the

possibility of confounding factors or other sources of bias. Because of the promi-

nence of such potential weaknesses, inferences of causation tend to be more

intensely scrutinized in epidemiology than they may in other statistical contexts,

where the same problems may lurk unexamined in the background. Studying

causation issues in epidemiology is thus useful, not only of itself, but also because

it sheds light on the general problems of causal inference in statistics. In this chapter

we introduce the subject, using epidemiologic examples as illustrations.
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Further Reading

Rothman, Greenland & Lash, Modern Epidemiology (3d ed. 2008).

10.2 Attributable risk

The concept of attributable risk1 is used to measure the potential reduction in

occurrence of a given disease that would result by complete elimination of a

particular risk factor. There are two related concepts: attributable risk in the

population exposed to the risk factor and attributable risk in the entire population

(both exposed and unexposed). We describe each in turn.

Attributable risk in the exposed population

In most cases in which attributable risk calculations are made, the disease under study

has a greater incidence or prevalence in the exposed population.2 Consider first the

group of people who were exposed and subsequently contracted the disease. They can

be divided conceptually into a “base” subgroup, consisting of those who would have

contracted the disease in any event, i.e., without the exposure, and an “excess”

subgroup, whose disease was caused by the exposure. The attributable risk in the

exposed population (ARe) is the proportion that the excess subgroup bears to the

whole exposed diseased group. This proportion is also the probability that a person

selected at random from the whole group would be in the excess subgroup, i.e., would

not have contracted the disease without the exposure. The statement that 80% of all

smokers who get lung cancer could have avoided the disease if they had not smoked

is a description of the fraction of lung cancers among smokers that is attributable to

smoking. The equivalent statement is that smoking caused the lung cancer in 80% of

cancer victims who smoked. Simple algebra shows us that the attributable risk in the

exposed population is related to the rate ratio (or relative risk) by the formula

1 The term is something of a misnomer because what is computed is not a risk but the fraction of a

risk attributable to a cause. Sometimes the term etiologic fraction is used, which is more accurate

but less common. For convenience of reference we use the more common term.
2 The incidence rate of a disease is a velocity, like the speed of a car, except that it is measured, not

in miles per hour, but in the proportion of the population that newly contracts the disease in a

relatively short time period. For example, the incidence of heart disease among male smokers

65–70 years old is about 0.1% per month, or 1.2% per year, assuming the incidence of heart disease

is fairly constant over the year. If incidence varies over time, calculations become more accurate as

the unit time interval shrinks to zero and the rate approaches the instantaneous incidence, a limit

concept equivalent to the hazard concept discussed in Sect. 11.1, and analogous to the instanta-

neous velocity of a car.

The concept of incidence should be distinguished from that of prevalence, which is the

proportion of the population that has the disease at a given time and thus includes the effect of

current and past incidence and disease duration. Attributable risk calculations can be made in

terms of incidence or prevalence, although incidence rates are more appropriate to disease

prevention.
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ARe ¼ 1� 1=RRð Þ; ð1Þ
where RR is the ratio of the rate of disease given the exposure relative to the rate

given no exposure. ARe is sometimes referred to as the probability of causation.

To illustrate the formula, the relative risk of colon cancer given exposure to

asbestos has been estimated at 1.55. Hence ARe¼ 1� (1/1.55)¼ 0.35, approxi-

mately. Thus, 35% of colon cancers in asbestos workers might have been avoided

if they had not been exposed. Equivalently, there is a 35% chance that a randomly

selected asbestos worker’s colon cancer was caused by asbestos.

It is of some consequence to the legal issue of causation that if the relative risk is

greater than two, it is more likely than not that a random exposed worker’s disease

was caused by the exposure. Some courts have in fact held that if there are no facts

to distinguish the specific plaintiff’s case from other exposed cases, then causation

for the particular plaintiff is not proved by a preponderance of evidence unless the

relative risk from exposure is greater than two.3 When there are specific facts,

inferences based on relative risk calculations must be modified accordingly. For

example, the relative risk for the exposed group may be greater than two, but this

applies to the average exposure, and the plaintiff’s exposure may have been below

the group’s average. On the other hand, if the relative risk is less than two, but other

evidence suggests causation, the combination may be sufficient for an expert to

conclude that the exposure more likely than not caused plaintiff’s disease. The

specific evidence may even be a differential diagnosis, i.e., the attribution of cause

by eliminating other risk factors.4 However, valid differential diagnosis requires

both proof of general causation and affirmative evidence of an absence of other risk

factors for a disease with a reasonably well established etiology.5

Attributable risk in the population

The second concept is that of attributable risk in the population ARp. This is the

proportion of disease cases in the general population that would be eliminated if

the exposure were eliminated. The statement that “20% of all lung cancers could be

avoided by smoking cessation” is a statement of attributable risk in the population.

ARp is a function of both the relative risk and exposure prevalence, which makes it a

reasonable indicator of the importance of the risk factor as contributing to disease.

Even if ARe is high, because the disease is strongly associated with the exposure,

3 See, e.g., Daubert v. Merrell Dow Pharmaceuticals, 43 F.3d 1311 (9th Cir. 1995) (Bendectin and
birth defects); Hall v. Baxter Healthcare Corp., 1996 U.S. Dist. Lexis 18960 at p. 15 (D. Ore.

1996) (silicone breast implants and connective tissue disease).
4 See Landrigan v. Celotex Corp, 127 N.J. 404, 605 A.2d 1079 (1992) (1.55 relative risk of colon

cancer from exposure to asbestos plus an absence of other causal factors is sufficient for plaintiff’s

proof of causation).
5 In re Joint Eastern and Southern District Asbestos Litig. (John Maiorana), 964 F.2d 92, 97

(2d Cir. 1992) (“[P]laintiff did not need to provide epidemiological evidence of a certain magni-

tude [presumably referring to an RR�2.0] in order to defeat a summary judgment motion because

she did not rely on epidemiological studies alone.”)

302 10 Epidemiology



ARpmay still be low if the exposed proportion of the population is low. If ARp is high,

because the exposure is widespread, the absolute number of people affected by the

exposure may still be small if the disease in question is rare. For example, in the

United States, the attributable risks relating smoking to lung cancer are far larger than

the attributable risks relating smoking to heart disease. However, because the inci-

dence of heart disease is much greater than that of lung cancer, a smoking-cessation

policy would save many more people from heart disease than from lung cancer.

The illustration below depicts a population in which 20% of unexposed subjects

and 50% of exposed subjects have the disease, and 10% of the population has been

exposed. Assuming 20% of all those exposed would have contracted the disease in

any event, the excess risk is 0.50� 0.20¼ 0.30, which is 60% of the proportion of

exposed disease cases. Here RR¼ 0.5/0.2¼ 2.5 and ARe¼ 1� 1/2.5¼ 0.6. Because

only 10% of the population has been exposed, the excess cases attributable to the

exposure account for only 0.30� 0.10¼ 0.03 of the total population. The propor-

tion of all cases in the population is: 0.20� 0.90 + 0.50� 0.10¼ 0.23. Hence ARp

(the proportion of excess cases to total population cases)¼ 0.03/0.23¼ 13%.

There are three equivalent ways to calculate ARp. The numerator can be shown

to equal the difference between the overall disease rate and the disease rate among

the unexposed, with the denominator being the overall disease rate. The overall

disease rate reflects both the heightened risk due to the exposure and the prevalence

of the exposure. Thus,

ARp ¼ P dð Þ � P0 dð Þf g=P dð Þ ¼ 1� P0 dð Þ=P dð Þ; ð2Þ
where P0(d ) is the risk (prevalence or incidence) of disease in the unexposed

population, and P(d ) is the overall risk of disease in both the exposed and unex-

posed populations combined (Fig. 10.2).

Alternatively, and equivalently, ARp may be calculated as

ARp ¼ X= 1þ Xð Þ; ð3Þ
where X¼P(e)(RR� 1) and P(e) is the proportion exposed.

Fig. 10.2. Attributable risk in the population
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A third method uses the formula

ARp ¼ 1� 1=RRð ÞP e
��d� �

; ð4Þ
where 1� 1/RR has the same value given for ARe and P(ejd) is the proportion

exposed among those with the disease. In a comparative cohort study, data from

which to estimate P(ejd ) might not be available, in which case formula (4) could

not be used and formulas (2) or (3), with some estimate of P(e), would have to

suffice. Case-control studies provide direct estimates of P(ejd), but not of RR, so
that to use formula (4), RR must be approximated by the odds ratio (which is

acceptable if the disease is rare).

If data are available there is an advantage to formula (4). All of the formulas

given so far are idealizations in the sense that counterfactually eliminating the

exposure would not necessarily reduce the incidence of disease in the exposed

subjects to the level of those unexposed. There may be confounding factors that

correlate with exposure, contribute to the disease, and would remain even if the

exposure were eliminated. Smokers may have characteristics other than smoking,

e.g., sedentary lifestyles, that contribute to their higher rates of heart disease. To

take these factors into account one has to compute an adjusted relative risk (RRa) in

which the numerator is, as before, the rate of disease among those exposed, but the

denominator is the rate of disease among those unexposed if the exposure alone

were eliminated, all other characteristics of those persons remaining unchanged. To

compute ARe and ARp it is necessary to substitute RRa in formulas (1) and (4),

respectively. (This substitution is not valid for the other formulas for ARp.) Part of

an epidemiologist’s job is to identify confounding factors, if any, and to estimate an

adjusted RR that takes account of them.

An adjustment in RRmay also be justified if, as is usually the case, interventions

to eliminate exposure are only partially successful or if the exposed population

would tend to substitute another risk factor if compelled to give up the exposure. If

smoking were eliminated, smokers might turn for consolation to greater consump-

tion of fatty foods. In that case calculations of potential health benefit should take

into account the risks of the substituted behavior by computing an adjusted RR, as
described above. However, for purposes of determining causation in a lawsuit, RR
should not be adjusted for substitute behavior because the risk of substituted

behavior does not affect the probability that the original behavior caused the

disease.

10.2.1 Atomic weapons tests

Between January 1951 and the end of October 1958, at least 97 atomic devices were

detonated in above-ground tests in the Nevada desert at a site located 160 km west

of the Utah–Nevada border. Fallout from at least 26 tests (amounting to over half

the total kiloton yield) was carried by wind eastward to Utah (see Fig. 10.2.1).
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Testing continued underground after 1961, with some tests venting fallout into the

atmosphere.

There were 17 counties in southern and eastern Utah that were identified from

U.S. Government fallout maps as “high fallout” counties. These counties were rural

and had about 10% of the state’s population.

Two epidemiologic studies of leukemia deaths in children were conducted using

high-exposure and low-exposure cohorts. Deaths were assigned to the high-

exposure, age-time cohort if they occurred before age 1 for the years 1951–1958,

at age 1 for the years 1951–1959, and so on up to deaths at age 14 for the years

1951–1972. All remaining deaths of children up to age 14, that is, all deaths through

the end of 1950 and all deaths subsequent to the upper-year limits of the previously

defined high-exposure cohorts for each age at death, were assigned to the

low-exposure cohort. For purposes of the person-years calculation, for each year

the number of persons who contribute a person-year in each cohort is the number of

persons who, if they had died in that year, would have had their deaths assigned to

that cohort for that year.

The two different teams of investigators used different data. Lyon, et al., used

data from 1944–1975. A summary is shown in Table 10.2.1a.

Land, et al., critical of the Lyon study, did not use the earlier (1944–49) data

because they believed these to be unreliable, but did use data from the later years.

They also added three “control” areas (Eastern Oregon, Iowa, and the United States

as a whole). The study used the same high-exposure, lowexposure defined cohorts

as in the Lyon study. An excerpt from the Land data on leukemia deaths is in

Table 10.2.1b.

Fig. 10.2.1. Atomic weapons test fallout

10.2 Attributable risk 305



Questions

Peggy Orton, born on January 12, 1946, was 5 years old when testing began in

1951. She lived in St. George, Utah. On November 11, 1959, at the age of 13, she

was diagnosed as having acute lymphoblastic leukemia. She died six months later,

on May 29, 1960. Orton’s estate brought suit for wrongful death against the United

States under the Federal Tort Claims Act, 28 U.S.C. }}2671–80 (1994).

In your computations made below, assume that the age distribution of all cohorts

is the same; in the actual studies the mortality rates were age-adjusted by the

“direct” method to the U.S. 1960 white population.6

Table 10.2.1a. Distribution of childhood leukemia deaths

Cohort: Males—Southern Utah

Low-exposure I (1944–50) High-exposure (1951–58) Low-exposure II (1959–75)

Age Cases Person-

years

Ratea Cases Person-

years

Ratea Cases Person-

years

Ratea

0–4 4 62,978 6.35 6 92,914 6.46 1 115,000 0.87

5–9 1 55,958 1.79 4 128,438 3.10 2 74,588 2.68

10–14 0 49,845 0.00 6 151,435 3.96 0 40,172 0.00

0–14 5 168,781 2.96 16 372,787 4.29 3 229,760 1.31

Cohort: Females—Southern Utah

Low-exposure I (1944–50) High-exposure (1951–58) Low-exposure II (1959–75)

Age Cases Person-

years

Ratea Cases Person-

years

Ratea Cases Person-

years

Ratea

0–4 0 59,214 0.00 2 86,518 2.31 4 109,675 3.65

5–9 1 53,696 1.86 6 121,302 4.95 3 71,828 4.18

10–14 1 48,486 2.06 8 143,924 5.56 0 39,645 0.00

0–14 2 161,396 1.24 16 351,744 4.55 7 221,148 3.17

Person-years and age-specific mortality rates by three age classes and exposure
aAge-specific leukemia mortality rate expressed in cases per 100,000 computed from the respec-

tive observed cases and person-years of cohort experience

Table 10.2.1b. Distribution of leukemia deaths and person-years for southern and northern Utah,

eastern Oregon, and Iowa

S. Utah N. Utah E. Oregon Iowa

Exposure High Low High Low High Low High Low

Deaths 30 16 150 127 28 16 415 348

Person-years

(in thousands)

691.3 590.1 3,768.8 4,237.0 910.7 770.4 11,958.1 10,288.8

6 In comparing two populations, adjustments may sometimes be needed for differences in age

distribution. In the direct method of adjustment, a weighted average is computed from age-specific

rates, where the weights are the proportions of people in each age bracket in the reference

population.
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1. What is the relative risk of leukemia death in the high-exposure and combined

low-exposure cohorts in Table 10.2.1a?

2. Assuming that the entire excess risk is caused by the exposure, what is the

attributable risk of leukemia due to the exposure in (i) the exposed population,

and (ii) the general population?

3. As attorney for Orton’s estate, what argument would you make from the above

calculations and other facts that, by a preponderance of the evidence, Orton’s

exposure caused her leukemia?

4. As attorney for the government, what argument would you make that the

association between the high-exposure cohort and childhood leukemia was not

causal, and even if generally causal, was not shown to be the cause of Orton’s

leukemia?

5. Instead of an all-or-nothing result, should recovery be allowed more generally in

cases of excess risk, but the amount thereof proportionally reduced by the

probability that decedent’s leukemia would have occurred in any event, without

the exposure?

Source

Allen v. United States, 588 F. Supp. 247 (D. Utah 1984), rev’d, 816 F.2d 1417 (10th

Cir. 1987), cert. denied, 108 S. Ct. 694 (1988) (district court judgment for the

plaintiffs reversed; the testing activity was a discretionary function for which

recovery against the federal government was not sanctioned by the Federal Tort

Claims Act).

Notes

For the conflicting studies on the causation issue in the Allen case, compare

Lyon, et al., Childhood leukemias associated with fallout from nuclear testing,

300 New Eng. J. Med. 397 (1979) (concluding that the data show an excess

of leukemia) with Land, et al., Childhood leukemia and fallout from the

Nevada nuclear tests, 223 Science 139 (1984) (concluding that the data were not

sufficient to support a finding of such an excess). However, a later study by

Land, et al., confirmed the Lyon, et al., finding. See Machado, Land & McKay,

Cancer mortality and radiation fallout in Southwest Utah, 125 Am. J. Epidemiology

44 (1987).

In 1997, a National Cancer Institute study released after long delay found that

radioactive iodine dispersed from the atmospheric tests had delivered varying doses

of radioactivity, principally through milk, to large segments of the U.S. population

east of the test site. See the NCI website at <www.nci.nih.gov.> It has been

estimated that thousands of cases of thyroid cancer were caused as a result.

The story of the “downwinders,” the medical controversy surrounding the issue

of causation, and the legal battle for compensation are given in Ball, Justice

Downwind (1986).
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10.3 Epidemiologic principles of causation

Epidemiology is the study of the distribution and causes of disease in mankind.

It uses statistical tools, but generally is regarded as a separate specialty. Its purview

includes, but is much broader than, infectious disease epidemiology and the study

of epidemics. Three types of studies are commonly used in epidemiology. The most

reliable are cohort studies in which two or more highly similar unaffected groups

are selected for study and control; the study subjects are exposed while the controls

are not. The cohorts are followed for a predesignated period of time after which the

health or disease outcomes in the two groups are compared, usually by computing

the relative risk of disease associated with the exposure. See Section 10.2.1 (Atomic

weapons tests) for examples of birth cohort studies. Cohort studies are hard to

manage when the follow-up is long or the disease is rare. In such situations, an

alternative is a case-control study in which the cases are people with the disease and

the controls are without the disease but are highly similar with respect to factors

related to both disease and the exposure of interest. The antecedent exposure

histories in the case and control groups are then compared. The results are reflected

in the computation of an odds ratio, which for rare diseases is approximately equal

to a relative risk. Careful selection of controls and measurement of confounding

factors are of critical importance in case-control studies. See Section 10.3.1

(Dalkon Shield) for a case-control study. A third type of study is called ecologic.

These are generally descriptive, looking at relations between average levels of risk

factors and disease in several population or sampling units. Section 1.4.1 (Danger-

ous eggs) is an example of an ecologic study.

Epidemiological studies may involve observations over time, or in cross-section

at a particular time, or both.

General and Specific Causation

Regardless of the type of study, epidemiology follows a two-step process: first,

determining whether there is an association between the exposure and a disease;

and then, if there is an association, determining whether it is causal. Judicial

opinions sometimes refer to an epidemiologic finding of causation as “general

causation,” meaning that the exposure has caused at least some disease in the

exposed group. In a law case in which causation is an issue, the question is whether

the exposure caused the particular plaintiff’s disease. This is known as specific

causation. Specific causation is not the special province of epidemiology, although

epidemiologic data may be important to the answer.

Does negative epidemiology “trump” other evidence? The issue arises when

studies show no association between exposure and disease, but plaintiffs propose to

have experts testify that there is a causal relation. Sometimes the proposed testi-

mony is based on laboratory (in vitro) studies, or animal (in vivo) studies, or clinical
observations, or on an isolated epidemiologic study that shows a low level or weak
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association. When the epidemiology is strong and negative, such testimony has

rightly been viewed skeptically, and in a number of cases judges have not permitted

plaintiffs’ claims to go to a jury.7

Biases and Confounding

Epidemiology is not a razor-sharp tool for detecting causal relationships. Case-

control studies are particularly prone to bias because of the difficulty in identifying

control subjects who match the cases in everything except the disease (but not the

antecedent risk factor that may have caused the disease). Cohort studies tend to be

better because they offer the possibility of composing groups differing only in

exposure (i.e., before disease is detected), but even in these studies a finding of

association may be produced by study biases, errors, confounding, or chance, and

not by causal connections. This means that in any epidemiologic study positive

findings cannot be accepted without a searching look at factors that may weaken or

vitiate the conclusions. Some of these are described below.8

Confounding—An apparent causal relation between a supposed hazard and a

disease may be due to the effect of a third variable that is correlated with both. An

example would be a study which showed that people living in areas where jet

airplane noise was greater than 90 decibels had a significantly shorter life expec-

tancy. Did the noise shorten their lives? Perhaps, but the study is questionable

because people who live in devalued housing close to airports tend to be poorer than

the general population. Recent evidence suggests that exposure to jet exhaust

pollution may be another confounder.

Selection bias—The cases or the controls may be selected in a way that makes

them significantly different from the populations they are supposed to represent.

Suppose that at an Alaskan hospital the rate of complications for women in labor is

higher in winter than in summer. Could changes in diet and reduced light be

responsible? Again, perhaps. But it may be that during the winter when travel is

difficult women tend to come to the hospital only for more difficult pregnancies;

otherwise they deliver at home. In short, the women appearing at the hospital during

the winter were subject to self-selection that is biased with respect to the population

of deliveries. The “healthy worker” effect is an example of selection bias.

Response bias—This bias arises when subjects respond inaccurately to an

investigator’s questions. A study of the effects of preconception X-rays of fathers

on the incidence of childhood leukemia in their subsequently born offspring

suggests an association. But the value of the study was discounted because the

information was based upon the recollections of the mothers, who may have been

more likely to recall such X-rays if the child had contracted leukemia than if the

7 See, e.g., cases cited in note 3 at p. 302; see also In re Agent Orange Liability Lit., 597 F. Supp.

740, 787–795 (E.D.N.Y. 1984) and 611 F. Supp. 1223, 1231–1234 (1985), aff’d in rel. part,
818 F.2d 145, 171–173 (2d Cir. 1987) (Agent Orange and a variety of illnesses).
8 Some of the hypothetical examples given below are from Mitchell, Boyce &Wilcox, Biomedical
Bestiary: Epidemiological Guide to Flaws and Fallacies in the Medical Literature (1984).

10.3 Epidemiologic principles of causation 309



child’s development had been normal. Evasive answer bias is another response bias

that is particularly serious when sensitive areas are probed.

Under- and over-matched controls—Under-matching is the failure to select

controls that are sufficiently like the cases. When that occurs, differences between

the cases and controls other than the exposures may be responsible for the

differences in outcomes. To avoid this, controls should match the cases in every-

thing but the exposure. A more precise statement of what is required of control

selection in a case-control study is that the probability of inclusion into the study

must not depend on the exposure under study. A study of the relation between

chronic bronchitis and air pollution would be under-matched if the cases were

chosen from a city and the controls from rural areas. There are too many differences

between city and country life that might cause bronchitis to have much confidence

that an observed association was causal. A study of the relation between pregnancy

outcomes and drug use would be under-matched if the cases were chosen from

women patients at city hospitals with adverse pregnancy outcomes while the

controls were chosen from women visiting a hospital clinic for other reasons.

Women who use drugs would probably be less likely to visit a clinic and therefore

the exposure to drugs would diminish the probability of their selection as controls.

Since the controls would have less drug use than the cases, the study would show an

effect, even if there were none.

Over-matching occurs when the controls are selected so that they excessively

resemble the cases, as when controls are selected under criteria that give them the

same exposure as the cases. When that occurs, the association between the disease

and the exposure may be concealed. A study of the association between bronchitis

and air pollution would be over-matched if the matched controls were from the

same census tract as the cases because the air quality within the small area of a

census tract is likely to be much the same. Since the exposure of bronchitic and

non-bronchitic subjects would be essentially the same, one would conclude, falsely,

that air pollution had no effect.

Cohort effect—The cohort effect is the tendency for persons born in certain

years to reflect a relatively higher (or lower) risk of a disease throughout their lives.

For example, a cross-sectional study of tuberculosis antibodies may show a higher

prevalence in older people. This would not necessarily mean that older people

suffer a higher incidence of tuberculosis, but only that the incidence of tuberculosis

was greater in earlier years than it is today. In that case, a sample of tuberculosis

patients would show a disproportionate representation of older people.

Observer variability—In clinical judgments, it is well recognized that

observers may differ markedly in their subjective evaluations. This may produce

spurious effects. A study that has a single observer is particularly vulnerable to this

possible bias. Unreliability (i.e., lack of reproducibility) almost always causes loss

of efficiency and precision.

Hawthorne effect—The name comes from the fact that officials at a

Westinghouse plant in Hawthorne, Illinois, found that merely consulting workers

about conditions improved productivity. Analogously, simply participating in a

study may change results, particularly when the study is of attitude or behavior.
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Related to this is social desirability bias, when subjects give responses they believe

the investigator wants to hear.

Ascertainment—Changes in reported incidence of a disease associated with

some environmental or risk factor may in fact be due to changes in the accuracy of

diagnosis or classification of the disease, or the case definition, as when the CDC

changed the criteria defining the Acquired Immune Deficiency Syndrome (AIDS).

Regression to the mean—Regression to the mean is the tendency of individuals

who score either very high or low on one measurement to move closer to the mean

on a second one. An apparent improvement in scores following some treatment may

be due wholly or in part to regression. See Section 13.1 for a further discussion.

Ecological fallacy—In ecological studies the investigator attempts to detect

associations between risk factors and disease from the behavior or experience of

groups. The ecologic fallacy is the assumption that such associations apply at an

individual level. The relation between egg consumption and ischemic heart disease

in various countries (Section 1.4.1) is an example of an ecological association that

may be fallacious as applied to individuals because, as noted, factors other than egg

consumption are producing the association.

Association v. Causation

A well designed study will not have features that suggest bias or confounding. Yet

there may be hidden defects. To minimize the possibility of false conclusions,

epidemiologists have developed certain common-sense criteria of validity for a

causal inference. These are referred to as the “Bradford-Hill” criteria.9 They are

described below.

Strength of association—The larger the relative risk associated with exposure,

the less likely it is to be due to undetected bias or confounding. But even large

relative risks may be weak evidence of causation if the number of cases is so small

that chance alone could explain the association. To measure sampling uncertainty,

confidence intervals for the point estimates of the relative risk should be computed.

Consistency—The more consistent the findings from all relevant epidemiologic

studies, the less likely it is that the association in a particular study is due to some

undetected bias. All relevant studies should therefore be examined. What is suffi-

ciently relevant is a matter of judgment.

Dose-response relationship—If risk increases with increasing exposure, it is

more likely that the corresponding association would be causal. This is a strong

indication of causality when present, but its absence does not rule out causality.

Biological plausibility—There must be a plausible biological mechanism that

accounts for the association. This is sometimes said to be a weaker criterion because

a biological scenario can be hypothesized for almost any association, and plausibil-

ity is often subjective.

9 After Bradford-Hill, The environment and disease: association or causation?, 58 Proc. Roy. Soc.
Med. 295–300 (1965).
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Temporality—Cause must precede effect. This sine qua non for causation is

usually satisfied. However, some patterns of temporality may affect the plausibility

of the causal inference, as when the time between the exposure and the onset of

disease is inconsistent with causality.

Analogy—Similar causes should produce similar effects. Knowledge that a

chemical is known to cause a disease is some evidence that a related chemical

may also cause the same disease. This is related to the plausibility argument, and

similar caution is warranted.

Specificity—If risk is concentrated in a specific subgroup of those exposed, or in

a specific subgroup of types of diseases under scrutiny, the association is more

likely to be causal. This is a strong indication when present.

Experimental evidence—Experimental evidence in man (i.e., random alloca-

tion to exposure or removal of exposure) would constitute the strongest evidence of

causation. However, such data usually are not available.

10.3.1 Dalkon Shield

The Dalkon Shield was an oval-shaped plastic intrauterine device (IUD), slightly

larger than a dime, with fin-type projections on each side. It was designed to

conform to the shape of the uterine cavity; the projections were added to improve

resistance to expulsion and to cause the device to seek the fundus with normal

uterine movements. A tailstring was tied to the bottom of the Shield by a knotted

loop as an indicator of proper placement of the device and as a means for removal of

the Shield. When this IUD was placed properly in the uterus, the tailstring projected

through the cervix into the vagina. Because the removal of the Dalkon Shield

required greater force than removal of other IUDs, the string had to be stronger

and this was accomplished by the use of multiple strands of suture material encased

by a nylon sheath open at both ends.

A.H. Robins, Inc. (“Robins”), bought the Shield for $750,000 plus a 10% royalty

on June 12, 1970. In January 1971, Robins began a dual campaign of marketing and

testing the Shield. After the Shield had been on the market for over a year (with

more than one million sold) Robins began to receive complaints of high pregnancy

rates, acute pelvic inflammatory disease (“PID”), uterine perforations, ectopic

pregnancies, and others. By June 1974, some 2.8 million Shields had been

distributed in the U.S.; this was about 6.5% of the women in the 18–44 age

group. On June 28, 1974, Robins voluntarily suspended domestic distribution of

the Shield at the request of the U.S. Food and Drug Administration and on August

8, 1975, announced that it would not remarket the Shield. Throughout this period

there was extensive negative publicity concerning the Shield. There were studies

indicating that the multifilamented tail of the Shield might “wick” bacteria from the

vagina to the otherwise sterile uterus. There was evidence that the risk of infection

increased with the length of time the Shield was worn. On September 25, 1980,

Robins wrote a “Dear Doctor” letter recommending removal of the Shield from
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asymptomatic patients because of possible association between long-term use

and PID.

The Women’s Health Study was a multi-center, case-control investigation that

included information on the relationship between the use of contraceptive methods

and hospitalization for certain gynecologic disorders. Data were collected at

16 hospitals in 9 U.S. cities between October 1976 and August 1978. Women

aged 18–44 were eligible. Cases consisted of women who had a discharge diagnosis

of PID; controls were women who had a discharge diagnosis of a

non-gynecological condition. Excluded were cases and controls who had had a

history of PID or conditions that might lower risk of pregnancy, e.g., lack of sexual

activity, sterility, or illness. Current IUD type was identified for cases and controls.

In total, 1,996 potential cases and 7,162 potential controls were identified. After

exclusions, 622 cases and 2,369 controls remained for analysis. The data are shown

in Table 10.3.1.

Other studies have shown that IUDs in general raise the risk of PID, while barrier

contraceptives have a protective effect.

Questions

Plaintiff is a woman who wore an IUD, and switched to the Dalkon Shield in 1972.

It was removed in 1974, when she developed PID. She now sues Robins on various

theories.

1. What analysis of the above data should be made in support of the contention that

plaintiff ’s PID was caused by the Dalkon Shield?

2. Should an epidemiologist be permitted to testify as to causation (i) in general or

(ii) in this particular case?

3. Is there reason to believe that the proportion of Dalkon Shield users among the

controls was different than their proportion in the population at the time plaintiff

wore the Shield? If so, what bias would that create in the study?

4. Is there reason to believe that the proportion of Dalkon Shield users among the

cases was different than their proportion in the case population at the time

plaintiff wore the Shield? If so, what bias would that create in the study?

Table 10.3.1. Method of contraception for PID cases and controls

Current contraception method Women with PID Controls

Oral contraceptive (OC) 127 830

Barrier (diaphragm/condom/

sponge)

60 439

Dalkon shield 35 15

Other IUDs 150 322

No method 250 763

Total 622 2,369
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Source

Lee, et al., Type of intrauterine device and the risk of pelvic inflammatory disease,
62 J. Obs. & Gyn. 1 (1983) (finding increased risk for the Dalkon Shield); compare

Snowden, et al., Pelvic infection: a comparison of the Dalkon Shield and three other
intrauterine devices, 258 Brit. Med. J. 1570 (1984) (finding no increased risk for the

Dalkon Shield).

Notes

An extensive recital of the facts surrounding the Dalkon Shield is given in

Hawkinson v. A. H. Robins Co., Inc., 595 F. Supp. 1290 (D. Colo. 1984). The

Hawkinson case (12 women) was part of a flood of lawsuits by some 14,000 women

who had worn the Dalkon Shield. Settlements cost the company hundreds of

millions of dollars. Of the cases it litigated, Robins won about half, usually those

tried by judges and usually on the ground that causation had not been proved. In

many cases, epidemiologic data were not introduced directly, although the data

possibly influenced the opinions of the clinicians who testified. In most cases of

substantial recovery, punitive damages far exceeded compensatory damages.

Robins claimed that it was being repeatedly punished for the same act and sought

to consolidate the cases in a single tribunal. When this failed, in August 1983, the

company filed for bankruptcy reorganization under Chapter 11.

Robins made $10 million in profits from the device. By 1985, when it filed for

protection under Chapter 11, Robins and Aetna Casualty & Insurance Company, its

insurer, had disposed of 9,500 injury suits at a cost of $530 million; more than 2,500

suits were pending and new ones were coming in at a rate of 400 a month.

N.Y. Times, Dec. 13, 1987, at F17, col. 1.

In September 1985, Johnson & Johnson stopped selling its 20-year old Lippes

Loop after 200 lawsuits. In January 1986, G.D. Searle & Company withdrew its

Copper-7 IUD after 775 lawsuits. This was the last major manufacturer of intra-

uterine devices in the U.S. and its withdrawal marked the end of their production

here. N. Y. Times, Feb. 1, 1986 at A1, col. 5.

10.3.2 Radioactive “cocktails” for pregnant women

Our story begins more than 50 years ago at the dawn of the atomic era in the fall of

1945. World War II had just ended after the atomic bombing of Hiroshima and

Nagasaki. And not coincidentally, radioactive isotopes of a number of elements—

such as sodium, phosphorous, and iron—produced in cyclotrons at MIT or the

University of California at Berkeley, had become available for medical uses. Their

potential for treatment of disease caused great excitement in the medical commu-

nity. There was also research. It had become possible for the first time to trace the

metabolism of elements in the body by tagging compounds with radioactivity and

recording their passage by measuring the emissions. Iron was a particularly
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intriguing subject. Its metabolism is complex and was not perfectly understood.

George Whipple won a Nobel Prize for experiments on dogs using iron 59, a

radioactive isotope of iron. Paul Hahn was a young scientist working with Whipple.

In 1944, Hahn was brought to Vanderbilt Medical School in Nashville, Tennessee,

as a radiobiologist to continue studies using radioactive tracers.

In the meantime, and quite independently, the state of Tennessee and Vanderbilt

University had set up a project to study nutrition in the South. This was known as

the Tennessee Vanderbilt Nutrition Project (TVNP). In the summer of 1945, Hahn

proposed that the TVNP study the metabolism of iron in pregnant women by giving

them a radioactive tracer. Among other things, it was thought that knowledge of the

passage of iron across the placenta would be useful in delivering dietary iron

supplements to prevent maternal anemia in pregnancy. The study was approved

by Tennessee’s Commissioner of Health and the administration of Vanderbilt

Medical School.

That these approvals were forthcoming was not surprising given the medical

practices of the day. Nontherapeutic experiments on humans involving tracer doses

of radioactivity were not unusual in the 1940s and 1950s, and a number of those

studies included pregnant women as subjects. It was recognized that high levels of

radioactivity created health risks, but exposure to low level radiation was thought to

be harmless. It was common at that time to X-ray pregnant women to determine the

position of the fetus (especially when twins were suspected) and the first study of

the health effects of fetal X-rays, which showed an elevated risk of cancer in the

children exposed in utero, was not to be published until 1957.

On the other hand, the TVNP study involved over 800 white women visiting a

prenatal clinic,whichmade it the largest such study by far.Moreover, thewomenwere

not told that the vitamin “cocktail” they were given to drink was radioactive and had

no therapeutic purpose. The extent to which the absence of informed consent departed

from standard research procedure at that time was much debated by the experts in the

lawsuit that followed. Informed consent as a developed concept required in human

experimentation did not emerge until a later era, but the general advisability of

obtaining patient consent was recognized. What was practiced was another story.

There was testimony that the need to obtain consent was more opportunistic than

principled: procedures believed to be harmlesswere performed on patients in hospitals

when those procedures could appear to be part of the treatment or hospital protocol.

Moreover, non-paying patients were sometimes so used on the theory that they were

paying back the medical establishment for their free treatment.

Whatever the standards were, it is clear that the experimenters did not believe that

their project was nefarious and had to be concealed. Vanderbilt issued a press release

about the study and stories appeared in Nashville newspapers. Hahn and others wrote

scientific papers recording their results and delivered them at scientific meetings.

Nothing happened; there was no outcry or objection of which we have any record.

But then the study became unique in another respect. About 20 years later, some

researchers at Vanderbilt got the idea to do a follow-up study. We refer to this as the

Hagstrom study. Their purpose was to see whether the low level radioactivity had

caused any adverse effect on either the women or their children. By this time,
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studies beginning in the late 1950s had documented some increase in childhood

cancer in children X-rayed in utero. The relative risk was about 1.4–2.0, depending

on age, with the greatest excess at ages five to seven. After age eight the excess risk

appeared to be exhausted. On the other hand, studies of children in utero in

Hiroshima and Nagasaki—who had received much larger doses—showed no

increase in childhood leukemia. The state of scientific knowledge suggested a

possible connection, but the degree of fetal sensitivity was still unknown. The

Vanderbilt follow-up study was seen as an unusual opportunity to add knowledge

of this subject by using a large and well defined group.

The results of the study were as follows. Hagstrom evaluated an index group of

751 pregnant white women who were fed the isotope and a control group of

771 pregnant white women visiting the clinic who were not known to have been

fed the radioactive iron. Some 679 of the index group and 705 of the control group

responded to questionnaires. Follow-up of the children born to these women was

completed for 634 index children and for 655 control children covering a period

that averaged 18.44 years. For the mothers, no difference in health effects appeared.

For the children, however, there were four cancer deaths in the index group and

none in the control group. The cancers were not the same. One was a leukemia,

another a sinovial sarcoma, a third a lymphosarcoma, and the fourth a liver cancer.

The child with leukemia died at age five; the children with sarcomas died at age

eleven. Hagstrom put the liver cancer to one side because it appeared to be familial:

two older siblings of the child had died of the same disease in their twenties.

The dose of radiation received in utero was the subject of debate among the

experts. A separate study made at the time of the Hagstrom study estimated the

exposures as follows: for the sinovial sarcoma, the exposures were 0.095 rads10 for

the fetal dose and 1.28 rads for the fetal-liver dose; for the lymphosarcoma, the

figures were 0.036 rads for the fetal dose and 0.160 for the fetal-liver dose; for

the leukemia case, the exposure was 1.78 rads for the fetal dose and 14.2 rads for the

fetal-liver dose. The first two were far below, and the third was above, the median

for the index group. These estimates were made many years after the fact and were

subject to considerable uncertainty. As a point of comparison: in the 1950s, when

fetal X-rays were not uncommon, the average in utero exposure from a fetal X-ray

was in the neighborhood of one rad.

The discovery of three cases of malignancy in the exposed group (excluding the

liver cancer) and none in the control group led Hagstrom, et al., to conclude, in

words carefully chosen, that the result “suggests a cause and effect relationship.”

Hagstrom, et al., also calculated that, on the basis of cancer rates in the statewide,

white population of Tennessee up to age 14, the expected number of childhood

cancers in the index group was 0.65 (averaging figures for 1950 and 1960).

10 A unit of absorbed radiation in which 100 ergs of energy are absorbed per gram of tissue. By

way of comparison, background radiation delivers about 0.3–0.4 rads per year to humans, most of

it from radon.
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The Hagstrom study was published in 1969. Again, nothing happened. More

than 20 years passed. Then, in the 1990s, public attention was drawn to human

experimentation because of revelations regarding the infamous Tuskegee experi-

ment, in which black men with syphilis were recruited as patients and then

deliberately denied treatment because researchers were interested in tracking the

long-term effects of the disease. A presidential commission was appointed to

investigate and report on such experiments. The commission’s report, issued in

December 1993, listed a number of such studies; the Vanderbilt study achieved a

notoriety of sorts by being first on the list. Emma Craft, whose child had died an

excruciating death from the sinovial sarcoma, testified before Congress. Very

shortly thereafter, a class action was brought on behalf of the women and children

in the study against the State of Tennessee, Vanderbilt, and others. Causation, both

general and specific, was a major issue in the case.

Questions

1. What is the relative risk of childhood cancer in the index group vs. (i) the control

group? (ii) the general population up to age 14?

2. Using a two-tailed test (see p. 123) and the Poisson distribution, are the relative

risks statistically significant?

3. Assuming that the log of the estimated Poisson parameter, μ̂ , is approximately

normally distributed with variance 1=μ̂ , what is a 95% confidence interval for

the relative risk in 1(ii) above? What is its relevance?

4. What criticisms would you make of the 0.65 figure as the expected number of

childhood cancers in the exposed group?

5. What arguments can be made for and against including the liver cancer?

6. Do the results satisfy the Bradford-Hill criteria for inferring causation?

Sources

Hahn, et al., Iron metabolism in human pregnancy as studied with the radioactive
isotope Fe 59, 61 Am. J. Obs. & Gyn. 477 (1951); Hagstrom, et al., Long term
effects of radioactive iron administered during human pregnancy, 90 Am.

J. Epidemiology 1 (1969); Dyer & Brill, Fetal radiation doses from maternally
administered 59Fe and 131I, in Sikov & Mahlum, eds., Radiation Biology of the
Fetal and Juvenile Mammal 73 (U.S. Atomic Energy Commission 1969). The most

important study of the effects of fetal X-rays was MacMahon, Prenatal x-ray
exposure and childhood cancer, 28 J. Nat’l Cancer Inst. 1173 (1962). The litigation
was styled Craft et al. v. Vanderbilt et al., No. 3-94-0090 (M.D. Tenn 1994).

Notes

Highly qualified epidemiologists for the parties disagreed sharply over whether the

epidemiology was sufficient to support the conclusion that it was more likely than

not that the in utero exposure had caused the childhood cancers. Dr. Richard
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Monson, of the Harvard School of Public Health, treated the Hahn study as a unique

case because it involved fetal exposure from an internal emitter. On the basis of the

fact that there were 0.65 expected cases and 4 observed cases (he included the liver

cancer), and without consideration of dose, he concluded that it was more likely

than not that the malignancies were caused by the exposure. Dr. Geoffrey Howe, of

the Columbia School of Public Health, believed that whether the emitter was

internal or external to the fetus affected only dose. He compared the Hahn study

with a number of other fetal radiation studies, primarily those involving the atomic

bomb and fetal X-rays, and derived a relationship between dose and childhood

cancer risk. From this he concluded that the doses involved in the Hahn study were

too small to have created an appreciably increased childhood cancer risk. The case

was settled before trial when Vanderbilt agreed to pay plaintiffs $10 million. The

court never ruled on the adequacy of the scientific evidence of causation.

10.3.3 Preconception paternal irradiation and leukemia

In 1983, a television program reported a cluster of leukemia among young people in

Seascale, a village about 3 km south of the Sellafield nuclear reprocessing plant in

West Cumbria in northwest England. There were 5 such cases when, based on

national rates, only 0.5 would have been expected. The program and a subsequent

report caused an uproar and many investigations were launched. A subsequent

study by Professor Martin Gardner proposed an explanation (the “Gardner Hypoth-

esis”): preconception paternal irradiation (ppi) of male workers at the Sellafield

plant caused mutations in their spermatagonia which, in turn, caused a predisposi-

tion to leukemia and/or non-Hodgkins lymphoma in their offspring. On this theory,

two lawsuits were brought against British Nuclear Fuels, the owner of the plant.

In one lawsuit, the only one considered here, plaintiff was the mother of Dorothy

Reay, who was born in 1961 in Whitehaven, West Cumbria, contracted childhood

leukemia, and died in Whitehaven at the age of 10 months. Whitehaven is a village

some 15 km from Seascale. Dorothy Reay’s father, George Reay, had been

employed at Sellafield prior to her conception. It was agreed at the trial that his

total ppi was 530 milliSieverts (mSv) and his dose in the six months immediately

preceding conception was 12 mSv. A Sievert is a measure of the effective dose of

radiation in man. By way of comparison, natural background radiation delivers up

to 3–4 mSv per year.

(During the trial, another study was published that revealed a significant excess

of leukemia in the ward of Egremont North about 7 km north of Sellafield. There

were four cases of childhood leukemia diagnosed in the period 1968–1985, but

none of the fathers of these cases had any recorded ppi despite the fact that the

collective dose of ppi associated with children born in Egremont North was higher

than that associated with children born in Seascale. Whitehaven is closer to

Egremont North than to Seascale; see Fig. 10.3.3).

In the epidemiologic studies, the subjects were 46 cases of leukemia occurring in

young people (under the age of 25) born in the West Cumbria health district
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(including the 5 in Seascale) in 1950–1985. Dorothy Reay was among these cases.

After the data collection had begun, a decision was made to limit cases to those

not merely born but also diagnosed in West Cumbria. However, a young man was

included whose home was Seascale but who was diagnosed in Bristol, where he was

attending the university.

There were two groups of controls that were matched to each case: area and

local. For the area controls, searches were made backwards and forwards in time

from the case’s entry in the West Cumbria birth register until the nearest four

appropriate controls of the same sex in each direction were found. For the local

controls, the residence of their mothers was matched for residence (civil parish) of

Fig. 10.3.3. The Sellafield area
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the case; otherwise the procedure was the same as for the area controls. (Thus, a

local control could also be an area control.) As an example of exclusions: eight

potential controls for the young man diagnosed in Bristol were excluded, apparently

because the physician registry in those cases was outside of West Cumbria; in seven

of those exclusions the fathers had worked at Sellafield.

The data for cases and local and area controls are shown in Table 10.3.3.

About 1 in 2,000 English children contract childhood leukemia and it is

estimated that about 5% of the cases are due to a genetic link. From 1950 to

1989, of the 9,260 births to Sellafield employees, there were 779 births to Seascale

residents and 8,482 in the rest of West Cumbria, with total collective ppi doses of

38 and 501.4 man-Sv, respectively. The number of childhood leukemias in West

Cumbria (excluding Seascale) did not exceed expectation based on national rates.

Questions

1. Consider, a priori, and then compute, the odds ratio you deem most relevant to

the issue of causation.

2. Based on the data provided, what arguments would you make for and against a

finding that ppi caused childhood leukemia in Seascale (general causation) or in

Dorothy Reay’s case (specific causation)?

Source

Gardner, et al., Results of case-control study of leukemia and lymphoma among

young people near Sellafield nuclear plant in West Cumbria, 300 Brit. Med. J. 423

(1990); Doll, Evans & Darby, Paternal exposure not to blame, 367 Nature

678 (1994).

Notes

Application of the Bradford-Hill criteria (see Section 10.3) is illustrated by the

court’s resolution of the claims in the Sellafield case.

Table 10.3.3. Leukemia in young persons (age under 25 years) born and diagnosed in West

Cumbria, 1950–1985, by father’s occupational exposure to ionizing radiation

Father’s

preconception

dose (in milliSieverts)

Leukemic Children

W. Cumbria

Local

controls

Area

controls

Total preconception

0 38 236 253

1–99 4 37 30

�100 4 3 5

Previous 6 months

0 38 246 262

1–9 4 27 21

�10 4 3 5
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Strength of Association. The court agreed that there was a cluster of leukemia

in Seascale creating a high relative risk, but for several reasons declined to find that

the point estimate of the relative risk was evidence of causation.

First, the number of leukemic children was only 5. Such small numbers raise the

possibility of chance association and increase the risk of error if a case is wrongly

included.

Second, the excess of leukemia that was investigated was to some extent

identified in advance by a television program and prior studies. While neither

side claimed the excess was due entirely to chance, the degree of association

might have been increased by boundary tightening around Seascale.

Third, a decision was made after the Gardner team had started to collect data to

limit cases to those not merely born, but born and diagnosed in West Cumbria. This

switch, if made with knowledge of the data, would have compromised the statistical

significance (P-values) of the results.
Fourth, contrary to the rules of the study, a young man was included whose home

was Seascale, but who was diagnosed in Bristol, where he was attending university.

This departure from protocol was important because seven of the eight potential

controls who were excluded (apparently because their physician registry was

outside of West Cumbria) had fathers who had worked at Sellafield and so would

have been candidates for exposure.

Fifth, the Gardner study examined multiple hypotheses and this would have

reduced the statistical significance of the results for any one comparison.

Consistency. The court examined other studies of ppi cited by the plaintiffs’

experts, but found that they did not support the ppi hypothesis. In one study, the ppi

hypothesis was examined for men who had received diagnostic radiation before

conception of at least some of their children. The court rejected this study because,

in a subsequent publication, the authors admitted that bias may have crept into their

work. A study of the children of uranium miners showed an excess of leukemia, but

the excess was not statistically significant and the doses were not comparable to the

Sellafield doses. An excess of childhood leukemia around Dounreay, another

nuclear facility, could not be explained by ppi because, of the 14 cases involved

there, only 3 of the fathers had worked at Dounreay and none had received a large

preconception dose. A study of the effect of ppi from diagnostic X-rays in Shanghai

was found inherently unreliable because most of the information on the X-rays was

obtained from the mothers.

On the other hand, studies of A-bomb survivors followed 30,000 offspring of

over 70,000 irradiated parents over 45 years and found no ppi effect. These studies

were particularly important because they were prospective cohort studies, the most

reliable, and were conducted by highly qualified scientists under international

supervision.

Dose Response. The court noted that the only evidence of positive association

between dose and risk was between children and fathers who had received more

than 1,000 mSv ppi and that in any event the numbers involved were so small that

the data, while not inconsistent with a dose-response relationship in that region, fell

short of demonstrating the existence of such a relationship.
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Biological Plausibility. The court addressed two questions: whether leukemia

had a heritable component and, if so, whether ppi could explain the Seascale excess.

The court found that there was a heritable component in leukemia, but that it

was very small (about 5% of leukemia). Moreover, to explain the Seascale

excess one would have to assume transmissible gene mutation rates that were far

in excess of those shown in insect (Drosophila), mouse, and human in vitro studies.

Recognizing this difficulty, plaintiff argued a synergy theory: the radiation

caused a mutation that predisposed the offspring to leukemia, but the leukemia

only developed if the mutation was activated or acted in synergy with an X-factor,

such as a virus or environmental background radiation.

The court rejected this argument, pointing out that the theory presupposed a high

rate of mutations that was inconsistent with the cited studies. Moreover, it was not

clear why the X-factor could not operate on its own. In that connection, the synergy

theory did not explain another cluster of leukemia in children from Egremont North

(a nearby community), none of whose fathers had more than negligible ppi. Nor did

the theory explain the absence of any excess of other heritable diseases in the

children. To reconcile the excess of leukemia with normal rates of other heritable

diseases would require either an exquisitely sensitive leukemia gene or an X-factor

that was specific to leukemia. While plaintiff’s experts offered some theories to that

effect, the court rejected them as speculative.

An alternative hypothesis was proposed by Professor Kinlen. He concluded

on the basis of studies of oil refineries in remote places that the Sellafield

cluster was caused by chance and by the influx of a large number of outside workers

into a previously isolated rural community; some unknown infectious agent was

responsible. The court quoted Sir Richard Doll, a world famous epidemiologist,

who wrote that the association with ppi was caused by chance and the post hoc

selection of an atypical subgroup of the young people in West Cumbria. The court

stated that it found the Kinlen hypothesis no less plausible than the Gardner

hypothesis.

Analogy. Five studies of the offspring of fathers in motor-related occupations or

in paint and pigment-related occupations showed relative risks of 1–5 or more. The

court said that, in view of the criticisms of these studies, it gave the evidence from

analogy very little weight.

Specificity. The parties were agreed that radiation had a “scatter gun” effect on

the germline. Plaintiffs’ experts argued that the variety of leukemia was consistent

with this. Defendants argued that, if radiation were responsible, one would expect

to see an excess of a wide range of diseases with a heritable component in the

offspring. The court held that the plaintiffs were right to concede that this criterion

afforded them little assistance.

Temporal Association. There was no dispute that ppi preceded leukemia.

Experimentation. There was no suggestion that there were any human experi-

mental data that affected the issues in the case.

The court concluded that plaintiffs had failed to prove by a preponderance of the

evidence that ppi was a material contributory cause of the excess childhood

leukemia in Seascale. The court also stated that, if it had determined that ppi was
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the cause of the excess childhood leukemia in Seascale, it would still have found

that Dorothy Reay’s leukemia was not part of the Seascale excess. Reay had lived in

Whitehaven, which was much closer to Egremont North than to Seascale, and so

she would have been regarded as part of the Egremont North excess, as to which

there was no proof of ppi.

A subsequent study of cancer in some 46,000 children of men and women

employed in nuclear establishments in the U.K. found that the leukemia rate in

children whose fathers had a preconception dose of>100 mSv was 5.8 times that in

children conceived before their fathers’ employment in the nuclear industry (95%

c.i. 1.3–24.8). However, this result was based on only three exposed cases, and two

of those cases had previously been identified in the West Cumbrian case-control

study involved in the Reay case. No significant trends were found between increas-

ing dose and leukemia. Roman, et al., Cancer in children of nuclear industry

employees: report on children aged under 25 years from nuclear industry family

study, 318 Brit. Med. J. 1443 (1999).

10.3.4 Swine flu vaccine and Guillain-Barré Syndrome

In 1976 there was a cluster of swine flu cases among soldiers in Fort Dix, New

Jersey, and one soldier died. The virus resembled the virus in the pandemic that

killed 20 million people world-wide in 1918 and 1919. Fearing an outbreak, the

federal government undertook a massive immunization effort through the National

Swine Flu Immunization Program Act of 1976, 42 U.S.C. 247(b)(1978). The

program began on October 1, 1976, but a moratorium was declared on December

18, 1976, eleven weeks after it started, in part because the epidemic did not

materialize and in part because there were sporadic reports of Guillain-Barré

Syndrome (GBS) following immunization with the vaccine. GBS is a rare neuro-

logical disorder that is characterized by a destruction and loss of the myelin sheath,

the insulation surrounding nerve fibers. Demyelinated nerve fiber will not conduct

impulses from the central nervous system in a normal manner. A typical case of

GBS begins with tingling, numbness, or weakness in the limbs, which is followed

by paralysis of the extremities, with maximum weakness reached in about two

months. The acute phase is followed by a much longer period in which most

patients recover the use of their limbs. GBS is sometimes triggered by vaccination

or infection, but it is not a well defined organic disorder and consequently is

difficult to diagnose.

When insurance companies declined to issue coverage for adverse effects

resulting from vaccination, the drug companies declined to produce the vaccine

without coverage. To resolve this impasse, the federal government accepted

liability for adverse effects under the Federal Tort Claims Act, 28 U.S.C. }1346
(b) (1999). All cases of adverse reaction following vaccination were to be reported

to the federal government to begin the compensation process.
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Louis Manko received a vaccination on October 20, 1976. He testified that,

about ten days later, he began to feel muscular weakness, which became progres-

sive. On January 15, 1977, some thirteen weeks after vaccination, he was diagnosed

as having GBS. He brought suit against the federal government. The principal issue

was causation and the court seemed to assume that causation was established if the

rate ratio (RR) for GBS comparing vaccinated and unvaccinated subjects was

greater than 2.

The experts for the parties were agreed that the RR for GBS most relevant to

Manko’s case was the ratio of observed to expected numbers of new GBS cases

13 weeks after vaccination. Manko’s experts computed those numbers by treating

as a separate cohort those vaccinated in each time period (using periods of about a

week) from the beginning to the end of the program, and then computing for each

cohort the observed and expected numbers of new GBS cases 13 weeks after

vaccination. The observed number of new GBS cases was simply the number of

new GBS cases among the cohort appearing in the 13th week after vaccination. The

expected number of new GBS cases (under the null hypothesis that vaccination had

no effect on the incidence of GBS) was obtained by multiplying the size of the

cohort by the background rate of GBS in the unvaccinated population in that 13th

week. The numbers for the first, second, third, etc., cohorts were then summed to

arrive at an overall number of observed and expected cases. Since the numbers were

still very small, Manko’s experts averaged the RRs thus computed between 11 and

16 weeks after vaccination. By their computation, the RR was greater than 2; one

calculation gave it as 29/7.40¼ 3.92.

Following the moratorium, there was a sharp drop in the incidence of GBS

among unvaccinated persons, which experts for both sides attributed to

underreporting. But there was also a drop in rate of GBS among vaccinated persons.

Manko’s experts took the position that this was also due to underreporting compa-

rable to that for unvaccinated persons.

The government’s experts took the position that the decline in reported GBS

following the moratorium was due to the passage of time after the vaccinations had

stopped. They argued that, if prior estimates of the background rate of 0.24 per

million person-weeks of exposure continued to apply, the relative risk would be

29/17.5¼ 1.66.

In Fig. 10.3.4, Panel A shows the incidence rate of GBS among the vaccinated,

by week since vaccination. The government’s argument is reflected in the dashed

line, the rate of GBS among the unvaccinated, which is truncated, after the

moratorium, to the background rate of 0.24 per million person-weeks of exposure.

Panel B shows, in greater detail, the incidence rate among the unvaccinated, by

week since the start of the vaccination campaign.

Manko had an infection with respiratory and gastrointestinal symptoms a week

or two before his hospitalization for acute GBS. Prior infection is a risk factor for

GBS: about 62% of the unvaccinated GBS cases had some illness in the month

before onset; for the vaccinated cases, only 33% had been ill. As a first cut, to

account for this confounder, the RR computed above was multiplied by 33/62.

Manko’s experts objected that the RR so adjusted would be skewed by selection
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effect, because vaccination was contraindicated immediately after illness. To

focus on cases in which illness occurred after vaccination, but within a month of

the onset of GBS, they argued that the data should be restricted to late-onset cases

like Manko’s. In that category, the adjustment would be 53/62¼ 0.85, because

53% of the vaccinated, late-onset GBS cases had a prior illness, while, as stated,

62% of the unvaccinated GBS cases had illness in the month before GBS. Note

that, in the above calculation of adjustment, it is assumed that the RR of illness for

vaccinated vs. unvaccinated persons is 1. This is so because the formal relation

between the RR of GBS and the RR of GBS for people with prior illness is given in

general by:

RR of GBS given illness½ � ¼ RR of GBS½ � � RR of illness given GBS½ �
RR of illness½ �

where the RR for GBS or for illness are for vaccinated vs. unvaccinated subjects.

Manko’s experts argued that the RR for illness would be less than 1 because

people were advised against vaccination immediately following illness. Another

reason is that vaccinated persons with GBS may have been less willing to have

reported any illness. On the other hand, the RR of illness could be greater than 1 if

people prone to illness tended to seek vaccination and ignored the advice in

contraindication.
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Fig. 10.3.4. Panel (a) shows the incidence of GBS among the vaccinated, by week since

vaccination. Panel (b) shows the incidence of GBS among the unvaccinated from the start of the

vaccination program
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Questions

1. If the government’s experts were correct in their interpretation of the decline of

GBS among the vaccinated, explain why the RR calculation of Manko’s experts

would be biased. Which interpretation, Manko’s experts or the defendant’s

experts, is more reasonable?

2. Use Bayes’s theorem to derive the relation shown for the RR of GBS given

illness. Is there a problem with the definition of illness?

3. Was the adjustment for prior illness properly made?

Source

Manko v. United States, 636 F. Supp. 1419 (W.D. Mo. 1986), aff’d in part, 830 F.2d

831 (8th Cir. 1987); Freedman & Stark, The swine flu vaccine and Guillain-Barré

syndrome: a case study in relative risk and specific causation, 23 Eval. Rev.

619 (1999).

Notes

On the causation issue, the district court found that the vaccine caused plaintiff’s

GBS on two separate theories: (i) plaintiff’s symptoms of muscle weakness occur-

ring shortly after vaccination amounted to “smouldering GBS,” which became

acute in January 1977; and (ii) even if plaintiff’s GBS did not occur until January

1977, some 13 weeks after vaccination, causation was proved because the relative

risk was greater than 2. The court of appeals affirmed on the first ground without

reaching the second.

10.3.5 Silicone breast implants

Between 650,000 and one million women received silicone breast implants during

the 1970s and 1980s. The legal disputes started shortly afterwards as women

claimed that leaks from the implants had damaged their health. Claims were

made that, besides localized complications, the implants caused connective tissue

diseases (CTD), such as rheumatoid arthritis, lupus, and scleroderma. In December

1991, a California jury awarded a woman $7.34 million for CTD. There was much

publicity of the verdict and the causal link. Shortly thereafter, probably influenced

by the verdict and the public outcry, the Commissioner of the Federal Food and

Drug Administration sharply limited the future sales of the implants pending

submission of additional safety data. It was not until June 16, 1994, two years

after the FDA had taken breast implants off the market, that the first reliable

observational epidemiologic study was published. In the meantime, the FDA action

was a major factor in causing a tidal wave of litigation against the manufacturers.

The federal cases were consolidated for pre-trial proceedings before District

Judge Sam C. Pointer, Jr., of the Northern District of Alabama. Availing himself of

his power to appoint experts, Judge Pointer selected an expert panel to examine the
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evidence that silicone breast implants caused CTD. The panel took two years and in

December 1998 issued its report finding no connection between implants and CTD.

Chapter III of the report, entitled “Epidemiological Analysis of Silicone Breast

Implants and Connective Tissue Disease” (Principal Author, Barbara S. Hulka), did

not present new research, but rather consisted of a meta-analysis of the available

epidemiologic studies. The principal features of the meta-analysis were as follows.

The report analyzed the connection between implants and five conditions with

established diagnoses. These were rheumatoid arthritis, lupus, scleroderma,

Sj€ogren’s syndrome, and dermatomyositis/polymyositis. There was also a diagnos-

tic category called “definite CTDs combined,” which included the five definite

diagnoses plus what the individual study authors regarded as “definite CTD,” even

though the diagnoses did not fit into the established categories. This last category

was designed to allow for some uncertainty and change in diagnoses. In addition,

the report used a category called “other autoimmune/rheumatic conditions” to

include ill-defined diagnoses, such as undifferentiated connective tissue disease.

The report used as the exposure of interest any implant, not merely silicone

implants, because information on type of implant frequently was missing or could

not be verified. Separate analyses were also made of known silicone implants.

The panel searched data bases of published materials, and a data base of

dissertation abstracts for unpublished sources. Studies published only in abstract

or letter form in unrefereed journals were also included. The search was limited to

English-language sources and to human subjects. Submissions were also received

from a plaintiffs’ law firm. This search yielded 756 citations, most of which were

not epidemiologic studies. All potentially relevant papers were reviewed indepen-

dently by the investigators. The criteria for inclusion were: (1) an internal compari-

son group; (2) available numbers from which the investigators could identify the

numbers of implanted women with and without the disease and the numbers of

nonimplanted women with and without the disease; (3) the exposure variable being

the presence or absence of breast implants; and (4) the disease variable being some

type of CTD. For each study, the investigators calculated an OR or an RR by the

exact method based on the non-central hypergeometric distribution. The ORs and

RRs thus obtained were unadjusted for confounders.

In producing an overall summary estimate, it was assumed that the studies were

homogeneous, i.e., they constituted repeated measurements of the same OR or

RR. To test this assumption, the investigators used a chi-squared test and assumed

that heterogeneity might exist if the P-value were less than 0.10. When that

occurred they attempted to stratify the studies to achieve homogeneity within the

strata. The chief available stratification variables (i.e., variables for which there was

information for all studies) were study design (cohort or other), medical record

validation of disease (yes or no), and the date of data collection on disease diagnosis

(<1992 or�1992). If homogeneity could not be achieved through stratification, the

investigators resorted to visual inspection of individual studies in search of outliers.

Studies were removed individually or in pairs to achieve homogeneity among the

remaining studies. The final set of studies represented the largest number of studies

and subjects that were homogeneous.
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The investigators also prepared meta-analyses of effect estimates that were

adjusted by the authors of the individual studies to reflect possible confounders.

The primary confounders were age, with controls frequently being older than cases,

and secular time, because implant frequency and implant type varied by calendar

time period. Additionally, length of follow-up sometimes varied between implanted

and nonimplanted women within individual studies. Because the exact methods

previously used for unadjusted results could not be used for adjusted results, large-

sample, meta-analytic methods were used to combine adjusted ORs and RRs

obtained from the individual studies.

Table 10.3.5a shows the individual study results for the category “Definite CTDs

combined,” for the 16 studies with unadjusted odds ratios. Eleven of these studies

had adjusted odds ratios, which are also given. Table 10.3.5b shows some derived

statistics for the Table 10.3.5a studies with adjusted odds ratios.

Figure 10.3.5 shows power calculations for Definite CTDs combined and for the

conditions separately.

Questions

1. Using Tables 10.3.5a and 10.3.5b and the weighted-average method of

Section 8.1 at p. 253, compute a common adjusted OR and a 95% confidence

interval for the estimate. What conclusion do you reach?

2. Compute a P-value for the homogeneity statistic. The chi-squared statistic used

in the Mantel-Haenszel test for homogeneity isX
i

wi li � l
� �2

;

where li and l are, respectively, the log odds ratio for the ith study and weighted

average log odds ratio for the studies, and wi¼ 1/[se(li)]
2 is the weight used for

the ith study in averaging the studies. For ease of calculation, use the alternative

formula for the variance (see Section 1.3 at p. 21), giving.

X
i

wi li � l
� �2 ¼X

i

wil
2
i �

X
i

wi

 !
l
2

What conclusion do you reach?

3. What systematic difference is there between the unadjusted and adjusted

estimates in the studies? What could cause that? Which set of results appears

to be more valid?

4. What are the arguments for and against excluding the Hennekens study?

5. Interpret the power curves of Fig. 10.3.5.

6. In Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993), the Supreme

Court held that trial judges must be more vigilant gate keepers, assuring that
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Table 10.3.5b. Silicone breast implants: weighted least squares meta-analysis using studies with

adjusted odds ratios

Study

(1)

adjusted

ln(OR)

(2)

Se(1)

(a)

(3)

Weights

(b)

(4)

(3)� (1)

(5)

(3)� (1)2

1. Burns �0.051 0.774 1.670 �0.085 0.004

2. Dugowson, �0.892 1.055 0.898 �0.801 0.715

3. Edworthy 0.000 0.407 6.033 0.000 0.000

6. Gabriel 0.095 0.553 3.273 0.311 0.030

8. Hennekens 0.215 0.068 216.152 46.473 9.992

9. Hochberg,

1996b

0.068 0.355 7.942 0.540 0.037

10. Lacey 0.392 0.748 1.786 0.700 0.274

11. Nyren �0.223 0.263 14.495 �3.232 0.721

13. Sanchez-

Guerrero

�0.511 1.175 0.725 �0.370 0.189

15. Teel �0.105 0.446 5.022 �0.527 0.055

16. Wolfe 0.300 0.767 1.701 0.510 0.153

Total 259.697 43.518 12.170

(a) Se{adjusted ln(OR)} approximated by half-width of (log endpoints of 95% confidence interval

for adjusted OR) divided by 1.96

(b) Weights are squared reciprocals of column (2)

Fig. 10.3.5. Power versus underlying effect measure (including Hennekens)
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“scientific testimony or evidence admitted is not only relevant but reliable.”

Should proffered expert testimony that silicone implants can cause CTD based

on case reports, clinical studies, in vitro, or in vivo studies be deemed suffi-

ciently reliable to be admissible under Daubert despite the negative

epidemiology?

Source

Diamond, et al., Silicone Breast Implants in Relation to Connective Tissue Diseases

and Immunologic Dysfunction: A Report by a National Science Panel to The

Honorable Sam C. Pointer Jr., Coordinating Judge for the Federal Breast Implant

Multi-District Litigation (November 17,1998), available at<www.fic.gov/breimlit/

mdl926.htm>. See also, Janowsky, Kupper & Hulka, Meta-Analyses of the relation

between silicone breast implants and the risk of connective-tissue disease, 342 New

Eng. J. Med. 781 (2000).

Notes

Despite the publication of this and other studies by scientific bodies reaching the

same conclusion, litigation and the process of settlement continued. In particular,

Dow Corning, which was forced into bankruptcy, went ahead with hearings before

a bankruptcy court for approval of a planned $3.1 billion settle-ment with a class of

some 170,000 women who had received breast implants. Three other manufacturers

also reached class action settlements totaling some $3 billion. These were, at the

time, the largest settlements in the history of American tort law.

The performance of the legal system in these cases was sharply criticized

by Marcia Angell, the executive editor of the New England Journal of Medicine,

in a notable book, Science on Trial: The Clash of Medical Evidence and Law in the

Breast Implant Cases (1996). Some legal scholars defended the results, arguing

that, even if the implants did not cause CTDs, the manufacturers were at fault

(and presumably were properly punished) for selling a product that turned out to be

safe, but before there had been sufficient studies with which to prove that safety.

Dresser, Wagner & Giannelli, Breast Implants Revisited: Beyond Science on Trial,

1997 Wisc. L. Rev. 705. As they put it: “If well-designed studies had been

conducted sooner, there would have been no need for drastic FDA intervention

and no basis for the implant litigation.” Id. at 708. Do you agree?

On question (6), compare Vassallo v. Baxter Healthcare Corp., 696 N.E.2d

909 (Mass. 1998) (testimony allowed despite absence of supporting epidemiology)

with In re Breast Implant Litigation, 11 F. Supp. 2d 1217 (D. Colo. 1998)

(testimony excluded).
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Survival Analysis 11

11.1 Death-density, survival, and hazard functions

There are many situations in law that require estimation of the time to failure, e.g.,

how long someone will live or something will last. The event of failure may be

anything—death, filing a claim after exposure to a carcinogen, peeling of defective

paint on house sidings, or termination of an at-will relationship. If there are

comparable populations in which all or almost all members have already failed,

the probabilities of survivorship and death at various ages can be estimated directly

from data and presented in the form of a life table. The classic life table tracks an

initial cohort of people year by year from birth, showing in each year how many

people die and how many survive, until the entire cohort has died. If there are no

comparable populations with complete survival data, the problem of estimation is

more difficult. The average life of those who have already failed would seriously

underestimate the average life of those still surviving. An estimate of the likelihood

of early failure is still possible; but at later times, to take account of the fact that

many in the population have not yet failed, one must assume that the force of

mortality has a certain mathematical form or model as a function of time and

estimate the model’s parameters from the data. The future rate of mortality is

then extrapolated from the model.

In survival analysis, four functions related to the failure time, viewed as a

random variable T, are ordinarily defined:

1. The death-density function f(t), or unconditional failure rate, is the probability
that an individual will die within a given time interval divided by the length of that

interval. Where this probability changes in the interval, a limit is taken as the

interval shrinks to zero, at which point we have the instantaneous death rate, which

is the probability density function for the failure time. Because death must occur

sometime, the total area under the death-density function from zero to infinity

equals one.

2. The survival function S(t) is the probability that an individual fails at a given

time t or later, S(t)¼P[T� t]. If F(t) denotes the cumulative distribution function of

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_11
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T, F(t)¼P[T	 t], then S(t)¼ 1�F(t) +P[T¼ t]. When failure times are measured

precisely in time (the “continuous-time” case), so that P[T¼ t]¼ 0, S(t) is simply

one minus the cumulative distribution function of the failure time. The survival

function never increases, and generally decreases, with time. It is often estimated

from follow-up data by the “product-limit” estimator, also known as the Kaplan-

Meier estimator, Ŝ(t)¼∏ j (1� dj/nj), where dj is the number of observed deaths at

the moment tj of the j
th death time, nj is the number at risk of death just prior to time

tj, and where the product ∏j is taken over all death times prior to time t, i.e., for all
j with tj< t. The product-limit estimator thus equals the product of sample survival

proportions up to time t. In the continuous-time case, there are no ties among the

observed times of failure, and dj equals 1. Occasionally failure time data are

measured only in discrete units or at the end of fixed periods, so that failure can

only occur, or be observed to occur, at the end of each time period. In this “discrete-

time” case, dj may be greater than 1. Ŝ(t) is particularly useful because it is defined

even when losses to follow-up occur, so that not all failure times can be observed

(“censored” failure times). Such losses are subtracted from the number at risk, nj,
after the time of censoring. In this way we utilize the survival information provided

by those lost to follow-up, up to the time of censoring. See Section 11.1.4 for further

discussion of how the product-limit estimator accounts for censored observations.

The standard error of Ŝ(t) at any time t is provided by Greenwood’s formula.1

As an illustration, a randomized clinical trial of risperidone (an anti-psychotic

medication given to Alzheimer’s disease patients to alleviate symptoms of aggres-

sive or agitated behavior) was conducted to determine if discontinuation after

responsive treatment for 16 weeks would lead to relapse of symptoms more rapidly

than if the treatment were continued.2 Figure 11.1 shows two Kaplan-Meier curves;

the solid line shows the proportion of patients free of relapse by weeks after

randomization for those continued on risperidone while the dashed line shows the

same for those discontinued and treated with a placebo (in blinded fashion). The

vertical jump discontinuities in the curves reflect the decline in the estimated

survival proportion occurring after each observed relapse. The P-value of 0.02

refers to the statistical significance of the difference between the two curves by the

log-rank statistic. See Section 11.2.

3. The hazard function θ(t), also known as the “force of mortality,” is a rate

measured in units of deaths per person per time period, as, e.g., 5 deaths per 100,000

persons per year, or 5 deaths per 100,000 person-years. The hazard function

1 The standard error is given by

s:e: Ŝ tð Þ�  ¼ Ŝ tð Þ
X
j:t j<t

d j

n j n j � d j

� �
8<:

9=;
1=2

¼ Ŝ tð Þ
X
j:t j<t

d j=n j

n j 1� d j=n j

� �
8<:

9=;
1=2

;

where the sum is taken over all death times prior to time t.
2 See Devanand et al., Relapse Risk after Discontinuation of Risperidone in Alzheimer’s Disease,
367 New Engl. J. Med. 1497 (2012) for the primary findings of this randomized clinical trial.
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generally varies with time. For example, the hazard function for death from all

causes in human beings is higher around birth and during old age than during late

childhood through middle age.

In the continuous-time case, θ(t) is an instantaneous rate, defined as the limiting

value of the ratio of the conditional probability that an individual dies during a

short interval starting at time t, given his survival before time t, to the length of

the interval as that length approaches zero. From the definition it follows that the

hazard function is equal to the death-density function at time t divided by the

survival function at time t, θ (t)¼ f (t)/S(t).
We emphasize that in the continuous-time case, the hazard function is a rate, i.e.,

a proportion per time unit, not a probability. In particular, the hazard rate can be

greater than 1 whenever the rate of death, if continued long enough, would exhaust

the population before the unit time period elapsed. For example, if 2,000 deaths

occur in a population of 12,000 during 1 month, the person-years at risk are 12,000

(1/12)¼ 1,000 person-years, so that the hazard rate is 2,000 deaths/1,000 person-

years¼ 2 deaths per person-year. For a small time interval of length h, the quantity
θ(t)h does approximate the conditional probability of death in the time interval from

t to t+ h. Thus, in the above example with h¼ 1/12, the quantity θ(t)h¼ 2(1/12)¼
1/6, which is the conditional probability of death in the first month.

Fig. 11.1. Product-limit estimates for two survival functions
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In the discrete-time case, with time periods indexed by j¼ 1, 2,. . ., the hazard

function is defined slightly differently as the conditional probability of death in

period j given survival past period j� 1. The units are still deaths per person per

period, but since the period is fixed and indivisible, the hazard rate never exceeds

1 per person per period. In the above example, with monthly periods fixed, the

discrete hazard function would equal 1/6 for the given period.

4. The cumulative hazard function, H(t), at time t is the integral of the hazard

function θ from 0 to t. In continuous time, the cumulative hazard function is equal to

minus the natural logarithm of the survival function; taking antilogs, the survival

function is equal to e raised to the power of minus the cumulative hazard function.

In symbols, H tð Þ ¼
ð t
0

θ uð Þdu ¼ �logS tð Þ, and S(t)¼ exp{�H(t)}. Thus, one way

to estimate H(t) is to take the negative log of the product-limit estimator, Ĥ(t)¼
�log Ŝ(t). Another way to estimate H(t) is by summing the discrete hazard

estimates dj/nj up to time t. The two estimates agree closely except at very large

times where data become sparse. In discrete time, H(t) is defined as the cumulative

sum of the hazard function, and is estimated by summing the discrete hazard

estimates. The cumulative hazard function is useful for plotting procedures

designed to check on specific parametric forms for the survival distribution, e.g.,

the Weibull failure time discussed below.

Specific forms of the foregoing functions that are widely used are the Weibull,

exponential, and geometric functions.

The Weibull hazard function with parameters c and θ is a widely used

continuous-time hazard rate function given by θ(t)¼ θ0ct
c�1 where θ0 is 1/c

times the hazard rate at t¼ 1. If 0< c< 1, then the hazard declines with time; if

c¼ 1 the hazard remains constant (this is the exponential distribution); if c> 1, the

hazard increases with time. Using the definition of the cumulative hazard rate for

the Weibull distribution, H tð Þ ¼
ð t
0

θ0cx
c�1dx ¼ θ0t c. Taking logarithms of both

sides yields logH tð Þ ¼ logθ0 þ c logt. Thus, if the values of the cumulative hazard

function fall on a straight line against time when graphed on log–log paper,

this relation can be used to estimate the parameters of the Weibull hazard

rate function and, from these, the survival function. For the Weibull distribution,

S tð Þ ¼ exp �θ0tcð Þ. The median survival time for a Weibull distribution is {(log 2)/

θ0}
1/c, and the mean survival time is Γ(1 + 1/c)θ0�1/c, where Γ(x) is the gamma

function satisfying Γ(x + 1)¼ x Γ(x); if 1/c is an integer, then Γ(1 + 1/c)¼ (1/c)!
In the case of the exponential distribution the cumulative hazard function is

θ0 t and the survival function is exp(�θ0 t). The mean time to failure is equal to the

reciprocal of the hazard constant θ0, and the standard deviation of the time to failure

is equal to the mean. The term “half-life” refers to the median life in an exponential

survival distribution. The half-life is given by (log 2)/θ0. Do you see why? See

Section 4.8.

The geometric distribution is a discrete time analogue of the exponential distri-

bution and shares many of its properties. Like the exponential distribution, it is

336 11 Survival Analysis

http://dx.doi.org/10.1007/978-1-4419-5985-0_4#Sec26


characterized by a constant hazard, p, and is without memory, i.e., the expected

residual lifetime is constant no matter when it is evaluated. What is the median

lifetime (half-life) in a geometric survival distribution? See Section 4.8.

Further Reading

Kalbfleisch & Prentice, The Statistical Analysis of Failure Time Data (2nd

ed. 2011).

Lawless, Statistical Models and Methods for Lifetime Data (2nd ed. 2011).

11.1.1 Valuing charitable remainders

Humes v. United States, 276 U.S. 487 (1928). Della R. Gates died leaving one-half

her residuary estate of $11,783,072.30 in trust for her 15-year old niece, who lived

in Texas. The niece was to receive income and portions of the corpus during her

lifetime. If she died without issue before reaching the age of 40, any principal not

given to her was to be distributed to charity. There was a parallel provision for the

testatrix’s brother involving the other half of the estate. Actuaries determined that

present value of the contingent interest was $482,034, or 4.0909% of the residue.

This amount was deducted from the gross estate for estate tax purposes.

The probability that the charity would take was calculated using a standard

experience table of mortality with two other “relatively little known” tables not

previously used in legal proceedings. These tables were described by Justice

Brandeis as follows:

Both of these tables are based on data contained in volumes of Lodge’s Peerage. The first

table, which may be found in the Transactions of the Faculty of Actuaries in Scotland, Vol.

1, pp. 278–79, and is called Lees’ Female Peerage Tables, was constructed by

M. Mackensie Lees. It deals with 4,440 lives, of whom 2,010 died during the period of

observation. The second of the tables, which may be found in an article entitled “On the

Probability that a Marriage entered into by a Man of any Age, will be Fruitful,” in the

Journal of the Institute of Actuaries of Great Britain, Vol. 27, pp. 212–13, was constructed

by Dr. Thomas Bond Sprague. It deals with the experience of 1,522 male members of the

Scotch [sic] peerage and purports to show the probability that a marriage will be childless

both as respects men married as peer or heir apparent and men who did not marry as peer or

heir apparent. In order to apply the latter table to females certain assumptions and

adjustments are necessarily made.

Id. at 493.

The Revenue Act of 1918 provided that “the amount of all bequests to or for” a

charity was to be deducted from the gross estate. Was the value of the charitable

bequest sufficiently ascertainable to be deductible?

Commissioner v. Marisi, 156 F.2d 920 (2d Cir. 1946). When Marisi divorced his

wife in 1931, she became entitled to alimony until her death or remarriage. In 1940

Marisi died and his estate claimed a deduction for estate tax purposes of the value of

that obligation. Marisi’s wife was then 49 and unmarried. To determine the
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expected time to remarriage, the Tax Court, over the Commissioner’s objection,

accepted actuarial tables prepared by the Casualty Actuarial Society of America,

based upon the remarriage experience of American widows entitled to workmen’s

compensation in states where compensation benefits were lost upon remarriage.

A deduction was allowed accordingly.

The Commissioner objected that no deduction should be allowed because the

tables were not relevant from an actuarial point of view. Was the Commissioner

right?

Commissioner v. Sternberger, 348 U.S. 187 (1954). Sternberger established

trusts to provide income to his wife and daughter, with remainder to charity if the

daughter had no descendants living at her death. The estate claimed a charitable

deduction based on the actuarial value of the conditional gift to charity. The

probability of the daughter’s marriage was computed from the American Remar-

riage Table (referred to in Marisi above). A specially devised table was used to

compute the probability of the daughter’s having issue. It was assumed that any

child would survive its mother. On that basis, the present value of the charitable

remainder was computed as 24.06% of the principal value of the trust funds (some

$2,000,000).

The Commissioner objected that the tables were not relevant from an actuarial

point of view. Was the Commissioner right?

11.1.2 Defective house sidings

Whittaker claimed that Sherwin-Williams breached its express and implied

warranties by supplying Crown with defective Superclad paint, which Crown in

turn sold to consumers under a 5-year warranty. When warranty claims were made

against Whittaker, it sued Sherwin-Williams. Assume that at the time of trial only

about 2 years of the 5-year warranty period had run. The court required proof of

damages arising from all past and future failures, not only those failures occurring

up to the time of trial. Set forth in Table 11.1.2 are data showing the cumulative

hazard by months to failure for the color laurel green. A plot of cumulative hazard

vs. months to failure on log-log paper (the logs used here are common logs) shows

that the points fall close to a straight line. The slope of that line (as determined by

least squares regression) is 2.484 and the intercept is �3.742.

Questions

1. Is the life of laurel green house sidings exponentially distributed?

2. What is the probability that a laurel green siding will last for at least five years?

11.1.3 “Lifing” deposit accounts

When Trustmark National Bank acquired Canton Exchange Bank on December

14, 1983, it allocated a part of the purchase price to Canton’s regular savings
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deposit accounts, and then sought to amortize the cost for tax purposes.

The willingness of depositors to continue their accounts is regarded as an intangible

asset, the cost of which can only be amortized if it has a limited life that can be

estimated with reasonable accuracy. The IRS denied any deduction by amortiza-

tion, taking the position that the life of the asset could not be so estimated. The

taxpayer brought suit in the Tax Court and at the trial estimated a Weibull model

from data on the lives of accounts. These are shown in Table 11.1.3.

Table 11.1.2. Failure data for laurel green paint

Age (months) Cumulative hazard log10 Age log10 Cum haz

9 0.02459 0.95424 �1.60924

9 0.04919 0.95424 �1.30812

12 0.07380 1.07918 �1.13194

12 0.09841 1.07918 �1.00696

13 0.12303 1.11394 �0.90999

14 0.14765 1.14613 �0.83077

14 0.17228 1.14613 �0.76377

15 0.19692 1.17609 �0.70571

17 0.22156 1.23045 �0.65451

19 0.24621 1.27875 �0.60869

20 0.27086 1.30103 �0.56726

22 0.29552 1.34242 �0.52941

Table 11.1.3. Observed closures in 1983: regular savings accounts

Year

open

Avg age

acc’ts at end

of 1983

Log of

avg age

No. acc’ts at

start of 1983

No. of

closures

Prop. of

closures

Est. cum.

hazard

Log est.

cum.

hazard

1983 0.5 �0.693 409a 133 0.325 0.3252 �1.123

1982 1.5 0.405 347 110 0.317 0.6422 �0.443

1981 2.5 0.916 257 55 0.214 0.8562 �0.155

1980 3.5 1.253 312 52 0.167 1.0229 0.023

1979 4.5 1.504 310 29 0.094 1.1164 0.110

1978 5.5 1.705 249 35 0.141 1.2570 0.229

1977 6.5 1.872 197 28 0.142 1.3991 0.336

1976 7.5 2.015 152 20 0.132 1.5307 0.442

1975 8.5 2.140 129 17 0.132 1.6625 0.508

1974 9.5 2.251 108 13 0.120 1.7828 0.578

1973 10.5 2.351 89 7 0.079 1.8615 0.621

1972 11.5 2.442 82 8 0.098 1.9590 0.672

1971 12.5 2.526 65 4 0.062 2.0206 0.703

1970 13.5 2.603 50 3 0.060 2.0806 0.733

1969 14.5 2.674 21 2 0.095 2.1758 0.777
aAccounts opened during 1983
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Questions

1. Referring to Table 11.1.3, is the hazard of termination increasing, decreasing, or

staying the same with age? Is the pattern reasonable?

2. Plot the logarithms of the estimated cumulative hazard, H(t), on the vertical axis
of a graph against the logarithms of the average age at the end of 1983. From this

graph estimate the slope coefficient c and the intercept term log θ0. This provides
a graphical estimation procedure for the parameters c and θ0 of a Weibull

distribution.

3. Use the above parameters to estimate the median and mean of a Weibull

distribution (rounding 1/c to the nearest integer).

4. Should a depreciation deduction be allowed?

Source

Trustmark Corp v. Commissioner of Internal Revenue, T. C. Memo 1994–184

(1994).

11.1.4 Exonerations in death-sentence cases

In the period from 1973, when the first of the modern death penalty laws were

enacted in the U.S., to the end of 2004 there were 7,482 persons sentenced to death

in the U.S. Of these there have been 107 death-sentenced defendants who were

exonerated between 1 and 21.4 years after conviction as a result of legal

proceedings begun while on death row and ten more exonerated in proceedings

commenced after leaving death row. Some 943 defendants (12.6%) were executed

and 2,675 (35.8%) were removed from death row but not exonerated (usually

resentenced to a non-capital sentence) during the study period. What is the rate of

exoneration among those under threat of execution on death row? The fraction

107/7482¼ 0.0143 surely understates the rate because many defendants are

removed from death row by (i) execution, (ii) death from other causes, or (iii)

resentencing to a non-capital sentence. Some 3,449 (46.1%) of the death-sentenced

defendants were still on death row, the defendants being neither exonerated nor

otherwise removed from death row, when the study concluded at the end of 2004.

We refer to (i)–(iii) and the end-of-study as censoring events. To account for such

censoring, a group of investigators first used a Kaplan-Meier estimator (K-M) (for

the equation, see p. 334, supra) to estimate the cumulative probability of exonera-

tion under threat of execution from time of conviction.

In applying the K-M estimator, the exonerations were ordered by follow-up time

from conviction to exoneration or censoring, beginning with the shortest time (<1

year) and ending with the longest time (21.4 years). Calendar time, i.e. the year in

which the sentence was imposed or the exoneration occurred, was irrelevant—a

defendant sentenced to death near the end of the study who thus had a short
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follow-up time would be listed ahead of defendants sentenced earlier with longer

follow-up times. At each point in follow-up time at which an exoneration occurs,

the “risk” of exoneration is estimated by d/n, where d is the number of exonerations

at that time and n is the number of defendants under threat of execution immedi-

ately before that time. The number n is tracked through follow-up time starting

from the initial number sentenced and is reduced at any subsequent follow-up time

by all those previously exonerated or censored (and thus removed from the risk

pool). The complement of the risk of exoneration is the so-called survival proba-

bility at that time and the product of the survival probabilities for each exoneration

event is the cumulative survival probability (i.e., the proportion still under threat of

execution but not yet exonerated). The complement of the cumulative survival

probability is the cumulative incidence probability of exoneration while under

threat of execution.

The investigators found that the cumulative survival probability was 95.9% and

hence the cumulative incidence probability of exoneration while under threat of

execution was the complement of that, or 4.1%.

A critical assumption of the K-M estimator is that censoring events that remove

the subject from the risk pool at any given follow-up time are statistically indepen-

dent of the time to the event of interest (in this case exoneration while on death

row). One way to define “independent” here is to assert that the residual waiting

time to exoneration, given no removal from death row by any cause up to time t, is
unaffected by whether or not there is a censoring event at time t, for all possible
follow-up times t. It is a far-from-obvious mathematical fact that the K-M curve

assigns an increased “risk” of exoneration to every observed event time subsequent

to each censoring time by including a certain risk of exoneration contributed by the

censored cases as if the censoring had not occurred. The way in which the increased

risk is assigned depends on the assumption that the censoring is independent, and

when that assumption holds, the final K-M estimate of the survival function

approaches the true survival function as the number of observed events grows

large. If the independent censoring assumption does not hold, however, this last

assertion is not guaranteed. In fact, when censoring is not independent of the time to

the event of interest, there can be many joint distributions of these two times with

different true survival functions for the event of interest which would produce

identical K-M estimates; thus the true survival function is not even identifiable

when censoring is not independent of event times. As a simple albeit extreme

example, suppose that for each censored observation, the defendant would have

been exonerated exactly two years after the censoring. The K-M estimator of the

time to exoneration would be exactly the same if instead we supposed that for each

censored observation the defendant would have been exonerated exactly three years

after the censoring, or four years, etc.

To address the concern that the K-M estimate of the cumulative incidence

probability of exoneration might have been affected by non-independent censoring,

in a second application of the K-M estimator, the investigators redefined the event

time to be not just follow-up time to exoneration, but follow-up time to removal

from death row due to any of the following three competing risks: (i) exoneration,
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(ii) execution, or (iii) resentencing. Since these events are no longer censoring

events but event times, it need no longer be assumed that they are independent.

Other removals from threat of execution due to other causes of death or removals

from observation due to the ending of the study continued to comprise censored

observations. By summing up the jump discontinuities in the estimated survival

function (see page 334) for those removals due to single causes (i), (ii), or (iii), the

investigators estimated the following probabilities of removals from death row by

21.4 years from sentencing (which account for the remaining forms of censoring):

(i) 2.2% due to exoneration; (ii) 23.8% due to execution; and (iii) 48.3% due to

resentencing. These probabilities add to 74.3%; the remaining 25.7% estimates the

proportion of defendants who, absent censoring, would still be under threat of

execution after 21.4 years without previously being exonerated, executed, or

resentenced. This second K-M method continues to assume that the censoring

due to other causes of death or the ending of the study is independent of the time

to removal from death row.

