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Preface to the third edition

Sometimes it is suggested that mining engineering and its supporting engineering
sciences have reached a state of maturity. However, this proposition is inconsistent
with major developments in the twenty years that have elapsed since the preparation of
the first edition of this book, and the ten years since it has been subject to any substantial
revision. Over those periods, innovations and improvements in engineering practice
in mining and mining rock mechanics, and advances in the engineering science of
rock mechanics, have been extraordinary. For these reasons the third edition, which
results from comprehensive and thorough revision of the earlier editions, has involved
the replacement or substantial modification of the equivalent of about half of the text
and figures of those versions of the book.

One of the key drivers for many significant developments in fundamental rock me-
chanics over the period has been the mining industry’s recognition of the economic
returns of better understanding and more rigorous application of the governing sci-
ences embedded in its industrial operations and processes. The result has been some
notable advances in mining engineering practice, involving improvements in mining
methods in particular. For example, caving methods are now more widely applied
as understanding of their scientific basis has improved and their economic and oper-
ational advantages have been realised. Whereas sublevel caving was once regarded
in some places as a method of marginal interest, the advent of very large scale sub-
level caving, made possible in part by improved drilling technology and in part by
understanding of the governing rock mechanics, it is now an attractive proposition for
many orebodies. Similarly, block caving is now conducted efficiently and reliably in
orebody settings that would have been inconceivable two decades ago. At the same
time, methods such as overhand cut-and-fill stoping and shrink stoping have declined
in application, replaced in part by open stoping and bench-and-fill stoping, where large
scale mechanisation, improved backfill technology, reliable rock mass reinforcement
of stope walls and the intrinsic advantages of non-entry methods of working have led
to superior economics and enhanced operational safety.

The scope of developments in mining rock mechanics science and practice has been
as impressive as that in mining engineering. Perhaps the most significant advance has
been the resolution of some longstanding issues of rock fracture, failure and strength
and their relation to the modes of deformation and degradation of rock around mining
excavations. The fact that the key research on this topic was conducted at the Under-
ground Research Laboratory of Atomic Energy of Canada Limited demonstrates the
extent to which mining rock mechanics has benefited from fundamental research in
other fields of rock engineering. The mechanics of blocky rock has also been a field of
impressive development, particularly in regard to formulation of a broad spectrum of
methods of analysis of block jointed rock and their application in excavation engineer-
ing and support and reinforcement design. More generally, improved understanding
of the mechanics of discontinuous rock has had a profound effect on simulation of
caving mechanics and therefore on the design and operation of block caving and
sublevel caving mines.

Xi



PREFACE TO THE THIRD EDITION

Mining-induced seismicity and the related phenomenon of rockbursts have become
more prevalent in hard rock mining. Developments in mineworthy seismic equipment
and associated data recording, processing and analysis hardware and software have
contributed greatly to measurement, characterisation and management of the problem.
These developments have been complemented by measures in excavation design
and extraction sequencing which have done much to mitigate the serious operating
problems which can occur in seismically active, rockburst prone mines. In large-scale
open stope mining, Canadian developments based on pillarless stoping, formulation
of extraction sequences which promote the evolution and uniform displacement of a
regular mine stress abutment, and the extensive use of cement-stabilised backfill, have
been successful in managing an acute mining challenge. Notably, these measures have
been based on sound conceptual and analytical models of the relation of damaging
seismicity to induced stress, geological structure, potential rock displacements and
strain energy release during mining.

Some remarkable developments in computational methods have supported these
improvements in rock mechanics practice. Many mining rock mechanics problems
are effectively four-dimensional, in that it is the evolution of the state of stress over the
time scale of the mining life of the orebody which needs to be interpreted in terms of
the probable modes of response of the host rock mass. The computational efficiency
of tools for three-dimensional stress analysis now permits modelling of key stages of
an extraction sequence, for example, as a matter of routine rock mechanics practice.
Similarly, computer power and efficient algorithms provide a notable capacity to
simulate the displacement and flow of rock in cave mining and to support design of
optimum caving layouts.

Notwithstanding these developments, it is encouraging to note continued attention
to formal mathematical analysis in solution of rock mechanics problems. The results
of such analysis provide the canonical solutions for the discipline of rock mechanics
and ensure a sound base for both the science and engineering practice.

In preparing this extensive revision, the authors have been fortunate to have the
support of many colleagues and several organisations. In particular, they would like
to record the helpful advice and comment of colleagues on possible improvements
in earlier editions of the book and in identifying inevitable errors in the text. They
acknowledge the generous assistance of the Brisbane office of Golder Associates in
providing facilities and many helpful services, particularly in assistance with draft-
ing of the figures for this edition. One of the authors was supported for part of the
work of revision by The University of Western Australia, and the other by the Julius
Kruttschnitt Mineral Research Centre of The University of Queensland. This support,
including the associated library services, is acknowledged with gratitude. The authors
thank the many individuals and organisations who generously gave permission to use
published material. Finally, they record the encouragement of publisher’s represen-
tative, Petra van Steenbergen, and her patient assistance and advice during this major
undertaking.

B.H. G. B.
E.T. B.
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Preface to the second edition

Since the publication of the first edition, several developments in rock mechanics have
occurred which justified a comprehensive revision of the text. In the field of solid
mechanics, major advances have been observed in understanding the fundamental
modes of deformation, failure and stability of rock under conditions where rock
stress is high in relation to rock strength. From the point of view of excavation design
practice, a capacity for computational analysis of rock stress and displacement is
more widely distributed at mine sites than at the time of preparing the first edition. In
rock engineering practice, the development and demonstration of large-scale ground
control techniques has resulted in modification of operating conditions, particularly
with respect to maintenance of large stable working spans in open excavations. Each
of these advances has major consequences for rock mechanics practice in mining and
other underground engineering operations.

The advances in solid mechanics and geo-materials science have been dominated
by two developments. First, strain localisation in a frictional, dilatant solid is now
recognised as a source of excavation and mine instability. Second, variations in
displacement-dependent and velocity-dependent frictional resistance to slip are ac-
cepted as controlling mechanisms in stability of sliding of discontinuities. Rockbursts
may involve both strain localisation and joint slip, suggesting mitigation of this per-
vasive mining problem can now be based on principles derived from the governing
mechanics. The revision has resulted in increased attention to rockburst mechanics
and to mine design and operating measures which exploit the state of contemporary
knowledge.

The development and deployment of computational methods for design in rock
is illustrated by the increased consideration in the text of topics such as numerical
methods for support and reinforcement design, and by discussion of several case
studies of numerical simulation of rock response to mining. Other applications of
numerical methods of stress and displacement analysis for mine layout and design
are well established. Nevertheless, simple analytical solutions will continue to be
used in preliminary assessment of design problems and to provide a basis for engi-
neering judgement of mine rock performance. Several important solutions for zone
of influence of excavations have been revised to provide a wider scope for confident
application.

Significant improvements in ground control practice in underground mines are
represented by the engineered use of backfill in deep-level mining and in application
of long, grouted steel tendons or cable bolts in open stoping. In both cases, the
engineering practices are based on analysis of the interaction between the host rock
and the support or reinforcement system. Field demonstration exercises which validate
these ground control methods and the related design procedures provide an assurance
of their technical soundness and practical utility.

Xiii



PREFACE TO THE SECOND EDITION

In the course of the revision, the authors have deleted some material they considered
to be less rigorous than desirable in a book of this type. They have also corrected
several errors brought to their attention by a perceptive and informed readership, for
which they record their gratitude. Their hope is that the current version will be subject
to the same rigorous and acute attention as the first edition.

B.H.G.B.
E.T. B.
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Preface to the first edition

Rock mechanics is a field of applied science which has become recognised as a
coherent engineering discipline within the last two decades. It consists of a body of
knowledge of the mechanical properties of rock, various techniques for the analysis of
rock stress under some imposed perturbation, a set of established principles express-
ing rock mass response to load, and a logical scheme for applying these notions and
techniques to real physical problems. Some of the areas where application of rock me-
chanics concepts have been demonstrated to be of industrial value include surface and
subsurface construction, mining and other methods of mineral recovery, geothermal
energy recovery and subsurface hazardous waste isolation. In many cases, The pres-
sures of industrial demand for rigour and precision in project or process design have
led to rapid evolution of the engineering discipline, and general improvement in its
basis in both the geosciences and engineering mechanics. An intellectual commitment
in some outstanding research centres to the proper development of rock mechanics
has now resulted in a capacity for engineering design in rock not conceivable two
decades ago.

Mining engineering in an obvious candidate for application of rock mechanics
principles in the design of excavations generated by mineral extraction. A primary
concern in mining operations, either on surface or underground, is loosely termed
‘ground control’, i.e. control of the displacement of rock surrounding the various
excavations generated by, and required to service, mining activity. The particular
concern of this text is with the rock mechanics aspects of underground mining engi-
neering, since it is in underground mining that many of the more interesting modes of
rock mass behaviour are expressed. Realisation of the maximum economic potential
of a mineral deposit frequently involves loading rock beyond the state where intact
behaviour can be sustained. Therefore, underground mines frequently represent ideal
sites at which to observe the limiting behabiour of the various elements of a rock
mass. It should then be clear why the earliest practitioners and researchers in rock
mechanics were actively pursuing its mining engineering applications.

Underground mining continues to provide strong motivation for the advancement
of rock mechanics. Mining activity is now conducted at depths greater than 4000 m,
although not without some difficulty. At shallower depths, single mine excavations
greater than 350 m in height, and exceeding 500 000 m? in volume, are not uncommon.
In any engineering terms, these are significant accomplishments, and the natural
pressure is to build on them. Such advances are undoubtedly possible. Both the
knowledge of the mechanical properties of rock, and the analytical capacity to predict
rock mass performance under load, improve as observations are made of in-situ
rock behaviour, and as analytical techniques evolve and are verified by practical
application.

This text is intended to address many of the rock mechanics issues arising in under-
ground mining engineering, although it is not exclusively a text on mining applica-
tions. It consists of four general sections, viz. general engineering mechanics relevant
to rock mechanics; mechanical properties of rock and rock masses; underground
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PREFACE TO THE FIRST EDITION

design and design of various types and associated components of a mine structure;
and several topics related to rock mechanics practice. The material presented is an
elaboration of a course of lectures originally prepared for undergraduate rock mechan-
ics instruction for mining students at the Royal School of Mines, Imperial College,
London. Some subsequent additions to this material, made by one of the authors
while at the University of Minnesota, are also included. The authors believe that the
material is suitable for presentation to senior undergraduate students in both mining
and geological engineering, and for the initial stages of post-graduate instruction in
these fields. It should also be of interest to students of other aspects of geomechanics,
notably civil engineers involved in subsurface construction, and engineering geol-
ogists interested in mining and underground excavation design. Practising mining
engineers and rock mechanics engineers involved in mine design may use the book
profitably for review purposes, or perhaps to obtain an appreciation of the current
state of engineering knowledge in their area of specialisation.

Throughout the text, and particularly in those sections concerned with excavation
design and design of a mine structure, reference is made to computational methods for
the analysis of stress and displacement in a rock mass. The use of various computation
schemes, such as the boundary element, finite element and distinct element methods,
is now firmly and properly embedded in rock mechanics practice. The authors have
not listed computer codes in this book. They are now available in most program
libraries, and are transported more appropriately on magnetic storage media than as
listings in text.

The preparation of this book was assisted considerably by the authors’ colleagues
and friends. Part of the contribution of Dr John Bray of Imperial College is evident
in the text, and the authors record their gratitude for his many other informal con-
tributions made over a period of several years. Dr John Hudson of Imperial College
and Gavin Ferguson of Seltrust Engineering Ltd read the text painstakingly and made
many valuable suggestions for improvement. Professor Charles Fairhurst supported
preparation activities at the University of Minnesota, for which one of the authors
is personally grateful. The authors are also indebted to Moira Knox, Carol Makkyla
and Colleen Brady for their work on the typescript, to Rosie and Steve Priest who
prepared the index, and to Laurie Wilson for undertaking a range of tedious, but im-
portant, chores. The authors are also pleased to be able to record their appreciation of
the encouragement and understanding accorded them by the publisher’s representa-
tives, Roger Jones, who persuaded them to write the book, and Geoffrey Palmer, who
expertly supervised its production. Finally, they also thank the many individuals and
organisations who freely gave permission to reproduce published material.

B.H. G.B.
E.T. B.
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Rock mechanics and
mining engineering

1.1 General concepts

The engineering mechanics problem posed in all structural design is the prediction
of the performance of the structure under the loads imposed on it during its pre-
scribed functional operation. The subject of engineering rock mechanics, as applied
in mining engineering practice, is concerned with the application of the principles
of engineering mechanics to the design of the rock structures generated by mining
activity. The discipline is closely related to the main streams of classical mechanics
and continuum mechanics, but several specific factors identify it as a distinct and
coherent field of engineering.

A widely accepted definition of rock mechanics is that first offered by the US
National Committee on Rock Mechanics in 1964, and subsequently modified in 1974:

Rock mechanics is the theoretical and applied science of the mechanical behaviour
of rock and rock masses; it is that branch of mechanics concerned with the response
of rock and rock masses to the force fields of their physical environment.

Clearly, the subject as defined is of fundamental relevance to mining engineering
because the act of creating mining excavations changes the force fields of the rock’s
physical environment. As will be demonstrated throughout this text, the study of the
response of the rock to these changes requires the application of analytical techniques
developed specifically for the purpose, and which now form part of the corpus of the
subject. Rock mechanics itself forms part of the broader subject of geomechan-
ics which is concerned with the mechanical responses of all geological materials,
including soils. The learned society for geomechanics in Australia, the Australian
Geomechanics Society, defines geomechanics as “the application of engineering and
geological principles to the behaviour of the ground and ground water and the use
of these principles in civil, mining, offshore and environmental engineering in the
widest sense”.

This definition of geomechanics is almost synonymous with the term geotechni-
cal engineering, which has been defined as “the application of the sciences of soil
mechanics and rock mechanics, engineering geology and other related disciplines
to civil engineering construction, the extractive industries and the preservation and
enhancement of the environment” (Anon, 1999). The term geotechnical engineering
and the adjective geotechnical will be used in this sense in this text.

Application of rock mechanics principles in underground mine engineering is based
on simple and, perhaps, self-evident premises. First, it is postulated that a rock mass
can be ascribed a set of mechanical properties which can be measured in standard
tests or estimated using well-established techniques. Second, it is asserted that the
process of underground mining generates a rock structure consisting of voids, support
elements and abutments, and that the mechanical performance of the structure is
amenable to analysis using the principles of classical mechanics. The third proposition
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Figure 1.1 (a) Pre-mining condi-
tions around an orebody, and (b)
mechanical consequences of mining
excavations in the orebody.
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is that the capacity to predict and control the mechanical performance of the host
rock mass in which mining proceeds can assure or enhance the safe and economic
performance of the mine. These ideas may seem rather elementary. However, even
limited application of the concepts of mechanics in mine excavation or mine structural
design is a comparatively recent innovation (Hood and Brown, 1999).

Itis instructive to consider briefly some of the mechanical processes which occur as
rock is excavated during underground mining. Figure 1.1a represents a cross section
through a flat-lying, uniform orebody. ABCD and EFGH represent blocks of ore that
are to be mined. Prior to mining, the material within the surfaces ABCD and EFGH
exerts a set of support forces on the surrounding rock. Excavation of the orebody
rock to produce the rock configuration of Figure 1.1b eliminates the support forces;
i.e. the process of mining is statically equivalent to introducing a set of forces on the
surfaces ABCD and EFGH equal in magnitude but opposite in sense to those acting
originally. Under the action of these mining-induced forces, the following mechanical
perturbations are imposed in the rock medium. Displacements of the adjacent country
rock occur into the mined void. Stresses and displacements are induced in the central
pillar and abutments. Total, final stresses in the pillar and abutments are derived from
both the induced stresses and the initial state of stress in the rock mass. Finally, the
induced surface forces acting through the induced surface displacements result in an
increase of strain energy in the rock mass. The strain energy is stored locally, in the
zones of increased stress concentration.

The ultimate objective in the design of a mine structure, such as the simple one
being considered here, is to control rock displacements into and around mine ex-
cavations. Elastic displacements around mine excavations are typically small. Rock
displacements of engineering consequence may involve such processes as fracture of
intact rock, slip on a geological feature such as a fault, excessive deflections of roof
and floor rocks (due, for example, to their detachment from adjacent rock), or unstable
failure in the system. The latter process is expressed physically as a sudden release
of stored potential energy, and significant change in the equilibrium configuration of
the structure. These potential modes of rock response immediately define some of
the components of a methodology intended to provide a basis for geomechanically
sound excavation design. The methodology includes the following elements. The
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strength and deformation properties of the orebody and adjacent country rock must
be determined in some accurate and reproducible way. The geological structure of the
rock mass, i.e. the location, persistence and mechanical properties of all faults and
other fractures of geologic age, which occur in the zone of influence of mining activ-
ity, is to be defined, by suitable exploration and test procedures. Since the potential
for slip on planes of weakness in the rock mass is related to fissure water pressure, the
groundwater pressure distribution in the mine domain must be established. Finally,
analytical techniques are required to evaluate each of the possible modes of response
of the rock mass, for the given mine site conditions and proposed mining geometry.

The preceding brief discussion indicates that mining rock mechanics practice
invokes quite conventional engineering concepts and logic. It is perhaps surpris-
ing, therefore, that implementation of recognisable and effective geomechanics pro-
grammes in mining operations is limited to the past 40 or so years. Prior to this
period, there were, of course, isolated centres of research activity, and some attempts
at translation of the results of applied research into mining practice. However, design
by precedent appears to have had a predominant réle in the design of mine structures.
(A detailed account of the historical development of the discipline of mining rock
mechanics is given by Hood and Brown (1999)). The relatively recent appearance and
recognition of the specialist rock mechanics engineer have resulted from the industrial
demonstration of the value and importance of the discipline in mining practice.

A number of factors have contributed to the relatively recent emergence of rock
mechanics as a mining science. A major cause is the increased dimensions and pro-
duction rates required of underground mining operations. These in turn are associated
with pursuit of the economic goal of improved profitability with increased scale of
production. Since increased capitalisation of a project requires greater assurance of
its satisfactory performance in the long term, more formal and rigorous techniques
are required in mine design, planning and scheduling practices.

The increasing physical scale of underground mining operations has also had a
direct effect on the need for effective mine structural design, since the possibility
of extensive failure can be reckoned as being in some way related to the size of the
active mine domain. The need to exploit mineral resources in unfavourable mining
environments has also provided a significant impetus to geomechanics research. In
particular, the continually increasing depth of underground mining in most parts
of the world, has stimulated research into several aspects of rock mass performance
under high stress. Finally, more recent social concerns with resource conservation and
industrial safety have been reflected in mining as attempts to maximise the recovery
from any mineral reserve, and by closer study of practices and techniques required
to maintain safe and secure work places underground. Both of these concerns have
resulted in greater demands being placed on the engineering skills and capacities of
mining corporations and their service organisations.

In the evolution of rock mechanics as a field of engineering science, there has been
a tendency to regard the field as a derivative of, if not a subordinate discipline to, soil
mechanics. In spite of the commonality of some basic principles, there are key issues
which arise in rock mechanics distinguishing it from soil mechanics. The principal
distinction between the two fields is that failure processes in intact rock involve
fracture mechanisms such as crack generation and growth in a pseudo-continuum. In
soils, failure of an element of the medium typically does not affect the mechanical
integrity of the individual grains. In both diffuse and locally intense deformation
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modes, soil failure is associated with processes such as dilatation, particle rotation
and alignment. This distinction between the different media has other consequences.
For example, soils in their operating engineering environments are always subject
to relatively low states of stress. The opposite is frequently true for rock. Further
differences arise from the relatively high elastic moduli, and the relatively low material
permeabilities of rocks compared with soils. The latter distinction is important. In
most rock formations, fluid flow occurs via fissures and channels, while in soils fluid
migration involves movement through the pore space of the particulate assembly. It
appears, therefore, that rock and soil mechanics should be regarded as complementary
rather than mutually inclusive disciplines.

Having suggested that rock mechanics is a distinct engineering discipline, it is clear
that its effective practical application demands an appreciation of its philosophic inte-
gration with other areas of geomechanics. Rock mechanics, soil mechanics, ground-
water hydrology and structural geology are, in the authors’ opinions, the kernels of the
scientific basis of mining engineering. Together, they constitute the conceptual and
factual base from which procedures can be developed for the control and prediction
of rock behaviour during mining activity.

1.2 Inherent complexities in rock mechanics

It has been observed that rock mechanics represents a set of principles, a body of
knowledge and various analytical procedures related to the general field of applied
mechanics. The question that arises is — what constituent problems arise in the me-
chanics of geologic media, sufficient to justify the formulation or recognition of a
coherent, dedicated engineering discipline? The five issues to be discussed briefly
below determine the nature and content of the discipline and illustrate the need for
a dedicated research effort and for specialist functions and methodologies in mining
applications.

1.2.1 Rock fracture

Fracture of conventional engineering material occurs in a tensile stress field, and so-
phisticated theories have been postulated to explain the pre-failure and post-failure
performance of these media. The stress fields operating in rock structures are perva-
sively compressive, so that the established theories are not immediately applicable
to the fracture of rock. A particular complication in rock subject to compression is
associated with friction mobilised between the surfaces of the microcracks which are
the sites for fracture initiation. This causes the strength of rock to be highly sensitive
to confining stress, and introduces doubts concerning the relevance of such notions as
the normality principle, associated flow and plasticity theories generally, in analysing
the strength and post-failure deformation properties of rock. A related problem is the
phenomenon of localisation, in which rupture in a rock medium is expressed as the
generation of bands of intensive shear deformation, separating domains of apparently
unaltered rock material.

1.2.2  Scale effects
The response of rock to imposed load shows a pronounced effect of the size or scale of
the loaded volume. This effect is related in part to the discontinuous nature of a rock
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Figure 1.2 The effect of scale on
rock response to imposed loads: (a)
rock material failure in drilling; (b)
discontinuities controlling the final
shape of the excavation; (c) a mine pil-
lar operating as a pseudo-continuum.

INHERENT COMPLEXITIES IN ROCK MECHANICS

mass. Joints and other fractures of geological origin are ubiquitous features in a body
of rock, and thus the strength and deformation properties of the mass are influenced
by both the properties of the rock material (i.e. the continuous units of rock) and
those of the various structural geological features. These effects may be appreciated
by considering various scales of loading to which a rock mass is subjected in mining
practice. The process of rock drilling will generally reflect the strength properties of
the intact rock, since the process operates by inducing rock material fracture under
the drilling tool. Mining a drive in jointed rock may reflect the properties of the joint
system. In this case, the final cross section of the opening will be defined by the joint
attitudes. The behaviour of the rock around the periphery of the drive may reflect the
presence of discrete blocks of rock, whose stability is determined by frictional and
other forces acting on their surfaces. On a larger scale, e.g. that of a mine pillar, the
jointed mass may demonstrate the properties of a pseudo-continuum. Scale effects as
described here are illustrated schematically in Figure 1.2.

These considerations suggest that the specification of the mechanical properties of
a rock mass is not a simple matter. In particular, the unlikely possibility of testing
jointed rock specimens, at scales sufficient to represent the equivalent continuum sat-
isfactorily, indicates that it is necessary to postulate and verify methods of synthesising
rock mass properties from those of the constituent elements.

1.2.3 Tensile strength

Rock is distinguished from all other common engineering materials, except concrete,
by its low tensile strength. Rock material specimens tested in uniaxial tension fail at
stresses an order of magnitude lower than when tested in uniaxial compression. Since
joints and other fractures in rock can offer little or no resistance to tensile stresses, the
tensile strength of a rock mass can be assumed to be non-existent. Rock is therefore
conventionally described as a ‘no-tension’ material, meaning that tensile stresses
cannot be generated or sustained in a rock mass. The implication of this property for
excavation design in rock is that any zone identified by analysis as being subject to
tensile stress will, in practice, be de-stressed, and cause local stress redistribution.
De-stressing may result in local instability in the rock, expressed as either episodic
or progressive detachment of rock units from the host mass.

1.2.4 Effect of groundwater

Groundwater may affect the mechanical performance of a rock mass in two ways. The
most obvious is through the operation of the effective stress law (section 4.2). Water
under pressure in the joints defining rock blocks reduces the normal effective stress
between the rock surfaces, and therefore reduces the potential shear resistance which
can be mobilised by friction. In porous rocks, such as sandstones, the effective stress
law is obeyed as in granular soils. In both cases, the effect of fissure or pore water
under pressure is to reduce the ultimate strength of the mass, when compared with
the drained condition.

A more subtle effect of groundwater on rock mechanical properties may arise
from the deleterious action of water on particular rocks and minerals. For example,
clay seams may soften in the presence of groundwater, reducing the strength and
increasing the deformability of the rock mass. Argillaceous rocks, such as shales
and argillitic sandstones, also demonstrate marked reductions in material strength
following infusion with water.
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The implications of the effect of groundwater on rock mass strength are consid-
erable for mining practice. Since rock behaviour may be determined by its geohy-
drological environment, it may be essential in some cases to maintain close control
of groundwater conditions in the mine area. Further, since backfill is an important
element in many mining operations, the lithologies considered for stope filling op-
erations must be considered carefully from the point of view of strength properties
under variable groundwater conditions.

1.2.5 Weathering

Weathering may be defined as the chemical or physical alteration of rock at its surface
by its reaction with atmospheric gas and aqueous solutions. The process is analogous
to corrosion effects on conventional materials. The engineering interest in weathering
arises because of its influence on the mechanical properties of the intact material,
as well as the potential for significant effect on the coefficient of friction of the
rock surface. It appears that whereas weathering causes a steady reduction in rock
properties, the coefficient of friction of a surface may suffer a step reduction (Boyd,
1975).

Although physical processes such as thermal cycling and insolation may be im-
portant in surface mining, underground weathering processes are chiefly chemical in
origin. These include dissolution and ion exchange phenomena, oxidation and hy-
dration. Some weathering actions are readily appreciated, such as the dissolution of
limestone in an altered groundwater environment, or softening of marl due to sulphate
removal. In others, such as the oxidation of pyrrhotite, the susceptibility of some forms
of the mineral to rapid chemical attack is not fully understood. A weathering problem
of particular concern is presented by basic rocks containing minerals such as olivine
and pyroxenes. A hydrolysis product is montmorillonite, which is a swelling clay
with especially intractable mechanical behaviour.

This discussion does not identify all of the unique issues to be considered in rock
mechanics. However, it is clear that the subject transcends the domain of traditional
applied mechanics, and must include a number of topics that are not of concern in
any other engineering discipline.

1.3 Underground mining

Ore extraction by an underground mining method involves the generation of different
types of openings, with a considerable range of functions. The schematic cross section
and longitudinal section through an operating mine, shown in Figure 1.3, illustrate
the different roles of various excavations. The main shaft, level drives and cross cuts,
ore haulages, ventilation shafts and airways constitute the mine access and service
openings. Their duty life is comparable with, or exceeds, the mining life of the orebody
and they are usually developed in barren ground. Service and operating openings
directly associated with ore recovery consist of the access cross cuts, drill headings,
access raises, extraction headings and ore passes, from, or in which, various ore
production operations are undertaken. These openings are developed in the orebody,
or in country rock close to the orebody boundary, and their duty life is limited to the
duration of mining activity in their immediate vicinity. Many openings are eliminated
by the mining operation. The third type of excavation is the ore source. It may be a
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Figure 1.3 The principal types of  stope, with well-defined, free-standing rock walls forming the geometric limits for the

excavation involved in underground  mined void, which increases in size with the progress of ore extraction. Alternatively,

mining by some stoping method. the ore source may be a rubble-filled space with fairly well-defined lower and lateral
limits, usually coincident with the orebody boundaries. The rubble is generated by
inducing disintegration of the rock above the crown of the orebody, which fills the
mined space as extraction proceeds. The lifetime of these different types of ore source
openings is defined by the duration of active ore extraction.

It is clear that there are two geomechanically distinct techniques for underground
ore extraction. Each technique is represented in practice by a number of different
mining methods. The particular method chosen for the exploitation of an orebody is
determined by such factors as its size, shape and geometric disposition, the distribution
of values within the orebody, and the geotechnical environment. The last factor takes
account of such issues as the in situ mechanical properties of the orebody and country
rocks, the geological structure of the rock mass, the ambient state of stress and the
geohydrological conditions in the zone of potential mining influence.

Later chapters will be concerned with general details of mining methods, and the
selection of a mining method to match the dominant orebody geometric, geological
and geomechanical properties. It is sufficient to note here that mining methods may
be classified on the basis of the type and degree of support provided in the mine
structure created by ore extraction (Thomas, 1978). Supported mine structures are
generated by methods such as open stoping and room-and-pillar mining, or cut-and-
fill stoping and shrinkage stoping. In the former methods, natural support is provided
in the structures by ore remnants located throughout the stoped region. In the latter
methods, support for the walls of the mined void is provided by either introduced fill
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Figure 1.4 Principal features of
a caving operation (after Borquez,
1981).

ROCK MECHANICS AND MINING ENGINEERING

or by fractured ore temporarily retained in contact with mined stope walls. The second
type of mine configuration recognised by Thomas is a caving structure, generated by
mining methods such as block caving and sublevel caving. In these cases, no support is
provided in the mined space, which fills spontaneously with fragmented and displaced
orebody and cover rock.

From a rock mechanics point of view, discrimination between the two generic
mining techniques, and the structures they generate, may be made on the basis of
the displacements induced in the country rock and the energy redistribution which
accompanies mining. In the technique of mining with support, the objective is to
restrict displacements of the country rock to elastic orders of magnitude, and to main-
tain, as far as possible, the integrity of both the country rock and the unmined remnants
within the orebody. This typically results in the accumulation of strain energy in the
structure, and the mining problem is to ensure that unstable release of energy cannot
occur. The caving technique is intended to induce large-scale, pseudo-rigid body
displacements of rock above the crown of the orebody, with the displacement field
propagating through the cover rock as mining progresses. The principle is illustrated
schematically in Figure 1.4. The process results in energy dissipation in the caving
rock mass, by slip, crushing and grinding. The mining requirement is to ensure that
steady displacement of the caving mass occurs, so that the mined void is continuously
self-filling, and unstable voids are not generated in the interior of the caving material.

This distinction between different mining techniques does not preclude a transition
from one technique to the other in the life of an orebody. In fact, the distinction is
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FUNCTIONAL INTERACTIONS IN MINE ENGINEERING

useful in that it conveys the major mechanical ramifications in any change of mining
strategy.

Irrespective of the mining technique adopted for ore extraction, it is possible to
specify four common rock mechanics objectives for the performance of a mine struc-
ture, and the three different types of mine openings described previously. These are:

(a) toensure the overall stability of the complete mine structure, defined by the main
ore sources and mined voids, ore remnants and adjacent country rock;

(b) to protect the major service openings throughout their designed duty life;

(c) to provide secure access to safe working places in and around the centres of ore
production;

(d) to preserve the mineable condition of unmined ore reserves.

These objectives are not mutually independent. Also, the typical mine planning
and design problem is to find a stope or ore block excavation sequence that satisfies
these objectives simultaneously, as well as fulfilling other operational and economic
requirements. The realisation of the rock mechanics objectives requires a knowledge
of the geotechnical conditions in the mine area, and a capacity for analysis of the
mechanical consequences of the various mining options. An appreciation is also
required of the broad management policies, and general mining concepts, which have
been adopted for the exploitation of the particular mineral resource.

It is instructive to define the significant difference in operational constraints be-
tween underground excavations designed for civil engineering purposes, and those
types of excavations involved in mining engineering practice subject to entry by mine
personnel. In the latter case, the use of any opening is entirely in the control of the
mine operator, and during its active utilisation the surfaces of an excavation are subject
to virtually continuous inspection by mine personnel. Work to maintain or reinstate
secure conditions around an opening, ranging from surface scaling (barring down) to
support and reinforcement emplacement, can be undertaken at any stage, at the direc-
tion of the mine management. These conditions rarely apply to excavations subject
to civil engineering operating practice. Another major difference is that most mine
excavations have duty lives that are significantly less than those of excavations used
for civil purposes. It is not surprising, therefore, that mine excavation design reflects
the degree of immediate control over opening utilisation, inspection, maintenance
and support emplacement afforded the mine operator.

In addition to the different operating constraints for mining and civil excavations,
there are marked differences in the nature of the structures generated and these directly
affect the design philosophy. The principal difference is that a civil engineering rock
structure is essentially fixed, whereas a mine structure continues to develop throughout
the life of the mine. In the latter case, stope or ore block extraction sequences assume
great importance. Decisions made early in the mine life can limit the options, and
the success of mining, when seeking to establish an orderly and effective extraction
strategy, or to recover remnant ore.

1.4 Functional interactions in mine engineering

The purpose of this section is to explore the roles of various engineering disciplines
in the planning, design and operation of an underground mine. The particular concern
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FUNCTIONAL INTERACTIONS IN MINE ENGINEERING

is to define the interaction of geologists and planning, production and rock mechanics
engineers in the pre-production and operating phases of mining activity.

The scope of engineering activity to be undertaken preceding and during the produc-
tive life of a mine is illustrated in the design task definition chart shown in Figure 1.5.
The overall aim of the various components of engineering activity (e.g. mine access
design, ventilation system) is the development of sustainable production and cost
schedules for the operation. The specific rock mechanics contributions to the mine
engineering programme, and its interface with other planning functions, occur pri-
marily in tasks related to mine access, mining method development and mine layout,
mining sequence and ore extraction design. Mining method development, mine layout
and sequencing, support and reinforcement design, and the development of responses
to unanticipated events (e.g. falls of ground) occurring during operations, usually
constitute the majority of the initial and continuing rock mechanics activity.

Rock mechanics activities need to be conducted within an organisational framework
that permits the exchange and integration of concepts, requirements, information and
advice from and between management, geologists, planning engineers, production
personnel and rock mechanics engineers. The logic of such an integrated mine engi-
neering philosophy is illustrated in Figure 1.6. The principles implicit in this scheme
are, first, the mutual dependence of each functional group on information provided by
the others, and, second, that it is usually the mine planning engineers who transform
the individual technical contributions into working drawings, production schedules
and cost estimates for subsequent implementation by production personnel. The logic
of Figure 1.6 is not intended to represent a mine site organisational structure. What-
ever structure is used, it is essential that there be close working relationships between
geology, planning, rock mechanics and production groups.

Considering Figure 1.6 from a rock mechanics perspective, it is useful to summarise
the information that can be reasonably expected from the other functional groups and
the information and advice that should be delivered by a rock mechanics group.

1.4.1 Management

Information from management is a key element which is frequently not available to
rock mechanics specialists. The general requirement is that the broad framework of
management policy and objectives for the exploitation of a particular resource be
defined explicitly. This should include such details as the volume extraction ratio
sought for the orebody and how this might change in response to changing product
prices. The company investment strategy should be made known, if only to indi-
cate the thinking underlying the decision to mine an orebody. Particular corporate
constraints on mining technique, such as policy on disturbance of the local physical
environment above the mine area, and restrictions on geohydrological disturbance,
should be defined. Further, restrictions on operating practices, such as men working
in vertical openings or under unsupported, temporary roof spans, need to be specified.

1.4.2 Geology

In defining the geomechanics role of exploration and engineering geologists in mine
engineering, it is assumed that, at all stages of the geological exploration of an orebody,
structural and geohydrological data will be logged and processed on a routine basis. A
Geology Section can then provide information ranging from a general description of
the regional geology, particularly the structural geology, to details of the dominant and
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pervasive structural features in the mine area. A comprehensive geological description
would also include the distribution of lithologies in and around the orebody, the
distribution of values throughout the orebody, and the groundwater hydrology of
the mine area. In the last case, the primary need is to identify aquifers in the zone
of possible influence of mining which might deliver groundwater into any part of
the mining domain. Finally, specific geological investigations would identify sources
of potential mining problems in the mine area. These include zones of shattered
ground, leached zones, cavernous ground (vughs), rocks and minerals with adverse
weathering properties, and major structural features such as faults and clay seams
which transgress the orebody and are expressed on the ground surface.

It is clear, from this specification of duties, that mine geological activity should
produce a major component of engineering geological data. It implies that successful
execution of the engineering exploration of an orebody and environs requires the
active co-operation of geologists and rock mechanics personnel. It may be necessary,
for example, for the latter to propose drilling programmes and targets to clarify site
conditions of particular mining consequence.

1.4.3 Planning

Mine planning and design engineers are responsible for the eventual definition of all
components of an engineering study of a prospective mining operation. Their role is
initiative as well as integrative. In their interaction with rock mechanics engineers,
their function is to contribute information which can usefully delineate the scope of
any geomechanical analysis. Thus they may be expected to define the general mining
strategy, such as one-pass stoping (no pillar recovery), or stoping and subsequent
pillar extraction, and other limitations on mining technique. Details of anticipated
production rates, economic sizes of stopes, and the number of required sources of
ore production, can be used to define the extent of the active mine structure at any
time. The possibility of using backfills of various types in the production operation
should be established. Finally, the constraints imposed on future mining by the current
location of mine accesses, stoping activity, permanent openings and exploration drives
should be specified.

1.4.4 Rock mechanics

It has been noted that the mine engineering contributions of a rock mechanics group
relate to design tasks concerned principally with permanent mine openings, mine
layout and sequencing, extraction design, support and reinforcement and operational
responses. Specific activities associated with each of these tasks are now detailed. De-
sign issues related to permanent mine openings include siting of service and ventila-
tion shafts, siting, dimensioning and support specification of level main development,
and detailed design of major excavations such as crusher excavations, interior shaft
hoist chambers, shaft bottom facilities and workshop installations. The demand for
these services is, of course, episodic, being mainly concentrated in the pre-production
phase of mine operations.

The majority of rock mechanics activity in mining operations is devoted to res-
olution of questions concerned with the evolutionary design of the mine structure.
These questions include: dimensions of stopes and pillars; layout of stopes and pillars
within the orebody, taking due account of their location and orientation relative to the
geological structure and the principal stress directions; the overall direction of mining
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advance through an orebody; the sequence of extraction of stope blocks and pillar
remnants, simultaneously noting the need to protect service installations, maintain
access and preserve mine structural stability; and the need for and specification of the
strength parameters of any backfill in the various mined voids. In all of these design
activities, effective interaction must be maintained with planning personnel, since ge-
omechanics issues represent only part of the complete set of engineering information
required to develop an operationally acceptable mining programme.

Extraction system design is concerned with the details of stope configuration and
ore recovery from the stope. This involves, initially, consideration of the stability of
stope boundaries throughout the stope working life, and requires close examination
of the possibility of structurally controlled failures from stope and pillar surfaces.
The preferred direction of stope retreat may be established from such studies. The
design of the extraction horizon requires consideration of the probable performance of
stope drawpoints, tramming drives and ore-flow control raises, during the stope life.
Particular problems can occur on the extraction horizon due to the density of openings,
resulting in stressed remnants, and the potential for damage by secondary breakage
of oversize rock during ore recovery. A final issue in this segment of stope design is
primary blast design. The issue here is blasting effects on remnant rock around the
stope periphery, as well as the possibility of damage to access and adjacent service
openings, under the transient loads associated with closely sequenced detonations of
relatively large explosive charges.

A mine rock mechanics group also has a number of important rdles to play during
production. It is good and common practice for a rock mechanics engineer to make
regular inspections of production areas with the production engineer responsible
for each area, and to make recommendations on local support and reinforcement
requirements based on the mine’s established support and reinforcement standards.
Usually, these standards will have been developed by the rock mechanics engineers
in consultation with production personnel. The rock mechanics group will also be
responsible for monitoring the geomechanical performance of excavations and for
making recommendations on any remedial actions or measures that may be required to
manage unforeseen events such as falls of ground or the ingress of water. A close daily
working relationship between production and rock mechanics engineers is required in
order to ensure the safe and economic operation of the productive areas of the mine.

1.5 Implementation of a rock mechanics programme

It has been stated that an effective rock mechanics programme should be thoroughly
integrated with other mine technical functions in the development and implementation
of a coherent mining plan for an orebody. However, the successful accomplishment
of the goals of the programme requires the commitment of sufficient resources, on
a continuous basis, to allow rational analysis of the range of problems posed by the
various phases of mining activity.

A methodology for the implementation of a rock mechanics programme is illus-
trated schematically in Figure 1.7. Five distinct components of the programme are
identified, and they are postulated to be logically integrated, i.e. deletion of any
component negates the overall operating philosophy. Another point to be observed
from Figure 1.7 is that the methodology implies that the programme proceeds via a
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Figure1.7 Componentsand logic of
a rock mechanics programme.

ROCK MECHANICS AND MINING ENGINEERING

Site characterisation
definition of hydromechanical properties of the host rock
mass for mining

Mine model formuiation
conceptualisation of site characterisation data

Design analysis
selection and application of mathematical and computational
schemes for study of various mining layouts and strategies

Rock performance monitoring
measurement of the operational response to mining of
the host rock mass

Retrospective analysis

quantification of in-siru rock mass properties. and identi-
fication of dominant modes of response of mine structure

multi-pass loop. There are two main reasons for this. First, the site characterisation
phase never generates a sufficiently comprehensive data base from which to develop
a unique plan for the complete life of the mine. Second, mine design is itself an
evolutionary process in which engineering responses are formulated to reflect the
observed performance of the mine structure under actual operating conditions. For
these reasons, the process may not proceed in the linear manner implied by Figure 1.7.
At times, some of the activities, or parts of those activities, may proceed in parallel.
These issues are clarified in the following discussion of the component phases of the
programme.

1.5.1 Site characterisation

The objective of this phase, in the first pass through the loop, is to define the me-
chanical properties and state of the medium in which mining is to occur. It involves
determination of the strength and deformation properties of the various lithological
units represented in and around the orebody, definition of the geometric and mechan-
ical properties of pervasive jointing, and location and description of the properties of
discrete structural features. An estimate of the in situ strength of the medium may then
be made from the properties of the constituent elements of the mass. This phase also
includes determination of the in situ state of stress in the mine area, and investigation
of the hydrogeology of the orebody and environs.

The difficulty in site characterisation lies in achieving representative data defining
geomechanical conditions throughout the rock medium. Under conditions of limited
physical access, yielding small numbers of small rock specimens, with no unifying
theory to relate the specimen properties with those of the host rock medium, a first-pass
site characterisation is intrinsically deficient.
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1.5.2  Mine model formulation
Formulation of a mine model represents the simplification and rationalisation of the
data generated by the site characterisation. The aim is to account for the principal
geomechanical features which will be expressed in the deformational behaviour of
the prototype. For example, lithological units are ascribed average ‘representative’
strength and deformation properties, major structural features are assigned a regular
geometry and average shear strength properties, and a representative specification is
accepted for the pre-mining state of stress. The need for this phase arises from the
limited details that can be accommodated in most of the analytical or computational
methods used in design.

It is clear that significant discrepancies may be introduced at this stage, by failure
to recognise the engineering significance of particular features of the mine geome-
chanical setting.

1.5.3 Design analysis

Having defined the prevailing conditions in the rock mass in an analytically tractable
way, the mechanical performance of selected mining configurations and excavation
geometries can be predicted using appropriate mathematical or numerical techniques.
The analytical tools may be relatively primitive (e.g. the tributary area theory for
pillar design) or advanced, employing, for example, computational schemes which
may model quite complex constitutive behaviour for both the rock mass and various
fabric elements. In any event, the design analyses represent the core of rock mechanics
practice. Recent rapid development in the power of available computational schemes
has been responsible for significant advances, and improved confidence, in the quality
of rock structural design.

1.5.4 Rock performance monitoring

The objective of this phase of rock mechanics practice is to characterise the oper-
ational response of the rock mass to mining activity. The intention is to establish
a comprehension of the roles of the various elements of the rock mass in the load-
deformational behaviour of the rock medium. The data required to generate this
understanding are obtained by displacement and stress measurements made at key
locations in the mine structure. These measurements include closures across pillars,
slip on faults, and levelling and horizontal displacement measurements in and around
the active mining zone. States of stress may be measured in pillars, abutments and
in the interior of any rock units showing signs of excessive stress. Visual inspections
must be undertaken regularly to locate any structurally controlled failures and areas
of anomalous response, and these should be mapped routinely. Finally, data should
be collected on the production performance of each stope, and the final configuration
of each stope should be surveyed and mapped. The aim in this case is to seek any
correlation between rock mass local performance and stope productivity.

1.5.5 Retrospective analysis

The process of quantitative analysis of data generated by monitoring activity is in-
tended to reassess and improve knowledge of the in sifu mechanical properties of the
rock mass, as well as to review the adequacy of the postulated mine model. Review
of the conceptualisation of the host rock mass involves analysis of the role of major
structural features on the performance of the structures, and identification of the key
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geomechanical parameters determining the deformational response of the medium.
Particularly valuable data are generated by the analysis of local failures in the system.
These provide information about the orientations, and possibly relative magnitudes
of the in situ field stresses, as well as high quality information on the in situ rock mass
strength parameters. Subsequently, stope mechanical and production performance
data can be assessed with a view to formulating detailed stope design and operat-
ing criteria. This might involve establishment of rules specifying, for example, stope
shape relative to geological structure, stope blasting practice, and drawpoint layouts
and designs for various types of structural and lithological conditions.

Figure 1.7 indicates that data generated by retrospective analysis are used to update
the site characterisation data, mine model and design process, via the iterative loop.
This procedure represents no more than a logical formalisation of the observational
principle long used in soil mechanics practice (Peck, 1969). It is a natural engineer-
ing response to the problems posed by basic limitations in site characterisation and
conceptualisation associated with excavation design in geologic media.
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Stress and infinitesimal strain

2.1 Problem definition

The engineering mechanics problem posed by underground mining is the prediction
of the displacement field generated in the orebody and surrounding rock by any
excavation and ore extraction processes. The rock in which excavation occurs is
stressed by gravitational, tectonic and other forces, and methods exist for determining
the ambient stresses at a mine site. Since the areal extent of any underground mine
opening is always small relative to the Earth’s surface area, it is possible to disregard
the sphericity of the Earth. Mining can then be considered to take place in an infinite
or semi-infinite space, which is subject to a definable initial state of stress.

An understanding of the notions of force, stress and strain is fundamental to a proper
and coherent appreciation of the response of a rock mass to mining activity. It was
demonstrated in Chapter 1 that excavating (or enlarging) any underground opening is
mechanically equivalent to the application, or induction, of a set of forces distributed
over the surfaces generated by excavation. Formation of the opening also induces a set
of displacements at the excavation surface. From a knowledge of the induced surface
forces and displacements, it is possible to determine the stresses and displacements
generated at any interior point in the rock medium by the mining operation.

Ilustration of the process of underground excavation in terms of a set of applied
surface forces is not intended to suggest that body forces are not significant in the
performance of rock in a mine structure. No body forces are induced in a rock mass
by excavation activity, but the behaviour of an element of rock in the periphery of
a mine excavation is determined by its ability to withstand the combined effect of
body forces and internal, post-excavation surface forces. However, in many mining
problems, body force components are relatively small compared with the internal
surface forces, i.e. the stress components.

Some mine excavation design problems, such as those involving a jointed rock
mass and low-stress environments, can be analysed in terms of block models and
simple statics. In most deep mining environments, however, the rock mass behaves
as a continuum, at least initially. Prediction of rock mass response to mining there-
fore requires a working understanding of the concepts of force, traction and stress,
and displacement and strain. The following discussion of these issues follows the
treatments by Love (1944) and Jaeger (1969).

In the discussion, the usual engineering mechanics convention is adopted, with
tensile normal stresses considered positive, and the sense of positive shear stress on
any surface determined by the sense of positive normal stress. The geomechanics
convention for the sense of positive stresses will be introduced subsequently.

2.2 Force and stress

The concept of stress is used to describe the intensity of internal forces set up in a
body under the influence of a set of applied surface forces. The idea is quantified by
defining the state of stress at a point in a body in terms of the area intensity of forces
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(a)

Figure 2.1 (a) A finite body subject
to surface loading; (b) determination
of the forces, and related quantities,
operating on an internal surface; (c)
specification of the state of stress at a
point in terms of the traction compo-
nents on the face of a cubic free body.

STRESS AND INFINITESIMAL STRAIN

(b)

ez

acting on the orthogonally oriented surfaces of an elementary free body centred on the
point. If a Cartesian set of reference axes is used, the elementary free body is a cube
whose surfaces are oriented with their outward normals parallel with the co-ordinate
axes.

Figure 2.1a illustrates a finite body in equilibrium under a set of applied surface
forces, P;. To assess the state of loading over any interior surface, Sj, one could
proceed by determining the load distribution over S; required to maintain equilibrium
of part of the body. Suppose, over an element of surface AA surrounding a point
O, the required resultant force to maintain equilibrium is AR, as shown in Figure
2.1b. The magnitude of the resultant stress o, at O, or the stress vector, is then
defined by

. AR
oy = lim —
AA—0 AA
If the vector components of AR acting normally and tangentially to AA are AN, AS,
the normal stress component, g, and the resultant shear stress component, 7, at O
are defined by

. AN . AS
o,= lim —, 7= lim —
AA—0 AA AA—0 AA
The stress vector, @, may be resolved into components #,, t,, ¢, directed parallel
to a set of reference axes x, y, z. The quantities 1, t,, t;, shown in Figure 2.1b are
called traction components acting on the surface at the point O. As with the stress
vector, the normal stress, oy, and the resultant shear stress, 7, the traction components
are expressed in units of force per unit area. A case of particular interest occurs when
the outward normal to the elementary surface A A is oriented parallel to a co-ordinate
axis, e.g. the x axis. The traction components acting on the surface whose normal is
the x axis are then used to define three components of the state of stress at the point
of interest,

Oyxx =1y, Oxy =1y, Oyx;=1I; 2.1
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In the doubly-subscripted notation for stress components, the first subscript indicates
the direction of the outward normal to the surface, the second the sense of action of
the stress component. Thus g, denotes a stress component acting on a surface whose
outward normal is the x axis, and which is directed parallel to the z axis. Similarly,
for the other cases where the normals to elements of surfaces are oriented parallel
to the y and z axes respectively, stress components on these surfaces are defined in
terms of the respective traction components on the surfaces, i.e.

Oyx =1y, Oy =1, Oy=1 2.2)

O =1Ly, Oy =1, Oz=1I 2.3)

The senses of action of the stress components defined by these expressions are shown
in Figure 2.1c, acting on the visible faces of the cubic free body.

It is convenient to write the nine stress components, defined by equations 2.1, 2.2,
2.3, in the form of a stress matrix [o], defined by

Oxx Oxy Oxg
[6]=] 0y 0y 0Oy 24
Ozx  Ozy Oz

The form of the stress matrix defined in equation 2.4 suggests that the state of stress
at a point is defined by nine independent stress components. However, by consider-
ation of moment equilibrium of the free body illustrated in Figure 2.1c, it is readily
demonstrated that

Oxy = Oyx, Oy = 0zy, Ozx = Oy

Thus only six independent stress components are required to define completely the
state of stress at a point. The stress matrix may then be written

Oxx Oxy Ogx
[6]=| 0y 0y Oy 2.5)
Ozx Oy Oz

2.3 Stress transformation

The choice of orientation of the reference axes in specifying a state of stress is
arbitrary, and situations will arise in which a differently oriented set of reference axes
may prove more convenient for the problem at hand. Figure 2.2 illustrates a set of
old (x, y, z) axes and new (I, m, n) axes. The orientation of a particular axis, e.g. the
[ axis, relative to the original x, y, z axes may be defined by a row vector (I, [, ;)
of direction cosines. In this vector, /, represents the projection on the x axis of a unit
vector oriented parallel to the / axis, with similar definitions for /, and /. Similarly,
the orientations of the m and n axes relative to the original axes are defined by row
vectors of direction cosines, (my, m,, m;) and (n, n,, n;) respectively. Also, the state
of stress at a point may be expressed, relative to the I, m, n axes, by the stress matrix
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The analytical requirement is to express the components of [¢*] in terms of the
components of [or] and the direction cosines of the [, m, n axes relative to the x, y, z
axes.

Figure 2.2 shows a tetrahedral free body, Oabc, generated from the elementary
cubic free body used to define the components of the stress matrix. The material
removed by the cut abc has been replaced by the equilibrating force, of magnitude
t per unit area, acting over abc. Suppose the outward normal OP to the surface abc
is defined by a row vector of direction cosines (A,, A, , A;). If the area of abc is A,
the projections of abc on the planes whose normals are the x, y, z axes are given,
respectively, by

Area Oac = A, = A\,
Area Oab = Ay = A\,
Area Obc = A, = A\,

Suppose the traction vector t has components t,1,,t,. Application of the
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equilibrium requirement for the x direction, for example, yields
1A — 0 AN, — 0 ANy — 0 AN, =0 (2.6)
or
ty = OyxxNg + Oy Ay + O\,

Equation 2.6 represents an important relation between the traction component, the
state of stress, and the orientation of a surface through the point. Developing the
equilibrium equations, similar to equation 2.6, for the y and z directions, pro-
duces analogous expressions for 7, and #,. The three equilibrium equations may
then be written

tx ()-X)C ()-)Cy UZX )\’X
ty | =| 0xy oy Oy A, 2.7
I Ozxx Oy Oy A,
or
[t] = [o][A] (2.8)

Proceeding in the same way for another set of co-ordinate axes I, m, n maintaining
the same global orientation of the cutting surface to generate the tetrahedral free body,
but expressing all traction and stress components relative to the [, m, n axes, yields
the relations

1 (7] Om Onl )\l
Im = | Oim Omm Omn )\m (29)
Iy Onl Omn Onn N,
or
[t*] = [6"][N"] (2.10)

In equations 2.8 and 2.10, [t], [t*], [A], [A*] are vectors, expressed relative to the
X, y, zand [, m, n co-ordinate systems. They represent traction components acting on,
and direction cosines of the outward normal to, a surface with fixed spatial orienta-
tion. From elementary vector analysis, a vector [v] is transformed from one set of
orthogonal reference axes x, y, z to another set, /, m, n, by the transformation equation

vy I ly l, Ux
Uy | = | me my my v,
Up ny ny ng v,
or
[v'] = [R][v] (2.11)

In this expression, [R] is the rotation matrix, whose rows are seen to be formed
from the row vectors of direction cosines of the new axes relative to the old axes.
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As discussed by Jennings (1977), a unique property of the rotation matrix is that its
inverse is equal to its transpose, i.e.

[RI™' = [R]" (2.12)

Returning now to the relations between [t] and [t*], and [N] and [N*], the results
expressed in equations 2.11 and 2.12 indicate that

[t*] = [RI[t]

or
[t] = [R]"[t"]
and
[A] = [R][A]
or
[N] = [R]"[A"]
Then
[t*] = [R][t]
= [R][¢][A]
= [R][o][R]"[A"]
but since
[t*] = [0*][\*]
then

[0*] = [R][][R]" (2.13)

Equation 2.13 is the required stress transformation equation. It indicates that the
state of stress at a point is transformed, under a rotation of axes, as a second-order
tensor.