Questions

1. In the first K-M method, are the independence criteria satisfied with respect to

censoring by execution and resentencing? If there are violations of independence

what would be the directions of bias created by lack of independence?

2. What assumption did the study make with regard to the 3,449 defendants still on

death row when the study closed in 2004? Was that assumption correct or did it

create bias?

3. Use the probabilities in the second K-M method to estimate the probability of

exoneration if all defendants’ cases were given the same high level of judicial

scrutiny after removal from death row as takes place when on death row (except

assume that the probability of post-execution exoneration is 0).

4. The first K-M method yielded a 4.1% rate of exonerations; the second method

2.2% rate. Explain the reason for the difference.

Source

Gross, O’Brien, Hu & Kennedy, Rate of false conviction of criminal defendants
sentenced to death, 111 Proc. Natl. Acad. Sci. U.S.A.7230 (2014); see also

Finkelstein, Levin, McKeague & Tsai, A note on the censoring problem in empiri-
cal case-outcome studies, 3 J. of Empirical Legal Studies 375 (2006).

11.2 The proportional hazards model

The Weibull and similar models purport to estimate the probability of “death” as a

function of time. Such models can be used to compare hazards in two or more

populations or groups. However, a more non-parametric approach, known as a
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proportional hazards model, can be used to estimate the increase in risk in a

population exposed to some condition or treatment. See Cox, Regression Models
and Life Tables, 34 J. Roy. Stat. Soc. (Series B) 187 (1972). In such models the

hazard function for the exposed population is postulated to be a multiple

(or proportionality factor) times the baseline hazard associated with the unexposed

population. The proportionality factor may be a function of the degree of exposure,

usually assumed to be of the form exp (βX), where X is the degree of exposure and β
is a coefficient to be estimated from the data. The hazard function of the exposed

population is θ(t|X)¼ θ0(t) exp(βX), where θ(t|X) is the hazard for a population with
exposure X and θ0(t) is the reference group hazard function for the unexposed

population. Under this model, each unit increase in exposure corresponds to an

eβ-fold increase in risk; if β is small, this increase in exposure corresponds approxi-

mately to a 100β percent increase in risk over the baseline.

A distinct advantage of this model is that the coefficient β can be estimated from

data without any assumptions regarding the specific form of the baseline hazard

θ0(t). The key element in the analysis is the conditional probability that a person

with a given degree of exposure Xi (possibly 0) would die at a certain moment given

that someone in the risk group has died at that moment; this probability is

ascertained at each observed death time. (The risk group at time t includes all

persons alive and at risk just prior to time t, both exposed and unexposed). This

conditional probability is proportional to the hazard function θ (t|X) among those at

risk at the time of each death. Because the baseline risk θ0(t) appears in both

numerator and denominator, it cancels out and the conditional probability simply

equals exp(βXi) divided by the sum of such terms over all individuals in the risk set.

The product of the conditional probabilities is known as the partial likelihood

function.3 The factor β is then estimated by maximum likelihood, namely, it is

the value that maximizes the partial likelihood function.

When β¼ 0 there is no excess risk associated with the exposure. In that case

exposure is irrelevant and the conditional probability that a death would occur to a

person with any exposure, given that a death has occurred among those at risk, is

simply one divided by the total number of persons in the risk group. For dangerous

exposures, the conditional probability that a death would involve a person with high

exposure is large, and β is estimated to be correspondingly greater.

When testing the hypothesis that β¼ 0, a central limit theorem usually applies to

the sum of the exposure variates for the observed deaths, provided there are enough of

them. This is true even if the exposure variate is not normally distributed. The

difference between the sum of the exposures for the people dying and their expected

exposures divided by the square root of the sum of the variances for such exposures

3Multiplying these conditional probabilities together, even though they are not strictly indepen-

dent, can be justified by partial likelihood theory, the properties of which are similar to standard

likelihood theory. See Section 5.6.
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tends to a normal distributionwith zeromean and unit standard deviation. The statistic

is called a score test,4 and it is powerful against proportional hazards alternatives.

To estimate, a computer iteration is generally required. A closed-form approxima-

tion to the maximum likelihood estimator of β (really the first step in the iteration

process) is given by the sum of the differences between the observed and expected

exposures divided by the sum of the variances of the exposures under the null hypothe-

sis. To be accurate, the full iteration should be carried out for three or four steps.

If the exposure variate is a binary indicator, simplifications occur, which we

examine in some detail. For any time interval, a fourfold table can be constructed

with rows giving the number of deaths during, and survivals beyond, the interval

(among those still alive and at risk at the beginning of the interval), and columns

corresponding to exposure status. Suppose the full study period is divided into a

sequence of equal subintervals and corresponding fourfold tables are constructed.

Some tables may indicate no deaths in a subinterval: these are non-informative

about β and may be ignored. The remaining informative tables will show the

occurrence of one or more deaths. Say the ith such table has ni persons at risk,

with mi exposed and ni�mi not exposed, and with di who died and ni� di who
survived. (If the subinterval length is short, di will equal 1 for most of the informa-

tive tables). The situation may be summarized thus:

exposed

yes no

died di1 di0 di
survived li1 li0 ni� di
at risk mi ni�mi ni

The proportional hazards model implies that whatever odds on death there may

be during any short interval for those unexposed, the odds on death for those

exposed are greater by a constant factor eβ, i.e., there is a common odds ratio

Ω¼ eβ underlying each table.

To test the hypothesis H0: β¼ 0, we may combine the evidence from the fourfold

tables constructed above using the Mantel-Haenszel statistic (this score test is also

called the log-rank test),

z ¼

X
i

di 1

 !
�

X
i

dimi=ni

 !
X
i

di ni � dið Þmi ni � mið Þ= n2i ni � 1ð Þ	 
( )1=2
:

4 Score tests are based on the statistic that results from differentiating the logarithm of the

likelihood function. In this instance, the score test is the derivative of the log partial likelihood,

evaluated at β¼ 0.
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The justification for using this statistic, however, is different from that used in

Section 8.1. There, the fourfold tables were statistically independent, whereas here

they are not: outcomes di1 and li1 in table i affect the margins in subsequent tables,

and hence the conditional distribution of the quantities inside those tables. In fact,

in the present case there is a conceptual problem in conditioning on both sets

of margins in all tables simultaneously that does not arise when the tables are truly

independent. This is because once we know the numbers of exposed and unexposed

at each stage (and the numbers lost to follow-up in each group), then we know how

many deaths and survivals occurred inside each table, leaving no room for variation.

The two situations differ also respecting the quantities that are fixed or random in

the test statistic. In the independent case, when all margins are fixed, the sum of the

reference cells over all tables is the pivotal random variable, while the sum of the

cell expectations and variances are fixed. In the survival application, it is still

appropriate to regard the marginal number of deaths di in each table as fixed,

since these depend on our choice of time intervals; the number of losses to

follow-up between points of observation may also be regarded as fixed. One may

further condition on the initial number of people exposed and unexposed m1 and

n1�m1, and even on the final total of exposed and unexposed deaths,
X
i

di 1 andX
i

di0. However, margins mi and ni�mi, the number of those exposed and

unexposed and at risk at any stage after the first, are random. Thus, the sum of

reference cells, ∑i di1, may be regarded as fixed, while the other terms in the

expression for z are random.

The situation may be likened under the null hypothesis to a series of selections at

random without replacement from an urn containing at the outset m1 “exposed”

chips and n1�m1 “unexposed” chips. A sampling plan is adopted pursuant to which

di chips, corresponding to deaths, are selected at the i
th stage. Drawing single chips,

di¼ 1, is an example of such a plan. What is random is the composition of the urn

after each selection, which corresponds to the number of exposed and unexposed

chips in the urn at each stage.

So the circumstances for applying z to a two-group comparison of survival are

different, but in one respect not: it can still be shown that under H0 the numerator of

z has zero expectation, and that z has an approximately standard normal distribution

in large samples. A fact used in the proof of this assertion is that the terms summed

in the numerator, (di1� di mi /ni ), while not independent, are nevertheless uncorre-
lated, so it is correct to sum their variances to find the variance of the sum. The

random variable in the denominator of z turns out to be a consistent estimator of the

actual null variance of the numerator, so z is approximately of unit variance. That

the asymptotic distribution of z is normal follows from special limit laws for certain

stochastic processes, which generalize the notion of sums of independent random

variables to the dependent case. These are studied in the theory of “martingales.”

One important difference that does emerge as a consequence of the role reversal

between fixed and random quantities is that the one-half continuity correction is

inappropriate to use in the score test statistic for survival comparison. Unlike the
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case of independent tables, where the correction is valid and improves accuracy, the

random variable in the numerator of z is no longer integer-valued, but takes

on fractional, unequally spaced values. As a result, the distribution of the score statistic

is much better approximated by the normal distribution without continuity correction.

Returning to the estimation problem, one may estimate Ω¼ eβ simply with the

Mantel-Haenszel estimate of a common odds ratio. The estimate is given by

ΩMH ¼
X
i

di 1li 0
ni

.X
i

di 0li 1
ni

;

where sums are taken over all informative tables. In the present application,

assuming di¼ 1 for each table, the estimator reduces to

ΩMH ¼
X
1

1� f ið Þ
.X

0

f i;

where fi¼mi/ni is the fraction exposed among those at risk at the time of the ith

death, and where the summation in the numerator is over those tables corresponding

to an exposed death, and the summation in the denominator is over those tables

corresponding to an unexposed death. The logarithm of ΩMH is then a consistent

estimator of β. The standard error for log ΩMH may be obtained from the RGB

formula at p. 254 of Section 8.1.

Further Reading

Breslow & Day, The Design and Analysis of Cohort Studies, 2 Statistical Methods
in Cancer Research, ch. 4 (1994).

Kalbfleisch & Prentice, The Statistical Analysis of Failure Time Data, ch. 4 (2nd

ed. 2011).

11.2.1 Age discrimination in employment terminations revisited

Question

Using the proportional hazards model, compute a “one-step approximation” for the

increase in risk of termination for each year of age from the data of Section 8.1.2.

11.2.2 Contaminated wells in Woburn

Woburn, Massachusetts, a community of some 37,000 residents located 12 miles

from Boston, has been an industrial site for more than 130 years. The town was a

major chemical and leather processing center, a producer of arsenic compounds for

insect control, and a producer of textiles, paper, TNT, and animal glues.
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The town’s drinking water was supplied by eight municipal wells, two of which

(designated “G & H”) were contiguous and operated as a single source to supply

water to sections of eastern Woburn. The chance discovery of toxic wastes near

wells G & H led to their testing in May 1979. The tests showed concentrations of

toxic chemicals in the wells and they were shut down. The types and amounts of

contamination in wells G & H before 1979 were not known. All other town wells

met state and federal drinking water standards.

Independently, abandoned waste sites were found near wells G & H, which led

to testing of groundwater. Pollution was discovered at 61 sites in eastern Woburn.

These events led to a series of studies in 1980 and 1981. A review of mortality

statistics for 1969–1979 showed a significantly elevated rate of childhood leukemia

(ages 19 and under) in Woburn between 1969 and 1979, with 12 cases diagnosed

when only 5.3 were expected (O/E¼ 2.3, p¼ 0.008). The study noted that the

leukemia excess was attributable to six cases occurring in one of the town’s six

census tracts (No. 3334, see Fig. 2.1.4). A new investigation, by the Environmental

Protection Agency (EPA) and the Harvard School of Public Health, identified

20 cases of childhood leukemia diagnosed in Woburn between 1964, the year

wells G & H began pumping, and 1983. Based on national rates, only 9.1 cases

were expected over this period (O/E¼ 2.2, p¼ 0.001).5

The town’s water pipes were interconnected, so that each residence received a

blend of water from several of the town’s eight municipal wells. The specific blend

varied with the location of the residence and over time. The Massachusetts Depart-

ment of Environmental Quality and Engineering estimated, on a monthly basis, which

zones of Woburn received none, some, or all of their water from wells G & H.

These results (obtained in August 1983) were used to estimate the percentage

of each household’s annual water supply from wells G & H. The study assigned

to each leukemic child an exposure history, consisting of his or her set of annual

exposure scores, beginning from birth. The score for each year was the percent-

age of water received by the zone of residence from wells G & H. For example,

a leukemic child born in 1967 and residing in the intersection of zones 1 and

B for the first four years of life would generate cumulative exposures of 0.51,

1.23, 1.98, and 2.25 over this period. However, this kind of detailed information

was not available for the population at large. In determining its exposure

distribution, the investigators surveyed a sample of the risk-set population. As

the investigators described their procedure: “For each case we identified all

surveyed children who were born in the same year and were residents at the

same time as the case and then computed the average and variance of their

exposure values for the period of residency of the case.”

The EPA/Harvard study used two measures of exposure: (i) cumulative exposure

from birth until age t, and (ii) a binary indicator of whether there had been any G &

H exposure by age t. In models utilizing the first of these measures, risk increases

5 The study also identified elevated levels of birth defects and other health problems, but these are

not covered here.
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steadily with cumulative exposure. With the latter, an individual’s hazard function

jumps upon exposure.

The observed and expected exposure scores for each leukemic death are shown

in Table 11.2.2.

Questions

The parents of 20 Woburn children who were diagnosed as having leukemia

between 1964 and 1983 sued W.R. Grace & Co. for contaminating wells G & H,

claiming that the well water caused the disease. The Harvard study was accepted in

evidence.

1. What is the composition of the risk set at the point of diagnosis of leukemia for

Case No. 1?

2. What are the definitions, under the null hypothesis, of the expected exposure and

variance of exposure for a leukemic child?

3. What number of excess leukemia cases does the study attribute to wells G & H?

4. Using the one-step approximation given in Section 11.2 at pp. 343–344, what is

the relative risk of leukemia per child-year of exposure to water from wells G &

H?

5. Compute the Mantel-Haenszel estimate from Section 11.2 for the odds ratio on

leukemia, across all deaths for exposed vs. unexposed children.

6. Is there anything in the data to cast doubt on the connection between leukemia

and wells G & H?

7. Are the data sufficient to establish causation, prima facie?

Source

Lagakos, Wesson & Zelen, An analysis of contaminated well water and health
effects in Woburn, Massachusetts, 81 J. Am. Stat. Assoc. 583 (1986); Anderson
v. Cryovac, Inc., Civ. A. No. 82–1672-S (D. Mass. 1982).

Notes

A subsequent study found the greatest elevation in childhood leukemia (OR¼ 8.33;

c.i. 0.73, 94.67) in children whose mothers were exposed to water from wells G and

H during pregnancy. See Massachusetts Department of Public Health, Bureau of

Environmental Health Assessment, Woburn Childhood Follow-up Study (July,

1997), available on the Massachusetts Department of Public Health website

at<www.state.ma.us/dph/beha>.

The Woburn lawsuit was the subject of a popular book by Jonathan Harr, A Civil
Action (1995), and a movie of the same title, starring John Travolta.
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11.3 Quantitative risk assessment

Under the Occupational Safety and Health Act of 1970, 29 U.S.C. }}651-78 (1994),
the Secretary of Labor is delegated broad authority to promulgate occupational

safety and health standards, defined as standards that are “reasonably necessary or

appropriate to provide safe or healthful employment and places of employment.”

Id. at }652(8). Acting pursuant to this authority, the Occupational Safety and Health
Administration (OSHA), the responsible “Agency” within the Department of

Labor, has issued standards regulating workplace exposure limits for chemicals

believed to be toxic. OSHA’s limits frequently have been subjected to legal

challenge.

The leading case relating to risk assessment is Industrial Union Dept., AFL-CIO
v. American Petroleum Inst., 448 U.S. 607 (1980). In that case, the Secretary of

Labor issued a standard that reduced the exposure limit on airborne benzene from

10 parts per million (ppm) averaged over an eight-hour period to 1 ppm. There was

evidence that benzene in concentrations as low as 10 ppm caused leukemia and

some expert opinion that there was a risk even below that level, but there were no

statistical data in that range or quantification of that risk. The Agency argued that,

since substantial evidence supported the view that there was no safe level for a

carcinogen, the burden was on industry to establish that a safe level exists.

Rejecting an industry witness, the Agency found that since there was no safe

level of exposure and it was impossible to quantify the benefits of the proposed

reduction in exposure, the industry “must select the level of exposure which is most

protective of exposed employees.” 448 U.S. at 654 (quoting OSHA).

The plurality opinion of the Court did not accept OSHA’s position. In remanding

for further proceedings, the Court held that “[a]lthough the Agency has no duty to

calculate the exact probability of harm, it does have an obligation to find that a

significant risk is present before it can characterize a place of employment as

‘unsafe.’” A reasonable person might consider that a risk of one in a thousand

was significant. This does not mean that “anything approaching scientific certainty

is required, but only the best available evidence. . . Thus, so long as they are

supported by a body of reputable scientific thought, the Agency is free to use

conservative assumptions in interpreting the data with respect to carcinogens,

risking error on the side of overprotection rather than underprotection.” OSHA

has interpreted this mandate as requiring it to make a quantitative assessment of

risks when issuing exposure limits.

The multistage extrapolation model

OSHA makes quantitative assessments by extrapolating from animal studies in

which the animals are exposed to much higher doses of the chemicals being tested

than would be encountered by humans in the workplace. The animals are then

sacrificed and examined for disease. This approach requires OSHA to make two

extrapolations: from animals to humans and from high-dose to low-dose effect; we

deal here with the second extrapolation. To make the extrapolation from high to low
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doses OSHA uses a “multistage” model first proposed in the 1950s by Armitage and

Doll,6 and now in general use. The multistage model assumes that: (1) a normal cell

is transformed into a cancer cell in a fixed and irreversible sequence of steps; (2) the

waiting times in the various stages are statistically independent and exponentially

distributed; and (3) the mean time spent in each stage is inversely related to the

dose, with higher doses shortening the time by a factor specific to that stage. If there

are m steps, the total risk of cancer from all sources within a specified time period,

Ptotal(d ), in the presence of dose d is usually approximated by the equation

Ptotal dð Þ ¼ 1� exp � q0 þ q1d þ q2d
2 þ � � � þ qmd

m
� �	 


;

where the qi are parameters estimated from the data, but constrained to be not less

than zero. This equation is a convenient mathematical approximation to the exact

form of Ptotal (d) under assumptions (1)–(3) above.

The first term of the exponent, q0, represents the natural or base rate of cancer

(without the carcinogen); the second term, q1, represents the linear part of the dose–
response curve (which would be a straight line if there were no higher power terms);

and the remaining qi’s allow for a nonlinear response. The qi’s are generally

estimated by the maximum likelihood (mle) method (see Section 5.6).

Two aspects or assumptions of this model should be noted. First, the model

makes no allowance for a threshold effect: any dose, no matter how small, increases

risk. That there is no absolutely safe dose for a carcinogen is an assumption

generally made by regulators in the United States. Second, the model is consistent

with the assumption generally made that the dose–response curve is linear at low

doses. This will be true under the model if the mle estimate of q1 is greater than
zero. In such cases, since d is much greater than d2 and higher powers of d at low

doses, the linear term, q1d, will predominate and the model will be essentially

linear. However, where the rate of cancer rises rapidly at higher doses (more rapidly

than a linear model would predict), as it tends to do in these studies, the sharp rise in

the curve leads to a small linear term and larger estimates of the nonlinear terms.

When the maximum likelihood estimate of q1 in the multistage model is very small

or zero, so that the linear term does not predominate, regulators have made ad hoc

adjustments, to implement the assumption of low-dose linearity. One approach

simply assumes that at low doses the multistage model is approximated by a simple

linear model in which the terms with d2 and higher powers of d are omitted. Another

approach uses the upper end of a 95% confidence interval for q1 instead of the mle.

Since the standard error of q1 is usually quite large, the linear term becomes

substantial and predominates.

Both the no-threshold and linear dose–response assumptions are “conservative”

in the sense that they predict greater risk at low doses than most other models. It is

probably fair to say that no empirical evidence either supports or refutes these

6 See Armitage & Doll, Stochastic models for carcinogenesis, Proceedings of the Fourth Berkeley

Symposium of Mathematical Statistics and Probability 19 (1961).
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assumptions for most exposures, nor does any appear possible at present. It is also

quite clear that neither the multistage, nor any of the other models discussed below,

fully reflect the complexity of the carcinogenic process. In particular, the linearity

assumption assumes that the number of cells at risk of undergoing the first trans-

formation is constant and thus the normal processes of cell division, differentiation,

and death are not taken into account by the model.

Other extrapolation models

Other models used to make low-dose extrapolations are the “one-hit,” the “multi-

hit,” the Weibull, the logit, and the probit. The formulas for the one-hit, multi-hit,

and Weibull models are as follows. Let Pexcess(d ) represent the conditional chance
of getting cancer because of exposure at dose level d, given that the animal escapes

cancer from other causes. This may also be interpreted as the risk within the

specified time period when there is zero independent background risk. A little

algebra shows that Pexcess(d) for the multi-stage model is the same as above without

the term q0.
Under the assumption that hits follow a Poisson distribution with intensity

parameter k such that, given dose d, the hits have a mean kd, then

Pexcess dð Þ ¼ 1�
Xm�1

0

e�kd kdð Þi=i!;

the summation term being the probability of fewer than m hits. For the one-hit

model, which assumes that a cell turns malignant after a single hit, m¼ 1 and this

becomes Pexcess(d )¼ 1� exp(�kd). At low doses, this expression is approximately

Pexcess(d)¼ kd, so that the one-hit model may be characterized as linear at low

doses. For the multi-hit model, which assumes that more than one hit is required to

turn a cell malignant, m> 1 and at low doses Pexcess(d ) is approximately a polyno-

mial with leading term of order higher than linear. For the Weibull model with

parameters m and k, Pexcess(d)¼ 1� exp(�kdm). For a discussion of the logit and

probit models, see Section 14.7. Both the logit and the probit models assume that

individuals have a threshold for disease: a dose above the threshold is certain to

result in disease; a dose below that is certain to have no effect. In the logistic model,

the thresholds are assumed to have a logistic distribution (which is like a normal

distribution except that the tails are heavier) among individuals; in the probit model

they are assumed to be normally distributed. The multi-hit model also admits of an

individual threshold model interpretation, where the threshold distribution is

gamma with shape parameter m and scale parameter 1/k.
While regulators tend to rely primarily on multistage models, they compare the

risk estimates thus obtained with those from other models and derive comfort from

estimates that are consistent within a range. In one case it was said that a factor of

three was well within a range of consistency. This is not always obtainable. In

general, the one-hit model gives the highest risk estimates and the multi-hit or

probit the lowest, with Weibull and multistage in the middle. The differences
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between estimates can be large. For example, for aflatoxin, the virtually safe dose

(defined as a dose that yields a risk of one in a million) is 30 times greater for the

multistage model than for the one-hit model, 1,000 times greater for the Weibull

model, and 40,000 times greater for the multi-hit model.

Further Reading

Goldstein & Henifin, Reference Guide on Toxicology in Federal Judicial Center,

Reference Manual on Scientific Evidence 633 (3rd ed. 2011).

National Research Council, Science and Judgment in Risk Assessment (1994).
Krewski & Van Ryzin, Dose response models for quantal toxicity data in Current

Topics in Probability and Statistics (North Holland, Amsterdam, 1981).

11.3.1 Ureaformaldehyde foam insulation

In 1982, after extensive hearings, the U.S. Consumer Products Safety Commission

found that ureaformaldehyde foam insulation (UFFI) presented an unreasonable

risk of cancer and irritant effects and banned its future use in residences and

schools. On appeal, various petitioners challenged in particular the commission’s

finding of unreasonable risk of cancer. As required by the Administrative Procedure

Act, the court of appeals reviewed the agency’s action under the “substantial

evidence” standard, which requires that an agency’s actions be supported by

substantial evidence on the record taken as a whole.

In estimating the cancer risk to humans, the commission had several types of

data: (i) two sets of animal studies, which showed that formaldehyde gas at high

concentrations (e.g., an average of 14.3 ppm with concentrations of 17–20 ppm, not

uncommon) caused cancer in rats; (ii) data from 1,164 homes with UFFI; and (iii)

test data from measurements of formaldehyde gas in simulated UFFI wall

segments. Both home and test data were similar and showed concentrations of

gas on the order of 0.12 ppm. Petitioners challenged the concentrations to which the

rats had been exposed (the maximum was far greater than the average), the sample

from which home levels of exposure had been calculated (they were not a random

sample, but were mostly “complaint” homes), and the validity of the simulated tests

(materials simulated unheated, unairconditioned homes). In addition, petitioners

challenged the method of extrapolation from the high-dose response in rats to the

low-dose response in humans. Only this last point need concern us here.

In the high-dose study, rats were exposed to formaldehyde gas in varying

concentrations for six hours a day, five days a week. After 24 months the animals

were sacrificed and examined for nasal carcinomas. Table 11.3.1 shows the results,

with the administered dose converted into an equivalent continuous-exposure dose.7

7An equivalent continuous dose that would yield the same total exposure (the actual numbers

differ slightly from those that would be produced by a simple pro-rating).
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For purposes of extrapolation, an industrial worker receives an equivalent

lifetime continuous exposure of 0.13 ppm and a homeowner with formaldehyde

insulation in his or her house receives 0.004 ppm. The concentration of formalde-

hyde in the Los Angeles ambient air was 0.015 ppm in 1979.

To estimate the risk of cancer at low doses, the agency used a multistage model;

for a description see Section 11.3. Because of the sharp rise in cancer at higher doses,

the estimate of q1 was 0. The commission, however, implemented its assumption of

low-dose linearity by assessing the risk at low doses from the upper end of a 95%

confidence interval for q1 instead of the maximum likelihood estimate. The value of

the linear term was substantial because the confidence interval was wide.

In response to an objection that the CPSC should not have used the upper

95 percent confidence interval as opposed to the maximum likelihood estimate,

the commission noted:

The ‘most likely’ estimates from the multistage and other models do not consider that

formaldehyde can interact with other environmental carcinogens and ongoing carcinogenic

processes within the human body. The ability of formaldehyde and many other carcinogens

to interact with the genetic material makes it likely that they also interact with ongoing

carcinogenic processes within the human body. Thus, the true risk is probably closer to a

predicted risk based on the upper 95 percent confidence limit [of the model used by the

CPSC] than to one predicted from any other model. If formaldehyde could not interact with

the genetic material, the predicted risk would be low. However, the Commission believes

this is unlikely.

CPSC, Ban of Urea-Formaldehyde Foam Insulation, 47 Fed. Reg. 14366 (April

2,1982).

Questions

The court of appeals rejected the rat study evidence because (i) “[I]n a study as small

as this one the margin of error is inherently large. For example, had 20 fewer rats, or

20 more, developed carcinomas, the predicted risk would be altered drastically”;

(ii) there was only a single experiment; and (iii) the administered dose was only an

average; “the rats in fact were exposed regularly to much higher doses.”

1. Do you agree that the rat study evidence should have been rejected for these

reasons?

2. Does the CPSC justification for using the upper 95 percent confidence interval

instead of the maximum likelihood estimate satisfy the grounding in science

required of an agency, as described by the Supreme Court in American Petro-
leum Institute?

Table 11.3.1. Chemical Industry Institute of Toxicology rat formaldehyde study

Average exposure (ppm) 0 2.00 5.60 14.30

Equivalent continuous exposure (ppm) 0 0.34 0.94 2.40

Number of rats at risk 216 218 214 199

Number of carcinomas 0 0 2 103
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Source

Gulf South Insulation v. U.S. Consumer Product Safety Commission, 701 F.2d 1137
(5th Cir. 1983); Fienberg, ed., The Evolving Role of Statistical Assessments as
Evidence in the Courts 46 (1989).

11.3.2 Ethylene oxide

In 1983, the federal Occupational Safety and Health Administration (OSHA)

proposed to reduce the permissible exposure limit for ethylene oxide (EtO) from

50 parts per million (ppm) of air as an 8-hour time-weighted average to 1 ppm.

EtO is a colorless gas with an ether-like odor which is primarily used as an

intermediate in the manufacture of ethylene glycol, a major component of

anti-freezes and an intermediate in the production of certain polyester fibers,

bottles, and films. More than five billion pounds of EtO are produced domestically

each year.

In making a quantitative risk assessment, OSHA relied primarily on a rat study.

In the study, rats were exposed to airborne concentrations of 100, 33, or 10 ppm of

ethylene oxide vapor for 6 hours a day, 5 days per week, for approximately two

years. Two control groups were exposed to air only, under similar conditions.

Initially, 120 rats per sex per group were exposed, and at each 6-month interval

some animals were sacrificed to determine treatment-related effects. The results are

shown in Tables 11.3.2a and 11.3.2b.

Table 11.3.2a. Pathologies in rats after exposure to ethylene oxide

Tumor Type 100 ppma 33 ppm 10 ppm Controls

Peritoneal mesothelioma (Males) 22/96b 7/82 3/88 4/187

(22.9%) (8.5%) (3.4%) (2.1%)

[<0.0001]c [0.0213] [0.3983]

Mononuclear cell leukemia (Males) 26/98 25/77 21/77 38/193

(26.5%) (32.5%) (27.3%) (19.7%)

[0.1192] [0.0202] [0.1163]

Mononuclear cell leukemia (Females) 28/73 24/72 14/71 22/186

(38.4%) (33.3%) (19.7%) (11.8%)

[<0.0001*] [<0.0001*] [0.0791]
aDose used in risk assessment was expressed in mg/kg of body weight/day. Dose was calculated as

d(mg/kg/day)¼ d(ppm)� S, where S is a scaling factor. For male rats S¼ 0.1930324; for female

rats S¼ 0.2393601; for humans S¼ 0.129898. Almost certainly the measurement of scaling factors

was not accurate to the number of decimals shown.
bNumber of tumor-bearing animals/effective number of animals at risk. The effective number of

animals at risk was the number of rats alive when the first tumor was observed (since the animals

were sacrificed at several intervals before the first tumor was observed).
cP-value from Fisher’s exact test (upper-tail probability) when compared to controls. A Bonferroni

correction was used in evaluating significance at the 0.05 level.

*indicates P less than 0.05/r, where r is the number of test doses.
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Questions

1. OSHA proposed reducing permissible exposures from 50 to 1 ppm. Using the

two-stage model, estimated from male rat data, confirm that the excess cancer

rates per 10,000 workers for 50 and 1 ppm are approximately 634 and 12, as

shown in Table 11.3.2b.

2. OSHA used the one-stage model to extrapolate the data for female rats on the

ground that the data fit the one-stage model. Plot the data for female rats. Are

they consistent with the use of the one-stage model?

3. Using the Weibull model for excess risk estimated from female rat data, com-

pute the excess cancer rates for 10,000 workers for 50 and 1 ppm. The mle’s for

k and m in the model risk are approximately 0.0829 and 0.4830, respectively.

Are these extrapolations consistent with the extrapolations for males?

4. What goodness of fit is chi-squared measuring here? To what extent do the

values of the chi-squared statistic constitute evidence in favor of the estimated

risks at low doses given by the models?

Sources

Occupational Safety and Health Administration, Docket H-200, Occupational
Exposure to Ethylene Oxide, 48 Fed. Reg. 17284 (April 21, 1983); id., Prelim-
inary Quantitative Risk Assessment for Ethylene Oxide (Exhibit 6–18); Public
Citizen Health Research Group v. Tyson, 796 F.2d 1479 (D.C. Cir. 1986).

Table 11.3.2b. Excess lifetime risk of cancer per 10,000 workersa

Two-stageb One-stagec One-staged

Exposure level(ppm) MLEe UCLf MLE UCL MLE UCL

50 634 1,008 746 1,018 1,093 1,524

10 118 211 154 213 229 326

5 58 106 77 107 115 164

1 12 21 15 21 23 33

0.5 6 11 8 11 12 16

χ2 g 0.0579(1) 0.2360(2) 4.3255(2)

Ph 0.81 0.89 0.12
aExcess risk per 10,000 workers, P[E]¼ (P(d )�P(0))/(1�P(0)). This is known as Sheps’ relative
difference index. Lifetime exposure is assumed to be 8 hours per day, 5 days per week, 46 weeks

per year for 45 years in a 54-year lifespan since initial exposure.
bTwo-stage model with 3 parameters: q[0]¼ 0.020965; q[1]¼ 0.008905; and q[2]¼ 0.000184.

Extrapolated from male rats; data for females not available.
cOne-stage model with parameters: q[0]¼ 0.019682; q[1]¼ 0.011943. Extrapolated from

male rats.
dOne-stage model with parameters: q[0]¼ 0.14700 and q[1]¼ 0.017841. Extrapolated from

female rats.
eMaximum likelihood estimate of excess risk.
f95% upper confidence limit on excess risk.
gOne-tailed chi-squared goodness-of-fit test. Degrees of freedom are in parentheses.
hP-value associated with g.
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Nonparametric Methods 12

12.1 The sign test

A nonparametric test is one for which the stated Type I error rate holds no matter

what distribution may underlie the observations. Nonparametric tests are thus

broadly applicable and valid for testing, relying only on the assumption of random

sampling, and generally requiring only simple calculation. The sign test is the

simplest example of this class of procedures.

Since the underlying distributions are no longer assumed symmetrical,

hypotheses are often formulated in terms of population medians instead of means.

Suppose we wish to test the hypothesis H0 that the median μ of a continuous but

otherwise unknown distribution equals zero, against the one-sided alternative that

the median is, say, a negative number, μ< 0.1 For example, we may wish to test the

hypothesis that the median lifetime of some product equals or exceeds an

advertiser’s claim of μ0. Then given sample lifetime data X1, . . ., Xn we test the

hypothesis that the distribution of X� μ0 has zero median against the alternative

that the median is negative. Another example arises when comparing two

distributions in a matched pairs study: the null hypothesis of equal distribution

implies that the median of the paired difference distribution is zero. We can test H0

without knowledge of the shape, or parametric form, of the distribution by noting

that, under the hypothesis of zero median, each observation will be positive or

negative with probability one-half. Thus, in a sample of size n, the number S of

observations with a plus “sign” will follow a binomial distribution with index n and
p¼ 1/2. Under the alternative hypothesis, S follows a binomial distribution with

p< 1/2, so that the strategy of counting positive outcomes (or outcomes in excess of

μ0) reduces the matter to a simple binomial problem. Table B in Appendix II may be

used to assess significance of the binomial tail probability, or in large samples the

1 For discrete distributions, there could be several candidates for population median. In fact, a

median in such cases is any number μ satisfying P [X < μ] 	 1/2 	 P [X 	 μ].
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M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_12

357

http://dx.doi.org/10.1007/978-1-4419-5985-0_BM1#Sec166
http://dx.doi.org/10.1007/978-1-4419-5985-0_BM1#Sec169


normal approximation may be applied (see Section 4.2). Thus, in the lifetime

example, a skewed sample of size n¼ 10 such as {1, 1, 1, 1, 1, 1, 1, 1, 1, 11}

provides evidence against a claimed median lifetime of μ0¼ 2 that is significant

at the P ¼ P S 	 1
��n ¼ 10, p ¼ 1=2

	 
 ¼ 10

0

� �
þ 10

1

� �� �
� 1=2ð Þ10 ¼ 0:011

level.

A two-sample cousin of the sign test arises when comparing two distributions,

say F1 and F2, with independent samples of size n1 and n2. To test the hypothesis

H0: F1¼F2 , we find the sample median in the combined sample of size n1 + n2, and
then count the number of observations in each group that exceeds the median or that

falls below it. The results may be cast in a fourfold table with fixed row margins

(n1, n2) and column margins (m1,m2), wherem1 is the number of observations in the

combined sample that exceeds the sample median, andm2 is the number that falls at

or below it (if n1 + n2 is even and there are no ties in the data, then

m1¼m2¼ (n1 + n2)/2, but m1 or m2 may be less than this if n1 + n2 is odd or there

are observations tied at the median). Under H0, the cells of the fourfold table follow

Fisher’s exact distribution, i.e., the number of group 1 observations exceeding the

combined median has a hypergeometric distribution, and so H0 may be tested with

the methods of Sections 4.5 and 5.1. Clearly, these methods may be generalized to

quantiles other than the median, or to more than the two categories above or below

the reference quantile.

The price one pays for the general applicability of a nonparametric test is a loss

of some efficiency: comparisons of the power of the nonparametric test with the

power of a given parametric test of the same hypotheses generally show that, when

the parametric test is valid, it is more powerful than the nonparametric test. The

trade-off, then, is power for robustness against departures from distributional

assumptions. We illustrate this in the case of the sign test, which throws away all

information in the observed values except whether they are positive or negative. If

the data were known to come from a normal distribution with unit variance, one

could test H0: μ¼ 0 with the z-score z ¼ ffiffiffi
n

p � X, rejecting H0 at level α¼ 0.05

when z<�1.645. When H0 is false, e.g., when the true parameter is μ¼�1, the

event [z<�1.645], which is equivalent to X < �1:645=
ffiffiffi
n

p	 

, occurs with proba-

bility P
ffiffiffi
n

p
X � μ
� �

<
ffiffiffi
n

p �1:645=
ffiffiffi
n

pð Þ � �1ð Þf g	 
 ¼ Φ
ffiffiffi
n

p � 1:645ð Þ, where Φ
denotes the standard normal cumulative distribution function. Then the power to

reject H0 when the true mean is μ¼�1 is given by Φ
ffiffiffi
n

p � 1:645ð Þ. For example,

when n¼ 10, power ¼ Φ 1:517ð Þ ¼ 0:935. For the sign test, we reject H0 if the

number of positive observations is 2 or less, with type I error rate P[S	 2jn¼ 10,

p¼ 1/2]¼ 0.0547. If μ¼�1, then the probability that any observation is positive

becomes p¼ 0.16, so that the power of the sign test is P[S	 2jn¼ 10, p¼ 0.16]¼
0.79. To achieve the same power as the z-score, we would require a sample size of

about 16, for a relative efficiency (the ratio of sample sizes) of about 62.5%. Of

course, if the data were markedly non-normal, the z-score could not be relied upon

to give an accurate result. For example, suppose that the true distribution of X is

that of the variable X¼ (log 2)� Y, where Y has a standard exponential distribution.
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The median of X equals 0 and the variance of X is 1. This distribution satisfies the null

hypothesis, but because of its skewness, the probability that z ¼ ffiffiffi
n

p � X < �1:645 is
substantially in excess of 0.05. For n¼ 10, for example, the Type I error already

exceeds 0.20, and grows larger as n increases.

Fortunately, there are nonparametric tests that make better use of the data than

the sign test, and which have remarkably high efficiency relative to the best

available parametric tests—90% or better—so that the loss of efficiency is of lesser

concern, and the trade-off worthwhile with data of uncertain distribution. We study

some of these tests below.

Further Reading

Lehmann & D’Abrera, Nonparametrics: Statistical Methods Based on Ranks,
ch. 3 (2006).

12.1.1 Supervisory examinations

The Board of Education of the City of New York requires teachers seeking

supervisory positions in the school system to take qualifying examinations for the

various positions. These examinations were challenged as discriminatory against

black and Hispanic teachers. Approximately 10% of the teaching force eligible to

take the examinations was black or Hispanic. The data showed that out of 6,201

candidates taking most of the supervisory examinations in the previous seven years,

including all such examinations in the preceding three years, 5,910 were identified

by race. Of the 5,910 so identified, 818 were black or Hispanic and 5,092 were

Caucasian.

Of 50 different examinations given, 32 were examinations where blacks or

Hispanics took the examination and at least one person in any group passed.

Among these 32 examinations, the Caucasian group had a larger percentage passing

in 25 examinations and the black and Hispanic group combined had a larger

percentage passing in 7 examinations. For most examinations, the number of blacks

and Hispanics taking the test was very small (e.g., 41 out of 50 examinations were

taken by an aggregate of 83 blacks and Hispanics).

Questions

1. Do the data from the 32 examinations show a statistically significant disparate

impact on black and Hispanic teachers?

2. What objections would you have to a test of statistical significance in this

context?
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Source

Chance v. Board of Examiners, 330 F. Supp. 203 (S.D.N.Y. 1971), aff’d, 458 F.2d

1167 (2d Cir. 1972).

12.2 Wilcoxon signed-rank test

The most important applications of the Wilcoxon signed-rank test arise when pairs

of subjects from a treatment group and a control group are compared to determine

whether there is a statistically significant difference between treatments. Although

there are two groups, the test is a one-sample test because the quantity of interest is

the difference between paired observations from the two groups. Under the null

hypothesis of no treatment effect the median of the differences would be zero. As

the treatment becomes more effective, the magnitude of the observations in the

treated group is systematically raised (or lowered) relative to the control group, and

the median difference is correspondingly raised or lowered.

To apply the test: (1) rank the absolute values of the data (in this case, the

differences) from 1 to sample size n; (2) give the ranks the signs of the items to

which they relate; (3) sum the negative or positive ranks. This is the Wilcoxon

signed-rank statistic (W ). Under the null hypothesis each rank has a 50% chance of

being positive (or negative), so that each particular assignment of +’s and�’s to the

ranks has probability (1/2)n. Computation of the W distribution for any particular

value involves counting the number of assignments with aW value equal to or more

extreme than that observed. The distribution of theW statistic has been tabulated for

small sample sizes. As an example, supposing there are n¼ 20 items and W¼ 52,

P[W	 52] is about 0.025 by Table H1 of Appendix II. This figure would double for

a two-tailed test (i.e., doubling gives the probability that W would be either as far

below expectation as that observed or as far above expectation).

Under the null hypothesis, the signed rank statistic has mean EW¼ n(n+ 1)/4
and variance Var W¼ n(n+ 1)(2n+ 1)/24. In large samples, the z-score

z ¼ W � EWð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var W

p
may be used to assess significance. In the example

above, we would calculate EW¼ 20(21)/4¼ 105, Var W¼ 20(21)(41)/24¼ 717.5,

and then, using the 1/2 continuity correction, P W	 52½ � ¼P W< 52:5½ � ¼
P W�EWð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var W
p

< 52:5�105ð Þ= ffiffiffiffiffiffiffiffiffiffiffi
717:5

p ¼�1:96
	 
� 0:025:

We have assumed above that there are no zeros among the absolute differences.

If zeros do occur, they are dropped from the calculations after assigning ranks to

all the differences. If there are d0 zero differences, the expected value of W is

modified to the expression EW¼ [n(n+ 1)� d0(d0 + 1)]/4. Occasionally there are

other tied values among the absolute differences, and when they occur, the average

rank is assigned to each member in a group of tied differences. In the presence of

tied values, the variance of W is
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VarW ¼ n nþ 1ð Þ 2nþ 1ð Þ � d0 d0 þ 1ð Þ 2d0 þ 1ð Þ½ �=24� 	X di d
2
i � 1

� �

=48;

where the sum is taken over the tied groups, with di items tied in the ith group. (The
1/2 continuity correction is not used when ties are present since the statistic is no

longer integer-valued.) The modifications for ties are usually negligible, except

when sample size is small or there are many tied values (which generally occurs

only when the measures being ranked are discrete).

Further Reading

Lehmann & D’Abrera, Nonparametrics: Statistical Methods Based on Ranks,
}}3.2 and 4.2 (2006).

12.2.1 Voir dire of prospective trial jurors revisited

Questions

1. Use the Wilcoxon signed-rank statistic to test the statistical significance of the

median difference in impaneling times under state and federal methods for voir

dire, using the data in Section 7.1.2.

2. What advantages are there in this method of testing statistical significance over

the t-tests used in Section 7.1.2?

12.3 Wilcoxon rank-sum test

Assume that there arem “treatment” and n “control” items ranked from 1 tom + n¼
N (rank 1 representing the best result). There are no ties, and the two groups are

statistically independent.

A plausible measure of treatment effect is the sum of the ranks, S, of the

m treatment items. The probability under the null hypothesis that S would be as

low as the observed sum can then be computed by counting the number of possible

rank distributions whose sum is less than or equal to the observed sum (practical

only if m and n are quite small) divided by the total number of possible different

rankings. Table H2 in Appendix II gives critical values for the rank-sum statistic for

small values of m and n. For larger values, use the normal approximation, as

follows.

Under the null hypothesis of no treatment effect, the expected value of a rank

is (N + 1)/2; for the m treatment subjects the expected value of their sum is

ES¼m(N+ 1)/2. The variance of a rank selected at random from N ranks is

σ2¼ (N 2� 1)/12. The variance of the sum of m randomly selected ranks out of

m+n¼N ranks, without replacement, is thus given by (m/12) (N2� 1)(N�m)/
(N� 1), or Var S¼mn(N+ 1)/12. Despite the lack of independence of rank
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assignments, when m and n are sufficiently large the sum of ranks is approximately

normally distributed.

When ties are present, the average rank among tied items is assigned to each

item in the tied group. These adjusted ranks still have mean ES¼ (N + 1)/2, but their

variance becomes

σ2 ¼ N2 � 1� 1=Nð Þ �
X

di d
2
i � 1

� �n o
=12;

where the sum is taken over the tied groups, with di items tied in the ith group. The
adjusted variance of the sum of m ranks selected without replacement is then

Var S ¼ 1=12ð Þ � mn nþ 1ð Þ � mn= 12N N � 1ð Þ½ �f g �
X

di d
2
i � 1

� �
:

The rank-sum statistic is statistically equivalent to the Mann-Whitney U statistic,

defined as the number of item pairs that can be formed with one item from each

group, such that the rank of the item from the treatment group is less than the rank

of the item from the control group. The relation between the two statistics is

U ¼ mnþ 1=2ð Þm mþ 1ð Þ � S:

The quantity U/(mn) estimates the probability that a treatment outcome will be

better than a control outcome, when applied to two items chosen at random.

Further Reading

Lehmann & D’Abrera, Nonparametrics: Statistical Methods Based on Ranks, }}
1.2, 2.2 (2006).

12.3.1 Sex discrimination in time to promotion

K& B, a Louisiana corporation domiciled in New Orleans, operates a chain of drug

stores in Louisiana, Mississippi, and Alabama. The EEOC and a female pharmacist

sued K & B, alleging discrimination in the promotion of women from pharmacist to

chief pharmacist. The data below show, for a certain cohort of employees, the time

in months from hire to promotion to chief pharmacist for male and female

employees (Table 12.3.1).

Table 12.3.1. Time, in months, from hire to promotion

Females: 229, 453

Males: 5, 7, 12, 14, 14, 14, 18, 21, 22, 23, 24, 25, 34, 34, 37, 47, 49, 64, 67, 69,

125, 192, 483
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Plaintiff’s statistician, using the Wilcoxon rank-sum test, concluded that the

median time to promotion was greater for women than for men. Defendant’s

statistician computed the probability under the null hypothesis that both female

time-to-promotions would exceed the male median time-to-promotion and

concluded that the difference was not statistically significant.

Defendant’s expert explained the difference in results by saying that he was

“looking at the typical time to promotion,” whereas plaintiff’s expert, by using the

Wilcoxon rank-sum test, tested the similarity of the shapes of the two

distributions—male and female—and “statistical significance will be obtained if

the two distributions do not match, regardless of the manner one distribution did not

match the other.”

Questions

1. Make the calculations for plaintiff’s and defendant’s experts.

2. Do you agree with the statement of defendant’s expert?

3. Which expert used the more appropriate test?

Source

Capaci v. Katz & Besthoff, Inc., 525 F. Supp. 317 (E.D. La. 1981), affirmed in part,
reversed and remanded in part, 711 F. 2d 647 (5th Cir. 1983); Gastwirth & Wang,

Nonparametric tests in small unbalanced samples: application in employment
discrimination cases, 15 Canadian J. Stat. 339 (1987).

12.3.2 Selection for employment from a list

Persons are selected for employment, in order, from an eligibility list. Rank on the

list is determined by the person’s score on a competitive examination. The Puerto

Rican Legal Defense & Education Fund contends that the test has an adverse impact

on blacks and Hispanics. Of 2,158 test takers, 118 were black and 44 Hispanic;

738 passed the test, 27 of whom were black, and 11 Hispanic. See Table 12.3.2 for

the scores and rankings of blacks and Hispanics who passed. An applicant who

scored below a certain cutoff point is not included on the list.

Questions

1. Use the Wilcoxon rank-sum test to determine whether minorities have signifi-

cantly lower average scores than non-minorities. The sum of the list nos. in

Table 12.3.2 is 19,785.

2. Would a two-sample t-test on these truncated data also be valid to answer that

question?
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3. Compute the probability that a minority person randomly selected from the list

would have a lower rank (higher score) than a randomly selected non-minority

person.

12.3.3 Sentencing by federal judges

In a Federal Judicial Center study of sentencing practices by federal judges,

50 federal judges were given case descriptions and asked to impose sentence. The

sentences were ranked by severity for each case (1 being the most severe and

Table 12.3.2. Selection for employment: Minority list

Blacks Hispanics

List No. Adj. final score List No. Adj. final score

058 91.753 162 90.051

237 88.223 273 87.372

315 86.371 369 85.479

325 86.138 432 84.293

349 85.799 473 83.327

350 85.769 493 80.323

371 85.459 529 82.083

375 82.878 605 79.780

484 83.081 631 79.277

486 82.965 692 77.263

527 82.137 710 76.114

551 81.550

575 80.818

584 80.452

587 80.419

615 79.598

642 78.854

645 78.762

654 78.419

688 77.270

693 77.184

694 77.137

713 75.935

716 75.779

725 74.887

726 74.683

731 74.168
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50 being the most lenient). Data showing the average ranks given by the 50 judges

in 13 model cases chosen to represent the range of types to come before them are

given in Table 12.3.3.

Questions

Do the data support the common beliefs that some judges are more severe than

others? Consider whether the average sentence rankings of the judges are more

dispersed than they would have been if ranks had been assigned on a random basis,

i.e., each possible permutation of rankings is equally likely. Test that proposition

using the average ranking for all 13 cases, as follows.

1. Ignoring the variance adjustment for ties, determine the mean and variance of an

average of 13 independent rankings for a single judge, under the null hypothesis

that all judges sentence with equal severity.

2. It can be shown thatN� 1multiplied by the ratio of themean squared deviation to its

expected value under thenull hypothesis has a chi-squareddistributionwithN� 1 df

as the number of cases becomes large. (One df is lost because the ranks have a

Table 12.3.3. Ranks of sentences of individual judges in thirteen model cases

Judge Average rank Judge Average rank

1 5.4 26 25.9

2 10.6 27 26.0

3 12.1 28 26.0

4 15.3 29 26.1

5 19.2 30 26.7

6 19.2 31 26.7

7 19.6 32 26.8

8 19.6 33 27.0

9 20.8 34 27.6

10 22.7 35 27.8

11 22.8 36 27.8

12 23.0 37 27.9

13 23.4 38 28.3

14 24.3 39 29.3

15 24.5 40 30.0

16 24.5 41 30.1

17 24.6 42 31.5

18 24.6 43 31.8

19 24.6 44 32.1

20 24.7 45 32.7

21 25.0 46 33.0

22 25.2 47 33.4

23 25.5 48 34.7

24 25.7 49 36.1

25 25.8 50 36.9
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fixed sum.) Test the null hypothesis using this statistic. What do you conclude?

How would you describe the degree of departure from the null hypothesis?

The sum of the squared deviations of the 50 average ranks is 1,822.47.

Source

Partridge & Eldridge, The Second Circuit Sentencing Study: A Report to the Judges
of the Second Circuit (Federal Judicial Center, 1974) (Appendix C).

12.4 Spearman’s rank correlation coefficient

To measure the correlation between two variables, X and Y, there is available a

nonparametric version of Pearson’s product-moment correlation coefficient that is

based on ranks rather than on actual numerical values. Whenever there is risk of

distortion due to outliers, or when Y depends on X non-linearly, the non-parametric

version should be used. Known as Spearman’s rank correlation coefficient, it is

always applicable to measured data, and is uniquely suited to assess information

coming only in the form of relative rankings or ordered qualitative ratings. An

example is a concordance study of two or more raters, where each rater arranges a

list of items in order of preference. Like other nonparametric procedures discussed

above, rank correlation trades a slight loss of efficiency relative to the ordinary

sample correlation coefficient (for making inferences about true correlation in

bivariate normal situations), in exchange for applicability to a much broader array

of problems for which rank correlation alone is valid, since it does not require

specific distributional assumptions. The procedure is as follows.

Given N data pairs (Xi , Yi), i ¼ 1, . . .N; replace each X value by its

corresponding rank, from 1 to N , from among the N X-values; similarly, replace

each Y value by its rank from among the N Y-values; then, calculate the ordinary

product-moment correlation between the paired ranks.

Since the rank values (1, . . .N ) are known in advance, the formula for the

correlation coefficient simplifies appreciably: letting di denote the difference

between the X-rank and the Y-rank in the ith pair, Spearman’s rank correlation

coefficient is

rS ¼ 1� 6
X

d2i = N3 � N
� �

:

A significance test of a correlation based on rS may be obtained by referring

z ¼ rS �
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
to tables of the standard normal distribution because, in large

samples, under the null hypothesis of no association between X and Y, rS has an

approximate normal distribution with mean 0 and standard deviation 1=
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
.
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Tables of the exact distribution of rS for small N are widely available. Formulas

for rS and its mean and variance in the case of tied observations may be found

in the textbook by Lehmann and D’Abrera.

Further Reading

Lehmann & D’Abrera, Nonparametrics: Statistical Methods Based on Ranks,
ch. 7 (2006).

12.4.1 Draft lottery revisited

Questions

1. Compute Spearman’s rank correlation coefficient for the 1970 draft lottery (see

Section 9.1.1). The sum of squared rank differences (between birthday rank and

sequence rank) is 10,015,394 with N¼ 366.

2. Do the same for the 1971 draft lottery. The sum of squared rank differences is

7,988,976 with N¼ 365.
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Regression Models 13

13.1 Introduction to multiple regression models

Multiple regression is a statistical technique for estimating relationships between

variables that has become a key tool in mathematical economics (econometrics) and

in the social sciences. By these routes it has invaded the law. The principal

applications have been in antidiscrimination class action litigation, but the tech-

nique has also been applied in a variety of other legal contexts—antitrust price-

fixing, securities market manipulation, litigation over capital punishment, attacks

on bail, and others. It is now so easy to fit models to data by computer that multiple

regression and related techniques are likely to become even more widely used—and

probably also abused—in cases involving statistical proof.

Here are some examples of regression models in law:

• In a class-action antidiscrimination suit, plaintiffs assert that after accounting for

differences in productivity factors between men and women, there is a residual

difference in salaries that should be attributed to discrimination. To quantify that

relationship, plaintiffs estimate a regression relationship in which salary is the

dependent variable and sex and productivity factors (such as education and

experience) are explanatory factors. The argument is that, if no discrimination

exists, then sex would not be a significant explanatory factor in the regression

equation. To the extent that it is a factor, its importance is a measure of the extent

of discrimination. The weight assigned to the sex explanatory variable in the

regression equation represents an average dollar shortfall between equally pro-

ductive men and women. Often the focus is on testing for the presence of

discrimination by assessing the statistical significance of the sex coefficient.

• In a price-fixing case, plaintiff is entitled to recover three times the difference

between the price it paid and the price it would have paid in the absence of the

conspiracy. To estimate the “but-for” price, a multiple regression model is used

in which the dependent variable is price and the explanatory variables are those

# Springer Science+Business Media, LLC 2015

M.O. Finkelstein, B. Levin, Statistics for Lawyers, Statistics for Social
and Behavioral Sciences, DOI 10.1007/978-1-4419-5985-0_13
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factors of demand, supply, and inflation that are believed to influence it.

The regression equation is estimated from data in the non-conspiratorial period,

and the but-for price in the conspiracy period is projected by inserting the values

of the explanatory variables for that period in the equation to obtain the expected

price in the absence of conspiracy. The regression estimate of the competitive

price (the predicted value of the dependent variable) is compared with the

conspiracy price to determine damages.

• A regulatory agency may need to determine the effect of a rate it sets on the

regulated industry. Regulators formulate regression equations in which industry

revenue is the dependent variable and the regulated rate and other variables are

explanatory factors; they use this equation to estimate the effect on revenue of

various possible rates given certain levels of the other explanatory factors.

There are many types of regression models. In the linear multiple regression

model, the type most commonly encountered, the dependent variable is portrayed

as a weighted sum of the explanatory factors plus a random error term. The weights

are called regression coefficients. A large positive coefficient implies that small

increases in the explanatory factor are associated with large increases in the

dependent variable, all other factors being held constant; a large negative coeffi-

cient implies an inverse relation. Conversely, a coefficient near zero implies that

changes in the explanatory variable are not associated with changes in the depen-

dent variable, all other factors being held constant. In some contexts the quantity of

interest is the size of the coefficient of a particular explanatory factor, while in

others it is the expected value of the dependent variable as determined by the

regression equation. That is, the regression equation may be used for explanation

(analysis) or prediction (synthesis).

Regression analysis does not require that the relation between response and

explanatory variables be exact or perfectly deterministic. All that is necessary is

that the mean of the error term be zero for any fixed values of the explanatory

factors, so that it is the average value of the dependent variable which is systemati-

cally related to the values of the explanatory factors by the regression model.

We have described the concept of regression in terms of “model-plus-error,”

where the model has a stimulus-response or input-output nature implying a causal

relation. In the model-plus-error view, explanatory factors need not be regarded as

random variables with distributions, but may be deterministic values, possibly fixed

by design. The rate-setting example is of this type. Another important perspective

considers the joint distribution of two or more random variables and inquires about

the mean value of one of them for given values of the others. No causality need be

assumed for there to be a systematic relation between the average value of the

dependent variable and the values of the other variables. That is, an increase of one

unit in factor X may not lead instrumentally to any corresponding change in Y. The
regression model merely states that, on average, different subsets of the data have

different means. Analysis of scores on tests given before and after training is in this

noncausal category. The score X on the first test is not an input that causes the score

Y on the second test (leaving aside learning from test-taking). Here one must
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consider an important phenomenon known as “regression to the mean,” which we

describe below. Whereas in the model-plus-error view the regression model is

postulated from the start, in the joint-distribution view it is the regression phenom-

enon that gives us the (sometimes surprising) regression model.

Regression to the mean

Regression to the mean was discovered by Sir Francis Galton in the late 1880s,

while he was studying data on the heights of parents and their adult offspring, sons

in particular. Galton noticed that if he divided parents into groups by height and

then plotted the average height of the sons in each group against the midparent

height,1 the averages tended to lie on a straight line. That linear regression relation

constituted a regression model for Galton, even though a son’s height in any

particular case could not be predicted with great accuracy from his parents’ heights.

The line of averages represented the component of sons’ heights “explained” by the

model, while the difference between each individual son’s height and the group-

specific average was the error, or unexplained, component of that son’s height.

Galton called the relation one of regression because, as he further noticed, for any
given group of parents of fixed height there is an apparent shift toward the mean in the

average height of their sons. That is, for the group of parents whose height is, say, one

standard deviation above the mean for all parents, the average height of their sons will

be above average, but by less than one standard deviation above the mean for all sons,

thus “regressing” toward the grand mean for all sons. See Fig. 13.1a. The degree of

regression turns on the tightness of correlation. At one extreme, if midparent heights

perfectly predicted sons’ heights, then for parents whose height was d standard

deviations above the mean for midparent height, their sons’ mean height would

also be d standard deviations above the mean for sons; in such cases there would

be no regression to the mean. At the other extreme, if there were no correlation

between heights of parents and sons, the mean height of sons of any given midparent

height would be the same as the grand average for all sons, i.e., it would regress all the

way to the mean. In intermediate cases, if there is a correlation r between the height of
parents and the height of their sons, then parents whose height is d standard deviations
above the mean midparent height will have sons whose mean height will be r d
standard deviations above the mean for sons; or, to put it differently, they would have

regressed by a factor of 1� r toward the mean for sons (in standard deviation terms).

Specifically, Galton found a correlation of r¼ 0.5 between midparent height and

height of sons, so that parents with a height d standard deviations above or below

the mean midparent height had sons whose height was, on average, d/2 standard

deviations above or below the average of sons’ heights. To put this in units of

inches, note that the standard deviation of midparent height is smaller than that of

1Galton used the “midparent” height, defined as one-half the sum of father’s height and 1.08 times

mother’s height, to summarize the joint contribution of parents. (The factor 1.08 scales up height

of mothers to be equal in mean and variability to that of fathers.) Galton satisfied himself that

midparent height was an adequate summarization by finding no systematic variation in son’s

height based on the difference between father’s and mother’s height, after fixing midparent height.
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son’s height by a factor of about
ffiffiffi
2

p
, since the former is an average of two

quantities, each with the same variance as the latter.2 Therefore, parents with

height h inches above or below the mean had sons whose height was, on average,

1=2ð Þh ffiffiffi
2

p ¼ h=
ffiffiffi
2

p
inches above or below the average son’s height. Hence, the

regression equation of son’s height on midparent height is

Y ¼ EY þ X � EXð Þ=
ffiffiffi
2

p
þ e;

where Y¼ son’s height, EY¼ average height among sons, X¼midparent height,

EX¼ averagemidparent height, andwhere e represents the error term.3 The equation

may be expressed equivalently as Y¼ a+ bX + e where a¼EY� bEX and b¼ 1/√2.
In Galton’s example, both the outcome factor (son’s height) and the explana-

tory factor (midparent height) are random variables in the population.

The regression equation is an asymmetrical relation, however, describing the

conditional mean of the outcome variable given fixed levels of the explanatory

Fig. 13.1a. Galton’s illustration of regression to the mean

2 This ignores the correlation between mother’s and father’s heights, which was about 1/4. Taking

this into account yields the slightly smaller factor √1.6¼ 1.26.
3 Using the smaller factor 1.26 yields the regression coefficient (1/2)(1.26)¼ 0.63, close to the

value 2/3 preferred by Galton. See Fig. 13.1a. Our value of 1/√2¼ 0.71 is slightly higher than

Galton’s.
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factor(s). This asymmetrical approach is a key feature of regression analysis. It

implies, for example, that there are two regression relationships, the regression of

son’s height on midparent height, and the regression of midparent height on son’s

height. See Fig. 13.1b.

The former regression is the average height of all sons whose parents are a given

height; the latter regression is the averagemidparent height of all parents whose sons

are a given height. It is often surprising to learn that these two regression relations are

not the same. For example, as we have seen, parents whose heights are h inches

above average have sons whose mean height is h /√2 inches above average. But sons
whose heights are h/√2 inches above average do not have parents whosemean height

is h inches above average. (Their mean height is h/4 inches above average.) The

regression of midparent height on son’s height obviously does not represent a causal

connection from son to parent, but merely the correlation induced by the contribu-

tion of genetic and environmental factors from parent to offspring. The regression of

midparent height on son’s height could nevertheless be used, for example, to predict

an unseen couple’s midparent height on the basis of their son’s height.

Further Reading

Freedman, Pisani & Purves, Statistics, 169–74 (3d ed. 1998).

Stigler, The History of Statistics, ch. 8 (1986).

Fig. 13.1b. Heights of sons and midparents, showing two regression lines
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13.1.1 Head Start programs

Head Start programs provide compensatory education for disadvantaged children.

Do they work? To answer that question, investigators compared a group of disad-

vantaged children eligible for compensatory education (the Experimental Group)

with a group of children selected at random from the community who were not

eligible for such education (the Control Group). Both groups were pre-tested, the

Experimental Group was given a program of compensatory education, and then

both groups were post-tested. Children from both groups with the same pre-test

scores were then compared with respect to their post-test scores. In addition,

children were matched by post-test scores, and their gain from pre-test scores

compared. The results are shown in Tables 13.1.1a and 13.1.1b (simulated data).

In these data, the correlation between pre-test and post-test scores for both groups is

about 0.5; the mean pre-test score is approximately 50 for the Experimental Group

and 70 for the Control Group; the post-test means are 60 and 80, respectively; the

standard deviations of the scores are each about 16.6.

Table 13.1.1a. Means on post-test according to pre-test score

Pre-test score

(Midpoint)

Experimental group Control group

n Post-test mean n Post-test mean

110 0 – 1 110.98

105 0 – 5 95.58

100 0 – 13 103.75

95 2 77.74 21 92.71

90 2 69.54 27 86.99

85 6 87.11 41 84.13

80 10 76.25 48 84.85

75 23 72.52 64 83.20

70 26 67.73 55 78.92

65 33 67.16 60 76.31

60 57 64.78 45 78.50

55 64 62.93 47 70.29

50 56 61.38 30 74.12

45 50 56.51 25 66.11

40 54 51.87 7 61.14

35 42 53.91 4 70.58

30 35 54.17 4 43.44

25 20 53.69 2 59.24

20 6 43.57 0 —

15 5 41.32 1 37.95

10 6 34.36 0 —

5 3 44.34 0 —
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Congressional hearings were held on funding of the program. Opponents

claimed the data show that compensatory programs have a negative effect, because

Experimental Group children frequently have lower post-test scores than Control

Group children with the same pre-test scores. Thus, for pre-test scores with the

midpoint 55 (the largest group), the post-test mean for the Experimental Group is

62.93, while for the Control Group it is 70.29 (Table 13.1.1a).

On the other hand, the director of the program claimed it is beneficial. He

pointed out that for children scoring the same on the post-test (Table 13.1.1b) the

Experimental Group shows a greater gain from the pre-test than the Control Group.

Thus, for one of the two largest post-test groups (midpoint 60), the Experimental

Group increased from 49.52, while the Control Group showed no gain over its

pre-test mean.

Questions

1. For experimental and control groups with given pre-test or post-test scores,

illustrate the fact that the data exhibit regression to the mean and compute the

Table 13.1.1b. Means on pre-test according to post-test score

Post-test

score (Midpoint)

Experimental group Control group

n Pre-test mean n Pre-test mean

125 0 – 1 78.77

120 0 – 3 94.59

115 0 – 4 94.06

110 1 82.66 14 81.53

105 0 – 16 87.46

100 2 70.36 25 77.62

95 3 67.19 51 77.19

90 14 64.20 41 74.07

85 21 67.90 52 72.56

80 29 51.64 75 69.16

75 48 53.40 52 68.62

70 50 55.05 57 61.52

65 57 56.23 37 63.38

60 57 49.52 27 61.43

55 52 48.99 21 62.09

50 54 42.81 15 58.41

45 42 44.94 4 38.98

40 26 37.19 5 42.29

35 22 33.77 0 –

30 15 37.41 0 –

25 2 30.29 0 –

20 4 16.75 0 –

15 1 30.34 0 –
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magnitude of this effect. What would be the explanation for the regression

phenomenon?

2. Explain the fallacy in the arguments of the opponents and the director in terms of

regression to the mean.

3. Compare the average difference in pre-test and post-test scores for all the

experimental and control groups combined. What does this difference suggest

about the efficacy of the program?

This case raises subtle points, some of which are taken up again in Section 14.5.

Source

Campbell & Erlebacher, How regression artifacts in quasi-experimental
evaluations look harmful, in Compensatory Education: A National Debate, 3 The
Disadvantaged Child (Helmuth 1970).

Notes

In a study sponsored by the American Pediatrics Institute, an investigator gave

propranolol, one of a class of heart drugs called beta blockers, to 25 high school

students. The students were selected because they suffered from unusually severe

anxiety about the Scholastic Aptitude Tests and evaluations suggested that “they

had not done as well as they should have on the S.A.T.” When the students took

the S.A.T. again an hour after taking propranolol, their scores improved by a mean

of 50 points on the verbal section and 70 points on the mathematics section. Each

part of the multiple-choice exam is scored on a scale of 200–800. Students who

retake the test without special preparation typically increase their verbal scores by

18 points and their math scores by 20 points. As a New York Times lead on the

story reported, “A drug used to control high blood pressure has dramatically

improved Scholastic Aptitude Test scores for students suffering from unusually

severe anxiety, according to a preliminary study.” N.Y. Times, October

22, 1987 at A27. What reservations would you have about the validity of this

assessment?

13.2 Estimating and interpreting coefficients
of the regression equation

In the usual case, a regression model is postulated, but the mathematical form of the

relation, the explanatory factors, and their coefficients are unknown. Both the form

of regression relation (linear or nonlinear) and the choice of explanatory factors

involve substantive expertise, which of course depends on the case, while the

assignment of coefficients to those factors is one of statistical technique, for

which there are general solutions. We describe first the statistical technique for
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estimating coefficients in a linear regression model. Choice of explanatory factors is

taken up in Section 13.5 and alternate forms of regression models are discussed in

Sections 13.9, 14.3, and 14.7.

Each possible set of regression coefficients for a given equation produces a set of

“fitted” values for the dependent variable by ignoring the error component. The

differences between the actual values of the dependent variable in the data and

the fitted values are known residuals. See Fig. 13.2. When the actual value of the

variable lies above the regression estimate the residual is positive; when below,

the residual is negative. One cannot select the equation that minimizes the algebraic

sum of the residuals because that sum can equal zero for many different sets of

coefficients as positive and negative residuals cancel. Selecting the equation that

minimizes the sum of the absolute values of the residuals gives a unique solution in

most cases, but absolute values are awkward to manipulate and lack certain other

advantages discussed below. The procedure most widely followed is to pick the set

of coefficients that minimizes the sum of the squared residuals. This is known as the

“ordinary least squares” (OLS) method of estimation of the regression.

Consider a simple linear regression specified by the model

Y ¼ aþ bX þ e;

where the error term e has zero mean for any fixed value of X. The interpretation of
the intercept coefficient a is the expected value of Y given X equals 0 and the

interpretation of the slope coefficient b is the increment in the expected of Y per unit

increase in X.

Fig. 13.2. Residuals from a fitted regression model
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Given a sample of n pairs (Xi, Yi), i ¼ 1, . . ., n, the least squares estimate of the

constant term a is given by â ¼ Y � b̂ X, where X and Y are the sample means of

X and Y, respectively. Here b̂ is the least squares estimate of b, given by b̂ ¼ rsY=sX,
where sX and sY are the sample standard deviations of X and Y, respectively, and r is
the sample correlation coefficient between X and Y (see Section 1.4).

It is instructive to re-express the fitted model in terms of standardized variables,

x ¼ X � X
� �

=sX and y ¼ Y � Y
� �

=sY , with zero sample mean and unit sample

variance, as follows:

y ¼ rxþ e
0
;

where e0 is the regression residual, Y � â þ b̂ X
� �

, divided by sY.

Thus, in terms of standardized variables, the estimated regression coefficient

equals the sample correlation coefficient. When the model is expressed in this form,

the regression coefficient is called a standardized regression coefficient, also known
as a path coefficient. In general, a standardized regression coefficient is equal to the
ordinary least squares estimate of a regression coefficient corresponding to an

explanatory factor X, divided by the ratio sY/sX.
When there are two explanatory factors, the multiple linear regression model

becomes

Y ¼ aþ b1 X1 þ b2 X2 þ e;

where the error term has zero mean for all fixed values of X1 and X2. In terms of

standardized variables, the fitted model is given by

y ¼ p1 x1 þ p2 x2 þ e
0
:

The standardized regression coefficients p1, p2 satisfy the pair of simultaneous

linear equations (the “normal” equations)

r1Y ¼ p1 þ r12 � p2
r2Y ¼ r12 � p1 þ p2

where r1Y and r2Y denote the correlations between Y and X1 or X2, respectively, and

r12 is the correlation between X1 and X2. The solution to these equations is given by

p1 ¼ r1Y � r12 � r2Yð Þ= 1� r212
� �

p2 ¼ r2Y � r12 � r1Yð Þ= 1� r212
� �

:

Then, the least-squares estimates of the coefficients of the original are given by
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â ¼ Y � b̂ 1X1 � b̂ 2X2,

b̂ 1 ¼ p1 � sY=sX1
, and

b̂ 2 ¼ p2 � sY=sX2
:

Notice that if X1 and X2 are uncorrelated, r12¼ 0 and the regression coefficients are

equal to the values that would obtain if Y were regressed on either variable alone.

This means that, in the single variable case, adding to the model a second variable

uncorrelated with the first will not change the estimated coefficient of the first

variable. This general statement also holds when there are more than two explana-

tory factors, in the sense that a new variable, when added to the model, will not

change the coefficient of an existing variable if the two are uncorrelated, given fixed

values of all remaining variables.

Ordinary least squares estimation has certain desirable features. First, it “fits” the

regression equation to the data in such a way that the coefficient estimates are

unbiased, and the sample correlation between the predicted and the actual values of

the dependent variable is maximized. Second, when the errors are normally

distributed with constant variance, the least squares estimates of the regression

coefficients are maximum likelihood estimates, i.e., they maximize the probability

of observing the given data.4 Third, as the amount of data increases, the estimates

become increasingly precise, the highly desirable property of consistency. Fourth,

the least squares estimates are “efficient” linear estimates, meaning that they vary

less in repeated sampling than other linear estimates; they therefore provide the

most precise unbiased linear estimates of the “true” coefficients based on a given set

of data.5 For these reasons, least squares estimation has become the standard

method for estimating linear multiple regression equations.6

Although least squares estimation has become standard and is amply justified on

mathematical grounds, its use warrants a cautionary note. Since this method

minimizes squared residual values, the largest residuals contribute disproportion-

ately to the sum of squares (e.g., a residual that is twice as large as another

contributes four times its weight in the sum). This means that data points creating

the largest residuals, although few in number, can have a major influence on the

estimate of the coefficients. This may or may not be appropriate. Data points that lie

more than two or three standard deviations from mean, known as outliers, may

seriously distort average values and regression estimates when they arise from

4 For a discussion of maximum likelihood estimation in the binomial case see Section 5.6. Here the

least squares estimates of the regression coefficients maximize the likelihood function based on the

observed values of the dependent variable given the explanatory factors and normally distributed

errors.
5 The OLS estimate is “linear” because it in fact equals a weighted sum of the observed values of

the dependent variable.
6 But it is not the only method. For the weighted least squares technique, see Section 13.8 at p. 428.

In other forms of regression (Section 14.7) the maximum likelihood estimates differ from the least

squares estimates; this usually occurs when the errors are not normally distributed.
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mistakes in reporting, or from special circumstances not described in the model or

likely to be repeated. It thus becomes important to check their accuracy and to

investigate their effect on the regression estimates. In a similar vein, values of

explanatory variables far removed from the main body of data exert a strong

leverage on regression estimates, even without the occurrence of large residuals.

Ways of testing the sensitivity of the regression model in this respect are discussed

in Section 14.9. Regression “diagnostics” refers to various measures of the influ-

ence of particular data points with large residuals or high leverage. These are

important clues to hidden defects. See Cook & Weisberg, Residuals and Inference
in Regression (1982) for a discussion of regression diagnostics.

13.2.1 Western Union’s cost of equity

In a 1970 ratemaking proceeding involving Western Union, the Federal

Communications Commission sought to determine Western Union’s cost of equity

as a step in determining its total cost of capital. Although cost of equity traditionally

is determined by the earnings-price ratio of a company’s common stock, an expert

for Western Union argued that its earnings had been abnormally depressed, so that

the earnings-price ratio yielded manifestly absurd results. The expert proposed to

estimate cost of equity for Western Union by examining cost of equity for other

industry groups and adjusting for differences in risk. The risk adjustment was made

by using an index of variability of earnings. Variability was defined as the standard

deviation around the 1957–1960 trend in earnings (to avoid treating simple growth

in earnings as variability) divided by the mean earnings per share (to eliminate the

factor of absolute size of earnings per share). Research produced the statistics of

cost of equity and earnings variability shown in Table 13.2.1.

Table 13.2.1. Cost of equity and variability of earnings for selected regulated industries

Utility group Cost of equity (%)

Variability of rate

earned on book (%) Log of variability

AT&T 9.9 3.6 1.28

Electrics 10.4 7.1 1.96

Independent Telephones 10.4 10.6 2.36

Gas Pipelines 11.4 11.9 2.48

Gas Distributions 12.2 12.9 2.56

Water Utilities 10.0 17.1 2.84

Truckers 16.5 44.0 3.78

Airlines 18.9 76.0 4.33

Western Union ? 27.0 3.30

380 13 Regression Models

http://dx.doi.org/10.1007/978-1-4419-5985-0_14#Sec25


Questions

1. Regress cost of equity on variability of rate earned on book to estimate a cost of

equity for Western Union. (The log of variability is included here for

Section 13.9.1.)

2. What objections would you envision?

Source

Finkelstein, Regression Models in Administrative Proceedings, 86 Harv. L. Rev.

1442, 1445–1448 (1973), reprinted in Quantitative Methods in Law 215–219.

13.2.2 Tariffs for North Slope oil

The Trans-Alaska Pipeline System is a common carrier pipeline extending approx-

imately 800 miles from Prudhoe Bay on Alaska’s North Slope to Valdez on

Alaska’s south central coast. The pipeline carries a mixture of crude oils produced

from various fields on the North Slope. A refinery near Fairbanks (ERCA)

purchases oil from the pipeline and reinjects residual refinery oil into the system.

The various oils shipped are of different qualities and, as a result of commingling in

transportation, shippers in Valdez generally receive oil of a different quality from

that tendered for transportation.

A so-called “Quality Bank” was established by the carriers to compensate or

charge shippers for variations in quality between the oil tendered at Prudhoe Bay,

the oil reinjected by ERCA, and the oil received at Valdez. For Quality Bank

purposes, the quality of oil is measured in API Gravity (by degrees API)—the

higher the degrees API, the higher the quality. When the carriers proposed a

differential for the Quality Bank of 15 cents per barrel per degree, ERCA protested.

ERCA, which received 26–27 degree API oil and reinjected 20 degree API oil,

would be the principal payer into the Quality Bank; it recommended a 3.09 to 5.35

cent differential per degree.

Under Section 1(5) of the ICA (49 U.S.C. 1(5)), carriers are required to establish

“just and reasonable” rates or tariffs. Hearings were held before an administrative

law judge of the Federal Energy Regulatory Commission to determine whether a

quality bank should be established and, if so, what the adjusting payment rate

should be. The hearing examiner found that a quality bank concept was just and

reasonable and then had to determine the amount of adjusting payment.

Because there were no posted prices for North Slope crude itself, prices for other

oils were investigated.

The shippers’ expert examined the prices of Mideast and certain domestic

crudes. “[S]tudies showed good correlations between the prices of these crudes

and either gravity, sulfur, or gravity and sulfur together, with one exception, namely

the poor correlation between price and sulfur for domestic crudes. . ..”
Table 13.2.2 shows the price per barrel and the degrees API for a sample of

Persian Gulf crudes.
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Questions

1. Plot the data and fit a linear regression model to the data (either by eye from a

graph, or by the method of Section 13.2).

2. Apply regression analysis to these data. What conclusions do you draw?

3. As attorney for ERCA, what points would you make in response?

Source

Trans Alaska Pipeline System, 23 F.E.R.C. }63,048 (1983) (ALJ Initial Dec., dated
May 3, 1983), and subsequent proceedings (rebuttal testimony of Jack

B. Moshman).

13.2.3 Ecological regression in vote-dilution cases

The Voting Rights Act of 1965, as amended in 1982, forbids any practice that

would diminish the opportunity for the members of any racial group to elect

representatives of their choice. 42 U.S.C. }1973 (1988). In Thornburg v. Gingles,
478 U.S. 30 (1986), the Supreme Court held that, for a racial minority to make a

case of vote dilution, plaintiffs must show that (i) the minority is geographically

compact (i.e., there is a geographical district in which the minority would be a

majority); (ii) the minority is politically cohesive (i.e., it votes substantially as a

bloc for its desired candidate); and that (iii) the majority is also a voting bloc (i.e., it

generally votes together to defeat the minority’s candidate).

The Los Angeles County Board of Supervisors consisted of five members

elected to serve 4-year terms in nonpartisan elections within supervisory districts.

Before February 1990, no Hispanic had ever been elected as a supervisor despite the

Table 13.2.2. Persian Gulf crudes

�API $/barrel

27.0 12.02

28.5 12.04

30.8 12.32

31.3 12.27

31.9 12.49

34.5 12.70

34.0 12.80

34.7 13.00

37.0 13.00

41.1 13.17

41.0 13.19

38.8 13.22

39.3 13.27
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fact that, according to the 1980 Census, Hispanics made up 28% of the total

population of Los Angeles County and 15% of the voting-age citizens.

In a suit to compel redistricting to create a majority-Hispanic district, plaintiffs

presented an ecological regression model consisting of two regression equations to

prove bloc voting by both Hispanics and non-Hispanics. In plaintiffs’ model, the

first regression equation was Yh¼ αh +βh Xh+ εh, where Yh is the support rate for the
Hispanic candidate expressed as a percentage of all registered voters in a precinct;

αh is the expected percentage of non-Hispanic registered voters who voted for the

Hispanic candidate in a completely non-Hispanic precinct; βh is the added vote for

the Hispanic candidate per percentage point of Hispanic registered voters; Xh is the

percentage of registered voters who are Hispanic; and εh is a random error term with

0 mean. Plaintiff assumes that αh also provides the expected percentage turnout for

the Hispanic candidate among non-Hispanic registered voters in every precinct; this

is known as the “constancy” assumption. Note that the model assumes that there is

no census tract factor affecting turnout that correlates with Xh.

The above model purports to estimate the percentages of the Hispanic and

non-Hispanic registered voters that turned out for the Hispanic candidate. To

estimate the support rates (i.e., the proportion of those voting in each group that

voted for the Hispanic candidate) it is necessary to estimate the voting rates for

Hispanic and non-Hispanic registered voters. This was done by a second regression

equation, Yt¼ αt + βt Xh + εt, where Yt is the total turnout expressed as a percentage

of all registered voters in a precinct; αt is the percentage of non-Hispanics voting for
any candidate in completely non-Hispanic precincts; βt is the change in percentage
voting associated with being Hispanic; Xh is, as before, the percentage of Hispanic

registered voters in the precinct; and εt is a random error.

Using the results of a 1982 primary election for Sheriff of Los Angeles County,

the investigators collected the following data for each of some 6,500 precincts:

(i) total registered voters; (ii) Hispanic registered voters (based on Hispanic

surnames, with certain adjustments); (iii) votes for Feliciano, the principal Hispanic

candidate; and (iv) the total vote.

From these data the two regression models were estimated by OLS, as follows:

Yh ¼ 7:4%þ 0:11Xh; and

Yt ¼ 42:6%� 0:048Xh:

Figure 13.2.3 gives a scatter plot for the voting data. Each dot represents one

precinct. The horizontal axis shows the percentage of registrants in the precinct

who are Hispanic; the vertical axis shows the turnout rate for Feliciano. To make

the figure more readable only every 10th district is plotted. The sloping line is the

first equation, as estimated from the data.

In ruling for the plaintiffs, the district court accepted the ecological regression

model, holding that “[e]cological regression [is] the standard method for inferring

the behavior of population groups from data collected for aggregate units.” It

further held that “[w]hile in theory there exists a possibility that ecological regres-

sion could overestimate polarization, experts for defendants have failed to demon-

strate that there is in fact any substantial bias.”
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Questions

From the ecological regression model:

1. What are the average precinct rates and the difference in rates of Hispanic and

non-Hispanic turnout for Feliciano?

2. What are the Hispanic and non-Hispanic average precinct voting rates?

3. In an attempt to determine the support rates among those who voted or didn’t

vote, the plaintiff calculated precinct-wide support rates for Feliciano by divid-

ing the Hispanic (respectively non-Hispanic) expected support rates by the

Hispanic (respectively non-Hispanic) expected turnout rates. Calculate

plaintiff’s precinct-wide support rates for Feliciano. What objection do you

have to these estimates?

4. Assuming the ecological regression model is correct, what conclusions do you

draw as to bloc voting?

5. What objections do you have to the ecological regression model?

6. What other ways are there to obtain the voting information purportedly furnished

by the ecological regression model?
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Fig. 13.2.3. Turnout rates for Feliciano, the principal Hispanic candidate in the 1982 sheriff

primary, Los Angeles County. Note: The unit of analysis is the precinct. The regression line is

shown.
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Source

Garza v. County of Los Angeles, 918 F.2d 763 (9th Cir.), cert. denied, 111 S. Ct. 681
(1991). For an extensive discussion of the evidence and the issues, see Rubinfeld,

ed., Statistical and Demographic Issues Underlying Voting Rights Cases, l5 Evalu-
ation Rev. 659 (1991).

Notes

Plaintiffs interpreted the ecological regression model to mean that, on average

across precincts, the Hispanic candidate received αh% of the votes of the

non-Hispanic registered voters and (αh+ βh)% of the votes of the Hispanic

registered voters. The difference between the two—βh percentage points—is the

average difference in Hispanic and non-Hispanic support for the Hispanic candi-

date, and is thus a measure of polarized voting.

Defendants responded that plaintiffs’ interpretation of the regression depended

on their constancy assumption, and that one could interpret the regression quite

differently. They argued that one could assume that within a precinct there was no

bloc voting—i.e., that the same proportion of Hispanic and non-Hispanic registrants

voted for the Hispanic candidate. Then βh would be interpreted as the average

percentage point increase for both groups in the vote for the Hispanic candidate for

each percentage point increase in Hispanics among registered voters. In this

interpretation, the percentage of Hispanic registered voters in a precinct is a

proxy for economic and social conditions that affect the electoral choices of both

Hispanic and non-Hispanic voters. Defendants’ expert, David Freedman, called this

a “neighborhood” model because it assumes that Hispanics and non-Hispanics in

the same social and economic class tend to vote in the same way. For both groups,

the percentage of registered voters who vote for the Hispanic candidate is αh+ βhXh,

with αh and βh as estimated from the regression model.

Although the neighborhood model posits no polarized voting within precincts,

bloc voting may appear when the precincts are aggregated if disproportionate

numbers of Hispanics live in districts with high proportions of Hispanic registered

voters. If precincts are highly segregated, there will be little difference in estimates

of polarized voting between the ecological regression model and the neighborhood

model. But when Hispanics are a significant minority in many districts, as they are

in Los Angeles County, the estimates of polarized voting will be higher under the

ecological regression model than under the neighborhood model.

13.2.4 Projecting airline costs

The Department of Defense uses commercial aircraft drawn from what’s called the

“Civil Reserve Air Fleet” to augment the Department’s own airlift capabilities. The

Fleet is divided into teams, each with a “team leader.” The team leader bids with the

Department of Defense for services and allots the business it gets to its members.

Federal Express Corp. was a team leader and ATA Airlines, Inc. was a member of
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the team. Fedex entered into three-year contracts with its team members, allocating

non-emergency military passenger service equally between ATA and another

airline. In January 2008, Fedex cancelled the contract, which ATA claimed was a

breach, depriving it of the profits from the contract for the balance of the contract

term, which continued through fiscal year September 30, 2009.

ATA sued in federal court for lost profits and other damages. To compute its lost

profits, ATA’s expert, Lawrence D. Morriss, Jr., had to project both revenue and

costs for the 2008 and 2009 fiscal years. He projected lost revenue at $286.5 million

for each of those years. To determine costs associated with that revenue, he

performed a regression analysis in which costs were regressed on revenue from

1998 through 2007. The data were as shown in Table 13.2.4.

Using unrounded data, Morriss estimated by OLS a regression equation of costs

on revenue as: Costs¼ 30,502,004 + 0.7796�Revenue. The correlation between

the regression estimates and the observed values of costs is 0.976. A graph showing

the regression appears above (Fig. 13.2.4).

Table 13.2.4. ATA Airlines revenue and costs (rounded data)

Fiscal Year

Ending 9/30

Military Revenue

($ in millions)

Military Cost

($ in millions)

1998 128.5 113.9

1999 114.0 106.9

2000 185.4 175.0

2001 159.5 155.8

2002 176.2 177.1

2003 276.4 257.5

2004 302.7 268.4

2005 406.1 315.1

2006 342.5 306.7

2007 276.9 274.8
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Fig. 13.2.4. Plot of military revenues and costs, 1998–2007 with regression line
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Questions

1. Assuming Morriss’s regression model is correct, what are ATA’s lost profits for

2008?

2. The jury awarded ATA its entire lost profits as computed by Morriss. But on

appeal the court of appeals (per Posner, J.) rejected Morriss’s model. Among a

number of points, Judge Posner wrote that Morriss’s “most glaring error was to

use costs as his dependent variable and revenues as his independent variable.

The dependent variable as we know is a number sought to be explained by the

independent variable. . .. But revenue does not influence cost directly; nor is it

clear that it is closely correlated with unmeasured variables that do influence

costs.” Do you agree that these observations invalidate Morriss’s use of the

regression to project costs?

Source

ATA Airlines, Inc. v. Federal Express Corp., 665 F.3d 882 (7th Circuit 2011)

(Posner, J.).

Notes

Judge Posner’s opinion on regression was either dictum or an alternative holding

because he first dismissed the case on other grounds, but nevertheless followed that

dismissal with a primer on regression and a discussion of the shortcomings of

Morriss’s analysis. He capped that with scathing remarks on the failure of the

district court judge to penetrate and exclude Morriss’s model from evidence. Two

other aspects of Posner’s opinion are discussed in Sections 13.7.4 and 14.1.7.

13.3 Measures of indeterminacy for the regression equation

A regression model allows for an explicit source of indeterminacy: the scatter of

observations of the dependent variable about the regression mean (due to the error

term). An additional source of indeterminacy arises when the regression equation is

estimated from sample data.

Error of the regression

To illustrate the error of the regression we return to Galton’s parents and sons data.

For parents of a given midparent height, the heights of their sons vary. The scatter

of the sons’ heights around the regression mean of their height is represented by the

error term in the regression model. The variance of this error is not affected by the

number of observations. Nor is it affected by the conditioning factor of parents’
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height, as may be seen in Fig. 13.3a: the scatter of points in the vertical direction is

about the same for any value of midparent height. Finally, the distribution of sons’

heights about the regression mean is approximately normal. The variance of the

error term is usually denoted by σ2 and its square root, the standard deviation of the
error, by σ.

These properties are so typical of regression models that they have been canon-

ized into four assumptions that define the standard regression model. These are: for

any fixed values of the explanatory factors, (i) the errors of regression have zero

mean; (ii) the errors are statistically independent; (iii) the errors have constant

variance; (iv) the errors are normally distributed. The effect of one or more

violations of these assumptions is discussed in Section 13.8.

In the usual case, we do not know either the “true” regression relation or the

“true” errors; both must be estimated from sample data. Nature shows us the

combined result, but hides the error. When the regression relation is estimated

from sample data, the various regression means are uncertain, and the inherent

uncertainty of a predicted value is enlarged by the sampling variability of the OLS

estimates of the regression coefficients. For example, if we took repeated samples

of parents of given heights, the average heights of their sons would vary from

Fig. 13.3a. Simulated parents-and-sons data illustrating constant error variance
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sample to sample. The estimated OLS regression equation would vary, and with it

predictions of sons’ heights.

Differences between values of the dependent variable and regression estimates are

called residuals. They are to the estimated regression line what errors are to the “true”

line. Since the errors are not known, their variance must be estimated from the

residuals. In the standard model, the sum of the squared residuals is called the

residual sum of squares. This is a basic measure of the unexplained variability in

the model—unexplained because it primarily reflects the random variation of the

dependent variable about the regression mean. The residual sum of squares divided

by an adjusted sample size, called the error degrees of freedom and denoted dfe, is an
unbiased estimator of σ2, the variance of the error. The estimate is called the residual
mean square. The error degrees of freedom equals the sample size, n, less the number

of explanatory variables in the equation (including the constant term).7 The square

root of the residual mean square, commonly (and confusingly) referred to as the

standard error of regression, is essential to the computation of statistical significance

of the regression coefficients and confidence and prediction intervals for the depen-

dent variable. See Sections 13.4 and 13.7. A convenient formula for its calculation is

n� 1ð Þ= n� pð Þ½ �s2y 1� R2
� �n o1=2

, where sy is the sample variance of the dependent

variable, R is the multiple correlation coefficient (defined and discussed shortly), and

p is the number of explanatory variables, including the constant.

A measure of the explained variability in the model—known as the regression
sum of squares—is equal to the sum of the squared differences between the

regression estimate of the dependent variable and its overall mean value in the

sample. Variability is explained in the sense that the regression model accounts for

variations in the regression mean as the explanatory factors vary. The regression

sum of squares divided by the regression degrees of freedom (dfr) is called the

regression mean square. The regression degrees of freedom is the number of

explanatory variables in the equation (including the constant term) less 1.

The total sum of squares is simply the sum of squared deviations of the

dependent variable about its overall mean. The total degrees of freedom (dftot) is
the sample size less 1. It is a profound and useful mathematical fact that the total

variability of the dependent variable can be resolved into two parts: variability

explained by the regression model and variability due to the residuals. Specifically,

the total sum of squares equals the regression sum of squares plus the residual sum

of squares. This is an expression in sample data of the following theoretical

property of random variables: For any two random variables X and Y,

7 The reduction in degrees of freedom is needed for an unbiased estimate. It reflects the fact that

each explanatory factor added to the regression makes it possible to fit an equation more closely to

a finite sample of data, and thereby to shrink the variance of the residuals compared with the

variance of the errors.
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Var Yð Þ ¼ E Var Y
��X� �	 
þ Var E Y

��X� �	 

:

In words, the overall variance of Y is the sum of two components: the average of the

conditional variances of Y for given values of X (the residual mean square), and the

variance of the conditional means of Y given X (the regression mean square).

Measuring goodness of fit

Since the regression equation does not fit values of the dependent variable perfectly,

it is important to measure how well the equation performs.

The extent to which a regression model fits the data is initially appraised by the

standard error of regression and by the squared multiple correlation coefficient. The

smaller the standard error, the better the fit in absolute terms, so that the standard

error is often used as a criterion for selecting a regression model from among

several candidates. This subject is taken up more fully in Section 13.5.

The multiple correlation coefficient, R, is the correlation between the regression

estimates and the observed values of the dependent variable. The squared multiple

correlation coefficient, R2, is commonly used to describe goodness of fit because it

can be shown to equal the ratio of the regression sum of squares to the total sum of

squares. Thus, R2 can be interpreted as the proportion of the total variability of the

dependent variable that is explained or accounted for by the regression equation. R2

ranges between 0 (no association) and 1 (a perfect fit). Figure 13.3b illustrates the

explained and unexplained deviations on which R2 is based.

Since the regression equation is optimally fitted to the data, R2 is biased upward

slightly as an estimate of the population value of the proportion of variability explained

Fig. 13.3b. Explained and unexplained deviations from the mean
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by the true regression. To compensate for this,R2 is adjusted downward, by subtracting

the quantity (1�R2)(p� 1)/(n� p), where there are p predictors (including the

constant term) and sample size n. The revised estimate is called adjusted R2.8

One should remember that R2 is a summary measure of fit, and a value near

1 does not necessarily imply that the model reflects causal patterns or even that it

predicts outcomes very well. The problem of spurious correlation is most noticeable

in time series data marked by strong trends; in those circumstances it is quite easy to

obtain squared correlation coefficients exceeding 0.90, which seems a close fit. In

fact, these coefficients may reflect concurrent trends rather than a causal relation,

and in such cases the model fails to predict turning points in the trend. This is

obvious in the sales data of Section 14.1.3, where Time and the Seasonal Indicator

are not inevitable causes of growth in sales.

In addition, R2 is affected by the span of the explanatory factors. A regression

model based on data extending over a broad range of X values will almost always

have a much larger R2 than the same regression model evaluated on data extending

over a narrow range of X values. Over a narrow range of X values, relatively less of

the total variation in Y is explained by X, and relatively more is unexplained or error

variation. See Fig. 1.4.1.

Even when a high degree of correlation reflects a causal relation, there is no

assurance that the equation reflects the true form. Models that are quite inconsistent

with the true regression can “fit” the data equally well by the R2 criterion. Each of

the data sets shown in Fig. 13.3c has the same correlation between the linear

regression values and the actual data values. The patterns are quite different,

however, and only in the middle case does the linear model appear to fit the data

appropriately.

Consequently, it is essential to analyze the fit of the estimated equation in some

detail, and not merely to rely on a summary measure.

13.3.1 Sex discrimination in academia

A class action on behalf of women was brought against the University of Houston

alleging discrimination in faculty compensation. The court found plaintiffs’

statistical proof of discrimination insufficient because it used comparisons

between male and female salaries that did not simultaneously take account of

all relevant factors.

The University presented two multiple regression studies including such factors,

and the court considered plaintiffs’ claim that these studies supplied themissing proof.

8 The effect is small if either R2 is close to 1, or the number of explanatory factors is small

compared with the number of observations of the dependent variable. For example, if R2¼ 0.80

based on 30 observations and 6 explanatory factors (including the constant term), adjusted R2

would be 0.76.
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Fig. 13.3c. Scatterplots with the same correlation coefficient
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In the first study, salary was regressed on eight department, experience, and

education variables; R2¼ 52.4%. The second model was identical, except that sex

was added as a factor; R2¼ 53.2%. Plaintiffs claimed that their case was proved

because the sex coefficient of $694 per year (indicating that women on average earned

that much less than equally qualified men) was statistically significant. The court

rejected this argument, apparently adopting the position of the University’s expert:

According to the university’s expert, despite the $694 coefficient for sex in the second model,

the multiple regression analysis [sic] do not indicate discrimination against women because

the model with sex as a factor explained only 0.8 percent more of the total variation around

the average salary than did the model without sex: ‘It is not the values of the coefficients

themselves which matter so much in a statistical interpretation of two models, it is the

difference in proportion of variation that is explained.’ Plaintiffs introduced no evidence

that sex was not, in a statistical sense, independent of the other independent variables in the

model (e.g., department, rank, experience, and degree); thus, there has been no showing that

the incremental contribution of sex to the variation explained by the university’s models is

understated because part of its influence erroneously had been attributed to the other

independent variables.9 Further, plaintiffs did not introduce evidence that the value of the

coefficient for the sex variable is significant notwithstanding the fact that only 0.8 percent

more of the total variation was explained when sex was added into the model. As we have no

basis for rejecting the opinion of the university’s expert, we decline to do so.

Questions

1. Does the 0.8 percentage point increase in R2 when sex is added to the model

imply an average 0.8 percentage point shortfall in female salaries relative to the

salaries of equally qualified males? What does this small increase imply for the

shortfall?

After reading Section 13.4 answer the following:

2. What is the relation between the statistical significance of the change in R2 when

sex is added as an explanatory factor and the statistical significance of the sex

coefficient?

Source

Wilkins v. University of Houston, 654 F.2d 388, 403–4 and n.19 (5th Cir. 1981), reh.
den., 662 F.2d 1156 (1981), vacated, 459 U.S. 809 (1982), on remand, 695 F.2d

134 (1983).

9 For example, if plaintiffs had proven that women were discriminated against with respect to

promotion, the independent variable for experience as an assistant professor would be related to

sex because women, due to the discrimination, would have more experience at that rank than

would men. In that event, part of the variation in average salary that should have been attributed to

sex would not have been because it would have been ‘explained’ by the experience-as-an-

assistant-professor variable. As discussed above, plaintiffs did not prove discrimination with

respect to promotion.
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13.4 Statistical significance of the regression coefficients

Standard errors of the estimated coefficients

The variability of each of the estimated regression coefficients is measured in

terms of quantities called the standard errors of the coefficients (not to be confused
with the standard error of regression). These are the (estimated) standard

deviations of the OLS estimators when viewed as random variables in repeated

samples with fixed explanatory factor values. The size of the standard error of a

coefficient depends on: (1) the standard error of regression; (2) the sample size;

(3) the spread of the values of the explanatory factors; and (4) where there are

multiple explanatory factors, the extent of linear correlation among them. In the

simplest case, the linear model Y¼ a + bX+ e with E [e|X]¼ 0, if the variance of the

error term is Var (e|X) ¼ σ 2 then the variance of b̂ in the estimated regression

equation Ŷ ¼ â þ b̂ X is

Var b̂
� � ¼ σ2=

X
i
Xi � X
� �2

;

and the variance of â for a sample size n is

Var âð Þ ¼ σ2
1

n
þ X

2X
i
Xi � X
� �2

0@ 1A:

These quantities are estimated by replacing σ2 by σ̂ 2, the squared standard error of

regression (i.e., the mean square). The standard error of â or b̂ is then obtained as the

square root of the corresponding estimated variance.

Consider first the fact that the variance of â and b̂ depends on the variance of the

error term and on the size of the sample from which the equation is estimated. If the

error variance were zero, each sample of data with fixed values of the explanatory

factors would have the same value of the dependent variable regardless of sample

size. As the error variance increases, the influence of the random part of the

equation causes the dependent variable to vary increasingly from sample to sample;

as mentioned in Section 13.3 at p. 388–389, this produces different OLS equations.

On the other hand, for a given error variance, increasing the sample size

diminishes the variability of the estimates due to sampling.

As for the spread of the explanatory factors, again consider the case of simple

linear regression of Y on X. The OLS equation runs through the point defined by

the means of Y and X. If the values of the explanatory factor X cluster together near

the mean, while the Y values have a broad distribution, even small changes in the

Y values can cause large swings in the estimated slope of the line (the b̂ coefficient),

as it responds like a see-saw. But if the X values are spread apart, the line is more

stably located.

In more complex situations involving multiple explanatory variables, the fourth

factor—the extent of linear correlation among the variables—has an important
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influence on the standard errors. Suppose that in a wage regression model almost all

high-paid employees were men with special training and almost all low-paid

employees were women without training. Sex and special training are then highly

correlated. Data exhibiting such correlations are said to be collinear; where one

factor is nearly a linear function of several other factors, the data are said to be

multicollinear, a not uncommon occurrence in a multiple regression equation.

A high level of multicollinearity is an indication that the model is overspecified

in the sense that more variables are included than are necessary or justified by the

data. Multicollinearity does not bias regression estimates of the coefficients or of

the dependent variable; its effect is simply to increase the standard errors of the

coefficients, thus making significance tests less powerful and coefficient estimates

less reliable.

The reason for the unreliability is not hard to see. In the example, if sex and

special training were perfectly correlated, it would be impossible to distinguish

their separate effects on wages because they would always move together. When

explanatory factors are highly, but not perfectly, correlated, assessment of their

separate effects depends on the few cases in which they do not move in tandem; the

enlarged standard errors of the coefficients reflect the smallness of the effective

sample size.

A simple (but not foolproof) test for multicollinearity involves looking for high

correlations (e.g., in excess of 0.9) in pairs of explanatory variables (the correlation

matrix printed by most multiple regression computer programs makes this easy).

Other indications are large standard errors or the wrong sign for coefficients of

important variables. Multicollinearity may also be suspected if, in the construction

of a model, the addition or deletion of a variable causes a large change in the

estimated coefficient for another variable, or if the addition or deletion of a data

point causes a large change in the estimates. For a foolproof way to detect

multicollinearity, see the definition of “tolerance” in Section 13.6 at p. 405.

While multicollinearity affects the precision of coefficient estimates, it is possi-

ble nevertheless to estimate regression means and predict values of the dependent

variable with a small standard error, even though individual coefficients have large

standard errors due to the multicollinearity. The situation is akin to locating a point

on a map with highly oblique (non-orthogonal) grid lines. The position of the point

on the map may be accurately fixed even though the coordinates of the point are

quite uncertain, with many different coordinate pairs leading to approximately the

same location on the map.

Tests for significance of regression coefficients

The statistical significance of a coefficient is usually determined by dividing the

value of the coefficient by its (estimated) standard error. The resulting critical ratio

is a t-statistic because, with normal errors, using an estimated value for the error

variance gives the quotient Student’s t distribution (see Section 7.1). The attained

significance level is obtained from tables, and depends on the error degrees of

13.4 Statistical significance of the regression coefficients 395

http://dx.doi.org/10.1007/978-1-4419-5985-0_7#Sec1


freedom, defined in Section 13.3 as the number of observations less the number of

explanatory variables (including the constant).

The t-statistic described above tests significance of an individual estimated

coefficient. It is also possible to test groups of coefficients, or all of them

simultaneously, for joint significance. A test of all explanatory factors together

(exclusive of the constant term) is, in effect, a test of the statistical significance of

R2. The effect of adding or deleting groups of explanatory factors is appraised by

looking at F-statistics. See Section 7.2 for a discussion of the F distribution. In the

present context, the F-statistic is calculated as the ratio of (i) the absolute change

in the residual sum of squares when explanatory factors are added to or subtracted

from the equation, divided by the number of factors tested, i.e., the regression

mean square for the added variables, to (ii) the sum of squared residuals with

the factors included, divided by the error degrees of freedom, i.e., the error mean

square. The numerator may also be expressed in terms of the absolute change in

the regression sum of squares. Yet another expression for the F-statistic, often the
most convenient, is the ratio of (i) the change in R2 as variables are added

or removed from the model, divided by the number of factors tested, to (ii) the

value 1�R2 from the larger model, divided by the dfe for the larger model.

In symbols,

F ¼ R2
1 � R2

0

p

�
1� R2

1

d f e
;

where R2
1 is from the larger model, R2

0 is from the smaller model, the models differ

by p parameters, and dfe is the error degrees of freedom from the larger model.

If the true values of the coefficients of all factors tested are 0 (i.e., the factors are

not explanatory), the sampling distributions of the numerator and the denominator

are independent chi-squared distributions divided by their respective degrees of

freedom, and thus the ratio follows the F distribution. If the reduction in residual

variance is large when factors are added (or the increase is large when the factors

are deleted), the numerator of the F-statistic becomes large, and the hypothesis that

these factors should not be in the equation is rejected. For a single factor under test,

the F-statistic reduces to the square of the t-statistic for that factor’s coefficient, so
that the t-test and the F-test are fully equivalent.

For a single explanatory variable, or for groups of variables, coefficients that are

statistically significant usually justify rejection of the hypothesis associated with

zero coefficients. The assertion that sex played no role in wages would be rejected if

there were a statistically significant sex coefficient in a correct regression model.

The converse situation is more open to interpretation. If there is an independent

reason to believe that sex is a factor in wages, and the estimated coefficient is

consistent with that hypothesis (e.g., it shows that equally qualified women earned

less than men), but is not statistically significant, one would conclude that the data

are consistent with the hypothesis, but that the observed differences between men

and women may have been due to chance. The hypothesis of discrimination cannot
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be excluded, however, because the lack of significance may reflect lack of power

(e.g., because of a small number of observations) rather than an absence of

discrimination. On the other hand, if power were high or if the estimated coefficient

were inconsistent with discrimination, e.g., it showed that equally qualified women

earned more than men, a rejection of discrimination would be more justified. Our

attitude toward a coefficient with an attained level of significance that fails to reach

a critical level thus depends both on the substantive importance of the coefficient’s

value and on the power of the test to detect departures from the null hypothesis.

Confidence intervals for regression coefficients

A confidence interval for a true regression coefficient b is constructed by adding and

subtracting from b̂ , the least squares estimate of b, a critical value times the standard

error of b̂ . The critical value is obtained from tables of the t distribution with dfe
degrees of freedom. For example, a 95% confidence interval might take the form

b̂ 
 2:09 � se b̂
� �

, where 2.09 is the 95% two-tailed critical value for the t distribution

on dfe¼ 20 degrees of freedom. Confidence intervals for the regression mean and

prediction intervals for future observations are discussed in Section 13.7.

13.4.1 Race discrimination at Muscle Shoals

The Tennessee Valley Authority (TVA) has an Office of Agricultural and Chemical

Development (OACD) at Muscle Shoals, Alabama. Jobs there are divided into

schedules: Schedule A for administrative jobs; Schedule B for clerical; Schedule D

for engineering or scientific; Schedule E for aides and technicians; Schedule F for

custodial; and Schedule G for Public Safety. The OACD requires a BS degree in

chemistry from an American Chemical Society (ACS) approved curriculum for

initial hiring into a professional chemist (Schedule D) position. Individuals with

non-ACS approved degrees are nevertheless considered for Schedule D positions

provided their schools have met substantive requirements for ACS accreditation, or

if the candidate has substantial related work experience. Recipients of non-ACS

approved degrees are generally eligible for Schedule E (subprofessional) positions,

from which they may be promoted to Schedule D jobs. Promotions are also made

from Schedule B to Schedule A.

Plaintiffs brought a class action claiming discrimination against blacks in

promotions. Each side performed multiple regression analyses. Plaintiffs used five

explanatory factors (plus a constant term): technical degree, non-technical degree

(no degree was a reference category), years of service at TVA, age, and race; annual

salary was the dependent variable. The data were from Schedules A, B, D, E and F

combined. There were only 7 blacks in Schedule E and 14 on Schedule D; there were

a few blacks in Schedule B, but none in Schedule A. The estimated race effect was

$1,685.90 against blacks, with a standard error of $643.15.

TVA’s regressions differed in that they broke down degrees by area of major

concentration: natural science, engineering science (other than chemical
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engineering), Code R (a doctoral degree in any field or a chemical engineering

degree), and highest grade completed. The regressions were estimated separately

for Schedules D and E. The choice of variables was the result of some trial and error

by TVA’s expert and a stepwise regression program (see Section 13.5).

The results were: for Schedule D the estimated race effect was $1,221.56 against

blacks, with standard error $871.82; for Schedule E the estimated race effect was

$2,254.28 against blacks, with standard error $1,158.40.

Questions

1. Compute the t-statistic for the race coefficient in each of the regression models

and find its P-value (assume the dfe’s are very large).

2. Why are the standard errors larger in defendant’s regressions than in plaintiffs’?

3. Which model is preferable?

4. Should plaintiffs’ model have included indicator variables for the different

schedules? (See Section 13.5 at p. 400). If it had, what would have been the

effect on the standard error of the regression coefficient for race?

5. Increase the power of TVA’s model by combining the evidence from the two

schedules using one of the methods of Section 8.1. What conclusions do you

reach?

Source

Eastland v. Tennessee Valley Authority, 704 F.2d 613 (11th Cir. 1983).

13.5 Explanatory factors for a regression equation

Selection of factors

Ideally, the selection of explanatory factors is determined solely by strong, well-

validated, substantive theory, without regard to the closeness of fit between the

regression estimates and the actual data. Thus, a labor economist might use labor

market theory to select certain types of experience and education as explanatory

factors in a wage equation. Of course, if an employer has an explicit mechanism for

awarding salary (such as wage increment guidelines), that mechanism should be

reflected in an explanatory factor (unless it is tainted—see p. 402). This ideal is

seldom met in practice, either because theory is not complete enough to dictate the

choices, or because data for theoretically perfect factors are not available and

surrogates must be used instead.

There are various techniques for selecting a set of explanatory factors from a

group of candidates. One popular procedure is the so-called forward-selection

method. In this method, the first variable to enter the equation is the one with the
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highest simple correlation with the dependent variable. If its regression coefficient is

statistically significant, the second variable entered is the one with the highest partial

correlation with the dependent variable. (The partial correlation is the correlation of

the residuals of the dependent variable, after it has been regressed on the first variable,

with the residuals of the second variable, after it has been regressed on the first

variable.) In a so-called “stepwise” variant, when the regression is recomputed with

two variables, the first is dropped if it proves no longer significant. This procedure of

adding, retesting, and eliminating is continued until no new significant variables are

found and all included variables remain significant.10

These techniques are widely practiced, but it should be remembered that the

variables selected for the model may not reflect external validity. For example, a

variable that increases R2 too little might be excluded as not statistically significant

even though its omission biases the remaining regression coefficients. Simulation

studies employing the bootstrap technique have shown that the group of variables

selected by stepwise regression is likely to vary widely depending on random

factors in the data, and that the correct set of explanatory variables (i.e., the set

assumed in the bootstrap experiment) is unlikely to be chosen. (See Section 14.9.)

The final selection in a stepwise procedure should be viewed only as a candidate

model with some degree of parsimony in explanatory variables and an adequate fit

to the data given the set of variables on hand.

At least one court has rejected a regression equation, in part because the

variables were selected by the forward-selection procedure. Eastland v. Tennessee
Valley Authority, supra.

An alternate technique involves selecting the “best” from all possible subsets

of explanatory factors. An index that assists in selecting the best set from among

many candidates is Mallows’ Cp,
11 defined as follows. Assume that there is a

maximally inclusive model with a residual mean square that provides an unbiased

estimate, say s2, of the error variance. We wish to select a smaller model, say with

p explanatory factors, including the constant, with no substantial degradation in the

goodness of fit of the model to the data. The Cp index is defined as the ratio of the

smallermodel’s residual sumof squares, RSSp, to s
2, that ratio diminished by (n� 2p):

Cp¼ (RSSp/s
2)� (n� 2p). If there is adequate fit to the data,Cpwill be approximately

equal to p, whereas if there is a substantial lack of fit, Cpwill exceed p. Thus when Cp

is plotted against p for various models, those falling close to the line Cp¼ p are

preferred. Cp times σ2 also estimates the total sum of squared deviations of the fitted

model from the true but unknownmodel, combining error variance with squared bias.

Therefore, the “best” models have the smallest values of Cp without departing far

from the Cp¼ p line. Plotting Cp vs. p for each competing model is recommended

as a graphical aid to model selection.

10 “Significance” here is merely synonymous with a sufficiently large F-statistic. Since the same

data are used repeatedly to select a model, the actual Type I error rates are larger than nominal.
11Mallows, Some comments on Cp, 15 Technometrics 661 (1973); Draper & Smith, Applied

Regression Analysis, ch. 15 (3rd ed. 1998).
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The limitations of these methods—arising from the fact that the same data are

used to fit the model and assess its goodness of fit—underscore the importance of

validation for the model from external consistency, external theory, and replication

with independent data.

Indicator or dummy variables

In many cases, one or more explanatory factors do not have “natural” values, but

rather fall into categories. Examples are sex, race, academic rank, and so forth.

Values may, of course, be assigned to each category, but assignment of successive

integers to categories means that any shift between categories creates corresponding

numerical changes in the dependent variable (the size of the change being measured

by the coefficient of the coded variable). Often this kind of correspondence does not

accurately reflect the phenomenon under study. Whether an employee finishes high

school may affect his productivity very differently from whether he finishes college.

To provide greater flexibility, the usual practice is to set up an indicator, or “dummy,”

variable for each category (save one reference category) which assumes the value

1 for observations in that category and 0 otherwise. Observations in the reference

category are represented by zero indicator variables for all the other categories. With

this arrangement, the differential effect of each category relative to the reference

group is determined separately by the coefficient for the corresponding indicator

variable. In the example given, separate dummy variables would be included for

“finished high school but not college,” and “finished college.” The reference category

would be “did not finish high school.” The coefficients for the two dummy variables

could differ, reflecting their different contributions to productivity.

Generally, to compare k means, one defines k� 1 indicators, X1, . . . ,Xk�1, and

writes the model E Y
��X1, . . . ,Xk�1

	 
 ¼ μþ β1X1 þ � � � þ βk�1Xk�1. Then β̂ i is the

difference between the ith sample mean and μ̂ , the kth sample mean. The regression

analysis is then entirely equivalent to the analysis of variance for comparing several

means (see Section 7.2).

Consequences of misspecification

It is frequently the case (particularly in non-standard problems) that no detailed

theory exists to dictate the choice of explanatory factors. Has the right set been

chosen, and what if it hasn’t? The lack of solid answers to these questions provides

a fertile field for almost every challenge to a model. There are three important cases

to consider: wrongly omitted variables, extraneous variables, and tainted variables.

Omitted variables

Omission of an important explanatory variable causes “misspecification” of the

regression equation, and the resulting regression coefficient estimates are usually

biased. Generally, the direction of the bias is to overstate the coefficients of

included variables, as they “pick up” the correlated explanation that “belongs” to

the omitted variable. If a wage regression model includes a sex variable, for
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example, the coefficient of that variable tends to be overstated if a significant

productivity factor—which is positively correlated with sex after accounting for

the included variables—is omitted.

On the other hand, failure to include an important explanatory variable does not

bias the coefficient of a variable of interest if the two are uncorrelated for any fixed

values of the other variables in the equation. Apart from this special case, however,

omission of an important explanatory factor biases the coefficients of included

variables and increases the residual mean square of the equation.

The effect on regression estimates of excluding an important explanatory factor

also depends on the relation of the omitted factor to other explanatory factors in the

equation. There are two cases. First, if the omitted variable is a linear function of the

other variables in the equation plus an error term with mean zero, failure to include

the omitted variable does not bias estimates of the dependent variable. That is, the

estimated value of the dependent variable based on any set of fixed values of the

included explanatory variables would equal the value of the estimate that would be

obtained from the full model if the omitted factor had been evaluated at its estimated

mean, given the included factors. As discussed above, however, the omission is likely

to bias the coefficients of the included explanatory factors, and to increase the

residual mean square of the equation. Second, if the omitted variable is not a linear

function of other variables in the equation, the equation would be biased both with

respect to estimates of the dependent variable and estimates of the coefficients; in

addition, as before, the residual mean square of the equation would be increased.

Whether the omitted variable has a linear relationship with the variables

included in the equation is commonly a matter of speculation; such variables

usually are omitted because they cannot be observed. An indicator variable cannot

have a substantial linear relation with a continuous variable over an infinite range,

but might have an effectively linear relationship over an observed range. But a

wispy specter of omitted variable bias should not ipso facto compel rejection of a

model. Even if qualitatively plausible, a sensitivity analysis might show that

misspecification produces only trivial bias.

The possibility of bias and the nature of omitted variables arose in New York

State’s and New York City’s action against the Census Bureau to compel adjust-

ment of the census to correct for the undercount (see Section 9.2.1). To estimate the

undercount from post-enumeration survey data, New York proposed a regression

equation in which the dependent variable was the undercount (estimated from the

survey data) and the explanatory variables were percent minority, crime rate, and

percent conventionally enumerated (face-to-face interview rather than mail-in,

mail-back). Resisting this approach, Census Bureau experts argued that many

other variables might be associated with the undercount (e.g., percentage of elderly

people). Plaintiff’s lead expert replied that omitted variables would not bias the

regression estimate of the undercount. An expert for the Bureau rejoined that the

estimate would be unbiased only if the omitted variables had a linear relationship

with included variables and that some plausible omitted variables were unlikely to

have that form (e.g., a dummy variable for “Central City”). The court did not

resolve this issue. Cuomo v. Baldridge, 674 F. Supp. 1089 (S.D.N.Y. 1987).
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Assume that a dummy variable like Central City should have been in the

equation and (for all practical purposes) has a linear relation with the included

variables. If the regression estimates were in fact unbiased, would that meet

objections to the model based on the failure to include the Central City variable?

Extraneous variables

Including an unnecessary factor violates the desire for parsimony, but usually does

not create misleading results. If the factor is uncorrelated with the dependent

variable after accounting for the other variables in the model, the least-squares

estimator of its coefficient would be near zero, and it would not affect either the

regression estimates or the other regression coefficients, although it would reduce

precision. [Do you see why?] A problem would arise only if there were substantial

multicollinearity with other explanatory variables.

Tainted variables

The main reason for omitting a plausible variable is that it may be tainted.

Academic rank is a good example of a potentially tainted variable in a wage

regression involving university faculty. If the university is guilty of discrimination

in awarding promotions, the inclusion of academic rank as an explanatory factor

would effectively conceal wage discrimination consequent to promotion discrimi-

nation. On the other hand, if the university awards rank without discrimination, the

omission of rank would deprive the wage regression of an important explanatory

factor and might produce a spurious result indicating discrimination when none

existed. The same problem could arise in a price equation used to measure the effect

of a price-fixing conspiracy. It is common in such an equation to include cost of

production as a factor. But that factor would be tainted if the conspiracy itself raised

costs by reducing the incentive for cost reduction.

Some courts have dealt with the problem by looking to separate studies to see

whether they indicate the presence of taint. In a sex discrimination case, rank was

allowed as an explanatory factor in a wage regression because no statistically

significant difference appeared between men and women in average waiting time

for promotion.12 An intermediate approach would be to attempt to remove the

effect of any taint. Various strategies are possible. For example, in the case of

academic rank, females might arbitrarily be coded with the next higher academic

rank in cases identified by plaintiff as involving possible discrimination in the

awarding of rank, but with salary and all other variables remaining at their actual

values. The resulting measure of male-female disparity, adjusted for rank and other

factors, might then be taken as an upper bound on the shortfall that would have been

measured in the absence of taint.

12Presseisen v. Swarthmore College, 442 F. Supp 593 (E.D. Pa. 1977), aff’d, 582 F.2d 1275 (3rd

Cir. 1978).
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Missing data

Almost all large data sets are beset by missing values. In sample surveys, data may

be missing due to non-response to a survey item. In the context of controlled

experiments, missing values occur due to unforeseen mishaps, e.g., equipment

malfunction. In multiple regression studies, data on a variable may be missing

due to non-applicability of the variable to particular subjects. In all cases, data may

be just lost or miscoded. What should be done about missing data in a multiple

regression study?

The answer depends very much on the mechanisms that cause values to be

unobserved. In the simplest case, data are missing at random, meaning that the

probability that a unit to be sampled will be unobserved does not depend on the

value to be observed in that unit. When data are missing at random, one can usually

proceed with standard analyses on the observed data, on the theory that those data

form a random subsample from the random sample, which of course is still a

random sample. When this assumption is false, analyzing the observed data as if

it were a random sample is unjustified and can cause severe bias. For example, in

surveys designed to address sensitive areas, such as income or sexual behavior, it is

far more likely to find missing values due to non-response when the true answer

would be extraordinary than when the answer would be ordinary. In such cases the

average income or rate of sexual deviance will be seriously underestimated from

the observed data. Occasionally, the assumption of missing-at-randommay be valid

within strata or holding the value of some observed covariate fixed. In the income

survey example, it may be valid to assume that, within a given age bracket, the

probability of non-response is constant with respect to any person’s income,

although that probability may vary with age. In a regression analysis that adjusts

for age, the observed data would be unbiased, since one is then estimating average

income given age. The marginal distribution of income would still be biased,

however, since the overall probability of non-response is not constant with age.13

Almost all remedies for missing values rely on an assumption of missing-at-

random for their validity, although most often it is the exception rather than the

rule that one can verify the assumption. The simplest procedure analyzes cases with

all relevant non-missing variables. In a regression context this is known as “listwise”

deletion of missing values, because a case is dropped from the analysis whenever one

or more variate values from the list of variables is missing for that case. This method

is acceptable when there are only a few sporadic values missing, so that sample size is

not substantially reduced, and the missing-at-random assumption is tenable. Some-

times, however, almost all cases have one or two missing values, in which case

13 Technically, to ensure that all analyses remain unbiased in the observed data, one needs a

stronger condition known as missing completely at random, which essentially postulates that the

observable data are a random sample both marginally and conditionally with respect to covariates.

The definition of missing at random therefore allows the probability that a unit to be sampled will

be unobserved to depend on observed characteristics of the unit, but not unobserved

characteristics. Missing completely at random allows no dependence at all.
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listwise deletion is inefficient. Another strategy utilizes “pairwise” deletion, the idea

being to estimate means, variances, and covariances with as much data as possible.

The correlation between two variables, for example, would be estimated from the set

of data observed completely on the two variables, although this same data subset may

not be used in estimating the correlation between a different pair of variables.While it

makes use of more data than listwise deletion, this method has been shown to suffer

from severe bias under certain circumstances with much missing data, and therefore

should be avoided whenever possible.

Another class of methods relies on imputation of data to “fill in” the missing

values, adjusting for the consequent inflation of apparent precision and significance.

For example, in a multiple regression context, missing values of explanatory factors

can be estimated using a subsidiary regression model that predicts the missing

factors based on the present factors. The predicted values are then substituted as if

they had been observed.

Yet another scheme attempts to model the probability of missingness as a

function of observable covariates, and then uses the reciprocals of these probabilites

as weights to “correct” for the unobserved portion of the sample based on the

observed portion.

On the treatment of missing data by the courts, see the Notes, pp. 282–283.

Further Reading

Draper & Smith, Applied Regression Analysis, ch. 14 (dummy variables)

(3d ed., 1998).

Little & Rubin, Statistical Analysis of Missing Data (1987).

13.6 Reading multiple-regression computer printout

The computer sheets that were exhibits in the Bazemore case (see Section 13.6.1)

are output from a widely used computer program called IBM SPSS.14 Listed below

are brief descriptions of the terms appearing in the printout, most of which were

defined in Sections 13.3 and 13.4.

The output begins with summary statistics for the dependent variable and each

explanatory factor: the sample mean, standard deviation, sample size, and correla-

tion matrix showing the simple correlation of each variable with every other.

Under the heading “Multiple Regression” are the names of the dependent

variable and the variable entered in the current step of the forward-selection

procedure. Beneath this are the values of the multiple correlation coefficient,

14 Formerly known as Statistical Package for the Social Sciences, the vendor SPSS, Inc. was

acquired by IBM in 2010. Many computer programs offer multiple regression routines. Among the

better known of these are SAS, SPSS, and R.
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squared multiple correlation (“R Squared”), adjusted R2, and standard error of

regression (“Standard Error”).

Under the heading “Analysis of Variance” are the source of variability (“Regres-

sion” or “Residual” [i.e., error]), the respective degrees of freedom (“DF”), and the

corresponding sum of squares and mean square. At the extreme right is the F-
statistic, the joint test of overall significance of the explanatory factors.

Directly below this, under the heading “Variables in the Equation,” is the

estimated model, listing the variable name, the estimated regression coefficient

(in the column headed “B”), the standardized coefficient (in the column headed

“Beta,” see below), the standard error of the regression coefficient, and the F-
statistic for each coefficient (squared t-statistic).

Beta is the standardized form of coefficient obtained by multiplying B by the

standard deviation of the explanatory variable and dividing by the standard devia-

tion of the dependent variable. Equivalently, Beta (path) coefficients are OLS

estimates that result when all the variables are first standardized, i.e., mean-centered

and scaled by their sample standard deviations. Because the magnitude of the

coefficient for an explanatory variable is affected by the relative sizes of the

standard deviations of the explanatory and dependent variables, this transformation

makes it possible to compare the relative contributions of explanatory factors

expressed in different units (as changes in s.d. units of the dependent variable per

s.d. change in the explanatory factor).

To the right of the regression model is a section labeled “Variables Not in the

Equation.” Here “Beta-In” refers to the value of Beta that would be calculated if

that variable were entered next. “Partial” refers to the partial correlation between

the dependent and the explanatory variable. (Note that the partial correlation

squared is the proportionate reduction in 1�R2 due to the addition of the new

variable.) “Tolerance” is a measure of a variable’s multicollinearity with other

variables in the model. It is defined as the proportion of that variable’s variance not

explained by the other variables in the model. A tolerance close to zero (say, less

than 0.01 in practice) indicates severe multicollinearity. “F” for a variable is the test
statistic that would result from entering that variable.

A summary table at the end of the printout gives the multiple-R, R-squared, and
the change in R2 between adjacent steps, as variables are added to the model, and,

for the final model, the simple correlation of each explanatory variable with the

dependent variable, its regression coefficient, and standardized coefficient.

13.6.1 Pay discrimination in an agricultural extension service

The purpose of the North Carolina Agricultural Extension Service is to disseminate

“useful and practical information on subjects relating to agriculture and home

economics.” Programs are carried out through local agents, who are divided into

three ranks: full agent, associate agent, and assistant agent. “While the three ranks

of agents perform essentially the same tasks, when an agent is promoted his

responsibilities increase and a higher level of performance is expected of him.”
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The salaries of agents are determined jointly by the Extension Service and the

county board of commissioners where the agents work. Federal, state, and county

governments all contribute to the salaries.

Before August 1, 1965, the Extension Service had a separate “Negro branch,”

composed entirely of black personnel, that served only black farmers, homemakers,

and youth. The white branch employed no blacks, but did on occasion serve blacks.

On August 1, 1965, in response to the Civil Rights Act of 1964, the State merged the

two branches. However, disparities in pay were not immediately eliminated. There

were substantial county-to-county variations in contribution, but the counties

contributing the least were not those with the greatest number of blacks.

In a suit by black agents claiming discrimination in pay (joined by the United

States), plaintiffs relied heavily on multiple-regression analysis in which salary was

regressed on four independent variables—race, education, tenure, and job title.

These variables were selected on the basis of deposition testimony by an Extension

Service official, who stated that four factors determined salary: education, tenure,

job title, and job performance. Set forth below are the definitions of the variables

used in the computer printout.

MS ¼ 1 if person has master’s degree; 0 otherwise

PHD ¼ 1 if person has Ph.D.; 0 otherwise

TENURE ¼Years with the service as of 1975

CHM ¼Chairman, 1 or 0

AGENT ¼Agent, 1 or 0

ASSOCIATE ¼Associate Agent, 1 or 0

ASST ¼Assistant Agent, 1 or 0

The printout of one stepwise OLS regression analysis introduced in the case is

shown in Table 13.6.1.

Evidently, there was a preselection of variables because the stepwise regression

computer printout from the record in the case shows only the variables that were

ultimately selected for the model, and we know that others were excluded. The

stepwise program without this preselection would be similar in operation except

that there would be more variables in the table under the heading “Variables Not in

the Equation” at each step, and possibly a different final model. Full disclosure of

the method employed should normally include all of the variables from which

selections were made.

Questions

1. From the Extension Service’s point of view, what potentially explanatory

variables were omitted from the model? Are the omissions justified?

2. From the black agents’ point of view, what potentially objectionable variables

were included in the model? Are the inclusions justified?
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3. Interpret the coefficient for race in the final model. Is it statistically significant?

Is the value of the coefficient affected by the fact that race was the last variable to

be included in the model?

4. The larger pool of variables from which the variables in the model were selected

included interaction variables for White Chairman, White Agent, and White

Associate Agent. What was the reason for considering these variables for

inclusion in the model? Why were they not included? What inference would

you draw from their exclusion? If they had been included, how would you have

used the model to measure the pay differential between the races?

Source

Bazemore v. Friday, 478 U.S. 385 (1986).

Table 13.6.1. Multiple-regression computer output from Bazemore v. Friday

VARIABLE MEAN

STAND.

DEV CASES

SALARY 12,524.0316 2,487.0518 569

WHITE 0.8190 0.3854 569

MS 0.1634 0.3701 569

PHD 0.0 0.0 569

TENURE 10.6626 8.9259 569

CHM 0.1634 0.3701 569

AGENT 0.4763 0.4999 569

ASSOC 0.1459 0.3533 569

ASST 0.2144 0.4108 569

CORRELATION COEFFICIENTS

SALARY WHITE MS PHD TENURE CHM AGENT ASSOC ASST

SALARY 1

WHITE 0.17511 1

MS 0.29322 0.12140 1

PRO – – – 1

TENURE 0.68522 �0.05157 0.12438 – 1

CHM 0.67609 0.19023 0.19023 – 0.42123 1

AGENT 0.17086 �0.10002 �0.02183 – 0.35648 �0.42152 1

ASSOC 0.27590 0.03911 �0.08841 – �0.30483 �0.18267 �0.39409 1

ASST 0.57977 �0.08803 �0.06879 – �0.55116 �0.23092 �0.49820 �0.21590 1
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MULTIPLE REGRESSION RESULTS

DEPENDENT VARIABLE SALARY SALARY 1975

VARIABLE(S) ENTERED ON STEP NUMBER 1.. TENURE TENURE 1975

MULTIPLE R 0.68522

R SQUARE 0.46953

ADJUSTED R SQUARE 0.46859

STANDARD ERROR 1,813.00693

ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 1. 1,649,596,681.82313 1,649,596,681.82313 501.85568

RESIDUAL 567. 1,863,725,679.60747 3,286,994.14393

VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 190.9256 0.68522 8.52265 501.856

(CONSTANT) 10,488.27

VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

WHITE 0.21101 0.28933 0.99734 51.710

MS 0.21126 0.28780 0.98453 51.116

PHD – – – –

CHM 0.47104 0.58655 0.82256 296.862

AGENT �0.08410 �0.10788 0.87292 6.665

ASSOC �0.07389 �0.09663 0.90708 5.334

ASST �0.29029 �0.33257 0.69622 70.384

VARIABLE(S) ENTERED ON STEP NUMBER 2.. CHM

INDICATOR VARIABLE I:CHAIRMAN 1975

MULTIPLE R 0.80749

R SQUARE 0.65203

ADJUSTED R SQUARE 0.65080

STANDARD ERROR 1,469.67154
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ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 2. 2,290,799,475.06036 1,145,399,737.53018 530.29375

RESIDUAL 566. 1,222,522,886.37025 2,159,934.42822

VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 135.6400 0.48680 7.61748 317.069

CHM 3,165.370 0.47104 183.71606 296.862

(CONSTANT) 10,560.40

VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

WHITE 0.11505 0.18910 0.94000 20.952

MS 0.14880 0.25734 0.96243 36.819

PHD – – 0.0 –

AGENT 0.41184 0.48148 0.47560 170.510

ASSOC �0.04590 �0.07396 0.90350 3.107

ASST �0.29114 �0.41181 0.69622 115.386

VARIABLE(S) ENTERED ON STEP NUMBER 3.. AGENT

INDICATOR VARIABLE I:AGENT 1975

MULTIPLE R 0.85598

R SQUARE 0.73270

ADJUSTED R SQUARE 0.73128

STANDARD ERROR 1,289.24145

ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 3. 2,574,221,270.00844 858,070,423.33615 516.24328

RESIDUAL 565. 939,111,091.42217 1,662,143.52464

VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 61.13800 0.21942 8.78668 48.414

CHM 5,088.825 0.75726 218.33633 543.229

AGENT 2,049.039 0.41184 156.91900 170.510

(CONSTANT) 10,064.50
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VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

WHITE 0.08560 0.15966 0.92989 14.754

MS 0.013637 0.25839 0.0 40.348

PHD – – 0.0 –

ASSOC 0.13395 0.21426 0.68395 27.138

ASST �0.15574 �0.21426 0.50591 27.138

VARIABLE(S) ENTERED ON STEP NUMBER 4.. MS

INDICATOR VARIABLE I:MS DEGREE 1975

MULTIPLE R 0.86634

R SQUARE 0.75055

ADJUSTED R SQUARE 0.74878

STANDARD ERROR 1,246.56459

ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 4. 2,636,909,630.52409 659,227,407.63102 424.23420

RESIDUAL 564 876,412,730.90652 1,553,923.28175

VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 60.63075 0.21760 8.49619 50.926

CHM 4,895.584 0.72851 213.28961 526.829

AGENT 2,006.770 0.40334 151.87048 174.602

MS 916.4253 0.13637 144.27257 40.348

(CONSTANT) 9,971.838

VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

WHITE 0.07345 0.14122 0.92199 11.456

PHD – – 0.0 –

ASSOC 0.13828 0.22889 0.68348 31.128

ASST �0.16078 �0.22889 0.50556 31.128

VARIABLE(S) ENTERED ON STEP NUMBER 5.. ASSOC

INDICATOR VARIABLE I:ASSOCIATE AGENT 1975
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MULTIPLE R 0.87385

R SQUARE 0.76362

ADJUSTED R SQUARE 0.76152

STANDARD ERROR 1,214.54711

ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 5. 2,682,827,168.60466 536,565,433.72093 363.74243

RESIDUAL 563. 830,495,192.82595 1,475,124.67642

VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 54.29896 0.19487 8.35543 42.231

CHM 5,391.334 0.80228 226.01101 569.027

AGENT 2,473.263 0.49710 169.95906 211.764

MS 937.0254 0.13944 140.61547 44.405

ASSOC 973.4755 0.13828 174.48178 31.128

(CONSTANT) 9,590.787

VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

WHITE 0.06117 0.12009 0.91098 8.224

PHD – – 0.0 –

ASST – – 0.0 –

VARIABLE(S) ENTERED ON STEP NUMBER 6 WHITE

INDICATOR VARIABLE I:WHITE

MULTIPLE R 0.87580

R SQUARE 0.76702

ADJUSTED R SQUARE 0.76454

STANDARD ERROR 1,206.82941

ANALYSIS OF

VARIANCE DF SUM OF SQUARES MEAN SQUARE F

REGRESSION 6. 2,694,804,647.82284 449,134,107.97047 308.37863

RESIDUAL 562. 818,517,713.60776 1,456,437.21283
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VARIABLES IN THE EQUATION

VARIABLE B BETA STD ERROR B F

TENURE 59.06173 0.21197 8.46689 48.659

CHM 5,221.188 0.77696 232.28020 505.259

AGENT 2,404.438 0.48327 170.57593 198.697

MS 898.5532 0.13371 140.36453 40.980

ASSOC 918.8206 0.13052 174.41745 27.751

WHITE 394.7963 0.06117 137.66904 8.224

(CONSTANT) 9,291.513

VARIABLES NOT IN THE EQUATION

VARIABLE BETA IN PARTIAL TOLERANCE F

PHD – – 0.0 –

ASST – – 0.0 –

F-LEVEL OR TOLERANCE-LEVEL INSUFFICIENT FOR FURTHER COMPUTATION

SUMMARY TABLE

VARIABLE MULTIPLE-R R-SQUARE
RSQ

CHANGE
SIMPLE

R B BETA

TENURE 0.68522 0.46953 0.46953 0.68522 59.06173 0.21197

CHM 0.80749 0.65203 0.18251 0.67609 5,221.188 0.77696

AGENT 0.85598 0.73270 0.08067 0.17086 2,404.438 0.48327

MS 0.86634 0.75055 0.01785 0.29322 898.5532 0.13371

ASSOC 0.87385 0.76362 0.01307 0.27590 918.8206 0.15052

WHITE 0.87580 0.76702 0.00341 0.17511 394.7963 0.06117

(CONSTANT) 9,291.513

Notes

In the Bazemore case, the Supreme Court, in reversing the court of appeals’

decision rejecting the multiple regression model, articulated a sensible approach

to the question of omitted variables when “the major factors” are represented in the

model:

The Court of Appeals erred in stating that petitioners’ regression analyses were “unaccept-

able as evidence of discrimination,” because they did not include “all measurable variables

thought to have an effect on salary level.” The court’s view of the evidentiary value of the

regression analysis was plainly incorrect. While the omission of variables from a regression

analysis may render the analysis less probative than it otherwise might be, it can hardly be

said, absent some other infirmity, that an analysis which accounts for the major factors

“must be considered unacceptable as evidence of discrimination.” Ibid.Normally, failure to

include variables will affect the analysis’ probativeness, not its admissibility.
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Id., 478 U.S. at 400. In a footnote the Court added that “there may, of course, be

some regressions so incomplete as to be inadmissible as irrelevant; but such was

clearly not the case here.” Id. n.15.
The Court also indicated in a footnote that it is not enough merely to object to a

regression on the ground that some factor had been omitted, and suggested that the

party challenging a regression must demonstrate that the omitted factors would

cause the disparity to vanish:

Respondents’ strategy at trial was to declare simply that many factors go into making up an

individual employee’s salary; they made no attempt that we are aware of—statistical or

otherwise—to demonstrate that when these factors were properly organized and accounted

for there was no significant disparity between the salaries of blacks and whites.

Id., 478 U.S. at 404, n. 14. The Court’s prescription for rebuttal was applied by the

Second Circuit in Sobel v. Yeshiva University, 839 F.2d 18 (2d Cir. 1988); see

Section 14.5.1.

13.6.2 Public school financing in the State of Washington

Public schools in Washington are financed by a combination of state funds and

special levies voted and assessed on a district-wide basis. The state constitution

provides that “it is the paramount duty of the state to make ample provision for the

education of all children residing within its borders.” In 1978, the Washington

Supreme Court held, in a suit by the Seattle School District and others, that this

provision required the legislature to define and fully fund a program of basic

education. Seattle School District v. State of Washington, 90 Wash. 2d

476 (1978). The effect of this decision was to increase state funding and to reduce

special levies by about two-thirds. Nevertheless, in 1981 the Seattle School District

and other plaintiffs returned to court to complain that the state was spending too

little on basic education. The school districts argued for increases in the scope of

services, in staff salaries, in teacher-pupil ratios, and in budgets for equipment and

supplies.

Student outcomes—as measured by scores on standardized tests—tend to be

higher in more affluent districts that exact special levies and spend more on

education. Is this relationship a direct result of the amount spent on education, or

is it due to other correlated factors?

To answer that question, the state introduced an education production function

study for Washington similar to studies conducted in many other states. The usual

method is to regress a measure of performance (such as standardized test scores) on

three groups of explanatory factors: background variables (such as parents’ educa-
tional level, occupational level, and family income); peer group variables (such as

percentage of minority students, social class composition of the school, ability

composition of classmates); and school resource variables (such as class size,
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teacher postgraduate education, teacher experience, teacher salaries, and spending

per pupil).

In the Washington study, the data were collected by district in the 88 districts

that had an enrollment of at least 2,000 students (accounting for 83% of

Washington’s total public school enrollment).

The results of the regression study are shown in Table 13.6.2.

Questions

1. If the model correctly measured the factors causing differences in district

reading scores, what conclusions relevant to the case would you draw from the

regression study?

2. The model included prior test score as an explanatory variable. What is the

relative importance of that variable compared with others in the equation?

Table 13.6.2. Regression for 1980 4th-grade language scores

Estimated

coefficient t

Variable

mean

Variable

standard

deviation

Dependent Variable

4th-grade language – – 60.14 8.63

Background Variables

Occupational index (%) 0.458 3.08 20.91 6.67

Median income ($000’s) �0.141 �0.59 2.07 3.76

Peer Group Variables

Title I enrollment (%)a �58.47 �4.02 0.09 0.06

Hispanic enrollment (1 if over 5%) �3.668 �1.73 0.17 0.38

Logarithm of 4th-grade enrollment �2.942 �2.34 5.67 0.53

Prior test score (district average,

same grade, 1976)

0.200 3.60 53.40 12.31

School Variables

Administrator-teacher ratio 17.93 0.42 0.09 0.01

Pupil-teacher ratio 0.689 0.42 28.35 3.63

Certificated staff-pupil ratio �0.403 �0.27 0.45 0.50

Teacher experience:

Level A (%) (less than three years) �0.0614 �1.30 69.03 16.61

Level B (%) (more than six years) �0.0382 �0.58 14.64 12.71

Constant 70.67 6.08 – –

Standard error of regression: 5.57

R2 0.64
aRefers to Title I of the Elementary and Secondary Education Act of 1965, 20 U.S.C. }}2701
(1982), which provided for financial assistance to school districts with concentrations of children

from ages 5 to 17 in families below the poverty level as defined in the 1970 census.
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3. What criticisms of the model would you have based on the inclusion of the prior

test score variable?

Source

Pincus & Rolph, How Much is Enough? Applying Regression Analysis to a School
Finance Case, in Statistics and the Law 257 (DeGroot, Fienberg & Kadane,

eds., 1986).

Notes

In the U.S. Office of Education’s groundbreaking study, Equality of Educational
Opportunity (1966), mandated by the Civil Rights Act of 1964, J.S. Coleman and

others measured the relation between school factors and achievement on various

types of tests. They found that (i) despite the wide diversity of school facilities,

curricula, and teachers, and despite the wide diversity among student bodies in

different schools, over 70 percent of the variation in achievement for each racial

group was variation within the same student body; (ii) school-to-school variations

in achievement at the beginning of grade 1 and compared with later years indicated

that the component due to school factors was far smaller than that attributable to

family background differences; and (iii) schools had an important effect on the

achievement of minority group students.

The Coleman report has been cited to support the proposition that variations

within a range of pupil-teacher ratios and higher teacher salary schedules do not

affect the quality of education, San Antonio School District v. Rodriguez,
411 U.S. at 46, n.101 (see Section 1.4.2); that while expenditure by itself may not

“matter,” social composition of the student body does matter, Commonwealth of
Virginia v. United States, 386 F. Supp. 1319, 1326 (D.C. 1974), aff’d, 420 U.S. 901
(1975); and that because attributes of other students account for far more variation

in achievement by minority group children than do attributes of school facilities and

slightly more than do attributes of staff (Coleman Rept. at 9), “achievement of

Negro students was increased with the increasing degree of integration.” Johnson
v. San Francisco Unified School District, 339 F. Supp. 1315, 1331

(N.D. Calif. 1971).

Since the Coleman report, the relation between expenditure for education and

student achievement has been much studied and debated. For meta-analyses of the

conflicting studies, see Gary Burtless, ed., Does Money Matter? The Effect of
School Resources on Student Achievement and Adult Success (1996).

In 1989, as part of the settlement of a desegregation case, 15 schools in Austin,

Texas, serving low-income minority-group children, received $300,000 each,

above normal school spending, for a period of five years. At the end of four

years, achievement in 13 of the schools remained extremely low, as measured by

state-wide tests, but the improvement in two schools was extraordinary. In those

two schools, attendance had risen to the highest in the city, and test scores had risen

to the city average, even though median family income for the families with

children in those schools remained about $12,000. The difference was that, in
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those two schools, the principals made a package of changes—including reducing

class size, changing instructional techniques, investing in raising student atten-

dance, and increasing parental involvement—whereas in the other 13 schools the

only change was reduction in class size. The authors pointed out that, in the

statistical studies, data to capture these inputs were not available, and even if they

had been, the complex interaction effects would not have been explored in the

simple models commonly in use. Murnane & Levy, Evidence from fifteen schools in
Austin, Texas, in Burtless, ed., Does Money Matter? 93 (1996).

13.6.3 Public school financing in Pennsylvania

The Pennsylvania Association of Rural and Small Schools (PARSS) brought suit

against the Commonwealth of Pennsylvania, attacking the system of local school

district funding. The system relies substantially (although not wholly) on the local

property tax on residential and nonresidential property. Plaintiff argued that

districts with smaller property bases and low personal incomes are disadvantaged

in a way that violates the Pennsylvania constitution’s “education” clause, which

places responsibility on the state “for the maintenance and support of a thorough

and efficient system of public education.”

There are substantial inter-district differences in amounts raised for education by

the property tax. State and federal aid to poorer districts to some extent “flatten” the

differences in spending per pupil that would exist without such help, but differences

remain, and the lawsuit raised the question whether the remaining differences had

educational significance. To help answer that question, the state commissioned a

study by a statistician, Dr. William Fairley, of student performance on standardized

tests. Using district data, Dr. Fairley performed a multiple regression study, in

which student achievement in standardized tests was regressed on various district

factors and two school factors, which he selected. The data and results for one

model are in Table 13.6.3.

Pennsylvania has 502 school districts. Data for a few districts had missing

values, so the regression model was estimated from the remaining 496 districts.

The dependent and independent variables are district medians. The dependent

variable is the average score in the district for the 11th grade PSSA test in 1995.

The eight independent variables are:

Parental Income¼ personal income per capita in the district in 1995;

Bachelor’s Degree %¼ percent of persons in the district over age 18 having a

bachelor’s degree or higher in 1992–1993;

Poverty %¼ percent of population in the district below poverty level income in

1994;
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Instructional Expense¼ actual instructional expense in 1995 per weighted pupil

(the weights reflect the differential costs of elementary and secondary

education);

Score 89¼median reading and math scores in 5th grade in 1989 (presumably

largely the same students as the 11th graders taking the test in 1995);

Plaintiff¼ 1 if district is a plaintiff and 0 if not;

Rural %¼ percent of district population living in rural areas as of 1994; and

Size (log)¼ size of district (measured as the log of a weighted per pupil figure

in 1995).

The regression results are shown in Table 13.6.3. Columns 3 and 4 are the first

and third quartiles for the input variables and Column 5 is the effect over the

interquartile range of the input variable on the dependent variable.

Questions

1. Do the model results help defendant’s case?

2. How does the inclusion of the Score 89 variable affect the interpretation of the

model?

Source

Fairley, Spending and economic base in Pennsylvania school districts, Report to the
Pennsylvania Department of Education and Office of Attorney General (November

3, 1995) in Pennsylvania Association of Rural and Small Schools (PARSS) v. Ridge,
No. 11 M.D. 1991.

Table 13.6.3. 1995 PSSA test model for 496 Pennsylvania school districts

Col # 1 2 3 4 5

Variable Coeff. P-value Q1 Q3 Columns: (4� 3)� 1

Parental income ($) 0.0014 0.139 $9,319 $14,890 7.7994

Bachelor’s degree % 5.0862 0.000 8.3 16.72 42.8258

Poverty % �1.0474 0.000 12.62 79.1 �69.6312

Instructional expense �0.021 0.000 $3,709 $4,598 �18, 669

Score 89 2.845 0.000 77.36 87.35 28.42155

Plaintiff 1.3554 0.839 0 1 1.3554

Rural % 0.248 0.007 8.4 100 22.7168

Size (log) 0.0928 0.984 7.46 8.32 0.079808
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13.7 Confidence and prediction intervals

Important applications of the regression model are to estimate the value of the

regression mean for a given X, or to predict the value of a future observation at a

given X. We discuss these applications for simple linear regression.

Errors in estimation of the regression mean arise from two sources: error in

estimation of the overall mean by the sample mean Y, and error in the estimation of

the slope coefficient by the OLS estimate b̂ ¼ r � sy=sx. It can be shown that these

two sources of error are uncorrelated, so that the variance of the estimate Ê Y
��X	 


¼ Y þ b̂ X � X
� �

about its mean E Y
��X	 


is equal to the sum of the variance of Y

about EY, which is σ2/n, and the variance of b̂ X � X
� �

about its mean, b X � X
� �

,

which is σ2 X � X
� �2

=
X

i
Xi � X
� �2

. Thus,

Var Ê Y
��X	 
�  ¼ σ2

1

n
þ X � X

� �2X
i
Xi � X
� �2

0@ 1A:

The variance of the errors, σ2, may be estimated by replacing σ2 by the residual

mean square.

If the errors are normally distributed, a 95% confidence interval for E[Y | X] is
given by

Ê Y
��X	 

 tν, :05 � estimated Var Ê Y

��X	 
� �� 1=2
;

where tν,.05 is the two-sided, upper 5% critical value of Student’s t-distribution with
ν degrees of freedom, where ν¼ n� 2¼ dfe.

The quantity â þ b̂ X is also a predictor of a future observation of Y at X; we will

denote it by Ŷ(X) to distinguish it from Ê Y
��X	 


. The estimate Ŷ(X) has minimum

mean squared errorE Y � Ŷ
� �

2 among all predictors Ŷ that are linear functions of X.

Prediction differs from estimation in that, in addition to the sources of sampling

variability previously identified corresponding to uncertainty regarding the location

of the regression mean, there is also the inherent variance σ2 in any single observa-
tion about its regression mean even if E Y

��X	 

were known exactly. Thus, for a

single future observation at X, the mean squared error of prediction becomes

Var Ŷ Xð Þ�  ¼ σ2 1þ 1

n
þ X � X

� �2X
i
Xi � X
� �2

0@ 1A:

To predict the mean ofm future observations at X, the leading term 1 in this formula

is replaced by 1/m. As before, the mean squared error of prediction may be

estimated by replacing σ2 by the residual mean square. A 95% prediction interval

for the future value (or mean of the future values) at X is obtained as above,

replacing the variance estimate of Ŷ(X) by the appropriate estimated mean squared
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error of prediction. Note that increasing the sample size reduces the variability of

the estimate of the regression mean, but the 95% prediction interval for a new

observation will always be at least as wide as two standard errors of regression to

account for inherent variability of the dependent variable.15

The relationship between confidence intervals and prediction intervals for the

regression mean is illustrated by a case involving cash and futures wheat prices on

the Chicago Board of Trade. When those prices rose dramatically during the last

five days of trading in May 1963, the Department of Agriculture accused a firm of

market manipulation. The firm argued that wheat prices had been artificially

depressed and that the dramatic price rise was attributable to normal supply and

demand factors. The staff of the Department of Agriculture presented a regression

of the cash price for wheat on supply and demand factors; the study estimated a

$2.13 price for May with a confidence interval for the regression mean of $2.10–$

2.17. Because the actual average price for May was $2.136—very close to the

regression mean and within the confidence interval—the study was successfully

used to rebut the claim that wheat prices had been abnormally depressed. Alterna-

tively, the consistency of these prices in the last few days of trading with normal

supply and demand factors might have been tested by comparing those wheat prices

with a prediction interval for each day or for the five-day averages.

See Finkelstein, Regression Models in Administrative Proceedings, 86 Harv.

L. Rev. 1442, 1453–1455 (1973), reprinted in Quantitative Methods in Law 211.

13.7.1 Projecting fuel costs

The Puerto Rico Maritime Shipping Authority, a carrier, filed for a rate increase

with the Federal Maritime Commission. The Authority’s forecast of rising fuel

prices for 1981 was the single most significant item in its overall cost-based

presentation, accounting for over half of its requested increase. (This was the pro

forma test year for which the FMC required projections of revenues and costs; new

rates would presumably be in place for a far longer period.) The carrier’s projection

relied on a straight line derived from least squares regression based on 1980

quarterly data. The quarterly fuel prices in dollars per barrel for 1980 were 19.26,

20.60, 21.39, and 28.03.

15 For either estimation or prediction, the farther away X is from the mean of the already observed

Xi, the less precise the estimate. The most accurate predictions are for values near the mean of

the Xi. The increase in uncertainty of estimation of E[Y | X] as Xmoves away from the center of the

data is evident in Fig. 13.7, which shows a 95% confidence band for the regression mean of

the form Ê Y
��X	 

 tν, :05 � {estimated Var Ê Y

��X	 
� �g1=2 for a range of X values.
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Questions

1. Using OLS, what are the projected quarterly fuel costs for 1981?

2. Assuming the regression model is correct, is the slope coefficient statistically

significant?

3. Assuming the regression model is correct, do the regression estimates rule out a

substantial flattening of fuel price increases in 1981?

4. What factors would lead you to doubt the model?

Source

Puerto Rico Maritime, etc. v. Federal Maritime Com’n, 678 F.2d 327, 337–42

(D.C. Cir. 1982).

13.7.2 Severance pay dispute

Able Company bought Baker Company under an agreement by which Able was to

provide severance and related benefits for Baker employees involuntarily

terminated by Able, and to do so within a specified period after the acquisition.

These severance benefits were to be equivalent to the benefits provided under

Fig. 13.7. Confidence and prediction bands for the regression mean and single observations
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Baker’s personnel policies. A Baker corporate policy paper issued before the

acquisition stated that severance pay was based on three factors: (1) age, (2) length

of service (using pension years of service), and (3) salary grade/position level.

When Able sold certain of the Baker assets, it laid off 200 employees. They

received an average of 14.73 weeks of severance pay. One of these employees,

claiming four to six weeks of severance pay for each year of service, filed a class

action on behalf of all terminated employees. At the time of severance, plaintiff was

age 45, had a salary grade of 20, seniority of 9 years, and received 18 weeks of

severance pay.

To determine whether or not to settle and to prepare for a motion for class

certification, Baker asked its statistician to determine whether plaintiff’s weeks of

severance pay followed the pattern of severance payments before the acquisition.

Responding to this request, the statistician regressed weeks of severance pay on

grade, age, and seniority with results shown in Table 13.7.2.

Questions

Compute confidence and prediction intervals at the means of the explanatory

factors and at plaintiff’s values of those factors, and answer the following questions.

Table 13.7.2. A regression model for weeks of severance pay

Variable Estimate t

Constant 14.221 14.771

Grade – 12 0.526 5.227

Age – 40 0.372 2.886

Seniority – 5 0.944 4.410

R2 0.426

St. err. reg. (root MSE) 9.202

Overall F 24.010

Model df 3

Error df 97

Sample size 101

Weeks Grade Age Seniority

Mean 15.859 15.000 40.286 4.949

St Dev. 11.964 9.302 7.852 4.734

Correlations

Weeks of severance 1.000 0.395 0.432 0.426

Grade 1.000 0.102 �0.105

Age 1.000 0.392

Seniority 1.000

The dependent variable is number of weeks of severance pay.

Grade – 12 is salary grade approximately centered by subtracting 12.

Age – 40 is age in years approximately centered by subtracting 40.

Seniority – 5 is seniority in years approximately centered by subtracting 5.
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1. Was the plaintiff’s severance consistent with the earlier pattern? [Point of

information: At the plaintiff’s levels of the explanatory factors, the standard

error of the regression estimate is (0.0214 MSE)1/2.]

2. Is the overall level of severance consistent with the earlier overall level?

3. What relevance does the regression result have for the class certification issue?

13.7.3 Challenged absentee ballots

In a 1993 senatorial election held in District 2 in Philadelphia, Pennsylvania, there

were allegations of fraud in the count of the absentee ballots. In the machine-

counted ballots, the Democrat received 19,127 votes and the Republican received

19,691 votes, the latter candidate therefore winning the machine ballots. But when

the absentee ballots were counted, the Democrat received 1,396 votes while the

Republican received only 371 votes; thus, the Democrat won the election. An action

was brought to set aside the election on the ground of fraud in the absentee ballots.

In the preceding 21 senatorial elections in Pennsylvania on even years the data on

machine votes and absentee ballots were as shown in Table 13.7.3.

Table 13.7.3. Machine votes and absentee ballots in 21 Pennsylvania senatorial elections

Election

Machine

votes

Machine

votes

Machine

votes

difference

Absentee

votes

Absentee

votes

Absentee

votes

difference

Y/Dist Democrat Republican (D-R) Democrat Republican (D-R)

82/2 47,767 21,340 26,427 551 205 346

82/4 44,437 28,533 15,904 594 312 282

82/8 55,662 13,214 42,448 338 115 223

84/1 58,327 38,883 19,444 1,357 764 593

84/3 78,270 6,473 71,797 716 144 572

84/5 54,812 55,829 �1,017 1,207 1,436 �229

84/7 77,136 13,730 63,406 929 258 671

86/2 39,034 23,363 15,671 609 316 293

86/4 52,817 16,541 36,276 666 306 360

86/8 48,315 11,605 36,710 477 171 306

88/1 56,362 34,514 21,848 1,101 700 401

88/3 69,801 3,939 65,862 448 70 378

88/5 43,527 56,721 �13,194 781 1,610 �829

88/7 68,702 12,602 56,100 644 250 394

90/2 27,543 26,843 700 660 509 151

90/4 39,193 27,664 11,529 482 831 �349

90/8 34,598 8,551 26,047 308 148 160

92/1 65,943 21,518 44,425 1,923 594 1,329

92/3 58,480 12,968 45,512 695 327 368

92/5 41,267 46,967 �5,700 841 1,275 �434

92/7 65,516 14,310 51,206 814 423 391
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Questions

1. Plot the difference between the Democrats and Republicans in the absentee

ballots against the same difference in machine-counted ballots for the

21 elections listed above. Is there a pattern? Plot the point for the 1993

challenged election. Does it appear to be part of the pattern?

2. Regress the difference between the Democrats and the Republicans for the

absentee ballots on the difference for the machine ballots. Compute a 95%

prediction interval for the predicted value of the absentee ballots given the

value for difference in the machine ballots in the 1993 election. Is the actual

value of the difference in the absentee ballots in the 1993 election within that

interval? What conclusion do you reach? To help in your calculations, the mean

difference in the machine ballot was 30,066.71 and that in the absentee ballot

was 256.05. In the prediction equation â þ b̂ X, the estimated intercept coeffi-

cient is �125.90 and the estimated slope coefficient is 0.0127. The sum of

squared deviations about the mean of the machine ballot differences is

1.188� 1010. The standard error of regression is 324.84.

3. Are the computations of the prediction interval thrown into doubt by heterosce-

dasticity (see p. 425) in the data?

Source

Marks v. Stinson, 1994 U.S. Dist. Lexis 5273 (E.D. Pa. 1994) (Report of court-

appointed expert O. Ashenfelter).

13.7.4 Projecting airline costs revisited

In the ATA case (Section 13.2.4) plaintiff’s expert, Lawrence Morriss, did not

present any calculation of a confidence or prediction interval for his projection.

However, an expert for the defense, A. Frank Adams, III, did make such

calculations with the following result: using Morriss’s revenue and cost data

(rounded) and his projection of revenue for 2008 of 286.5 million, a 95% forecast

interval was from 209 to 298 million (rounded).

Questions

1. Which is appropriate here, a confidence interval or a prediction interval?

2. Check Adams’s result. The following may be helpful:

Mean revenues over 10 year period: 236.82

Standard deviation of revenues: 98.009

Standard error of regression: 17.944
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3. What conclusion relevant to the case do you reach?

4. Suppose you used a one-sided 90% confidence interval instead of a two-sided

95% confidence interval. Would that change the result? Can you defend that?

5. In his opinion for the Seventh Circuit, Judge Posner defined a confidence interval

as follows: “Confidence intervals. . . are statistical estimates of the range within

which there can be reasonable confidence that a correlation or prediction is not

the result of chance variability in the sample on which the correlation or

prediction was based. . .” 665 F.3d at 895. Do you agree?

13.8 Assumptions of the regression model

Least squares calculations for the standard multiple regression model rest on four

key assumptions about the error terms. If these assumptions are unwarranted, the

OLS equation may be biased or inconsistent, or the usual computations of sampling

variability may seriously misstate true variability and consequently misstate the

statistical significance and reliability of the results. Let us consider these critical

assumptions and the consequences of their failure in some detail.

First assumption: The errors have zero mean

The first assumption is that the expected value of the error term is zero for each set

of values of the explanatory factors. In that case, regression estimates are unbiased;

that is, if repeated samples are taken from the model and regression equations

estimated, the overall average of the estimated coefficients will be their true values.

When this assumption is not true, the estimates are biased, and if bias does not

approach zero as sample size increases, the estimates are inconsistent. The assump-

tion is violated whenever a correlation exists between the error term and an

explanatory factor. This usually occurs because (i) some important explanatory

factor has been omitted and that factor is correlated with factors in the equation;

(ii) the equation is based on time-series data, a lagged dependent variable is

included as a regressor, and there is serial correlation in the error term; or (iii) the

equation belongs in a system of equations where one of the explanatory factors is

determined within the system. We deal with the first of these situations here; the

second is described below; the third situation is described in Section 14.6.

Omitted variable bias has been discussed in Section 13.5; a simple example

here will illustrate the point. Suppose an employer gives employees yearly

bonuses in varying amounts averaging $500 for each year of service. A regression

of bonus on years of service would have a coefficient of $500 for the years-of-service

variable. Suppose, further, that managers receive a $1,000 bonus in addition to the

year-of-service amount. The increase in bonus per year of service is still $500, but the

model is now misspecified because the important factor of managerial status has been

omitted.
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For a cohort of employees, the expected value of the error term in the earlier years

(when no one is a manager) is zero, but becomes positive in the later years as the

model predictions become systematically too low. If the regression of bonus on

years-of-service is estimated from data, the coefficient of the years-of-service

variable exceeds $500 because the least-squares criterion adjusts the estimate

upward to explain as closely as possible the rise in bonuses due both to increase in

years of service and the managerial bonus. Since the correct value for the years-of-

service coefficient is still $500, the estimate is biased. A correctly specified model

has a $500 coefficient for the years-of-service variable and a $1,000 coefficient for

the manager status variable (coded 1 for manager, 0 for non-manager). Correlation

between an explanatory factor and the error term arising from the omission of a

necessary variable leads, therefore, to a biased estimate of a regression coefficient.

Second assumption: The errors are independent

The second assumption, that the errors are statistically independent across

observations, is important for gauging the variability of sampling error. Indepen-

dence means that knowing the error in one observation tells nothing about errors in

other observations, i.e., the distribution of the error for one observation is unaf-

fected by the errors for other observations. Errors that are not independent are said

to be correlated. If the data have a natural sequence and correlations appear between

errors in the sequence, they are said to be autocorrelated or serially correlated.
The problem of correlation of errors is most noticeable when the data have a

natural ordering, as in a time series, but is by no means confined to that situation. It

exists whenever the regression estimates tend to be systematically too high or too

low for groups of related values of explanatory variables. For example, as discussed

in Section 13.5 at p. 401, the plaintiffs in Cuomo v. Baldridge proposed to make

estimates of the census undercount of the population in subnational areas using a

regression equation estimated from a post-enumeration sample. The dependent

variable was the undercount and the explanatory variables were percent minority,

crime rate, and percent conventionally enumerated by face-to-face interviews.

A statistician appearing for the Census Bureau pointed out that, because there

were undoubtedly omitted explanatory variables, the equation was likely to have

correlated errors for types of communities—such as inner cities—even though there

was no natural ordering of the observations.

Third assumption: The errors have constant variance

The third assumption is that the errors have constant variance about the regression

value, irrespective of the values of the explanatory factors. If this condition is met,

the data are homoscedastic; if not, they are heteroscedastic (from the Greek word

skedastikos, “able to scatter”).

There are two consequences of heteroscedasticity. One is that the OLS estimates

of the regression coefficients are no longer most efficient. If some observations have

larger errors than others, those observations with large random effects contain less

reliable information than observations with small effects and should receive less
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weight in the estimation. OLS regression, which gives the same weight to each

observation, fails to take heterogeneity into account and, as a result, may have a

larger variance for its estimates than other methods. One way to correct for this

defect is “weighted” least-squares which, like OLS, estimates coefficients by

minimizing a sum of squared deviations of observed values from fitted values,

but where each deviation is weighted inversely to the variance of the errors. Other

cures, involving transformations, are discussed in Section 13.9 at p. 435.

A second consequence of heteroscedasticity is that the usual measures of

precision are no longer reliable. When there is fluctuation in the variance of error

terms, the usual calculation of precision uses, in effect, an average variance based

on the particular data of the construction sample. If another sample of data

concentrated its predictors in a domain of greater variance in the error term, the

estimated precision from the first sample would be overstated. This difficulty may

seem esoteric, but it is by no means uncommon, particularly when variables in the

regression equation are so structured that the entire scale of the equation (and hence

the residuals) increases systematically. This often occurs with salary data, and is

one reason for use of the logarithmic transformation.

Anexample ofheteroscedasticity arosewhen theNewYorkStockExchange sought

to defend its minimum commission structure before the Securities and Exchange

Commission.Using cost and transaction data for a large number of firms, theExchange

regressed total expenses on number of transactions and number of transactions

squared. The coefficient of the quadratic term (transactions squared) was negative

and statistically significant, indicating that the cost per transaction declined as the

number of transactions increased. These economies of scale, argued the Exchange,

made fixed minimum commissions necessary to prevent cutthroat competition in

which larger firms, with their cost advantage, would drive out smaller firms.

The Department of Justice’s reply pointed out that, because the Exchange used

total firm costs as the dependent variable and total commissions as the explanatory

variable, the entire scale of the equation would grow with increasing firm size,

thereby increasing the size of the regression errors. This heteroscedasticity cast

doubt on the statistical significance of the quadratic term. That doubt was reinforced

when average cost per transaction was substituted as the dependent variable,

which kept the scale of the equation unchanged as firm size increased. In this

transformed equation, the coefficient of the squared term was positive and not

statistically significant. Fixed commissions were abolished by the Exchange on

May 1, 1975.

Fourth assumption: The errors are normally distributed

Because of mathematical tractability, it is frequently assumed that data are nor-

mally distributed when in fact there are departures from the normal. Although

arbitrary, the assumption that regression errors are normally distributed in repeated

sampling for any given values of the explanatory factors is not as dubious as one

might think. The key is the correctness of the model. If all important influences on

the dependent variable are accounted for by the model, what is left are many small

426 13 Regression Models



influences whose sum is reflected in the error term. The central limit theorem then

assures us that, to a good approximation, the error term is normally distributed. In

addition, moderate departures from normality do not seriously affect the accuracy

of the estimates of statistical significance. Nevertheless, it is appropriate to check

the residuals for non-normality. Marked skewness of residuals often indicates that a

transformation of the dependent variable is in order. See Section 13.9.

Validating the model

Whenever the reliability of the estimates is important, it is essential to test for, or at

least carefully consider, the correctness of the assumptions of the standard model

we have discussed. Since the assumptions concern the errors, and these are

unknown, one set of tests involves looking at the residuals.

The OLS protocol forces residuals to have the characteristics of the expected

values of errors in the true model. One characteristic is that the positive and negative

residuals balance out, so that their algebraic sum is always exactly zero. Thus, if a

dependent variable is regressed on a single explanatory factor, the estimated regres-

sion line will pass through the point of means of the data, X,Y
� �

, with observations of

the dependent variable falling above and below the regression estimate. In the true

model, the average sum of errors over all different samples of data (the expected

value) is zero, but, because of sampling variation, the sum of the errors for the

particular sample used to estimate the equation will not necessarily be zero. Thus, the

sum of residuals from the least squares equation is not necessarily identical to the sum

of the errors with respect to the data used to estimate the equation.

A second characteristic is that residuals have exactly zero correlation with

explanatory factors. (If there were a nonzero correlation between the residuals

and an explanatory factor, the fit of the equation could be improved simply by

adjusting the coefficient for that factor.) In the true model, errors have zero

correlation with the explanatory factors. As before, though, this represents an

expectation over the theoretical universe of data; because of sampling variation,

some sample correlation between the true errors and explanatory factors can exist

within the data from which the equation is estimated. In addition, while the

residuals have zero correlation with explanatory factors, so that the best fitting

straight line through a scatterplot of residuals vs. explanatories would have zero

slope, nothing prevents the residuals from having a strong nonlinear dependence on

the explanatory factor, as discussed below.

A third characteristic is that, because residuals are constrained to sum to zero,

they must be negatively correlated with each other in any sample of data. (Selecting

a positive residual increases the probability that the next selection will be negative,

because positive and negative residuals must balance in the sample.) In the true

model, the infinite universe of errors must also average to zero, but the errors are

uncorrelated with each other in any finite sample of data.

Since the residuals must have these characteristics irrespective of the model,

their existence is not evidence that the model is correct. The fact that residuals sum

to zero does not show that the model is unbiased; absence of correlation between
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residuals and the explanatory factors does not mean that the model is correctly

specified. However, we can look to residuals to indicate outliers, non-linearity,

autocorrelation, and violations of the assumptions of homoscedasticity and normal-

ity. We discuss these subjects below.

Plots of residuals

The general method for analyzing residuals is to inspect computer-generated plots

of residuals against other quantities to detect violations of the assumptions and to

compute certain statistics. Residuals are generally plotted in standardized form, i.e.,

according to the number of standard deviations from the mean, which is zero.

Usually, values of the standardized predicted dependent variable or any explanatory

factor are plotted along the horizontal axis, and standardized residuals along the

vertical axis. There are four types of residual plots.

First, residuals are plotted against explanatory factors not in the regression

equation—such as time, or a variable that is a product of two variables already in

the equation, or the square of a variable already in the equation. The investigator

examines such plots to see if there is a trend in the residuals with respect to the new

variable; if so, that variable is a candidate for inclusion in the model.

Second, the residuals are plotted against each explanatory factor in the equation.

Although the least squares equation ensures a zero linear correlation between the

residuals and each explanatory factor, there may be a systematic nonlinear relation-

ship between them, which would indicate that the model was misspecified by

having the wrong functional form for some explanatory factors. For example, if

the true relation between Y and X is thatY ¼ X2 þ ε, but one does not know this and

simply regresses Y on X (but not X2) for values of X symmetrically located about

0, the result is a regression line with a zero slope because X and X2 are uncorrelated.

The residuals from the fitted line have zero correlation with X, but a parabolic

(U-shaped) dependence on X. Inspection of the residual plot would indicate that a

quadratic term in X was missing from the model.

Third, residuals are plotted against the predicted dependent variable to see

whether the data are homoscedastic. A symptom of heteroscedasticity is a residual

plot that steadily fans out or narrows with increasing predicted values. If the error

variance is constant, the cloud of points should look like a horizontal football: the

spread should be greatest at the center of the plot and smallest at the ends. (The

reason is that, in order to avoid large residuals that would prevent minimization of

the residual sum of squares, the regression tends to stick more closely to those

values of the dependent variable that correspond to influential extreme values of the

explanatory factors than to the less influential middle values. The variance of the

corresponding residuals is thus smaller than that of centrally located residuals.)

Fourth, residuals are examined for outliers, that is, points that depart markedly

from the pattern of the rest of the data. Such points may have a large effect on the

regression equation. The solution to the problem of outliers is not simply to

eliminate them automatically, but to subject them to detailed examination, possibly

leading to their elimination if their accuracy is questionable.
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An example of a residual plot revealing moderate heteroscedasticity is shown in

Fig. 13.8.

Tests of residuals

It is not always obvious from visual inspection of residual plots that one or more of

the regression assumptions have been violated. Statistical tests provide an objective

appraisal of residuals; the best known of these tests is the Durbin-Watson test for

autocorrelation of the residuals.

The Durbin-Watson test is applied when there is a natural ordering of the data, as

in a time series. The test assumes that the error term in the model for a given

observation is equal to the preceding error times a correlation coefficient between

0 and 1, plus a random component. Of course, actual autocorrelations are likely to

be more complex, with error depending not only on the immediately preceding

error, but also, to a lesser extent, on more distant errors. Methods exist for analyzing

such situations, but the Durbin-Watson test is simple and frequently used because

the more complex autocorrelation structures often cause the residuals to fail the

Durbin-Watson test as well.

The statistic used in the Durbin-Watson test is the sum of the squared differences

between adjacent residuals divided by the sum of the squared residuals. If the

correlation between successive errors is zero, the expected value of this statistic

Fig. 13.8. A plot of residuals
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based on the residuals will be near two; as autocorrelation increases, the statistic

approaches zero.16

The computed value of the observed test statistic is compared with tabulated

critical values of the Durbin-Watson statistic, usually at the 1% or 5% levels of

significance, under the hypothesis of no correlation in the errors. The results fall

into one of three categories: if the statistic is close to 0, the hypothesis of zero

correlation in the errors is rejected; if close to 2, the hypothesis is not rejected; if in

the middle range, the test is indeterminate. See Appendix II, Table D.

Further Reading

Draper & Smith, Applied Regression Analysis, chs. 2 and 8 (3rd ed., 1998).

Kleinbaum & Kupper, et al., Applied Regression Analysis and Other Multivariable
Methods, 115–117 (5th ed. 2013).

13.9 Transformations of variables

Transformations are basic mathematical tools for re-expressing relations between

variables in equivalent, but possibly more illuminating, forms. We focus on one-to-

one transformations of data, which are such that, after applying the transformation,

we could undo the transformation with its inverse, thereby regaining the original

data. No information is lost by such transformations, nor is the purpose to distort the

facts. We describe below several common transformations, the reasons for them,

and the interpretation of the model coefficients in light of them.

Quadratic terms

The additive model with linear explanatory factors assumes that the effect on the

dependent variable of a one-unit change in an explanatory factor is the same,

regardless of the initial level of the explanatory factor. In many situations, however,

this is unlikely to be true. For example, in an employment regression, salary

16Assuming that the average absolute value of the errors remains the same in successive

observations, the sum of squared differences between successive errors can be imagined as if all

errors were of the same absolute magnitude, the only variation being whether they are positive or

negative (i.e., above or below the regression estimate). Under the hypothesis of no correlation, half

the differences would be zero (when successive errors are on the same side of the estimate) and

half would be twice the error (when they are on opposite sides). The sum of the squared differences

would therefore be four times the sum of the squared errors in half the cases, or two times the sum

of the squared errors. Dividing this by the sum of the squared errors gives an expected value of two

for the Durbin-Watson statistic under the hypothesis of no correlation. On the other hand, if there is

high correlation between successive errors, positive errors would tend to follow positive errors,

and negative errors to follow negative errors, so that the sum of the squared differences would tend

toward zero. The Durbin-Watson statistic is approximately equal to twice the value of 1 minus the

squared correlation coefficient between successive values of the errors.
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increases tend to be greater per year of service for new employees than for those

nearing retirement. On the other hand, profit per dollar of sales may rise with the

number of sales, as fixed costs are spread over a greater number of transactions. To

account for these kinds of changes, a regression model might include squared terms

of the explanatory variables in addition to simple linear terms, e.g., a + bx+ cx2. If
the coefficient of the squared term is negative, the change in the dependent variable

per unit increase in the explanatory factor diminishes as the explanatory factor

increases; if positive, the reverse is true. Thus, one would expect a positive coeffi-

cient for the years-of-service variable and a negative coefficient for a years-of-

service-squared variable. This is typically the case. Quadratic terms also allow for

reversals in trend in time-series regressions (see Section 14.1).

Although the explanatory factors may be non-linear functions, if the regression

model combines these terms in the usual way (multiplying by coefficients and

adding), the model is still a linear regression model, which can be estimated in

using OLS; the term “linear” refers to the dependence of the model on its

parameters, not on the form of the explanatory factors. At other times, the relation

cannot be expressed adequately or reasonably by a polynomial of fixed degree as,

for example, when y¼ a+ bxc. That case requires non-linear regression analysis.

Often, however, a relation that appears non-linear at first may be reduced to a linear

relation by an appropriate transformation. This is true for multiplicative models, for

which the log transform (discussed below) creates a linear relation. For another

example, y ¼ x= axþ bð Þ can be re-expressed as 1=y ¼ aþ b 1=xð Þ, so that 1/x and
1/y are linearly related. The statistics of linear regression are simpler than that of

non-linear regression, so it is preferable to use a linearizing transformation when-

ever possible. Thus, future events may be forecast by linear extrapolation, and the

forecast reconverted to the original units by the inverse transform.

When a transformation is applied to a variable in a statistical model, the

parameters of the model are generally transformed as well. For example, if a

dependent variable Y is a count taking large positive values with mean μ, the square
root transformation produces a variable Y1/2 whose mean parameter is approxi-

mately μ1/2. Statistical hypotheses concerning parameters in the original problem

can be reformulated as equivalent hypotheses in the new scale. Confidence intervals

constructed in the transformed scale and then reconverted to the original scale are

often more valid than those constructed from an inferior approximation in the

original scale. Transformation may also aid in detecting subtleties of a model

such as additivity of effects: it is easy to determine whether two lines are parallel,

but the relation may not be obvious for the original curves.

Logarithmic terms

One of the most common transformations is to take the natural logarithm (denoted

by log, sometimes by ln) of positive data; the regression equation is then estimated

in linear form by OLS. A model in logarithmic form might be
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logðYÞ ¼ logðαÞ þ β1 � logðX1Þ þ � � � þ βklogðXkÞ þ error;

which is equivalent to a multiplicative model for the original data of the form

Y ¼ α � Xβ1
1 � � �Xβk

k � ε;
where ε ¼ exp errorð Þ, the anti-log of the error.

As an example of a logarithmic transform, consider again salary and seniority.

Since the qualitative relation is a rapid increase at the low end and slower at the high

end, an alternative to the addition of a squared term for seniority is the form

log salary ¼ αþ βlog 1þ seniorityð Þ. (The unit is added to seniority before taking

logs so that zero seniority before transformation becomes zero seniority after

transformation.) This form produces a slower increase at the high end than by

using a squared term, and also avoids the eventual downturn in predicted salary

implied by a negative coefficient for the quadratic term.

Income distributions are another example. Typical income distributions are

characterized by marked skewness and heavy tails at the high-income range.

Summarizing such distributions is generally impossible without tabulations of

percentiles, and statistical inferences based on ordinary standard deviation analysis

are grossly inaccurate. If, however, the income distribution is normally distributed

in the logarithmic scale (a “log-normal” distribution), then a complete summariza-

tion of the data is possible with the mean and standard deviation of log-income, and

standard deviation analysis is then appropriate in the transformed scale. As an

example, suppose we wish to find a 95% prediction interval for an individual

income. The geometric mean of all incomes corresponds to the arithmetic mean μ
of log incomes by the log transformation. In the transformed scale, the distribution

is normal with mean μ and variance σ2, say, and thus a 95% prediction interval

for log-income is constructed as μ� 1:96σ, μþ 1:96σð Þ. Applying anti-logs,

eμ�1:96σ; eμþ1:96σ
� �

is a 95% prediction interval for income. Note its asymmetry,

reflecting the original asymmetry of the income distribution.

Linear models that assume normally distributed errors become applicable in

non-standard cases when a transformation of the data can produce error terms that

are approximately normal. Thus, for a model postulating Y ¼ αeXε, where the error
term ε has a log-normal distribution with mean exp(σ2/2), standard linear regression
is applicable to the transformed model log y ¼ logαþ βX þ e, where the error term
e ¼ logðεÞ has a normal distribution with zero mean and variance σ2.