Equation 2.13 when written in expanded notation becomes

Oy Oim Onl Iy ly [ Oxx Oxy Ogx Iy my n,
Oim  Omm  Opmp | = | mx my, m; Oyy  Oyy Oy ly, my n,
Onil Omn Onn Ny ny n; Oz Oyz Oz lz m; n;

Proceeding with the matrix multiplication on the right-hand side of this expression,
in the usual way, produces explicit formulae for determining the stress components
under a rotation of axes, given by
o = [0 + [0y + 20 + 2000y + L0y + LLow)  (2.14)
Oy = Lymyoyy, + lymyo-yy + lzmzo-zz + (lxmy + lymx)o'xy

+Uym; +I:my)oy: + (my + Lem:)oz, (2.15)
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Expressions for the other four components of the stress matrix are readily obtained
from these equations by cyclic permutation of the subscripts.

2.4 Principal stresses and stress invariants

The discussion above has shown that the state of stress at a point in a medium may
be specified in terms of six components, whose magnitudes are related to arbitrarily
selected orientations of the reference axes. In some rock masses, the existence of a
particular fabric element, such as a foliation or a schistosity, might define a suitable
direction for a reference axis. Such a feature might also determine a mode of defor-
mation of the rock mass under load. However, in an isotropic rock mass, any choice of
a set of reference axes is obviously arbitrary, and a non-arbitrary way is required for
defining the state of stress at any point in the medium. This is achieved by determining
principal stresses and related quantities which are invariant under any rotations of
reference axes.

In section 2.2 it was shown that the resultant stress on any plane in a body could
be expressed in terms of a normal component of stress, and two mutually orthogonal
shear stress components. A principal plane is defined as one on which the shear stress
components vanish, i.e. it is possible to select a particular orientation for a plane such
that it is subject only to normal stress. The magnitude of the principal stress is that
of the normal stress, while the normal to the principal plane defines the direction of
the principal stress axis. Since there are, in any specification of a state of stress, three
reference directions to be considered, there are three principal stress axes. There are
thus three principal stresses and their orientations to be determined to define the state
of stress at a point.

Suppose that in Figure 2.2, the cutting plane abc is oriented such that the resultant
stress on the plane acts normal to it, and has a magnitude o, If the vector (A,, Ay, \;)
defines the outward normal to the plane, the traction components on abc are defined
by

t e
=0 | N\ (2.16)
tZ )\Z

The traction components on the plane abc are also related, through equation 2.7, to
the state of stress and the orientation of the plane. Subtracting equation 2.16 from
equation 2.7 yields the equation

Oxx — Up O-xy Ozx )\x
Oy Oy — Op Oy Ay | =10] (2.17)
Oy Oy, 0, —0p A;

The matrix equation 2.17 represents a set of three simultaneous, homogeneous,
linear equations in Ay, Ay, A;. The requirement for a non-trivial solution is that the
determinant of the coefficient matrix in equation 2.17 must vanish. Expansion of the
determinant yields a cubic equation in o, given by

oy — Loy + Loy — I3 =0 (2.18)
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In this equation, the quantities /1, I, and I3, are called the first, second and third
stress invariants. They are defined by the expressions

I} = 0y + 0y + 0y
2 2 2
I = 04,0y + 0},0;; + 0,0y — (0'” + oy, + O'ZX)

I3 = 04x0y,0;; + 20,,0,,0,, — ((Txx(ryzx + ny(rzzx + O'ZZ(szy)
It is to be noted that since the quantities /;, I, I3 are invariant under a change of axes,
any quantities derived from them are also invariants.

Solution of the characteristic equation 2.18 by some general method, such as a
complex variable method, produces three real solutions for the principal stresses.
These are denoted oy, 0», 03, in order of decreasing magnitude, and are identified
respectively as the major, intermediate and minor principal stresses.

Each principal stress value is related to a principal stress axis, whose direction
cosines can be obtained directly from equation 2.17 and a basic property of direction
cosines. The dot product theorem of vector analysis yields, for any unit vector of
direction cosines (A, Ay, \;), the relation

NN N =1 (2.19)

Introduction of a particular principal stress value, e.g. gy, into equation 2.17, yields a
set of simultaneous, homogeneous equations in A1, Ayi, As1. These are the required
direction cosines for the major principal stress axis. Solution of the set of equations
for these quantities is possible only in terms of some arbitrary constant K, defined by

M M A
A B C
where
gy, — 0] O
A= |9 ¥z
Oy Oz — 01
16 o
B=—|% 7 (2.20)
O, Oy — O
C | On—o
Ozx  Oyg

Substituting for A1, Ay1, A;1 in equation 2.19, gives

A1 = AJ(A?+ B2+ CH?
)\yl — B/(A2+BZ + C2)1/2
At = C/(A*+ B>+ CH)'/?
Proceeding in a similar way, the vectors of direction cosines for the intermediate
and minor principal stress axes, i.e. (Ay2, Ay2, A;2) and (Ay3, Ny3, A;3), are obtained
from equations 2.20 by introducing the respective values of o, and o3.

The procedure for calculating the principal stresses and the orientations of the
principal stress axes is simply the determination of the eigenvalues of the stress matrix,
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and the eigenvector for each eigenvalue. Some simple checks can be performed to
assess the correctness of solutions for principal stresses and their respective vectors of
direction cosines. The condition of orthogonality of the principal stress axes requires
that each of the three dot products of the vectors of direction cosines must vanish, i.e.

Mihe2 F AN + A A2 =0

with a similar result for the (2,3) and (3,1) dot products. Invariance of the sum of the
normal stresses requires that

O] + 02 + 03 = Oxx + Oy + 0

In the analysis of some types of behaviour in rock, it is usual to split the stress
matrix into two components — a spherical or hydrostatic component [o,], and a
deviatoric component [o4]. The spherical stress matrix is defined by

on 0 O
[O'm] = 0-m[I] = 0 Om O
0 0 Om
where
Oy = 11/3

The deviator stress matrix is obtained from the stress matrix [o] and the spherical
stress matrix, and is given by

Oxx — Om Oyy Ozx
[o4] = Oyxy Oyy —Om Oy
Ozx Oy Ozz — Om

Principal deviator stresses S, S>, S3 can be established either from the deviator
stress matrix, in the way described previously, or from the principal stresses and the
hydrostatic stress, i.e.

S| = o1 — oy, etc.

where S; is the major principal deviator stress.
The principal directions of the deviator stress matrix [oy4] are the same as those of
the stress matrix [o7].

2.5 Differential equations of static equilibrium

Problems in solid mechanics frequently involve description of the stress distribution
in a body in static equilibrium under the combined action of surface and body forces.
Determination of the stress distribution must take account of the requirement that the
stress field maintains static equilibrium throughout the body. This condition requires
satisfaction of the equations of static equilibrium for all differential elements of the
body.
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Figure 2.3 Free-body diagram for
development of the differential equa-
tions of equilibrium.

STRESS AND INFINITESIMAL STRAIN

Figure 2.3 shows a small element of a body, in which operate body force components
with magnitudes X, Y, Z per unit volume, directed in the positive x, y, z co-ordinate
directions. The stress distribution in the body is described in terms of a set of stress
gradients, defined by doy,/dx, doy,/dy, etc. Considering the condition for force
equilibrium of the element in the x direction yields the equation

00, 00y,

-dx -dydz +
ax yee ay

a0,y

-dy -dxdz + -dz-dxdy+ X dxdydz=0
Applying the same static equilibrium requirement to the y and z directions, and
eliminating the term dx dy dz, yields the differential equations of equilibrium:
00, a0y, 00y
4+ 2%

X=0
ox 8y+8z+

4y =0 (2.21)

+Z=0

These expressions indicate that the variations of stress components in a body under
load are not mutually independent. They are always involved, in one form or another,
in determining the state of stress in a body. A purely practical application of these
equations is in checking the admissibility of any closed-form solution for the stress
distribution in a body subject to particular applied loads. It is a straightforward matter
to determine if the derivatives of expressions describing a particular stress distribution
satisfy the equalities of equation 2.21.

2.6 Plane problems and biaxial stress

Many underground excavation design analyses involving openings where the length
to cross section dimension ratio is high, are facilitated considerably by the relative
simplicity of the excavation geometry. For example, an excavation such as a tunnel of
uniform cross section along its length might be analysed by assuming that the stress
distribution is identical in all planes perpendicular to the long axis of the excavation.
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Figure 2.4 A long excavation, of
uniform cross section, for which a
contracted form of the stress transfor-
mation equations is appropriate.

PLANE PROBLEMS AND BIAXIAL STRESS

Suppose a set of reference axes, x, y, z, is established for such a problem, with the long
axis of the excavation parallel to the z axis, as shown in Figure 2.4. As shown above,
the state of stress at any point in the medium is described by six stress components.
For plane problems in the x, y plane, the six stress components are functions of (x, y)
only. In some cases, it may be more convenient to express the state of stress relative
to a different set of reference axes, such as the [, m, z axes shown in Figure 2.4. If the
angle [Ox is a, the direction cosines of the new reference axes relative to the old set
are given by

[, =cosa, [y =sina, I,=0

my = —sina, my, =cosa, m, =0
Introducing these values into the general transformation equations, i.e. equations
2.14 and 2.15, yields

Ol = Oy COSZ o + Oyy sin® a + 20y sin o cos o
Opum = Oxx sin o + Oyy cos® o — 20, sina cos a

O = (rxy(cos2 a—sin®a) — (Oxx — Oyy) sinacosa (2.22)
Oz = Oy, COSQ — Oy SinQ

0y = Oy;sina + 0, cos

and the o, component is clearly invariant under the transformation of axes. The
set of equations 2.22 is observed to contain two distinct types of transformation:
those defining ay;, Gy, 07, Which conform to second-order tensor transformation
behaviour, and o;,,; and o;;, which are obtained by an apparent vector transformation.
The latter behaviour in the transformation is due to the constancy of the orientation
of the element of surface whose normal is the z axis. The rotation of the axes merely
involves a transformation of the traction components on this surface.

For problems which can be analysed in terms of plane geometry, equations 2.22
indicate that the state of stress at any point can be defined in terms of the plane
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Figure 2.5 Problem geometry for
determination of plane principal
stresses and their orientations.
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components of stress (0yy, Ty, Oyy) and the antiplane components (o, 0y, 0z,). In
the particular case where the z direction is a principal axis, the antiplane shear stress
components vanish. The plane geometric problem can then be analysed in terms of
the plane components of stress, since the o,,, component is frequently neglected. A
state of biaxial (or two-dimensional) stress at any point in the medium is defined by
three components, in this case oy, Oyy, Oyy.

The stress transformation equations related to oy, 0y, 07, in equation 2.22, for
the biaxial state of stress, may be recast in the form

0y = 1(0x + 0yy) + 2(0xr — Oyy) €08 20 + Oy sin 2ax
Onm = 3(0rx + 0yy) — 2(0x — 0y,) cOS 20 — 0, sin 201 (2.23)

Opym = Oxy COS 200 — %((rxx — Oy,) sin 2a

In establishing these equations, the x, y and [, m axes are taken to have the same
sense of ‘handedness’, and the angle « is measured from the x to the / axis, in a sense
that corresponds to the ‘handedness’ of the transformation. There is no inference
of clockwise or anticlockwise rotation of axes in establishing these transformation
equations. However, the way in which the order of the terms is specified in the
equations, and related to the sense of measurement of the rotation angle o, should be
examined closely.

Consider now the determination of the magnitudes and orientations of the plane
principal stresses for a plane problem in the x, y plane. In this case, the o;;, 0y, 0«
stress components vanish, the third stress invariant vanishes, and the characteristic
equation, 2.18, becomes

2 2 _
o, — (Oxx + 0yy)0p + Oy Oy — Oy = 0

Solution of this quadratic equation yields the magnitudes of the plane principal

stresses as

12

012 = 50 + 0yy) £ [§(00r — 0yy)” + 07, ] (2.24a)
The orientations of the respective principal stress axes are obtained by establishing
the direction of the outward normal to a plane which is free of shear stress. Suppose
ab, shown in Figure 2.5, represents such a plane. The outward normal to ab is Ol, and

therefore defines the direction of a principal stress, o,. Considering static equilibrium
of the element aOb under forces operating in the x direction:

op abcoso — 0y, abcosa — oy, absina =0

or

i.e.

o =tan ! 2 (2.24b)
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Figure 2.6 Initial and final positions
of points P, Q, in a body subjected to
strain.
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Substitution of the magnitudes oy, 0», determined from equation 2.24a, in equation
2.24b yields the orientations o, o of the principal stress axes relative to the positive
direction of the x axis. Calculation of the orientations of the major and minor plane
principal stresses in this way associates a principal stress axis unambiguously with
a principal stress magnitude. This is not the case with other methods, which employ
the last of equations 2.23 to determine the orientation of a principal stress axis.

It is to be noted that in specifying the state of stress in a body, there has been no
reference to any mechanical properties of the body which is subject to applied load.
The only concept invoked has been that of static equilibrium of all elements of the
body.

2.7 Displacement and strain

Application of a set of forces to a body, or change in its temperature, changes the
relative positions of points within it. The change in loading conditions from the initial
state to the final state causes a displacement of each point relative to all other points.
If the applied loads constitute a self-equilibrating set, the problem is to determine
the equilibrium displacement field induced in the body by the loading. A particu-
lar difficulty is presented in the analysis of displacements for a loaded body where
boundary conditions are specified completely in terms of surface tractions. In this
case, unique determination of the absolute displacement field is impossible, since any
set of rigid-body displacements can be superimposed on a particular solution, and
still satisfy the equilibrium condition. Difficulties of this type are avoided in analysis
by employing displacement gradients as the field variables. The related concept of
strain is therefore introduced to make basically indeterminate problems tractable.
Figure 2.6 shows the original positions of two adjacent particles P(x, y, z) and
Q(x +dx, y +dy, z + dz) in a body. Under the action of a set of applied loads, P
moves to the point P*(x + uy, y + u,, z + u;), and Q moves to the point Q*(x + dx +
uy,y +dy+ u;‘,, z+dz +u}). If u, = u}, etc., the relative displacement between P

/ P(x,y,z)

I Q(x + dx, y + dy, z + dz)
|

y+dy+u‘4z-’+dz+:t§)

X
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Figure 2.7 Rigid-body rotation of
an element producing component dis-
placements of adjacent points.
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and Q under the applied load is zero, i.e. the body has been subject to a rigid-body
displacement. The problem of interest involves the case where u, # u?, etc. The line
element joining P and Q then changes length in the process of load application, and
the body is said to be in a state of strain.

In specifying the state of strain in a body, the objective is to describe the changes in
the sizes and shapes of infinitesimal elements in the loaded medium. This is done by
considering the displacement components (i, #y, u.) of a particle P, and (u}, u;, uy)
of the adjacent particle Q. Since

" ouy oy Oty
u, = uy +du,, wheredu, = dx + dy + dz
ox dy 0z
and
* 8”}' auy 3uy
uy =u,+du,, wheredu,= gdx+gdy+a—zdz
d ] a
' =u, +du,, whereduzzidx—i—ﬁdy—i—ﬁdz
¢ ax ay 0z
the incremental displacements may be expressed by
du, ] M Ou, Ou, Ou, | [dx’]
ox ay 9z
du, Ju, OJu,
d = 2 z = d 2.25
Uy ox  ay oz y (2.252)
du, Jdu, OJu,
| du, | L dx  dy dz | [dz |
or
[dd] = [D][dr] (2.25b)

In this expression, [dr] represents the original length of the line element PQ, while
[d8] represents the relative displacement of the ends of the line element in deforming
from the unstrained to the strained state.

The infinitesimal relative displacement defined by equation 2.25 can arise from both
deformation of the element of which PQ is the diagonal, and a rigid-body rotation
of the element. The need is to define explicitly the quantities related to deformation
of the body. Figure 2.7 shows the projection of the element, with diagonal PQ, on to
the yz plane, and subject to a rigid body rotation €2, about the x axis. Since the side
dimensions of the element are dy and dz, the relative displacement components of Q
relative to P are

du, = —Q, dz

2.26
du, = Q, dy ( )

Considering rigid-body rotations €2, and €2, about the y and z axes, the respective
displacements are

du, = —Q, dx

2.27
du, = Q, dz ( )
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Figure 2.8 Displacement compo-
nents produced by pure longitudinal
strain.
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Figure 2.9 Displacement produced
by pure shear strain.
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and

du, = —Q, dy

G — Q. dx (2.28)

The total displacement due to the various rigid-body rotations is obtained by addi-
tion of equations 2.26, 2.27 and 2.28, i.e.

duy, = —Q,dy + Q,dz

duy, = Q. dx — Q,dz
du, = —Q, dx + Q, dy

These equations may be written in the form

duy 0 -Q Q, || dx
duy, |[=| @ 0 - ||dy (2.29a)
du, -Q,  Q 0 dz
or
[dd] = [Q][dr] (2.29b)

The contribution of deformation to the relative displacement [d8] is determined
by considering elongation and distortion of the element. Figure 2.8 represents the
elongation of the block in the x direction. The element of length dx is assumed to be
homogeneously strained, in extension, and the normal strain component is therefore
defined by

du,

Exx = dx

Considering the y and z components of elongation of the element in a similar way,
gives the components of relative displacement due to normal strain as

du, = €., dx
duy, =€, dy (2.30)

du, = ¢, dz
The components of relative displacement arising from distortion of the element
are derived by considering an element subject to various modes of pure shear strain.

Figure 2.9 shows such an element strained in the x, y plane. Since the angle a is
small, pure shear of the element results in the displacement components

du, = ady
duy, = o dx

Since shear strain magnitude is defined by
T
Xy = — — = 2
Yxy ) $ a
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then

du, = %'ny dy
de = ] (2.31)
Uy = 5Yry dx

Similarly, displacements due to pure shear of the element in the y, z and z, x planes
are given by

du, = 1v,.dz
’ : ’ (2.32)
du, = 7Yz dy
and
du, = %sz dx
| (2.33)
dux - z'\/Zx dz

The total displacement components due to all modes of infinitesimal strain are
obtained by addition of equations 2.30, 2.31, 2.32 and 2.33, i.e.

duy, = gy, dx + %ny dy + %'sz dz
duy = vy dx + €4y dy + 3vy. dz
du, = %’sz dx + %'sz dy +¢;dz

These equations may be written in the form

du, Exx %’ny %’sz dx
duy | =3y &y 3w || dy (2.34a)
du %'sz %'\/yz €2z dz
or
[dd"] = [e][dr] (2.34b)
where [€] is the strain matrix.
Since
[d8] = [d®'] + [dd"]
equations 2.25a, 2.29a and 2.34a yield
[ Ou, Ouy Ouy e, %ny %sz_ 0 —-Q Q,7]
ax ay 9z
ouy, Jduy, Jdu,
Yy 8—; 8_1) e By 3 Q0 -
du, Jdu, Ju,
| ox 9y 0z ] [3Ye 3 & | |-Q, @ 0

Equating corresponding terms on the left-hand and right-hand sides of this equation,
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gives for the normal strain components

oy duy du,

€y =—, E€,,=—, E,=— 2.35
0x i ay « 0z ( )
and

ou 1

8yx T 2

duy, 1

_ = = 'y Q

ox 2w TR

Thus expressions for shear strain and rotation are given by

_ ouy n du,y Q. — 1 (0u, Ouy
Yoy = dy ox’ 2\ ax dy

and, similarly,

ou,y ou 1 /0u ou
Yyz = 4+ z’ QX=_<—Z_—y)

0z dy 2\dy oz
(2.36)
ou, Juy 1 (du, du,
= S s Q= -
e ox + 9z Y2 ( 0z ox )

Equations 2.35 and 2.36 indicate that the state of strain at a point in a body is
completely defined by six independent components, and that these are related simply
to the displacement gradients at the point. The form of equation 2.34a indicates that
a state of strain is specified by a second-order tensor.

2.8 Principal strains, strain transformation, volumetric strain
and deviator strain

Since a state of strain is defined by a strain matrix or second-order tensor, determina-
tion of principal strains, and other manipulations of strain quantities, are completely
analogous to the processes employed in relation to stress. Thus principal strains and
principal strain directions are determined as the eigenvalues and associated eigen-
vectors of the strain matrix. Strain transformation under a rotation of axes is defined,
analogously to equation 2.13, by

[e*] = [R][e][R]"

where [€] and [€*] are the strain matrices expressed relative to the old and new sets
of co-ordinate axes.
The volumetric strain, A, is defined by

A =gy + Eyy + €
The deviator strain matrix is defined in terms of the strain matrix and the volumetric
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strain by
Exx — A/3 'ny VYzx
[e] = Yxy €yy — A/3 Yyz
Vzx Yyz €. —A/3

Plane geometric problems, subject to biaxial strain in the xy plane, for example,
are described in terms of three strain components, €,,, €y, VYxy.

2.9 Strain compatibility equations

Equations 2.35 and 2.36, which define the components of strain at a point, suggest
that the strains are mutually independent. The requirement of physical continuity of
the displacement field throughout a continuous body leads automatically to analytical
relations between the displacement gradients, restricting the degree of independence
of strains. A set of six identities can be established readily from equations 2.35 and
2.36. Three of these identities are of the form

0%, | 078y 07y
dy? 9x2  9xdy

and three are of the form

328” a 9Vy; 0Yzx 0Yxy
_(_ 'Y)@_F Yz + 'Yy)

2 X
dydz  Ox ax ay 0z

These expressions play a basic role in the development of analytical solutions to
problems in deformable body mechanics.

2.10 Stress-strain relations

It was noted previously that an admissible solution to any problem in solid mechanics
must satisfy both the differential equations of static equilibrium and the equations of
strain compatibility. It will be recalled that in the development of analytical descrip-
tions for the states of stress and strain at a point in a body, there was no reference
to, nor exploitation of, any mechanical property of the solid. The way in which
stress and strain are related in a material under load is described qualitatively by its
constitutive behaviour. A variety of idealised constitutive models has been formu-
lated for various engineering materials, which describe both the time-independent and
time-dependent responses of the material to applied load. These models describe re-
sponses in terms of elasticity, plasticity, viscosity and creep, and combinations of these
modes. For any constitutive model, stress and strain, or some derived quantities, such
as stress and strain rates, are related through a set of constitutive equations. Elasticity
represents the most common constitutive behaviour of engineering materials, includ-
ing many rocks, and it forms a useful basis for the description of more complex
behaviour.

In formulating constitutive equations, it is useful to construct column vectors
from the elements of the stress and strain matrices, i.e. stress and strain vectors
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are defined by

Oxx Exx
Oyy Eyy
o, €

[o] = @ and [g]=]| “
Oxy Yxy
Oy Yyz
Ozx Yzx

The most general statement of linear elastic constitutive behaviour is a generalised
form of Hooke’s Law, in which any strain component is a linear function of all the
stress components, i.e.

€xx Sit Siz Siz Sis Sis Sis| | Oxx
€yy So1 S Sz Saa S5 S | | Oy
€ S31 Sn S S S35 Sk | | o
= 2.37a
Yy Sa1 Sa Sz Sas Sas Sas | | Oy ( )
Yyz Ss1 Ss2 Ss3 Ssa Sss Sse | | Oy
Vox Se1 Se2 Ses Se4a Ses  Ses | | 0ux
or
[e] = [S][o] (2.37b)

Each of the elements S;; of the matrix [S] is called a compliance or an elastic
modulus. Although equation 2.37a suggests that there are 36 independent compli-
ances, a reciprocal theorem, such as that due to Maxwell (1864), may be used to
demonstrate that the compliance matrix is symmetric. The matrix therefore contains
only 21 independent constants.

In some cases it is more convenient to apply equation 2.37 in inverse form, i.e.

[o] = [D][e] (2.38)

The matrix [D] is called the elasticity matrix or the matrix of elastic stiffnesses. For
general anisotropic elasticity there are 21 independent stiffnesses.

Equation 2.37a indicates complete coupling between all stress and strain compo-
nents. The existence of axes of elastic symmetry in a body de-couples some of the
stress—strain relations, and reduces the number of independent constants required to
define the material elasticity. In the case of isotropic elasticity, any arbitrarily ori-
ented axis in the medium is an axis of elastic symmetry. Equation 2.37a, for isotropic
elastic materials, reduces to

€ox 1 —v —v 0 0 0 Oxx
€yy -V I —v 0 0 0 Oyy
e | _ 1 |- —v 1 0 0 0 0y,
Yoy | E 0 0 0 2(1+v) 0 0 Oy (2.39)
Vyz 0O 0 O 0 2(1 +v) 0 Oy,
Vex 0 0 0 0 0 2(1+v) Oy
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Figure 2.10 A transversely isotro-
pic body for which the x, y plane is

E(1—v)

T U+ —2v)

X

the plane of isotropy.
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The more common statements of Hooke’s Law for isotropic elasticity are readily
recovered from equation 2.39, i.e.

1
Exx = E[Uxx —v(gyy + 037)]; ete.
1
Yay = 5 Yy, etc. (2.40)
where
E
G=——
2(1 +v)

The quantities E, G, and v are Young’s modulus, the modulus of rigidity (or shear
modulus) and Poisson’s ratio. [sotropic elasticity is a two-constant theory, so that de-
termination of any two of the elastic constants characterises completely the elasticity
of an isotropic medium.

The inverse form of the stress—strain equation 2.39, for isotropic elasticity, is given
by

1 v/(1—v) v/(l—-v) 0 0 0 €ix
v/(1 —v) 1 v/(1 —v) 0 0 0 e
v/(1=v) v/(1—v) 1 0 0 0 W
(1—-2v) €2z
0 0 m 0 0 . (2.41)
0 0 0 o (U= "
2(1 —v) Yy
(=2 ||
0 0 0 0 0 —
21 —v)d L Yex

The inverse forms of equations 2.40, usually called Lamé’s equations, are obtained
from equation 2.41, i.e.

0 = ANA + 2G€,, etc.

Oxy = GYyy, €tc.

where \ is Lamé’s constant, defined by

2vG vE

A= d—2v)  d+wd—2v)

and A is the volumetric strain.

Transverse isotropic elasticity ranks second to isotropic elasticity in the degree of
expression of elastic symmetry in the material behaviour. Media exhibiting transverse
isotropy include artificially laminated materials and stratified rocks, such as shales.
In the latter case, all lines lying in the plane of bedding are axes of elastic symmetry.
The only other axis of elastic symmetry is the normal to the plane of isotropy. In
Figure 2.10, illustrating a stratified rock mass, the plane of isotropy of the material
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coincides with the x, y plane. The elastic constitutive equations for this material are

given by
Exx 1 —V1 —1 0 0 0 Oyx
€yy -1 1 ) 0 0 0 Oyy
e |_ 1 |-»m —-wn E/E 0 0 0 O
Yo |["E | 0 0 0 204w 0 0 ||oy | ¥
Vyz 0 0 0 0 E/G, 0 Oy;
Vzx 0 0 0 0 0 E\/G, o

It appears from equation 2.42 that five independent elastic constants are required
to characterise the elasticity of a transversely isotropic medium: E; and v; define
properties in the plane of isotropy, and E», v,, G, properties in a plane containing the
normal to, and any line in, the plane of isotropy. Inversion of the compliance matrix
in equation 2.42, and putting £/ E, = n, G,/ E, = m, produces the elasticity matrix

given by
_n(l—nv%) n(v1+nv%) n2vy(1 4+ ) 0 N
n(l—nv%) n2vy(1 4+ vp) 0
(1-%) o
) 0.5 % nk
[D] = B . 2
(1 +V1)(1 —v —2n 1)2) symmetric *(1—vy —2nv3) 0 0
m(1 + vy)* 0
* (1 —v — 2nv§) m(l + vy)*
L *(1—v1—2nv%)_

Although it might be expected that the modulus ratios, n and m, and Poisson’s ratios, v;
and v,, may be virtually independent, such is not the case. The requirement for positive
definiteness of the elasticity matrix, needed to assure a stable continuum, restricts
the range of possible elastic ratios. Gerrard (1977) has summarised the published
experimental data on elastic constants for transversely isotropic rock materials and
rock materials displaying other forms of elastic anisotropy, including orthotropy for
which nine independent constants are required.

2.11  Cylindrical polar co-ordinates

A Cartesian co-ordinate system does not always constitute the most convenient sys-
tem for specifying the state of stress and strain in a body, and problem geometry may
suggest a more appropriate system. A cylindrical polar co-ordinate system is used
frequently in the analysis of axisymmetric problems. Cartesian (x, y, z) and cylindrical
polar (r, 0, z) co-ordinate systems are shown in Figure 2.11, together with an ele-
mentary free body in the polar system. To operate in the polar system, it is necessary
to establish equations defining the co-ordinate transformation between Cartesian and
polar co-ordinates, and a complete set of differential equations of equilibrium, strain
displacement relations and strain compatibility equations.
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The co-ordinate transformation is defined by the equations.

r= Gty
0 = arctan (X)

X
and
X =rcos0
y =rsinf

If R, 6, Z are the polar components of body force, the differential equations of equi-
librium, obtained by considering the condition for static equilibrium of the element
shown in Figure 2.11, are

00;, 1 00,9 90, Orr — Obo
- —— +R=0
ar r 00 9z + r +
80',9 1 30‘99 80'9Z 20‘,~9
— —4+06=0
or r 90 0z + *
do,, 100y, 0d0,, O
ar r 00 9z + r +

For axisymmetric problems, the tangential shear stress components, g, and oy,
and the tangential component of body force, 6, vanish. The equilibrium equations
reduce to

a rr a r rr T
(oF GZ+0 0'99+R:0
ar 0z r
do,; 00y, —i-%—i-Z:O
ar 0z r

For the particular case where 7, 0, z are principal stress directions, i.e. the shear stress
component o, vanishes, the equations become

8rr rr T

o +w+R:O

ar r
80‘ZZ+Z_0
0z B

Displacement components in the polar system are described by u,, ug, u,. The

elements of the strain matrix are defined by

ou,
e = or
1 8”3 u,
0= 90 T
au,
€z = 3z
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10u, dugy
M= e

du,  Jdu,
Y= e T

1 roug  ou,
W:;(‘””a—r+ ae)

The volumetric strain is the sum of the normal strain components, i.e.
A =¢€, + €y + €

When the principal axes of strain coincide with the directions of the co-ordinate
axes, i.e. the shear strain components vanish, the normal strains are defined by

du,
Err = dr

ur
€pp = —

-

du,
€z =

dz

The compatibility equations for strains are

3%(ryre) 3%(regp) de, 3%,

=r —7r +

or 00 or? or 002
azyrz %€, 82811
or 9z 972 ar?

9*Yo: . 3%(regp) + lazgzz 0€; 0V

309z 022 r 062 9z 9z

The case where v, = vy, = v,; = 0 yields only one compatibility equation, i.e.

d
5(” 899) =&

Stress components expressed relative to the Cartesian axes are transformed to the
polar system using equations 2.22, with » and 6 replacing / and m and 6 replacing
a. An analogous set of equations can be established for transformation of Cartesian
strain components to the polar system.

2.12 Geomechanics convention for displacement, strain and stress

The convention used until now in the discussion of displacement, strain and stress
has been the usual engineering mechanics one. Under this convention, force and dis-
placement components are considered positive if directed in the positive directions of
the co-ordinate axes. Extensile normal strains and tensile normal stresses are treated
as positive. Finally, the sense of positive shear stress on a surface of the elementary
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free body is outward, if the outward normal to the surface is directed outward relative
to the co-ordinate origin, and conversely. The sense of positive stress components,
defined in this way, is illustrated in Figures 2.1c and 2.11, for Cartesian and polar
co-ordinate systems. This convention has been followed in this introductory mate-
rial since important notions such as traction retain their conceptual basis, and since
practically significant numerical methods of stress analysis are usually developed
employing it.

States of stress occurring naturally, and generated and sustained in a rock mass by
excavation activity, are pervasively compressive. If the usual engineering mechanics
convention for stresses were followed, all numerical manipulations related to stress
and strain in rock would involve negative quantities. Although this presents no con-
ceptual difficulties, convenience and accuracy in calculations are served by adopting
the following convention for stress and strain analysis in rock mechanics:

(a) positive force and displacement components act in the positive directions of the
co-ordinate axes;

(b) contractile normal strains are taken as positive;

(c) compressive normal stresses are taken as positive;

(d) the sense of positive shear stress on a surface is inward relative to the co-ordinate
origin, if the inward normal to the surface acts inwards relative to the co-ordinate
origin, and conversely.

The senses of positive stress components defined by this convention, for Cartesian
and polar co-ordinate systems, and biaxial and triaxial states of stress, are shown in
Figure 2.12. Some minor changes are required in some of the other general relations
developed earlier, and these are now defined.

2.12.1 Stress-traction relations
If the outward normal to a surface has direction cosines (A, Ay, \;), traction compo-
nents are determined by

Iy = —(Ox Ny + o-xy)\y + O'ZX)\Z), etc.

2.12.2 Strain-displacement relations
Strain components are determined from displacement components using the expres-
sions

ouy,
Exx = — 9x
ouy,  duy
Yxy = — <8—x + dy )1 etc.

2.12.3 Differential equations of equilibrium
The change in the sense of positive stress components yields equations of the form

00« n 00y, + A0,
ax ay 0z

— X =0, etc.

All other relations, such as strain compatibility equations, transformation equations
and stress invariants, are unaffected by the change in convention.
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Figure 2.12 Two- and three-
dimensional free bodies, for speci-
fication of the state of stress relative to
Cartesian and polar co-ordinate axes,
using the geomechanics convention
for the sense of positive stresses.

GRAPHICAL REPRESENTATION OF BIAXIAL STRESS
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2.13 Graphical representation of biaxial stress

Analytical procedures for plane problems subject to biaxial stress have been discussed
above. Where equations or relations appropriate to the two-dimensional case have not
been proposed explicitly, they can be established from the three-dimensional equa-
tions by deleting any terms or expressions related to the third co-ordinate direction.
For example, for biaxial stress in the x, y plane, the differential equations of static
equilibrium, in the geomechanics convention, reduce to

00y, 00y,

-X=0
ax dy
00,y n day, _y—o
ax dy

One aspect of biaxial stress that requires careful treatment is graphical representa-
tion of the state of stress at a point, using the Mohr circle diagram. In particular, the
geomechanics convention for the sense of positive stresses introduces some subtle
difficulties which must be overcome if the diagram is to provide correct determination
of the sense of shear stress acting on a surface.

Correct construction of the Mohr circle diagram is illustrated in Figure 2.13. The
state of stress in a small element abcd is specified, relative to the x, y co-ordinate
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Figure 2.13 Construction of a Mohr
circle diagram, appropriate to the
geomechanics convention of stresses.

STRESS AND INFINITESIMAL STRAIN

OC = V2 ( O+ Oyl
CD =12 ( Oy — Gy}
DF ==0y

axes, by known values of oy, 0y,, 0,. A set of reference axes for the circle diagram
construction is defined by directions o, and 7, with the sense of the positive T axis
directed downwards. If O is the origin of the g, — 7 co-ordinate system, a set of
quantities related to the stress components is calculated from

OC = 3(0xx + 0yy)
CD = %(O-xx — ayy)

DF = —oy,,

Points corresponding to C, D, F are plotted in the o, T plane as shown in Figure 2.13,
using some convenient scale. In the circle diagram construction, if oy, is positive,
the point F plots above the o, axis. Construction of the line FDF' returns values
of T = 0y, and o, = 0y, which are the shear and normal stress components acting
on the surface cb of the element. Suppose the surface ed in Figure 2.13 is inclined
at an angle 0 to the negative direction of the y axis, or, alternatively, its outward
normal is inclined at an angle 6 to the x axis. In the circle diagram, the ray FG
is constructed at an angle 8 to FDF', and the normal GH constructed. The scaled
distances OH and HG then represent the normal and shear stress components on the
plane ed.

A number of useful results can be obtained or verified using the circle dia-
gram. For example, OS; and OS, represent the magnitudes of the major and minor
principal stresses oy, 0,. From the geometry of the circle diagram, they are given
by

g1,2 OC = CF

1/2
= %(O-xx + O'yy) + [O'xzy + %(O-xx — O'yy)z] /

confirming the solution given in equation 2.24a. The ray FS; defines the orientation
of the major principal plane, so FS;, normal to FS;, represents the orientation of the
major principal axis. If this axis is inclined at an angle «, to the x axis, the geometry
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of the circle diagram yields

(OS; — OD)
DF
_ (Ul - Gxx)

tanoy =

Oy

This expression is completely consistent with that for orientations of principal axes
established analytically (equation 2.24b).

Problems

(The geomechanics convention for stress and strain is to be assumed in the following
exercises.)

1 The rectangular plate shown in the figure below has the given loads uniformly
distributed over the edges. The plate is 50 mm thick, AB is 500 mm and BC is
400 mm.

(a) Determine the shear forces which must operate on the edges BC, DA, to maintain
the equilibrium of the plate.

AB =500 mm 400 kN
BC = 400 mm
250 kN
A B
P
m !
fy 0
300kN E 30 4 300kN
«——VH X =
A !X
/8 G 7
4 4
D C
y [ 250 kN
400 kN
X

(b) Relative to the x, y reference axes, determine the state of stress at any point P
in the interior of the plate.

(c) For the [,m axes oriented as shown, determine the stress components
Oi1s Omm s Olm -

(d) Determine the magnitudes of the principal stresses, and the orientation of the
major principal stress axis to the x axis.

(e) For the surface GH, whose outward normal is inclined at 6° to the x axis,
determine expressions for the component tractions, #,, ¢,, operating on it as a
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function of oy, 0y, 0y, and 0. Determine values of ¢, 7, for 6 = 0°, 60°, 90°,
respectively. Determine the resultant stress on the plane for which 6 = 60°.

2 The unit free body shown in the figure (left) is subject to the stress components
shown acting parallel to the given reference axes, on the visible faces of the cube.

(a) Complete the free-body diagram by inserting the required stress components,
and specify the six stress components relative to the x, y, z axes.

(b) Thel, m, nreference axes have direction cosines relative to the x, y, z axes defined
by

(y. 1y, 1) = (0.281,0.597,0.751)
(my, my, m.) = (0.844,0.219, —0.490)
(g, ny, ;) = (—0.457,0.771, —0.442)

Write down the expressions relating d;,,,, 0, to the x, y, z components of stress
and the direction cosines, and calculate their respective values.

(c) From the stress components established in (a) above, calculate the stress invari-
ants, Iy, I, I3, write down the characteristic equation for the stress matrix, and
determine the principal stresses and their respective direction angles relative to
the x, y, 7 axes.

Demonstrate that the principal stress directions define a mutually orthogonal
set of axes.

3 A medium is subject to biaxial loading in plane strain. Relative to a set of x, y,
co-ordinate axes, a load imposed at the co-ordinate origin induces stress components
defined by

o - 1 8y?  8y*

AT 4 46
1 4y 8y*

S 2xy  8xy3

Xy = T2 6

where r2 = x2 + y?
Verify that the stress distribution described by these expressions satisfies the dif-
ferential equations of equilibrium. Note that

a (1 X
a ; =—r—3 etc.

4 A medium is subject to plane strain loading by a perturbation at the origin of the
x, y co-ordinate axes. The displacements induced by the loading are given by

_ 1 [xy+c]
Mx_2G r2 !

72

1 [y?
Uy, = Glz (3 —4v)lnr + C,
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where C,, C, are indefinite constants.

(a) Establish expressions for the normal and shear strain components, €, , €y, Yxy-

(b) Verify that the expressions for the strains satisfy the strain compatibility equa-
tions.

(c) Using the stress—strain relations for isotropic elasticity, establish expressions for
the stress components induced by the loading system.

5 The body shown in the figure below is subject to biaxial loading, with stress com-
ponents given by oy, = 12, oy, = 20, 0y, = 8.

20

APA TSI I IS A L B

20

(a) Construct the circle diagram representing this state of stress. Determine, from
the diagram, the magnitudes of the principal stresses, and the inclination of the
major principal stress axis relative to the x reference direction. Determine, from
the diagram, the normal and shear stress components o, and T on the plane EF
oriented as shown.

(b) Noting that the outward normal, OL, to the surface EF is inclined at an angle of
30° to the x axis, use the stress transformation equations to determine the stress
components oy; and ay,,. Compare them with o, and 7 determined in (a) above.

(c) Determine analytically the magnitudes and orientations of the plane principal
stresses, and compare them with the values determined graphically in (a) above.
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Figure 3.1 Sidewall failure in a
mine haulage aligned parallel to the
line of intersection of two major dis-
continuities (photograph by E. Hoek).

Rock mass structure and
characterisation

3.1 Introduction

Rock differs from most other engineering materials in that it contains fractures of
one type or another which render its structure discontinuous. Thus a clear distinction
must be made between the rock element or rock material on the one hand and the
rock mass on the other. Rock material is the term used to describe the intact rock
between discontinuities; it might be represented by a hand specimen or piece of drill
core examined in the laboratory. The rock mass is the total in situ medium containing
bedding planes, faults, joints, folds and other structural features. Rock masses are
discontinuous and often have heterogeneous and anisotropic engineering properties.

The nature and distribution of structural features within the rock mass is known
as the rock structure. Obviously, rock structure can have a dominant effect on the
response of a rock mass to mining operations. It can influence the choice of a mining
method and the design of mining layouts because it can control stable excavation
spans, support requirements, subsidence, cavability and fragmentation characteris-
tics. At shallow depths and in de-stressed areas, structurally controlled failures may
be the prime concern in excavation design (Figure 3.1). At depth and in areas of
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MAJOR TYPES OF STRUCTURAL FEATURES

high stress concentration, the influence of structure may be less marked, and lim-
iting the induced boundary stresses or energy release rates may be more important
considerations (Chapters 7 and 10).

This chapter describes the types and important properties of structural features
found in rock masses, methods of collecting, processing and presenting data on rock
structure, and the incorporation of such data into rock mass classification schemes.
The uses of these data and rock mass classifications in selecting mining methods and
designing excavations will be described in subsequent chapters.

3.2 Major types of structural features

Structural features and their origins are well described in several textbooks on general,
structural and engineering geology. From an engineer’s point of view, the accounts
given by Hills (1972), Hobbs et al. (1976), Blyth and de Freitas (1984), Price and
Cosgrove (1990) and Goodman (1993) are particularly helpful. The reader who is not
familiar with the elements of structural geology should study one of these texts. All
that will be given here is a catalogue of the major types of structural feature and brief
descriptions of their key engineering properties.

Bedding planes divide sedimentary rocks into beds or strata. They represent inter-
ruptions in the course of deposition of the rock mass. Bedding planes are generally
highly persistent features, although sediments laid down rapidly from heavily laden
wind or water currents may contain cross or discordant bedding. Bedding planes may
contain parting material of different grain size from the sediments forming the rock
mass, or may have been partially healed by low-order metamorphism. In either of
these two cases, there would be some ‘cohesion’ between the beds; otherwise, shear
resistance on bedding planes would be purely frictional. Arising from the depositional
process, there may be a preferred orientation of particles in the rock, giving rise to
planes of weakness parallel to the bedding.

Folds are structures in which the attitudes of the beds are changed by flexure
resulting from the application of post-depositional tectonic forces. They may be major
structures on the scale of a mine or mining district or they may be on a smaller local
scale. Folds are classified according to their geometry and method of formation (Hills,
1972, for example).

The major effects of folds are that they alter the orientations of beds locally, and
that certain other structural features are associated with them. In particular, well-
defined sets of joints may be formed in the crest or trough and in the limbs of a fold.
Figure 3.2 shows the typical development of jointing in one stratum in an anticline.
During the folding of sedimentary rocks, shear stresses are set up between the beds
where slip may occur. Consequently, the bedding plane shear strength may approach,
or be reduced to, the residual (section 4.7.2). Axial-plane or fracture cleavage may
also develop as a series of closely spaced parallel fractures resulting from the shear
stresses associated with folding.

Faults are fractures on which identifiable shear displacement has taken place. They
may be recognised by the relative displacement of the rock on opposite sides of the
fault plane. The sense of this displacement is often used to classify faults (Hills, 1972,
for example). Faults may be pervasive features which traverse a mining area or they
may be of relatively limited local extent on the scale of metres; they often occur in
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Figure 3.2 Jointing in a folded stra-
tum (after Blyth and de Freitas, 1984).

Figure 3.3 Secondary structures as-
sociated with faulting: (a) bedding
plane fault in brittle rock develops
associated shear and tension (gash)
fractures; (b) bedding plane fault in
closely bedded shale develops closely
spaced, intersecting shears; (c) bed-
ding plane fault in poorly stratified,
partially ductile rock produces a wide
zone of drag folds; (d) fault in compe-
tent, brittle rock dies out in weak shale;
(e) fault in crystalline igneous rock de-
velops subsidiary inclined shears and
parallel sheeting; (f) a fault in an ig-
neous rock changes character in pass-
ing through a mica-rich metamorphic
rock (after Wahlstrom, 1973).

ROCK MASS STRUCTURE AND CHARACTERISATION

tension joints at
crest of fold

strike joints

oblique joints
(shear joints)

dip joints

echelon or in groups. Fault thickness may vary from metres in the case of major,
regional structures to millimetres in the case of local faults. This fault thickness may
contain weak materials such as fault gouge (clay), fault breccia (recemented), rock
flour or angular fragments. The wall rock is frequently slickensided and may be coated
with minerals such as graphite and chlorite which have low frictional strengths. The
ground adjacent to the fault may be disturbed and weakened by associated structures
such as drag folds or secondary faulting (Figure 3.3). These factors result in faults
being zones of low shear strength on which slip may readily occur.

Shear zones are bands of material, up to several metres thick, in which local shear
failure of the rock has previously taken place. They represent zones of stress relief
in an otherwise unaltered rock mass throughout which they may occur irregularly.
Fractured surfaces in the shear zone may be slickensided or coated with low-friction
materials, produced by the stress relief process or weathering. Like faults, shear zones
have low shear strengths but they may be much more difficult to identify visually.
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Figure 3.4 The effect of dyke prox-
imity on rockburst incidence, East
Rand Proprietary Mines. (a) Large
dykes in continent abutments; (b)
large dykes in island or remnant abut-
ments (after Cook, N.G.W. et al.,
1966).

MAJOR TYPES OF STRUCTURAL FEATURES

Deere (1979) has described the nature of shear zones and discussed the engineering
problems associated with them. Salehy et al. (1977) have described their occurrence
in coal measures rocks as intraformational shears.

Dykes are long, narrow intrusions of generally fine-grained igneous rock with
steep or vertical and approximately parallel sides. They may vary in width from a few
centimetres to several metres and may appear as dyke swarms. Dykes may also be of
considerable length. The Great Dyke of Rhodesia, for example, is some 500 km long.
It is a flat, trough-like structure which is extensively mineralised, particularly on the
margins. Some dyke rocks are more resistant to weathering than the country rock, but
the basic igneous dyke rocks such as dolerite can weather to montmorillonite clays
which are noted for their swelling characteristics. The dyke margins are frequently
fractured and altered during the intrusion. They form potential seepage paths and zones
of low stiffness and shear strength in which movements will tend to be concentrated.
Because of their high stiffnesses, unweathered dyke rocks can develop high stresses
and so be susceptible to stress-induced failure or, as in the deep-level gold mines
of South Africa, be associated with rockburst conditions. Figure 3.4 (after Cook,
N.G.W. et al., 1966) shows the effect of dyke proximity on rockburst incidence at
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Figure 3.5 Diagrammatic longi-
tudinal section illustrating inrush
of water from Bank compartment,
West Dreifontein Mine, 26 Octo-
ber 1968. Total inflow was approx-
imately 100000 gal/day (~45.5 x
10* 1/day) (after Cartwright, 1969).

East Rand Proprietary Mines. Another major mining problem caused by dykes in
South African gold mines is the compartmentalisation of water-bearing dolomites
causing severe differences in head between adjacent compartments after the water
level in one has been drawn down during mining operations. At the West Driefontein
Mine in 1968, a stope hangingwall failure adjacent to a fault in the compartment on
the non-dewatered side of a major vertical dyke triggered the flooding of a portion of
the mine (Figure 3.5).

Joints are the most common and generally the most geotechnically significant
structural features in rocks. Joints are breaks of geological origin along which there
has been no visible displacement. A group of parallel joints is called a joint set,
and joint sets intersect to form a joint system. Joints may be open, filled or healed.
They frequently form parallel to bedding planes, foliations or slaty cleavage, when
they may be termed bedding joints, foliation joints or cleavage joints. Sedimentary
rocks often contain two sets of joints approximately orthogonal to each other and to
the bedding planes (Figure 3.2). These joints sometimes end at bedding planes, but
others, called master joints, may cross several bedding planes.

Veins, or cemented joints, are mineral infillings of joints or fissures. They may be
sheet-like or tabular or irregular. They are generally of igneous origin but may also
result from sedimentary processes. They are commonly associated with metalliferous
orebodies and have been found to have major influences on orebody cavability and
fragmentation as at the El Teniente mine, Chile. They may be weaker or stronger than

50



Figure 3.6 Definition of dip direc-
tion (a) and dip (W).

IMPORTANT GEOMECHANICAL PROPERTIES OF DISCONTINUITIES

the wall rock and should be taken into account in rock mass classification schemes
(see section 3.7).

It is common in rock mechanics to use the term discontinuity as a collective term
for all fractures or features in a rock mass such as joints, faults, shears, weak bedding
planes and contacts that have zero or relatively low tensile strengths. This terminology
will be used here and will be departed from only when it is necessary to identify the
geological origin of the structural feature being discussed.

3.3 Important geomechanical properties of discontinuities

This section lists and discusses briefly the most important of those properties of dis-
continuities that influence the engineering behaviour of rock masses. For a fuller
discussion of these properties, the reader should consult the document ‘Suggested
methods for the quantitative description of discontinuities in rock masses’ prepared
by the Commission on Standardization of Laboratory and Field Tests, International
Society for Rock Mechanics (1978a), subsequently referred to as the ISRM Commis-
sion (1978a).

Orientation, or the attitude of a discontinuity in space, is described by the dip
of the line of maximum declination on the discontinuity surface measured from the
horizontal, and the dip direction or azimuth of this line, measured clockwise from
true north (Figure 3.6). Some geologists record the strike of the discontinuity rather
than the dip direction, but this approach can introduce some ambiguity and requires
that the sense of the dip must also be stated for unique definition of discontinuity
orientation. For rock mechanics purposes, it is usual to quote orientation data in the
form of dip direction (three digits)/dip (two digits) thus, 035/70, 290/15. Obviously,
the orientations of discontinuities relative to the faces of excavations have a dominant
effect on the potential for instability due to falls of blocks of rock or slip on the
discontinuities (Chapter 9). The mutual orientations of discontinuities will determine
the shapes of the blocks into which the rock mass is divided.

Spacing is the perpendicular distance between adjacent discontinuities, and is usu-
ally expressed as the mean spacing of a particular set of joints. The spacing of discon-
tinuities determines the sizes of the blocks making up the rock mass. The mechanism
of deformation and failure can vary with the ratio of discontinuity spacing to exca-
vation size. Engineering properties such as cavability, fragmentation characteristics
and rock mass permeability also vary with discontinuity spacing.

It is to be expected that, like all other characteristics of a given rock mass, discon-
tinuity spacings will not have uniquely defined values but, rather, will take a range of
values, possibly according to some form of statistical distribution. Priest and Hudson
(1976) made measurements on a number of sedimentary rock masses in the United
Kingdom and found that, in each case, the discontinuity spacing histogram gave a
probability density distribution that could be approximated by the negative exponen-
tial distribution. Thus the frequency, f(x), of a given discontinuity spacing value, x,
is given by the function

fx) =re™ (3.1

where A >~ 1/x is the mean discontinuity frequency of a large discontinuity population
and X is the mean spacing.
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Figure 3.7 Discontinuity spacing
histogram, Lower Chalk, Chinnor,
Oxfordshire (after Priest and Hudson,
1976).

ROCK MASS STRUCTURE AND CHARACTERISATION
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A discontinuity spacing histogram and the corresponding negative exponential
distribution calculated from equation 3.1 are shown for the Lower Chalk, Chin-
nor, Oxfordshire, UK, in Figure 3.7. The use of frequency distributions such as
that given by equation 3.1 permits statistical calculations to be made of such fac-
tors as probable block sizes and the likelihood that certain types of intersection will
occur.

Priest and Hudson’’s findings have since been verified for a wider range of igneous,
sedimentary and metamorphic rocks, although other distributions, most notably the
log-normal distribution, have been found to provide better fits to some sets of data.
Which distribution applies has been found to depend on the rock type and the spacing
range recorded. If there have been enough geological events to create a number of
discontinuity sets and a small total spacing, the spacings are likely to follow a nega-
tive exponential distribution. If only a few geological events have caused fracturing,
existing discontinuity sets have become healed, or the recorded spacings were cen-
sored by omitting discontinuities of below a particular size, a larger total spacing and
a log-normal distribution may result (Brown, 2003).

In classifying rock masses for engineering purposes, it is common practice to quote
values of Rock Quality Designation (RQD), a concept introduced by Deere (1964,
1968) in an attempt to quantify discontinuity spacing. RQD is determined from drill
core and is given by

IOOEX,‘

ROD =
Q L

(3.2)
where x; are the lengths of individual pieces of core in a drill run having lengths of
0.1 m or greater and L is the total length of the drill run. The lengths of the pieces
of core may be measured from tip to tip, along the core centre line, or as the fully
circular lengths of core. There are good reasons for using the centre line method
(Brown, 2003, Goodman, 1993, ISRM Commission, 1978a).

Priest and Hudson (1976) found that an estimate of RQD could be obtained
from discontinuity spacing measurements made on core or an exposure using the
equation

ROD = 100e~ "™ 0.1\ + 1) (3.3)
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Figure 3.8 Relation between RQD
and mean discontinuity frequency
(after Priest and Hudson, 1976).

IMPORTANT GEOMECHANICAL PROPERTIES OF DISCONTINUITIES
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For values of \ in the range 6 to 16/m, a good approximation to measured RQD
values was found to be given by the linear relation
ROD = —3.68\ + 110.4 34
Figure 3.8 shows the relations obtained by Priest and Hudson (1976) between mea-
sured values of ROD and A, and the values calculated using equations 3.3 and 3.4.