A closely related transformation appropriate specifically to percentages or

proportions (in either dependent or explanatory variables) is the log-odds transform

(sometimes called a folded log or “flog”). If x is a proportion strictly between 0 and
1, the transform is y ¼ log x= 1� xð Þ½ �. For small x, the flog of x is approximately the

same as log x, while for x near 1, the flog is near �log 1� xð Þ. This transform is

particularly useful for variables that take on proportion values close to 0 and

1 because it makes their distribution more symmetrical. The same transformation

is used in logistic regression (see Section 14.7).
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In certain kinds of models, a comparison of two proportions is given by the odds

ratio,Ω ¼ P1= 1� P1ð Þ½ �= P2= 1� P2ð Þ½ � (see Section 1.5 at p. 40). The odds ratio is
a number between zero and infinity, with the value 1 corresponding to P1¼P2. If

P1<P2, values of the odds ratio are constrained to lie between 0 and 1; if P1>P2,

the odds ratio can assume all values greater than 1. In large samples from two

different populations we may estimate Ω as the odds ratio of sample proportions,

say w. Although the sampling distribution of w is markedly asymmetrical, the

sampling distribution of log(w) is nearly symmetrical and, in fact, approximately

normal, with mean log(Ω). With this transformation, approximate confidence

intervals can be constructed. See Section 5.3 at p. 173.

Logarithmic or semi-logarithmic forms frequently are used in estimating the

elasticity of response in econometric models, e.g., the effect of changes in price on

sales. See Section 14.1.6 for an example.

When a logarithmic transformation is made, the meaning of the coefficients

changes. Whereas in the original model a one-unit change in an explanatory

variable Xi yields an average change of βi units in the dependent variable, where

βi is the regression coefficient of Xi, in the logarithmic model a 1% change in the

explanatory variable is interpreted as an approximate βi percentage change in the

dependent variable. This may be seen as follows. A 1% increase in a particular

explanatory factor Xi is effected by multiplying Xi by 1.01; in a multiplicative

model this multiplies the dependent variable Y by 1.01βi. The relative change in

Y (denote it “ΔY ”) is therefore ΔY ¼ Y 1:01βi
� �� Y

	 

=Y ¼ 1:01βi � 1. Hence

ΔY þ 1 ¼ 1:01βi . Taking logarithms of both sides, we have

log 1þ ΔYð Þ ¼ βi � log 1:01ð Þ. Since log 1þ xð Þ � x when x is close to 0, the fore-

going expression becomes ΔY � βi 0:01ð Þ. Expressing this in percentage points,

we have ΔY% � βi 0:01ð Þ100% ¼ βi%. Thus, we may say that in a multiplicative

model (or its equivalent, a linear logarithmic model) a change of 1% in the

explanatory variable X is accompanied by approximately a βi% change in the

dependent variable, when βi is small.

Semi-logarithmicmodels are also useful in some circumstances. In one form of such

models, the dependent variable is in logarithmic form, but the explanatory variable of

interest is not. Such a model is appropriate when the explanatory factor of interest is

itself a percentage. In that case, a unit (e.g., a percentage point) change leads to a

percentage change in the dependent variable of eβi � 1
� ��100% or approximately

βi·100% for small βi. For example, a coefficient of βi¼ 0.02 implies a e0:02 � 1ð Þ�100%
� 2% change in the dependent variable per percentage point change in Xi.

When the dependent variable is a percentage, the reverse transformation may be

more appropriate: the dependent variable remains in the original scale while the

explanatory variables are transformed. In that case, each 1% change in the explan-

atory variable Xi corresponds to an additive change of 0.01βi in the dependent

variable.
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Fig. 13.9. Sale prices for houses made more symmetrical by transformation into logs
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Variance stabilizing transformations

The standard OLS estimates of regression coefficients are fully efficient when the

error term has constant variance (homoscedasticity). It is not uncommon, however,

for error terms to have greater variability for larger predicted values or at larger

values of the independent variable. For example, counts often follow a Poisson

distribution, in which the variance equals the mean. If such counts are the dependent

variable in a regression model, the model is heteroscedastic. Although OLS

estimates are unbiased in this case, they are not as precise as other available

estimators. There are two approaches to this problem. The first transforms the

dependent variable to achieve a constant variance in the transformed scale. For a

Poisson distribution, the square root transformation y1/2 achieves this goal, since the
variance of the square root of a Poisson random variable with large mean is

approximately 1/4, independent of the mean. Thus, we may entertain models of the

form Y1=2 ¼ αþ βX þ ε1, where the error term has constant variance.

Transformations that achieve constant variance are called variance-stabilizing

transformations. For binomial proportions, p, the variance-stabilizing transformation

is y ¼ arcsin p1=2
� �

, with variance approximately equal to 1/(4n), independent of p,

where n is the binomial sample size.

The second approach involves re-expression of the variables in the model to

remove a parametric relationship in the variance of the error term. Suppose that

examination of the residuals from a linear regression of y on x reveals that the

variance of the residuals increases as the square of x, indicating a specific kind of

heteroscedasticity. In this case the variance of the errors divided by x will be

constant. This relation suggests dividing the original equation Y ¼ αþ βX þ ε by

X to obtain the new model Y ¼ β þ αX
0 þ ε

0
, where Y

0 ¼ Y=X and X
0 ¼ 1=X, in

which the error term ε0 satisfies the assumption of homoscedasticity. This method is

equivalent to estimation of the regression coefficients by the method of weighted

least squares, where the weights are inversely proportional to the variances of the

error term at each x. This method produces unbiased and efficient estimates of the

regression coefficients if the assumed error structure (i.e., set of weights) is properly

specified. Residual analysis is crucial in determining the success of any weighting

system. The method of weighted least squares is applicable to a wide variety of

regression problems, including logit and probit analysis (see Section 14.7).

On the problem of autocorrelation and the remedy of transformation to differ-

ence equations, see Section 14.1.

Further Reading

Draper & Smith, Applied Regression Analysis, ch. 13 (3rd ed. 1998).
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13.9.1 Western Union’s cost of equity revisited

Questions

1. Calculate R2 for the cost-of-equity data of Section 13.2.1 with variability-of-

earnings both in logarithmic form and in the original scale.

2. What is the reason for the difference in R2 between the models?

3. If goodness of fit were the only consideration, which model would be more

appropriate for estimating Western Union’s cost of equity?

13.9.2 Sex- and race-coefficient models for Republic National Bank

Blacks and women brought a class action against Republic National Bank claiming

discrimination in hiring, promotion, and pay. To establish a prima facie case of pay

discrimination, plaintiffs presented multiple regression studies in which the loga-

rithm of salary was regressed on various sets of explanatory factors. Here was one

set of factors used by the plaintiffs:

• Personal Characteristic Variables (Set D)

– education (highest grade completed)

– age (in years) [as a proxy for general labor market experience]

– age squared

– bank experience (in years) [using Republic National Bank hire dates]

– bank experience squared

• Job Variables

– bank officer (1 for bank officers, 0 otherwise)

– other exempt (1 for employees in other exempt categories, 0 otherwise)

– Hay points [A proprietary method for ranking jobs by content, which can be

used in calculating their relative worth].

The regressions using these factors were computed separately for each year. The

results for 1978 are shown in Table 13.9.2a.

To rebut plaintiffs’ regressions, the bank’s labor economist presented

multiple regression studies based on data obtained from questionnaires submitted

to a random sample of employees. The dependent variable was the logarithm of

year-end salary. The 1978 results for white men and women are shown in

Table 13.9.2b.
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Table 13.9.2b. Defendant’s multiple-regression models for Republic National Bank 1978 year-

end salary

Stratified by status at year-end 1978

Status/variables Female/male

Controlled pay disparity t

Cumulatively (percent)

Status: Professional

Sex (1¼ female), unadjusted �25.75 �5.03a

Sex (1¼ female), adjusted cumulatively for:

Service at RNB �18.20 �3.42a

Highest educational level �13.65 �2.71a

Banking major �11.10 �2.12a

Length and type of prior experience �6.63 �1.56

Non-productive time out of labor force �6.00 �1.40

Investment in RNB careerb �4.22 �0.75

Career motivationc �2.53 �0.46

Sample size 135

Number of females 57

Status: Non-professional

Sex (1¼ female), unadjusted �2.96 �0.89

Sex (1¼ female), adjusted cumulatively for:

Service at RNB �2.08 �0.73

Highest educational level �2.13 �0.75

Banking major �1.69 �0.60

Length and type of prior experience �1.57 �0.57

Non-productive time out of labor force �1.87 �0.67

Investment in RNB careerb �1.26 �0.44

Avg. ann. absence occasions from work �0.69 �0.23

Career motivationc �0.00 �0.00

Sample size 131

Number of females 95
aStatistically significant at the 1 percent level on a one-tailed test.
bTraining programs and overtime worked after hire.
cVarious subjective measures of interest in career at the bank.

Table 13.9.2a. Plaintiffs’ multiple-regression models for Republic National Bank salary levels

in 1978

#

Employees

Personal

characteristic

variables

Job

variables Females Blacks

Regression (2) 2,012 Set D Not

included

�0.3216a �0.1985a

Regression (3) 1,806 Set D Included �0.0705a �0.0948a

aSignificant at the one-tailed 1%, level.
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Questions

1. Interpret the results of plaintiffs’ and defendant’s regressions.

2. As attorney for defendant, what objections would you have to the explanatory

factors used in plaintiffs’ regressions?

3. As attorney for plaintiffs, what objections would you have to the study design

and explanatory factors used in defendant’s regressions?

Source

Vuyanich v. Republic Natl. Bank, 505 F. Supp. 224 (N.D. Texas 1980), vacated,
723 F.2d 1195 (5th Cir. 1984), reh. denied, 736 F.2d 160, cert. denied,
469 U.S. 1073 (1984). The district court opinion is a massive treatise on multiple

regression that deals with many issues in addition to those discussed here.
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More Complex Regression Models 14

14.1 Time series

When observations of the dependent variable forma series over time, special problems

may be encountered. Perhaps the most significant difference from the models

discussed thus far is the use as an explanatory variable of the value of the dependent

variable itself for the preceding period. A rationale for lagged dependent variables is

that they account for excluded explanatory factors. Lagged dependent and indepen-

dent variables may also be used to correct for “stickiness” in the response of the

dependent variable to changes in explanatory factors. For example, in a price equation

based on monthly prices, changes in cost or demand factors might affect price only

after several months, so that regression estimates reflecting changes immediately

would be too high or too low for a fewmonths; the error termwould be autocorrelated.

A lagged value of the dependent variable might be used to correct for this. Note,

however, that inclusion of a lagged dependent variable makes the regression essen-

tially predict change in the dependent variable because the preceding period value is

regarded as fixed; this may affect interpretation of the equation’s coefficients.

For previous examples, see Sections 13.6.2 and 13.6.3.

Regression estimates are unbiased in the presence of autocorrelation as long as

the errors, autocorrelated or not, have an expected value of zero. However, when

there is positive autocorrelation, the usual calculation seriously overestimates

precision because the variability of residuals underestimates the true error variance.

To illustrate, suppose that a true regression model of price on time has expected

values that, in the presence of autocorrelation, are either first consistently below and

then consistently above the observed data, or vice versa; in repeated samples the

overestimates and underestimates balance so that the equation is unbiased.

Although the error is substantial, the OLS regression line is fitted to the points in

a way that makes the residuals smaller than the error. In Fig. 14.1 above, the OLS

line passes through, rather than below and then above, the data points. An investi-

gator unaware of the serial correlation would conclude that the regression model

was quite precise, a false conclusion because, in another sample, the observations
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might first lie below the regression line, and then above it, reversing the prior

pattern. Predictions would not be precise, and the new data would produce a very

different estimate of the equation.

When the equation includes a lagged dependent variable, the existence of serial

correlation in the error term may even result in biased estimates. The error at time

t is of course correlated with the dependent variable at time t. If there is serial

correlation in the error term, the error at t is correlated with the error at t� 1 and,

since the error at t� 1 is correlated with the dependent variable at t� 1, it follows

that the error at t is correlated with the dependent variable at t� 1. If the lagged

dependent variable is included as an explanatory factor in the regression model, the

error no longer has zero mean, and the correlation between regressor and error

biases the estimated coefficients.

A remedy for serial correlation is based on the idea that the correlation can

sometimes be eliminated if the regression is estimated from a difference equation:
differences between successive observations of the dependent variable are

regressed on differences between successive observations of the independent
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Fig. 14.1. Effect of autocorrelation
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variables. A regression model based on single differences is called a first difference
equation. In the so-called generalized difference equation, lagged values of both the
dependent and explanatory factors are multiplied by an estimate, made from the

residuals, of the correlation between successive error terms. The coefficients are

usually estimated by maximum likelihood methods using iteration. This approach is

sometimes referred to as the Cochrane-Orcutt method.

Further Reading

Draper & Smith, Applied Regression Analysis 179–203 (3d ed. 1998).

14.1.1 Corrugated container price-fixing

In an antitrust price-fixing case under the Sherman Act, damages are based on the

difference between the prices paid by the plaintiff purchasers and the prices they

would have paid in the absence of defendants’ collusion. This difference is then

trebled.

To estimate the “but-for” prices in a case involving corrugated containers and

containerboard, data during the conspiracy period (1965–1975) were used to

estimate a regression relation between monthly average price of corrugated

containerboard and the following explanatory variables: (1) price the previous

month; (2) change in the cost of production from the previous month; (3) an

index of the level of manufacturing output; and (4) wholesale price index for all

commodities. The regression estimated for the conspiracy period (reflecting the

effects of the conspiracy) was used to estimate prices in the post-conspiracy period

(1976–1979). These projected prices were higher than actual prices, with an

average difference, as a percentage of the projected conspiracy price, of 7.8%.

From this projection plaintiffs argued that the overcharge during the conspiracy

period was at least 7.8%.

The specifications of the regression equation are given in Table 14.1.1. A plot of

the actual and projected prices for containerboard is shown in Fig. 14.1.1.

Table 14.1.1. Price of corrugated containerboard

Explanatory variable Coefficient Std. error t

Intercept 0.732770 0.54660 1.34

Price of

containerboard

lagged by 1-month

0.733244 0.05045 14.53

Change in cost of

production from

previous month

0.453225 0.10700 4.24

Level of manuf.

output (1974¼ 100)

0.012204 0.00659 1.85

Wholesale price

index

0.245491 0.04726 5.20

The dependent variable is an index for the price of containerboard with price in 1974¼ 100

Monthly (1963:1 to 1975:12) observations (n¼ 156)
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Question

As an expert for defendants, what procedures would you use to test the correctness

of the regression model?

Source

In re Corrugated Container Antitrust Litigation, 756 F.2d 411 (5th Cir. 1985);

Finkelstein & Levenbach, Regression Estimates of Damages In Price-Fixing Cases,
Law & Contemp. Probs., Autumn 1983 at 145, reprinted in Statistics and the Law
93–95 (DeGroot, Fienberg & Kadane, eds., 1986).

14.1.2 Puppy Chow versus Chewy Morsels

Alpo Petfoods and Ralston Purina are competing makers of puppy food. Beginning

in December 1985 and continuing through October 1986, Ralston ran advertising in

which it claimed that Purina Puppy Chow and Purina Chewy Morsels had been

reformulated to help lessen the severity of canine hip displasia (“CHD”).
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Contending these claims were false, Alpo sued for lost sales and profits. On the

issue of damages, both sides introduced multiple regression models.

In one of Alpo’s models, the dependent variable was Alpo’s percentage share of

19 East Coast markets (where it sold most of its puppy food). In the period covered

by the data, which was divided into 33 28-day periods between February 1, 1985,

and July 17, 1987, this ranged between 16.1088 and 24.1604%. The independent

variables were as follows:

• Total Alpo puppy food advertising expenditures by 28-day period.

• Total Alpo puppy food coupon redemption expenditures by 28-day period

(a measure of consumer promotion expenditure).

• A dummy variable equal to 1 beginning in April 1985 when Purina Puppy Chow

and Purina Chewy Morsels entered the market, and 0 prior to that.

• CHD A dummy variable equal to 1 during the 28-day periods between December

6, 1985, through October 10, 1986 (corresponding to the period of Ralston

Purina’s CHD advertising), and 0 outside that period.

• A dummy variable equal to 1 beginning in August 1986, the month in which a

competing brand, Gaines Gravy Train Puppy Food, entered the market, and

0 before that.

• The price of ALPO Dry Puppy Food divided by the price of Purina Puppy Chow

(excluding Chewy Morsels) based on the East Coast sales.

• Total Purina Puppy Chow and Chewy Morsels expenditures on advertising and

promotion during the 28-day periods.

Using these variables and data for 33 28-day periods between February 1, 1985,

and July 17, 1987, Alpo estimated a regression equation and reported a coefficient

of �1.471 for CHD with a t-value of �2.238 and an associated P-value of 0.0344.
The model had an R2 of 0.697 and an adjusted R2 of 0.612.

In one of Ralston Purina’s models, the dependent variable was the same as in

Alpo’s, and the independent variables were similar, except that Ralston Purina

added the following:

• A time trend variable (the number of months since February 1985) to capture

underlying trends not captured by other explanatory factors.

• A dummy variable equal to 1 beginning in March 1986 to represent Purina’s

second reformulation of Puppy Chow and Chewy Morsels, and 0 prior to that.

• The number of puppy food brands on the market from the six leading

competitors.

With these added variables, Purina reported a CHD coefficient of 1.832 with a

standard error of 1.469.
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Ralston Purina argued that Alpo’s data and model were defective because:

(1) Alpo counted as CHD advertising any advertisement that mentioned CHD no

matter how fleeting the reference; (2) Alpo’s model assumed that a given expendi-

ture on advertising would yield the same dollar increase in sales regardless of the

level of advertising, contrary to the economic law of diminishing returns for inputs;

and (3) the model implicitly assumes that Ralston would not have run any

advertising if it had not run the CHD advertisements.

Questions

1. Interpret the CHD coefficient in the two models.

2. What probably accounts for the difference in CHD coefficients in the two

models? How would you test your surmise?

3. How would you resolve Ralston Purina’s criticisms of Alpo’s model?

Source

Alpo Petfoods, Inc. v. Ralston Purina Company, 997 F.2d 949, 955 (D.C. Cir. 1993)
(expert reports).

14.1.3 Losses from infringing sales

Firm A sells a familiar consumer product and patents a new variation of that

product. Sales of the variation are well established by 1972.

Beginning in 1981, Firm B begins selling a competing product that Firm A says

infringes its patent. A sues B, claiming that its sales would have been much larger

were it not for the infringer. B replies that a projection of A’s sales from the

pre-infringement period shows no lost sales. Sales data are shown in Table 14.1.3.

In this table, “Firm A unit sales,” expressed in millions, are total revenues divided

by the Firm A price per unit. The seasonal indicator variable takes the value +1 for

observations in the period May–October, and –1 in the period November–April of

each 12-month period.

Questions

1. Estimate by OLS the regression coefficients of the linear regression of Firm A

unit sales on Time and Seasonal indicator for the pre-infringement period.

Use the estimate to project Firm A’s 1981 sales based on the pre-infringement

pattern.

2. Should other explanatory factors be included in the model?

3. Does the model lead to an appropriate measure of A’s lost sales?
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14.1.4 OTC market manipulation

Between December 1975 and March 14, 1977, an account executive at Loeb

Rhoades, Hornblower & Co., a large brokerage firm, manipulated the market for

four over-the-counter stocks. Among other things, he bought and sold such stocks

between accounts that he controlled. The SEC alleged that these transactions were

made at artificial prices for the purpose of raising the prices of the securities,

sustaining the prices once established, and absorbing shares of the securities

being sold in the market. At times, his trades constituted a large fraction of total

trades for these securities in the OTC market.

Table 14.1.3. Sales data

Year

Bimonthly

period Firm A unit sales Time Seasonal indicator

1978 Jan/Feb 1.560 1 –1

Mar/Apr 1.821 2 –1

May/Jun 1.901 3 1

Jul/Aug 2.106 4 1

Sep/Oct 1.965 5 1

Nov/Dec 1.875 6 –1

1979 Jan/Feb 2.005 7 –1

Mar/Apr 2.057 8 –1

May/Jun 2.139 9 1

Jul/Aug 2.485 10 1

Sep/Oct 2.603 11 1

Nov/Dec 2.144 12 –1

1980 Jan/Feb 2.048 13 –1

Mar/Apr 2.145 14 –1

May/Jun 2.237 15 1

Jul/Aug 2.440 16 1

Sep/Oct 2.311 17 1

Nov/Dec 2.284 18 –1

1981 Jan/Feb 2.150 19 –1

Mar/Apr 2.400 20 –1

May/Jun 2.947 21 1

Jul/Aug 3.326 22 1

Sep/Oct 2.789 23 1

Nov/Dec 2.557 24 –1

Firm A unit sales Time Seasonal indicator

1978–1980 Means: 2.1181 9.5 0

1978–1980 S.D.s: 0.2550 5.3385 1.0290

1978–1980 Correlations:

Firm A unit sales 1.0000 0.7264 0.5040

Time 0.7264 1.0000 0.0964

Seasonal indicator 0.5040 0.0964 1.0000
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When the account executive was exposed onMarch 14, 1977, customers suedLoeb

Rhoades, claiming that they had been injured by the manipulation. In response, the

brokerage house prepared a regression study for each security involved in the manip-

ulation, inwhich the price change of the securitywas regressed on the price change for

the OTCmarket as a whole. This equation was estimated from data for a 5-year period

prior to the manipulation. The actual prices during the manipulation period were then

compared with the regression estimates of those prices. Statistically significiant

differences were examined for special events, such as declaration of a dividend.

The regression equation for one security—Olympic Brewing Co.—is shown in

Table 14.1.4a. The dependent variable is the return on Olympic stock, defined as the

difference between closing bid prices on the first and last days of the period for

which the return is computed, plus any dividend paid during the period, divided by

the closing bid price on the first day of the period. The explanatory variable, Daily

Value Weighted Return (DVWR), is similarly defined on a value-weighted basis for

all stocks in the OTC market. The other dependent variable, Days, is the number of

trading days in the period over which the return is computed. A monthly period was

used in the estimation of the equation; thus, Days was either 30 or 31 (except for

February).

The account executive was particularly active in trading in December 1976 and

January 1977. Shown in Table 14.1.4b are daily return data (defined for successive

days in the same way as monthly data) for the first few days of January, and the last

few days of March before he was discovered.

Questions

1. Using the regression equation, do you find a statistically significant difference

between actual returns and the regression estimates in either period?

(In determining the prediction interval for the regression estimate, assume that

the coefficients of the regression equation are estimated without error. Also

assume that the daily returns are statistically independent.)

2. It appears that the model fitted was of the form Y¼ β1Days + β2DVWR+ e,
where e is the error term with 0 mean given Days and DVWR. Is this model

likely to be homoscedastic? What would be the effect of heteroscedasticity?

3. Is the model likely to have serial correlation in the error term? How would you

test for such correlation? What would be its effect?

4. Does the model have sufficient power to justify an inference favorable to

defendant? What conclusions relevant to the case would you draw?

Source

Loeb Rhoades, Hornblower & Co., Sec. Exch. Act Rel. No. 16823 (1980) (related

SEC administrative proceeding).
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Notes

A similar model was accepted without serious challenge in Leigh v. Engle,

669 F. Supp. 1390 (N.D. Ill. 1987) (testimony of Daniel Fischel). For other

discussions of the model, see Easterbrook & Fischel, Optimal Damages in Securities

Cases, 52 U. of Chi. L. Rev. 611 (1985); Fischel, Use of Modern Finance Theory in

Securities Fraud Cases, 38 Bus. Law. 1 (1982); Note, The Measure of Damages in

Rule 10b—5 Cases Involving Actively Traded Securities, 26 Stan. L. Rev.

371 (1974); see also Basic Incorporated v. Levinson, 99 L. Ed. 2d 194 (1988).

Table 14.1.4a. Regression of Olympic Brewing Company stock return on Daily ValueWeighted

Return (DVWR)

Source df

Sum of

squares

Mean

square F-value Prob> F

Model 2 0.095021 0.047510 4.269 0.0186

Error 59 0.656682 0.011130

Totala 61 0.751703

Root MSE 0.105500 R-Square 0.1264 C.V. 737.1111

Dep. Mean 0.014313 Adj R-Sq 0.1116

Variable df Parameter estimate Standard error t for H0:

Parameter¼ 0

Prob> |t|

Days 1 0.0004383 0.0006491 0.675 0.5022

DVWR 1 0.6968 0.2583 2.698 0.0091

Dependent variable is the return on Olympic Stock

The standard error of regression (without centering on the mean) is 0.111
aThe intercept term is constrained to be 0. As a result, there is no reduction in total df for estimation

of an intercept, and the total and model sums of squares are sums of squares but not squared

deviations from the mean. R2 is still the ratio of the model to total sums of squares, but is no longer

the squared multiple correlation coefficient between dependent and explanatory variables. In this

context, the constraint is reasonable because the assumption that the dependent variable is zero

when both explanatory variables are zero seems correct.

Table 14.1.4b. Daily return data on Olympic stock and the market for selected days in January

and March, 1977

Date Price Olympic return Market return

03 Jan 77 46.00 0.00000 –0.00266

04 Jan 77 47.00 0.02174 –0.00998

05 Jan 77 47.50 0.01064 –0.00771

06 Jan 77 47.75 0.00526 0.00187

07 Jan 77 50.50 0.05759 0.00085

09 Mar 77 51.50 0.04040 –0.00697

10 Mar 77 48.50 –0.05825 0.00486

11 Mar 77 31.75 –0.34536 0.00074

14 Mar 77 28.375 –0.10630 0.00687

14.1 Time series 447



14.1.5 Fraud-on-the-market damages

Geriatric & Medical Centers, Inc. (Geri-med) operated nursing homes in

Pennsylvania and New Jersey. Its stock was traded on NASDAQ. In 1992,

purchasers of its stock brought a class action against the company alleging that it

had perpetrated a “fraud on the market” by failing to disclose certain adverse

developments. The jury rejected most of the charges, but found that Geri-med

had failed to disclose the existence of a state grand jury investigation of patient

deaths at two company-managed nursing homes. The period of non-disclosure

found by the jury was fromMarch 1, 1992, to September 1, 1992, when indictments

were returned against company officials. During the class period, the stock trended

down from around $4.00 at the beginning of March to $2.50 on August 31. After the

disclosure on September 1, the stock dropped to under $2.00. Stockholders most

clearly injured were those who bought during this “class period” and held through

September 1, to see the value of their holdings decline. In order to quantify

damages, an expert for Geri-med, Louis Guth, calculated by statistical projection

what the price of Geri-med’s stock would have been if disclosure of the investiga-

tion, which was known to the company, had been made at the beginning of the class

period. He compared these “but-for” prices with the actual prices for each day

during the class period to come up with the excess amount paid by purchasers on

each day. This amount varied from over $1 at the end of March to 0 on many days

during the summer.

Guth’s calculations used a regression equation of the form

ln Pt=Pt�1ð Þ ¼ aþ b � ln xtð Þ þ et;

where Pt and Pt�1 are the Geri-med stock closing prices on trading days t and t� 1,

respectively; a is the constant term; xt is the ratio of closing prices on days t and
t� 1 of an index of nursing home industry stock prices; and et is the error term on

day t. This regression was estimated from data for a control period prior to the class

period. The nursing home index declined from around $212 at the beginning of

March to around $169 at the end of August.

The summary statistics are as shown in Table 14.1.5.

Since a was small and not statistically significant, it was ignored in subsequent

calculations.

In models of this type, calculation of expected prices generally is made by

“backcasting.” In backcasting, one starts with the stock price and value for the

index after full disclosure has ended the assumed distorting effects of the nondis-

closure. One begins at the end rather than at the beginning because usually it is

clearer when the problem ended than when it began. Then, working backwards day

by day, the regression equation is used to compute expected stock returns to the

beginning of the class period. For each day, the difference between actual and

expected prices, if positive, is the first element in measuring damages for a person

who bought shares on that day. If the shares were sold during the class period, the

excess return received would be deducted from the excess return paid to arrive at a

448 14 More Complex Regression Models



damage figure. If sold shortly after the class period, the excess return upon sale is

presumed to be 0. In computing damages, actual or expected prices may be adjusted

for the distorting effects of special events unrelated to the nondisclosures, such as

earnings announcements.

To illustrate backcasting, we begin with the calculated expected closing price on

April 2, 1992, and calculate the expected closing price on April 1. The expected

price for April 2 is $3.233 from the backcasting calculation up to that point.

The nursing home index number on April 2 is 193.796 and on April 1 is 198.733.

The ratio of the two is 193:796=198:733 ¼ 0:975158. The natural logarithm of the

ratio is –0.02516. From Table 14.1.5 the coefficient b of the log index variable is

0.53049. The coefficient times the log ratio is 0:53049��0:02516 ¼ �0:0252.
This is the logged return associated with the change in the index. Taking the anti-log,

we have exp(–0.0252)¼ 0.9867 as the ratio of the stock prices on April 2/April

1. The expected price on April 1 is equal to the expected price on April 2 divided by

the April 2/April 1 ratio, or 3:233=0:9867 ¼ 3:276. Because the actual closing price
onApril 1 was $4.40, a purchaser who bought stock on that day and held to the end of

the period would by this calculation have overpaid $1.124 per share.

Questions

1. In In Re Control Data Corporation Securities Litigation, 933 F.2d 616 (8th Cir.

1991), a similar fraud-on-the-market case, plaintiff’s expert, John Torkelson, did

not use regression to project the value of the stock during the class period.

Instead, he assumed that the stock price had the same percentage changes day by

day as an index (in that case, of technology stocks). If that method were applied

to the April 1 calculation, based on the April 2 price, what would be the result?

Which method is superior?

2. What are the arguments for and against using an upper end of a 95% prediction

interval for the expected stock price? What effect would that have on the

calculation of damages for April 1? (In determining the interval assume, as in

Table 14.1.5. Regression of Geri-med closing stock prices on nursing home company stock

index

Number of observations 401

Mean of the dependent variable 0.000720951

S.D. of dependent variable 0.073265

Sum of squared residuals 2.1204

Variance of residuals 0.005314

Std. error of regression 0.0728

R-squared 0.0124

Durbin-Watson statistic 2.5513

Parameter Estimate Standard Error t-statistic

a �0.0004188 0.003676 �0.1139

b 0.53049 0.2368 2.2406
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the last problem, that the coefficients of the regression are estimated without

error and that the daily returns are statistically independent).

Source

Pearl v. Geriatric & Medical Centers, Inc., 1996 U.S. Dist. LEXIS 1559 (E.D. Pa.

1996)(testimony of Dr. Louis Guth). See also references cited in Section 14.1.4.

Notes

If an aggregate damage estimate is needed, either for settlement or litigation, this

requires not only a measure of stock price inflation but also the number of shares

bought on each day during the class period, and the day on which such shares are

sold, if the sale occurs within the class period. Since such data are not available,

various assumptions are made to model the process, which introduces another level

of complexity. For a discussion of these models see Koslow, Estimating Aggregate
Damages in Class-Action Litigation under Rule 10b-5 for Purposes of Settlement,
59 Fordham L. Rev. 811, 826–842 (1991); Mayer, Best-Fit Estimation of Damaged
Volume in Shareholder Class Actions: The Multi-Sector, Multi-Trader Model of
Investor Behavior (National Economic Research Associates 1996).

Calculations of damages in securities actions must now take account of the cap

on such damages imposed by Congress in the Private Securities Litigation Reform

Act of 1995. See 15 U.S.C. }78u-4(e)(1997).

14.1.6 Effects of capital gains tax reductions

Capital gains are taxed only when the gain is realized. In any year, realizations of

capital gains are only a small fraction of capital gains. (For example, net annual

realized gains averaged only slightly over 3% of the stock of accrued gains between

1947 and 1980.) If the tax rate is sufficiently high, taxpayers have a strong incentive

to delay realizations or to avoid the tax altogether by leaving the assets to heirs

(at which time the tax basis of the assets is stepped up to market value, permanently

avoiding the capital gains tax). Capital gains are concentrated among the wealthy.

For example, in 1984, taxpayers with adjusted gross income (AGI) of $100,000 or

more (the top 1% of returns) accounted for 54% of gains but only about 9% of

other AGI.

The Tax Reform Act of 1986 abolished the preferential tax treatment of capital

gains, effectively raising the maximum tax rate for wealthy individuals on such

gains from 20 to 28%. A campaign for reinstatement of the preferential tax rate was

based on the argument that lowering tax rates would unlock sufficient gains to more

than offset the reduction in rates. Among the possible effects of a reduction in rates

were: (i) a one-time unlocking of realizations, and (ii) a longer-term increase in

realizations due to increased velocity of sales but, more significantly, a reduction in

retention of assets until death. What could not be determined was whether these
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effects would be large enough to offset the effect of reduction in rates, other factors

being held constant. For this a number of time-series regression studies were made.

The theory of the time-series studies was that capital gains realizations would

grow in proportion to the level of total accrued gains. Total accrued gains cannot

be measured directly, but are likely to follow overall growth in the economy and the

value of corporate equities. In general, realized gains have moved upward with the

growth of GNP and the value of corporate equities held by households.

See Figs. 14.1.6a and 14.1.6b. In the 1970s, realizations fluctuated without trend;

they declined in years of recessions (e.g., 1970 and 1974–75) and increased in years

of expansion (e.g., 1971–1972 and 1976).

Gross
National
Product

(Right Scale)

Long-Term
Gains

(Left Scale)

5,000

3,750

2,500

1,250

1985198019751970

Year

196519601955
0

50

100

150

200

0

Fig. 14.1.6a. Realized net long-term gains and Gross National Product, 1954–1985 (in billions of

dollars)
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Fig. 14.1.6b. Realized net long-term gains and corporate equity of households, 1954–1985

(in billions of dollars)
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The data indicate that changes in tax rates have also influenced realizations. The

Revenue Act of 1978 reduced the maximum marginal rate on long-term gains from

39.875% (for most taxpayers) to 28%; the weighted-average marginal rates for

wealthy taxpayers (defined as the top 1% in AGI) dropped from about 35.1% in

1978 to 25.9% in 1979.1 This reduction evidently contributed to a dramatic 45%

increase in realizations in 1979, which was concentrated in the high income classes

that benefited most from the reductions. The increase, however, also occurred

during a rising stock market and high growth of GNP, suggesting that part of the

increase may have been due to these factors.

The 1981 Act further reduced the maximum tax rate on long-term capital gains

to 20% for gains realized after June 20, 1981. The result was to drop the weighted

average marginal rate for wealthy taxpayers from 26.1% in 1980 to 23.4% in 1981

to 20% in 1982. Capital gains realizations, however, increased by only about 5% in

1981 over 1980.

This weak response may have been due to the beginning of the 1981–1982

recession in July 1981. Realizations rose only about 10% overall in 1982, perhaps

reflecting the fact that the business cycle did not reach its nadir until late in the year

(although the stock market revived in August). In 1983, both the stock market and

realizations increased substantially.

To assess the separate effect of tax rate changes, Treasury analysts and others

used various multiple linear regression models. Some of the data are shown in

Table 14.1.6a and the results of multiple regression analyses in Tables 14.1.6b and

14.1.6c.

During the 1988 presidential election campaign, one set of Treasury analysts,

Darby, Gillingham, and Greenlees, argued, upon reanalysis of an earlier Treasury

study, adding data for 1983–85 and refining some variables, that a reduction in rates

would so increase realizations that revenue would be increased on a permanent

basis. Their equation is Equation 1 in Table 14.1.6b. Another analyst, Joseph

Minarik of the Urban Institute, disputed their conclusions and calculated Equation

2 in Table 14.1.6b.

The Congressional Budget Office (CBO) also created a regression model in

logarithmic form using average marginal tax rate and the logarithms of GNP and

corporate equities (in constant dollars) as explanatory variables, and the logarithm

of net long-term realizations as the dependent variable. For the results, see

Table 14.1.6c.

1 The average marginal rate is not the same as the maximum rate because not all taxpayers are in

the highest bracket. Average marginal rates are computed as weighted averages of last-dollar

marginal tax rates on capital gains faced by taxpayers with the average amounts of capital gains

and taxable income in each income group. Changes in the income groups or in ordinary income

rates can change average marginal rates on capital gains even when the maximum rate on capital

gains does not change.

452 14 More Complex Regression Models



Table 14.1.6a. Capital gains realizations time series data

Year

Net long-term

gains

Marginal tax

rate

NYSE

composite

index Real GNP

Corporate

equities

1975 30.7 30.2 45.73 2,695.0 637.4

1976 39.2 33.8 54.46 2,826.7 752.0

1977 44.4 34.4 53.69 2,958.6 706.6

1978 48.9 35.1 53.70 3,115.2 703.2

1979 71.3 25.9 58.32 3,192.4 857.4

1980 70.8 26.1 68.10 3,187.1 1,163.9

1981 78.3 23.4 74.02 3,248.8 1,102.0

1982 87.1 20.0 68.93 3,166.0 1,241.7

1983 117.3 19.7 92.63 3,279.1 1,422.5

1984 135.9 19.4 92.46 3,501.4 1,438.3

1985 165.5 19.5 108.09 3,607.5 1,890.1

Net long-term gains are net long-term capital gains in excess of net short-term losses in billions of

dollars for top 1% AGI taxpayers

Marginal tax rate refers to the average marginal tax rate on net long-term gains for top 1% AGI

taxpayers

NYSE composite index is an index of stock prices on the New York Stock Exchange

Real GNP refers to the U.S. gross national product, adjusted for inflation

Corporate equities refers to the value of household corporate stock holdings in billions of dollars

Table 14.1.6b. Time series linear regression models for capital gains realizations

Equation number

1 2

Variable Estimate t Estimate t

CONSTANT �1,186.4 –1,568.78

CRGNP 96.8 7.37 66.8 4.48

CIGNP 2.5 0.22 12.8 1.06

CSTK 36.2 6.03 35.2 3.65

CTX �1,795.0 �4.13 �1,441.3 �3.75

CTX(-1) 50.9 0.11 818.1 1.84

CVALUE Not Used Not Used 24.5 3.29

R2 0.845 0.875

Durbin-Watson 1.917 1.411

St. err. of reg. Not reported 3.712

Sample period 1954–1985 1954–1985

The dependent variable is the change in net long-term gains (in millions of dollars) as defined in

Table 14.1.6a

CRGNP and CIGNP refer to real and inflationary components of GNP change (in billions of

dollars)

CSTK represents the change in corporate equities (in billions of dollars) as defined in

Table 14.1.6a

CTX and CTX(-l) refer to the current and lagged changes in the marginal tax rate as defined in

Table 14.1.6a

CVALUE refers to the change in NYSE composite Index as defined in Table 14.1.6a

14.1 Time series 453



Questions

1. What is the difference in the estimate of realizations elasticity between the two

models in Table 14.1.6b?

2. What is the reason for this difference? [Point of information: The original

Treasury study, using variables substantially similar to those in Equation 1 on

data for the period 1954–1982, obtained results similar to Equation 2. When that

original Treasury equation was recalculated for data from 1954 to 1983, the

results were similar to Equation 1. Hence, adding 1983 to the model without the

CVALUE variable seemed to make the difference.]

3. Which model is more plausible?

4. Interpret the elasticity of net long-term gains for MTR in the CBO

semi-logarithmic model in Table 14.1.6c.

5. Is this form of model more plausible than the linear model?

6. Do the elasticities of realization estimated by the CBO model indicate that a

reduction of average marginal tax rate from 20 to 15% would generate enough

new realizations to offset the reduction in rate (assuming both rates would be flat

rates, i.e., that all realizations would be taxed at that rate)?

7. What collateral effects might vitiate the revenue projections based on the model?

Table 14.1.6c. A semi-logarithmic regression model for capital gains realizations

Variable Estimate t

Constant –10.900 4.93

Log-Price 0.901 3.13

Log-RCE 0.848 7.30

Log-RY 1.839 4.08

MTR –0.032 5.81

R2 0.984

Durbin-Watson 1.796

St. err. of reg. 0.118

Sample period 1954–1985

The dependent variable is the logarithm of net long-term gains

Log-Price refers to the logarithm of the GNP deflator

Log-RCE refers to the logarithm of corporate equities (in constant dollars) held by individuals

multiplied by the share of dividends received by top 1% AGI taxpayers

Log-RY refers to the logarithm of the GNP (in constant dollars) multiplied by share of AGI

received by top 1% AGI taxpayers

MTR refers to the average marginal tax rate on net long-term gains for top 1% AGI taxpayers
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Source

Darby, Gillingham, and Greenlees, The Direct Revenue Effects of Capital Gains
Taxation, Res. Paper No. 8801 (U.S. Dep’t of Treasury 1988); Minarik, The New
Treasury Capital Gains Study: What is in the Black Box? (The Urban Inst. 1988);

Congressional Budget Office, How Capital Gains Tax Rates Affect Revenues: The
Historical Evidence (March, 1988).

14.1.7 Projecting airline costs re-revisited

In the ATA Airlines case (see Section 13.2.4) defense expert A. Frank Adams, III,

applied a RESET test and found Morriss’s regression equation misspecified.2 To

cure this he added a trend variable to Morriss’s equation that took on values 1, . . .,

11 for the fiscal years 1997–2008. For this new equation R2 ¼ 0:9867 and adjusted

R2 ¼ 0:9830. The coefficients were as shown in Table 14.1.7.

Questions

1. Interpret the trend variable.

2. Is this model superior to Morriss’s equation without the trend variable?

3. Using Morriss’s projection of $286.5M for revenue in 2008, what estimate does

the equation give for costs in that year? What conclusion does that generate for

the case?

Source

See Section 13.2.4.

Table 14.1.7. Airline costs regressed on revenue and trend ($ in millions)

Variable Coefficient Standard Error t-ratio P[|T |> t]

Constant 37.4083 7.0024 5.342 0.0011

Revenue 0.5386 0.0653 8.251 0.0001

Trend 9.1210 1.5228 5.989 0.0005

2 RESET stands for “regression specification error test” and was suggested by J.B. Ramsey (Tests

for specification errors in classical linear least squares regression analysis, 31 J. Royal Stat. Soc.,

Ser. B, No. 2, 350–71). It consists of including as additional explanatory variables the squares of

the predicted values of the dependent variable from the original model, possibly together with third

and higher order powers of those predicted values. If the null hypothesis that the set of coefficients

corresponding to the terms added to the original model are zero is rejected at a given level of

statistical significance, then the original model is deemed to have a misspecification error. The

highest power used should be specified. Adams quotes an F statistic with 2 and 6 degrees of

freedom for testing the joint significance of the terms he added to Morriss’s model, implying he

added second and third powers of the predicted values from Morriss’s model.
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14.2 Interactive models

An additive linear model assumes that the impact of a change in any explanatory

factor on the dependent variable is the same regardless of the levels of other factors.

This is often not true. An employer’s discrimination against women may well

differ—either in absolute dollars or in percentage terms—at different levels in the

work force. In this case, the coefficient of the sex factor represents a (complicated)

average level of discrimination. A more realistic representation of the salary model

must include one or more interaction or cross-product terms that combine sex and

other explanatory factors. For example, to test whether the shortfall in salary

increases with length of service, one might include, in addition to years-of-service,

an interaction term, the product of the sex indicator and years-of-service. This

cross-product would equal the number of years of service for men and zero for

women (assuming the sex indicator was coded 1 for men and 0 for women).

The coefficient of the simple years-of-service variable would reflect the return

per year of service for women; the coefficient of the interaction term would reflect

the added advantage given to men per year of service. The interactive model signals

a different mode of discrimination than does the additive sex coefficient model—

different returns per year of service, as opposed to a flat dollar shortfall. When

interaction terms are added, the sex coefficient alone no longer represents the sole

indicium of discrimination, or even the more important one; the interpretation is

more complicated, but inclusion of interaction terms may pinpoint the sources of

discrimination. In the interactive model of this example, the simple sex-coefficient

describes the effect of sex for employees with zero years of service, while the

coefficient of the interaction term describes how this effect increases or decreases

per additional year of service.

Interaction terms are required when the effect of an explanatory factor, say X1,

depends on the level of another (or more than one other) variable, say X2. Variable

X2 may be regarded as a modifier of the effect of X1, and, symmetrically, X1 may be

regarded as an effect modifier of X2. For example, consider the simplest interactive

model,

Y ¼ aþ b � X1 þ c � X2 þ d � X1X2 þ error:

Suppose that X1 is a dichotomous variable taking values 1 and 0, and X2 is either

continuous or dichotomous. When X1 ¼ 0, the model specifies the expected value

of Y, given X1 and X2, as

E Y
��X1 ¼ 0,X2

	 
 ¼ aþ c � X2;

since the interaction term X1X2 is zero. Thus, the regression coefficient c describes
the effect of a unit change in X2 for the reference group with X1 ¼ 0. (The constant

term measures the mean of Y when X1 and X2 are both zero.) On the other hand,

when X1 ¼ 1, the model specifies
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E Y
��X1 ¼ 1,X2

	 
 ¼ aþ bð Þ þ cþ dð Þ � X2:

The change in Y per unit change in X2 is now cþ d; the presence of X1 has modified

the effect of X2 from c to cþ d. The coefficient of the interaction term, d, thus
measures the change in the effect of X2 as X1 goes from 0 to 1. A symmetrical

description is that the coefficient b of X1 gives the difference in means of Y (when

X1 ¼ 1 vs. 0) for the reference subgroup with X2 ¼ 0. That difference is modified

by non-zero values of X2 to bþ d � X2ð Þ, as can be seen by subtracting the model

expression for Y when X1 ¼ 0 from that when X1 ¼ 1, holding X2 constant.

When d ¼ 0 the model is additive, in which case coefficients b and c may be

interpreted as main effects (of X1 and X2, respectively). This terminology is unam-

biguous because a unit change in X1 (or X2) has the same effect, viz., an average

change in Y of b (or c) units, irrespective of the value of the other variable. When

d is not zero, b and c are no longer usefully regarded as main effects, since that

interpretation now applies only to the reference subgroups (when X2 or X1 ¼ 0).3

Interest usually shifts in this case from b or c to d. For example, in the employment

discrimination model discussed in Section 13.5, the “sex-coefficient” b is the focus
of attention in an additive model where X1 is the sex indicator (0 for female, 1 for

male). It describes the mean salary difference between males and females, adjusted

for other factors in the model, say X2¼ years of service. A single coefficient suffices

because in the additive model the mean salary difference is a constant at all levels of

experience. In the interactive model including X1X2, the “sex-coefficient” b now

measures the dollar shortfall only for employees with zero years of service, while

d measures the difference between men and women in dollar return paid by the

employer per year of service. The latter coefficient is likely to be a more important

index of disparate treatment than the former. The coefficient b might even be

0, while if d were large, one would not say there was no discrimination.

Interactive models are also useful to describe changes in relations over time. If

X2 represents time measured from an initial moment, the interaction term allows for

an effect of X1 on Y with time dependent coefficients:

E Y
��X1,X2 ¼ t

	 
 ¼ aþ ctð Þ þ bþ dtð Þ � X1:

The coefficients a and b describe the baseline relation when t ¼ 0.

Sometimes categorical variables are coded with values other than 0 and 1, in

which case the coefficients have a different meaning than described above.

Suppose, for example, X1 and X2 are each dichotomous variables taking values +1

and �1. In this case neither of the “main effect” coefficients, b or c, describes a
simple difference in means. For example, when X1 ¼ 1 the difference in means (for

3 In general, depending on the coding, X1 or X2¼ 0 may not even denote a realizable value, e.g.,

when X2¼ age.
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X2 ¼ 1 vs. �1) is 2 cþ dð Þ and when X1 ¼ �1 the difference in means (for X2 ¼ 1

vs.�1) is 2 c� dð Þ. It follows that c equals one-half the average of these differences
and d equals one fourth the difference of these differences.

The above coefficients are familiar to statisticians from the analysis of variance,

but are not as easily interpreted as the corresponding coefficients when 0� 1 coding

is used. For this reason 0� 1 coding should be used whenever possible to avoid

confusion.

In order to test for significance of an interaction coefficient estimated by OLS,

the usual t and F tests may be applied (see Section 13.4) if the term is an

explicit parameter in the model. Note that here an infelicitous choice of parameteri-

zation can lead to trouble. For example, another common coding scheme when

studying four subgroups, as in the case of the double dichotomy above, is to use 0� 1

indicators X1, X2, and X3 for three of the groups, leaving the fourth group as

reference, which is then identified by its coding X1 ¼ X2 ¼ X3 ¼ 0. In the model

Y ¼ aþ b1 � X1 þ b2 � X2 þ b3 � X3 þ � � � þ error, the coefficient bi represents

the difference between means for group i vs. the reference group i ¼ 1, 2, 3ð Þ.
An interaction coefficient, i.e., a difference between differences, would be expressed

asd ¼ Y1 � Y2

� �� Y3 � Y4

� �
, whereY1, is the expected value of Y for observations

in group 1 with X1 ¼ 1 and X2 ¼ X3 ¼ 0, and similarly for Y2 and Y3: Y4 is the

expected value of Y for observations in the reference group, for which

X1 ¼ X2 ¼ X3 ¼ 0. Thus, d ¼ b1 � b2 þ b3ð Þ. If the interaction coefficient is the

object of interest in the study, to assess its significance we require the standard error

of the linear combination b̂ 1 � b̂ 2 � b̂ 3. The standard error here equals the square

root of the sum of the variance of each coefficient, minus twice the sums of

covariances between b̂ 1 and b̂ 2, b̂ 1 and b̂ 3, and b̂ 2 and b̂ 3. While the variance

terms are usually available in the computer output, the covariance terms are often

unavailable unless specifically requested. The better procedure is to express interac-

tion terms explicitly.

The preceding discussion considered only “first order” interactive models,

comprising equations with only pairwise products of variables. Higher-order

interactions are occasionally required, comprising products of three or more

variables. The higher-order interaction coefficients generally describe how lower-

order interaction effects vary with other variables.

Two cautionary notes are in order. The first is that computer programs

sometimes override the intended coding of an indicator variable, changing say

from 0� 1 coding to 
1 coding, even reversing the ordering of categories and,

thus, the sign of the intended regression coefficient. The unwary user of such

programs may be seriously misled by the printout.

The second caution is statistical: interaction effects usually have larger standard

errors than their main-effect counterparts, reducing the power of hypothesis tests

and widening confidence intervals. The reason for this may be seen readily in the

case of the double-dichotomy with 0� 1 coding. Suppose, for simplicity, the four

groups are of equal size n, and that the data in each group are distributed about the

respective group mean with variance σ2. In the interactive model, the interaction
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coefficient is estimated as d̂ ¼ yij � y10 � y01 þ y00, where the yij are the sample

means corresponding to X1 ¼ i, X2 ¼ j (i, j¼ 1 or 0). The standard error for this

coefficient is 4σ2=nð Þ1=2 ¼ 2σ=
ffiffiffi
n

p
. By contrast, the “main effect” coefficient for X1

is estimated as b̂ ¼ y10 � y00, with standard error
ffiffiffi
2

p
σ=

ffiffiffi
n

p
with a similar result for

ĉ ¼ y01 � y00. In an additive model with d ¼ 0, the main effect coefficient for X1 is

estimated as

b̂ ¼ ½ y10 þ y11ð Þ � ½ y01 þ y00ð Þ½ � ¼ ½ y10 � y00ð Þ þ y11 � y01ð Þ½ �;
in which the main effect of X1 is averaged across the two levels of X2, as is

appropriate when there is no interaction. The standard error of b̂ is thus the smallest,

½ 4σ2=nð Þ1=2 ¼ σ=
ffiffiffi
n

p
.

Further reading

Kleinbaum, et al., Applied Regression Analysis and Other Multivariable Methods
188–93 (1998).

14.2.1 House values in the shadow of a uranium plant

The Feed Materials Production Center was located on a site of approximately 1,000

acres in a rural-residential area some 16 miles north and west of Cincinnati, Ohio.

The plant was owned by the United States Government and was operated by a

private contractor for the U.S. Department of Energy; it refined uranium trioxide

powder into uranium metal and machined uranium metal for use in nuclear reactors,

and in the manufacture of plutonium at other locations.

On December 10, 1984, the contractor (NLO, Inc.) announced that during the

previous 3 months nearly 400 pounds of uranium trioxide powder had been released

accidentally into the atmosphere. Approximately 6 weeks after that announcement,

a class action suit was filed in federal district court alleging substantial personal

injury and property damage to residents living in the area around the plant, as a

result of the release.

The Rosen model

To support the plaintiffs’ claim for loss of single-family home values, Dr. Harvey

Rosen prepared amultiple regression studywith home value as the dependent variable

and explanatory variables to account for (i) differences in housing characteristics that

could affect sale prices; (ii) differences in economic conditions over the period that

could have affected sale prices, and (iii) location and time variables to reflect the effect

of proximity to the plant both before and after the accident.

The data used to estimate the model were sales of single-family residential

homes in three school districts adjacent to the plant, in the period 1983–1986.

There were approximately 2,000 transactions, but due to incomplete data there were

only about 1,000 sales that could be included in the analysis.
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In the principal regressionmodel, Rosen included the following indicator variables:

Pre-1985 In: coded 1 for a sale of a residence within five miles of the plant

perimeter prior to 1985, otherwise 0;

Pre-1985 Out: coded 1 for a sale of a residence beyond five miles prior to 1985,

otherwise 0; and

Post-1984 In: coded 1 for a sale of a residence within five miles after 1984,

otherwise 0.

The reference group consisted of the Post-1984 Out sales, coded 0 on the three

preceding indicators.

The regression included other factors—such as lot size and square-footage of

house—designed to adjust for differences in house values. The coefficients of the

indicator variables of interest were as shown in Table 14.2.1a.

From these results, Rosen concluded that the average loss in value to the

homeowners within the five-mile radius was about $6,000 and the difference was

statistically significant. He multiplied this figure by 5,500, the number of homes

within the five-mile radius, to come up with a damage figure of $33 million.

Questions on the Rosen model

1. Assuming the Rosen model is correct, how would you interpret the –6,094

coefficient?

2. What objections would you have to use of this figure as a measure of damage?

3. What is the value of an interaction coefficient that would be more relevant for

assessing damages? Is it statistically significant? (In computing significance, you

may assume that the estimates of the indicator variable coefficients are statisti-

cally independent; in fact, they are correlated).

The Gartside Model

Another expert for the plaintiffs, Peter Gartside, used data from a study by the

defendents and calculated regressions using other indicator variables to code for

distance and the pre-1985 and post-1984 years. He categorized distance (“RC”) into

0–1 miles; 1–2 miles; and 2–4 miles. The reference category was 4–6 miles, for

which observations were coded 0. A separate indicator was set up for each year

Table 14.2.1a. Rosen model results

Variable Estimate t

Pre-1985 In –1,621.11 –0.367

Pre-1985 Out 550.38 0.162

Post-1984 In –6,094.45 –2.432
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between 1984 and 1986 (“PC”), with 1983 being the reference category. He then

calculated a regression that included year, distance, and the interactions PC*RC,

which are products of the year and distance indicators. The significance of each

group of variables and the estimates are shown in Table 14.2.1b above. The OLS

regression means were then shown in a 4� 4 table (in dollar amounts and in

deviation form, setting 1984 as the zero point). These results are shown in

Tables 14.2.1c above and 14.2.1d below.

From the fact that houses near the plant showed a decline or only modest rise in

prices after 1984, while houses further away showed a substantial increase, Gartside

Table 14.2.1b. Gartside model results

Variable DF SS F Value PR> F

PC 3 914.2 1.03 0.3780

RC 3 5,581.3 6.30 0.0003

PC*RC 9 3,644.9 1.37 0.1972

Variable Estimate t PR> t

PC

(1984) –0.0921 –0.04 0.963

(1985) 2.1245 0.93 0.351

(1986) 8.8978 4.20 0.000

RC

(0–1) –4.5682 –0.26 0.796

(1–2) 0.8662 0.26 0.796

(2–4) 1.9371 0.56 0.574

PC*RC

1984/0–1 11.047 0.57 0.573

1984/1–2 2.470 0.49 0.625

1984/2–4 12.414 2.50 0.013

1985/0–1 2.701 0.14 0.887

1985/1–2 –2.675 –0.52 0.605

1985/2–4 3.510 0.80 0.425

1986/0–1 –7.440 –0, 41 0.681

1986/1–2 –5.790 –1.28 0.202

1986/2–4 3.327 0.79 0.429

Intercept 62.2

Table 14.2.1c. Gartside regression model average price ($ 000’s)

Distance 83 84 85 86

0–1 57.7 68.6 62.5 59.1

1–2 63.1 65.5 62.5 66.2

2–4 64.2 76.5 69.8 76.4

4–6 62.2 62.1 64.4 71.1
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concluded that the emissions had caused a diminution in value for houses nearer

the plant.

Questions on the Gartside Model

1. Interpret the PC, RC, and PC*RC coefficients, and describe the relevance of the

PC*RC coefficients to the damage issue. Working from the 62.2 regression

estimate for 1983 value of houses in the 4–6 mile band (these are the reference

categories), do you see how Tables 14.2.1c and 14.2.1d were derived from

Table 14.2.1b?

2. What objections would you have to Gartside’s conclusions?

Source

In Re Fernald Litigation, Master File No. C-1-85-0149 (SAS) (Rosen & Burke,

Preliminary Report on the Property Value Effects of the Feed Mate rials Produc-
tion Center at Fernald, Ohio on Single Family Residences Only (November
30, 1987); Gartside, Review of “Independent Analysis of Patterns of Real Estate
Market Prices Around the Feed Materials Production Center, Fernald, Ohio”).

Notes

A similar statistical study found that the accident at Three Mile Island caused

neither an absolute decline in prices, nor a slower appreciation rate for houses

within four miles of the plant in a 7-month period after the accident in 1979. Nelson,

Three Mile Island and Residential Property Values: Empirical Analysis and Policy
Implications, 57 Land Economics 363 (1981).

14.3 Alternative models in employment discrimination cases

The form of regression analysis used in many employment discrimination cases

involves a model for salary (or log salary) as the dependent variable which is

regressed on productivity factors and indicator variables for the various protected

groups (usually women, minorities, those age 40 or over). If the coefficients for

these groups are statistically significant, a prima facie case of discrimination is

Table 14.2.1d. Gartside regression model—average price changes from 1984

Distance 83 84 85 86

0–1 –10.9 0 –6.1 –9.5

1–2 –2.4 0 –3.0 0.7

2–4 –12.3 0 –6.7 –0.1

4–6 0.1 0 2.3 9.0
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made, subject to the caveat that some courts have required a showing of particular

instances of discrimination in addition to an overall pattern.

Courts often specify one or more failings when rejecting regression analysis:

(1) certain explanatory factors are potentially tainted by discrimination; (2) omis-

sion of important wage-explaining variables; (3) incorrect aggregation of different

groups into the same regression; (4) inclusion of observations from a time when

discrimination was not illegal; (5) speculative assumptions that the independent

variables have in fact determined decisions to raise pay or secure promotion.

The two-equation model

Campbell, Finkelstein, and others have argued that instead of a single equation with

dummy variables designating protected groups, the coefficients of explanatory

variables from two or more separate equations should be compared. Thus, determi-

nation of sex discrimination would involve a comparison of two equations, one for

men and one for women. A larger coefficient for the experience variable in the

men’s equation, for example, would indicate that the employer was paying men

more than women for each additional year of experience. The two-equation model

is equivalent to a single-equation interactive model containing cross-product terms

between the sex indicator and each of the other explanatory factors. The OLS

coefficients of the cross-product terms equal the differences between corresponding

OLS coefficients in the two separate equations.

The two-equation approach, arguably, is preferable for several reasons. If the null

hypothesis of no discrimination is to be rejected, the single-equation model

pre-specifies the form in which discrimination was practiced; the two-equation

model does not. Using the two-equation model, the fact-finder may compare the

coefficients of the various explanatory factors and pinpoint the source of any

discrimination, thereby satisfying judicial insistence that the particular discrimina-

tory practice be identified. For example, a markedly lower coefficient for years of

experience in the women’s equation suggests that the employer has discriminated

with respect to that factor. Finally, back pay due to each individual can be estimated

from the regression equations because the particular subgroup (e.g., experienced

women) adversely affected by discrimination can be identified more accurately. See

Campbell, Regression Analysis in Title V11 Cases: Minimum Standards, Compara-
ble Worth, and Other Issues Where Law and Statistics Meet, 36 Stan. L. Rev. 1299

(1984); see also Finkelstein, The Judicial Reception of Multiple Regression Studies
in Race and Sex Discrimination Cases, 80 Colum. L. Rev. 737, 739, n.12 (1980).

The trade-off implicit in the two-equation model is loss of power: comparison of

several coefficients of explanatory factors requires higher levels of significance to

compensate for the higher rate of Type I error when making multiple comparisons.

See Sections 6.2 and 7.2. By contrast, the sex coefficient model tests only a single

coefficient for significance, under the assumption that there are no interaction terms,

i.e., that the return for each explanatory factor is the same for men and women.
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The urn model

Levin and Robbins, focusing on the issue of statistical significance of unexplained

disparities in mean wage between men and women, propose a different method to

test that issue. Their approach, called an “urn model,” regresses salary for all

employees on explanatory variables, excluding indicator variables for group status,
thereby obtaining a sex/race-neutral value for the expected salary of each

employee. This adjusted mean salary represents the portion of an employee’s salary

explained by deviations of the explanatory factors from their mean. The role of OLS

regression in this context is solely to produce an adjustment formula to define the

“explained portion.” The difference between the employee’s actual salary and the

explained portion is the residual or “unexplained portion” of salary. The difference

between the mean residual for men and women is then tested for statistical

significance.

In classical regression analysis, randomness is modeled through the assumption

that replicate samples of employees would produce residuals with randomly differ-

ent realizations. Levin and Robbins object that this view is highly artificial, if not

untenable, because it posits a hypothetical population of employees (potential or

future) from which the actual set is drawn by random sampling. The classical

analysis also makes the strong assumptions that salaries are determined by a

model formula plus error, that those errors are independent, and that they are

normally distributed (see Section 13.8).

The urn model approach makes no assumption of hypothetical employees or

random sampling errors, or any model-plus-error salary, or independence, or

normality of errors. Instead, the urn model treats residuals like chips in an urn

that are withdrawn at random without replacement. The chips withdrawn simu-

late the (e.g.) male residuals, while the remaining chips simulate the female

residuals. The urn model treats the numbers of men and women and the values

of their residuals as fixed, once given the adjustment formula. Its key assump-

tion is that the residuals are exchangeable, i.e., that each possible assignment of

sexes to the salary residuals is equally likely. This randomization device

simulates situations that might appear under the null hypothesis of no influence

of sex/race on salary.

If the average residual for men minus the average residual for women is so large

that in simulations the difference would occur with small probability, say less than

0.05, then significance at the 5% level is declared. If the residual difference occurs

fairly often in simulations, then the urn model shows that a sex-neutral random

mechanism could have produced the observed disparity, which is then declared not

significant. In practice it is not necessary to physically carry out the simulations, as

simple formulas are available to approximate tail-area probabilities. See Levin &

Robbins, Urn Models for Regression Analysis, with Applications to Employment
Discrimination Studies, Law & Contemporary Problems, Autumn 1983 at 247. The

urn model was accepted by the district court in Sobel v. Yeshiva University,
566 F. Supp. 1166 at 1169–70 (S.D.N.Y. 1983), but was rejected by the court of

appeals on the ground that the model merely showed that the disparities could have
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occurred by chance, not that they did.4 Id., 839 F.2d 18 at 35–36. The urn model

was accepted by the administrative law judge in U.S. Dep’t of Labor v.Harris Trust
and Savings Bank, No. 78-OFCCP-2 (ALJ Decision Dec. 22. 1986) as

demonstrating statistically significant disparities against women and minorities.

Id. at 63. See Section 14.4.1. It should be noted that the urn model is concerned

only with testing the null hypothesis, and so does not allow the kind of detailed

estimation of effects offered by the two-equation approach.

The test statistic in the urn model is described in terms of Δr, the difference in
mean residual between men and women, interpreted as the unexplained portion of

the mean wage disparity between sexes. (When the wage variable is log dollars,Δr
is approximately the fraction of the geometric mean wage ratio for the two groups

that is unexplained by the adjustment procedure.) This difference is not intended to

be an estimate of the sex coefficient in a single equation model; the principal

intended use of the unexplained portion of the mean wage disparity is as a score

by which one assesses statistical significance of unexplained disparities. In fact, the

difference in mean residuals is systematically smaller than the sex coefficient by an

amount that depends on the squared multiple correlation RZ(X)
2 between sex (Z) and

the other predictors in the model (X). Specifically, the difference in mean residuals

is equal to the sex coefficient reduced by the factor 1� R2
Z Xð Þ. If sex is uncorrelated

with other explanatory factors, there is no shrinkage; if it is highly correlated, the

shrinkage is nearly complete and the difference in mean residuals approaches zero.

The reason for this shrinkage is that the sex coefficient reflects the correlation of

sex with salary after the effect of all other variables has been taken into account.5

Each coefficient is computed in similar fashion, with magnitude depending on its

factor’s correlation with the dependent variable, the correlation with other explan-

atory factors, and the correlation of other explanatory factors with the dependent

variable.6

The urn model differs in that the coefficients of the productivity factors are

computed without regard to sex. To the extent that sex is a factor in determining

salary, and is correlated with the productivity factors, its effect is assigned to those

factors. Thus, the productivity coefficients are unbiased as estimators of productiv-

ity only under the null hypothesis of no discrimination. The urn model gives priority

to the productivity factors since it works under the null hypothesis, asking whether

the data are consistent with a nondiscriminatory explanation.

4 The objection by the court of appeals is misinformed, since no statistical test of significance does

more than this and yet it is well established that a nonsignificant difference is evidence of

nondiscrimination, if there is adequate power.
5 Technically, the sex coefficient represents the simple linear regression coefficient of the residuals

of salary (after salary is regressed on explanatory factors) on the residuals of sex (after sex is

regressed on explanatory factors).
6 The relationship in the case of sex and a single other explanatory factor may be seen from the

following formula: b̂ Z ¼ rYZ � rYX � rZZð Þ= 1� r2ZX
� ��  � SY=SZð Þ, where Y denotes salary, Z is the

sex indicator, X is the explanatory factor, the r’s are correlation coefficients, the s’s are standard

deviations, and b̂ Z is the sex coefficient. See Section 13.2.
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To calculate the significance of Δr, one uses the statistic

z ¼ Δr= s n= mwð Þf g1=2
h i

, where s2, the variance of the residuals, is equal toX
r2i = n� 1ð Þ; m is the number of men; w is the number of women; and n equals

m +w. In large samples, z is approximately a standard normal variable. Generally,

z is smaller in magnitude than t, the test statistic for the sex coefficient.7 When the

explanatory factors are uncorrelated with sex, the two statistics are asymptotically

equivalent under the null hypothesis. If one is willing to assume the validity of the

sex-coefficient model, the urn model represents a loss of efficiency, but such a loss is

unimportant in large samples under the alternative hypothesis.

The urn model is most effective in stratified analyses where the assumption of

exchangeability of residuals within homogeneous strata is most tenable. The evi-

dence is combined across strata in a manner analogous to the Mantel-Haenszel

statistic. See Levin and Robbins, supra at 412. In fact, the z-score for a stratified urn
model, with dichotomous outcomes and no regression adjustments within strata,

reduces exactly to the Mantel-Haenszel z-score.
Figure 14.3 illustrates the ideas behind the alternative forms of regression

analysis discussed above.

14.4 Locally weighted regression

A single salary regression equation that is fitted globally to all employees may not

accurately model the employer’s salary process because it fails to represent differ-

ent patterns of remuneration at different levels of qualifications, experience,

responsibilities, or productivity. To extend the model to allow for different returns

on these factors by adding interaction terms is a daunting task to accomplish

properly in all but the simplest cases. Instead, one can fit a model to the data locally
by using only those data points that fall within a neighborhood of the explanatory

factors for a given employee, then repeating this procedure once for each employee.

Restricting attention to local data in this way assures us that employees with very

different profiles from a given employee will have no influence on the model that

pertains to the given employee. Thus, the technique, known as locally weighted
regression, explains each employee’s salary in terms of other similarly situated

employees.

The method requires a distance function to define how close a set of values of the

explanatory factors is to the values for the referenced employee, and a cutoff

7 The relation between them is given by the expression

z ¼ t

1þ t2

n� p�1

� �1=2 � 1� R2
Z Xð Þ

� �1=2
� n� 1

n� p� 1

� �1=2

;

where p is the number of explanatory factors in the adjusting equation, including the constant.
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Fig. 14.3. Alternative forms of regression analysis in employment discrimination cases. (a) The
sex coefficient model—The model posits a constant dollar shortfall for women. (b) The

two-equation model—predicted salary for men based upon the women’s equation is lower than

actual; predicted salary for women based upon the men’s equation is higher than actual. (c) The
urn model—male residuals tend to be positive while female residuals tend to be negative
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criterion to define the extent of the local neighborhood. Within the neighborhood,

weights may be used to give preferential emphasis in the fitting to those points

closest to the employee’s reference point, thereby diminishing the influence of data

at the edges of the neighborhood. This refinement requires a weighting function.

Locally weighted regression is a generalization of a smoothing algorithm for

scatterplots. Practical details and elaborations in that context are given in

Cleveland, Robust Locally Weighted Regression and Smoothing Scatterplots,
74 J. Am. Stat. Assoc. 829 (1979).

As a rule, locally weighted regression produces fitted values with a substantially

smaller residual sum of squares than that of global models, even when global

models include higher order interaction terms not used in local fitting. This benefit

counteracts the loss of a global model’s convenient summary description through a

single set of regression coefficients. Locally weighted regression is particularly well

suited to the urn model method of analysis (see Section 14.3) because all that is

required in that method is the unexplained portion of an employee’s salary (which

may be obtained as the residual from the local fit) and not necessarily any regression

coefficients.

14.4.1 Urn models for Harris Bank

The Office of Federal Contract Compliance of the U.S. Department of Labor

charged Harris Bank with discrimination against blacks and women in initial salary

and advancement. Both sides prepared multiple regression studies. To avoid what

defendant’s expert called “nonhomogeneous job bias,” employees were divided

into cohorts, such as professional employees hired in the period 1973–1977. In one

set of regression studies for this group the dependent variable was the log of initial

salary; explanatory variables were age and age squared, indicators for prior profes-

sional job and prior job in finance, years of work experience and work experience

squared, a series of indicator variables for higher education, time out of the work

force, and business education.

Plaintiff’s expert prepared two urn model studies for this cohort of 53 minority

and 256 white employees. The first study included the above factors in a global

OLS regression model to adjust log salary. The difference between the average

residual for whites and average residual for minorities was 0.1070; the standard

deviation of the residuals was 0.2171. The second study used locally weighted

regression based on approximately 100 of the “nearest neighbors” for each

employee. In this model, the difference in average residuals was 0.0519 and the

standard deviation of the residuals was 0.1404.
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Questions

1. Interpret the results of the global and locally weighted regressions.

2. Are the differences statistically significant? What does statistical significance

mean in this context?

3. Does the difference between the global and locally weighted regression results

cast doubt on the correctness of the global model?

4. If defendant had used the urn model and it had not shown statistical significance,

what objections might plaintiffs have made?

Source

U.S. Dep’t of Labor v. Harris Trust and Savings Bank, No. 78-OFCCP-2 (Dec.

22,1986) (ALJ Decision).

14.5 Underadjustment bias in employment regressions

The problem of underadjustment bias in multiple regression models has become the

focus of judicial attention and considerable academic debate in anti-discrimination

class actions. The problem of underadjustment arises because the true productivity

of employees cannot be observed directly, so that regression analysis, in adjusting

for productivity differences, has to make use of proxies for productivity. These

usually include education, experience, and other factors. The use of proxies,

however, may be misleading because of their imperfect correlation with

productivity.

To explore this problem we begin by looking more closely at the question of bias

in the proxies. A proxy may be “unbiased” in that it applies to men and women

equally, but this vague notion encompasses two assumptions that are in fact

antithetical. The first assumption is that equally productive men and women will

have, on average, the same value of the proxy. This assumption can also be

expressed as “the regression of proxy on productivity is the same function of

productivity for men as for women.” The simplest example of this model occurs

when proxy equals productivity plus an uncorrelated random error with zero mean

for both sexes. The second assumption reverses the conditioning: men and women

with equal values of the proxy are, on average, equally productive, i.e., productivity

regressed on proxy is the same function of proxy for men and women. The simplest

example of this assumption occurs when productivity equals proxy plus an uncor-

related random error with zero mean for both sexes. Note that either assumption is

compatible with a difference between men and women in terms of both average

proxy and productivity.

Because there are two regression relationships (see Section 13.1, at p. 372–373),

if the proxy is an imperfect surrogate for productivity, the regression of proxy on

productivity will not be the same as the regression of productivity on proxy. In fact,
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if men have different average proxy values than women, the truth of one assumption

generally implies the falsity of the other. For example, if it is true that equally

productive men and women have, on average, the same proxy value (first assump-

tion), then it will not be true that men and women who have the same proxy are

equally productive on average (second assumption); rather, assuming men have

higher average scores on the proxy, women with the same score as men will tend to

be less productive, on average. It follows that a fair employer who awards salary

solely on the basis of productivity would pay men more than women with the same

proxy, but the difference would falsely be attributed to sex discrimination in a

multiple regression salary equation using that proxy for productivity. We call this

“underadjustment” bias.

The reason for the seemingly paradoxical difference between male and female

regressions of productivity on proxy can be understood by looking at Fig. 14.5,

which illustrates the first assumption. Suppose the proxy is an evaluation score. If

the regression of evaluation score on productivity is the same for the two groups

(see line AB on the figure, portraying E[eval|prod]¼ prod), then the regression of

productivity on evaluation score will be split into separate regression lines for men

(line CD) and women (line EF). This splitting is a regression-to-the-mean effect,

which is seen most clearly for an evaluation score that lies between the mean scores

for men and women (line at M0). Because the correlation between evaluation score

Fig. 14.5. The mechanism of underadjustment bias
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and productivity is imperfect, the average productivity for men at score M0

regresses upward from the value given by regression line AB toward the overall

mean productivity of men, while the average productivity for women at score M0

regresses downward from regression line AB toward the overall mean productivity

of women.8

Under the second assumption, however, no underadjustment bias occurs. The

reason is that now men and women with equal proxy values are equally productive,

on average, and should be paid equally, on average, by a nondiscriminatory

employer. A regression based on that proxy would not be expected to show a sex

effect, i.e., the sex-coefficient is unbiased.9 The fact that men would have a higher

proxy on average than equally productive women, though paradoxical, is irrelevant

to whether equally productive employees are paid the same average salary.

Thus, whether a regression equation is threatened by underadjustment bias

depends on the relation between the proxies and productivity. Whether the first or

second assumption holds (if either) is an empirical question that seldom can be

answered solely by the data. However, the nature of the proxies may make certain

positions more or less tenable in the absence of specific evidence bearing on the

issue. If a proxy measures a cause of productivity—such as years of education or

work experience—then, absent evidence to the contrary, it would be reasonable to

assume that the proxy plus a random error equals productivity because that is

consistent with the causal model. From this it follows that there is no

underadjustment bias. An employer who objects to the second assumption for

these causal variables would have to introduce some evidence showing that there

are omitted factors that correlate with sex and productivity (given the other included

variables in the model) that would cause the second assumption to be violated.

If the causal direction is reversed, however, so that the proxy reflects or is a
consequence of productivity, then, absent evidence to the contrary, it seems rea-

sonable to make the first assumption, since the assumption that productivity plus a

random error equals the proxy is consistent with the causal direction. In such

circumstances, if men score higher on the proxy than women, on average, then

the use of such a proxy in the regression would create underadjustment bias.

An evaluation score is an example of a reflective proxy for which the first assump-

tion is plausible for a nondiscriminatory employer. Plaintiffs who object to the first

assumption for a particular reflective proxy would have to introduce evidence either

of taint or of bias in the proxy. Defendents who object to regression results from

8The same effect is exhibited if the conditioning proxy value is above or below the mean values

for both men and women. If above, the conditioning value represents a smaller number of standard

deviations above the mean for men than for women. As a result, the average productivity for men

with that level of proxy regresses less toward the mean overall productivity of men than the

average productivity of women at that value regresses toward the mean overall productivity of

women.
9 If the employer does award men a given amount more than equally productive women, the

expected sex-coefficient will equal that amount.
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models that include such a proxy will have an argument that the statistically

significant sex-coefficient in the model is only a consequence of underadjustment.10

The foregoing indicates that judicial analysis of regression models depends on

the type of proxy. The question in every case is whether, on average, men and

women with the same values of the proxies would be equally productive. We have

now identified two circumstances in which this question may be answered in the

negative: (1) the inclusion of even unbiased reflective proxies with different means

in the two groups; or (2) the existence of omitted identifiable causal factors that are

correlated with sex, after accounting for included variables.

The extent of underadjustment bias turns on the unobservable (to the analyst)

correlation between the reflective proxies and productivity. For a nondiscriminatory

employer, i.e., one who awards salary solely on the basis of productivity, the

difference in the regression estimates of salary for men and women for a given

level of the explanatory factors is equal to the unadjusted average salary difference

for men and women times one minus the squared multiple correlation coefficient

between the proxies and true productivity.11

The extent of correlation between the proxy and true productivity is therefore

both crucial and generally unknowable. There are some guideposts, however.

Extensive studies of correlations between scores on tests designed to predict

performance and actual academic performance have generally found values less

than 0.60. See, e.g., College Entrance Examination Board, ATP Guide for High
School and Colleges 28–29 (1989). If the correlation in the occupational context

were no better than this, a salary difference equal to at least 64% of the unadjusted

difference would be produced by underadjustment. For lower-level jobs in particu-

lar, validated proficiency tests or carefully structured and objective evaluation

scores may have higher correlations, with the highest values attained for multiple

reflective proxies or for proxies that are themselves elements of productivity. While

hard data are lacking on this subject, we presume that correlations above 70%

would be unusual. Thus, one might say that the lower limit of underadjustment bias

would be at least 50% of the unadjusted salary difference, or of the difference that

remains after adjustment for causal factors.

Another element to consider is the degree of correlation between the proxy and

salary for men or for women alone. This correlation would set a lower bound on the

correlation between productivity and proxy because errors in the assignment of

10 The line between causal and reflective proxies is not always as clear as this description may

suggest. For example, rank at an academic institution, while primarily a reflective proxy, does have

some causal aspects as well. It probably should be considered reflective.
11 See Robbins & Levin, A Note on the ‘Underadjustment Phenomenon,’ 1 Statistics and Proba-

bility Letters 137–139 (1983). If the regression includes both reflective and causal proxies, and the

employer is nondiscriminatory, the difference in regression estimates of salary for men and women

for a given level of explanatory factors is equal to the difference between the regression estimates

of salary for men and women using only the causal proxies, times one minus the partial squared

multiple correlation coefficient between the reflective proxies and true productivity, given the

causal proxies.
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salary reduce the correlation below the correlation between productivity and proxy.

However, having a lower bound on the correlation gives one an upper bound on the

salary difference that could be attributed to underadjustment bias, and if the residual

salary difference exceeded that amount the employer could not fairly argue that the

difference was attributable solely to underadjustment.12

As the foregoing analysis suggests, the threat of underadjustment bias will not

exist in every case. In fact, the dynamics of the adversarial process may limit its

scope. Plaintiffs tend to exclude reflective proxies from their regression studies

because they are potentially tainted. Defendant employers are more likely to use

them, but are generally reluctant to present regression studies unless the

sex-coefficient is not statistically significant. Thus, regression models with reflec-

tive proxies and statistically significant sex-coefficients may be relatively few—at

least in the first round. Models that raise the issue are more likely to appear in the

second round, when plaintiffs may introduce one with reflective proxies to counter

an employer’s assertion that some essential variable was omitted in the first-round

model; or the defendant employer may introduce one to show that some test or

measure of productivity sharply narrows the gap between men and women, even if

it is not closed entirely and remains statistically significant.

In such cases, the threat of underadjustment prevents us from finding discrimi-

nation simply from a statistically significant sex-coefficient. Instead the court must

look at the degree to which reflective proxies are likely to correlate with productiv-

ity. When there is reason to think that the correlation between productivity and

reflective proxies is high, and men score higher than women on the proxies, the

potential for bias should be a reason for caution, but not the sole ground for

rejecting the regression results. The weight given a statistically significant

sex-coefficient should be diminished when the proxies are believed to be less

accurate reflectors of productivity. The formulas for the degree of bias given in

this section can be a starting point for the appraisal of such regression results.

14.5.1 Underadjustment in medical school

An issue of bias was raised by experts for the defense in Sobel v. Yeshiva University,
839 F.2d 18 (2d Cir. 1988), in which the Albert Einstein College of Medicine

(AECOM) of Yeshiva University was accused of discrimination against women M.

D.s with respect to pay and promotion. The difference in mean salaries for men and

women without adjustment for differences in productivity was approximately

$3,500. However, men had greater experience, education, and tenure at the institu-

tion, as well as higher rank.

12 This assumes that there is no direct effect of proxy on salary, only an indirect effect mediated

through productivity. If there is a direct effect—salary awarded on the basis of, e.g., evaluation

score—the correlation between productivity and proxy could be less than the correlation between

salary and proxy.
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Plaintiffs’ experts initially presented a multiple-regression model in which

salary was the dependent variable and the explanatory variables were indicators

for education, work experience, tenure at the school, and year. After a critique of

this model by defendant’s experts, plaintiffs revised their model to estimate salary

for each year separately, and added as variables license to practice medicine in

New York State, rate of publications, and detailed departmental classifications. The

sex coefficients were negative in every year, with the largest negative value being

�3, 145 t ¼ �2:18ð Þ for 1978. Since the indicator variable for sex was coded 1 for
women and 0 for men, the coefficient indicated that women faculty members on

average earned $3,145 less than equally qualified men.

Defendant also claimed that rank, time in rank, assignment of administrative

responsibility, and assignment of research or clinical emphasis (since clinical

departments were more highly paid than research departments) were variables

that should have been included in the model. Defendant argued that rank in

particular was needed to account for aspects of productivity not reflected in the

other explanatory variables. Protesting that rank was not a cause of productivity but

a result of it, and that the conferring of rank was tainted by the school’s practices,

plaintiffs nevertheless presented a revised regression adding defendant’s variables.

The resulting sex coefficient was �2, 204 t ¼ 1:96ð Þ, again indicating that on

average women earned $2,204 less than equally qualified men. The effect of adding

this last group of variables was to increase R2 from 0.7297 to 0.8173.

The district court found for the defendant, holding that the difference in salary

shown by the regressions might have been due to underadjustment bias:

The evidence was clear that certain types of productivity, such as the procurement and

management of large research grants, clinical expertise, the generation of revenue through

private practice and affiliation practice, and a significant clinical work load, had a direct

effect upon compensation and should have been accounted for as significant sources of

productivity differences. In addition, it was necessary to take account of the less tangible

but highly important factor of the quality of performance in the areas of research, teaching,

and clinical practice. Although these factors were not easily quantifiable, we cannot

conclude that their omission had no effect on the results of the multiple linear regression

study. On the contrary, the fact that male faculty members scored higher on sixteen of the

plaintiffs’ twenty proxies strongly suggests that the omission of the less tangible factors

distorted the results in favor of the plaintiffs. The Court agrees, therefore, with the

defendant’s conclusion that the failure to adequately account for productivity resulted in

an underadjustment bias and plaintiffs’ overstatement of the sex-coefficients.

Id., 566 F. Supp. at 1180.

The court of appeals reversed on issues not relevant here, and on remanding

instructed that faculty rank should be used in the regression and that the

underadjustment defense should be rejected. On the latter point, the court of appeals

reasoned:

Yeshiva’s experts concluded that Sobel’s regressions contained an “underadjustment bias”

simply because men scored higher on the included variables. Insofar as Yeshiva argued that

simply because men “scored” higher the imperfection of the included variables itself

proved that the regression underadjusted for productivity, the argument is unpersuasive.

Men might have scored even higher had the variables perfectly reflected productivity, and
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this would have explained even more of the apparent gender disparity. But it is equally

possible that the imperfection had the opposite effect; that women would have scored

higher if the proxies were more accurate. On the present record, there is no way to tell

which gender was disadvantaged by the imperfections.

Put another way, all that is known about the proxies used by plaintiffs in their regression

is that they are not perfect measures of productivity, and that insofar as they do measure

productivity they show that men on the AECOM faculty possess the attributes tied to

productivity (e.g., experience) in greater measure. What is not known is whether variables

that exactly measure productivity would show the same advantage for men (and thus would

explain the same portion of the raw gender disparity as the imperfect proxies), a lesser

advantage for men (and therefore explain less of the gender discrepancy), or a larger

advantage. In short, the simple fact of imperfection, without more, does not establish that

plaintiffs’ model suffers from underadjustment, even though men score higher on the

proxies.

Id., 839 F. 2d at 34.

Questions

1. The preceding section identified two circumstances in which the regression of

productivity on proxies would not be the same for men and women. See pp. 472.

Which of these was found to exist by the district court? Did the district court deal

with the other circumstance?

2. Was the court of appeals correct when it concluded that “the simple fact of

imperfection, without more, does not establish that plaintiffs’ model suffers

from underadjustment, even though men score higher on the proxies”? Assum-

ing the statement is true, does it justify the court’s rejection of defendant’s claim

that the sex coefficient in plaintiffs’ regressions was not a reliable indicator of

discrimination?

3. Is it likely that the sex coefficient of –2,204 in plaintiffs’ revised regression is

entirely due to underadjustment?

14.6 Systems of equations

We have mentioned that a correlation between a regressor and the error term arises

when the regression equation is part of a system of equations in which the regressor

is determined within the system, i.e., appears itself as a dependent variable in one

equation in the system (Section 13.8 at p. 424). Explanatory variables determined

within the system are called endogenous variables; those determined outside the

system are called exogenous variables. A specific example may clarify these ideas.

Suppose we posit a “supply” function for murders (Section 14.6.1) in which the

rate of murder is a weighted sum of (i) the risk of execution for those convicted,

(ii) an exogenous variable (such as an index of violent crime other than murder), and

(iii) an error term. In addition to the posited negative causal relation between

execution risk and murder rate, there may be a reciprocal relationship: a sharp

increase in the murder rate could raise a public outcry for more executions. This
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reciprocal relationship is represented by a separate function in which the execution

rate is a weighted sum of the murder rate (an endogenous explanatory variable) and

exogenous explanatory variables (probably different from those in the murder

equation).

The reciprocity of the feedback relation compels us to abandon OLS as a method

for determining the murder rate equation. Because of the feedback, correlation

exists between the risk of execution and the error term. For example, if in a given

period the error is positive (i.e., the rate of murder is above the mean value

predicted by the equation), that higher rate would in turn produce a greater rate of

executions (ignoring the lag factor, which obviously would be important here), and

thus positive errors would be associated with higher values of execution risk. The

resulting correlation means that OLS estimates of the murder rate equation would

be biased and inconsistent because the correlated part of the error term would

wrongly be attributed to the execution risk.

Here is a second example of a reciprocal relationship. In an antitrust case

involving corrugated cardboard containers, plaintiffs introduced a regression equa-

tion in which the price of containers sold by manufacturers was regressed on

various factors, including the price of containerboard sheets from which containers

were made (see Section 14.1.1). Plaintiffs conceded that, if prices for corrugated

containers dropped significantly, prices of containerboard sheets would also

decline. This reciprocal relation creates a correlation between containerboard

price and the error term that would bias OLS estimates of the price equation.

The point of these examples is that a full model involves more than a single

equation. Econometrics usually calls for separate supply and demand equations,

called structural equations, with the same dependent variable in both. Price appears

in both as an endogenous explanatory variable, but otherwise the explanatory

factors are different. A technically correct method of estimating the coefficients

for price is to solve the two equations using special methods (discussed below).

In many cases, econometricians do not estimate separate structural equations,

but content themselves with reduced form equations that combine supply and

demand factors in a single equation. Although in the absence of reciprocal relations

this practice is not objectionable per se, it may be desirable to estimate supply and

demand equations separately. Structural equations disclose relationships concealed

by the reduced form, which is essentially a black box; estimating them separately

may show perverse results (e.g., demand rising with price) that would reveal defects

in the model.

Various techniques have been developed to deal with the problem of estimation

when there are reciprocal relations in a system of equations. Perhaps the most

widely used is the two-stage least-squares technique. In the first stage, the explana-

tory variable carrying a reciprocal relation is estimated in a separate equation in

which it is the dependent variable and other exogenous explanatory variables in the

supply and demand equations are the regressors. Since none of the exogenous

explanatory variables is correlated with the error, neither their linear combination

nor the regression values of the endogenous explanatory variable are correlated

with the error in the original supply and demand equations. In effect, the
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endogenous variable has been purged of its correlation with the error. In the second

stage, separate supply and demand equations are estimated by OLS using regression

values for the endogenous variable (from the first stage) rather than its original

values. The result is consistent (although not unbiased) estimates of the parameters

in the supply and demand equations. Where there is more than one such endogenous

variable, each must be estimated in a separate equation.

Two-stage least squares is an example of a “limited-information” technique,

since it involves estimating only one equation at a time; it does not require

estimation of all variables in all equations of the system. There are more compli-

cated “full-information” techniques for simultaneously estimating all equations

which require observations on all variables in the system. Full-information

techniques include such methods as three-stage least squares and maximum likeli-

hood. The advantage of such techniques is that they are more efficient than

two-stage least squares.

Further Reading

Wonnacott & Wonnacott, Econometrics, chs. 7–9 (2d ed. 1979).

Theil, Principles of Econometrics, ch. 9 (1971).

14.6.1 Death penalty: Does it deter murder?

During the 1960s, attacks on capital punishment as “cruel and unusual,” in violation

of the Eighth and Fourteenth Amendments to the U.S. Constitution, focused

attention on whether the death penalty deterred potential murderers. Contending

that it might, the Solicitor General, appearing as amicus in Gregg v. Georgia,
428 U.S. 153 (1976), cited a then-unpublished study by Isaac Ehrlich of the

University of Chicago. Ehrlich had used regression analysis and historical data to

reach the tentative conclusion that every execution prevented seven to eight

murders. This dramatic and publicized finding contradicted much previous research

on the subject.

Ehrlich’s data consisted of aggregate crime statistics for the United States from

1933 to 1969. The model treated estimates of the murder rate and the conditional

probabilities of apprehension, conviction, and execution as jointly determined by a

series of simultaneous regression equations. The key equation was a murder supply

function in which the murder rate (murders and non-negligent homicides per

thousand) was regressed on the product of endogenous and exogenous variables.

The endogenous variables were probability of arrest, probability of conviction

given arrest, and probability of execution given conviction. The probability of

arrest was estimated from the ratio of arrests to murders. The execution risk was

defined in several ways; the definition principally relied on by Ehrlich had one of

the largest negative coefficients, and had the largest t-value. It was defined for year

t as an estimate of executions in year t+ 1 based on a weighted average of

executions in the five preceding years (presumably to mimic the estimate that

would be made by a person coldly calculating the risks of murder) divided by the

number of convictions in year t.
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The exogenous variables were: (1) fraction of the civilian population in the labor

force; (2) unemployment rate; (3) fraction of residential population in the age group

14–24; (4) permanent income per capita; (5) chronological time; (6) civilian popu-

lation in 1,000s; (7) per capita real expenditures of all governments (excluding

national defense) in millions of dollars; and (8) per capita (real) expenditures on

police in dollars lagged 1 year.

The model was in the multiplicative form

Q=N ¼ CXa1
1 � Xa2

2 � Xa3
3 � eν;

where Q/N is the murder and non-negligent manslaughter rate; C is a constant; X1 is

the risk of execution given conviction; X2 is a vector of the other endogenous

variables, each with its own coefficient; X3 is a vector of the exogenous variables,

each with its own coefficient; and v is the error term, which is assumed to be

correlated with its immediately preceding value because of the feedback relation-

ship between the murder rate and the execution rate. The equation was estimated

using a three-stage least-squares procedure.

The simple correlation coefficient between the murder rate and execution risk

was 0.096. But when the regression model was estimated using a modified first-

difference linear equation in natural logarithms, the elasticity of execution risk

became �0.065, with upper and lower 95% confidence limits of �0.01 and �0.10.

In Ehrlich’s data, the average annual number of executions was 75, and the

average annual number of murders and non-negligent homicides was 8,965.

Ehrlich conceded that his result was heavily influenced by the later years in his

data. The national homicide rate, as reported by the FBI, rose precipitously in the

middle and late 1960s; between 1962 and 1969 it increased almost 60% to a level

exceeded only by the rate for 1933. At the same time, executions declined. The

average numbers of executions for the 5-year periods between 1930 and 1960 were

155, 178, 129, 128, 83, and 61. There was an average of 36 executions in 1961–1964;

there were seven in 1965, one in 1966, two in 1967, and none after that (for a while).

Questions

1. How did Ehrlich compute that each execution saved 7–8 lives?

2. What does Table 14.6.1, which estimates Ehrlich’s model for sub-periods,

suggest about Ehrlich’s results?

3. What is the effect of using the logarithmic transformation to estimate this

model?

4. What factors other than deterrence may account for the partial elasticity of the

murder rate with respect to the execution risk in Ehrlich’s model?

Source

Ehrlich’s original study and the studies of his critics, together with other literature

on the subject, are cited in Gregg v. Georgia, 428 U.S. 153, 184 n.31 (1976).
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Notes

The classic work, by Thorsten Sellin, compared the homicide rates in six clusters of

abolitionist and retentionist states and found no deterrent effect. Sellin, The Death
Penalty (1959). Sellin’s work was criticized by the Solicitor General in Gregg
because it relied only on the statutory authorization for the death penalty and not on

its actual use. Subsequent work, by Peter Passell, used Ehrlich’s form of murder

supply equation, but estimated it for cross-sectional data (on a state basis). The

coefficient for the execution risk was not statistically significant. Passell, The
Deterrent Effect of the Death Penalty: A Statistical Test, 28 Stan. L. Rev.

61 (1975). Bowers and Pierce reported that, in the 1960s, states that decreased

executions were more likely to have an increase in homicide rate that was below the

national average than states that increased executions. Bowers & Pierce, supra,
85 Yale L.J. at 203, n.42 (Table VIII).

14.6.2 Neurontin off-label marketing

Pfizer, Inc. and Warner-Lambert Company, LLC, were found guilty of fraudulent

marketing of the anticonvulsant drug Neurontin for off-label uses. Kaiser Founda-

tion Health Plans, among others, sued for damages arising from the fact that they

had to pay for the prescriptions generated by the false advertising. The fraudulent

marketing for off-label uses for bipolar disorder apparently began in 1996 and

continued until at least the first quarter of 2007. The marketing promoted Neurontin

with psychiatrists for bipolar disorder, among other uses. In order to estimate the

number of prescriptions that would not have been written or filled but for the

alleged misconduct, an expert for the plaintiffs, Dr. Meredith Rosenthal, performed

a regression analysis. Using monthly data in natural logs, she regressed

prescriptions for Neurontin by psychiatrists for off-label bipolar disorder uses on

Table 14.6.1. Estimated effect of execution risk on criminal homicide rate

Ending date of

effective period

Log model Natural values model

Estimate (t-value) Estimate (t-value)

1969 –0.065 (–3.45) 0.00085 (0.43)

1968 –0.069 (–4.09) 0.00085 (0.41)

1967 –0.068 (–4.55) 0.00039 (0.18)

1966 –0.056 (–3.40) 0.00046 (0.22)

1965 –0.037 (–1.53) 0.00087 (0.52)

1964 –0.013 (–0.40) 0.00123 (0.78)

1963 0.048 (1.00) 0.00189 (1.10)

1962 0.021 (0.35) 0.00120 (0.80)

1961 0.050 (1.02) 0.00216 (2.00)

1960 0.067 (1.36) 0.00235 (2.17)

Excerpted from Tables IV and V of Bowers & Pierce, The Illusion of Deterrence in Isaac Ehrlich’s
Research on Capital Punishment, 85 Yale L.J. 187 (1975)
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promotional spending for Neurontin and other factors. Her regression result for

bipolar disorder is shown in Table 14.6.2.

Questions

1. (a) Based on these results, Dr. Rosenthal testified in her declaration that more

than 99% of the off-label prescriptions written by psychiatrists for bipolar

disorder would not have been written but for the fraudulent promotion. How

did she get that result from the equation? (b) Given the doubly logarithmic form

of the model, did the but-for calculation depend on the coefficient of the

promotion variable? Did it depend on other variables in the model or their

coefficients?

2. Why did she use two-stage least squares regression?

3. (a) What is the point of the instrument variables? (b) What happens if the

instrumental variables are only weakly correlated with the variable measuring

stock of promotions? What happens if the instrumental variables are correlated

with the error term in the regression model?

4. The AR(1) variable in Table 14.6.2 for a given month is given by the residual

term from the preceding month. What is the point of including this variable?

Source

In re Neurontin Marketing and Sales Practices Lit., 712 F.3d 31 (1st Cir. 2013).

Notes

OnMarch 25, 2010, after a 5-week trial, the jury found that Pfizer had violated RICO

in its promotion of Neurontin for bipolar disorder, migraine, neuropathic pain, and

dosages exceeding 1800 mg per day and awarded Kaiser damages of $47,363,092,

which the court trebled to $142,089,276. Defendants also attacked Dr. Rosenthal’s

regression analysis, but the court of appeals affirmed the district court in rejecting

that challenge, noting that “regression analysis is a recognized and scientifically

valid approach to understanding statistical data, and courts have long permitted

parties to use statistical data to establish causal relationships.” 712 F.3d at *42.

14.7 Logit and probit regression

In many situations the outcome of interest in an analysis is simply whether a case

falls into one category or another. When there are only two outcome categories, the

parameter of primary interest is the probability that the outcome falls in one

category (e.g., a “positive” response). This probability is represented as a function

of explanatory factors. For example, the U.S. Parole Board (now abolished) used

multiple regression to estimate the probability that an inmate would violate parole if

released, based on type of offense, prior history, and behavior while incarcerated.
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Table 14.6.2. Rosenthal regression output

Dependent Variable: LPSYCH_OFF_BIPOLAR

Method: Two-Stage Least Squares

Sample (adjusted): 1996Q1 2007Q1

Included observations: 45 after adjustments

Estimation settings: tol¼ 0.00010

Initial Values: C(1)¼ –12.1837

C(2)¼ –3.29453

C(3)¼ 1.03813

C(4)¼ –8.72390

C(5)¼ 0.85664

C(6)¼ 0.00250

Convergence achieved after 7 iterations

Newey-West HAC Standard Errors & Covariance (lag truncation¼ 3)

Instrument list: LCPI LWAGE LCPI_DRUGS LPPI LPPI_2

Lagged dependent variable & regressors added to instrument list

Coefficient Std. Error t-Statistic Prob.

INTERCEPT –3.100292 21.61914 –0.143405 0.8867

GD_LPRICERATIO –3.342654 0.929426 –3.596471 0.0009

LBPSYCH_030 1.000314 0.274438 3.644950 0.0008

LNDX_BIPOLAR –3.441548 14.44313 –0.238283 0.8129

LSUBPSYCH_BIPOL 0.334621 1.211104 0.276295 0.7838

AR(1) 0.497527 0.158311 3.142713 0.0032

R-squared 0.931914 Mean dependent var 11.65979

Adjusted R-squared 0.923185 S.D. dependent var 1.424541

S.E. of regression 0.394819 Sum squared resid 6.079410

Durbin-Watson stat 1.779943 Second-Stage SSR 5.210858

Inverted AR Roots 0.50

Variable definitions:

GD_LPRICERATIO Natural log of the ratio of Neurontin Fisher Ideal price indexa to the

gabapentin (a generic for Neurontin)

Fisher Ideal price index, 0 prior to generic entry

LBPSYCH_030 Natural log of the stock of baseline Neurontin promotion to psychiatrists

depreciated at 4.0% per month

LNDX_BIPOLAR Natural log of the Fisher Ideal price of substitute drugs for the off-label

bipolar uses

LSUBPSYCH_BIPOLAR_030 Natural log of stock of promotion to psychiatrists for substitute drugs for

off-label bipolar uses, depreciated at

3% per month

The list of instrumental variables is as follows:

LCPI Natural log of CPI Index for all urban consumers

LWAGE Natural log of average weekly earnings of production workers in the

pharmacy industry

LCPI_DRUGS Natural log of CPI index for prescription drugs and medical supplies

LPPI Natural log of PPI for specialized business and professional periodicals,

and advertising

LPPI_2 Natural log of PPI index for pharmaceutical preparation manufacturing

a
The Fisher Ideal price index is defined as the geometric mean of the Paasche and Laspeyers price indices. See

Section 1.2.5 for the definitions of these indices
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In such studies the expected value of the dependent variable is a probability, and the

accuracy of the estimate depends on the rate of violations for various categories of

offenders. Inmates with a higher predicted probability of parole violation were

denied parole or targeted for closer supervision when paroled.

The usual linear models should be avoided in this context because they allow

the predicted outcome probability to assume a value outside the range 0–1. In addition,

the ordinary least-squares model is inefficient because the errors do not satisfy the

assumption of homoscedasticity: their variance depends on the values of the explana-

tory factors.13

A standard approach in this situation is to express the outcome odds in a

logarithmic unit or “logit,” which is the logarithm of the odds on a positive

response, i.e., the logarithm of the ratio of the probability of a positive response

to the probability of a negative response. This may seem arcane, but in fact “logit

regression” (more often called “logistic regression”) has several advantages.

First, when comparing two probabilities, the most useful statistic is usually a ratio

of the probabilities, or a ratio of the odds, rather than a difference in probabilities or a

difference in odds (see Section 1.5). When the outcome parameter in a regression

equation is the log odds, the coefficient of the indicator variable for group status

(in previous examples, the sex or race coefficient) is simply equal to the difference

between the log odds for the two groups. This difference is the log of the ratio of the

odds for the two groups. The coefficient is therefore referred to as the log odds ratio

(l.o.r.) and its anti-log as the odds ratio or odds multiplier. For example, in a logistic

regression involving success or failure on a test, since the anti-log of –0.693 is 0.5, a

coefficient of –0.693 for a protected group implies that the odds on passing for a

protected group member are one-half the odds on passing for a favored group

member. If the coefficient is β, the percentage change in the odds is equal to

exp(β)� 1; for small β, this is approximately equal to β. For example, when

β ¼ 0:06, the percentage change is 6.18%. While the coefficient of an explanatory

factor in a linear model is the mean arithmetic change in the dependent variable

associated with a unit change in that factor (other factors being held constant), the

coefficient in a logit model is the (approximate) percentage change in the odds.

Second, the logarithm of the odds is appropriate because it can take on any

positive or negative value without restriction, while probabilities and odds must be

positive. If the probability of a positive response is less than 0.5, the odds are less

than 1 and the logarithm is negative; if the probability is greater than 0.5, the odds

are greater than 1 and the logarithm is positive. There is no restriction on the range

of the logarithm in either direction. The regression thus cannot generate “impossi-

ble” results for the dependent variable probabilities. If L denotes a log-odds,

L ¼ log p= l� pð Þ½ �, then p ¼ 1= 1þ exp �Lð Þ½ �, which is always between 0 and 1.

13 The regression estimates the probability of a positive (or negative) response of a binary variable,

and the variance of that estimate is smallest when the probability is near 0 or 1 and greatest when it

is near 0.5.
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Third, unless the underlying probability is equal to 0.5, the sampling distribution

of the sample proportion is skewed, with a longer tail on the side with the greater

distance from 0 or 1, as the case may be. The sampling distribution of the odds is

also skewed because, if the probability is less than 0.5, the odds are constrained to

lie between 0 and 1; if greater than 0.5, the odds can range between 1 and infinity.

The sampling distribution of the log odds tends to be more nearly symmetrical and

closer to normal, so that standard normal distribution theory becomes applicable.

Fourth, in many data sets the transformation from probabilities to log odds yields

a more linear relationship with explanatory factors than in other forms. In epidemi-

ology, disease incidence models are often expressed in terms of log odds.

Fifth, logit models are useful for the classification problem in which one must

assign subjects to one of two (or more) groups based on observed explanatory

factors, such as in the parole board example above. It can be shown that, among all

possible classification procedures, the one that minimizes the probability of

misclassification is the rule that assigns subjects to group A vs. B according to

whether the log-odds on membership in group A given the explanatory factor

exceeds a certain criterion level. The log odds can be shown by Bayes’ Theorem

to be a linear function of the explanatory factors for a wide class of distributions

governing those factors.

In addition to the utility of the logistic regression model, there is an entirely

different genesis for logit and logit-like models when the outcome variable is a

dichotomization of an underlying (and perhaps unobservable) continuous variable,

T. Suppose the observable dichotomous outcome Y takes the value 1 if T falls below

a given cut-off value c, and 0 if not. For example, T might represent a test score,

with Y ¼ 1 denoting failure to score above c. Suppose further that T is normally

distributed in a population with mean value that depends linearly on explanatory

factor(s) X. Then the probability that Y ¼ 1 is not linearly related to X.14

One strategy to retrieve linearity is to transform the conditional probabilities into

values of the standard normal variate (z-scores) corresponding to the points on the

normal curve at which such probabilities would occur. Thus, if the probability of

being on one side of the cutoff is 0.20, a table of the standard normal curve shows

that this is associated with a z-score of 0.842, and it is this value that would be

linearly related to X. This approach is known as probit analysis.

Another example arises in bioassay problems, where T represents a hypothesized

tolerance to a drug, and Y ¼ 1 denotes a toxic response to the drug if tolerance T is

14 The reason lies in the nonlinear nature of the normal cumulative distribution. If T is approxi-

mately normally distributed and linearly related to explanatory variables, then the means of the

conditional distributions of T (conditional, that is, on the values of the explanatory variables)

increase linearly with increases in the explanatory variables. In effect the bell-shaped distribution

of the dependent variable moves one notch higher above the dichotomizing point for each unit

increase in the explanatory variables. But the one-notch increase in the dependent variable does

not produce a constant increase in the probability that T is above the cutoff point. As the bell-

shaped curve is shifted further to the right of the cutoff point, the change in probability from a unit

shift diminishes; when the cutoff point is in the tail of the distribution, the change in probability

becomes negligible.
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below dosage level c. This time the mean and variance of the normally distributed

T are fixed, but dosage levels c are chosen by the experimenter. The normal variate

z-score corresponding to the probability thatY ¼ 1 is again a linear function, of dose

this time X ¼ cð Þ.
If the underlying variable T has what is known as a logistic distribution (which is

similar to the normal distribution except that it has fatter tails) and there is a linear

relation between that variable and independent variables X, then the logarithm of

the odds that T would be on one side of the cutoff is a linear function of the

independent variables.15 This follows because the cumulative distribution function

of the standard logistic distribution isF tð Þ ¼ 1= 1þ exp �tð Þ½ �; solving algebraically
for the exponent yields t ¼ ln F tð Þ= 1� F tð Þð Þ½ �. Thus, P Y ¼ 1½ � ¼ P T < c½ � ¼ F tð Þ,
where t ¼ c� μð Þ=σ is a linear function of X, so that ln P Y ¼ 1½ �=P Y ¼ 0½ �ð Þ is a
linear function of X. We usually write

log
P Y ¼ 1

��X	 

P Y ¼ 0

��X	 
 ¼ αþ βX:

As mentioned above, ordinary least-squares techniques should not be used to

estimate a logistic regression because the equation is not linear. However, at least

two other techniques are available for estimating the equation: maximum likelihood

and weighted least squares. We prefer the maximum likelihood method, which

calculates the set of coefficients that maximizes the likelihood of the observed data

(see Section 5.6). Maximum likelihood estimates can generally be calculated even

when there is only a single binary outcome per vector of explanatory factors. By

contrast, weighted least squares requires grouping of data to estimate probabilities.

In large samples the two methods yield close answers, but not always in smaller

samples.

In modern computer software for estimating logistic multiple regression models,

the program may stop without convergence to a set of coefficient values. This does

not necessarily mean that the technique cannot or should not be used. When small

samples are involved, the program may stop because an explanatory factor is

always associated in the data with a particular outcome, regardless of the presence

or absence of other factors. In that case, the log odds multiplier associated with that

factor is infinite and after a certain number of iterations the program shuts down.

For the same reason, a log odds multiplier may be very large for such a factor,

representing the point at which the program has stopped on its march to infinity, but

this does not mean that the large value is wrong. One way to deal with this problem

is to acknowledge that the factor is determinative or nearly so whenever it is

present, regardless of other factors, and to reanalyze the data without cases in

15 The word “logistic” in logistic regression thus refers both to “logits,” and to a logistic random

variable that has been dichotomized.
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which that factor was present. By doing so, the program can reach closure with

respect to the effect of other, nondeterminative factors.

In logistic regression, the standard errors of the coefficients of the explanatory

factors have the same interpretation as they do in ordinary least squares regression,

except that for testing the normal distribution is used instead of the t-distribution,
because the estimates and inferential theory are valid only for large samples.

Standard errors must generally be computed at the same time maximum likelihood

estimates of the coefficients are calculated. For a simple fourfold table, the standard

error of the log odds ratio is the square root of the sum of the reciprocals of the cell

frequencies.

The correctness of the regression estimate of the odds (or probability) is usually

measured by the correctness of classifications based on the estimate. The conven-

tion adopted is to predict the outcome that is most probable on the basis of the

model (assuming the cost of either kind of misclassification is equal). The accuracy

of the model is then assessed in terms of the rates of false positive errors and false

negative errors (see Section 3.4). Section 14.10.1 gives a refinement.

With replicate observations per vector of explanatory factors, e.g., when the

factors are discrete as in a contingency table, a measure for testing goodness of fit is

a chi-squared type statistic known as the log likelihood ratio. See Section 5.6 at

p. 200. This is defined as twice the sum (over both categories of the dependent

variable in all cells of the table) of the observed frequency times the log of the ratio

of the observed frequency to the estimated expected frequency. This statistic can

test the goodness of fit of a logit model when the sample size in each of the

categories is sufficiently large (more than 5). If sample sizes within cells are smaller

than five, we may still use the difference between two log likelihood ratio statistics

to assess the significance of particular variables included in one model, but

excluded from the other.

Logistic regression models have been used in employment discrimination cases

where the issue is dichotomous, such as hiring or promotion. See Coser v. Moore,
587 F. Supp. 572 (E.D.N.Y. 1983) (model used by both sides to test whether women

faculty members at the State University of New York were initially assigned lower

faculty ranks than comparably qualified men); Craik v. Minnesota State University
Bd., 731 F.2d 465 (8th Cir. 1984) (same use of logistic regression by defendant

St. Cloud State University).

14.7.1 Mortgage lending discrimination

Decatur Federal Savings and Loan in Atlanta, Georgia, was investigated by the

U.S. Department of Justice for discrimination against blacks in making home

mortgage loans. The investigators found that, although the bank had written

guidelines, there was wide latitude for an underwriter’s subjective assessment of

the application, and the decision whether or not to make a loan might be influenced

by personal, subjective criteria in addition to the financial data.
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A statistical study of application files showed that, over a 2-year period, after

eliminating cases involving special circumstances, there were 896 applications for

conventional, fixed-rate mortgages from whites, of which 86.9% were accepted,

and 97 such applications from blacks, of which 55.7% were accepted. To adjust for

possible differences in the ability of whites and blacks to meet the bank’s

underwriting guidelines, the investigators performed a multiple logistic regression

analysis. The dependent variable was the log odds on being accepted. Explanatory

variables were grouped in five categories: (1) the amount of money at risk,

measured by various forms of the loan-to-value ratio of the house; (2) the

borrower’s ability to pay, measured, e.g., by the borrower’s income in relation to

his or her obligations; (3) the borrower’s willingness to pay, measured by past credit

history; (4) serious credit problems, such as bankruptcy or foreclosure; and

(5) other. In the “other” category the investigators put a dummy variable, which

took the value 1 if the borrower or co-borrower were black, and 0 otherwise. The

model predicted 96% of the decisions correctly.

Questions

In the model, the coefficient for black was –0.8032, which was 2.52 standard

deviations from its expected value under the null hypothesis.

1. Interpret this coefficient in terms of the probabilities of acceptance for whites

and blacks.

2. What is the expected value of the coefficient under the null hypothesis and what

is its approximate P-value?

Source

Siskin & Cupingood, Use of Statistical Models to Provide Statistical Evidence of
Discrimination in the Treatment of Mortgage Loan Applicants: A Study of One
Lending Institution in Mortgage Lending, Racial Discrimination, and Federal
Policy, ch. 16 at 451 (Urban Institute Press, Goering & Wienk, eds., 1996). The

seminal work of this type was a market-wide study by the Federal Reserve Bank of

Boston; see Munnell, et al., Mortgage Lending in Boston: Interpreting HMDA
Data, 86 Am. Econ. Rev. 25 (1996).

14.7.2 Death penalty in Georgia

In McCleskey v. Kemp, 481 U.S. 279 (1987), the petitioner, a black man who had

been sentenced to death for the murder of a white policeman, argued that Georgia’s

death penalty was unconstitutional because it was applied in a racially discrimina-

tory manner. To prove his claim, petitioner relied on a study by the late Professor

David Baldus, which assessed the effect of race in the decision to impose the death

penalty on those convicted of homicides in Georgia. Baldus conducted two separate
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studies, the smaller of which, the Procedural Reform Study, consisted of “594

defendants arrested in the state of Georgia between March 28, 1973, and June

30, 1978, who were convicted after trial of murder and sentenced either to life

imprisonment or to death, or who received death sentences after pleading guilty to a

charge of murder.”16

The data collection effort was massive. Data for each case consisted of informa-

tion about the defendant, the victim, the crime, aggravating and mitigating

circumstances, the evidence, and the race of killer and victim. In all, over

250 variables were collected in each case. Information was gathered by examining

records of the Georgia Parole Board and, in some cases, Georgia Supreme Court

opinions, by examining records of the Bureau of Vital Statistics, and by

interviewing lawyers involved in the trial.

Table 14.7.2a lists eight explanatory factors for a sample of 100 cases from the

“middle range” (in terms of aggravation of the crime) in the Procedural Reform

Study. Cases are ranked by the predicted probability of a death sentence based on

the multiple logistic regression model shown in Table 14.7.2b, which was estimated

from the data of Table 14.7.2c.

Questions

1. Sift through the data and compile two fourfold tables, each table to classify death

sentence outcome for white victim in the first row and “other” victim in the

second row. The left-hand column should be for death sentences and the right-

hand column for other sentences. The first table should be for cases involving

stranger victims and the second table for victims not strangers.

2. Compute the odds ratio and log odds ratio relating sentence to race of victim for

each table.

3. Estimate the common log odds ratio by taking a weighted average of the two log

odds ratios, with weights inversely proportional to the variances of the individ-

ual log odds ratios. Take anti-logs to arrive at an estimated common odds ratio.

What conclusions do you draw?

4. Referring to Tables 14.7.2a and 14.7.2b, the model fitted was

log
P death

��X	 

P other

��X	 
 ¼ β0 þ β1X1 þ � � � þ βkXk:

The maximum likelihood estimates of the coefficients are shown in

Table 14.7.2b. In the above equation, each of the coefficients is a “main effect”

for the corresponding variable. Using this equation, how would you describe the

16 The data presented in this section come from Baldus’s Procedural Reform Study. Most of the

analysis and conclusions of the courts dealt with the other study, the Charging and Sentencing

Study. The methods of the two studies were substantially the same, except that in the latter, a more

comprehensive model included a larger number of variables.
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main effect for the race-of-victim and race-of-defendant variables? How would

you describe the joint race-of-victim and race-of-defendant effect against the

base category (i.e., BD¼WV¼ 0)? Calculate the odds ratio on death sentence

vs. other, comparing white victim cases with non-white victim cases. How does

this result compare with the answer to question 3?

5. Show that the probability of a death sentence is

P death
��X	 
 ¼ exp Lð Þ= 1þ exp Lð Þ½ �;

where L ¼ β0 þ β1X1 þ � � � þ βkXk.

Table 14.7.2a. Variable codes for 100 death-eligible cases

Death: 1¼Death sentence

0¼Life sentence

BD: 1¼Black defendant

0¼White defendant

WV: 1¼One or more white victims

0¼No white victims

AC: Number of statutory aggravating

circumstances in the case

FV: 1¼ Female victim

0¼Male victim

VS: 1¼Victim was a stranger

0¼Victim was not a stranger

2V: 1¼Two or more victims

0¼One victim

MS: 1¼Multiple stabs

0¼No multiple stabs

YV: 1¼Victim 12 years of age or younger

0¼Victim over 12 years of age

Table 14.7.2b. Logistic regression results for the Procedural Reform Study data

Variable Coefficient MLE S.E.

Constant β0 –3.5675 1.1243

BD β1 �0.5308 0.5439

WV β2 1.5563 0.6161

AC β3 0.3730 0,1963

FV β4 0.3707 0.5405

VS β5 1.7911 0.5386

2V β6 0.1999 0.7450

MS β7 1.4429 0.7938

YV β8 0.1232 0.9526
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6. Assume that McCleskey shot a white male police officer who was a stranger, and

that there were three aggravating factors in the case. Using the result in question

6, calculate the predicted probability of a death sentence. Repeat with the same

factors assuming, however, that McCleskey’s victim was not white. Do the data

show that it is more likely than not that McCleskey would not have received the

death penalty if his victim had not been white?

7. Using the rule that a death sentence is predicted when the estimated probability

of such a sentence is more than 0.50, calculate the proportions of correct

predictions in Table 14.7.2c.

Table 14.7.2c. 100 death-eligible cases from the middle range

# Death Pred BD WV #AC FV VS 2V MS YV

1 0 0.0337 1 0 1 1 0 0 0 0

2 0 0.0338 1 0 2 0 0 0 0 0

3 0 0.0461 1 0 2 0 0 1 0 1

4 1 0.0584 1 0 3 0 0 1 0 0

5 0 0.0655 1 0 2 1 0 1 0 1

6 0 0.0687 1 0 4 0 0 0 0 0

7 0 0.0769 1 0 3 1 0 0 0 1

8 0 0.1155 1 0 4 1 0 1 0 0

9 0 0.1288 1 0 1 1 0 0 1 0

10 1 0.1344 1 0 5 1 0 0 0 0

11 0 0.1423 1 1 2 0 0 0 0 0

12 0 0.1627 0 1 1 0 0 0 0 0

13 0 0.1735 1 0 2 0 1 0 0 0

14 1 0.1735 1 0 2 0 1 0 0 0

15 0 0.1770 1 0 3 0 0 0 1 0

16 0 0.2197 0 1 1 1 0 0 0 0

17 0 0.2201 0 1 2 0 0 0 0 0

18 0 0.2201 0 1 2 0 0 0 0 0

19 0 0.2336 1 0 3 0 1 0 0 0

20 0 0.2336 1 0 3 0 1 0 0 0

21 0 0.2380 1 0 4 0 0 0 1 0

22 1 0.2558 0 1 1 1 0 1 0 0

23 0 0.2588 1 1 3 1 0 0 0 0

24 0 0.2902 0 1 2 1 0 0 0 0

25 0 0.2902 0 1 2 1 0 0 0 0

26 1 0.3063 1 0 3 1 1 0 0 0

27 0 0.3068 1 0 4 0 1 0 0 0

28 0 0.3068 1 0 4 0 1 0 0 0

29 0 0.3167 0 1 3 0 0 0 0 1

30 0 0.3335 0 1 3 0 0 1 0 0

31 1 0.3369 1 1 5 0 0 0 0 0

32 1 0.3369 1 1 5 0 0 0 0 0

(continued)
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Table 14.7.2c. (continued)

# Death Pred BD WV #AC FV VS 2V MS YV

33 1 0.3730 0 1 4 0 0 0 0 0

34 0 0.3730 0 1 4 0 0 0 0 0

35 0 0.3730 0 1 4 0 0 0 0 0

36 1 0.3730 0 1 4 0 0 0 0 0

37 0 0.3730 0 1 4 0 0 0 0 0

38 0 0.3906 1 0 4 1 1 0 0 0

39 1 0.3912 1 0 5 0 1 0 0 0

40 0 0.3912 1 1 5 0 1 0 0 0

41 1 0.4208 0 1 4 0 0 1 0 0

42 0 0.4208 0 1 4 0 0 1 0 0

43 0 0.4245 1 0 6 0 0 0 0 0

44 0 0.4294 0 1 4 0 1 0 0 0

45 1 0.4511 0 1 4 0 0 1 0 1

46 1 0.4629 0 1 4 1 0 0 0 0

47 0 0.4635 0 1 5 0 0 0 0 0

48 1 0.4635 0 1 5 0 0 0 0 0

49 0 0.4821 1 0 5 1 1 0 0 0

50 0 0.4827 1 0 6 0 1 0 0 0

51 0 0.4936 0 1 4 1 0 0 0 1

52 0 0.5050 1 1 3 0 0 0 1 0

53 0 0.5172 1 1 7 0 0 0 0 0

54 0 0.5172 1 1 7 0 0 0 0 0

55 1 0.5221 0 0 5 0 1 0 0 0

56 1 0.5564 0 1 6 0 0 0 0 0

57 0 0.5904 1 1 2 1 1 0 0 0

58 0 0.5910 1 1 3 0 1 0 0 0

59 1 0.5910 1 1 3 0 1 0 0 0

60 1 0.5910 1 1 3 0 1 0 0 0

61 0 0.6285 0 1 2 0 1 0 0 0

62 1 0.6343 0 1 3 0 0 0 1 0

63 1 0.6343 0 1 3 0 0 0 1 0

64 0 0.6383 1 1 3 0 1 1 0 0

65 0 0.6451 0 1 6 1 0 0 0 0

66 1 0.6767 1 1 3 1 1 0 0 0

67 1 0.6772 1 1 4 0 1 0 0 0

68 0 0.6772 1 1 4 0 1 0 0 0

69 1 0.6772 1 1 4 0 1 0 0 0

70 1 0.6772 1 1 4 0 1 0 0 0

71 1 0.6772 1 1 4 0 1 0 0 0

72 0 0.6788 0 1 2 1 0 1 1 0

73 1 0.7102 0 1 2 1 1 0 0 0

74 1 0.7102 0 1 2 1 1 0 0 0

75 0 0.7102 0 1 2 1 1 0 0 0

(continued)
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Notes

Baldus’s method

In Baldus’s data, blacks who killed whites received the death penalty in a far greater

proportion of cases than any other racial combination of defendant and victim. It

was, however, argued that such cases usually involve strangers and more

aggravating factors. To isolate the racial factor, Baldus began by examining unad-

justed measures of the impact of case characteristics on death sentencing rates.

For example, he compared the death sentencing rate for cases in which assailant and

victim were strangers 74=449 ¼ 0:16ð Þ with the rate for cases in which the parties

knew each other 54=2035 ¼ 0:03ð Þ. To assess the impact of such differences, he

used four measures: (i) the difference between death sentencing rates for the two

groups; (ii) the ratio of death sentencing rates for the two groups; (iii) the OLS

regression coefficient for the group indicator; and (iv) the odds-ratio multiplier

Table 14.7.2c. (continued)

# Death Pred BD WV #AC FV VS 2V MS YV

76 1 0.7107 0 1 3 0 1 0 0 0

77 1 0.7107 0 1 3 0 1 0 0 0

78 1 0.7153 0 1 3 1 0 0 1 0

79 1 0.7500 0 1 3 0 1 1 0 0

80 1 0.7524 1 1 4 1 1 0 0 0

81 1 0.7529 1 1 5 0 1 0 0 0

82 0 0.7529 1 1 5 0 1 0 0 0

83 1 0.7529 1 1 5 0 1 0 0 0

84 1 0.7529 1 1 5 0 1 0 0 0

85 1 0.7751 1 1 5 0 1 0 0 1

86 1 0.7751 1 1 5 0 1 0 0 1

87 1 0.7807 0 1 3 1 1 0 0 0

88 1 0.7807 0 1 3 1 1 0 0 0

89 1 0.7811 0 1 4 0 1 0 0 0

90 1 0.7811 0 1 4 0 1 0 0 0

91 0 0.7811 0 1 4 0 1 0 0 0

92 1 0.7811 0 1 4 0 1 0 0 0

93 1 0.7849 0 1 4 1 0 0 1 0

94 1 0.7849 0 1 4 1 0 0 1 0

95 1 0.8153 1 1 5 1 1 0 0 0

96 1 0.8592 1 1 2 1 1 0 1 0

97 1 0.8595 1 1 3 0 1 0 1 0

98 0 0.8635 0 1 5 0 1 1 0 0

99 1 0.8827 0 1 6 0 1 0 0 0

100 1 0.9018 0 1 6 0 1 1 0 0
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(by how much an offender’s odds on receiving the death sentence increase or

decrease in the presence of the relevant characteristic).

Next, Baldus looked at racial characteristics while adjusting, one at a time, for

background factors that correlated with death sentence to see whether the apparent

effect of racial characteristics could be attributed to the nonracial factor. He

examined, for example, whether the fact that the defendant was black and the

victim white was an important factor in its own right or whether it merely pointed

to a higher probability that the murder was between strangers and involved a

contemporaneous felony.

Baldus used two methods to control for background characteristics: cross-

tabulation and multiple linear regression. In the cross-tabulation method, the

association between death sentence and the racial characteristic of interest is

compared in two tables at different levels of the background factor; a persistence

of the association in both tables is evidence that the effect of the characteristic of

interest is not explained by background. In the example given above, two 2� 2

tables would be constructed for black defendant/white victim cases versus other

cases, one involving contemporaneous felonies, and the other not. In the multiple

regression method, a variable for the background factor is added to the regression

equation and the resulting change in the coefficient for racial characteristic

observed. If the coefficient becomes statistically insignificant, then the change

indicates that the apparent racial effect was merely a mask for the effect of the

background factor.

Baldus then expanded his analysis to correct for more than one background

factor at a time. While cross-tabulation becomes ineffective with more than a few

characteristics, because the numbers in each cell become too small, multiple

regression is not so limited. Baldus ran multiple regressions on several different

sets of background characteristics, the largest of which contained over 230 nonracial

background variables. In the largest model he found significant regression

coefficients of 0.06 for both the variable representing race of the victim and the

variable representing race of the defendant.

In addition to weighted least squares, Baldus also used a logistic regression model.

He described the result this way: “The overall race-of-victim disparity estimated with

a logistic coefficient measure was 1.31 (with a death odds multiplier of 3.7).”

The district court opinion

The Federal District Court for the Northern District of Georgia rejected the validity

of Baldus’s study, citing three specific defects. McCleskey v. Zant, 580 F. Supp.

338 (N.D. Ga. 1984).

1. “[T]he data base has substantial flaws.” The court criticized the failure of the

data to capture all nuances of a case, the unavailability of certain information,

the miscoding of information, and the application of a coding convention in

which unknown data were coded as a U and then recoded to show the factor’s

absence (for 39 characteristics, over 10% of the cases were coded U).
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2. “[N]one of the models utilized by the petitioner’s experts are sufficiently predic-

tive to support an inference of discrimination.” Specifically, the court rejected

any model with fewer than the 230 variables Baldus expected to explain the

sentence; it found the R2 (approximately 0.48) in the 230 variable model too low;

and it took issue with (what it asserted was) the assumption that information

available in retrospect had also been available to the fact finders.

3. “The presence of multi-colinearity [sic] substantially diminishes the weight to be

accorded to the circumstantial statistical evidence of racial disparity.” The court

found white victim cases more aggravated than black victim cases and suggested

that, due to multicollinearity, the race of the victim might be a surrogate for

unaccounted-for aggravation otherwise not accounted for.

4. The stepwise regression technique used by Baldus was invalid since it searched

for correlation without considering causality.

5. The study did not prove that race was a factor in any given case.

Baldus also selected 32 cases from Fulton County (where the murder took

place), dividing them into three groups: more aggravated than McCleskey, equal
in degree of aggravation, and less aggravated. Baldus concluded that these cases,

analyzed individually, demonstrated discrimination. The district court analyzed

several of the “equal to McCleskey” cases and found differences that it felt justified

not imposing the death penalty.

The court of appeals opinions

The Court of Appeals for the Eleventh Circuit chose not to deal with the asserted

invalidity of the Baldus study. It accepted arguendo its validity, but found its results
insufficient to justify upsetting the system.

The court noted that the simple unadjusted figures showed that death sentences

were imposed in 11% of the white victim cases and 1% of the black victim cases.

After adjusting for various explanatory factors (the 230 variable model), the

difference was described by the court as a 0.06 race-of-victim effect, signifying

that, on average, a white-victim homicide was 6% more likely to result in a death

sentence than a black-victim homicide. The court also cited Baldus’s tables in

which, in intermediate aggravation cases, according to the court, “white victim

crimes were shown to be 20% more likely to result in the death penalty than equally

aggravated black victim crimes.”McCleskey v. Kemp, 753 F.2d 8771 896 (11th Cir.
1985). Is the court’s interpretation of the 6% figure correct?

The court found that “the 6% bottom line” was insufficient to overcome the

presumption that the statute was constitutional and insufficient to prove that racial

factors played “a role in the outcome sufficient to render the system as a whole

arbitrary and capricious,” or that they operated in any given case. Id. at 897. As for
the 20% figure, the court objected that a valid challenge could not be made using
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only a middle range of cases, that Baldus had not explained the rationale of his

definitions, and that statistics alone could not demonstrate that McCleskey’s

sentence was determined by the race of his victim.

One dissenting opinion, however, addressed the validity of the Baldus study.

Finding the district court clearly erroneous in holding the study invalid, Judge

Johnson raised the following points.

1. The flaws in the data base were not significant. Many of the mismatches

(inconsistent coding between the two studies) were the result of improvements

in coding technique, and the remainder were not sufficiently important to

invalidate the result. The amount of missing data was minor and perfection

was unnecessary.

2. Multicollinearity was not a relevant concern since it either reduced the statistical

significance of the coefficient of interest or distorted the interrelationship among

coefficients. In neither case, Judge Johnson asserted, did it operate to increase

the race-of-victim coefficient (in the former it depressed statistical significance

and in the latter it dampened the race-of-victim coefficient).17

3. Bigger is not always better in models, which must balance the risk of omitting a

significant variable with the risk of multicollinearity. A parsimonious model

may be better than a more inclusive model.

4. An R2 of approximately 0.48 is not too low. The explanatory power of a given

model must be viewed in its context. Because with death sentences the random

effects are likely to be great, the model might be sufficient. The district court’s

statement that a model with an R2 less than 0.5 “does not predict the outcome in

half of the cases” was incorrect.

The Supreme Court opinions

A narrowly divided Supreme Court affirmed the court of appeals (5-4). Writing for

the majority, Justice Powell repeated some of the criticisms of the district court, but

assumed that the model was statistically valid. However, given the necessity for

discretion in the criminal process and the social interest in laws against murder,

McCleskey had to prove by exceptionally clear evidence that the decision makers

had acted with intent to discriminate in his case; the statistical pattern was not

sufficient for that purpose. The dissenters pointed out that McCleskey’s case was in

the middle range of aggravation, for which the statistics showed that 20 out of every

34 defendants convicted of killing whites and sentenced to death would not have

received the death sentence had their victims been black. It was therefore more

likely than not that McCleskey would not have received the death sentence had his

victim been black. His sentence thus depended on an arbitrary racial factor in

violation of the Eighth and Fourteenth Amendments.

17We note that it is not true that multicollinearity always distorts coefficients in the direction of

zero. Severe multicollinearity causes unpredictable perturbations that reflect round-off and minor

errors.
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After his retirement from the Court, Justice Powell told an interviewer that the

action he most regretted while on the bench was his vote in McCleskey.

Notes

A description of the McCleskey studies may be found in Baldus, Woodworth &

Pulaski, Equal Justice and the Death Penalty: A Legal and Empirical Analysis
(1990). Subsequent studies, led by Professor Baldus, showed race-of-defendant and

race-of-victim effects in New Jersey and Philadelphia. For New Jersey, see Baldus,

Special Master, Death Penalty Proportionality Review Project Final Report to the
New Jersey Supreme Court, Tables 18 and 18A (1991) (finding a 19 percentage

point race-of-defendant disparity and at least a 14 percentage point race-of-victim

disparity). For Philadelphia, see Baldus, et al., Racial Discrimination and the Death
Penalty in the Post-Furman Era: An Empirical and Legal Overview, with Recent
Findings from Philadelphia, 83 Cornell L. Rev. 1638 (1998) (strong race-of-

defendant and race-of-victim disparities found, but results sensitive to the particular

models and data used).

14.7.3 Deterring teenage smoking

In debates over proposed tax increases for cigarettes as a way of discouraging

teenage smoking, the Treasury Department argued, based on studies, that every

10% increase in price would decrease the prevalence of teenage smoking by about

7%. In particular, the Treasury asserted, adding about $1.00 to the price of

cigarettes (an increase of about 50%) would decrease teenage smoking by more

than 30%. This estimate was derived from cross-sectional studies that regressed

smoking among teenagers on a variety of student and parental control factors,

including state cigarette taxes. This conclusion was disputed by a group at the

Department of Policy Analysis & Management at Cornell University. They used

data for a cohort of about 10,000 students who were in 8th grade in 1988 and 12th

grade in 1992. First, they looked at cross sections of all students in the data set in

1988 and 1992, and regressed a probit of smoking on student and parental control

factors (including state cigarette taxes) to model the probability that an individual

student would smoke in 8th and 12th grades. The results are shown in Table 14.7.3

below. They then excluded students who had smoked in 8th grade, and created an

onset-of-smoking model. In this model they regressed a probit for smoking in the

12th grade on essentially the same control factors, including the level of state

cigarette taxes and the increase in such taxes between 1988 and 1992. The results

of this model are also shown in Table 14.7.3.

Questions

1. For the two cross-sectional models and the onset model, use the coefficients to

compute the estimated percentage decrease in demand associated with a 10%

increase in cigarette price (about $0.20) due to a tax increase in that amount.
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2. What might account for the difference in estimates between the cross-section

and onset models?

3. What do these models tell us about the probable effect of an additional $1.00

tax?

Source

DeCicca, Kenkel & Mathios, Putting Out the Fires: Will Higher Taxes Reduce
Youth Smoking? (Department of Policy Analysis & Management, Cornell Univer-

sity 1998; unpublished ms.)

14.8 Poisson regression

Poisson regression is a close relative of logistic regression. The dependent variable

Y is a count, taking values 0, 1, 2. . ., which follows a Poisson distribution. See

Section 4.7. The mean of the distribution at given values of explanatory factors

X1 . . .,Xk, which we denote μ(X1, . . .,Xk) or μ X
� �

or E Y
��X	 


, varies with the levels

of the explanatory factors. Because the mean is a positive quantity, it is natural to

model the logarithm of the mean as a linear function of the explanatory factors.

Thus, ln μ
��X� � ¼ β0 þ β1X1 þ � � � þ βkXk. In this model, exp(βj) gives the multipli-

cative increase in the expected value of the Poisson count per unit increase in the

explanatory factor Xj, holding other factors fixed. As is general in log

Table 14.7.3. Tax coefficients in probit regression of teenage smoking

Tax regressors

1988 Cross section 1992 Cross section Onset model 88–92

Coefficient

(t-ratio)
Coefficient

(t-ratio)
Coefficient

(t-ratio)

Cigarette tax 1988 (cents/pack)

–0.0059 (–2.35) –0.0031 (–2.57) –0.0015 (–0.83)

Maximum 38 48 38

Minimum 2 2.5 2

Mean 18.71 26.27 18.71

Increase in cigarette tax 1988–1992 (cents/pack)

n/a n/a –0.00042 (–0.22)

Maximum 25

Minimum 0

Mean 7.56

Sample size 12,866 12,036 11,271

Overall rate of

smoking

5.5% 24.4% 21.7%
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transformations (see Section 13.9 at p. 433), if β is not too large 100� βj is the
approximate percentage increase in μ per unit increase in Xj.

Typically, the regression coefficients are estimated by maximum likelihood.

Standard computer packages routinely produce these estimates along with standard

errors. Weighted least squares is a less desirable alternative method. Ordinary least

squares estimation should be avoided because the variance of a Poisson distribution

is equal to its mean; as the regression mean changes, the variance also changes,

contrary to the basic OLS assumption of homoscedasticity.

In the Poisson model the sum of squared differences between observed and

expected counts divided by the expected count has a chi-squared distribution with

degrees of freedom n� k � 1, where n is the number of observations of the

dependent variable and k is the number of explanatory factors in the regression,

excluding the constant term. The chi-squared statistic can thus be used to test the

goodness-of-fit of the model.

Although in theory the variance of a Poisson random variable is equal to its

mean, it is common to find in data sets—especially when there are replicate

observations for given values of the explanatory factors—that the actual dispersion

exceeds the mean. This is a consequence of unexplained heterogeneity—there are

unspecified factors that affect μ beyond what is accounted for by the explanatory

factors X and this heterogeneity causes overdispersion in the data. That is, the

conditional distribution of Y given X is not a pure Poisson random variable with

mean μ X
� �

but has a distribution of a mixture of Poisson variables with mean μ X
� �

and variance Var Y
��X� �

> μ X
� �

.

Overdispersion generally does not affect the predicted mean values from a

model, but does influence the significance of the regression coefficients and the

precision of predicted counts. Levels of significance reported in computer output

should therefore be viewed with caution. A simple adjustment that is often made in

cases of overdispersion is to multiply the standard errors reported under the Poisson

assumption by the overdispersion factor—which is equal to the square root of the

ratio of the chi-squared goodness-of-fit statistic to its degrees of freedom.

Poisson regression is commonly used in survival analysis where the counts are

failures or deaths and the explanatory factors are etiologic. The parameter μ
multiplying time T in a Poisson process (see p. 146) can also be modeled with

Poisson regression.

14.8.1 Challenger disaster

On January 26, 1986, Flight 51-L of the space shuttle Challenger ended in a

spectacular disaster. Within a minute after launch, an explosion destroyed the

shuttle and killed the seven astronauts on board. A presidential commission

appointed to investigate the catastrophe concluded that the explosion was caused

by the failure of an O-ring seal between two lower segments of the right solid rocket

motor. The O-rings were designed to prevent hot gases from leaking through the

14.8 Poisson regression 497

http://dx.doi.org/10.1007/978-1-4419-5985-0_13#Sec23


joint during the propellant burn of the rocket motor. It appears that the escaping

gases penetrated an external fuel tank, leading to the explosion. The leak occurred

because the O-ring did not adapt itself to changes in the gap between the tang and

the clevis of the joint, which varied as the joint worked itself during take-off.

Although other factors may have played a role, the most prominent reason for

the loss of flexibility in the O-ring was the low ambient temperature at the time of

the launch. The commission noted, for example, that at 75 �F the O-ring returned to

its original shape after being compressed about five times faster than at 30�. In a

dramatic demonstration at the commission’s public hearings, physics professor

Richard Feynman dipped a section of O-ring into ice water and then squeezed it

with pliers to demonstrate its loss of resilience. On the day of the Challenger launch,

the ambient temperature was 36 �F (about 15� colder than the next coldest launch

day) and the side of the solid rocket motor away from the sun was 28� plus or minus

5�. (Even the side toward the sun was only 50�.) Citing some of the data from earlier

launches set out below, the commission concluded that, “a careful analysis would

have revealed a correlation of O-ring damage and low temperature. Neither NASA

nor Morton Thiokol, Inc. [the maker of the O-rings] carried out such an analysis;

consequently, they were unprepared to properly evaluate the risks of launching the

51-L mission in conditions more extreme than they had encountered before.”

As Table 14.8.1 shows, the lowest ambient temperature at a launch was 53�

Fahrenheit. To project what the risks of O-ring damage would have been at some

lower temperature, say 36�, a Poisson regression model can be fitted to the data. In

such a model the number of damaged O-rings is a Poisson count with the mean

varying with the temperature. To estimate the model, it is natural to use the

logarithmic transformation. The logarithm of the mean number of O-ring failures

at any given temperature is a linear function consisting of a constant plus a slope

coefficient times the ambient temperature. In our calculations we expressed the

temperature variable in degrees Fahrenheit minus 36�. (We subtracted 36� to center
temperature on the particular value of interest; this centering does not affect the

results of the model.) The equation is lnfμ Tð Þg ¼ aþ b T � 36ð Þ.
The maximum likelihood results are as follows: The intercept is 2.8983, with

standard error of the estimate 1.1317; the slope coefficient is –0.1239, with standard

error of the estimate 0.0407.

Table 14.8.1. Number of damaged O-rings (Row B) by ambient temperature in degrees Fahren-

heit (Row A) at launch for 24 shuttle flights prior to Challenger flight 51-L

A

B

53

3

57

1

58

1

63

1

66

0

67

0

67

0

67

0

68

0

69

0

70

1

70

1

A

B

70

0

70

0

72

0

73

0

75

2

75

0

76

0

76

0

78

0

79

0

80

0

81

0
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Questions

1. Plot the observed data and model estimates on the same graph, with temperature

minus 36� on the X-axis and the number of damaged O-rings on the Y-axis.

2. What does the model estimate for the average number of damaged O-rings at 36�

compared with the risk at 53�, the lowest temperature previously encountered?

3. What does the model indicate is the approximate percentage increase in the

average number of damaged O-rings for each degree reduction in temperature?

4. Compute an approximate 95% confidence interval for the expected value of the

dependent variable when the explanatory temperature variable is at 36�. Does
the width of the confidence interval affect your view of the increase in risk at that

temperature vs. the risk at 53�?

5. Are the data consistent with the Poisson model? The chi-squared statistic is 32.3

for these data.

6. What is the degree of overdispersion in the data? What is the reason for the

overdispersion and what correction would you make?

Source

The Presidential Commission on the Space Shuttle Challenger Accident Report,

June 6, 1986, at 148; cf. Boisjoly v. Morton Thiokol, Inc., 706 F. Supp.

795 (D. Utah 1988).

14.9 Negative binomial regression

The negative binomial regression model adopts a different, more concretely

parametric approach to the overdispersion problem in Poisson regression (see

Section 14.8) by assuming an explicit form for the distribution governing the

heterogeneity in the Poisson mean parameter. It relies on the fact that if, for fixed

values of the explanatory factors, the residual variation in the true Poisson mean can

be assumed to follow a gamma distribution with parameters α and β (see

Section 4.9), then the marginal distribution of Y (i.e., its probability distribution

without regard to the specific value of the Poisson mean that governed the Poisson

count) has a negative binomial distribution (see Section 4.9). The mean of the

marginal negative binomial distribution is E Yð Þ ¼ αβ and the variance is

Var Yð Þ ¼ αβ β þ 1ð Þ. Thus we have a constant overdispersion model with

overdispersion parameter ϕ ¼ 1þ β.
Note that in the context of a Poisson regression model where the mean μ depends

on explanatory factors X, this corresponding negative binomial regression model

would also arise if one assumes that the scale parameter β is constant, while the

shape parameter α varies with X as μ/β. Whether this model is reasonable is an

empirical question that can be addressed if there are multiple observations at each

value of the explanatory factors, e.g., with grouped data.
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A different set of assumptions leads to a random effects model with a

non-constant overdispersion parameter. Suppose instead of the above Poisson

model for Y we assume that given a random quantity b that varies from case to

case, Y has a Poisson distribution with mean μb, where for the moment, we assume

μ is constant. The random variable b is to be thought of as a perturbation that alters

the overall mean μ multiplicatively by a random amount. To provide that interpre-

tation we assume that b has a gamma distribution with shape parameter α and scale

parameter 1/α, so that the mean of b is E bð Þ ¼ 1 and its variance is Var bð Þ ¼ 1=α.
The probability function for the marginal distribution of Y is another negative

binomial distribution with mean μ and variance μ 1þ μ=αð Þ.
In this model, then, the overdispersion parameter isϕ ¼ 1þ μ=α and depends on

the mean μ. For a negative binomial regression model based on these assumptions,

since μ depends on the explanatory factors (again, typically with ln(μ) expressed as
a linear function of the explanatory factors), the overdispersion parameter varies

with X, and so a simple adjustment of the standard errors does not work. However,

because for either type of negative binomial model there is a definite likelihood

function, the standard theory of maximum likelihood estimation applies, and

provides consistent estimates together with valid and asymptotically efficient

standard errors.

The key points to remember about Poisson and negative binomial regression

models are these:

• Overdispersion is quite common and should be considered the default state of

affairs, because models very often fail to capture all of the variability in count

data based on explanatory factors.

• As a result, Poisson regression models that do not allow for an overdispersion

constant are likely to be overoptimistic in terms of the significance of the

regression coefficients.

• Generalized linear models make a variety of assumptions about how the

overdispersion affects standard errors. While simple adjustments may be possi-

ble, the expert witness should be prepared to justify the model assumptions with

auxiliary studies from the data.

• A negative binomial regression model can be used as a fully parametric model

that can encompass overdispersion. Different kinds of negative binomial models

can be used which imply different kinds of overdispersion, so, again, the data

analyst should be prepared to justify his choice of model.

Further reading

Fleiss, Levin & Paik, Statistical Methods for Rates and Proportions, Section 12.3

(3rd ed. 2003).

500 14 More Complex Regression Models

http://dx.doi.org/10.1007/978-1-4419-5985-0_12#Sec5


14.9.1 New York City police stops

The New York City Police Department conducted an extensive stop, question, and

frisk program in the 2000s. The announced purpose was to interdict low-level crime

as a way of preventing more serious crime. The program gradually evolved into a

marijuana enforcement strategy. The intersection of racial disparities and constitu-

tional irregularities was the basis for litigation that led to a consent degree in 2003

regulating the conduct of street stops and prohibiting the use of race as a factor in

the selection of citizens for stops. Between 2004 and 2008 there were 2,224,128

street stops, of which 51,761 were on suspicion of marijuana possession. After

additional data became available, two social science investigators, Amanda Geller

and Jeffrey Fagan, explored stop data for the years 2004–2008, treating each of

75 of New York’s 123 police precincts in a year as a separate data point. To

consider whether race had an effect after other factors that might influence the

number of stops were accounted for, they fitted a negative binomial regression

model where the parameters were estimated using the method of generalized

estimating equations (GEEs) with AR(1) covariance (the strength of the correlation

declines in a certain way as the years separate) within precincts. The dependent

variable, “Total marijuana enforcement,” combines the numbers of stops on suspi-

cion of marijuana possession and arrests on that basis in a precinct. The model

relates the natural logarithm of the rate of total marijuana enforcement per person in

the population in a given precinct and year to the explanatory factors. The right-

hand side of the model combines the explanatory factors linearly with the regres-

sion coefficients. From the model prediction of the log rate, one would have to add

the log of the population size and then exponentiate to obtain the expected number
of total marijuana enforcement actions. For one of their models the results were as

shown in Table 14.9.1.

Table 14.9.1. Negative binomial regression of total marijuana enforcement by precinct, demog-

raphy, and socioeconomic conditions

Variable Coefficient Standard Error

Proportion non-Hispanic black 1.688** 0.466

Proportion Hispanic 1.580* 0.677

Proportion other race �0.624 0.814

Socioeconomic disadvantage �0.0458 0.11

Proportion foreign born �0.143 0.754

Lagged violent crime (000s) 0.131 0.221

Lagged marijuana arrests

(000s)

0.241** 0.0665

Total stops (log) 0.454** 0.0878

Constant �9.97** 0.794

# Observations 300

# Precincts 75

Marginal R2 0.76

**p< 0.01; *p< 0.05
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The variable “socioeconomic disadvantage” is an index combining precinct

poverty levels, unemployment rate, and level of physical disorder; it has a mean

of 0 and negative values indicate more disadvantage. The variable “total stops” is

the total number of stops for any reason in the precinct/year. The dependent

variable, total marijuana enforcement, has standard deviation 512.8 and the factor

proportion non-Hispanic black has standard deviation 0.26. The factor violent

crime (in thousands) has standard deviation 0.3331; and the factor marijuana

possession arrests (in thousands) has standard deviation 0.4459. Note that the

standard deviations of the lagged variables in the regression model are not neces-

sarily equal to those of the variables just mentioned. The model includes fixed

effects for borough and year (not shown in Table 14.9.1).

Questions

1. Is a negative binomial model appropriate for these data?

2. Interpret the coefficient for proportion non-Hispanic black. What does it tell you

about the legality of the stop program in light of the court order prohibiting the

selection of citizens for stops on the basis of race?

3. What does the model predict for the difference in rates of total marijuana

enforcement comparing an all-white versus an all-non-Hispanic black precinct,

assuming other factors in the model remain the same? Is the estimate reason-

able? Is the assumption of “all other factors equal” reasonable?

4. The model without total stops as an explanatory factor showed a coefficient of

1.986 for proportion of non-Hispanic black. Was it appropriate to add total stops

as an explanatory factor?

Source

Gelman & Fagan, Pot as Pretext: Marijuana, Race, and the New Disorder in
New York City Street Policing, 7 J. EMPIRICAL LEGAL STUDIES 591 (2010).

Notes

After a 9-week trial in 2013, federal judge Shira A. Scheindlin ruled, in a 198-page

opinion, that the NYC police department’s stop-and-frisk policies were unconstitu-

tional in violation of New Yorkers’ Fourth Amendment rights to be free from

unreasonable searches and seizures and were racially discriminatory in violation

of the Equal Protection clause of the Fourteenth Amendment. The Geller & Fagan

study shown above was not introduced in evidence, but other similar multiple

regression studies were introduced and professor Fagan testified at length about

them. Judge Scheindlin ordered various remedial measures, including the appoint-

ment of a monitor to oversee reforms at the department. Floyd v. City of New York,
959 F. Supp.2d 540 (S.D.N.Y. Aug. 13, 2013). The city appealed and the Second

Circuit Court of Appeals stayed the decision pending resolution of the appeal.

But Bill DeBlasio, running for mayor, vowed that if elected he would withdraw
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the appeal, and he did so after being elected and taking office in 2014. Thereafter

the reforms took effect and the monitor was appointed.

In her opinion Judge Scheindlin made the following finding: “The best predictor

for the rate of stops in a geographic unit—be it precinct or census tract—is the racial

composition of that unit rather than the known crime rate.” 4/3 Tr. at 2029.

Compute standardized regression coefficients to determine whether the results of

the Geller and Fagan study shown in Table 14.9.1 support that statement.

14.10 Jackknife, cross-validation, and bootstrap

In theory, the standard errors of regression coefficients reflect sampling variation,

but in fact it is not uncommon to find that, in repeated samples, actual variation

from sample to sample exceeds the theoretical prediction.

One important source of sensitivity is not reflected in standard errors. When a

regression model is selected and estimated from the same sample of data (the

construction sample), there is usually deterioration in the goodness of fit of the

equation when it is applied to other data. The greatest deterioration tends to occur if

the regression has been constructed using a stepwise procedure or some other data-

dredging technique. In the context of logistic regression, the difference between the

apparent misclassification rate in the construction sample and the true error rate for

independent samples is called overoptimism.

Computer technology has opened up ways of making direct assessment of the

stability of regression coefficients and the degree of overoptimism. Given enough

data, one could assess both by dividing the data into groups and recomputing the

regression for each group to determine how the coefficients vary in new samples.With

respect to overoptimism, the parallel technique is to divide the data into construction

and validation samples, estimate the regression from the construction sample, and test

its accuracywith the validation sample. Inmany cases, however, there is not sufficient

data to proceed in this way, and the statistician turns to devices known as the jackknife,
the bootstrap, and cross-validation to create replicate regressions for testing stability
of the coefficients and the accuracy of regression classifications.

In the jackknife technique (so named for its versatility), the regression equation

is computed many times, each time omitting a different case from the data base.

Computer programs do this efficiently by adjusting the estimates of the coefficients

for the addition of one point and the deletion of another. The variation of the

coefficients in these replications forms the basis for a direct estimate of their

standard errors.18 The technique is more robust than the classic method in that

18 The calculation is as follows. Let b denote a coefficient based on all the data, and let b(i) denote
the not-i coefficient based on deleting observation i, one at a time, for i ¼ 1, . . . , n. Define the ith

pseudovalue b*i ¼ nb� n� 1ð Þb ið Þ. Then the jackknifed estimate of the standard error of b is the

standard deviation of the n pseudovalues,
1

n� 1

Xn
i¼1

b*i � b*
� �2" #1=2

;whereb* ¼ 1=nð Þ
Xn
i¼1

b*i is the

jackknifed estimate of the coefficient. The jackknife estimator was originally introduced to convert

a biased estimator b into a largely unbiased estimator b*.
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standard errors can be estimated without any assumption as to the correctness of the

model. Confidence intervals for the coefficients may be based on the jackknifed

estimate of standard errors using the t-distribution, as in the classical method. Direct

assessment of variability is a useful check on theoretical calculations, particularly

in cases in which the significance of coefficients is at issue.

The resampling idea can also be used to estimate the degree of overoptimism by

using the model fitted with a case deleted to predict the outcome for the deleted data

point. The average accuracy of those predictions is a more accurate estimate of the

true error rate than that obtained from the construction sample. This technique is

called cross-validation.

The other technique for replicating regression equations is called the bootstrap.

Its essential idea is to create replications, not by deleting data points, but by treating

existing data points as a population from which simulated samples equal in size to

the actual sample may be selected. Variation is possible because after each point is

selected it is replaced in the population. Thus, if there are 30 points of data, a

bootstrap resample consists of 30 selections at random with replacement from this

group. Most such samples involve multiple selections of some individuals and the

omission of others. The number of possible different replications is much larger

than in the jackknife. For 30 points, the number of jackknife resamples is 30; the

number of different bootstrap resamples is 3030. Usually, however, a few hundred

bootstrap samples give results close to much larger samples.

In the multiple linear regression context there are two ways to make selections.

If the regression model is correct, for each given set of values of the explanatory

variables, the value of the dependent variable is computed by taking the regression

estimate and adding a residual selected at random from the population of residuals.

The selected residual is “replaced” in the population and the procedure repeated for

the next set of values of the explanatory factors. In this way a simulated set of

values for the dependent variable is generated, and a new regression is computed

based on the new values. From these replicate regressions the variability of the

regression coefficients is assessed.

This approach is valid only if the linear regression model is correct. A more

robust procedure, which does not depend on the correctness of the model, involves

treating each observation vector as a single data point, and randomly selecting (with

replacement) a number of observations equal in size to the sample. If there are

30 data points in the sample, repeated samples of size 30 are selected from the

population. As before, replicate regressions are derived from the data. In logistic

regression, the extent of overoptimism of a fixed prediction equation can be

assessed using the average rate of error of that equation in the bootstrap samples.

Further Reading

Efron & Tibshirani, An Introduction to the Bootstrap (1994).
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14.10.1 Georgia death penalty revisited

Table 14.10.1a shows the predicted probabilities of a death sentence based on a

regression computed from a “construction sample” of cases from Table 14.7.2c.

The equation was then applied to the remaining cases (the “test sample”), with the

results shown in Table 14.10.1b.

Table 14.10.1a. Death sentences and predicted probability of death (construction sample)

# Death Pred BD WV #AC FV VS 2V MS YV

1 0 0.0066 1 0 1 1 0 0 0 0

2 0 0.0105 1 0 4 0 0 0 0 0

3 0 0.0204 1 0 1 1 0 0 1 0

4 0 0.0211 1 0 3 0 0 0 1 0

5 0 0.0324 1 0 4 0 0 0 1 0

6 0 0.0504 1 0 2 1 0 1 0 1

7 0 0.0505 1 1 2 0 0 0 0 0

8 0 0.0634 1 0 3 0 1 0 0 0

9 0 0.0806 0 1 2 0 0 0 0 0

10 0 0.0951 1 0 4 0 1 0 0 0

11 0 0.1325 0 1 4 0 0 1 0 0

12 1 0.1362 1 0 3 1 1 0 0 0

13 0 0.1404 1 0 5 0 1 0 0 0

14 0 0.1477 0 0 4 0 1 0 0 0

15 0 0.1615 1 1 3 1 0 0 0 0

16 1 0.1663 1 1 5 0 0 0 0 0

17 0 0.1697 0 1 2 1 0 0 0 0

18 0 0.1747 0 1 4 0 0 0 0 0

19 1 0.1747 0 1 4 0 0 0 0 0

20 0 0.2065 1 1 3 0 0 0 1 0

21 0 0.2366 1 1 6 0 0 0 0 0

22 0 0.2475 0 1 5 0 0 0 0 0

23 1 0.2475 0 1 5 0 0 0 0 0

24 0 0.2757 1 0 5 1 1 0 0 0

25 0 0.3171 0 1 2 1 0 1 1 0

26 0 0.3250 1 1 7 0 0 0 0 0

27 0 0.4493 1 1 3 0 1 0 0 0

28 0 0.4640 0 1 2 0 1 0 0 0

29 1 0.4925 0 1 3 0 1 1 0 0

30 0 0.4937 0 1 3 0 0 0 0 1

31 1 0.5222 0 1 4 0 0 1 0 1

32 0 0.5436 0 1 6 1 0 0 0 0

33 0 0.5590 1 1 4 0 1 0 0 0

34 1 0.5590 1 1 4 0 1 0 0 0

(continued)
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Table 14.10.1a. (continued)

# Death Pred BD WV #AC FV VS 2V MS YV

35 1 0.5590 1 1 4 0 1 0 0 0

36 1 0.5736 0 1 3 0 1 0 0 0

37 1 0.6084 0 1 4 1 0 0 1 0

38 0 0.6632 1 1 5 0 1 0 0 0

39 1 0.6632 1 1 5 0 1 0 0 0

40 1 0.6686 0 1 2 1 1 0 0 0

41 0 0.6686 0 1 2 1 1 0 0 0

42 1 0.6764 0 1 4 0 1 0 0 0

43 1 0.6764 0 1 4 0 1 0 0 0

44 0 0.6764 0 1 4 0 1 0 0 0

45 0 0.7008 0 1 5 0 1 1 0 0

46 1 0.7582 0 1 3 1 1 0 0 0

47 1 0.7845 0 1 6 0 1 1 0 0

48 1 0.7940 1 1 2 1 1 0 1 0

49 1 0.8211 1 1 5 1 1 0 0 0

50 1 0.9337 1 1 5 0 1 0 0 1

Table 14.10.1b. Death sentences and predicted probability of death (test sample)

# Death Pred BD WV #AC FV VS 2V MS YV

1 0 0.0044 1 0 2 0 0 0 0 0

2 1 0.0049 1 0 3 0 0 1 0 0

3 0 0.0176 1 0 4 1 0 1 0 0

4 0 0.0223 1 0 2 0 0 1 0 1

5 1 0.0371 1 0 5 1 0 0 0 0

6 0 0.0417 1 0 2 0 1 0 0 0

7 1 0.0417 1 0 2 0 1 0 0 0

8 0 0.0534 0 1 1 0 0 0 0 0

9 0 0.0634 1 0 3 0 1 0 0 0

10 0 0.0806 0 1 2 0 0 0 0 0

11 1 0.0867 0 1 1 1 0 1 0 0

12 0 0.0895 0 1 3 0 0 1 0 0

13 0 0.0951 1 0 4 0 1 0 0 0

14 0 0.1026 1 0 3 1 0 0 0 1

15 0 0.1162 0 1 1 1 0 0 0 0

16 1 0.1325 0 1 4 0 0 1 0 0

17 1 0.1404 1 0 5 0 1 0 0 0

18 1 0.1663 1 1 5 0 0 0 0 0

19 0 0.1697 0 1 2 1 0 0 0 0

20 1 0.1747 0 1 4 0 0 0 0 0

21 0 0.1747 0 1 4 0 0 0 0 0

22 0 0.1747 0 1 4 0 0 0 0 0

23 0 0.1968 1 0 4 1 1 0 0 0

(continued)
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Questions

1. Using the rule that a death sentence is predicted when the estimated probability

of such a sentence is greater than 0.50, calculate the proportion of correct

predictions in the test and construction samples. Do the data show

overoptimism?

2. Refine your calculations by computing the positive predictive value (i.e., those

who received the death penalty as a proportion of those predicted to receive it)

and the negative predictive value (i.e., those who did not receive the death

penalty as a proportion of those predicted not to receive it).

Table 14.10.1b. (continued)

# Death Pred BD WV #AC FV VS 2V MS YV

24 0 0.2024 1 0 6 0 1 0 0 0

25 1 0.2122 0 0 5 0 1 0 0 0

26 1 0.3003 0 1 3 0 0 0 0 0

27 1 0.3003 0 1 3 0 0 0 1 0

28 0 0.3250 1 1 7 0 0 0 1 0

29 1 0.3304 0 1 4 1 0 0 0 0

30 1 0.3382 0 1 6 0 0 0 0 0

31 0 0.3705 1 1 3 0 1 1 0 0

32 1 0.4493 1 1 3 0 1 0 0 0

33 1 0.4493 1 1 3 0 1 0 0 0

34 1 0.5001 0 1 3 1 0 0 1 0

35 0 0.5503 1 1 2 1 1 0 0 0

36 1 0.5590 1 1 4 0 1 0 0 0

37 1 0.5590 1 1 4 0 1 0 0 0

38 1 0.5736 0 1 3 0 1 0 0 0

39 1 0.6084 0 1 4 1 0 0 1 0

40 1 0.6553 1 1 3 1 1 0 0 0

41 1 0.6632 1 1 5 0 1 0 0 0

42 1 0.6632 1 1 5 0 1 0 0 0

43 1 0.6686 0 1 2 1 1 0 0 0

44 1 0.6764 0 1 4 0 1 0 0 0

45 1 0.7198 1 1 3 0 1 0 1 0

46 1 0.7471 1 1 4 1 1 0 0 0

47 1 0.7582 0 1 3 1 1 0 0 0

48 0 0.7793 0 1 4 1 0 0 0 1

49 1 0.8346 0 1 6 0 1 0 0 0

50 1 0.9337 1 1 5 0 1 0 0 1
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Appendix I: Calculations and Comments
on the Cases

In this appendix we furnish our calculations of statistical results for most of the

problems requiring some calculation. We do not suggest that these are the only

“correct” solutions; there are usually a variety of analyses appropriate for a statisti-

cal question. The methods we present are designed to illustrate the topics discussed

in the text. There are also comments on some of the statistical issues, and occasion-

ally some supplementary technical discussion for those inclined to dig further. For

the most part, we have left discussion of the legal issues to the reader.

Chapter 1. Descriptive Statistics

Section 1.2.1. Parking meter heist

1. Average total revenue/month for the 10 months of the Brink’s contract prior

to April 1980 was $1,707,000; the comparable figure for CDC the next year

was $1,800,000. The city argued that the difference of about $100,000/month

was due to theft.

An alternative calculation can be made based on the questionable assumption

that the $4,500 recovered when the employees were arrested represented an

average theft per collection. Since there were about 200 collections in the

preceding 10 months, the theft in that period was 200� 4,500¼ 900,000,

close to the figure obtained from the time-series analysis.

2–3. Brink’s argued that the difference was due to an underlying trend, pointing to

the figures in Area 1-A, where no theft occurred. Average monthly revenue for

Area 1-A during the last 10 months of the Brink’s period was $7,099; its

average during the CDC period was $7,328. The difference of $229 is a

percentage increase of 3.2%. A 3.2% increase applied to $1,707,000 comes

to $1,762,000, which leaves only $38,000/month, or $380,000 for 10 months,

The original version of the book was revised. An erratum can be found at DOI 10.1007/978-1-

4419-5985-0_15
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unaccounted for. At the trial, Brink’s adduced the evidence from Area 1-A,

but did not stress the comparison. Its chief defense was that confounding

factors had contributed to an overall trend that biased the city’s estimate.

The jury found for the city and awarded $1,000,000 compensatory damages

and punitive damages.

Section 1.2.2. Taxing railroad property

1. The language of the statute, which refers to the assessed value of “other

commercial and industrial property in the same assessment jurisdiction,”

suggests using the ratio of the aggregate assessed value to the aggregate market

value; that would be a weighted mean. In its generic sense of “not unusual,” the

word “average” is not informative on the choice between the mean and the

median. However, in its specific sense the “average” is the mean, and “weighted

average” could only be the weighted mean. The issue is made murky by the

comment of the railroad spokesman, which suggests that the mean was not

intended to be used in applying the statute.

2. Because the median minimizes the sum of absolute deviations, it might be said to

minimize discrimination with respect to the railroads.

3. Total assessment is calculated as the mean assessment rate times the number of

properties; use of the mean would therefore produce no change in revenue.

4. The median is the middle measurement for all properties. Its treatment of all

properties as equal can be regarded as most equitable to the railroads.

5. The weighted mean assessment/sales ratio is a weighted harmonic mean because

it is the reciprocal of the weighted mean of the reciprocals of the assessment/

sales ratios in each stratum, with the weights being the proportions that the

assessments in each stratum bear to total assessments.

Section 1.2.4. Disproportionate-share hospitals

The answer is a legal matter, but we make the following observation. The weighted

average is equivalent to summing all Medicaid patient-days and dividing by the

sum of all inpatient days across all hospitals. As such, the average can be viewed as

the proportion of all inpatient days that are accounted for by Medicaid patients, i.e.,

the unit is the patient-day. The unweighted average uses the hospital as the unit,

each summarized by its own proportion of Medicaid patient-days, so that the

unweighted average represents the average of these proportions in the population

of hospitals rather than in the population of patient-days. Since the statute is focused

on hospitals, the unweighted average seems to be the more appropriate measure.

1. In statistics, the arithmetic mean usually refers to an unweighted average. So the

absence of that modifier in the provision in question is some evidence that
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Congress did not intend to preclude the use of a weighted mean. This inference is

weakened by the fact that “arithmetic mean” is often used to distinguish a simple

average from other types of means, such the geometric mean or harmonic mean.

2. The squared deviations of the hospital Medicaid proportions around the

weighted average should also be weighted before summing, i.e., a weighted

standard deviation should be used. Statisticians would always weight the

deviations when using the weighted mean as the center of a distribution, and

Congress’ use of the technical term would import the standard statistical prac-

tice. In this case it would appear that the weighted standard deviation would be

smaller than the unweighted version, to the benefit of the smaller hospitals like

Garfield. This would follow insofar as the proportions from the larger hospitals,

being more heavily weighted, would tend to be closer to the weighted average,

and those smaller deviations themselves would be more heavily weighted in the

weighted standard deviation.

Section 1.2.5. Hydroelectric fish kill

The sample arithmetic mean is equal to the sum of the observations in the sample

divided by the sample size, n. From this definition, it is obvious that, if one is given

the mean of a sample, the sum of the sample observations can be retrieved by

multiplying the mean by n. The sample can then be “blown up” to the population by

multiplying it by the reciprocal of the proportion that the sample size bears to the

whole. In short, the arithmetic mean fish kill per day times the number of days in the

year estimates the annual fish kill. However, for the geometric mean the first step

cannot be taken because the geometric mean is the nth root of the product of the

n observations; multiplying that by n does not yield the sum of the sample

observations. Hence, the geometric mean fish kill per day times the number of

days in the year does not estimate the annual kill. Notice also that if on any day in

the sample of days there were no fish killed, the geometric mean would equal zero,

clearly an underestimate. So the geometric mean procedure is inappropriate.

Section 1.2.6. Pricey lettuce

1. The ratio of new to old lettuce prices, using the arithmetic mean index with constant

dollar shares (RA), can be expressed algebraically as RA¼∑S0,i(Pt,i/P0,i), where S0,i
is the dollar share of the ith product in the base period; Pt,i is the price of the ith
product at time t; P0,i is the price of the ith product in the base period; and the

summation is across products being averaged. Thus the arithmetic average ratio of

new to old lettuce prices is (1/2)(1/1) + (1/2)(1.5/1)¼ 1.25, indicating a 25%

increase in price of lettuce. The new quantities implied by this increase are

1.25 lb of iceberg and 0.8333 lb of romaine lettuce. (These are the quantities that

keep the expenditure shares for each kind of lettuce equal, given that the total
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amount spent on lettuce increases by 25%.) Since the reduction in amount

of romaine is less than the increase in quantity of iceberg, the assumption of

equal satisfaction implies that consumer satisfaction is greater per unit of romaine

than of iceberg.

2. Using the geometric mean, index, the ratio of new to old prices can be expressed

as RG ¼
Y

i
Pt, i=P0, ið ÞS0, i , where Π indicates the product of the relative price

changes across items. The geometric average ratio of new to old lettuce prices is

(1/1)1/2� (1.5/1)1/2¼ 1.225, for a 22.5% average increase. The new quantities

implied by this increase are 1.225 lb of iceberg and 0.816 lb of romaine lettuce.

Again, consumer satisfaction is deemed greater per unit of romaine than of

iceberg, although the difference is smaller than under the arithmetic mean

computation.

3. The arithmetic mean ratio if romaine drops back from $1.5 to $1 is (1/2)(1/1)

+ (1/2)(1/1.5)¼ 0.8333, which is greater than 0.8, the reciprocal of 1.25. The

geometric mean ratio is (1/1)1/2� (1/1.5)1/2¼ 0.816, which is the reciprocal of

1.225. The geometric mean ratio would appear superior to the arithmetic mean

ratio from this point of view because it matches reciprocal price movements with

reciprocal changes in the index.

Section 1.2.7. Apportionment of Representatives among
the states

1. For Montana, the divisor for the Hill method¼ geometric mean of 1 and

2¼ square root of 2¼ 1.414. By the Dean method this would be the harmonic

mean of 1 and 2¼ 2/(1 + 0.5)¼ 1.333.

For Washington, the divisor for the Hill method¼ geometric mean of 8 and

9¼ square root of 72¼ 8.485. By the Dean method this would be the harmonic

mean of 8 and 9¼ 2/(0.125 + 0.1111)¼ 8.471.

2. For Montana, the priority number would be 803655/1.414¼ 568356 by the Hill

method. It would be 803655/1.333¼ 602892 by the Dean method.

For Washington, the priority number would be 4887941/8.485¼ 576068 by the

Hill method. It would be 4887941/8.471¼ 577021 by the Dean method.

Thus, by the Hill method, Washington goes from 8 to 9 representatives, while

Montana loses one seat. By the Dean method, Washington gets 8 seats and

Montana gets 2.

3. The relative disparities are as follows:

Montana’s average district size was 803,655 under the Hill method whereas it

would have been 803,655/2¼ 401,828 under the Dean method. Therefore the

relative disparity is |803,655� 572,466|/572,466¼ 40.4% under the Hill method
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whereas it is |401,828� 572,466|/401,828¼ 42.5% under the Dean method. The

latter denominator is used because 401,828 is smaller than the ideal district size

of 572,466.

Washington’s average district size was 4,887,941/9¼ 543,105 under the Hill

method whereas it would have been 4,887,941/8¼ 610,993 under the Dean

method. Therefore the relative disparity is |543,105� 572,466|/543,105¼
5.41% under the Hill method whereas it is |610,993� 572,466|/572,466¼
6.73% under the Dean method.

The absolute disparities are as follows:

For Montana: |803,655� 572,466|¼ 231,189 under the Hill method and

|401,828� 572,466|¼ 170,638 under the Dean method.

For Washington: |543,105� 572,466|¼ 29,361 under the Hill method and

|610,993� 572,466|¼ 38,527 under the Dean method.

Thus the sum of the relative disparities under the Hill method (40.4

+ 5.41¼ 45.81) is smaller than that under the Dean method (42.5

+ 6.73¼ 49.23), while the sum of the absolute disparities is greater under the

Hill method (231,189 + 29,361¼ 260,550) than that under the Dean method

(170,638 + 38,527¼ 209,165).

The Supreme Court unanimously rejected Montana’s challenge, holding that “in

none of these alternative measures of inequality [the absolute difference, the

relative difference, and others], do we find a substantive principle of command-

ing constitutional significance.”

Section 1.2.8. Super-drowsy drug

1. Baker’s expert used in effect an average percentage reduction in sleep latency

weighted by the baseline latency. His weighted average was greater than the

FTC simple or unweighted average because, in the data, larger percentage

reductions are associated with longer baseline latencies. If there were a constant

mean percentage reduction of sleep latency for all baselines, either the weighted

or unweighted average would be an unbiased estimator of it. Our choice would

then depend on which was more precise.

2. If the variability of reduction percentages were the same for all baseline

latencies, the unweighted sample average (the FTC estimate) would be the

preferred estimator because it would have the smallest sampling variance. But

if, as Fig. 1.2.8 indicates, variability in the reduction percentage decreases with

increasing baseline latency, the more precise estimator is the weighted average

(the Baker estimate), which gives greater weight to larger baseline latencies.

Regression methods (see Chapter 13) can be applied to study the percentage

reduction as a function of baseline latency.
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Able’s exclusion of data in the baseline period is clearly unacceptable, as the

week 2 latency average would appear shorter even with exactly the same values

as in week 1. Baker’s entry criteria and non-exclusion of data are more reason-

able, defining a target population of insomniacs as those with longer than

30 minute latencies on at least 4 out of 7 nights. Such entry criteria ordinarily

lead to some apparent reduction in sleep latency, even without the sleep aid, by

an effect known as the regression phenomenon (see Section 13.1 at p. 371). The

total effect is a sum of drug effect, placebo effect, and regression effect.

Section 1.3.1. Texas reapportionment

1. a. The range is 7,379. The range in percentage terms is from +5.8 to �4.1%, or

9.9 percentage points.

b. The mean absolute deviation is 1,148 (mean absolute percentage

deviation¼ 1.54%).

c. Using the formula

S ¼ n

n� 1

� � 1

n

Xn
i¼1

x2i

 !
� 1

n

Xn
i¼1

xi

 !2
24 358<:

9=;
1=2

the standard deviation of district size is 1,454.92 (if the exact mean 74,644.78

is used), or 1,443.51 (if 74,645 is used). This formula is sensitive to the least

significant digits in the mean. A better way to calculate S is from the mean

squared deviation

S ¼ n

n� 1

� � 1

n

Xn
i¼1

xi � xð Þ2
" #( )1=2

¼

Xn
i¼1

xi � xð Þ2

n� 1

8>>><>>>:
9>>>=>>>;

1=2

which does not suffer from this instability. The sd of percentage deviation is

1.95%. We give the above formula because it is the usual one used for

estimating the standard deviation from samples; in this context it could well

be argued that the data are the population, in which case the factor n/(n� 1) in

the first expression should be deleted.

d. The interquartile range is 75,191� 73,740¼ 1,451. In percentage terms it is

0.7� (�1.2)¼ 1.9.

e. The Banzhaf measure of voting power (see Section 2.1.2) argues for the use of

the square root of the population as a measure of voting power. Transforming

the data by taking square roots, the range becomes 280.97� 267.51¼ 13.46.
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For percentage deviation from the average root size of 273.2, the range is

+2.84 to �2.08%, or 4.92 percentage points.

2. The choice among measures depends initially on whether one is most influenced

by the most discrepant districts or by the general level of discrepancy. The

former points to the range; the latter to one of the other measures. In any event,

there would seem to be no reason to use squared differences, i.e., the variance or

standard deviation, as a measure.

Section 1.3.2. Damages for pain and suffering

1. Treating the data as the population ($ in 000’s), the variance is

913,241� 558,562¼ 354,679. The standard deviation is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
354,679

p ¼ 595:55.
The mean is 747.37. Hence, the maximum award under the court’s two-standard-

deviation rule would be 747.37+ 2� 595.55¼ 1,938.47. Probably it is more cor-

rect to treat the data as a sample from a larger population of “normative” awards.

In that case, the variance would be estimated as 354, 679� 27
26
¼ 368, 320:5.

The standard deviation would be
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
368, 320:5

p ¼ 606:89, and the maximum

award under the court’s rule would be 747.37+ 2� 606.89¼ 1,961.15.

2. The court’s use of a two-standard-deviation interval based on a group of

“normative” cases to establish permissible variation in awards assumes that

the pain and suffering in each case was expected to be the same, apart from

sampling variability, assumed permissible, and was similar to that suffered in the

Geressy case. This seems unlikely since, e.g., an award of $2,000,000 would

probably have been deemed excessive if made to the case that had received

$37,000. If, as seems likely, different levels of pain and suffering are involved

over the range of cases, one would have to locateGeressy on that continuum, and

then construct an interval for that level. Two standard deviations calculated from

the normative cases would no longer be appropriate because that would reflect

both variation at a particular level and variation across levels, the latter being

irrelevant to the reasonableness of the award in the particular case.

These are linear regression concepts—see Section 13.3.

Section 1.3.3. Ancient trial of the Pyx

1. The remedy was 7,632 grains. If σ¼ 0.42708, then the standard deviation of the

sum of n¼ 8,935 differences of a sovereign’s actual weight from the standard is

σ � ffiffiffi
n

p ¼ 40:4 gr. Thus, the deviation represented by the remedy in standard

deviation units is 7,632/40.4¼ 188.9 sd. The probability of finding an absolute

sum of n differences greater than 188.9 standard deviations is, by Chebyshev’s

inequality, less than 1/188.92¼ 2.8� 10�5, vanishingly small.
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2. The remedy grows too large because it increases by the factor of n instead of
ffiffiffi
n

p
.

The remedy of 3σ
ffiffiffi
n

p
should have amply protected the Master of the Mint

without giving him excessive leeway; in the example, it would have been

3� 0:42708 � ffiffiffiffiffiffiffiffiffiffi
8935

p ¼ 121:1 gr. Whether Newton would have appreciated the

flaw in the remedy formula has been the subject of some conjecture. See Stigler,

supra, in the Source.

The square root law may be inadequate if the individual coins put into the Pyx

were not statistically independent, e.g., because they were from the same mint

run. Such dependence tends to reduce the effective sample size.

Section 1.4.1. Dangerous eggs

1. Pearson’s correlation coefficient between mean egg consumption (EC) and mean

ischemic heart disease (IHD) is 0.426.

2. The probative value of ecologic studies such as this is considered extremely

limited. The correlational study of national means says little about the strength of

correlation among individuals within the societies. The “ecologic fallacy” results

from an uncritical assumption that the observed association applies at the indi-

vidual level. In fact, it is theoretically possible for EC and IHD to be uncorrelated

among individuals within a given society, while societal mean levels of EC and

IHD co-vary with a confounding factor that itself varies across societies.

For example, red meat consumption in societies with high-protein diets might

be such a confounding factor, i.e., a factor correlated with both EC and IHD.

Counsel for the egg producers might argue that, in view of the ecologic fallacy,

statistical comparisons should be limited to countries similar to the United

States, at least in egg consumption. When that is done, however, the correlation

between IHD and egg consumption virtually disappears.

3. Errors in the data would tend to reduce the correlation.

Section 1.4.2. Public school financing in Texas

1. The correlation in Texas between state and local revenues per pupil and median

family income from 1960 for the five groups (unweighted) is 0.875. On a

weighted basis, treating each district as separate but using median values for

each group, the Texas correlation is 0.634. (The effect of grouping districts is to

remove some of the variability in the data, thereby increasing the correlation.)

Using the first figure one would say that 0.8752¼ 76.6% of the variation in

revenues per pupil is accounted for by variation in median family income; using

the weighted correlation the figure is 0.63422¼ 40.2%.
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The overall correlation is reduced by the inverse relation in the center of the data.

The inversion is not very important because the median income figures in the

three districts are quite close to the overall median figure.

2. The possible objection that only a few extreme districts were involved cannot be

resolved because, remarkably, it does not appear that Professor Berke stated how

his 10% sample of districts had been selected.