It should be noted, however, that ROD measured from drill core can be an unreliable
predictor of discontinuity frequency because:

¢ it relies on the ability of the logger to discriminate between natural fractures and
those caused by blasting or drilling;

* it may be influenced by the strength of the rock material being drilled;

¢ good core recovery depends on the drilling practice used (see section 3.4.2);

* RQD is not a good measure of the better rock mass conditions. If a rock mass has
one uniformly spaced discontinuity set with a spacing of either 0.1 m or 5 m, the
RQOD will be 100 in both cases; and

* in an anisotropic rock mass, the measured RQOD will be influenced by drilling
orientation.

Discontinuity spacing is a factor used in many rock mass classification schemes.
Table 3.1 gives the terminology used by the ISRM Commission (1978a).

Persistence is the term used to describe the areal extent or size of a discontinuity
within a plane. It can be crudely quantified by observing the trace lengths of discon-
tinuities on exposed surfaces. It is one of the most important rock mass parameters
but one of the most difficult to determine. Figure 3.9 shows a set of simple plane
sketches and block diagrams used to help indicate the persistence of various sets of
discontinuities in a rock mass. Clearly, the persistence of discontinuities will have a
major influence on the shear strength developed in the plane of the discontinuity and
on the fragmentation characteristics, cavability and permeability of the rock mass.
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Figure 3.9 Illustration of persis-
tence of various sets of discontinuities
(after ISRM Commission, 1978a).

ROCK MASS STRUCTURE AND CHARACTERISATION

Table 3.1 Classification of discontinuity spacing.

Description Spacing (mm)
extremely close spacing <20
very close spacing 20-60
close spacing 60-200
moderate spacing 200-600
wide spacing 600-2000
very wide spacing 2000-6000
extremely wide spacing >6000

Table 3.2 Classification of discontinuity persistence.

Description Modal trace length (m)
very low persistence <1
low persistence 1-3
medium persistence 3-10
high persistence 10-20
very high persistence 20

The ISRM Commission (1978a) uses the most common or modal trace lengths of
each set of discontinuities measured on exposures (section 3.4.1) to classify persis-
tence according to Table 3.2.

Roughness is a measure of the inherent surface unevenness and waviness of the
discontinuity relative to its mean plane. The wall roughness of a discontinuity has a
potentially important influence on its shear strength, especially in the case of undis-
placed and interlocked features (e.g. unfilled joints). The importance of roughness
declines with increasing aperture, filling thickness or previous shear displacement.
The important influence of roughness on discontinuity shear strength is discussed in
section 4.7.2.

When the properties of discontinuities are being recorded from observations made
on either drill core or exposures, it is usual to distinguish between small-scale surface
irregularity or unevenness and larger-scale undulations or waviness of the surface
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Figure 3.10 Different scales of dis-
continuity roughness sampled by dif-
ferent scales of shear test. Waviness
can be characterised by the angle i
(after ISRM Commission, 1978a).

IMPORTANT GEOMECHANICAL PROPERTIES OF DISCONTINUITIES

Table 3.3 Classification of discontinuity roughness.

Class Description

I rough or irregular, stepped

I smooth, stepped

I slickensided, stepped

v rough or irregular, undulating
v smooth, undulating

VI slickensided, undulating

VII rough or irregular, planar
VIII smooth, planar

X slickensided, planar

(Figure 3.10). Each of these types of roughness may be quantified on an arbitrary
scale of, say, one to five. Descriptive terms may also be used particularly in the
preliminary stages of mapping (e.g. during feasibility studies). For example, the ISRM
Commission (1978a) suggests that the terms listed in Table 3.3 and illustrated in
Figure 3.11 may be used to describe roughness on two scales — the small scale (several
centimetres) and the intermediate scale (several metres). Large-scale waviness may
be superimposed on such small- and intermediate-scale roughness (Figure 3.10).
Aperture is the perpendicular distance separating the adjacent rock walls of an
open discontinuity in which the intervening space is filled with air or water. Aper-
ture is thereby distinguished from the width of a filled discontinuity (Figure 3.12).
Large apertures can result from shear displacement of discontinuities having appre-
ciable roughness, from outwash of filling materials (e.g. clay), from solution or from
extensile opening. In most subsurface rock masses, apertures will be small, probably
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Figure 3.11 Typical roughness pro-
files and suggested nomenclature.
Profile lengths are in the range 1 to
10 m; vertical and horizontal scales
are equal (after ISRM Commission,
1978a). I
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less than half a millimetre. It will be appreciated, of course, that unlike the examples
given in Figure 3.12, the apertures of real discontinuities are likely to vary widely
over the extent of the discontinuity. This variation will be difficult, if not impossible,
to measure.

Clearly, aperture and its areal variation will have an influence on the shear strength
of the discontinuity. Perhaps more important, however, is the influence of aperture on
the permeability or hydraulic conductivity of the discontinuity and of the rock mass.
For laminar flow, the hydraulic conductivity of a single discontinuity with plane,
parallel sides is given by

_ g

T 12w (3-5)

where k = hydraulic conductivity (m s~'), g = acceleration due to gravity
(ms~2), e = discontinuity aperture (m) and v = kinematic viscosity of the fluid
(m? s~ (= 1.01 x 107°m? s~! for water at 20°C).

If e = 0.05 mm, for example, k = 1.01 x 1077 ms~' for water at 20°C, but if e is
increased to 0.5 mm, k is increased by a factor of 1000 to 1.01 x 10™* ms~!.

Filling is the term used to describe material separating the adjacent rock walls
of discontinuities. Such materials may be calcite, chlorite, clay, silt, fault gouge,
breccia, quartz or pyrite, for example. Filling materials will have a major influence on
the shear strengths of discontinuities. With the exception of those filled with strong
vein materials (calcite, quartz, pyrite), filled discontinuities will generally have lower
shear strengths than comparable clean, closed discontinuities. The behaviour of filled
discontinuities will depend on a wide range of properties of the filling materials. The
following are probably the most important and should be recorded where possible:

(a) mineralogy of the filling material taking care to identify low-friction materials
such as chlorite

(b) grading or particle size

(c) water content and permeability

(d) previous shear displacement

(e) wall roughness

(f) width of filling

(g) fracturing, crushing or chemical alteration of wall rock.

3.4 Collecting structural data

The task of collecting the data referred to in section 3.3 is usually the responsibility
of the mining or engineering geologist, although rock mechanics engineers or mining
engineers may sometimes be called on to undertake the necessary fieldwork. In either
case, it is essential for the rock mechanics or mining engineer (who will generally
initiate a request for the data, and who will use it in mine planning studies) to be
familiar with techniques used in collecting the data and with the potential difficulties
involved.

The starting point for the development of an engineering understanding of the rock
mass structure is a study of the general regional and mine geology as determined
during exploration. This will provide some knowledge of the lithologies and of the
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major structural features (folds, faults and dykes) present in the mining area. Such
information provides essential background to rock mechanics studies, but in itself,
is inadequate for our purposes. Further studies, involving careful mapping of surface
and underground exposures and logging of boreholes drilled for this purpose, are
required to obtain the types of data discussed in section 3.3.

The present account of the methods used to collect structural and related geological
datais far from exhaustive. Fuller accounts are given by Goodman (1976, 1993), ISRM
Commission (1978a), Hoek and Brown (1980), Priest (1993) and Brown (2003).

3.4.1 Mapping exposures

In the early stages of a mining project, it may not be possible to gain access under-
ground. In this case, surface outcrops must be utilised to obtain information on the
engineering properties and structure of the rock mass. Measurements may be made on
natural outcrops or on faces exposed by surface excavations. In some mining projects,
an existing open pit provides an invaluable source of data.

It must be recognised, however, that these surface exposures can be affected by
weathering and that the surface rock mass quality may be quite different from that at
depth. It is essential, therefore, that any preliminary data obtained from surface expo-
sures are validated by subsequently examining underground exposures. Exploratory
openings should be mapped at the earliest possible stage to provide data for the rock
mechanics input into mining feasibility studies. As the mining project reaches a more
advanced stage, development openings should be mapped to provide information on
which stope design can be based.

In all of these instances, there is a basic sampling problem to be considered.
What proportion of the rock mass should be surveyed to obtain satisfactory results?
What degree of confidence can be placed on mean values of discontinuity properties
determined using limited amounts of data? There are no complete answers to such
questions although the use of statistical techniques, such as those developed by Priest
and Hudson (1981) and discussed briefly below, does provide valuable guidance.
Even where it is possible to develop a statistical approach to discontinuity mapping,
practical considerations, such as a lack of access to the desired underground exposure,
can mean that surveyors must use their judgement in interpreting results.

The approaches used for mapping exposures may be of three main types:

* spot mapping in which the observer selectively samples only those discontinuities
that are considered to be important;

* lineal mapping in which all discontinuities intersecting a given sampling line are
mapped; and

¢ areal mapping in which all discontinuities within a selected area of the face,
often called a window, are mapped. This method can reduce some of the biases in
mapping to be discussed below, but it suffers from some practical difficulties for
routine use in underground mines.

The basic technique used in mapping surface or underground exposures is the
scanline survey (Figure 3.13). A scanline is a line set on the surface of the rock
mass, and the survey consists of recording data for all discontinuities that intersect
the scanline along its length. An alternative approach is to measure all discontinuities
within a defined area on the rock face, but this is more difficult to control and do
systematically than are scanline surveys. In underground development excavations
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Figure 3.13 Scanline survey.
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of limited height, it is often possible to combine these two approaches and to record
all discontinuities by extrapolating those which do not intersect the scanline to give
imaginary intersection points.

In practice, a scanline is a measuring tape fixed to the rock face by short lengths of
wire attached to masonry nails hammered into the rock. The nails should be spaced at
approximately 3 m intervals along the tape which must be kept as taut and as straight as
possible. Where practicable, each scanline location should be photographed with the
scanline number or location suitably identified. Once the scanline is established, the
location (scanline number and grid co-ordinates), date, rock type, face orientation,
scanline orientation and name of the surveyor are recorded on the logging sheet
(Figure 3.14). Surveyors should then carefully and systematically work their way
along the scanline recording the following features for each discontinuity intersecting
the scanline:

(a) distance along the scanline to the point at which the discontinuity intersects the
scanline (D in Figure 3.13). Fractures obviously caused by blasting are usually
not recorded;

(b) number of endpoints of the discontinuity observed on the face (0, 1 or 2);

(c) discontinuity type (joint, fault, vein, bedding plane, shear zone);

(d) orientation (dip and dip direction) of the discontinuity at or near the point of
intersection with the scanline using a suitable magnetic compass such as the
Clar compass;

(e) roughness (rough, smooth or slickensided);

(f) planarity (planar, wavy or undulating, irregular or stepped);

(g) trace length or length of the discontinuity seen in the sample plane. Some author-
ities (e.g. Priest, 1993) advocate recording only the length, L, above the scanline
as shown in Figure 3.13, whereas others record separately the trace lengths above
and below the discontinuity;

(h) termination types (in intact rock, at another joint or hidden) for the ends above
and below the scanline; and

(i) remarks, particularly on the nature of any infilling present, discontinuity aperture
or seepage from the discontinuity.
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Line No.: North: Bench face/wall dip: Page: of
Bearing: East: Bench face/wall dip dir: By:
Plunge: Censoring levels (m): up down Date:
Elev: Location: Start: Finish:
LOCATION STRUCTURE GEOMETRY REMARKS
Above Trace Length | Below
Dist (m) Endpoints Type Dip Dir Dip Rock | Rough Plan T1 T2 (m) T1 T2
NOTATION USED:
Endpoint Locations Structure Type Roughness Planarity T1 (Termination) T2
0 Transecting J Joint | B | Bedding | R Rough P | Planar | AJ | Another joint L Low angle (<20°)
1 Intersecting v Vein | S Shear S Smooth W | Wavy IR Intact rock H High angle (>20°)
2 Contained F Fault | C | Contact | SL | Slickensided | I | Irregular | FC | Floor censored | UN Unknown
BX Blast induced RC | Roof censored

Figure 3.14 Scanline survey sheet

; Traditionally, data have been recorded on paper in the field. However, depending
(after Villaescusa, 1991).

on the environment in which the mapping is done, it is now quite common for data
to be captured on hand held computers from which it may be transferred directly to
the computers used for subsequent data analysis and presentation (see section 3.6).

Experience has shown that, for rock mechanics purposes, rock masses can be
divided into homogeneous zones, or zones within which the rock mass has relatively
uniform rock mass structure and geotechnical properties. Where possible, the rock
mass should be divided into such zones and at least one scanline survey made in
each zone. Clearly, attention should be concentrated on areas in and adjacent to the
orebody for mine design studies. However, other sections of the rock mass may also
be of interest as sites for permanent underground installations. Figure 3.15 shows the
likely locations of scanlines in an exploration cross cut driven through a sedimentary
sequence containing mineralised shales. These scanlines sample the immediate foot-
wall and hangingwall of each of the two orebodies, the orebodies themselves and the
rocks outside the mineralised zone.

As with other methods of collecting structural data, bias may be introduced into
scanline survey results by a number of causes. There are four main types of sampling
bias associated with discontinuity measurement (Brown, 2003):

Orientation bias — the frequency of discontinuities intersecting a particular win-
dow, scanline or piece of drill core depends on the orientation of the sampling
geometry relative to the orientation of the discontinuity set.
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Figure 3.15 Suggested scanline lo-
cations along an exploration cross cut
intersecting two orebodies in steeply
dipping sedimentary strata.
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Size bias — the larger the scale of a discontinuity, the more likely it is to be sampled
by a given drill core, scanline or mapping window.

Truncation bias — a truncation or size cut-off is usually used in scanline or window
mapping. For example, fractures that are less than 50 mm in length may be
ignored. Although using such a small cut-off will usually have little effect on
the overall discontinuity statistics, if a comprehensive, rigorous analysis is
undertaken with the aim of fully describing the distribution of discontinuity
sizes then the truncation size cut-off must be taken into account. It has been
found that the size cut-off can have a particular influence on estimates of
fragmentation size distributions (Villaescusa, 1991).

Censoring bias — this bias is associated with the artificial boundaries imposed
when carrying out a rock mass characterisation exercise. Typically, in under-
ground mines, the most limiting boundary is the height of the drives in which
mapping is carried out. The restriction in height of the mapping window limits
the trace lengths that can be observed. Censored trace lengths provide lower
bound estimates of the true trace lengths.

Generally there will be an orientation bias in the observed spacings between dis-
continuities in a particular set because the scanline will not be perpendicular to the
discontinuity traces. If, as shown in Figure 3.13, the apparent spacing between two dis-
continuities in a set is x; and the acute angle between the normal to the discontinuities
and the scanline is a, the true spacing in the plane of the face, x;¢, can be calculated
from

Xjp = X; COsS 3.6)
Only when o = 0°, is the true spacing in the plane of the face measured directly.
In the extreme case when the discontinuity and scanline are parallel (o = 90°), no

intersection will be observed. It is necessary, therefore, that scanline surveys of a face
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be carried out in two orthogonal directions, usually horizontal and vertical. Ideally,
equal total horizontal and vertical scanline lengths should be used, but this is often
difficult to achieve in practice.

The value x;o given by equation 3.6 will be the true normal spacing of the discon-
tinuities only when the face is normal to the discontinuities. If the scanline intersects
N sets of discontinuities, the discontinuity frequency measured along the scanline is
given by

N
= Z Nio COS 3.7
i1

where \;o is the frequency of set i measured along the normal to the discontinuities
and o; is the acute angle between the normal and the scanline.

Hudson and Priest (1983) showed that if «;, B; are the trend (the azimuth of the
vertical plane containing the line) and plunge (the acute angle measured in a vertical
plane between the downward directed end of the line and the horizontal) of the normal
to the ith discontinuity set and a, B; are the trend and plunge of the scanline, the
discontinuity frequency measured along the scanline is

N = Asina, cos Bs + B cosag cos B + C sin By 3.8)

where

N
A= E Nio sin o; cos [3;

i=1

N
B = E Nio cos a; cos [3;

i=1
N

C = Z )\iO sin Bi
i=l1

Priest and Hudson (1981) have pointed out that there is also a natural variability in
the mean discontinuity spacing X computed as

n
>
=5 (3.9)
n
where x; is the ith discontinuity spacing measurement along a scanline of length L
yielding n values. The question arises as to what value n should take in order that
the value of ¥ can be estimated with acceptable precision. In theory, a plot of the
frequency of occurrence of values of X determined from several scanline surveys in
the one direction with different values of n, should have a normal distribution (Figure
3.16a). It is known that, in this case, a proportion ¢ (z) of the different scanlines
will yield a mean value within +zo/,/n of the population mean (Figure 3.16b)
where z is the standard normal variable associated with a certain confidence level
and o is the standard deviation of the population of values. Tabulations of values of
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Table 3.4 Values of ¢( z) for the normal distribution.

z b(2)
0.675 0.50
0.842 0.60
1.036 0.70
1.282 0.80
1.645 0.90
1.960 0.95
2.576 0.99

(a)
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Figure 3.16 Frequency distribution I
of the sample mean (after Priest and | >
Hudson, 1981). Sample mean, x

z and ¢ (z) can be found in most statistics textbooks. Selected values are given in
Table 3.4.

It will be recalled that discontinuity spacings, x, often follow the negative expo-
nential probability density function

f(x)=Ne ™ 3.1)

It so happens that, for this distribution, the mean and standard deviation of the pop-
ulation are equal. For a sample of size n, the bandwidth of ¢(z) confidence is then
X £ (z%)/+/n. Alternatively, this bandwidth can be written as ¥ + £X where € is the
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Figure3.17 Sample number vs. pre-
cision of the mean discontinuity spac-
ing estimate for a negative exponen-
tial distribution of spacing (after Priest
and Hudson, 1981).
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Equation 3.10 can be used to estimate the sample size required to achieve a given
error bandwidth to a required confidence level in the estimate of the mean. For exam-
ple, if the mean spacing is required within an error bandwidth of +20% at the 80%
confidence level, € = 0.2, z = 1.282 and n = 41. If, on the other hand, the mean
spacing is required to within 10% at the 90% confidence level, n = 271.

Figure 3.17 shows the required number of spacing values versus the error band for
various confidence levels. It will be seen that the required sample size increases very
rapidly as the allowable error is reduced.

Priestand Hudson (1981), Villaescusa and Brown (1992) and others, have discussed
the bias in trace lengths measured in scanline surveys and developed methods for
estimating mean trace lengths from censored measurements made at exposures of
limited extent. These estimated trace lengths can serve as measures of persistence
(Table 3.2) which is an important engineering property of discontinuities. A detailed
consideration of these analyses is beyond the scope of this text. However, the reader
should be aware of the uncertainties involved in estimating mean rock mass properties
from scanline and other types of discontinuity survey.

3.4.2 Geotechnical drilling and core logging

Core drilling is the most reliable way of exploring the interior of a rock mass prior to
mining. As will be discussed later in this section, downhole geophysical and other in-
struments may be used in drill holes to investigate the structure and physical properties
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Figure 3.18 Strip chart record of a
short instrumented diamond drilling
run (after Barr and Brown, 1983).
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of the rock mass. However, they cannot yet substitute for sampling the rock by
coring.

The aim of geotechnical drilling is to obtain a continuous, correctly oriented sample
of the rock mass in as nearly undisturbed a form as possible. Therefore, the standard
of the drilling must be considerably higher than that required for normal exploration
drilling. In geotechnical drilling, it is necessary to aim for 100% core recovery. Any
weak materials such as weathered rock, fault gouge, clay seams or partings in bedding
planes, should be recovered, because a knowledge of their presence and properties
is essential in predicting the likely behaviour of the rock mass during and following
excavation. In normal exploration drilling, these materials are seen to be of little
importance and no effort is made to recover them.

Diamond core drilling is expensive, and it is important that the operation be ade-
quately controlled if full value is to be gained from the expenditure. Several factors
can influence the quality of the results obtained.

Drilling machine. A hydraulic feed drilling machine is essential to ensure high core
recovery. The independent control of thrust permits the bit to adjust its penetration
rate to the properties of the rock being drilled and, in particular, to move rapidly
through weathered rock and fault zones before they are eroded away by the drilling
fluid.

There is a range of hydraulic feed machines that are suitable for geotechnical
drilling from surface and underground locations. The use of lightweight (aluminium)
drill rods and hydraulic chucks permits rapid coupling and uncoupling of rods in
a one-man operation. Figure 3.18 shows some results obtained with one of these
machines, a Craelius Diamec 250, in drilling a horizontal 56 mm diameter hole in an
underground limestone quarry. Electronic transducers were used to monitor thrust,
rotary speed, penetration, torque and delivery and return water pressures and flows as
drilling proceeded. Changes in rock strength were reflected by changes in penetration
rate. Open fractures were typified by local steps in the penetration trace and by spikes
in the rotary speed and torque traces. Clay- or gouge-filled features also produced
irregular torque and rotary speed traces. In the case shown in Figure 3.18, a 12 cm
wide clay-filled fissure encountered at a hole depth of 17.61 m, caused the bit to block
and the drill to stall.
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Figure 3.19 Diagrammatic illustra-
tion of the distinctive features of (a)
single-tube, and (b) double-tube core
barrels.
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The use of drill rig instrumentation, sometimes known as measurement while
drilling (MWD), can greatly improve the quantity and quality of the geotechnical data
obtained from non-coring rotary drilling as well as from coring drilling. Schunnesson
and Holme (1997) and Schunnesson (1998) give examples of rock characterisation
through the monitoring of production percussive drilling at a number of mines in
Sweden. Both in-the-hole and top hammer drills were used with drilling orientations
ranging from vertical to horizontal. Depending on the type of drill being used,
microprocessors were used to record drilled length, thrust, penetration rate, rotational
speed, torque pressure, hydraulic pressure, time and electric current and voltage at
every 10 mm or 10 cm of penetration. The data obtained were used to identify faults,
discriminate between rock types, identify orebody boundaries and estimate RQD
values.

Core barrel. Except in extremely good-quality rock and for the larger core sizes,
the objective of recovering a complete, undisturbed core sample of the rock mass
can only be achieved if the core passes into an inner tube in the core barrel. When
a single-tube core barrel (Figure 3.19a) is used, the core may be damaged by the
rotating barrel and by the circulating water to which it is fully exposed. In a double-
tube core barrel (Figure 3.19b), the core is retained in an inner barrel mounted on a
bearing assembly. This de-couples the inner barrel from the rotating outer barrel and
isolates the core from the drilling water, except at the bit. Some manufacturers also
supply triple-tube core barrels which use a split inner tube inside the second barrel.
This inner tube is removed from the barrel with the core, further minimising core
disturbance, particularly during and after core extraction. Split inner tube wireline
core barrels have greatly improved the efficiency and quality of geotechnical drilling
in deeper holes.
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The more sophisticated core barrels are not required for very good quality,
strong rocks or when larger-diameter cores are taken. The usual core diameter for
geotechnical drilling is 50-55 mm. With larger core diameters, mechanical breakage
of the core and erosion at the bit are less likely to occur, and recovery is correspond-
ingly higher. Unfortunately, drilling costs vary approximately with the square of the
core diameter, and so a compromise must be reached between cost and drilling quality.
Rosengren (1970) describes successful large-diameter core drilling operations car-
ried out from underground locations at the Mount Isa Mine, Australia. Thin wall bits
and up to 6 m long single-tube core barrels were used to take 102 mm and 152 mm
diameter cores in hard silica dolomite.

Drilling techniques and contracts. Because the emphasis is on core recovery
rather than on depth drilled, the drillers must exercise greater care in geotechnical
than in other types of drilling, and must be motivated and rewarded accordingly. It
is desirable that geotechnical drilling crews be given special training and that their
contracts take account of the specialised nature of their work. The normal method
of payment for exploration drilling (fixed rate plus payment per unit length drilled)
is generally unworkable for geotechnical drilling. A preferred alternative is to pay
drillers on the basis of drilling time, with a bonus for core recovery achieved above a
specified value which will vary with the nature of the rock mass.

To obtain good core recovery and avoid excessive breakage of the core, it is essential
that the drilling machine be firmly secured to its base, that special care be taken
when drilling through weak materials (the readings of instruments monitoring drilling
parameters can be invaluable here), and that extreme care be used in transferring the
core from the core barrel to the core box and in transporting it to the core shed.

Core orientation. If the fullest possible structural data are to be obtained from the
core, it is essential that the core be oriented correctly in space. Not only must the trend
and plunge of the borehole axis be measured (the trend and plunge of a line are
analogous to the dip direction and dip of a plane), but the orientation of the core
around the full 360° of the borehole periphery must be recorded. If this is not done,
then the true orientations of discontinuities intersected by the borehole cannot be
determined.
Three general approaches may be used to orient the core correctly.

(a) Use the known orientations of geological markers, such as bedding planes,
cleavage or an easily identified joint set, to determine the correct orientation
of the core and of the other structural features that it contains. Even the most
regular geological features do not always have the same attitudes at widely
spaced locations within the rock mass and so this approach can be relied upon
only in exceptional cases.

(b) Use a device in the core barrel that places orientation marks on the core. Ex-
amples of such mechanical devices are the Craelius core orienter which uses
a set of lockable prongs to orient the first piece of core in a drilling run using
the existing core stub as a guide, and the Christensen-Hugel core barrel which
scribes reference marks on the core in an orientation known from a magnetic
borehole survey instrument mounted in the core barrel. Acid etching and clay
imprint methods are also examples of this general approach.
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(c) Examine the borehole walls with a suitably oriented downhole tool and relate
orientations of features measured on the walls to those found on the core at the
corresponding depth. Instruments used for this purpose include cameras, televi-
sion cameras, periscopes, the seisviewer (an acoustic device) and the borehole
impression packer.

A complete discussion of these various techniques is outside the scope of this
text. Fuller details are given by Rosengren (1970), Goodman (1976), Sullivan et al.
(1992) and Nickson et al. (2000). Unfortunately, all of these techniques have their own
disadvantages and generally only operate successfully under restricted conditions. As
with many aspects of mining engineering, there is no universal or simple answer to the
question of how to orient core. Quite often, when the standard techniques do not give
satisfactory results, techniques suited to local conditions can be devised. Rosengren
(1970), for example, describes a technique developed for orienting core taken from flat
dipping, large-diameter holes at the Mount Isa Mine, Australia. The device ‘consists
of a marking pen fitted in a short dummy barrel and attached to a mercury orienting
switch. The barrel is lowered into the hole with aluminium rods and when nearly on the
face, is rotated until the pen is in a known position, as indicated by the mercury switch.
The barrel is then pushed on to the face, and so marks the core stub in a known position.’

Core logging. The final stage in the geotechnical drilling process is the recording of
the information obtained from the core. Here again, the value of the entire expensive
exercise can be put at risk by the use of poor techniques or insufficient care. Generally,
the structural or geotechnical logging of the core is carried out by specially trained
operators in a location removed from the drilling site. The log so obtained is additional
to the normal driller’s or geologist’s log.

It must be recognised that the data obtained from geotechnical drilling may not be
used in planning studies or detailed mine design until after some time has elapsed.
Because of the considerable cost of obtaining the core, measures should be taken to
ensure that the fullest amount of useful information is recovered from it. An essential
first step in this regard is to take colour photographs of the boxes of core as soon as
they become available and before they are disturbed by the logging process or pieces
of core are removed for testing or assaying. The use of digital technologies makes
the taking, archiving and use of core photographs much easier and more reliable than
it had been previously. Brown (2003) gives an example of the use of a photograph
gallery manager within a geotechnical data management system.

The design of the logging sheet and the logging procedures used will vary with the
nature of the rock mass and with the project concerned. However, the geotechnical or
structural log will usually include information on the size, location and orientation of
the borehole, a description of the rock types encountered, together with a strength in-
dex (generally the point load index) and/or a weathering index, and, most importantly,
data on all discontinuities intersecting the core. These data will include the depth at
which the discontinuity is intersected, its nature (joint, bedding plane, drilling break),
its orientation, its roughness (generally on a multi-point scale) and the presence and
nature of infilling materials. Values of RQD or the results of in sifu testing, such as
permeability tests, may be added as required. From the data recorded on the core log
and the driller’s or geologist’s log, composite logs may be prepared for subsequent
use by the planning or rock mechanics engineer.
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Downhole logging. The logging of core may be supplemented by logging of the
borehole walls with a range of downhole tools such as borehole cameras, televi-
sion cameras and geophysical tools. Optical imaging may be enhanced by the use of
digital imaging software to process the signals received from a downhole scanner.
The digitally recorded data yield high resolution colour images, enabling detailed
measurements to be made of discontinuities (e.g. Kamewada et al., 1990, Goodman,
1993) and mineralisation to be identified. However, it must be remembered that sam-
pling issues such as the orientation bias and the lack of persistence data also apply to
borehole imaging techniques.

Geophysical logging systems consist of a downhole probe or tool attached to a
multi-conductor electric cable often referred to as a wireline. Several types of geo-
physical devices may be combined to form one downhole logging tool. The most
common types of downhole geophysical logging test include seismic velocity (full
wave seismic logs), acoustic scanning, electrical resistivity, gamma-gamma and self
potential. These logs may be correlated with rock types, material strengths and moduli
(e.g. Schepers et al., 2001). The ISRM Commission (1981) has published Suggested
Methods for the standard geophysical logging tests. The most useful device for making
discontinuity measurements is the acoustic scanner, seisviewer or televiewer, which
is able to provide oriented images of borehole walls at very fine resolutions (Hatherly
and Medhurst, 2000).

3.5 Presentation of structural data

3.5.1 Major features

The effective utilisation of geological data by a mining or rock mechanics engineer
requires that the engineer must first be able to understand and digest the data and to
visualise their relation to the proposed mining excavation. It is necessary, therefore,
that means be found of presenting the data so that the often complex three-dimensional
geometrical relations between excavations and structural features can be determined
and portrayed.

Major structural features such as dykes, faults, shear zones and persistent joints
may be depicted in a variety of ways. Their traces may be plotted directly on to mine
plans with the dips and dip directions marked. Alternatively, structural features may
be plotted, level by level, on transparent overlays which can be laid over mine plans
so that their influence can be assessed in developing mining layouts.

However, the most effective method of depicting major structural features is through
the use of modern computer-based mine planning systems. These systems which are
used at all major mines in one form or another, permit geological and geotechnical data
to be integrated with mine planning and design systems. They are able to produce plan
or sectional views as well as three-dimensional representations which can be rotated
about chosen axes. Figure 3.20 shows such a depiction of two faults with orientations
(dip/dip direction) of 70/255 and 70/319 intersecting stope development excavations
in a bench-and-fill stoping block at the Neves Corvo mine, Portugal.

3.5.2 Joints and bedding planes
The data for joints and bedding planes differ in two significant respects from the data
for major structural features such as faults. First, they are much more numerous, giving
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Figure 3.20 Computerised depic-
tion of two faults intersecting stope
development excavations.

Figure 3.21 Plots of fracture fre-
quency along the lengths of boreholes
(after Mathews and Rosengren, 1986).

ROCK MASS STRUCTURE AND CHARACTERISATION

rise to a distribution of orientations for each set rather than the single orientation used
to describe a major feature. Second, their spacings or frequencies are important and
must be represented in some way. As illustrated by Figure 3.7, a histogram of spacing
values is a convenient way of presenting these data. All discontinuities intersected
by a given length of borehole or scanline may be plotted together as in Figure 3.7, or
alternatively, the individual discontinuities may be assigned to particular sets which
are then plotted separately. Figure 3.21 shows an example in which a distinction is
made between bedding plane breaks and other joints in discontinuity frequency plots
for two inclined boreholes intersecting two orebodies.

Figures 3.7 and 3.21 show measured spacings along a scanline and measured
frequencies along a borehole, respectively. It is also possible to present these data as
spacings or frequencies along lines perpendicular to the discontinuity plane at various
points along the scanline or borehole.

Orientation data are sometimes presented on a rose diagram in which the strikes of
discontinuities are shown in, say, 5° intervals around a polar diagram and the numbers
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Figure 3.22 The great circle and its
poles which define the orientation of
a plane.

THE HEMISPHERICAL PROJECTION

of observations made for each orientation interval are plotted as radii. Dips and dip
directions may be added at the periphery of the circular diagram. This method of
presenting discontinuity orientation data is much less useful and versatile than the
hemispherical or stereographic projection which will be discussed in the following
section.

3.6 The hemispherical projection

3.6.1 Hemispherical projection of a plane
The hemispherical projection is a method of representing and analysing the three-
dimensional relations between planes and lines on a two-dimensional diagram. The
method was first developed as a tool for use in structural geology but has been ex-
tended and used to solve engineering problems. The basis of the method and its classic
geological applications are described by Phillips (1971). Rock engineering applica-
tions are described in detail by Goodman (1976, 1989), Hoek and Brown (1980),
Hoek and Bray (1981) and Priest (1985, 1993). Application of the technique to the
problem of structurally controlled failures around underground mining excavations
will be discussed in Chapter 9.

Imagine a sphere which is free to move in space so that it can be centred on an
inclined plane as illustrated in Figure 3.22. The intersection of the plane and the
surface of the sphere is a great circle, shown at the perimeter of the shaded area in

reference sphere

great circle
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Figure 3.23 Stereographic projec-
tion of a great circle and its pole on
to the horizontal plane from the lower
reference hemisphere.

ROCK MASS STRUCTURE AND CHARACTERISATION

azcnith

stercographic projection
of pole

stereographic
projection of
greal circle

great circle

Figure 3.22. A line perpendicular to the plane and passing through the centre of the
sphere intersects the sphere at two diametrically opposite points called the poles of
the plane.

Because the great circle and the pole representing the plane appear on both the
upper and lower parts of the sphere, only one hemisphere need be used to plot and
manipulate structural data. In rock mechanics, the lower-hemisphere projection is
almost always used. The upper-hemisphere projection is often used in textbooks
on structural geology and can be used for rock mechanics studies if required (for
example, Goodman, 1976).

The hemispherical projection provides a means of representing the great circle and
pole shown in Figure 3.22 on a horizontal plane. As shown in Figure 3.23, this is
achieved by connecting all points on the great circle and the pole with the zenith or
point at which a vertical through the centre of the sphere intersects the top of the
sphere. The hemispherical projections of the great circle and the pole are then given
by the intersections of these projection lines with the horizontal plane.

The projection shown in Figure 3.23 is known as the stereographic, Wulff, or
equal-angle projection. In this projection, any circle on the reference hemisphere
projects as a circle on the plane of the projection. This is not the case for an alternative
projection known as the Lambert, Schmidt or equal-area projection. The latter
projection is better suited than the equal-angle projection for use in the analysis
of discontinuity orientation data, to be discussed in section 3.6.2. The equal-angle
projection has an advantage in terms of the solution of some engineering problems
and so will be used here. Most of the constructions to be used are the same for both
types of projection.

The plotting of planes and their poles is carried out with the aid of a stereonet such
as that shown in Figure 3.24. The great circles representing planes of constant dip are
constructed as circular arcs centred on extensions of the east—west axis of the net. The
stereonet also contains a series of small circles centred on extensions of the north—
south axis. The angle between any two points on a great circle is determined by count-
ing the small circle divisions along the great circle between the two points concerned.
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Figure 3.24 Meridional stereo-
graphic or equal area net.

great circle

Figure 3.25 Stereographic projec-
tion of the great circle and pole of the
plane 230°/50°.
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Appendix A sets out the detailed steps required to construct the great circle and
pole of a plane using a stereonet such as that shown in Figure 3.24. This procedure
involves centring a piece of tracing paper over the stereonet with a drawing pin,
marking the north point, marking the dip direction of the discontinuity measured
around the periphery of the net from the north point, rotating the tracing paper so that
the dip direction coincides with either the east or the west direction on the stereonet,
measuring the dip of the discontinuity by counting great circles from the periphery of
the net, and drawing in the appropriate great circle. The pole is plotted by counting a
further 90° along the east—west axis from the great circle with the tracing paper still
in the rotated position. Figure 3.25 shows the great circle and pole of a plane having
a dip of 50° and a dip direction of 230°. Appendix A also sets out the steps required
to carry out a number of other manipulations. In practice these manipulations are
carried out using computer programs. The manual methods are presented here to aid
the development of the reader’s understanding. Further details are given by Priest
(1985, 1993).

3.6.2 Plotting and analysis of discontinuity orientation data

An elementary use of the stereographic projection is the plotting and analysis of field
measurements of discontinuity orientation data. If the poles of planes rather than
great circles are plotted, the data for large numbers of discontinuities can be rapidly
plotted on one diagram and contoured to give the preferred or ‘mean’ orientations of
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Figure 3.26 Polar stereographic net
used for plotting poles of geological
planes.
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the dominant discontinuity sets and a measure of the dispersion of orientations about
the ‘mean’.

Field data may be plotted using a stereonet such as that shown in Figure 3.24
and the method for plotting poles to planes given in Appendix A. However, it is
slightly more convenient to use a suitably annotated polar net such as that shown in
Figure 3.26. Using this net, the tracing paper on which the data are to be plotted does
not have to be rotated in the east—west position to plot each pole, as it has to be in
the procedure described in Appendix A. A piece of tracing paper is centred over the
net using a drawing pin, the north point is marked, and the poles are plotted using
the dip directions given in bold in Figure 3.26 (the dip direction of the plane + 180°)
and measuring the dips from the centre of the net along the appropriate dip direction
lines.

Figure 3.27 shows such a plot of the poles to 351 individual discontinuities whose
orientations were measured at a particular field site. Different symbols have been
used for three different types of discontinuity — joints, bedding planes and a fault. The
fault has a dip direction of 307° and a dip of 56°. Contours of pole concentrations
may be drawn for the joints and bedding planes to give an indication of the preferred
orientations of the various discontinuity sets present. Because of the basic principle
of its construction, the equal-area projection is best suited to contouring. However,
Hoek and Brown (1980) found that provided a suitable counting net (see below) is
used, the equal-angle projection can be used to give results that are almost identical
with those given by the equal-area method.
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Figure 3.27 Plots of poles of
351 discontinuities (after Hoek and
Brown, 1980).

THE HEMISPHERICAL PROJECTION

Key
4 bedding planes
O joints

& fault

total 351 poles

Methods of manual pole contouring are described by Phillips (1971), Hoek and
Brown (1980) and Priest (1985, 1993). In these methods, the numbers of poles lying
within successive areas which each constitute 1% of the area of the hemisphere are
counted. The maximum percentage pole concentrations are then determined and con-
tours of decreasing percentage of pole concentrations around the major concentrations
are established. Figure 3.28 shows the contours of pole concentrations so determined
for the data shown in Figure 3.27. The central orientations (dip/dip direction) of the
two major joint sets are 22/347 and 83/352, and that of the bedding planes is 81/232.
It is important to note that although the order dip/dip direction is most commonly
used in the mining industry, some authors (e.g. Priest 1985, 1993) use the reverse
representation of trend/plunge or dip direction/dip.

It is also important to note that there is a distribution of orientations about the
central or “mean” orientations. As illustrated by Figure 3.28, this distribution may be
symmetric or asymmetric. A number of statistical models have been used to provide
measures of the dispersion of orientations about the mean. The most commonly used
of these is the Fisher distribution (Fisher, 1953) in which the symmetric dispersion
of data about the mean in represented by a number, K, known as the Fisher constant.
The higher the value of K, the less is the dispersion of values about the mean or true
orientation. For a random distribution of poles, K = 0. Further details of the Fisher
distribution and its application to the analysis of discontinuity orientation data are
given by Priest (1985, 1993) and Brown (2003).

The data from which contours of pole concentrations are drawn usually suffer
from the orientation bias illustrated by Figure 3.13 and discussed in section 3.4.1.
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Figure 3.28 Contours of pole con-
centrations for the data plotted in
Figure 3.27 (after Hoek and Brown,
1980).
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Key
EZ3 2% - 7 poles
B 3% - 10 poles
[l 4% - 14 poles
5% - 17 poles
B 6% - 22 poles

total 351 poles

When the data are collected from a single borehole or scanline, it will be necessary to
correct the observed pole concentrations to account for the fact that the numbers of
discontinuities of a given set intersected will depend on the relative orientations of the
set and the borehole or scanline. The correction most widely used is that developed
by Terzaghi (1965). In the general case, the number of observations within a given
counting area must be weighted by a factor 1/cosa where «a is the angle between
the borehole axis or the scanline and the normal to the discontinuity. In practice, this
correction is generally made only for |a| < 70° (Goodman, 1976). For a > 70°, the
Terzaghi correction is not reliable and so the data should be discarded or an alternative
approach used (Priest, 1993).

As noted previously, the plotting and analysis of discontinuity orientation data are
now carried out using computer software. Figure 3.29 shows a contoured stereographic
projection produced by one of the most commonly used programs known as DIPS
(Rocscience, 1999). Fisher constant calculations, the Terzaghi correction, and other
corrections and analytical tools may be incorporated into these programs. When
orientation data have been obtained from boreholes or scanlines of similar length
oriented in at least three different directions at a site, it is not necessary to apply
the Terzaghi correction to a plot of the combined data if discontinuity frequency is
not being considered. In this case, it may be necessary to use the procedure given in
Appendix A for rotating data from one plane to another if the data are given with
respect to the borehole axis rather than as correctly oriented data.
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Figure 3.29 Computer generated
contoured stereographic projection
(after Rocscience, 1999).

ROCK MASS CLASSIFICATION

Fisher
Coneenirations
% of total per 1.0 % area

0.00~ 280 %
2480~ 500%
500~ 750%
7.50 ~10.00 %
1000 ~12.50 %
1240 ~15.00 %
1600 ~17.50 %
17.50 ~20.00 %
20,00 ~22.50 %
2250 ~2500%

No Bias Correction
Max. Conc.= 23.2811%

Equal Angle
Lower Hemisphere
61 Poles
40 Entries

3.7 Rock mass classification

3.7.1 The nature and use of rock mass classification schemes

Whenever possible, it is desirable that mining rock mechanics problems be solved
using the analytical tools and engineering mechanics-based approaches discussed in
later chapters of this book. However, the processes and interrelations involved in
determining the behaviour of the rock surrounding a mining excavation or group
of excavations are sometimes so complex that they are not amenable to enginerring
analysis using existing techniques. In these cases, design decisions may have to take
account of previous experience gained in the mine concerned or elsewhere.

In an attempt to quantify this experience so that it may be extrapolated from one site
to another, a number of classification schemes for rock masses have been developed.
These classification schemes seek to assign numerical values to those properties
or features of the rock mass considered likely to influence its behaviour, and to
combine these individual values into one overall classification rating for the rock
mass. Rating values for the rock masses associated with a number of mining or civil
engineering projects are then determined and correlated with observed rock mass
behaviour. Aspects of rock mass behaviour that have been studied in this way include
the stable spans of unsupported excavations, stand-up times of given unsupported
spans, support requirements for various spans, cavability, stable pit slope angles,
hangingwall caving angles and fragmentation. A number of these assessments made
from geotechnical data collected in the exploration or feasibility study stages of a
mining project may provide useful guides to the selection of an appropriate mining
method.

Although the use of this approach is superficially attractive, it has a number of
serious shortcomings and must be used only with extreme care. The classification
scheme approach does not always fully evaluate important aspects of a problem,
so that if blindly applied without any supporting analysis of the mechanics of the
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problem, it can lead to disastrous results. It is particularly important to recognise
that the classification schemes give reliable results only for the rock masses and
circumtances for which the guide-lines for their application were originally developed.
It is for this reason that considerable success has been achieved in using the approach
to interpolate experience within one mine or a group of closely related mines, as
described by Laubscher (1977), for example.

Hoek and Brown (1980), Goodman (1993) and Brown (2003), among others, have
reviewed the considerable number of rock mass classification schemes that have been
developed for a variety of purposes. Two of these schemes, the NGI tunnelling quality
index (Q) developed by Barton et al. (1974) and the CSIR goemechanics or Rock
Mass Rating (RMR) scheme developed by Bieniawski (1973, 1976), are currently
widely used in civil engineering and in mining practice. Bieniawski’s RMR scheme
has been modified by Laubscher (1977, 1990), particularly for use in cave mining
applications. Because of their widespread use in mining practice, the basic RMR and
Q systems will be outlined here. The more recent GSI system introduced by Hoek
(1994) and developed further by Marinos and Hoek (2000) will also be discussed.

3.7.2 Bieniawski’s geomechanics classification

Bieniawski (1973, 1976) developed his scheme using data obtained mainly from civil
engineering excavations in sedimentary rocks in South Africa. Bieniawski’s scheme
uses five classification parameters.

1 Strength of the intact rock material. The uniaxial compressive strength of the
intact rock may be measured on cores as described in section 4.3.2. Alternatively,
for all but very low-strength rocks, the point load index (section 4.3.9) may be
used.

2 Rock Quality Designation (RQD) as described in section 3.3.

3 Spacing of joints. In this context, the term joints is used to describe all disconti-
nuities.

4 Condition of joints. This parameter accounts for the separation or aperture of
discontinuities, their continuity or persistence, their surface roughness, the wall
condition (hard or soft) and the nature of any in-filling materials present.

5 Groundwater conditions. An attempt is made to account for the influence of
groundwater pressure or flow on the stability of underground excavations in terms
of the observed rate of flow into the excavation, the ratio of joint water pressure
to major principal stress, or by a general qualitative observation of groundwater
conditions.

The way in which these parameters are incorporated into Bieniawski’s geo-
mechanics classification for jointed rock masses is shown in Part (a) of Table 3.5.
For various ranges of each parameter, a rating value is assigned. The allocation of
these rating values allows for the fact that all parameters do not necessarily contribute
equally to the behaviour of the rock mass. The overall Rock Mass Rating (RMR) is
obtained by adding the values of the ratings determined for the individual parame-
ters. This RMR value may be adjusted for the influence of discontinuity orientation
by applying the corrections given in Part (b) of Table 3.5. The terms used for this
purpose are explained in Table 3.6. (When falling or sliding of blocks of rock from
the roof or walls of an excavation is a possibility, this approach should not be relied
upon. A wedge analysis of the type described in Chapter 9 should be used.) Part (c) of
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Table 3.6 The effects of joint strike and dip in tunnelling (after Bieniawski, 1989).

Strike perpendicular to tunnel axis Strike parallel to tunnel axis
Drive with dip Drive against dip
Dip 0°-20°
Dip Dip Dip Dip Dip Dip irrespective
45°-90° 20°-45° 45°-90° 20°-45° 45°-90° 20°-45° of strike
very favourable fair unfavourable very fair fair
favourable unfavourable

Table 3.7 Determination of rock mass rating.

Parameter Value or description Rating

1. strength of intact rock material 150 MPa 12

2. ROD 70 13

3. joint spacing 0.5m 10

4. condition of joints slightly rough surfaces
separation < 1 mm 25
slightly weathered joint
wall rock

5. groundwater water dripping 4
Total RMR 64

Table 3.5 sets out the class and description assigned to rock masses with various total
ratings. The interpretation of these ratings in terms of stand-up times of underground
excavations and rock mass strength parameters is given in Part (d) of Table 3.5. The
variation with RMR of the in situ strengths and deformabilities of jointed rock masses
will be discussed in section 4.9.

As an example of the application of Bieniawski’s classification, consider a granitic
rock mass for which the RMR is determined as shown in Table 3.7. An adit is to
be driven into the granite oriented such that the dominant joint set strikes roughly
perpendicular to the adit axis and dips at 35° against the drive direction. From Table 3.6
this situation is described as unfavourable for which a rating adjustment of — 10 is
obtained from Part (b) of Table 3.5. Thus the final RMR is reduced to 54 which places
the rock mass in Class III with a description of fair.

3.7.3 The NGI Q system

This classification was developed by Barton ef al. (1974) as a means estimating
support requirements for hard rock tunnels in Scandinavia as a function of an index
of rock mass quality, defined as

_ (ReD S v 3.11
Q_<Jn)x(1a>x<SRF) G-AD
where

RQD is the Rock Quality Designation discussed in section 3.3;

Jn is the Joint Set Number which represents the number of joint sets in the rock
mass, varying from 0.5 for a massive rock mass with no or few joints to 20 for crushed
or diaggregated rock;

J: is the Joint Roughness Number which represents the roughness of the structural
features in the rock mass, varying from 0.5 for slickensided, planar surfaces to 5 for
non-persistent structures with spacings larger than 3 m;
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Jaisthe Joint Alteration Number representing the condition or degree of alteration
of the structures in the rock mass, varying from 0.75 for wall-wall contact in unaltered
rock or for joints containing tightly healed, hard, non-softening, impermeable filling
to 20 for structures with thick fillings of clay gouge;

Jw is the Joint Water Reduction Factor representing the groundwater conditions,
varying from 0.05 for exceptionally high inflows or for water pressure continuing
without noticeable decay to 1.0 for dry conditions or minor inflows; and

SRF is the Stress Reduction Factor which is a coefficient representing the effect
of stresses acting on the rock mass, varying from 0.5 for high stress but tight structure
conditions in good quality rock to 400 for heavy squeezing rock pressures or heavy
rock burst conditions and immediate dynamic deformations in massive rock.

The three quotients in equation 3.11 may be taken to represent the block size,
the inter-block frictional shear strength and the “active stress”, respectively. The
details of how the six parameters in the Q system are determined are given by Barton
et al. (1974), Hoek and Brown (1980), Priest (1993) and Barton (2002), for example.
Except for some changes to the SRF parameter introduced to account for rockburst
conditions, the original Q system has remained essentially unchanged since it was
first developed. Possible Q values range from 0.001 to 1000 on a logarithmic scale.
The system defines nine geotechnical classes of rock mass ranging from exceptionally
poor (Q < 0.01) to exceptionally good (Q > 400). The application of the Q system in
underground mining rock mechanics will be discussed at various points in this book.
It should be noted that some applications use the parameter Q" which is the value of
Q with the active stress term Jy,/SRF, put equal to unity.

3.7.4 Geological strength index (GSI)

As part of the continuing development and practical application of the Hoek-Brown
empirical rock mass strength criterion to be discussed in section 4.9.1, Hoek (1994)
and Hoek et al. (1995) introduced a new rock mass classification scheme known as
the Geological Strength Index (GSI). The GSI was developed to overcome some of
the deficiencies that had been identified in using the RMR scheme with the rock mass
strength criterion.

The GSI was developed specifically as a method of accounting for those properties
of adiscontinuous or jointed rock mass which influence its strength and deformability.
As will become apparent in Chapter 4, the strength of a jointed rock mass depends on
the properties of the intact pieces of rock and upon the freedom of those pieces to slide
and rotate under a range of imposed stress conditions. This freedom is controlled by
the shapes of the intact rock pieces as well as by the condition of the surfaces separating
them. The GSI seeks to account for these two features of the rock mass, its structure
as represented by its blockiness and degree or interlocking, and the condition of the
discontinuity surfaces. Using Figure 3.30 and with some experience, the GSI may be
estimated from visual exposures of the rock mass or borehole core.

It will be noted that the GSI does not explicitly include an evaluation of the uniaxial
compressive strength of the intact rock pieces and avoids the double allowance for
discontinuity spacing as occurs in the RMR system. Nor does it include allowances for
water or stress conditions which are accounted for in the stress and stability analyses
with which the Hoek-Brown criterion is used. Although the origin and petrography
of the rock are not represented in Figure 3.30, the rock type will usually constrain the
range of GSI values that might be encountered in rock masses of that type. Marinos
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GEOLOGICAL STRENGTH INDEX FOR
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and Hoek (2000) present a series of indicative charts which show the most probable
ranges of GSI values for rock masses of several generic rock types.

Problems

1 A scanline survey is to be carried out on the vertical wall of an exploration drive.
The rock mass contains two sets of parallel discontinuities whose traces on the wall
are mutually inclined at 75° as shown in the diagram. The traces of set A make an
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angle of 55° with a horizontal scanline. Large numbers of measurements give the
apparent mean spacings of sets A and B along the scanline as 0.450 m and 0.800 m,
respectively.

(a) Calculate the mean normal spacing of each set.

(b) What is the mean spacing of all discontinuities in the direction of the scanline?

(c) Assuming that the combined discontinuity spacings follow a negative expo-
nential distribution, estimate the RQD of the rock mass in the direction of the
scanline.

set A set B

c e
scanline direction of
drive advance

2 A preliminary borehole investigation of a sandstone produced 30 m of core that
contained 33 drilling breaks, 283 iron-stained joints and 38 other discontinuities of
uncertain origin.

(a) Calculate the bandwidths within which the overall mean discontinuity spacing
in the direction of the borehole axis lies at the 80% and 95% confidence levels.

(b) What approximate additional length of borehole is required to provide a value
in a bandwidth of £8% of the true spacing value at the 95% confidence
level?

3 Plot on the stereographic projection the great circle of the plane with the orientation
(dip direction/dip) 110/50. What is the apparent dip of this plane in the direction 090°?

4 What are the trend and plunge of the line of intersection of the planes 110/50 and
320/60?

5 Plot the great circles and poles to the planes 156/32 and 304/82. What is the acute
angle between these planes? In what plane is it measured?

6 A tunnel of square cross section has planar vertical sidewalls of orientation 230/90.
The lineation produced by the intersection of a planar joint with one sidewall plunges
at 40° to the north-west. The same joint strikes across the horizontal roof in the
direction 005° — 185°. What is the orientation of the joint plane?

7 Areference line is scribed on drill core for use in correctly orienting discontinuities
intersected by the core. A certain planar discontinuity has the apparent orientation
120/35 measured with the reference line vertical. If the actual trend and plunge of the
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borehole axis, and of the reference line, are 225° and 60° respectively, determine the
true orientation of the discontinuity.

8 Assume that, for the rock mass described in Problem 1, both sets of discontinuities
strike perpendicular to the drive axis. The intact rock material has a uniaxial com-
pressive strength of 120 MPa, the joint surfaces are slightly rough with an average
separation of 0.2 mm and, although there is water in the joints, the flow into the
excavation is quite small.

Determine the basic CSIR geomechanics classification for this rock mass (Ta-
ble 3.5). How does application of the adjustments for joint orientations for tunnelling
given by Tables 3.5 and 3.6 affect this classification?

Is the adjusted RMR value likely to provide a satisfactory guide to roof stability in
this case?
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Rock strength and deformability

4.1 Introduction

The engineering mechanics-based approach to the solution of mining rock mechanics
problems used in this book, requires prior definition of the stress—strain behaviour of
the rock mass. Important aspects of this behaviour are the constants relating stresses
and strains in the elastic range, the stress levels at which yield, fracturing or slip occurs
within the rock mass, and the post-peak stress—strain behaviour of the fractured or
‘failed’ rock.

In some problems, it may be the behaviour of the intact rock material that is of
concern. This will be the case when considering the excavation of rock by drilling
and blasting, or when considering the stability of excavations in good quality, brittle
rock which is subject to rockburst conditions. In other instances, the behaviour of
single discontinuities, or of a small number of discontinuities, will be of paramount
importance. Examples of this class of problem include the equilibrium of blocks of
rock formed by the intersections of three or more discontinuities and the roof or wall of
an excavation, and cases in which slip on a major throughgoing fault must be analysed.
A different class of problem is that in which the rock mass must be considered as
an assembly of discrete blocks. As noted in section 6.7 which describes the distinct
element method of numerical analysis, the normal and shear force—displacement
relations at block face-to-face and corner-to-face contacts are of central importance
in this case. Finally, it is sometimes necessary to consider the global response of a
jointed rock mass in which the discontinuity spacing is small on the scale of the
problem domain. The behaviour of caving masses of rock is an obvious example of
this class of problem.