Section 1.5.1. Proficiency test with a disparate impact

1. The computations are as follows:

Pass rates Fail rates

Blacks 448/770¼ 0.582 322/770¼ 0.418

Whites 240/341¼ 0.704 101/341¼ 0.296

Difference in rates

Blacks to Whites 0.582� 0.704¼�0.122 0.418� 0.296¼ 0.122

Whites to Blacks 0.704� 0.582¼ 0.122 0.296� 0.418¼�0.122

Ratio of rates (relative risk)

Blacks to Whites 0.582/0.704¼ 0.827 0.418/0.296¼ 1.412

Whites to Blacks 0.704/0.582¼ 1.210 0.296/0.418¼ 0.708

Odds Ratio

Blacks to Whites 0:582=0:418

0:704=0:296
¼ 0:585

0:418=0:582

0:296=0:704
¼ 1:708

Whites to Blacks 0:704=0:296

0:582=0:418
¼ 1:708

0:296=0:704

0:418=0:582
¼ 0:585

2. Under the express terms of the four-fifths rule, the data do not indicate adverse

impact because the relative risk is 0.827, which exceeds 0.80. However, in light

of the policy of the rule, there might be said to be adverse impact because the

odds of a black passing are only 0.585 of the odds that a white would pass.

If the test purported to be one of minimum qualifications (e.g., absence of an

arrest record), the principal focus would be on failure rates. From that perspec-

tive, the case for adverse impact is stronger on these data since the white failure

rate is only 0.708 of the black failure rate. Notice that the odds ratio for black

failure vs. white failure is the same (0.585) as the odds ratio for white pass

vs. black pass. If the EEOC had used odds ratios rather than relative risks in its

rule, it would have avoided the problem of possible inconsistency in results

between pass and fail rates.

Appendix I: Calculations and Comments on the Cases 517



Section 1.5.2. Bail and bench warrants

1. The rates of bench warrants previously issued among those currently issued

(54/146) and not currently issued (23/147) are not dependent on the sample sizes

for current issuance. However, these rates are only of indirect interest.

2. The statistics of direct interest are the rates of bench warrants currently issued

among those previously issued (54/77) and not previously issued (92/216). But

these rates are dependent on the sample sizes with respect to the currently issued

warrants, which are arbitrary features of the study design.

3. Since the study was retrospective, to express the value of using prior issuance as

a predictor, one must use the odds ratio, which is

54=92

23=124
¼ 54=23

92=124
¼ 54� 124

23� 92
¼ 3:16:

In its prospective interpretation, this says that the odds on a current bench

warrant issuing if one has been previously issued are three times the odds on a

current bench warrant issuing if one has not been previously issued.

4. One cannot tell from these data how many non-appearances would be avoided if

prior issuance of a warrant automatically led to denial of bail because that figure

(known as the attributable risk, see Section 10.2) requires knowledge of the

proportion of prior issuance and the relative risk of a warrant currently issuing

given a prior issuance (or not) and those quantities cannot be determined from

these data.

Section 1.5.3. Non-intoxicating beer

1. The relative risk of DWI arrest by gender is 2/0.18¼ 11.11. The attributable risk

due to maleness, using formula (3) in Section 10.1 at p. 304, is

x

1þ x
¼ 5:06

1þ 5:06
¼ 0:835;

where x¼ the proportion of males (0.5) times (R.R.� 1)¼ (0.5)(11.11� 1)¼
5.06. Thus, even though relatively few men are involved, the higher arrest rate of

men accounts for over 80% of the arrests.

2. Justice Brennan’s statement is confusing, but appears to address an issue beyond

the large relative risk. His conclusion assumes that the low percentage of arrests

reflects the extent of the drinking and driving problem among young people who

drink 3.2% beer. In that case, the small numbers involved would make a gender-

discriminatory statute less acceptable in terms of social necessity, even in the

face of the large relative risk. A difficulty is that the data are not satisfactory for

assessing the extent of the problem. On the one hand, the number of arrests
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clearly underestimates the extent of the drinking and driving problem. But on the

other hand, arrests for all alcoholic beverages clearly overstate the problem for

3.2% beer. There is no reason to think that these biases would balance out. In

addition, since the study was made after the statute was passed, it is not clear

what direct bearing it has on assessing the conditions that led to and would

justify its passage.

Section 1.5.4. SIDS tragedies

1. This was a comparative retrospective or case-control study. From the description

it is unclear whether the control sample was sampled independently from the

same population of families, or whether the control families were matched to

each case family in a 4:1 ratio based on important confounding factors. Many

studies of this kind are done with matching controls, and they are called

matched-sample case-control studies.

2. Ignoring for the moment that a matched-sample study design would require

more information than is provided in the narrative, we could cast the data into a

fourfold table cross-classifying SIDS vs. control families by presence or absence

of a prior SIDS infant. Among SIDS families, the odds on having a prior SIDS

infant can be estimated as 5/318, whereas among control families, the odds on

having a prior SIDS infant are estimated as 2/1,286. The ratio of these odds is

OR¼ (5/318)/(2/1,286)¼ 10.11. By the invariance property of the odds ratio,

this can be interpreted to say that having a prior SIDS infant multiplies the base

odds of that event by a factor 10 compared to that among families with no prior

SIDS infants.

If this was indeed a matched-sample study, the above analysis would be poten-

tially biased due to confounding (see Chapter 8). It is likely in this case,

however, that there is still a strong association between prior SIDS infants and

future ones, though possibly not as strong as a tenfold odds ratio.

Chapter 2. How to Count

Section 2.1.1. DNA profiling

1. There are 20 distinguishable homozygous and (20� 19)/2¼ 190 heterozygous

genotypes possible at the locus (not distinguishing between chromosomes of the

pair). Thus, there are 210 distinguishable homozygous and heterozygous pairs of

alleles at a locus.

2. With four loci, there are 2104¼ 1.94� 109 possible homozygous and heterozy-

gous genotypes at the loci (again, not distinguishing between chromosomes of

the genotype at a locus).
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Section 2.1.2. Weighted voting

1. There are 182 ways the supervisors from the eight small towns can vote so that

the supervisor from the larger town can cast the deciding vote, as shown in the

third column of the table below.

Yes No # of Combinations

4 4 70

5 3 56

3 5 56

182

2. There are 42 ways a small town supervisor can find himself casting a deciding

vote:

Yes No # of Combinations

big town (3) +2 5 21

5 big town (3) +2 21

42

3. Total number of decisive votes: 182 + 8 · 42¼ 518. Proportion of decisive votes

for the big town: 182/518¼ 35.1%. Since it has only 3/11 or 27.3% of the total

population, it may be said to be overrepresented, if the definition of voting power

is accepted. The smaller towns are correspondingly underrepresented. They each

have 42/518 of voting power, or 8.1%, while they have 1/11 or 9.1% of the total

population.

4. If the theory is applied at the voter level, the supervisor from the larger town

should have not three times the voting power, but
ffiffiffi
3

p
times the voting power,

because a voter’s probability of breaking a tie for election of a representative

declines not in proportion to the increase in number of votes, but in proportion to

the square root of their numbers. This result can be obtained in various ways,

among them by applying Stirling’s approximation (see Section 2.1 at p. 48) to

the binomial coefficient
2N
N

� �
.
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Section 2.1.3. Was the bidding rigged?

The nine low bids can be distributed in the occupancy sequence 2, 2, 1, 1, 1, 1, 1 in

9!

2! 2! 1! 1! 1! 1! 1!
¼ 90,720

ways. The total number of ways of distributing the occupancy sequence among the

seven firms is
7

2

� �
¼ 21. Thus, the total number of ways of obtaining the observed

occupancy numbers without regard to sequence is 21� 90,720¼ 1,905,120. The

total number of ways of distributing the 9 low bids among the 7 firms is

79¼ 40,353,607. Thus, the probability of observing the actual set of occupancy

numbers is 1,905,120/40,353,607¼ 0.047, assuming equally likely outcomes.

The model of equal probability seems appropriate since the firms claim that they

are similar and act independently. Under that model, the observed distribution is not
in fact the most likely. (For example, the occupancy sequence 3, 2, 2, 1, 1, 0, 0 has

probability 0.236.) Among all occupancy sequences, 2, 2, 1, 1, 1, 1, 1 has the

smallest range (maximum minus minimum), which is another statistic suggesting

collusive allocation.

Section 2.1.4. A cluster of leukemia

We seek the probability that, in a uniform multinomial distribution with 6 cells and

sample size 12, the largest cell frequency would be 6 or more. While a computer

algorithm is generally indispensable for calculating a quantity of this type, in the

present case exhaustive enumeration of all cases involving a maximum frequency

of 6 or more is feasible. There are 29 such sets of occupancy numbers (for which

multinomial probabilities must be computed). The exact answer is 0.047544. In the

bid-rigging problem (Section 2.1.3), the distribution was too uniform while in this

problem it is too clumped. The point is that either extreme is improbable under the

hypothesis of equal probability for all cells.

Bonferroni’s inequality may also be applied with excellent accuracy; see

Section 3.1 at p. 64.

Section 2.1.5. Measuring market concentration

1. The number of ways N customers can be divided among i firms with ai customers

of firm i is the multinomial coefficient N!/∏ai!

2. Setting 1/ni¼ ai/N, we have ai¼N/ni. Substituting in the multinomial coefficient

we have N!/∏(N/ni)!
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3. Using the crude form of Stirling’s approximation for the factorials, we have

NNe�NY
N=nið ÞN=ni e�N=ni

:

Since ∑1/ni¼ 1, we have
Y
i

e�N=ni ¼ e�N and
Y
i

NN=ni ¼ NN , so that

canceling e�N and NN from numerator and denominator and taking the Nth

root, we have
Y
i

n
1=ni
i as the entropy measure of concentration.

4. In the example, the value of the entropy index is obtained as follows. The value of

ni is 5 for the 20% firms, 50 for the 2% firms, and 100 for the 1% firms.When there

are 10 small firms, the entropy measure is 50.20�4� 500.02�10¼ 7.92 equal firms;

when there are 20 small firms the entropy measure is 50.20�4� 1000.01�20¼ 9.10

equal firms. Thus, by the entropy measure, the number of small firms is relevant to

competition. By the Herfindahl index (HHI), when there are 10 small firms, HHI is

202� 4 + 22� 10¼ 1,640, or 10,000/1,640¼ 6.10 equal firms; by a similar calcu-

lation, when there are 20 small firms, HHI is 10,000/1,620¼ 6.17. By HHI, the

number of small firms makes little difference.

These two indices form the basis for two classical tests of the null hypothesis of

uniform distribution of customers in a multinomial model. The entropy measure

gives rise to the likelihood ratio statistic (see Section 5.6), while HHI gives rise

to the Pearson chi-squared statistic (see Section 6.1).

Section 2.2.1. Tracing funds for constructive trusts

1. Under the reflection principle of D. André, to find the number of paths that begin

at $10, touch or cross the 0 ordinate, and end at 10, we count the number of

paths that end at �$10. This is equal to
100

40

� �
. The total number of paths that

end at 10 is
100

50

� �
. Hence, the probability that a path would touch or cross

0 and end at 10 is

100

40

� ��
100

50

� �
¼ 50 !2

40 ! � 60 ! ¼ 0:136:

2. The expected maximum reduction in the trust is 0:627
ffiffiffiffiffiffiffiffi
100

p ¼ 6:27 dollars.

3. The probability of no $10 depletion is 1� 0.136¼ 0.864. This number raised to

the 10th power is 0.232, the probability of no $10 depletion on any of the

10 days. Therefore, the probability that a $10 depletion occurs at some point

during the 10 day period is 1� 0.232¼ 0.768.
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The fact that we apply probability theory here should not be construed as a

recommendation for the rule of law that suggests the excursion into fluctuation

theory, but which otherwise seems to have little to recommend it.

Chapter 3. Elements of Probability

Section 3.1.1. Interracial couple in yellow car

1–2. The identifying factors are almost certainly not independent. However,

if probabilities are interpreted in the conditional sense, i.e., P[e | f]¼ 1/10;

P[d | e and f]¼ 1/3; P[c | d and e and f]¼ 1/10, etc., the probability of the

factors’ joint occurrence would be equal to their product.

3. The calculation in the court’s appendix assumes that the selection of couples

who might have been at the scene from the larger universe was made with
replacement. This assumption would produce a 0.41 probability of including a

C-couple twice in the selection in any case in which a C-couple had been

included once, even if they were the only such couple in the population. An

analysis assuming sampling without replacement would have been more

appropriate.

4. The prosecutor assumed, in essence, that the frequency of C-couples in the

population was the probability of the Collinses’ innocence. It is not that, but

the probability that the guilty couple would have been a C-couple if the
Collinses’ were innocent. This inversion of the conditional is sometimes

called the prosecutor’s fallacy. The two probabilities would be of the same

magnitude only if the other evidence in the case implied a 50% probability of

the Collinses’ guilt. See Sections 3.3 and 3.3.2.

5. The last clause of the last sentence of the court’s appendix assumes that the

probability of the Collinses’ guilt is one over the number of C-couples. This is

called the defendant’s fallacy because it assumes that there is no other

evidence in the case except the statistics, which is generally not true and

was not true here. See the sections referred to above.

Section 3.1.2. Independence assumption in DNA profiles

1. The weighted average frequency of the homozygous genotypes consisting of allele

9 is
130

916

� �2

� 916

2844
þ . . .þ 52

508

� �2

� 508

2844
¼ 0:01537: For heterozygous

genotypes consisting of alleles 9 and 10, the weighted average calculation is
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130

916
� 78

916
� 2

� �
916

2844
þ . . .þ 52

508
� 43

508
� 2

� �
508

2844
¼ 0:02247:

2. The frequency of a homozygous genotype consisting of allele 9 using the total

population figure is
350

2844

� �2

¼ 0:01515. For the heterozygous genotype

consisting of alleles 9 and 10, the calculation based on total population figures

is
350

2844
� 261

2844
� 2 ¼ 0:02259.

3. In both the homozygous and heterozygous cases, the agreement with the

weighted average calculation is very good, indicating that HW is justified.

4. A sufficient condition for HW in the total population is that the rates of the

alleles in the subpopulations are the same (or, HW holds approximately, if the

rates are not very different).

5. The weighted average for Canadians and non-Canadians is 0.3782 for a homo-

zygous genotype of allele 9. The figure based on population totals is 0.25. HW

doesn’t hold because the rates of allele 9 in the two subpopulations are very

different.

Section 3.1.4. Telltale hairs

1. The total number of pairs among the 861 hairs is
861

2

� �
¼ 370, 230. Of these,

there were approximately 9 hairs per person or
9

2

� �
¼ 36 intra-person pairs,

yielding a total of 3,600 intra-person pairs. Of the net total of 366,630 inter-

person pairs, 9 were indistinguishable, a rate of 9/366,630¼ 1/40,737; the rest of

the derivation is in the Gaudette-Keeping quotation in the text.

Gaudette–Keeping assumes that the probability of one pair’s distinguishability is

independent of the distinguishability for other pairs. Although such indepen-

dence is unlikely, violation of the assumption does not matter much because the

probability of one or more matches is less than or equal to 9 � 1=40, 737
(Bonferroni’s inequality), or 1/4,526—a result close to the 1/4,500 figure

given in the text. The substantial problems with the study are its lack of

blindedness and the unbelievability of the number of asserted comparisons.

The probability reported is not the probability that the hair came from another

individual but the probability that it would be indistinguishable if it came from

another individual.
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Section 3.1.5. Randomized Response Technique

1. From the formula given in the text,

P A
��B� � ¼ P Að Þ � P A

��B� �
P B
� �� 

=P Bð Þ

¼ 0:30� 0:5 � 0:5f g=0:5 ¼ 0:10:

2. The variance of the randomized response technique estimate is larger than the

variance of the estimator that would be obtained by asking all respondents the

sensitive question, because essentially one-half of the sample has been

discarded. The price may be worth it, however, if the estimate it produces is

an unbiased or much less biased estimate than would be obtained by asking the

sensitive question directly when the risk of evasive-answer bias is large.

Section 3.2.1. L’affaire Dreyfus

1. The expert computed the probability of exactly four coincidences in the particu-
lar words in which they occurred.

2. The more relevant calculation is the probability of at least 4 coincidences in any
of the 13 words. This is 0.2527, on the assumption that the occurrence of a

coincidence in one word is independent of coincidences in others.

Section 3.2.2. Searching DNA databases

1–2. Multiplying by the size of the database is a way of applying Bonferroni’s

adjustment for multiple comparisons. On the assumption that no one in the

database left the incriminating DNA, and that each person’s DNA had the

same probability of matching, the approximate probability of one or more

matches is given by the Bonferroni adjustment. This probability would seem

to be only peripherally relevant to the identification issue.

3. In the fiber-matching case, the question was whether any fibers matched; in

this case, the question is whether the DNA of a particular person matched by

coincidence, not whether any person’s DNA matched.

4. It should make no difference to the strength of the statistical evidence whether

particular evidence leads to the DNA testing, or is discovered afterward.

Because no adjustment for multiple comparisons would be made in the former

case, none should be made in the latter. As for the argument that with a large

database some matching would be likely because there are multiple trials, if a

match occurs by coincidence there is unlikely to be particular evidence

supporting guilt, and probably some exonerating evidence. This means that
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the prior probability of guilt would be no greater than 1 over the size of the

suspect population and the posterior probability of guilt would be quite small.

5. Because the probative effect of a match does not depend on what occasioned

the testing, we conclude that the adjustment recommended by the committee

should not be made. The use of Bonferroni’s adjustment may be seen as a

frequentist attempt to give a result consistent with Bayesian analysis without

the clear-cut Bayesian formulation.

Section 3.2.3. Trawling in DNA Databases

Assuming the number of nine-locus matches would be approximately 1 in

7.54� 106 (ignoring the 13- vs. 9-locus issue) for a given genotype, the number

of matches X in a database of 65,493 genotypes would be expected to be

1/(7.54� 106)¼ 1.326� 10�7 times the number of pairs of genotypes, which

would be 65,493� 65,492/2¼ 2,144,633,778, for an expectation of

1.326� 10�7� 2,144,633,778¼ 284.4 matching pairs. It is hard to argue that

finding “as many as” 122 is evidence against independence, implying positive

correlations amongst the loci. Indeed, if there were only 122 in an exhaustive

search of all 2.1 billion pairs, it would argue for a negative correlation between

loci. Assuming X is binomially distributed with index N given by the number of

pairs¼ 65,493 and parameter P¼ 1/(7.54� 106), the probability that X� 122 is

essentially zero.

Section 3.3.1. Rogue bus

4. The prior odds that it was company B’s bus are 0.20/0.80¼ 1/4. The likelihood

ratio associated with the testimony that it was company B’s bus is 0.70/0.30¼ 7/3.

The posterior odds that it was company B’s bus, given the prior odds and

the testimony, are 1
4
� 7

3
¼ 0:583. The posterior probability that it was company

B’s bus is 0.583/(1 + 0.583)¼ 0.368.

Section 3.3.2. Bayesian proof of paternity

1. The expert’s calculation is wrong, but the arithmetic error is harmless. Given the

prior odds of 1 and a genotype rate of 1%, the posterior odds are 1� 1/0.01¼ 100.

This translates into a posterior probability of paternity of 100/101¼ 0.991.

Since the expert used her own prior, which might have been irrelevant, it would

seem that her calculation should not have been admitted. The appellate court held

it was improper for the expert to use a 50–50% prior, but indicated that the jurors

might be given illustrative calculations based on a range of priors, as suggested in

question 3.
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Section 3.4.1. Airport screening device

The defendant will argue that among those persons who screen as “high risk,” or

“+,” only the proportion

P W
��þ	 
 ¼ P þ��W	 
 � P W½ �

P þ��W	 
 � P W½ � þ P þ��W	 
 � P W
	 


actually carry a concealed weapon. In the example P[W]¼ 0.00004,

P[+jW]¼ sensitivity¼ 0.9 and P þ��W	 
 ¼ 1� specificity ¼ 0:0005. Thus,

P W
��þ	 
 ¼ 0:9 0:00004ð Þ

0:9 0:00004ð Þ þ 0:0005 0:99996ð Þ ¼ 0:067;

or 6.7% of “high risk” individuals carry weapons. This rate is arguably too low for

either probable cause or reasonable suspicion.

Assuming independence of test results for any person in the repeated test

situation of the Notes, sensitivity falls to P[+jD]¼P[+1jD] ·P[+2jD,+1]¼
0.95 · 0.98¼ 0.9310. Specificity increases such that

P þ��D	 
 ¼ P þ1

��D	 

P þ2

��D,þ1

	 
 ¼ 0:05 � 0:02 ¼ 0:001:

Then

PPV ¼ 0:001 � 0:931ð Þ= 0:001 � 0:931þ 0:001 � 0:999ð Þ ¼ 0:4824;

which is still rather low as a basis for significant adverse action. Specificity would

have to be much greater to have adequate PPV.

Section 3.4.2. Polygraph evidence

1. Using the Defense Department data, the PPV of the test is no greater than

22/176¼ 12.5%.

2. A statistic to compute would be either NPV or 1�NPV. The latter is the

probability of guilt given an exonerating polygraph.

3. It seems reasonable to conclude that PPV> 1�NPV because the probability of

guilt when there is an incriminating polygraph should be greater than when there

is an exonerating polygraph. Thus, the probability of guilt given the exonerating

test is less than 12.5%. The test seems quite accurate when used for exoneration

even if not very persuasive when used as evidence of guilt. Because
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NPV

1� NPV
¼ P not guilty

�� exonerating exam
	 

P guilty

�� exonerating exam	 

¼ P exonerating exam

��not guilty	 

P not guilty½ �

P exonerating exam
��guilty	 


P guilty½ �

¼ specificity

1� sensitivity
� prior odds on not guilty;

the NPV will be high if the sensitivity of the test is high, or if prior probability of

guilt is low.

4. The statistical point is that rates of error for a test that would seem acceptably small

when the test is used as evidence in an individual case are unacceptably large in the

screening context; the screening paradigm is more exacting than the individual

case, not less. Because 7,616� 176¼ 7,440 persons tested negative in the Defense

Department screening program, if 1�NPV were in fact as high as 12.5%,

the number of guilty but undetected personnel would be 0.125� 7,440¼ 930.

A screening test that passed so many questionable personnel would clearly be

unacceptable. The fact that the Defense Department uses the test for screening is

thus significant evidence that it is sufficiently reliable to be admitted, at least as

exonerating evidence.

Section 3.5.2. Cheating on multiple-choice tests

Under the assumption of innocent coincidence, the likelihood of 3 matching wrong

answers in dyads with 4 wrong answers is 37/10,000. Under the assumption of

copying, the expert used 1 as the likelihood of 3 matching wrong answers out of

4. Thus, the likelihood ratio is 1/(37/10,000)¼ 270.7. The interpretation is that one

is 270 times more likely to observe these data under the assumption of copying than

of innocent coincidence.

Chapter 4. Some Probability Distributions

Section 4.2.1. Discrimination in jury selection

1. The probability of no black selections at random out of 60 is (0.95)60¼ 0.046.

This is statistically significant under the usual 5% standard (using a one-tailed

test, see Section 4.4), but only marginally so.

2. The Court computed the probability of observing exactly 7 blacks. The more

relevant is the probability of observing 7 or fewer blacks.
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3. From Table B, for n¼ 25, p¼ 0.25, the probability of 3 or more blacks is 0.9679;

the probability of 2 or fewer is 1� 0.9679¼ 0.0321.

Section 4.2.3. Small and nonunanimous juries in criminal cases

1. The probability of selecting one or more minority jurors, by the binomial model

and Table B in Appendix II, is 0.931; two or more is 0.725; three or more is

0.442; and four or more is 0.205. Thus, the probability that one or more minority

jurors must concur in a 12-person verdict is 0.931, and in a 9–3 verdict it is

0.205.

2. Using the Kalven and Zeisel overall proportion of guilty votes on first ballots,

1,828/2,700¼ 0.677, the binomial probability of 9 or more guilty votes is 0.423

and the probability of 5 unanimous guilty votes is 0.142. A prosecutor is

therefore much more likely to get at least 9 votes for conviction than a unani-

mous 5, on the first ballot.

3. The Kalven and Zeisel data are inconsistent with the binomial model because the

expected number of cases arrayed by first ballot votes does not correspond with

the actual number, as the following table shows:

First ballot guilty votes

0 1–5 6 7–11 12

Observed number of cases 26 41 10 105 43

Expected number of cases 0 12.7 22.7 187.5 2.09

See Section 6.1 for a formal test of goodness of fit. The data show many more

unanimous verdicts than one would expect on the basis of the model, suggesting

that the greater source of variation in guilty votes is the strength of the case,

which affects all jurors, rather than variation in individual jurors.

Section 4.2.4. Cross-section requirement for federal jury lists

1. The probability of 0 or 1 blacks in a 100-person venire, with probability of

picking a black, p¼ 0.038 (the functional wheel), is

100

1

� �
0:038ð Þ1 0:962ð Þ99 þ 0:962ð Þ100 ¼ 0:103:

With p¼ 0.0634, the proportion of blacks in a representative wheel, the

probability of so few blacks is 0.011. By this probability test, the functional

wheel seems unrepresentative. The comparable probabilities for Hispanics are

0.485 and 0.035 for the functional and representative wheels, respectively.
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2. As for absolute numbers: 6.34� 3.8¼ 2.54 blacks and 5.07� 1.72¼ 3.35

Hispanics would have to be added to the average venire chosen from the

functional wheel to make it representative. These numbers might be regarded

as too small to indicate that the wheel was unrepresentative.

3. One problem with the probabilities test is that the hypothetical number of

minorities used to compare probabilities (here a maximum of 1) is fairly

arbitrary. A problem with the absolute numbers test is that, when the percentages

are small the numbers will be small, even if the underrepresentation, in propor-

tionate terms, is large.

Section 4.2.5. Cat litter imbroglio

1. The court used a simple binomial probability model, assuming N¼ 44 indepen-

dent trials of the Clorox jar with probability of 0.14 of falsely detecting a

malodor when there was none. Under these assumptions, the probability of

finding no detections is (1� 0.14)44¼ 0.8644¼ 0.0013¼ 0.13%. Equivalently,

this is the probability that for 11 independent binomial random variables of

index 4 (counting whether each rating was non-zero or not), the sum of the

11 counts would be zero.

2. Positive correlation between the determinations within a rater among the four

sniffs will increase the probability of finding no malodor detections among the

44 trials by reducing the effective number of trials. In the extreme case where the

four replicate trials were easily associated with the same sample, the binary

outcomes would be perfectly correlated. In that case, the effective sample size

would be 11 not 44 (because each rater is providing only a single independent

piece of information). In that case the probability of finding 0 detections of

malodor would be 0.8611¼ 0.19 or 19%, assuming a constant probability of false

alarm of 0.14 across raters.

3. If the binary detections of malodor were statistically independent within a given

rater, but raters have different odor detecting abilities which would give them

unequal false alarm probabilities, averaging out to 0.14, then the probability of

observing no malodor detections is smaller than 0.0013. As an exercise, suppose

five raters never falsely detect, one rater has a 14% false alarm probability, and

the remaining five raters each have a 28% false alarm probability. What now is

the probability of zero malodor detections? Ans: 0.000767.

Section 4.3.1. Alexander: Culling the jury list

1. The result is approximately correct. The calculations are as follows. Given

n¼ 400 and p¼ 1,015/7,374,
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P X 	 27½ � ¼ P Z <
27:5� 400 1015=7374ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

400 � 1015=7374ð Þ � 6359=7374ð Þp ¼ �4:00

" #
< 0:00003;

from Table A1 or A2 in Appendix II.

2. The largest proportion of blacks in the qualified pool, p*, consistent with the data
would satisfy the equation

27:5� 400 p*ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400 p*q*

p ¼ �1:645:

Solving for p* yields p*¼ 0.0926. (This is a one-sided upper 95% confidence

limit for the proportion; see Section 5.3.) To calculate the qualification rate ratio,

note that if Q denotes qualification, B black, and W white,

P Q
��W	 


P Q
��B	 
 ¼ P W

��Q	 

P Q½ � =P W½ �

P B
��Q	 


P Q½ � =P B½ � ¼ P W
��Q	 


=P B
��Q	 


P W½ � =P B½ � :

The odds on W vs. B among the qualified are at least 0.9074/0.0926¼ 9.800,

while in the initial pool the odds on being white are 6,359/1,015¼ 6.265. The

qualification rate ratio is thus at least 9.8/6.265¼ 1.564, i.e., whites qualify at a

minimum of 1.5 times the rate that blacks qualify.

Section 4.4.1. Hiring teachers

1. Given n¼ 405 and p¼ 0.154,

P X 	 15½ � ¼ P Z <
15:5� 405 � 0:154ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
405 � 0:154 � 0:846p ¼ �6:45

� �
� 0:

Given p¼ 0.057,

P X 	 15½ � ¼ P Z <
15:5� 405 � 0:057ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
405 � 0:057 � 0:943p ¼ �1:626

� �
� 0:052:

The exact result is 0.0456.

2. Justice Stevens’s clerk used a one-tailed test; the Castaneda two- or three-

standard-deviations “rule” reflects the general social science practice of using

two-tailed tests.
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Section 4.5.1. Were the accountants negligent?

1.
983

100

� �
� 17

0

� ��
1000

100

� �
¼ 983 � 982� � �884

1000 � 999� � �901 ¼ 0:164:

Because this computation is somewhat laborious, the normal approximation

would commonly be used instead.

2. If the sample were twice as large, the probability of finding none would be

P X ¼ 0½ � ¼ P X < 0:5½ � ¼ P Z <
0:5� 17 � 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

200 � 800 � 17 � 983
10002 � 999

r ¼ �1:77

2664
3775 � 0:04:

3. The accountants should (and frequently do) stratify their sample, with separate

strata and heavier sampling for the large invoices.

Section 4.5.2. Challenged election

1. Let a denote the number of votes for Candidate A and b the votes for Candidate

B. Let m denote the number of invalid votes. If X denotes the unknown number

of invalid votes cast for A then a reversal would occur upon removal of the

invalid votes if a�X	 b� (m�X), or X� (a� b +m)/2. On the facts, if 59 of

the invalid votes were cast for the winner, the election would be tied by the

removal of all the invalid votes.

2. E(x)¼ 101 · 1,422/2,827¼ 50.8.

3. Using the normal approximation for the hypergeometric, the probability that

X� 59 is

P Z � 58:5� 101 � 1422=2827ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
101 � 2726 � 1422 � 1405

28272 � 2826

r ¼ 1:559

2664
3775 ¼ 0:06:

When the election is close (a� b) the probability of reversal is approximately

the normal tail area above

z ¼ a� b� 1ð Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m
� 1

aþ b

r
(1 subtracted from the plurality reflects the continuity correction).

The incumbent, who controls the election machinery, may have greater oppor-

tunity to create fraudulent, as opposed to random, errors.
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Section 4.5.3. Election 2000: Who won Florida?

1. From column (7), the expected total net for Gore is �811.9. Thus Bush would

have won.

2. From column (8), the standard error of the expected total net for Gore is the

square root of 9,802.2, or 99.01. The z-score is therefore�8.20, so that we reject

the null hypothesis that Gore won Florida, with an extremely significant P-value.

3. Considering Miami-Dade only, the expected net for Gore among the undervote

from column (6) is 145.0, with a standard error of square root of 2,271.2, or

47.66. Letting the actual net for Gore from Miami-Dade be denoted by the

random variable X, a reversal would have occurred if and only if X is greater

than or equal to 195, the plurality in favor of Bush from column (4).

The probability of this event is approximately (using continuity correction)

P[z> 1.0596]¼ 0.145.

Section 4.5.4. Taking the stand

1. The hypergeometric probability for the observed count 32 in the upper left-hand

cell is

44

32

� �
16

7

� �
60

39

� � ¼ 0:0302. The mid-p correction is half this amount, 0.0151,

subtracted from the upper tail probability.

2. If the two-tailed mid-p corrected P-value is 0.0487, the single tail P-value with
mid-p correction is 0.02435. To remove the correction, we would add back

0.0151 obtaining a one-tailed P-value of 0.02435 + 0.0151¼ 0.03945, and dou-

bling we get the uncorrected P-value of 0.0789.

3. To see that the type I error rate is greater than 0.05, namely 0.0644 (for the test of

the null hypothesis which rejects if and only if the mid-p corrected two-tailed

P-value is less than 0.05), we can proceed as follows. The type I error rate of any

hypothesis test procedure with discrete data is the sum of the probabilities under the

null hypothesis of all possible observations that would cause the test procedure to

reject the null hypothesis. Here, the test procedure under consideration rejects the

null hypothesis when the mid-p corrected two-tailed P-value does not exceed 0.05.
That event occurs in the given table for the possible reference cell values of 23, 24,

25 in the lower tail and also 32,. . .,39 in the upper tail, and only these values. The

sum of the hypergeometric probabilities for these observations is 0.0644, which is

therefore the type I error rate of the mid-p corrected test procedure.
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So the price of getting a significant result where without correction we did not is

to use a test that does not guarantee control of the type I error rate at no more

than 0.05. By contrast, a test of the null hypothesis that uses the two-tailed

P-value obtained by doubling the uncorrected one-tailed P-value has type I error
rate 0.0342 in this example. (The same type I error rate obtains using the

two-tailed P-value by the point-probability method of Section 4.4.)

Section 4.6.1. Heights of French conscripts

1. Chi-squared is 446.51, which on 6 to 8 degrees of freedom, has a vanishingly

small P-value, P� 0.0000. The null hypothesis that the data are normally

distributed must be rejected.

2. There are several departures from normality, of which the largest is the excess

number of men shorter than 1.570 meters. Quetelet hypothesized that since

1.570 meters was the cutoff for service in the army, the excess number of men

below that height represented cheating to avoid military service.

3. If the first two rows are combined, chi-squared drops to 66.8, which is still highly

significant. Under either calculation, the null hypothesis that the data are nor-

mally distributed must be rejected.

Section 4.6.2. Silver “butterfly” straddles

1. The expert has it backward: the correct statement is that, if the data were

normally distributed, there is only a 0.01 chance of observing D that large or

larger.

2. Again the expert has it backward: If the data were not normally distributed due to

positive kurtosis, the distributions would have fatter tails than the normal and

there would be greater opportunities for profit.

3. Since 4-week price changes are the sum of daily price changes, if the daily

changes were independent, the central limit theorem tells us that their sum would

tend to be normally distributed. Even if the daily changes are negatively

autocorrelated, as they appear to be, there are central limit theorems implying

normality of sums, so independence is not necessary for normality.

4. If daily price changes were independent, the sd of the 8-week price changes

would be
ffiffiffi
2

p
times the sd of the 4-week price changes; the sd of the 4-week price

changes would be
ffiffiffi
4

p ¼ 2 times the sd of the 1-week price changes. The data

show no such increase.

5. In order to break even after commissions, the price change must be $126. For a

2-2 contract held 4 weeks, this is approximately 126/32.68¼ 3.86 sd’s. The
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probability of a move at least that large is, by Chebyshev’s inequality, not

greater than 1/3.862¼ 0.067. Thus, there is at best a small probability of

breaking even.

6. The expert’s holding period statistic does not reflect whatever opportunities exist

for profitable liquidation within the 4-week, etc., periods.

7. Instead of a probability model, the expert might simply have inspected the data

to determine the number of profitable points for liquidation, given the holding

period. Chebyshev’s inequality indicates that at most these would have

been few.

Section 4.7.1. Sulphur in the air

Given a Poisson random variable with mean 1, P[X� 2]¼ 1�P[X¼ 0 or 1]¼ 1�
[e�1 + e�1]¼ 0.264, as the probability of 2 or more days with excess emissions in a

year. This assumes a simple Poisson with mean 1. Because the mean will vary from

day to day, the distribution of excess emissions will be a compound Poisson and

will have a larger variance than a simple Poisson. In normal distributions, an

increase in variance (with fixed mean) would imply an increased probability of a

tail event, such as X� 2. In the case of the Poisson distribution, when μ is small

(as it is in this case, where μ¼ 1) an increase in variance would, as expected,

increase the probability of a left-tail event, such as X	 1, but may decrease the

probability of a right-tail event, such as X� 2. In such a case, the probability of 2 or

more days of excess emissions in a year would be less than calculated, not more, as

one might think by analogy to the normal distribution.

Section 4.7.2. Vaccinations

The expected number of cases of functional damage given the risk of

functional damage that the plaintiffs accepted is μ ¼ 300,533� 1
310,000 ¼ 0:969:

For this mean, the probability of 4 or more cases is

1� e�μ
X3
x¼0

μx=x! ¼ 1� e�0:969 2þ 0:969þ 0:9692=2!þ 0:9693=3!
� � ¼ 0:017.

The null hypothesis that μ¼ 0.969 can be rejected at the 0.05 level.

Section 4.7.3. Is the cult dangerous?

The expected number of deaths per 4,000 drivers over a 5 year period is

5 · 4,000 · 13.2/100,000¼ 2.64, so that 10 deaths is 10� 2:64ð Þ= ffiffiffiffiffiffiffiffiffi
2:64

p ¼ 4:5 stan-

dard deviations above expectation. The normal approximation cannot be used, but
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Chebyshev’s inequality gives us 1/4.52¼ 0.049 as an upper bound on the tail area

probability. The exact tail area probability is given by

1�
X9
i¼0

e�μ μi=i!
� �

;

which can be expressed for calculation purposes as nested quantities as follows:

1� e�μ � 1þ μ 1þ μ

2
1þ μ

3
1þ � � � þ μ

8
1þ μ

9

� �
� � �

� �� �� �� �
:

With μ¼ 2.64, this gives the tail area probability as 0.000422. Note that the

probability of 10 alone is 0.0003, so that the first term dominates the sum. Cult

members have a higher rate of death from suicide or automobile accidents than the

general population, but the difference may be due more to the type of person who

joined the cult than the exhortations of the leader.

Section 4.7.4. Incentive for good drivers

Consider the group of drivers with a total of n accidents in the two time periods.

Any driver contributes to the sought-after sum (i.e., the number of accidents in the

second time period by those having zero accidents in the first) either (i) n accidents
(if the driver has none in the first); or (ii) 0 (for those with one or more accidents in

the first period). The expected contribution to the sum is n times the probability that

the driver had all n accidents in the second time period. Since by hypothesis an

accident occurs with equal probability in the two time periods, the probability of all

n accidents occurring in the second period is (1/2)n. Thus, the expected contribution
is n(1/2)n.

On the other hand, the probability that a driver will have exactly one accident in

the first period, given that he has a total of n accidents, is by the binomial formula

n
1

� �
1=2ð Þ1 1=2ð Þn�1 ¼ n 1=2ð Þn. Because this is the same as the expected contri-

bution of the (0, n) driver, and holds for any n, we conclude that the observed

number of drivers with one accident in the first period is an unbiased predictor of

the number of accidents drivers with no accidents in the first period will have in the

second period.

Robbins’s expression for E(μ|X¼ i) furnishes a way to estimate the number of

accidents in the second period by those with zero in the first. With i¼ 0, estimate

P[X¼ 1] by 1,231/7,842 and P[X¼ 0] by 6,305/7,842. Then the expected number

of accidents among the 6,305 zero-accident drivers is 6,305 · (1,231/7,842)� (6,305/

7,842)¼ 1,231, i.e., the number of drivers with one accident in the first period.

Letm( j) denote the number of drivers who had j accidents in the first period. Our
prediction is m(1). It can be shown that a 95% prediction interval for the quantity of

interest is
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m 1ð Þ 
 1:96 2 m 1ð Þ þ m 2ð Þ½ �ð Þ1=2:
In the example, the prediction interval takes the value 1,231
 109. (The original

problem did not separate those drivers with two from those with more than two

accidents; substituting 306 for m(2) provides a slightly conservative estimate for

the width of the prediction interval.) Since the actual number of accidents for the

zero-accident group was 1,420, there is significant evidence of deterioration in

performance. The data also support the hypothesis that drivers with one or more

accidents improved in performance.

Section 4.7.5. Epidemic of cardiac arrests

1. Treat each of the n¼ 34 deaths as a binary trial with respect to the presence or

absence of Nurse i, with parameter pi for Nurse i obtained from the proportion of

evening shifts worked for that nurse. Calculate the z-score zi¼ (Xi� 34pi)/
(34piqi)

1/2 for each nurse. Nurse 32’s zi is 4.12, Nurse 60’s zi is 2.10, and the

rest are all less than 1.1. The probability that among eight z-scores the largest

would equal or exceed 4.12 is P[max zi� 4.12]¼P [at least one zi� 4.12]	X
i
P zi � 4:12½ � by Bonferroni’s inequality, where the sum is over i ¼ 1, . . . , 8.

Since each term is about 0.00002, P[max zi� 4.12]	 8 · 0.00002¼ 0.00016, i.e.,

a z-score as large as 4.12 is highly unlikely even when the worst nurse is not

identified beforehand. If there had been other reasons for singling out Nurse

32, the Bonferroni inequality would be unnecessary.

2. The relative risk of death for shifts when Nurse 32 was on duty, opposed to

that when she was not on duty, is (27 deaths/201 shifts)/(7 deaths/253 shifts)¼
(0.1343 deaths/shifts)� (0.0277 deaths/shift)¼ 4.85.

Section 4.8.1. Marine transportation of liquefied natural gas

1. The exponential model is a good candidate since the risk of an accident arguably

will not increase with time.

2. The death density function for failure time is θe�θt. This is greatest in the

first year.

3. Since the probability of survival for more than 10 years is e�10θ, the probability

of failure in the first 10 years is 1� e�10θ. If θ¼ 1/7,000 the above expression is

approximately equal to 10/7,000¼ 0.0014.

4. There is no bunching of probability around the 7,000 year mark. The standard

deviation of time to first accident is 7,000.
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Section 4.8.2. Network affiliation contracts

1. The intuitive estimate of the discrete hazard rate is p̂ ¼ n=S, the number of

terminations n, divided by the total number of affiliation years commenced, S.
This can be shown to be the maximum likelihood estimate.

For the 1962 data, the mean life of a contract is estimated at 1767/88¼ 20+

years, corresponding to a yearly discrete hazard of p̂ ¼ 0:05.

2. The model was ultimately found inappropriate because the risk of termination

declined as life continued. A Weibull model should have been used instead.

See Section 11.1.

Section 4.8.3. Dr. Branion’s case

1. No.

2. They would be independent unless Branion had planned to call by a certain time.

In any event, the joint probability (that driving took less than 6 minutes and

garroting less then 15 minutes) underestimates the probability that the sum took

less than 21 (or 27) minutes, because the joint occurrence of the two events is

only one of the many ways in which the sum of the two times could be less than

21 (or 27) minutes.

3. If the distribution of the total driving and garroting times were skewed, there

would probably be a right tail that was fatter than the left tail, i.e., longer times

would be more probable. That would help Branion’s case. The exponential

distribution probably would not be appropriate to model the distribution of

driving and garroting times because at any intermediate point the elapsed time

would be relevant to the time necessary to finish the work.

4. Use Chebyshev’s inequality: 27 minutes is 4.5 minutes from the mean of 9

+ 22.5¼ 31.5 minutes. The standard deviation of the sum would be, under the

assumptions, (12 + 2.52)1/2¼ (7.25)1/2, so the deviation is
4:5ffiffiffiffiffiffiffiffiffi
7:25

p sd units. By

Chebyshev’s inequality, such deviations occur with no more than probability

1

�
4:5ffiffiffiffiffiffiffiffiffi
7:25

p
� �2

¼ 7:25

20:25
¼ 0:358:

538 Appendix I: Calculations and Comments on the Cases

http://dx.doi.org/10.1007/978-1-4419-5985-0_11#Sec1_11


Chapter 5. Statistical Inference for Two Proportions

Section 5.1.1. Nursing examination

Using the hypergeometric distribution, we have:

P ¼ 9

4

� �
� 26

26

� ��
35

30

� �
¼ 0:000388;

a highly significant result.

Section 5.2.1. Suspected specialists

The data may be summarized as follows:

Unaccounted for Accounted for Total

Favorable 74 146 220

Unfavorable 8 123 131

Total 82 269 351

The formula

X2 ¼ N � ��ad � bc
��� N=2

� �2
m1 � m2 � n1 � n2

yields 33.24, which is highly significant. The data do not support the specialists’

position.

Section 5.2.2. Reallocating commodity trades

Profitable Unprofitable Total

Account F 607 165 772

G 98 15 113

Total 705 180 885

The corrected z-score¼�1.871. The one-sided P-value is about 0.03 for these

data. The data are not consistent with the broker’s defense.
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Section 5.2.3. Police examination

The data are

Pass Fail Total

Hispanics 3 23 26

Others 14 50 64

Total 17 73 90

z ¼ 3:5=26ð Þ � 13:5=64ð Þj jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
17=90ð Þ � 73=90ð Þ � 26�1 þ 64�1

� �q ¼ 0:84, p � 0:20;

a non-significant result (one-tailed).

Section 5.2.4. Promotions at a bank

The aggregate data for Grade 4 are as follows:

B W Total

Promotions 39 34 73

Non-Promotions 85 41 126

Total 124 75 199

1. This model requires the hypergeometric distribution, for which the normal

approximation may be used, as follows:

P Z 	 39:5� 73 � 124=199ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73 � 126 � 124 � 75

1992 � 198

r ¼ �5:9874

3:3030
¼ �1:813

2664
3775 � 0:035;

a result significant at the 5% level with a one-tailed test. If the balls are returned

to the urn, we have a one-sample binomial model, as follows:

P Z 	 39:5� 73 � 124=199ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73 � 124 � 75

1992

r ¼ �5:9874

4:1405
¼ �1:446

2664
3775 � 0:074:
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2. If there are two urns, we must use a two-sample binomial, as follows:

P Z 	
39:5

124
� 33:5

75ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
73 � 126
1992

1

124
þ 1

124

� �s ¼ �0:1281

0:0705
¼ �1:817

266664
377775 � 0:035;

a result that is in close agreement with the hypergeometric.

3. The statistical text cited by the court was referring to the fact that the t distribution
closely approximates the normal for samples of at least 30, so that the normal

distribution may be used instead. This is not of relevance here. Despite the court’s

statement, the hypergeometric is the better model. First, to justify sampling with

replacement, the replacement would have to be of the same race as the promoted

employee and have on average the same probability of promotion. Neither of

these conditions is likely to be true. Second, the hypergeometric model is

substantially equivalent to the two-sample binomial model in large samples,

which would appear to be an appropriate alternative choice.

4. The expert was justified in using a one-tailed test, but not for the reasons given.

The point is that, in appraising the level of Type I error, only discrimination

against blacks should be considered because the court would take action only in

that event.

5. There are serious objections to aggregating over years and grades. Aggregating

over years assumes either a new employee group each year or that decisions not

to promote in one year are independent of those in another year even for the

same employees. Neither of these assumptions is likely to be true and, as a result,

the effective sample size is smaller than indicated from the aggregate numbers

(and the significance is less). Aggregation over grades is also risky (but perhaps

less so) since the results can be misleading if promotion rates are different in the

two grades. See Section 8.1.

Section 5.3.2. Paucity of Crossets

A reasonable upper bound is provided by a one-sided 95% upper confidence limit.

Assuming a binomial model for the number of Crossets found, X ~Bin (n, P) where
n¼ 129,000,000 with X¼ 0 observed, one solves the equation 0.05¼ lower tail area

probability¼ (1�P)n. This yields Pu¼ 1� 0.051/n¼ 23� 10�9. An alternative

method is to use the Poisson approximation to the binomial distribution since n is

large and P is small. If X ~ Poisson with mean μ, and X¼ 0 is observed, the upper

95% confidence limit for μ is the solution of the equation e�μ¼ 0.05, or μu¼�ln

0.05� 3. The confidence limit for P is then obtained from μu¼ nPu, or

Pu¼ 3/129,000,000¼ 23� 10�9.
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Section 5.3.3. Purloined notices

1. The dispute concerns the proportion of Financial’s bond redemption notices that

were copied by Moody’s, among the roughly 600 instances in which copying

could not be ruled out. Consider the 600 notices as chips in an urn, some of

which were copied, the others not. The existence of an error is tantamount to

withdrawing a chip at random from the urn and being able to inspect it as to

copied status. Thus, each error can be viewed as an independent binomial trial of

copied status with the problem being to estimate the smallest p, the probability
that a random chip would be copied, that is consistent at the given level of

confidence with the number of copied chips among those withdrawn. Looking

just at the 1981 data, there were 8 errors and all of them were copied. Using a

99% one-sided confidence interval, we have P8
L ¼ 0:01, or PL¼ 0.56. Thus, the

minimum proportion of copied notices, consistent with finding 8 out of 8, is

about 56%.

When not all the errors have been copied, it is necessary to solve the formula for

the cumulative binomial for p. This can be done by trial and error or by using

tables of the F-distribution. Combining the 2 years data, there were 18 errors, of

which 15 were copied. Asserting that PL¼ 0.54, we have

X18
i¼15

18

i

� �
0:54ð Þi 0:46ð Þ18�i ¼ 0:01;

which confirms the assertion.

Tables of the F-distribution can be used as follows (see Section 5.3 at p. 173,

footnote 8). Given n trials, suppose that c are copied. If Fa,b;α denotes the critical

value of the F-distribution with a¼ 2(n� c+ 1) and b¼ 2c degrees of freedom
that cuts off probability α in the upper tail, then

PL ¼ b= bþ a � Fa,b;α

� �
is the solution to the expression for the cumulative binomial distribution when

the upper tail is set equal to α. In our example, n¼ 18, c¼ 15, and

F8,30;01¼ 3.17; the above expression for PL¼ 0.54.

It is of some computational interest to compare this exact solution with the

approximate 99% confidence interval (
2.326 standard errors). For both years

pooled, PL¼ 0.63, which is about 9 percentage points too high. Using the more

precise approximation given by Fleiss et al. (at p. 172), PL� 0.53.

2. The lawyer for Moody’s might point out that Financial’s model assumes that

whether an error was made is independent of whether the notice was copied. To

this he might object that Moody’s was more likely to copy the more obscure

notices, and those notices were more likely to involve errors.
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Section 5.3.4. Commodity exchange reports

Required: to find n such that

1:96 0:05 � 0:95=nð Þ1=2 	 0:02:

Solving for n yields

n � 1:962 � 0:05 � 0:95
0:022

¼ 456:2:

Thus, a sample of 457 is required.

Section 5.3.5. Discharge for dishonest acts

An approximate 95% confidence interval for the proportion of blacks among

employees discharged for dishonest acts committed outside of employment is

given by 6=18ð Þ 
 1:96 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 � 12=183

p
or (0.116, 0.551). The workforce proportion

of blacks is well below the lower 95% confidence limit.

The small sample size is already taken into account in the standard error formula

and is not proper grounds per se for rejecting the statistical argument. A valid

objection to small sample statistics could be raised if the sample were not random,

but of course that objection applies also to large samples. Sometimes a “small”

sample means a sample of convenience, or worse, a biased sample; if so, that is

where the objection should be raised. Sometimes there is variability in the data not

represented by sampling variability, but which is difficult to measure in small

samples. However, it is not valid to reject a statistically significant finding merely

on grounds of sample size.

Section 5.3.6. Confidence interval for promotion test data

The ratio of black to white pass rates is 0.681. The approximate 95% confidence

limits for the log relative risk are at

log p1=p2ð Þ 
 1:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q1= n1 p1ð Þ½ � þ q2= n2 p1ð Þ½ �

p
¼ �0:384
 0:267

¼ �0:652 , � 0:117ð Þ:
Exponentiating to obtain a confidence interval for the R.R. in original units gives

0.521<R.R.< 0.890.
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Section 5.3.7. Complications in vascular surgery

The 95% two-sided confidence interval is (0.021, 0.167).

Section 5.3.8. Torture, disappearance, and summary execution
in the Philippines

1. There can be no guarantee that the half-width of the 95% confidence interval

based on n¼ 137 will not exceed plus or minus five percentage points because

the width of the confidence interval depends on the results of the sample. For

example, if the sample proportion were 69/137¼ 0.504, the approximate 95%

confidence interval would be 
0.084, thus exceeding the 5 percentage point

range. A sample size of about n¼ 400 is required for the guarantee. The given

sample size of 137 meets the
5% goal only if the sample proportion is�0.92 or

	0.08, which would occur roughly only half the time under the expert’s

assumption of P¼ 0.90.

2. For summary execution, a 95% confidence interval for the average award is

128,515
 1:96� 34,143ffiffiffiffiffi
50

p ¼ 128,515
 9, 464, or (119,051, 137,979). The

argument that defendant has no cause for complaint at use of the sample average

award to compute the total award for the class seems reasonable because the

sample average is just as likely to be below the population average as above it,

assuming the approximate normality of the distribution of the sample average

based on n¼ 50 observations. (Notice, however, that this is not the same as

saying that the population average is just as likely to be above the sample

average as below it, which is what the argument assumes.) In any event, the

point cannot be pressed too far because, if the sample is very small, the

confidence interval would become very wide and defendant might then justly

object that the results were too indeterminate. Here the coefficient of variation

for the average summary execution award is 4,829/128,515� 3.8%, which

seems acceptable.

3. Given the broad variation in individual awards, the use of an average for all

plaintiffs within a class seems more questionable as a division of the total award

for that class. It may be justified in this case by the arbitrariness of the amounts

given for pain and suffering and the administrative impossibility of processing

the large number of claims.

Section 5.4.1. Death penalty for rape

In Table 5.4.1e, the black p for unauthorized entry was 0.419, and the white, 0.15.

Assuming these are the population values, the power of the test to detect a

difference as large as 0.269 in either direction is the probability that a standard

normal variable would exceed

544 Appendix I: Calculations and Comments on the Cases

http://dx.doi.org/10.1007/978-1-4419-5985-0_5#Tab10_5


1:96

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:3137 � 0:6863 � 1

31
þ 1

20

� �s
� 0:269ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:419 � 0:581
31

þ 0:15 � 0:85
20

r ¼ �0:07;

which is slightly larger than one-half. Given such a difference, there is only a 50%

chance that it would be found statistically significant.

The corresponding calculations for Table 5.4.1f yield probability of death given

unauthorized entry¼ 0.375; probability of death given authorized entry¼ 0.229.

The difference is 0.146. The power to detect a difference that large in absolute value

corresponds to the probability that a standard normal variable would exceed 0.838,

which is 20%.

Dr. Wolfgang’s conclusion that the absence of significance implies an absence

of association ignores the lack of power.

Section 5.4.2. Is Bendectin a teratogen?

1. This is a one-sample binomial problem. Let X denote the number of defects of

any kind in a sample of n exposed women. To test the null hypothesis that

p¼ p0¼ 0.03, where p denotes the true malformation rate, we reject H0 when

X > n p0 þ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffi
n p0q0

p
. Under the alternative hypothesis p¼ p1¼ 0.036, the

probability of rejection, i.e., power, is obtained from

P X > np0 þ 1:645
ffiffiffiffiffiffiffiffiffiffiffiffi
n p0q0

p	 

¼ P

X � n p1ffiffiffiffiffiffiffiffiffiffiffiffi
np1q1

p >

ffiffiffi
n

p
p0 � p1ð Þffiffiffiffiffiffiffiffiffiffi
p1q1

p þ 1:645 �
ffiffiffiffiffiffiffiffiffiffi
p0q0

pffiffiffiffiffiffiffiffiffiffi
p1q1

p
� �

� Φ
ffiffiffi
n

p � p0 � p1ffiffiffiffiffiffiffiffiffiffi
p1q1

p þ 1:645 �
ffiffiffiffiffiffiffiffiffiffi
p0q0

pffiffiffiffiffiffiffiffiffiffi
p1q1

p
� �

;

whereФ is the standard normal cdf. With n¼ 1,000, the power is approximately

Ф(�0.488)¼ 0.31.

2. In order for power to be at least 90%, the argument of the normal cdf must be at

least equal to the upper 10th percentile value, z0.10¼ 1.282. We may solve

ffiffiffi
n

p � p0 � p1ffiffiffiffiffiffiffiffiffiffi
p1q1

p þ 1:645 �
ffiffiffiffiffiffiffiffiffiffi
p0q0

pffiffiffiffiffiffiffiffiffiffi
p1q1

p � 1:282

for n to find the requirement
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n � 1:282 � ffiffiffiffiffiffiffiffiffiffi
p1q1

p þ 1:645 � ffiffiffiffiffiffiffiffiffiffi
p0q0

p
p1 � p0

� �2

;

which in the present problem is n� 7,495.

3. Now p0¼ 0.001 and p1¼ 0.002, which yields n� 11,940. As p0 approaches

0 with p1¼ 2p0, the required sample size grows approximately as

zα þ
ffiffiffi
2

p � zβ
� �2

p0
;

where zα is the critical value used in the test of H0 (1.645 in the example) and zβ
is the upper percentile corresponding to the Type II error (1.282 in the example).

Section 5.4.3. Automobile emissions and the Clean Air Act

1. Let n¼ 16, and let X denote the number of cars in the sample of n cars that fail

the emissions standard. Assume X ~Bin(n,P), where P is the fleet (i.e., popula-

tion) proportion that would similarly fail. Using Table B of Appendix II for

n¼ 16 we find that the rejection region X� 2 has power 0.9365 when P¼ 0.25,

thus meeting the EPA regulation for 90% power. Under this test, Petrocoal fails.

2. The Type I error for this procedure is out of control. Using the table, if the fleet

proportion were P¼ 0.10, a possibly allowable proportion, there would still be

about a 50% chance of failing the test. The EPA regulation is silent on the

maximum allowable proportion P and Type I error rate for that proportion.

3. To achieve a Type I error rate between, say 0.05 and 0.10, if the fleet proportion

failing the emissions standard were P¼ 0.05, and meets the 90% power require-

ment at P¼ 0.25, we enter Table B for larger values of n. With a sample of

n¼ 20 cars and rejection region X� 3, the test has Type I error rate 0.0755 at

P¼ 0.05 and power 0.9087 at P¼ 0.25. With a sample of n¼ 25 cars and

rejection region X� 4, the Type I error can be limited to 0.0341 when

P¼ 0.05, with power 0.9038 at P¼ 0.25.

Section 5.5.1. Port Authority promotions

1. The pass rate for whites was 455/508¼ 89.57% and for blacks was

50/64¼ 78.13%. The ratio of the black rate to the white rate is 78.13/

89.57¼ 0.8723, which exceeds 80%. This is not a sufficient disparity for action

under the four-fifths rule.

The P-value for the ratio is obtained by taking logs: ln(0.8723)¼�0.1367. The

s.e. of the log ratio (see Section 5.3 at p. 178) is
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1� 0:8957

0:8957� 508
þ 1� 0:7813

0:7813� 64

� �1=2
¼ 0:0678:

Then z¼ (�0.1367)/0.0678¼�2.02. The ratio is statistically significant at the

5% level and meets the Supreme Court’s Castaneda standard.

2. If two more blacks had passed the test, the black pass rate would rise to

52/64¼ 0.8125. The ratio would be 0.9071 and ln(0.9071)¼�0.0975. The

s.e. of the log ratio becomes 0.0619 and z¼ (�0.0975)/0.0619¼�1.58, which

is not significant. The court of appeals’ conclusion as to significance is thus

correct, but since calculations of significance are intended to take account of

sampling error, it seems incorrect to vary the sample as if mimicking such error

and then to make another allowance for randomness. This does not mean that

change-one or change-two hypotheticals are not valid ways to appraise the depth

of the disparities. As discussed in Section 5.6, a better indication of the weight of
evidence is the likelihood ratio, which is the maximized likelihood under the

alternative hypothesis (where P1¼ 455/508 and P2¼ 50/64) divided by the

maximized likelihood under the null hypothesis (where P1¼P2¼ 505/574).

Thus the likelihood ratio is

455

508

� �455
53

508

� �53
50

64

� �50
14

64

� �14

505

572

� �505
67

572

� �67
¼ 21:05;

which is fairly strong evidence against the null hypothesis in favor of the

alternative. If two more blacks had passed the test, the likelihood ratio would

have been

455

508

� �455
53

508

� �53
52

64

� �52
12

64

� �12

505

572

� �505
65

572

� �65
¼ 5:52:

Thus the weight of evidence against the null hypothesis falls by a factor of 3.8

upon alteration of the data. The altered data would still be 5.5 times more likely

under the disparate impact hypothesis than under the null hypothesis, but would

be considered fairly weak evidence.

3. The ratio of black to white pass rates is 5/63� 70/501¼ 56.80%, with ln

(0.5680)¼�0.5656. The z-score is �1.28, which is not significant. The court

of appeals’ statement (i) is technically correct, but it does not follow that the lack

of significance is irrelevant to proof of disparity when sample sizes are small.

Lack of significance in a small sample, while not affirmative evidence in favor of
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the null hypothesis as it would be in a large sample, implies that the sample data

are consistent with either the null or the alternative hypothesis; there is not

sufficient information to choose between them. That is relevant when plaintiff

asserts that the data are sufficient proof of disparity. The court’s more telling

point is: (ii) statistical significance is irrelevant because the disparities were not

caused by chance, i.e., the court decided not to accept the null hypothesis, but to

accept the alternate hypothesis of disparate impact under which a Type II error

occurred. This seems correct since only 42.2% of the blacks achieved a score

(76) on the written examination sufficient to put them high enough on the list to

be promoted, while 78.1% of the whites did so. The court’s opinion is more

penetrating than most in analyzing the reason for disparities that could have been
caused by chance.

Section 5.6.1. Purloined notices revisited

The mle for the alternative hypothesis is (0.50)15(0.50)3, and for the null hypothesis

is (0.04)15(0.96)3. The ratio of the two is 4� 1015. Moody’s claim is not supported

by the evidence.

Section 5.6.2. Do microwaves cause cancer?

1. The maximum likelihood estimates are p̂ 1 ¼ 18=100 ¼ 0:18 and

p̂ 2 ¼ 5=100 ¼ 0:05. The mle of p1/p2 is p̂ 1= p̂ 2 ¼ 3:6 by the invariance

property.

2. The maximized likelihood under H1: p1 6¼ p2 is

L1 ¼ 18=100ð Þ18 82=100ð Þ82 5=100ð Þ5 95=100ð Þ95;
while under H0: p1¼ p2 the maximized likelihood is

L0 ¼ 23=200ð Þ23 177=200ð Þ177:
The likelihood ratio is L1/L0¼ 79.66, against H0. The data are approximately

80 times more likely under H1 than they are under H0.

To assess the significance of a likelihood ratio this large, we calculate the

log-likelihood ratio statistic,

G2 H1 : H0ð Þ ¼ 2 log L1=L0ð Þ ¼ 8:76:

Alternatively, by the formula of Section 5.6 at p. 201,
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G2 ¼ 2
	
18 log 18=11:5ð Þ þ 5 log 5=11:5ð Þ

þ 82 log 82=88:5ð Þ þ 95 log 95=88:5ð Þ
 ¼ 8:76:

This exceeds the upper 1% critical value for χ2 on 1 df.

3. Students should be wary of the multiple comparisons problem: with

155 measures considered, one or more significant results at the 1% level are to

be expected, even under the null hypothesis. The case for a statistical artifact is

strengthened by the fact that the rate of cancer in the cases was about as expected

and was below expectation in the control and by the apparent absence of any

biological mechanism.

Section 5.6.3. Peremptory challenges of prospective jurors

1. Without loss of generality, we may assume that the prosecution first designates

its 7 strikes and the defense then designates its 11 strikes, without knowledge of

the prosecution’s choices. Letting X and Y designate the number of clear-choice

jurors for the prosecution and the defense, respectively, the hypergeometric

probability of one overstrike is:

7� X
1

� �
32� 7� Y
11� Y � 1

� ��
32� X � Y
11� Y

� �
:

2. (i) If there were all clear-choice jurors save one for the prosecution (X¼ 6) and

one for the defense (Y¼ 10), the probability of one overstrike would be

7� 6

1

� �
32� 7� 10

11� 10� 1

� ��
32� 6� 10

11� 10

� �
¼ 1=16 ¼ 0:063:

(ii) If there were no clear-choice jurors, the probability of one overstrike would be

7

1

� �
32� 7

11� 1

� ��
32

11

� �
¼ 0:177:

(iii) If the prosecution had three clear-choice jurors and the defense had

five, the probability of one overstrike would be

7� 3

1

� �
32� 7� 5

11� 5� 1

� ��
32� 3� 5

11� 5

� �
¼ 0:461:

This is the mle estimate. The same result follows if X¼ 4 and Y¼ 5.
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Chapter 6. Comparing Multiple Proportions

Section 6.1.1. Death-qualified jurors

Under the null hypothesis that there is no difference in the verdict distributions of

death-qualified and Witherspoon-excludable juries, the probabilities in the cells are

best estimated from the pooled data in the margins. For the pre-deliberation data

this leads to the following (cell expectations in parentheses):

Death-qualified Excludable Total

First degree murder 20 (18.81) 1 (2.19) 21

Second degree murder 55 (55.54) 7 (6.46) 62

Manslaughter 126 (120.04) 8 (13.96) 134

Not guilty 57 (63.60) 14 (7.40) 71

Total 258 30 288

For these values, X2¼∑(observed� expected)2/expected¼ 10.184 on 3 df,

which is significant ( p¼ 0.017). (If exact cell expectations are used, without

rounding, the answer is 10.192.)

The principal contributions to X2 are the manslaughter and not-guilty categories,

with the Witherspoon-excludables providing more not-guilty verdicts and fewer

manslaughter verdicts than expected. The omission of the Witherspoon-excludables

thus increases the probability of conviction, but not of first degree murder conviction.

For the post-deliberation verdicts, X2¼ 9.478 on 3 df, which is also significant

( p¼ 0.024).

Section 6.1.2. Spock jurors

1. The data on observed and expected numbers of men and women panelists,

assuming a constant p¼ 86/597¼ 0.144 of selecting a woman panelist,

Observed Expected

Women Men Women Men

8 42 7.203 42.797

9 41 7.203 42.797

7 43 7.203 42.797

3 50 7.635 45.365

9 41 7.203 42.797

19 110 18.583 110.417

11 59 10.084 59.916

9 91 14.405 85.595

11 34 6.482 38.518

Totals 86 511 86 511
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X2 ¼
X9
1

observed� expectedð Þ2
expected

¼ 10:60;

on 8 df (not significant). We do not reject the null hypothesis of binomial

sampling with constant p. Since X2 is also not too small (it exceeds its expected

value of 8), there is no basis for inferring a non-binomial sampling distribution

with too little variation, such as might be produced by a quota. See Section 6.1.3

for an example with too little binomial variation.

To illustrate the assessment of post-hoc findings, note that the fourth, eighth, and

ninth juries contribute 9.335 to X2, the remaining six juries only 1.266. If there

were some a priori reason to separate the juries in this way, there would be

grounds for rejecting the null hypothesis of constant rate. However, as things

stand, this is a post-hoc comparison that is properly adjusted for by calculating

the usual X2 for the collapsed table,

W M Total

Juries 4, 8 Low 12 141 153

Juries 1–3, 5–7 Med 63 336 399

Jury 9 Hi 11 34 45

Total 86 511 597

but assessing significance still with respect to the critical value of X2 on 8 df.

Such assessment allows arbitrary regroupings of the original 9� 2 table. For the

regrouped 3� 2 table, X2¼ 9.642 is not significant.

2. Assuming that there is a constant expected proportion of women for each jury of

0.144, the standard deviation is 0.014, based on the 597 persons seated on the

panels. A 95% confidence interval for p is 0.116< p< 0.172. This result

supports Spock’s position, since the 29% average for other judges is far above

the upper limit of this confidence interval (the variance of the 29% estimate is

negligible under the binomial model).

On the other hand, the difference between the proportion of women on the panel in

Spock’s case (9/100) and in the other 8 panels for the same judge (77/497) is of

borderline significance: z¼ (9.5/100� 76.5/497)/[(86/597) · (511/597) ·

(100�1 + 497�1)]1/2¼�1.53(p¼ 0.063). Hence, the statistical evidence is weak

for asserting that the selection practice for Spock’s judge specially excluded

women in Spock’s case.

An odd point of the case is that, because the trial judges had no ostensible role in

selecting the panels (which was done by the clerks from jury lists), no reason for

the difference between the Spock judge and the other judges is apparent.
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Section 6.1.3. Grand jury selection revisited

1. Using the calculation formula in Section 6.1 at p. 208, we haveX
12 � pi � 0:1574ð Þ2= 0:1574ð Þ 0:8426ð Þ ¼ 0:56;

on 8 df. This is far into the (unconventional) lower tail of chi-squared on 8 df.

A calculation shows that p¼ 0.000205. This result indicates that one must reject

the null hypothesis that black jurors were selected in binomial trials with

constant p since the variation in number of blacks is too small to be consistent

with the binomial model. Thus, the hypothesis of random selection must be

rejected even if one accepts the state’s position that the overall proportion of

blacks appearing on juries reflected their proportion of the qualified and avail-

able pool. The test is unconventional in that the usual chi-squared test involves

the upper tail of the chi-squared distribution, detecting departures from expecta-

tion that are too large due to heterogeneity in the proportions.

The accuracy of the chi-squared approximation might be questioned because of

the small expected cell frequencies. An exact computation of P[X2	 0.56],

given fixed margins of (12, . . .,12) and (17, 91) in the multiple hypergeometric

model for the 2� 9 table yields

P ¼ 9 � 12

2

� �8

� 12

1

� ��
108

17

� �
¼ 0:00141:

2. Using the binomial distribution with n¼ 12 and p¼ 17/108¼ 0.1574:

Binomial probability for outcome: Expected #s Observed #s

0 or 1¼ 0.4151 3.7361 1

2¼ 0.2950 2.6558 8

3 or more¼ 0.2899 2.6090 0

X2¼ 15.37, which is highly significant at 2 df ( p< 0.0005). The actual dfs are

between 1 and 2 since p was estimated from the uncategorized data. See the

answer to Section 6.1.4. Since the observed value of chi-squared exceeds even

the critical value of chi-squared on 2 df, it is unnecessary to be more precise.

Although the expected cell frequencies are less than five, an exact calculation

shows that P[X2� 15.37] is less than 0.001, a result that is consistent with an

evaluation of chi-squared on 2 df.
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Section 6.1.4. Howland Will contest

The value of X2 for the 14-category outcome (0, 1, 2, 3, . . ., 12, 13–30) is 141.54,
where we have used the value p¼ 5,325/25,830 for calculating the expected cell

frequencies from the terms of the binomial distribution. Referring the test statistic

to critical values of chi-squared with 13 df, one must reject the binomial model for

lack of fit. Much of the discrepancy comes from the tail region, as we discuss below.

There are two details to consider first, however, one minor, the other more serious.

Because the probability of coincidence per downstroke was estimated from the

data, one would ordinarily lose one degree of freedom, leaving 12 dfs. But because

the rate was estimated from averages in the original data (as opposed to an estimate

based on the multinomial likelihood for the grouped frequencies), the correct

critical value of the statistic lies between that of a chi-squared on 12 and 13 df.

See Chernoff and Lehmann, The use of maximum likelihood estimates in
chi-squared tests for goodness of fit, 25 Ann. Math. Stat. 579 (1954). In this case,

of course, the difference is inconsequential.

Of greater concern in the questionable validity of the chi-squared analysis,

because the 861 pairs are not independent data points. In addition to possible

reasons for dependence between pairs of signatures related to how and when the

signatures were made, there may be correlation between paired comparisons

because the same signatures are used to form many pairs and some signatures

may be more likely than others to have many (or few) coincidences.

Consider, for example, assessing the likelihood of observing as many as

20 coincidences of 13 or more downstrokes. The probability for 13 or more

coincidences in Peirce’s binomial model is (using p¼ 1/5 for simplicity)

P X � 13½ � ¼
X30
i¼13

30

i

� �
1

5

� �i
4

5

� �30�i

¼ 0:003111:

Students who use the normal approximation with continuity correction will find

P X � 13½ � ¼ P X > 12:5½ � ¼ P Z >
12:5� 30 � 0:2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
30 � 0:2 � 0:8p ¼ 2:967

� �
� Φ �3ð Þ � 0:001:

The expected number of occurrences in 861 pairs is 861 · 0.003111¼ 2.68. The

deviation of observation from expectation is thus 20� 2.68¼ 17.32. What is a

correct standard error for this deviation? If the number of coincidences in all

N¼ 861 pairs were truly independent, the variance of the deviation would be the

binomial variance 861 · 0.00311 · (1� 0.00311)¼ 2.67, so that the deviation of

17.32 would be more than 10 standard errors (accounting for most of the value of

the chi-squared statistic). Because the pairs were overlapping and since signatures

probably would vary in the likelihood of coincidences, the variance is likely to be

greater than that given by binomial theory. See Lehmann & D’Abrera,

Nonparametrics: Statistical Methods Based on Ranks, App. Sec. 5 at 362 (2006)
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(theory of “U-statistic”). Peirce’s binomial assumption thus understates the fre-

quency of highly coincident signature pairs.

Does this undermine Peirce’s conclusion that 30 coincidences is exceedingly

rare? Not really. In a nonparametric form of analysis, one might consider the set of

signature pairs as a finite population, each equally likely to be the pair scrutinized

under the hypothesis of authenticity of the disputed signature. In this probability

space one observes as many as 30 coincidences only once; the probability of this

event is thus one over the number of signature pairs examined. For example, if one

includes the pair found in the Howland will with the 861 other pairs examined, the

probability would be 1/862. If one assumes that none of the other pairs were in as

much agreement among the
44

2

� �
¼ 946 pairs potentially examinable, the prob-

ability would be 1/946� 0.001. The assumption of equally likely paired outcomes

might be challenged based on the basis of how close in time the signatures

were made.

A test more closely tailored to the tracing hypothesis might restrict attention to

those 43 signature pairs that included the authentic signature on the will from which

the tracing was supposed to have been made.

Section 6.1.5. Imanishi-Kari’s case

Chi-squared for the questioned data is 30.94; on 9� 1¼ 8 df the P-value is 0.0001.
For the control group, chi-squared is 12.17; P-value¼ 0.14.

Section 6.2.1. Wage additives and the four-fifths rule

The data are:

+ � Total

WM 20 123 143

BM 6 32 38

HM 1 6 7

AOM 0 8 8

WF 5 98 103

BF 4 55 59

HF 2 36 38

AOF 2 11 13

Total 40 369 409

X2 ¼
X

ni pi � pð Þ2= p � qð Þ ¼ 10:226

on 7 df, which is not significant ( p> 0.10). An alternative test procedure in this

problem is to compare each group to the WM group, and reject as significant any
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z-score statistic at or beyond the nominal α/7¼ 0.05/7¼ 0.007 level. Since the

largest z-score without continuity correction is 2.33 (for WM vs. WF), which is

significant only at the one-tailed 0.01 level, we would not reject the overall

hypothesis, in agreement with the chi-squared procedure. On the other hand, if

the EEOC would only find disparate impact within race and across gender, or within

gender and across race, there are only four comparisons with white male, and the

difference is statistically significant at the 5% level.

Section 6.2.2. Discretionary parole

1. Using the calculation formula for chi-squared in Section 6.1 at p. 208, the value

of chi-squared is 17.67 on 3 df, which is significant at the 0.001 level. This is the

test procedure appropriate for the null hypothesis of no association between

discretionary parole and race or ethnicity.

2. The court used a binomial model when it should have used a hypergeometric

model and the corresponding chi-squared statistic or z-score utilizing the

hypergeometric variance.

3. The court’s method of using fourfold tables, but adding the finite population

correction factor, yields for Native Americans vs. whites

z ¼ 24:5� 34:73j jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
382 � 267 � 590 � 59

6492 � 648

r ¼ 10:23

3:607
¼ 2:84:

This is equivalent to X2¼ 8.04. As a test of the a priori hypothesis that Native

American inmates received disproportionately few paroles, one can refer 8.04 to

the usual table of chi-squared on a single degree of freedom, P< 0.005. Simi-

larly for Mexican Americans: the z-score¼ 2.56 and X2¼ 6.54, P� 0.01.

4. In one sense, the selection of the Native Americans or Mexican Americans might

be viewed as determined by the data. To adjust for such post hoc selection and to

achieve a given level of overall Type I error when there are multiple

comparisons, the method described in Section 6.1 should be applied. In the

present case, we could assess significance of each 2� 2 chi-squared by referring

each value to the upper critical value indicated for the chi-squared distribution

for the 3 df in the original 2� 4 table. The 5% critical value for 3 df is 8.0, which

would make the result for Mexican Americans non-significant using a

two-tailed test.

It would probably be more appropriate to take account of only the three

comparisons of interest: Native Americans, Mexican Americans, and blacks

vs. whites. Using Bonferroni’s method, assuming three comparisons, the

attained significance level is 3 times the level based on a single df P-value of

0.005 for Native Americans and 0.01 for Mexican Americans. Both would

remain significant at the 5% level.
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Section 6.2.4. InterMune’s Actimmune

1. Using Fisher’s exact test, the two-tailed P-value is 0.004 (using either the point-
probability method or doubling the one-tailed P-value). Using the chi-squared

approximation with ½ continuity correction, the two-tailed P-value is 0.005.

2. The statements were misleading because of the post-hoc, multiple comparisons,

which inflated the type I error. Although one could multiply the P-value by

7 (since there were two planned and five unplanned comparisons), such post-hoc

findings have little credence in the clinical trials community because it is

difficult to know how many other comparisons were made and not reported.

Section 6.3.1. Preventive detention

Computation of τb requires the joint probabilities pij and the expected probabilities

under no association. These are computed as follows.

A or B Neither Total

Low 0.1098 0.5002 0.61

Med 0.0560 0.1440 0.20

High 0.0703 0.1197 0.19

Total 0.2361 0.7639 1.00

The table of expected probabilities under no association, pi · pj, is

A or B Neither Total

Low 0.1440 0.4660 0.61

Med 0.0472 0.1528 0.20

High 0.0449 0.1451 0.19

Total 0.2361 0.7639 1.00

The value of τB from these data is 0.03. Thus, there is only a 3% reduction in

classification errors due to knowledge of risk group.

Chapter 7. Comparing Means

Section 7.1.1. Automobile emissions and the Clean Air Act revisited

1. A 90% (two-sided) confidence interval is

0:0841
 1:753 � 0:1672=
ffiffiffiffiffi
16

p

or (0.011, 0.157). Petrocoal fails this test.
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2. The two-sample t-statistic is t¼ 0.0841/[0.5967 · (2/16)1/2]¼ 0.399. Petrocoal

would pass this test. The difference in result is due to the much larger estimated

s.e. of the difference when pairing is ignored.

3. The two-sample t-test requires that each sample be selected from a normal

population; that the variances of the two populations be the same; and that the

selections for each sample be independent of each other and of the other sample.

Assume that the ith car has an expected emission value θi for the base fuel, i.e., θi
is the long run average if the ith car were tested repeatedly with the base fuel.

Under the over-simplified assumption that θi is the same for all cars with respect

to each fuel, so that the only variation is measurement error, assumed statisti-

cally independent, the above assumptions are met and the t-test would be valid.

However, it is apparent from the data that car-to-car variation makes the

assumption of constant θi’s untenable. While the car-to-car variation may be

combined with measurement error for the overall error term, thereby restoring

the assumption of selection from two normal populations with given means, the

two groups are no longer independent: a car that has a below-average rate of

emissions for the base fuel tends to have below-average emissions for Petrocoal.

Thus, the two-sample t-test would not be valid. The paired t-test would remain

valid because only the paired differences enter into the test statistic.

Section 7.1.2. Voir dire of prospective trial jurors

The best way of doing this problem is to regard the state and federal voir dire times

for each judge as naturally paired and to look at the distribution of the paired

differences. The mean of the differences (state minus federal) is 27.556 minutes and

the estimated standard deviation of the differences is 60.232. Student’s t is

27:556= 60:232=
ffiffiffiffiffi
18

p� � ¼ 1:94:

Since t17,0.05¼ 2.11 and t17,0.10¼ 1.74, the result is not significant at the

two-tailed 5% level but is significant at the 10% level.

The reciprocal transformation yields a mean difference of �0.0026 with stan-

dard deviation 0.0114. Thus, t ¼ �0:0026j j= 0:0114=
ffiffiffiffiffi
18

p� � ¼ 0:968, which is

much less significant than for the untransformed data. The reason for this

non-significant result is that the reciprocal transformation emphasizes differences

for shorter impaneling times relative to the same differences for longer times; in

these data judges who already had short impaneling times under the state method

did not consistently further shorten their times by using the federal method. The

non-significant result for the transformed data suggests that the result is sensitive to

the outlier for Judge A in the original scale and calls into question the assumption of

normality needed for the t-test in the original data. “Waiting time” data like these

frequently have exponential distributions with much thicker tails than the normal

distribution. See Section 12.2.1 for a nonparametric test of these data.
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Section 7.1.3. Ballot position

The mean percentage point difference is 64.3� 59.3¼ 5.0. The pooled variance

estimate for a single election is

s2p ¼
148:19 � 121� 1ð Þ þ 177:82 � 31� 1ð Þ

152� 2
¼ 154:116:

The variance of the difference between the averages over elections is estimated as:

s2
X1�X2

¼ 154:116 � 121�1 þ 31�1
� � ¼ 6:245:

The standard error of the difference in means is the positive square root, 2.50. Thus,

the difference is almost exactly two sd’s. While the distribution of vote percentages

cannot be truly normal, we may rely on the large sample size and robustness of the

t-statistic for an approximate analysis. In fact, with 150 df, the t-distribution is

approximately equal to the normal; the difference is statistically significant at about

the two-tailed 5% level. Notice, that since incumbents appeared in the second

position so infrequently, the assumption that position was determined by lot must

be rejected (the observed proportion was more than 7 sd’s from 50%). Incumbents

who appeared second may have received a smaller proportion of the vote because

they were politically less powerful.

Section 7.1.4. Backdating Stock Options

The sample mean of the % ln price changes is 10.86 with standard deviation

3.536. The standard error of the mean is 3.536/71/2 = 1.3366. Student’s t is

10.86/1.3366 = 8.125, with two-sided P-value <0.001 (it is in fact 0.0002).

The critical value of Student’s t on 6 df cutting off 5% in the tails is 2.4469, so

the 95% confidence interval is the sample mean plus or minus 2.4469 standard

errors, i.e., 10.86
 2.4469� 1.3366 or 7.59 to 14.13.

Section 7.2.1. Fiddling debt collector

1. SSw ¼
X3
1

39ð Þ 0:3ð Þ2 ¼ 3� 39� 0:09 ¼ 10:53

MSw ¼ SSw= N � 3ð Þ ¼ 10:53

120� 3
¼ 0:09
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2. SSb ¼
X3
1

ni Yi � Y
� �2

¼ 40 0:71� 0:70ð Þ2 þ 40 0:70� 0:70ð Þ2 þ 40 0:69� 0:70ð Þ2 ¼ 0:008

MSb ¼ SSb= k � 1ð Þ ¼ 0:008=2 ¼ 0:004

3. The F-statistic is F ¼ MSb
MSw

¼ 0:004

0:09
¼ 0:044 with 2 and 117 df.

4. The null hypothesis is that the samples were selected at random. The alternative

hypothesis is that the process was manipulated to create results close to 0.70 in

each sample. Given the alternative hypothesis, the lower tail of the F-distribu-
tion should be used to see whether the means are too close to 0.70.

5. The P-value is P[F2,117	 0.044]. We don’t need special F-tables to evaluate this

because of the relationshipP F2,117 	 0:044½ � ¼ P F117,2 � 1
0:044 ¼ 22:5

	 

< 0:05

from Table F in Appendix II. Since the P-value is less than 0.05, we reject the

null hypothesis that the samples were selected at random from populations with

an average collection rate of 70%. However, use of the F-distribution assumes

that the percentages collected of individual invoices are normally distributed.

This is unlikely since the collection percentage only varies between 0 and 100%

and may well be U-shaped, reflecting the fact that invoices are either collected or

not. If the distribution is J-shaped, with most invoices largely collected,

simulations suggest that the above calculation may be conservative, i.e., the

probability of such close adherence to 0.70 is even smaller than indicated.

Chapter 8. Combining Evidence Across Independent Strata

Section 8.1.1. Hiring lawyers

Strata 1970–1972 may be disregarded as non-informative. The elements of the

Mantel-Haenszel statistic are as follows (taking white hires as the reference

category):

Observed whites hired (1973–1982) 60

Expected number 55.197

Excess number whites (or shortfall for blacks) 4.8

Sum of the hypergeometric variances 7.2706

The continuity corrected z-score is zc ¼ 4:8� 0:5ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:2706

p ¼ 1:59 which is

just short of significant at the one-tailed 0.05 level. Note that if the squared form of

the Mantel-Haenszel statistic is used, the P-value corresponding to the upper tail of
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the chi-squared distribution is a two-sided test because both positive and negative

deviations in the z-score contribute to the upper tail. The P-value should be divided
by two for a one-sided test.

In the actual case, data from other positions were combined, the result was

significant, and the magistrate accepted the Mantel-Haenszel statistic.

Fisher’s exact test is appropriate here for each year and the corresponding

hypergeometric model is in fact the basis for the Mantel-Haenszel test that we

use. Fisher’s method of combing the evidence applies to continuous distributions

and is inappropriate here because of the small numbers and the resulting discrete-

ness of the P-values. Pooling should be avoided because of the variations in

outcome rate (hiring) and exposure rate (race) across years (the stratification

variable).

Section 8.1.2. Age discrimination in employment terminations

1. In 10 out of 15 cases, the age of the terminated employee exceeded the average

age of employees. There is a total of 89.67 years in excess of expectation on the

hypothesis of no discrimination.

2. Following the logic of the Mantel-Haenszel test, for each termination we

generate an expected value for age, which is the average age (or that times the

number of terminations when there are more than 1). The differences between

observed and expected ages are then summed over the termination events. The

sum is divided by the square root of the sum of the variances of the aggregated

ages at each termination in a sampling experiment without replacement for those

at risk of termination. When only one person is terminated this variance is

simply the variance of the ages of those at risk. When more than one is

terminated, it is the number of terminations times the variance of the ages of

those at risk times the finite population correction.

The result is a standard normal deviate,

z ¼ 653� 563:4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1276:84

p ¼ 2:51;

which is significant at the one-tailed 1% level (P¼ 0.006).

Section 8.1.3. Rheumatoid arthritis drug

1. The chi-squared goodness of fit test for equality of the multinomial proportions

( p1,. . .,p4)¼ (1/4,. . .,1/4) is 0.10, which on 3 degrees of freedom has P-value
0.99. The allocation of treatments to subjects appears uniform in the aggregate

data. However, not so for the individual countries. Chi-squared is 35.2 in the

U.S. and 39.8 in Mexico, which on 3 degrees of freedom have P-values of less
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than one in a million. We can reject the hypothesis of chance deviations from

random allocation with respect to country. It is unclear why this occurred.

2. Suppose that only sites in the U.S. were recruiting patients during the start of the

trial when patients were randomized to placebo or the 50 mg dose, which would

explain why there were no assignments to the 50 mg dose in Mexico. Suppose

furthermore that after the DSMB cleared recruitment into the 100 mg dose,

additional sites were opened in Mexico while at the same time the rate of

enrollment at the U.S. sites declined, such that by the time the DSMB cleared

recruitment into the 150 mg dose, most of the patient accrual was from Mexico

and little from the U.S. That would explain the small number of patients in the

U.S. at the highest dose. The published reports did not mention if the above

occurred, but if it did, would that affect your answer to problem 4?

3. Generally in clinical trials, a treatment must demonstrate a significant effect with

respect the primary endpoint in order to be declared significant, notwithstanding

results for secondary endpoints. With respect to the primary endpoint, if Rigel

would point to any dose level that showed a significant difference from the

placebo response rate as evidence of a treatment effect, then adjustment for three

multiple comparisons would be required. Using a Bonferroni adjustment, the

P-values would be multiplied by 3, which would still leave them significant at

the 0.05 level. Alternatively, as explained in Section 6.1, the null hypothesis of

no treatment effect at any dose level compared to placebo may be tested with the

chi-squared test of homogeneity of sample proportions. Chi-squared is 21.74 on

3 df (p< 0.0001). However, if Rigel would have pointed to any of the other two

secondary endpoints as supporting evidence of a treatment effect, even if the

primary endpoint had not shown significance, there would have been nine

comparisons, and the individual P-values would have to be multiplied by 9 for

the Bonferroni adjustment.

4. The sufficient conditions for collapsibility of the data across the two countries

are not met. Looking at the placebo group for example, the outcome rate in the

U.S. was 24% (6 out of 25) whereas the outcome rate in Mexico was 55% (12 out

of 22). Looking now at the exposure rate among the responders, 44% of

responders (15 out of 34) were at the 50 mg dose in the U.S. compared with

0% (0 out of 65) in Mexico. Similar imbalances appeared among the responders

at the 150 mg dose. Because neither of the two sufficient conditions are met, the

analysis should be disaggregated by country.

Section 8.2.1. Bendectin revisited

1. With weights ωi¼ 1/(s.e. log RR)2, the estimated log relative risk is

θ̂ ¼
X

ωiθi=
X

ωi ¼ �10:025=269:75 ¼ �0:0372. The s.e. of

θ̂ is 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
269:75

p ¼ 0:0609.
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2. A 95% confidence interval is �0:0372
 1:96ð Þ 0:0609ð Þ ¼ �0:157, 0:082ð Þ:
3. Exponentiating, the estimated relative risk is 0.96 with confidence interval

(0.85,1.09).

4. Suppose there were a true common log relative risk underlying each of the

studies. In order for the log confidence interval found in Answer 2 to exclude the

null value of 0, we must have the estimate exceed 1.96 standard errors. For this

event to occur with 80% probability, we must have

θ̂ � θ

s:e: θ̂
>

1:96 s:e: θ̂ � θ

s:e: θ̂
:

Since the left-hand side of the above equation is approximately a standard

normal variable, the probability of rejecting the null hypothesis will exceed

80% when the right-hand side is less than �0.84. This implies that θ> (2.8)

(0.0609)¼ 0.17, corresponding to an RR of approximately 1.2. Power is suffi-

cient to detect the relative risk posited by plaintiff’s expert. (A one-tailed test

would yield even greater power.) This result indicates that the lack of signifi-

cance is not due to a lack of power, but rather to the inconsistency in direction of

the study results.

5. Under the hypothesis of homogeneity, Q has a chi-squared distribution on nine

df. Since the value Q¼ 21.46 has a tail probability of 0.011, we reject the

hypothesis of homogeneity and conclude that the true ln(RR)’s vary from

study to study.

6. eτ2 ¼ 0:058;eτ ¼ 0:241.eτ is the estimated standard deviation of the true ln(RR)’s
in the hypothetical population. Using weights adjusted for this factor, the mean

of the population of true ln(RR)’s is estimated as �0.136. The antilog is 0.873,

with s.e. 0.1088.

Section 8.2.2. Avandia and Heart Attacks

1. The Mantel-Haenszel estimate of the common odds ratio is

B=C ¼ 43:064=30:179 ¼ 1:427:

From the RGB formula of Section 8.1 at p. 254, the squared standard error of log

ORMH is

½
	
23:364=43:0642
� �þ 16:338þ 19:700ð Þ= 43:064 � 30:179ð Þf gþ

13:842=30:1792
� �
 ¼ 0:02776;
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so that the standard error of logORMH¼ 0.027761/2¼ 0.1666. Thus an approximate

95% confidence interval for log ORMH is log(1.427)
 1.96 · 0.1666, or (0.029,

0.682). Exponentiating, the approximate 95% c.i. for ORMH is (1.029, 1.978).

2. Adding ½ to the cells of a table before calculating a log odds ratio tends reduce

bias in the estimated log odds ratio in large samples. However, the bias is not

exactly zero, and this residual bias tends to grow larger for tables with small

expected frequencies. Combining the evidence across several such tables tends

to create serious bias in the estimated odds ratio. In tables with equal sample

sizes per group, as is typical for randomized trials, the direction of the bias is

toward an odds ratio of one. The Mantel-Haenszel estimator does not require

adjustments for zero cells and so does not suffer this defect.

Chapter 9. Sampling Issues

Section 9.1.1. Selective Service draft lotteries

2. Dichotomizing sequence numbers in those 	183 or �184 yields the following

2� 12 table:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec All

�184 19 17 21 19 17 16 17 12 13 18 9 5 183

	183 12 12 10 11 14 14 14 19 17 13 21 26 183

Total 31 29 31 30 31 30 31 31 30 31 30 31 366

The chi-squared statistic is appropriate to test for random assortment in a

multiple hypergeometric model with all margins fixed. The value of X2 is 31.139

on 11 df ( p ~ 0.001). There is a significantly decreasing trend in the proportion of
high-end sequence numbers from beginning to end of year. The later months

were more likely to receive lower sequence numbers because the chronological

sequence in which the slips were put into the bowl put them on top and the

stirring was inadequate (as it usually is).

The results from the 1971 lottery are much more uniform:

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec All

�184 9 18 16 14 15 16 14 17 19 14 14 16 182

	183 22 10 15 16 16 14 17 14 11 17 16 15 183

Total 31 28 31 30 31 30 31 31 30 31 30 31 365

For these data X2¼ 11.236 on 11 df ( p> 0.4).
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Section 9.1.2. Uninsured motor vehicles

1. Using Fleiss’s formula of Section 5.3 at p. 176, a 95% confidence interval is

(93.6%, 98.7%).

2. The sample is not too small; the confidence interval in theory reflects the

uncertainty attributable to the given sample size.

3. The true rate of uninsured vehicles is probably greater than the confidence

interval would indicate because the missing vehicles may well have a lower

insurance rate. If all the missing vehicles in the sample of size 249 are assumed

to be uninsured, the 95% confidence interval would be (86.3%, 93.9%).

Section 9.1.3. Mail order survey

The mail-order house argued that the respondents were “representative” of all

purchasers with respect to the resale/personal-use issue because respondents and

nonrespondents had similar distributions of order size and shipping address.

In general, reference to such covariates is appropriate to justify treating a sample

as random despite nonresponse. If the sample is random, the company’s position is

correct. If the sample is deemed not random, there are no clear benchmarks as to the

right percentage, but the Board’s position that all nonresponse should be deemed in

the personal-use category would seem extreme. On the randomness issue, however,

a chi-squared test of homogeneity in the distribution of orders by size for

respondents and nonrespondents is 22.15, on 3 df (P< 0.0001), indicating a signifi-

cant departure from the homogeneity hypothesis implicitly argued by the mail-

order house. Chi-squared for the shipping address table is 2.67, on 2 df, which is not

significant, a result that is consistent with the company’s position.

Section 9.1.5. NatraTaste v. NutraSweet

1. The entry criterion was criticized by the court because respondents included

users as well as buyers, and a user might well have not been a buyer, e.g., those

who used the product in restaurants or used it at home, but did not buy it.

The study method was criticized because (i) the respondents were not shown the

NutraSweet box together with the other boxes, as they would be seen in a store;

(ii) the question was leading; and (iii) there was no instruction against guessing.

2. The expert’s analysis was flawed because the control boxes did not control for

similarities in names and colors, which were not protected elements of trade

dress. The court analyzed the reasons given by respondents for their choice of

the NatraTaste box and found that in most cases these elements played a role in

respondents’ choices.
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Section 9.1.6. Cocaine by the bag

1. Let p be the proportion of the 55 bags that contains cocaine. We seek the value of

p for which the probability of picking three bags at random, all of which contain

cocaine, is 0.05 (this value is the lower end of a one-sided 95% confidence

interval). This is given by p3¼ 0.05; p¼ (0.05)1/3¼ 0.368, suggesting that a

minimum of about 0.368� 55¼ 20 of the 55 bags have cocaine. A one-sided

interval is used because there is no p larger than that shown by the data ( p¼ 1).

2. Using the slightly more accurate hypergeometric distribution, the probability of

finding cocaine in all 3 bags selected at random, if there were 21 bags with

cocaine, is given by

21

3

� �
34

0

� �
55

3

� � ¼ 1,330

26,235
ffi 0:05:

Section 9.1.7. ASCAP sampling plan

1. ASCAP’s expert’s statements:

Randomness

a. Not too bad. The reference to chance should be “knowable” to reflect the

purpose of random sampling.

b. Not “determined by statistical laws” in the sense that other days, times,

etc., couldn’t be selected. The statement is correct if understood to mean

that the characteristics in repeated samples will vary in accordance with

statistical laws.

c. True, in theory.

Sampling Precision

a. False. Sampling precision is the degree to which results will vary from sample

to sample.

b. Not quite true. The less the sampling precision, the greater the average

absolute or squared understatement or overstatement of the number of a

member’s playings.

c. Under commonly assumed distributions for counts, such as the Poisson or the

binomial, this statement is true in the proportional sense, but not in the

absolute sense. For a composition with many playings, the variance will be

greater in terms of number of playings, but smaller in proportion to the mean

than for a piece with few playings.

d. True, and also true for a piece with many playings.

Appendix I: Calculations and Comments on the Cases 565



2. Estimates of accuracy of the samples:

In a sampling plan as complex as this, the court should require some

replicated, split-sample technique, such as the jackknife or the bootstrap, to

support estimates of precision. See Section 14.10.

Section 9.1.8. Current population survey

1–3. Stratified sampling is used in creating the strata composed of similar PSUs; its

purpose is to reduce sampling error by creating more homogeneous sampling

units. Cluster sampling is used in creating clusters of four neighboring hous-

ing units for the systematic sample. This increases efficiency, but also

increases sampling error compared with a random sample of the same size.

Ratio estimation is used in estimating the number of unemployed in each

subgroup in the sample; its use reduces sampling error.

4. One factor is size. Sampling ratios should be greater in small PSUs than in

large ones because it is primarily the size of the sample, not its ratio to the

population, that determines sampling error. Thus, PSUs in low population

states should have higher sampling ratios.

5. Recall that CV¼ sd/mean. Assuming the mean to be 6%, sd¼
(0.06)(0.019)¼ 0.00114. Hence, a 90% c.i. is about 6.0
 0.2.

Section 9.1.9. Insurance payments to doctors

1. We use cluster sampling (as opposed to a simple random sample of patient visits)

for two reasons. The first is practical: it is often easier to retrieve and review a

patient’s entire chart (which includes all visits) rather than a particular visit for

this patient here and some other visit for another patient there, etc. This is

especially true in other applications such as the Census Bureau’s interdecennial

surveys. Rather than sending canvassers to one apartment in this building then a

different apartment in that building, canvassers can interview all apartments in a

randomly selected building. The second reason is discussed in the next answer.

2. The amount of damage incurred by improper coding of an individual claim is the

unit of analysis. These are clustered within patients who have repeated visits to

the doctor. There may be greater homogeneity in the codes used for repeated

visits from the same patient compared to the codes that would be used for

different patients, and insofar as this is the case, the correlation between the

damages per claim will be nonzero, so the data would not comprise an indepen-

dent sample of claims. By reviewing all of the visits from any sampled patient,

we get a more precise estimate of the intracluster correlation coefficient.

It is an empirical question whether there is a substantial correlation or not, but

one would typically expect a positive association between upcoded claims from
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the same patient, i.e., within clusters than between clusters, which would lead to

a positive ICC.

3. VIF ¼ 1þ m� 1ð ÞICC ¼ 1þ 3:347� 1ð Þ0:435 ¼ 2:02. This inflates the stan-
dard error of the mean by a factor of the square root of 2.02, or 1.42, i.e., the ICC

together with the cluster size inflate the standard error of the mean by about 42%.

Section 9.2.1. Adjusting the Census

1. Putting aside the provision for erroneous enumerations in brackets (for which

there is no provision in the fish example), the DSE formula is equal to the

number of fish in the first sample (census)� the number of fish in the second

sample (Np—the estimated population from the post-census sample) divided by

the number of tagged fish in the second sample (M—the weighted-up number of

matches).

2. The DSE underadjusts for black males and overadjusts for black females. This

suggests that black males who are hard to catch in the census are also hard to

catch in the post-census survey. [Do you see why?] The reason for the overad-

justment of black females is unknown.

3. That adjustment should be made for this reason was argued by the plaintiffs in

the first round of litigation (to compel adjustment). The Second Circuit in effect

agreed, but the Supreme Court unanimously reversed. Wisconsin v. City of
New York, 517 U.S. 1 (1996).

4. This remedy has been suggested by some statisticians. See the article by

L.D. Brown, et al., cited at p. 297.

Chapter 10. Epidemiology

Section 10.2.1. Atomic weapons tests

The relative risk for males and females combined and control groups combined in

Table 10.2.1a is 4.42/2.18¼ 2.03. Let p1 denote the disease rate among those

exposed and p0 the rate among those unexposed. Among those exposed, if p0
are cases assumed to have arisen from other causes, while the remaining p1� p0
are assumed to have been caused by the exposure, then ( p1� p0)/p1¼ 1� 1/RR is

the proportion of exposed cases caused by the exposure. Thus, the probability that

Orton’s leukemia was caused by the exposure is 1� 1/2.03¼ 0.507, or slightly

more likely than not. On the other hand, when the earlier years are dropped, the

relative risk falls below 2 (1.99 for Southern Utah in the Lyon study, and 1.60 in

Southern Utah and 1.33 for Northern Utah in the Land study) and the data do not

indicate causation is more likely than not. In addition, the data for at least Eastern

Oregon also indicate an elevated risk (1.48), suggesting that events other than

fallout may have been a contributing factor.
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Section 10.3.1. Dalkon Shield

Because the study was retrospective, use the odds ratio. The odds ratios for the

group of Dalkon Shield users vs. each group separately are as follows:

O.C. (35/15)/(127/830)¼ 15.2

Barrier (35/15)/(60/439)¼ 17.1

Other IUDs (35/15)/(150/322)¼ 5.0

No Method (35/15)/(250/763)¼ 7.1

The data support the suggestion of a much higher risk of PID with the Shield

than with other methods or with no method.

Since the study was conducted after extensive and negative publicity about

the Shield, the proportion of Shield wearers among the controls appears to be

smaller than their proportion in the general population at the time plaintiff wore

the Shield. Robins estimated that 6.5% of women in the 18–44 age group wore the

Shield, while only 15/2,369¼ 0.63% of the controls wore the Shield. Such a change

would cause the study to overstate the risk of the Shield. It also could be argued that

those cases still wearing the Shield at the time of the study were more careless about

their health and thus more likely to contract PID than women who wore the Shield

when the plaintiff did. Such a change would also cause that study to overstate the

effect of the Shield. On the other hand, it could be argued that many of those who

would contract PID from the Shield had already done so before the study recruit-

ment period, thus, rate of Shield use for those with PID was below that rate when

plaintiff wore the Shield. Such a change would cause the study to understate the risk

of the Shield.

Section 10.3.2. Radioactive “cocktails” for pregnant women

1. (i) Since the control group had 0 childhood cancer deaths, RR¼1.

(ii) Using population data and including the liver cancer, SMR¼ 4/0.65¼ 6.15.

Excluding the liver cancer, SMR¼ 4.62.

2. Since the exposed and control groups are about the same size, the probability

that a cancer death would be in the exposed group, under the null hypothesis, is

about 1/2; the probability that all four cases would be in the exposed group is

1/24¼ 1/16¼ 0.0625 and the probability that all 4 cases would be in either group

is 2� 0.0625¼ 0.125. With three cases, the probability of all being in either

group is 0.25. In neither case are the data significant. Comparing the exposed

group with the expected number from general population data, we treat X, the
number of childhood cancer deaths, as a Poisson random variable with mean

0.65. Then, including the liver cancer,
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P X � 4½ � ¼ 1� P X 	 3½ �
¼ 1� e�0:65 1þ 0:65þ 0:65ð Þ2=2þ 0:65ð Þ3= 3� 2ð Þ

n o
¼ 0:0044

for the upper-tail P-value. The point probability for X¼ 4 is 0.0039.

Since the only value in the lower tail is X¼ 0, and the probability of that is

e�0.65¼ 0.522, there is no additional P-value for the lower tail by the point

probability method (see Section 4.4 at p. 124). The two-tailed test is thus

significant. Excluding the liver cancer, the two-tailed test is still significant.

3. An approximate 95% confidence interval for the log number of cancer deaths is

ln 4
 1.96(1/4)1/2¼ (0.4063, 2.3663). Exponentiating, we have (1.50, 10.66) as

the lower and upper confidence limits, respectively, for the number of deaths.

Dividing by 0.65 gives (2.3, 16.4) as the limits for the SMR. The size of the

interval is an indication of the evidence’s weakness. If the liver cancer is

excluded, the approximate interval is (0.968, 9.302), which includes 1. But an

exact computation gives limits (1.258, 13.549) that are broader, shifted to the

right, and as a result exclude 1.

4. Defense experts argued that the 0.65 figure was biased downward because the

followup was for an average of 18.44 years, but childhood cancer deaths only

through age 14 were included. Plaintiffs’ experts argued in reply that to include

later cancer deaths would introduce a biasing factor of adult cancer. One of the

defense experts recalculated the expected number of deaths through 20 years of

age and found 0.90 expected deaths in the exposed cohort. With this expectation,

P[X� 4]¼ 0.013 and P[X� 3]¼ 0.063.

5. Plaintiffs’ experts argued that the liver cancer death should be included because

the population figures did not exclude deaths from hereditary cancers. They also

argued that the radiation “promoted” the liver cancer, causing death at an earlier

age. Defendant’s experts replied that the first argument did not justify including the

liver cancer, but making an allowance for the rate of hereditary cancer in comput-

ing the expected number. They rejected the promotion theory as speculative.

Section 10.3.3. Preconception paternal irradiation and leukemia

Given that human spermatozoa do not live more than a few days, the data for the

previous 6 months would seem to be the most relevant. Within that table, to

compute an odds ratio we must decide what categories to use. On the theory that

only the highest exposures have any significant effect, it would be most reasonable

to compare the �10 and 0 dosage categories and to use local controls as the closest

to the cases. The result is:
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Father’s preconception

dose (in mSv) Leukemic children Local controls Totals

0 38 246 284

�10 4 3 7

Totals 42 249 291

For this table OR ¼ 246�4
3�38

¼ 8:63, which has an exact (one-sided) P-value of

0.0096. However, had this been one of many comparisons arrived at post hoc, it

would have been necessary to apply an adjustment for multiple comparisons in

computing significance. For example, if this table were considered merely as one

of nine possible 2� 2 subtables obtained without summing from the original 3� 3

table, the Bonferroni-adjusted P-value is 0.0096� 9¼ 0.086, which is not significant.

The loss of significance that may occur when making multiple comparisons

underscores the importance of an a priori specification of the primary analysis.

Section 10.3.4. Swine flu vaccine and Guillain-Barré Syndrome

1. If the government’s experts were right, the decline in GBS cases among the

vaccinated as time passed after the moratorium was due to the fact that any risk

from the vaccine declined with time and largely, if not completely, disappeared

by 13 weeks; the decline was not due to underreporting of GBS among the

vaccinated, as plaintiff claimed. Since plaintiff’s use of population rates of GBS

among the unvaccinated in the post-moratorium period was admittedly biased

downward, the relative risk was biased upward. It would seem probable that

underreporting would be greater among unvaccinated than vaccinated persons,

given the medical and media attention given to the GBS risk of the vaccine.

2. Denote GBS as G, vaccination as V, and illness as I. Then, using Bayes’s

theorem, for vaccinated persons,

P G
��I,V	 
 ¼ P I and G

��V	 

P I
��V	 
 ¼ P I

��G,V	 

P G

��V	 

P I
��V	 
 :

Because this also holds for unvaccinated persons, the ratio of the two yields

the relative risk equation in the text.

3. Although 33/62 may be a reasonable adjustment to reflect RR[I|G] in the

numerator of the relative risk equation in the text, a similar effect may obtain

for RR[I] in the denominator of the equation. To the extent that the two effects

are similar, they would cancel. This highlights a difficulty with the data: the

unconditional relative risk of illness for vaccinated vs. unvaccinated people was

not estimated, and the absence of such an estimate makes problematic any

adjustment for illness as a GBS risk factor.
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Section 10.3.5. Silicone breast implants

1. The weighted average adjusted ln(OR)¼ 43.518/259.697¼ 0.1676;

exponentiating, OR¼ 1.18.

The standard error of the weighted average is 1/(sum of weights)1/2 or

1/(259.697)1/2¼ 0.0621. The approximate 95% confidence interval is

ln(OR)¼ 0.1676
 1.96(0.0621)¼ [0.046, 0.289]; exponentiating, the limits

are [1.05, 1.34].

2. Using Table 10.3.5b and our earlier result, 12.17� (259.697)(0.1676)2¼ 4.88,

which is non-significant for chi-squared on k� 1 (here 10) degrees of freedom

(P¼ 0.899). Notice that there are two different null hypotheses for the studies,

the first being that the log odds ratios for all the studies equal zero; the second

being that the studies have the same log odds ratios, but not necessarily zero. The

test for homogeneity used here is for the second null hypothesis.

Based on a variety of analyses, the panel concluded that there was no “consistent

or meaningful” association between breast implants and connective tissue

disease.

Chapter 11. Survival Analysis

Section 11.1.2. Defective house sidings

Since the slope coefficient is far from unity, the exponential model must be rejected

in favor of the more general Weibull model. From the fitted equation log10 H(t)¼
log10 θ0 + c · log10 t¼�3.742 + 2.484 · log10 t and θ0¼ 10�3.742¼ 0.0001811.

Then, the estimated Weibull survival function is S(t)¼ exp(�θ0 t
c)¼

exp(�0.0001811 · t2.484). The probability of a siding lasting for at least 5 years

(t¼ 60 months) is 0.0088.

The data shown in the problem are questionable because the 9-month hazard is

0.0246, which suggests that there were initially about 40 houses (1/40¼ 0.025). In

that case, however, the hazard should rise as the number of failures reduces the risk

set, but it essentially does not. The relative constancy of the hazard would normally

suggest the exponential distribution, but in these data the unequal spacing of failure

events implies a non-exponential distribution and leads us to fit the more general

Weibull distribution.

Section 11.1.3. “Lifing” deposit accounts

1. The hazard rates (one minus the proportions remaining) are decreasing with age.

This suggests consideration of a Weibull distribution with c< 1.
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2. A plot of the log cumulative hazard estimated by the summation of the dj/nj
method gives slope coefficient cffi 1/2 and intercept, ln θ0ffi�1/2, or θ0ffi e�1/2.

3. The median based on these parameters (with 1/c rounded to 2) is {(log 2)/

e�1/2}2¼ 1.3. The mean is ffiГ(1 + 2)/(e�1/2)2¼ 2!� effi 5.4.

Section 11.1.4. Exonerations in Death-Sentence Cases

1. It is highly unlikely that censoring due to execution or resentencing to a

non-capital sentence are events independent of when the defendant might have

been exonerated had he remained on death row. Insofar as resentenced

defendants might have had a better case for exoneration, the K-M method

would underestimate the fraction of those defendants who would have been

exonerated. Insofar as executed defendants might have exhausted all reasonable

grounds for exoneration, the K-M method would overestimate the fraction of

those who would have been exonerated had they remained on death row. Since

many more defendants were resentenced than were executed, on balance K-M

probably underestimates the rate of exonerations.

2. The end-of-study censoring (also known as “recency” censoring) is often

assumed to be independent of the event of interest. Insofar as the follow-up

time depends directly on the date of sentencing in this case, it is unlikely that the

residual waiting time distribution to exoneration differs by this date. Thus there

would be no bias due to this form of censoring. This assumption is likely to be

false if there are strong period effects.

3. The second K-M method provides the proportions exiting death row by exoner-

ation (0.022), execution (0.238), or resentencing (0.483). Obviously, 100% of

those exonerated were exonerated; and by assumption, 0% of those executed

would have been exonerated had they remained on death row. The rate of

exoneration among those resentenced is unknown. If we assume it would be

the same as the observed rate of exiting due to exoneration, 2.2%, we could

arrive at a weighted average of 0.022� 100%+ 0.238� 0%+0.483� 2.2%¼
3.26%. The investigators argued that the exoneration rate for those resentenced

should be higher. Assuming double the 2.2% rate for this group, they calculated

0.022� 100%+0.238� 0%+0.483� 2� 2.2%¼ 4.4% (ignoring round-off

error). As noted above, the weights do not add to 1.0 because 25.7% of cases

had unresolved dispositions by 21.4 years. The weighted averaging does not

speak to any subsequent exonerations; it only posits the exonerations that might

have taken place at or before 21.4 years had the defendants remained on death

row. Presumably the rate of exoneration would be somewhat larger if the time

frame were extended beyond 21.4 years.

4. The first K-M method allocates some fraction of the censored cases (due to any
removal from death row) as possible future exonerations, estimating 4.1% under

the assumption that the incidence of exoneration would follow the estimated
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K-M curve. The second K-M method has a much smaller fraction of censored

cases, thus allocating only those as possible future exonerations. All those cases
executed or resentenced, however, are not included in the fraction removed from

death row due to exoneration (2.2%). This is why the additional step of calcu-

lating a weighted average is required to estimate the additional aliquot from

these other groups of defendants.

Section 11.2.1. Age discrimination in employment
terminations revisited

The simplest proportional hazards model postulates that the hazard at time t for an
employee who at time t is X(t) years older than an arbitrary reference age is θ0(t)e

bX(t),

where θ0(t) is the hazard at time t for the arbitrary reference age. Using the

closed form (one-step) approximation for the log-proportional hazards constant

referenced in Section 11.2 at p. 344, and the data of Table 8.1.2c at p. 261, we have

eβ ¼ 653� 563:4

1276:84
¼ 0:070;

implying that each year of age increases the risk of termination by about 7%.

Section 11.2.2. Contaminated wells in Woburn

1. The risk set for Case No. 1 is all children with the same birth year who are alive

and without diagnosis of leukemia in Woburn just prior to the time Case No. 1 is

diagnosed. The analysis is thus stratified by birth year, which is more refined

than a risk set consisting of all children, without regard to birth year, who would

be followed from the same age as Case No. 1 at diagnosis.

2. The expected exposure under the null hypothesis is the average cumulative

exposure for children in the risk set, for the period of residence in Woburn of

the child who was diagnosed at the time of such diagnosis. For Case No. 1 this

was 0.31 child-years for cumulative exposure; 33% of the children in the risk set

had some exposure.

The variance is the finite population variance of these exposure scores in the risk

set at each diagnosis. For the binary exposure variable, this is the product of the

proportions exposed and unexposed at diagnosis, which sums to 3.493 in

Table 11.2.2.

3. The excess number of cases with some exposure is 9� 5.12¼ 3.88. For the

continuous variate the excess of 21.06� 10.55¼ 10.61 is in terms of child-years

of exposure, which cannot be interpreted in terms of cases.
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4. Using the one-step approximation given in Section 11.2 at p. 344, the

log-proportional hazard constant is

eβ ¼ 21:06� 10:55

31:53
¼ 0:333;

which yields an estimated relative risk of e
eβ ¼ 1:40 per child-year of cumulative

exposure.

5. The Mantel-Haenszel estimate for the odds ratio on leukemia for exposed

vs. unexposed children is given by

ΩM H ¼

sum of proportion unexposed among those

at risk at the time of each exposed death

 !
sum of proportion exposed among those at

risk at the time of each unexposed death

 !

¼ 1� 0:33ð Þ þ 1� 0:25ð Þ þ 1� 0:36ð Þ þ 1� 0:32ð Þ þ � � �
0:26þ 0:29þ 0:38þ 0:25þ � � �

¼ 6:21

2:33
¼ 2:67:

6. The excess leukemia cases continued in children born after the wells were closed

and the cruder dichotomous measure of exposure shows a larger relative risk

than the presumably more accurate continuous exposure metric.

Section 11.3.2. Ethylene oxide

1. Using the two-stage model extrapolated from male rats, with the scaling factor

for humans given in footnote (a) of Table 11.3.2a (S¼ 0.129898) and the

coefficients given in footnote (b) of Table 11.3.2b (q[1]¼ 0.008905 and

q[2]¼ 0.000184), the excess lifetime risk of cancer per 10,000 workers is

635 for 50 ppm exposure, as follows:

Pexcess dð Þ ¼ 1� exp � 0:008905ð Þ 50� 0:129898ð Þ½
þ 0:000184ð Þ 50� 0:129898ð Þ2

i
¼ 0:0635;

or 635 in 10,000. The term q[0] does not appear because it cancels out of the

expression {P(d )�P(0)}/{1�P(0)} for P[E]. When ppm¼ 1 a similar calcula-

tion indicates that the excess lifetime risk is 12. The decrease is clearly signifi-

cant under the Supreme Court’s one-in-a-thousand standard in American
Petroleum Institute.
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2. Although the P-value (P¼ 0.12) for chi-squared indicates a non-significant

departure from the linear model, a plot of the data indicates that the relationship

is nonlinear, with the curve flattening at higher doses.

3. The Weibull model, extrapolated from the female rat data, for an exposure of

50 ppm, estimates Pexcess(d )¼ 1� exp[�0.0829� (50� 0.129898)0.4830]¼
0.1851, or 1,851 excess cancers per 10,000. A similar calculation for an expo-

sure of 1 ppm estimates that the excess lifetime risk is 305. The large ratios of

female to male cancer rates (almost 3 to 1 at 50 ppm and over 25 to 1 at 1 ppm) in

the two models, not replicated in the observed data, casts some doubt on the

extrapolations. (The large ratios apparently are not due to the difference between

the two-stage model used for males and the Weibull model used for females

because OSHA calculated a Weibull model for males and got essentially the

same results as the two-stage model.)

4. Chi-squared measures the fit of the model with the observed cancers at the higher

doses. A good fit with the observed data is a necessary condition, but by no

means ensures that the extrapolations to low doses will be valid.

Chapter 12. Nonparametric Methods

Section 12.1.1. Supervisory examinations

1. Evaluating the binomial probability using the normal approximation with conti-

nuity correction, we find P X 	 7
��n ¼ 32, p ¼ 1=2

	 
 ¼ P X < 7:5½ � ¼
P z < 7:5� 16ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 � 1=2 � 1=2p ¼ �3:0
h i

� 0:0013. The shortfall of tests in

which blacks and Hispanics combined passed at a greater rate than whites is thus

statistically significant.

2. Black and Hispanic test-takers exceeded their 10% proportion of the eligible

population (818/5,910¼ 13.8%), suggesting that they may have been less self-

selective, and perhaps less qualified as a group, than whites.

Section 12.2.1. Voir dire of prospective trial jurors revisited

1. The sum of the ranks corresponding to impaneling times longer for the federal

method than for the state method is W¼ 14 + 8.5 + 13 + 6¼ 41.5, corresponding

to Judges C, G, P, and R, where we have used the midrank 8.5 for the tied

differences of Judges G and O. Table H1 of Appendix II with n¼ 18 gives

P[W	 41.5] just above 0.025 (or 0.05, two-tailed). Use of Table H1 ignores the

zero difference (d0¼ 1) for Judge J and the two groups of tied rankings with two

tied values in each (d1¼ d2¼ 2). With the formulas for mean and variance

adjusted for zeros and ties given in the text, we find EW¼ (18 · 19� 2)/4¼ 85
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and Var(W )¼ [(18 · 19 · 37� 1 · 2 · 3)/24]� (2 · 3 + 2 · 3)/48¼ 527� 0.25¼
526.75. Then P W 	 41:5½ � � P z 	 41:5� 85ð Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

526:75
p ¼ �1:90

	 
 � 0:03.

The significance of the difference in impaneling times is about the same as

found in Section 7.1.2.

2. The nonparametric test used here does not assume a normal distribution and

removes the influence of outliers as an issue.

Section 12.3.1. Sex discrimination in time to promotion

1. The Wilcoxon rank-sum for females is 23 + 24¼ 47. In a random selection from

an urn containing 25 ranks, there are
25

2

� �
¼ 300 ways to choose 2 ranks. Of

these, only 4 selections produce a rank sum �47: these are 23 + 24, 23 + 25, 24

+ 25, and 22 + 25. Thus, the exact attained significance level is 4/300� 0.0133.

Defendant’s calculation is also combinatorial. Ignoring the ties among

waiting times, there are 24 possible ways to interpose the waiting time of either

woman among the 23 times of the men, so that the 24 slots can be filled in
24

2

� �
þ24 ¼ 300 ways (the extra 24 for the event in which both waiting times fall

between two times for men or at either end). Of these
12

2

� �
þ 12 ¼ 78 result in

both women’s waiting times exceeding the median time for men. The probability

is 78/300¼ 0.26.

2. Plaintiff’s test, by using ranks, does not depend on an assumed distribution.

3. Defendant’s test has unacceptably low power because the null hypothesis would

never be rejected.

A variation on defendant’s approach, analogous to the sign test but still less

powerful than the Wilcoxon test, would be to calculate a hypergeometric probabil-

ity based on categorization of all 25 times as either 	 the combined median

(13 such) or > median (12 such). Treating the two times for females as a random

sample without replacement under the null hypothesis, the probability that both

exceed median
12

2

� �
� 13

0

� ��
25

2

� �
is 0.22. Again, power is too low.

Section 12.3.2. Selection for employment from a list

1. The rank-sum for minorities is S¼ 19,785. With N¼ 738 who passed the test and

m¼ 38 minorities, S has null expectation 38 · 1/2 · (738 + 1)¼ 14,041 and vari-

ance 38 · 700 · 739/12¼ 1,638,116.67. The upper tail area probability is

approximately
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P S � 19,785½ � ¼ P S > 19,784:5½ � ¼ P Z >
19,784:5� 14,041ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1,638, 116:67
p ¼ 4:487

� �
� 4� 10�6:

The lower scores of minorities are statistically significant.

2. The t-test would not technically be valid since the sample size for minorities is

small and the truncation skews the distribution of scores and makes it markedly

nonnormal.

3. Using the relation between the Mann-Whitney U-statistic and Wilcoxon rank-sum

statistic, U ¼ 38ð Þ 700ð Þ þ 1
2
38ð Þ 39ð Þ � 19,785 ¼ 7,556. Thus, the sought-after

probability is 7,556/(38 · 700)¼ 0.28. Under the null hypothesis it should be 0.50.

If the minority group scores had a smaller standard deviation around their mean

than did the majority group scores, even if those means were the same, the

average rank among those passing would tend to be lower for the majority group.

For the above result to prove a lower mean score for minorities, the standard

deviations for the two groups must be assumed to be comparable. A careful

analysis would therefore include a look at the passing data for non-minorities.

Section 12.3.3. Sentencing by federal judges

1. For a single judge among 50 who sentence equally, the rank for the judge on a

single case has expectation 25.5 and variance (502� 1)/12; for 13 independent

cases, the average has expectation 25.5 and variance (502� 1)/(12 · 13)¼ 16.02.

2. The mean squared deviation is 1,822.47/50¼ 36.45. (The division is by 50 rather

than 49 because the mean of the ranks is known (25.5) and is not estimated from

the data.) The expected value under the null hypothesis is 16.02, as given in the

answer to question 1. Thus, the mean squared deviation is 2.275 times larger

than its expected value. This is a significant difference, as shown by X2, which is

(50� 1)(2.275)¼ 111.5, a highly significant value by Table C. The data show

significant dispersion in average rankings among the judges.

Section 12.4.1. Draft lottery revisited

1. Spearman’s rank correlation coefficient is �0.226 for the 1970 draft lottery,

indicating a tendency for lower sequence numbers to occur toward year’s end.

The z-score z ¼ �0:226
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
366� 1

p ¼ �4:3 is significantly different from 0.

2. The rank correlation for the 1971 draft lottery is 0.0142, with z score¼ 0.27,

which is not significant.
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Chapter 13. Regression Models

Section 13.1.1. Head Start programs

The data were simulated with zero treatment effect. The supposed effects are due

entirely to regression to the mean.

1. Since the correlation coefficient is 1/2, the mean value of the post-test score for a

given pre-test score regresses one-half the distance toward the grand mean of the

post-test scores.

For the Experimental Group with pre-test score 55, for example, the average

post-test score is 62.93, approximately halfway between the overall mean

(60) and the five-point differential that would be naively predicted by the five-

point spread in pre-test scores above the average (55–50). For the control group,

the average post-test score is 70.29, roughly halfway between the group average

of 80 and the 15 point shortfall naively predicted on the basis of the 15 point

shortfall in pre-test scores below the average (55–70).

2. The above shows that the regression-to-the-mean effect would produce approxi-

mately the difference in post-test scores for those with the same pre-test scores

even if both groups (or neither) were given the same treatment. The point is that, in

the presence of the initial disparity in pre-test means, the post-test means move in

opposite directions, although this has nothing to do with a true “treatment effect.”

The director’s argument is similarly fallacious, also being based on the regres-

sion phenomenon, for pre-test scores regressed on post-test scores.

Students should be alerted to the serious flaw in experimental design, namely the

confounding between treatment and pre-test scores, for which regression analy-

sis only partly adjusts. See Section 14.5.

3. Since the average difference is equal to the difference in averages, the post-test

minus pre-test difference for both treatment and control groups is simply

20, indicating no treatment effect.

Section 13.2.1. Western Union’s cost of equity

1. The estimated regression is cost of equity¼ 9.46 + 0.13� (variability of rate)

+ residual. The predicted cost of equity for Western Union is 13.0%.

Section 13.2.2. Tariffs for North Slope oil

1. The mean value of price is $12.73/barrel; the mean value of �API is 34.61. The
OLS regression line is
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Ŷ ¼ 12:73þ 0:095 � X � 34:61ð Þ ¼ 9:442þ 0:095 � X:
2. The estimated return per �API is 9.5¢. In this example, the correlation coefficient

is 0.96.

3. The attorney for ERCA might question whether this relationship would hold for
�API values below the range of the data on which the regression was computed.

Section 13.2.3. Ecological regression in vote-dilution cases

Using the two regression equations, plaintiffs made the following estimates of the

turnout and support rates for Feliciano:

1. The average Hispanic turnout rate for Feliciano (i.e., percentage of registrants

voting for Feliciano) was 18.4% and the average non-Hispanic turnout rate

was 7.4%.

2. 42.6% of the non-Hispanics and 37.8% of the Hispanics voted in the election.

3. The non-Hispanic precinct-wide support rate for Feliciano (i.e., percentage of

non-Hispanics in the district who would have voted for Feliciano if all registered

voters voted) was 7.4/42.6� 17%; the Hispanic support rate was 18.4/

37.8� 49%. It is highly questionable whether the same support rates for actual

voters would also apply to non-voters.

4. There is significant Hispanic and non-Hispanic bloc voting.

5. The model depends on the constancy assumption, i.e., that, subject to random

error, the same proportion of Hispanics in all districts votes for the Hispanic

candidate. This is probably not true since bloc voting is likely to be more intense

in poor, Hispanic districts than in more affluent mixed districts. The “neighbor-

hood” model, which assumes that Hispanics and non-Hispanics in all districts vote

in the same proportions for the Hispanic candidate, is at the other extreme and is

also unlikely to be completely true, since ethnicity is well known to affect voting.

6. An alternative to a regression model would be exit polling, which is commonly

done to give early forecasts of election results.

Section 13.2.4. Projecting airline costs

1. The estimated costs for 2008 are $30.5M+0.7796� 286.5M¼ $253.9M. There-

fore the estimated profits are 286.5� 253.9¼ $32.6M.

2. Judge Posner found the regression model invalid because costs cause revenues

so the correct causal direction should have revenues as the dependent variable
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and costs as the explanatory factor. While Judge Posner’s observation is ger-

mane for causal modeling, reversing the independent and dependent variables

may be entirely adequate for prediction purposes. As pointed out in Section 13.1,

no causality need be assumed for there to be a systematic relation between the

average value of a dependent variable and the values of other variables. One can

readily predict the height of a father from the height of his son, for example, even

though this reverses the causal direction of genetic and environmental factors.

In retrospective case-control studies (see Section 1.5 and Chapter 10), one often

places a dummy variable indicating case or control status (e.g., cancer or not)

on the right-hand side of the equation in order to reflect the design of the study in

which cases and controls are sampled in predetermined numbers, while placing

an antecedent causal risk factor of interest (e.g., number of pack-years of

cigarettes smoked) on the left-hand side of the model.

Section 13.3.1. Sex discrimination in academia

The 0.8 percentage point increase in R2 is not directly related to the percentage

shortfall in salaries for women relative to men. The change in R2 is more closely

related to the significance of the sex-coefficient when added as an explanatory

factor, but, like the t-statistic, that describes only the ratio of the coefficient’s

magnitude relative to its standard error, not the importance of the coefficient per se.

As a special case of the formula given in Section 13.4 at p. 396, when adding

a single variable to a regression model (the sex-coefficient), the

F‐statistic ¼ change in R2
� �� 1� R2

1

� �
=d fe where R2

1 denotes the value in the

larger model (0.532) and dfe denotes the error degrees of freedom in that model.

It may also be shown that F ¼ t2 ¼ β̂ 2= se β̂
� �� 

where β̂ is the sex-coefficient.

Thus, the sex-coefficient is related to the change in R2 by the formula

β̂ 2 ¼ se β̂
� �	 
2 � d fe
1� R2

1

� change in R2
� �

:

While the change of 0.008 may be small, it must be multiplied by a potentially huge

factor before it can describe the salary shortfall.

Section 13.4.1. Race discrimination at Muscle Shoals

The t-statistic for the race coefficient in plaintiff’s regression is t¼ 1,685.90/

643.15¼ 2.62 (p¼ 0.0044, one-sided). For defendant’s regressions, the t-statistics are:

Schedule D: t¼ 1,221.56/871.82¼ 1.40 ( p¼ 0.081, one-tailed)

Schedule E: t¼ 2,254.28/1,158.40¼ 1.95 ( p¼ 0.026, one-tailed).
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The standard errors are larger in defendant’s model because the sample size for

each regression is smaller. Defendant’s model is preferable because it avoids the

possibly confounding effect of different schedules. Plaintiffs should either have

used indicator variables or separate regressions and combined their results to

compensate for loss of power.

Fisher’s test is given by �2 · (ln 0.081 + ln 0.026)¼ 12.326, distributed

as chi-squared on 4 df under the null hypothesis of no discrimination in

either schedule, and therefore significant at the 0.025 level. Using weights

w1¼ 1/(871.82)2 and w2¼ 1/(1,158.40)2, the weighted average of the two

coefficients (w1 · 1,221.56 +w2 · 2,254.28)/(w1 +w2)¼ $1,594.99. The s.e. is the

reciprocal square root of the sum of w1 and w2, equal to 696.58, leading to a

z-score of 2.29 ( p¼ 0.011, one-tailed).

Section 13.6.1. Pay discrimination in an agricultural
extension service

1. The Extension Service objected that: (i) the regression did not screen out the

effects of pre-Title VII discrimination (the year 1972 was the cutoff for the

governmental entity); (ii) county-to-county variations were not reflected; and

(iii) performance on the job was not reflected. The Supreme Court answered

these objections by pointing out that (i) pre-Act discrimination could not be

perpetuated; (ii) a regression need not account for all factors and in any event

studies showed that black employees were not located disproportionately in

counties that contributed only a small amount to Extension Service salaries;

and (iii) a regression analysis by the Extension Service that included a perfor-

mance variable showed an even greater disparity for 1975.

2. The black agents might object that the regression included job title, an explana-

tory factor that might be tainted by discrimination.

3. The 394.80 coefficient for WHITE in the final model indicates that whites

received on average $395 more than equally qualified blacks (as measured by

the explanatory factors in the model). The coefficient is statistically significant:

F¼ 8.224; p� 0.002. Because the equation is recomputed each time a variable is

entered, the fact that race was entered last does not affect the value of the

coefficient, given the selection of variables in the model.

4. The reason for including White Chairman, White Agent, and White Associate

Agent was to pinpoint the possibility of different degrees or extent of discrimi-

nation at different levels of rank. These factors were probably not included by

the stepwise regression program because the numbers were too small for statis-

tical significance. If they had been included, the coefficient for WHITE would

have applied only to assistant agents, the reference category, for which no

separate variable was included. The interaction coefficients would then give

the differences between the effect of WHITE at the other levels and the effect of
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WHITE at the assistant level. The subject of such interaction terms is an

important one that is taken up in Section 14.2.

Section 13.6.2. Public school financing in the State
of Washington

The inclusion of the lagged variable “Prior Test Score” radically changes the

interpretation of the regression from one of absolute prediction to one of change

in language scores since 1976. While school variables may affect the absolute level

of language scores from district to district, unless they also changed in the 4-year

period, their influence would be understated by the equation.

Section 13.7.1. Projecting fuel costs

The OLS predictor of fuel costs is Ŷ Xð Þ ¼ 15:545þ 2:71 � X where X¼ 1, 2, 3, or

4 for the 1980 quarterly data. For 1981, with X¼ 5, 6, 7, and 8, the projections are

29.10, 31.80, 34.52, and 37.22. The slope coefficient, with standard error

σ̂ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

Xi � 2:5ð Þ2
q

¼ 2:130 =
ffiffiffi
5

p ¼ 0:952 just fails to reach significance at the

two-sided 10% significance level (t¼ 2.845, t2;0.10¼ 2.920), because of the small

sample size. The 95% prediction interval for first quarter 1981 is

29:10
 4:303 1þ 1
4
þ 5� 2:5ð Þ2=5

h i1=2
¼ 22:3; 35:9½ �, while that for last quarter

1981 is 37:22
 4:303 1þ 1
4
þ 8� 2:5ð Þ2=5

h i1=2
¼ 25:6; 48:8½ �.

Section 13.7.2. Severance pay dispute

The estimated regression mean of severance weeks at the mean value of the

explanatory factors is simply the sample mean, 15.859, with a confidence interval

of 15:859
 2:0 � MSE=nð Þ1=2 ¼ 15:859
 2:0 � 9:202= ffiffiffiffiffiffiffiffi
101

p ¼ 15:859
 1:831, or
from 14.0 to 17.7. The predicted value of an observation at the mean is also the

sample mean, although a 95% prediction interval is this value plus or minus

2 · 9.202 · (1 + 1/101)1/2¼ 18.495, or from �2.6 (i.e., 0) to 34.4.

1. At plaintiff’s values of the explanatory factors, the prediction is 24.07¼ 14.221

+ 0.526 · (20� 12) + 0.372 · (45� 40) + 0.944 · (9� 5). A 95% confidence inter-

val for the estimated regression mean at plaintiff’s values is 24.07 plus or minus

2.0 · 9.202 · (0.0214)1/2¼ 24.07
 2.7, or from 21.4 to 26.8. The prediction inter-

val is 24.07
 2.0 · 9.202 · (1 + 0.0214)1/2¼ 24.07
 18.6, or from 5.5 to 42.7.
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2. At the mean value of the explanatory variables, the standard error of the

difference between actual and predicted mean severance weeks is the root

MSE times (200�1 + 101�1)1/2¼ 9.202 · 0.122¼ 1.123. Since the difference is

14.73� 15.859¼�1.13, or �1 standard error, there is no significant difference

between actual and predicted mean values.

Section 13.7.3. Challenged absentee ballots

2. The slope coefficient, b, of the regression line is equal to

0:6992� 442:84

24, 372:3
¼ 0:0127. The intercept is 256.05� (0.0127� 30,066.7)¼

�125.90. For D�R¼�564, the prediction is�125.90+0.0127(�564)¼�133.1.

A 95% prediction interval is obtained, first, by computing the standard error of

regression; second, by using the standard error of regression to compute a

standard error for the regression prediction at the value �564; and, third, by

taking plus or minus an appropriate number of standard errors from the

t-distribution for n� 2 degrees of freedom. In this case the standard error

of regression is
20� 442:84ð Þ2 � 1� 0:69922ð Þ

19

" #1=2
¼ 324:8. The standard

error of the prediction is

324:8 1þ 1

21
þ �564� 30:066:7ð Þ2�

20� 24,372:32

" #1=2
¼ 344:75:

The relevant t value is (t19,0.05¼ 2.093). Finally, the 95% prediction interval is

�133.1
 (2.093� 344.75), or approximately (�855, 588). Since the actual

difference was 1,396� 371¼ 1,025, it was well outside the 95% prediction

interval.

3. A scatterplot of the data does not show them to be markedly heteroscedastic.

However, because the data appear to be somewhat more widely dispersed at the

lower end of the machine D–R vote, where the challenged election lies, the

width of the prediction interval for that value may be somewhat understated.

Section 13.7.4. Projecting airline costs revisited

1. The prediction interval is the appropriate choice because we are trying to predict

a single cost value.

2. Yes, Adams’ prediction interval is correct.

3. Profits may fall below $0 since revenue� cost might be as low as

286.5� 298¼�$13.5M.
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4. That choice of confidence interval for predicted costs ($227.2M to $280.5M)

would change the result, but just barely.

5. Assuming Judge Posner was alluding to the equivalence between values inside

the confidence interval and values of the true correlation or prediction that would

not be rejected as inconsistent with the observed data, he seems to have gotten

the key relation backward. The confidence interval contains all possible values

of the true correlation or prediction for which the sample data would be deemed

consistent with chance variability, i.e., all those values that would not be rejected
as null hypotheses at the given confidence level.

Section 13.9.1. Western Union’s cost of equity revisited

R2 for the untransformed data is 0.922. When variability of earnings is transformed

into logs, R2¼ 0.808. The predicted value in the log scale is 14.35%, compared with

13% in the untransformed scale.

R2 is reduced in the logarithmic model because of the foreshortening in the range

of the explanatory factor. A graph of the data suggests that the relationship between

cost of equity and variability of earnings is more nearly linear when variability is

transformed into logs. Hence, in terms of fit, the logarithmic model should be

preferred even though it has a smaller R2.

Section 13.9.2. Sex- and race-coefficient models
for Republic National Bank

The district court in Vuyanich held that in plaintiffs’ regressions age was an

inaccurate and biased proxy for the general work experience of women at the

bank, but not of black men. The court reached this conclusion partly on the basis

of the bank’s data, which showed that the average male was out of the labor force

and not in school for about 4 months, whereas the average female was out of the

labor force and not in school for about 30 months. [The court apparently interpreted

this statement about crude averages as a stronger conditional statement, namely,

that for men and women of a given age, women were out of the labor force more

than men.] Nor did the plaintiffs compensate for this defect by offering a regression

that controlled for a job level by the use of both Hay points or job grades and actual

general work experience. Id. at 314–316.
The district court rejected the bank’s regression on the ground that there was no

variable to account for “the job the individual is performing (such as would be done

in a crude fashion through the use of Hay points).” Id. at 308. Plaintiffs might also

have objected that some of the explanatory variables in the bank’s model might

have been tainted (e.g., career motivation), and that by separating employees into

two groups and computing separate regressions, the bank substantially reduced the

power of the model.
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Chapter 14. More Complex Regression Models

Section 14.1.1. Corrugated container price-fixing

The dominance of the lagged price as an explanatory variable in the equation means

that the model tends to project a smooth trend from wherever the fit period is ended.

Franklin Fisher, the expert for the defendant in the Corrugated Container case,

showed that stopping the fit period a little earlier led to projections of collusive

prices that were actually below the competitive prices in the competitive period.

Fisher also tested the model using other data by estimating it from the competitive

period data and then using it to “backcast” competitive prices for the collusive

period, beginning in 1963. The result was that estimated competitive prices in the

collusive period were far above the actual collusive prices—a perverse result

indicating that the explanatory factors were not good predictors of price movement.

Section 14.1.3. Losses from infringing sales

The OLS regression estimate of FirmAUnit Sales on Time and Seasonal Indicator is:

Coefficient Standard Error t

Time 0.033 0.0066 4.96

Seasonal Ind. 0.109 0.034 3.18

Constant 1.808 0.071 25.40

R2¼ 0.718, F¼ 19.08 on 2 and 15 df, error mean square¼ 0.0208.

Applying the equation, the 1981 projections of Firm A Unit Sales are: 2.326,

2.359, 2.610, 2.643, 2.676, and 2.491 for a 1981 annual total of 15.105, compared

with the actual total of 16.17.

Section 14.1.4. OTC market manipulation

A 95% prediction interval here is simply the regression estimate plus or minus 1.96

standard errors, which is 
1.96 · 0.1055¼ 0.2068.

Actual Olympic Return Regression Predictions Difference

03 Jan 77 0.00000 �0.00142 0.00142

04 Jan 77 0.02174 �0.00652 0.02826

05 Jan 77 0.01064 �0.00493 0.01557

06 Jan 77 0.00526 0.00174 0.00352

07 Jan 77 0.05759 0.00103 0.05656

⋮

09 Mar 77 0.04040 �0.00442 0.04482

10 Mar 77 �0.05825 0.00382 �0.06207

11 Mar 77 �0.34536 0.00095 �0.34631

14 Mar 77 �0.10630 0.00523 �0.11153
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1. The only day on which the actual value is outside the prediction interval is

March 11.

2. Under the model, the returns for Olympic stock increase with the DVWR

returns; because the scale of the equation increases with increasing DVWR,

the errors are likely also to increase, making the model heteroscedastic. Apart

from a loss of efficiency in estimating the coefficients (which is not relevant here

since we assumed that the coefficients were estimated without error), the effect is

to overstate the precision of the Olympic stock price regression prediction when

DVWR is in the high range; as a result, the model is even less powerful in that

range than it appears to be. However, since the prediction interval, as calculated,

is so wide, the fact that it should in some contexts be even wider is of little

importance.

3. The model would have serial correlation in the error term if there were periods

extending over more than a month when special factors affected the price of

Olympic stock vis-à-vis the market; this possible defect does not seem very

important. If serial correlation is suspected, the correlation of successive

residuals should be tested with the Durbin–Watson statistic. The effect of serial

correlation would be to make the estimated 95% prediction interval appear more

precise than the true interval, which, as noted, is of little practical importance in

this context.

4. The prediction interval is so wide that the model has power to detect only the

largest abnormal stock price movements. For example, on 07 Jan 77 the actual

return on Olympic stock (0.05759) was more than 5.6 percentage points greater

than the regression estimated return (0.00103), but nevertheless was within a

95% prediction interval for the estimate. In addition, the model has no power to

detect as abnormal any manipulation that simply maintained Olympic prices in

relation to the rest of the market.

Section 14.1.5. Fraud-on-the-market damages

1. Torkelson’s method in effect unjustifiably assumes that R2¼ 1 in the regression

model, which is far from the case. The regression method would seem to be more

defensible. For a single backcast the difference is not large. Starting at 3.233 on

April 2 (note that this is a calculated figure using the regression model; under

Torkelson’s method the starting point would be different), the April 1 price

would be 3.233� 193.796/198.733¼ 3.315, compared with 3.276 using the

regression model. However, the cumulative difference between the two methods

could become large if the calculation is extended over many days.

2. Assuming the regression is estimated without error, a 95% prediction interval for

a single backcast would be the regression estimate 
1.96 standard errors of

regression. Since the estimate for each day is built on the preceding estimate, the

errors are additive in the sense that the standard error for a given day is equal to the
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square root of the sum of the squared standard errors for the preceding estimates.

Thus, a regression estimate for April 1 (the outcome of 153 backcasts from

September 1 to April 1) has a standard error of [(0.0728)2� 153]1/2¼ 0.9005.

The 95% prediction interval for April 1 is therefore 3.276
 1.96� 0.9005, or

from 1.51 to 5.04. The errors of estimating the regression coefficients would make

this interval still wider. But even as it stands, if the upper limit were used, there

would be no damages for a purchase on that day. Note that purchasers closer to

September 1 would have a better chance to recover damages because the

prediction intervals for the regression estimates on their purchase days would

be narrower, although it would seem as a matter of equity that they should be

treated no differently than purchasers earlier in the class period. Finally, given

the imperfection of the methods necessarily used, it would seem inappropriate to

resolve uncertainties in measurement in favor of the defendant, who is, after all,

a wrongdoer.

Section 14.1.6. Effects of capital gains tax reductions

The difference in the estimate of realizations elasticity between Equations 1 and 2

in Table 14.1.6b is that, in Equation 2, the larger value of the lagged term (CTX

(�1)) implies that in the second year after the tax decrease the realizations would

decline substantially (818). No significant decline is shown in Equation 1. The

reason for the difference appears to be that since Equation 1 did not include the

NYSE Composite Index, when the stock market surged in 1983, to explain the

increase in realizations that occurred as a result required two changes: (i) a large

negative increase in the coefficient of CTX, since the marginal tax rate decreased

only slightly between 1982 and 1983, and (ii) a large reduction in the lagged

coefficient CTX(�1) to offset the negative effect on realizations that would other-

wise have been caused by the substantial decrease in the marginal tax rates that

occurred between 1981 and 1982.

The interpretation of the coefficient of MTR in the CBO semilogarithmic

model (Table 14.1.6c) is that, for each percentage point decrease in rates,

realizations would increase by 3.2%. According to the model, reducing rates

from 20 to 15% would increase realizations by 3.2� 5¼ 16%. However, the

25% reduction in rate would more than overcome the increase in realizations,

with the net result being a reduction of 13% in revenue.

Section 14.1.7. Projecting airline costs re-revisited

1. The trend variable estimates that the average increase in costs per year, holding

revenue constant, is $9.12 million.

2. The coefficient for trend is statistically significant (P¼ 0.0005). Because the two

models differ by only this term, we know as well that the increase in R2 is also
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significant (with the same P-value). From the perspective of significance, the

model with trend is superior because it fits the data better. Note, however, that

the model including trend assumes that the linear effect of time (given revenue)

continues to hold in 2008 and 2009, which makes the model somewhat

more speculative. Caution is justified by the fact that the model appears

to overestimate the effect of time with respect to two pairs of data points: 2003

and 2007, where revenue was approximately equal but costs differed by only

274.8� 257.5¼ $17.3M which is smaller than the predicted 9.121� 4¼ $36.5M.

Between 2000 and 2002, the revenue went down by $9.2M, so the model predicts

a change in costs of (0.5386��$9.2M)+ (9.1210� 2 years)¼ $13.3M, whereas

the actual costs increased by only $2.1M.

3. The predicted cost for 2008 from the model with trend is 37.4083

+ 0.5386� 286.5 + 9.1210� 12¼ $301.2M. Since the projected costs exceed

the projected revenue, there were no damages.

Section 14.2.1. House values in the shadow of a uranium plant

The Rosen Model

1. The �6,094 coefficient means that after 1984 houses inside the 5-mile radius

sold on average for $6,094 less than similar houses outside the 5-mile radius.

2. The objection to this figure as a measure of damage is that it does not measure

the change in the negative premium for being inside the 5-mile radius before and

after the announcement. The change in the negative premium may be expressed

as [(Post-1984 In)� (Post-1984 Out)]� [(Pre-1985 In)� (Pre-1985 Out)]. This

equals (�6,094)� [(�1,621)� (550)]¼�3,923.

3. The interpretation of this interaction coefficient is that the negative premium for

being inside the 5-mile radius increased by $3,923 between 1983 and 1986.

Assuming independence of the component coefficients, the standard error of the

interaction coefficient is the square root of the sum of the component variances:

6,094

2:432

� �2

þ 1,621

0:367

� �2

þ 550

0:162

� �2
" #1=2

¼ 6,109:

Thus,

t ¼ �3,973

6,109
¼ �0:65;

which is not significant. The covariances between estimated coefficients have

been ignored.
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The Gartside Model

1. The PC coefficient for each year represents the change in average house value

over the base year, 1983, for houses in the 4–6 mile band (the base distance

category). Similarly, the RC coefficient for a particular distance band represents

the change in average house value over the base distance band, 4–6 miles, with

respect to 1983 values (the base year category). The interaction coefficients

represent differences of the differences. For example, since there was a negative

premium of $4,568 for houses at 0–1 miles compared with 4–6 miles in 1983, the

coefficient for 1986/0–1 of �7,440 implies that this negative premium increased

by 7,440 between 1983 and 1986. This would seem to be a relevant measure of

damage. If the interaction coefficients were 0, there would be no basis for

damages because that would imply that the negative premium on being inside

the 5-mile radius had not changed after the announcement.

The cells of Table 14.2.1d can be derived by beginning with the value 62.2 for

1983 values at 4–6 miles, adding the main effects to adjust for year and distance

separately, and then adding the interaction term to adjust for both together.

2. One would object to Gartside’s conclusions because the interaction coefficients

are not statistically significant either as a group (the F value for PC*RC¼ 1.37,

P ~ 0.2) or individually (with one irrelevant exception). There is also a question

whether the data are normally distributed, or whether a few high sale prices are

affecting the coefficients.

Section 14.4.1. Urn models for Harris Bank

1. In the global log model, for which Δr ¼ 0:107, the adjusting factors fail to

account for about 10% of the ratio of the geometric mean wage for blacks to the

geometric mean wage for whites. The figure is about 5% for the locally weighted

regression.

2. For the global urn model, z¼ 0.1070/{0.2171 · [309/(53 · 256)]1/2}¼ 3.27. For

the locally weighted regression model,

z ¼ 0:0519= 0:1404 � 309= 53 � 256ð Þ½ �1=2
n o

¼ 2:45:

Both are significant.

3. Since the z-score in the locally weighted regression is smaller than in the global

model, apparently relatively more of the mean wage disparity is explained by the

locally weighted regression, which suggests, but does not conclusively prove,

that the larger z-score of the global model may be due to model misspecification

rather than discrimination.
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4. Plaintiffs might have objected that the equation was biased because the produc-

tivity factors picked up part of the salary difference that was correlated with both

race and productivity, but should have been attributed to race alone.

Section 14.5.1. Underadjustment in medical school

1. The district court assumed that the regression of productivity on proxies was not

the same for men and women, due to omitted factors on which men were likely

to have higher values than women because they had higher values for the

included factors. This extrapolation was rejected by the court of appeals. The

district court did not deal with the effect of using reflective proxies on which

men score higher than women.

2. The court of appeals’ statement is correct, but its argument is irrelevant to

AECOM’s experts’ point, which evidently was not understood. If the model is

correct, whether or not perfect proxies would fully explain the disparity in pay

between men and women turns on whether the employer was discriminatory.

If AECOM was nondiscriminatory and the proxies were perfect, the

sex-coefficient would become nonsignificant; if AECOM was discriminatory

and the proxies perfect, the sex coefficient would remain significant.

But AECOM’s experts were not addressing whether AECOM was discrimina-

tory, and not even whether the plaintiffs’ regressions overstated or understated

the degree of discrimination. Their point was that even if AECOM were nondis-

criminatory, a regression of salary on proxies might nevertheless show a statisti-

cally significant sex coefficient because the proxies were imperfect and men

scored higher on them. The statisticians passed judgment only on the question

of whether the appearance of a statistically significant sex coefficient in the

regression was unambiguous evidence of discrimination. They concluded it was

not because, on the facts in Sobel, a significant sex coefficient would be produced
as a statistical artifact even for a nondiscriminatory employer. To this observation,

the court’s speculation about what would happen if the proxies were perfect—i.e.,

whether AECOM actually discriminated—was essentially irrelevant.

3. The sex-coefficient in the regression model without the reflective proxies

(except for publication rate) is �3,145, and with all the reflective proxies is

�2,204. Under the Robbins and Levin formula discussed in Section 14.5 at

p. 472, note 11, if underadjustment were to account for the entire sex-coefficient

of �2,204, the reflective proxies would have to account for no more than about

30% of the variation in productivity after accounting for the causal proxies:

�3, 145ð Þ � 1� R2
� � ¼ �2, 204, R2 ¼ 0:30:

This would seem a substantial possibility because the squared partial multiple

correlation between salary and the proxies (including the important reflective

proxies for rank), argued to be necessary by Yeshiva and added by plaintiffs in

their last round model, is (0.8173� 0.7297)� (1� 0.7297)¼ 0.324, or 32.4%.

(See note on partial correlation in Section 13.6 at p. 405.)
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Section 14.6.1. Death penalty: does it deter murder?

1. Since Ehrlich’s model is in logs, each 1% increase in the execution risk is

associated with a 0.065% decrease in the murder rate. At the average values,

the expectation of an additional execution in year t+ 1 is equal to 1/75¼ 1.333%

increase in executions, which the model equates to a 1.333��0.065%¼
�0.0867% decrease in murders. Since the average number of murders in

Ehrlich’s data was 8,965, Ehrlich computed that the saving was

0.000867� 8,965¼ 7.770, or between 7 and 8 murders per execution. Ehrlich’s

statement that every execution saves between 7 and 8 murders misrepresented

the results of his model, since the effect would only be achieved by increasing

the average number of executions over the preceding 5 years.

2. When the period after 1964 is eliminated, the apparent deterrent effect of

executions disappears as the coefficients of the execution risk become positive

(although non-significant). This casts doubt on the model, since a finding of

deterrence should not depend on the particular period selected.

3. The logarithmic transformation tends to emphasize variations at the lower range of

a variable; at such values the change in the logarithmmay be larger than the change

in natural value of the variable. Because the execution risk declined to extremely

low values in the middle and late 1960s, the log transform emphasizes this decline.

And because the murder rate soared as the execution risk declined, this emphasis in

the log model probably accounts for the negative elasticity of its murder rate with

respect to the execution risk, which does not appear in the natural values model.

4. The previous answers suggest that Ehrlich’s conclusion depends on an assumed

causal relation between the dramatic increase in murder and decline in

executions that occurred in the late 1960s. However, the two trends may be

unrelated: the increase in murder may be due primarily or entirely to factors that

produced a general increase in violent crime in that period, without significant

dependence on the decline in execution risk.

Section 14.6.2. Neurontin off-label marketing

1a. Since the equation expresses the dependent variable as well as the explanatory

variables in logarithmic form, a percentage change in an explanatory variable

before taking logs, say p%, corresponds approximately to a percentage change

of (βp)% in the geometric mean of the original (unlogged) dependent variable,

where β is the regression coefficient of the given explanatory variable. This

generalizes the description given in Section 13.9 at p. 431–432. To see the

result, the model specifies

E log Yð Þ��X	 
 ¼ αþ β log Xð Þ þ � � �
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and E log Yð Þ��X	 
 ¼ log geometric mean of Y at Xð Þ. So if we reduce X by p%,

i.e., move from X¼ x to X¼ x · (1� p/100), then

log geometric mean of Y at X ¼ x � 1� p=100ð Þf g
� log geometric mean of Y at X ¼ xf g

¼ E log Yð Þ��X ¼ x 1� p=100ð Þ	 
� E log Yð Þ��X ¼ x
	 


¼ β � log x 1� p=100ð Þ½ � � β � log xð Þ ¼ β � log 1� p=100ð Þ:

It follows that the ratio of geometric means equals 1� p=100ð Þβ. This holds at
any size percentage change p. If p is not too large, this is approximately a

(βp)% reduction by the binomial theorem. If β ¼ 1 it is a p% reduction

irrespective of the size of p.

Thus, if all promotion had stopped during the class period (ignoring carryover

effects), the stock of promotions would have decreased by 100%. Since the

coefficient of LBPSYCH_030 is approximately 1, the geometric mean of the

dependent variable would also decrease by 100%. Consequently about 100% of

the prescriptions would be attributable to the promotion. (The expert’s estimate

is slightly less than this due to the effect of the AR(1) variable.)

1b. The result—that removing promotion reduces prescriptions to essentially

zero—follows automatically from the assumed multiplicative form of the

model (see Section 13.9). Anytime a dependent variable is expressed as the

product of non-negative terms, setting any term to zero produces a zero

expectation for the dependent variable, assuming only that the coefficient is

positive, and irrespective of the particulars of the other covariates or their

coefficients. Thus the conclusion drawn by the expert depends heavily on the

specification of the model as a multiplicative one.

2. Two stage least squares is necessary to correct for the bias that results from the

fact that one of the explanatory factors is itself influenced by the dependent

variable, thus violating the assumption that the error term in the regressionmodel

is independent of the explanatory factors. (This is also known as “simultaneity

bias,” “reciprocal relation bias,” or “endogeneity bias”—see Section 14.6.)

An OLS regression with quantity of prescriptions on the left-hand side

and price (appearing as the logarithm of the stock of promotions) on the right-

hand side would yield biased coefficients because price is not exogenous; price is

itself a function of quantity of promotions.

3a. Instrumental variables are a necessary component of the two-stage least squares

regression. The objective is to identify a set of variables (known as the

“instruments”) that are substantially correlated with the endogenous variables

(e.g., price) on the right-hand side of the model, but are unrelated to the error

term of the regression model (this last condition is equivalent to assuming no

correlation with the dependent variable conditional on the endogenous

variables). The first stage calculates predicted values for the endogenous
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variables as a function of the instruments. These predicted values are then used

in the second stage regression instead of the original values because the

predicted values, being functions of the instruments only, will be uncorrelated

with the error term, thus eliminating simultaneity bias.

3b. One wants the multiple correlation between the instruments and the endoge-

nous variable to be substantial (otherwise one is effectively not adjusting for

the effect of that variable) though not with the error term in the regression

model. If the instruments are correlated with the error term, the estimates of the

regression coefficients will be biased. This can occur, for example, if there are

unmeasured confounding factors that correlate with both the instruments and

the dependent variable at fixed levels of the endogenous variable.

4. The AR(1) variable (an abbreviation for autoregressive lag-1) is included to

remove the correlation between error terms between successive periods. Such

autocorrelation would not bias the regression coefficient estimates, but would

bias estimates of their standard errors.

Section 14.7.2. Death penalty in Georgia

1. The two tables are as follows:

Stranger victim Non-Stranger victim

Death Other Total Death Other Total

WV 28 9 37 15 22 37

Non WV 4 10 14 2 10 12

Total 32 19 51 17 32 49

2. The odds ratios are: 7.78 and 3.41.

The log odds ratios are: 2.05 and 1.23.

3. The weights used for averaging the two log odds ratios are:

w1 ¼ 1= 28�1 þ 9�1 þ 4�1 þ 10�1
� � ¼ 2:013

w2 ¼ 1= 15�1 þ 22�1 þ 2�1 þ 10�1
� � ¼ 1:404

Weighted average¼ (w1 · 2.05 +w2 · 1.23)/(w1 +w2)¼ 1.713. Exponentiating,

we have e1.71¼ 5.53 as the corresponding odds ratio. The variance of the

weighted average log odds ratio is the reciprocal of the sum of the weights, or

1/(2.013 + 1.404)¼ 0.293. The log odds ratio is significantly different from

0, i.e., the odds ratio is significantly different from 1.

4. In cases involving a white victim, the odds that a defendant would be sentenced

to death are e1.5563¼ 4.74 times the odds on a death sentence if the victim were

not white. In cases involving a black defendant, the odds on a death sentence are

only e�0.5308¼ 0.588 as great as when a non-black defendant is involved (the
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difference, however, is not statistically significant). In the white victim/black

defendant cases, the joint effect is e1.5663�0.5308¼ 2.79, indicating that the odds

on a death sentence are almost three times as great for a black who kills a white

then for the reference category (non-black defendant, non-white victim). Note

that this is an additive model, so that there is no synergism between BD and WV

effects. Also, the effect of WV is the same for any fixed values of other factors.

5. As above, the odds ratio on death sentence vs. other, comparingWVwith non-WV,

is e1.5563¼ 4.74. This is somewhat less than theweighted average odds ratio of 5.53

computed in question 3,which indicated that a part of the odds ratio computed there

was due to factors other than the factor that the victim was or was not a stranger.

6. The term eL is the odds on a death sentence. Since in general odds equal P/
(1�P), solving for P yields P¼ odds/(1 + odds)¼ eL/(1 + eL).

7. The log-odds on death penalty at the values of McClesky’s factors is

log‐odds ¼ �3:5675ð Þ þ �0:5308 � 1ð Þ þ 1:5563 � 1ð Þ
þ 0:3730 � 3ð Þ þ 0:3707 � 0ð Þ þ 1:7911 � 1ð Þ
þ 0:1999 � 0ð Þ þ 1:4429 � 0ð Þ þ 0:1232 � 0ð Þ

¼ 0:3681;

corresponding to a probability of death penalty of e0.3681/(1 + e0.3681)¼ 0.59. If

the victim were not white, the log-odds would be 0.3681� 1.5563¼�1.1882,

corresponding to a probability of death penalty of e�1.1882/(1 + e�1.1882)¼ 0.23.

Since the relative risk of a death penalty is 0.59/0.23¼ 2.57� 2, it is more likely

than not in the model that McClesky would not have received the death sentence

if his victim had not been white.

8. There are 35 correct predictions of a death sentence and 37 correct predictions of

no death sentence. The rate of correct predictions is (35 + 37)/100¼ 72%. See

Section 14.9.1 for a more refined method of calculating accuracy.

Section 14.7.3. Deterring teenage smoking

1. Assuming that the overall prevalence of smoking (p0) corresponds to the mean of

cigarette taxes in 1988 (X ), probit p0ð Þ ¼ constantþ βX, while probit p1ð Þ ¼
constantþ β X þ 20

� �
where p1 is the estimated prevalence of smoking

corresponding to a tax 20 cents larger than X. Subtracting, gives us probit (p1)¼
probit (p0) +β · 20, or, equivalently, z(p1)¼ z(p0) + 20β, where z(p) is the standard
normal deviate cutting off probability p in the lower tail. For the 1988

cross-sectional model, z(p0)¼ (0.055)¼�1.598, so z(p1)¼�1.598+

20(�0.0059)¼�1.716, a normal deviate cutting off proportion p1¼ 0.043.

The change is estimated to be 0.055� 0.043¼ 1.2 percentage points, or a

1.2/5.5¼ 21.8% decrease (cross-sectionally, in 1988). For the 1992 cross-sectional

model, the 20 cent increase in 1988 taxes is associated with a 7.4% reduction from
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the baseline rate of 24.4%. For the onset model, the estimated change in smoking

incidence is from 24.4% at the baseline (corresponding to a 7.56¢ increase in taxes)

to 21.49% for a 20¢ increase over that, or a 0.946% decrease. The change is not

statistically significant.

2. The elasticity of response to tax increases in cross-sectional models may reflect

the fact that cigarette taxes may be high in states with strong anti-smoking

sentiment, so that the estimated effects of taxes also reflect the influence of

that sentiment on teenage smoking decisions.

3. The effect of adding $1 to cigarette taxes cannot be estimated with any assurance

because the variation in taxes did not approach that amount, the maximum

increase being only 25¢.

Section 14.8.1. Challenger disaster

2. At 36�, the expected number of damaged O-rings is about 18.1; at 53� the

expected number is about 2.2.

3. The percentage increase in expected number of damaged O-rings for each degree

decrease in temperature is about 12.4%, or, more precisely, exp(0.124)�
1¼ 13.2%.

4. An approximate 95% confidence interval for the expected number of damaged

O-rings at 36� is given by exponentiating the confidence interval for the intercept
term, a¼ ln μ(36�): exp(2.8983
 1.96 · 1.1317), or from 2.0 to 167.

5. Pearson’s chi-squared comparing expected and observed counts is 32.262 with

22 df; P> 0.05; the Poisson distribution cannot be rejected for these data.

6. The overdispersion factor for the data is (32.262/22)1/2¼ 1.21. Hence, a 95%

confidence interval for the expected number of damaged O-rings at 36� is exp

(2.8983
 1.96 · 1.1317 · 1.21), or from 1.2 to 266. The uncertainty is large due to

extrapolation down to 36 �F. Evidently, temperature is not the only factor

affecting the risk of damage to the rings.

Section 14.9.1. NYC Street Stops

1. To a first approximation, yes. We would expect the counts for a given precinct in

a given year to follow a Poisson distribution with a mean specified by the model

based on the explanatory factors. However, if there are omitted factors that also

vary even given fixed levels of the observed factors and which affect the true

mean, then there would be overdispersion in the Poisson model. The negative

binomial model allows for such overdispersion, by assuming the unexplained
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variation in the true mean (given fixed levels of the observed explanatory

factors) follows a Gamma distribution. This parametric assumption may not be

correct, and insofar as it is very wrong, the negative binomial model may

be misspecified, leading to biased estimates. However, the Gamma family

of distributions contains many different shapes and is often used as a matter

of flexibility and mathematical convenience. The important point is that

some method of accounting for overdispersion will produce much more

valid inferences than a pure Poisson model that ignores the overdispersion;

the influence of this or that model of overdispersion is of secondary

importance.

2. The coefficient 1.688 for proportion non-Hispanic black predicts an increase of

about 1.017-fold in the rate of total marijuana enforcement per person per

percentage point increase in the non-Hispanic black population in the given

precinct and year. This follows by subtracting ln(rate given X) for some propor-

tion X of non-Hispanic black from ln(rate given X + 0.01) for a precinct-year one

percentage point higher, with all other factors held constant. The difference on

the left-hand side of the equation is the logarithm of the rate at X+ 0.01 divided

by the rate given X, and the difference on the right-hand side of the equation is

1.688(X+ 0.01)� 1.688X¼ 0.01688, so that the ratio of rates is exp(0.01688)¼
1.017, i.e., about a 1.7% increase in the rate of total marijuana enforcement per

percentage point increase in the non-Hispanic black population.

3. For a 100 percentage point increase from a non-Hispanic black population

proportion of 0 to 1.0, the corresponding increase would be exp

(1.688� 1.0)¼ 5.41, more than a fivefold increase in the rate.

With respect to Judge Scheindlin’s finding, if we multiply the regression

coefficients for proportion non-Hispanic black, lagged violent crime, and lagged

marijuana possession arrests by the standard deviations of the respective explan-

atory factors, we can interpret the products as the effects per change in standard

deviation increments (see p. 378). To obtain the standardized regression

coefficients for an ordinary multiple regression model, one would then divide

by the standard deviation of the dependent variable. However, in this case, we

are modeling the logarithm of rates rather than the expected number of total

marijuana enforcement directly, so for the purpose of comparing the impor-

tance of the race and crime factors, we need only take the first step since the

last step would divide all three products by the same number. Thus, we find

regression coefficients for the factors expressed in standard deviation units of

0.44, 0.04, and 0.11, respectively; the study is consistent with Judge

Scheindlin’s finding.
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Section 14.10.1. Georgia death penalty revisited

1. For the construction sample with a 50% classification rule, the outcome was as

follows:

Predicted sentence

D D Total

Actual sentence D 14 5 19

D 6 25 31

Total 20 30 50

The sensitivity of the classification is apparently 14/19¼ 0.74 and the speci-

ficity is apparently 25/31¼ 0.81. In the test sample, the outcome was

Predicted sentence

D D Total

Actual sentence D 15 15 30

D 2 18 20

Total 17 33 50

Now, sensitivity is only 0.50¼ 15/30 while specificity has increased to

0.90¼ 18/20. The proportion of correct classifications falls from 78% in the

construction sample to 66% in the test sample.

2. The PPV is 14/20¼ 0.70, and the NPV is 25/30¼ 0.83 in the construction

sample. In the test sample, PPV¼ 15/17¼ 0.88, but the NPV is 18/33¼ 0.55.
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Appendix II: Tables

A1: The Cumulative Normal Distribution

A2: Critical Values of the Standard Normal Distribution

B: Cumulative Terms of the Binomial Distribution

C: Percentage Points of the χ2 Distribution
D: Critical Values of the Durbin-Watson Statistic

E: Percentage Points of the t Distribution
F: Percentage Points of the F Distribution

G1: Critical Values of the Kolmogorov-Smirnov One-Sample Test

G2: Critical Values of the Kolmogorov-Smirnov Two-Sample Test

H1: Critical Values of the Wilcoxon Signed-Ranks Test

H2: Critical Values of the Wilcoxon Rank-Sum Test

Table A1: The Cumulative Normal Distribution

z P[Z< z] z P[Z< z] z P[Z< z] z P[Z< z] z P[Z< z]

0.00 0.50000 0.80 0.78814 1.60 0.94520 2.40 0.99180 3.50 0.99977

0.02 0.50798 0.82 0.79389 1.62 0.94738 2.42 0.99224 3.55 0.99981

0.04 0.51595 0.84 0.79955 1.64 0.94950 2.44 0.99266 3.60 0.99984

0.06 0.52392 0.86 0.80511 1.66 0.95154 2.46 0.99305 3.65 0.99987

0.08 0.53188 0.88 0.81057 1.68 0.95352 2.48 0.99343 3.70 0.99989

0.10 0.53983 0.90 0.81594 1.70 0.95543 2.50 0.99379 3.75 0.99991

0.12 0.54776 0.92 0.82121 1.72 0.95728 2.52 0.99413 3.80 0.99993

0.14 0.55567 0.94 0.82639 1.74 0.95907 2.54 0.99446 3.85 0.99994

0.16 0.56356 0.96 0.83147 1.76 0.96080 2.56 0.99477 3.90 0.99995

0.18 0.57142 0.98 0.83646 1.78 0.96246 2.58 0.99506 3.95 0.99996

0.20 0.57926 1.00 0.84134 1.80 0.96407 2.60 0.99534 4.00 0.99997

0.22 0.58706 1.02 0.84614 1.82 0.96562 2.62 0.99560 4.05 0.99997

0.24 0.59483 1.04 0.85083 1.84 0.96712 2.64 0.99585 4.10 0.99998

0.26 0.60257 1.06 0.85543 1.86 0.96856 2.66 0.99609 4.15 0.99998

0.28 0.61026 1.08 0.85993 1.88 0.96995 2.68 0.99632 4.20 0.99999

0.30 0.61791 1.10 0.86433 1.90 0.97128 2.70 0.99653 4.25 0.99999
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(continued)

z P[Z< z] z P[Z< z] z P[Z< z] z P[Z< z] z P[Z< z]

0.32 0.62552 1.12 0.86864 1.92 0.97257 2.72 0.99674 4.30 0.99999

0.34 0.63307 1.14 0.87286 1.94 0.97381 2.74 0.99693 4.35 0.99999

0.36 0.64058 1.16 0.87698 1.96 0.97500 2.76 0.99711 4.40 0.99999

0.38 0.64803 1.18 0.88100 1.98 0.97615 2.78 0.99728 4.45 1.00000

0.40 0.65542 1.20 0.88493 2.00 0.97725 2.80 0.99744 4.50 1.00000

0.42 0.66276 1.22 0.88877 2.02 0.97831 2.82 0.99760 4.55 1.00000

0.44 0.67003 1.24 0.89251 2.04 0.97932 2.84 0.99774 4.60 1.00000

0.46 0.67724 1.26 0.89617 2.06 0.98030 2.86 0.99788 4.65 1.00000

0.48 0.68439 1.28 0.89973 2.08 0.98124 2.88 0.99801 4.70 1.00000

0.50 0.69146 1.30 0.90320 2.10 0.98214 2.90 0.99813 4.75 1.00000

0.52 0.69847 1.32 0.90658 2.12 0.98300 2.92 0.99825 4.80 1.00000

0.54 0.70540 1.34 0.90988 2.14 0.98382 2.94 0.99836 4.85 1.00000

0.56 0.71226 1.36 0.91309 2.16 0.98461 2.96 0.99846 4.90 1.00000

0.58 0.71904 1.38 0.91621 2.18 0.98537 2.98 0.99856 4.95 1.00000

0.60 0.72575 1.40 0.91924 2.20 0.98610 3.00 0.99865 5.00 1.00000

0.62 0.73237 1.42 0.92220 2.22 0.98679 3.05 0.99886

0.64 0.73891 1.44 0.92507 2.24 0.98745 3.10 0.99903

0.66 0.74537 1.46 0.92785 2.26 0.98809 3.15 0.99918

0.68 0.75175 1.48 0.93056 2.28 0.98870 3.20 0.99931

0.70 0.75804 1.50 0.93319 2.30 0.98928 3.25 0.99942

0.72 0.76424 1.52 0.93574 2.32 0.98983 3.30 0.99952

0.74 0.77035 1.54 0.93822 2.34 0.99036 3.35 0.99960

0.76 0.77637 1.56 0.94062 2.36 0.99086 3.40 0.99966

0.78 0.78230 1.58 0.94295 2.38 0.99134 3.45 0.99972

Table A2: Critical Values of the Standard Normal Distribution

The table gives critical values z for selected values of P, and tail probabilities P for

selected values of z.

z P[Z< z] P[Z> z] P[�z< Z< z] P[|Z|> z]

0.0 0.50 0.50 0.00 1.0000

0.1 0.5398 0.4602 0.0797 0.9203

0.126 0.55 0.45 0.10 0.90

0.2 0.5793 0.4207 0.1585 0.8415

0.253 0.60 0.40 0.20 0.80

0.3 0.6179 0.3821 0.2358 0.7642

0.385 0.65 0.35 0.30 0.70

0.4 0.6554 0.3446 0.3108 0.6892

0.5 0.6915 0.3085 0.3829 0.6171

0.524 0.70 0.30 0.40 0.60
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(continued)

z P[Z< z] P[Z> z] P[�z< Z< z] P[|Z|> z]

0.6 0.7257 0.2743 0.4515 0.5485

0.674 0.75 0.25 0.50 0.50

0.7 0.7580 0.2420 0.5161 0.4839

0.8 0.7881 0.2119 0.5763 0.4237

0.842 0.80 0.20 0.60 0.40

0.9 0.8159 0.1841 0.6319 0.3681

1.0 0.8413 0.1587 0.6827 0.3173

1.036 0.85 0.15 0.70 0.30

1.1 0.8643 0.1357 0.7287 0.2713

1.2 0.8849 0.1151 0.7699 0.2301

1.282 0.90 0.10 0.80 0.20

1.3 0.9032 0.0968 0.8064 0.1936

1.4 0.9192 0.0808 0.8385 0.1615

1.440 0.925 0.075 0.85 0.15

1.5 0.9332 0.0668 0.8664 0.1336

1.6 0.9452 0.0548 0.8904 0.1096

1.645 0.95 0.05 0.90 0.10

1.7 0.9554 0.0446 0.9109 0.0891

1.8 0.9641 0.0359 0.9281 0.0719

1.9 0.9713 0.0287 0.9426 0.0574

1.960 0.975 0.025 0.95 0.05

2.0 0.9772 0.0228 0.9545 0.0455

2.1 0.9821 0.0179 0.9643 0.0357

2.2 0.9861 0.0139 0.9722 0.0278

2.241 0.9875 0.0125 0.975 0.025

2.3 0.9893 0.0107 0.9786 0.0214

2.326 0.99 0.01 0.98 0.02

2.4 0.9918 0.0082 0.9836 0.0164

2.5 0.9938 0.0062 0.9876 0.0124

2.576 0.995 0.005 0.99 0.01

2.6 0.9953 0.0047 0.9907 0.0093

2.7 0.9965 0.0035 0.9931 0.0069

2.8 0.9974 0.0026 0.9949 0.0051

2.807 0.9975 0.0025 0.995 0.005

2.9 0.9981 0.0019 0.9963 0.0037

3.0 0.9987 0.0013 0.9973 0.0027

3.090 0.999 0.001 0.998 0.002

3.1 0.9990 0.0010 0.9981 0.0019

3.2 0.9993 0.0007 0.9986 0.0014

3.291 0.9995 0.0005 0.999 0.001

3.3 0.9995 0.0005 0.9990 0.0010

3.4 0.9997 0.0003 0.9993 0.0007
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(continued)

z P[Z< z] P[Z> z] P[�z< Z< z] P[|Z|> z]

3.5 0.9998 0.0002 0.9995 0.0005

3.6 0.9998 0.0002 0.9997 0.0003

3.719 0.9999 0.00010 0.9998 0.00020

3.8 0.99992 0.00007 0.99986 0.00014

3.9 0.99995 0.00005 0.99990 0.00010

4.0 0.99997 0.00003 0.99994 0.00006

Table B: Cumulative Terms of the Binomial Distribution

The table gives P[X� x|n, p] for selected values of n, p	½, and 1	 x	 n. For
values of p>½, use the relation

P X � x
��n, p	 
 ¼ 1� P X � n� xþ 1

��n, 1� p
	 


:

For example, for p¼ 0.90 and n¼ 10, P[X� 8]¼ 1�P[X� 3] for p¼ 0.10,

which equals 1� 0.0702¼ 0.9298.
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P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

2 1 0.0975 0.1900 0.2775 0.3600 0.4375 0.5100 0.5775 0.6400 0.6975 0.7500

2 0.0025 0.0100 0.0225 0.0400 0.0625 0.0900 0.1225 0.1600 0.2025 0.2500

3 1 0.1426 0.2710 0.3859 0.4880 0.5781 0.6570 0.7254 0.7840 0.8336 0.8750

2 0.0073 0.0280 0.0608 0.1040 0.1563 0.2160 0.2818 0.3520 0.4253 0.5000

3 0.0001 0.0010 0.0034 0.0080 0.0156 0.0270 0.0429 0.0640 0.0911 0.1250

4 1 0.1855 0.3439 0.4780 0.5904 0.6836 0.7599 0.8215 0.8704 0.9085 0.9375

2 0.0140 0.0523 0.1095 0.1808 0.2617 0.3483 0.4370 0.5248 0.6090 0.6875

3 0.0005 0.0037 0.0120 0.0272 0.0508 0.0837 0.1265 0.1792 0.2415 0.3125

4 0.0000 0.0001 0.0005 0.0016 0.0039 0.0081 0.0150 0.0256 0.0410 0.0625

5 1 0.2262 0.4095 0.5563 0.6723 0.7627 0.8319 0.8840 0.9222 0.9497 0.9688

2 0.0226 0.0815 0.1648 0.2627 0.3672 0.4718 0.5716 0.6630 0.7438 0.8125

3 0.0012 0.0086 0.0266 0.0579 0.1035 0.1631 0.2352 0.3174 0.4069 0.5000

4 0.0000 0.0005 0.0022 0.0067 0.0156 0.0308 0.0540 0.0870 0.1312 0.1875

5 0.0000 0.0000 0.0001 0.0003 0.0010 0.0024 0.0053 0.0102 0.0185 0.0313

6 1 0.2649 0.4686 0.6229 0.7379 0.8220 0.8824 0.9246 0.9533 0.9723 0.9844

2 0.0328 0.1143 0.2235 0.3446 0.4661 0.5798 0.6809 0.7667 0.8364 0.8906

3 0.0022 0.0159 0.0473 0.0989 0.1694 0.2557 0.3529 0.4557 0.5585 0.6563

4 0.0001 0.0013 0.0059 0.0170 0.0376 0.0705 0.1174 0.1792 0.2553 0.3438

5 0.0000 0.0001 0.0004 0.0016 0.0046 0.0109 0.02 23 0.0410 0.0692 0.1094

6 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0018 0.0041 0.0083 0.0156

7 1 0.3017 0.5217 0.6794 0.7903 0.8665 0.9176 0.9510 0.9720 0.9848 0.9922

2 0.0444 0.1497 0.2834 0.4233 0.5551 0.6706 0.7662 0.8414 0.8976 0.9375

3 0.0038 0.0257 0.0738 0.1480 0.2436 0.3529 0.4677 0.5801 0.6836 0.7734

4 0.0002 0.0027 0.0121 0.0333 0.0706 0.1260 0.1998 0.2898 0.3917 0.5000

5 0.0000 0.0002 0.0012 0.0047 0.0129 0.0288 0.0556 0.0963 0.1529 0.2266

6 0.0000 0.0000 0.0001 0.0004 0.0013 0.0038 0.0090 0.0188 0.0357 0.0625

7 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0006 0.0016 0.0037 0.0078

8 1 0.3366 0.5695 0.7275 0.8322 0.8999 0.9424 0.9681 0.9832 0.9916 0.9961

2 0.0572 0.1869 0.3428 0.4967 0.6329 0.7447 0.8309 0.8936 0.9368 0.9648

3 0.0058 0.0381 0.1052 0.2031 0.3215 0.4482 0.5722 0.6846 0.7799 0.8555

4 0.0004 0.0050 0.0214 0.0563 0.1138 0.1941 0.2936 0.4059 0.5230 0.6367

5 0.0000 0.0004 0.0029 0.0104 0.0273 0.0580 0.1061 0.1737 0.2604 0.3633

6 0.0000 0.0000 0.0002 0.0012 0.0042 0.0113 0.0253 0.0498 0.0885 0.1445

7 0.0000 0.0000 0.0000 0.0001 0.0004 0.0013 0.0036 0.0085 0.0181 0.0352

8 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002 0.0007 0.0017 0.0039

9 1 0.3698 0.6126 0.7684 0.8658 0.9249 0.9596 0.9793 0.9899 0.9954 0.9980

2 0.0712 0.2252 0.4005 0.5638 0.6997 0.8040 0.8789 0.9295 0.9615 0.9805

3 0.0084 0.0530 0.1409 0.2618 0.3993 0.5372 0.6627 0.7682 0.8505 0.9102

4 0.0006 0.0083 0.0339 0.0856 0.1657 0.2703 0.3911 0.5174 0.6386 0.7461

5 0.0000 0.0009 0.0056 0.0196 0.0489 0.0988 0.1717 0.2666 0.3786 0.5000

6 0.0000 0.0001 0.0006 0.0031 0.0100 0.0253 0.0536 0.0994 0.1658 0.2539

7 0.0000 0.0000 0.0000 0.0003 0.0013 0.0043 0.0112 0.0250 0.0498 0.0898

8 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0014 0.0038 0.0091 0.0195

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0008 0.0020

10 1 0.4013 0.6513 0.8031 0.8926 0.9437 0.9718 0.9865 0.9940 0.9975 0.9990

2 0.0861 0.2639 0.4557 0.6242 0.7560 0.8507 0.9140 0.9536 0.9767 0.9893

3 0.0115 0.0702 0.1798 0.3222 0.4744 0.6172 0.7384 0.8327 0.9004 0.9453

4 0.0010 0.0128 0.0500 0.1209 0.2241 0.3504 0.4862 0.6177 0.7340 0.8281

5 0.0001 0.0016 0.0099 0.0328 0.0781 0.1503 0.2485 0.3669 0.4956 0.6230

6 0.0000 0.0001 0.0014 0.0064 0.0197 0.0473 0.0949 0.1662 0.2616 0.3770

7 0.0000 0.0000 0.0001 0.0009 0.0035 0.0106 0.0260 0.0548 0.1020 0.1719

8 0.0000 0.0000 0.0000 0.0001 0.0004 0.0016 0.0048 0.0123 0.0274 0.0547
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0017 0.0045 0.0107