It is important to note that the presence of major discontinuities or of a number of
joint sets does not necessarily imply that the rock mass will behave as a discontinuum.
In mining settings in which the rock surrounding the excavations is always subject
to high compressive stresses, it may be reasonable to treat a jointed rock mass as an
equivalent elastic continuum. A simple example of the way in which rock material
and discontinuity properties may be combined to obtain the elastic properties of the
equivalent continuum is given in section 4.9.2.

Figure 4.1 illustrates the transition from intact rock to a heavily jointed rock mass
with increasing sample size in a hypothetical rock mass surrounding an underground
excavation. Which model will apply in a given case will depend on the size of the
excavation relative to the discontinuity spacing, the imposed stress level, and the
orientations and strengths of the discontinuities. Those aspects of the stress—strain
behaviour of rocks and rock masses required to solve these various classes of prob-
lem, will be discussed in this chapter. Since compressive stresses predominate in
geotechnical problems, the emphasis will be on response to compressive and shear
stresses. For the reasons outlined in section 1.2.3, the response to tensile stresses will
not be considered in detail.
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Figure 4.1 Idealised illustration of
the transition from intact rock to a
heavily jointed rock mass with in-
creasing sample size (after Hoek and
Brown, 1980).

Figure 4.2 (a) Strain-softening; (b)
strain-hardening stress—strain curves.

ROCK STRENGTH AND DEFORMABILITY

underground
excavation

intact rock

single discontinuity

two discontinuities

several discontinuities

rock mass

4.2 Concepts and definitions

Experience has shown that the terminology used in discussions of rock ‘strength’ and
‘failure’ can cause confusion. Unfortunately, terms which have precise meanings in
engineering science are often used imprecisely in engineering practice. In this text,
the following terminology and meanings will be used.

Fracture is the formation of planes of separation in the rock material. It involves
the breaking of bonds to form new surfaces. The onset of fracture is not necessarily
synonymous with failure or with the attainment of peak strength.

Strength, or peak strength, is the maximum stress, usually averaged over a plane,
that the rock can sustain under a given set of conditions. It corresponds to point B
in Figure 4.2a. After its peak strength has been exceeded, the specimen may still
have some load-carrying capacity or strength. The minimum or residual strength
is reached generally only after considerable post-peak deformation (point C in
Figure 4.2a).

Brittle fracture is the process by which sudden loss of strength occurs across a
plane following little or no permanent (plastic) deformation. It is usually associated
with strain-softening or strain-weakening behaviour of the specimen as illustrated in
Figure 4.2a.

Ductile deformation occurs when the rock can sustain further permanent defor-
mation without losing load-carrying capacity (Figure 4.2b).

A @ B p ()

Stress

\ 4

>

Strain
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Yield occurs when there is a departure from elastic behaviour, i.e. when some of
the deformation becomes irrecoverable as at A in Figure 4.2a. The yield stress (ay in
Figure 4.2) is the stress at which permanent deformation first appears.

Failure is often said to occur at the peak strength or be initiated at the peak strength
(Jaeger and Cook, 1979). An alternative engineering approach is to say that the rock
has failed when it can no longer adequately support the forces applied to it or otherwise
fulfil its engineering function. This may involve considerations of factors other than
peak strength. In some cases, excessive deformation may be a more appropriate
criterion of ‘failure’ in this sense.

Effective stress is defined, in general terms, as the stress which governs the gross
mechanical response of a porous material. The effective stress is a function of the
total or applied stress and the pressure of the fluid in the pores of the material,
known as the pore pressure or pore-water pressure. The concept of effective stress
was first developed by Karl Terzaghi who used it to provide a rational basis for the
understanding of the engineering behaviour of soils. Terzaghi’s formulation of the
law of effective stress, an account of which is given by Skempton (1960), is probably
the single most important contribution ever made to the development of geotechnical
engineering. For soils and some rocks loaded under particular conditions, the effective
stresses, 07, are given by

O-i/j = 0jj — uS,-j (41)
where o;; are the total stresses, u is the pore pressure, and &;; is the Kronecker delta.
This result is so well established for soils that it is often taken to be the definition of
effective stress. Experimental evidence and theoretical argument suggest that, over a
wide range of material properties and test conditions, the response of rock depends
on

0 = oij — aud; 4.2)

where o < 1, and is a constant for a given case (Paterson, 1978).

4.3 Behaviour of isotropic rock material in uniaxial compression

4.3.1 Influence of rock type and condition

Uniaxial compression of cylindrical specimens prepared from drill core, is proba-
bly the most widely performed test on rock. It is used to determine the uniaxial or
unconfined compressive strength, o, and the elastic constants, Young’s modulus,
E, and Poisson’s ratio, v, of the rock material. The uniaxial compressive strength
of the intact rock is used in rock mass classification schemes (section 3.7), and as
a basic parameter in the rock mass strength criterion to be introduced later in this
chapter.

Despite its apparent simplicity, great care must be exercised in interpreting results
obtained in the test. Obviously, the observed response will depend on the nature and
composition of the rock and on the condition of the test specimens. For similar miner-
alogy, o, will decrease with increasing porosity, increasing degree of weathering and
increasing degree of microfissuring. As noted in section 1.2.4, . may also decrease
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with increasing water content. Data illustrating these various effects are presented by
Vutukuri et al. (1974).

It must be recognised that, because of these effects, the uniaxial compressive
strengths of samples of rock having the same geological name, can vary widely.
Thus the uniaxial compressive strength of sandstone will vary with the grain size,
the packing density, the nature and extent of cementing between the grains, and the
levels of pressure and temperature that the rock has been subjected to throughout
its history. However, the geological name of the rock type can give some qualitative
indication of its mechanical behaviour. For example, a slate can be expected to exhibit
cleavage which will produce anisotropic behaviour, and a quartzite will generally be a
strong, brittle rock. Despite the fact that such features are typical of some rock types,
it is dangerous to attempt to assign mechanical properties to rock from a particular
location on the basis of its geological description alone. There is no substitute for a
well-planned and executed programme of testing.

4.3.2 Standard test procedure and interpretation

Suggested techniques for determining the uniaxial compressive strength and deforma-
bility of rock material are given by the International Society for Rock Mechanics
Commission on Standardization of Laboratory and Field Tests ISRM Commission,
1979). The essential features of the recommended procedure are:

(a) The test specimens should be right circular cylinders having a height to diam-
eter ratio of 2.5-3.0 and a diameter preferably of not less than NX core size,
approximately 54 mm. The specimen diameter should be at least 10 times the
size of the largest grain in the rock.

(b) The ends of the specimen should be flat to within 0.02 mm and should not depart
from perpendicularity to the axis of the specimen by more than 0.001 rad or
0.05 mm in 50 mm.

(c) The use of capping materials or end surface treatments other than machining is
not permitted.

(d) Specimens should be stored, for no longer than 30 days, in such a way as to
preserve the natural water content, as far as possible, and tested in that condition.

() Load should be applied to the specimen at a constant stress rate of
0.5-1.0 MPas™".

(f) Axial load and axial and radial or circumferential strains or deformations should
be recorded throughout each test.

(g) There should be at least five replications of each test.

Figure 4.3 shows an example of the results obtained in such a test. The axial force
recorded throughout the test has been divided by the initial cross-sectional area of
the specimen to give the average axial stress, g,, which is shown plotted against
overall axial strain, €,, and against radial strain, €.. Where post-peak deformations
are recorded (section 4.3.7), the cross-sectional area may change considerably as
the specimen progressively breaks up. In this case, it is preferable to present the
experimental data as force—displacement curves.

In terms of progressive fracture development and the accumulation of deformation,
the stress-strain or load-deformation responses of rock material in uniaxial compres-
sion generally exhibit the four stages illustrated in Figure 4.3. An initial bedding down
and crack closure stage is followed by a stage of elastic deformation until an axial
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Figure4.3 Results obtained in a uni-
axial compression test on rock.
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stress of gy is reached at which stable crack propagation is initiated. This continues
until the axial stress reaches a.4 when unstable crack growth and irrecoverable defor-
mations begin. This region continues until the peak or uniaxial compressive strength,
0., is reached. The processes involved in these stages of loading will be discussed
later in this Chapter.

As shown in Figure 4.3, the axial Young’s modulus of the specimen varies through-
out the loading history and so is not a uniquely determined constant for the material.
It may be calculated in a number of ways, the most common being:

(a) Tangent Young’s modulus, E, is the slope of the axial stress—axial strain curve
at some fixed percentage, generally 50%, of the peak strength. For the example
shown in Figure 4.3, E; = 51.0 GPa.

(b) Average Young’s modulus, E,,, is the average slope of the more-or-less straight
line portion of the axial stress—strain curve. For the example shown in Figure
4.3, E;y = 51.0 GPa.

(c) Secant Young’s modulus, Ej, is the slope of a straight line joining the origin
of the axial stress—strain curve to a point on the curve at some fixed percentage
of the peak strength. In Figure 4.3, the secant modulus at peak strength is E; =
32.1 GPa.

Corresponding to any value of Young’s modulus, a value of Poisson’s ratio may be
calculated as
. (Aoy/Ag,)
(Ad,/Ag;)

4.3)

For the data given in Figure 4.3, the values of v corresponding to the values of E,,
E,, and E calculated above are approximately 0.29, 0.31 and 0.40 respectively.

Because of the axial symmetry of the specimen, the volumetric strain, €,, at any
stage of the test can be calculated as

&y = & + 28 4.4)

For example, at a stress level of o, = 80 MPa in Figure 4.3, ¢, = 0.220%, ¢, =
—0.055% and &, = 0.110%.
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Figure4.4 Influence of end restraint
on stresses and displacements induced
in a uniaxial compression test: (a)
desired uniform deformation of the
specimen; (b) deformation with com-
plete radial restraint at the specimen—
platen contact; (c) non-uniform nor-
mal stress, o, and shear stress, T in-
duced at the specimen end as a result
of end restraint.

ROCK STRENGTH AND DEFORMABILITY

(a) (b) (c)

platen

-

|

=
T

i+

:

{

I

specimen

deformed ——
shape

|
Varying the standard conditions will influence the observed response of the spec-
imen. Some of these effects will be discussed briefly in sections 4.3.3 to 4.3.7.

More extensive discussions of these effects are given by Hawkes and Mellor (1970),
Vutukuri et al. (1974) and Paterson (1978).

4.3.3 End effects and the influence of height to diameter ratio

The objective of the test arrangements should be to subject the specimen to uni-
form boundary conditions with a uniform uniaxial stress and a uniform displacement
field being produced throughout the specimen (Figure 4.4a). Due to friction between
the specimen ends and the platens and differences between the elastic properties of
rock and steel, the specimen will be restrained near its ends and prevented from de-
forming uniformly. Figure 4.4b illustrates a case in which complete radial restraint
occurs at the specimen ends. The result of such restraint is that shear stresses are
set up at the specimen—platen contact (Figure 4.4c). This means that the axial stress
is not a principal stress and that the stresses within the specimen are not always
uniaxial.

As a consequence of these end effects, the stress distribution varies throughout the
specimen as a function of specimen geometry. As the height to diameter (H /D) ratio
increases, a greater proportion of the sample volume is subjected to an approximately
uniform state of uniaxial stress. It is for this essential reason that a H /D ratio of at least
2.0 should be used in laboratory compression testing of rock. Figure 4.5 shows some
experimental data which illustrate this effect. When 51 mm diameter specimens of
Wombeyan Marble were loaded through 51 mm diameter steel platens, the measured
uniaxial compressive strength increased as the H /D ratio was decreased and the shape
of the post-peak stress—strain curve became flatter. When the tests were repeated with
‘brush’ platens (made from an assembly of 3.2 mm square high-tensile steel pins),
lateral deformation of the specimens was not inhibited; similar stress—strain curves
were obtained for H /D ratios in the range 0.5 to 3.0 However, ‘brush’ platens were
found to be too difficult to prepare and maintain for their use in routine testing to be
recommended.

It is tempting to seek to eliminate end effects by treating the specimen—platen
interface with a lubricant or by inserting a sheet of soft material between the specimen
and the platen. Experience has shown that this can cause lateral tensile stresses to be
applied to the specimen by extrusion of the inserts or by fluid pressures set up inside
flaws on the specimen ends. For this reason, the ISRM Commission (1979) and other
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Figure 4.5 Influence of height to di-
ameter (H /D) ratio on stress-strain
curves obtained in uniaxial compres-
sion tests carried out on Wombeyan
Marble using (a) brush platens, and
(b) solid steel platens (after Brown and
Gonano, 1974).
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authorities (e.g. Hawkes and Mellor, 1970; Jaeger and Cook, 1979) recommend that
treatment of the sample ends, other than by machining, be avoided.

4.3.4 Influence of the standard of end preparation

In Figures 4.3 and 4.5, the axial stress-axial strain curves have initial concave up-
wards sections before they become sensibly linear. This initial portion of the curve
is generally said to be associated with ‘bedding-down’ effects. However, experience
shows that the extent of this portion of the curve can be greatly reduced by paying
careful attention to the flatness and parallelism of the ends of the specimen. Analyses
of the various ways in which a poor standard of end preparation influence the observed
response of the sample have been presented by Hawkes and Mellor (1970).

The ISRM Commission (1979) recommends that in a 50+ mm diameter specimen,
the ends should be flat to within 0.02 mm and should not depart from the perpendicular
to the specimen axis by more than 0.05 mm. The latter figure implies that the ends
could be out of parallel by up to 0.10 mm. Even when spherical seats are provided in
the platens, out-of-parallelism of this order can still have a significant influence on the
shape of the stress—strain curve, the peak strength and the reproducibility of results.
For research investigations, the authors prepare their 50-55 mm diameter specimens
with ends flat and parallel to within 0.01 mm.

4.3.5 Influence of specimen volume

It has often been observed experimentally that, for similar specimen geometry, the
uniaxial compressive strength of rock material, o., varies with specimen volume.
(This is a different phenomenon to that discussed in section 4.1 where the changes
in behaviour considered were those due to the presence of varying numbers of ge-
ological discontinuities within the sample volume.) Generally, it is observed that o,
decreases with increasing specimen volume, except at very small specimen sizes
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where inaccuracy in specimen preparation and surface flaws or contamination may
dominate behaviour and cause a strength decrease with decreasing specimen volume.
This, coupled with the requirement that the specimen diameter should be at least 10
times the size of the largest grain, provides a reason for using specimen diameters of
approximately 50 mm in laboratory compression tests.

Many explanations have been offered for the existence of size effects, but none
has gained universal acceptance. A popular approach is to interpret size effects in
terms of the distribution of flaws within the material. Much of the data on which
conclusions about size effects are based, were obtained using cubical specimens.
Brown and Gonano (1975) have shown that in these cases, stress gradients and end
effects can greatly influence the results obtained. The most satisfactory explanations
of observed size effects in rock and other brittle materials are those in which surface
energy is used as the fundamental material property (section 4.5.3).

4.3.6 Influence of strain rate

The ISRM Commission (1979) recommends that a loading rate of 0.5-1.0 MPa s7!
be used in uniaxial compression tests. This corresponds to a time to the attainment
of peak strength in the order of 5—10 min. As the arguments presented below show,
it is preferable to regard strain or deformation, rather than axial stress or load, as the
controlling variable in the compression testing of rock. For this reason, the following
discussion will be in terms of axial strain rate, €,, rather than axial stress rate.

The times to peak strength recommended by the ISRM Commission (1979) corre-
spond to axial strain rates in the order of 1075—10~* s~!. For rocks other than those
such as the evaporites which exhibit markedly time-dependent behaviour, departures
from the prescribed strain rate by one or two orders of magnitude may produce little
discernible effect. For very fast and very slow strain rates, differences in the observed
stress—strain behaviour and peak strengths can become quite marked. However, a
change in strain rate from 1073 s~! to 10? s~! may only increase the measured uniax-
ial compressive strength by a factor of about two. Generally, the observed behaviour
of rock is not significantly influenced by varying the strain rate within the range that
it is convenient to use in quasi-static laboratory compression tests.

4.3.7 Influence of testing machine stiffness

Whether or not the post-peak portion of the stress—strain curve can be followed and
the associated progressive disintegration of the rock studied, depends on the relative
stiffnesses of the specimen and the testing machine. The standard test procedure and
interpretation discussed in section 4.3.2 do not consider this post-peak behaviour.
However, the subject is important in assessing the likely stability of rock fracture in
mining applications including pillar stability and rockburst potential.

Figure 4.6 illustrates the interaction between a specimen and a conventional testing
machine. The specimen and machine are regarded as springs loaded in parallel. The
machine is represented by a linear elastic spring of constant longitudinal stiffness, kp,,
and the specimen by a non-linear spring of varying stiffness, k. Compressive forces
and displacements of the specimen are taken as positive. Thus as the specimen is
compressed, the machine spring extends. (This extension is analogous to that which
occurs in the columns of a testing machine during a compression test.) When the
peak strength has been reached in a strain-softening specimen such as that shown
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Figure 4.6 Spring analogy illustrat-
ing machine—specimen interaction.

Figure 4.7 Post-peak unloading us-
ing machines that are (a) soft, and (b)
stiff, with respect to the specimen.
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in Figure 4.6, the specimen continues to compress, but the load that it can carry
progressively reduces. Accordingly, the machine unloads and its extension reduces.

Figure 4.7 shows what will happen if the machine is (a) soft, and (b) stiff, with re-
spect to the specimen. Imagine that the specimen is at peak strength and is compressed
by a small amount, As. In order to accommodate this displacement, the load on the
specimen must reduce from P, to Py, so that an amount of energy AW;, given by
the area ABED in Figures 4.7 a and b, is absorbed. However, in displacing by As
from point A, the ‘soft’ machine only unloads to F and releases stored strain energy
AWy, given by the area AFED. In this case AW,, > AW, and catastrophic failure
occurs at, or shortly after, the peak because the energy released by the machine during
unloading is greater than that which can be absorbed by the specimen in following
the post-peak curve from A to B.

If the machine is stiff with respect to the specimen in the post-peak region, the
post-peak curve can be followed. In Figure 4.7b, AWy, < AW and energy in excess
of that released by the machine as stored strain energy must be supplied in order
to deform the specimen along ABC. Note that the behaviour observed up to, and
including, the peak, is not influenced by machine stiffness.

For some very brittle rocks, generally those that are fine grained and homogeneous,
portions of the post-peak force—displacement or stress—strain curves can be very
steep so that it becomes impossible to ‘control’ post-peak deformation even in the
stiffest of testing machines. In these cases, the post-peak curves and the associated

mechanisms of fracture may be studied using a judiciously operated servocontrolled
testing machine.
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Figure 4.8 Principle of closed-loop
control (after Hudson et al., 1972b).
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Figure 4.9 Choice between force
and displacement as the programmed
control variable (after Hudson et al.,
1972a).
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The essential features of closed-loop servocontrol are illustrated in Figure 4.8.
An experimental variable (a force, pressure, displacement or strain component) is
programmed to vary in a predetermined manner, generally monotonically increasing
with time. The measured and programmed values are compared electronically several
thousands of times a second, and a servo valve adjusts the pressure within the actuator
to produce the desired equivalence.

Modern servocontrolled testing systems are used to conduct a wide variety of tests
in rock mechanics laboratories. The key to the successful use of these systems is the
choice of the control variable. The basic choice is between a force (or pressure) and a
displacement (or strain) component. Figure 4.9 shows why it is not feasible to obtain
the complete uniaxial force—displacement curve for a strain-softening specimen by
programming the axial force to increase monotonically with time. When the peak
strength of the specimen is reached, the program will attempt to continue to increase
the axial force, but the load-carrying capacity can only decrease with further axial
displacement. However, the test can be successfully controlled by programming the
axial displacement to increase monotonically with time.

The post-peak portions of the force—displacement curves obtained in compression
tests on some rocks may be steeper than, or not as smooth as, those shown in Figures
4.7 and 4.9. In these cases, better control can be obtained by using the circumferential
displacement rather than the axial displacement as the control variable. Figure 4.10
shows the complete axial stress (o,)—axial strain (€,) and circumferential (or radial)
strain (€;)—axial strain curves obtained in such a test on a 50 mm diameter by 100 mm
long specimen of an oolitic limestone (Portland stone) in which a wrap-around trans-
ducer was used to monitor circumferential displacement. Although the possibility of
extracting energy from the machine—specimen system offered by this technique is
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Figure 4.10 Axial stress, o,, and
radial strain, €, vs. axial strain, €,
curves recorded in a uniaxial compres-
sion test on an oolitic limestone (after
Elliott, 1982).

Figure 4.11 Uniaxial stress—strain
curves for six rocks (after Wawersik
and Fairhurst, 1970).
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not reproduced in practical mining problems, this approach does permit progressive
post-peak breakdown to be controlled and studied.

Figure 4.11 shows the complete o,—€, curves obtained by Wawersik and Fairhurst
(1970) in a series of controlled uniaxial compression tests on a range of rock types.
By halting tests on specimens of the same rock at different points on the curve
and sectioning and polishing the specimens, Wawersik and Fairhurst were able to
study the mechanisms of fracture occurring in the different rock types. They found
that the post-peak behaviours of the rocks studied may be divided into two classes
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Figure 4.12 Two classes of stress—
strain behavior observed in uniaxial
compression tests (after Wawersik and
Fairhurst, 1970).
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(Figure 4.12). For class I behaviour, fracture propagation is stable in the sense that
work must be done on the specimen for each incremental decrease in load-carrying
ability. For class II behaviour, the fracture process is unstable or self-sustaining; to
control fracture, energy must be extracted from the material.

The experiments of Wawersik and Fairhurst and of subsequent investigators, indi-
cate that, in uniaxial compression, two different modes of fracture may occur:

(a) local ‘tensile’ fracture predominantly parallel to the applied stress;
(b) local and macroscopic shear fracture (faulting).

The relative predominance of these two types of fracture depends on the strength,
anisotropy, brittleness and grain size of the crystalline aggregates. However, sub-
axial fracturing generally precedes faulting, being initiated at 50-95% of the peak
strength.

In very heterogeneous rocks, sub-axial fracturing is often the only fracture mech-
anism associated with the peaks of the g,—¢€, curves for both class I and class II
behaviour. In such rocks, shear fractures develop at the boundaries and then in the
interiors of specimens, well beyond the peak. This observation is at variance with
the traditional view that through-going shear fracture occurs at the peak. Generally,
these shear fractures, observed in ‘uncontrolled’ tests, are associated with sudden
unloading in a soft testing machine.

In homogeneous, fine-grained rocks such as the Solenhofen Limestone (Figure
4.11), the peak compressive strength may be governed by localised faulting. Be-
cause of the internal structural and mechanical homogeneity of these rocks, there
is an absence of the local stress concentrations that may produce pre-peak crack-
ing throughout coarser-grained crystalline aggregates. In these homogeneous, fine-
grained rocks, fracture initiation and propagation can occur almost simultaneously. If
violent post-peak failure of the specimen is to be prevented, the strain energy stored
in the unfractured parts of the specimen, and in the testing machine, must be removed
rapidly by reversing the sense of platen movement. This produces the artefact of a
class II curve.

It is important to recognise that the post-peak portion of the curve does not reflect
a true material property. The appearance of localised faulting in laboratory tests on
rock and around underground excavations may be explained at a fundamental level
by bifurcation or strain localisation analysis. In this approach, it is postulated that the
material properties may allow the homogeneous deformation of an initially uniform
material to lead to a bifurcation point, at which non-uniform deformation can be
incipient in a planar band under conditions of continuing equilibrium and continuing
homogeneous deformation outside the zone of localisation (Rudnicki and Rice, 1975).
Using arigorous analysis of this type with the required material properties determined
from measured stress—strain and volumetric strain curves, Vardoulakis et al. (1988)
correctly predicted the axial stress at which a particular limestone failed by faulting
in a uniaxial compression test, the orientation of the faults and the Coulomb shear
strength parameters (section 4.5.2) of the rock.

4.3.8 Influence of loading and unloading cycles
Figure 4.13 shows the axial force—axial displacement curve obtained by Wawersik
and Fairhurst (1970) for a 51 mm diameter by 102 mm long specimen of Tennessee
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Figure 4.13 Axial force—axial dis-
placement curve obtained for Ten-
nessee Marble with post-peak unload-
ing and reloading (after Wawersik and
Fairhurst, 1970).
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Marble which was unloaded and then reloaded from a number of points in the post-
peak range. Several points should be noted about the behaviour observed.

(a) On reloading, the curve eventually joins that for a specimen in which the axial
displacement increases monotonically with time.

(b) As displacement continues in the post-peak region, the proportion of the total
displacement that is irrecoverable increases.

(¢) The unloading—loading loop shows some hysteresis.

(d) The apparent modulus of the rock which can be calculated from the slope of
the reloading curve, decreases with post-peak deformation and progressive frag-
mentation of the specimen.

If rock specimens are subjected to loading and unloading cycles in the pre-peak
range, some permanent deformation and hysteresis are generally observed. This is
often associated with ‘bedding-down’ effects, and for this reason, the ISRM Commis-
sion (1979) recommends that ‘it is sometimes advisable for a few cycles of loading
and unloading to be performed’.

4.3.9 The point load test

Sometimes the facilities required to prepare specimens and carry out uniaxial com-
pression tests to the standard described above are not available. In other cases, the
number of tests required to determine the properties of the range of rock types en-
countered on a project may become prohibitive. There may be still further cases, in
which the uniaxial compressive strength and the associated stress—strain behaviour
need not be studied in detail, with only an approximate measure of peak strength
being required. In all of these instances, the point load test may be used to provide
an indirect estimate of uniaxial compressive strength. This account is based on the
ISRM Suggested Method for determining point load strength (ISRM Commission,
1985).
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Figure 4.14 Point load test appara-
tus (photograph by ELE International
Ltd).
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In this test, rock specimens in the form of core (the diametral and axial tests), cut
blocks (the block test) or irregular lumps (the irregular lump test) are broken by
a concentrated load applied through a pair of spherically truncated, conical platens.
The test can be performed in the field with portable equipment or in the laboratory
using apparatus such as that shown in Figure 4.14. The load should be applied at least
0.5D from the ends of the specimen in diametral tests, where D is the core diameter,
and equivalent distances in other tests as specified by the ISRM Commission (1985).
From the measured value of the force, P, at which the test specimen breaks, an
Uncorrected Point Load Index, I, is calculated as

P

S

where D., the equivalent core diameter, is given by the core diameter, D, for diametral
tests, and by 4A/m for axial, block and lump tests, where A is the minimum cross
sectional area of a plane through the specimen and the platen contact points.

The index, I, varies with D, and so size correction must be applied in order to
obtain a unique point load strength index for a particular rock sample for use for
strength classification. Wherever possible, it is preferable to carry out diametral tests
on 50-55 mm diameter specimens. The size-corrected Point Load Strength Index,
Iy50), 1s defined as the value of I that would have been measured in a diametral test
with D = 50 mm. The results of several series of tests carried out by a number of
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investigators show that the value of I; determined in a test of equivalent diameter, D,
may be converted to an /50y value by the relation

D045
Iss0) = I X <5_0e) (4.6)

Beginning with Broch and Franklin (1972), a number of investigators have developed
correlations of the Point Load Index with the uniaxial compressive strength, o,. The
most commonly used correlation is

O, ~ (22 — 24)]5(50) (47)

Caution must be exercised in carrying out point load tests and in interpreting the
results, especially when correlations such as that given by equation 4.7 are used. The
test is one in which fracture is caused by induced tension, and it is essential that a
consistent mode of failure be produced if the results obtained from different specimens
are to be comparable. Very soft rocks, and highly anisotropic rocks or rocks containing
marked planes of weakness such as bedding planes, are likely to give spurious results.
A high degree of scatter is a general feature of point load test results and large numbers
of individual determinations (often in excess of 100) are required in order to obtain
reliable indices. For anisotropic rocks, it is usual to determine a Strength Anisotropy
Index, I,:s0), defined as the ratio of mean Iy50) values measured perpendicular and
parallel to the planes of weakness.

4.4 Behaviour of isotropic rock material in multiaxial compression

4.4.1 Types of multiaxial compression test

A basic principle of the laboratory testing of rock to obtain data for use in design
analyses, is that the boundary conditions applied to the test specimen should simulate
those imposed on the rock element in situ. This can rarely be achieved. General
practice is to study the behaviour of the rock under known uniform applied stress
systems.

As was shown in Chapter 2, a general state of three-dimensional stress at a point
can be represented by three principal stresses, oj, 0» and o3, acting on mutually
orthogonal planes. No shear stresses act on these planes. A plane of particular interest
is the boundary of an underground excavation which is a principal plane except
in the unusual case in which a shear stress is applied to the boundary surface by
the support. The rock surrounding an underground excavation is rarely in a state
of uniaxial compression. In the general case, away from the excavation boundary
or on the boundary when a normal support stress, o3, is applied, there will be a
state of polyaxial stress (o7 # 0, # 03). The special case in which o, = o3 is called
triaxial stress. It is this form of multiaxial stress that is most commonly used in
laboratory testing. On the boundary of an unsupported excavation, a3 = 0, and a
state of biaxial stress exists. The behaviour of intact, isotropic rock materials under
each of these applied stress conditions will be discussed briefly in the following
sections.
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Figure 4.15 Biaxial compression
test results for Wombeyan Marble (af-
ter Brown, 1974).
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4.4.2 Biaxial compression (o) > 0, 03 = 0)

Biaxial compression tests are carried out by applying different normal stresses to
two pairs of faces of a cube, plate or rectangular prism of rock. The great difficulty
with such tests is that the end effects described in section 4.3.3 exert an even greater
influence on the stress distribution within the specimen than in the case of uniaxial
compression. For this reason, fluid rather than solid medium loading is preferred. An
alternative approach is to generate a biaxial state of stress at the inner surface of a
hollow cylinder by loading it axially with a fluid pressure applied to its outer surface
(Hoskins, 1969, Jaeger and Cook, 1979) in a triaxial cell (section 4.4.3). However, in
this case, the stresses at ‘failure’ cannot be measured, but must be calculated using the
theory of elasticity which may not be applicable at peak stress. The inner boundary of
the hollow cylinder is a zone of high stress gradient which could influence the result.
For these reasons, it is recommended that the use of hollow cylinder tests be restricted
to the simulation of particular rock mechanics problems such as the behaviour of rock
around a shaft, bored raise or borehole.

Brown (1974) carried out a series of biaxial compression tests on 76 mm square by
25 mm thick plates of Wombeyan Marble which were loaded on their smaller faces
through (a) 76 mm x 25 mm solid steel platens, and (b) brush platens made from
3.2 mm square steel pins. Figure 4.15 shows the peak strength envelopes obtained
in tests carried out at constant g, /oy ratios. The data are normalised with respect to
the uniaxial compressive strength of the plates, o, = 66 MPa. The increase in peak
strength over o, associated with a given value of o,, was greater for the solid platens
than for the brush platens. This was attributed to the influence of end effects. When
the brush platens were used, the maximum measured increase in peak strength over
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Figure 4.16 Elements of a conven-
tional triaxial testing apparatus.

Figure 4.17 Cut-away view of the
triaxial cell designed by Hoek and
Franklin (1968). Because this cell
does not require drainage between
tests, it is well suited to carrying out
large numbers of tests quickly.
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o. was only 15%. For 0, = g, no strength increase was observed (i.e. g = o).
The practical consequence of these results is that, for this rock type, the ‘strength-
ening’ effect of the intermediate principal stress can be neglected so that the uniax-
ial compressive strength, o, should be used as the rock material strength whenever
o3 = 0. This slightly conservative conclusion is likely to apply to a wide range of rock

types.

4.4.3 Triaxial compression (o) > 0 = 03)

This test is carried out on cylindrical specimens prepared in the same manner as those
used for uniaxial compression tests. The specimen is placed inside a pressure vessel
(Figures 4.16 and 4.17) and a fluid pressure, o3, is applied to its surface. A jacket,
usually made of a rubber compound, is used to isolate the specimen from the confining
fluid which is usually oil. The axial stress, oy, is applied to the specimen via a ram
passing through a bush in the top of the cell and hardened steel end caps. Pore pressure,
u, may be applied or measured through a duct which generally connects with the
specimen through the base of the cell. Axial deformation of the specimen may be most
conveniently monitored by linear variable differential transformers (LVDTs) mounted
inside or outside the cell, but preferably inside. Local axial and circumferential strains
may be measured by electric resistance strain gauges attached to the surface of the
specimen (Figure 4.17).

hardened and ground
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Figure 4.18 Results of triaxial com- 0.4 —

pression tests on an oolitic limestone
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(after Elliott, 1982). € (%)

It is necessary to have available for use with the triaxial cell a system for generating
the confining pressure and keeping it constant throughout the test. If the confining
pressure is generated by a screw-driven pressure intensifier, it is possible to use
the displacement of the intensifier plunger to measure the volumetric strain of the
specimen (Crouch, 1970). Figure 4.18 shows some results obtained using such a
system in tests carried out at three different confining pressures on specimens of an
oolitic limestone. An important feature of the behaviour of rock material in triaxial
compression is illustrated by Figure 4.18. When the specimen is initially loaded it
compresses, but a point is soon reached, generally before the peak of the axial stress—
axial strain curve, at which the specimen begins to dilate (increase in volume) as
a result of internal fracturing. Shortly after the peak strength is reached, the nett
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Figure 4.19 Complete axial stress—
axial strain curves obtained in triaxial
compression tests on Tennessee Mar-
ble at the confining pressures indi-
cated by the numbers on the curves
(after Wawersik and Fairhurst, 1970).
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Figure 4.20 Effect of pore pressure
(given in MPa by the numbers on the
curves) on the stress—strain behaviour
of a limestone tested at a constant
confining pressure of 69 MPa (after
Robinson, 1959).
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volumetric strain of the specimen becomes dilational. Dilation continues in the post-
peak range. The amount of dilation decreases with increasing confining pressure.
At very high confining pressures, often outside the range of engineering interest,
dilation may be totally suppressed with the volumetric strains remaining contractile
throughout the test.

Figure 4.19 illustrates a number of other important features of the behaviour of
rock in triaxial compression. The axial stress (o,)—axial strain (€,) data shown were
obtained by Wawersik and Fairhurst (1970) for the Tennessee Marble giving the
uniaxial stress—strain curve shown in Figure 4.11. These and similar data for other
rocks show that, with increasing confining pressure,

(a) the peak strength increases;

(b) there is a transition from typically brittle to fully ductile behaviour with the
introduction of plastic mechanisms of deformation including cataclastic flow
and grain-sliding effects;

(c) the region incorporating the peak of the o,—€, curve flattens and widens;

(d) the post-peak drop in stress to the residual strength reduces and disappears at
high values of o3.

The confining pressure at which the post-peak reduction in strength disappears and
the behaviour becomes fully ductile (o3 = 48.3 MPa in Figure 4.19), is known as the
brittle-ductile transition pressure and varies with rock type. In general, the more
siliceous igneous and metamorphic rocks such as granite and quartzite remain brittle
at room temperature at confining pressures of up to 1000 MPa or more (Paterson,
1978). In these cases, ductile behaviour will not be of concern in practical mining
problems.

The influence of pore-water pressure on the behaviour of porous rock in the triaxial
compression test is illustrated by Figure 4.20. A series of triaxial compression tests
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was carried out on a limestone with a constant value of o3 = 69 MPa, but with various
levels of pore pressure in the range u = 0 — 69 MPa applied. There is a transition
from ductile to brittle behaviour as u is increased from 0 to 69 MPa. In this case,
mechanical response is controlled by the effective confining pressure, oy = 03 — u,
calculated using Terzaghi’s classical effective stress law. For less permeable rocks than
this limestone, it may appear that the classical effective stress law does not hold. Brace
and Martin (1968) conducted triaxial compression tests on a variety of crystalline
silicate rocks of low porosity (0.001-0.03) at axial strain rates of 1073-1078 s~
They found that the classical effective stress law held only when the strain rate was
less than some critical value which depended on the permeability of the rock, the
viscosity of the pore fluid and the specimen geometry. At strain rates higher than the
critical, static equilibrium could not be achieved throughout the specimen.

4.4.4 Polyaxial compression (o7 > 0y > 03)

These tests may be carried out on cubes or rectangular prisms of rock with different
normal stresses being applied to each pair of opposite faces. The difficulties caused by
end effects are even more marked than in the comparable case of biaxial compression
(section 4.4.2). By the addition of an internal fluid pressure, the hollow cylinder
biaxial compression test may be converted into a polyaxial test. Hoskins (1969) gives
a detailed account of such tests. However, the test also suffers from the difficulties
noted for the hollow cylinder biaxial compression test.

The results of polyaxial compression tests on prismatic specimens are often con-
flicting, but generally indicate some influence of the intermediate principal stress, o»,
on stress—strain behaviour. Generally, the peak strength increases with increasing o»
for constant o3, but the effect is not as great as that caused by increasing o3 by a
similar amount (Paterson, 1978). However, doubts must remain about the uniformity
of the applied stresses in these tests and the results should be interpreted with great
care.

4.4.5 Influence of stress path

In the tests described in the preceding sections, it is usual for two of the principal
stresses (0, and 03) to be applied and held constant and for the other principal stress
(o1) to be increased towards the peak strength. This stress path is not necessarily that
which an element of rock influenced by an excavation will follow when the excavation
is made.

As an example, consider a long excavation of circular cross section made in an
elastic rock mass in which the in situ principal stresses were p vertically, p horizontally
parallel to the axis of the excavation, and 0.5 p horizontally perpendicular to the axis.
Results to be presented in Chapter 7 show that on completion of the excavation,
the principal stresses at mid-height on the boundary of the excavation change from
o =p,00=p,03 =0.5p,toc; =2.5p, 0 = (1 + v)p where v is Poisson’s ratio
of the rock, and a3 = 0. As aresult of excavation, two principal stresses are increased
and the other decreased. It is necessary to determine, therefore, whether the behaviour
described earlier is stress-path dependent or whether it is simply a function of the
final state of stress.

A test of considerable relevance in this regard is the triaxial extension test which is
carried out in a triaxial cell with the confining pressure, oy, greater than the axial stress,
0,. The test may be commenced at o, = o; with g, being progressively reduced so that
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Figure 4.21 Influence of stress path
on the peak strength envelope for
Westerly Granite (after Swanson and
Brown, 1971).

Figure 4.22 Shear failure on plane
ab.
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o = 0] = 0y > 0, = 03. With modern servocontrolled testing machines, almost any
desired total or effective stress path can be followed within the limitations imposed
by the axisymmetric configuration of the triaxial cell. Swanson and Brown (1971)
investigated the effect of stress path on the peak strength of a granite and a quartz
diorite. They found that, for both rock types, the peak strengths in all tests fell on the
same envelope (Figure 4.21 for Westerly Granite) irrespective of stress path. They also
found that the onset of dilatancy, described in section 4.4.3, is stress-path independent.
Similarly, Elliott (1982) found the yield locus of a high-porosity, oolitic limestone to
be stress-path independent.

4.5 Strength criteria for isotropic rock material

4.5.1 Types of strength criterion
A peak strength criterion is a relation between stress components which will permit
the peak strengths developed under various stress combinations to be predicted. Sim-
ilarly, a residual strength criterion may be used to predict residual strengths under
varying stress conditions. In the same way, a yield criterion is a relation between
stress components which is satisfied at the onset of permanent deformation. Given
that effective stresses control the stress—strain behaviour of rocks, strength and yield
criteria are best written in effective stress form. However, around most mining exca-
vations, the pore-water pressures will be low, if not zero, and so o;; > 0;;. For this
reason, it is common in mining rock mechanics to use total stresses in the majority
of cases and to use effective stress criteria only in special circumstances.

The data presented in the preceding sections indicate that the general form of the
peak strength criterion should be

o1 = f(02, 03) 4.8)

This is sometimes written in terms of the shear, T, and normal stresses, o;,, on a
particular plane in the specimen:

T = f(on) 4.9

Because the available data indicate that the intermediate principal stress, o, has less
influence on peak strength than the minor principal stress, o3, all of the criteria used
in practice are reduced to the form

o) = f(03) (4.10)

4.5.2 Coulomb’s shear strength criterion

In one of the classic papers of engineering science, Coulomb (1776) postulated that
the shear strengths of rock and of soil are made up of two parts — a constant cohesion
and a normal stress-dependent frictional component. (Actually, Coulomb presented
his ideas and calculations in terms of forces; the differential concept of stress that we
use today was not introduced until the 1820s.) Thus, the shear strength that can be
developed on a plane such as ab in Figure 4.22 is

s =c+optand 4.11)
where ¢ = cohesion and ¢ = angle of internal friction.
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Figure 4.23 Coulomb strength en-
velopes in terms of (a) shear and nor-
mal stresses, and (b) principal stresses.
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Applying the stress transformation equations to the case shown in Figure 4.22
gives

0y = (01 + 03) + 1(01 — 03) cos 2B
and
T = 1(0y — 03) sin 2B

Substitution for o, and s = 7 in equation 4.11 and rearranging gives the limiting
stress condition on any plane defined by 3 as

_ 2c+ o3[sin 2B +tan & (1 — cos 2B)]

o = i (4.12)
sin 23 — tan & (1 4 cos 23)

There will be a critical plane on which the available shear strength will be first
reached as oy is increased. The Mohr circle construction of Figure 4.23a gives the
orientation of this critical plane as

T, b
=—+4 = 4.13
B 773 (4.13)
This result may also be obtained by putting d(s — 7)/d = 0.
For the critical plane, sin 23 = cos ¢, cos 23 = —sin ¢, and equation 4.12 reduces
to
o = 2¢ cos & + o3(1 + sin ¢) 4.14)

1 —sin ¢

This linear relation between o3 and the peak value of oy is shown in Figure 4.23b.
Note that the slope of this envelope is related to ¢ by the equation

tanp = ——— (4.15)

and that the uniaxial compressive strength is related to ¢ and ¢ by

_ 2ccosd
oy = 00 (4.16)
1 —sind
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Figure 4.24 Coulomb strength en-
velopes with a tensile cut-off.
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If the Coulomb envelope shown in Figure 4.23b is extrapolated to oy = 0, it will
intersect the o3 axis at an apparent value of uniaxial tensile strength of the material
given by

2c cos ¢

or

The measurement of the uniaxial tensile strength of rock is fraught with difficulty.
However, when it is satisfactorily measured, it takes values that are generally lower
than those predicted by equation 4.17. For this reason, a tensile cutoff is usually
applied at a selected value of uniaxial tensile stress, Ty, as shown in Figure 4.24. For
practical purposes, it is prudent to put 7o = 0.

Although it is widely used, Coulomb’s criterion is not a particularly satisfactory
peak strength criterion for rock material. The reasons for this are:

(a) It implies that a major shear fracture exists at peak strength. Observations such
as those made by Wawersik and Fairhurst (1970) show that this is not always
the case.

(b) Itimplies a direction of shear failure which does not always agree with experi-
mental observations.

(c) Experimental peak strength envelopes are generally non-linear. They can be
considered linear only over limited ranges of o;, or g3.

For these reasons, other peak strength criteria are preferred for intact rock. How-
ever, the Coulomb criterion can provide a good representation of residual strength
conditions, and more particularly, of the shear strengths of discontinuities in rock
(section 4.7).

4.5.3 Griffith crack theory

In another of the classic papers of engineering science, Griffith (1921) postulated
that fracture of brittle materials, such as steel and glass, is initiated at tensile stress
concentrations at the tips of minute, thin cracks (now referred to as Griffith cracks)
distributed throughout an otherwise isotropic, elastic material. Griffith based his deter-
mination of the conditions under which a crack would extend on his energy instability
concept:

A crack will extend only when the total potential energy of the system of ap-
plied forces and material decreases or remains constant with an increase in crack
length.
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Figure 4.25 Extension of a preex-
isting crack, (a) Griffith’s hypothesis,
(b) the actual case for rock.
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Figure4.26  Griffith crack model for
plane compression.
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For the case in which the potential energy of the applied forces is taken to be
constant throughout, the criterion for crack extension may be written

0
—(Wqg — W) <0 (4.18)
dc

where c is a crack length parameter, W, is the elastic strain energy stored around the
crack and Wy is the surface energy of the crack surfaces.

Griffith (1921) applied this theory to the extension of an elliptical crack of initial
length 2¢ that is perpendicular to the direction of loading of a plate of unit thickness
subjected to a uniform uniaxial tensile stress, 0. He found that the crack will extend
when

2Ea
e

o> (4.19)
where « is the surface energy per unit area of the crack surfaces (associated with the
rupturing of atomic bonds when the crack is formed), and E is the Young’s modulus
of the uncracked material.

It is important to note that it is the surface energy, o, which is the fundamental
material property involved here. Experimental studies show that, for rock, a pre-
existing crack does not extend as a single pair of crack surfaces, but a fracture zone
containing large numbers of very small cracks develops ahead of the propagating
crack (Figure 4.25). In this case, it is preferable to treat a as an apparent surface
energy to distinguish it from the true surface energy which may have a significantly
smaller value.

It is difficult, if not impossible, to correlate the results of different types of direct
and indirect tensile test on rock using the average tensile stress in the fracture zone as
the basic material property. For this reason, measurement of the ‘tensile strength’ of
rock has not been discussed in this chapter. However, Hardy (1973) was able to obtain
good correlation between the results of a range of tests involving tensile fracture when
the apparent surface energy was used as the unifying material property.

Griffith (1924) extended his theory to the case of applied compressive stresses.
Neglecting the influence of friction on the cracks which will close under compression,
and assuming that the elliptical crack will propagate from the points of maximum
tensile stress concentration (P in Figure 4.26), Griffith obtained the following criterion
for crack extension in plane compression:

(01 —3)? —8Ty(o1 +0») =0 ifoy+30, >0

o+ Ty =0 ifo;+30, <0 (4.20)

where Tj is the uniaxial tensile strength of the uncracked material (a positive number).
This criterion can also be expressed in terms of the shear stress, 7, and the normal
stress, o, acting on the plane containing the major axis of the crack:

T2 = 4Ty(o, + Tp) 4.21)

The envelopes given by equations 4.20 and 4.21 are shown in Figure 4.27. Note
that this theory predicts that the uniaxial compressive stress at crack extension will
always be eight times the uniaxial tensile strength.
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Figure 4.27 Griffith envelopes for
crack extension in plane compression.

Figure 4.28 Comparison of calcu-
lated Griffith locus (solid line) and
measured Griffith locus for Lac du
Bonnet granite (after Martin and
Chandler, 1994).
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During the 1960s, a number of attempts were made to apply these results to the
peak strength envelopes for rock. Quite often, o, in the plane stress criterion was
simply replaced by o3 so that the criterion could be applied to triaxial test results.
For a number of reasons, the classical Griffith criterion did not provide a very good
model for the peak strength of rock under multiaxial compression. Accordingly, a
number of modifications to Griffith’s solution were introduced (see Paterson, 1978
and Jaeger and Cook, 1979 for details). The most important of these modifications
was probably that introduced by Cook (1965) who developed equations for the
Griffith locus for instability, or the post-peak stress-strain curve, for rock in com-
pression by assuming shear displacement or sliding on an array of variably inclined
cracks.

Using Cook’s approach, Martin and Chandler (1994) developed equations for the
Griffith locus for rock in triaxial compression which they fitted to triaxial test results
obtained for the Lac du Bonnet granite from the Underground Research Laboratory
at Pinnawa, Manitoba, Canada. Figure 4.28 shows a comparison of the calculated
Griffith locus (solid line) and the measured Griffith locus at confining pressures of 2,
15 and 30 MPa. It was found that as crack-induced damage accumulated in the sample,
the stress level associated with crack initiation remained essentially unchanged but
that the stress level required to initiate sliding reduced dramatically.
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Figure 4.29 The three basic modes
of distortion at a crack tip (after Pater-
son, 1978).
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4.5.4  Fracture mechanics

Griffith’s energy instability concept forms the basis of the engineering science of
fracture mechanics which is being used increasingly to study a number of fracture
propagation phenomena in rock mechanics. The outline of the essential concepts of
fracture mechanics given here follows that of Paterson (1978).

Although, as illustrated in Figure 4.25, non-elastic effects operate at the tips of
cracks in rock, the practical analysis of the stresses in the vicinity of a crack tip
is usually carried out using the classical theory of linear elasticity. In this case, the
approach is referred to as linear elastic fracture mechanics. The purpose of this
stress analysis is to estimate the “loading” applied to the crack tip and to determine
whether or not the crack will propagate. In order to do this, the nature of the stress
distribution in the vicinity of the crack tip must be determined.

The analysis of the stresses in the vicinity of the crack tip is approached by con-
sidering three basic modes of distortion, designated modes I, IT and III, and defined
with respect to a reference plane that is normal to the edge of a straight line crack.
As shown in Figure 4.29, modes I and II are the plane strain distortions in which the
points on the crack surface are displaced in the reference plane normal and parallel,
respectively, to the plane of the crack. Mode III is the anti-plane strain distortion in
which the points on the crack surface are displaced normal to the reference plane. In
simpler terms, modes I, II and IIT are the extension or opening, in-plane shear and
out-of-plane shear modes, respectively. The stress and displacement fields around
the crack tip in these three basic modes of distortion are obtained by considering
the distributions resulting from the application of uniform loadings at infinity. In the
absence of perturbations due to the crack, these loadings correspond, respectively, to
a uniform tensile stress normal to the crack (I), a uniform shear stress parallel to the
crack (II) and a uniform shear stress transverse to the crack (III).

It is found that, for each mode of distortion, each of the stress and displacement
components can be expressed as the product of a spatial distribution function that is
independent of the actual value of the applied stress and a scaling factor that depends
only on the applied stress and the crack length. The same scaling factor applies for
each of the stress and displacement components in a given mode. It is known as the
stress intensity factor for that mode. The stress intensity factors for the three modes
of distortion are designated Ky, Ky and Ky, respectively. For example, in the mode I
case for the co-ordinate axes shown in Figure 4.29, the o, stress component near the
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crack tip within the material in the plane of the crack is given by (Jaeger and Cook,
1979)

0, = 0'\/(0/2)6)

or,

o.. = K1/v/(2mx) (4.22)

where K; = o+/(wc), 2c is the crack length, x is the distance from the crack tip and
o is the far field stress applied normal to the crack. Equations of a similar form to
equation 4.22 may be obtained for the other modes of distortion (e.g. Paris and Sih,
1965).

It is clear from the above that the values of Ky, Ki and Ky in any particular
case depend on both the macroscopic stress field and the geometry of the specimen.
These values have been calculated for a number of practical cases (e.g. Paris and
Sih, 1965, Whittaker et al., 1992). The question then arises as to when a crack in a
particular case will begin to extend. In linear elastic fracture mechanics, it is postulated
that the crack will begin to extend when a critical intensity of loading as measured
by the stress intensity factors is reached at its tip. That is, the failure criterion is
expressed in terms of critical stress intensity factors designated Kic, Kyc, Kic-
These factors which are also known as fracture toughnesses are regarded as material
properties. Practical procedures have been developed for measuring them for a range
of engineering materials including rock (e.g. Backers et al., 2002, ISRM Testing
Commission 1988, 1995, Whittaker et al., 1992.) It must be noted that in many
practical problems, the applied stress field will be such that a mixed mode of fracture
will apply.

4.5.5 Empirical criteria
Because the classic strength theories used for other engineering materials have been
found not to apply to rock over a wide range of applied compressive stress con-
ditions, a number of empirical strength criteria have been introduced for practical
use. These criteria usually take the form of a power law in recognition of the fact
that peak oy vs. o3 and T vs. o, envelopes for rock material are generally concave
downwards (Figures 4.21, 30, and 31). In order to ensure that the parameters used in
the power laws are dimensionless, these criteria are best written in normalised form
with all stress components being divided by the uniaxial compressive strength of the
rock.

Bieniawski (1974) found that the peak triaxial strengths of a range of rock types
were well represented by the criterion

(03] 03 k
L (—) (4.23)
c Oc
or
™ _01+B (U—“‘> (4.24)
o o

where T, = %(01 —o3)and 0y, = %(01 + 03).
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Bieniawski found that, for the range of rock types tested, k >~ 0.75 and ¢ >~ 0.90.
The corresponding values of A and B are given in Table 4.1. Note that both A and B
take relatively narrow ranges for the rock types tested.

Brady (1977) studied the development of rock fracture around a bored raise in a
pillar in mineralised shale in a trial stoping block at the Mount Isa Mine, Australia.
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Table 4.1 Constants in Bieniawski’s empirical strength criterion
(after Bieniawski, 1974).

Rock type A B

norite 5.0 0.8
quartzite 4.5 0.78
sandstone 4.0 0.75
siltstone 3.0 0.70
mudstone 3.0 0.70

Using a boundary element analysis to calculate the elastic stresses induced around the
raise as the pillar was progressively mined, he found that fracture of the rock could be
accurately modelled using equation 4.23 with A = 3.0, k = 0.75 and o, = 90 MPa
which is approximately half the mean value of 170 MPa measured in laboratory
tests.

Hoek and Brown (1980) found that the peak triaxial compressive strengths of a
wide range of isotropic rock materials could be described by the equation

o1 =03+ (mo. 03 + scrcz)o'5 (4.25)

where m varies with rock type and s = 1.0 for intact rock material. On the basis of
analyses of published strength data and some interpolation and extrapolation based
on practical experience, Marinos and Hoek (2000) have suggested that the constant
m for intact rock, mj, varies with rock type in the manner shown in Table 4.2.

A normalised peak strength envelope for sandstones is shown in Figure 4.30. The
grouping and analysis of data according to rock type has obvious disadvantages.
Detailed studies of rock strength and fracture indicate that factors such as mineral
composition, grain size and angularity, grain packing patterns and the nature of ce-
menting materials between grains, all influence the manner in which fracture initiates
and propagates. If these factors are relatively uniform within a given rock type, then it
might be expected that a single curve would give a good fit to the normalised strength
data with a correspondingly high value of the coefficient of determination, 2. If, on
the other hand, these factors are quite variable from one occurrence of a given rock
type to another, then a wider scatter of data points and a poorer fit by a single curve
might be anticipated. For sandstones (Figure 4.30) where grain size, porosity and
the nature of the cementing material can vary widely, and for limestone which is a
name given to a wide variety of carbonate rocks, the values of r2 are, indeed, quite
low.

Despite these difficulties and the sometimes arbitrary allocation of a particular
name to a given rock, the results obtained initially by Hoek and Brown (1980) and
updated by Marinos and Hoek (2000), do serve an important practical purpose. By
using the approximate value of m; found to apply for a particular rock type, it may be
possible to carry out preliminary design calculations on the basis of no testing other
than a determination of a suitable value of o, made using a simple test such as the
point load test. A value of o is required as a scaling factor to determine the strength
of a particular sample of rock. Thus although the same value of m; may apply to
granites from different localities, their strengths at different confining pressures may
differ by a factor of two or three.
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Table 4.2  Variation of the constant m; for intact rock by rock group (after Hoek, 2003).
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Rock Class Group Texture
Type Coarse Medium Fine Very fine
Conglomerates* Sandstones Siltstones Claystones
Breccias* 17+ 4 7+2 442
. Greywackes Shales
Clastic (18 + 3) (6+2)
E Maris
& (742)
& Crystalline Sparitic Micritic Dolomites
2 Carbonates Limestone Limestones Limestones 9+3)
% N (12+3) (10£2) (9+2)
7] on- .
. . Gypsum Anhydrite
Clastic Evaporites §+2 1242
. Chalk
Organic 7+2
Marble Hornfels Quartzites
8) . 9+3 (19+4) 20+3
5 Non Foliated Metasandstone
19+3
g (19+3)
. . Migmatite Amphibolites Gneiss
é Slightly foliated (29 +3) 26+ 6 28+5
= o ew Schists Phyllites Slates
Foliated 12+3 (7+3) 7+4
Granite Diorite
, 3243 25+5
Light -
Granodiorite
(29 +3)
Plutonic
Gabbro Dolerite
27+3 (16 +5)
Dark .
g Norite
Q 20+5
z
Porphyries Diabase Periodotite
@)
= Hypabyssal @0+ 5) (15+5) (25+5)
Rhyolite Dacite
) (25+5) (25+3)
) Lava Andesite Basalt
Volcanic 25+5) (25 +5)
. Agglomerate Breccia Tuff
Pyroclastic (19+3) (19 + 5) (13+5)

*Conglomerates and breccias may present a wide range of m; values depending on the nature of the cementing material and the
degree of cementation, so they may range from values similar to sandstone, to values used for fine grained sediments (even under

10).

**These values are for intact rock specimens tested normal to bedding or foliation. The value of m; will be significantly different
if failure occurs along a weakness plane.
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An instructive and practically useful interpretation of the Hoek-Brown criterion
for brittle intact rock has been provided by Martin (1997) and others (e.g. Martin and
Chandler, 1994, Hajiabdolmajid et al., 2002, Martin et al., 1999), who studied the
laboratory and field behaviour of Lac du Bonnet granite. Martin (1997) found that,
in a manner consistent with that described in Section 4.3.7, the start of the fracture or
failure process began with the initiation of damage caused by small cracks growing in
the direction of the maximum applied load. For unconfined Lac du Bonnet granite, this
occurred at an applied stress of 0.3 to 0.4 o.. As the load increased, these stable cracks
continued to accumulate. Eventually, when the sample contained a sufficient density of
these cracks, they started to interact and an unstable cracking process involving sliding
was initiated. The stress level at which this unstable cracking process is initiated is
referred to as the long term strength of the rock, o,4. Martin (1997) argued that,
in terms of the Coulombic concepts of cohesion and friction, the mobilised strength
to this stage is cohesive. After the stress a4 has been reached, cohesion is lost and
frictional strength is mobilised.

As illustrated in Figure 4.31, Martin (1997) determined the laboratory peak, long
term and crack initiation strengths for the Lac du Bonnet granite. He was able to fit
Hoek-Brown failure envelopes to these curves, although the laboratory crack initia-
tion curve was found to be a straight line on o; versus o3 axes. Subsequently, in a
field experiment carried out at the URL site, the initiation of cracks around a tunnel
excavated in the Lac du Bonnet granite was recorded using microseismic emissions
(see section 18.2.7). As shown in Figure 4.31, these data correspond well with the
laboratory crack initiation data. It was found that crack initiation at approximately
constant deviatoric stress, (o; — a3), could be well represented by the Hoek-Brown
criterion with my, = 0 and s = 0.11 (Martin et al., 1999). This important result will
be used in later chapters of this book.

4.5.6 Yield criteria based on plasticity theory

The incremental theory of plasticity (Hill, 1950) is a branch of continuum mechanics
that was developed in an attempt to model analytically the plastic deformation or
flow of metals. Plastic deformation is permanent or irrecoverable; its onset marks the
yield point. Perfectly plastic deformation occurs at constant volume under constant
stress. If an increase in stress is required to produce further post-yield deformation,
the material is said to be work- or strain-hardening.

As noted in section 4.4.3, plastic or dissipative mechanisms of deformation may
occur in rocks under suitable environmental conditions. It would seem reasonable,
therefore, to attempt to use plasticity theory to develop yield criteria for rocks. The
relevant theory is beyond the scope of this introductory text and only the elements of
it will be introduced here.

Because plastic deformation is accompanied by permanent changes in atomic posi-
tions, plastic strains cannot be defined uniquely in terms of the current state of stress.
Plastic strains depend on loading history, and so plasticity theory must use an incre-
mental loading approach in which incremental deformations are summed to obtain the
total plastic deformation. In some engineering problems, the plastic strains are much
larger than the elastic strains, which may be neglected. This is not always the case
for rock deformation (for example, Elliott and Brown, 1985), and so an elastoplastic
analysis may be required.
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Figure 4.32 The normality condi-

tion of the associated flow rule.
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The total strain increment {€} is the sum of the elastic and plastic strain in-
crements

{e} = {€°) + (") (4.26)

A plastic potential function, Q ({c}), is defined such that

") =\ {@} 4.27)
Jo

where \ is a non-negative constant of proportionality which may vary throughout the
loading history. Thus, from the incremental form of equation 2.38 and equations 4.26
and 4.27

{e} =[] Yo} + 1 {Q} (4.28)
Jo

where [D] is the elasticity matrix.

It is also necessary to be able to define the stress states at which yield will occur
and plastic deformation will be initiated. For this purpose, a yield function, F({c}),
is defined such that F = 0 at yield. If Q = F, the flow law is said to be associated.
In this case, the vectors of {c} and {€"} are orthogonal as illustrated in Figure 4.32.
This is known as the normality condition.

For isotropic hardening and associated flow, elastoplastic stress and strain incre-
ments may be related by the equation

{o} = [DP][e]

where
[Dep] — [D] {ﬁ}id_l:} [D]
A+ {5} D1{52}
ﬂ strain increment vector

yield envelope

03,€3

116



STRENGTH OF ANISOTROPIC ROCK MATERIAL IN TRIAXIAL COMPRESSION

in which

where K is a hardening parameter such that yielding occurs when

L T 9F 0

_{80'} Wt ox =

The concepts of associated plastic flow were developed for perfectly plastic and
strain-hardening metals using yield functions such as those of Tresca and von Mises
which are independent of the hydrostatic component of stress (Hill, 1950). Although
these concepts have been found to apply to some geological materials, it cannot be
assumed that they will apply to pressure-sensitive materials such as rocks in which
brittle fracture and dilatancy typically occur (Rudnicki and Rice, 1975).

In order to obtain realistic representations of the stresses at yield in rocks and rock
masses, it has been necessary to develop yield functions which are more complex than
the classical functions introduced for metals. These functions are often of the form
F(1, J,) = 0 where I, is the first invariant of the stress tensor and J, is the second
invariant of the deviator stress tensor (section 2.4), i.e.

I =3(S7 + 57+ 53)
[

1
2
sl — 02 + (02 — 03)° + (03 — 01)’]

More complex functions also include the third invariant of the deviator stress tensor
J3 = 81 S> S3. For example, Desai and Salami (1987) were able to obtain excellent
fits to peak strength (assumed synonymous with yield) and stress—strain data for a
sandstone, a granite and a dolomite using the yield function

173\ ™
Felh— i+ |(1-p2
=2 e Sl B 12
Qo J2

where o, n, 3 and m are material parameters and o is one unit of stress.

4.6 Strength of anisotropic rock material in triaxial compression

So far in this chapter, it has been assumed that the mechanical response of rock
material is isotropic. However, because of some preferred orientation of the fabric or
microstructure, or the presence of bedding or cleavage planes, the behaviour of many
rocks is anisotropic. The various categories of anisotropic elasticity were discussed in
section 2.10. Because of computational complexity and the difficulty of determining
the necessary elastic constants, it is usual for only the simplest form of anisotropy,
transverse isotropy, to be used in design analyses. Anisotropic strength criteria are
also required for use in the calculations.

The peak strengths developed by transversely isotropic rocks in triaxial compres-
sion vary with the orientation of the plane of isotropy, foliation plane or plane of
weakness, with respect to the principal stress directions. Figure 4.33 shows some

117



Figure 4.33 Variation of peak prin-
cipal stress difference with the angle
of inclination of the major principal
stress to the plane of weakness, for the
confining pressures indicated for (a) a
phyllite (after Donath, 1972), (b—d) a
slate and two shales (after McLamore
and Gray, 1967).
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Figure 4.34 (a) Transversely iso-
tropic specimen in triaxial compres-
sion; (b) variation of peak strength at
constant confining pressure with the
angle of inclination of the normal to
the plane of weakness to the compres-
sion axis (3).
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measured variations in peak principal stress difference with the angle of inclination
of the major principal stress to the plane of weakness.

Jaeger (1960) introduced an instructive analysis of the case in which the rock
contains well-defined, parallel planes of weakness whose normals are inclined at an
angle B to the major principal stress direction as shown in Figure 4.34a. Each plane

of weakness has a limiting shear strength defined by Coulomb’s criterion
S = Cy + o, tan ¢y, (4.29)

Slip on the plane of weakness (ab) will become incipient when the shear stress on
the plane, 7, becomes equal to, or greater than, the shear strength, s. The stress
transformation equations give the normal and shear stresses on ab as

Oy = 3(01 4 03) + 3(01 — 03) cos 2B
and

T = 1(0) — 03)sin 2B (4.30)
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Substituting for gy, in equation 4.29, putting s = 7, and rearranging, gives the criterion
for slip on the plane of weakness as

_ 2(cy + 03 tan dy)
(1 = 03)s = (1 —tan &y cot B) sin 23 “.3D)

The principal stress difference required to produce slip tends to infinity as 3 — 90°
and as B — ¢,,. Between these values of 3, slip on the plane of weakness is possible,
and the stress at which slip occurs varies with 3 according to equation 4.31. By
differentiation, it is found that the minimum strength occurs when

tan 23 = — cot by,

or when

by
P=3t7

The corresponding value of the principal stress difference is

]1/2 + “_,W)

(01 — 03)min = 2(cw + Pwos) ([1 + g
where Ly = tan dy,.

For values of B approaching 90° and in the range 0° to ¢y, slip on the plane of
weakness cannot occur, and so the peak strength of the specimen for a given value of
03, must be governed by some other mechanism, probably shear fracture through the
rock material in a direction not controlled by the plane of weakness. The variation of
peak strength with the angle 8 predicted by this theory is illustrated in Figure 4.34b.

Note that the peak strength curves shown in Figure 4.33, although varying with 3
and showing pronounced minima, do not take the same shape as Figure 4.34b. (In
comparing these two figures note that the abscissa in Figure 4.33 is o = /2 — ).
In particular, the plateau of constant strength at low values of a, or high values of
a, predicted by the theory, is not always present in the experimental strength data.
This suggests that the two-strength model of Figure 4.34 provides an oversimplified
representation of strength variation in anisotropic rocks. Such observations led Jaeger
(1960) to propose that the shear strength parameter, c,, is not constant but is contin-
uously variable with 3 or . McLamore and Gray (1967) subsequently proposed that
both ¢y, and tan ¢, vary with orientation according to the empirical relations

cw = A — B[cos 2(a — op)]"
and
tan ¢y, = C — D[cos 2(a — ag0)]”

where A, B, C, D, m and n are constants, and oo and oy are the values of « at which
¢y and ¢y, take minimum values, respectively.
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Figure 4.35 Direct shear test con-
figurations with (a) the shear force
applied parallel to the discontinuity,
(b) an inclined shear force.
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4.7 Shear behaviour of discontinuities

4.7.1 Shear testing

In mining rock mechanics problems other than those involving only fracture of intact
rock, the shear behaviour of discontinuities will be important. Conditions for slip on
major pervasive features such as faults or for the sliding of individual blocks from the
boundaries of excavations are governed by the shear strengths that can be developed
by the discontinuities concerned. In addition, the shear and normal stiffnesses of
discontinuities can exert a controlling influence on the distribution of stresses and
displacements within a discontinuous rock mass. These properties can be measured
in the same tests as those used to determine discontinuity shear strengths.

The most commonly used method for the shear testing of discontinuities in rock is
the direct shear test. As shown in Figure 4.35, the discontinuity surface is aligned
parallel to the direction of the applied shear force. The two halves of the specimen are
fixed inside the shear box using a suitable encapsulating material, generally an epoxy
resin or plaster. This type of test is commonly carried out in the laboratory, but it
may also be carried out in the field, using a portable shear box to test discontinuities
contained in pieces of drill core or as an in situ test on samples of larger size. Methods
of preparing samples and carrying out these various tests are discussed by the ISRM
Commission (1974), Goodman (1976, 1989) and Hoek and Bray (1981).

Test arrangements of the type shown in Figure 4.35a can cause a moment to be
applied about a lateral axis on the discontinuity surface. This produces relative rotation
of the two halves of the specimen and a non-uniform distribution of stress over the
discontinuity surface. To minimise these effects, the shear force may be inclined at
an angle (usually 10°—15°) to the shearing direction as shown in Figure 4.35b. This is
almost always done in the case of large-scale in situ tests. Because the mean normal
stress on the shear plane increases with the applied shear force up to peak strength, it
is not possible to carry out tests in this configuration at very low normal stresses.

Direct shear tests in the configuration of Figure 4.35a are usually carried out at
constant normal force or constant normal stress. Tests are most frequently carried
out on dry specimens, but many shear boxes permit specimens to be submerged and
drained shear tests to be carried out with excess joint water pressures being assumed
to be fully dissipated throughout the test. Undrained testing with the measurement of
induced joint water pressures, is generally not practicable using the shear box.

The triaxial cell is sometimes used to investigate the shear behaviour of discon-
tinuities. Specimens are prepared from cores containing discontinuities inclined at
25-40° to the specimen axis. A specimen is set up in the triaxial cell as shown in
Figure 4.34a for the case of anisotropic rocks, and the cell pressure and the axial load
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Figure 4.36 Discontinuity shear
testing in a triaxial cell (after Jaeger
and Rosengren, 1969).
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are applied successively. The triaxial cell is well suited to testing discontinuities in the
presence of water. Tests may be either drained or undrained, preferably with a known
level of joint water pressure being imposed and maintained throughout the test.

It is assumed that slip on the discontinuity will occur according to the theory set
out in section 4.6. Mohr circle plots are made of the total or effective stresses at slip
at a number of values of o3, and the points on these circles giving the stresses on the
plane of the discontinuity are identified. The required shear strength envelope is then
drawn through these points. This requires that a number of tests be carried out on
similar discontinuities.

In an attempt to overcome the need to obtain, prepare and set up several specimens
containing similar discontinuities, a stage testing procedure is sometimes used. A
specimen is tested at a low confining pressure as outlined above. When it appears that
slip on the discontinuity has just been initiated (represented by a flattening of the axial
load—axial displacement curve that must be continuously recorded throughout each
test), loading is stopped, the cell pressure is increased to a new value, and loading
is recommenced. By repeating this process several times, a number of points on the
peak strength envelope of the discontinuity can be obtained from the one specimen.
However, this approach exacerbates the major difficulty involved in using the triaxial
test to determine discontinuity shear strengths, namely the progressive change in the
geometry of the cell-specimen system that accompanies shear displacement on the
discontinuity.

The problem is illustrated by Figure 4.36. It is clear from Figure 4.36a that, if
relative shear displacement of the two parts of the specimen is to occur, there must be
lateral as well as axial relative translation. If, as is often the case, one spherical seat
is used in the system, axial displacement causes the configuration to change to that
of Figure 4.36b, which is clearly unsatisfactory. As shown in Figure 4.36¢, the use
of two spherical seats allows full contact to be maintained over the sliding surfaces,
but the area of contact changes and frictional and lateral forces are introduced at the
seats. Figure 4.36d illustrates the most satisfactory method of ensuring that the lateral
component of translation can occur freely and that contact of the discontinuity surfaces
is maintained. Pairs of hardened steel discs are inserted between the platens and either
end of the specimen. No spherical seats are used. The surfaces forming the interfaces
between the discs are polished and lubricated with a molybdenum disulphide grease.
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Figure 4.37 Shear stress—shear dis-
placement curves for ground surfaces
tested with a constant normal stress of
1.0 MPa (after Jaeger, 1971).
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In this way, the coefficient of friction between the plates can be reduced to the order
of 0.005 which allows large amounts of lateral displacement to be accommodated at
the interface with little resistance.

This technique was developed by Rosengren (1968) who determined the corrections
required to allow for the influence of friction and the change of contact area. His
analysis has been re-presented by Goodman (1976, 1989) and will not be repeated
here. The authors have successfully used this technique in tests on specimens of
150 mm diameter tested at confining pressures of up to 70 MPa.

4.7.2 Influence of surface roughness on shear strength

Shear tests carried out on smooth, clean discontinuity surfaces at constant normal
stress generally give shear stress—shear displacement curves of the type shown in
Figure 4.37. When a number of such tests are carried out at a range of effective normal
stresses, a linear shear strength envelope is obtained (Figure 4.38). Thus the shear
strength of smooth, clean discontinuities can be described by the simple Coulomb
law

s =0, tan¢’ (4.32)

where ¢’ is the effective angle of friction of the discontinuity surfaces. For the case
shown in Figure 4.38, ¢’ = 35°, a typical value for quartz-rich rocks.

Naturally occurring discontinuity surfaces are never as smooth as the artificially
prepared surfaces which gave the results shown in Figures 4.38 and 4.39. The shear
force—shear displacement curve shown in Figure 4.39a is typical of the results obtained
for clean, rough discontinuities. The peak strength at constant normal stress is reached
after a small shear displacement. With further displacement, the shear resistance falls
until the residual strength is eventually reached. Tests at a number of normal stresses
give peak and residual strength envelopes such as those shown in Figure 4.40.

This behaviour can be explained in terms of surface roughness using a simple
model introduced by Patton (1966) (Figure 4.41). A smooth, clean, dry discontinuity
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Figure 4.38 Sliding of smooth
quartzite surfaces under various con-
ditions (after Jaeger and Rosengren,
1969).

Figure 4.39 Results of a direct
shear test on a 127 mm x 152 mm
graphite-coated joint, carried out at
a constant normal force of 28.9 kN.
(a) Shear force—shear displacement
curves; (b) surface profile contours be-
fore testing (mm); (c) relative posi-
tions on a particular cross section after
25 mm of sliding (after Jaeger, 1971).
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Figure 4.41 Idealised surface
roughness models illustrating the
roughness angle, i.
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surface has a friction angle ¢, so that at limiting equilibrium for the direct shear test
configuration of Figure 4.41a,

S
— =t
N an ¢

If the discontinuity surface is inclined at an angle i to the direction of the shear
force, S (Figure 4.41b), then slip will occur when the shear and normal forces on the
discontinuity, S* and N*, are related by

*

N =tan ¢ (4.33)

Resolving S and N in the direction of the discontinuity surface gives
S§* = Scosi — Nsini

and
N* = Ncosi + Ssini

Substitution of these values in equation 4.33 and simplification gives the condition
for slip as

% = tan (b + i) (4.34)

Thus the inclined discontinuity surface has an apparent friction angle of (&b + i).
Patton extended this model to include the case in which the discontinuity surface
contains a number of ‘teeth’ (Figure 4.41c and d). In a series of model experiments

(a) lN (b) lN

(d) lN
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Figure 4.42 Bilinear peak strength
envelope obtained in direct shear tests
on the models shown in Figure 4.41.
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with a variety of surface profiles, he found that, at low values of N, sliding on the
inclined surfaces occurred according to equation 4.34. Dilation of the specimens
necessarily accompanied this mechanism. As the value of N was increased above
some critical value, sliding on the inclined asperity surfaces was inhibited, and a value
of S was eventually reached at which shear failure through the asperities occurred. The
corresponding values of S and N gave the upper portion of the bilinear shear strength
envelope shown in Figure 4.42. Note that, in such cases, the shear strengths that can
be developed at low normal loads can be seriously overestimated by extrapolating the
upper curve back to N = 0 and using a Coulomb shear strength law with a cohesion
intercept, ¢, and a friction angle, ;.

Natural discontinuities rarely behave in the same way as these idealised models.
However, the same two mechanisms — sliding on inclined surfaces at low normal loads
and the suppression of dilation and shearing through asperities at higher normal loads —
are found to dominate natural discontinuity behaviour. Generally, the two mechanisms
are combined in varying proportions with the result that peak shear strength envelopes
do not take the idealised bilinear form of Figure 4.42 but are curved. These combined
effects are well illustrated by the direct shear test on a graphite-coated joint which
gave the results shown in Figure 4.39a. The roughness profile of the initially mating
surfaces is shown in Figure 4.39b. The maximum departure from the mean plane over
the 127 mm x 152 mm surface area was in the order of &+ 2.0 mm. After 25 mm of
shear displacement at a constant normal force of 28.9 kN, the relative positions of the
two parts of the specimen were as shown in Figure 4.39¢. Both riding up on asperities
and shearing off of some material in the shaded zone took place.

Roughness effects can cause shear strength to be a directional property. Figure 4.43
illustrates a case in which rough discontinuity surfaces were prepared in slate spec-
imens by fracturing them at a constant angle to the cleavage. When the specimens
were tested in direct shear with the directions of the ridges on the surfaces parallel to
the direction of sliding (test A), the resulting shear strength envelope gave an effective
friction angle of 22° which compares with a value of 19.5° obtained for clean, pol-
ished surfaces. However, when the shearing direction was normal to the ridges (test
B), sliding up the ridges occurred with attendant dilation. A curved shear strength
envelope was obtained with a roughness angle of 45.5° at near zero effective normal
stress and a roughness angle of 24° at higher values of effective normal stress.

4.7.3 Interrelation between dilatancy and shear strength
All of the test data presented in the previous section were obtained in direct shear
tests carried out at constant normal force or stress. Because of the influence of surface
roughness, dilatancy accompanies shearing of all but the smoothest discontinuity sur-
faces in such tests. Goodman (1976, 1989) pointed out that although this test may re-
produce discontinuity behaviour adequately in the case of sliding of an unconstrained
block of rock from a slope (Figure 4.44c), it may not be suited to the determination
of the stress—displacement behaviour of discontinuities isolating a block that may po-
tentially slide or fall from the periphery of an underground excavation (Figure 4.44d).
In the former case, dilation is permitted to occur freely, but in the latter case, dilation
may be inhibited by the surrounding rock and the normal stress may increase with
shear displacement.

When laboratory specimens in the configuration of Figure 4.44a are subjected
to a shear stress, T, parallel to the discontinuity, they can undergo shear and normal
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Figure 4.43 Effect of shearing di-
rection on the shear strength of a wet
discontinuity in a slate (after Brown et
al., 1977).
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displacements, « and v, respectively. When a normal compressive stress, a,, is applied,
the discontinuity will compress. This compressive stress—displacement behaviour is
highly non-linear (Figure 4.45a) and at high values of a;,, becomes asymptotic to a
maximum closure, V., related to the initial thickness or aperture of the discontinuity.

Suppose that a clean, rough discontinuity is sheared with no normal stress applied.
Dilatancy will occur as shown in the upper curve of Figure 4.45b. If the shear resis-
tance is assumed to be solely frictional, the shear stress will be zero throughout. For
successively higher values of constant normal stress, A, B, C and D, the initial normal
displacement will be a, b, ¢ and d as shown in Figure 4.45a, and the dilatancy—shear
displacement and shear stress—shear displacement curves obtained during shearing
will be as shown in Figures 4.45b and c. As the normal stress is increased, the amount
of dilatancy will decrease because a greater proportion of the asperities will be dam-
aged during shearing.

Now suppose that a test is carried out on the same specimen with the normal stress
initially zero and no dilation permitted during shearing (i.e. v = 0 throughout). By

126



Figure 4.44 Controlled normal
force (a, ¢) and controlled normal
displacement (b, d) shearing modes.
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the time a shear displacement corresponding to point 1 in Figure 4.43b is reached, a
normal stress of o, = A will have been acquired, and the shear resistance will be that
given by the T—u curve for 0, = A atu = u;. As shearing progresses, the shear stress
will increase according to the dashed locus 0—1-2 in Figure 4.45c. If the discontinuity
is initially compressed to point 3 in Figure 4.45b by a normal stress o, = A, and
shearing then occurs with no further normal displacement being permitted (i.e. v = a
throughout), then the T—u curve followed will be that given by the locus 3—4-5-6
in Figure 4.45c. Note that, in both cases, considerable increases in shear strength
accompany shearing without dilatancy, and that the T—u behaviour is no longer strain
softening as it was for constant normal stress tests. This helps explain why limiting
dilation on discontinuities by rock bolt, dowel and cable reinforcement (Chapter 11),
can stabilise excavations in discontinuous rock.

4.7.4  Influence of scale
As was noted in section 3.3, discontinuity roughness may exist on a number of scales.
Figure 3.10 illustrated the different scales of roughness sampled by different scales of
shear test. For tests in which dilation is permitted, the roughness angle and, therefore,
the apparent friction angle, decrease with increasing scale. For tests in which dilation
is inhibited, the influence of scale is less important.

Barton (1973) proposed that the peak shear strengths, of joints, 7, in rock could be
represented by the empirical relation

JCS

T = 0o, tan [JRClog,0 (—/) + d)’r] (4.35)
0-1'1

where o, = effective normal stress, JRC = joint roughness coefficient on a scale of

1 for the smoothest to 20 for the roughest surfaces, JCS = joint wall compressive

strength and ¢y = drained, residual friction angle.
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Figure 4.45 Relations between nor-
mal stress (oy), shear stress (T), nor-
mal displacement (v), and shear dis-
placement (x) in constant displace-
ment shear tests on rough discontinu-
ities (after Goodman, 1989).
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Equation 4.35 suggests that there are three components of shear strength — a basic
frictional component given by ¢/, a geometrical component controlled by surface
roughness (JRC) and an asperity failure component controlled by the ratio (JCS /o).
As Figure 4.46 shows, the asperity failure and geometrical components combine to
give the nett roughness component, i °. The total frictional resistance is then given by
(& +1)°.

Equation 4.35 and Figure 4.46 show that the shear strength of a rough joint is
both scale dependent and stress dependent. As o, increases, the term log,,(JCS/a;)
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Figure 4.46 Influence of scale on
the three components of discontinu-
ity shear strength (after Bandis et al.,
1981).

decreases, and so the nett apparent friction angle decreases. As the scale increases, the
steeper asperities shear off and the inclination of the controlling roughness decreases.
Similarly, the asperity failure component of roughness decreases with increasing
scale because the material compressive strength, JCS, decreases with increasing size
as discussed in section 4.3.5.

4.7.5 Infilled discontinuities

The previous discussion referred to ‘clean’ discontinuities or discontinuities contain-
ing no infilling materials. As noted in section 3.3, discontinuities may contain infilling
materials such as gouge in faults, silt in bedding planes, low-friction materials such
as chlorite, graphite and serpentine in joints, and stronger materials such as quartz or
calcite in veins or healed joints. Clearly, the presence of these materials will influ-
ence the shear behaviour of discontinuities. The presence of gouge or clay seams can
decrease both stiffness and shear strength. Low-friction materials such as chlorite,
graphite and serpentine can markedly decrease friction angles, while vein materials
such as quartz can serve to increase shear strengths.

Of particular concern is the behaviour of major infilled discontinuities in which the
infilling materials are soft and weak, having similar mechanical properties to clays
and silts. The shear strengths of these materials are usually described by an effective
stress Coulomb law. In a laboratory study of such filled discontinuities, Ladanyi and
Archambault (1977) reached the following conclusions:

(a) For most filled discontinuities, the peak strength envelope is located between
that for the filling and that for a similar clean discontinuity.

(b) The stiffnesses and shear strength of a filled discontinuity decrease with in-
creasing filling thickness, but always remain higher than those of the filling
alone.

(c) The shear stress—displacement curves of filled discontinuities often have two
portions, the first reflecting the deformability of the filling materials before rock
to rock contact is made, and the second reflecting the deformability and shear
failure of rock asperities in contact.
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Figure 4.47 Coulomb friction, lin-
ear deformation joint model; (a) nor-
mal stress (oy,)-normal closure (Av)
relation; (b) shear deformation (7)—
shear displacement (Au) relation.

ROCK STRENGTH AND DEFORMABILITY

(d) The shear strength of a filled discontinuity does not always depend on the thick-
ness of the filling. If the discontinuity walls are flat and covered with a low-
friction material, the shear surface will be located at the filling-rock contact.

(e) Swelling clay is a dangerous filling material because it loses strength on swelling
and can develop high swelling pressures if swelling is inhibited.

4.8 Models of discontinuity strength and deformation

In section 4.7, discussion was concentrated on the factors influencing the peak and
residual shear strengths of discontinuities. When the responses of discontinuous rock
masses are modelled using numerical methods such as joint-element finite element
or distinct element methods (Chapter 6) it is also necessary that the shear and normal
displacements on discontinuities be considered. The shear and normal stiffnesses of
discontinuities can exert controlling influences on the distribution of stresses and dis-
placements within a discontinuous rock mass. Three discontinuity strength and de-
formation models of varying complexity will be discussed here. For simplicity, the
discussion is presented in terms of total stresses.

4.8.1 The Coulomb friction, linear deformation model

The simplest coherent model of discontinuity deformation and strength is the Coulomb
friction, linear deformation model illustrated in Figure 4.47. Under normal compres-
sive loading, the discontinuity undergoes linear elastic closure up to a limiting value
of Avy, (Figure 4.47a). The discontinuity separates when the normal stress is less
than the discontinuity tensile strength, usually taken as zero. For shear loading (Fig-
ure 4.47b), shear displacement is linear and reversible up to a limiting shear stress
(determined by the value of the normal stress), and then perfectly plastic. Shear load
reversal after plastic yield is accompanied by permanent shear displacement and hys-
teresis. The relation between limiting shear resistance and normal stress is given by
equation 4.11.

This model may be appropriate for smooth discontinuities such as faults at residual
strength, which are non-dilatant in shear. The major value of the model is that it
provides a useful and readily implemented reference case for static discontinuity
response.

(a) o (b) TA
§ Tmax irrecoverable slip
S
[0
On k)
a
€
Q
3] - N
é\\‘-' initial shear stress
q}q’ Au
opening and initial normal stress
reclosure
AVm Av Tmax
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lation (after Barton et al., 1985). discontinuity deformation and strength have been described by Bandis ef al. (1983,
1985) and Barton et al. (1985) in terms of a series of empirical relations between
stress and deformation components and the parameters joint roughness coefficient,
JRC, and joint wall compressive strength, JCS, introduced in equation 4.35.
The Barton—Bandis discontinuity closure model incorporates hyperbolic loading
and unloading curves (Figure 4.48a) in which normal stress and closure, Av, are

related by the empirical expression

on = Av/(a — bAv) (4.36)

where a and b are constants. The initial normal stiffness of the joint, Ky;, is equal to
the inverse of a and the maximum possible closure, vy,, is defined by the asymptote

a/b.
Differentiation of equation 4.36 with respect to Av yields the expression for normal

stiffness

Ko = Kuill — 00/(vmKpi + 00)]

which shows the normal stiffness to be highly dependent on normal stress.
To provide estimates of joint initial stiffness and closure, Bandis et al. (1985)

present the empirical relations

Ky = 0.02(JCSo/Eg) + 2.0JRCy — 10
Um = A + B(JRCp) + C(JCSy/ Eo)®

131



ROCK STRENGTH AND DEFORMABILITY

where JCSy and JRC, are laboratory scale values, Ej is the initial aperture of the
discontinuity, and A, B, C and D are constants which depend on the previous stress
history.

The peak shear strength is given by equation 4.35. The gradual reduction in shear
strength during post-peak shearing is caused by a decline in the effective contribution
of roughness due to mismatch and wear. This behaviour is modelled by using different
values for the roughness coefficient, JRCyob, that will be mobilised at any given value
of shear displacement, u. A set of empirical relations between u, JRC, JCS, a,, the
mobilised dilation angle and the size of the discontinuity permits the shear stress—shear
displacement curve to be modelled in piecewise linear form (Figure 4.48b).

The Barton—Bandis model takes explicit account of more features of discontinuity
strength and deformation behaviour than the elementary model discussed in section
4.8.1. However, its practical application may present some difficulties. In particular,
the derivation of relations for the mobilisation and degradation of surface roughness
from a piecewise linear graphical format rather than from a well-behaved formal
expression may lead to some irregularities in numerical simulation of the stress—
displacement behaviour.

Although three decades of experience has been gained in assigning JRC values, the
exercise remains a subjective one. A range of approaches to the measurement of JRC
involving surface profiling and statistical and fractal analyses have been proposed.
Grasselli and Egger (2003), for example, used an advanced topometric sensor (ATS)
scanner to obtain digitised three-dimensional profiles of the surfaces of joints in seven
rock types which were then subjected to constant normal load direct shear tests. As
in the example shown in Figure 4.43, they found that the surface profiles and the
associated shear strengths were anisotropic. They were able to fit the measured shear
strengths to the peak shear strength criterion given by equation 4.35 using a model in
which the value of JRC on the laboratory scale was expressed as a function of the basic
friction angle, the ratios of uniaxial compressive and tensile strengths to the average
normal stress, and a number of parameters which represent the three dimensional
surface morphology of the joint and the direction of shearing.

4.8.3 The continuous-yielding joint model

The continuous-yielding joint model was designed to provide a coherent and unified
discontinuity deformation and strength model, taking account of non-linear com-
pression, non-linearity and dilation in shear, and a non-linear limiting shear strength
criterion. Details of the formulation of the model are given by Cundall and Lemos
(1990).

The key elements of the model are that all shear displacement at a discontinuity
has a component of plastic (irreversible) displacement, and all plastic displacement
results in progressive reduction in the mobilised friction angle. The displacement
relation is

AuP = (1 — F)Au

where Au is an increment of shear displacement, AuP is the irreversible component
of shear displacement and F is the fraction that the current shear stress constitutes of
the limiting shear stress at the prevailing normal stress.
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The progressive reduction in shear stress is represented by

1
Adn = _E((bm — dp)AuP

where ¢, is the prevailing mobilised friction angle, &y, is the basic friction angle, and
R is a parameter with the dimension of length, related to joint roughness.
The response to normal loading is expressed incrementally as

Ao, = K Av
where the normal stiffness K, is given by
K, = OLnO'nB"

in which a;, and 3, are further model parameters.
The shear stress and shear displacement increments are related by

AT = FK{Au
where the shear stiffness may also be taken to be a function of normal stress, e.g.
K, = asof“

in which o, Bs are further model parameters.

The continuously-yielding joint model has been shown to have the capability to
represent satisfactorily single episodes of shear loading and the effects of cyclic
loading in a manner consistent with that reported by Brown and Hudson (1974).

4.9 Behaviour of discontinuous rock masses

4.9.1 Strength
The determination of the global mechanical properties of a large mass of discontinuous
in situ rock remains one of the most difficult problems in the field of rock mechanics.
Stress—strain properties are required for use in the determination of the displacements
induced around mine excavations, and overall strength properties are required in, for
example, assessments of pillar strength and the extent of discontinuous subsidence.
A first approach to the determination of the overall strength of a multiply jointed
rock mass is to apply Jaeger’s single plane of weakness theory (section 4.6) in several
parts. Imagine that a rock mass is made up of the material for which the data shown
in Figure 4.33b were obtained, but that it contains four sets of discontinuities each
identical to the cleavage planes in the original slate. The sets of discontinuities are
mutually inclined at 45° as shown in the sketches in Figure 4.49. A curve showing the
variation of the peak principal stress difference with the orientation angle, o, may be
constructed for a given value of o3 by superimposing four times the appropriate curve
in Figure 4.33b with each curve displaced from its neighbour by 45° on the « axis.
Figure 4.49 shows the resulting rock mass strength characteristics for three values of
03. In this case, failure always takes place by slip on one of the discontinuities. Note
that, to a very good approximation, the strength of this hypothetical rock mass may
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Figure 4.49 Composite peak
strength characteristics for a hypo-
thetical rock mass containing four
sets of discontinuities each with the
properties of the cleavage in the slate
for which the data shown in Figure
4.33b were obtained.
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be assumed to be isotropic. This would not be the case if one of the discontinuity sets
had a substantially lower shear strength than the other sets.

Because of the difficulty of determining the overall strength of a rock mass by
measurement, empirical approaches are generally used. As discussed in section 4.5.5,
Brady (1977) found that the power law of equation 4.23 could be applied to the
mineralised shale at the Mount Isa Mine. An attempt to allow for the influence of
rock quality on rock mass strength was made by Bieniawski (1976) who assigned
Coulomb shear strength parameters, ¢ and ¢, to the various rock mass classes in
his geomechanics classification (Table 3.5). Correlations have also been proposed
between other rock mass classification schemes and rock mass strengths (e.g. Barton,
2002, Laubscher, 1990, Laubscher and Jakubec, 2001).

The most completely developed of these empirical approaches is that introduced
by Hoek and Brown (1980). Because of a lack of suitable alternatives, the Hoek-
Brown empirical rock mass strength criterion was soon adopted by rock mechanics
practitioners, and sometimes used for purposes for which it was not originally intended
and which lay outside the limits of the data and methods used in its derivation. Because
of this, and as experience was acquired in its practical application, a series of changes

were made and new elements introduced into the criterion. Hoek and Brown (1997)
consolidated the changes made to that time and gave a number of worked examples to
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illustrate the criterion’s application in practice. A further update was given by Hoek
et al. (2002). The summary of the criterion given here is based on these accounts and
those of Marinos and Hoek (2000) and Brown (2003).

In effective stress terms, the generalised Hoek-Brown peak strength criterion for
jointed rock masses is given by:

o] = 0} + (mpoeo’s + s0?2)" (4.37)
where my, is the reduced value of the material constant m; (see equation 4.25) for the
rock mass, and s and a are parameters which depend on the characteristics or quality
of the rock mass. The values of my, and s are related to the GSI for the rock mass (see
section 3.7.4) by the relations

myp = m; exp{(GSI — 100)/(28 — 14D)} (4.38)
and
s = exp{(GSI — 100)/(9 — 3D)} (4.39)

where D is a factor which depends on the degree to which the rock mass has been
disturbed by blasting or stress relaxation. D varies from 0 for undisturbed in situ rock
masses to 1.0 for very disturbed rock masses. For good quality blasting, it might be
expected that D ~ 0.7.

In the initial version of the Hoek-Brown criterion, the index a took the value 0.5 as
shown in equation 4.25. After anumber of other changes, Hoek et al. (2002) expressed
the value of a which applies over the full range of GSI values as the function:

a=0.5+ (exp BYB —exp™3)/6 (4.40)

Note that for GSI > 50, a & 0.5, the original value. For very low values of GSI, a —
0.65.

The uniaxial compressive strength of the rock mass is obtained by setting o; to
zero in equation 4.37 giving

Ocn = OcS° (4.41)

Assuming that the uniaxial and biaxial tensile strengths of brittle rocks are approx-
imately equal, the tensile strength of the rock mass may be estimated by putting
0| = 0} = Oy in equation 4.37 to obtain

Oim = —S 0c/myp 4.42)

The resulting peak strength envelope for the rock mass is as illustrated in Figure 4.50.
Because analytical solutions and numerical analyses of a number of mining rock
mechanics problems use Coulomb shear strength parameters rather than principal
stress criteria, the Hoek-Brown criterion has also been represented in shear stress-
effective normal stress terms. The resulting shear strength envelopes are non-linear
and so equivalent shear strength parameters have to be determined for a given normal
stress or effective normal stress, or for a small range of those stresses (Figure 4.50).

135



Figure 4.50 Hoek-Brown peak
strength envelope for a diorite rock
mass with o, = 100 MPa, m; = 25
and GSI 65 and the equivalent
Coulomb shear strength parameters.

ROCK STRENGTH AND DEFORMABILITY

200 —

150

=
a9}
2 100
<
50
(53’ max— Maximum value of (5;
Gy Gem for which the equivalent
\ Coulomb parameters apply
I l | I
0 10 20 30

Gg'(MPa)

Methods of doing this are proposed by Hoek and Brown (1997), Hoek et al. (2002)
and Sofianos (2003).

It is important to recognise that the Hoek-Brown rock mass strength criterion as
presented here is a short-term peak strength criterion and not a crack initiation or
long-term strength criterion. Furthermore, it applies only to sensibly isotropic rock
masses as in the case illustrated in Figure 4.49. In particular, it should not be used when
failure is governed by a single discontinuity or by a small number of discontinuities.
The limitations of the criterion and the conditions under which it should be used have
been discussed by Hoek and Brown (1997) and are illustrated in Figure 4.51.

4.9.2 Deformability
The study of the complete stress—strain behaviour of jointed rock masses involving
post-yield plastic deformation, is beyond the scope of this introductory text. How-
ever, it is of interest to consider the pre-peak behaviour with a view to determining
equivalent overall elastic constants for use in design analyses.

In the simplest case of a rock mass containing a single set of parallel discontinuities,
a set of elastic constants for an equivalent transversely isotropic continuum may be
determined. For a case analogous to that shown in Figure 2.10, let the rock material
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Figure 4.51 Applicability of the
Hoek—Brown empirical rock mass
strength criterion at different scales
(after Hoek and Brown, 1988).
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be isotropic with elastic constants E and v, let the discontinuities have normal and
shear stiffnesses K;, and K as defined in section 4.7.5, and let the mean discontinuity
spacing be S. By considering the deformations resulting from the application of unit
shear and normal stresses with respect to the x, y plane in Figure 2.10, it is found that
the equivalent elastic constants required for use in equation 2.42 are given by

Ei=E
1 1 1
5 _ETKS
VI =7V

E,
szfv
111
G, G ks

If, for example, E = 10 GPa, v = 0.20, K, =5 GPam™!, K, = 0.1 GPam™! and
S =0.5m, then G =4.17 GPa, E; = 10 GPa, E;, = 2.0 GPa, v; = 0.20, v, = 0.04
and G, = 49.4 MPa.

Similar solutions for cases involving more than one set of discontinuities are given
by Amadei and Goodman (1981) and by Gerrard (1982). It is often found in practice
that the data required to apply these models are not available or that the rock mass
structure is less regular than that assumed in developing the analytical solutions. In
these cases, it is common to determine E as the modulus of deformation or slope
of the force—displacement curve obtained in an in situ compression test. There are
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Figure 4.52 Determination of the
Young’s modulus of a rock mass from
the response on initial unloading in a
cyclic loading test (after Brady et al.,
1985).
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many types of in situ compression test including uniaxial compression, plate bearing,
flatjack, pressure chamber, borehole jacking and dilatometer tests.

The results of such tests must be interpreted with care particularly when tests are
conducted under deviatoric stress conditions on samples containing discontinuities
that are favourably oriented for slip. Under these conditions, initial loading may
produce slip as well as reflecting the elastic properties of the rock material and the
elastic deformabilities of the joints. Using a simple analytical model, Brady et al.
(1985) have demonstrated that, in this case:

(a) the loading—unloading cycle must be accompanied by hysteresis; and
(b) itis only in the initial stage of unloading (Figure 4.52) that inelastic response is
suppressed and the true elastic response of the rock mass is observed.

Bieniawski (1978) compiled values of in situ modulus of deformation determined
using a range of test methods at 15 different locations throughout the world. He found
that for values of rock mass rating, RMR, greater than about 55, the mean deformation
modulus, Ey;, measured in GPa, could be approximated by the empirical equation

Enm = 2(RMR) — 100 (4.43)

Serafim and Pereira (1983) found that an improved fit to their own and to Bieni-
awski’s data, particularly in the range of E\; between 1 and 10 GPa, is given by the
relation

RMR—10

Ey = 10" % (4.44)

Figure 4.53 shows equations 4.43 and 4.44 fitted to Bieniawski’s (1978) and Serafim
and Periera’s (1983) data, respectively. It also shows further data provided by Barton
(2002) fitted to the equation

Ey =100 (4.45)

where Q. = Qa./100.
Following Hoek and Brown (1997), Hoek et al. (2002) proposed the more complex
empirical relation

Ev = (1 — D/2) y/(6./100) - 10(GS1-10//40) (4.46)

which is derived from equation 4.44 but gives an improved fit to the data at lower
values of RMR (= GSI for RMR > 25), and includes the factor D to allow for the
effects of blast damage and stress relaxation.

It must be recognised that equations 4.43 to 4.46 relate rock mass classification
indices to measured static deformability values that show considerable scatter. Ac-
cordingly, it cannot be expected that they will always provide accurate estimates of
Eyp. It must also be remembered that, as indicated earlier in this section, rock mass
moduli may be highly anisotropic. They also vary non-linearly with the level of ap-
plied stress and so can be expected to vary with depth. Because of the high costs of
carrying out in situ deformability tests, geophysical methods are often used to esti-
mate in situ moduli. These methods generally involve studies of the transmission of
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Figure 4.53 Measured values of

static rock mass modulus, E},
and some empirical relations (after
Barton, 2002).
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elastic compression and shear waves through the rock mass and empirical correlations
with rock mass classifications and dynamic and/or static moduli. Barton (2002), for
example, was able to fit data from a number of hard rock sites using equation 4.45
with the value of Q. estimated from the in situ seismic P wave velocity, V,(km s7h,
using the empirical relation

Vo &~ 3.5 +log o Oc

Problems

1 From the data given in Figure 4.18, calculate the tangent modulus and Poisson’s
ratio for the initial elastic behaviour of the limestone with o3 = 2.0 MPa.

2 A porous sandstone has a uniaxial compressive strength of o, = 75 MPa. The
results of a series of triaxial compression tests plotted on shear stress—normal stress
axes give a linear Coulomb peak strength envelope having a slope of 45°.

Determine the axial stress at peak strength of a jacketed specimen subjected to a
confining pressure of oz = 10 MPa. If the jacket had been punctured during the test,
and the pore pressure had built up to a value equal to the confining pressure, what
would the peak axial stress have been?

3(a) Establish an approximate peak strength envelope for the marble for which the
data shown in Figure 4.19 were obtained.

3(b) In what ways might the observed stress—strain behaviour of the specimens have
differed had the tests been carried out in a conventional testing machine having a
longitudinal stiffness of 2.0 GN m~!? Assume that all specimens were 50 mm in
diameter and 100 mm long.
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4 A series of laboratory tests on intact specimens of quartzite gave the following
mean peak strengths. The units of stress are MPa, and compression is taken as
positive.

3 (01 + 03) 3 (o1 — 03)

100 100

135 130

triaxial 160 150
compression 200 180
o =03 298 248
435 335

(1 o 03

biaxial 0 0 —135
tension/ 0 —13 —13
compression 218 50 0
225 100 0

228 150 0

210 210 0

Develop apeak strength criterion for the quartzite for use in underground excavation
design. Experience has shown that the in situ uniaxial compressive strength of the
quartzite is one-half the laboratory value.

5 A series of triaxial compression tests on specimens of a slate gave the following
results:

Confining Peak axial Angle between

pressure stress cleavage and o
a3 (MPa) o (MPa) a®
2.0 62.0 40
5.0 62.5 32
10.0 80.0 37
15.0 95.0 39
20.0 104.0 27

In each test, failure occurred by shear along the cleavage. Determine the shear
strength criterion for the cleavage planes.

6 In afurther series of tests on the slate for which the data of Problem 5 were obtained,
it was found that, when failure occurred in directions other than along the cleavage,
the peak strength of the rock material was given by

o = 150 + 2.803

where o and o3 are in MPa.

Construct a graph showing the expected variation of peak axial stress at a confining
pressure of 10 MPa, as the angle between the cleavage and the specimen axis varies
from 0° to 90°.
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7 The following results were obtained in a series of direct shear tests carried out on
100 mm square specimens of granite containing clean, rough, dry joints.

Normal stress  Peak shear  Residual shear Displacement at

strength strength peak shear strength

“Normal  Shear

o, (MPa) Tp (MPa) T (MPa) v(mm) u(mm)
0.25 0.25 0.15 0.54 2.00
0.50 0.50 0.30 0.67 2.50
1.00 1.00 0.60 0.65 3.20
2.00 1.55 1.15 0.45 3.60
3.00 2.15 1.70 0.30 4.00
4.00 2.60 - 0.15 4.20

(a) Determine the basic friction angle and the initial roughness angle for the joint
surfaces.

(b) Establish a peak shear strength criterion for the joints, suitable for use in the
range of normal stresses, 0—4 MPa.

(c) Assuming linear shear stress-shear displacement relations to peak shear strength,
investigate the influence of normal stress on the shear stiffness of the joints.

8 A triaxial compression test is to be carried out on a specimen of the granite referred
to in Problem 7 with the joint plane inclined at 35° to the specimen axis. A confining
pressure of o3 = 1.5 MPa and an axial stress of o; = 3.3 MPa are to be applied. Then
a joint water pressure will be introduced and gradually increased with o and o3 held
constant. At what joint water pressure is slip on the joint expected to occur? Repeat
the calculation for a similar test in which oy = 4.7 MPa and o3 = 1.5 MPa.

9 In the plane of the cross section of an excavation, a rock mass contains four sets of
discontinuities mutually inclined at 45°. The shear strengths of all discontinuities are
given by a linear Coulomb criterion with ¢’ = 100 kPa and ¢’ = 30°.

Develop an isotropic strength criterion for the rock mass that approximates the
strength obtained by applying Jaeger’s single plane of weakness theory in several
parts.

10 A certain slate can be treated as a transversely isotropic elastic material. Block
samples of the slate are available from which cores may be prepared with the cleavage
at chosen angles to the specimen axes.

Nominate a set of tests that could be used to determine the five independent elastic
constants in equation 2.42 required to characterise the stress—strain behaviour of the
slate in uniaxial compression. What measurements should be taken in each of these
tests?
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Figure5.1 Method of specifying the
in situ state of stress relative to a set
of global reference axes.

y {(east)

Pre-mining state of stress

5.1 Specification of the pre-mining state of stress

The design of an underground structure in rock differs from other types of structural
design in the nature of the loads operating in the system. In conventional surface struc-
tures, the geometry of the structure and its operating duty define the loads imposed on
the system. For an underground rock structure, the rock medium is subject to initial
stress prior to excavation. The final, post-excavation state of stress in the structure
is the resultant of the initial state of stress and stresses induced by excavation. Since
induced stresses are directly related to the initial stresses, it is clear that specification
and determination of the pre-mining state of stress is a necessary precursor to any
design analysis.

The method of specifying the in situ state of stress at a point in a rock mass,
relative to a set of reference axes, is demonstrated in Figure 5.1. A convenient set
of Cartesian global reference axes is established by orienting the x axis towards
mine north, y towards mine east, and z vertically downwards. The ambient stress
components expressed relative to these axes are denoted pyx, pyy, P2z Pxys Pyzs Pox-
Using the methods established in Chapter 2, it is possible to determine, from these
components, the magnitudes of the field principal stresses p;(i = 1,2, 3), and the
respective vectors of direction cosines (Ay;, Ay;, A;;) for the three principal axes. The
corresponding direction angles yield a dip angle, o, and a bearing, or dip azimuth, {3;,
for each principal axis. The specification of the pre-mining state of stress is completed
by defining the ratio of the principal stresses in the form p; : po : p3=1.0:q : r
where both g and r are less than unity.

The assumption made in this discussion is that it is possible to determine the in situ
state of stress in a way which yields representative magnitudes of the components of
the field stress tensor throughout a problem domain. The state of stress in the rock
mass is inferred to be spatially quite variable, due to the presence of structural features
such as faults or local variation in rock material properties. Spatial variation in the
field stress tensor may be sometimes observed as an apparent violation of the equation
of equilibrium for the global z (vertical) direction. Since the ground surface is always
traction-free, simple statics requires that the vertical normal stress component at a

— x {north)

7
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sub-surface point be given by

Pz =72 5.1

where vy is the rock unit weight, and z is the depth below ground surface.

Failure to satisfy this equilibrium condition (equation 5.1) in any field determination
of the pre-mining state of stress may be a valid indication of heterogeneity of the stress
field. For example, the vertical normal stress component might be expected to be less
than the value calculated from equation 5.1, for observations made in the axial plane
of an anticlinal fold.

A common but unjustified assumption in the estimation of the in situ state of stress
is a condition of uniaxial strain (‘complete lateral restraint’) during development of
gravitational loading of a formation by superincumbent rock. For elastic rock mass
behaviour, horizontal normal stress components are then given by

1—v

1%
Pxx = Pyy = Pzz (5.2)

where v is Poisson’s ratio for the rock mass.

If it is also assumed that the shear stress components pyy, py;, p;x are zero, the
normal stresses defined by equations 5.1 and 5.2 are principal stresses.

Reports and summaries of field observations (Hooker et al., 1972; Brown and Hoek,
1978) indicate that for depths of stress determinations of mining engineering interest,
equation 5.2 is rarely satisfied, and the vertical direction is rarely a principal stress
direction. These conditions arise from the complex load path and geological history
to which an element of rock is typically subjected in reaching its current equilibrium
state during and following orebody formation.

5.2 Factors influencing the in situ state of stress

The ambient state of stress in an element of rock in the ground subsurface is deter-
mined by both the current loading conditions in the rock mass, and the stress path
defined by its geologic history. Stress path in this case is a more complex notion than
that involved merely in changes in surface and body forces in a medium. Changes in
the state of stress in a rock mass may be related to temperature changes and thermal
stress, and chemical and physicochemical processes such as leaching, precipitation
and recrystallisation of constituent minerals. Mechanical processes such as fracture
generation, slip on fracture surfaces and viscoplastic flow throughout the medium,
can be expected to produce both complex and heterogeneous states of stress. Conse-
quently, it is possible to describe, in only semi-quantitative terms, the ways in which
the current observed state of a rock mass, or inferred processes in its geologic evolu-
tion, may determine the current ambient state of stress in the medium. The following
discussion is intended to illustrate the role of common and readily comprehensible
factors on pre-mining stresses.

5.2.1 Surface topography
Previous discussion has indicated that, for a flat ground surface, the average verti-
cal stress component should approach the depth stress (i.e. p,, = yz). For irregular
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Figure 5.2 The effect of irregular
surface topography (a) on the subsur-
face state of stress may be estimated
from a linearised surface profile (b). A
V-notch valley (c) represents a limit-
ing case of surface linearisation.