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0010

11 1 0.4312 0.6862 0.8327 0.9141 0.9578 0.9802 0.9912 0.9964 0.9986 0.9995

2 0.1019 0.3026 0.5078 0.6779 0.8029 0.8870 0.9394 0.9698 0.9861 0.9941

3 0.0152 0.0896 0.2212 0.3826 0.5448 0.6873 0.7999 0.8811 0.9348 0.9673

4 0.0016 0.0185 0.0694 0.1611 0.2867 0.4304 0.5744 0.7037 0.8089 0.8867

5 0.0001 0.0028 0.0159 0.0504 0.1146 0.2103 0.3317 0.4672 0.6029 0.7256

6 0.0000 0.0003 0.0027 0.0117 0.0343 0.0782 0.1487 0.2465 0.3669 0.5000

7 0.0000 0.0000 0.0003 0.0020 0.0076 0.0216 0.0501 0.0994 0.1738 0.2744

8 0.0000 0.0000 0.0000 0.0002 0.0012 0.0043 0.0122 0.0293 0.0610 0.1133

9 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0020 0.0059 0.0148 0.0327

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0007 0.0022 0.0059

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0000 0.0002 0.0005

12 1 0.4596 0.7176 0.8578 0.9313 0.9683 0.9862 0.9943 0.9978 0.9992 0.9998

2 0.1184 0.3410 0.5565 0.7251 0.8416 0.9150 0.9576 0.9804 0.9917 0.9968

3 0.0196 0.1109 0.2642 0.4417 0.6093 0.7472 0.8487 0.9166 0.9579 0.9807

4 0.0022 0.0256 0.0922 0.2054 0.3512 0.5075 0.6533 0.7747 0.8655 0.9270

5 0.0002 0.0043 0.0239 0.0726 0.1576 0.2763 0.4167 0.5618 0.6956 0.8062

6 0.0000 0.0005 0.0046 0.0194 0.0544 0.1178 0.2127 0.3348 0.4731 0.6128

7 0.0000 0.0001 0.0007 0.0039 0.0143 0.0386 0.0846 0.1582 0.2607 0.3872

8 0.0000 0.0000 0.0001 0.0006 0.0028 0.0095 0.0255 0.0573 0.1117 0.1938

9 0.0000 0.0000 0.0000 0.0001 0.0004 0.0017 0.0056 0.0153 0.0356 0.0730

10 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0028 0.0079 0.0193

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0011 0.0032

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0002

13 1 0.4867 0.7458 0.8791 0.9450 0.9762 0.9903 0.9963 0.9987 0.9996 0.9999

2 0.1354 0.3787 0.6017 0.7664 0.8733 0.9363 0.9704 0.9874 0.9951 0.9983

3 0.0245 0.1339 0.3080 0.4983 0.6674 0.7975 0.8868 0.9421 0.9731 0.9888

4 0.0031 0.0342 0.1180 0.2527 0.4157 0.5794 0.7217 0.8314 0.9071 0.9539

5 0.0003 0.0065 0.0342 0.0991 0.2060 0.3457 0.4995 0.6470 0.7721 0.8666

6 0.0000 0.0009 0.0075 0.0300 0.0802 0.1654 0.2841 0.4256 0.5732 0.7095

7 0.0000 0.0001 0.0013 0.0070 0.0243 0.0624 0.1295 0.2288 0.3563 0.5000

8 0.0000 0.0000 0.0002 0.0012 0.0056 0.0182 0.0462 0.0977 0.1788 0.2905

9 0.0000 0.0000 0.0000 0.0002 0.0010 0.0040 0.0126 0.0321 0.0698 0.1334

10 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0025 0.0078 0.0203 0.0461

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0013 0.0041 0.0112

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0017

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

14 1 0.5123 0.7712 0.8972 0.9560 0.9822 0.9932 0.9976 0.9992 0.9998 0.9999

2 0.1530 0.4154 0.6433 0.8021 0.8990 0.9525 0.9795 0.9919 0.9971 0.9991

3 0.0301 0.1584 0.3521 0.5519 0.7189 0.8392 0.9161 0.9602 0.9830 0.9935

4 0.0042 0.0441 0.1465 0.3018 0.4787 0.6448 0.7795 0.8757 0.9368 0.9713

5 0.0004 0.0092 0.0467 0.1298 0.2585 0.4158 0.5773 0.7207 0.8328 0.9102

6 0.0000 0.0015 0.0115 0.0439 0.1117 0.2195 0.3595 0.5141 0.6627 0.7880

7 0.0000 0.0002 0.0022 0.0116 0.0383 0.0933 0.1836 0.3075 0.4539 0.6047

8 0.0000 0.0000 0.0003 0.0024 0.0103 0.0315 0.0753 0.1501 0.2586 0.3953

9 0.0000 0.0000 0.0000 0.0004 0.0022 0.0083 0.0243 0.0583 0.1189 0.2120

10 0.0000 0.0000 0.0000 0.0000 0.0003 0.0017 0.0060 0.0175 0.0426 0.0898

11 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0011 0.0039 0.0114 0.0287

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0022 0.0065

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0000 0.0001 0.0003 0.0009
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

15 1 0.5367 0.7941 0.9126 0.9648 0.9866 0.9953 0.9984 0.9995 0.9999 1.0000

2 0.1710 0.4510 0.6814 0.8329 0.9198 0.9647 0.9858 0.9948 0.9983 0.9995

3 0.0362 0.1841 0.3958 0.6020 0.7639 0.8732 0.9383 0.9729 0.9893 0.9963

4 0.0055 0.0556 0.1773 0.3518 0.5387 0.7031 0.8273 0.9095 0.9576 0.9824

5 0.0006 0.0127 0.0617 0.1642 0.3135 0.4845 0.6481 0.7827 0.8796 0.9408

6 0.0001 0.0022 0.0168 0.0611 0.1484 0.2784 0.4357 0.5968 0.7392 0.8491

7 0.0000 0.0003 0.0036 0.0181 0.0566 0.1311 0.2452 0.3902 0.5478 0.6964

8 0.0000 0.0000 0.0006 0.0042 0.0173 0.0500 0.1132 0.2131 0.3465 0.5000

9 0.0000 0.0000 0.0001 0.0008 0.0042 0.0152 0.0422 0.0950 0.1818 0.3036

10 0.0000 0.0000 0.0000 0.0001 0.0008 0.0037 0.0124 0.0338 0.0769 0.1509

11 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0028 0.0093 0.0255 0.0592

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0019 0.0063 0.0176

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0011 0.0037

14 0.0000 0.0000 0.0000 0.0000 0.0000 0000 0.0000 0.0000 0.0001 0.0005

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

16 1 0.5599 0.8147 0.9257 0.9719 0.9900 0.9967 0.9990 0.9997 0.9999 1.0000

2 0.1892 0.4853 0.7161 0.8593 0.9365 0.9739 0.9902 0.9967 0.9990 0.9997

3 0.0429 0.2108 0.4386 0.6482 0.8029 0.9006 0.9549 0.9817 0.9934 0.9979

4 0.0070 0.0684 0.2101 0.4019 0.5950 0.7541 0.8661 0.9349 0.9719 0.9894

5 0.0009 0.0170 0.0791 0.2018 0.3698 0.5501 0.7108 0.8334 0.9147 0.9616

6 0.0001 0.0033 0.0235 0.0817 0.1897 0.3402 0.5100 0.6712 0.8024 0.8949

7 0.0000 0.0005 0.0056 0.0267 0.0796 0.1753 0.3119 0.4728 0.6340 0.7728

8 0.0000 0.0001 0.0011 0.0070 0.0271 0.0744 0.1594 0.2839 0.4371 0.5982

9 0.0000 0.0000 0.0002 0.0015 0.0075 0.0257 0.0671 0.1423 0.2559 0.4018

10 0.0000 0.0000 0.0000 0.0002 0.0016 0.0071 0.0229 0.0583 0.1241 0.2272

11 0.0000 0.0000 0.0000 0.0000 0.0003 0.0016 0.0062 0.0191 0.0486 0.1051

12 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013 0.0049 0.0149 0.0384

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0009 0.0035 0.0106

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0021

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

17 1 0.5819 0.8332 0.9369 0.9775 0.9925 0.9977 0.9993 0.9998 1.0000 1.0000

2 0.2078 0.5182 0.7475 0.8818 0.9499 0.9807 0.9933 0.9979 0.9994 0.9999

3 0.0503 0.2382 0.4802 0.6904 0.8363 0.9226 0.9673 0.9877 0.9959 0.9988

4 0.0088 0.0826 0.2444 0.4511 0.6470 0.7981 0.8972 0.9536 0.9816 0.9936

5 0.0012 0.0221 0.0987 0.2418 0.4261 0.6113 0.7652 0.8740 0.9404 0.9755

6 0.0001 0.0047 0.0319 0.1057 0.2347 0.4032 0.5803 0.7361 0.8529 0.9283

7 0.0000 0.0008 0.0083 0.0377 0.1071 0.2248 0.3812 0.5522 0.7098 0.8338

8 0.0000 0.0001 0.0017 0.0109 0.0402 0.1046 0.2128 0.3595 0.5257 0.6855

9 0.0000 0.0000 0.0003 0.0026 0.0124 0.0403 0.0994 0.1989 0.3374 0.5000

10 0.0000 0.0000 0.0000 0.0005 0.0031 0.0127 0.0383 0.0919 0.1834 0.3145

11 0.0000 0.0000 0.0000 0.0001 0.0006 0.0032 0.0120 0.0348 0.0826 0.1662

12 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0030 0.0106 0.0301 0.0717

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0025 0.0086 0.0245

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0019 0.0064

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0003 0.0012

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

18 1 0.6028 0.8499 0.9464 0.9820 0.944 0.9984 0.9996 0.9999 1.0000 1.0000

2 0.2265 0.5497 0.7759 0.9009 0.9605 0.9858 0.9954 0.9987 0.9997 0.9999
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

3 0.0581 0.2662 0.5203 0.7287 0.8647 0.9400 0.9764 0.9918 0.9975 0.9993

4 0.0109 0.0982 0.2798 0.4990 0.6943 0.8354 0.9217 0.9672 0.9880 0.9962

5 0.0015 0.0282 0.1206 0.2836 0.4813 0.6673 0.8114 0.9058 0.9589 0.9846

6 0.0002 0.0064 0.0419 0.1329 0.2825 0.4656 0.6450 0.7912 0.8923 0.9519

7 0.0000 0.0012 0.0118 0.0513 0.1390 0.2783 0.4509 0.6257 0.7742 0.8811

8 0.0000 0.0002 0.0027 0.0163 0.0569 0.1407 0.2717 0.4366 0.6085 0.7597

9 0.0000 0.0000 0.0005 0.0043 0.0193 0.0596 0.1391 0.2632 0.4222 0.5927

10 0.0000 0.0000 0.0001 0.0009 0.0054 0.0210 0.0597 0.1347 0.2527 0.4073

11 0.0000 0.0000 0.0000 0.0002 0.0012 0.0061 0.0212 0.0576 0.1280 0.2403

12 0.0000 0.0000 0.0000 0.0000 0.0002 0.0014 0.0062 0.0203 0.0537 0.1189

13 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0014 0.0058 0.0183 0.0481

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013 0.0049 0.0154

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0038

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 1 0.6226 0.8649 0.9544 0.9856 0.9958 0.9989 0.9997 0.9999 1.0000 1.0000

2 0.2453 0.5797 0.8015 0.9171 0.9690 0.9896 0.9969 0.9992 0.9998 1.0000

3 0.0665 0.2946 0.5587 0.7631 0.8887 0.9538 0.9830 0.9945 0.9985 0.9996

4 0.0132 0.1150 0.3159 0.5449 0.7369 0.8668 0.9409 0.9770 0.9923 0.9978

5 0.0020 0.0352 0.1444 0.3267 0.5346 0.7178 0.8500 0.9304 0.9720 0.9904

6 0.0002 0.0086 0.0537 0.1631 0.3322 0.5261 0.7032 0.8371 0.9223 0.9682

7 0.0000 0.0017 0.0163 0.0676 0.1749 0.3345 0.5188 0.6919 0.8273 0.9165

8 0.0000 0.0003 0.0041 0.0233 0.0775 0.1820 0.3344 0.5122 0.6831 0.8204

9 0.0000 0.0000 0.0008 0.0067 0.0287 0.0839 0.1855 0.3325 0.5060 0.6762

10 0.0000 0.0000 0.0001 0.0016 0.0089 0.0326 0.0875 0.1861 0.3290 0.5000

11 0.0000 0.0000 0.0000 0.0003 0.0023 0.0105 0.0347 0.0885 0.1841 0.3238

12 0.0000 0.0000 0.0000 0.0000 0.0005 0.0028 0.0114 0.0352 0.0871 0.1796

13 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0031 0.0116 0.0342 0.0835

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0031 0.0109 0.0318

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0028 0.0096

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0022

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 1 0.6415 0.8784 0.9612 0.9885 0.9968 0.9992 0.9998 1.0000 1.0000 1.0000

2 0.2642 0.6083 0.8244 0.9308 0.9757 0.9924 0.9979 0.9995 0.9999 1.0000

3 0.0755 0.3231 0.5951 0.7939 0.9087 0.9645 0.9879 0.9964 0.9991 0.9998

4 0.0159 0.1330 0.3523 0.5886 0.7748 0.8929 0.9556 0.9840 0.9951 0.9987

5 0.0026 0.0432 0.1702 0.3704 0.5852 0.7625 0.8818 0.9490 0.9811 0.9941

6 0.0003 0.0113 0.0673 0.1958 0.3828 0.5836 0.7546 0.8744 0.9447 0.9793

7 0.0000 0.0024 0.0219 0.0867 0.2142 0.3920 0.5834 0.7500 0.8701 0.9423

8 0.0000 0.0004 0.0059 0.0321 0.1018 0.2277 0.3990 0.5841 0.7480 0.8684

9 0.0000 0.0001 0.0013 0.0100 0.0409 0.1133 0.2376 0.4044 0.5857 0.7483

10 0.0000 0.0000 0.0002 0.0026 0.0139 0.0480 0.1218 0.2447 0.4086 0.5881

11 0.0000 0.0000 0.0000 0.0006 0.0039 0.0171 0.0532 0.1275 0.2493 0.4119

12 0.0000 0.0000 0.0000 0.0001 0.0009 0.0051 0.0196 0.0565 0.1308 0.2517

13 0.0000 0.0000 0.0000 0.0000 0.0002 0.0013 0.0060 0.0210 0.0580 0.1316

14 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0015 0.0065 0.0214 0.0577

15 0.0000 0.0000 0.0000 0000 0.0000 0.0000 0.0003 0.0016 0.0064 0.0207

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0015 0.0059
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0013

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 1 0.6594 0.8906 0.9671 0.9908 0.9976 0.9994 0.9999 1.0000 1.0000 1.0000

2 0.2830 0.6353 0.8450 0.9424 0.9810 0.9944 0.9986 0.9997 0.9999 1.0000

3 0.0849 0.3516 0.6295 0.8213 0.9255 0.9729 0.9914 0.9976 0.9994 0.9999

4 0.0189 0.1520 0.3887 0.6296 0.8083 0.9144 0.9669 0.9890 0.9969 0.9993

5 0.0032 0.0522 0.1975 0.4140 0.6326 0.8016 0.9076 0.9630 0.9874 0.9964

6 0.0004 0.0144 0.0827 0.2307 0.4334 0.6373 0.7991 0.9043 0.9611 0.9867

7 0.0000 0.0033 0.0287 0.1085 0.2564 0.4495 0.6433 0.7998 0.9036 0.9608

8 0.0000 0.0006 0.0083 0.0431 0.1299 0.2770 0.4635 0.6505 0.8029 0.9054

9 0.0000 0.0001 0.0020 0.0144 0.0561 0.1477 0.2941 0.4763 0.6587 0.8083

10 0.0000 0.0000 0.0004 0.0041 0.0206 0.0676 0.1623 0.3086 0.4883 0.6682

11 0.0000 0.0000 0.0001 0.0010 0.0064 0.0264 0.0772 0.1744 0.3210 0.5000

12 0.0000 0.0000 0.0000 0.0002 0.0017 0.0087 0.0313 0.0849 0.1841 0.3318

13 0.0000 0.0000 0.0000 0.0000 0.0004 0.0024 0.0108 0.0352 0.0908 0.1917

14 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0031 0.0123 0.0379 0.0946

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0036 0.0132 0.0392

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0037 0.0133

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0008 0.0036

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 1 0.6765 0.9015 0.9720 0.9926 0.9982 0.9996 0.9999 1.0000 1.0000 1.0000

2 0.3018 0.6608 0.8633 0.9520 0.9851 0.9959 0.9990 0.9998 1.0000 1.0000

3 0.0948 0.3800 0.6618 0.8455 0.9394 0.9793 0.9939 0.9984 0.9997 0.9999

4 0.0222 0.1719 0.4248 0.6680 0.8376 0.9319 0.9755 0.9924 0.9980 0.9996

5 0.0040 0.0621 0.2262 0.4571 0.6765 0.8355 0.9284 0.9734 0.9917 0.9978

6 0.0006 0.0182 0.0999 0.2674 0.4832 0.6866 0.8371 0.9278 0.9729 0.9915

7 0.0001 0.0044 0.0368 0.1330 0.3006 0.5058 0.6978 0.8416 0.9295 0.9738

8 0.0000 0.0009 0.0114 0.0561 0.1615 0.3287 0.5264 0.7102 0.8482 0.9331

9 0.0000 0.0001 0.0030 0.0201 0.0746 0.1865 0.3534 0.5460 0.7236 0.8569

10 0.0000 0.0000 0.0007 0.0061 0.0295 0.0916 0.2084 0.3756 0.5650 0.7383

11 0.0000 0.0000 0.0001 0.0016 0.0100 0.0387 0.1070 0.2280 0.3963 0.5841

12 0.0000 0.0000 0.0000 0.0003 0.0029 0.0140 0.0474 0.1207 0.2457 0.4159

13 0.0000 0.0000 0.0000 0.0001 0.0007 0.0043 0.0180 0.0551 0.1328 0.2617

14 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0058 0.0215 0.0617 0.1431

15 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0016 0.0070 0.0243 0.0669

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0019 0.0080 0.0262

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0021 0.0085

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0022

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 1 0.6926 0.9114 0.9762 0.9941 0.9987 0.9997 1.0000 1.0000 1.0000 1.0000

2 0.3206 0.6849 0.8796 0.9602 0.9884 0.9970 0.9993 0.9999 1.0000 1.0000

3 0.1052 0.4080 0.6920 0.8668 0.9508 0.9843 0.9957 0.9990 0.9998 1.0000

4 0.0258 0.1927 0.4604 0.7035 0.8630 0.9462 0.9819 0.9948 0.9988 0.9998
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 0.0049 0.0731 0.2560 0.4993 0.7168 0.8644 0.9449 0.9810 0.9945 0.9987

6 0.0008 0.0226 0.1189 0.3053 0.5315 0.7312 0.8691 0.9460 0.9814 0.9947

7 0.0001 0.0058 0.0463 0.1598 0.3463 0.5601 0.7466 0.8760 0.9490 0.9827

8 0.0000 0.0012 0.0152 0.0715 0.1963 0.3819 0.5864 0.7627 0.8848 0.9534

9 0.0000 0.0002 0.0042 0.0273 0.0963 0.2291 0.4140 0.6116 0.7797 0.8950

10 0.0000 0.0000 0.0010 0.0089 0.0408 0.1201 0.2592 0.4438 0.6364 0.7976

11 0.0000 0.0000 0.0002 0.0025 0.0149 0.0546 0.1425 0.2871 0.4722 0.6612

12 0.0000 0.0000 0.0000 0.0006 0.0046 0.0214 0.0682 0.1636 0.3135 0.5000

13 0.0000 0.0000 0.0000 0.0001 0.0012 0.0072 0.0283 0.0813 0.1836 0.3388

14 0.0000 0.0000 0.0000 0.0000 0.0003 0.0021 0.0100 0.0349 0.0937 0.2024

15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0030 0.0128 0.0411 0.1050

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0040 0.0153 0.0466

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0010 0.0048 0.0173

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0053

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0013

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 1 0.7080 0.9202 0.9798 0.9953 0.9990 0.9998 1.0000 1.0000 1.0000 1.0000

2 0.3392 0.7075 0.8941 0.9669 0.9910 0.9978 0.9995 0.9999 1.0000 1.0000

3 0.1159 0.4357 0.7202 0.8855 0.9602 0.9881 0.9970 0.9993 0.9999 1.0000

4 0.0298 0.2143 0.4951 0.7361 0.8850 0.9576 0.9867 0.9965 0.9992 0.9999

5 0.0060 0.0851 0.2866 0.5401 0.7534 0.8889 0.9578 0.9866 0.9964 0.9992

6 0.0010 0.0277 0.1394 0.3441 0.5778 0.7712 0.8956 0.9600 0.9873 0.9967

7 0.0001 0.0075 0.0572 0.1889 0.3926 0.6114 0.7894 0.9040 0.9636 0.9887

8 0.0000 0.0017 0.0199 0.0892 0.2338 0.4353 0.6425 0.8081 0.9137 0.9680

9 0.0000 0.0003 0.0059 0.0362 0.1213 0.2750 0.4743 0.6721 0.8270 0.9242

10 0.0000 0.0001 0.0015 0.0126 0.0547 0.1528 0.3134 0.5109 0.7009 0.8463

11 0.0000 0.0000 0.0003 0.0038 0.0213 0.0742 0.1833 0.3498 0.5461 0.7294

12 0.0000 0.0000 0.0001 0.0010 0.0072 0.0314 0.0942 0.2130 0.3849 0.5806

13 0.0000 0.0000 0.0000 0.0002 0.0021 0.0115 0.0423 0.1143 0.2420 0.4194

14 0.0000 0.0000 0.0000 0.0000 0.0005 0.0036 0.0164 0.0535 0.1341 0.2706

15 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 0.0055 0.0217 0.0648 0.1537

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0016 0.0075 0.0269 0.0758

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0022 0.0095 0.0320

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005 0.0028 0.0113

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0033

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 1 0.7226 0.9282 0.9828 0.9962 0.9992 0.9999 1.0000 1.0000 1.0000 1.0000

2 0.3576 0.7288 0.9069 0.9726 0.9930 0.9984 0.9997 0.9999 1.0000 1.0000

3 0.1271 0.4629 0.7463 0.9018 0.9679 0.9910 0.9979 0.9996 0.9999 1.0000

4 0.0341 0.2364 0.5289 0.7660 0.9038 0.9668 0.9903 0.9976 0.9995 0.9999

5 0.0072 0.0980 0.3179 0.5793 0.7863 0.9095 0.9680 0.9905 0.9977 0.9995

6 0.0012 0.0334 0.1615 0.3833 0.6217 0.8065 0.9174 0.9706 0.9914 0.9980

7 0.0002 0.0095 0.0695 0.2200 0.4389 0.6593 0.8266 0.9264 0.9742 0.9927

8 0.0000 0.0023 0.0255 0.1091 0.2735 0.4882 0.6939 0.8464 0.9361 0.9784
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

9 0.0000 0.0005 0.0080 0.0468 0.1494 0.3231 0.5332 0.7265 0.8660 0.9461

10 0.0000 0.0001 0.0021 0.0173 0.0713 0.1894 0.3697 0.5754 0.7576 0.8852

11 0.0000 0.0000 0.0005 0.0056 0.0297 0.0978 0.2288 0.4142 0.6157 0.7878

12 0.0000 0.0000 0.0001 0.0015 0.0107 0.0442 0.1254 0.2677 0.4574 0.6550

13 0.0000 0.0000 0.0000 0.0004 0.0034 0.0175 0.0604 0.1538 0.3063 0.5000

14 0.0000 0.0000 0.0000 0.0001 0.0009 0.0060 0.0255 0.0778 0.1827 0.3450

15 0.0000 0.0000 0.0000 0.0000 0.0002 0.0018 0.0093 0.0344 0.0960 0.2122

16 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0029 0.0132 0.0440 0.1148

17 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0043 0.0174 0.0539

18 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0012 0.0058 0.0216

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0016 0.0073

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0004 0.0020

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0005

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 1 0.7854 0.9576 0.9924 0.9988 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.4465 0.8163 0.9520 0.9895 0.9980 0.9997 1.0000 1.0000 1.0000 1.0000

3 0.1878 0.5886 0.8486 0.9558 0.9894 0.9979 0.9997 1.0000 1.0000 1.0000

4 0.0608 0.3526 0.6783 0.8773 0.9626 0.9907 0.9981 0.9997 1.0000 1.0000

5 0.0156 0.1755 0.4755 0.7448 0.9021 0.9698 0.9925 0.9985 0.9998 1.0000

6 0.0033 0.0732 0.2894 0.5725 0.7974 0.9234 0.9767 0.9943 0.9989 0.9998

7 0.0006 0.0258 0.1526 0.3930 0.6519 0.8405 0.9414 0.9828 0.9960 0.9993

8 0.0001 0.0078 0.0698 0.2392 0.4857 0.7186 0.8762 0.9565 0.9879 0.9974

9 0.0000 0.0020 0.0278 0.1287 0.3264 0.5685 0.7753 0.9060 0.9688 0.9919

10 0.0000 0.0005 0.0097 0.0611 0.1966 0.4112 0.6425 0.8237 0.9306 0.9786

11 0.0000 0.0001 0.0029 0.0256 0.1057 0.2696 0.4922 0.7085 0.8650 0.9506

12 0.0000 0.0000 0.0008 0.0095 0.0507 0.1593 0.3452 0.5689 0.7673 0.8998

13 0.0000 0.0000 0.0002 0.0031 0.0216 0.0845 0.2198 0.4215 0.6408 0.8192

14 0.0000 0.0000 0.0000 0.0009 0.0082 0.0401 0.1263 0.2855 0.4975 0.7077

15 0.0000 0.0000 0.0000 0.0002 0.0027 0.0169 0.0652 0.1754 0.3552 0.5722

16 0.0000 0.0000 0.0000 0.0001 0.0008 0.0064 0.0301 0.0971 0.2309 0.4278

17 0.0000 0.0000 0.0000 0.0000 0.0002 0.0021 0.0124 0.0481 0.1356 0.2923

18 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0045 0.0212 0.0714 0.1808

19 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0014 0.0083 0.0334 0.1002

20 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0029 0.0138 0.0494

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0050 0.0214

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0016 0.0081

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0026

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

35 1 0.8339 0.9750 0.9966 0.9996 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.5280 0.8776 0.9757 0.9960 0.9995 0.9999 1.0000 1.0000 1.0000 1.0000

3 0.2542 0.6937 0.9130 0.9810 0.9967 0.9995 0.9999 1.0000 1.0000 1.0000

4 0.0958 0.4690 0.7912 0.9395 0.9864 0.9976 0.9997 1.0000 1.0000 1.0000
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

5 0.0290 0.2693 0.6193 0.8565 0.9590 0.9909 0.9984 0.9998 1.0000 1.0000

6 0.0073 0.1316 0.4311 0.7279 0.9024 0.9731 0.9942 0.9990 0.9999 1.0000

7 0.0015 0.0552 0.2652 0.5672 0.8080 0.9350 0.9830 0.9966 0.9995 0.9999

8 0.0003 0.0200 0.1438 0.4007 0.6777 0.8674 0.9581 0.9898 0.9981 0.9997

9 0.0000 0.0063 0.0689 0.2550 0.5257 0.7659 0.9110 0.9740 0.9943 0.9991

10 0.0000 0.0017 0.0292 0.1457 0.3737 0.6354 0.8349 0.9425 0.9848 0.9970

11 0.0000 0.0004 0.0110 0.0747 0.2419 0.4900 0.7284 0.8877 0.9646 0.9917

12 0.0000 0.0001 0.0037 0.0344 0.1421 0.3484 0.5981 0.8048 0.9271 0.9795

13 0.0000 0.0000 0.0011 0.0142 0.0756 0.2271 0.4577 0.6943 0.8656 0.9552

14 0.0000 0.0000 0.0003 0.0053 0.0363 0.1350 0.3240 0.5639 0.7767 0.9123

15 0.0000 0.0000 0.0001 0.0018 0.0158 0.0731 0.2109 0.4272 0.6624 0.8447

16 0.0000 0.0000 0.0000 0.0005 0.0062 0.0359 0.1256 0.2997 0.5315 0.7502

17 0.0000 0.0000 0.0000 0.0001 0.0022 0.0160 0.0682 0.1935 0.3976 0.6321

18 0.0000 0.0000 0.0000 0.0000 0.0007 0.0064 0.0336 0.1143 0.2751 0.5000

19 0.0000 0.0000 0.0000 0.0000 0.0002 0.0023 0.0150 0.0615 0.1749 0.3679

20 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0061 0.0300 0.1016 0.2498

21 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0022 0.0133 0.0536 0.1553

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0007 0.0053 0.0255 0.0877

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0019 0.0109 0.0448

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0006 0.0042 0.0205

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0014 0.0083

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0030

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⋮ . . . remaining terms¼ 0.0000 . . .

35

40 1 0.8715 0.9852 0.9985 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.6009 0.9195 0.9879 0.9985 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

3 0.3233 0.7772 0.9514 0.9921 0.9990 0.9999 1.0000 1.0000 1.0000 1.0000

4 0.1381 0.5769 0.8698 0.9715 0.9953 0.9994 0.9999 1.0000 1.0000 1.0000

5 0.0480 0.3710 0.7367 0.9241 0.9840 0.9974 0.9997 1.0000 1.0000 1.0000

6 0.0139 0.2063 0.5675 0.8387 0.9567 0.9914 0.9987 0.9999 1.0000 1.0000

7 0.0034 0.0995 0.3933 0.7141 0.9038 0.9762 0.9956 0.9994 0.9999 1.0000

8 0.0007 0.0419 0.2441 0.5629 0.8180 0.9447 0.9876 0.9979 0.9998 1.0000

9 0.0001 0.0155 0.1354 0.4069 0.7002 0.8890 0.9697 0.9939 0.9991 0.9999

10 0.0000 0.0051 0.0672 0.2682 0.5605 0.8041 0.9356 0.9844 0.9973 0.9997

11 0.0000 0.0015 0.0299 0.1608 0.4161 0.6913 0.8785 0.9648 0.9926 0.9989

12 0.0000 0.0004 0.0120 0.0875 0.2849 0.5594 0.7947 0.9291 0.9821 0.9968

13 0.0000 0.0001 0.0043 0.0432 0.1791 0.4228 0.6857 0.8715 0.9614 0.9917

14 0.0000 0.0000 0.0014 0.0194 0.1032 0.2968 0.5592 0.7888 0.9249 0.9808

15 0.0000 0.0000 0.0004 0.0079 0.0544 0.1926 0.4279 0.6826 0.8674 0.9597

16 0.0000 0.0000 0.0001 0.0029 0.0262 0.1151 0.3054 0.5598 0.7858 0.9231

17 0.0000 0.0000 0.0000 0.0010 0.0116 0.0633 0.2022 0.4319 0.6815 0.8659

18 0.0000 0.0000 0.0000 0.0003 0.0047 0.0320 0.1239 0.3115 0.5609 0.7852

19 0.0000 0.0000 0.0000 0.0001 0.0017 0.0148 0.0699 0.2089 0.4349 0.6821

20 0.0000 0.0000 0.0000 0.0000 0.0006 0.0063 0.0363 0.1298 0.3156 0.5627

21 0.0000 0.0000 0.0000 0.0000 0.0002 0.0024 0.0173 0.0744 0.2130 0.4373

22 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0075 0.0392 0.1331 0.3179

23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0030 0.0189 0.0767 0.2148

(continued)
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011 0.0083 0.0405 0.1341

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0034 0.0196 0.0769

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0086 0.0403

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0034 0.0192

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012 0.0083

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0032

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0011

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⋮ . . . remaining terms¼ 0.0000 . . .

40

45 1 0.9006 0.9913 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.6650 0.9476 0.9940 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0.3923 0.8410 0.9735 0.9968 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000

4 0.1866 0.6711 0.9215 0.9871 0.9984 0.9999 1.0000 1.0000 1.0000 1.0000

5 0.0729 0.4729 0.8252 0.9618 0.9941 0.9993 0.9999 1.0000 1.0000 1.0000

6 0.0239 0.2923 0.6858 0.9098 0.9821 0.9974 0.9997 1.0000 1.0000 1.0000

7 0.0066 0.1585 0.5218 0.8232 0.9554 0.9920 0.9990 0.9999 1.0000 1.0000

8 0.0016 0.0757 0.3606 0.7025 0.9059 0.9791 0.9967 0.9996 1.0000 1.0000

9 0.0003 0.0320 0.2255 0.5593 0.8275 0.9529 0.9909 0.9988 0.9999 1.0000

10 0.0001 0.0120 0.1274 0.4120 0.7200 0.9066 0.9780 0.9964 0.9996 1.0000

11 0.0000 0.0040 0.0651 0.2795 0.5911 0.8353 0.9531 0.9906 0.9987 0.9999

12 0.0000 0.0012 0.0302 0.1741 0.4543 0.7380 0.9104 0.9784 0.9964 0.9996

13 0.0000 0.0003 0.0127 0.0995 0.3252 0.6198 0.8453 0.9554 0.9910 0.9988

14 0.0000 0.0001 0.0048 0.0521 0.2159 0.4912 0.7563 0.9164 0.9799 0.9967

15 0.0000 0.0000 0.0017 0.0250 0.1327 0.3653 0.6467 0.8570 0.9591 0.9920

16 0.0000 0.0000 0.0005 0.0110 0.0753 0.2538 0.5248 0.7751 0.9238 0.9822

17 0.0000 0.0000 0.0002 0.0044 0.0395 0.1642 0.4017 0.6728 0.8698 0.9638

18 0.0000 0.0000 0.0000 0.0017 0.0191 0.0986 0.2887 0.5564 0.7944 0.9324

19 0.0000 0.0000 0.0000 0.0006 0.0085 0.0549 0.1940 0.4357 0.6985 0.8837

20 0.0000 0.0000 0.0000 0.0002 0.0035 0.0283 0.1215 0.3214 0.5869 0.8144

21 0.0000 0.0000 0.0000 0.0001 0.0013 0.0135 0.0708 0.2223 0.4682 0.7243

22 0.0000 0.0000 0.0000 0.0000 0.0005 0.0060 0.0382 0.1436 0.3526 0.6170

23 0.0000 0.0000 0.0000 0.0000 0.0001 0.0024 0.0191 0.0865 0.2494 0.5000

24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0089 0.0483 0.1650 0.3830

25 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0038 0.0250 0.1017 0.2757

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0015 0.0120 0.0582 0.1856

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0053 0.0308 0.1163

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0021 0.0150 0.0676

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0008 0.0068 0.0362

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0028 0.0178

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0010 0.0080

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004 0.0033

33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0012

34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0004

35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⋮ . . . remaining terms¼ 0.0000 . . .

45
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(continued)

P

n x 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

50 1 0.9231 0.9948 0.9997 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 0.7206 0.9662 0.9971 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

3 0.4595 0.8883 0.9858 0.9987 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000

4 0.2396 0.7497 0.9540 0.9943 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000

5 0.1036 0.5688 0.8879 0.9815 0.9979 0.9998 1.0000 1.0000 1.0000 1.0000

6 0.0378 0.3839 0.7806 0.9520 0.9930 0.9993 0.9999 1.0000 1.0000 1.0000

7 0.0118 0.2298 0.6387 0.8966 0.9806 0.9975 0.9998 1.0000 1.0000 1.0000

8 0.0032 0.1221 0.4812 0.8096 0.9547 0.9927 0.9992 0.9999 1.0000 1.0000

9 0.0008 0.0579 0.3319 0.6927 0.9084 0.9817 0.9975 0.9998 1.0000 1.0000

10 0.0002 0.0245 0.2089 0.5563 0.8363 0.9598 0.9933 0.9992 0.9999 1.0000

11 0.0000 0.0094 0.1199 0.4164 0.7378 0.9211 0.9840 0.9978 0.9998 1.0000

12 0.0000 0.0032 0.0628 0.2893 0.6184 0.8610 0.9658 0.9943 0.9994 1.0000

13 0.0000 0.0010 0.0301 0.1861 0.4890 0.7771 0.9339 0.9867 0.9982 0.9998

14 0.0000 0.0003 0.0132 0.1106 0.3630 0.6721 0.8837 0.9720 0.9955 0.9995

15 0.0000 0.0001 0.0053 0.0607 0.2519 0.5532 0.8122 0.9460 0.9896 0.9987

16 0.0000 0.0000 0.0019 0.0308 0.1631 0.4308 0.7199 0.9045 0.9780 0.9967

17 0.0000 0.0000 0.0007 0.0144 0.0983 0.3161 0.6111 0.8439 0.9573 0.9923

18 0.0000 0.0000 0.0002 0.0063 0.0551 0.2178 0.4940 0.7631 0.9235 0.9836

19 0.0000 0.0000 0.0001 0.0025 0.0287 0.1406 0.3784 0.6644 0.8727 0.9675

20 0.0000 0.0000 0.0000 0.0009 0.0139 0.0848 0.2736 0.5535 0.8026 0.9405

21 0.0000 0.0000 0.0000 0.0003 0.0063 0.0478 0.1861 0.4390 0.7138 0.8987

22 0.0000 0.0000 0.0000 0.0001 0.0026 0.0251 0.1187 0.3299 0.6100 0.8389

23 0.0000 0.0000 0.0000 0.0000 0.0010 0.0123 0.0710 0.2340 0.4981 0.7601

24 0.0000 0.0000 0.0000 0.0000 0.0004 0.0056 0.0396 0.1562 0.3866 0.6641

25 0.0000 0.0000 0.0000 0.0000 0.0001 0.0024 0.0207 0.0978 0.2840 0.5561

26 0.0000 0.0000 0.0000 0.0000 0.0000 0.0009 0.0100 0.0573 0.1966 0.4439

27 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0045 0.0314 0.1279 0.3359

28 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0019 0.0160 0.0780 0.2399

29 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0007 0.0076 0.0444 0.1611

30 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0034 0.0235 0.1013

31 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0014 0.0116 0.0595

32 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 0.0053 0.0325

33 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002 0.0022 0.0164

34 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0009 0.0077

35 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0033

36 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0013

37 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005

38 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002

39 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

⋮ . . . remaining terms¼ 0.0000 . . .

50
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Table C: Percentage Points of the Chi-squared Distribution

Values of Chi-squared in Terms of Upper Tail Probability and Degrees of Freedom v
The table gives values χν,p

2 such that a chi-squared variable with ν degrees of

freedom exceeds χν,p
2 with probability p, i.e., P χ2ν > χ2ν, p

h i
¼ p:

v\p 0.1 0.05 0.025 0.01 0.005 0.001 0.0005 0.0001

1 2.7055 3.8415 5.0239 6.6349 7.8794 10.828 12.116 15.137

2 4.6052 5.9915 7.3778 9.2103 10.5966 13.816 15.202 18.421

3 6.2514 7.8147 9.3484 11.3449 12.8382 16.266 17.730 21.108

4 7.7794 9.4877 11.1433 13.2767 14.8603 18.467 19.997 23.513

5 9.2364 11.0705 12.8325 15.0863 16.7496 20.515 22.105 25.745

6 10.6446 12.5916 14.4494 16.8119 18.5476 22.458 24.103 27.856

7 12.0170 14.0671 16.0128 18.4753 20.2777 24.322 26.018 29.878

8 13.3616 15.5073 17.5345 20.0902 21.9550 26.124 27.868 31.828

9 14.6837 16.9190 19.0228 21.6660 23.5894 27.877 29.666 33.720

10 15.9872 18.3070 20.4832 23.2093 25.1882 29.588 31.420 35.564

11 17.2750 19.6751 21.9200 24.7250 26.7568 31.264 33.137 37.367

12 18.5493 21.0261 23.3367 26.2170 28.2995 32.909 34.821 39.134

13 19.8119 22.3620 24.7356 27.6882 29.8195 34.528 36.478 40.871

14 21.0641 23.6848 26.1189 29.1412 31.3193 36.123 38.109 42.579

15 22.3071 24.9958 27.4884 30.5779 32.8013 37.697 39.719 44.263

16 23.5418 26.2962 28.8454 31.9999 34.2672 39.252 41.308 45.925

17 24.7690 27.5871 30.1910 33.4087 35.7185 40.790 42.879 47.566

18 25.9894 28.8693 31.5264 34.8053 37.1565 42.312 44.434 49.189

19 27.2036 30.1435 32.8523 36.1909 38.5823 43.820 45.973 50.795

20 28.4120 31.4104 34.1696 37.5662 39.9968 45.315 47.498 52.386

21 29.6151 32.6706 35.4789 38.9322 41.4011 46.797 49.011 53.962

22 30.8133 33.9244 36.7807 40.2894 42.7957 48.268 50.511 55.525

23 32.0069 35.1725 38.0756 41.6384 44.1813 49.728 52.000 57.075

24 33.1962 36.4150 39.3641 42.9798 45.5585 51.179 53.479 58.613

25 34.3816 37.6525 40.6465 44.3141 46.9279 52.620 54.947 60.140

26 35.5632 38.8851 41.9232 45.6417 48.2899 54.052 56.407 61.657

27 36.7412 40.1133 43.1945 46.9629 49.6449 55.476 57.858 63.164

28 37.9159 41.3371 44.4608 48.2782 50.9934 56.892 59.300 64.662

29 39.0875 42.5570 45.7223 49.5879 52.3356 58.301 60.735 66.152

30 40.2560 43.7730 46.9792 50.8922 53.6720 59.703 62.162 67.633

40 51.8051 55.7585 59.3417 63.6907 66.7660 73.402 76.095 82.062

50 63.1671 67.5048 71.4202 76.1539 79.4900 86.661 89.561 95.969

60 74.3970 79.0819 83.2977 88.3794 91.9517 99.607 102.695 109.503

70 85.5270 90.5312 95.0232 100.425 104.215 112.317 115.578 122.755

80 96.5782 101.879 106.629 112.329 116.321 124.839 128.261 135.783

90 107.565 113.145 118.136 124.116 128.299 137.208 140.782 148.627

100 118.498 124.342 129.561 135.807 140.169 149.449 153.167 161.319
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Table D: Critical Values of the Durbin-Watson Statistic

Let ri denote the residuals from a linear model with k explanatory factors (excluding
the constant term). The Durbin-Watson statistic is

d ¼
Xn
i¼2

ri � ri�1ð Þ2
�Xn

i¼1

r2i :

To test the null hypothesis of zero serial correlation against an alternative of

positive serial correlation, reject H0 at one-sided level α¼ 0.05 if d< dL given in

the table. If d> dU, conclude that d is not significant and do not reject H0. If

dL< d< dU, the test is deemed inconclusive.

To test H0 against an alternative of negative serial correlation, use the statistic

(4� d) in place of d.
For a two-tailed test ofH0 against serial correlation of any sign, reject H0 at level

α¼ 0.10 if either d< dL or 4� d< dL. If d> dU and 4� d> dU, conclude d is not

significant. Otherwise the test is deemed inconclusive.

Source:
J. Durbin and G.S. Watson, Testing for serial correlation in least squares regres-
sion 11, 38 Biometrika. 159–178 (1951).

n

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5

dL dU dL dU dL dU dL dU dL dU

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

(continued)
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(continued)

n

k¼ 1 k¼ 2 k¼ 3 k¼ 4 k¼ 5

dL dU dL dU dL dU dL dU dL dU

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

Table E: Percentage Points of the t Distribution

The table gives values tv, p such that a Student t variable with v degrees of freedom
exceeds tv, p in absolute value with probability p, i.e., P[|t|> tv, p]¼ p. The tail area
probability in a single tail equals p/2.

Source:
Reprinted by permission from Biometrika Tables for Statisticians, Volume I by
E.S. Pearson and H.O. Hartley. Copyright 1954 Cambridge University Press,

Cambridge, England.
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v\p 0.800 0.500 0.200 0.100 0.050 0.020 0.010 0.005 0.002 0.001

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.321 318.309 636.619

2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.599

3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.215 12.924

4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610

5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959

7 0.263 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408

8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041

9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437

12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318

13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140

15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015

17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965

18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922

19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883

20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819

22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792

23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.768

24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745

25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707

27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690

28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674

29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659

30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646

40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551

60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373

1 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291
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Table F: Percentage Points of the F Distribution

P F > Fν1,ν2; p

	 
 ¼ p

The tables give values Fν1,ν2; p such that an F variable with v1 and v2 degrees of

freedom exceeds Fν1,ν2; p with probability p, i.e., P F > Fν1,ν2; p

	 
 ¼ p: The first

table gives critical values for p¼ 0.05, the next table gives critical values for

p¼ 0.01.

Source:
Reprinted by permission from Biometrika Tables for Statisticians, Volume I by
E.S. Pearson and H.O. Hartley. Copyright 1954 Cambridge University Press,

Cambridge, England.

numerator df

v2\v1 1 2 3 4 5 6 8 12 15 20 30 60 1
1 161.45 199.50 215.71 224.58 230.16 233.99 238.88 243.91 245.95 248.01 250.10 252.20 254.31

2 18.51 19.00 19.16 19.25 19.30 19.33 19.37 19.41 19.43 19.45 19.46 19.48 19.50

3 10.13 9.55 9.28 9.12 9.01 8.94 8.85 8.74 8.70 8.66 8.62 8.57 8.53

4 7.71 6.94 6.59 6.39 6.26 6.16 6.04 5.91 5.86 5.80 5.75 5.69 5.63

5 6.61 5.79 5.41 5.19 5.05 4.95 4.82 4.68 4.62 4.56 4.50 4.43 4.36

6 5.99 5.14 4.76 4.53 4.39 4.28 4.15 4.00 3.94 3.87 3.81 3.74 3.67

7 5.59 4.74 4.35 4.12 3.97 3.87 3.73 3.57 3.51 3.44 3.38 3.30 3.23

8 5.32 4.46 4.07 3.84 3.69 3.58 3.44 3.28 3.22 3.15 3.08 3.01 2.93

9 5.12 4.26 3.86 3.63 3.48 3.37 3.23 3.07 3.01 2.94 2.86 2.79 2.71

10 4.96 4.10 3.71 3.48 3.33 3.22 3.07 2.91 2.85 2.77 2.70 2.62 2.54

11 4.84 3.98 3.59 3.36 3.20 3.09 2.95 2.79 2.72 2.65 2.57 2.49 2.40

12 4.75 3.89 3.49 3.26 3.11 3.00 2.85 2.69 2.62 2.54 2.47 2.38 2.30

13 4.67 3.81 3.41 3.18 3.03 2.92 2.77 2.60 2.53 2.46 2.38 2.30 2.21

14 4.60 3.74 3.34 3.11 2.96 2.85 2.70 2.53 2.46 2.39 2.31 2.22 2.13

15 4.54 3.68 3.29 3.06 2.90 2.79 2.64 2.48 2.40 2.33 2.25 2.16 2.07

16 4.49 3.63 3.24 3.01 2.85 2.74 2.59 2.42 2.35 2.28 2.19 2.11 2.01

17 4.45 3.59 3.20 2.96 2.81 2.70 2.55 2.38 2.31 2.23 2.15 2.06 1.96

18 4.41 3.55 3.16 2.93 2.77 2.66 2.51 2.34 2.27 2.19 2.11 2.02 1.92

19 4.38 3.52 3.13 2.90 2.74 2.63 2.48 2.31 2.23 2.16 2.07 1.98 1.88

20 4.35 3.49 3.10 2.87 2.71 2.60 2.45 2.28 2.20 2.12 2.04 1.95 1.84

21 4.32 3.47 3.07 2.84 2.68 2.57 2.42 2.25 2.18 2.10 2.01 1.92 1.81

22 4.30 3.44 3.05 2.82 2.66 2.55 2.40 2.23 2.15 2.07 1.98 1.89 1.78

23 4.28 3.42 3.03 2.80 2.64 2.53 2.37 2.20 2.13 2.05 1.96 1.86 1.76

24 4.26 3.40 3.01 2.78 2.62 2.51 2.36 2.18 2.11 2.03 1.94 1.84 1.73

25 4.24 3.39 2.99 2.76 2.60 2.49 2.34 2.16 2.09 2.01 1.92 1.82 1.71

26 4.23 3.37 2.98 2.74 2.59 2.47 2.32 2.15 2.07 1.99 1.90 1.80 1.69

27 4.21 3.35 2.96 2.73 2.57 2.46 2.31 2.13 2.06 1.97 1.88 1.79 1.67

28 4.20 3.34 2.95 2.71 2.56 2.45 2.29 2.12 2.04 1.96 1.87 1.77 1.65

29 4.18 3.33 2.93 2.70 2.55 2.43 2.28 2.10 2.03 1.94 1.85 1.75 1.64

30 4.17 3.32 2.92 2.69 2.53 2.42 2.27 2.09 2.01 1.93 1.84 1.74 1.62

40 4.08 3.23 2.84 2.61 2.45 2.34 2.18 2.00 1.92 1.84 1.74 1.64 1.51

60 4.00 3.15 2.76 2.53 2.37 2.25 2.10 1.92 1.84 1.75 1.65 1.53 1.39

120 3.92 3.07 2.68 2.45 2.29 2.18 2.02 1.83 1.75 1.66 1.55 1.43 1.25

1 3.84 3.00 2.60 2.37 2.21 2.10 1.94 1.75 1.67 1.57 1.46 1.32 1.00
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Table F: Percentage Points of the F Distribution P F > Fν1,ν2;0:01

	 
 ¼ 0:01

numerator df

v2\v1 1 2 3 4 5 6 8 12 15 20 30 60 ∞

1 4052.18 4999.50 5403.35 5624.58 5763.65 5858.99 5981.07 6106.32 6157.28 6208.73 6260.65 6313.03 6365.86

2 98.50 99.00 99.17 99.25 99.30 99.33 99.37 99.42 99.43 99.45 99.47 99.48 99.50

3 34.12 30.82 29.46 28.71 28.24 27.91 27.49 27.05 26.87 26.69 26.50 26.32 26.13

4 21.20 18.00 16.69 15.98 15.52 15.21 14.80 14.37 14.20 14.02 13.84 13.65 13.46

5 16.26 13.27 12.06 11.39 10.97 10.67 10.29 9.89 9.72 9.55 9.38 9.20 9.02

6 13.75 10.92 9.78 9.15 8.75 8.47 8.10 7.72 7.56 7.40 7.23 7.06 6.88

7 12.25 9.55 8.45 7.85 7.46 7.19 6.84 6.47 6.31 6.16 5.99 5.82 5.65

8 11.26 8.65 7.59 7.01 6.63 6.37 6.03 5.67 5.52 5.36 5.20 5.03 4.86

9 10.56 8.02 6.99 6.42 6.06 5.80 5.47 5.11 4.96 4.81 4.65 4.48 4.31

10 10.04 7.56 6.55 5.99 5.64 5.39 5.06 4.71 4.56 4.41 4.25 4.08 3.91

11 9.65 7.21 6.22 5.67 5.32 5.07 4.74 4.40 4.25 4.10 3.94 3.78 3.60

12 9.33 6.93 5.95 5.41 5.06 4.82 4.50 4.16 4.01 3.86 3.70 3.54 3.36

13 9.07 6.70 5.74 5.21 4.86 4.62 4.30 3.96 3.82 3.66 3.51 3.34 3.17

14 8.86 6.51 5.56 5.04 4.69 4.46 4.14 3.80 3.66 3.51 3.35 3.18 3.00

15 8.68 6.36 5.42 4.89 4.56 4.32 4.00 3.67 3.52 3.37 3.21 3.05 2.87

16 8.53 6.23 5.29 4.77 4.44 4.20 3.89 3.55 3.41 3.26 3.10 2.93 2.75

17 8.40 6.11 5.18 4.67 4.34 4.10 3.79 3.46 3.31 3.16 3.00 2.83 2.65

18 8.29 6.01 5.09 4.58 4.25 4.01 3.71 3.37 3.23 3.08 2.92 2.75 2.57

19 8.18 5.93 5.01 4.50 4.17 3.94 3.63 3.30 3.15 3.00 2.84 2.67 2.49

20 8.10 5.85 4.94 4.43 4.10 3.87 3.56 3.23 3.09 2.94 2.78 2.61 2.42

21 8.02 5.78 4.87 4.37 4.04 3.81 3.51 3.17 3.03 2.88 2.72 2.55 2.36

22 7.95 5.72 4.82 4.31 3.99 3.76 3.45 3.12 2.98 2.83 2.67 2.50 2.31

23 7.88 5.66 4.76 4.26 3.94 3.71 3.41 3.07 2.93 2.78 2.62 2.45 2.26

24 7.82 5.61 4.72 4.22 3.90 3.67 3.36 3.03 2.89 2.74 2.58 2.40 2.21

25 7.77 5.57 4.68 4.18 3.85 3.63 3.32 2.99 2.85 2.70 2.54 2.36 2.17

26 7.72 5.53 4.64 4.14 3.82 3.59 3.29 2.96 2.81 2.66 2.50 2.33 2.13

27 7.68 5.49 4.60 4.11 3.78 3.56 3.26 2.93 2.78 2.63 2.47 2.29 2.10

28 7.64 5.45 4.57 4.07 3.75 3.53 3.23 2.90 2.75 2.60 2.44 2.26 2.06

29 7.60 5.42 4.54 4.04 3.73 3.50 3.20 2.87 2.73 2.57 2.41 2.23 2.03

30 7.56 5.39 4.51 4.02 3.70 3.47 3.17 2.84 2.70 2.55 2.39 2.21 2.01

40 7.31 5.18 4.31 3.83 3.51 3.29 2.99 2.66 2.52 2.37 2.20 2.02 1.80

60 7.08 4.98 4.13 3.65 3.34 3.12 2.82 2.50 2.35 2.20 2.03 1.84 1.60

120 6.85 4.79 3.95 3.48 3.17 2.96 2.66 2.34 2.19 2.03 1.86 1.66 1.38

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.51 2.18 2.04 1.88 1.70 1.47 1.00
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Table G1: Critical Values of the Kolmogorov-Smirnov
One-Sample Test

A sample of size n is drawn from a population with cumulative distribution function

F(x). Let x(l), . . .,x(n) denote the sample values arranged in ascending order. Define

the empirical distribution function Fn(x) to be the step function Fn(x)¼ k/n for

x(i)	 x< x(i+1), where k is the number of observations not greater than x. Under the
null hypothesis that the sample has been drawn from the specified distribution,

Fn(x) should be fairly close to F(x). Define

Dn ¼ max
��Fn xð Þ � F xð Þ��:

For a two-tailed test this table gives critical values of the sampling distribution of

Dn under the null hypothesis. Reject the hypothetical distribution if Dn exceeds the

tabulated value. If n is over 35, determine the critical values of Dn by the divisions

indicated at the end of the table. For α¼ 0.01 and 0.05 the asymptotic formulas give

values which are slightly high—by 1.5% for n¼ 80.

A one-tailed test is provided by the statistic D+¼max[Fn(x)�F(x)].

Source:
Adapted with permission from Handbook of Tables for Probability and Statistics,
Table X.7 (Chemical Rubber Co., 2d ed., 1968).

Sample size Significance Level

N 0.20 0.15 0.10 0.05 0.01

1 0.900 0.925 0.950 0.975 0.995

2 0.684 0.726 0.776 0.842 0.929

3 0.565 0.597 0.642 0.708 0.829

4 0.494 0.525 0.564 0.624 0.734

5 0.446 0.474 0.510 0.563 0.669

6 0.410 0.436 0.470 0.521 0.618

7 0.381 0.405 0.438 0.486 0.577

8 0.358 0.381 0.411 0.457 0.543

9 0.339 0.360 0.388 0.432 0.514

10 0.322 0.342 0.368 0.409 0.486

11 0.307 0.326 0.352 0.391 0.468

12 0.295 0.313 0.338 0.375 0.450

13 0.284 0.302 0.325 0.361 0.433

14 0.274 0.292 0.314 0.349 0.418

15 0.266 0.283 0.304 0.338 0.404

16 0.258 0.274 0.295 0.328 0.391

17 0.250 0.266 0.286 0.318 0.380

18 0.244 0.259 0.278 0.309 0.370

19 0.237 0.252 0.272 0.301 0.361

(continued)

Appendix II: Tables 619



(continued)

Sample size Significance Level

20 0.231 0.246 0.264 0.294 0.352

25 0.21 0.22 0.24 0.264 0.32

30 0.19 0.20 0.22 0.242 0.29

35 0.18 0.19 0.21 0.23 0.27

40 0.21 0.25

50 0.19 0.23

60 0.17 0.21

70 0.16 0.19

80 0.15 0.18

90 0.14

100 0.14

Asymptotic Formula 1.07√n 1.14√n 1.22√n 1.36√n 1.63√n

Table G2: Critical Values of the Kolmogorov-Smirnov
Two-Sample Test

A sample of size n1 is drawn from a population with cumulative distribution

function F(x). Define the empirical distribution function Fn1(x) to be the step

function Fn1
(x)¼ k/n1, where k is the number of observations not greater than x.

A second, independent sample of size n2 is drawn with empirical distribution

function Fn2
(x). Under the null hypothesis that the samples have been drawn from

the same distribution, the statistic

Dn1,n2 ¼ max Fn1 xð Þ � Fn2 xð Þj j:
should not be too large. For a two-tailed test, this table gives critical values of the

sampling distribution of Dn1,n2 under the null hypothesis.

Reject the null hypothesis if Dn1,n2 exceeds the tabulated value.

For large values of n1 and n2, determine the critical values by the approximate

formulas indicated at the end of the table.

A one-tailed test is available using Dþ
n1,n2

¼ max Fn1 xð Þ � Fn2 xð Þ½ �.

Source:
Adapted with permission from Handbook of Tables for Probability and Statistics,

Table X.8 (Chemical Rubber Co., 2d ed., 1968).

Sample size n1
Sample

size n2 2 3 4 5 6 7 8 9 10 12 15

2 * * * * * 7/8 16/18 9/10

(continued)
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(continued)

Sample size n1
Sample

size n2 2 3 4 5 6 7 8 9 10 12 15

* * * * * * * *

3 * * 12/15 5/6 18/21 18/24 7/9 9/12

* * * * * * 8/9 11/12

4 3/4 16/20 9/12 21/28 6/8 27/36 14/20 8/12

* * 10/12 24/28 7/8 32/36 16/20 10/12

5 4/5 20/30 25/35 27/40 31/45 7/10 10/15

4/5 25/30 30/35 32/40 36/45 8/10 11/15

6 4/6 29/42 16/24 12/18 19/30 7/12

5/6 35/42 18/24 14/18 22/30 9/12

7 5/7 35/56 40/63 43/70

5/7 42/56 47/63 53/70

8 5/8 45/72 23/40 14/24

6/8 54/72 28/40 16/24

9 5/9 52/90 20/36

6/9 62/90 24/36

10 6/10 15/30

7/10 19/30

12 6/12 30/60

7/12 35/60

15 7/15

8/15

Note 1: The upper value gives a significance level at most 0.05; the lower value

gives a significance level at most 0.01.

Note 2: Where * appears, do not reject H0 at the given level.

Note 3: For large values of nl and n2, use the approximate critical value

c p � n�1
1 þ n�1

2

� �1=2
;

where the multiplier cp is given by

p 0.10 0.05 0.025 0.01 0.005 0.001

cp 1.22 1.36 1.48 1.63 1.73 1.95

Table H1: Critical Values of the Wilcoxon Signed Ranks Test

Let di¼ xi� yi denote the difference between scores in the ith of n matched pairs of

observations. Rank all the di without regard to sign, giving rank 1 to the smallest,

rank 2 to the next smallest, etc. Then affix the sign of difference di to each
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corresponding rank. Let W denote the smaller sum of like-signed ranks. This table

gives 1, 2, 5, and 10% two-sided critical values Wα for selected values of n. Reject
the null hypothesis of no difference between distributions of x and y for values of
W	Wα. For a one-sided test of level α/2, reject H0 only if W	Wα and

W corresponds to a sum of ranks of proper sign.

Source:
Adapted with permission from Handbook of Tables for Probability and Statistics,
Table X.2 (Chemical Rubber Co., 2d ed., 1968).

Two-sided α 0.10 0.05 0.02 0.01

(One-sided α) (0.05) (0.025) (0.01) (0.005)

n

5 1

6 2 1

7 4 2 0

8 6 4 2 0

9 8 6 3 2

10 11 8 5 3

11 14 11 7 5

12 17 14 10 7

13 21 17 13 10

14 26 21 16 13

15 30 25 20 16

16 36 30 24 19

17 41 35 28 23

18 47 40 33 28

19 54 46 38 32

20 60 52 43 37

21 68 59 49 43

22 75 66 56 49

23 83 73 62 55

24 92 81 69 61

25 101 90 77 68

26 110 98 85 76

27 120 107 93 84

28 130 117 102 92

29 141 127 111 100

30 152 137 120 109

31 163 148 130 118

32 175 159 141 128

33 188 171 151 138

34 201 183 162 149

35 214 195 174 160

(continued)
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(continued)

Two-sided α 0.10 0.05 0.02 0.01

(One-sided α) (0.05) (0.025) (0.01) (0.005)

n

36 228 208 186 171

37 242 222 198 183

38 256 235 211 195

39 271 250 224 208

40 287 264 238 221

41 303 279 252 234

42 319 295 267 248

43 336 311 281 262

44 353 327 297 277

45 371 344 313 292

46 389 361 329 307

47 408 379 345 323

48 427 397 362 339

49 446 415 380 356

50 466 434 398 373

Table H2: Critical Values of the Wilcoxon Rank-Sum Test

Given two samples of size m and n, with m	 n, let S be the sum of the ranks from

1, . . ., m + n corresponding to the smaller sample. Large or small values of S lead to
rejection of the null hypothesis that assignment of ranks between groups is at

random.

The table provides upper and lower critical values, SU and SL. For a two-sided

level α¼ 0.05 test, reject H0 if S> SU or S< SL. Do not reject H0 if SL	 S	 SU.
One-sided tests with these limits have level α¼ 0.025. Enter the table with m and

n�m� 0.

The relationship between the Mann-Whitney U-statistic and S is

U¼mn +½m(m + 1)� S.

Source:
Adapted with permission from Handbook of Tables for Probability and Statistics,
Table X.5 (Chemical Rubber Co., 2d ed, 1968).
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Glossary of Symbols

Unless otherwise noted, log(x) refers to the natural logarithm of x, equivalent to the
notation ln(x). Common logarithms (to base 10) are written log10(x). References are
to sections of first substantive use.

α 4.4

Β 4.4

βi 8.2

Γ 11.1

Δ 7.2

Δ 13.9

Δr 14.3

Θ 5.6

Θ̂ 5.6

θ(t) 11.1

Λ 4.9

μ 1.1

Ν 7.1

Π 2.1Q
4.2

Ρ 1.1

Σ 1.1

∑ 12.2

Τ 6.3

ϕ 4.3

Ф 12.1

χ2 5.6

Ω 4.5

A,B 3.3

Bin 4.2

Cdf 4.1

Cov 1.4
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introduced, 370

extraneous, 402

forms for

indicator or dummy, 400

interaction or cross-product, 456

lagged, 424, 439–441

logarithmic, 431–434

quadratic, 430–431

omitted, 400–402, 424–425

selection procedures for

forward selection, 398–399

Mallows’ Cp index, 399

stepwise selection, 399, 405–413

tainted, 402

Exponential distribution, 152–154, 336

kurtosis, 139

paint failure, 338

Extraneous variables, 402
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Extrapolation

to low doses, 350–353

in regression, 419n, 441–442

in time series, 7–11

distribution, 242

to solve for binomial confidence

limits, 173n

statistic in regression models, 395–397

test, in ANOVA, 243

Factorials, 47
Stirling’s approximation, 48–49

Failure of paint, time to, 338, 339

Fair cross section requirement See Juries
False positive or negative diagnosis, in

screening devices, 85–86

rate, in screening devices, 85–86, 485

Federal judges, sentencing by, 364–366

Federal Reserve Bank of Richmond,

discrimination by, 170–171

Federal Trade Commission, U.S., 18, 34

Fibers, telltale, 72

Filiation proceeding, 83–85

Fisher’s

exact test, 159–161, 560

method for combining the evidence,

251–253, 581

rejected for small samples, 559

observed information, 200

Fixed effects models, 264

Fleiss quadratic confidence intervals, 176

Fluctuation theory, 57–59

Folded log (flog), 432

Food and Drug Administration, U.S., 312

Forged signatures, 213–215

Formaldehyde gas, cancer risk

from, 353–355

Forward selection for regression models, 398

Foundations of probability, 98–100

Four (4)–R Act, 11–13

Four-fifths rule, 41, 220–221

Fourfold tables, 159–161, 165–166

Fourteenth Amendment, 25

Frankfurter, Justice, rejecting a venire as

improbable, 108

Fraud on the market, damages for, 448–450

French conscripts, heights of, 142–143

Fuels, new See Automobile emissions

Full information technique, 477

Futures contracts, price changes in, 143–145

Galton, Sir Francis, 371–374

Gamma distribution See Distribution

Gamma function, 157, 336

Gartside model, 460–462

Gaudette–Keeping study, 74

Gauss, Carl Friedrich, 117

Gaussian distribution See Normal distribution

Generalized likelihood ratio statistic, 180,

200–202, 485, 522

Geometric distribution, 152, 336

Geometric mean, 6

Goodness-of-fit statistic

chi-squared as, 207–217

logistic models (G2), 202, 485

regression models (R2), 390–391, 579

Grand jury selection See Discrimination,

jury selection

Guillain–Barré syndrome, swine flu and,

323–326

Hair evidence, 73–76

Hairs, telltale, 73–76

Harmonic (reciprocal) mean, 6, 18, 510

Hazard function, 334–336

in proportional hazards model, 342–346

Head Start program, 374–376

Heart disease, 34, 41

Heights of parents and sons, 371–374

Herfindahl index of concentration, 55, 56

Heroin swallower, sentencing of, 93–95

Heteroscedasticity, 425–426, 428

Hiring lawyers, 257

Histogram, 12, 102

HLA See Human Leukocyte Antigen tests

Holm step-down procedure for multiple

comparisons, 219

Homogeneity hypotheses

of k proportions, 207
of two proportions, 159–162

Homoscedasticity, 425

Hospital intensive care units, deaths in,

150–151

Hospitals, disproportionate share, 14

House sidings, time to failure of paint, 338

Howland Will, 213–215

Human Leukocyte Antigen (HLA) tests, 83

Hydroelectric generating facility, 15

Hypergeometric distribution, 101, 126–138

in accountants’ audits, 130

invalid votes in challenged elections, 131

mean, 128

non-central, 129–130

normal approximation, 129

origin of name, 130

sampling from a finite population, 126–127
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Hypergeometric distribution (cont.)
test, rejected by court, 171

variance, 128

Hypotheses, independence and homogeneity,

159–160

Hypothesis testing See Tests

Identification evidence

fibers, 72, 77

hair, 73–76

interracial couple, 66–69

the name “Crosset”, 180–181

Idiopathic pulmonary fibrosis, 222

Impartial jury, definition of, 211

Income distributions, 4, 37, 432

Independence

in DNA profiles, 70–72

of events, 66

hypothesis, 159–160

Independent censoring, See Censoring

Independent samples, Student’s t-test for, 233
Independent studies, 252

in meta-analysis, 262–270

Indeterminacy in regression, measures of,

387–393

Indicator (dummy) variables, 400

Influential data points, 380

high leverage points, 380

outliers, 379

Information, observed, 200

Infringing sales, 444–445

Insurance payments to doctors, 290

Interaction terms, 456–462

Interactive regression models, 456–462

cautions for use of, 459

Interquartile range, 25

Interracial couple as identification

evidence, 66–69

Intersections of events, 65

Intrauterine device (IUD), 312–314

Invariance of odds ratio, 40

Invertibility of odds ratio, 40

Jackknife, 503–507
Job variables, 406

Juries

binomial model of voting by, 110–113

size optimization, 111

Sixth, Seventh, and Fourteenth

Amendments, 111

small and nonunanimous, 110–113

Jurors

biased against capital punishment, 209–211

knowledge of prior record, 138

Poisson’s model of, 112

voir dire of, 236–237

women excluded as, 211–212

Jury decision models

conviction errors estimation, 110–113

Jury lists

fair cross-section requirement,

113–114, 211

Jury selection

binomial model for, 108, 213

discrimination see Discrimination

Justice, U.S. Dep’t of, 55–57

Kaplan–Meier estimators, 334

Kolmogorov–Smirnov test, 140–141, 207

of normality, 139

of whether two empirical distributions have

the same parent, 141

Kurtosis, 139

Lancaster’s correction for discreteness, 252

Laplace, Pierre Simon de, 117

Laspeyres index, 16

Law of large numbers, 3n, 24

Least squares estimation, 118, 378–379

Leukemia

from drinking water, in Woburn, 55,

346–349

from ionizing radiation, 304–307

paternal irradiation and, 318–323

Leverage, from influential data points, 380

Lie detector tests, 90–91

Life table, 333

Likelihood

function, 199

partial, 343

ratio, 80, 97, 99–100, 124, 175, 200–202,

526, 528, 547–548 see also
Generalized likelihood ratio statistic

Limited information technique, 477

Listwise deletion, 403

Locally weighted regression, 466–469

Log-likelihood

differences of, 485

function, 199

ratio statistic, 200–202, 485

Log–log paper, 336, 338

Log odds ratio, 482–485

common, in several fourfold tables, 253,

254, 487

symmetrical distribution of, 483

Log(1 + x) transformation, 432
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Logarithmic regression models, 431–434,

454, 477–478

Logarithmic transformations, 430

Logistic

distribution, 484

transformation, 483

Logit models, 482–496

Low doses, extrapolation to, 350–351

Mail order survey, 281–283

Mallows’ Cp index, 399

Mann–Whitney U statistic, 362

Mantel–Haenszel method

age discrimination, 258

combining the evidence, 247–262, 344, 345

generalized, 255

hiring discrimination, 257

matched pairs, 250–251

proportional hazards model, 344, 345

Robins, Greenland, Breslow variance

formula, 254

Marcos, Ferdinand E., 185

Market concentration, measurement of, 55–57

Marriage and remarriage, probability of, 338

Matched-pairs study, Mantel–Haenszel

method applied to, 250

Maximum likelihood estimation, 198–205

in binomial samples, 199, 379n

in logistic regression, 485

in multistage models, 354

in OLS regression, 379

in proportional hazards model, 343–344

McNemar’s test, 250

Mean, 2–3

absolute deviation, 25

arithmetic, 3

arithmetic vs. geometric, 15

comparing several, 241–246

geometric, 6

harmonic (reciprocal), 6, 18, 510

Laspeyres index, 16

lettuce, prices of, 16–17

and median, 4–5

and mode, 4–5

Paasche index, 16n

trimmed, 5

weighted and unweighted, 5, 15

Mean square, 389

regression, 389

residual, 389

Mean squared contingency, 224–226

Mean squared error of prediction, 418

Measures of

association, 30–34, 224–226

central location, 2–20

correlation, 30–38

dispersion, 20–30

Median, 4–5

nonparametric test for, 357–359

sensitivity to outliers, 14

Medicaid, 14

Merger guidelines, 55–57

Meta-analysis, 262–270

Fixed effects, 264

Random effects, 265

Mexican-Americans, 121–122

Microwaves and cancer, 202–203

Midparent height, 371n, 371–373

Missing data, 282, 403–404

Misspecification, consequences of, 400,

401, 425

Mode, 4–5

Monte Carlo methods, 92–97

Mortality tables, 337

Mortgage lending discrimination, 485–486

Multi-hit model, 352–353

Multi-member electoral districts, 25

Multi-stage model, 350–352

Multicollinearity, 395

tolerance, 405

Multinomial

coefficient, 48

distribution, 107

Multiple comparisons, 207–217

and Bonferroni’s inequality, 217–223,

243, 245, 251n

collapsing contingency tables, 208

and Holm’s procedure, 219

with many outcome measures, 211–212

of proportions, 207–229

Scheffe’s method, 243–245

Multiple correlation coefficient, squared,

390–391

Multiple regression See Regression
Multiple tests of significance See Multiple

comparisons

Murder supply function, 477–479

Musical performances, surveys by ASCAP of,

287–288

Native-Americans, parole of, 221

Negative binomial

distribution, see Distribution regression,

499, 595–596

Negative predictive value, 86, 507

Network TV affiliations, 154–155
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Neurontin off-label marketing, 479

New York Stock Exchange, 426, 453

Newton, Sir Isaac, 29

Nitrous oxide emissions, 235–236

No-fault insurance, 280

Non-intoxicating beer, 45

Non-linear regression models, 412, 431

Non-response, use of covariates, 282, 403

Non-significant findings, power and, 187–193

Nonparametric methods, 357–367

coincidences in signature pairs, 554

Nonresponse and missing data in samples,

282–283

Nonsampling variability, 275–276

Normal distribution, 103, 116–117

cumulative distribution function, 103,

141–142

Kolmogorov-Smirnoff test for, 139–141

kurtosis, effect of positive, 139

price change data, 144–145

probability graph paper, 140

skewness, effect of, 139

tail areas as approximation for

binomial tail areas, 118–119

hypergeometric tail areas, 127

Poisson tail areas, 146–147

tests of normality, 139–145

Normal equations in OLS estimation, 378

Normal variable See Normal distribution

North Slope oil, 381–382

Nuclear accident, 459–462

Nuisance parameters, 161

Null hypothesis, 123–125

Nurse-associated clusters of deaths, 150–151

Objective probability, 98

Occam’s razor, 161

Occupancy problems, 49

Occupational Safety and Health Act, 350

Odds, 39

Odds ratio (and log odds ratio), 39–41,

482–485

Bendectin and birth defects, 267–268

contaminated wells and leukemia,

346–349

Dalkon Shield and pelvic inflammatory

disease, 312–314

Mantel–Haenszel estimate of, 253–254

preconception paternal irradiation and

leukemia, 318–323

race and mortgage lending, 485

race of victim and death penalty, 486–495

relative risk and, 300

silicone breast implants and connective

tissue disease, 326–331

OLS See Ordinary least squares estimates

Omitted variables, 400–402, 424–425

Omnibus test See Chi-squared
One-hit model, 352

One-person, one-vote principle, 53–54

One-tailed test, 123–125

rejected by court, 171

Operating characteristics of screening

devices, 87

Options exchange specialists, 168

Ordinary least squares (OLS) estimates, 377–379

OSHA rules for carcinogens, 188

Outliers, 25, 379

Overdispersion, 500

Over-optimism of regression predictions,

503–504

Over-the-counter stocks, 445–447

P-value, 92, 122, 138, 155, 179–180, 196,
201–202, 219, 245, 252, 263, 321,

334, 398, 486, 533–534, 559, 569,

570

defined, 123–125

Lancaster’s correction, 252

mid-p correction, 125, 138

one-tailed and two-tailed, 179

point-probability method, 124, 179, 201,

534, 569

works assuredly, 125, 138

Paasche index, 16n

Pain and suffering, damages for, 27–28

Paired Difference test, 192, 235–236

Paired observations, ranks in, 360–361

Paired samples, Student’s t-test, 232
Pairwise deletion, 404

Parameters, 1

Parking meter theft, 7–11

Parole

discretionary, 221

Salient Factor Score, 227–228

Partial correlation, 405

Partial likelihood, 343

Paternal irradiation, 318–323

Paternity probabilities, 81

Path (standardized regression) coefficients, 378

Paths, behavior of, 57

Pearson’s

chi-squared statistic, 162–167

product moment correlation, 31

Peirce, Benjamin, 213–215

Peirce, Charles Sanders, 213
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Pelvic inflammatory disease, 312

Peremptory challenges, of jurors, 203–205

Permutations, 47

Person-years, 306, 335

Petrocoal, 193, 236

Phi-coefficient, phi-squared, 224

Poisson distribution, 102, 145–152

accident proneness of drivers, 150

calculation formula for tail areas, 536

compound, 147–148

conditioning property of, 146

deaths of cult members, 149

as limit of binomial, 145

mean, 146

normal approximation, 146

overdispersion, 500

process, 146–148, 352

variance, 146

Polygraph tests, 90–91

Pooled data See Aggregated data

Population parameter, 1 See also Sampling

Population frequency statistics, 75

Port Authority of New York and New

Jersey, 195

Positive predictive value (PPV), 86–87

Post-hoc comparisons, 208–209

Bonferroni’s method, 217–219

parole, 555

Scheffé’s method, 243–245

wage additives, 220–221

Posterior

odds, 80

probabilities, 81

Power

Bendectin as teratogen, 191–192

curves, 330

death penalty for rape, 189–191,

544–545

function, 187

in hypothesis testing, 187–193

independent studies, 252, 264

one-sample binomial, 545

OSHA’s rule, 188

sample size required, 188, 546

silicone breast implant studies, 330

of tests, 123, 125, 161

z-score test and, 188–189
Precision, of samples, 23, 288, 565

Prediction intervals, 418–424

Predictive values in screening devices,

86–87

Prevalence of disease, 301n, 302

Preventive detention, 226–229

Price change data

of corrugated containers, 441–442

geometric mean, measure of, 15–17

of lettuce, 16–17

nonnormal distribution of, 93

normal distribution of, 143–145

of silver butterfly straddles, 143–145

of stocks, 445–447

Prior

odds, 80

in Polish paternity cases, 81

probabilities, 81

Probability

axiomatic, 99

density function, 103

foundations of, 98–100

fundamentals of calculation, 61–77

objective, 98

posterior, 80–81

prior, 80–81

rule of total, 66

subjective, 81, 98

transform of random variables, 252n

Probit regression SeeRegression models, probit

Product efficacy claims, 18–20

Product rule for probabilities, independent

events, 67

Proficiency test, 41–42

Projecting

airline costs, 385, 423, 455

corrugated container prices, 441

fuel costs, 419–420

Promotions, discrimination in, 164–167,

170–171, 362–363

Proportional hazards model, 342–349

leukemia and drinking water, 346–349

risk of employment termination with

age, 346, 560

Proportions or rates

comparing multiple, 207–229

comparing two, 38–45, 301–307

Prosecutor’s fallacy, 84

Prospective study, 40

Proxy variables, 469–475

Pseudo-random number generators, 272

Psychological profiles as screening devices, 89

Public opinion surveys, 276

Public school finance

in Pennsylvania, 416–417

in State of Washington, 413–416

in Texas, 36–38

Puppy Chow, 442–444

Pyx, trial of the, 28–29
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Quadratic terms in regression models,

430–431

Quantal response See Regression models,

quantal

Quetelet, Adolphe, 118, 142–143

R2

change in, when variables added, 396, 580

as a measure of fit, 391

Race coefficient See Employment

discrimination

Radioactive cocktails for pregnant women,

314–318

Radioactive fallout, 304–307

Random

digit dialing, in surveys, 276

digit tables, 272

effects, 265–267

fluctuations, 57–59

number generators, pseudo, 272

sampling see Sampling

stops, of automobiles, 89

walks, 57–59

Random variables, 2

continuous, 102–103

discrete, 101–102

probability transform of, 252n see also
particular distributions

Randomization

devices, physical, 272

model, 161n

Randomized

controlled trial, 300

Avandia, 270

Actimmune, 223

rheumatoid arthritis drug

response technique, 76

Range, 25

Rank correlation

applied to draft lottery, 367

Rank-sum test, 361–367

eligibility list, 363–364

promotion time data, 362–363

Ranks, methods based on, 357–367

in paired observations, 360–361

Rates See Proportions or rates
Ratio

of odds see Odds ratio
of rates see Relative risk

Reapportionment, 25–27

Receiver operating characteristic (ROC)

curve, 87–88

Reciprocal relationships, 475–477

Reciprocal transformation

to create a linear relation 431

to improve normality, 237

Redistricting, 26–27

Reduced form equations, 476

Reflection principle, 58

Regression

ecological, in vote dilution cases, 382–385

Poisson, 496–499

Regression coefficients

bias in estimates of, due to correlation

between errors and other factors,

424–425

extraneous variables, 402

omitted variables, 400–402, 424–425

tainted variables, 402

underadjustment, 469–475

confidence intervals for, 397

estimation of, 376–387

maximum likelihood, 379

ordinary least squares, 377–380

weighted least squares, 426, 435

meaning of, 369

significance of, 394–398

change in R2 for testing, 396

Regression, computer printout for

multiple, 404–417

Regression effect, 371–373

accidents, 147

Head Start programs, 374–376

parents’ and sons’ heights, 371–373

Regression mean

bias in estimates of, 401

confidence intervals for, 418–424

inherent variability and uncertainty in, 418

Regression models

biased explanatory factors, 469–475

bigger not always better, 494

diagnostics for, 380

econometric see Econometrics

error term, assumptions

errors are independent, 425

errors are normally distributed, 426–427

errors have constant variance, 425–426

errors have zero mean, 424–425

extrapolation, 575

fitted values and residuals, 377

forms for employment discrimination,

462–466

single-equation, 436–438, 463

two-equation, 463

urn model, 464–467

goodness-of-fit, 390–391
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imperfect, admissibility of

indeterminacy of, 387–398

error degrees of freedom, 389

error term, 388

regression mean square, 389

regression sum of squares, 389

residual mean square, 389

residual sum of squares, 389

interactive, 456–462

introduction to, 369–376

joint distribution view, 370–371

lagged variables, 439–441

linear, 370

locally weighted, 466–469

logarithmic, 431–434

logistic or logit, 480–496

misspecification, 400

model-plus-error view, 370

negative binomial, 499

non-linear

defined, 431

models Regression models, logistic

or logit

prediction intervals for dependent

variable, 418–424

probit, 483

semi-logarithmic, 433

standard assumptions, 424–425

standardized variables in, 378

t-statistics for, 396, 418
tainted explanatory factors, 402–404

two regression lines, 373

urn model, 464–467

validation of, 427–428

Regression models (by application)

adjusting the census, 401–402

capital gains realizations, 452–455

corrugated cardboard container prices,

441–442

death penalty, 477–479, 486–495

equity capital, cost of, 380–381, 436

fuel costs, 419–420

house values, 459–462

murders, supply of, 477–479

oil prices, 578

paint failure data, 338–339

police stops, 501

salaries

AgriculturalExtensionService, 405–413

at banks, 437, 466

for teachers, 414–415

TVA, 397–398

severance pay, 420–422

student performance on tests, 413–416

Relative frequency function, 103

Relative risk, 39, 264, 301–304

adjusted, 304

of birth defects by Bendectin, 267–268

confounding factors and, 304

of connective tissue disease by silicone

breast implants, 326–331

of death, by duty nurse, 150–152, 537

of DWI arrest, by gender, 44, 518–519

of Guillain-Barre Syndrome by swine flu

vaccine, 570

of leukemia, by radiation exposure,

304–307, 567

log relative risk, 267–268, 562

multiple independent studies, 252

odds ratio and, 39–41, 300

of passing a test, by race, 41–42, 161,

169, 184

Reliability, 90, 228, 271, 289, 310, 395,

424, 427

Replicated regressions, 504

Replication, 96, 147, 177, 263, 400, 503–504

Representative sample, 271

Representatives, apportionment among

states, 17

Resampling methods

bootstrap, 503–507

cross-validation, 503–507

jackknife, 503–507

Residuals

plots, 428–429

tests of, 429–430

urn models, 464–466

Retrospective study, 40

Rheumatoid arthritis, 260

Rigged bidding, 54

Risk See Relative risk and Attributable risk

Risperidone, 334–335

Robbins’ theorem, 148

ROC curve, See Receiver operating
characteristic curve

Root mean squared deviation, 21

Rosiglitazone, See Avandia
Rule of total probability, See Probability

Sales
tax, sample survey, 281–283

Salient Factor Score, 227

Sample size

and Bendectin studies, 191–192

and power, 187

for a given confidence interval, 185, 544

motor vehicles insured and uninsured, 564

and power, 187

small, reliability of, 109, 183–184,

276, 544
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Sample space, 61

Sample v. census, 276
Sampling

audit, 271

biases, 276

bootstrap, 92, 503

coins, 28

cluster, 272–275

error, effect of, 290, 566

frame, 271, 283

guidelines for, 277

inspection, 28–29

legal acceptability of, 277

nonresponse and missing data,

281–283, 564

nonsampling variability, 275–276

physical randomization, 272, 278

precision defined, 288, 565

random, theory of, 271–293

ratio estimation, 275, 289

replicate, 93, 566

simple random, stratified, and cluster

compared, 290, 566

split-samples, 276, 566

stratified, 12, 272–275

systematic, 272

telephone surveys, 276

variability, direct assessment of, 275–276

with and without replacement, 126, 275

Sampling (by application)

adjustment of census, 294–298

ASCAP musical performances, 287–288

cocaine, bags of, 286–287

current population survey, 289–290

domino sugar trademark, infringement of,

283–284

draft lottery, birth dates for, 277–280

insurance payments to doctors, 290

mail order survey, 281–283, 564

motor vehicles, insured and uninsured,

280–281

NatraTaste trade dress, infringement

of, 284–286

Satterthwaite approximation, 233

Scatterplots

draft lottery, 279

heights of sons and midparents, 373

ischemic heart disease mortality, 34

of the regression mean, 420

of residuals, 429

sleep latency, 20

voting turnout ratios, 384

with same correlation coefficient, 392

Scheffé method of simultaneous comparisons,

243–245

School finance, 36–38, 413–416

Screening devices, 85–91

at airports, 8

dichotomization in, 87–88

false positive and negative rates, 85–86

operating characteristics, 87

positive and negative predictive values

in, 86–87

psychological profiles as, 89

sensitivity, 86

specificity, 86

Securities and Exchange Commission,

245, 426

Selection

bias, 309

effect, 77

explanatory factors in regression analysis,

398–400

Selective service lottery, 277–280

Semi-logarithmic regression models,

433, 454

Sensitivity in screening devices, 86

Sentencing, by federal judges, 364–366

Serial correlation, 425, 439

Severance pay dispute, 420–422

Sex coefficient See Employment

discrimination

Shape parameter, 157

Sign test, 193n, 357–360

supervisory examinations, 359–360

Signed-rank test, 360–361

Significance

legal and statistical, 193–198

Significance tests See Tests
Silver butterfly straddles, 143–145

Simple events, 61

Simpson’s paradox, 247n

Simulated trials, 84

Simulation methods, 92–93

Simultaneous tests of significance SeeMultiple

comparisons

Skewed distribution, skewness, 4–5, 139, 432

Smokers, national sample of, 274–275

Snowfalls, distribution of, 165

Spearman’s rank correlation coefficient,

366–367, 577

Specificity in screening devices, 86

Spock, Benjamin, prosecution of, 211–212

jurors, 211–212

Standard assumptions of regression models,

424–430
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Standard deviation, 21

Chebyshev’s inequality and, 23–24

of electoral district sizes, 514–515

estimated from resampling plans, 505n

formulas for, 20–21, 514

weights of coins, 28–29

Standard error

of the mean, 22–23

of regression, 389

Standard normal distribution See Normal

distribution

Standardized regression coefficients (path,

or beta, coefficients), 378

Standardized variables, 24

State trooper literacy exam, 197

Stepwise selection in regression, 399

Stirling’s approximation, 48–49, 54, 56n

Stock market manipulation, 445–447

Stock options, backdating, 238

Stratified sampling, 272–275

Structural equations, 476

Student’s t-
distribution, 231–232

test statistic, 231–241, 395–397

automobile emissions, 235–236, 546

ballot position for incumbents, 238

and the Castaneda rule, 558

regression coefficients, 395–397

voir dire methods, 236–237, 557

wrongly applied to binomial

trials, 558

Studies

cohort, 40, 267–268, 307, 308

independent, combining

the evidence, 252

prospective, 40

retrospective, 40

study of, meta-analysis, 262–270

Subjective probabilities, 81, 98

Sudden Infant Death Syndrome (SIDS), 45

Sulphur dioxide emissions, 148

Sum of squares

between groups, 242–243

regression, 389

residual, 389

total, 389–390

within groups, 242

Supervisory examinations, 359–360

Supreme Court, Florida, 132

Supreme Court, U.S.

charitable remainders, 337–338

death penalty as a deterrent to murder,

477–479

death penalty, discrimination on the basis

of race of victim, 486–495

death-qualified jurors, 209–211

discrimination in jury selection, 108

and Castaneda rule, 121–122

election 2000, 132

educational nominating panel, 108–109
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