PRE-MINING STATE OF STRESS
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ground ground
surface surface
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ground surface

surface topography, such as that shown in Figure 5.2a, the state of stress at any point
might be considered as the resultant of the depth stress and stress components associ-
ated with the irregular distribution of surface surcharge load. An estimate of the latter
effect can be obtained by linearising the surface profile, as indicated in Figure 5.2b.
Expressions for uniform and linearly varying strip loads on an elastic half-space can
be readily obtained by integration of the solution for a line load on a half-space
(Boussinesq, 1883). From these expressions, it is possible to evaluate the state of
stress in such locations as the vicinity of the subsurface of the base of a V-notch
valley (Figure 5.2¢). Such a surface configuration would be expected to produce a
high horizontal stress component, relative to the vertical component at this location.
In all cases, it is to be expected that the effect of irregular surface topography on the
state of stress at a point will decrease rapidly as the distance of the point below ground
surface increases. These general notions appear to be confirmed by field observations
(Endersbee and Hofto, 1963).

5.2.2 Frosion and isostasy

Erosion of a ground surface, either hydraulically or by glaciation, reduces the depth
of rock cover for any point in the ground subsurface. It can be reasonably assumed
that the rock mass is in a lithologically stable state prior to erosion, and thus that
isostasy occurs under conditions of uniaxial strain in the vertical direction. Suppose
after deposition of a rock formation, the state of stress at a point P below the ground
surface is given by

If a depth &, of rock is then removed by erosion under conditions of uniaxial strain,
the changes in the stress components are given by

Ap; = —hey, Apy = Apy =v/(1 —=Ap, = —v/(1 — v)hey
and the post-erosion values of the stress components are
pxf = pyr = p —v/(1 =v)hey, py=p—hey
Because v < 0.5, from this expression it is clear that, after the episode of erosion, the
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horizontal stresses are reduced by amounts less than the reduction in vertical stress;
ie.

Dxfs Dyf = Dzf

or the ratios of the stresses p.s/p.r, pyr/P-s are greater than unity. For a point at
shallow current depth /., it can be shown that, for 4. > h., is possible for the ratios
of the horizontal stresses to the vertical stress to achieve very high values indeed.

From this analysis, it can also be deduced that the horizontal/vertical stress ratio
decreases as the current depth /. increases, approaching the pre-erosion value when
h. is significantly greater than /..

5.2.3 Residual stress

Residual stresses exist in a finite body when its interior is subject to a state of stress in
the absence of applied surface tractions. The phenomenon has long been recognised
in the mechanics of materials. For example, Love (1944) describes the generation
of residual stresses in a cast-iron body on cooling, due to the exterior cooling more
rapidly than the interior. Timoshenko and Goodier (1970) also discuss the develop-
ment of residual (or initial) stresses in common engineering materials. In general,
residual stresses may be related to physical or chemical processes occurring non-
homogeneously in restricted volumes of material. For example, non-uniform cooling
of arock mass, or the presence in a rock mass subject to uniform cooling, of contigu-
ous lithological units with different coefficients of thermal expansion, will produce
states of stress which are locally ‘locked-in’.

Processes other than cooling that produce residual stresses may involve local min-
eralogical changes in the rock medium. Local recrystallisation in a rock mass may
be accompanied by volumetric strain. Changes in the water content of a mineral
aggregation, by absorption or exudation and elimination of chemically or physically
associated water, can result in strains and residual stresses similar in principle to those
associated with spatially non-uniform cooling.

A comprehensive understanding of the thermal history and subtle geologic evo-
lution of the members of a rock formation is not considered a practical possibility.
The problem of residual stresses therefore remains an inhibiting factor in predicting
the ambient state of stress in a rock mass, from either basic mechanics or detailed
geological investigations. The inverse process may be a more tractable proposition;
i.e. anomalous or non-homogeneous states of stress in a formation may be related to
the features or properties of the rock mass which reflect the spatial non-uniformity of
its thermal, chemical or petrological history.

5.2.4 Inclusions

Inclusions in a rock mass are lithological units that post-date the formation of the host
rock mass. Common inclusions are extrusive features such as dykes and sills, and
veins of such minerals as quartz and fluorspar. The existence of a vertical, subplanar
inclusion in a rock mass may have influenced the current in situ state of stress in
two ways. First, if the inclusion were emplaced under pressure against the horizontal
passive resistance of the surrounding rock, a high-stress component would operate
perpendicular to the plane of inclusion. A second possible influence of an inclusion
is related to the relative values of the deformation moduli of the inclusion and the
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surrounding rock. Any loading of the system, for example by change of effective
stress in the host rock mass or imposed displacements in the medium by tectonic
activity, will generate relatively high or low stresses in the inclusion, compared with
those in the host rock mass. A relatively stiff inclusion will be subject to relatively
high states of stress, and conversely. An associated consequence of the difference in
elastic moduli of host rock and inclusion is the existence of high-stress gradients in
the host rock in the vicinity of the inclusion. In contrast, the inclusion itself will be
subject to a relatively homogeneous state of stress (Savin, 1961).

An example of the effect of an inclusion on the ambient state of stress is provided
by studies of conditions in and adjacent to dykes in the Witwatersrand Quartzite. The
high elastic modulus of dolerite, compared with that of the host quartzite, should lead
to a relatively high state of stress in the dyke, and a locally high stress gradient in the
dyke margins. These effects appear to be confirmed in practice (Gay, 1975).

5.2.5 Tectonic stress

The state of stress in a rock mass may be derived from a pervasive force field imposed
by tectonic activity. Stresses associated with this form of loading operate on a regional
scale, and may be correlated with such structural features as thrust faulting and folding
in the domain. Active tectonism need not imply that an area be seismically active, since
elements of the rock mass may respond viscoplastically to the imposed state of stress.
However, the stronger units of a tectonically stressed mass should be characterised
by the occurrence of one subhorizontal stress component significantly greater than
both the overburden stress and the other horizontal component. It is probable also that
this effect should persist at depth. The latter factor may therefore allow distinction
between near-surface effects, related to erosion, and latent tectonic activity in the
medium.

5.2.6  Fracture sets and discontinuities

The existence of fractures in a rock mass, either as sets of joints of limited continuity,
or as major, persistent features transgressing the formation, constrains the equilibrium
state of stress in the medium. Thus vertical fractures in an uplifted or elevated rock
mass, such as a ridge, can be taken to be associated with low horizontal stress com-
ponents. Sets of fractures whose orientations, conformation and surface features are
compatible with compressive failure in the rock mass, can be related to the properties
of the stress field inducing fracture development (Price, 1966). In particular, a set
of conjugate faults is taken to indicate that the direction of the major principal field
stress prior to faulting coincides with the acute bisector of the faults’ dihedral angle,
the minor principal stress axis with the obtuse bisector, and the intermediate principal
stress axis with the line of intersection of the faults (Figure 5.3). This assertion is
based on a simple analogy with the behaviour of a rock specimen in true triaxial
compression. Such an interpretation of the orientation of the field principal stresses
does not apply to the state of stress prevailing following the episode of fracture. In
fact, the process of rock mass fracture is intrinsically an energy dissipative and stress
redistributive event.

The implication of the stress redistribution during any clastic episode is that the
ambient state of stress may be determined by the need to maintain equilibrium con-
ditions on the fracture surfaces. It may bear little relation to the pre-fracture state of
stress. A further conclusion, from considerations of the properties of fractured rock,
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Figure 5.3 Relation between fault
geometry and the field stresses caus-
ing faulting.
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and of significance in site investigation, relates to the problem of spatial variability of
the field stress tensor. A fracture field in a rock mass is usually composed of members
which are variably oriented. It is inferred that a mechanically compatible stress field
may also be locally variable, in both magnitudes and orientations of the principal
stresses. A heterogeneous stress field is thus a natural consequence of an episode of
faulting, shearing or extensive slip, such as occurs between beds in parallel folding.
Successive episodes of fracturing, where, for example, one fault set transgresses an
earlier set, may be postulated to lead to increasing complexity in the stress distribution
throughout the medium.

It is clear from this brief discussion that the ambient, subsurface state of stress in a
rock mass presents prohibitive difficulty in estimation ab initio. Its direct determina-
tion experimentally also presents some difficulty. In particular, the spatial variability
of the stress tensor suggests that any single experimental determination may bear
little relation to volume averages of the tensor components. In the design of a mine
excavation or mine structure, it is the average state of stress in the zone of influence of
the structure which exerts a primary control on the post-excavation stress distribution
in the excavation near-field rock. The requirements for successful definition of the in
situ state of stress are a technique for a local determination of the stress tensor, and a
strategy for integration of a set of observations to derive a representative solution for
the field stress tensor throughout the sampled volume.

5.3 Methods of in situ stress determination

5.3.1 General procedures

The need for reliable estimates of the pre-mining state of stress has resulted in the
expenditure of considerable effort in the development of stress measurement devices
and procedures. Methods developed to date exploit several separate and distinct prin-
ciples in the measurement methodology, although most methods use a borehole to gain
access to the measurement site. The most common set of procedures is based on de-
termination of strains in the wall of a borehole, or other deformations of the borehole,
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induced by overcoring that part of the hole containing the measurement device. If
sufficient strain or deformation measurements are made during this stress-relief oper-
ation, the six components of the field stress tensor can be obtained directly from the
experimental observations using solution procedures developed from elastic theory.
The second type of procedure, represented by flatjack measurements and hydraulic
fracturing (Haimson, 1978), determines a circumferential normal stress component
at particular locations in the wall of a borehole. At each location, the normal stress
component is obtained by the pressure, exerted in a slot or fissure, which is in balance
with the local normal stress component acting perpendicular to the measurement slot.
The circumferential stress at each measurement location may be related directly to
the state of stress at the measurement site, preceding boring of the access hole. If
sufficient boundary stress determinations are made in the hole periphery, the local
value of the field stress tensor can be determined directly.

The third method of stress determination is based on the analysis and interpreta-
tion of patterns of fracture and rupture around deep boreholes such as oil and gas
wells. Although such ‘borehole breakouts’ are a source of difficulty in petroleum
engineering, they are invaluable for estimating the state of stress in the lithosphere.

For characterising the state of stress on a regional scale, a method which is funda-
mentally different from the three described above was formulated by Mukhamediev
(1991). It relies on the analysis in the domain of interest of stress trajectories, derived
from other types of stress measurement, to reconstruct the distribution of principal
stresses throughout the block. The method is discussed later in relation to the world
stress map.

The importance of the in situ state of stress in rock engineering has been recognized
by the documentation of ISRM Suggested Methods of rock stress estimation, reported
by Hudson et al. (2003), Sjoberg et al. (2003) and Haimson and Cornet (2003).

5.3.2 Triaxial strain cell

The range of devices for direct and indirect determination of in sifu stresses in-
cludes photoelastic gauges, USBM borehole deformation gauges, and biaxial and
triaxial strain cells. The soft inclusion cell, as described by Leeman and Hayes (1966)
and Worotnicki and Walton (1976) is the most convenient of these devices, since it
allows determination of all components of the field stress tensor in a single stress
relief operation. Such a strain cell, as shown in Figure 5.4a, consists of at least three
strain rosettes, mounted on a deformable base or shell. The method of operation is
indicated in Figures 5.4b, ¢ and d. The cell is bonded to the borehole wall using a
suitable epoxy or polyester resin. Stress relief in the vicinity of the strain cell induces
strains in the gauges of the strain rosettes, equal in magnitude but opposite in sign
to those originally existing in the borehole wall. It is therefore a simple matter to
establish, from measured strains in the rosettes, the state of strain in the wall of the
borehole prior to stress relief. These borehole strain observations are used to deduce
the local state of stress in the rock, prior to drilling the borehole, from the elastic
properties of the rock and the expressions for stress concentration around a circular
hole.

The method of determination of components of the field stress tensor from borehole
strain observations is derived from the solution (Leeman and Hayes, 1966) for the
stress distribution around a circular hole in a body subject to a general triaxial state
of stress. Figure 5.5a shows the orientation of a stress measurement hole, defined
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by dip, «, and dip direction, {3, relative to a set of global axes x, y, z. Relative
to these axes, the ambient field stress components (prior to drilling the hole) are
Dxx»> Pyy> Pzzy Dxys Dyz> Pzx- A convenient set of local axes, [, m, n, for the borehole
is also shown in Figure 5.5a, with the n axis directed parallel to the hole axis, and
the m axis lying in the horizontal (x, y) plane. The field stress components expressed
relative to the hole local axes, i.e. p;, pm, etc., are readily related to the global
components py,, Pxz, €tc., through the stress transformation equation and a rotation
matrix defined by

At MNem ANn —sinacos B sinB  cosacosP
[RI=1|As Nm Ay [ = —sinasinB  —cosB cosasinf3
Na o Ngm Ay cosa 0 sin o

In Figure 5.5b, the location of a point on the wall of the borehole is defined by
the angle 6 measured clockwise in the /, m plane. Boundary stresses at the point

(b)

Figure 5.4 (a) A triaxial strain : L4
cell (of CSIRO design), and (b),
(c), (d) its method of application.

(c) (d

strain cell
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(a)

Figure 5.5 (a) Definition of hole lo-
cal axes; (b) field stress components
relative to hole local axes and posi-
tion co-ordinate angle, 8; (c) reference
axes on hole wall.
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are related to the local field stresses, for an isotropic elastic medium, by the
expressions

Opp = O0rg = Opp = 0

o9 = pu(1 —2¢c0820) + pum(1 +2c0s20) — 4p;,, sin 20
Oun = Pun + 20(—pir €08 20 + pjyyn 0826 — 2pyy, 8in20)
Ogn = 2Pmn O8O — 2p,; sin O

(5.3)

Equations 5.3 define the non-zero boundary stress components, Gyg, Gy, O, T€lative
to the n, 0 axes, aligned respectively with the hole axis, and the orthogonal direction
which is tangential, in the [, m plane, to the hole boundary. Another set of right
Cartesian axes, OA, OB, may be embedded in the hole boundary, as shown in Figure
5.5¢c, where the angle W defines the rotation angle from the n, 6 axes to the OA, OB
axes. The normal components of the boundary stress, in the directions OA, OB are

given by

gp =

OB =

%(O-nn + 0'(-)(-)) + %(O-nn -

1 1
§(O-nn + 0pg) — Q(O'nn -

Ty9) €08 2V + oy, sin 2W

Tgg) cOs 2W — gy, sin 2W

54

Suppose the direction OA in Figure 5.5¢ coincides with the orientation and location
of a strain gauge used to measure the state of strain in the hole wall. Since plane
stress conditions operate at the hole boundary during the stress relief process, the
measured normal strain component is related to the local boundary stress components

by

or

1

€A = — (oA — vOB)

E

Eepn = op —vop

(5.5)

Substituting the expressions for ga, op (equations 5.4) in equation 5.5, and then
substituting equations 5.3 in the resulting expression, gives the required relation
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between the local state of strain in the hole wall and the field stresses as

Eea = pu{il(1 —v) — (1 +v)cos2W] — (1 — v*)(1 — cos2W) cos 20}
+ Pum {311 =) — (1 + v) cos 2W] + (1 — 1v*)(1 — cos 2W¥) cos 260 }
+ Pan2[(1 = v) + (1 +v) cos 2¥]
— pim2(1 — vH)(1 — cos 2W) sin 20
+ P,,,2(1 4+ v)sin2W cos 0
— pu2(1 +v)sin2W¥ sin 6 (5.6a)

or

aipi + a2 pmm + a3 Pun + @4 Pim + as Pmn + a6 Pui = b (56b)

Equations 5.6a and 5.6b indicate that the state of strain in the wall of a borehole, at
a defined position and in a particular orientation, specified by the angles 6 and W, is
determined linearly by the field stress components. In equation 5.6b, the coefficients
a;(i = 1 — 6) can be calculated directly from the position and orientation angles for
the measurement location and Poisson’s ratio for the rock. Thus if six independent
observations are made of the state of strain in six positions/orientations on the hole
wall, six independent simultaneous equations may be established. These may be
written in the form

[Allp] = [b] (5.7)

where [p] represents a column vector formed from the stress components
Diis Pmms Pnn»> Plms Pmns Pni- Provided the positions/orientations of the strain obser-
vations are selected to ensure a well conditioned coefficient matrix [A], equation 5.7
can be solved directly for the field stress components py;, pim, etc.. A Gaussian elimi-
nation routine, similar to that given by Fenner (1974), presents a satisfactory method
of solving the set of equations.

The practical design of a triaxial strain cell usually provides more than the minimum
number of six independent strain observations. The redundant observations may be
used to obtain large numbers of equally valid solutions for the field stress tensor
(Brady et al., 1976). These may be used to determine a locally averaged solution
for the ambient state of stress in the zone of influence of the stress determination.
Confidence limits for the various parameters defining the field stress tensor may also
be attached to the measured state of stress.

5.3.3  Flatjack measurements

Stress measurement using strain gauge devices is usually performed in small-diameter
holes, such that the volume of rock whose state of stress is sampled is about 1073 m3,
Larger volumes of rock can be examined if a larger diameter opening is used as the
measurement site. For openings allowing human access, it may be more convenient
to measure directly the state of stress in the excavation wall, rather than the state of
strain. This eliminates the need to determine or estimate a deformation modulus for
the rock mass. The flatjack method presents a particularly attractive procedure for
determination of the boundary stresses in an opening, as it is a null method, i.e. the
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Figure5.6 (a)Coredrilling aslot for
a flatjack test and (b) slot pressurisa-
tion procedure.

measurement system seeks to restore the original, post-excavation local state of stress
at the experiment site. Such methods are intrinsically more accurate than those relying
on positive disturbance of the initial condition whose state is to be determined.

Three prerequisites must be satisfied for a successful in sifu stress determination
using flatjacks. These are:

(a) arelatively undisturbed surface of the opening constituting the test site;

(b) anopening geometry for which closed-form solutions exist, relating the far-field
stresses and the boundary stresses; and

(c) arock mass which behaves elastically, in that displacements are recoverable
when the stress increments inducing them are reversed.

The first and third requirements virtually eliminate the use as a test site of an ex-
cavation developed by conventional drilling and blasting. Cracking associated with
blasting, and other transient effects, may cause extensive disturbance of the elastic
stress distribution in the rock and may give rise to non-elastic displacements in the
rock during the measurement process. The second requirement restricts suitable open-
ing geometry to simple shapes. An opening with circular cross section is by far the
most convenient.

The practical use of a flatjack is illustrated in Figure 5.6. The jack consists of
a pair of parallel plates, about 300 mm square, welded along the edges. A tubular
non-return connection is provided to a hydraulic pump. A measurement site is es-
tablished by installing measurement pins, suitable for use with a DEMEC or similar
deformation gauge, in a rock surface and perpendicular to the axis of the proposed
measurement slot. The distance djy between the pins is measured, and the slot is cut,
using, for example, a series of overlapping core-drilled holes. Closure occurs between
the displacement measuring stations. The flatjack is grouted in the slot, and the jack
pressurised to restore the original distance d between the displacement monitoring
pins. The displacement cancellation pressure corresponds closely to the normal stress
component directed perpendicular to the slot axis prior to slot cutting.

Determination of the field stresses from boundary stresses using flatjacks follows
a procedure similar to that using strain observations. Suppose a flatjack is used to
measure the normal stress component in the direction OA in Figure 5.5¢, i.e. the
plane of the flatjack slot is perpendicular to the axis OA. If o4 is the jack cancellation
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pressure, substitution of the expressions for gyg, 0y, 09, (equations 5.3) into the
expression for o (equation 5.4) yields

N p”%{(l —cos2W) —2cos20[(1 +v) — (1 —v)cos2W¥]}
+ pmm%{(l —cos2W) +2cos20[(1 +v) — (1 —v)cos2W]}
+ Pun3(1 4 cos 2W) — py,, 25in20{(1 +v) — (1 — v) cos 2W}
+ pun 28in2W cos 6 — p,; 2sin2W sin 6 (5.8)

or
Clpu + C2pmm + C3pnn + C4le + C5pmn + Cﬁpnl = 0A (59)

Equation 5.9 confirms that the state of stress in any position/orientation in the hole
boundary is linearly related to the field stress components, by a set of coefficients
which are simply determined from the geometry of the measurement system. Thus if
six independent observations of o are made at various locations defined by angles 6
and W, a set of six simultaneous equations is established:

[Cllp] = [o] (5.10)

The terms of the coefficient matrix [C] in this equation are determined from 6 and W
for each boundary stress observation, using equation 5.8.

In the design of a measurement programme, the boundary stress measurement
positions and orientations must be selected carefully, to ensure that equations 5.10 are
both linearly independent and well conditioned. The criterion for a poorly conditioned
set of equations is that the determinant of the [ C] matrix is numerically small compared
with any individual term in the matrix.

5.3.4 Hydraulic fracturing

A shortcoming of the methods of stress measurement described previously is that close
access to the measurement site is required for operating personnel. For example, hole
depths of about 10 m or less are required for effective use of most triaxial strain cells.
Virtually the only method which permits remote determination of the state of stress is
the hydraulic fracturing technique, by which stress measurements can be conducted
in deep boreholes such as exploration holes drilled from the surface.

The principles of the technique are illustrated in Figure 5.7. A section of a borehole
is isolated between inflatable packers, and the section is pressurised with water, as
shown in Figure 5.7a. When the pressure is increased, the state of stress around
the borehole boundary due to the field stresses is modified by superposition of
hydraulically-induced stresses. If the field principal stresses in the plane perpen-
dicular to the hole axis are not equal, application of sufficient pressure induces tensile
circumferential stress over limited sectors of the boundary. When the tensile stress ex-
ceeds the rock material tensile strength, fractures initiate and propagate perpendicular
to the hole boundary and parallel to the major principal stress, as indicated in Figure
5.7b. Simultaneously, the fluid pressure falls in the test section. After relaxation of
the pressure and its subsequent re-application, the peak borehole pressure achieved is
less than the initial boundary fracturing pressure by an amount corresponding to the
tensile strength of the rock material.
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Figure 5.7 Principles of stress mea-
surement by hydraulic fracturing: (a)
packed-off test section; (b) cross sec-
tion of hole, and fracture orientation
relative to plane principal stresses.

Figure 5.8 Pressure vs. time record
for a hydraulic fracturing experiment
(after Enever and Chopra, 1986).
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A record of borehole pressure during an hydraulic fracturing experiment, in which
typically several cycles of pressure application and decline are examined, is shown
in Figure 5.8. Two key parameters defined on the borehole pressure record are the
instantaneous shut-in pressure pg and the crack re-opening pressure p,. The shut-in
pressure or fracture closure pressure defines the field principal stress component per-
pendicular to the plane of the fracture. As suggested by Figure 5.7b, this corresponds
to the minor principal stress p, acting in the plane of section. The crack re-opening
pressure is the borehole pressure sufficient to separate the fracture surfaces under
the state of stress existing at the hole boundary. The crack re-opening pressure, the
shut-in pressure and the pore pressure, u, at the test horizon may be used to estimate
the major principal stress in the following way.

The minimum boundary stress, o, around a circular hole in rock subject to biaxial
stress, with field stresses of magnitudes p; and p,, is given by

Omin = 3P2 — D1 (5.11)

When a pressure py is applied to the interior of the borehole, the induced tangential
stress ogg at the hole wall is
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The minimum tangential boundary stress is obtained by superimposing this stress on
that given by equation 5.11, i.e.

Omin = 3p2 — P1 — Po (5.12)

and the minimum effective boundary stress is
Opin = 3P2— P1— po — U (5.13)

The crack re-opening pressure p; corresponds to the state of borehole pressure pg
where the minimum effective boundary stress is zero, i.e. introducing p, in equation
5.13

3pp—p1—pr—u=20
or

p1=3pp—p—u (5.14)

Because p; = ps, equation 5.14 confirms that the magnitudes of the major and minor
plane principal stresses p; and p, can be determined from measurements of shut-in
pressure ps and crack re-opening pressure p;. The orientation of the principal stress
axes may be deduced from the position of the boundary fractures, obtained using a
device such as an impression packer. The azimuth of the major principal stress axis
is defined by the hole diameter joining the trace of fractures on opposing boundaries
of the hole.

Although hydraulic fracturing is a simple and apparently attractive stress measure-
ment technique, it is worth recalling the assumptions implicit in the method. First,
it is assumed that the rock mass is continuous and elastic, at least in the zone of
influence of the hole and the hydraulically induced fractures. Second, the hole axis
is assumed to be parallel to a field principal stress axis. Third, the induced fracture
plane is assumed to include the hole axis. If any of these assumptions is not satisfied,
an invalid solution to the field stresses will be obtained. A further limitation is that it
provides only plane principal stresses, and no information on the other components
of the triaxial stress field. The usual assumption is that the vertical normal stress
component is a principal stress, and that it is equal to the depth stress.

5.3.5 Other methods of estimating the in situ state of stress

Compared with overcoring, flatjacks and hydraulic fracturing, some other methods
of estimating the in situ state of stress are attractive by virtue of the relative ease
with which the raw data for the stress determination can be recovered. Of particular
interest in this regard are methods based on borehole breakouts, stress history gauging
through the Kaiser effect, and differential strain curve analysis or deformation rate
analysis.

The borehole breakout method described by Zoback et al. (1985) relies on the state
of stress around a borehole being sufficient to cause compressive fracture at preferred
locations around the hole boundary. Assuming a principal stress direction is parallel
to the borehole axis and that the principal stress field in the plane perpendicular to the
hole axis is anisotropic, the Kirsch equations and a knowledge of the rock material

155



PRE-MINING STATE OF STRESS

strength properties allow an estimate of the state of stress immediately outside the
zone of influence of the borehole. Widely used in the petroleum industry for estimating
the state of stress in deep reservoirs, the method is reviewed in detail by Zoback ez al.
(2003). An example of its application in hard rock is provided by Paillet and Kim
(1987).

Development and application of a method for in situ stress measurement based on
the Kaiser effect is described by Villaescusa et al. (2002). The Kaiser effect is an
expression of the immediately preceding maximum stress to which a specimen of
rock has been subjected, and provides a method of estimating the recent stress history
of a core sample recovered from a borehole. For a specimen containing microcracks,
such as brittle rock, uniaxial loading is aseismic until a stress threshold is reached
characteristic of the earlier stress magnitude it experienced. Application of the Kaiser
effect in estimating the complete stress tensor relies on a capacity to determine re-
liably the magnitudes of the preceding normal stresses applied to the specimen in
various directions. This is done by monitoring the emission of acoustic pulses during
loading of small undercores recovered from the larger, oriented drill core taken from
the ground. By Kaiser-effect gauging of preceding stresses in six undercores in six
mutually independent orientations, it is possible to invert the normal stresses to re-
cover the field stresses which the large core experienced in sifu. The advantage of the
method is the relative convenience and ease of application and the related low cost.

Anelastic strain recovery (Voight, 1968) exploits the relaxation which a rock core
experiences after it is isolated from the stressed host rock mass. The time-dependent
strains are measured with strain gauges, the principal strains calculated, and the total
strains are estimated by assuming direct proportionality between total strains and the
anelastic strains.

Differential strain curve analysis (Roegiers, 1989) or deformation rate analysis
(Villaescusa et al., 2002) are similar in principle to Kaiser effect gauging of the
recent stress history of a sample of rock. When a core is taken from the ground, re-
laxation of normal stress allows microcracks to open. In axial loading of undercores
taken from a larger core, closure of open microcracks is indicated by a clear change
in the slope of the axial stress-normal strain plot. The related value of the applied
normal stress is taken to correspond to the normal stress existing in the ground imme-
diately prior to recovery of the core. If closure stresses are determined for undercores
taken in six mutually independent orientations, then as for Kaiser-effect gauging, it
is possible to invert the stress data to recover the field principal stresses and their
orientations.

5.4 Presentation of in situ stress measurement results

The product of a stress measurement exercise is the set of six components of the field
stress tensor, usually expressed relative to a set of local axes for the measurement
hole. These yield the stress components expressed relative to the global axes by
a simple transformation. The principal stress magnitudes and orientations are then
determined from these quantities using the methods described in Chapter 2. If a single
determination is made of the field stress tensor, the orientations of the principal stress
axes can be plotted directly on to a stereonet overlay as shown in Figure 5.9. The
value of this procedure is that the required mutual orthogonality of the principal
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Figure 5.9 Presentation of principal
stress data on lower hemisphere stere-
ographic projection.

PRESENTATION OF IN SITU STRESS MEASUREMENT RESULTS

stress directions can be determined by direct measurement. It therefore provides a
useful check on the validity and consistency of the solution for the principal stresses.
Other points of confirmation of the correctness of the solution are readily established
by considering the magnitudes of the various stress invariants, calculated from the
several sets of components (expressed relative to different sets of reference axes) of
the field stress tensor.

In the case where redundant experimental observations have been collected, many
independent solutions are possible for the in situ stress tensor. The methods suggested
by Friday and Alexander (Brady et al., 1976) can then be used to establish mean
values of the components and principal directions of the stress tensor. An example of
the way in which an over-determination of experimental parameters can be used is
illustrated in Figure 5.10. More than 1000 independent solutions for the field stresses
allowed construction of histograms of principal stress magnitudes, and contour plots
of principal stress directions. Presumably, greater reliability can be attached to the
mean values of principal stress magnitudes and orientations obtained from these plots,
than to any single solution for the field stresses. The usual tests for consistency can
be applied to the mean solution in the manner described earlier.
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Figure 5.10 Histogram plots of
principal stress frequencies and con-
tour plots and principal stress orienta-
tions obtained from redundant strain
observations.

A number of other assessments, in addition to those to test the internal consistency
of a solution for the field stresses, can be performed to take account of specific site
conditions. A primary requirement is that the ambient state of stress cannot violate
the in situ failure criterion for the rock mass. As was noted in Chapter 4, establishing a
suitable rock mass failure criterion is not a simple procedure process, but an essential
proposition is that the field stresses should not violate the failure criterion for the intact
rock material. The latter rock property may be established from standard laboratory
tests on small specimens. Since the in situ strength of rock is typically much less than
the strength measured on small specimens, the proposed test may not be a sensitive
discriminant of the acceptability of a field stress determination. However, it ensures
that widely inaccurate results are identified and re-examined.
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A second determinant of the mechanical acceptability of an in situ stress measure-
ment is derived from the requirement for conditions of static equilibrium on pervasive
planes of weakness in the rock mass. Application of this criterion is best illustrated
by example. Suppose a fault plane has the orientation 295°/50° (dip direction/dip),
and that the measured in situ stress field is defined by:

o1, magnitude 15 MPa, dips 35° towards 085°;
07, magnitude 10 MPa, dips 43° towards 217°;
03, magnitude 8 MPa, dips 27° towards 335°.

The groundwater pressure at the measurement horizon is 2.8 MPa, and the angle of
friction for the fault surface 25°. These data can be used to determine the normal and
resultant shear stress components acting on the fault, and thus to calculate the angle
of friction on the fault surface required to maintain equilibrium.

The given data are applied in the following way. When plotted on a stereonet, the
direction angles (o, 3, 'y) between the principal axes and the pole to the fault plane
are measured directly from the stereonet as (24°, 71°, 104°). These yield direction
cosines (I1, [, [3) 0of (0.914, 0.326, —0.242) of the fault normal relative to the principal
stress axes. The effective principal stresses are given by

o] = 122 MPa
oy = 7.2 MPa
o} = 5.2 MPa

Working now in terms of effective stresses, the resultant stress is given by
R= Dol +L 0+ o) =11.46 MPa
and the normal stress by
r__ 32 7 2 2
o,=1] 0y +15 0,415 05 =11.26 MPa

The resultant shear stress is

172

1= (R*—0,)"" =208MPa

The angle of friction mobilised by the given state of stress on the plane is
Pmob = tan~'(2.08/11.26) = 10.5°

Since b is less than the measured angle of friction for the fault, it is concluded that
the in situ state of stress is compatible with the orientation and strength properties of
the fault. It is to be noted also that a similar conclusion could be reached by some
simple constructions on the stereonet. Clearly, the same procedures would be followed
for any major structural feature transgressing the rock mass.

For the example considered, the measured state of stress was consistent with static
equilibrium on the plane of weakness. In cases where the field stresses apparently
violate the equilibrium condition, it is necessary to consider carefully all datarelated to
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Figure 5.11 Variation with depth
below surface of (a) measured val-
ues of in situ vertical stress, p.., and
(b) ratio of average measured horizon-
tal stresses to the vertical stress (data
compiled by Windsor, 2003, after
Aydan and Kawamoto, 1997).

the problem. These include such factors as the possibility of a true cohesive component
of discontinuity strength and the possible dilatant properties of the discontinuity in
shear. Questions to be considered concerning stress measurement results include the
probable error in the determination of both principal stress magnitudes and directions,
and the proximity of the stress measurement site to the discontinuity. Thus the closer
the measurement site to the discontinuity, the more significance to be attached to
the no-slip criterion. Only when these sorts of issues have been considered in detail
should the inadmissibility of a solution for the field stress tensor be decided.

5.5 Results of in situ stress measurements

A comprehensive collation of the results of measurement of the pre-mining state of
stress, at the locations of various mining, civil and petroleum engineering projects,
reported by Brown and Hoek (1978), was updated by Windsor (2003). The results
presented in Figure 5.11 consist of data for about 900 determinations of in situ states
of stress. Although data exist for depths extending to 7 km, those presented are for
depths down to 3 km, which is the range of interest in most mining projects. The first
observation from this figure is that the measurements of p,, (in MPa) are scattered
about the trend line

P = 0.0277

where z (in m) is the depth below ground surface. Since 27 kN m~ represents a
reasonable average unit weight for most rocks, it appears that the vertical component
of stress is closely related to depth stress. A further observation concerns the variation
with depth of the parameter k, defined as the ratio of the average of the horizontal
stresses to the vertical stresses: i.e.

k= (pxx + Pyy)/2pz:
The data are bounded on the lower side by £k = 0.3, while the upper bound is defined
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by the expression
k =0.341500/z

where 7 is the depth below the ground surface in metres.

At shallow depth, values of k vary widely and are frequently much greater than
unity. At increasing depth, the variability of the ratio decreases and the upper bound
tends towards unity. Some of the variability in the stress ratio at shallow depths and
low stress levels may be due to experimental error. However, the convergence of the
ratio to a value of unity at depth is consistent with the principle of time-dependent
elimination of shear stress in rock masses. The postulate of regression to a lithostatic
state by viscoplastic flow is commonly referred to as Heim’s Rule (Talobre, 1957).

The final observation arising from inspection of Figures 5.11a and b is a confirma-
tion of the assertion made at the beginning of this chapter. The virgin state of stress
in a rock mass is not amenable to calculation by any known method, but must be
determined experimentally. In jointed and fractured rock masses, a highly variable
stress distribution is to be expected, and indeed has been confirmed by several investi-
gations of the state of stress in such settings. For example, Bock (1986) described the
effect of horizontal jointing on the state in a granite, confirming that each extensive
joint defined a boundary of a distinct stress domain. In the analysis of results from
a jointed block test, Brown et al. (1986) found that large variations in state of stress
occurred in the different domains of the block generated by the joints transgressing
it. Richardson et al. (1986) reported a high degree of spatial variation of the stress
tensor in foliated gneiss, related to rock fabric, and proposed methods of deriving a
representative solution of the field stress tensor from the individual point observa-
tions. In some investigations in Swedish bedrock granite, Carlsson and Christiansson
(1986) observed that the local state of stress is clearly related to the locally dominant
geological structure.

These observations of the influence of rock structure on rock stress suggest that
a satisfactory determination of a representative solution of the in situ state of stress
is probably not possible with a small number of random stress measurements. The
solution is to develop a site-specific strategy to sample the stress tensor at a number
of points in the mass, taking account of the rock structure. It may then be necessary to
average the results obtained, in a way consistent with the distribution of measurements,
to obtain a site representative value.

The natural state of stress near the earth’s surface is of world-wide interest, from
the points of view of both industrial application and fundamental understanding of
the geomechanics of the lithosphere. For example, industrially the topic is of interest
in mining and petroleum engineering and hazardous waste isolation. On a larger
scale, the topic is of interest in tectonophysics, crustal geomechanics and earthquake
seismology. From observations of the natural state of stress in many separate domains
of the lithosphere, ‘world stress maps’ have been assembled to show the relation
between the principal stress directions and the megascopic structure of the earth’s
crust. An example is shown in Figure 5.12, due to Reinecker et al. (2003). The map
is a section of the world map showing measurements of horizontal principal stresses
in and around the Australasian plate.

The value of such a map in mining rock mechanics is that it presents some high
level information on orientations of the horizontal components of the pre-mining
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Figure 5.12 A section of the stress
map of the world, showing orienta-
tions of horizontal principal stresses
in and around the Australasian plate
(after Reinecker et al., 2003).
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principal stresses which can be incorporated in site investigations and preliminary
design and scoping studies. A map of this type is also valuable in other fields of
resource engineering. For example, considering the Australian continental land mass,
Mukhamadiev et al. (2001) showed that, by analysis of the horizontal principal stress
orientations, after constructing the principal stress trajectories it was possible to de-
duce the macroscopic state of stress throughout the continental block. An important
result from the analysis was that it suggested the existence of a singular point in the
interior of the Australian continent, where the ratio k of the horizontal stresses is
unity. This has significant implications for exploitation of petroleum and geothermal
energy resources in the region, which might depend on hydraulic fracture treatments
for their economic recovery.

Problems
1 At a particular site, the surface topography can be represented in a vertical cross

section by a vertical cliff separating horizontal, planar ground surfaces, as shown
in the figure (a) below. The upper and lower surfaces AB and CD can be taken to
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extend infinite distances horizontally from the toe of the 100 m high cliff. The effect
of the ground above the elevation D’CD can be treated as a wide surcharge load on a
half-space.

(a) The stress components due to a line load of magnitude P on a half space are
given by
2Psin®

mr
0o = 0y =0

Oy =

where r and 0 are defined in figure (b).
Relative to x, z reference axes, show that the stress components due to the
strip load defined in figure (c) are given by

0o = 2128, — 8)) + (sin 26> — sin26,)]
21

0., = 21206, — 0,) — (sin 20, — sin 26))]
21

Oy = 2%[005 26, — cos 26, ]

(b) If the unit weight of the rock is 27 kN m~3, calculate the stress components
induced at a point P, 80 m vertically below the toe of the cliff, by the surcharge
load.

(c) If the state of stress at a point Q remote from the toe of the cliff and on the same
elevation as P, is given by o, = 2.16 MPa, o, = 3.24 MPa, o,, = 0, estimate
the magnitudes and orientations of the plane principal stresses at P.

(hy

80 m

Qe

2 An element of rock 800 m below ground surface is transgressed by a set of parallel,
smooth continuous joints, dipping as shown in the figure below. The fissures are
water filled below an elevation 100 m below the ground surface. The vertical stress
component p,, is a principal stress, and equal to the depth stress. From the calculated
depth stress, p.., calculate the range of possible magnitudes of the horizontal stress
component, p,,. The unit weight of the rock mass is 26 kN m~—, and the unit weight
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of water 9.8 kN m~3. The resistance to slip on the joints is purely frictional, with an
angle of friction ¢’ of 20°.
State any assumptions used in deriving the solution.

. 4
_v_________________m%’"__{/JL.
800 m
z N
55 \
N \ PXX

3 In an underground mine, flatjacks were used to measure the state of stress in the
walls and crown of a long horizontal tunnel of circular cross section. Independent
observations indicated that the long axis of the tunnel was parallel to a field principal
stress. For slots cut parallel to the tunnel axis, the cancellation pressures were 45 MPa
in both side walls, at the midheight of the tunnel, and 25 MPa in the crown. For slots
cut in each side wall, perpendicular to the tunnel axis and at the tunnel midheight, the
cancellation pressures were 14.5 MPa.

(a) By considering the symmetry properties of equations 5.3 defining boundary
stresses around a circular hole in a triaxial stress field, deduce the principal
stress directions.

(b) Calculate the magnitudes of the field principal stresses, assuming v = 0.25.

4 A CSIRO hollow inclusion strain cell was used in an overcoring experiment to
determine the state of strain in the walls of a borehole. The borehole was oriented
300°/70°. Using the angular co-ordinates and orientations defined in Figure 5.5, the
measured states of strain (expressed in microstrains) in the wall of the hole were, for
various 0 and W:

\DO
0° 0° 45° 90° 135°
0° — 213.67 934.41 821.11
120° 96.36 — 349.15 131.45
240° 96.36 — 560.76 116.15

Young’s modulus of the rock was 40 GPa, and Poisson’s ratio, 0.25.

(a) Set up the set of nine equations relating measured strain and gauge location.
(Note that, for ¥ = 0°, identical equations are obtained, independent of 6.)

(b) Select the best conditioned set of six equations, and solve for the field stresses,
expressed relative to the hole local axes.

(¢) Transform the field stresses determined in (b) to the mine global axes (x —north,
y —east, z —down).

163



PRE-MINING STATE OF STRESS

(d) Determine the magnitudes of the field principal stresses, and their orientations
relative to the mine global axes.
(Note: This problem is most conveniently handled with a calculator capable of
solving six simultaneous equations.)

5 Measurement of the state of stress in a rock mass produced the following results:

oy, of magnitude 25 MPa, is oriented 109°/40°;

0y, of magnitude 18 MPa, is oriented 221°/25°;

03, of magnitude 12 MPa, is oriented 334°/40°.
The groundwater pressure at the measurement site is 8 MPa. A fault, oriented
190°/60°, is cohesionless, and has an estimated angle of friction of ¢’ = 20°.

Comment on the consistency of this set of observations, and describe any other
subsequent investigations you might consider necessary.
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Methods of stress analysis

6.1 Analytical methods for mine design

Basic issues to be considered in the development of a mine layout include the location
and design of the access and service openings, and the definition of stoping procedures
for ore extraction. These issues are not mutually independent. However, geomechanics
questions concerning stoping activity may be more pervasive than those related to the
siting and design of permanent openings, since the former persist throughout the life
of the mine, and possibly after the completion of mining.

The scope of the problems which arise in designing and planning the extraction
of an orebody can be appreciated by considering the implementation of a method
such as room-and-pillar mining. It is necessary to establish parameters such as stope
dimensions, pillar dimensions, pillar layout, stope mining sequence, pillar extraction
sequence, type and timing of placement of backfill, and the overall direction of mining
advance. These geomechanics aspects of design and planning must also be integrated
with other organisational functions in the planning process. It is not certain that this
integration is always achieved, or that economic and geomechanics aspects of mine
planning and design are always compatible. However, it is clear that sound mining rock
mechanics practice requires effective techniques for predicting rock mass response to
mining activity. A particular need is for methods which allow parameter studies to be
undertaken quickly and efficiently, so that a number of operationally feasible mining
options can be evaluated for their geomechanical soundness. Alternatively, parameter
studies may be used to identify and explore geomechanically appropriate mining
strategies and layouts, which can then be used to develop detailed ore production
schemes.

The earliest attempts to develop a predictive capacity for application in mine design
involved studies of physical models of mine structures. Their general objective was to
identify conditions which might cause extensive failure in the prototype. The difficulty
in this procedure is maintaining similitude in the material properties and the loads
applied to model and prototype. These problems can be overcome by loading a model
in a centrifuge. However, such facilities are expensive to construct and operate, and
their use is more suited to basic research than to routine design applications. An
additional and major disadvantage of any physical modelling concerns the expense and
time to design, construct and test models which represent the prototype in sufficient
detail to resolve specific mine design questions. The general conclusion is that physical
models are inherently limited in their potential application as a predictive tool in mine
design. Base friction modelling provides an exception to this statement. If it is possible
to deal with a two-dimensional model of a mine structure, and to examine discrete
sections of the complete mine layout, the procedure described by Bray and Goodman
(1981) provides a useful and inexpensive method for design evaluation. The method
is particularly appropriate where structural features exercise a dominant role in rock
mass response.

A conventional physical model of a structure yields little or no information on
stresses and displacements in the interior of the medium. The earliest method for
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quantitative experimental determination of the internal state of stress in a body sub-
jectto applied load was the photoelastic method. The principle exploited in the method
is that, in two dimensions, and for isotropic elasticity, the stress distribution is inde-
pendent of the elastic properties of the material, and is the same for plane stress
and plane strain. In its original application, a two-dimensional model of a structure
was prepared from a transparent material such as glass or plastic, and mounted in
a beam of monochromatic, polarised light. Application of loads to the model, and
passage of the light beam through an analyser onto a screen, produced a series of
bands, or fringes, of light extinction and enhancement. Generation of the fringes is
due to dependence of the propagation velocity of light through the medium on the
local principal stress components. A fringe, also called an isochromatic, represents
a contour line of constant principal stress difference. Thus a fringe pattern produced
by a photoelastic model represents a mapping of contours of maximum shear stress
throughout the medium. Calibration of the system allows the shear stress magnitude
of any contour level to be determined. For excavation design in rock, it is necessary to
establish the distribution of principal stresses throughout the medium. Thus in addi-
tion to the maximum shear stress distribution, it is necessary to establish contour plots
of the first stress invariant. Since, as is shown later, this quantity satisfies the Laplace
equation, various analogues can be used to define its spatial variation in terms of a set
of isopachs, or contour plots of (o] + a3). Taken together with the photoelastic data,
these plots allow the development of contour plots of the principal stresses throughout
the problem domain.

It is clear from this brief discussion that the photoelastic method of stress analysis
is a rather tedious way of predicting the stress distribution in a mine structure. It is
therefore rarely used in design practice. However, the method is a useful research
technique, for examining such problems as blocky media (Gaziev and Erlikmann,
1971) and three-dimensional structures (Timoshenko and Goodier, 1970) using the
frozen-stress method.

A major detraction from the use of physical models of any sort for prediction of the
rock mass response to mining is their high cost in time and effort. Since many mine
design exercises involve parameter studies to identify an optimum mining strategy,
construction and testing of models is inherently unsuited to the demands of the design
process. Their use can be justified only for a single, confirmatory study of a proposed
extraction strategy, to verify key aspects of the mine structural design.

6.2 Principles of classical stress analysis

A comprehensive description of the fundamentals of stress analysis is beyond the
scope of this book. Texts such as those by Timoshenko and Goodier (1970) and
Prager (1959) may be consulted as general discourses on engineering elasticity and
plasticity, and related methods of the analysis of stress. The intention here is to
identify key elements in the analytical determination of the stress and displacement
fields in a body under applied load. The particular concern is to ensure that the
conditions to be satisfied in any closed-form solution for the stress distribution in a
body are appreciated. Techniques can then be established to verify the accuracy of any
solution to a particular problem, such as the stress distribution around an underground
excavation with a defined shape. This procedure is important, since there exist many

166



(a)

PRINCIPLES OF CLASSICAL STRESS ANALYSIS

Pyy =P
r (b) (c)

A
4
//t 7 Pax
NPT ;
o~ (:Kp) J A% ! P
= —» ’"\ L o

Figure 6.1 An opening in a medium
subject to initial stresses, for which
is required the distribution of total
stresses and excavation-induced dis-
placements.

analytical solutions, such as those collated by Poulos and Davis (1974), which can
be used in excavation design. Use of any solution in a design exercise could not be
justified unless suitable tests were applied to establish its validity.

The following discussion considers as an example a long, horizontal opening of reg-
ular cross section excavated in an elastic medium. A representative section of the prob-
lem geometry is shown in Figure 6.1. The far-field stresses are p,,(= p), pxx(= Kp),
and p_,, and other field stress components are zero, i.e. the long axis of the excavation
is parallel to a pre-mining principal stress axis. The problem is thus one of simple
plane strain. It should be noted that in dealing with excavations in a stressed medium,
it is possible to consider two approaches in the analysis. In the first case, analysis
proceeds in terms of displacements, strains and stresses induced by excavation in
a stressed medium, and the final state of stress is obtained by superposition of the
field stresses. Alternatively, the analysis proceeds by determining the displacements,
strains and stresses obtained by applying the field stresses to a medium containing
the excavation. Clearly, in the two cases, the equilibrium states of stress are identi-
cal, but the displacements are not. In this discussion, the first method of analysis is
used.

The conditions to be satisfied in any solution for the stress and displacement dis-
tributions for a particular problem geometry and loading conditions are:

(a) the boundary conditions for the problem;
(b) the differential equations of equilibrium;
(c) the constitutive equations for the material;
(d) the strain compatibility equations.

For the types of problem considered here, the boundary conditions are defined by
the imposed state of traction or displacement at the excavation surface and the far-
field stresses. For example, an excavation surface is typically traction free, so that,
in Figures 6.1b and c, t, and ¢,, or #; and ¢, are zero over the complete surface of
the opening. The other conditions are generally combined analytically to establish
a governing equation, or field equation, for the medium under consideration. The
objective then is to find the particular function which satisfies both the field equation
for the system and the boundary conditions for the problem.
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It is instructive to follow the procedure developed by Airy (1862) and described by
Timoshenko and Goodier (1970), in establishing a particular form of the field equation
for isotropic elasticity and plane strain. The differential equations of equilibrium in
two dimensions for zero body forces are

00, 00y,

=0 6.1
ax dy ©.1)
doy, 00y, _0
ox ay
or
Bzcrxy _ _820“ _ _820” 62)
dxdy 0x2 dy?

For plane strain conditions and isotropic elasticity, strains are defined by

1
Exx = E(Gxx - V/O'yy)
€y = —(0yy — V'Oyy) (6.3)

Yxy =

where

The strain compatibility equation in two dimensions is given by

9%y, | 0%&n 07y
dx2 ay2  9xdy

6.4)

Substituting the expressions for the strain components, (equations 6.3) in equation
6.4, and then equations 6.2 in the resultant expression yields

1 (820” ,820“> 1 (820” ,820yy> _ 2(1 +7') 3%0y,

E'\ 9x2 3x2 E'\ 9y? 3y? E' 9xdy
_ _(1 +v') (8%, 82(ryy
E’ 9x? dy?

which becomes, on simplification,

920,  0%0., n Bzo'yy 820yy
0x2 dy? 0x? dy?

=0
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or

02 9?

Equation 6.5 demonstrates that the two-dimensional stress distribution for isotropic
elasticity is independent of the elastic properties of the medium, and that the stress
distribution is the same for plane strain as for plane stress. The latter point validates
the use of photoelastic plane-stress models in estimating the stress distribution in
bodies subject to loading in plane strain. Also, as noted in section 6.1, equation 6.5
demonstrates that the sum of the plane normal stresses, o, + 0, satisfies the Laplace
equation.

The problem is to solve equations 6.1 and 6.5, subject to the imposed boundary
conditions. The method suggested by Airy introduces a new function U(x, y), in
terms of which the stress components are defined by

*U
Oxx = 7>
9y?
U
O'yy = W (66)
*U
Oyy = —
dx dy

These expressions for the stress components satisfy the equilibrium equations 6.1,
identically. Introducing them in equation 6.5 gives

ViU =0
where

2P

= — 6.7
0x2 + dy? ©.7)

Equation 6.7 is called the biharmonic equation.

Several methods may be used to obtain solutions to particular problems in terms
of an Airy stress function. Timoshenko and Goodier (1970) transform equations
6.5 and 6.6 to cylindrical polar co-ordinates, and illustrate a solution procedure by
reference to a thick-walled cylinder subject to internal and external pressure, as shown
in Figure 6.2. For this axisymmetric problem, the biharmonic equation assumes the
form

d*U 243U 1 d*U 1 dU
— T 4 — =0
dr? rdrd  r2dr?2 3 dr

for which a general solution for U is given by
U=A¢nr+Br’tnr+Cr*+D
In this expression, the constants A, B, C, D are determined by considering both the
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Figure 6.2 A thick-walled cylinder
of elastic material, subject to interior
pressure, pi, and exterior pressure, po.

requirement for uniqueness of displacements and the pressure boundary conditions
for the problem. It can be shown that uniqueness of displacements requires B = 0,
and that the stress components are then given by

A
Oy = —2+2C
r

A
Opg = —r—2+2C

g9 =0 (6.8)
where
A a’b*(pi — po)
(b* —a?)
20 = p0b2 - Pi612
(b? —a?)

In these expressions, a and b are the inner and outer radii of the cylinder, and p;
and p, are the pressures applied to its inner and outer surfaces.

For problems involving two-dimensional geometry and biaxial stress, the most
elegant solution of the biharmonic equation is obtained in terms of complex variable
theory. The topic is discussed in some detail by Jaeger and Cook (1979). Briefly, it is
shown that the Airy stress function may be expressed as the real part of two analytic
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functions ¢ and x of a complex variable z, in the form

U = R[zd(2) + x (2]
= 1Zd(2) + z2¢(2) + x (2) + X (2)] (6.9)
Expressions for the stress components may then be established from U (equation
6.9) by successive differentiation. The displacements are obtained by setting up ex-
plicit expressions for the normal strain components €,, and €, in terms of the stress
components, and integrating. It is then found that stresses and displacements are given
by
Oxx + Oyy = 4R[¢,(Z)]
—Oyx + Oyy + 2i0—xy = Z[Ed)/,(Z) + ll" /(Z)] (610)
2G(uy +iuy) = —[pd(z) — 24/ (z) — ¥ (2)]
where
¥ (2) = x'(2)
and
p = 3 — 4v for plane strain

In applying these results, it is often useful to invoke the transformation between the
rectangular Cartesian and cylindrical polar co-ordinates, given in complex variable
form by

Oy + 0gp = Oxx + Oyy

‘ 6.11)
—0pr + 0gp + 2009 = [—0yx + Tyy + Zl.o-xy]el29

The solution to particular problems in two dimensions involves selection of suit-
able forms of the analytic functions ¢(z) and X (z). Many useful solutions involve
polynomials in z or z~!. For example, one may take

d(2) = 2cz, Y(z) = % (6.12)

where ¢ and d are real.
Using the relations 6.9 and 6.10, equation 6.11 yields

Oy + Ogg = 2c

. 2d
=0y + Opo + 200, = ——
r
so that
d
O = C+ - (613)

r
d

Ogp =C — —
p

o9 =0
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For the axisymmetric problem defined by Figure 6.2, introducing the boundary
conditions o,, = p; whenr = a, and o,, = p, whenr = b, into equations 6.13 yields

= pob2 - pia2
(b* —a?)
. (6.14)
P b=(pi — po)
(b* —a?)

Equations 6.13 and 6.14 together are identical in form to equations 6.8. Thus
the choice of the analytic functions in the form given by equation 6.12 is sufficient
to represent conditions in a thick-walled cylinder subject to internal and external
pressure. Expressions for the displacements induced in the cylinder by application of
the internal and external pressures are obtained directly from &(z), ¥ (z) and the third
of equations 6.10.

It is clear that expressions for the stress and displacement distributions around
openings of various shapes may be obtained by an heuristic selection of the forms
of the analytic source functions. For example, for a circular hole with a traction-free
surface, in a medium subject to a uniaxial stress p,, at infinity, the source functions
are

1 A 1 B C
(b(Z): — DPxx (Z+_>7 d’(Z):——Pxx (Z+_+_3) (615)
4 z 2 z 4

The real constants A, B, C are then selected to satisfy that known boundary condi-
tions. These conditions are that, for all 0, o,, = 0,9 = 0 atr = a (the hole boundary),
and 0,, — p,, for 6 = 0 and r — oo. The resulting equations yield

A=24* B=4d’ C=-da*

and the stress components are given by

1 a? 1 4a*>  3a*
Trr = 5 Pxx <1 - r_2> + 5P (1 -2t 7) cos 26
1 a? 1 3a*
Ogg = prx <1 + r—2> - prx (1 + r—4> cos 20 (6.16)

1 2¢%  3a*\ .
O'r(-):_ipxx 1+r—2—7 sin 26

In spite of the apparent elegance of this procedure, it appears that seeking source
analytic functions to suit particular problem geometries may be a tedious process.
However, the power of the complex variable method is enhanced considerably by
working in terms of a set of curvilinear co-ordinates, or through a technique called
conformal mapping. There is considerable similarity between the two approaches,
which are described in detail by Muskhelishvili (1963) and Timoshenko and Goodier
(1970).

A curvilinear co-ordinate system is most conveniently invoked to match the shape
of a relatively simple excavation cross section. For example, for an excavation of
elliptical cross section, an orthogonal elliptical (§, m) co-ordinate system in the z
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plane can be readily established from an orthogonal Cartesian system in the { plane
through the transformation

z=Xx41iy =ccosh{ = ccosh(§¢ +im)
so that
x =ccosh&cosm, y=csinh§sinm (6.17)

Equations 6.17 are also the parametric equations for an ellipse of major and minor axes
¢ cosh &, ¢ sinh &. The analysis of the stress distribution around the opening proceeds
by expressing boundary conditions, source analytic functions and stress components
in terms of the elliptic co-ordinates. The detail of the method then matches that
described for a circular opening.

The conformal mapping method involves finding a transformation which will map
a chosen geometric shape in the z plane into a circle of unit radius in the { plane. The
problem boundary conditions are simultaneously transformed to an appropriate form
for the { plane. The problem is solved in the { plane and the resulting expressions
for stress and displacement distributions then inverted to obtain those for the real
problem in the z plane. Problem geometries which have been analysed with this
method include a square with rounded corners, an equilateral triangle and a circular
hole with a concentric annular inclusion.

6.3 Closed-form solutions for simple excavation shapes

The preceding discussion has established the analytical basis for determining the stress
and displacement distributions around openings with two-dimensional geometry. In
rock mechanics practice, there is no need for an engineer to undertake the analysis
for particular problem configurations. It has been noted already that comprehensive
collections of solutions exist for the analytically tractable problems. The collection
by Poulos and Davis (1974) is the most thorough. The practical requirement is to be
able to verify any published solution which is to be applied to a design problem. This
is achieved by systematic checking to determine if the solution satisfies the governing
equations and the specified far-field and boundary conditions. The verification tests to
be undertaken therefore match the sets of conditions employed in the development of
the solution to a problem, as defined in section 6.1, i.e. imposed boundary conditions,
differential equations of equilibrium, strain compatibility equations and constitutive
equations. The method of verification can be best demonstrated by the following
example which considers particular features of the stress distribution around a circular
opening.

6.3.1 Circular excavation

Figure 6.3a shows the circular cross section of along excavation in a medium subject to
biaxial stress, defined by p,, = p, and p,, = Kp. The stress distribution around the
opening may be readily obtained from equations 6.6, by superimposing the induced
stresses associated with each of the field stresses p and K p. The complete solutions
for stress and displacement distributions around the circular opening, originally due
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In these expressions u,,uqy are displacements induced by excavation, while
o, Oge, Org are total stresses after generation of the opening.

By putting r = a in equation 6.18, the stresses on the excavation boundary are
given as

ogg = pl(1 4+ K)+2(1 — K)cos260]
o, =0 (6.19)
0,9 = 0
Equations 6.19 confirm that the solutions satisfy the imposed condition that the ex-
cavation boundary is traction free. Similarly, for 6 = 0, and r large, the stress com-

ponents are given by

o =Kp, oo =p, 0=0
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so that the far-field stresses recovered from the solutions correspond to the imposed
field stresses. With regard to the equilibrium requirements, the differential equation
of equilibrium in two dimensions for the tangential direction and no body forces, is

80’,«9 1 8099 20}9
ar r a0 r

=0

Evaluating each of the terms of this equation from the expressions for oyg and o
leads to

or rd
1 80’99
r 00

20,9 1 24 3a*\ .
p(l—K) _+_'§__5 Sln29
r r- r

90,4 2a>  6a*\ .
—— =pl—K)|——5 + —)sin26
r

1 3a*\ .
—-pd-K)|-+— sin 26
r r

r

Inspection indicates that the equilibrium equation for the tangential direction is sat-
isfied by these expressions. It is obviously an elementary exercise to confirm that the
stress components satisfy the other two-dimensional (i.e. radial) equilibrium equa-
tion. Similarly, the strain components can be determined directly, by differentiation
of the solutions for displacements, and the expressions for stress components derived
by employing the stress—strain relations. Such a test can be used to confirm the mutual
consistency of the solutions for stress and displacement components.

Boundary stresses. Equations 6.19 define the state of stress on the boundary of a
circular excavation in terms of the co-ordinate angle 6. Clearly, since the surface is
traction free, the only non-zero stress component is the circumferential component
0yg. For K < 1.0, the maximum and minimum boundary stresses occur in the side
wall (6 = 0) and crown (6 = /2) of the excavation. Referring to Figure 6.3b, these
stresses are defined by the following:

at point A: 0 =0, (0gg)a =0a=pB3—K)

atpointB: 0 = ; (0v0)s = 08 = p(3K — 1)

These expressions indicate that, for the case when K = 0, i.e. a uniaxial field
directed parallel to the y axis, the maximum and minimum boundary stresses are

oa =3p, og = —p

These values represent upper and lower limits for stress concentration at the boundary.
That is, for any value of K > 0, the sidewall stress is less than 3p, and the crown
stress is greater than — p. The existence of tensile boundary stresses in a compressive
stress field is also noteworthy.

In the case of a hydrostatic stress field (K = 1), equation 6.19 becomes

Ogp = 2p
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specifying the stress distribution
around an elliptical excavation in a bi-
axial stress field.

i.e. the boundary stress takes the value 2 p, independent of the co-ordinate angle 6. This
represents the optimum distribution of local stress, since the boundary is uniformly
compressed over the complete excavation periphery.

Equations 6.18 are considerably simplified for a hydrostatic stress field, taking the
form

(6.20)

a2
Ogp = P 1+r—2

O = 0

The independence of the stress distribution of the co-ordinate angle 6, and the fact
that o,¢ is everywhere zero, indicates that the stress distribution is axisymmetric.

6.3.2 Elliptical excavation
Solutions for the stress distribution in this case are quoted by Poulos and Davis (1974)
and Jaeger and Cook (1979). In both cases, the solutions are expressed in terms of
elliptical curvilinear co-ordinates. Their practical use is somewhat cumbersome. Bray
(1977) produced a set of formulae which results in considerable simplification of the
calculation of the state of stress at points in the medium surrounding an elliptical
opening. The problem geometry is defined in Figure 6.4a, with the global x axis
parallel to the field stress component K p, and with an axis of the ellipse defining the
local x; axis for the opening. The width, W, of the ellipse is measured in the direction
of the x; axis, and the height, H, in the direction of the local z; axis. The attitude of
the ellipse in the biaxial stress field is described by the angle 3 between the global x
and local x; axes. The position of any point in the medium is defined by its Cartesian
co-ordinates (xy, z1) relative to the local x1, z; axes.

Bray’s solution specifies the state of stress at a point in the medium in terms of a set
of geometrical parameters, and relative to a set of local axes, denoted / and m, centred
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on the point of interest. The various geometric parameters are defined as follows:

W+ H)
)= ——
(W —H)
b 4(x? +z3)
(W2 — H?)
J- 8(x1 —Zl) _q
(W2 — H?)

u=b+ |e—0|(b2 — )\
€0

e_u+ﬁ(2 1)1/2

1
= arctan [(i) Z—l]
e—1) x;
1\2
6 = arctan |:< et ) Z—l]
e—1) x;

C=1-—c¢ce
J =14¢*—2ecos2y

The stress components are given by

oy = % {(1 + K — 1)—

+ (1 —-K) |:|:§(e —e0)+Ce] cos2(y +B) — Ccos2Bi|}

G = £{(1 + K)(e? — 1)+ 2(1 — K)egle cos 2( + B) — cos 28]} — o

O = p(eoJ €) {(1 + K)— sin2y + (1 — K)[e(eo—i—e)sm2[3

+esin2(f — B) — [E(eo +e)+ ezeo:| sin 2( + B)]} (6.21)

In applying these formulae, it should be noted that the angle 6, defining the orientation
of the local reference axes [, m relative to the ellipse local axes x, z1, is not selected
arbitrarily. It is defined uniquely in terms of the ellipse shape and the point’s position
co-ordinates.

The boundary stresses around an elliptical opening with axes inclined to the field
stress directions are obtained by selecting values of x;, z; which fall on the boundary
contour. For this case, e = e, 0;; = 0y,, = 0, and the [ axis is directed normal to the
boundary. For the problem geometry defined in Figure 6.4b, the boundary stress is
given by

o= %{(1 + K1 + g% + (1 — g*)cos 2(y — B)]
— (1= K)[(1 +¢)*cos 2y + (1 — g*)cos 2B]} (6.22)

177



METHODS OF STRESS ANALYSIS

When the axes of the ellipse are oriented parallel to the field stress directions, equation
6.22 reduces to

o= %{(1 + K1 +¢%) + (1 — ¢*)cos2y ]
— (1= K)[(1 + g)* cos 26 + (1 — g*)]} (6.23)

In assessing the state of stress in the sidewall and crown of an elliptical excavation,
i.e. for points A and B (y = 7/2,{§ = 0) in Figure 6.4c, it is useful to introduce the
effect of the local boundary curvature on boundary stress. For an ellipse of major and
minor axes 2a and 2b, the radius of curvature at points A and B, pa and pg, is found
from simple analytical geometry (Lamb, 1956) to be
b? a’
pPA = ;, PB = ?

Since ¢ = W/H = a/b, it follows that

w 1 H
9=\5— —=,75—
2pa ¢ 2pp

Sidewall and crown stresses in the ellipse boundary, for the problem defined in Figure
6.4c, may then be expressed as

2W

oo=pl—-—K+2q)=p|1—-K+ | —

PA
2K 2H
op=p|K-14+4—)=p|K—-14+K |—
q PB

It will be shown later that the formulae for stress distribution about ideal excavation
shapes, such as a circle and an ellipse, can be used to establish useful working ideas
of the state of stress around regular excavation shapes.

(6.24)

6.4 Computational methods of stress analysis

The preceding discussion indicated that even for a simple two-dimensional excavation
geometry, such as an elliptical opening, quite complicated expressions are obtained for
the stress and displacement distributions. Many design problems in rock mechanics
practice involve more complex geometry. Although insight into the stress distributions
around complex excavation shapes may be obtained from the closed form solutions for
approximating simple shapes, it is sometimes necessary to seek a detailed understand-
ing of stress distribution for more complicated configurations. Other conditions which
arise which may require more powerful analytical tools include non-homogeneity of
the rock mass in the problem domain and non-linear constitutive behaviour of the
medium. These conditions generally present difficulties which are not amenable to
solution by conventional analysis.
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Solutions to the more complex excavation design problems may usually be obtained
by use of computational procedures. The use of these techniques is now firmly em-
bedded in rock mechanics practice. The following discussion is intended to indicate
the potential of various computational methods of analysis in excavation design. The
description is limited to the formulation of solution procedures for plane geometric
problems, with the implication that, conceptually at least, there is no difficulty in
extending a particular procedure to three-dimensional geometry.

Computational methods of stress analysis fall into two categories — differential
methods and integral methods. In differential methods, the problem domain is di-
vided (discretised) into a set of subdomains or elements. A solution procedure may
then be based on numerical approximations of the governing equations, i.e. the differ-
ential equations of equilibrium, the strain—displacement relations and the stress—strain
equations, as in classical finite difference methods. Alternatively, the procedure may
exploit approximations to the connectivity of elements, and continuity of displace-
ments and stresses between elements, as in the finite element method.

The characteristic of integral methods of stress analysis is that a problem is spec-
ified and solved in terms of surface values of the field variables of traction and
displacement. Since the problem boundary only is defined and discretised, the so-
called boundary element methods of analysis effectively provide a unit reduction in
the dimensional order of a problem. The implication is a significant advantage in
computational efficiency, compared with the differential methods.

The differences in problem formulation between differential and integral methods
of analysis lead to various fundamental and operational advantages and disadvantages
for each. For a method such as the finite element method, nonlinear and heteroge-
neous material properties may be readily accommodated, but the outer boundary of
the problem domain is defined arbitrarily, and discretisation errors occur throughout
the domain. On the other hand, boundary element methods model far-field boundary
conditions correctly, restrict discretisation errors to the problem boundary, and en-
sure fully continuous variation of stress and displacement throughout the medium.
However, these methods are best suited to linear material behaviour and homoge-
neous material properties; non-linear behaviour and medium heterogeneity negate
the intrinsic simplicity of a boundary element solution procedure.

In describing various computational procedures, the intention is not to provide a
comprehensive account of the methods. Instead, the aim is to identify the essential
principles of each method.

6.5 The boundary element method

Attention in the following discussion is confined to the case of a long excavation of
uniform cross section, developed in an infinite elastic body subject to initial stress. By
way of introduction, Figure 6.5a illustrates the trace of the surface S of an excavation
to be generated in a medium subject to uniaxial stress, p,., in the x direction. At
any point on the surface, the pre-excavation load condition is defined by a traction
t.(S). After excavation of the material within S, the surface of the opening is to be
traction free, as shown in Figure 6.5b. This condition is achieved if a distribution
of surface traction, #,(S), equal in magnitude, but opposite in sense to that shown
in Figure 6.5a, is induced in a medium that is stress free at infinity. The required
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induced traction distribution is shown in Figure 6.5¢c. Superposition of Figures 6.5a
and c confirms that their resultant is a stressed medium with an internal traction-free
surface S. It is concluded from this that if a procedure is established for solving the
problem illustrated in Figure 6.5c, the solution to the real problem (Figure 6.5b) is
immediately available. Thus the following discussion deals with excavation-induced
tractions, displacements and stresses, and the method of achieving particular induced
traction conditions on a surface in a continuum.

For a medium subject to general biaxial stress, the problem posed involves distribu-
tions of induced tractions, #,(S), #,(S), at any point on the surface S, as illustrated in
Figure 6.6a. In setting up the boundary element solution procedure, the requirements
are to discretise and describe algebraically the surface S, and to find a method of
satisfying the imposed induced traction conditions on S.

The geometry of the problem surface S is described conveniently in terms of the
position co-ordinates, relative to global x, y axes, of a set of nodes, or collocation
points, disposed around S. Three adjacent nodes, forming a representative boundary
element of the surface §, are shown in Figure 6.6b. The complete geometry of this
element of the surface may be approximated by a suitable interpolation between the
position co-ordinates of the nodes. In Figure 6.6b an element intrinsic co-ordinate & is
defined, with the property that —1 < & < 1 over the range of the element. Considering
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nodes 1, 2, 3 of the element, suppose that a set of functions is defined by

Ny =-1e1-¥§)
Ny =(1-¢% (6.25)
Ny =1e(1+8)

The property of these functions is that each takes the value of unity at a particular
node, and zero at the other two nodes. They are therefore useful for interpolation of
element geometry from the nodal co-ordinates in the form

x(€) = xiNy + xo2N, + x3N3 = ZxaNa

(6.26)
YE) =D yaNa

It is seen that the properties of the interpolation functions 6.25 ensure that equations
6.26 return the position co-ordinates of the nodes, 1,2, 3,for§ = —1, 0, 1 respectively.
Also, equations 6.25 and 6.26 can be interpreted to define a transformation from the
element local co-ordinate & to the global x, y system.

In seeking a solution to the boundary value problem posed in Figure 6.6a, it is
known that the stress and displacement distribution in the medium exterior to S is
uniquely determined by the conditions on the surface S (Love, 1944). Thus if some
method can be established for inducing a traction distribution on § identical to the
known, imposed distribution, the problem is effectively solved. Suppose, for example,
continuous distributions g, (S), ¢g,(S), of x- and y-directed line load singularities
are disposed over the surface S in the continuum. Using the solutions for stress
components due to unit line loads (Appendix B), and the known tangent to S at
any point i, the x and y component tractions T7;, T7; and T, Tyyi induced by the
distributions of x- and y-directed line loads, can be determined. When point i is a
node of the surface, the condition to be achieved to realise the known condition on §
is

s

(6.27)
/ [T + g,(SIT]]dS = 1,

Discretisation of equation 6.27 requires that the surface distributions of fictitious load,
qx(S)and g,(S), be expressed in terms of the nodal values of these quantities. Suppose
that, for any element, the interpolation functions 6.25 are also used to define fictitious
load distributions with respect to the element intrinsic co-ordinate &, i.e.

‘Ix(‘g) = qx1N1 +qoN2 + g3N3 = quNa

Qy(g) = Z qy(xN(x

(6.28)
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The discretised form of equation 6.27 can be written

Z [ [4:(S)TE + (ST ]dS =t (6.29)
j=1 75
Z [ [qx(S)T;.‘i + qy(S)Tyyl.]dS =1y (6.30)
j=1 7

where 7 is the number of boundary elements, and each surface integral is evaluated
over the range S; of each boundary element j. Considering a particular element, one
of the surface integrals can be expressed by

/ [4:(HTS + q,($)T};]dS =

Se

! o dS ! y,..dS
> [ NOTO T+ Y g / NBTIOFE 63D

The integrals of the interpolation function (N )—kernel (T') products defined in equation
6.31 can be evaluated readily by standard Gaussian quadrature methods. When all
components of equations 6.29 and 6.30 have been calculated using the procedure
defined in equation 6.31, it is found that for the m boundary nodes

M=

(g T +qy 1) = t
=1

<~
Il

(6.32)

NgE

(g T + gy 1)) =ty
=1

<
Il

where T, etc., are the results of the various interpolation function—kernel integrations
and, for the end nodes of each element, a summation with the appropriate integral for
the adjacent element. When equations similar to 6.32 have been established for each
of the m boundary nodes, they may be recast in the form

[T*][q] = [t] (6.33)

Equation 6.33 represents a set of 2m simultaneous equations in 2m unknowns, which
are the nodal values of fictitious boundary load intensity.

Once equation 6.33 has been solved for the vector [q] of nodal load intensities,
all other problem unknowns can be calculated readily. For example, nodal displace-
ments, or displacements at an internal point i in the medium, can be determined
from

w = f [4:(S)UE + g, (U ]dS
i (6.34)
By
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Similarly, stress components at an internal point i in the medium are given by
Oxxi = /[qx(S)U;xi + qy(S)Uxth]dS
s

Oy = / [4:(S)0,; + 4y(S)ay,,]dS (6.35)

s

- / [4:(S)0%, +ay(S)0?,;]dS

In equations 6.34 and 6.35, U, o ,, U.,, 0. ., etc., are displacements and stresses
induced by x- and y-directed unit line loads, given by the expressions in Appendix B.
Equations 6.34 and 6.35 may be discretised using the methods defined by equations
6.29-6.31, and all the resulting integrals can be evaluated using standard quadrature
formulae.

In setting up equations 6.27, 6.34 and 6.35, the principle of superposition is ex-
ploited implicitly. Thus the method is applicable to linear elastic, or at least piece-wise
linear elastic, behaviour of the medium. Also, since both element geometry and ficti-
tious load variation are described in terms of quadratic interpolation functions (equa-
tions 6.25), the method may be described as a quadratic, isoparametric formulation
of the boundary element method.

The introduction of fictitious load distributions, g, (S), ¢, (), in the solution proce-
dure to satisfy the imposed boundary conditions results in this approach being called
an indirect formulation of the boundary element method. In the alternative direct
formulation, the algorithm is developed from a relation between nodal displacements
[#] and tractions [¢], based on the Betti Reciprocal Work Theorem (Love, 1944).
These formulations are also isoparametric, with element geometry, surface tractions
and displacements following imposed quadratic variation with respect to the element
intrinsic co-ordinate.

6.6 The finite element method

The basis of the finite element method is the definition of a problem domain surround-
ing an excavation, and division of the domain into an assembly of discrete, interacting
elements. Figure 6.7a illustrates the cross section of an underground opening gener-
ated in an infinite body subject to initial stresses pyy, Pyy, Pxy. In Figure 6.7b, the
selected boundary of the problem domain is indicated, and appropriate supports and
conditions are prescribed at the arbitrary outer boundary to render the problem stati-
cally determinate. The domain has been divided into a set of triangular elements. A
representative element of the set is illustrated in Figure 6.7c, with the points i, j, k
defining the nodes of the element. The problem is to determine the state of total
stress, and the excavation-induced displacements, throughout the assembly of finite
elements. The following description of the solution procedure is based on that by
Zienkiewicz (1977).

In the displacement formulation of the finite element method considered here, the
initial step is to choose a set of functions which define the displacement components
at any point within a finite element, in terms of the nodal displacements. The various
steps of the solution procedure then develop from the imposed displacement field.
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Figure 6.7 Development of a finite
element model of a continuum prob-
lem, and specification of element ge-
ometry and loading for a constant
strain, triangular finite element.

Thus, since strain components are defined uniquely in terms of various derivatives
of the displacements, the imposed displacement variation defines the state of strain
throughout an element. These induced strains and the elastic properties of the medium
together determine the induced stresses in an element. Superposition of the initial and
the induced stresses yields total stresses in the element.

The assumption in the finite element method is that transmission of internal forces
between the edges of adjacent elements can be represented by interactions at the
nodes of the elements. It is therefore necessary to establish expressions for nodal
forces which are statically equivalent to the forces acting between elements along
the respective edges. Thus the procedure seeks to analyse the continuum problem
(Figure 6.7a) in terms of sets of nodal forces and displacements for the discretised
domain (Figure 6.7b). The solution procedure described here, for purposes of il-
lustration, considers triangular element geometry, linear variation of displacement
with respect to element intrinsic co-ordinates, and resultant constant stress within an
element.

6.6.1 Displacement variation

In Figure 6.7c, induced nodal displacements are u,;, u,;, etc., and displacements
[u] at any point within the element are to be obtained by suitable interpolation from
the nodal values. Introducing a matrix of interpolation functions, [N], a suitable
interpolation formula is

u;
[u] = [Z] =D [INJfu] = (N Nj. N | w; (6.36)
y W
= [N][u‘]

where
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The components of [N], i.e. the terms N;, are prescribed functions of position, and
[u’] is a column vector listing the nodal displacements u;, uy;, Uy; . . . etc.

The interpolation functions which constitute the elements of [N] must be chosen
to return the nodal displacements at each of the nodes. This requires that

[Nilxi,yi = (I
[Ni]xi,yj = [0], etc.

where [I] and [0] are the identity and null matrices respectively. Also, since both
components of displacement at a point are to be interpolated in the same way, it is
clear that

[N:] = N;[1]

where N; is a scalar function of position within the element.
A simple development of a linear interpolation function is demonstrated by repre-
senting the displacements in terms of linear functions of position, i.e.

Uy = aq + ox + azy
(6.37)
Uy = a4 + osx + agy

The six interpolation constants are determined by ensuring that the displacements
uy, u, assume the nodal values when nodal co-ordinates are inserted in equation
6.37. Thus oy, ap, a3 are determined by solving the simultaneous equations

Uy = o + ox; +azy;

Uyj = Q1 +00X; + 03y

Uxp = 0 + 00X + a3 yg

Solution for a;, o, a3 and some rearrangement, produces

1
uy = =—[(@; + bix + c;y)uy; +(a; +bjx + c;y)uyj + (@ + bex + cpy)uyl

2A
(6.38)

where

ai = XjYk — Xk
bi =y; —

Ci = X — Xj
with cyclic permutation of i, j, k to obtain a;, etc., and

2A = 2 x area of the triangular element

Xi Vi
=21 Xj yj
L oxe
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Solution for a4, as, og yields an interpolation function for u, identical to equation
6.38, withu,; replacing u,;, etc. The variation of displacements throughout an element
is therefore described by

[u] = [H = [N][u] = [N;L, N;L, NiI[ue] (6.39)

y

where N; = (a; + bijx + ¢;y)/2A, with similar expressions N;, Ny and I'isa 2 x 2
identity matrix.

By defining the displacement field in an element in terms of the nodal dis-
placements, the interpolation procedure ensures continuity of the displacements
both across an element interface with an adjacent element, and within the element
itself.

Once the displacement field in an element is defined, the state of strain can be
established from the strain—displacement relations. For plane strain problems, a strain
vector may be defined by

- u,
- 2 0
Sxx ax 8)(
el=| gy | = Outy o 2"
yy ay 8y My
Yxy ou,  duy d
L dy ox | | dy  Ox |
or
[e] = [L][{u] (6.40)

Since displacements are specified by equation 6.39, equation 6.40 becomes

[e] = [LIN][u®] = [B][u®]

where
rON; ON; oN ]
oo =0 X9
0x 0x 0x
IN; ON; IN;
[B] = 0 0 — 0 —
dy dy dy
ON; ON; ON; ON; ONy 0N
L dy ax dy ox ay ox |

For the case of linear displacement variation, the terms d N; /9y, etc., of the B matrix
are constant, and thus the strain components are invariant over the element.

6.6.2 Stresses within an element
The state of total stress within an element is the sum of the induced stresses and the
initial stresses. Ignoring any thermal strains, total stresses, for conditions of plane
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strain, are given by

0.0

- 1 v/(d-v) 0 £,r N
_ E(1-v) B ol
= d+v)(1—-v) v/ =v) 1 0 €y |+ (;))
Oxy 0 0 (1—=2v)/2(1—v) |LY xy

or
[o] = [D][e] + [¢”]
= [D][B][u°] + [¢”] (6.41)

where [o] is the vector of total stresses, [D] is the elasticity matrix, and [0°] is the
vector of initial stresses.

6.6.3 Equivalent nodal forces
The objective in the finite element method is to establish nodal forces g,;, g,; etc.,
equivalent to the internal forces operating between the edges of elements, and the

body force
— bx
m=[]

operating per unit volume of the element. The internal nodal forces are determined
by imposing a set of virtual displacements [8u®] at the nodes, and equating the in-
ternal and external work done by the various forces in the displacement field. For
imposed nodal displacements [u®], displacements and strains within an element
are

[Bu] = [N][u°], [de] = [B][du"]

The external work done by the nodal forces [(°] acting through the virtual displace-
ments is

AW® = [3u°]"[q°]

and the internal work per unit volume, by virtue of the virtual work theorem for a
continuum (Charlton, 1959) is given by

AW' = [3¢]"[o] — [3u]"[b]
= ([BI[3u®])"[o] — (IN][3u°])"[b]
= [du*]"([B]"[o] — [N]'[b])

Integrating the internal work over the volume V, of the element, and equating it with
the external work, gives

lq°] =/V [B]'[o]dV — ) [N]"[b]dV
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Figure 6.8 A simple finite element
structure to illustrate the relation be-
tween nodal connectivity and con-
struction of the global stiffness matrix.
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Introducing equation 6.41,
Mﬂ=/[mmmmmmw+/fmﬁ&MV—/[Mﬁww (6.42)
Examining each component of the RHS of this expression, for a triangular element
the term f v [B]T[D][B] dV yields a 6 x 6 matrix of functions which must be inte-
grated over the volume of the element, the term f V. [B]"[6°]dV a 6 x 1 matrix, and
f V. [N]T[b]dV a 6 x 1 matrix. In general, the integrations may be carried out using
standard quadrature theory. For a constant strain triangular element, of volume V.,
the elements of [B] and [N] are constant over the element, and equation 6.42 becomes

[q°] = V.[B]"[D][B][u] + V.[B]"[0] — V.[N]"[b]

In all cases, equation 6.42 may be written
[q°] = [K®][u’] + [f°] (6.43)

In this equation, equivalent internal nodal forces [q°] are related to nodal displace-
ments [u®] through the element stiffness matrix [K®] and an initial internal load vector
[f¢]. The elements of [K®] and [f°] can be calculated directly from the element ge-
ometry, the initial state of stress and the body forces.

6.6.4 Solution for nodal displacements

The computational implementation of the finite element method involves a set of
routines which generate the stiffness matrix [K®] and initial load vector [f¢] for all
elements. These data, and applied external loads and boundary conditions, provide
sufficient information to determine the nodal displacements for the complete element
assembly. The procedure is illustrated, for simplicity, by reference to the two-element
assembly shown in Figure 6.8.

Suppose the applied external forces at the nodes are defined by

T
[r]" = [ra Tyl Fx2 Fy2 Fx37y3 rx4ry4]
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Equilibrium at any node requires that the applied external force at the node be in bal-
ance with the resultant internal equivalent nodal force. Suppose the internal equivalent
nodal force vector for elements a and b is given by

la']" = [a}1 431 42 432 433 435 ]

[Q°1" = [a2 a0 40 450 925 4%

The nodal equilibrium condition requires
fornode 1: ry1 = qy,,  ryi =gy,
for node 2: ryr = g2, + q;’z, ry =gy + f]?z

with similar conditions for the other nodes. The external force—nodal displacement
equation for the assembly then becomes

— , _
Tx1 K2 L0 0 Uyl fr
ryl Y00 uyl fyl

!

Fx2 ! Ux2 fx2
"y2 - b || U fy2
7 = ' K*+ K°, ) + )
Ix3 ____:________. U3 ;x?,
ry3 ! Uy3 3
y 00 Kb ¥ ¥
I'x4 I Uxs fx4

00
L7y4 - AL Uya | _fy4_

where appropriate elements of the stiffness matrices [K?*] and [KP®] are added at the
common nodes. Thus assembly of the global stiffness matrix [K] proceeds simply by
taking account of the connectivity of the various elements, to yield the global equation
for the assembly

(K][u®] = [r¢] — [f¢] (6.44)

Solution of the global equation 6.44 returns the vector [u®] of nodal displacements.
The state of stress in each element can then be calculated directly from the appropriate
nodal displacements, using equation 6.41.

In practice, special attention is required to render [K] non-singular, and account
must be taken of any applied tractions on the edges of elements. Also, most finite ele-
ment codes used in design practice are based on curvilinear quadrilateral elements and
higher-order displacement variation with respect to the element intrinsic co-ordinates.
For example, a quadratic isoparametric formulation imposes quadratic variation of
displacements and quadratic description of element shape. Apart from some added
complexity in the evaluation of the element stiffness matrix and the initial load vector,
the solution procedure is essentially identical to that described here.

6.7 The distinct element method

Both the boundary element method and the finite element method are used exten-
sively for analysis of underground excavation design problems. Both methods can
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Figure 6.9 A schematic representa-
tion of a rock mass, in which the be-
haviour of the excavation periphery is
controlled by discrete rock blocks.

METHODS OF STRESS ANALYSIS
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be modified to accommodate discontinuities such as faults, shear zones, etc., trans-
gressing the rock mass. However, any inelastic displacements are limited to elastic
orders of magnitude by the analytical principles exploited in developing the solution
procedures. At some sites, the performance of a rock mass in the periphery of a mine
excavation may be dominated by the properties of pervasive discontinuities, as shown
in Figure 6.9. This is the case since discontinuity stiffness (i.e. the force/displacement
characteristic) may be much lower than that of the intact rock. In this situation, the
elasticity of the blocks may be neglected, and they may be ascribed rigid behaviour.
The distinct element method described by Cundall (1971) was the first to treat a
discontinuous rock mass as an assembly of quasi-rigid blocks interacting through de-
formable joints of definable stiffness. It is the method discussed here. The technique
evolved from the conventional relaxation method described by Southwell (1940)
and the dynamic relaxation method described by Otter et al. (1966). In the distinct
element approach, the algorithm is based on a force-displacement law specifying the
interaction between the quasi-rigid rock units, and a law of motion which determines
displacements induced in the blocks by out-of-balance forces.

6.7.1 Force-displacement laws
The blocks which constitute the jointed assemblage are taken to be rigid, meaning
that block geometry is unaffected by the contact forces between blocks. The deforma-
bility of the assemblage is conferred by the deformability of the joints, and it is this
property of the system which renders the assemblage statically determinate under an
equilibrating load system. It is also noted that, intuitively, the deformability of joints
in shear is likely to be much greater than their normal deformability.

In defining the normal force mobilised by contact between blocks, a notional over-
lap &, is assumed to develop at the block boundaries, as shown in Figure 6.10a. The
normal contact force is then computed assuming a linear force—displacement law, i.e.

F, = K,8, (6.45)
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Figure 6.10 Normal and shear
modes of interaction between distinct
elements.
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where K, is the joint normal stiffness. When the faces of two blocks are aligned in a
subparallel attitude, as shown in Figure 6.10b, interaction is assumed to occur at two
point contacts, for each of which equation 6.45 is taken to define the contact force.
While the realism of this two-point mode of interaction might be questioned, it is
likely that when rock blocks are disturbed from their initial, topographically matched
equilibrium condition, the number of contacts will be small. It is improbable that the
location of these contacts will affect the shear deformability of a joint.

Equation 6.45 indicates that the normal contact force between blocks is determined
uniquely by the relative spatial positions of the blocks. However, the shear contact
force at any stage depends on the deformation path to which the contact has been
subjected. Thus it is necessary to compute the progressive shear displacements of
blocks, which are then used to determine the incremental shear force operating be-
tween two blocks. For an increment of shear displacement &, as shown in Figure
6.10c, the increment of shear force A F; is given by

AF, = K3 (6.46)

where Kj is the joint shear stiffness.

The deformation relations defined by equations 6.45 and 6.46 are elastic, in that
they describe non-dissipative, reversible processes. Under some circumstances, these
relations will not apply. For example, when separation occurs at a joint, normal
and shear forces at the block surfaces vanish. If, at some stage, the computed shear
force, Fj, at a contact exceeds the maximum frictional resistance (F} tan ¢, for a
cohesionless surface), slip occurs, and the shear force assumes the limiting value
F, tan ¢. Consequently, in any algorithmic treatment, after each increment of normal
and shear displacement, the total shear force must be evaluated. If the shear force
is less than the limiting frictional resistance, elastic deformability conditions are re-
established at the joints.

6.7.2 Law of motion

Equations 6.45 and 6.46 indicate how a set of forces acting on a block can be de-
termined from the position of a block relative to its neighbours. For each block,
these forces may be combined to determine the resultant force, and a moment. Using
Newton’s Second Law of motion, it is possible to determine the translation of the
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block centroid and the rotation of the block about the centroid; i.e. for the x direction

iy = — 6.47)
m
where ii, is the acceleration of the block centroid in the x direction, F) is the x
component of the resultant force on the block, and m is the mass of the block.

The translation of the block centroid can be determined from equation 6.47, by nu-
merical integration. Suppose a time increment At is selected, over which it is intended
to determine the block translation. Block velocity and translation are approximated
by

Uy () = u(ty) + iiy At
ux(tl) = u,(ty) + iy At

Similar expressions are readily established for block translation in the y direction,
and for block rotation.

6.7.3 Computational scheme

The distinct element method is conceptually and algorithmically the simplest of the
methods of analysis considered here. In its computational implementation, precau-
tions and some effort are required to achieve satisfactory performance. First, the time
step At in the integration of the law of motion cannot be chosen arbitrarily, and an ex-
cessively large value of At results in numerical instability. Second, for an assemblage
of blocks which is mechanically stable, the dynamic relaxation method described
above provides no mechanism for dissipation of energy in the system. Computation-
ally, this is expressed as continued oscillation of the blocks as the integration proceeds
in the time domain. It is therefore necessary to introduce a damping mechanism to
remove elastic strain energy as the blocks displace to an equilibrium position. Viscous
damping is used in practice.

The computational scheme proceeds by following the motion of blocks through a
series of increments of displacements controlled by a time-stepping iteration. Iteration
through several thousand time steps may be necessary to achieve equilibrium in the
block assemblage.

6.8 Finite difference methods for continuous rock

Dynamic relaxation, finite difference methods for continua have a long history of
application in the analysis of stress and displacement in the mechanics of deformable
bodies, traceable from the original work of Southwell (1940) and Otter ef al. (1966).
Particular formulations for rock mechanics are represented by the proprietary codes
FLAC and FLAC3D (Itasca, 2003), which have gained acceptance as reference codes
for excavation engineering and support and reinforcement design. The FLAC (Fast
Langrangian Analysis of Continua) codes are intended for analysis of continuum
problems, or at most sparsely jointed media.

FLAC and FLAC3D are explicit finite difference techniques for solution of the
governing equations for a problem domain, taking account of the initial and boundary
conditions and the constitutive equations for the medium. An explicit procedure is
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one in which the problem unknowns can be determined directly at each stage from the
difference equations, in a stepwise fashion, from known quantities. Some advantages
of such an approach are that large matrices are not formed, reducing the demands on
computer memory requirements, and that locally complex constitutive behaviour such
as strain softening need not result in numerical instability. An offsetting disadvantage
is that the iterative solution procedure may sometimes consume an excessive amount
of computer time in reaching an equilibrium solution.

Considering the two-dimensional case for simplicity, a finite difference scheme is
developed by dividing a body into a set of convenient, arbitrarily-shaped quadrilateral
zones, as shown in Figure 6.11a. For each representative domain, difference equations
are established based on the equations of motion and the constitutive equations of
the rock. Lumping of part of the mass from adjacent zones at a gridpoint or node, as
implied in Figure 6.11b, and a procedure for calculating the out-of-balance force at a
gridpoint, provide the starting point for constructing and integrating the equations of
motion.

The Gauss Divergence Theorem is the basis of the method for determining the
out-of-balance gridpoint force. In relating stresses and tractions, the theorem takes
the form

00;;/0x; = limA_>()/(r,-j n; dS i, j=172) (6.48)
S
where
x; = components of the position vector
0;; = components of the stress tensor
A = area bounded by surface S
dS = increment of arc length of the surface contour
nj = unit outward normal to dS.

A numerical approximation may then be made to the RHS of equation 6.48, involving
summation of products of tractions and areas over the linear or planar sides of a
polygon, to yield a resultant force on the gridpoint.

The differential equation of motion is

p d0;/0r = 30y /0xi + pgi (6.49)
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where U; is the gridpoint velocity and g; is the component of the gravitational accel-
eration in the i coordinate direction.
Introducing equation 6.48 yields

o0 /ot = 1/m/0ij nj dS + g (6.50)
s

where m = pA.
If a force F; is applied at a gridpoint due, for example, to reactions mobilized by
reinforcement or contact forces between blocks, equation 6.50 becomes

E)ﬁi/at = 1/m(F +/O‘ijnj ds) + gi
N

where R; is the resultant (out-of-balance) force at the gridpoint.

Equation 6.51 indicates that the acceleration at a gridpoint can be calculated ex-
plicitly from the resultant force obtained by integration of the surface tractions over
the boundary contour of the region surrounding the gridpoint summed with local in-
ternally applied forces, the lumped local mass and the local gravitational acceleration.

When the acceleration of a gridpoint has been calculated, central difference equa-
tions can be used to calculate gridpoint velocities and displacements after a time
interval At:

TP = u A LR m + gl A (6.52)

1

XA = 0 x {1780 (6.53)
When a pseudo-static problem is being analysed, viscous damping terms are included
in equations 6.52 and 6.53 to increase the rate of convergence.

Calculation of changes in the state of stress proceed through calculation of strain
increments and their introduction in the constitutive equations for the medium. Strain
increments are determined directly from the velocity gradients, as follows. From the
Gauss Divergence Theorem,

dii/ox; = 1/A f Gin; dS (6.54)

The RHS of equation 6.54 can be evaluated as a summation over the boundary contour
of a polygon surrounding a gridpoint, and then strain increments can be determined
from the expression

Ag;; = 1[04;/0x; + 04;/0x;] At (6.55)
Finally, the stress increment in the time interval At is calculated directly from the
existing state of stress, the strain increments and the material constants k, for the
medium, through an appropriate constitutive equation:

Aoy = f(Agijf, 05, ko) (6.56)
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Figure 6.12 Resolution of a cou-
pled distinct element-boundary ele-
ment problem into component prob-
lems.

LINKED COMPUTATIONAL SCHEMES

The form chosen for the constitutive function f may represent isotropic or transversely
isotropic elasticity, Mohr-Coulomb plasticity, Hoek-Brown yield, strain softening, or
anisotropic plasticity defined by ubiquitous joints.

In the numerical implementation, equations 6.48—6.56 are solved sequentially
through a series of time steps of duration Az. Thus the solution procedure is essentially
a time-based integration of the governing equations to yield the displacements and
state of stress at a set of collocation points in the medium. One of the advantages of
the procedure is the relative ease with which equations describing forces generated in
support and reinforcing elements, or drag forces from fluid flow, can be incorporated
in the analysis.

The wide utilisation of FLAC in both rock engineering design and in fundamental
studies of rock deformation confirms its acceptance as a sound analytical tool.

6.9 Linked computational schemes

The preceding discussion has noted the advantages and limitations of the various com-
putational methods. In many cases, the nature of mine excavation design problems
means that the boundary element method can be used for design analyses, particu-
larly if the intention is to carry out a parameter study in assessing various options.
In those cases where non-linear material or discrete, rigid-block displacements are
to be modelled, the scale of a mining problem frequently precludes the effective or
economical use of finite element or distinct element codes. The solution is to develop
linked schemes, where the far-field rock is modelled with boundary elements, and the
more complex constitutive behaviour is modelled with the appropriate differential
method of analysis. A domain of complex behaviour is then embedded in an infi-
nite elastic continuum. The advantages of this approach include, first, elimination of
uncertainties associated with the assumption of an outer boundary for the problem
domain, as required by the differential methods. Second, far-field and elastic material
behaviour is represented in a computationally economical and mechanically appro-
priate way with boundary elements. Finally, zones of complex constitutive behaviour
in a mine structure are frequently small and localised, so that only these zones may
require the versatility conferred by a differential method. The implied reduction in the
size of zones to be modelled with a differential method again favours computational
efficiency. An example of the development of a linked method and its application in
excavation design is given by Lorig and Brady (1982).
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The principles used in the development of a boundary element (b.e.)—distinct ele-
ment (d.e.)linkage algorithm are illustrated in Figure 6.12. The b.e. and d.e. domains
are isolated as separate problems, and during a computational cycle in the d.e. rou-
tine, continuity conditions for displacement and traction are enforced at the interface
between the domains. This is achieved in the following way. As shown by Brady and
Wassyng (1981), the boundary constraint equation developed in a direct b.e. formu-
lation can be manipulated to yield a stiffness matrix [K;] for the interior surface of
the domain. In each computational cycle of the d.e. iteration, displacements [u;] of
interface d.e. nodes calculated in a previous cycle are used to determine the reactions
[r;] developed at the nodes from the expression

[ri] = [Ki][u;] (6.57)

Then the forces applied to the d.e. interface nodes are equal and opposite to the
reactions developed on the b.e. interface; i.e.

[qi] = —[ri] (6.58)

Equation 6.57 represents formal satisfaction of the requirement for continuity of
displacement at the interface, while equation 6.58 implies satisfaction of the condition
for force equilibrium.

In the d.e. routine, nodal forces determined from equation 6.58 are introduced in
the equation of motion (equation 6.47) for each block in contact with the interface.
In practice, several iterative cycles may elapse before it is necessary to update the
interface nodal forces. When equilibrium is achieved in the d.e. assembly, the interface
nodal displacements and tractions (derived from the nodal reactions) are used to
determine stresses and displacements at interior points in the b.e. domain.
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Excavation design in massive
elastic rock

7.1 General principles of excavation design

Mining excavations are of two types — service openings and production openings. Ser-
vice openings include mine accesses, ore haulage drives, airways, crusher chambers
and underground workshop space. They are characterised by a duty life approaching
the mining life of the orebody. It is therefore necessary to design these openings so
that their operational functions can be assured and maintained at low cost over a
relatively long operational life.

Mine production openings have a temporary function in the operation of the mine.
These openings include the ore sources, or stopes, and related excavations such as
drill headings, stope accesses, and ore extraction and service ways. In these cases, it
is necessary to assure control of the rock around the excavation boundary only for the
life of the stope, which may be as short as a few months.

The issue considered in this chapter is the design of service openings and produc-
tion openings subject to entry by personnel. (The design of non-entry excavations is
considered later in conjunction with the related mining methods.) A logical frame-
work is presented for the design of these openings. Although it is proposed for general
application in the design of permanent mine openings, it can also be regarded as a ba-
sis for the evolution of designs for specific temporary openings. Such an evolutionary
process could be associated with the implementation of an observational principle of
excavation design.

In principle, excavation design in massive elastic rock represents the simplest design
problem posed in mining rock mechanics. However, only in recent years have some
key questions related to rock strength, fracture and failure and their effect on the
behaviour of rock in the boundary and near field of an excavation been resolved.
These matters were considered in Chapter 4, and in particular in Section 4.5. The
case considered in this chapter involves a single excavation, which is taken to imply
that the opening will not be mined in the zone of influence of any existing opening.
The rock mass is considered massive if, on the scale of the excavation, the volume
of rock to be mined to create the opening is traversed by only one or two persistent
structural features prone to slip or separation. However, many observations (Brady,
1977, Martin et al., 1999, Diederichs, 2002) suggest that the proposed methods for
massive rock, involving comparison of the state of rock stress and local rock mass
strength, are also applicable in moderately jointed rock masses.

The rock mass strength properties are assumed to be defined by compressive failure
criteria of the types discussed in Chapter 4, with an in situ crack initiation and damage
stress described by o.; and the constant deviatoric stress criterion (Martin et al., 1999)
and an in situ long-term strength described by 0.4 and a modified Mohr-Coulomb cri-
terion (Martin et al., 1999). Both the damage criterion and the long term strength
criterion may be represented by appropriate m and s parameters in the generic
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Hoek-Brown criterion. The tensile strength of the rock mass, Ty, is usually taken to be
ZEero.

The need to consider two compressive strength criteria arises because different
failure modes apply near the excavation boundary and in the interior of the rock. Under
the complex stress path and in the low confinement conditions near the boundary of
the excavation, crack initiation leads to unstable crack growth and the formation of
spalls in the excavation boundary. Under confined conditions in the interior of the
rock mass, rock failure depends on the formation of a population of interacting cracks,
i.e. the accumulation of damage in the rock fabric from crack initiation and growth.
The experimental observations and analysis supporting this formulation of criteria for
rock mass failure are presented by Martin (1997), Martin et al. (1999) and Diederichs
(2002).

While the evolution of and final state of stress around single excavations involve
three-dimensional geometry and complex stress paths, Brady (1977) and Martin et al.
(1999), among others, have shown that plane strain elastic analysis and an appropriate
failure criterion can be used to make sound engineering predictions of the extent of
zones of failure close to the excavation boundary. In a well-controlled and detailed
study, Martin et al. (1999) showed that the constant deviatoric stress criterion pre-
dicted both the extent of the zone of near-boundary microseismic activity, indicating
initiation of cracks, and the geometry of the spalled zone. The criterion could be
represented by the Hoek-Brown criterion, i.e.

1/2
(o] =03+(mcr3(rC+S(rC2)

with m =0 and s = 0.11. The failure criterion for the particular rock mass was
therefore expressed by

oy —o3 =0.330, 7.1)

In the design of any mine opening, two points need to be borne in mind. First, in
successful mining practice the existence of an extensive zone of damaged or failed
rock near the boundary of an excavation is common. Second, a basic mining objective
is to ensure that large, uncontrolled displacements of rock in the excavation boundary
cannot occur. This may be achieved by due attention to excavation shape, mining
practice, and possibly by the application of one or more support and reinforcement
devices or systems. By extension, it also involves questions of excavation location and
shape, and frequently, development of an excavation sequence, the specification of the
detail for rock support and reinforcement, and definition of the timing of support and
reinforcement installation. In this chapter, some issues related to excavation shape,
location, orientation and the effect of sparse discontinuities are considered.

The general principles and some examples of engineering design in rock have been
considered extensively in a series of papers in Comprehensive Rock Engineering
(Hudson et al., 1993). In particular, the broad concepts of engineering design and
their translation into rock engineering practice have been discussed by Bieniawski
(1993). The components and logical sequence of the design process are presented
schematically in Figure 7.1. It shows the evolution of a design from specification of
functional requirements through to final realisation of the design in the engineering
construction phase. The excavation design practice considered here can be regarded
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Figure 7.1 A general design metho-
dology for rock engineering (after
Bieniawski, 1993).

GENERAL PRINCIPLES OF EXCAVATION DESIGN
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as a subset of the Bieniawski approach, concentrating on Stages 5—8 of the design
logic.

The design of a mine excavation proceeds from an initial configuration which
satisfies its duty requirements, such as minimum dimensions required for operating
equipment, or airway resistance to achieve some ventilation capacity. Siting and ori-
entation are also determined by the duty requirements and by the need for integration
with other elements of the mining layout. The suitability of the selected draft design is
then assessed by following the logical framework defined in Figure 7.2. It is observed
that a key step in the design process is the determination of the stress distribution
around the excavation. This can be achieved using any of the methods described in
Chapter 6. The logical path then involves comparison of boundary stresses with the
in situ crack initiation stress, oc;, and the rock mass tensile strength, 7j. If no bound-
ary failure is predicted, it remains to examine the effect of any major discontinuities
which will transgress the excavation. This requires consideration of both the general
effect of the structural features on boundary stresses and local stability problems
in the vicinity of the discontinuity/boundary intersection. Such considerations may
lead to design changes to achieve local and more general stability conditions for the
excavation perimeter.

Excavation design for the case where rock mass strength is low, or field stresses
are high, proceeds using the path defined by the right-hand branch of Figure 7.2.
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rock.

These conditions imply that fracturing of rock will occur on and near the excavation
boundary. Iteration on the design variables proceeds to restrict the extent of bound-
ary failure and the zone of failure in the excavation near field, and to mitigate any
difficulties arising from either the presence of major planes of weakness or their in-
teraction with zones of induced rock fracture. The final phase of the design is the
specification of support and reinforcement measures to control the displacement of
the zones of fractured rock around the excavation. Referring to Figure 7.2, the design
logic implies iteration over the steps A, B, C, D, E using practically feasible shape,
orientation and location parameters, until a geomechanically sound and operationally
functional design is attained.

In the discussion that follows, elastic analyses will be used to illustrate some
important design issues and principles. In some cases they will be employed to predict
the extent of non-linear processes, such as slip and separation on discontinuities, or
rock mass failure. In these cases, the analyses produce only a first-order estimate of the
extent of these processes. However, in the case of near-boundary damage and spalling,
Martin et al. (1999) showed that an elastic analysis and the constant deviatoric stress
criterion estimated the failure domain quite accurately. Similarly, Austin et al. (1982)
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used various numerical methods to show that an elastic analysis coupled with a simple
Mohr-Coulomb criterion for slip provided good approximations for estimation of
zones of slip on planes of weakness near excavations. These observations suggest that
the procedures are adequate for analysis of many mine excavation design problems.

The following examples deal with simple excavation shapes for which the stress
fields can be described by simple algebraic expressions. In practice, for general exca-
vation shapes, the methods of stress analysis described in Chapter 6 may be employed,
and the results used in the ways described in the following discussion.

7.2 Zone of influence of an excavation

The concept of a zone of influence is important in mine design, since it may provide
considerable simplification of a design problem. The essential idea of a zone of
influence is that it defines a domain of significant disturbance of the pre-mining stress
field by an excavation. It differentiates between the near field and far field of an
opening. The extent of an opening’s effective near-field domain can be explained by
the following example.

The stress distribution around a circular hole in a hydrostatic stress field, of mag-
nitude p, is given by equations 6.20 as

612
O = P 1_}"_2

a2
Opgp = P (1 + r—2> (72)
Org = 0

Equations 7.2 indicate that the stress distribution is axisymmetric, and this is illustrated
in Figure 7.3a. Using equations 7.2, it is readily calculated that for » = 5a, gy =
1.04p and o,, = 0.96p, i.e. on the surface defined by » = 5a, the state of stress is not
significantly different (within + 5%) from the field stresses. If a second excavation
(IT) were generated outside the surface described by r = 5a for the excavation I, as
shown in Figure 7.3b, the pre-mining stress field would not be significantly different
from the virgin stress field. The boundary stresses for excavation II are thus those for
an isolated excavation. Similarly, if excavation I is outside the zone of influence of
excavation II, the boundary stresses around excavation I are effectively those for an
isolated opening. The general rule is that openings lying outside one another’s zones
of influence can be designed by ignoring the presence of all others. For example, for
circular openings of the same radius, a, in a hydrostatic stress field, the mechanical
interaction between the openings is insignificant if the distance Dy between their
centres is

Dy > 6a

It is important to note that, in general, the zone of influence of an opening is related
to both excavation shape and pre-mining stresses.

Other issues related to the notion of zone of influence include the state of stress in a
medium containing a number of excavations, and interaction between different-sized
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Figure 7.3 (a) Axisymmetric stress
distribution around a circular opening
inahydrostatic stress field; (b) circular
openings in a hydrostatic stress field,
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excavations. Figure 7.3b illustrates the overlap of the zones of influence of two circular
openings. In the overlap region, the state of stress is produced by the pre-mining
stresses and the stress increments induced by each of the excavations I and II. In the
other sections of each zone of influence, the state of stress is that due to the particular
excavation.

Figure 7.4 illustrates a large-diameter opening (I) with a small-diameter opening
(ID) in its zone of influence. Since excavation I is outside the zone of influence of
excavation I, a fair estimate of the boundary stresses around I is obtained from the
stress distribution for a single opening. For excavation II, the field stresses are those
due to the presence of excavation I. An engineering estimate of the boundary stresses
around II can be obtained by calculating the state of stress at the centre of II, prior to
its excavation. This can be introduced as the far-field stresses in the Kirsch equations
(Equations 6.18) to yield the required boundary stresses for the smaller excavation.

Figure 7.4 Illustration of the effect
of contiguous openings of different di-
mensions. The zone of influence of ex-
cavation I includes excavation II, but
the converse does not apply.

limit of zone of
mfluence of
excavation I

\
limit of zone of ~—— /

influence of
excavation II

202



Figure 7.5 (a) A practical prob-
lem involving semi-coupling between
a large excavation (a cut-and-fill
stope) and smaller access openings;
(b) nomenclature for definition of
the zone of influence of an elliptical
opening.

ZONE OF INFLUENCE OF AN EXCAVATION
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Problems related to zone of influence arise frequently in metalliferous mining.
Haulages, access and service openings must frequently be located, for reasons of
economy and practicality, in the zone of influence of the major production openings.
An example is shown in Figure 7.5a, with access openings on the footwall side
of an inclined orebody. In this case, a zone of influence could be defined for an
ellipse inscribed in the stope cross section, for any particular stage of up-dip advance
of mining. Suppose the stope is outside the zone of influence of each access drive.
Then, reasonable estimates of the access opening boundary stresses could be obtained
from the local stresses due to the pseudo-elliptical stope and the boundary stress
concentrations due to the shape of the access drive.

The preceding discussion suggests that it is useful to consider the zone of influence
of an elliptical excavation in the course of a design exercise. It is therefore appropriate
to formalise its definition. The general case of a zone around an elliptical excavation
in which the stresses depart from the maximum in sifu stress (p or Kp) by more
than c% has been considered by Bray (1986). From this analysis, the zone may be
approximated by an ellipse with axes Wj and H| equal to the greater of each of the
following sets of values:

Wi = H[Aa | q(qg +2)— K3 +2¢) |1'?
or

Wi = H[o{A(K + ¢°) + Kq*}]"/>
Hy = H[Aa | K(1+2q) —q(3q +2)|1'*

or
Hi = H[o{A(K +¢*) + 1)]'/?

where W and H are the width and height of the elliptical excavation,q = W/H, A =
100/2canda =1,if K < l,anda = 1/K,if K > 1.
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Figure 7.6 A plane of weakness,
oriented perpendicular to the major
principal stress, intersecting a circular
opening along the horizontal diameter.

EXCAVATION DESIGN IN MASSIVE ELASTIC ROCK

For the special case of a zone of influence defined by a 5% departure from the field
stresses, A is set equal to 10 in the preceding expressions.

7.3 Effect of planes of weakness on elastic stress distribution

In excavation design problems where major discontinuities penetrate the prospective
location of the opening, questions arise concerning the validity of elastic analysis in
the design process and the potential effect of the discontinuity on the behaviour of the
excavation periphery. It is now shown that, in some cases, an elastic analysis presents
a perfectly valid basis for design in a discontinuous rock mass, and in others, provides
a basis for judgement of the engineering significance of a discontinuity. The following
discussion takes account of the low shear strengths of discontinuities compared with
that of the intact rock. It assumes that a discontinuity has zero tensile strength, and is
non-dilatant in shear, with a shear strength defined by

T =0,tan ¢ (7.3)

As observed earlier, although the following discussion is based on a circular opening,
for purposes of illustration, the principles apply to an opening of arbitrary shape. In
the latter case, a computational method of stress analysis would be used to determine
the stress distribution around the opening.

Case 1. (Figure 7.6) From the Kirsch equations (equations 6.18), for 6 = 0, the
shear stress component o, = 0, for all r. Thus o, 0y are the principal stresses oy,
0yy and oy, is zero. The shear stress on the plane of weakness is zero, and there is no
tendency for slip on it. The plane of weakness therefore has no effect on the elastic
stress distribution.

Case 2. (Figure 7.7a) Equations 6.18, with 6 = /2, indicate that no shear stress
is mobilised on the plane of weakness, and thus the elastic stress distribution is not

o

Kp lﬂ' o9

» — P
*U T\ o,

-_— == —_—

—_— —
oy =0
¥y
T ‘l‘ plane of weakness
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Figure 7.7 A plane of weakness in-
tersecting a circular opening and ori-
ented parallel to the major principal
stress, showing development of a de-
stressed zone for K < %

EFFECT OF PLANES OF WEAKNESS ON ELASTIC STRESS DISTRIBUTION
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modified by slip. The possibility of separation on the plane of weakness arises if
tensile stress can develop in the crown of the opening, i.e. if K < 1. If K > 1, the
elastic stress distribution is unaltered by either slip or separation.

For the case where K < % , separation on the plane of weakness leads to de-stressing
of a region in the crown of the opening (and also in the floor, although this is of no
engineering consequence). A reasonable estimate of the extent of the de-stressed
zone, for purposes of support design, for example, can be obtained by considering the
circumscribed ellipse, illustrated in Figure 7.7b. Separation on the plane of weakness
is prevented when o = 0; from equation 6.24, this occurs when

2K
og =p K—l—i-? =0

or
2K
=1k
Since ¢ = W/H = 2a/H, itis readily shown that the height A% of the de-stressed
zone above the crown of the opening is given by

(1—3K>
Ah=a|———
2K

Case 3. (Figure 7.8) A flat-lying feature whose trace on the excavation boundary is
located at an angle 8 above the horizontal diameter is shown in Figure 7.8a. Consid-
ering the small element of the boundary, shown in Figure 7.8b, the normal and shear
stress components on the plane of weakness are given by

0, = Oy cos?0

(7.4)
T = Ogg Sin 6 cos O
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Figure 7.8 A flat-lying plane of
weakness intersecting a circular exca-
vation non-diametrically.

EXCAVATION DESIGN IN MASSIVE ELASTIC ROCK
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The limiting condition for slip under this state of stress is
T =optand
or, introducing equation 7.4,
Gop SIN O COS 0 = Ty cOs” O tan & (7.5)
or
tan 0 = tan b

Thus if 8 = ¢, the condition for slip is satisfied on the plane of weakness. (This
conclusion could have been established by noting that the resultant stress, in this case
0yg, 1s constrained to act within the angle ¢ to the normal to the plane.) It is observed
that the sense of slip, defined by the sense of the shear stress, involves outward
displacement of the upper (hanging wall) surface of the fault relative to the lower
surface. This implies boundary stresses lower than the elastic values in the crown of
the opening. A prudent design response would anticipate the generation of subvertical
tension fractures in the crown.

The equilibrium state of stress at the boundary-plane of weakness intersection can
be established from equation 7.5, which may be rewritten in the form

sin(0 — &)

ogp————— =10
b cos b

For 6 > &, this condition can be satisfied only if oyg = 0. Thus the regions near the
intersection of the opening and the plane of weakness are either de-stressed, or at low
confining stress. They may be expected to be areas from which loosening of rock may
commence, and therefore deserve special attention in support design.

Case 4. (Figure 7.9) The problem illustrated in Figure 7.9a is introduced as a simple
example of an arbitrarily inclined plane of weakness intersecting an opening. The
far-field stresses are defined by components p (vertical) and 0.5p (horizontal). For
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Figure 7.9 Aninclined, radially ori-
ented plane of weakness intersecting a
circular excavation.

EFFECT OF PLANES OF WEAKNESS ON ELASTIC STRESS DISTRIBUTION
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a feature inclined at an angle of 45°, the normal and shear stress components are
obtained by substitution in the Kirsch equations (equations 6.18), and are given by

p a’
O'H_O'(-)(-):E*l.s 1+r—2

p 2a>  3a*
T=0‘,9=5>k0.5 1+r—2—

4

The variation of the ratio 7 /0y, is plotted in Figure 7.9b. The maximum value of the
ratio, 0.357 at r/a = 2.5, corresponds to a mobilised angle of friction of 19.6°. The
far-field value of the ratio of the stresses corresponds to a mobilised angle of friction of
18.5°. If the rock mass were in a state of limiting equilibrium under the field stresses,
the analysis indicates that mining the excavation could develop an extensive zone of
slip along the plane of weakness. On the other hand, an angle of friction for the plane
of weakness exceeding 19.6° would be sufficient to preclude slip anywhere in the
medium.

Case 5. (Figure 7.10) The design problem shown in Figure 7.10a involves a circular
opening to be excavated close to, but not intersecting, a plane of weakness. For
purposes of illustration, the stress field is taken as hydrostatic. From the geometry
given in Figure 7.10a, equations 7.2 for the stress distribution around a circular hole
in a hydrostatic stress field, and the transformation equations, the normal and shear
stresses on the plane are given by

1 1
On = E(O-rr + 0gg) + z(o-rr — Opp) COS 2a

a2
p (1 — — cos 2a>
r

T = 0,9 COS 20t — %((r,, — Opg) Sin 2«

a’ .
= p— sin2a
r
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Figure 7.10 Shear stress/normal
stress ratio on a plane of weakness
close to, but not intersecting, a circular
excavation.

EXCAVATION DESIGN IN MASSIVE ELASTIC ROCK
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The value of the ratio 7 /0, determined from these expressions is plotted for various
points along the plane of weakness in Figure 7.10b.

The peak value of the shear stress/normal stress ratio corresponds to a mobilised
angle of friction of about 24°. If the angle of friction for the plane of weakness
exceeds 24°, no slip is predicted on the plane, and the elastic stress distribution can
be maintained.

For a plane of weakness with an angle of friction of 20°, the extent of the predicted
zone of slip is shown in Figure 7.10b. Clearly a zone of slip is also predicted for the
reflection of the depicted zone about the vertical centreline of the excavation. For
both zones, the sense of slip produces inward displacement of rock on the underside
of the plane of weakness. This would be expressed as increased boundary stresses in
the segment between the fault and the excavation. The effect of the fault is to deflect
and concentrate the stress trajectories in the region between the excavation and the
fault.

The following comments are offered to establish some practical guidelines for
the type of analysis described above. First, the procedures indicate whether inelastic
effects such as separation and slip on planes of weakness are likely to be significant
in the performance of an excavation. If the zones of inelastic response are small
relative to the dimensions of the excavation, their effect on the stress distribution
around the excavation may reasonably be ignored. If the zones are relatively large,
the stress distribution around the opening can be determined only by comprehensive
analysis using, for example, a finite element package. However, even in this case, some
useful engineering insights into the behaviour of excavation peripheral rock can be
established by exploiting quite simple conceptual models of the effects of inelastic
deformation. Finally, the procedures allow quick and inexpensive exploration of the
effects of varying the principal design options, i.e. excavation location, orientation,
shape and excavation sequence. In fact, in a design exercise, the types of analysis
discussed above should usually precede a more sophisticated analysis which might
be needed to model inelastic behaviour of discontinuities in the rock mass.
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Figure 7.11 Definition of nomen-
clature for an elliptical excavation
with axes parallel to the field stresses.

EXCAVATION SHAPE AND BOUNDARY STRESSES
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7.4 Excavation shape and boundary stresses

The previous discussion has indicated that useful information on boundary stresses
around a mine opening can be established from the elastic solution for the particular
problem geometry even in the presence of discontinuities. It is now shown that simple,
closed form solutions have greater engineering value than might be apparent from a
first inspection.

Figure 7.11 illustrates a long opening of elliptical cross section, with axes parallel
to the pre-mining stresses. For the particular casesof 3 = 0,y = 0,and 3 =0, ¢ =
/2, equation 6.21 reduces to

2W
N =p(1—K+2q)=p<l—K+ p_> (7.6)
A
2K [2H
()'B=p<K—1+—)=p<K—1+K —) (7.7)
q PB

where o and op are boundary circumferential stresses in the sidewall (A) and crown
(B) of the excavation, and ps and pp are the radii of curvature at points A and
B. Equation 7.6 indicates that if pa is small, o is large. Equation 7.7 defines a
similar relation between pg and op. A generalisation drawn from these results is
that high boundary curvature (i.e. 1/p ) leads to high boundary stresses, and that
boundary curvature can be used in a semi-quantitative way to predict boundary
stresses.

Figure 7.12 shows an ovaloidal opening oriented with its major axis perpendicular
to the pre-mining principal stress. The width/height ratio for the opening is three, and
the radius of curvature for the side wall is H /2. For a ratio of 0.5 of the horizontal and
vertical field principal stresses, the sidewall boundary stress is given, by substitution
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Figure 7.12 Ovaloidal opening in a T T
medium subject to biaxial stress.

in equation 7.6, as

2 x3H
oa=p|1—-05+ H)2

=3.96p

An independent boundary element analysis of this problem yielded a sidewall bound-
ary stress of 3.60 p, which is sufficiently close for practical design purposes. Although
the radius of curvature, for the ovaloid, is infinite at point B in the centre of the crown
of the excavation, it is useful to consider the state of stress at the centre of the crown
of an ellipse inscribed in the ovaloid. This predicts a value of og, from equation 7.6, of
—0.17 p, while the boundary element analysis for the ovaloid produces a value of og
of —0.15 p. This suggests that excavation aspect ratio (say W/ H), as well as boundary
curvature, can be used to develop a reasonably accurate picture of the state of stress
around an opening.

A square hole with rounded corners, each with radius of curvature p = 0.2B, is
shown in Figure 7.13a. For a hydrostatic stress field, the problem shown in Figure
7.13b is mechanically equivalent to that shown in Figure 7.13a. The inscribed ovaloid
has a width of 2B[2!/? — 0.4(2'/? — 1)], from the simple geometry. The boundary
stress at the rounded corner is estimated from equation 7.6 as

12 _ 12 _ 1/2
O'Azp{l—l+|:23(2 0.4(2 1))} }

0.2B
=3.53p

The corresponding boundary element solution is 3.14 p.

The effect of boundary curvature on boundary stress appears to be a particular
consequence of St Venant’s Principle, in that the boundary state of stress is dominated
by the local geometry, provided the excavation surface contour is relatively smooth.
An extension of this idea demonstrates an important design concept, namely that
changing the shape of an opening presents a most effective method of controlling
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Figure 7.13 Square opening with

rounded corners, in a medium subject I T T T
to hydrostatic stress.

boundary stresses. This is illustrated by the problem shown in Figure 7.14a. The arched
opening has a width of 4.0 m and a height of 4.5 m, which are not unusual dimensions
for a mine haulage. For a field stress ratio K of 0.3, an inscribed ellipse indicates
approximate sidewall stresses of 2.5 p, using equation 7.6. If the observed performance
of the opening involved crushing of the sidewalls, its redesign should aim to reduce
stresses in these areas. Inspection of equation 7.6 indicates this can be achieved by
reducing the excavation width/height ratio. For example, if the width/height ratio is
reduced to 0.5, the peak sidewall stress is calculated to be 1.7 p. While the practicality
of mining an opening to this shape is not certain, the general principle is clear, that
the maximum boundary stress can be reduced if the opening dimension is increased
in the direction of the major principal stress. For this case, a practical solution could
be achieved as shown in Figure 7.14b, by mining an opening with a low width/height
ratio, and leaving a bed of mullock in the base of the excavation.

relative dimensions of a mine haulage
drive, to mitigate sidewall failure.

Figure 7.14 Effect of changing the (a) 1 P l (b) 1 P 1

crushed ism  0.3p 0.3p
ones
h— —
— —
4.0 m
I T Wit = 4/4.5 I I 1H = 4/6.5
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Figure 7.15 States of stress at se-
lected points on the boundary of an
excavation with a moderately irregu-
lar cross section.

EXCAVATION DESIGN IN MASSIVE ELASTIC ROCK
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Having taken the steps noted above to minimise the maximum boundary stress,
failure of boundary rock may be unavoidable under the local conditions of field
stresses and rock mass strength. In that case, orienting the major axis of the excavation
parallel to the major principal field stress cannot be expected to provide the optimal
solution. The extent of rock mass failure may be greater than for other orientations,
including that in which the long axis is perpendicular to the major principal field
stress (Ewy et al., 1987). Indeed, it has been proposed that, for an excavation subject
to an extremely high vertical principal field stress and extensive sidewall failure, an
elliptical excavation with the long axis horizontal may be the preferred excavation
shape for the prevailing conditions of rock mass rupture and local stability (Ortlepp
and Gay, 1984).

A fairly general excavation cross section is shown in Figure 7.15. Such an ex-
cavation geometry might be used in a crusher station, battery charging station or
machine workshop, where a bench is retained for equipment installation. Using the
general notions developed above, the opening geometry (width/height ratio = 2/3)
and pre-mining stress ratio (K = 0.5), the following information concerning bound-
ary stresses can be deduced:

(a) The zones A, B, C are likely to be highly stressed, since the boundary curvature
at these locations is high. Local cracking is to be expected in these zones, but
this would compromise neither the integrity of the excavation nor the validity
of the stress analysis.

(b) The bench area D is likely to be at a low state of stress, due to the notionally
negative curvature of the prominence forming the bench.
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(c) The boundary stress at the centre of the crown would be approximately 0.72p,
estimated from equation 7.7. (The boundary element solution is 0.82p.)

(d) An estimate of the sidewall boundary stress, obtained by considering an in-
scribed ellipse and applying equation 7.6, yields oy = 1.83 p. For the sidewall
locations in the left wall shown in Figure 7.15, boundary element analysis gives
values of 1.87p, 1.75p and 2.08p. For the locations in the right wall, the g
values are 1.35p, 1.36p and 1.61p. The average of these six values is 1.67p.
Boundary element analysis also confirms conclusions (a) and (b). The extent of
the zone of tensile stress determined by the boundary element analysis is shown
in Figure 7.15.

The demonstration, in an elastic analysis, of a zone of tensile stress, such as in
the bench of the current excavation design, has significant engineering implications.
Since a rock mass must be assumed to have zero tensile strength, stress redistribution
must occur in the vicinity of the bench. This implies the development of a de-stressed
zone in the bench and some loss of control over the behaviour of rock in this region.
The important point is that a rock mass in compression may behave as a stable
continuum. In a de-stressed state, small imposed or gravitational loads can cause
large displacements of component rock units.

The conclusion from these studies is that a useful appreciation of the state of stress
at key sections of an excavation boundary can be established from simple, closed-
form solutions. Inscription of a simple excavation shape in the design cross section,
and determination of boundary curvature, are simple techniques allowing the key
features of the boundary stress distribution for an excavation to be defined. More
comprehensive definition of the boundary stress distribution would be required if
studies, such as those described, identified zones of mechanically unacceptable states
of stress around the excavation periphery.

7.5 Delineation of zones of rock failure

In assessing the performance of excavations and rock structures, it is useful to dis-
tinguish between failure of the structure, and failure or fracture of the rock mass.
Failure of a structure implies that it is unable to fulfil the designed duty requirement.
Failure of a rock structure in massive rock is synonymous with extensive rock frac-
ture, since the stable performance of the structure under these conditions cannot be
assured. In a mine structure, control of displacements in a fractured rock mass may
require the installation of designed support elements, or implementation of a mining
sequence which limits the adverse consequences of an extensive fracture domain.
On the other hand, limited fractured rock zones may pose no mining problem, and a
structure or opening may completely satisfy the design duty requirements. A simple
method of estimating the extent of fracture zones provides a basis for the prediction
of rock mass performance, modification of excavation designs, or assessing support
and reinforcement requirements.

In Chapter 4, it was observed that a compressive failure criterion for a rock mass
may be expressed in the form

ol” = F(03) (7.8)
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Figure 7.16 Prediction of the extent
of boundary failure around a circu-
lar excavation, using the rock mass
failure criterion and the elastic stress
distribution.
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This indicates that for any value of the minimum principal stress at a point, a major
principal stress value can be determined which, if reached, leads to local failure of
the rock. As discussed in Chapter 4 and Section 7.1, when assessing the possibility of
rock failure at an excavation boundary, the applicable compressive strength parameter
of the rock mass is the crack initiation stress, o.;. For design purposes, the tensile
strength of the rock mass is taken to be universally zero.

Prediction of the extent of boundary failure may be illustrated by reference to a
circular excavation in a biaxial stress field, as shown in Figure 7.16. Boundary stresses
are given by the expression

ogp = p[1 + K +2(1 — K)cos 28]

For a rock mass with a crack initiation stress, o, of 16 MPa (perhaps corresponding
to a uniaxial strength of the rock material of about 50 MPa), the data of Figure 7.16
indicate that compressive failure or spalling of the boundary rock occurs over intervals
defined by

7.5[1.3 4 1.4cos260] > 16
i.e. for O given by
—26° < 0 <26° or 154° < 6 < 206°
Similarly, boundary tensile failure occurs over intervals satisfying the condition

7.5[1.3+1.4cos20] <0
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Figure 7.17 Maps of zones of fail-
ure (dark areas) and damage (indi-
cated by microseismic events) com-
pared with the constant deviator stress
damage criterion of 75 MPa for a cir-
cular excavation in Lac du Bonnet
granite (after Martin, 1997).

DELINEATION OF ZONES OF ROCK FAILURE

)
2
SN
S\
\
\
H
;
.
Q \ ¢
|
Q

» h
1793=
N\ _____ 80 (Damage limit)

Microseismic
event

-2

-2 -1 0 1 2 3m
i.e
79° < 0 < 101° or 249° < 9 < 281°

These intervals are illustrated in Figure 7.16. The extent of these zones, relative to
the excavation perimeter, is sufficient to imply that the opening, as designed, may not
perform its specified function without change in shape or installation of support and
reinforcement. One possible design response could be to increase the height of the
opening relative to the width.

For arbitrarily shaped openings, assessment of boundary failure involves compar-
ison of computed boundary stresses and the uniaxial strength parameters.

Determination of the extent of failure zones close to the boundary of an excavation
is based on consideration of the detail of the stress distribution close to the opening.
It involves comparison of the state of stress in the near field of the excavation with the
rock mass damage criterion. An illustration of the procedure is provided by Martin
(1997) for a circular excavation in Lac du Bonnet granite, as shown in Figure 7.17.
In this case, contours of the maximum deviator stress (o7 — 03) are plotted near the
boundary of the excavation, and the known criterion for crack initiation in the rock
mass is defined by a maximum deviator stress of about 75 MPa. From the plots of
spalling failure and location of microseismic events, it is seen that the 75 MPa contour
bounds the observed zones of damage and rock failure in the excavation boundary.
The independent observations of spalling and damage confirm that the analysis has
predicted quite well the failure domain around the excavation.

The constant deviator stress criterion is valid for the stress path and confinement
conditions near the boundary of an excavation (within say one radius or so of the
boundary). For the more general case of mapping zones of failure in the interior of
a rock mass, the relevant rock mass strength is the long-term triaxial strength, which
is the triaxial criterion based on the long-term uniaxial strength, o.q. The failure
criterion in this case can be constructed from the generic Hoek-Brown criterion using
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Figure 7.18 Contour plots of prin-
cipal stress, and stress trajectories,
around an ovaloidal opening in a bi-
axial stress field (after Eissa, 1980).

EXCAVATION DESIGN IN MASSIVE ELASTIC ROCK

the appropriate m and s values for the rock mass and replacing o, by oq. For purposes
of illustration of the method, defining the zone of failure involves examination of
contour plots of the principal stresses, similar to the stress maps showns in Figure
7.18. For more general shapes of openings, such stress contour maps are readily
generated and displayed using computational techniques.

Mapping of the zone of failure uses the rock mass failure criterion and the stress
contour maps in the following way. Various values of 03(0.05p, 0.1 p, etc.) are used to
calculate corresponding, limiting values of O'I(f) from the failure criterion. The contour
plots of o} and o3 are superimposed. Selecting a particular o3 isobar, the intersection
is found with the oy isobar which satisfies the failure criterion. Repetition of this
process for the various values of g3 generates a set of points which together define
the boundary of the failure domain.

When dealing computationally with failure domain delineation, explicit generation
of principal stress contour maps is not required. At any interior point, the computed
state of stress is inserted directly into the failure criterion to determine local rock
behaviour. The condition at a large number of locations throughout the rock mass can
be displayed symbolically on a computer graphics terminal, for visual identification
of the failure zone.
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Failure domains determined in the manner discussed are not described accurately.
This can be appreciated from the observation that any rock failure causes a change
in the geometry of the elastic domain, which can cause further failure. That is, the
problem is a non-linear one, and the solution procedure suggested here examines only
the initial, linear component of the problem. For mining engineering purposes, the
suggested procedure is usually adequate.

7.6 Support and reinforcement of massive rock

Mining activity frequently takes place under conditions sufficient to induce exten-
sive failure around mine access and production openings. An understanding of the
mechanics of the techniques exploited to control the performance of fractured rock
is therefore basic to effective mining practice under these conditions. In this section,
some basic principles of rock support and reinforcement are introduced. This dis-
cussion is extended and a discussion of practical methods and procedures is given in
Chapter 11.

In evaluating the possible mechanical roles of a support system, it is instructive to
consider the effect of support on the elastic stress distribution in the rock medium.
One function of support is taken to be the application or development of a support
load at the excavation surface. It is assumed initially that this is uniformly distributed
over the boundary.

Figure 7.19a shows an elliptical opening with width/height ratio of 4, in a stress
field with vertical stress 20 MPa and horizontal stress 8§ MPa. Boundary stresses at
points A and B in the sidewall and crown of the excavation may be calculated directly
from equations 7.6 and 7.7, i.e.

oa = 172.0 MPa, og = —8.0 MPa

If a set of vertical supports is installed, sufficient to generate a vertical load of
1 MNm~2 uniformly distributed over the excavation surface, the boundary stresses
around the supported excavation can be determined from the superposition scheme
shown in Figure 7.19b. Thus

OAl = Oa2 +0a3

8
1+19({1——+8
* ( 19+>

= 161.0 MPa

o] = Op2 + 0B3
8 2x8 1
—0+19(— -1+ x -
* <19 LT X4>

= —7.0 MPa

From these results, it is concluded that support pressure does not modify the elastic
stress distribution around an underground opening significantly. If failure of the rock
mass is possible in the absence of support, installation of support is unlikely to modify
the stress distribution sufficiently to preclude development of failure. It is therefore
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Figure 7.19 Problem geometry for
determining the effect of support
load on the elastic stress distribution
around an elliptical opening.
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necessary to consider other mechanisms to explain the mode of action of support and
reinforcement systems.

The following example is intended to illustrate the main features of the function
of surface support on excavation peripheral rock, and is based on an analysis by
Ladanyi (1974). It is not a basis for comprehensive description of the interaction
between installed support and tunnel peripheral rock, which is a more complex,
statically indeterminate problem. The problem geometry is shown in Figure 7.20a,
with a circular opening excavated in a medium subject to hydrostatic stress. The field
stresses and rock mass strength are such that an annulus of failed rock is generated in
the excavation periphery. The main questions are the relation between the radius, .,
of the failed zone, the applied support presure, p;, and the stress distribution in the
fractured rock and elastic domains. It is assumed that the strength of the rock mass is
described by a Mohr—Coulomb criterion, i.e.

(1 + sin &) 2c¢ cos ¢
03(1 —sing) 1 —sind

o] =
or
o = boz + Cy (7.9)
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Figure 7.20 Stress distribution
around a circular opening in a hydro-
static stress field, due to development
of a fracture zone.

SUPPORT AND REINFORCEMENT OF MASSIVE ROCK
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The strength of fractured rock is taken to be purely frictional, with the limiting state
of stress within the fractured rock mass defined by

(1 + sin ")
B = sindh

o] =
or

(7.10)

o =doy

where &' is the angle of friction for fractured rock.
Since the problem is axisymmetric, there is only one differential equation of equi-
librium,

dO-rr _ Opp — Opr

7.11
dr r ( )

This condition is to be satisfied throughout the problem domain. In the fractured rock,
ogg and o, are related through equation 7.10, since limiting friction is assumed in
the fractured medium. Introducing equations 7.10 into equation 7.11, gives

doy, Orr

ar @D

Integrating this expression, and introducing the boundary condition, o,, = p; when
r = a, yields the stress distribution relations

ryd—1
Orr = Pi (_)
a

ryd—1
Coo = dp; (-)
a

(7.12)

Equations 7.12 are satisfied throughout the fractured domain and on its bound-
aries. At the outer limit of the fractured annulus, fractured rock is in equilibrium
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with intact, elastic rock. If p; is the equilibrium radial stress at the annulus outer

boundary, r.,

or

1/d—1)
re=a (ﬂ) (7.13)
Pi

Simple superposition indicates that the stress distribution in the elastic zone is
defined by
2 2
r I
0’69=P<1+r—;)—171r—52

2 2
r r
rr=P(1_r_§)+P1r%

At the inner boundary of the elastic zone, the state of stress is defined by

(7.14)

Ogp = 2p — pP1, Oy = DI

This state of stress must represent the limiting state for intact rock, i.e. substituting
for oyg(01) and o,,(03) in equation 7.9 gives

2p—p1r=bp1 +Cy

or
pL = % (7.15)

Substitution of equation 7.15 in equation 7.13 yields
Te =a [(21’;—;)6;}1/((11) (7.16)

Equations 7.12, 7.14, and 7.16, together with the support pressure, field stresses and
rock properties, completely define the stress distribution and fracture domain in the
periphery of the opening.

A numerical example provides some insight into the operational function of in-
stalled support. Choosing particular values of ¢ and ¢ of 35°, p; = 0.05p and
Co = 0.5p, leads to r. = 1.99a. The stress distribution around the opening is shown
in Figure 7.20b. The main features of the stress distribution are, first, the high and in-
creasing gradient in the radial variation of oy, both in an absolute sense and compared
with that for o,,; and secondly, the significant step increase in gyg at the interface
between the fractured and intact domains. These results suggest that the primary role
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P = 13.75 MPa
P,y = 19.25 MPa
Pry = 4.76 MPa

y

PROBLEMS

of installed support in massive rock subject to peripheral failure is to maintain ra-
dial continuity of contact between rock fragments. It also serves to generate a radial
confining stress at the excavation boundary. The mode of action of the support is
to generate and maintain a high triaxial state of stress in the fractured domain, by
mobilising friction between the surfaces of the rock fragments. The significance of
frictional action in the fractured rock can be readily appreciated from equation 7.16.
This indicates that the radius of the fractured zone is proportional to some power of
the friction parameter.

A significant issue neglected in this analysis is the dilatancy of undisturbed, frac-
tured rock. The inclusion of a dilatancy term would result in a significant increase
in the effective angle of friction of the fractured material, and a consequent marked
increase in effectiveness of the installed support.

Problems

1 Along opening of circular cross section is located 1000 m below ground surface. In
the plane perpendicular to the tunnel axis, the field principal stresses are vertical and
horizontal. The vertical stress p is equal to the depth stress, and the horizontal stress
is defined by 0.28 p. The unit weight of the rock mass is 27 kN m~>, the compressive
strength is defined by a Coulomb criterion with ¢ = 20 MPa, ¢ = 25°, and the tensile
strength by Ty = 0.

(a) Predict the response of the excavation peripheral rock to the given conditions.
(b) Propose an alternative design for the excavation.

2 The figure on the left represents a cross section through a long opening. The
magnitudes of the plane components of the field stresses are p,, = 13.75MPa, p,, =
19.25 MPa, p,, = 4.76 MPa, expressed relative to the reference axes shown.

(a) Calculate the maximum and minimum boundary stresses in the excavation
perimeter, defining the locations of the relevant points.

(b) If the strength of the rock mass is defined by a maximum shear strength criterion,
and the shear strength is 20 MPa, estimate the extent of boundary failure, in terms
of the angular range over the perimeter.

(c) Comment on the significance of this result for any mining operations in the
opening.

3 The figure overleaf shows the locations of two vertical, parallel shafts, each 4 m
in diameter. The pre-mining stress field is defined by p,, = p,, = p;; = 20 MPa.
Estimate approximate values for the boundary stresses around each opening, and
calculate the principal stresses at point A, and their orientations.

4 In the development of a haulage level in a mine, a horizontal opening horseshoe
cross section, 4 m wide and 4 m high, is to be mined parallel to an existing haulageway
of the same cross section and on the same horizon. The field principal stresses are
p(vertical) and 0.5p (horizontal). Ignoring any boundary loosening due to blasting
effects, propose a minimum distance between the centrelines of the haulageways
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20 MPa

20 MPa

v,
0>
y

such that, during development of the second opening, no support problem or local
instability is produced in the existing opening.

5 The figure below shows a horizontal section through the midheight of a vertical,
lenticular orebody. The orebody is mined with long vertical blast holes in such a
way that a slot approximately elliptical in a horizontal section is extended along
the strike of the orebody. The field principal stresses in the horizontal plane are of
magnitudes 25 MPa and 10 MPa, and oriented as shown. For the case where the length
(L)/breadth (B) ratio of the mined excavation is 2.8, determine the magnitudes and
corresponding locations of the maximum and minimum boundary stresses. If the rock

Kp = 10 MPa o
pe -
\ boundary /5 =25 MPa
45° /

o — orebody
- T ~——————outline
~_ - orebody

= = long axis

mass tensile strength is zero, and compressive failure is defined by a Coulomb law
with ¢ = 30 MPa, ¢ = 30°, determine the likelihood of boundary failure. Assess the
consequences of the results for mining activity.

B (
S
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6 The figure below represents a plan view of a vertical shaft, with a clay-filled
fault located near the shaft boundary. The state of stress at the particular horizon
is hydrostatic, of magnitude 8 MPa. The resistance to slip on the fault is purely
cohesive, and of magnitude 1.5 MPa.

Determine the maximum shear stress generated on the fault after development of
the shaft, and determine if the elastic stress distribution can be maintained.

Lo
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Figure 8.1 An excavation in a strat-
ified rock mass, with geometry con-
forming with dominant rock structure.

Excavation design in
stratified rock

8.1 Design factors

Tabular orebodies hosted by stratified rock masses are quite common in mining prac-
tice. An orebody in a sedimentary setting is typically conformable with the surround-
ing rock in which the stratification is associated with bedding planes, foliation or
related depositional features. The main geometric characteristics of these features are
their planar geometry and their persistence. They can be assumed to be continuous
over plan areas greater than that of any excavation created during mining. There are
two principal engineering properties of bedding planes which are significant in an
underground mining context. The first is the low or zero tensile strength in the di-
rection perpendicular to the bedding plane. The second is the relatively low shear
strength of the surfaces, compared with that of the intact rock. Both these properties
introduce specific modes of rock mass response to mining, which must be considered
in the excavation design procedure. An associated issue is that, for flat-lying strati-
form orebodies, the typical mining method involves entry of personnel into the mined
void. The performance of the bed of rock spanning the excavation, i.e. the immediate
roof, then assumes particular importance in maintaining geomechanically sound and
operationally safe mine workplaces.

Excavations in a stratified rock mass are usually mined to a cross-sectional geometry
in which the immediate roof and floor of the excavation coincide with bedding planes,
as illustrated in Figure 8.1. Factors to be considered in the design of such an excavation
include:

(a) the state of stress at the excavation boundary and in the interior of the rock
medium, compared with the strength of the anisotropic rock mass;

(b) the stability of the immediate roof;

(c) floor heave in the excavation.

roof bed
immediate
roof (back)
| | 1 1 | 1 1 | | L 1
L T T T T 1 T 01 T T 1
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Figure 8.2  Slip-prone zones around
an excavation in stratified rock.

ROCK MASS RESPONSE TO MINING

In addressing these three different design factors, it is necessary to consider different
deformation modes of the excavation near-field rock. For example, the first factor
reflects concern with surface spalling and internal fracture in the rock medium, in the
post-excavation stress field. The second factor involves the problem of detachment
of the immediate roof from the host medium, and its loading and deflection into the
mined void under gravity loading. The third problem, floor heave, is an issue where
the floor rocks are relatively weak and the material yields under the stresses operating
beneath the excavation side walls. It is a problem more frequently encountered in a
room-and-pillar mining layout, rather than in designing a single excavation.

Since an excavation design must satisfy different rock mass performance criteria
for the various modes of rock response, it is clear that a number of different analytical
methods are to be employed in the design process. It also implies that it may be neces-
sary to iterate in the design process, to satisfy the various performance requirements
simultaneously.

8.2 Rock mass response to mining

Adverse performance of the rock mass in the post-excavation stress field may be
caused by either failure of the anisotropic medium or slip on the pervasive weakness
planes. The initial phase of the design process involves determining the elastic stress
distribution in the medium around the selected excavation configuration. Following
the procedure proposed for an excavation in massive elastic rock, one can then define
any zones of tensile stress, or compressive stress exceeding the strength of the rock
mass. The excavation shape may be modified to eliminate or restrict these zones,
or alternatively, the extent of domains requiring support and reinforcement may be
defined. Concurrently, it is necessary to determine the extent of the zone around the
excavation in which slip can occur on bedding planes.

The criterion for slip on bedding planes is obtained from the shear strength of the
surfaces. For the reference axes illustrated in Figure 8.2, interbed slip is possible if

lozx| = o tand + ¢ (8.1)

Hence, evaluation of the extent of slip requires that the stress components o, and o,
be determined, from the results of the elastic stress analysis, at points coinciding with

”’,/’:,” /,//‘ A L7/, areas prone
// to interbed
z 77 dlip

S A A
Z zu”
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(a)

sense of slip
around haunches

of excavation

Figure 8.3 The effects of slip and
separation on excavation peripheral
rock.

EXCAVATION DESIGN IN STRATIFIED ROCK

cracks/joints
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interbed slip separation at bedding plane

detached
roof bed

the locations of bedding planes. The particular zones to be examined are the roof and
haunches of the excavation. It is then a relatively simple matter to map the domains
where the elastic stresses satisfy the criterion for slip. Of course, the mapped zones
do not indicate the complete extent of potential slip, but they can be used to obtain a
reasonable impression of the mining significance of the problem. The design process
seeks to limit the extent of the slip domain, while simultaneously restricting the extent
of any other adverse rock mass response.

Potential slip on bedding planes is a general problem in design in a stratified
rock mass. Its extent is clearly related to the pre-mining stress field and the planned
shape of the excavation. As a general rule, a problem configuration in which the
span/bed thickness ratio (s/¢) is low will be subject to slip only in the haunch area.
This may be expressed in the rock mass as the opening of cracks subperpendicular
to bedding, perhaps coincident with any cross joints in the medium, as illustrated
in Figure 8.3a. For a configuration in which the s/¢ ratio is high (i.e. beds rela-
tively thin compared with excavation span), the zone of slip may include virtually
the complete span of the immediate roof. Since the sense of slip on bedding is such
as to cause inward displacement towards the span centreline of beds, the tendency
is for isolation of the lower bed, at its centre, from the one immediately above it.
Separation of a roof bed from its uppermost neighbour is highly significant because
it implies loss of support of the roof by the overlying beds, as can be appreciated
from Figure 8.3b. Prior to decoupling of the roof layer, its gravitational load is car-
ried in part by the more extensive volume of rock in which the layer is embed-
ded. After detachment of the roof, the bed itself must support its full gravitational
load.

Reference to Figure 8.3 gives some indication of the types of problem presented
by design of roof spans in strata-bound excavations. For thick roof strata, any slip
and cracking over the haunches would appear to introduce the possibility of failure
by shear displacement of the roof bed past the abutment. For thin roof strata, the
implied problem is one of stability of the roof bed under the deflection and lateral
thrust associated with detachment and gravity loading.
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8.3 Roof bed deformation mechanics

Prediction and control of the deformation behaviour of the immediate roof of an
opening has been the subject of formal engineering investigation for more than a
century. Fayol (1885) published the results of investigations of the behaviour of
stacks of beams spanning a simple support system, simulating the bedding sequence
of a roof span. By noting the deflection of the lowest beam as successive beams
were loaded onto the stack, Fayol demonstrated that, at a certain stage, none of the
added load of an upper beam was carried by the lowest member. The gravitational
load of the uppermost beams was clearly being transferred laterally to the supports,
rather than vertically, as transverse loading of the lower members. The process of
lateral load distribution, associated with friction mobilised between the surfaces of
the upper beams, was described as arching. The basic concept proposed by Fayol
was that a rock arch was generated above a mine opening in a stratified mass, with the
rock beds between the excavation roof and the rock arch constituting an effectively
decoupled immediate roof for the opening. Fayol proceeded to apply his results to
surface subsidence phenomena, rather than to underground excavation design.

The first rigorous analysis of roof bed performance was attempted by Jones and
Llewellyn-Davies (1929). They mapped the morphology of roof failures, and sought
to explain the localisation of failure in terms of arching principles. Bucky and Taborelli
(1938) studied physical models of the creation and extension of wide roof spans. They
used initially intact beams of rock-like material, and found that, at a particular span, a
vertical tension fracture was induced at the centre of the lower beam. Increase in the
mined span produced a new central fracture, and closed the earlier fracture. This sug-
gested that the central fracture is the dominant transverse discontinuity in the roof bed.

Recognising the relation between vertical deflection, lateral thrust and stability
of a naturally or artificially fractured roof bed, Evans (1941) undertook a seminal
set of investigations of roof deformation mechanics at the Royal School of Mines.
This work established the notion of a ‘voussoir beam’ spanning an excavation, using
the analogy with the voussoir arch considered in masonry structures. Evans also
developed an analytical procedure for assessing roof beam stability, but an error in
statics and failure to handle the basic indeterminacy of the problem limited its practical
application.

Significant experimental and computational investigations of roof bed mechanics
subsequent to those by Evans (1941) have been reported by Adler and Sun (1968),
Barker and Hatt (1972), Wright (1972, 1974) and Sterling (1980). The experimen-
tal studies by Sterling capture many of the key conclusions of the work by other
researchers and provide insights into the deformation and failure modes of roof rock.

The experimental arrangement used by Sterling is illustrated in Figure 8.4. A rock
beam, of typical dimensions 660 mm x 75 mm x 75 mm, was constrained between
steel end plates linked by strain-gauged tie rods. The beam was loaded transversely by
aservocontrolled testing machine and a load spreading system. The experiment design
provided data on applied transverse load, induced beam deflection, induced lateral
thrust, and eccentricity of the lateral thrust. The typical response of an initially intact
limestone beam is given in Figure 8.5. The load—deflection plot, shown in Figure
8.5a, shows an initial elastic range (0—1). At this stage a transverse, central crack
developed in the beam, accompanied, in the test rig, by a relaxation of the applied
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Figure 8.4 Experimental apparatus
for testing the load—deflection be-
haviour of roof beams (after Sterling,
1980).

Figure 8.5 (a) Load—deflection and
(b) induced lateral thrust-transverse
load plots, for laterally constrained
rock beams (after Sterling, 1980).
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load, at constant transverse deflection. Increase in transverse load produced a linear
load—deflection plot (2—7). Loading and unloading in the range 2—7 was reversible,
and the downward extension of the plot is observed to pass through the origin. Load
increase (7—10) produced a pronounced non-linear response, accompanied physically
by local crushing at either the top centre of the beam or lower edges of the beam ends.
Subsequent loading showed decreased load capacity at increased deflection (10-17),
accompanied by spalling at the upper centre or lower ends of the specimen, and finally
localised specimen disintegration.

The main features of the load—deflection plot are confirmed by the plot of lateral
thrust and vertical load (Figure 8.5b). From the small original thrust corresponding to
lateral prestress, the initial response (0-1) is flat, corresponding to continuous, elastic
behaviour of the beam. Central vertical cracking of the beam (1-2) with increase in
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Figure 8.6 Results of linked d.e.—
b.e. analysis of an excavation in strat-
ified rock.

ROOF BED DEFORMATION MECHANICS

lateral thrust, reflects the significance of induced thrust in determining the subsequent
performance of the voussoir beam. The linear range of response (2—7) was reversible,
and extrapolates downwards to the original loading conditions. Past the peak load
capacity of the beam (10), the reducing lateral thrust caused by local spalling results
in reduced vertical load capacity for the beam.

This and other tests conducted by Sterling allow formulation of the following
principles concerning roof rock behaviour over mined spans:

(a) roof beds cannot be simulated by continuous, elastic beams or plates, since their
behaviour is dominated by the blocks (voussoirs) generated by natural cross
joints or induced transverse fractures;

(b) roof bed behaviour is determined by the lateral thrusts generated by deflection,
under gravity loading, of the voussoir beam against the confinement of the abut-
ting rock;

(c) a voussoir beam behaves elastically (i.e. the lateral thrust — vertical deflection
plot is linear and reversible) over the range of its satisfactory performance, the
upper limit of which approaches the peak transverse load capacity;

(d) for a voussoir beam with low span/thickness ratio, the most likely failure mode
is shear failure at the abutments;

(e) for a roof with high span/thickness ratio, roof span stability is limited by the
possibility of buckling of the beam, with no significant spalling of central or
abutment voussoirs;

(f) aroof with low rock material strength or moderate span/thickness ratio may fail
by crushing or spalling of central or abutment voussoirs.

An alternative study of the performance of excavations in bedded and jointed rock
led to conclusions consistent with the model developed from experimental observa-
tions. Lorig and Brady (1983) describe application of a linked boundary element—
distinct element (b.e.—d.e.) computational scheme to analysis of roof deformation
mechanics. The key results of the analysis are indicated in Figure 8.6. Slip is ob-
served over the abutments of the excavation, the immediate roof bed detaches from
the overlying strata, and tension cracks open in the centre of the roof span. The
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Figure 8.7 Free body diagrams and
notation for analysis of voussoir beam
(after Diederichs and Kaiser, 1999a).

EXCAVATION DESIGN IN STRATIFIED ROCK

distributions of normal stress and shear stress in the roof bed were generally consis-
tent with the voussoir beam model proposed by Evans (1941), and considered below.
One notable difference was observed between the Evans model and the results of
the numerical study. This was that bed separation, proposed by Evans to include
the complete excavation span, was indicated over only the centre of the span in the
computational analysis.

8.4 Roof design procedure for plane strain

A design procedure for roof beams was developed by Evans (1941) and modified
by Beer and Meek (1982). Subsequently Sofianos (1996) and Diederichs and Kaiser
(1999a) noted some limitations in a simplified version of Beer and Meek’s method pre-
sented by Brady and Brown (1985) and proposed alternative ways of tackling the static
indeterminacy of roof bed analysis. The design procedures proposed here draw on the
approaches of Evans, Brady and Brown, Diederichs and Kaiser, and Sofianos. More
comprehensive analyses are reported by Sofianos (1996) and Diederichs and Kaiser
(1999a). It should be noted that the solution procedures of Sofianos and Diederichs
and Kaiser assume different conceptual models for a roof beam, and consequently
the results of analyses of static stability and beam deflection differ considerably. A
valuable discussion of the differences between the two models is provided by Sofianos
(1999) and Diederichs and Kaiser (1999b). The analysis which follows immediately is
based on the formulation of Diederichs and Kaiser, which is a revision and extension
of that proposed by Brady and Brown (1985).

The voussoir beam model for a roof bed is illustrated in Figure 8.7a, and the forces
operating in the system are defined in Figure 8.7b. The essential idea conveyed in
the figures is that, in the equilibrium condition, the lateral thrust is not transmitted
either uniformly or axially through the beam cross section. The section of the beam
transmitting lateral load is assumed to be approximated by the parabolic arch traced
on the beam span. Since various experimental investigations support the intuitive
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ROOF DESIGN PROCEDURE FOR PLANE STRAIN

idea that the central transverse crack determines the deformational behaviour of the
discontinuous beam, the problem may be analysed in terms of the problem geometry
illustrated in Figure 8.7b. The three possible failure modes discussed earlier can be
readily appreciated from the problem configuration. These are: shear at the abutment
when the limiting shear resistance, T tan ¢, is less than the required abutment vertical
reaction V(= %W); crushing at the hinges formed in the beam crown and lower
abutment contacts; buckling of the roof beam with increasing eccentricity of lateral
thrust, and a consequent tendency to form a ‘snap-through’ mechanism. Each of these
modes is examined in the following analysis.

8.4.1 Load distribution

In analysing the performance of a roof bed in terms of a voussoir beam, it is observed
that the problem is fundamentally indeterminate. A solution is obtained in the current
analysis only by making particular assumptions concerning the load distribution in
the system and the line of action of resultant forces. In particular, the locus of the
horizontal reaction force or line of thrust in the beam is assumed to trace a parabolic
arch on the longitudinal vertical section of the jointed beam. The other assumption is
that triangular load distributions operate over the abutment surfaces of the beam and at
the central section, as shown in Figure 8.7b. These distributions are reasonable since
roof beam deformation mechanics suggest that elastic hinges form in these positions,
by opening or formation of transverse cracks.

8.4.2 Analysis and design

The problem geometry for the analysis is illustrated in Figure 8.7. The roof beam
in Figure 8.7b, of span s, thickness ¢ and unit weight vy, supports its own weight
W by vertical deflection and induced lateral compression. The triangular end load
distributions each operate over a depth 4 = nt of the beam depth and unit thickness
is considered in the out-of-plane direction. In Figure 8.7b, the line of action of the
resultant of each distributed load acts horizontally through the centroid of each distri-
bution. In the undeflected position of the beam, the moment arm for the couple acting
at the centre and abutment of the beam is z, and after displacement to the equilibrium
position, the moment arm is z. As shown in Figure 8.7b, the vertical deflection & at
the beam centre is given by

3= 20 — <2 (8~2)

From the geometry in Figure 8.7b, the fractional loaded section n of the beam is
defined by

8.3)
and the moment arm z is given by

Moment equilibrium of the free body illustrated in Figure 8.7b requires that the active
couple My associated with the gravitational load and the equilibrating abutment shear
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Figure 8.8 Assumed distributions
of axial compressive stress and
parabolic thrust line (after Diederichs
and Kaiser, 1999a).

EXCAVATION DESIGN IN STRATIFIED ROCK

force, V, be balanced by the resisting moment Mg of the distributed end loads,
ie.

M =4yt s>=Mg=13foniz (8.5)
or
1vs?
fe= i (8.6)
nzg

where f. is the maximum compressive stress acting in the beam, operating at the
bottom edge at the abutment and at the top edge at the centre of the span.

Analysis of the three modes of roof instability involves determination of f.,n and z.
Following Sofianos (1996), Diederichs and Kaiser (1999) showed that the assumption
of Evans of n = 0.5 was inadequate, that the iterative method proposed by Brady and
Brown (1985) was appropriate for small deflections, but that convergence and stability
in the solution procedure could be improved.

The solution procedure begins with an assumption of the initial moment arm prior
to deflection, z,, which is given by

zo=1(1—3n) (8.6)
The length L of the parabolic reaction arch is given by
8 2
L=st % 8.7)
3s

To calculate the elastic shortening of the arch and the central deflection of the arch
through equation 8.2, an assumption must be made about the distribution of axial
compressive stress over the longitudinal vertical section of the beam. In their original
relaxation analysis, Brady and Brown (1985) assumed the bilinear variation shown
in Figure 8.8a. From various numerical studies, Diederichs and Kaiser proposed that
a better approximation for the simple, two-member voussoir beam is the quadratic
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variation shown in Figure 8.8a, described by a minimum in f. at a distance s/2./2
from the midspan. For this distribution, the average longitudinal stress in the beam is
given by

fo=3f(5+n) 8.8)
Elastic shortening of the arch accompanying vertical deflection is then given by
AL = L& (8.9)
E

where E is the Young’s modulus of the rock mass in the direction parallel to the beam
axis.

The elastic shortening of the arch due to downward deflection of the arch at midspan
produces a new reaction moment arm given by

_[3 (8% _ap 1/2 (8.10)
‘T \3 :

The deflection at midspan given by equation 8.2 is determinate only if the term within
the square brackets in equation 8.10 is positive. A negative value implies that the
moment arm is notionally negative; i.e. the critical deflection of the beam has been
exceeded, and snap-though failure or buckling instability of the beam is indicated for
the specified value of arch compression thickness, nt.

In solving for the equilibrium deformation of the beam, the objective is to find the
pair of values of n and z which satisfies the set of equations 8.2-8.10. The original
analysis by Evans (1941) was based on the assumption of n = 0.5. Brady and Brown
(1985) proposed a relaxation method to determine n and z simultaneously. Due to some
convergence problems with the relaxation method, Kaiser and Diederichs showed that
to provide an efficient and quick analysis, the value of n could best be evaluated in
a stepwise incremental fashion, to provide direct solution for the lever arm z using
equation 8.4. The equilibrium values of n and z are assumed to correspond to the
minimum in the value of f, returned in the stepwise incrementation of n, in steps of
0.01, over the range 0.0—1.0. The flow chart for the analysis is provided in Figure 8.9.
A notable conclusion of some scoping studies was that n is around 0.75 for stable
beams at equilibrium, and drops to below 0.5 as critical (unstable) beam geometry
is approached. As a point of interest, 0.75 is the equilibrium value for n returned
consistently in the analysis reported by Brady and Brown (1985). Later it is recorded
that Sofianos (1996) reported considerably lower values for the equilibrium value of
n.

Having obtained equilibrium values for n and z, the factors of safety against the
various modes of failure can be estimated from the other problem parameters and
rock mass properties. For the crushing mode of failure, which will be localized at the
lower abutments and at top midspan, the factor of safety against crushing is given by

Oc

Fof S¢rush = — (8.11)
"R

The value of o, for the rock mass needs to be considered carefully. For isotropic
rocks, the long term strength of the rock mass is about 50% of the laboratory o,
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Figure 8.9 Flow chart for the deter-
mination of stability and deflection of
a voussoir beam (after Diederichs and
Kaiser, 1999a).

EXCAVATION DESIGN IN STRATIFIED ROCK

1)
2

1)

12)

13)

4)

value (Martin, 1997). For foliated and many sedimentary rocks, the rock fabric is
characterised by a plane of weakness parallel to the main structural features. The
theory for the strength of a rock mass containing a single set of uniformly oriented
planes of weakness is presented in Chapter 4. It indicates that a small inclination
of the planes of weakness to the direction of the major principal stress results in a
significant reduction in the compressive strength. Thus a prudent evaluation of the
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ROOF BEAM ANALYSIS FOR LARGE VERTICAL DEFLECTION

potential for compressive failure of the roof beam should be based on the minimum
value for o, for the transversely isotropic rock unit.

The possibility of shear failure of the roof beam by slip at the abutments can be
assessed directly from the calculated beam loads. Referring to Figure 8.7b, the lateral
thrust, 7', at the abutment must mobilise a frictional resistance to slip sufficient to
provide the abutment shear force, V. The maximum shear force that can be mobilised
is

F =T tanp = %fc nt tange
and the abutment shear force is given by
V = %y st
The factor of safety against abutment shear failure is therefore defined by

FoSgip = % tan @ (8.12)

To establish an engineering estimate for the yield threshold of the buckling limit, a
relation between the midspan deflection, 8, and the beam thickness, 7, was proposed.
In various numerical studies, it was found that ultimate failure corresponded to a
displacement equivalent to approximately 0.25 ¢. The onset of non-linear behaviour
was observed to occur at a deflection equivalent to about 0.1 7. That value was proposed
as an allowable yield limit in roof design.

8.5 Roof beam analysis for large vertical deflection

The preceding analysis was based on the implicit assumption that the mechanics of
a voussoir beam were controlled by the central vertical crack and involved small
vertical deflections of the roof. The problem could then be solved from simple statics
using the free body diagram of Figure 8.7. In a more exhaustive analysis, Sofianos
(1996) allowed for the possibility of large vertical deflections of the roof beam. He
showed that the assumption by Evans of n = 0.5 was inadequate, and that the iterative
method proposed by Brady and Brown (1985) was appropriate for small defections
only. Starting from the free body diagram of Figure 8.7, and using a slightly different
notation with oy in place of f., the moment equilibrium equation is

My = %’yts2 =Mr = %(rxx ntz (8.13)
or
1 2
Pt L (8.14)
4 nz

The problem is to find the equilibrium values of oy, , n and z. Sofianos proposed that
to provide an eff